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Abstract

Genome wide association (GWA) studies, which test for association between common genetic markers and a disease
phenotype, have shown varying degrees of success. While many factors could potentially confound GWA studies, we focus
on the possibility that multiple, rare variants (RVs) may act in concert to influence disease etiology. Here, we describe an
algorithm for RV analysis, RARECOVER. The algorithm combines a disparate collection of RVs with low effect and modest
penetrance. Further, it does not require the rare variants be adjacent in location. Extensive simulations over a range of
assumed penetrance and population attributable risk (PAR) values illustrate the power of our approach over other
published methods, including the collapsing and weighted-collapsing strategies. To showcase the method, we apply
RARECOVER to re-sequencing data from a cohort of 289 individuals at the extremes of Body Mass Index distribution
(NCT00263042). Individual samples were re-sequenced at two genes, FAAH and MGLL, known to be involved in
endocannabinoid metabolism (187Kbp for 148 obese and 150 controls). The RARECOVER analysis identifies exactly one
significantly associated region in each gene, each about 5 Kbp in the upstream regulatory regions. The data suggests that
the RVs help disrupt the expression of the two genes, leading to lowered metabolism of the corresponding cannabinoids.
Overall, our results point to the power of including RVs in measuring genetic associations.
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Introduction

The Common Disease, Common Variant (CDCV) hypothesis

[1–3] postulates that the etiology of common diseases is mediated by

commonly occurring genomic variants in a population. This has

served as the basis for genome wide association (GWA) studies that

test for association between individual genomic markers and the

disease phenotype. Using genome-wide panels of common SNPs,

GWA studies have been successful in identifying hundreds of

statistically significant associations for many common diseases as well

as several quantitative traits [4–7]. Nevertheless, the success of GWA

studies has been mixed. Significant genetic loci have not been

detected for several common diseases that are known to have a strong

genetic component [4]. Additionally, for many common diseases,

associations discovered in GWA studies can account for only a small

fraction of the heritability of the disease. While many factors could

potentially confound GWA studies, we focus on the possibility that

multiple, rare variants may act in concert to influence disease etiology.

The alternative to the CDCV hypothesis, the ‘Common

Disease, Rare Variant (CDRV)’ hypothesis has been the topic of

much recent debate [8], and has shown promise in explaining

disease etiology in multiple studies. For example, rare variants

(RVs) have been implicated in reduced sterol absorption and,

consequently, lower plasma levels of LDL [9,10] and colorectal

cancer [11]. While some studies have shown RVs to increase risk,

a recent study indicates that RVs also act ‘protectively’, with

multiple RVs in renal salt handling genes showing association with

reduced renal salt resorption and reduced risk of hypertension

[12]. Additionally, rare mutations in IFIH1 have been shown to

act protectively against type 1 diabetes [13].

The aforementioned studies and others focused on re-sequencing

of the coding regions of candidate genes using Sanger sequencing

(see Table 1 in Schork et al. [8] for a summary). Recent

technological advances in DNA sequencing have made it possible

to re-sequence large stretches of a genome in a cost-effective

manner. This is enabling large-scale studies of the impact of RVs on

complex diseases. However, several properties of rare variants make

their genetic effects difficult to detect with current approaches.

Bodmer and Bonilla provide an excellent review of the properties of

RVs, and the differences between rare, and common variant

analysis [14]. As an example, if a causal variant is rare (10{4
ƒ

MAF ƒ10{1), and the disease is common, then the allele’s

Population-Attributable-Risk (PAR), and consequently the odds-

ratio (OR), will be low. Additionally, even highly penetrant RVs are
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unlikely to be in Linkage Disequilibrium (LD) with more common

genetic variations that might be genotyped for an association study

of a common disease. Therefore, single-marker tests of association,

which exploit LD-based associations, are likely to have low power. If

the CDRV hypothesis holds, a combination of multiple RVs must

contribute to population risk. In this case, there is a challenge of

detecting multi-allelic association between a locus and the disease.

Methods to detect such associations are only just being

developed. A natural approach is a collapsing strategy, where

multiple RVs at a locus are collapsed into a single variant. Such

strategies have low power when ‘causal’ and neutral RVs are

combined (See for example, Li and Leal [15]). Madsen and

Browning have recently proposed a weighted-sum statistic to detect

loci in which disease individuals are enriched for rare variants [16].

In their approach, variants are weighted according to their

frequency in the unaffected sample, with low frequency variants

being weighted more heavily. Each individual is scored as a sum of

the weights of the mutations carried. The test then determines if the

diseased individuals are weighted more heavily than expected in a

null-model. Madsen and Browning show that with 50% of variants

in a group being causal and a combined odds ratio w15, the

weighted-sum statistic detects associations with high power. While

effective, this approach depends upon the inclusion of high

proportion of causal rare variants in the formation of the test

statistics and strong penetrance to detect significant association. In

their simulations, the PAR of the locus is partitioned equally among

all variants, an assumption that may not always hold.

The Combined Multivariate and Collapsing Method (CMC),

proposed by Li and Leal, combines variants into groups based upon

predefined criteria (e.g. allele frequency, function) [15]. An

individual has a ‘1’ for a group if any variant in the group is

carried and a ‘0’ otherwise. The CMC approach then considers

each of the groups in a multivariate analysis to explain disease risk.

This combination of the collapsing approach and multivariate

analysis results in an increase of power over single-marker and

multiple marker approaches. However, as Li and Leal point out, the

method relies on correct grouping of variants. The power is reduced

as functional variants are excluded and non-functional variants are

included in a group. Assignment of SNPs to incorrect groups may,

in fact, decrease power below that attainable through single marker

analysis. Indeed, a recent analysis by Manolio and colleagues

suggests that new methods might be needed when the causal

variants have both low PAR and low penetrance values [17].

Here, we focus on a model-free method, RARECOVER, that

collapses only a subset of the variants at a locus. Informally,

consider a locus L encoding a set S of rare variants. RARECOVER

associates L with a phenotype by measuring the strongest possible

association formed by collapsing any subset S’(S of variants at L.

At first glance, such an approach has many problems. First,

selecting an optimal subset of SNPs is computationally intensive,

scaling as 2DSD. We show that a greedy approach to selecting the

optimal subset scales linearly, making it feasible to conduct

associations on a large set of candidate loci.

A second confounding factor is that the large number of

different tests at a locus increase the likelihood of false association.

The adjustment required to control the type I error could decrease

the power of the method. However, extensive simulations show

otherwise. Our results suggest that moderately penetrant alleles

(RR§1:25) with small PAR (ƒ10%), and moderately sized

cohorts (*500 cases and *500 controls) are sufficient for

RARECOVER to detect significant association. This compares well

with the current power of single-marker GWA studies on common

variants, and outperforms other methods for RV detection.

We also applied RARECOVER to the analysis of two genes, FAAH,

and MGLL, in the endocannabinoid pathway in a large sequencing

study of obese and non-obese individuals. The endocannabinoid path-

way is an important mediator of a variety of neurological functions

[18,19]. Endocannabinoids, acting upon CB1 receptors in the brain,

the gastrointestinal tract, and a variety of other tissues, have been

shown to influence food intake and weight gain in animal models of

obesity. Using a selective endocannabinoid receptor (CB1) antagonist,

SR141716 (Rimonanabt; Sanofi-Synthelabo) leads to reduced food

intake in mice. Correspondingly, elevation of leptin levels have been

shown to decrease concentrations of endogenous CB1 agonists,

Anandamide, and 2-AG in mice, thereby reducing food-intake [20].

The FAAH and MGLL enzymes serve as regulators of endocanna-

binoid signaling in the brain [21], by catalyzing the hydrolysis of

endocannabinoid including anandamide (AEA), and 2-AG. Gene

expression studies in lean and obese women show significantly

decreased levels of AEA and 2-AG, as well as over-expression of CB1

and FAAH in lean, as opposed to obese women [22]. While evidence

points to a genetic association of these loci with obesity, multiple

recent studies using common SNPs in the FAAH region have failed to

confirm an association [23–26]. A Pro129Thr polymorphism was

tentatively associated with obesity in a cohort of Europe and and

Asian ancestry, but has not been replicated in other data [27].

We tested the hypothesis that multiple, rare alleles at these loci

are associated with obesity. We have used unpublished (submitted)

data from Frazer and colleagues, where the FAAH (31Kbp) and

MGLL (156Kbp) regions were re-sequenced using next generation

technologies in 148 obese and 150 non-obese individuals taken as

extremes of the body mass index distribution from subjects in a large

clinical trial (the CRESCENDO cohort, NCT00263042). The

resequencing identified a number of common, and rare variants in

the region. We applied RARECOVER to determine if multiple RVs,

i.e., allelic heterogeneity, mediated the genetic effects of FAAH and

MGLL on obesity. RARECOVER identified a single region at each

locus with permutation adjusted p-values of 0:002 and 0:001. In

each case, the significant locus was immediately upstream of the

gene, consistent with a regulatory function for the rare variants.

Author Summary

We focus on the problem of detecting multiple rare variants
(RVs) that act together to influence disease phenotypes. In
considering this problem, we argue that the detection of
causal rare variants must necessarily be different from
typical single-marker analysis used for common variants
and propose a novel algorithm, RARECOVER, to accomplish
this analysis. RARECOVER combines a disparate collection of
RVs, each with very low effect and modest penetrance.
Extensive simulations over a range of values for penetrance
and population attributable risk (PAR) illustrate the power
of our approach over other published methods, including
the collapsing and weighted-sum strategies. To showcase
the method, we applied RARECOVER to data from 289
individuals at the extremes of Body Mass Index distribution
(NCT00263042), sequenced around the FAAH and MGLL
genes. RARECOVER analysis identified exactly one significantly
associated region in each gene, each about 5Kbp in the
upstream regulatory regions. The data suggests that the
RVs help disrupt the expression of the two genes leading to
lowered metabolism of the corresponding endocannabi-
noids previously linked with obesity. Overall, our results
point to the power of including RVs in measuring genetic
associations, and suggest that whole genome, DNA
sequencing-based association studies investigating RV
effects are feasible.

Covering Method for Rare Variant Analysis
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Methods

Modeling RV association
We define a locus as a genomic region of fixed size (nucleotides).

Let S denote the set of RVs in the locus. We abuse notation

slightly by using S to also denote the locus itself. A case-control

study at S includes a set of individual genotypes. For genotype I ,

and RV s [S, let Is [ f0, 1, 2g denote the number of minor alleles

that genotype I carries for variant s. Extending the notation to

subsets, C(S of RVs, define IC~
P

s[C Is. For a subset C(S,

denote a union-variant AC as follows: individual I has the allele

AC~1 if and only if ICw0. Otherwise, AC~0. The union-variant

is a virtual construct that helps combine the effect of multiple RVs.

Let D~1 (respectively, D~0) represent the case (respectively,

control) status of an individual.

For an individual chosen at random, and C(S, let XCORR

(AC ,D) denote an association test statistic between the union-variant

AC and the disease status D. Here, we will use Pearson’s x2 as the

test-statistic, but the method remains unchanged for other measures.

Using this notation, the collapsing strategy described by Li and Leal

[15] uses the test-statistic XCORR (AS, D) to associate a locus S with

the disease. Instead, we define the association statistic for locus S by

Xcorr(S, D)~ max
C(S

Xcorr(AC , D) ð1Þ

The RARECOVER method
Our method, RARECOVER, accepts a locus containing a set S of

RVs in a window of fixed size (nucleotides). It returns the test-

statistic, XCORR (S, D), a p-value on the statistic, and the subset

C(S of RVs that contribute to the union variant. The window

size C(S is a parameter. When the input locus is larger than the

window size, RARECOVER looks at overlapping windows of size

C(S, where each window is shifted one RV away from the

previous window. For each window, the XCORR statistic is output,

along with a non-adjusted p-value.

The computation for the XCORR statistic on a single window is

described in the Algorithm below. Given a set S of RVs over n
individuals, the naive computation for computing XCORR (S, D)
needs *n2DSD computations. A reduction from the MAX-COVER

problem can be used to show that the problem is NP-hard,

indicating that no provably efficient algorithm is likely [28].

Similar reductions can also be used to show the hardness result for

a variety of other proposed association statistics. Therefore, we

employ a greedy heuristic that is fast (*DSDn computations), and

does well in practice. In each step, (see Algorithm), we select the

variant that adds the most to the statistic, until no further

improvement is possible. On a standard Linux workstation, the

computation is fast, about 100 windows per second.

Computing significance. While the test-statistic is a x2 test

on the union-variant AC , significance cannot be computed

directly, as C is optimized over many possibilities. The multiple-

tests will increase the statistic for non-associated loci as well. We

compute significance by applying RARECOVER to permutations of

the case-control genotypes.

The number of permuted trials required to achieve genome-

wide significance can be large. We make the computation

tractable using two ideas: first, empirical tests show that the x2

statistic on AC correlates tightly with the permutation p-value

(Figure 1). Note that the saturation at the end is due to limited

trials. Let t denote the value of XCORR for a window, S. When t is

less than a pre-determined threshold (t), no permutation test is

done, as the window is unlikely to be significant. When t§t, the

statistic is recomputed after permuting case and control labels

(default 104 permutations), and a p-value is computed as the

fraction of the permuted samples whose XCORR value matches or

exceeds t. To save time on this computation, we run permutations

in a data-driven fashion. We run a maximum of 104 permutations,

but stop as soon as we obtain 2 samples for which the RARECOVER

statistic exceeds t.

p{val(t)~
2=k0

if 2 samples match or exceed t in

k0 v 104 iterations

10{4 otherwise

8><
>: ð2Þ

Both, the parameter t, and the maximum number of iterations can

be adjusted, based on desired level of significance, and the size of

the genomic region. Here, we set parameter t~20, which

corresponds to a permutation adjusted p-value of 10{3:5 in

Figure 1. This ensures fast computation with no loss of power (See

Results).

RARECOVER for genic regions. RARECOVER can also be

applied to a locus containing a single gene. The definition of a

procedure RARECOVER (S, Q)
Set C~ 6 0, u~ 6 0
repeat

Set C~Czfug
Select u[S{C that maximizes XCORR (SCzfug,D)

while Xcorr(SCzfug,D){Xcorr(SC ,D)§Q
� �

return XCORR (SC , D).
The RARECOVER method for detecting locus association. C
describes the current subset of ‘causal’ SNPs. Initially C is
empty. In each iteration, the RV u that maximizes the test
statistic is chosen, and added to C. When the improved
statistic Xcorr(SCzfug, D) is not significantly better than
the current statistic (Xcorr(SC , D)), the method stops, and
outputs C.

Figure 1. Permutation p-values versus the x2 statistic value on
the union-variant AC . The mean of the empirical p-values (obtained
by permuting cases and controls) were plotted against each value of
the x2 statistic obtained over many tests over the entire range of
simulation parameters, by varying sample size n, locus PAR, and
penetrance. As C is the most significant subset among many possible
subsets, the theoretical p-value suggested by the x2 distribution cannot
be used directly. However, the plot shows that the locus x2 value
correlates tightly with the p-value, implying that the union x2 statistic
can be used to filter the significant windows with no loss of power. The
saturation at the ends is due to the number of trial being limited to 106 .
doi:10.1371/journal.pcbi.1000954.g001

Covering Method for Rare Variant Analysis
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gene varies; it sometimes includes only the coding exons, or it can

include all exons including UTRs, and even regulatory regions.

While the scanning window approach of RARECOVER can be

applied unchanged for any genic locus, we must correct for

multiple windows at a locus. Given a genic locus, we permute cases

and controls multiple times and score every window in the locus.

Then, the adjusted (locus) p-value of a window with XCORR value t
is the fraction of all permuted windows in the locus with an XCORR

score of t or higher.

RARECOVER parameters. RARECOVER is a model-free

approach, and has only 2 parameters: the window size W , and

a convergence cut-off Q (see procedure above). Empirical tests by

simulation show that the performance is similar despite large

variations in window size 5-10Kbp, as well as a choice of Q.

Hence, no explicit training was performed, and the parameters

were set to W~5Kbp, and Q~0:5. The performance of

RARECOVER was extensively tested over a wide range of

simulation parameters.

Parameters for RV simulation
Consider a locus with a set S of rare-variants. Let a subset C of

RVs be causal, in the sense that a mutation at any s [ C increases

the likelihood of disease. For an individual, I , we use AC and AC

as short-forms of the events AC~1 (or,ICw0), and AC~0,

respectively. Similarly, events D, D reflect case-control status for

the individual. We work with the following 3 parameters for power

calculations:

1. Disease prevalence in the population, denoted by PD.

2. Penetrance of the locus, denoted by r~Pr(DDAC)

3. Locus-PAR, denoted by R~Pr(AC DD)

Note that the PAR for a variant is often described by the

following (Ex:Bodmer and Bonilla, 1999 [14])

R~
K{y

K
~1{

y

K
ð3Þ

where K is the number of individuals with the phenotype, and y is

the number of individuals that show the phenotype, but do not

have the variant allele. In our terminology

R~1{
Pr(AC\D)

PD

~1{Pr(AC DD)~Pr(AC DD)

The choice of these parameters is intuitive as we expect an RV

to have moderate penetrance, but very low PAR (Pr(AsDD)).
However, the multiple RVs in C have roughly additive effect,

leading to moderate locus-PARs. These parameters are tightly

related to other, more common measures of locus association, such

as the Odds-Ratio (OR), as shown below:

OR(S)~
Pr(DjAC)

Pr(DjAC)

�
Pr(DjAC)

Pr(DjAC)

~
r

1{r

�
Pr(DjAC)

Pr(DjAC)

To compute Pr(DDAC), we start with a Bayesian relation for

computing the likelihood of a genotype containing a causal RV as

Pr(AC)~
Pr(AC DD)Pr(D)

Pr(DDAC)
~

RPD

r
ð4Þ

Then,

Pr(DDAC)~
Pr(AC DD)PD

Pr(AC)
~

(1{R)PD

Pr(AC)
~

(1{R)PD

1{
RPD

r

� � ð5Þ

and,

Pr(DDAC)~1{Pr(DDAC): ð6Þ

Simulating constant sized populations (CP)
We simulate multiple case-control studies over a range

PD, r, R. A simulation of N individuals begins with the division

of the individuals into q
N

2
r cases and t

N

2
s controls. Once this is

done two additional steps take place.

1. Generate a set of RVs for the simulated locus containing

causal, and neutral RVs.

2. Simulate the genotypes for each individual.

We start by generating causal RVs. As RVs do not show high

LD, we can model the population by generating each RV

independently. We adapt Pritchard’s argument that the frequency

distribution of rare, deleterious, RVs must follow Wright’s model

under purifying selection [29]. Therefore, the allele frequencies p
are sampled according to:

f (p)!p(bS{1)(1{p)(bN {1)es(1{p) ð7Þ

where,

N p, allelic frequency

N s, selection coefficient

N bS , rate of mutation from normal allele to causal

N bN , rate of repair from causal allele to normal

We choose s~30:0, bS~0:2, bN~0:002 [29]. Note that we do

not control the number of causal RVs, DCD, directly, in our

simulation. Recall that

Pr(AC DD)~1{Pr(AC DD)~1{ P
s[C

Pr(AfsgDD)

Further,

Pr(�AAfsgjD)~1{Pr(AfsgjD)~1{
Pr(Afsg)Pr(DjAfsg)

Pr(D)

� �
~1{

psr

PD

Therefore, setting a value for R limits the size of the causal RV.

R~Pr(AC DD)~1{ P
s[C

(1{
psr

PD

) ð8Þ

Further, the sampling procedure occasionally generates SNPs with

a high individual PAR. These variants would show up as being

significant even with a single marker analysis. Therefore, these are

discarded. The procedure SIMULATERV describes the method to

generate causal RVs. To generate neutral RVs, we use Fu’s model

of allele distributions [30] on a coalescent, which suggests that the

number of mutations that affect i individuals in a population with

mutation rate h is given by h=i. For the purposes of our simulation

we use h~5:0.

Covering Method for Rare Variant Analysis
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Simulating genotypes
For both cases and controls, each RV is sampled independently.

For non-causal variants s [ S{C, the probability of picking a

minor allele is ps, for both case and control individuals. To sample

alleles from causal SNPs, recall that under the union model,

Pr(DDAfsg)~Pr(DDAC)~r for all s [ C. Therefore, the minor

allele frequencies are given by

Pr(AfsgDD)~
rps

PD

Pr(AfsgDD)~
(1{r)ps

(1{PD)

We assume HW equilibrium to sample genotypes for case and

control individuals.

Simulating populations with bottleneck and recent
expansion (BRE)

Recently, Kryukov and colleagues [31] described a demographic

model that explicitly models European ancestry. The population is

assumed to be relatively stable for a long period, but is followed by a

bottleneck, and rapid expansion after the bottleneck (about 7500–

9000 years ago, with 20–25 years per generation). They validate

their model by comparing observed versus predicted allelic

frequencies. To this model, they add ‘causal’ (mostly deleterious)

mutations using a distribution of selection coefficients from a

gamma distribution. The causal alleles are associated with a change

in a quantitative trait (QT). The QT values are normally

distributed. Individuals carrying any causal mutation have QT

values drawn from a Normal distribution with a shifted mean. For

Rare variant analysis, individuals are chosen from the lower

(Control) and upper (Case) tails of the QT distribution.

For our study, the authors provided us with individual genotypes

simulated according to their demographic model, with causal

mutations contributing to the following shifts: 0:125s (Low), 0:25s
(Medium), 0:5s (High). The highest and lowest 5%, and 10% of the

QT distributions were used for the Case and Control populations.

For the 5% population (500 controls, 500 cases), the locus PAR

varied as 0:01–0:05. For the 10% populations, the number of

individuals is larger (1000 controls, 1000 cases), but the PAR values

decrease to 0:013 (Low), 0:017 (Medium), and 0:02 (High).

Reimplementing alternative strategies
For the purposes of comparison, we reimplemented the collapsing

statistic proposed by Li and Leal [15] as well as the weighted-sum

statistic used by Madsen and Browning [16]. Both publications

discuss the separation of variants into groups based upon function

(i.e. non-synonymous coding SNPs) or other property. However,

because we are performing our studies on model free, unannotated

data, we do not perform any such grouping.

As a result, the CMC approach proposed by Li and Leal [15] is

equivalent to collapsing all variants in the locus and calculating the

association. Li and Leal show that the assignment of variants to

functional groups, separately collapsing these groups, and finally

performing a multivariate analysis improves power to detect causal

loci. However, separation of variants into groups is inexact and the

authors show that errors in group assignment can confound tests

for significance. Additionally, performing this separation on a

genome wide scale may be intractable.

The weighted-sum statistic proposed by Madsen and Browning

[16] is used to detect association between a pre-defined group and

a disease state. To compare fairly we defined the group of

mutations as all mutations at a locus. We reimplemented the

weighting approach based upon allele frequency as well as the sum

and ranking approach to determine a score. Finally, we

implemented a single-marker test as a bi-allelic x2-statistic with

1df. The tests were used to score windows over a wide range of

simulation parameters to better understand how RARECOVER

performed in comparison to the collapsing, and weighted

strategies. For each strategy, a p-value of significance was

established by doing 104 randomized trials using permuted case

and control data. All three methods were run on the same sets of

permuted data, and the p-values were used to compare. Code for

all methods is available upon request from the authors.

MSMB gene resequencing
Recently, Yeager and colleagues [32] resequenced a *97Kbp

region including the micro-seminoprotein-b (MSMB) gene

(chr10:51, 168, 025–51, 265, 101) for 36 prostate cancer cases, 26
controls, plus another 8 CEPH individuals. While the number of

individuals is too small to derive rare variants, we used the prediced

genotypes supplied by the authors for RV analysis. For this analysis,

we used 26z8 individuals together as controls, and all 284 variants

with MAF v5% were used as input to RARECOVER.

CRESCENDO data
In a recently submitted study 40 LR-PCR amplicons (Har-

ismendy et al., unpublished) were used to re-sequence 31Kbp from

the FAAH locus (NCBI36 chr1:46621328–46653043) and 157Kbp

from the MGLL locus (NCBI36 chr3:128880456–129037011). A

total of 289 individuals were selected for sequencing from two tails

of the BMI distribution of the CRESCENDO cohort (http://

clinicaltrials.gov/ct/show/NCT00263042). 147 individuals had

BMI lower than 30 kg/m2 and 142 individuals a BMI greater than

40 kg/m2. DNA sequencing libraries were prepared, and sequenced

as previously described in Harismendy, 2009 [33] with the following

modifications: sequencing libraries were indexed by 4nt barcode

located downstream of the adapter [34] and between one and six

libraries were loaded per lane of the Illumina GAII instrument. The

reads obtained from several lanes were merged, aligned and the

variant called using MAQ mapmerge, map and cnsview+SNPfilter

options respectively [35]. All samples had an average coverage

greater than 60|. Allowing for a minimum coverage of 3 reads and

a minimum base quality (Phred §10), a raw set of 1451 single

nucleotides variants (SNVs) were identified in the population. The

SNVs were filtered for Hardy Weinberg Equilibrium in the controls

(pv0:001) and genotyping rate §90% of the samples to obtain a

final set of 1393 SNVs (220 FAAH, 1173 MGLL). Of these,

165z935~1100 SNVs had MAF ƒ0:1, and were selected for RV

analysis. The list and location of the RVs identified by RARECOVER

as supporting the association is available in Supplemental Table S1.

procedure SIMULATERV()
Set P~1
Set C~ 6 0
Repeat

Sample ps of low PAR (ƒ0:01) from Wright’s distribution
Generate a SNP s with MAF ps

C~Czfsg
P~P � (1{

psr

PD

)

while Pw(1{R)
Generating Case-Control genotypes for RV simulation.
Note that there is no explicit control of the number of
causal RVs, but the choice of parameters helps to bound
the number.

Covering Method for Rare Variant Analysis
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Results

Simulations (CP)
We simulated cases and controls for a collection of sample sizes,

ranging from n~100 to over n~5000 individuals with equal

numbers of cases and controls. The MAF for rare variants ranged

from 10{4 to 10{1. Throughout, we assume the disease

prevalence in the population to be PD~0:05. The PAR for the

locus was set to R [ f0:1, 0:2g. The penetrance, r was varied in

the interval ½0:075, 0:25�, corresponding to OR values of 1:6–7.

The dependence on parameters is somewhat non-trivial. To see

this, note that
r

PD

is a lower bound on relative risk. Reducing PD

would increase the relative risk, only making association easier. In

other words if the disease incidence is low, and a causal variant is

low frequency, then the presence of the causal variant is a strong

indicator of disease status.

The results of the simulation are shown in Figure 2. For each

choice of parameters (r, R, and n), 100 case-control studies were

sampled as described in Methods. The data-set was tested using

RARECOVER, collapsing, weighted-sum heuristics, as well as single-

marker tests.

To enable a fair comparison, the 4 methods were applied to

3|104 randomizations of the same data-set, obtained by

permuting cases and controls. The p-value is similar to a False

Discovery Rate calculation. The span of a typical human gene is

about 10Kbp, and will contain about 100 rare-variants, implying

fewer than 100 distinct windows per gene. If we assume 100
candidate genes for a phenotype, we would have 104 candidate

windows. A p-value, or FDR of 10{4 could therefore be

considered significant at the genome-wide level. A test score was

considered significant if it was higher than each of the 3|104

permutations, giving the 95% confidence interval of the p-value as

½0, 0:0001�. The power of a test for a specific choice of parameters

is the fraction of (100) tests that had a significant score. Consider

the sample point in Figure 2, with r~0:25, R~0:1, and a sample

of 1280 individuals. The power of RARECOVER is over 96%, which

can be contrasted with the low power of the weighted-sum [16],

and collapsing heuristics. For any choice of parameters, RARECOVER

shows better performance than the other methods.

Our phenotypic model differs somewhat from the one proposed

by Madsen and Browning. In their model, the PAR for each causal

variant is assumed to be equal, and is equal to the groupwise PAR

divided by the number of causal variants. We also applied the tests

to this model, using 1000 cases, and 1000 controls, and groupwise

PAR values at 0:02, 0:1, 0:25. The power of the MB test at these

values was computed to be 0, 0:68, 1 respectively, while the power

of RARECOVER on the data sets is 0:01, 0:975, 1 (Supplemental

Figure S1).

An advantage of the RARECOVER approach is that it does not

depend upon MAF, or the density of RVs in a region. This is

partly because it combines the effects of multiple associating RVs

that associate, and discards the RVs that do not associate. By

contrast, other methods combine all RVs, albeit with different

weights. While RARECOVER does not recover all of the causal RVs,

it always recovered a significant subset of the causal RVs in our

simulations. See Figure 3, which summarizes the results for

r~0:25, R~0:1. Let C� correspond to the simulated, causal RVs,

while C corresponds to the set returned by RARECOVER. Thus,
DC\C�D

DC�D
corresponds to the fraction of causal RVs recovered.

With modest sample size, more than 50% of the RVs are

recovered, and help provide a direct interpretation of the genetic

association. A somewhat unexpected aspect is that the number of

causal RVs, (DC�D), (and also, DCD) increases with an increasing

sample size. For larger samples, we can recover a larger number of

the low frequency variants, and the causal set has a larger mix of

low frequency RVs. As we only consider RVs with MAF w10{4,

the number saturates by 10K individuals.

Simulated BRE populations
The 4 methods were also applied to the data sets provided by

Kryukov et al., as explained in Methods. The cases and controls

are chosen from the extremes of a population of 10,000
phenotyped individuals to reflect current population cohorts. As

the locus PARs are very small (0:01–0:03), we work with a nominal

Figure 2. Power of RV analyses, tested over different values of
penetrance r, PAR R, and n individuals (cases+controls). For
each choice of parameters, 100 test cases were simulated. Each test-
case was analyzed using 3 methods, and the p-value computed using
3:104 permutations of cases and controls. The score is considered
significant only if it is higher than all permuted values. The power of the
test is the fraction of test-cases that had a significant score. RARECOVER

dominates the other methods implying greater power over all choice of
parameters. For all methods, power increases with an increase in r, R,
or sample size.
doi:10.1371/journal.pcbi.1000954.g002
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p-value cut-off of 0:01. As before, power is defined as the fraction

of 1000 simulations on which the test met the p-value cut-off. In

addition to the 4 methods, we also plot the power of the true causal

mutations to illustrate their small effect.

Figure 4 shows the results upon choosing the 5%, and 10%

extremes for different levels of phenotypic association. RARECOVER

outperforms other methods over the different tests, and is

comparable to the results of selecting the true causal mutations.

As suggested previously, increasing PAR values, and population

sizes, increase the power of RARECOVER, as with all methods.

However, the power of RARECOVER does not appear to be affected

by the specifics of the demographic simulation.

The allele frequency spectrum of the CP and BRE models is

shown in Figure 5. There are significant differences in allele

frequency spectra in the two cases. In the CP case, there is a bias in

the cases among alleles with lower frequency. High frequency

causal variants represent an easier case, as they can be detected by

single marker analysis. To eliminate these cases, we discarded high

frequency causal variants from the simulations, which partly

explains the bias in CP, relative to BRE. In the CP (respectively,

BRE) models, the average number of variants per 5Kbp window

was 52:48 (respectively, 38:09), with 27:02 (respectively, 19:61)

causal variants. The performance of RARECOVER is robust against

different demographic models, and depends mainly upon locus

PAR, and sample size.

Running time
The running time of RARECOVER increases linearly with the

number of SNPs, and the number of individuals, as shown in

Figure 6. For a population of 10,000 individuals, the running time

time goes from 80ms to 311ms on a standard Linux desktop, as the

number of SNPs in the window increases from 10 to 50. The times

shown here do not include the cost of reading and writing the data,

which incurs a fixed additional cost (about 250ms. See

Supplemental Figure S2). The total running time is at most 2|
that of a single marker test.

On the FAAH data (289 individuals), the running time for a

window of 5Kbp was computed to be 0:01 seconds. Consider a

genome-wide scan with WG windows. To achieve genome-wide

significance, we would need *WG randomizations for each

window, which could be computationally intensive.

However, we run RARECOVER in two passes, using the XCORR

statistic on the union-variant as a filter (Figure 1). The permutation

test is only applied to the fraction w%1 of the WG windows for

which the XCORR statistic exceeds a threshold (Xcorr(AC , D)wt).

Therefore the RARECOVER computation is executed on

WGzwW 2
G windows. As discussed in the methods, WG^104. For

w~10{3:5 (corresponding to t~20 in Figure 1), the total time is

0:01(104z100:5:104)^416s

If the number of candidate windows is larger (WG^106), and a

conservative filter is chosen (corresponding to t~25,w~10{4:5), the

running time increases to 90 hrs., easily accomplished on a small

cluster.

Results on resequencing data
MSMB data. A RARECOVER analysis of the 284 variants did

not identify anything significant. A 5Kbp window starting at

chr10:51253758 has a nominal p-value of 0.06. The 9 SNPs

selected by RARECOVER cover 12 cases and 0 control individuals. If

we apply RARECOVER after including common variants, the same

region has a nominal p-value of 0:002 due to a common variant

that occurs in 26 cases, and 16 controls. This window lies not in

MSMB but in a neighboring gene, NCOA4, also a candidate gene

for prostate cancer risk [32]. A larger population sequencing will

help resolve if this is a true association.

CRESCENDO cohort data. As described earlier, the

CRESCENDO cohort subjects selected for sequencing were

individuals at the extremes of BMI distribution. We applied

RARECOVER to overlapping windows of length 5Kbp over the

region (as described in Methods), to analyze the impact of RVs

(For the purposes of comparison the performance of all methods

can be seen in Supplemental Figure S4). The permutation based p-

values for two genes are plotted in Figure 7. For both loci, we

Figure 3. Comparisons between causal RVs, and RVs recovered by RARECOVER. The y-axis describes the raw number of causal RVs (DC�D), RVs
recovered (DCD), their intersection, and the fraction recovered (10DC\C�D=DC�D, scaled for exposition). Close to 40{70% of the causal RVs are
recovered over a wide range of sample populations.
doi:10.1371/journal.pcbi.1000954.g003
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found a single region of approximately *5000bp, that was

enriched in strongly associating variants.

The FAAH enzyme (1p33) is known to hydrolyze anandamide

(AEA), and other fatty acid amides. The region with the most

significant association, located ½{5705 � � �{716� upstream of the

FAAH transcription start site (TSS), contains 31 RVs. RARECOVER

selected a subset of 16 RVs, with a union-variant that appears in

23 cases, and 0 controls (nominal permutation p-value 0:002). The

locus specific p-value for the window is 0:009. Analyzing the locus

for functional significance, the locus falls within a retroviral Long-

Terminal-Repeat (LTR). Insertion of retroviral elements, followed

by adaptation of the viral regulatory elements is a well known

mechanism for gene regulation. A recent analysis of the FAAH

core promoter (100bp upstream) in human T-cells identified a C/

EBP site which (through a STAT3 tethering) mediated the leptin

regulation of FAAH expression [36]. Surprisingly, the leptin

mediated regulation of FAAH was observed in immune cells, but

not a model of neuronal cells [37]. Our results suggest that an

alternative regulatory region 1Kbp upstream of the TSS is

disrupted by RVs in obese individuals. A scan for transcription

factor binding sites reveals many relevant transcription factor

binding sites, including one for C/EBP (data not shown).

The enzyme monoacylglycerol lipase (MGLL), encoded by the

MGLL gene located on chromosome 3q21.3, is a presynaptic

enzyme that hydrolyzes 2-arachidonoylglycerol (2-AG), the most

abundant endocannabinoid found in the brain. The RARECOVER

scan on 935 RVs identified a single window enriched with

associated RVs. The window lies immediately upstream of the

gene, suggesting that the causal RVs have a regulatory function.

At the most significant locus (chr3:129030871–129035531,

upstream of MGLL TSS), 10 of 24 RVs were selected, with the

union RV present in 36 cases, and 8 controls. While the nominal

p-value is 0:002, the locus adjusted p-value is at the margin of

significance, at 0:05. The locus contains a known LINE element

and a promoter for RNA polymerase II. Mutations in this

promoter could easily interfere with binding affinity for RNA

Polymerase II and affect subsequent transcription/translation.

In our analysis, we only considered RVs (MAF ƒ0:1).

Harismendy et al. have reported on the connection between common

variant, and RV associations in a recently submitted study. Their

Figure 4. Power calculations on populations with bottleneck, and recent expansion. Simulated population data with quantitative trait (QT)
values was provided by Kryukov et al. The QT values are normally distributed. Individuals carrying any causal mutation have QT values drawn from a
Normal distribution with a shifted mean. The shift is characterized as Low (0:125s), Medium (0:25s), and High (0:5s). As the locus PAR values are low,
power is computed as the fraction of 1000 simulations that showed significance at p-value 0:01. Individuals were chosen from the lower (Control) and
upper (Case) tails of the QT distribution. The power of all methods is compared using the 5% extremes (500 cases, 500 controls), and the 10% (1000
cases, and 1000 controls). RARECOVER is shown to have the highest power, comparable to the power of the causal mutations.
doi:10.1371/journal.pcbi.1000954.g004
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Figure 5. Allele frequency spectra in various demographic models. BRE refers to the simulation of population under bottleneck followed by
recent expansion from Kryukov et al.; CP refers to the simulation under a constant population size. The allele frequencies in CP are biased toward rare
variants in cases, while there is little bias in BRE. The performance of RARECOVER is robust to data sets with different allele frequency spectra.
doi:10.1371/journal.pcbi.1000954.g005

Figure 6. Running time of RARECOVER as a function of sample size, and number of SNPs. As RARECOVER is a greedy approach, the running
time increases linearly with an increase in number of SNPs, and individuals. The running time shown here does not include the time for disk input and
output of the data, which incurs a fixed additional cost of *250ms to each run. The total running time is about twice that of single marker tests.
doi:10.1371/journal.pcbi.1000954.g006
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results suggest that common variants do not identify significant

associations in FAAH, but identify 2 regions with significantly

associated SNPs at the MGLL locus. LD between the significant

common variants and the MGLL union-variant is low, with the

highest r2 value of 0:29. This suggests that the rare and common

variations might have independent, additive effects on the phenotype.

Discussion

We described a novel method for Rare variant analysis with

greatly improved power of detecting associations, relative to other

published methods. RARECOVER utilizes the specific properties of

RVs as compared to common variants, and applies a greedy

approach to picking a subset of RVs, that best associate with the

phenotype. It is a natural extension of previous methods, which

either collapsed all RVs at a locus, or collapsed them after

weighting different SNPs differently. Our algorithm is similar in

orientation to the greedy solutions for the combinatorial problems

of identifying set-cover and test-cover (See for example, Lovasz

[38]). However, it is specifically designed for case-control analysis.

The power of the method is extensively analyzed against different

values of locus PAR, penetrance, and sample size. RARECOVER

easily outperforms other methods which group, and collapse SNPs.

The weighting approaches are reasonable, given that most causal

RVs have functional significance, and likely to have moderately

high penetrance, which one would not expect in a non-causal

RVs. However, a large number of non-causal RVs, even with

small weights, can dilute the association of the causal RVs. Also, it

is difficult to identify different groupings of RVs, and to set

appropriate weights for different groups.

Our application of the method on the CRESCENDO

individuals, generates plausible hypotheses on the role of FAAH

and MGLL in of obesity. The genetic association of FAAH with

obesity is interesting because many previous studies with common

variants have failed in identifying significant associations. We

investigated the hypothesis that alleleic heterogeneity due to

multiple RVs, influences the obesity phenotype. Second, the low

LD between RVs and causal variants implies that if an RV is

significantly associated, it is likely to have functional significance.

Our simulations confirmed that RVs identified by RARECOVER

were enriched in the causal RVs. In analyzing FAAH and MGLL,

we identified exactly one small, functionally significant region, at

each locus with significant association. This suggests that multiple

rare variations help influence the regulation of the two genes.

Recently, Sipe and colleagues collected metabolite expression

levels on 8 metabolites from 96 severely obese subjects and 48

normal weight subjects [39]. Comparing against our FAAH data,

we find that the levels of AEA (anandamide) are highest in obese

individuals that carry an RV identified by RARECOVER, and lowest

in individuals that are non-obese, and do not carry the causal RV.

As FAAH helps metabolize AEA (anandamide), this result is

consistent with the hypothesis of the RVs disrupting FAAH

expression. The data on all metabolite expression will be published

elsewhere (Harismendy et al., unpublished).

Nevertheless, our study also raises many methodological

questions. Our approach is greedy, in that it selects the most

discriminating RV at each step. Theoretically, it is possible that a

collection of RVs, that are individually less discriminating, are

jointly more strongly correlated. In that case, RARECOVER will not

identify them. We implemented an approach based on simulated

annealing to find an optimal subset of SNPs. However, in our

simulations with the union model, the greedy method worked as

well as the more complex optimization, and was significantly

faster. Recall that in the simple Union model, the penetrance does

not change upon inclusion of additional SNPs, but the PAR

increases. Other, more complex models are possible. For example,

we could have a threshold model, in which the penetrance

increases with a minimum number of rare alleles. Or, we could

Figure 7. FAAH locus association. RARECOVER was used to analyze overlapping windows of 5Kbp in the re-sequenced region around FAAH. A p-
value was computed for each window using 104 permutations of cases and controls. Each point corresponds to the p-value of a single window
starting at that location. The most significant window (described by the box) is *1Kbp upstream of the FAAH transcription start site. The region is
part of an LTR element, which are known to carry regulatory signals, and is enriched in transcription factor binding sites, suggesting a regulatory role
for the rare variants.
doi:10.1371/journal.pcbi.1000954.g007
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have additive models, where the penetrance increases as a function

of the number of rare alleles. As more re-sequencing data becomes

available, these will be the focus of additional investigation. A

second issue is that our definition of a locus is set arbitrarily as a

window of fixed length, much like in other methods. However,

empirical tests with a small range of window-sizes did not

significantly change the results. It is possible that a dynamic

assignment of the size of the locus could increase power, but at the

cost of additional computations.

In this study, we analyze only the rare variants. While the

RARECOVER algorithm can work unchanged with rare and

common variants, a correct test for power of such an approach

would require a biological model that combines the effect of RV

and common variants. It is hard to speculate on such models in the

absence of empirical data. However, preliminary results on

comparing common and rare variants at the MGLL locus suggest

an independent, additive effect.

GWA studies have shown that identifying the genetic basis of

disease depends upon many factors. For this reason, algorithms

have been devised to deal with population substructure issues,

epistatic interactions between loci, as well as rare variant analysis.

Our results indicate that RV analysis is useful in many contexts,

and novel methods may have to be developed to include the effect

of RVs in all of the above.

Supporting Information

Figure S1 Madsen and Browning models. RareCover perfor-

mance on the phenotypic models proposed by Madsen and

Browning. In this model, the PAR for each causal variant is

assumed to be equal, and is equal to the groupwise PAR divided

by the number of causal variants. The power of RareCover and

other methods is applied on populations with 1000 cases, and 1000

controls, and groupwise PAR values at 0.02, 0.1, and 0.25.

Found at: doi:10.1371/journal.pcbi.1000954.s001 (0.46 MB TIF)

Figure S2 RareCover running time including I/O. Running

time of RareCover as a function of number of individuals, and

number of SNPs, including time for input and output of data. The

time for input and output dominates when the number of

individuals is less than 2000. Otherwise, the time increases linearly

with an increase in number of SNPs, and number of individuals.

Found at: doi:10.1371/journal.pcbi.1000954.s002 (1.51 MB TIF)

Figure S3 RareCover on MGLL. Performance of RareCover on

MGLL. The most significant window (described by the box)

appears upstream of the MGLL gene, near the promoter region.

Found at: doi:10.1371/journal.pcbi.1000954.s003 (0.55 MB TIF)

Figure S4 Method comparison. Performance of RareCover the

weighted-sum statistic, and collapsing on the FAAH and MGLL.

Some peaks are replicated in only a subset of methods. RareCover

is the only method that identifies a significant hit in a region in

MGLL containing common variants associated with the disease

phenotype. Common variants were excluded from this analysis.

Found at: doi:10.1371/journal.pcbi.1000954.s004 (1.62 MB TIF)

Table S1 Detailed SNP information for the windows highlighted

in Figure 3 and Figure S3. The columns indicate the SNP id,

position, and relative risk of each SNP within the selected 5000 bp

windows. Case Matches refers to the number of case samples that

carry the SNP, and similarly for Control Matches. The worksheets

containing raw data give the genotype at each SNP (0,1, or 2)

within each 5000 bp window as well as disease status. Individual

ids have been removed.

Found at: doi:10.1371/journal.pcbi.1000954.s005 (0.15 MB XLS)
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regulated endocannabinoids are involved in maintaining food intake. Nature

410: 822–825.

21. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, et al. (1996)

Molecular characterization of an enzyme that degrades neuromodulatory fatty-

acid amides. Nature 384: 83–87.
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