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Abstract
Biological membranes form transient, conductive pores in response to elevated transmembrane
voltage, a phenomenon termed electroporation. These poresfacilitate electrical and molecular
transport across cell membranes that are normally impermeable. By applying pulsed electric fields
to cells, electroporation can be used to deliver nucleic acids, drugs, and other molecules into cells,
making it a powerful research tool. Because of its widely demonstrated utility for in vitro applica-
tions, researchers are increasingly investigating related in vivo clinical applications of electropora-
tion, such as gene delivery, drug delivery, and tissue ablation.

In this thesis, we describe a quantitative, mechanistic model of electroporation and concomitant
molecular transport that can be used for guiding and interpreting electroporation experiments and
applications. The model comprises coupled mathematical descriptions of electrical transport, elec-
trodiffusive molecular transport, and pore dynamics. Where possible, each of these components is
independently validated against experimental results in the literature. We determine the response
of a discretized cell system to an applied electric pulse by assembling the discretized transport re-
lations into a large system of nonlinear differential equations that is efficiently solved and analyzed
with MATLAB.

We validate the model by replicating in silico two sets of experiments in the literature that mea-
sure electroporation-mediated transport of fluorescent probes. The model predictions of molecular
uptake are in excellent agreement with these experimental measurements, for which the applied
electric pulses collectively span nearly three orders of magnitude in pulse duration (50µs – 20 ms)
and an order of magnitude in pulse magnitude (0.3 – 3 kV/cm).

The advantages of our theoretical approach are the ability to (1) analyze in silico the same quan-
tities that are measured by experimental studies in vitro, (2) simulate electroporation dynamics
that are difficult to assess experimentally, and (3) quickly screen a widearray of electric pulse
waveforms for particular applications. We believe that ourapproach will contribute to a greater
understanding of the mechanisms of electroporation and provide an in silico platform for guiding
new experiments and applications.

Thesis Supervisor: James C. Weaver, Ph.D.
Title: Senior Research Scientist, Harvard-M.I.T. Division of Health Sciences and Technology
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Chapter 1

Introduction

1.1 Research Significance and Objectives

Electroporation is widely used for delivering exogenous molecules (nucleic acids, drugs, and fluo-

rescent probes) into cells in biological research laboratories and is increasingly pursued for medical

applications [1, 2]. It is most often used to transfect cultured cells in vitro, though it has also found

use for a number of other more specialized experimental applications, such as transfecting retinal

cells [3] and single neurons [4] in vivo and chick embryos in ovo [5].

Electroporation is fundamentally attractive because, by transiently disrupting the plasma mem-

brane, it provides an operationally simple, effective means of facilitating the transport of a wide

range of different molecules into cells. Additionally, for in vivo applications, by appropriately lo-

calizing the applied electric field, the region of tissue affected by electroporation can be controlled

and limited [6–14], which is advantageous for many applications.

Following the success of in vitro electroporation in experimental applications, researchers began

investigating potential electroporation-based medical therapies, currently emphasizing drug deliv-

ery, gene delivery, or electroporation alone (without drugs) to treat or ablate tissue. A number of in

vivo studies have shown that electroporation can be used to treat solid tumors by greatly enhancing

the delivery of nonpermeant anticancer drugs [15–17] or suicide genes [18], with both approaches

leading to the destruction of the treated tissue.

Perhaps even more intriguing, recent studies have shown that electric pulses alone with very short
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duration and large magnitude can induce apoptosis in cells in vitro [19–22] and in vivo [23–26],

thereby leading to the destruction of treated cells or tissue without the need to introduce any drugs

or genes. Rather large conventional electroporation pulses can be used to ablate tissue in a similar

manner. However, this leads to necrosis rather than apoptosis [27, 28]. There is also ongoing in-

terest in using electroporation to transfect skeletal muscle cells in vivo [29] for applications such

as DNA vaccines [30] and increasing production of proteins like erythropoietin [31].

The common characteristic among all of these applications of electroporation is that they involve

transmembrane transport though temporary pores. Indeed, transmembrane transport underlies not

only electroporation-based applications but also the basic mechanisms of electroporation and there-

fore our fundamental understanding of electroporation. Much of what we know about electro-

poration has been determined through the analysis of measurements of electroporation-mediated

electrical and molecular transport. More direct methods ofobserving pores appear infeasible be-

cause of the very short length scales (nanometers to micrometers) and time scales (nanoseconds to

milliseconds) characteristic of electroporation and the absence of a significant contrast mechanism

for imaging. With a few exceptions [32, 33], these measurements involve the collective effects of

large ensembles of pores rather than single pores.

Lacking the ability to measure specific details about pores,many research studies focus onwhat

results are observed and notwhy they are observed, at least not in any rigorous sense. Addition-

ally, most electroporation studies are not quantitative, often, for example, reporting changes in

relative fluorescence rather than calibrating the measurement system and reporting the total num-

ber of molecules transported. As a result, only limited comparisons can be made among the many

experiments in the literature.

Accordingly, the primary objective of this research project was to develop a theoretical framework

within which experimental findings can be interpreted and compared. This framework takes the

form of a robust, comprehensive model integrating separatemechanisms for independent physical
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phenomena, with each mechanism having an established theoretical or experimental basis. More

specifically, the comprehensive, system-level model comprises separate mechanistic models for

pore creation and destruction, pore expansion and contraction, and electrical and electrodiffusive

molecular transport in bulk electrolyte and through pores.These mechanisms can be independently

investigated and provide a means of breaking the complex process that is electroporation into sim-

pler pieces that can be more readily characterized and validated prior to usage in a cell model. In

addition, these quantitative, mechanistic models are, in essence, hypotheses. They represent pre-

liminary, testable statements of our current understanding of electroporation.

Although a number of theoretical models have been used to describe and investigate electropora-

tion, each has been limited in its scope or its assumptions. Some of these models have provided

insights into particular aspects of electroporation, suchas pore creation, but none has characterized

the process of electroporation and its effects comprehensively. The system-level model presented

here allows the investigation of electroporation from the onset of the applied electric pulse to the

resealing of pores, throughout including the transport of molecules of interest. This enables us

to make direct comparisons with measurements made in electroporation experiments, which gen-

erally evaluate transmembrane transport of tracer molecules or the transmembrane voltage and/or

resistance of the membrane during and after the electric field application. Additionally, because

electroporation affects biological systems by facilitating transport betweencell compartments in

an unregulated manner, the model enables the investigationof potential mechanisms by which

electroporation leads to observed downstream biological events, such as apoptosis.

1.2 Experimental Electroporation Literature

Electroporation is very difficult to study experimentally because it involves very shortlength scales

(nanometers to micrometers) and time scales (nanoseconds to milliseconds), and applicable mea-

surement systems are limited in their spatial and temporal resolution. In fact, most studies do not

observe pores in any direct sense. Rather, they examine secondary effects of large ensembles of

pores. For example, many studies have examined the changes in fluorescence of cells electropo-
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rated in the presence of fluorescent dyes [34–48]. Others have examined the transmembrane volt-

age of pulsed cells during or after electroporation using voltage sensitive dyes [49–52] or patch

clamp techniques [53, 54]. The comprehensive electroporation model presented here will be of

great use in making comprehensive sense of the wide array of available experimental data.

A useful way to approach the experimental electroporation literature is to first recognize that, in

essence, all electroporation experiments measure either the direct effects that pores have on trans-

membrane transport or the downstream chemical or biological effects that occur as consequences

of transmembrane transport. With this in mind, one can beginto form sensible hypotheses about

the mechanisms of electroporation.

Downstream chemical and biological effects indicate thatsomethinghappened, with varying de-

grees of sensitivity and specificity. However, these effects generally do not provide insights into

the mechanisms of electroporation because they are merely observable endpoints of complex se-

quences of events, but they do provide a place to begin hypothesizing about potential mechanisms,

and this can subsequently lead to important insights. Theseempirical observations are most useful

when interpreted within the context of basic mechanisms.

More specifically, reported experimental studies have examined many biological and chemical ef-

fects that occur downstream of electroporation. Gene expression [55, 56] and cell death [43, 57]

following conventional electroporation pulses have long been of interest because of the widespread

use of electroporation to transfect cells. Studies that measure gene expression and transfection effi-

ciency are helpful to researchers who use electroporation to transfect cells, but they do not provide

much information about the electroporation processes thatlead to DNA uptake. Studies of cell

death are of similar utility to electroporation users. Celldeath likely results from transport be-

tween cell compartments that are not supposed to communicate in an unregulated manner [2].

Experiments that quantify cell death following various pulses [43, 57] are helpful in forming hy-

potheses about precisely what sequence of events might leadto cell death and how they relate
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to electroporation. Recent studies on the effects of submicrosecond, megavolt-per-meter electric

pulses have demonstrated that these pulses can lead to downstream effects, such as apoptosis in-

duction [19–26], that are not observed in response to more conventional electric pulses. These

effects are thought to result from electroporation of organelle membranes. All of these biological

and chemical events occur as the result of transmembrane transport, though the details of the rele-

vant transport are not always immediately clear.

Experiments that directly measure transport during and after electroporation, as opposed to infer-

ring it from downstream effects, are of much greater potential use in explaining the mechanisms of

electroporation. Such studies examine either the transport of small ions or polar tracer molecules.

They provide information that is essential for developing and testing quantitative models of elec-

troporation. The experiments can be replicated in silico and the model results can then be directly

compared with the experimental results.

Electroporation drastically increases the membrane conductance, thereby allowing small ions to

pass through the membrane with relatively little resistance. Extremely sensitive experiments on

planar membranes have actually detected the stepwise (quantized) changes in membrane conduc-

tance associated with the creation and destruction of individual pores [32]. Importantly, the sizes

of the pores can be straightforwardly calculated from thesestepwise changes in conductance.

Similar (but lower resolution) measurements have been madeat the cell level using patch clamp

techniques [53, 54]. To date, these methods have not been used to provide details about individual

pores, but they have been used to measure the conductance andtransmembrane voltage of the en-

tire plasma membrane in the minutes after electroporation.The experiments have provided useful

information on the rate of recovery of the plasma membrane (pore resealing), and they have also

provided experimental confirmation that submicrosecond, megavolt-per-meter pulses electroporate

the plasma membrane, despite numerous earlier claims to thecontrary [20, 58–66].
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Changes in membrane conductance can also be detected by measuring the transmembrane voltage

using voltage sensitive membrane dyes [49–52]. Upon application of an electric field, the creation

of pores in the plasma membrane causes a tremendous increasein the membrane conductance.

This limits the peak transmembrane voltage and leads to a subsequent drop in transmembrane volt-

age in a process called reversible electrical breakdown. This can be measured experimentally. The

transmembrane voltage has been measured for both long duration, small magnitude pulses [49–51]

and short duration, large magnitude pulses [52] in several impressive experimental studies. No-

tably, predictions of mechanistic models of cell electroporation are consistent with these results

[10, 14, 67–74].

Electroporation can also be investigated experimentally by measuring the transport of tracer mole-

cules during and after electroporation. Some studies have measured the total uptake of fluorescent

molecules at single time point after the applied electric pulse for a number of different pulses [38,

39, 43, 44, 48]. Others have measured the uptake at many time points for a few different pulses [42,

46, 47]. The most insightful and useful of these studies are those that used calibrated measurement

systems [34, 38, 39, 42–44, 46, 48], enabling them to report the number of transported molecules

(with some quantified error), rather than just relative fluorescence [41, 45, 47], which cannot be

interpreted with a useful degree of confidence.

1.3 Theoretical Electroporation Literature

To understand why the presented electroporation model is particularly comprehensive and useful,

one should first consider the previous electroporation models in the literature. These models range

from simplistic to sophisticated, but each is limited in either its scope or assumptions.

The simplest models of electroporation are empirical, didactic, or descriptive models. Such mod-

els describewhat electroporation does but do not provide details as tohow or why. For example,

one model describes electroporation as a process that prevents the transmembrane voltage from

exceeding a threshold (1 V) [75, 76]. After the threshold is reached, the transmembrane voltage is
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fixed at the threshold until the end of the pulse. Electroporation does, in fact, limit the transmem-

brane voltage as pore formation alters the voltage divisionbetween the membrane and electrolyte,

but this sort of model representation is a gross oversimplification and cannot provide any real quan-

titative insights into electroporation.

Somewhat more complex are spatially distributed passive (linear) cell models [77–80]. Such mod-

els appear sophisticated because they often have membranesthat are spatially distributed in 2-D

or 3-D systems that “look” like a cell. The spatial sophistication of these models masks unso-

phisticated passive representations of cell membranes, asthe electrical (and other) properties in

passive models are time-invariant. However, the very reason electroporation is interesting is that

the membrane properties arenot time-invariant: in response to elevated transmembrane voltage,

membranes form pores that increase the conductances of the membranes by orders of magnitude

and facilitate transport. Passive models cannot account for electroporation of membranes or the

tremendous changes in the electrical properties of the system that accompany electroporation [72].

The use of passive models increased with research into the effects of ultrashort pulses, and these

models were (mis)used to support claims that ultrashort pulses could electroporate organelle mem-

branes without electroporating the plasma membrane [20, 58–66]. Such claims have since been

refuted [53, 54, 72, 76]. Passive models are of little use in investigating electroporation because

they cannot actually make any predictions about pores (i.e., when and where pores form, how many

pores form, etc.) or effects of pores, such as how pores contribute to the redistribution of electric

fields or molecular transport.

Spatially distributed models that incorporate the asymptotic model of electroporation are typically

similar to passive models in the sophistication of the systems used but have a membrane represen-

tation based on a mechanistic model of electroporation [10,67–70, 72, 81]. These models allow for

the formation of conductive pores in membranes as functionsof the local transmembrane voltage.

The pores are not dynamic, however. Rather, they are fixed at aradius of∼0.8 nm until they reseal.



28 Introduction

Asymptotic models capture approximately the electrical behavior of cells in response to applied

electric fields reasonably well and predict reversible electrical breakdown and “flattening” peaks

in angular transmembrane voltage profiles, both hallmarks of electroporation [49–52, 82].

In contrast to passive models, asymptotic models can make predictions about pores (i.e., when

and where pores will form, how many pores will form, etc.) andthe redistribution of electric

fields in response to electroporation. Their predictions are particularly reasonable for short pulses,

for which pores do not expand significantly [83]. However, asymptotic models are not useful for

estimating molecular transport because their small, static pores artificially limit transmembrane

transport to small ions.

Spatially distributed models with dynamic pores representthe most sophisticated electroporation

models that have been developed to date. These models have all of the desirable properties of

asymptotic models plus the added advantage that they describe the temporal evolution (expansion

and contraction) of pores [13, 14, 71, 73, 74]. Importantly,models with dynamic pores have the

potential to be coupled with molecular transport models to give a complete picture of the dynamics

of electroporation and concomitant molecular transport that underly electroporation applications

and experimental observations. Indeed, the objective of this research project was to develop just

such a model.

All of the cell models described above are continuum models.That is, they assume that atom scale

fluctuations can be considered sufficiently averaged temporally and spatially as to follow larger

scale continuum dynamics. Discrete, molecular dynamics models of electroporation have also

been developed. These models consider strongly forced interactions between atoms that have been

assigned to small lipid bilayer-electrolyte systems. Molecular dynamics models have bolstered our

understanding of how pores form and what they look like at themolecular level [84–94], partially

validating the longstanding aqueous pore hypothesis [1]. Moving forward, they have the potential

to provide important information about pore dynamics and may assist in determining parameters
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for continuum models, neither of which can be easily accomplished by experimental approaches.

They cannot (and will not for the foreseeable future) provide insights into the process of electropo-

ration at the cell (or higher) level. Nonetheless, molecular dynamics models are likely to continue

to generate fundamental and practical information about the mechanisms of electroporation.

1.4 Thesis Structure

The first half of this thesis describes the “building blocks”of the comprehensive cell system elec-

troporation model. Each chapter focuses on a single aspect of the comprehensive model. Specifi-

cally:

Chapter 2: Molecular transport properties.

Chapter 3: Molecular transport (electrodiffusion) in bulk electrolyte.

Chapter 4: Ionic and molecular transport through pores.

Chapter 5: Pore energy and dynamics.

The second half of this thesis describes (1) the integrationof the building blocks into a compre-

hensive cell electroporation model, (2) model validation,(3) general features of the responses of

cells to applied electric pulses, and (4) implications of the model results. Specifically:

Chapter 6: Transmembrane transport resulting from nanosecond electric pulses.

Chapter 7: Implementation and validation of the comprehensive cell model.

Chapter 8: General features of the responses of cells to applied electric pulses.

Chapter 9: Potential mechanisms by which large magnitude pulses may induce apoptosis.

This thesis is written as a collection of eight manuscripts that will be submitted to peer-reviewed

journals following thesis submission. As a result, references to other chapters appear as citations

of the associated “in preparation” manuscripts.
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Chapter 2

Compilation and Computation of the Size, Charge, and

Diffusivity of Fluorescent Dyes and Other Small Molecules

Abstract

Quantitative descriptions of molecular transport within bulk media and through small aqueous
pathways are of long-standing interest. Motivations rangefrom fundamental mechanistic under-
standing to optimization of drug delivery, involving processes such as diffusive permeation, ion-
tophoresis, and electroporation. Molecular size, charge,and diffusivity are critical input parameters
in these quantitative descriptions that are often unavailable in the research literature, even for im-
portant and widely used molecules. Here, we describe in silico methods to estimate molecular
size, charge, and diffusivity and provide these parameters for a number of fluorescent dyes (e.g.,
Alexa, Rhodamine, and propidium) and proteins (e.g., humanserum albumin) that are widely used
in experimental research. First, we describe methods of “measuring” molecular dimensions us-
ing software and the advantages of regarding their shape as approximately cylindrical, rather than
spherical. Second, we show how software tools can be used to “titrate” molecules to determine
their net charge. Third, we describe the development of molar mass- and molecular volume-based
diffusivity correlations, and show how considerations of molecular shape can be used to increase
the quality of these correlations. The resulting molecularcharge and diffusivity estimates are in
good agreement with published values. The predicted diffusivity values have a mean error of
∼10 % for the basic (non-shape-corrected) correlations and just∼4 % for the shape-corrected cor-
relations.
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2.1 Introduction

The most fundamental parameters relevant to the transport of molecular solutes are their size,

charge, and diffusivity (diffusion coefficient) [1–3]. Knowledge of these parameters is important

to a wide range of experimental and theoretical studies of transport phenomena in biological sys-

tems, from intracellular transport within the cytoplasm [4, 5] to transmembrane transport through

channels [6, 7] and lipidic pores [8, 9]. Additionally, quantitative characterization of transport and

transport parameters is highly relevant to a range of clinical applications. Examples include ion-

tophoresis for transdermal drug delivery [10–13], physical methods for improving gene delivery

[14], and electroporation-mediated delivery of drugs [15–19] and genes [20–26] to cells.

Accurate determinations of diffusivity for many molecules of biological and experimental signif-

icance either have not been reported or are difficult to find in the research literature. The dif-

fusivities of some molecules have only been measured with imprecise, dated methods, and the

diffusivities of many others have simply never been measured at all. Moreover, some of the pa-

rameters that are available are of questionable accuracy. The widely used Rhodamine 6G, for

example, was long said to have a diffusivity of 28× 10−11 m2/s [27], but several recent studies

[28–30] have used a range of high-precision methods and found that its value is actually in the

range 41.1× 10−11 – 45.5× 10−11 m2/s, which is∼50 % larger.

Mathematical models of transport phenomena use diffusivity, and often size and charge, as basic

input parameters, and therefore the quality of the model results is limited by the quality of the input

parameters (the well-known “garbage in, garbage out” problem). As a result, accurate values of

these parameters for widely used molecules are of great importance.

In this study, we developed in silico methods of determiningand verifying molecular size, charge,

and diffusivity values. Our particular motivation was to determinethe transport properties of fluo-

rescent dyes, like propidium and yo-pro-1, that are widely used in investigations of electroporation
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[8, 31–35], as well as molecular species that are widely usedin biological experiments, many of

them fluorescent dyes or proteins that are commonly labeled with fluorescent dyes. Several recent

studies have used high-precision methods to measure diffusivity [28–30, 36], and we took advan-

tage of this to increase the quality of our diffusivity estimates.

The methods described here, as well as the results and consolidation of useful experimental values

from the research literature, should aid researchers studying biological transport.

2.2 Methods and Results

2.2.1 Molecule Selection and Structure Acquisition

Molecule Selection

Each molecule examined was selected for one of a few reasons.The first and main reason was

relevance to our primary field of study, electroporation. Such molecules included ATP, bleomycin,

calcein, fluorescein, lucifer yellow, propidium, yo-pro-1, cytochromec, human serum albumin

(HSA), bovine serum albumin (BSA), and lactalbumin, among others. The second reason for

selection was the availability of recent high-precision diffusivity measurements [28–30, 36]. Such

molecules included the Alexa dyes, Atto 655, Oregon Green 488, and the Rhodamine dyes. The

third reason for selection was shape. Our initial results suggested a relationship between molecular

shape and diffusivity. Therefore, the vital stains Congo Red and Fast Scarlet, both of which are

rod-shaped and have published diffusivity values, were added to help elucidate the effect of shape

on diffusivity. Finally, the ions chloride, calcium, sodium, and potassium, were selected for their

importance to the functioning of biological systems and forcomparison purposes.

Acquisition of Molecular Structures

The structures of the small (non-protein) molecules were obtained from the PubChem (http://

pubchem.ncbi.nlm.nih.gov) and Chemical Entities of Biological Interest (ChEBI) (http://www.ebi.

ac.uk/chebi) databases. When possible, the structures were downloaded in their pre-optimized 3-D

conformations. When their 3-D conformations were unavailable, their 2-D conformations were
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downloaded and the ChemAxon MarvinView (version 5.3.8, 2010, http://www.chemaxon.com)

conformer was used to find the lowest-energy 3-D conformations for the structures.

The structures of the proteins were obtained from the Protein Data Bank (PDB) (http://www.pdb.

org) in their 3-D conformations.

Table 2.1 lists all of the molecules studied here with the structure source and basic properties of

each.

2.2.2 Molecular Size and Shape

Molecular Size

The molar massMs of each molecule studied was taken from its entry in its structure source

database (Table 2.1).

UCSF Chimera [37] (version 1.4.1, 2010, http://www.cgl.ucsf.edu/chimera) was used to visualize

the structures of molecules and measure their van der Waals (VDW) volumes. After loading and

examining each molecule with the Chimera software, the VDW surface was added using theSur-

face tool and the molecular volumeVs was determined using theMeasure Volume and Areatool.

The molecular volume of each molecule is shown in Table 2.1.

Molecular Shape and Dimensions

UCSF Chimera was also used to assess the shapes of molecules and measure their dimensions.

In general, molecules do not exhibit simple geometric shapes. Rather, they are amorphous and

“lumpy”. Nonetheless, for many purposes, it is sufficient to approximate the shapes of molecules

as simple, well-defined geometric shapes (e.g., spheres andcylinders). We chose to approximate

the molecules as cylinders because this allowed a much more precise description of molecular

shape than approximating them as spheres, while still beingsimple enough to facilitate in silico

“measurement” of the molecular dimensions.
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Table 2.1: Molecular Structure Sources and Basic Properties

Molecule Database ID Ms Vs rs ls S s zs

Alexa 350 ChEBI 51744 396.3 0.3015 0.43 1.65 1.92−1.00
Alexa 488 ChEBI 52953 532.5 0.4046 0.67 1.44 1.08−3.00
Alexa 546 PubChem 25164103 1056.4 0.8920 0.86 2.63 1.53−3.00
Alexa 594 ChEBI 51250 819.9 0.6980 0.80 1.84 1.15−2.00
Antipyrine PubChem 2206 188.2 0.1695 0.40 1.19 1.49 0.00
ATP PubChem 5957 507.2 0.3792 0.62 1.22 0.98−3.49
Atto 655 PubChem 16218785 527.6 0.4522 0.79 1.74 1.10−1.00
BCECF PubChem 4241719 520.4 0.4380 0.65 1.71 1.32−4.48
Bleomycin A2 ChEBI MSDCHEM:BLM 1416.6 1.2470 0.89 2.76 1.55 +0.67
Bleomycin B2 ChEBI MSDCHEM:BLB 1426.5 1.2480 1.14 3.83 1.68 +0.84
Calcein PubChem 65079 622.5 0.5204 0.58 1.89 1.63−3.61
Congo Red PubChem 11314 652.7 0.5259 0.49 2.81 2.87−2.00
Cy5 ChEBI 38047 752.9 0.6555 0.92 2.49 1.35 −1.00
Eosin Bluish PubChem 452704 580.1 0.4092 0.67 1.49 1.11−2.00
Eosin Yellowish PubChem 27020 647.9 0.4523 0.64 1.26 0.99−1.85
Ethidium PubChem 3624 314.4 0.2872 0.56 1.37 1.22+1.00
Ethidium Homodimer ChEBI 52843 650.9 0.6014 0.65 2.51 1.93+3.11
Fast Scarlet PubChem 13817 680.8 0.5610 0.53 2.80 2.64−2.00
FITC PubChem 18730 389.4 0.3103 0.60 1.51 1.27−0.05
Fluorescein PubChem 16850 332.3 0.2712 0.57 1.28 1.12−0.05
Glucose PubChem 24749 180.2 0.1503 0.32 1.09 1.70 0.00
Glutamic Acid PubChem 104813 146.1 0.1215 0.32 0.96 1.50−1.01
Lucifer Yellow PubChem 93368 445.4 0.3172 0.61 1.46 1.20−2.00
Meglumine PubChem 4049 195.2 0.1738 0.33 1.30 1.97+0.98
Methylene Blue PubChem 4139 284.4 0.2514 0.38 1.65 2.17+1.00
Oregon Green 488 PubChem 5289081 412.3 0.3124 0.63 1.43 1.13−2.88
Propidium PubChem 4939 414.6 0.4041 0.69 1.55 1.12+2.00
Rhodamine 110 PubChem 65204 330.3 0.2852 0.61 1.23 1.01−0.19
Rhodamine 123 PubChem 65218 344.4 0.3062 0.59 1.25 1.07+0.66
Rhodamine 6G PubChem 65211 443.6 0.4174 0.68 1.61 1.18+0.05
Rhodamine B PubChem 6695 443.6 0.4115 0.69 1.74 1.26 0.00
Serva Blue PubChem 5856033 833.0 0.7804 0.72 2.52 1.75−1.00
Sucrose PubChem 5988 342.3 0.2827 0.45 1.21 1.33 0.00
Trehalose PubChem 7427 342.3 0.2798 0.47 1.27 1.35 0.00
Trypan Blue PubChem 5904246 868.8 0.6663 0.59 3.16 2.68−4.00
Urea PubChem 1176 60.1 0.0499 0.29 0.58 1.00 0.00
Yo-pro-1 PubChem 6913121 375.5 0.3531 0.53 1.71 1.63+2.00
Cytochromec PDB 2B4Z 12212.0 12.4900 2.04 4.27 1.05 +9.00
HSA/BSA∗ PDB 1N5U 68330.2 71.3500 4.32 9.26 1.07−11.02
Lactalbumin PDB 1A4V 14173.4 15.5100 1.76 4.30 1.22 −4.00
Calcium PubChem 271 40.1 0.0335 0.20 0.40 1.00+2.00
Chloride PubChem 312 35.5 0.0225 0.18 0.35 1.00−1.00
Potassium PubChem 813 39.1 0.0871 0.28 0.55 1.00+1.00
Sodium PubChem 923 23.0 0.0490 0.23 0.45 1.00+1.00
∗HSA (human serum albumin) was used for all structural measurements and charge and diffusivity calculations. BSA
(bovine serum albumin) was used for experimental diffusivity values. Ms: Molar mass (g/mol). Vs: van der Waals
molecular volume (nm3). rs: Radius of cylindrical approximation to molecule (nm).ls: Length of cylindrical ap-
proximation to molecule (nm).Ss: Ratio of length to diameter (ls/2rs). zs: Net charge (valence) of molecule at pH
7.4.
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The measurements were made using the ChimeraAxes andPlanetools. TheAxes tool aligns a

semi-transparent cylindrical axis with the molecule usingthe orientation that minimizes the aver-

age distance from each atom to the axis. The radius of the cylindrical axis was adjusted until it

was just large enough to encompass the VDW surface of the entire molecule. The radiusrs and

lengthls of the cylindrical axis were then recorded. The cylindricaldimensions of the molecules

are summarized in Table 2.1.

The ChimeraPlanetool was used to double-check the length measurement. ThePlanetool aligns

a circular plane with the molecule using the orientation that minimizes the average distance from

each atom to the plane. The diameter of the circular plane wasadjusted until it was just large

enough to encompass the VDW surface of the entire molecule. In general, the diameter measured

by theplanetool agreed very well with the length measured with theAxes tool.

The ChemAxonCalculator Pluginswere used to provide a final check on both the radius and length

of each molecule. TheCalculatorfeatures a tool that can determine the orientation of a molecule

whose projection has minimum area and compute both the radius of the projection and the length

of the molecule parallel to the projection (perpendicular to the surface onto which the projection is

cast). Similarly, theCalculatorcan determine the orientation of a molecule whose projection has

maximum area and compute both the radius of the projection and the length of the molecule paral-

lel to the projection. Although the ChemAxonCalculator Pluginsdid not measure the molecules in

exactly the same way as the Chimera manual measurements, they provided a check on the Chimera

measurements, and the results were generally consistent.

Figure 2.1 shows two example molecules: trypan blue (Fig. 2.1A) and calcein (Fig. 2.1B). Try-

pan blue, with a length-to-diameter ratio of 2.68, was amongthe most elongated, non-spherical

molecules studied. Calcein, with a length-to-diameter ratio of 1.63, was more typical. For both

molecules, the cylindrical approximation effectively characterizes the general molecular shape.
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(A) Trypan blue

rs

ls

(B) Calcein

ls

rs

Figure 2.1: Cylindrical approximation to molecular shape.(A) Trypan blue (rs = 0.59 nm,
ls = 3.16 nm). (B) Calcein (rs = 0.58 nm, ls = 1.89 nm). Note that the two molecules
are not shown to the same scale. The cylindrical approximation to molecular shape gives
a more precise description of molecular shape than a spherical approximation, while still
being simple enough to facilitate in silico “measurement” of molecular dimensions.

2.2.3 Molecular Charge

The ChemAxonCalculator Pluginswere used to determine the net chargezs of each small (non-

protein) molecule. This was done by using theCalculator Pluginsto determine the distribution of

microstates, or configurations, of each molecule at pH 7.4 and the charge of each microstate. The

net charge of each molecule was then calculated as the weighted average of its microstate charges.

The online tool H++ [38, 39] (version 2.0, 2010, http://biophysics.cs.vt.edu/H++) was used to

calculate net charge of each protein at pH 7.4. This computational tool is specifically designed for
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macromolecules and evaluates their chargezs in a manner similar to that described for the small

molecules.

The molecular charge data are summarized in Table 2.1.

2.2.4 Molecular Diffusivity

The use of diffusivity correlations is one strategy for estimating the diffusivities of molecules for

which accurate measurements are unavailable [40]. The basic idea behind a diffusivity correlation

is to correlate experimentally measured diffusivities with some other quantity that is available for

a wider range of molecules (e.g., molar mass). Then that quantity can be used with the correla-

tion equation to estimate diffusivity for molecules for which diffusivity is unknown. The quality

of the correlation can be tested by inputing the quantity into the correlation for molecules with

known diffusivity and then comparing the predicted diffusivity with the experimentally measured

diffusivity.

Experimental Diffusivity Data

We searched the research literature for diffusivity values for the molecules in our library, and were

able to find values for all of the proteins and about half of thesmall molecules (Table 2.2). In a

few cases, diffusivity values were found but excluded from this study. The reasons for exclusion

included:

1. Clear from context that diffusivity value was only approximate (only one significant figure

given, large error estimate, etc.).

2. No temperature information provided.

3. Referenced a primary source that could not be obtained.

4. Multiple more recent studies using more precise methods showed an older or less precise

measurement to be inaccurate.

The range of experimental diffusivities found for each molecule is shown in Table 2.2 underthe

heading “Dexp range” along with citations of their sources.
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For the purposes of developing the diffusivity correlation, if multiple diffusivity values were found,

it was necessary to reduce the range of diffusivity values to a single valueDexp for each molecule.

Generally, the average value was used. However, in some cases, one value was given more weight

than others based on the data source. For example, a study whose sole focus was on using high-

precision methods to measure diffusivity was given more weight than a study that mentioned mea-

suring diffusivity in passing as a means to some other end.

Temperature Dependence of Diffusivity

Diffusivity is a temperature-dependent quantity. Therefore, in developing a diffusivity correla-

tion, diffusivity values must be adjusted to a standard temperature, here 25◦C. The temperature

dependence of diffusivity is clear from the Stokes-Einstein equation:

Ds =
kT

6πηrst
. (2.1)

Here,Ds is the solute diffusivity, k is the Boltzmann constant,T is the absolute temperature,η is

the solvent viscosity, andrst is the Stokes radius. The Stokes radius is that of the sphere that will

have diffusivity Ds when diffusing in the solvent. It is often used as a rough estimate of the size of

a molecule when its diffusivity is known.

The temperature dependence of diffusivity arises not just from the explicitT in Eq. 2.1, but also,

and indeed mostly, from the implicit temperature dependence of the solvent viscosityη.

It follows from Eq. 2.1 that if a molecule has diffusivity Ds,0at absolute temperatureT0 with solvent

viscosityη0 and has diffusivity Ds at absolute temperatureT with solvent viscosityη, thenDs is

related toDs,0 by

Ds = Ds,0

(

T
T0

) (

η0

η

)

. (2.2)

Equation 2.2 was used, when necessary, to adjust experimental diffusivity values to 25◦C (T =

298.15 K). The viscosity values were calculated using the tabulated viscosity values in Ref. [60].
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Table 2.2: Diffusivity Values for Small Molecules, Proteins, and Ions

Molecule Dexp range Dexp DM D̂M DV D̂V References
Alexa 350 46.92 59.79 48.78 62.22
Alexa 488∗† 46.5 46.5 41.99 40.02 43.91 42.06 [28]
Alexa 546∗ 36.5 36.5 32.46 36.58 33.08 37.30 [28]
Alexa 594 35.70 35.13 36.12 35.69
Antipyrine∗ † 65 65 62.06 67.29 59.95 65.54 [41]
ATP∗ 40.1 – 47.5 43 42.76 39.41 44.94 41.65 [42, 43]
Atto 655∗† 40.7 – 42.7 41.7 42.13 40.51 42.19 40.82 [30, 36]
BCECF 42.35 43.86 42.68 44.41
Bleomycin A2 29.07 33.14 29.34 33.44
Bleomycin B2 29.00 34.59 29.34 34.95
Calcein 39.59 45.92 40.12 46.62
Congo Red∗ 50 – 76.3 67 38.90 69.44 39.97 70.87 [44–46]
Cy5∗† 37 37 36.87 38.90 36.94 39.12 [47]
Eosin Bluish 40.66 39.33 43.73 42.46
Eosin Yellowish 39.01 36.16 42.19 39.28
Ethidium 51.18 50.97 49.64 49.84
Ethidium Homodimer 38.94 50.07 38.10 49.03
Fast Scarlet∗ 68.2 – 72.2 70.2 38.29 63.21 39.06 64.15 [44, 45]
FITC 47.23 47.89 48.28 49.24
Fluorescein∗† 46.6 – 50.04 48 50.13 48.27 50.66 49.16 [28, 48]
Glucose∗ 67.28 67.28 63.09 73.51 62.58 73.38 [49]
Glutamic Acid∗† 76.23 – 78.1 77 68.25 74.07 67.53 73.91 [49, 50]
Lucifer Yellow 44.90 44.51 47.90 47.70
Meglumine 61.22 78.58 59.41 76.63
Methylene Blue∗ 76 76 53.15 73.57 52.06 72.20 [51]
Oregon Green 488∗† 41.1 41.1 46.22 44.81 48.16 46.96 [30]
Propidium 46.13 44.54 43.92 42.77
Rhodamine 110∗† 46 46 50.24 46.45 49.76 46.42 [29]
Rhodamine 123∗† 47 47 49.46 46.72 48.51 46.22 [29]
Rhodamine 6G∗† 41.4 – 45.5 43.2 44.97 44.39 43.42 43.17 [28–30]
Rhodamine B∗† 44.9 44.9 44.97 45.60 43.64 44.55 [29]
Serva Blue 35.49 43.08 34.71 42.17
Sucrose∗† 52.09 52.09 49.57 51.27 49.92 51.95 [49]
Trehalose 49.57 51.68 50.10 52.54
Trypan Blue 34.93 58.68 36.73 61.25
Urea 137.3 – 145 138 95.32 85.77 92.88 84.86 [41, 52, 53]
Yo-pro-1 47.88 55.00 46.10 53.22
Cytochromec∗† 13.51 13.51 12.94 12.75 12.86 12.62 [54]
HSA/BSA∗† 6.53 – 7.83 6.9 6.78 6.90 6.89 6.94 [54–58]
Lactalbumin∗† 10.5 – 13.0 11.8 12.24 12.84 11.90 12.43 [55, 57, 59]
Calcium 79.2 79.2 110.97 99.34 107.09 97.51 [60]
Chloride 203.2 203.2 116.20 103.85 123.61 112.09 [60]
Potassium 195.7 195.7 112.00 100.24 76.08 69.93 [60]
Sodium 133.4 133.4 136.74 121.47 93.48 85.43 [60]

All diffusivity values are for 25◦C and have units of 10−11 m2/s. ∗Used for development of initial and
shape-corrected diffusivity correlations.†Used for development of basic (non-shape-corrected) diffusiv-
ity correlation (Ss ≤ 1.5). Dexp: experimental diffusivity. DM : mass-based diffusivity without shape-
correction. D̂M : mass-based diffusivity with shape-correction.DV : volume-based diffusivity without
shape-correction.̂DV : volume-based diffusivity with shape-correction.
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A cubic spline interpolation of the tabulated viscosity values was used to determine viscosity values

at intermediate temperatures.

Diffusivity Correlations

The Stokes-Einstein equation (Eq. 2.1) shows that diffusivity is related to solute size:Ds ∝ r−1
st .

The Stokes radiusrst is itself not a useful correlation quantity because it is generally not known.

Moreover, even when the size of a molecule is known (e.g., using the method described above),

it is unclear how the measured dimensions relate to the Stokes radius because most molecules are

not perfectly spherical in shape.

In this study, we considered two other means of quantifying size: molar massMs and (VDW)

molecular volumeVs. Importantly, these are ideal quantities for a correlationbecause they are

widely available and easily obtained, much more so than diffusivity itself. BecauseDs ∝ r−1
st and

rst ∝ M1/3
s andrst ∝ V1/3

s , it follows that Ds ∝ M−1/3
s andDs ∝ V−1/3

s . Indeed, the assumption

that Ds ∝ M−1/3
s is the basis of several diffusivity correlations [55]. Here, rather than impose a

particular exponent, we determined the exponent that best fit the data.

The molar mass-based diffusivity correlation proposed here is

DM = aM

(

T
η

)

MbM
s , (2.3)

and the molecular volume-based diffusivity correlation proposed here is

DV = aV

(

T
η

)

VbV
s . (2.4)

Here,DM andDV are the molar mass-based and molecular volume-based diffusivities, respectively.

aM, bM, aV, andbV, are parameters to be fit by the experimental data. The temperatureT and sol-

vent viscosityη were not absorbed intoaM andaV to allow easier calculation ofDM andDV at

non-standard temperatures.
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(A) Mass-based diffusivity correlation
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(B) Volume-based diffusivity correlation
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Figure 2.2: Correlations between diffusivity and(A) molar mass and(B) molecular volume.
Diffusivity Dexp decreases as molar massMs and molecular volumeVs increase. The slope
of the best-fit line is∼−1/3 (in a log-log representation). The plots are similar in appearance
because molar mass and molecular volume are strongly correlated. On each plot, there are
three experimental data points located significantly farther from (above) the best-fit line than
the other data points. These outlying points correspond to molecules that are particularly
elongated in shape.

Figure 2.2 shows the results of plottingDexpη/T vs. Ms andVs using the diffusivity, molar mass,

and molecular volume data in Table 2.1. For a perfect correlation, the point plotted for each

molecule would be located on the best-fit line. Indeed, most of the plotted points do lie on or near

the best-fit line. However, there are three points that lie relatively far off (above) the best-fit line.

For these points, the experimentally measured diffusivity is significantly larger than the diffusivity

that would be predicted by either the mass-based or volume-based correlation.

Effect of Molecular Shape on Diffusivity

After creating the initial correlation, we compared the predicted diffusivity values with the exper-

imentally measured diffusivity values to see whether there was a pattern to the error. Specifically,

we hypothesized that molecular shape and charge, which werenot factored into the correlations,

might affect diffusivity and thereby affect the accuracy of the correlations.

We did not find a relationship between molecular charge and the error in the predicted diffusivities,
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(A) Mass-based diffusivity correlation
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(B) Volume-based diffusivity correlation
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Figure 2.3: Effect of molecular shape on the(A) molar mass-based and(B) molecular
volume-based diffusivity correlations. For each molecule, the ratio of the experimental
diffusivity Dexp to predicted diffusivitiesDM andDV is plotted against the shape factorSs,
which is the ratio of the molecule’s length to its diameter. WhenSs . 1.5, the correlations
slightly overestimate diffusivity (i.e., DM > Dexp and DV > Dexp). WhenSs & 1.5, the
correlations underestimate diffusivity (i.e.,DM < Dexp andDV < Dexp).

but we did find a relationship between the molecular shape andthe error in the predicted diffusiv-

ity values. Figure 2.3 showsDexp/DM plotted against the shape factorSs for the molar mass-based

correlation (Fig. 2.3A) andDexp/DV plotted against the shape factorSs for the molecular volume-

based correlation (Fig. 2.3B). Here, the shape factorSs ≡ ls/2rs is the ratio of a molecule’s length

to its diameter.Ss ≈ 1 for molecules that are approximately spherical andSs > 1 for less spherical,

more rod-like molecules, like trypan blue (Fig. 2.1A).

The relationship found betweenDexp/DM and Ss is, as shown in Fig. 2.3, a linear relationship

between the logarithm ofDexp/DM andSs. (The same is true of the relationship betweenDexp/DV

andSs, but here we will focus on the molar mass-based correlation for brevity.) Thus, the best-fit

line is described by an equation of the form

Dexp

DM
≈ αMβ

Ss
M , (2.5)

whereαM andβM are parameters determined by the best-fit line. The right-hand side of Eq. 2.5 can

be viewed as a shape-correction factor for the molar mass-based diffusivity correlation. Therefore,
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given the initial estimate of diffusivity DM from Eq. 2.3, an improved diffusivity estimateD̂M that

takes into account the effect of shape on diffusivity is

D̂M = DMαMβ
Ss
M . (2.6)

Substituting forDM, the molar mass-based diffusivity correlation with shape-correction is

D̂M = âM

(

T
η

)

Mb̂M
s ĉSs

M , (2.7)

whereâM, b̂M, andĉM are parameters. The simplest set of values that could be usedfor these pa-

rameters is ˆaM = aMαM, b̂M = bM, andĉM = βM, whereaM, αM, bM, andβM are all calculated from

best-fit lines to their respective plots, as described above. However, in using this set of values, the

shape-corrected correlation is stuck with some of the deficiencies of the original correlation. For

example, the points in Fig. 2.2 associated with the molecules with largeSs values cause the initial

correlation to overestimate the diffusivity of small molecules and thereby increases the magnitude

of the slope. This would only be partially corrected by this simple set of parameters because the

b̂M, which describes the slope of the best-fit line in Fig. 2.2, would remain the same.

A better approach to setting ˆaM, b̂M, andĉM is to simultaneously fit all three using a nonlinear fitting

algorithm. To do this, we used the MATLAB (version R2009a, 2009, http://www.mathworks.com)

nlinfit function using the simple set of parameters as initial guesses. In usingnlinfit, the objective

was to find the parameters ˆaM, b̂M, andĉM that result in the best-fit

Dexp ≈ âM

(

T
η

)

Mb̂M
s ĉSs

M . (2.8)

Taking the logarithm of both sides and rearranging,

log10(Dexp) ≈ log10(âM) + log10

(

T
η

)

+ b̂M log10(Ms) + Ss log10(ĉM). (2.9)
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As input intonlinfit, the independent variables were log10(M) andSs, and the dependent variable

was log10(Dexp). The fit parameters returned bynlinfit were log10(âM), b̂M, and log10(ĉM), from

which the desired ˆaM, b̂M , andĉM were easily determined.

Through similar development, the molecular volume-based diffusivity correlation with shape-

correction is

D̂V = âV

(

T
η

)

V b̂V
s ĉSs

V . (2.10)

The best-fit parameters found for the correlations are shownin Table 2.3.

Table 2.3: Diffusivity Correlation Parameters

Parameter Value
aM 1.3255× 10−14 N/K
bM −0.3757
âM 7.9520× 10−15 N/K
b̂M −0.3618
ĉM 1.4174
aV 2.0512× 10−25 N/K
bV −0.3580
âV 2.5534× 10−25 N/K
b̂V −0.3480
ĉV 1.4080

Basic Diffusivity Correlation

After examining the effect of shape on diffusivity, we reevaluated the parameters for the basic cor-

relation (i.e., without shape-correction) using only the molecules withSs ≤ 1.5 to prevent the more

elongated molecules from skewing the correlation. (Most molecules in this study meet theSs ≤ 1.5

criterion, as the medianSs across all of the small molecules and proteins is 1.29.) The resultingaM

andbM for the molar mass-based diffusivity correlation (Eq. 2.3) andaV andbV for the molecular

volume-based diffusivity correlation (Eq. 2.4) are shown in Table 2.3.

The basic correlations, though less accurate than the shape-corrected correlations, are appropriate

when a molecule is known to be relatively spherical, its structure/dimensions are unavailable, or
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(A) Mass-based diffusivity correlation
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(B) Volume-based diffusivity correlation

Dexp

(

m2/s
)

D
V
,
D̂

V

(

m
2
/
s)

10−10 10−9

10−10

10−9

w/o shape-correction
w/ shape-correction
ideal
ideal ± 10%

Figure 2.4: Quality of the(A) molar mass-based and(B) molecular volume-based diffu-
sivity correlations both with (blue circles) and without (red x-marks) shape-correction. The
diffusivity valuesDM and DV calculated with the basic correlations (i.e., without shape-
correction) are generally in good agreement with the experimental valuesDexp, except for
elongated molecules, for which the predicted diffusivity values are significantly smaller
than the measured values. The diffusivity valuesD̂M and D̂V calculated with the shape-
corrected correlations are in excellent agreement with theexperimental valuesDexp, re-
gardless of molecular shape, and are generally closer to theexperimental values than the
diffusivity values calculated using the basic correlations. The mean and median relative er-
ror are∼10 % and∼5 % for the basic correlations, and the mean and median relative error
are∼4 % and∼4 % for the shape-corrected correlations.

when an approximate diffusivity value is adequate.

Quality of Diffusivity Correlations

Figure 2.4 shows the predicted diffusivity values plotted against the experimentally measured val-

ues for both correlations, with and without shape-correction. The diffusivity values calculated

with the basic correlations are generally in good agreementwith the experimental values, except

for elongated molecules, for which the predicted diffusivity values are significantly smaller than

the measured values. The mean and median relative error are 10.1 % and 4.1 % for the basic molar

mass-based correlation, and the mean and median relative error are 10.1 % and 5.6 % for the basic

molecular volume-based correlation.

The diffusivity values calculated with the shape-corrected correlations are in excellent agreement

with the experimental values, regardless of molecular shape, and are generally closer to the ex-
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perimental values than the diffusivity values calculated using the basic correlations. Almost every

diffusivity value predicted by the shape-corrected correlations is within±10 % of the experimen-

tally measured value (Fig. 2.4). The mean and median relative error are 4.5 % and 3.5 % for the

molar mass-based correlation with shape-correction, the mean and median relative error are 4.2 %

and 3.2 % for the molecular volume-based correlation with shape-correction.

There is not a significant difference between the quality of the molar mass-based and molecular

volume-based diffusivity predictions. From a practical standpoint, the molar mass-based corre-

lation is better simply because molar mass is more easily obtained than molecular volume. The

molar mass is available in the structural database entry foreach molecule. The molecular volume,

on the other hand, has to be calculated using software (e.g.,Chimera).

2.2.5 Stokes Radii

While we have focused on characterizing molecular shape andsize in terms of cylindrical dimen-

sions, it is common in the research literature to characterize the size of molecules in terms of their

Stokes radii. Thus, it is instructive to compare the dimensions measured using Chimera to the

Stokes radii calculated from the experimental and correlation-based diffusivity values.

The Stokes-Einstein equation, as given in Eq. 2.1, relates the diffusivity to the size of sphere dif-

fusing in a smooth medium. However, when the size of the solute molecule is on the same order

as the size of the solvent molecule, continuum assumptions break down, and the Stokes-Einstein

equation (Eq. 2.1) must be modified to account for microfriction [61]. Without this correction, the

Stokes radius calculated from the Stokes-Einstein equation will underestimate the size of small

solute molecules.

Rearranging the Stokes-Einstein equation (Eq. 2.1), an initial guess at the corrected Stokes radius

is

rst,0 =
kT

6πηDs
. (2.11)
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Starting withi = 0 andrst,i = rst,0, the following iteration will converge on the corrected Stokes

radiusrst asi→∞ [61]:

rst,i+1 = rst,i













1+ 0.695

(

rw

rst,i

)2.234










. (2.12)

Here,rw is the radius of the solvent molecule, which in this case is water (rw = 0.14 nm).

Table 2.4 shows the cylindrical dimensions of each moleculefound using Chimera and the micro-

friction-corrected Stokes radii of the molecules found using the experimental and correlation-based

diffusivity values. In addition to the Stokes radii, the volume equivalent radius is shown for each

molecule. This is the radius of a sphere with the same volume as the molecule.

In general, all of the calculated Stokes radii for each molecule are relatively similar, as expected,

since the diffusivity values from which they are calculated are in good agreement. The Stokes

radii tend to be larger than the volume equivalent radii because most molecules are much less

tightly packed than spheres. It is interesting to note that the cylindrical radii are in relatively good

agreement with the Stokes radii, even for elongated molecules, like fast scarlet and congo red.

2.3 Discussion

2.3.1 Molecular Size and Shape

In this study, molecular size and shape were shown to affect transport properties primarily through

their effect on diffusivity. However, there are many biological systems in which transport occurs

in confined spaces, such as in the cytoplasm of a cell [4, 5] or through a membrane pore [8, 9]

or channel [6, 7]. In these cases, an understanding of the size and shape of a molecule can be

critical in understanding its transport [9]. The ability ofa molecule to fit through a tight pore is

determined by the actual size of molecule, not the diameter of a sphere that has the same diffusivity

as the molecule (Stokes sphere).

Here, small ions (e.g., calcium, chloride, sodium, and potassium) bear special mention because,
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Table 2.4: Cylindrical and Spherical Approximations of Molecular Size

Molecule rs ls rexp rM r̂M rV r̂V rVeq

Alexa 350 0.43 1.65 0.54 0.43 0.52 0.42 0.42
Alexa 488 0.67 1.44 0.55 0.60 0.63 0.58 0.60 0.46
Alexa 546 0.86 2.63 0.69 0.77 0.68 0.75 0.67 0.60
Alexa 594 0.80 1.84 0.70 0.71 0.69 0.70 0.55
Antipyrine 0.40 1.19 0.40 0.42 0.39 0.43 0.40 0.34
ATP 0.62 1.22 0.59 0.59 0.64 0.56 0.60 0.45
Atto 655 0.79 1.74 0.60 0.60 0.62 0.60 0.62 0.48
BCECF 0.65 1.71 0.60 0.58 0.59 0.57 0.47
Bleomycin A2 0.89 2.76 0.85 0.75 0.85 0.75 0.67
Bleomycin B2 1.14 3.83 0.86 0.72 0.85 0.71 0.67
Calcein 0.58 1.89 0.63 0.55 0.63 0.54 0.50
Congo Red 0.49 2.81 0.39 0.65 0.38 0.63 0.37 0.50
Cy5 0.92 2.49 0.68 0.68 0.65 0.68 0.64 0.54
Eosin Bluish 0.67 1.49 0.62 0.64 0.58 0.59 0.46
Eosin Yellowish 0.64 1.26 0.64 0.69 0.60 0.64 0.48
Ethidium 0.56 1.37 0.50 0.50 0.51 0.51 0.41
Ethidium Homodimer 0.65 2.51 0.64 0.51 0.66 0.52 0.52
Fast Scarlet 0.53 2.80 0.38 0.66 0.41 0.64 0.41 0.51
FITC 0.60 1.51 0.54 0.53 0.53 0.52 0.42
Fluorescein 0.57 1.28 0.53 0.51 0.53 0.50 0.52 0.40
Glucose 0.32 1.09 0.39 0.41 0.36 0.42 0.36 0.33
Glutamic Acid 0.32 0.96 0.35 0.39 0.36 0.39 0.36 0.31
Lucifer Yellow 0.61 1.46 0.56 0.57 0.53 0.53 0.42
Meglumine 0.33 1.30 0.42 0.34 0.44 0.35 0.35
Methylene Blue 0.38 1.65 0.35 0.48 0.36 0.49 0.37 0.39
Oregon Green 488 0.63 1.43 0.61 0.55 0.56 0.53 0.54 0.42
Propidium 0.69 1.55 0.55 0.57 0.58 0.59 0.46
Rhodamine 110 0.61 1.23 0.55 0.51 0.55 0.51 0.55 0.41
Rhodamine 123 0.59 1.25 0.54 0.51 0.54 0.52 0.55 0.42
Rhodamine 6G 0.68 1.61 0.58 0.56 0.57 0.58 0.58 0.46
Rhodamine B 0.69 1.74 0.56 0.56 0.56 0.58 0.57 0.46
Serva Blue 0.72 2.52 0.70 0.59 0.72 0.60 0.57
Sucrose 0.45 1.21 0.49 0.51 0.50 0.51 0.49 0.41
Trehalose 0.47 1.27 0.51 0.49 0.51 0.49 0.41
Trypan Blue 0.59 3.16 0.72 0.44 0.68 0.42 0.54
Urea 0.29 0.58 0.22 0.29 0.32 0.30 0.32 0.23
Yo-pro-1 0.53 1.71 0.53 0.47 0.55 0.48 0.44
Cytochromec 2.04 4.27 1.82 1.90 1.93 1.91 1.95 1.44
HSA/BSA 4.32 9.26 3.56 3.62 3.56 3.56 3.54 2.57
Lactalbumin 1.76 4.30 2.08 2.01 1.91 2.06 1.98 1.55
Calcium 0.20 0.40 0.34 0.26 0.28 0.27 0.29 0.20
Chloride 0.18 0.35 0.17 0.25 0.27 0.24 0.26 0.18
Potassium 0.28 0.55 0.18 0.26 0.28 0.35 0.38 0.28
Sodium 0.23 0.45 0.23 0.22 0.24 0.30 0.32 0.23

All lengths have units of nm.rs: radius measured using Chimera software.ls: length
measured using Chimera software.rexp: radius calculated from Stokes-Einstein equa-
tion using experimental diffusivity. rM : radius calculated from Stokes-Einstein equa-
tion using diffusivity from mass-based correlation without shape-correction. r̂M : radius
calculated from Stokes-Einstein equation using diffusivity from mass-based correla-
tion with shape-correction.rV : radius calculated from Stokes-Einstein equation using
diffusivity from volume-based correlation without shape-correction. r̂V : radius calcu-
lated from Stokes-Einstein equation using diffusivity from volume-based correlation
with shape-correction.rVeq: radius of sphere with same volume as molecule.
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in contrast to the larger species, they are truly spherical.Therefore, the corrected Stokes radius

is a reasonable means of characterizing the size of small ions. Moreover, because of the strong

interaction between the ions and surrounding water molecules [62], the corrected Stokes radius,

relative to the VDW radius, will better capture the effective size of an ion insofar as it interacts

with its surroundings and is transported through tight spaces, like pores [9].

2.3.2 Molecular Charge

Molecular charge is an important transport parameter because it determines how a molecule will

move in response to gradients in electric potential, which are common in biological systems, es-

pecially at the interfaces like membranes. Molecular charge also affects the interactions among

molecules in solution and between transported molecules and structures like pores through parti-

tioning [9].

The net charge values calculated for the small molecules andproteins were in good agreement

with analytically determined and experimentally measuredvalues. The net charges of the small

molecules were consistent with their formal charge values.The advantage of charge calculation

method described here is that it considers the distributionof microstates to give a clearer picture

of the net charge when there are multiple microstates with different charge.

The net charge values calculated for the proteins were also consistent with experimental measure-

ments. BSA has a charge of about−10 at pH 7.4 [63], consistent with the value of−11 (for HSA)

found here. Similarly, the reported charge of cytochromec at pH 7.4 is in the range+6 to+9

[64–66]. The value determined here was+9.

2.3.3 Molecular Diffusivity

Numerous diffusivity correlations have been proposed in the past [40, 55,67, 68]. The typical

average error of correlations is in the range 8 – 16 % [40, 55, 67, 68]. The basic molar mass

and molecular volume-based correlations developed here are comparable with an average error of

∼10 %, and the shape-corrected correlations do significantlybetter with an average error of just
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∼4 %. It should be noted, however, that the library of molecules considered here was considerably

smaller than some others. Tyn and Gusek, for example, considered 86 macromolecules in devel-

oping their correlation [55]. Additionally, the small error found here benefits from the inclusion

of recent precisely measured experimental diffusivities. A diffusivity correlation, no matter how

good, will exhibit large error if the measurements on which it is based exhibit large error.

To our knowledge, the explicit inclusion of shape in our diffusivity correlation is largely new, at

least for small molecules. Hayduk and Buckley [69] found that “linear” (i.e., more elongated and

rod-like) molecules had diffusivities∼30 % higher than spherical molecules of the same volume,

which is broadly consistent with our findings here. However,Hayduk and Buckley did not quantify

shape in any way (i.e., molecules were either spherical or linear). Here, we found an explicit rela-

tionship between a measurable shape factor and diffusivity. The significant reduction in the error

that resulted from the inclusion of a shape factor suggests that molecular shape may have been

an overlooked, or at least unaccounted for, source of error in the development of other diffusivity

correlations.

The shape-based correlations do come with a few caveats. First, the shape factors for the molecules

considered ranged from about 1 to 3, and the data in this rangesupported the exponential form of

the shape-correction factor developed. However, because the relationship between shape and dif-

fusivity is empirical, rather than based on basic physical insights, it is not clear that the relationship

will hold for shape factors greater than 3, and we would suggest further validation before using

the shape-based correction factors for such elongated molecules. Second, all of the elongated

molecules considered here were small molecules; the three proteins were all relatively spherical,

with shape factors∼ 1. Therefore, it is not clear from the data that the shape-correction factors

will extend to larger molecules (proteins, nucleic acids, etc.). We would suggest further validation

before using the shape-correction factors for larger molecules. Considerable work has been done

relating diffusivity to shape for ellipsoidal [68] and rod-shaped macromolecules [68, 70], like nu-

cleic acids, and these may be more appropriate for moleculesthat are especially large or long.
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The diffusivity correlations should also not be used for exceptionally small solute molecules, as

they tend to break down in this regime due to the granularity of the solvent. It is for this rea-

son that the small ions (chloride, calcium, potassium, and sodium) and urea (60.1 g/mol) were

not used in the development of the correlation, even though experimentally measured diffusivity

values are available. We note that the diffusivity values predicted by the correlations for the next

larger molecules in the library, glutamic acid (146.1 g/mol), glucose (180.2 g/mol), and antipyrine

(188.2 g/mol), are all consistent with experimental values. This suggests that the lower limit for

validity of the correlations is perhaps∼100 g/mol.
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Chapter 3

Electrodiffusion of Molecules in Aqueous Media: A Robust,

Discretized Description for Electroporation and Other

Transport Phenomena

Abstract

Electrically driven transport of molecules and ions withinaqueous electrolyte is of long-standing
interest, with direct relevance to applications involvingthe delivery or release of exogenous and
endogenous biologically active solutes. Motivating examples include iontophoretic and electro-
poration-mediated drug delivery. Here we describe a robustmethod for characterizing electrod-
iffusive transport in physiologic aqueous media. Specifically, we treat the case of solute present
in sufficiently low concentration as to negligibly contribute to the total ionic current within the
system. In this limiting case, which applies to many systemsof interest, the predominant electrical
behavior due small ions is decoupled from solute transport.Thus, electrical behavior may be char-
acterized using existing methods and treated as known in characterizing electrodiffusive molecular
transport. First, we present traditional continuum equations governing electrodiffusion of charged
solutes within aqueous electrolytes and then adapt them to discretized systems. Second, we ex-
amine the time-dependent and steady state interfacial concentration gradients that result from the
combination of diffusion and electrical drift. Third, we show how interfacial concentration gradi-
ents are related to electric field strength and duration. Finally, we examine how discretization size
affects the accuracy of these methods. Overall these methods are motivated by and well-suited to
addressing an outstanding goal: Estimation of the net ionicand molecular transport facilitated by
electroporation in biological systems.
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3.1 Introduction

Understanding electrically driven transport within biological systems is of general importance

[1, 2]. Here we consider continuum descriptions of transport for spatial scales ranging from

nanometers (cell membranes) to tens of micrometers (cells or multiple cells). Over this range,

exogenous and endogenous electric fields may lead to large gradients in solute concentration and

electric potential. Therefore, the combination of diffusion and electrical drift underlies resulting

transport.

In this study, we limit our consideration to movement of solutes within physiologic aqueous elec-

trolytes that have a relatively large electrical conductivity due to the presence of many small,

monovalent ions. In bulk, these electrolytes contain∼0.1 – 0.3 M total concentration of small ions

(sodium, potassium, and chloride). Solutes used and studied in biological applications and research

are typically present at much lower concentrations. As a result, the transport number (transference

number), which accounts for the fraction of the total ionic current (drift) due to a charged solute

[3], is small for typical solutes of interest (e.g., drugs and fluorescent probe molecules). Thus,

electrical transport can be characterized independently of the contribution of the solute of interest

and then treated as known in characterizing the electrodiffusive transport of the solute of interest.

Our primary motivation is the characterization of molecular transport that results from the highly

nonlinear and hysteretic phenomenon of electroporation, which is generally believed to involve

the creation of dynamic pores within the lipid regions of cell membranes [4–9]. Electroporation

significantly increases solute transport though membranes, and thereby leads to delivery, release,

or redistribution of biologically active ions and molecules within electroporated cellular systems.

Because of the large electric fields required for electroporation, we expect that electrodiffusion is

fundamentally involved in the biological response.

Indeed, electrodiffusion has been considered in a number of electroporation studies. For exam-
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ple, Klenchin et al. [10] reported, based on their experiments, that electroporation-mediated DNA

delivery into cells is a fast process involving electrophoresis. In contrast, Neumann et al. [11]

reported that DNA uptake can involve calcium-mediated adsorption of DNA as an initial step at

the membrane level, followed by a multi-step process involving electrodiffusion, which is noted

to be an order of magnitude more effective than simple diffusion. Small molecule delivery into

electroporated cells has also been analyzed quantitatively by considering electrodiffusion [12].

Additionally, the response of the more complex system of theskin’s stratum corneum at low volt-

ages (<1 V) has also been related to electrodiffusion [13].

Electrodiffusion is also relevant to biological responses to electric fields much smaller than those

used for electroporation. For many decades iontophoresis has been used for transdermal drug de-

livery [14, 15]. In most cases iontophoresis involves a small current density, usually at essentially

steady state. This is an example of transport by electrodiffusion in which drift is the major contrib-

utor, but iontophoresis can also involve electro-osmosis.Additionally, electrodiffusion has been

used to describe morphogen concentration profiles in developmental biology [16].

The method described here for approaching electrodiffusive transport problems is explicitly ap-

propriate for dealing with the large concentration solute gradients that arise in electroporation.

Unlike many transport phenomena in biology, electroporation stands out as having large gradients

in space, time, and pore size (radius) distribution.

Within biological systems, these gradients occur over distances from sub-membrane size (nanome-

ter scale) to cell and organelle scale (micrometer scale) totissue scale with both interstitial vol-

umes and irregularly shaped cells participating. The corresponding electroporation time scales

range from nanoseconds (slightly greater than the bulk charge relaxation time,∼ 0.5 ns, of bulk

physiologic saline) to microseconds (the approximate plasma membrane charging time) to mil-

liseconds and seconds (post-pulse behavior). This appearsto hold for biological systems exposed

to electric field pulses of greatly varying durations (∼4 ns – 100 ms) and corresponding magnitudes
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(10 MV/m – 10 kV/m).

The electrodiffusion of solutes within electroporated systems thus involves a wide range of electri-

cal pulse stimuli. The resulting, diverse responses involve fields and small ion currents that redis-

tribute throughout the cell. This redistribution takes place by rapidly changing small ion currents

that respond to the evolving heterogeneous pore populations throughout cell membranes within the

system. The co-transport of larger solutes by electrodiffusion also changes rapidly in space and

time because of combination of current redistribution and the solute selectivity of dynamic popu-

lations of different size pores [7, 8]. The present, robust discretized description of electrodiffusion

appears well-suited to this important, long standing, and challenging problem.

3.2 Methods

3.2.1 Basic Assumptions

As noted in theIntroduction, we focus on solute electrodiffusion within aqueous electrolytes rel-

evant to biological systems. In this case there is a large background total concentration (typically

0.1 – 0.3 M) of small ions, mainly sodium, potassium, and chloride. The solute concentration is

much less than this, so that the transport number (transference number) can be used to describe

fraction of the total ionic current that is due to charged solutes.

3.2.2 Electrodiffusion

Electrodiffusion is the transport of charged solute by the combination of electrical drift and diffu-

sion. The electrodiffusive fluxJs is described by [1, 2]

Js = −Ds∇γ −
Ds

kT
qezsγ∇φ. (3.1)

Here,γ is solute concentration,φ is electric potential,Ds is solute diffusivity, zs is solute charge

(valence),qe is elementary charge,k is the Boltzmann constant, andT is absolute temperature.

The first term in Eq. 3.1 describes the flux of solute resultingfrom a gradient in concentration
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(diffusion), and the second term describes the flux of solute resulting from a gradient in electric

potential (electrical drift).

In the absence of sources and sinks (e.g., chemical reactions), the amount of solute is conserved as

the solute is transported. Thus, for transport alone, the time rate of change of solute concentration

is related to the solute flux by the continuity equation

∂γ

∂t
= −∇ · Js = Ds∇2γ +

Ds

kT
qezs(∇γ) · (∇φ) +

Ds

kT
qezsγ∇2φ. (3.2)

This is simply a statement that if the net flux into an infinitesimal region of space is non-zero, then

the amount of solute, and therefore the concentration of solute, must be changing in time.

3.2.3 Electrodiffusion in 1-D

Our focus here will be on transport in 1-D. We note that higherorder systems can be modeled using

1-D flux equations to describe transport between nodes distributed in higher-dimensional systems

[17–19]. Specifically, 2-D cell models are already in use [20–22], and the extension to 3-D cell

models should be relatively straightforward but more computationally demanding.

In 1-D, electrodiffusive flux Js in the+x-direction (and dispensing with the vector notation) be-

comes

Js = −Ds
∂γ

∂x
− Ds

kT
qezsγ

∂φ

∂x
, (3.3)

and the continuity equation becomes

∂γ

∂t
= −

∂Js

∂x
= Ds

∂2γ

∂x2
+

Ds

kT
qezs

∂γ

∂x
∂φ

∂x
+

Ds

kT
qezs

∂2φ

∂x2
. (3.4)

For convenience, we define a dimensionless electric potential

ψ =
qezs

kT
φ. (3.5)
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Written in termsψ, the electrodiffusive flux equation (Eq. 3.3) simplifies to

Js = −Ds

(

∂γ

∂x
+ γ

∂ψ

∂x

)

, (3.6)

and the continuity equation simplifies to

∂γ

∂t
= Ds

(

∂2γ

∂x2
+
∂γ

∂x
∂ψ

∂x
+
∂2ψ

∂x2

)

. (3.7)

3.2.4 Electrodiffusive Flux in a Discretized 1-D System

Here, we recast established continuum theory in a fashion that anticipates large transport networks

with many discrete nodes [18, 19, 23]. Consider adjacent nodes i and j in a 1-D system with

positionsxi andx j. We seek to calculate the instantaneous electrodiffusive fluxJi, j
s from xi to x j

in terms of the solute concentrationsγi andγ j and electric potentialsφi andφ j, with associated

dimensionless potentialsψi andψ j. No assumptions are made about how concentrationγ varies

from xi to x j. In contrast, the electric potentialφ is assumed to vary linearly fromxi to x j. Thus,

betweenxi andx j

∂φ

∂x

∣

∣

∣

∣

∣

i, j
≈

(∆φ)i, j

(∆x)i, j
and

∂ψ

∂x

∣

∣

∣

∣

∣

i, j
≈

(∆ψ)i, j

(∆x)i, j
, (3.8)

where (∆φ)i, j ≡ φ j − φi, (∆ψ)i, j ≡ ψ j − ψi, and (∆x)i, j ≡ x j − xi. Similarly, for concentration

(∆γ)i, j ≡ γ j − γi.

Substituting, Eq. 3.8 into Eq. 3.6, the electrodiffusive fluxJi, j
s from xi to x j is

Ji, j
s = −Ds

∂γ

∂x
− Dsγ

(∆ψ)i, j

(∆x)i, j
. (3.9)

Solving for∂γ/∂x,
∂γ

∂x
= − Ji, j

s

Ds
−

(∆ψ)i, j

(∆x)i, j
γ. (3.10)

This differential equation can be solved using separation of variables:
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−
∫ γ j

γi

∂γ

Ji, j
s

Ds
+

(∆ψ)i, j

(∆x)i, j
γ
=

∫ x j

xi

∂x (3.11)

−












(∆x)i, j

(∆ψ)i, j
ln













Ji, j
s

Ds
+

(∆ψ)i, j

(∆x)i, j
γ

























γ j

γi

= [x]
x j
xi . (3.12)

Simplifying and solving forJi, j
s ,

Ji, j
s = −Ds

(∆ψ)i, j

(∆x)i, j

(

γi

1− e(∆ψ)i, j
+

γ j

1− e−(∆ψ)i, j

)

. (3.13)

Note that Eq. 3.13 is of indeterminate form when (∆ψ)i, j = 0. However,

lim
(∆ψ)i, j→0

Ji, j
s = −Ds

(∆γ)i, j

(∆x)i, j
. (3.14)

In other words, when there is no gradient in the dimensionless electric potential, the fluxJi, j
s re-

duces to that of simple diffusion. Thus, to be rigorous,Ji, j
s is described by the piecewise continuous

function

Ji, j
s =



























−Ds
(∆γ)i, j

(∆x)i, j
if (∆ψ)i, j = 0,

−Ds
(∆ψ)i, j

(∆x)i, j

(

γi

1−e(∆ψ)i, j
+

γ j

1−e−(∆ψ)i, j

)

if (∆ψ)i, j , 0.
(3.15)

It is instructive to consider the behavior of the fluxJi, j
s in limits of (∆ψ)i, j:

Ji, j
s ≈











































−Ds
(∆ψ)i, j

(∆x)i, j
γ j if (∆ψ)i, j ≫ 1,

−Ds
(∆γ)i, j

(∆x)i, j
if (∆ψ)i, j ≈ 0,

−Ds
(∆ψ)i, j

(∆x)i, j
γi if (∆ψ)i, j ≪ −1.

(3.16)

As expected, when diffusion dominates drift ((∆ψ)i, j ≈ 0), the equation for the fluxJi, j
s reduces to

that of simple diffusion. Likewise, when drift dominates diffusion (|(∆ψ)i, j| ≫ 1), the equation for
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the fluxJi, j
s reduces to that of electrical drift. Note that the concentration γ that determines the flux

Ji, j
s depends on the sign of (∆ψ)i, j: when (∆ψ)i, j > 0, γ = γ j, and when (∆ψ)i, j < 0, γ = γi.

That is, when drift dominates diffusion, the fluxJi, j
s is proportional to the concentration of the

sourcenode and independent of thedestinationnode. This makes intuitive sense. It also implies

that when the concentration of the source node→ 0, the fluxJi, j
s → 0. This is an important prop-

erty because it ensures that solute cannot be “pulled out” ofa node that does not have any, which

would cause its concentration to become negative (when solute conservation is imposed).

It is tempting to make the simplifying assumption that the concentrationγ varies linearly in space

(e.g., in Eq. 3.9). Under this assumption, diffusion and drift would be decoupled and the total flux

would be the sum of the independently determined fluxes:

Ji, j
s = −Ds

(∆γ)i, j

(∆x)i, j
− Ds

(∆ψ)i, j

(∆x)i, j

(γi + γ j

2

)

. (3.17)

The corresponding behavior of the linear fluxJi, j
s in limits of (∆ψ)i, j is

Ji, j
s ≈











































−Ds
(∆ψ)i, j

(∆x)i, j

(

γi+γ j

2

)

if (∆ψ)i, j ≫ 1,

−Ds
(∆γ)i, j

(∆x)i, j
if (∆ψ)i, j ≈ 0,

−Ds
(∆ψ)i, j

(∆x)i, j

(

γi+γ j

2

)

if (∆ψ)i, j ≪ −1.

(3.18)

Importantly, note that when drift dominates diffusion (|(∆ψ)i, j| ≫ 1), the flux is proportional to the

averageof the node concentrations. This is a marked contrast to the nonlinear case (Eq. 3.16), in

which the drift flux depends only on the concentration of the source node. This behavior of the

linear flux formulation can lead to nonphysical and unstablebehavior, such as a nonzero flux of

solute out of a node without any solute (γ = 0). Use of the nonlinear formulation avoids numerical

pathologies and is therefore robust in the presence of steepgradients inγ.
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Using Eqs. 3.16 and 3.18, the relative error in the linear formulation of the fluxJi, j
s is found to be

LinearJi, j
s Relative Error≈











































(∆γ)i, j

2γ j
if (∆ψ)i, j ≫ 1,

0 if (∆ψ)i, j ≈ 0,

(∆γ)i, j

2γi
if (∆ψ)i, j ≪ −1.

(3.19)

The error is small when the difference in dimensionless electric potential (∆ψ)i, j between the nodes

is small and also when the difference in concentrations between the nodes (∆γ)i, j is small relative

to the absolute concentrationγi andγ j. Otherwise, the error is large.

This is particularly true when the sign of the dimensionlesspotential is such that it contributes to

drift from the node with lower concentration to the node withhigher concentration. This is the

case because, as discussed, in the linear flux formulation, the drift contribution to the flux depends

on the average of the node concentrations, rather than on thesource node concentration alone.

Figure 3.1 shows the nonlinear (Eq. 3.15) and linear (Eq. 3.17) electrodiffusive fluxJi, j
s from nodei

to j (scaled by (∆x)i, j/Ds, as the values of these parameters are not relevant to the results displayed)

plotted against the dimensionless potential (∆ψ)i, j between nodesi and j for a few combinations of

concentrationsγi andγ j, and Fig. 3.1B shows the error in the linear electrodiffusive flux.

Whenγi = γ j = 1 (i.e., when (∆γ)i, j = 0) (dimensionless),Ji, j
s is linear in (∆ψ)i, j for both the non-

linear and linear formulations because solute transport results from drift alone. Whenψi = ψ j (i.e.,

when (∆ψ)i, j = 0), Ji, j
s is linear in (∆γ)i, j for both the nonlinear and linear formulations because

transport results from diffusion alone. It is only for these two limiting cases that the assumption of

linearity is valid and the linear flux formulation is accurate.

In general, however,γi , γ j andψi , ψ j, and the fluxJi, j
s is determined by the combination of drift

and diffusion. It is for these realistic conditions that the assumption of linearity becomes numeri-
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Figure 3.1: Electrodiffusive flux between adjacent nodes in a discretized system.(A) Elec-
trodiffusive fluxJi, j

s between nodesi and j for three sets of concentrationsγi andγ j calcu-
lated using the nonlinear (“nlin”,solid lines) and linear (“lin”,dashedlines) flux formula-
tions. (∆ψ)i, j is the dimensionless electric potential between nodesi and j. Note that the
flux Ji, j

s is scaled by (∆x)i, j/Ds, as the values of these parameters are not relevant to the
results displayed.(B) Relative error of the linear flux formulation. The error is small when
either|(∆γ)i, j | is small or|(∆ψ)i, j | is small; otherwise, the error is large.

cally pathological and leads to significant error. This is illustrated for the caseγi = 1 andγ j = 0

and the caseγi = 0 andγ j = 1 in Fig. 3.1.

In the case of the nonlinear flux formulation (Eq. 3.15) (Fig.3.1), when the sign of (∆ψ)i, j is such

that drift proceeds from the node with higher concentration(γ = 1) to the node with lower con-

centration (γ = 0), Ji, j
s is increasingly dominated by drift as|(∆ψ)i, j| increases, and approaches the

flux Ji, j
s found in the case of pure drift (i.e., whenγi = γ j = 1). Similarly, when the sign of (∆ψ)i, j

is such that drift proceeds from the node with lower concentration (γ = 0) to the node with higher

concentration (γ = 1), Ji, j
s is increasingly dominated by drift as|(∆ψ)i, j| increases, and approaches

the flux Ji, j
s found in the case of pure drift (i.e., whenγi = γ j = 0). The key finding is that when

drift dominates over diffusion, the fluxJi, j
s is proportional to the concentration of the drift source

node.

The behavior of the linear flux formulation (Eq. 3.17) is verydifferent from that of the nonlinear

flux formulation (Fig. 3.1). The flux is linear in (∆ψ)i, j with a vertical offset equal to the diffusive
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contribution to the flux, which is independent of (∆ψ)i, j. Regardless of the sign of (∆ψ)i, j, the flux

is determined by the average node concentration (γi + γ j)/2. Therefore, when the sign of (∆ψ)i, j

is such that drift proceeds from the node with higher concentration (γ = 1) to the node with lower

concentration (γ = 0), the linear formulation underestimates the magnitude ofthe flux Ji, j
s . And

when the sign of (∆ψ)i, j is such that drift proceeds from the node with lower concentration (γ = 0)

to the node with higher concentration (γ = 1), the linear formulation overestimates the magnitude

of the flux Ji, j
s . The latter case is particularly problematic, as it predicts flux out of a node that

contains zero solute. This is clearly impossible.

One could use the linear flux formulation and ensure that (∆ψ)i, j ≈ 0 by choosing a small (∆x)i, j,

but the (∆x)i, j required to keep the error in the flux under control is very small. Suppose one

wanted to use the linear flux formulation and choose (∆x)i, j to keep|(∆ψ)i, j| < 0.1. If zs = ±1,

this corresponds to a potential difference|(∆φ)i, j| < 2.6 mV (at 25◦C). The node spacing (∆x)i, j

required to meet this condition is (∆x)i, j < |(∆φ)i, j/E|, where isE is the electric field magnitude.

For a conventional electroporation pulse,E ≈ 1 kV/cm, and thus, the node spacing (∆x)i, j must be

<26 nm to meet the error criterion. Recently, pulses with magnitudes of up toE ≈ 10 MV/m have

been used. Such conditions would require an incredibly small (∆x)i, j < 0.26 nm. Moreover, the

typical field in a cell membrane under rest conditions is also∼ 10 MV/m (=∼ 50 mV/5 nm), and

the membrane is precisely where one expects large relative changes in concentrationγ. For these

reasons, the use of the linear formulation is likely to be particularly problematic in examining the

transmembrane flux of solute. The nonlinear flux formulationavoids this problem.

3.2.5 Electrodiffusive Continuity in a Discretized 1-D System

The electrodiffusive fluxJi, j
s describes the instantaneous movement of solute from one node (posi-

tion) to another, but it does not describe the resulting change in concentrationγ at a node (position).

It is the continuity equation (Eq. 3.4) that describes the change inγ that results from the net elec-

trodiffusive flux into the node.
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s

Figure 3.2: Discretized 1-D electrodiffusion system. Nodei has adjacent nodesi − 1 and
i + 1. The positionx, electric potentialφ, and concentrationγ for each node is indicated
by its subscript. Nodesi − 1 andi are separated by distance (∆x)i−1,i, nodesi andi + 1 are
separated by distance (∆x)i,i+1. The region of space associated with nodei has length (∆x)i.
Ji−1,i

s is the electrodiffusive flux from nodei−1 to nodei, andJi,i+1
s is the electrodiffusive flux

from nodei to nodei + 1. The electrodiffusive flux between adjacent nodes is determined
by the positions, electric potentials, and concentrationsof the nodes, as well as solute (e.g.,
diffusivity) and system (e.g., temperature) properties. The rate at which the concentration
γi changes is determined by the net fluxJi−1,i

s − Ji,i+1
s into nodei and the length (∆x)i.

More specifically, consider the 1-D system shown in Fig. 3.2.Nodei with positionxi has adjacent

nodesi − 1 andi + 1 with positionsxi−1 and xi+1 such thatxi−1 < xi < xi+1. The nodesi − 1, i,

andi + 1 have concentrationsγi−1, γi, andγi+1, electric potentialsφi−1, φi, andφi+1, and associated

dimensionless electric potentialsψi−1, ψi, andψi+1.

The distance between nodesi − 1 andi is (∆x)i−1,i ≡ xi − xi−1, and the distance between nodes

i and i + 1 is (∆x)i,i+1 ≡ xi+1 − xi. There is a region of space associated with nodei for which

all points are close toxi than to the position of any other node. More specifically, allx such that

xi−1 + (∆x)i−1,i/2 < x < xi+1 − (∆x)i,i+1/2 are associated with nodei. The length of this region

associated with nodei is (∆x)i ≡ (∆x)i−1,i/2+ (∆x)i,i+1/2.

The flux Ji−1,i
s from i − 1 to i and fluxJi,i+1

s from i to i + 1 at any instant in time can be determined

using Eq. 3.15, as described. The derivative of the flux with respect tox at xi can be approximated

by the following discretized relation:

∂Js

∂x

∣

∣

∣

∣

∣

i
≈

Ji,i+1
s − Ji−1,i

s

(∆x)i
. (3.20)
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Substituting into Eq. 3.4, the continuity equation for nodei is

∂γi

∂t
= −

Ji,i+1
s − Ji−1,i

s

(∆x)i
=

Ji−1,i
s − Ji,i+1

s

(∆x)i
. (3.21)

Thus, the concentrationγi of nodei increases when the influx of solute exceeds the efflux of solute

and decreases when the efflux of solute exceeds the influx of solute.

Having now developed discretized versions of both Eqs. 3.3 and 3.4, a complete approach has been

described. The combination of the flux and continuity equations fully characterizes the electrodif-

fusion in the 1-D system.

3.3 Results and Discussion

3.3.1 Electrodiffusion in 1-D: An Illustrative Example

In systems for which an electric field is applied transiently(e.g., in electroporating cells), the ini-

tial state of the system is such that concentration and electric potential are separately uniform over

large regions of the system and only change significantly at boundaries (e.g., membranes) that

impede molecular and electrical transport. As a result, upon initiation of an applied field in such

systems, the electrodiffusive flux throughout most of the system is dominated by drift(as in the

caseγi = γ j = 1 described above). The notable exception is at boundaries,where transport is

impeded and large concentration gradients can form rapidlyover time. It is here that an accurate

description of transport becomes very important.

We illustrate the principles described above by considering electrodiffusion in a simple 1-D model

system (Fig. 3.3). Specifically, consider a 1-D system with no-flux (reflecting) boundaries atx = 0

andx = L = 10µm. The system contains a solute with diffusivity Ds = 40× 10−11 m2/s and charge

zs = +1, which are typical of a small molecule [24]. Initially (t < 0 s), the solute concentration is

uniform and withγ(x) = γb, and the applied electric field is uniform with magnitudeE = 0 V/m.
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Figure 3.3: Electrodiffusion in a simple 1-D system. The concentrationγ(x) at selected
time points is shown for a typical small molecule with diffusivity Ds = 40× 10−11 m2/s and
chargezs = +1 in a 1-D system with lengthL = 10µm and no-flux (reflecting) boundaries
at x = 0µm andx = 10µm. Initially (t < 0 s), the concentration is uniform withγ(x) = γb

and there is no applied electric field. Att = 0 s a uniform electric field (in the+x-direction)
E = −104 V/m is applied, and the positively charged solute thus drifts toward x = 0µm.
The concentrationγ(x) approaches a steady state of exponential form for which thediffusion
and electrical drift contributions to the electrodiffusive flux are equal and opposite, and the
resulting net flux is zero.

Here,E is defined as

E = −∂φ
∂x
=
φ(0)− φ(L)

L
. (3.22)

At t = 0 s, an electric field is applied with magnitudeE = −104 V/m. The negative value ofE

indicates thatφ(L) > φ(0), and thus positively charged solute (zs > 0) will drift toward x = 0. The

voltage difference across the system isφ(L) − φ(0) = −EL = 1 V.

Figure 3.3, shows howγ(x) changes in time. Immediately after the application of the electric field,

solute begins to be drift towardx = 0 andγ(0) increases whileγ(L) decreases, as required by

the continuity equation. The flux in the central region of thesystem initially results entirely from

electrical drift, as the concentration is uniform over the central region.

As the solute drifts towardx = 0, the concentration profileγ(x) becomes increasingly nonuni-
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form. Initially, the concentration gradients are largest nearx = 0 andx = L. As electrodiffusion

continues, both the concentration and concentration gradient nearx = 0 increase while both the

concentration and concentration gradient nearx = L decrease.

As the concentration gradient nearx = 0 grows, the diffusive flux in the+x-direction increasingly

counterbalances the drift flux in the−x-direction. Eventually, the net electrodiffusive flux through-

out the system approaches zero and the concentrationγ(x) approaches a steady state profile of

exponential form.

3.3.2 Electrodiffusion in 1-D: Steady State Solution

As demonstrated in Fig. 3.3, electrical drift causes soluteto accumulate against (impermeable)

system boundaries (x = 0 in this case), and this accumulation results in increased concentration

gradients that, through diffusion, oppose the electrical drift. At steady state, diffusion and electrical

drift counterbalance one another. That is, they are equal and opposite. Thus, at steady state, the

net flux throughout the system approaches zero and Eq. 3.3 becomes

Js = 0 = −Ds
∂γ

∂x
+

Ds

kT
qezsγE. (3.23)

Rearranging,
∂γ

∂x
= −γ

λ
, (3.24)

whereλ is the length constant

λ ≡ − kT
qezsE

. (3.25)

Note that for the example shown above, the value ofλ is positive because the value ofE is negative.

Equation 3.24 has solution

γ(x) = γ0e
−x/λ, (3.26)

whereγ0 is an integration constant determined by the initial conditions.γ0 can be found by apply-
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ing conservation: the total amount of solute in the system remains constant. Thus,

γ0

∫ L

0
e−x/λ dx = γbL. (3.27)

Solving the integral and rearranging,

γ0 =

(

L/λ
1− e−L/λ

)

γb. (3.28)

Substituting forγ0 in Eq. 3.26 yields the steady state concentration

γ(x) =

(

L/λ
1− e−L/λ

)

γbe
−x/λ. (3.29)

Figure 3.4 shows the steady state concentration profilesγ(x) for a number of electric field magni-

tudesE for the example system described in the previous section. AsE increases, the magnitude

of the drift flux towardx = 0 also increases. Consequently, the steady state concentration gradient

at x = 0 must also increase such that the diffusive flux counterbalances the increased drift flux.

Additionally, asE increases, the steady state concentration atx = 0 increases and the steady state

concentration atx = L decreases.

3.3.3 Characteristic Length, Time, and Speed of Electrodiffusion

At steady state, diffusion and drift are in balance everywhere in system (i.e., for all x). Prior to

reaching steady state, diffusion and drift are not in balance throughout most of the system, but they

must be in balance at the boundaries because of the no-flux boundary condition. As a result, at

all times there is a region very near the boundaries that exhibits an (approximately) exponential

concentration profile of the same form as at steady state (Eq.3.29). This boundary layer has
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Figure 3.4: Steady state concentration profiles in a simple 1-D system. The steady
state concentrationγ(x) (normalized by the initial, uniform concentrationγb) is shown
for selected electric field magnitudes for a typical small molecule with diffusivity Ds =

40× 10−11 m2/s and chargezs = +1 in a 1-D system with lengthL = 10µm. The uniform
electric field is oriented such that the positively charged solute drifts towardx = 0µm. At
steady state, the diffusion and electrical drift contributions to the electrodiffusive flux are
equal and opposite, resulting in a concentration profileγ(x) of exponential form. As the
electric field magnitude increases, the steady state concentration increases atx = 0µm and
decreases atx = 10µm.

characteristic length

λ =
kT

qe|zsE|
. (3.30)

The length constantλ (Fig. 3.5) characterizes the length scale over which soluteaccumulates at

boundaries (e.g., membranes). It is in this interfacial region that the concentration and concentra-

tion gradient change most dramatically in time as the resultof the interplay between electrical drift

and diffusion.

The Debye length,λD, screens charged solutes and also charged surfaces. For most applied electric

fields of interest, the electrodiffusion lengthλ is larger thanλD (Fig. 3.5). Benedek and Villars give

values ofλD ≈ 0.31 nm for bulk 1 M saline andλD ≈ 0.96 nm for 0.1 M saline [26]. More relevant

to the cytoplasm, Ando and Skolnick 2010 [25] reportedλD ≈ 0.8 nm inside the cell (∼ 0.15 M

salt). Thus, in most of the applications that motivated our approach, the effect of the Debye length

can be neglected.
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Figure 3.5: Dependence of electrodiffusion length constant on electric field magnitude.
The electrodiffusion length constantλ is inversely proportional to the product of the electric
field magnitudeE and molecular charge (valence)zs. Note thatλ exceeds the Debye length
λD ≈ 0.8 nm [25] (inside cells), even at the largest electric magnitude (107 V/m) and can
therefore be neglected.

The bulk electrolyte is the source of the solute that accumulates in the boundary layer. Within the

bulk electrolyte (i.e., outside the boundary layer), electrical drift is the dominant mode of transport,

as gradients in concentration are small. Thus, the rate at which solute enters the boundary layer is

determined by the bulk electrolyte concentrationγb and the solute drift velocityν, where

ν = Ds
qe|zsE|

kT
=

Ds

λ
. (3.31)

The characteristic timeτ of electrodiffusion is related to the characteristic lengthλ and drift veloc-

ity ν by

τ =
λ

ν
=

1
Ds

(

kT
qezsE

)2

=
λ2

Ds
. (3.32)

τ is the time required for the solute to drift a distanceλ at speedν. τ is also the time required

for the solute to diffuse a distanceλ. This is consistent with the notion that drift and diffusion

counterbalance one another in the boundary layer.

τ also describes the rate at which the concentration increases in the boundary layer. Assuming the
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x = L boundary is sufficiently far from thex = 0 boundary (L ≫ νt), the concentrationγ(x) within

the boundary layer is described by the exponential function

γ(x) ≈
(

γ(0)− γb
)

e−x/λ + γb for t > τ and 0≤ x ≤ λ , (3.33)

and the flux of solute into the boundary layer isνγb. Continuity requires that this flux result in a

corresponding increase in concentration within the boundary layer described by

∂γ

∂t
≈
γb

τ
e−x/λ for t > τ and 0≤ x ≤ λ . (3.34)

Thus, for every time constantτ, the concentration at the boundaryγ(0) increases by an amountγb.

3.3.4 Discretization Error

As a practical matter, it is important to examine the effect that discretization has on the accuracy of

the model results. How fine a discretization is fine enough? Ifthe discretization is too coarse, the

results may be inaccurate, but if the discretization is too fine (i.e., finer than necessary to achieve

results within some margin of error), obtaining a numericalsolution will come at an unnecessarily

large computational cost.

Here, we consider a 1-D system with no-flux (reflective) boundaries asx = 0 andx = L. Initially

(t < 0), the uniform concentrationγ(x) = γb, and the electric field magnitudeE = 0. At t = 0, a

uniform electric field is applied with magnitudeE. The solute chargezs and electric field magni-

tude are of opposite sign such that the solute drifts toward the x = 0 boundary. The system length

L is sufficiently large that thex = L boundary has no effect on the results near thex = 0 boundary

on the time scales examined. (I.e.,L is much greater than the electrical drift distance on the time

scales considered.) This simplifies the analysis by removing any effect that thex = L boundary

might otherwise have. The system can be viewed as analogous to cells in system for which the

boundaries far away (e.g., an electroporation cuvette).
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Unfortunately, a time-dependent analytical solution for our system of interest is, to our knowledge,

unavailable. As an alternative, for comparison we use as a reference modeling results obtained

using an extremely fine discretization (so fine that it would be impractical to use for 2-D or 3-D

systems). We then compare the model results found using morereasonably sized discretizations

with the model results found using the extremely fine discretization. This approach is of course

predicated on the assumption that as the discretization size shrinks, the model results converge on

the true solution.

In the interest of generality, the results are presented in terms of a length constantλ (Eq. 3.30)

and time constantτ (Eq. 3.32). All systems with the sameλ andτ will exhibit exactly the same

spatiotemporal dynamics.

Figure 3.6A shows the concentrationγ relative to the bulk concentrationγb near thex = 0 bound-

ary for a few different discretization sizes∆x at time t = τ. The∆x/λ = 0.001 discretization,

which is much finer than the others, can be considered the exact solution. As the discretization

size decreases, the discretized concentration profileγ(x) approaches the trueγ(x). ∆x = 2λ is

clearly too coarse to spatially resolve the large concentration gradient atx = 0, but∆x = λ and

∆x = λ/2 do reasonably well. Note that while the concentration tends to be underestimated at the

discretized points, the total solute is not necessarily underestimated because the total solute at a

node is proportional to∆x.

Figure 3.6B shows the error in the concentration profiles (relative to the∆x = λ/1000 results) for

the discretizations shown in Fig. 3.6A, as well as a few others. As one would expect based on

Fig. 3.6A, the error decreases as∆x decreases. For example, when∆x = λ, the error atx = 0 is

11 %. When∆x is decreased toλ/16, the error drops to just 0.05 %. For all of the discretizations,

the error decreases with distance from the boundary. Over the 4λ shown, the error drops by 2–3

orders of magnitude. The reason is that the concentration gradient decreases with distance from the

boundary and effectively become more linear, such that even the coarser discretizations can cap-
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(A) Concentration profiles
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Figure 3.6: Concentration profiles and error near boundary.(A) Concentrationγ(x) (nor-
malized by bulk concentrationγb) nearx = 0 boundary att = τ for various discretization
sizes∆x relative to the length constantλ. (The inset shows∆x/λ.) As∆x/λ decreases, the
associated concentration profile converges.(B) Relative error in concentrationγ(x) near
x = 0 boundary att = τ for various discretization sizes∆x relative to the length con-
stantλ. (The inset shows∆x/λ.) The error is relative to concentration profile found with
∆x/λ = 0.001. The error decreases as the size of the discretization decreases. The error
also decreases with distance from the boundary. The dip in the error nearx/λ ≈ 3 is simply
the result of a sign change in the error. Note that thex = L boundary is sufficiently far away
as to have no effect on the results at thex = 0 boundary.

ture the changing concentration. The fact that the∆x required to accurately modelγ(x) at a fixed

error threshold decreases with distance from the boundary is significant. It suggests that variable

nodes spacing would be an excellent approach to achieving high accuracy in model results near

the boundary without the large computational cost of a fine node spacing throughout the system

[17–19].

While Fig. 3.6 shows the discretization error att = τ, it should be recognized that the concentration

and error change in time. Accordingly, Fig. 3.7 shows the error for a broad range of discretizations

and times. The error is shown in two different ways. Figure 3.7A shows the error (relative to a

much finer discretization) atx = 0. By contrast, Fig. 3.7B shows the error in the concentration of

the boundary layer (0≤ x ≤ λ) taken as a whole. This estimation is equivalent to measuring the

error in the total amount of solute contained in the boundarylayer. As noted, the coarser discretiza-

tions tend to underestimate the concentration at nodes, butbecause they have larger∆x, they do
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(A) Relative error in concentration: x = 0
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(B) Relative error in concentration: 0 ≤ x ≤ λ
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Figure 3.7: Temporal behavior of error in concentration near boundary.(A) Relative error
in concentration atx = 0 is shown for a range of durationst (relative to electrodiffusion time
constantτ) and discretization sizes∆x (relative to electrodiffusion length constantλ). The
error is relative to the results of using an extremely fine discretization (∆x/λ = 2× 10−4

nearx = 0). (B) Relative error in concentration averaged over 0≤ x ≤ λ is shown for a
range of durationst (relative to electrodiffusion time constantτ) and discretization sizes∆x
(relative to electrodiffusion length constantλ). The error is relative to the results of using
an extremely fine discretization (∆x/λ = 2× 10−4 nearx = 0). Both plots use the same
pseudocolor error scale, thereby allowing direct comparison. The results demonstrate that
the error decreases as the size of the discretization decreases relative to the electrodiffusion
length constantλ. The error concentration atx = 0 is generally larger than the error in the
concentration averaged over 0≤ x ≤ λ. Note that thex = L boundary is sufficiently far
away as to have no effect on the results at thex = 0 boundary.

not necessarily underestimate the total solute within a region. This is clear in comparing Fig. 3.7A

and B, as the error of the boundary layer concentration tendsto be smaller than the error in the

concentration atx = 0.

Figure 3.8 shows the maximum error for each discretization across 0≤ t ≤ 100τ, and can serve

as a guide in determining the size of the discretization required to achieve a specified degree of

accuracy. Note that the error in the concentration atx = 0 is much larger than the error of the

concentration of the boundary layer (0≤ x ≤ λ) taken as a whole. Which measure of error is more

meaningful depends on the particular application and its duration. In the case of electroporation,
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Figure 3.8: Maximum error in concentration near boundary. The maximum relative error
in the concentration over all times 0≤ t ≤ 100τ is shown for a range of discretization sizes
∆x (relative to electrodiffusion length constantλ). The error is shown for the concentration
at x = 0 and averaged over 0≤ x ≤ λ. For all discretization sizes, the error atx = 0
significantly exceeds the error averaged over 0≤ x ≤ λ. In both cases, error decreases as
the size of the discretization decreases relative to the electrodiffusion length constantλ. The
error over 0≤ x ≤ λ is proportional to (∆x/λ)2.

in which transmembrane transport depends on the concentration the membrane, the error atx = 0

is more meaningful ift . τ. For longer pulses (t & τ), the error for the boundary layer as whole is

more meaningful because solute will drift a distanceλ in time τ. Thus, for longer pulses (t > τ),

solute within the boundary layer can drift to the boundary onthe time scale of the pulse.

These results provide guidance in determining the discretization size appropriate for a particular

system. Specifically, one can use Fig. 3.8 to determine the discretization size∆x required to limit

error in the interfacial concentration to a specified level.This∆x should be considered a starting

point, as the particulars of a system may require a smaller∆x or permit a larger∆x while remaining

within error limits. We suspect that for many systems of interest,∆x as given by Fig. 3.8 is

conservative (i.e., smaller than necessary). For example,if a boundary is semi-permeable (allowing

transport through it), this will limit the accumulation of solute at the boundary. Similarly, in 2-D in

3-D systems, transport around a boundary (e.g., around a cell in solution) may limit accumulation

of solute at the boundary. Both cases are likely to permit a larger∆x than shown in Fig. 3.8.
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3.4 Conclusions

We have described a robust method of characterizing electrodiffusive transport in a discretized

system. This method is appropriate for modeling transport of solutes that do not contribute signif-

icantly to the total ionic current in a system. Many solutes of interest (e.g., drugs and fluorescent

probes) meet this criterion, as they are typically present in much lower concentration than the

primary charge carriers (sodium, potassium, and chloride ions) in physiologic electrolyte. Under

these circumstance, the molecular transport problem may treated separately from the electrical

transport problem.

As a result, the molecular transport model presented here may be coupled to existing models of

electrical transport (e.g., spatially distributed electroporation models [6–9, 18, 19, 27, 28]) to yield

a useful picture of transport in biological systems that experience exogenous or endogenous electric

fields.
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Chapter 4

Effects of Hindrance and Partitioning on Ionic and Molecular

Transport Through Small Lipidic Pores

Abstract

Quantitative, mechanistic description and understandingof electroporation is important to diverse
applications in biology, biotechnology, and clinical medicine. Two broad application categories
can be distinguished: (1) delivery of exogenous ions and molecules into cells, and (2) redistri-
bution or release of endogenous molecules within or from cells. In both cases, transport through
membrane pores are critical events that influence downstream biological outcomes. Here we con-
sider two fundamental effects that partially govern solute transport through lipidic pores: steric
hindrance and partitioning. These effects account approximately for the impact of solute size (hin-
drance) and charge (partitioning) on transport. We first show how classic descriptions of hindrance
and partitioning for spherical solute in infinitely long pores can be approximately adapted to elec-
tropores and to non-spherical solutes. As partial validation, we then use our methods to interpret
the important lipid bilayer membrane pore conductance measurements of Melikov et al. (Biophys.
J., 80:1829–1836, 2001). The Melikov et al. experiments report the average pore conductance val-
ues for two very different electrolyte solutions, KCl and NMDG-glutamate, for which we find that
both are consistent with an average pore radius value 1.03 nm at 180 mV transmembrane voltage.
More broadly, our analysis suggests that the minimum-size pore radius for bilayer lipid mem-
brane, an important quantity in electroporation models, lies in the approximate range 0.9 – 1.0 nm.
Finally, we describe how steric hindrance affects the solute size selectivity of small pores. In fu-
ture experiments our results could be exploited to estimatethe minimum-size pore radius in cell
plasma membranes using established experimental techniques. Overall these approximate descrip-
tions and estimates comprise basic ingredients for local electroporation models embedded in either
single planar membranes or curved cell membranes.
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4.1 Introduction

Two broadly distinguishable applications of electroporation continue to grow: (1) delivery of

molecules into cells (and less often, release of molecules from cells), and (2) non-thermal cell re-

moval by necrosis or apoptosis, with the type of cell death suspected to result from differing lethal

redistribution of one or more types of biologically active ions or molecules. In both broad cases,

lasting biological effects are hypothesized to depend on the net (cumulative) molecular transport

through electroporated cell membranes.

Significantly, increasingly realistic quantitative descriptions of cell-level electroporation are there-

fore important. For this reason, our goal is improved, useful descriptions of net (cumulative)

molecular and ionic transport. Here, we consider two fundamental effects that partially govern

pore-mediated transport: steric hindrance and partitioning. Specifically, we consider short cylin-

drical aqueous pathways, which provide an approximation tothe internal (central) region of a

toroidal lipidic pore. Further, while a cell membrane toroidal pore is envisioned, our results are

also relevant to iontophoresis pathways that can be approximated as cylindrical within low dielec-

tric constant (relative permittivity) media.

Movement of solutes (ions and molecules) through electrically created transient aqueous pores is

complicated, involving both “insertion” (partitioning) and “frictional drag” (hindrance). In com-

parison to electrodiffusion within bulk media such as aqueous electrolytes, most solutes are ener-

getically reluctant to enter the small volume of a pore interior region. This is the conceptual basis

of the partition factor,K. Moreover, after a solute enters a pore its movement is sterically restricted,

which is often described by a hindrance factor,H. In short, “getting in” involves partitioning, and

“moving through” involves hindrance. Both hindrance and partitioning are significant if the solute

size is close to that of the pore interior region.

Much of what is known about electroporation and pores has been determined through the analysis
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of transport, whether electrical [1–7] or molecular [8–18], because the very short characteristic

time and length scales limit the ways in which pores, and the effects of pores, can be observed. It

is for this reason that characterizing the interaction between pores and solutes is important: Anal-

ysis of electroporation-mediated transport can tell us much about pores, but only in the context of

a useful, quantitative characterization of the how pores affect transport. Here, as a first step, we

describe the pore hindrance and partitioning, the primary means by which pores restrict transport.

Much of the basic work on hindrance and partitioning has beencarried out by chemical engineers,

motivated by topics such as molecular transport through artificial porous membranes and narrow

diameter cylindrical tubes [19–24], and by electrical engineers motivated by problems posed by

biological systems and clinical applications [25]. We build on this substantial work in adapting

hindrance and partitioning for approximate, but realistic, pore geometries and non-spherical so-

lutes.

In addition to our interest in electroporation, we recognize that pharmaceutical science has a per-

sistent, strong interest in drug delivery, and therefore provides many examples of experiments and

modeling for ionic and molecular transport [22, 23]. Electrical drug delivery by iontophoresis is a

major example [26–29]. However, electroporation applications provide the primary motivation for

the present paper.

4.2 Methods

For clarity of presentation we begin with implications of pore shape, including molecular properties

[30]. We then consider the relatively simple case of electrodiffusion in bulk electrolyte [31], and

progress to the electrical resistance of pores, and the distinction between transmembrane voltage

and transpore voltage. The next topic of hindrance is closely related to electrical resistance, so we

treat that before partitioning.
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4.2.1 Pore Shape and Size

Hydrophilic lipid pores have long been assumed to be toroidal in shape [1–3, 32, 33], with the

heads of the lipid molecules rotated into the interior of thepore wall to minimize exposure of the

hydrophobic lipid tails to water molecules. Molecular dynamics simulations [34–39] over the past

decade have provided further evidence of the toroidal shapeof pores.

In the analysis here, we will generally assume that pores areindeed toroidal in shape, as shown in

Fig. 4.1A. However, we find it convenient to sometimes approximate this shape as trapezoidal, as

shown in Fig. 4.1B. That is, as a trapezoid rotated about an axis, rather than a circle rotated around

an axis (as for a toroid). While some relevant analyses have been based on toroidal pores, such as

the electrical force that drives pore expansion [40], others have been based, out of convenience, on

trapezoidal pores. An example of toroidal pore use is the estimation of the energy of charge in a

pore [2, 3]. As is apparent from Fig. 4.1, the differences between the toroidal and trapezoidal pores

are minor. The fluctuating pores created in molecular dynamics simulations variously resemble

both pore conformation.

For both toroidal and trapezoidal pores, the pore radiusrp refers to that of the centermost position

along the axis of the pore (Fig. 4.1). We will refer to this central region as the “internal” region

of the pore, and the entrance and exit regions (on either sideof the internal region of the pore) as

the “vestibules” or “vestibular” regions of the pore. The membrane has thicknessdm = 5 nm and

internal region of the pore has a thicknessdp = dm/2 = 2.5 nm. The value ofdp was chosen such

that the geometry of the trapezoidal pore closely approximated the geometry of the toroidal pore.

4.2.2 Molecular Properties

Several molecular species (solutes), ranging from ions to proteins, were selected for their rele-

vance to electroporation research (Table 4.1). Their widely ranging size and charge also illustrate

how these molecular properties can affect the interaction between transported species and mem-

brane pores. These considerations are particularly relevant when a solute is similar in size to a pore.



4.2 Methods 93

(A) Toroidal pore
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(B) Trapezoidal pore
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Figure 4.1: Pore shape and size.(A) Toroidal pore. (B) Trapezoidal pore. Both pore
conformations have radiusrp and lie within a membrane of thicknessdm = 5 nm. The
“internal” region of the trapezoidal pore has thicknessdp = dm/2 = 2.5 nm, and each
broad “vestibule” on either side of the “internal region” has thicknessdp/4 = 1.25 nm.
The wide vestibule contributes relatively little to pore electrical resistance, partitioning and
hindrance. The value ofdp was chosen such that the geometry of the trapezoidal pore
closely approximates the geometry of the toroidal pore. In this model, pore expansion and
contraction are assumed to change onlyrp.

The structures of the small (non-protein) molecules were obtained from the PubChem (http://

pubchem.ncbi.nlm.nih.gov) and Chemical Entities of Biological Interest (ChEBI) (http://www.ebi.

ac.uk/chebi) databases. The structures of the proteins were obtained from the Protein Data Bank

(PDB) (http://www.pdb.org). The source of each structure is shown in Table4.1.

The size and shape of the molecules were examined with UCSF Chimera [41] (version 1.4.1,

2010, http://www.cgl.ucsf.edu/chimera). For the purposes of assessing the molecular sizesand
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Table 4.1: Sources of Molecular Structures and Basic Molecular Properties

Molecule Database ID rs (nm) ls (nm) zs

Calcium PubChem 271 0.34 0.68 +2.00
Chloride PubChem 312 0.17 0.34 −1.00
Potassium PubChem 813 0.18 0.36 +1.00
Sodium PubChem 923 0.23 0.46 +1.00
Bleomycin A2 ChEBI MSDCHEM:BLM 0.89 2.76 +0.67
Glutamic Acid PubChem 104813 0.32 0.96 −1.01
Meglumine PubChem 4049 0.33 1.30 +0.98
Propidium PubChem 4939 0.69 1.55 +2.00
Yo-pro-1 PubChem 6913121 0.53 1.71 +2.00
Cytochromec PDB 2B4Z 2.04 4.27 +9.00
HSA PDB 1N5U 4.32 9.26 −11.02

rs: Radius of cylindrical approximation to molecule (nm).ls: Length of cylindrical
approximation to molecule (nm).zs: Net charge (valence) of molecule at pH 7.4.

dimensions, the molecules were assumed to be cylindrical inshape with radiusrs and lengthls.

The detailed computational methods used to “measure” the species based on their van der Waals

surface are described in Ref. [30]. For the small ions (calcium, chloride, potassium, and sodium),

the corrected Stokes radius [30] was used forrs, and because they are spherical, we assumels = 2rs.

Figure 4.2 illustrates the approximation of yo-pro-1, propidium, and bleomycin A2 as cylinders.

While the molecules are clearly far from perfect cylinders,their shape and size are much better

represented by cylinders than by spheres.

The ChemAxonCalculator Plugins(version 5.3.8, 2010, http://www.chemaxon.com) were used to

determine the net chargezs of each small molecule (non-protein) [30]. This was done by using the

Calculator Pluginsto determine the distribution of microstates of each molecule at pH 7.4 and the

charge of each microstate. The net charge of each molecule was then calculated as the weighted

average of its microstate charges.

The online tool H++ [42, 43] (version 2.0, 2010, http://biophysics.cs.vt.edu/H++) was used to cal-

culate net charge of each protein at pH 7.4 [30]. This computational tool is specifically designed

for macromolecules and evaluates their charge in a manner similar to that described for the small

molecules.
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(A) Yo-pro-1

ls

rs

(B) Propidium
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(C) Bleomycin A2
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Figure 4.2: Cylindrical approximation to molecular shape.(A) Yo-pro-1 (rs = 0.53 nm,
ls = 1.71 nm). (B) Propidium (rs = 0.69 nm, ls = 1.55 nm). (C) Bleomycin A2 (rs =

0.89 nm,ls = 2.76 nm). Note that the three molecules are not shown to the samescale. The
cylindrical approximation to molecular shape gives a more precise description of molecular
shape than a spherical approximation, while still being simple enough to facilitate in silico
“measurement” of molecular dimensions.
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The molecular charge data are summarized in Table 4.1.

4.2.3 Transport in Bulk Electrolyte

Electrodiffusion is the transport of charged solute by the combination of electrical drift and diffu-

sion. The electrodiffusive fluxJs in bulk electrolyte is described by [25, 31, 44]

Js = −Ds∇γ −
Ds

kT
qezsγ∇φ. (4.1)

Here,γ is solute concentration,φ is electric potential,Ds is solute diffusivity, zs is solute charge

(valence),qe is elementary charge,k is the Boltzmann constant, andT is absolute temperature.

The first term in Eq. 4.1 describes the flux of solute resultingfrom a gradient in concentration

(diffusion), and the second term describes the flux of solute resulting from a gradient in electric

potential (electrical drift).

In electrolytic systems, the primary charge carriers (generally small ions, e.g., chloride, potassium,

and sodium) can be treated collectively for simplicity. Theproperties that characterize the ions

and influence their transport (i.e., diffusivity and charge) are subsumed into the single macroscopic

quantity conductivityσ. The electrical fluxJs in bulk electrolyte is described by [44]

Js = −σ∇φ. (4.2)

That is, the flux of charge results from the gradient in electric potential.

The equations describing transport in bulk electrolyte, whether electrodiffusive (Eq. 4.1) or electri-

cal (Eq. 4.2), implicitly regard the transported solute as consisting of point charges. This continuum

assumption is reasonable in the bulk electrolyte, but not inthe limited confines of a pore, where

the finite size of the solute, as well as the specific electrical interactions between the charge and

the nearby lipids of a low dielectric constant pore, become significant.
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The objective of this study is to relate electrical and molecular transport through pores to electrical

and molecular transport in bulk electrolyte. Therefore, the electric potential and solute concen-

tration will be treated as known quantities. It follows thatthe flux through a pore based on bulk

electrolyte assumptions is also known (through Eqs. 4.1 and4.2). Specifically, we show that the

flux Js,p through a pore is simply related to the fluxJs calculated using bulk electrolyte assumptions

(Eqs. 4.1 and 4.2) by

Js,p= HKJs, (4.3)

whereH is the hindrance factor andK is the partition factor.

4.2.4 Electrical Resistance of Pores

When an ion subject to an electric field approaches a pore (Fig. 4.1), its surroundings may no

longer be considered homogenous (as in bulk electrolyte) and its size and charge become impor-

tant determinants of its interaction with its environment and resulting transport. Chief among these

interactions are hindrance and partitioning.

Consider the internal region of the trapezoidal pore in Fig.4.1. It has radiusrp, depthdp, cross-

sectional areaAp = πr2
p and conductivityσp. Ignoring any interaction between the ions that com-

prise the medium (and give rise to the conductivityσp) and assuming that the ions are point charges

(i.e., using bulk electrolyte assumptions), the conductancegp,p of the internal pore region is

gp,p = σp
Ap

dp
. (4.4)

In general, the conductivitiesσ1 andσ2 on the two sides of the membrane (e.g., extracellular and

intracellular) are not the same. If half of the pore (i.e., a cylindrical region with radiusrp and length

dp/2) is assumed to contain medium of conductivityσ1 and half is assumed to contain medium of

conductivityσ2, then the average conductivityσp in the pore is

σp =
2σ1σ2

σ1 + σ2
. (4.5)
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As will be described in the following sections, interactionbetween solute ions (or molecules) in a

pore and the pore gives rise to a pore hindrance factorH and partition factorK that scale the pore

conductance as it is given in Eq. 4.4. That is, accounting forhindrance and partitioning, the pore

conductance becomes

gp,p = σp
Ap

dp
HK. (4.6)

The resistanceRp,p of the internal pore region is thus

Rp,p =
1

gp,p
=

dp

σpApHK
. (4.7)

In addition to the resistanceRp,p of the internal pore region, there is an access resistanceRp,a [45, 46]

associated with each side of the membrane/pore. It is clear from Eq. 4.7, that pore resistance is

determined by both material properties (e.g.,σp) and geometric properties (e.g.,Ap anddp) of a

system. Access resistance (which is also known as spreadingresistance [47]) arises from the fact,

in order to pass through a pore, ions follow local, inhomogeneous electric fields in the electrolyte

before entering and after exiting a pore. That is, because the ions can only traverse the membrane

by passing through pores, their paths are “focused” throughpores, and this results in the access

resistance.

The pore access resistanceRp,a is the sum of the access resistance for each side of the pore, which

are not, in general, the same:

Rp,a=
1

4σ1rp
+

1
4σ2rp

=
σ1 + σ2

4σ1σ2rp
. (4.8)

Nonetheless,Rp,a can be written in terms ofσp as

Rp,a=
1

2σprp
. (4.9)
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The total resistanceRp associated with a pore is therefore the sum of the resistanceof the internal

pore regionRp,p and the access resistanceRp,a:

Rp = Rp,p+ Rp,a=
dp

σpApHK
+

1
2σprp

. (4.10)

4.2.5 Transmembrane and Transpore Voltage

A transmembrane voltage∆φm can arise due to either endogenous (e.g., metabolically established

ion concentration differences or ion pumps) or exogenous (e.g., electric pulse generator) sources.

Far from a pore, the transmembrane voltage is simply, as the name implies, the voltage drop across

the membrane. In the vicinity of a pore, the transmembrane voltage is the voltage drop across the

pore and the electrolyte regions near the pore entrance/exit that give rise to the pore access resis-

tance.

The definitions of transmembrane voltage in the absence and presence of a pore may appear con-

tradictory, since the former includes only the voltage dropacross the membrane whereas the latter

includes the voltage drop across the membrane and a region ofelectrolyte. The apparent discrep-

ancy is resolved by realizing that the voltage drop across a system comprising electrolyte and an

intact membrane occurs almost entirely across the membranebecause the membrane resistivity is

orders of magnitude larger than the electrolyte resistivity. Therefore, the voltage drop across an

intact membrane alone is the same as the voltage drop across the membrane and some amount of

electrolyte.

In the vicinity of a pore, a transpore voltage∆φp can also be defined. This is the voltage drop

across the internal pore region (i.e., not across the pore access region). The transpore voltage∆φp

is related to transmembrane voltage∆φm through voltage division:

∆φp =
Rp,p

Rp,p+ Rp,a
∆φm =

Rp,p

Rp
∆φm. (4.11)
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The circuit diagram in Fig. 4.3 shows the relationship between∆φm, ∆φp, and the resistancesRp,a

andRp,p that comprise the total resistanceRp associated with a pore.

}

Rp,a

Rp,p

Rp+

−

∆φp

+

−

∆φm

Figure 4.3: Pore voltages and resistances. The total resistanceRp associated with a pore is
the sum of the pore access resistanceRp,a and the resistance of the pore itselfRp,p. The total
voltage drop across the pore and pore access regions is the transmembrane voltage∆φm,
while the voltage drop across the pore alone is the transporevoltage∆φp. The magnitude
of ∆φp relative to∆φm is determined by the voltage division between theRp,a and Rp,p.
Generally, the ratio∆φp/∆φm decreases asrp increases.

4.2.6 Hindrance for Spherical Ions and Molecules

Continuum models of the bulk medium implicitly assume that transported molecular species ex-

ist as infinitesimal points. However, real molecules are not, of course, infinitesimal. They have

finite size, and this affects the transport of molecules through pores, especially when the size of

the molecule is on the same order as the size of the pore. Continuum models are smoothed repre-

sentations of molecular systems. They are useful and justified when the spatial scale of the system

region is large enough that statistical fluctuations withinthe region are small and thus enable a

spatiotemporal average to approximate the state of that system region [24].

The general problem motivating our analysis is transport ofa solute that is present at a relatively

small concentration compared with the background ubiquitous small ions (sodium, potassium, and

chloride) of physiologic aqueous media. Small ions should be distinguished, as they are essentially

ionized, hydrated atoms, which can be regarded as spherical. Physiologic media usually exist out-

side or within a cell in vivo, and are often (but not always) provided experimentally in vitro.
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The effect that a molecule’s finite size has on its transport througha pore can be accounted for

through a hindrance factor [48] that diminishes the transport that one would calculate in the ab-

sence of hindrance. In other words, if one calculated a current i through a pore in the absence

of hindrance, then accounting for hindrance, the current would be iH, whereH is the hindrance

factor. The hindrance factor is dimensionless and lies in the range 0≤ H ≤ 1.

Hindrance arises from two effects that impede transport through pores: (1) the decreasedeffective

(accessible) area of a pore when solute size is accounted forand (2) the drag (kinetic dissipation)

exerted on the solute by the pore walls [49]. Thus, the hindrance factor, which is a function of the

solute radiusrs and the pore radiusrp, is itself the product of an effective area factorfA and a drag

factor fD:

H = fA fD. (4.12)

Accounting for hindrance is difficult. Accordingly, a number of different approximate equations

for hindrance have been developed [50, 51]. Here, we use the equation developed by Bungay and

Brenner [52] because, in contrast to most other hindrance equations, it is valid over the entire range

0 ≤ rs ≤ rp. While the hindrance equation developed by Renkin [48] is perhaps better known, it

only holds for 0≤ rs < 0.4rp [50].

It should also be noted that these hindrance equations were derived for systems in which the pore

length is much greater than the pore radius (dp ≫ rp) and solute molecules are spherical in shape.

Here, the initial development and description of hindrancewill be consistent with these traditional

assumptions. However, we will then show how the hindrance estimate can be modified for more

realistic geometries (i.e., less elongated pores with cylindrical solute molecules).
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Effective Pore Area Factor

In contrast to an idealized infinitesimal solute, which can access the entire interior of a pore, a

realistic solute of finite size can access (occupy) only the central region of a pore. This means that

the distance from the center of the solute to the pore wall must exceedrs. As the radius of the

solute approaches the radius of the pore (rs→ rp), the solute becomes increasingly restricted, and

when size of the solute exceeds the size of the pore (rs ≥ rp), the solute cannot even enter the pore.

This basic concept is well-established. It is mainly a question of which approximate, numerical

description to employ.

More specifically, a cylindrical pore of radiusrp has cross-sectional areaAp = πr2
p. However, a

solute of radiusrs can only access the central region with radiusrp − rs, which has the effective

pore areaAeff = π(rp − rs)2. The (dimensionless) effective area factorfA is simply the ratio [48]:

fA =
Aeff

Ap
=
π(rp − rs)2

πr2
p

=

(

1− rs

rp

)2

. (4.13)

Drag Factor

The second source of hindrance for a solute traversing a poreis the drag exerted on the solute

molecule by the walls of the pore. The (dimensionless) drag factor developed by Bungay and

Brenner [52] is

fD =
6π
ft
, (4.14)

where

ft(λ) =
9
4
π

2
√

2(1− λ)−
5
2

(

1+ a1(1− λ) + a2(1− λ)2
)

+ a3 + a4λ + a5λ
2 + a6λ

3 + a7λ
4 (4.15)

andλ ≡ rs/rp. The constantsai (i = 1, 2, . . . , 7) are shown in Table 4.2.

Figure 4.4 shows how the pore hindrance factorH and its component factorsfA and fD vary withλ.
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Table 4.2: Values of Coefficients in the Bungay-Brenner Hindrance Equation

Parameter Value
a1 −1.2167
a2 1.5336
a3 −22.5083
a4 −5.6117
a5 −0.3363
a6 −1.216
a7 1.647

For all λ, the drag factor contributes more significantly than the effective area factor in hindering

transport of a solute through a pore. To our knowledge, thereis not intuitive explanation for

Eq. 4.15 and the parameters in Table 4.2. Instead, it is an example of the complexity of solute

transport within even a simple pore geometry. This forces the use of numerical methods.

λ

H

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
fA
fD
H

Figure 4.4: Hindrance factor for spherical solutes. The pore hindrancefactor H is shown
with the effective pore area factorfA and drag factorfD that comprise it (H = fA fD). λ is
the radius of the solute relative to the radius of the pore (λ ≡ rs/rp). The hindrance factorH
(0 ≤ H ≤ 1) scales the transport through a pore. Thus, whenH → 0, transport is maximally
hindered (transport goes to zero), and whenH → 1, transport is minimally hindered or
unhindered (transport is as in bulk electrolyte). For allλ, the drag factorfD contributes
more significantly than the effective area factorfA in hindering transport.

4.2.7 Hindrance for Cylindrical Molecules

We emphasize the fact that Eq. 4.12 was developed for spherical solute molecules (ls ≈ 2rs) in

long, slender cylindrical pores (dp ≫ rp). It follows from these two conditions that the solute

molecules are much smaller than the pore length (ls ≪ dp). These three conditions generally do

not apply to electroporation-mediated transport because solute molecules may be large (relative
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to the pore length), solute molecules may be non-spherical,and pores are not long and slender.

Even for minimum-size pores (rp ≈ 0.8 nm) [3]), dm/2rp is only∼3. In response to conventional

electroporation pulses, pores expand to significantly larger size [53–55], and thendm/2rp becomes

even smaller.

Due to these limitations of the hindrance equation (Eq. 4.12), we developed simple modifications

to generalize it for systems with any or all of the following three characteristics: (1) large solute

relative to the pore length (ls3 dp), (2) cylindrical (non-spherical) solute molecules (ls 0 2rs), and

(3) short, wide pores (dp 4 rp). To avoid confusion, hats are placed over symbols specific to the

modified hindrance factor̂H and differentiate them from the original pore hindrance factorH.

As in the case of the original pore hindrance factorH (Eq. 4.12), the modified pore hindrance

factorĤ is the product of an effective pore area factor̂fA and a drag factor̂fD:

Ĥ = f̂A f̂D. (4.16)

We assume that differential torques due to both heterogeneous flow and fields near the pore en-

trance (and exit) on a cylindrical molecule align the molecule such that it enters a pore with its

long dimension parallel to the axis of the pore (Fig. 4.5). With this orientation, the effective pore

area factorf̂A is that of the original formulation (Eq. 4.13):

f̂A = fA =

(

1− rs

rp

)2

. (4.17)

The relationship between the modified hindrance drag factorfD and the original hindrance drag

factor fD is more complicated. First we must relate the drag factorfD to the drag resistance itself.
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rs

ls

dp

dm

2

dm rp

Figure 4.5: Movement of a cylindrical molecule through a pore. The cylindrical molecule
has radiusrs and lengthls, and the pore has radiusrp and thicknessdp in a membrane of
thicknessdm. As shown, the molecule is assumed to traverse the pore with its long axis
parallel to the axis of the pore.

+

−

RD
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i

Figure 4.6: Circuit analog for molecular transport through a pore.V is the driving force
for molecular transport, which is determined by the gradients in solute concentration and
electric potential across a membrane pore.R is the resistance to molecular transport, ex-
cluding hindrance due to drag.R is determined by factors such as the solute diffusivity and
the cross-sectional area and length of a pore. In other words, R relates the rate of transport
i to the driving forceV, ignoring hindrance due to drag.RD is the resistance to molecular
transport that arises specifically due to the drag on a molecule as it traverses a pore. LikeR,
RD influences the rate of transporti for a given driving forceV.
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Figure 4.6 shows a simple circuit representation of molecular transport through a pore. In this

mathematically analogous circuit abstraction,V is the driving force for molecular transport, which

is determined by the gradients in solute concentration and electric potential across a membrane

pore (Eq. 4.1).

In this analogy,R is the resistance to molecular transport, excluding hindrance due to drag.R is

determined by factors such as the solute diffusivity and the cross-sectional area and length of a

pore. In other words,R relates the rate of transporti to the driving forceV, ignoring hindrance

due to drag.RD is the resistance to molecular transport that arises specifically due to the drag on

a molecule as it traverses a pore. LikeR, RD influences the rate of transporti for a given driving

forceV.

The hindrance drag factorfD is, by definition, the ratio of the diminished transport thatoccurs with

drag to the transport that would occur without drag. Therefore, in terms of the resistancesR and

RD in Fig. 4.6,

fD =
R

R + RD
. (4.18)

Rearranging Eq. 4.18, the drag resistanceRD is related to the drag factorfD by

RD = R

(

1
fD
− 1

)

. (4.19)

Note that whenfD → 0 (maximal hindrance),RD ≫ R, and whenfD → 1 (minimal hindrance),

RD ≪ R.

We assume that the resistance due to drag on a molecule traversing a pore is proportional to the

length of the interfacels,p between the molecule and internal pore region:

ls,p≡ min
(

ls, dp

)

. (4.20)
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In other words,ls,p is the lesser ofls anddp. Additionally, we assumêfD = fD whenls = 2rs. That

is, a cylindrical molecule with lengthls = 2rs is considered equivalent to a spherical molecule with

lengthrs. Thus, the drag resistanceR̂D on a cylindrical molecule with radiusrs and molecule-pore

interface lengthls,p is approximately related to the drag resistanceRD on a spherical molecule with

the same radiusrs by

R̂D = RD

(

ls,p

2rs

)

. (4.21)

Substituting forR̂D andRD based on Eq. 4.19,

R

(

1

f̂D
− 1

)

= R

(

1
fD
− 1

) (

ls,p

2rs

)

. (4.22)

Solving for f̂D yields

f̂D =
fD

fD + (1− fD)
(

ls,p

2rs

) . (4.23)

A spherical molecule of radiusrs is regarded as a cylindrical molecule of radiusrs and length

ls = 2rs so thatĤ = H. Accordingly, there is no need to use one hindrance equationfor spherical

molecules (Eq. 4.12) and another for cylindrical molecules(Eq. 4.16) because thêH is equivalent

to H for small, spherical molecules.

Figure 4.7 shows the dependence of the hindranceĤ on pore radiusrp for the ions and molecules in

Table 4.1. The hindrance factor̂H (0 ≤ Ĥ ≤ 1) is determined by the size of a solute relative to the

size of a pore and scales the transport through a pore. Thus, whenĤ → 0, transport is maximally

hindered (transport goes to zero), and whenĤ → 1, transport is minimally hindered or unhindered

(transport is the same as in bulk electrolyte). As the pore radiusrp increases the hindrance factor

Ĥ also increases, and solute can more easily pass through a pore.
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Figure 4.7: Hindrance factor for cylindrical solutes. The hindrance factor Ĥ is shown for
(A) ions and(B) molecules. Note that the distinction between ions and charged molecules
is somewhat arbitrary, and the same hindrance equation treats both. The hindrance factor̂H
(0 ≤ Ĥ ≤ 1) is determined by the size of a solute relative to the size ofa pore and scales the
transport through a pore. Thus, whenĤ → 0, transport is maximally hindered (transport
goes to zero), and when̂H → 1, transport is minimally hindered or unhindered (transport
is the same as in bulk electrolyte). As the pore radiusrp increases, the hindrance factorĤ
also increases, and solute can more easily pass through a pore.

4.2.8 Partitioning

The partition factor is an equilibrium-based quantity thatdescribes the decreased concentration of

a charged solute found inside a pore relative to in the bulk solution. The lowered concentration

results from the energy cost of moving a charge in a medium with a high dielectric constant (e.g.,

water) into membrane pore with a low dielectric constant (e.g., pore in lipid bilayer) [56, 57].

More generally, the partition factor is the ratio of concentrations (activities, strictly) between two

contacting media in equilibrium [22].

The partition factor, like the pore hindrance factor, playsa fundamental role in determining the

transport of charged solute through membrane pores. The original development of the partition

factor for an ion within a membrane by Parsegian [56, 57] makes many of the same assumptions

as those made by Bungay and Brenner [52] for hindrance, for example that the solute is an ion in

the center of a long, cylindrical pore. Chernomordik et al. [2] were the first to develop a partition

factor equation for ionic transport through lipid membranepores by assuming a trapezoidal energy



4.2 Methods 109

profile for an ion passing through pore, which reflects the approximately trapezoidal shape of

the pore itself. As in the development of hindrance, we will make some simple modifications to

generalize the partition factor equation developed by Chernomordik et al. [2] for use with larger

solutes, which we will also treat as cylindrical.

Effective Charge of Molecule in Pore

In developing a partition factor equation relevant for solute molecules with size of the same order

as or larger than a pore, we must address the fact that the solute (and its charge) may not fully

fit within a pore. As in the development of the hindrance equation, we assume that molecules

can be characterized as cylindrical in shape and that the most energetically favorable orientation

in a pore is with the long dimension of the molecule parallel to the pore axis (Fig. 4.5). Given

this orientation, we further assume that the charge on the solute molecule molecule,zs, is evenly

distributed along its length,ls. This is a useful simplifying assumption that cannot be completely

correct. With this assumption, when a molecule is centered within a pore of thicknessdp, the

charge within the pore is

zs,p≡ zs min

(

1,
dp

ls

)

. (4.24)

For small molecules (ls ≤ dp), zs,p= zs. For larger molecules (ls > dp), zs,p< zs (in magnitude).

Born Energy

Placing a charge at the center of a pore in a low dielectric membrane results in an energy cost

(relative to being in the bulk medium) termed the Born energyw0. Parsegian calculated the Born

energy for an ion in an infinitely long pore [56, 57], which is of theoretical interest but not directly

applicable to pores of finite length, like those considered here. Indeed, Vasilkoski et al. [47] used

numerical techniques to show that Born energy for a cylindrical pore withdp = 5 nm is signifi-

cantly smaller than for an infinitely long pore.

Using notation previously established by others, we use thefollowing equation for Born energy

w0:

w0(rp) = 5.3643
(zs,pqe)2

kT
r−1.803

p . (4.25)
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This is the energy (in units ofkT ) required to place (insert) a chargezs,p into the center of a

toroidal pore of radiusrp for zero transpore voltage. We note that Eq. 4.25 is an unpublished

result developed by Axel Esser (M.I.T.) and Zhen Ji (U. Wisconsin, Madison) using a numerical

approach along the lines of those in Kuyucak et al. [58].

Partitioning Equation

Chernomordik et al. [2] developed the following equation (with one small difference: they used

transmembrane rather than transpore voltage, as noted below) for the partition factorK, assuming

that the energy profile (vs. position along axis of pore) of a charged solute in a pore is trapezoidal

in shape:

K(rp,∆ψp) =
e∆ψp − 1

w0ew0−n∆ψp−n∆ψp

w0−n∆ψp
e∆ψp − w0ew0+n∆ψp+n∆ψp

w0+n∆ψp

. (4.26)

Here,qe is the electronic charge,n is the relative entrance length of a pore, and

∆ψp ≡
qezs,p

kT
∆φp. (4.27)

∆ψp is the dimensionless transpore voltage. In their formulation, Chernomordik et al. [2] used the

dimensionless transmembrane voltage∆ψm, rather than∆ψp, where

∆ψm ≡
qezs,p

kT
∆φm. (4.28)

We assume that this is because they did not account for voltage division due to the pore access

resistance, in which case the transmembrane voltage∆φm and transpore voltage∆φp would be

equivalent. We argue that the transpore voltage seems more appropriate for partitioning, as it is the

transpore voltage that relates to the magnitude of the electric field within the pore (Ep ≈ ∆φp/dp).

In Eq. 4.26,n is the relative entrance length of a pore, or the fraction of the membrane thickness

dm over which the trapezoidal energy profile is increasing or decreasing. Chernomordik et al. [2]

usen = 0.31, and Glaser et al. [3] usen = 0.15. These values were chosen to fit their experimental

data, rather than based on considerations of pore geometry.Here, we use a geometry-based value
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n = 0.25 for two reasons. First, this value is intermediate between those of Chernomordik et al.

and Glaser et al., the only experimental determinations we are aware of. Second, it is reasonable to

assume that the trapezoidal energy profile should be at leastin part related to the trapezoidal pore

geometry (Fig. 4.1) [3]. In other words, we assumen ≡ dp/2dm. Neither the early nor the present

values ofn are based on detailed calculations but appear to be reasonable estimates.

In using Eq. 4.26, one should note thatK is indeterminate when∆ψp = 0. This problem can be

resolved by evaluating Eq. 4.26 in the limit∆ψp → 0, using L’Hôpital’s rule twice to obtain

lim
∆ψp→0

K(rp,∆ψp) =
w0

(

w0(1− 2n) + 2n
)

ew0 − 2n
. (4.29)

Figure 4.8 shows the partition factor as a function of pore radiusrp and solute charge (in pore)zs,p

for a few transmembrane voltages∆φm. As rp increases,zs,p decreases, and/or ∆φm increases,K

increases (approaches 1), as all of these decrease the energy barrier for a charged solute entering a

pore.

4.3 Results and Discussion

4.3.1 Estimation of Radius of Minimum-size Pores in BilayerLipid

Membrane

Transport through pores is both size-dependent and charge-dependent due to hindrance (Eq. 4.16)

and partitioning (Eq. 4.26). As a result, quantitative determinations of pore conductance for solutes

that differ in size and/or charge can enable estimation of pore size.

Melikov et al. [6] examined pore conductance in voltage-clamped bilayer lipid membranes (BLM).

Using highly sensitive methods, they measured noisy but quantized steps up and down in mem-

brane conductance, which they attributed to the creation and destruction of discrete pores. Given
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Figure 4.8: Partition factor for transmembrane voltage∆φm values(A) 0.0 V, (B) 0.1 V,
(C) 0.3 V, and(D) 1.0 V. For each, the partition factorK is plotted against the pore radius
rp for a range of solute charges (in the pore)zs,p, as indicated by the inset. The partition
factor K (0 ≤ K ≤ 1) arises because of the Born energy cost (relative to being in the bulk
medium) required to place a charge in pore.K scales transport through a pore. Thus, when
K → 0, transport is maximally affected (transport goes to zero), and whenK → 1, transport
is minimally affected (transport is as if bulk electrolyte filled the pore). Increases in the
pore radiusrp and transmembrane voltage∆φm increase the partition factorK, resulting in
greater transport, and increases in the solute charge (in the pore)zs,p decreases the partition
factorK, resulting in less transport.
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the relatively small magnitude of the transmembrane voltages applied (.500 mV), we expect that

the pores were at or nearrp,min, the radius at which there is a local minimum in pore energy when

the transmembrane voltage is.500 mV [55, 59, 60].

To probe pore size, Melikov et al. [6] insightfully performed their experiments using two different

electrolyte solutions: KCl and NMDG-glutamate. (Note thatNMDG and glutamate are also known

as meglumine and glutamic acid, respectively.) Because thelatter solution resulted in a decrease

in average pore conductance relative to the former, Melikovet al. reasoned that pores should be

roughly the same size as NMDG+ and glutamate−1 ions and that the results were consistent with a

pore radius of∼1 nm reported in the literature at that time. Here, we use the methods developed

above to take a closer look at the Melikov et al. experiment and the implications for pore size.

Furthermore, we use the results to test our methods, as the pore size predicted by KCl and NMDG-

glutamate should be the same.

Melikov et al. [6] did not specify the temperature at which their experiments were performed, so

we assumed a typical room temperature of 22◦C. The conductivity of 100 mM KCl is 1.298 S/m

at 25◦C [61], which we adjusted to 1.20 S/m at 22◦C, as described by Smith et al. [30]. Melikov

et al. reported that the conductivity of their NMDG-glutamate solution was smaller than their KCl

solution by a factor of 1.5 [6], or 0.80 S/m at the assumed 22◦C.

We examined the relationship between pore radiusrp and pore conductancegp (= 1/Rp) using

the methods described above for calculating pore conductance and the solute properties of potas-

sium, chloride, NMDG, and glutamate listed in Table 4.1. Forthe transmembrane voltage, we used

∆φm = 180 mV. It is unclear from Melikov et al. [6] exactly what transmembrane voltage was used

for the KCl and NMDG-glutamate comparison, but we took∆φm = 180 mV to be most likely, as it

was this transmembrane voltage that was used to present their histogram of conductance measure-

ments for KCl (Fig. 5 of Ref. [6]). Additionally, the mean pore conductance in their histogram was

consistent with the mean pore conductance reported for KCl in the main text.
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Figure 4.9: Relationship between pore conductance and pore radius for ions used in Me-
likov et al. [6]. That study investigated the average conductance of pores in BLM using so-
lutions of KCl and NMDG-glutamate at transmembrane voltage∆φm we take to be 180 mV.
This figure shows, for each species, the pore radiusrp corresponding to pore conductance
gp. In their important experiments, Melikov et al. [6] found that the mean pore conductance
was 450 pS for the KCl solution and 100 pS for the NMDG-glutamate solution. As shown,
the pore radiusrp corresponding to 450 pS for KCl is 1.03 nm, and the pore radiusrp corre-
sponding to 100 pS for NMDG-glutamate is also 1.03 nm. That both electrolyte solutions,
which comprise solute of very different shape and size, are consistent with the same average
pore size ¯rp provides partial validation of the methods presented in this study and suggests
that the average pore size ¯rp in BLM is indeed∼1.03 nm.

Figure 4.9 shows the relationship between pore conductancegp and pore radiusrp for all four so-

lutes. In their experiments, Melikov et al. [6] found that the mean pore conductance was 450 pS

for the KCl solution and 100 pS for the NMDG-glutamate solution. In our analysis, 450 pS was

consistent with a mean pore radius of 1.041 nm for potassium and 1.026 nm for chloride, for an av-

erage of 1.03 nm for KCl. 100 pS was consistent with a mean pore radius of 1.060 nm for NMDG

and 1.007 nm for glutamate, for the same average of 1.03 nm for NMDG-glutamate. Both solutions

were therefore in fortuitous agreement, and the overall mean pore size we found was ¯rp = 1.03 nm.

The analysis of Melikov et al. [6] provides important validation because the transport associated

with two different solutions comprising solutes of very different shape and size are in excellent

agreement (Fig. 4.9). And this would still be the case if someof our assumptions, such as temper-

ature, were inaccurate because changes in the assumptions (e.g., temperature) will shift the pore
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radius calculated for the two electrolyte solutions by a similar amount. However, these assump-

tions do have some effect on the mean pore radius that we calculated. A lower temperature would

result in a slightly larger mean pore radius and a higher temperature would result in a slightly

smaller mean pore radius because of the impact that temperature has on electrolyte conductivity.

Similarly, if our assumptions about conductivity itself, which was not reported for either solution

by Melikov et al., were inaccurate, this would also affect our calculations.

The value we determined for the pore radius of average conductance ¯rp (1.03 nm) based on our

analysis of the Melikov et al. conductance measurements [6]provides insight into the approximate

value ofrp,min, the pore radius at which the pore energy has a minimum when∆φm ≈ 0 V [60].

Accurate estimation ofrp,min is important for both the interpretation of electroporation experiments

and as an input into electroporation models, as it strongly influences the size selectivity (through

hindrance) and charge selectivity (through partitioning)of minimum-size pores, which predomi-

nate both during short pulses [62] and following all pulses (post-pulse), when pores shrink to radius

rp,min. As a result, an accurate value ofrp,min is critical for accurate modeling of molecular transport.

The value ofrp,min is likely slightly smaller than the value of ¯rp for two reasons. First, the radius

of the energy minimum increases slightly in going from the idealized value of∆φm = 0 V (fully

depolarized membrane) to the Melikov et al. experimental value of 180 mV [60]. Second, the pore

density distribution is approximately centered atrp,min, but because of the nonlinear relationship

between pore radiusrp and pore conductancegp (Fig. 4.9), the pores withrp,min+∆rp will contribute

slightly more significantly to the total conductance than pores withrp,min − ∆rp, thereby slightly

skewing the average towardrp,min+ ∆rp. (Here,∆rp is a small distance with∆rp ≪ rp,min.) Given

these considerations, we estimate thatrp,min is in the approximate range 0.9 – 1.0 nm.

4.3.2 Estimation of Radius of Minimum-size Pores in Plasma Membrane

Much of the interest in electroporation centers on its ability to facilitate transmembrane transport

of various solutes of interest, such as drugs and nucleic acids. One of the primary determinants
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of the magnitude of transmembrane transport mediated by electroporation is the size of the pores

through which solute passes. While experiments on BLM, suchas those performed by Melikov et

al. [6], provide fundamental insights into the basic mechanisms of electroporation, we must bear

in mind that the properties of BLM differ from those of the plasma membrane (PM) of cells, which

contain a wide variety of lipids and proteins [63, 64].

Given the importance of pore size in mediating transport through the PM, we sought a robust

method of determining the size of pores in the PM, specifically the minimum-size pores present

post-pulse. Note that the analysis of pore size above reliedon the fact that Melikov et al. [6] per-

formed their experiment with two different electrolyte solutions. This aspect of their experiment

could not be repeated in a patch-clamped cell because, whilethe extracellular electrolyte can be

set by the experimentalists, the intracellular electrolyte cannot. Nonetheless, the essence of our

approach to estimating pore size relied on the fact that pores discriminate based on solute size.

That is true of electrical drift-dominated transport, as inthe Melikov et al. experiments [6], and it

is also true of diffusion-dominated transport. We can exploit this size-discrimination to estimate

the size of pores in the PM.

Here, we propose an approach for estimating the radius of minimum-size pores in the PM of cells

by using established experimental techniques to measure differences in molecular transport be-

tween different types of fluorescent probe molecules. The set of experiments we propose is similar

to those in Vernier et al. [65] in which they subjected cells to one or more very short pulses (4 ns,

8 MV/m) in pulsing medium with either propidium or yo-pro-1 and measured the relative change

in intracellular fluorescence for each. They reported larger increases in relative intracellular flu-

orescence for yo-pro-1 than for propidium for the same number of pulses [65]. However, their

measurement system was not calibrated (i.e., the measurement detection limits were not deter-

mined), and thus one cannot determine how much yo-pro-1 was transported into cells relative to

propidium. Suzuki et al. [66], for example, stained DNA (in gel) with yo-pro-1, propidium, and

similar dyes and found significant variation in the fluorescence of the DNA-bound dyes. The ap-
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proach we propose requires a calibrated measurement systemto allow determination of the number

of fluorescent probe molecules taken up by cells. A number of previous studies have made these

measurements using flow cytometry [8, 10, 16]. Temporal uptake information is not required.

As will become apparent in the analysis that follows, one canminimize the number of assumptions

required through careful selection of the electroporatingpulse and fluorescent probe molecules

used.

It turns out that the 4 ns, 8 MV/m electrical pulse used by Vernier et al. [65] is ideal. The large

magnitude ensures the creation of many pores (“supra-electroporation”) [47, 67, 68], and the short

duration ensures that essentially all transport occurs as aresult of post-pulse diffusion, rather than

electrical drift during the pulse [62]. This greatly simplifies the transport analysis. Additionally,

post-pulse, pores can be assumed to be tightly distributed around the minimum pore sizerp,min [60],

and this too simplifies the analysis.

The choice of fluorescent probes is also important. By choosing probes that have some com-

mon features (e.g., charge), fewer assumptions are required in analyzing the relative transport of

the probes. The use of the propidium and yo-pro-1 solute pair, as in Vernier et al. [65], is ideal

for several reasons. First, both have a charge of+2, so the partition factors will be essentially

the same. Second, propidium and yo-pro-1 are both intercalating dyes [69], which means that

they bind tightly to intracellular DNA (and indeed, it is thebound dye that fluoresces strongly).

As a result, the intracellular concentrationγi of free (unbound) dye can reasonably be assumed

γi ≈ 0 molecules/m3, which simplifies the analysis. Third, while propidium and yo-pro-1 are oth-

erwise similar (e.g., in charge), they differ in size, and thus differences in the transport of propidium

and yo-pro-1 can attributed primarily to differences in hindrance. (The difference in their diffusiv-

ities is also a factor, but a much more minor one.) Moreover, though differing, both propidium

and yo-pro-1 have sizes approaching that expected for a minimum-size pores (e.g., 0.6 – 1.0 nm

reported by Glaser et al. [3]). For these reasons, the hindrance factors for the two molecules should
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be highly nonlinear and different over the plausible size range of minimum-size pores, thereby

resulting in high sensitivity.

Post-pulse, the transmembrane voltage∆φm ≈ 0 V, and the electrodiffusion equation (Eq. 4.1)

reduces to simple diffusion. Thus, given the considerations above, the instantaneous post-pulse

flux Js(t) of solute into a cell is

Js(t) = Ds

(

γe

dm

)

πr2
p,min Ĥ(rs, ls, rp,min) K(zs,p, rp,min, 0) N(t), (4.30)

whereDs is the solute diffusivity, γe is the extracellular concentration of solute,dm is the mem-

brane thickness,rp,min is the minimum-size pore radius,̂H(rs, ls, rp,min) is the hindrance factor for

the solute (of radiusrs and lengthls) at radiusrp,min, K(zs,p, rp,min, 0) is the partition factor for the

solute (of chargezs,p with ∆φp ≈ 0 V at radiusrp,min), andN(t) is the pore density (pores/m2) at

time t. Equation 4.30 will hold for both propidium and yo-pro-1.

Denoting variables specific to yo-pro-1 with “yo” and variables specific to propidium with “pro”

and noting thatK(zyo,p, rp,min, 0) = K(zpro,p, rp,min, 0), the instantaneous flux of yo-pro-1Jyo(t) rela-

tive to the instantaneous flux of propidiumJpro(t) is

Jyo(t)

Jpro(t)
=

Dyo

(

γe,yo

dm

)

πr2
p,min Ĥyo(rp,min) K(zyo,p, rp,min, 0) N(t)

Dpro

(

γe,pro

dm

)

πr2
p,min Ĥpro(rp,min) K(zpro,p, rp,min, 0) N(t)

=
γe,yoDyo Ĥyo(rp,min)

γe,proDpro Ĥpro(rp,min)
. (4.31)

Here,Ĥyo(rp,min) ≡ Ĥ(ryo, lyo, rp,min) andĤpro(rp,min) ≡ Ĥ(rpro, lpro, rp,min).

Note that the ratio of the fluxes in Eq. 4.31 is independent of time. Therefore, the ratio of the

total transport of yo-pro-1 to the total transport of propidium is the same as the ratio of their

instantaneous fluxes. Similarly, the ratio of the final intracellular concentration of bound yo-pro-1

γ̂i,yo to the final intracellular concentration of bound propidiumγ̂i,pro is also the same as the ratio of
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Figure 4.10: Relationship between pore radius and relative transport ofyo-pro-1 and
propidium. The plot shows the ratio of (bound) intracellular yo-pro-1 concentration ˆγi,yo

(normalized by extracellular yo-pro-1 concentrationγe,yo) to (bound) intracellular propid-
ium concentration ˆγi,pro (normalized by extracellular propidium concentrationγe,pro) plot-
ted againstrp,min. For very short (nanosecond time scale) pulses, essentially all transport
through pores occurs post-pulse through minimum-size pores of radiusrp,min. The value of
rp,min can be determined by measuring the transport ratio of yo-pro-1 to propidium because
the relative transport of these species is related by the relative values of their hindrance
factorsĤ(rp,min), which are functions ofrp,min.

the instantaneous fluxes:
γ̂i,yo

γ̂i,pro
=

γe,yoDyo Ĥyo(rp,min)

γe,proDpro Ĥpro(rp,min)
. (4.32)

If the final intracellular concentrations of bound yo-pro-1and propidium are normalized by their

extracellular concentrations, then the ratio of their normalized transported is purely a function of

their diffusivity and hindrance factors:

γ̂i,yo/γe,yo

γ̂i,pro/γe,pro
=

Dyo Ĥyo(rp,min)

Dpro Ĥpro(rp,min)
. (4.33)

Using the diffusivities of yo-pro-1 and propidium (Table 4.1) and the hindrance equation for cylin-

drical solute (Eq. 4.16) and its dependence on pore radius, the ratio of yo-pro-1 to propidium

transport can be related to the minimum-size pore radius, asshown in Fig. 4.10.

Note that we would arrive at the same transport ratio (Eq. 4.33) even if we did not assume that

post-pulse transport occurs purely by diffusion. The reason is that the drift flux (Eq. 4.1) through
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pores, like the diffusive flux, is proportional toDsγeĤKN(t)πr2
p,min/dm, and thus the same factors

would drop out of the transport ratio. (Drift is also proportional tozs, but yo-pro-1 and propidium

have thezs, and thuszs would also drop out of the transport ratio.) Thus, even if junction potentials

or a slowly recovering resting potential are non-zero, our analysis still holds.

While it is interesting that the transport ratio (Eq. 4.33) can be expressed so simply in terms of

diffusivity and hindrance, in some sense it is not surprising. Inthe model presented here, the trans-

port properties of a solute are fully characterized by its diffusivity, size, and charge, with the size

determining the hindrance factor and the charge determining the partition factor. Because yo-pro-1

and propidium have the same charge (and therefore partitionfactor), the only characteristics that

differentiate yo-pro-1 and propidium are their diffusivity and size (and therefore hindrance factor).

Thus, it is these quantities that determine the relative transport of the two solutes.

Importantly, the relationship between the transport and ratio and the minimum-size pore radius

rp,min is very nonlinear (Fig. 4.10). Thus, the proposed experiment allows estimation ofrp,min with

excellent sensitivity. For example, a yo-pro-1 to propidium transport ratio of 5 would correspond

to rp,min = 1.07 nm, and a ratio of 10 would correspond torp,min = 0.93 nm. If rp,min were 1.03 nm,

as we estimated based on Melikov et al., then we would expect the yo-pro-1 to propidium transport

ratio to be 5.8.

Here, we considered the fluorescent probe pair yo-pro-1 and propidium. However, there are other

such sets that one could use and, indeed, repeating the proposed experiment with multiple sets

would enable calculation ofrp,min with greater confidence. Some specific sets, chosen such thatthe

probes have the same charge (and therefore partition factor), include Lucifer Yellow and Alexa 594

(−2); Alexa 488 and Alexa 546 (−3); and Alexa 350, Atto 666, Cy5, and ethidium (+1). Probes

with different charges from one another could also be used, but their differing partition factors

would have to be accounted for in because they would not drop out in simplifying Eq. 4.31.
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4.4 Conclusions

We have motivated and described methods for estimating quantities needed in models of mem-

brane and cell electroporation. Although we presented several topics, we emphasized the effect

that the hindrance factorH and partition factorK have on ionic and molecular transport through

lipidic pores. The impact of these factors is particularly significant when the size of the solute and

pore are similar and, in the case of the partition factor, when the solute charge is large.

Together, hindrance and partitioning constrain the size and charge of significantly participating

solutes, both small and large. This has clear implications for electroporation-mediated transport.

Longer duration pulses that have conventionally been used for electroporation provide sufficient

time for some pores to expand to well beyond the minimum-sizepore radiusrp,min ≈ 0.8 nm, and

thus these pulses result in transport of large and highly charged solutes. In contrast, nanosecond

duration pulses do not provide sufficient time for pores to expand much beyondrp,min, and thus

these pulses result in significant transport small and minimally charged solute (e.g., monovalent

ions) only.

Thus, hindrance and partitioning are both important to quantitative understanding of solute trans-

port during and after pulsing.
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Chapter 5

The Energy Landscape and Dynamics of Electropores

Abstract

Electroporation is a valuable tool for diverse applications of biological and clinical significance.
The appeal of electroporation is that it provides an essentially universal method of facilitating
transmembrane transport of a variety of solutes, particularly bioactive molecules (e.g., nucleic
acids and drugs). The amount of electroporation-mediated transport (molecular dose) that results
from a particular pulsed electric field depends strongly on the number and size of the pores that
develop in the membrane. Thus, to understand and interpret electroporation experiments and to
optimize electroporation-based applications, it is necessary to first understand the creation and
subsequent evolution of pores that result from a particularpulsed electric field. Accordingly, here
we describe the pore energy landscape and a discretized model of dynamic pores. First, we provide
quantitative descriptions of the total pore energy and its four interaction energies: steric repulsion
of lipid head groups, edge energy, membrane tension, and electrical energy. Second, we show
that the evolution of pores in radius space is analogous to electrodiffusive transport in physical
space. We utilize this analogy to adapt a description of electrodiffusion to the characterization of
pore evolution in response to the gradients in pore density and pore energy. Third, we use the
resulting model to generate a description of pore dynamics.This in turn provides a straightforward
means of understanding the apparently complex results generated by models of electroporation
with dynamic pores. Finally, as partial validation, we relate the pore conductance measurements
of Melikov et al. (Biophys. J., 80:1829–1836, 2001) to pore radius. This yields insights into the
pore energy landscape and approximate values of the important electroporation model parameters
r∗, the radius of hydrophilic pore creation and destruction, and rm, the radius of minimum energy
at zero transmembrane voltage.
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5.1 Introduction

Electroporation is widely used to deliver bioactive molecules, such as nucleic acids [1–19] and

drugs [20–29], into cells. It is an attractive approach to delivery because it provides an opera-

tionally simple means of delivering a variety of solutes. Yet, despite the widespread use of electro-

poration, there is little fundamental understanding of howto optimally deliver a particular solute in

particular cell system. This is evidenced by the sheer number of studies that have sought optimized

electroporation protocols for specific applications [12, 13, 15, 19, 30–42].

Transport through pores is expected to be strongly dependent on the size and number of pores and

the size and charge of the transported solute [43]. Thus, to understand, interpret, and optimize

electroporation experiments and applications on a fundamental level, we must first understand the

creation, evolution, and destruction of pores. To that end,our objective in this study is to develop

a quantitative, mechanistic description of pore dynamics.

In a series of previous papers [43–45], we investigated fundamental biophysical topics that may be

considered “ingredients” for increasingly comprehensive, mechanistic models of electroporation

with concomitant molecular transport. First, we described[44] how important transport param-

eters of ionic and molecular solutes, specifically size, charge, and diffusivity, may be estimated

in silico. Second, we reported a general method [45] of describing electrodiffusive transport in

discretized 1-D systems, noting that that higher dimensionmodels can be constructed through

the assignment of 1-D elemental models in a discretized 2-D or 3-D system [46, 47]. Third, we

showed [43] how ionic and molecular properties affect transport through small (minimum-size and

somewhat expanded), lipidic pores. In particular, we showed how steric hindrance and partitioning

strongly influence transport through pores relative to bulkelectrolyte. This influence is especially

significant when the solute is approximately the same size asthe pore or when the solute is highly

charged.
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In this study, the final in this series of basic methods-oriented papers, we consider the energetics

and dynamics of pores. Our previous work on electrodiffusion [45] and pore conductance [43] have

direct relevance here. We show that electrodiffusion is directly related (mathematically equivalent)

to transport of pores in pore radius space. This is equivalent to a quantitative description of the

evolution of heterogeneous pore populations. We use our description of pore conductance to relate

the pore conductance measurements of Melikov et al. [48] to pore radius and then use this data

to provide partial validation of our description of the poreenergy landscape. At the outset, we

emphasize that this description builds on the work of many others [49–56].

5.2 Methods

5.2.1 Pore Geometry

Hydrophilic lipidic pores have long been assumed to be toroidal in shape [49, 51, 52, 57], with the

head groups of the lipid molecules rotated into the interiorof the pore wall to minimize exposure

of the hydrophobic lipid tails to water molecules. Molecular dynamics simulations over the past

decade have provided further evidence of the toroidal shapeof pores [58–63].

In the analysis here, we generally assume that pores are indeed toroidal in shape (Fig. 5.1A). How-

ever, we find it convenient to sometimes approximate pore shape as trapezoidal (Fig. 5.1B). While

some analyses have been based on toroidal pores, such as the electrical force that drives pore ex-

pansion [54], others have been based on trapezoidal pores, such as the Born energy (energy to

place a charge within a pore) [51, 52]. The trapezoidal pore approximation provides relative sim-

plicity, clarity, and ease of computation while deviating only slightly from a toroidal pore. Further,

molecular dynamics simulations show that pore geometry fluctuates and is variable. As is apparent

in Fig. 5.1, the differences between the toroidal and trapezoidal pores are minor.

For both toroidal and trapezoidal pores, the pore radiusrp refers to that of the centermost position

along the axis of the pore (Fig. 5.1). We will refer to this central region as the “internal” region

of the pore, and the entrance and exit regions (on either sideof the internal region of the pore) as
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(A) Toroidal pore (side view)

Al,e

Θl,e

dm

2

dm rp

(B) Trapezoidal pore (side view)
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dm rp

(C) Toroidal pore (top view)
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2
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Figure 5.1: Pore shape and size.(A) and (C) Toroidal approximations to pore shape.
(B) Trapezoidal approximation to pore shape. Both pore conformations have radiusrp and
lie within a membrane of thicknessdm = 5 nm. The “internal” region of the trapezoidal
pore has thicknessdp = dm/2 = 2.5 nm, and each “vestibule” on either side of the “internal
region” has thicknessdp/4 = 1.25 nm. The value ofdp was chosen such that the geometry
of the trapezoidal pore closely approximated the geometry of the toroidal pore. Thethin
dashed lineshows the toroidal shape, as in(A). (C) The total area of lipidAl (associated
with each side) of the membrane is the sum of the area of the bilayer regionAl,b and the
pore edge regionAl,e. The aqueous area of the pore isAp = πr2

p.

the “vestibules” or “vestibular” regions of the pore. The membrane has thicknessdm = 5 nm and

internal region of the pore has a thicknessdp = dm/2 = 2.5 nm. The value ofdp was chosen such

that the geometry of the trapezoidal pore closely approximates the geometry of the toroidal pore.

We refer to the relatively large region of the pore-membranesystem for which lipid molecules are

rotated into the pore as the “edge” of a pore (Fig. 5.1). The pore edge includes all lipid within a

distancerp + dm/2 of the axis of a pore. We refer to the lipid outside the edge as“bilayer”. The

bilayer includes all lipid that is a distance greater thanrp + dm/2 from the axis of a pore.
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5.2.2 Pore and Lipid Area

To our knowledge, in previous publications, a pore of radiusrp is assumed to reduce the area of

lipid Al (associated with each side of the membrane) by an amountAp = πr2
p, with Ap regarded as

the aqueous area of a pore (Fig. 5.1C). However, it is clear from Fig. 5.1 that this does not properly

account for the areaAl,e of lipid in the edge of the pore. Assuming that a pore reduces the lipid area

by an amountAp is equivalent to assuming that a pore is cylindrical in shape. If so, there would be

no lipid head groups lining the pore interior, and this is inconsistent with the view that pores are

approximately toroidal in shape, or at least lined by lipid head groups so as to reduce the exposure

of the lipid tails to water.

Effect of a Single Pore on Lipid Area

Consider the effect that adding a single pore to a membrane has on the total lipid areaAl in a system

with fixed areaA. As shown in Fig. 5.1C, all lipid contributes to either the areaAl,b of the bilayer

region or areaAl,e of the pore edge region. Thus, the total lipid areaAl is simply the sum of the

two:

Al = Al,b + Al,e. (5.1)

Initially, the membrane is intact (no pores). ThereforeAl = A, Al,b = A, andAl,e = 0. (Note, that

Al, Al,b, andAl,e all refer to the area associated with one side (leaflet) of thebilayer membrane.)

Introducing a pore with radiusrp has two effects: it decreasesAl,b and it increasesAl,e. The combi-

nation of these effects determines the net changeAl (Eq. 5.1). Let us consider each effect in turn.

First, the introduction of the pore reduces the area of the bilayer to

Al,b = A − π
(

rp +
dm

2

)2

. (5.2)

This is clear upon inspection of Fig. 5.1C.
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Figure 5.2: Aqueous vs. lipid reduction area of pores. The pore aqueous areaAp and lipid
reduction areaδAl,p are plotted against pore radiusrp. Ap describes the area of the fluid-
filled region in the center of a pore, whileδAl,p describes the net change in lipid areaAl

that results from the introduction of a toroidal pore of radiusrp. Though not apparent in the
plot, in the limit rp → ∞, Ap ≈ δAl,p. However, for smaller pores, like those plotted here,
Ap is significantly larger thanδAl,p. Indeed, forrp < 3.14 nm,δAl,p < 0, which implies that
small pores actually increase the total lipid areaAl .

Second, the introduction of the pore increases the area of the pore edge to

Al,e = π
2

(

dm

2

) (

rp +
dm

2

)

− 2π

(

dm

2

)2

. (5.3)

This formula can be found through integration, as describedin theAppendix.

Thus, the net reductionδAl,p in total lipid areaAl that results from the introduction of a single pore

of radiusrp is

δAl,p(rp) = π

(

rp +
dm

2

)2

− π2

(

dm

2

) (

rp +
dm

2

)

+ 2π

(

dm

2

)2

. (5.4)

Figure 5.2 shows a comparison of the aqueous areaAp(rp) and lipid reduction areaδAl,p(rp) of

pores. Ap exceedsδAl,p for all rp, and the relative difference between the two is quite large for

small pores.

Note thatAp > 0 for all rp > 0, butδAl,p < 0 for rp < 3.14 nm andδAl,p > 0 for rp > 3.14 nm (for

dm = 5 nm). In other words, small pores (rp < 3.14 nm) actually increase the total area of lipidAl.
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Table 5.1: Model Parameters

Symbol Value Description and Source
dm 5 nm Membrane thickness [52]
dp 2.5 nm Pore thickness (internal region) [43]
r∗ 0.65 nm Pore radius at local energy maximum∗

rm 0.98 nm Pore radius at local energy minimum∗

W∗ 45 kT Energy at local maximum [52]
Wm 28.341 kT Energy at local minimum∗

Wd 16.659 kT Energy barrier to pore destruction∗

B 1.47× 10−19 J Steric repulsion constant∗

b 3.3965 Steric repulsion constant∗

C −5.2456× 10−20 J Steric repulsion constant∗

γ 2.0× 10−11 J/m Pore line tension [64]
Γ 1× 10−3 J/m2 Membrane tension (BLM) [64]
Γ′ 20× 10−3 J/m2 Hydrocarbon-water interface tension [55]
Fmax 6.9× 10−10 N/V2 Maximum electric force for∆φm = 1 V [54]
rh 0.95 nm Electric force constant [54]
rt 0.23 nm Electric force constant [54]
Dp 5× 10−14 m2/s Pore diffusion coefficient [64]
a 1× 109 /(m2 s) Pore creation rate density [56]
β 20 kT/V2 Pore creation constant [56]
fprot 0 Membrane protein fraction (BLM)
τp 0.5 s Pore resealing time constant∗

T 295.15 K Absolute temperature∗

σ 1.20 S/m Conductivity of electrolyte∗ (100 mM KCl at 22◦C)
rs 0.175 nm Radius of charge carrier∗ (KCl) [44]
n 0.25 Pore relative entrance length [43]
∗Value selected or calculated as described in main text.

The slope ofAl,p(rp) < 0 for rp < 1.43 nm, and the slope ofAl,p(rp) > 0 for rp > 1.43 nm. This

implies that the membrane tension will contribute to the contraction of small pores and expansion

of larger pores.

Effect of a Distribution of Pores on Lipid Area

The effect that a distribution of pores has on the total lipid areaAl is the sum of the effect that each

pore has onAl. (We assume that pore edges cannot overlap.) Again, consider a membrane system

with fixed areaA. The membrane has a distribution of pores given by the pore density distribution

n(rp) that describes the number of pores per unit area with radii betweenrp andrp+drp [53]. Thus,

the total number of pores in the system with radii betweenrp andrp + drp is An(rp)drp, and each

of these pores contributes an amountδAl,p(rp) (Eq. 5.4) to the reduction in lipid area. The net

reductionAl,p in lipid area that results from the distribution of pores maybe found by integrating

over allrp:

Al,p = A
∫ ∞

0
δAl,p(rp) n(rp) drp. (5.5)
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5.2.3 Pore Energy

The dynamic behavior of pores is determined by the transmembrane voltage-dependent pore en-

ergy landscape, as pores tend to expand or contract so as to minimize their free energyW. Fig-

ure 5.3 shows the energy landscapeW(rp) of a pore with zero transmembrane voltage (∆φm=

0 V) (Fig. 5.3A) and the equilibrium pore densityn(rp) associated with this energy landscape

(Fig. 5.3B). Pores created with radiusrp < r∗ are assumed to be short-lived, hydrophobic pores

(full “water chains” in molecular dynamics studies) that are rapidly destroyed through thermal

fluctuations in the membrane [49]. Pores created with radiusrp > r∗ are assumed to spontaneously

transform from hydrophobic pores to metastable hydrophilic pores, with lipid head groups lining

the pore edge (Fig. 5.1) [49]. This view of pore evolution is supported by recent molecular dynam-

ics studies.

The critical radiusr∗, at whichW(r∗) = W∗ (Fig. 5.3A), is determined by the relative energy of

hydrophobic poresWphobic(rp) and hydrophilic poresWphilic(rp). Hydrophobic pores created with ra-

diusrp < r∗ remain hydrophobic becauseWphobic(rp) < Wphilic(rp). Hydrophobic pores created with

radiusrp > r∗, spontaneously transform into hydrophilic pores becauseWphilic(rp) < Wphobic(rp).

Thus, (hydrophilic) pore creation requires that a pore overcomeW∗, the energy barrier to pore cre-

ation.

The energy of hydrophilic pores has a minimum atrp = rm, at whichW(rm) = Wm (Fig. 5.3A).

(Note that the symbolrp,min is often used in place ofrm. Here, we userm for succinctness.) As a

result, pores accumulate nearrm, thereby leading to a pore density distributionn(rp), as shown in

Fig. 5.3B. Just asW∗ is the energy barrier to pore creation,Wd = W∗ − Wm is the barrier to pore

destruction.

The model presented here only explicitly describes the dynamics of hydrophilic pores (rp > r∗) be-

cause hydrophobic pores are assumed to be very short-lived and nonconductive [49]. Nonetheless,
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Figure 5.3: Pore energy landscape and pore density distribution.(A) The pore energyW(rp)
at transmembrane voltage∆φm = 0 V is plotted against pore radiusrp. Pores created with
radiusrp < r∗ are assumed to be short-lived, hydrophobic pores that are rapidly destroyed
through thermal fluctuations in the membrane, while those created withrp > r∗ are assumed
to spontaneously transform from hydrophobic pores to metastable hydrophilic pores. Thus,
the critical radiusr∗, which has energyW∗, is the minimum radius of hydrophilic pores.
Pores tend to expand or contract so as to minimize their energy W. Therefore, newly cre-
ated hydrophilic pores slide down the energy gradient and accumulate near the radius of
minimum energyrm, which has energyWm. (B) The pore density distributionn(rp), which
describes the number of pores per area perdrp, associated with the pore energy in(A) is
plotted against pore radiusrp. The distribution is centered atrm, where the pore energy has
its minimumW = Wm. W∗ is the energy barrier to pore creation, andWd = W∗ −Wm is the
barrier to pore destruction. In this study,r∗ = 0.65 nm andrm = 0.98 nm.
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we include the approximate energy of hydrophobic pores [53]for completeness:

Wphobic(rp) ≈ W∗

(

rp

r∗

)2

. (5.6)

The energy of hydrophilic pores is the sum of several contributions (Fig. 5.4):

W(rp,∆φm) = Wsteric(rp) +Wedge(rp) +Wsurf(rp) +Welec(rp,∆φm). (5.7)

Here,Wsteric(rp) is the energy that results from the steric repulsion of lipid head groups,Wedge(rp) is

the energy that results from the bending of lipid around the interior edge of a pore,Wsurf(rp) is the

interfacial energy of water contacting lipid molecules, and Welec(rp,∆φm) accounts for the energy

that results from the force exerted on the pore edge by the electric field. In the following sections,

we describe each of these energy contributions in depth.

Steric Repulsion Energy

The first contribution to the pore energy is the steric repulsion energy [52]:

Wsteric= B

(

r∗
rp

)b

+C. (5.8)

The mathematical form of this version of the steric repulsion energy term is not based on any basic

physical insight, other than that the derivative of the termwith respect to pore radiusrp should

rapidly decrease to zero with increasing pore radius. It is primarily the decrease of the steric repul-

sion energy with pore radius and the increase of the edge energy with pore radius that determine

the radiusrm of the energy minimum.

Neu and Krassowska [53] first introduced a similar term, (C/rp)4, in which C and the exponent

were chosen such that the resulting pore energy would give would give values ofr∗, W∗, andrm,

close to those reported by Glaser et al. [52]. We have alteredthe form of this term slightly and
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Figure 5.4: Pore energy components. The total pore energyW(rp) and its components (in-
set) are plotted against pore radiusrp at transmembrane voltage∆φm = 180 mV. The total
pore energyW(rp) (of hydrophilic pores) is the sum of several contributions: (1) Wsteric(rp)
is the energy that results from the steric repulsion of lipidhead groups, (2)Wedge(rp) is the
energy that results from the bending of lipid around the interior edge of a pore, (3)Wsurf(rp)
is the interfacial energy of lipid molecules, and (4)Welec(rp,∆φm) accounts for the energy
that results from the force exerted on the pore edge by the electric field. Also shown is
the energyWphobic(rp) of hydrophobic pores (rp < r∗). The edge energyWedgecontributes
to pore contraction, while all other energy components contribute to pore expansion. For
rp < 1.43 nm, the interfacial energyWsurf also contributes to pore contraction, though its
contribution is much smaller than that of the edge energyWedge.

introduced another parameter, which enables us to ensure that three conditions are met (when

∆φm = 0 V): (1) The energy curve passes through (r∗,W∗), (2) the energy curve passes through

(rm,Wm), and (3) the energy curve has a local minimum at (rm,Wm) (i.e., the derivative of energy

with respect torp is zero at (rm,Wm)). (Here,r∗, W∗, rm, andWm should be regarded as established,

or known, parameters.)

The advantage of this description of the steric repulsion energy term lies in its flexibility. The

values ofr∗ and rm have not been well-established. Additionally, reported values of the pore

resealing time constantτp, which is directly related to the size of the pore resealing energy barrier

Wd = W∗ −Wm, vary widely [48, 52, 65–67]. Thus, the form described here (Eq. 5.8) allows one

to specifyr∗, rm, andτp, and the constantsB, b, andC can then be calculated, as described in the

Appendix.
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Edge Energy

The second contribution to the pore energy is the edge energy. This term accounts for the energy

associated with the bending of the lipid about the interior of a pore. The edge energy is described

by [49]

Wedge(rp) = 2πγrp, (5.9)

whereγ is line tension.

Note that one could consider the steric repulsion energy (Eq. 5.8) and the edge energy (Eq. 5.9)

to be a single entity, as in Wohlert et al. [61], because both result from bending the lipid bilayer,

though in different (orthogonal) directions. As defined here, the steric repulsion energy is associ-

ated with bending the lipid about the central axis of a pore, and the edge energy is associated with

bending the lipid around a circle defining a pore (i.e., wrapping around the toroidal interior of the

pore).

Interfacial Energy

The third contribution to the pore energy is the interfacialenergy of lipid in the membrane. A

reduction in lipid area reduces the interfacial energy. This contribution to the energy has generally

been given as

Wsurf(rp) = −ΓAp, (5.10)

whereΓ is the membrane tension andAp = πr2
p is the aqueous area of a pore. The problem with

this expression is that, as discussed, the creation of a poreof radiusrp does not reduce the lipid

area by an amountAp. Rather, it decreases the lipid area by an amountδAl,p (Eq. 5.4), and the

difference between the two is quite significant, especially for small pores (Fig. 5.2). Making the

appropriate substitution, the effect that a pore has on the interfacial energy is given by

Wsurf(rp) = −ΓδAl,p(rp). (5.11)
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Note that the membrane tensionΓ is treated as a constant. However, as Neu and Krassowska [55]

noted, the creation and expansion of pores generally decreases the membrane tension and this af-

fects the interfacial energy. This relaxation of the membrane can be accounted for through the use

of an effective membrane tension that is a function of pore density [55].

In their treatment, Neu and Krassowska [55] assumed that a pore reduces the lipid area by an

amountAp. Here, we replaceAp width δAl,p. Given that consideration, the effective membrane

tension in a system with fixed areaA and pore distributionn(rp) is [55]

Γeff(Al,p) = − ∂W
∂Al,p

= 2Γ′ − 2Γ′ − Γ
(

1− Al,p

A

)2
. (5.12)

Here,Γ′ is the interfacial energy per area of the hydrocarbon-waterinterface,Γ is the surface

tension of the intact membrane, andAl,p is the total reduction in lipid area that results from the

pore distribution (Eq. 5.5). Thus, with effective membrane tension, the energy of a pore is given

by

Wsurf(rp) = −Γeff(Al,p) δAl,p(rp). (5.13)

Electrical Energy

The final contribution to the pore energy results from the force exerted on a pore by an electric field.

Neu et al. [54] developed an expression, based on a fit to numerical simulations of the electric field

in the vicinity of a toroidal pore, for the electrical forceF(rp,∆φm) expanding pores:

F(rp,∆φm) =
Fmax

1+ rh
rp+rt

(∆φm)2 . (5.14)

Here,Fmax is the maximum force expanding a pore with∆φm = 1 V andrh andrt are constants.
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Figure 5.5: Dependence of pore energy on transmembrane voltage. The total pore energy
W(rp,∆φm) is shown for several (evenly spaced) transmembrane voltages|∆φm| in the range
0.0 – 0.7 V. For |∆φm| . 0.5 V, a local energy minimum exists nearrm. However, for
|∆φm| & 0.5 V, this energy minimum disappears. Thus, pores tend to expand when|∆φm| &
0.5 V and remain at or contract to∼rm when|∆φm| . 0.5 V. In this study,rm = 0.98 nm.

The electrical energy of a poreWelec(rp,∆φm) can be found by integrating the force (Eq. 5.14):

Welec(rp,∆φm) = −
∫ rp

0
F(r) dr (5.15)

= −Fmax

(

rp + rh ln

(

rt + rh

rp + rt + rh

))

(∆φm)2 . (5.16)

Note thatWelec goes as (∆φm)2. Therefore, (1)Welec does not depend on the sign of∆φm and (2) the

influence ofWelec on the total energyW increases rapidly with|∆φm|.

Figure 5.5 shows the how the pore energyW(rp,∆φm) changes with transmembrane voltage|∆φm|.

For |∆φm| . 0.5 V, a local energy minimum exists nearrm. However, for|∆φm| & 0.5 V, this energy

minimum disappears. Importantly, all pores in a local membrane region experience the same

transmembrane voltage∆φm, regardless of their radiirp. Therefore, all pores in a local membrane

region are located on the same energy curve (Fig. 5.5). Whilethe energy curve shifts with∆φm, all

pores will necessarily remain on that changing curve.
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5.2.4 Pore Flux and Continuity

In a recent study [45], we developed a description of electrodiffusion, the transport of charged

solute resulting from the combination of electrical drift and diffusion, in a discretized 1-D system.

Interestingly, our mathematical description and analysisof electrodiffusion is directly relevant to

the dynamics of pores. Indeed, the same equations that govern electrodiffusion in 1-D also govern

the dynamics of electropores in pore radius space. Put simply, pore radius space involves pores be-

ing transported from one size to another as the result of gradients in pore density and pore energy

in a manner analogous to charged solutes being transported from one position to another as the

result of gradients in concentration and electric potential. This mathematical analogy is presented

in more detail below.

In 1-D, electrodiffusive fluxJs of solute in the+x-direction is [45]

Js = −Ds
∂γ

∂x
−

Ds

kT
qezsγ

∂φ

∂x
, (5.17)

whereγ is solute concentration,φ is electric potential,Ds is solute diffusivity, zs is solute charge

(valence),qe is elementary charge,k is the Boltzmann constant, andT is absolute temperature.

The first term in Eq. 5.17 describes the flux of solute resulting from a gradient in concentration

(diffusion), and the second term describes the flux of solute resulting from a gradient in electric

potential (electrical drift).

In Eq. 5.17, the electrical drift flux term is written in termsof electric potentialφ. However, it can

also be written in terms of the electrical energy of solute moleculesW. The gradient in electrical

energyW is related to the gradient in the electric potentialφ by

∂W
∂x
= qezs

∂φ

∂x
(5.18)

This is essentially a statement of the Lorentz force on a molecule with chargeqezs (in the absence
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of a magnetic field). Thus, the electrodiffusive flux (Eq. 5.17) may be written in terms of the

electrical energyW as

Js = −Ds
∂γ

∂x
−

Ds

kT
γ
∂W
∂x

. (5.19)

This is mathematically equivalent to the form used to describe the fluxJp of pores in radius space

[50]:

Jp = −Dp
∂n
∂rp
−

Dp

kT
n
∂W
∂rp

, (5.20)

whereJp is flux of pores (per unit area),n is the pore density (per unit area perdrp), W is the

pore energy,Dp is the pore diffusion coefficient, k is the Boltzmann constant, andT is the ab-

solute temperature. This description of pore transport wasintroduced by Pastushenko et al. [50]

and has been used in a number of subsequent studies and models[53, 55, 56, 64, 68–70]. Just as

the electrodiffusive flux is determined by gradients in solute concentration and electrical energy,

pore flux in radius space is determined by gradients in pore density and energy (the energy land-

scape). This mathematical analogy is important because it allows improved analytic methods for

electrodiffusion [45] to be carried over directly to pore dynamics.

5.2.5 Discretized Pore Flux and Continuity

Because the continuum-based pore flux has the same mathematical form as the electrodiffusive

flux, the discretized pore flux has the same mathematical formas the discretized electrodiffusive

flux [45]. Thus, it follows that the flux of poresJi, j
p between adjacent nodesi and j in a discretized

pore radius space is

Ji, j
p =



























−Dp

kT
(∆n)i, j

(∆rp)i, j
if (∆W)i, j = 0,

−Dp

kT
(∆W)i, j

(∆rp)i, j

(

ni

1−e(∆W)i, j/kT +
n j

1−e−(∆W)i, j/kT

)

if (∆W)i, j , 0.
(5.21)

Here, nodesi and j have pore radiiri
p andr j

p, pore densitiesni andn j, and pore energiesWi andW j.

(∆n)i, j ≡ n j − ni, (∆rp)i, j ≡ r j − ri, and (∆W)i, j ≡ W j −Wi.

The number of pores is conserved during transport, except atthe boundaryrp = r∗, where pores
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Figure 5.6: Discretized 1-D pore transport system. Nodei has adjacent nodesi − 1 and
i+1. The pore radiusrp, energyW, and densityn for each node is indicated by its subscript
or superscript. Nodesi−1 andi are separated by distance (in radius space) (∆rp)i−1,i, nodes
i andi + 1 are separated by distance (in radius space) (∆rp)i,i+1. The region of radius space
associated with nodei has length (∆rp)i. Ji−1,i

p is the pore flux from nodei − 1 to nodei,

andJi,i+1
p is the pore flux from nodei to nodei + 1. The pore flux between adjacent nodes

is determined by the pore radii, energies, and densities of the nodes, as well as pore (e.g.,
diffusivity) and system (e.g., temperature) properties. The rate at which the pore densityni

changes is determined by the net fluxJi−1,i
p − Ji,i+1

p into nodei and the length (∆rp)i.

are created and destroyed. Thus, the time rate of change of pore density is related to the pore flux

by the continuity equation

∂n
∂t
= −

∂Jp

∂rp
= Dp

∂2n
∂r2

p

+
Dp

kT
∂n
∂rp

∂W
∂rp
+

Dp

kT
∂2W
∂r2

p

. (5.22)

Figure 5.6 shows a discretized 1-D pore transport system. Node i with radiusri
p has adjacent

nodesi − 1 and i + 1 with radii ri−1
p and ri+1

p such thatri−1
p < ri

p < ri+1
p . The nodesi − 1, i,

and i + 1 have pore densitiesni−1, ni, andni+1, pore energiesWi−1, Wi, andWi+1. The distance

between nodesi − 1 andi is (∆rp)i−1,i ≡ ri
p − ri−1

p , and the distance between nodesi and i + 1

is (∆rp)i,i+1 ≡ ri+1
p − ri

p. There is a region of radius space associated with nodei for which all

points are close tori than to the radius of any other node. More specifically, allrp such that

ri−1
p + (∆rp)i−1,i/2 < rp < ri+1

p − (∆rp)i,i+1/2 are associated with nodei. The length of this region

associated with nodei is (∆rp)i ≡ (∆rp)i−1,i/2+ (∆rp)i,i+1/2.
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In this discretized system, the continuity equation (Eq. 5.22) becomes

∂ni

∂t
= −

Ji,i+1
p − Ji−1,i

p

(∆rp)i
=

Ji−1,i
p − Ji,i+1

p

(∆rp)i
. (5.23)

The flux Ji−1,i
p from i − 1 to i and fluxJi,i+1

p from i to i + 1 at any instant in time can be determined

using Eq. 5.21, as described.

5.2.6 Pore Creation and Destruction

r∗ is the smallest pore radius explicitly represented in the model and is the smaller radius boundary

of pore radius space. Therefore, in contrast to other nodes,whose pore densities change purely as

a result of pore flux to and from adjacent nodes (Eq. 5.23), ther∗ node’s pore density also changes

as a result of pore creation and destruction. (The larger radius boundary of pore radius space at

rp,max is simply a no-flux (reflecting) boundary.)

Pore creation and destruction can be cast as additional flux terms at ther∗ node. Applying conti-

nuity (as in Eq. 5.23) then determines the time rate of changeof n∗ ≡ n(r∗):

∂n∗
∂t
=

J∗,cp − J∗,dp − J∗,∗+1
p

(∆rp)∗
. (5.24)

Here,J∗,cp is the creation flux,J∗,dp is the destruction flux,J∗,∗+1
p is the flux from ther∗ node to the

adjacent (larger radius) node (as described by Eq. 5.21), and (∆rp)∗ is the discretization size atr∗.

By construction,J∗,cp > 0 andJ∗,dp > 0. That is,J∗,cp can only increasen∗ andJ∗,dp can only decrease

n∗.

The pore creation flux is described by [52]

J∗,cp (∆φm) = a fce
β(∆φm)2/kT . (5.25)

Here,a is the pore creation rate density,β is a pore creation constant, andfc is the fraction of the
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membrane available for pore creation, as discussed below. Note that the pore creation fluxJ∗,cp

is highly nonlinear in∆φm and thus a small relative increase in|∆φm| will result in a much large

relative increase inJ∗,cp .

The pore destruction fluxJ∗,dp results from applying an absorbing boundary condition atr∗ [53].

Specifically,J∗,dp is equal to the flux fromr∗ to a slightly smaller radiusr∗ − ∆rp node with pore

densityn(r∗ − ∆rp) = 0.

In Eq. 5.25,fc is the fraction of the membrane available for pore creation.This factor arises because

we assume that pores cannot be created in the edges of existing pores, as this would result in

overlapping pores. Additionally, for biological membranes, a major fractionfprot of the membrane

is occupied by protein and therefore presumed unavailable for pore creation. Thefc factor accounts

for the reduced participation. In a region of membrane with areaA, protein fractionfprot, and pore

density distributionn(rp), the fraction of the membrane available for pore creation is

fc = 1− fprot −
∫ ∞

0
π

(

rp +
dm

2

)2

n(rp) drp. (5.26)

As the membrane becomes saturated with pores,fc→ 0, and thereforeJ∗,cp → 0. Thus,fc prevents

the generation of nonphysical pore density in response to very large magnitude pulses.

5.2.7 Pore Resealing

The application of a sufficiently large pulsed electric field will charge the membraneand lead to a

burst of pore creation (Eq. 5.25). Because of the large energy gradient betweenr∗ andrm (Fig. 5.3),

newly created pores rapidly expand to∼rm or larger, depending on the energy landscape (Fig. 5.5).

This large energy gradient is smallest at∆φm = 0 and grows significantly larger for increased|∆φm|.

Post-pulse,∆φm ≈ 0 V until most pores reseal [47]. Therefore, pore creation isminimal (Eq. 5.25),

but pore destruction is significant. While some previous models (e.g., [70]) have implemented re-

sealing using explicit resealing expressions that remove pores from radius space, in the model pre-



146 The Energy Landscape and Dynamics of Electropores

sented here, resealing occurs as pores diffuse over the pore destruction energy barrierWd = W∗−Wm

at r∗ (Fig. 5.3). Resealing continues until the pore density distribution reaches its equilibrium. At

equilibrium,∂n/∂t = 0 (including∂n∗/∂t) andJ∗,∗+1
p = 0. Thus, the continuity equation (Eq. 5.24)

requires that thatJ∗,cp = J∗,dp . In other words, pore creation is non-zero (Eq. 5.25) but is exactly

offset by pore destruction, on average. (Pore creation and destruction events are stochastic.)

We have found that resealing time constantτp is approximately related to the energy barrier to pore

destructionWd by

τp ≈
(rm − r∗)

2

Dp

(Wd

kT

)− 3
2

eWd/kT . (5.27)

This expression is adapted from a nondimensionalized expression for the resealing rate in Neu and

Krassowska [53].

Equation 5.27 can be numerically solved to find the value of the pore destruction barrierWd that

will result in approximately the desired resealing time constantτp. We have found that estimating

Wd using Eq. 5.27 generally results in aτp value within∼10 % of the desired value. In practice, we

use simply use Eq. 5.27 to estimate the value ofWd and then use an algorithm to adjust the value

until the resultingτp is equal to the desired value.

Note that, in this model,W∗ is a fixed constant andWd is chosen to given the specifiedτp. Wm is

then calculated asWm = W∗ −Wd.

5.2.8 Pore Electrical Conductance

In a previous study [43], we developed a detailed description of the conductance of pores, includ-

ing the effects of hindrance and partitioning. Here, for the convenience of the reader, we give a

brief description and note that greater detail may be found in Ref. [43].

Consider the internal region of the trapezoidal pore in Fig.5.1B. It has radiusrp, depthdp, aqueous

areaAp = πr2
p, and conductivityσ. The interaction between solute ions in a pore and the pore
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gives rise to a pore hindrance factorH and partition coefficientK that scale the pore conductance

relative to a region of the same dimensions in bulk electrolyte. (These factors are described in the

Appendixand Ref. [43].) Thus, accounting for hindrance and partitioning, the conductance of the

internal pore region is given by

gp,p = σ
Ap

dp
HK, (5.28)

and the resistanceRp,p of the internal pore region is thus

Rp,p =
1

gp,p
=

dp

σApHK
. (5.29)

In addition to the resistanceRp,p of the internal pore region, there is an access resistance [71, 72]

Rp,a associated with each side of the membrane/pore that accounts for the fact that ions are focused

by heterogeneous fields into and out of a pore. This access resistance is described by [71, 72]

Rp,a=
1

2σrp
. (5.30)

The total resistanceRp associated with a pore is therefore the sum of the resistanceof the internal

pore regionRp,p and the access resistanceRp,a:

Rp = Rp,p+ Rp,a=
dp

σApHK
+

1
2σrp

. (5.31)

The total pore conductance is simply the reciprocal ofRp:

gp =
1

Rp
. (5.32)
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5.3 Results and Discussion

5.3.1 Relative Significance of Pore Energy Components

Pores expand and contract in response to the time-dependentgradient in the pore energy (Eq. 5.20).

Thus, in a particular region of radius space, the relative significance of each energy term in Eq. 5.7

can be determined by considering its gradient relative to the gradients of the other terms.

It is clear from Fig. 5.4 that the steric repulsion energy term (Eq. 5.8) is the dominant mechanical

energy term whenrp < rm and that the edge energy term (Eq. 5.9) is the dominant mechanical

energy term whenrp > rm. Indeed, it is primarily the combination of these opposing terms that

determines the radiusrm of the energy minimum (Fig. 5.3).

The significance of the electrical energy term (Eq. 5.16) depends strongly on the transmembrane

voltage∆φm, as demonstrated in Fig. 5.5. When∆φm is small, the electrical energy term contributes

negligibly to pore dynamics. However, when∆φm is large, it significantly affects pore behavior.

Indeed for pores withrp > rm, pore expansion and contraction are determined by the relative sizes

of the gradients in edge energy and electrical energy.

For the range of radii (rp < 3 nm) shown in Fig. 5.3, the gradient in the interfacial energy term

(Eq. 5.11) is quite small. However, the gradient in interfacial energy, and thus its significance,

grows linearly withrp. Therefore, the relative significance of the interfacial energy term depends

on the membrane tensionΓ and pore radiusrp.

The significance of the interfacial energy term can be assessed by comparing its gradient with the

gradient of the edge energy:

∣

∣

∣

∣

dWsurf
drp

∣

∣

∣

∣

∣

∣

∣

∣

dWedge

drp

∣

∣
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)
∣
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. (5.33)
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Figure 5.7: Ratio of the interfacial energy gradient to the edge energy gradient. The rela-
tive importance of a pore energy component is determined by the magnitude of its energy
gradient relative to the energy gradients of the other components. This is because pores
expand and contract in response to the gradient in total energy. Here, the ratio of the in-
terfacial energy gradient|dWsurf/drp| to the edge energy gradient|dWedge/drp| is plotted
against pore radiusrp for a selection of membrane tension values, as shown in theinset.
WhenΓ = 10−3 J/m2, the ratio is>1 for rp & 20 nm and the interfacial energy gradient is
larger than the edge energy gradient. However, for the rest of plottedΓ (10−7 – 10−4 J/m2),
the ratio is≪1 for all radii plotted (rp < 100 nm) and the interfacial energy gradient is much
smaller than the edge energy gradient. Note that the typicalmembrane tension for BLM is
Γ ≈ 1× 10−3 J/m2 [64], while the typical membrane tension for cell plasma membranes
is a much smallerΓ ≈ 2× 10−6 – 20× 10−6 J/m2 [73]. Thus, these results suggest that the
impact of membrane tension on pore dynamics is small or negligible for cells.

Figure 5.7 shows the ratio of the interfacial energy gradient to the edge energy gradient for sur-

face tensionΓ in the range 10−7 – 10−3 J/m2 and pore radiirp up to 100 nm. The ratio increases

in proportion torp andΓ. WhenΓ = 10−3 J/m2, the ratio is> 1 for rp & 20 nm and the inter-

facial energy gradient is larger than the edge energy gradient. However, for the rest of plottedΓ

(10−7 – 10−4 J/m2), the ratio is≪ 1 for all radii plotted (rp < 100 nm) and the interfacial energy

gradient is much smaller than the edge energy gradient.

The tension of the cell plasma membrane is typically in the range 2× 10−6 – 20× 10−6 J/m2 [73].

This is 2 – 3 orders of magnitude smaller than typical bilayerlipid membrane (BLM) tension of

∼1× 10−3 J/m2 [64]. At the upper end of this membrane tension range (20× 10−6 J/m2) and at

pore radius 100 nm, the ratio of the interfacial energy gradient to the edge energy gradient is just

∼0.1, which is considerably smaller than the range of reported line tension values (0.5× 10−11 –
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3× 10−11 J/m) relative to the intermediate value used here (2× 10−11 J/m).

In other words, for a typical plasma membrane, the uncertainty in the value of the line tensionγ

is a more significant determinant of pore behavior than the membrane tension. Moreover, as Neu

and Krassowska [55] noted, the creation and expansion of pore will further decrease the membrane

tension. The implication is that, if the tension of the membrane is insignificant when intact, then it

will become even more insignificant upon the creation and expansion of pores.

The interfacial energy is significant in systems with large membrane tension (e.g., BLM and os-

motically swollen cells) or large pores. However, in a typical plasma membrane, the contribution

of interfacial energy to the behavior of pores is negligibleunless very large pores are considered.

5.3.2 Description of Pore Dynamics

The dynamic behavior of pores is complicated. The transmembrane voltage determines the rates of

pore creation, expansion, and contraction, and in response, pore creation, expansion, and contrac-

tion determine, in part, the transmembrane voltage. Additionally, in spatially distributed systems,

the behavior of one system region may affect another communicating system region through its

impact on system-level electrical response.

Despite this complexity, the results of mechanistic modelsof electroporation (featuring pore ex-

pansion) [64, 69, 70, 74, 75] exhibit some common features. Specifically: (1) During an applied

electric pulse, the transmembrane voltage∆φm tends to a plateau value of∼0.5 V. Notably, this

is true for both trapezoidal (or square) pulses [69, 70, 74, 75] and exponential pulses [69, 70].

(2) During an applied electric pulse, some pores tend to shrink to (or remain at) the minimum-size

pore radiusrm, while other pores expand significantly beyondrm. These specific features and,

indeed, the general behavior of pores can be understood through the pore dynamics phase space

shown in Fig. 5.8.
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Figure 5.8: Pore dynamics phase space. The rate of pore expansiondrp/dt is shown as a
function of pore radiusrp and transmembrane voltage magnitude|∆φm|. Thewhite curve
indicatesdrp/dt = 0. Note that the unit of drift speed, mm/s, is equivalent toµm/ms,
nm/µs, and pm/ns. Most pores are “born” in the upper-left corner wheredrp/dt is positive
and large, and therefore the pores initially expand rapidly. As they expand, their conduc-
tance increases and this leads to a decrease in|∆φm|. The combination of increasingrp and
decreasing|∆φm| sets the ensemble of pores on a trajectory pointedright anddown. As
described in the main text, the exact trajectory depends largely on the magnitude of the ap-
plied electric pulse, with small pulses leading to a trajectory pointed more to theright and
large pulses leading to trajectory pointed moredownward. Regardless of the specific pulse
applied, pores tend to accumulate along thewhite curve. This is an important result: pores
evolve to join this curve. It is also the basis for the tendency to form two pore populations,
one large and one small.

The drift speed of pores in radius space (from Eq. 5.20) is given by

drp

dt
= −

Dp

kT
∂W
∂rp

. (5.34)

Thus, pores expand (drp/dt > 0) when∂W/∂rp < 0 and pores contract (drp/dt < 0) when

∂W/∂rp > 0. Because the pore energyW (Eq. 5.7) is a function of transmembrane voltage∆φm and

pore radiusrp, the drift speeddrp/dt is also fully determined by∆φm andrp. Accordingly, Fig. 5.8

shows the drift speeddrp/dt plotted againstrp and∆φm.

Using Fig, 5.8 we can understand the “life cycle” of an ensemble of pores, as well as the cause of
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the specific features of electroporation model results noted above.

The rate of pore creation is strongly dependent on transmembrane voltage magnitude|∆φm|

(Eq. 5.25). (Pore creation and evolution, as described here, are independent of the sign of∆φm.

For simplicity, we use∆φm, though|∆φm| is implied.) Upon application of an electric pulse, the

membrane charges and then reaches a transient peak during which there is a burst of pore creation,

which leads to a subsequent decrease in transmembrane voltage∆φm. Thus, essentially all pores

are created at a large transmembrane voltage, typically,∆φm ≈ 1.0 – 1.5 V, depending on the ap-

plied electric pulse. Recalling that in the present model pores are created at radiusr∗ ≈ 0.65 nm,

pores are “born” in theupper-left cornerof Fig. 5.8. In this region,drp/dt is positive and large,

and thus pores expand rapidly.

As the newly created pores expand, their conductances increase (Eq. 5.32). This leads to a de-

crease in∆φm, by shifting some of the total system voltage drop from the membrane to the bulk

electrolyte. The combination of increasingrp and decreasing∆φm sets the ensemble of pores on a

trajectory pointedright anddown in Fig. 5.8.

Eventually, the ensemble of pores reaches thewhite curvedefiningdrp/dt = 0. In other words,

thewhite curve, which primarily lies along∆φm ≈ 0.5 V, defines the boundary between pore ex-

pansion and contraction. We refer to this transmembrane voltage withdrp/dt = 0 as∆φm,0, while

noting that the exact value is dependent onrp.

After reaching thewhite curve, the ensemble as a whole is not driven to expand or contract, and

if the pores are not expanding or contracting, then the transmembrane voltage should remain con-

stant. However, while in our model all pores in a local regionhave the same transmembrane

voltage∆φm, the population of pores contains a distribution of pore radii rp as a result of (1) pores

not being created at exactly the same time and position in phase space and (2) thermal fluctuations

that lead to “diffusion” in radius space. Note also that thewhite curvehas a slightdownward
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slope. Therefore, if the ensemble of pores is centered on thewhite curve at some radiusrp = r̄p

and transmembrane voltage∆φm, then pores with radiirp < r̄p lie below the curve (drp/dt < 0) and

pores with radiirp > r̄p lie above the curve (drp/dt > 0). As a result, the ensemble of pores splits,

with some pores contracting and some pores expanding. The net effect is necessarily such that the

∆φm remains relatively constant at the plateau voltage∆φm = ∆φm,0 ≈ 0.5 V.

The contraction of smaller pores enables the expansion of larger pores: the decreasing conduc-

tance of the contracting pores compensates for the increasing conductance of the expanding pores.

However, this process cannot proceed indefinitely. Eventually, the smaller pores reachrp ≈ rm

and cannot contract further. At this point, the smaller pores of the larger ensemble begin to con-

tract, enabling the continued expansion of the largest pores. However, this too, cannot continue

indefinitely. Eventually, essentially all pores contract.If the pulse is long enough, this outcome is

inevitable. While pore creation (Eq. 5.25) proceeds at a much slower rate at∆φm ≈ 0.5 V than at

higher∆φm, over the course of a long pulse it may lead to a non-negligible increase in membrane

conductance that then contributes to the decrease in∆φm and resulting contraction of large pores.

Following the end of the applied pulse,∆φm ≈ 0 V. Thus, all pores will shrink torp ≈ rm, and the

pores will assume a distribution like that shown in Fig 5.3. As pores diffuse into in the tail of the

distribution atrp = r∗ they are destroyed (“die”), thus completing the pore life cycle.

It is important to understand why the system tends to maintain the plateau transmembrane volt-

age∆φm = ∆φm,0 ≈ 0.5 V (in the short term). Consider what would happen if∆φm decreased

below∆φm,0. As shown in Fig. 5.8,drp/dt < 0 when∆φm < ∆φm,0, and therefore pores contract.

However, as pores contract their conductance decreases, and this leads to an increase in∆φm that

counteracts the hypothetical decrease. Now, consider whatwould happen if∆φm increased above

∆φm,0. drp/dt < 0 when∆φm < ∆φm,0 (Fig. 5.8), and therefore pores expand. However, as pores

expand their conductance increases, and this leads to an increase in∆φm that counteracts the hypo-

thetical increase. Put simply, any shift in∆φm away from∆φm,0 results in a shift in the distribution
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of pore radii that restores∆φm ≈ ∆φm,0. This negative feedback response by dynamic pores even

results in the temporary maintenance of∆φm = ∆φm,0 during an exponential pulse [69, 70] as the

applied electric field decreases.

The behavior described is typical for conventional electroporation pulses. However, other re-

sponses are possible, and they can be readily interpreted using Fig. 5.8. The rates of pore creation

and expansion are both transmembrane voltage-dependent. Additionally, pore creation and expan-

sion both increase membrane conductance and thereby lead toa decrease in transmembrane voltage

that, in turn, causes a decrease in the rates of pore creationand expansion. That is, electroporation

is self-limiting. Whether pore creation or expansion is dominant in increasing the membrane con-

ductance depends on the peak transmembrane voltage, which,in turn, depends on the magnitude of

the applied electric pulse. In terms of the phase plot (Fig. 5.8), this implies that the initial trajectory

of the pores depends on the magnitude of the applied electricpulse.

In response to a very large magnitude pulse (e.g., 10 MV/m), pore creation increases the mem-

brane conductance and decreases∆φm much faster than possible by pore expansion [56]. As a

result, the pores are “born” in theupper-leftcorner of Fig. 5.8, as in the typical case described, but

follow a trajectory pointed nearly straightdown. Thus, the pores reach thewhite curveat a radius

rp ≈ rm, for which there is no possibility of any significant pore expansion.

In response to a relatively small magnitude pulse (i.e., a pulse too small to charge the membrane

beyond∼1 V), pore creation proceeds slowly, and thus pore expansionis the primary mechanism

by which the membrane conductance increases and∆φm decreases. As a result, the pores are

“born” in the almost upper-left cornerof Fig. 5.8, as in the typical case described, but follow a

trajectory pointedright andslightly down. Thus, the pores reach thewhite curveat a large radius

rp. If the max radiusrp,max that a pore can attain is limited (e.g., by a boundary condition), then

pores may accumulate atrp,maxwith ∆φm > ∆φm,0 until a large enough number of pores are created

and expand to force∆φm to decrease and some pores to contract.
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Note that, in spatially distributed cell models, this scenario is almost inescapable, occurring some-

where in the membrane. Because the peak transmembrane voltage depends on the membrane

location (and orientation) in addition to the magnitude of the applied pulse. Thus, somewhere be-

tween the “pole” of the PM (where the membrane is normal to theapplied field), where the peak

∆φm is largest, and the “equator” of the PM (where the membrane isparallel to the applied field),

where∆φm ≈ 0 V, there is a region where the peak∆φm is ∼1 V and the above scenario plays out.

Krassowska et al. [75], for example, reported a region abouthalfway between the PM pole and

equator with slightly elevated∆φm (relative to other regions of the PM) and very large pores.

The final possible deviation from the typical behavior described is the response to a pulse that is

too small in magnitude to charge the membrane beyond∆φm,0 ≈ 0.5 V. In this case, pores are

“born” in the lower-left cornerof Fig. 5.8 and follow a trajectory pointedright until reaching the

white curve. In this case pores remain distributed aboutrp ≈ rm.

The phase plot (Fig. 5.8) can also be applied to patch-clamp experiments. In these experiments, the

transmembrane voltage∆φm is fixed over the entire plasma membrane, regardless of the resultant

behavior of pores. Thus, if∆φm < ∆φm,0, pores are “born” in thelower-left cornerof Fig. 5.8

and follow a trajectory pointedright until reaching thewhite curve. In this case pores remain

distributed aboutrp ≈ rm. However, if∆φm > ∆φm,0, pores will expand without bound (drp/dt > 0

for all ∆φm > ∆φm,0), thereby leading to irreversible membrane rupture.

5.3.3 Partial Validation of the Pore Energy Landscape

Melikov et al. [48] examined pore conductance in voltage-clamped BLM over the range 150 –

400 mV. Using highly sensitive methods, they measured noisybut quantized steps up and down

in membrane conductance, which they attributed to the creation and destruction of discrete pores.

Intriguingly, Melikov et al. [48] presented a histogram comprising thousands of individual pore

conductance measurements with a distribution that appearsstrikingly similar to the distribution of
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pores in radius space at low transmembrane voltage (Fig. 5.3B).

In a previous study [43], we analyzed the average pore conductance values ¯gp that Melikov et al.

[48] reported for two different electrolyte solutions, KCl and NMDG-glutamate, thatcomprise ions

of very different size and shape [43, 44]. Using our description of pore conductance, including hin-

drance and partitioning, we showed that the ¯gp reported for KCl is consistent with an average pore

radius value ¯rp = 1.03 nm and that the ¯gp reported for NMDG-glutamate is also consistent with

r̄p = 1.03 nm. That both electrolyte solutions were consistent withthe same average pore radius ¯rp

provides partial validation of our description of pore conductance [43].

In this study, we take our analysis of the Melikov et al. [48] experiments one step further by analyz-

ing the full set of pore conductance measurements for BLM clamped at∆φm = 180 mV (presented

in Fig. 5 of Ref. [48]). We digitized this conductance data using the open-source Engauge Digitizer

software (version 4.1, 2008, http://digitizer.sourceforge.net).

Melikov et al. [48] did not specify the temperature at which their experiments were performed, so

we assumed a typical room temperature of 22◦C. The conductivity of 100 mM KCl is 1.298 S/m

at 25◦C [76], which we adjusted to 1.20 S/m at 22◦C, as described by Smith et al. [44].

For the size of the KCl electrical charge carrier, we usedrs = 0.175 nm, the average of the cor-

rected Stokes radii for potassium and chloride ions [44]. (Note that thers values for potassium and

chloride ions are nearly identical.)

Using Eq. 5.32, we calculated the pore conductancegp for a range ofrp at ∆φm = 180 mV, the

transmembrane voltage at which Melikov et al. [48] made their conductance measurements (for

the pore conductance histogram that they presented in theirFig. 5). Figure 5.9 shows the resulting

relationship between pore conductancegp and pore radiusrp.
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Figure 5.9: Relationship between pore conductance and pore radius for the Melikov et al.
[48] experiments. The plot shows the pore radiusrp corresponding to pore conductancegp

for BLM clamped at∆φm = 180 mV in KCl solution, as in the Melikov et al. [48] single-
pore conductance measurements. The relationship betweenrp andgp was determined using
Eq. 5.32 and enables the Melikov et al. pore conductance measurements to be mapped to
pore radius.

We then used the relationship betweengp andrp to map the Melikov et al. [48] data from pore

conductance to pore radius. The resulting distribution of measurements is shown in Fig. 5.10A

and B. The number of measurementsM is normalized by the number of measurements of the local

maximumMmax at rp ≈ 1 nm, for reasons that will become clear. Note that the distribution of

measurements has two peaks: one atrp ≈ 0.65 nm and another, smaller peak atrp ≈ 1 nm.

Our interpretation of the bimodal distribution of the Melikov et al. measurements is that the sub-

distribution of measurements at larger radius (∼1 nm) corresponds to metastable pores. The in-

terpretation of the distribution at smaller radius (∼0.65 nm) is less clear. We note that a similar

histogram for a cell membrane patch (though with far fewer measurements) in Fig. 3 of Melikov

et al. [48], does not feature a sub-distribution at smaller conductance (radius) but does feature

an approximately Gaussian distribution at larger conductance (radius). We reason that the sub-

distribution at smallerrp may approximately correspond to the radiusr∗ at which pores are created

and destroyed. The number of conductance measurements falls off rapidly with radius below the

assumedr∗ (Fig. 5.10A). This is consistent with the view thatr∗ is the minimum radius of hy-

drophilic (i.e., conducting) pores.
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Figure 5.10: Comparison of the Melikov et al. [48] conductance measurement distribution
with the model-generated pore density distribution.(A) and (B) The Melikov et al. [48]
distribution is plotted as the number of measurementsM at each pore radius (as determined
through pore conductance) normalized by the number of measurements of the local max-
imum Mmax at rp ≈ 1 nm. Similarly, the normalized pore densityn/nmax is plotted for
comparison. The value of the minimum-energy radiusrm was selected such that the leading
edges of the distributions were horizontally aligned. (Thedistributions were best aligned
usingrm = 0.975 nm.) The shape of the leading edges of the distributions are in very close
agreement.(C) and(D) The pore energy landscape associated with the pore density distri-
butions shown(A) and(B). Note that the pore density distributions and pore energy profiles
are shown such that theirrp align. At equilibrium for an enforced∆φm value, the shape of
the pore density distribution is fundamentally determinedby the shape of the underlying
pore energy landscape. Thus, the fact that the pore density distribution generated by our
model agrees well with the experimental data provides partial validation of the underlying
description of the pore energy landscape, at least forrp & rm.
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Given this interpretation, we used our model to determine the equilibrium pore density distribution

n(rp) for a membrane with transmembrane voltage∆φm = 180 mV andr∗ = 0.65 nm. Because

Melikov et al. reported that some pores persisted for up to∼1s, we used the resealing time con-

stant valueτp = 0.5 s to determineWm andWd. (The results were not sensitive to the value used

for τp.) We adjusted the value ofrm used in the model until the leading edges of the normalized

distributions of measurements,M/Mmax, and pore density,n/nmax, were horizontally aligned, as

shown in Fig. 5.10A and B. The distributions were best aligned usingrm = 0.975 nm. As is clear

in Fig. 5.10A and B, the agreement between the leading edges of the distributions is excellent.

Figure 5.10C and D show the pore energy (on two scales) associated with the pore density distribu-

tions shown in Fig. 5.10A and B. Note that the pore density distributions and pore energy profiles

are displayed such that theirx-axes align. The shape of the equilibrium pore density distribution is

fundamentally determined by the shape of the underlying pore energy landscape. Thus, the finding

that the pore density distribution generated by our model agrees well with the experimental data

provides partial validation of the underlying descriptionof the pore energy landscape, at least for

rp & rm. Note that this region of the energy landscape is dominated by the pore edge energy and,

to a lesser extent, the steric repulsion energy (Fig. 5.4).

It is important to bear mind the differences between the Melikov et al. [48] distribution of mea-

surements, or events, and the time-averaged pore distribution generated by our model. The former

treats all pores equally, regardless of the duration of their existence, while the latter is fundamen-

tally time-averaged (i.e., normalized by duration of existence). Melikov et al. [48] distinguish

between conduction “spikes” with durations of a few milliseconds and conduction “steps” with

durations of up to several hundred milliseconds. Thus, for example, if the sub-distribution of mea-

surements at low conductance (radius) corresponded to pores that exist for milliseconds and the

sub-distribution of measurements at high conductance (radius) corresponded to pores that exist for

hundreds of milliseconds, then the resulting time-averaged distribution of measurements would
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still look much like the model-generated pore distribution.

The estimation ofrm (∼0.98 nm) in this analysis is significant, asrm is an important parameter for

electroporation models and in the interpretation of electroporation experiments. Small pores with

rp ≈ rm predominate during short pulses (. 100 ns) [56, 77] and post-pulse, when pores shrink to

∼ rm. Thus, an accurate value ofrm is important in determining transport during pulses of short

duration and following pulses of any duration. Note that ourassumption that the temperature was

∼22◦C does slightly affect the value determined forrm through the effect of temperature on KCl

conductivity, but this does not alter our conclusions.

5.4 Conclusions

We have described the energy landscape of electropores and acontinuum approach to character-

izing pore dynamics in radius space. Our description includes refinements to the steric repulsion

and interfacial energy terms commonly used in electroporation models. Additionally, we have

employed a phase space description of pore dynamics that provides a straightforward means of

understanding the apparently complex, though related, results generated by models of electropora-

tion. Finally, we related the pore conductance measurements of Melikov et al. [48] to pore radius,

and used the results to provide partial validation of the description of the pore energy landscape

and to determine approximate values of the important electroporation model parametersr∗ andrm.

As noted in theIntroduction, this paper is the last in a series [43–45] of basic methods-oriented

papers. In the previous papers, we characterized the transport properties of ionic and molecular

solute [44], developed methods of modeling electrodiffusive transport in discretized systems [45],

and described the factors that affect transport through pores [43]. The methods described here for

modeling the dynamics of pores in discretized systems provide the final “ingredient” necessary

for building spatially distributed cell models of electroporation with concomitant molecular trans-

port. Such models will aid the interpretation of electroporation experiments, which often assess

electrical or molecular transport, and be useful for investigating and optimizing applications of
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electroporation.

5.5 Appendix

5.5.1 Pore Edge Area

Hydrophilic pores are assumed to have toroidal shape (Fig. 5.1), with lipid head groups lining the

edge of the pore. Let 2Al,e be the total area of lipid lining the edge of a pore. Then the edge area

associated with each side of the membrane isAl,e.

Al,e can be found through integration. Consider a toroidal pore with radiusrp in a membrane with

thicknessdm (Fig. 5.1). The area of a small region of the edge is 2π
(

rp +
dm
2 −

dm
2 sinΘl,e

) (

dm
2

)

dΘl,e,

whereΘl,e is the angle of lipid molecules in the pore edge with respect to vertical.Al,e is found by

integrating this expression fromΘl,e = 0 toΘl,e =
π

2 :

Al,e(rp) = 2π

(

dm

2

) ∫ π

2

0

(

rp +
dm

2
− dm

2
sinΘl,e

)

dΘl,e (5.35)

= 2π

(

dm

2

) [(

rp +
dm

2

)

Θl,e +
dm

2
cosΘl,e

]
π

2

0

(5.36)

= π2

(

dm

2

) (

rp +
dm

2

)

− 2π

(

dm

2

)2

. (5.37)

5.5.2 Calculation of Steric Repulsion Energy Constants

At zero transmembrane voltage (∆φm = 0 V), the pore energy (Eq. 5.7) is described by

W(rp) = B

(

r∗
rp

)b

+C + 2πrpγ − δAl,p(rp)Γ. (5.38)

Here,δAl,p(rp) is the pore lipid area reduction given by Eq. 5.4.

As noted in the main text, we impose three conditions on the energy curve, and this enables deter-

mination of the values of the three steric repulsion constants B, b, andC. The first condition is that
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the pore energyW(rp) has a local minimum at (rm,Wm). This implies that the derivative of energy

with respect to pore radius be zero at this point:

∂W
∂rp

∣

∣

∣

∣

∣

∣

rm

= 0 = −Bb

(

rb
∗

rb+1
m

)

+ 2πγ −
(

2πrm +

(

dm

2

)

(

2π − π2
)

)

Γ. (5.39)

The last term arises as the result of taking the derivative ofδAl,p(rp) with respect torp:

∂(δAl,p)

∂rp
= 2πrp +

(

dm

2

)

(

2π − π2
)

. (5.40)

Equation 5.39, can be solved forB and simplified to give

B =

















2πrmγ −
(

2πrm +
(

dm
2

) (

2π − π2
))

rmΓ

b

















(

rm

r∗

)b

. (5.41)

B is given in terms ofb. Thus, one must determine the value ofb before using Eq. 5.41 to deter-

mine the value ofB.

The second condition is that the energy barrier to destruction W(r∗) − W(rm) equal the specified

value of the energy barrier to pore destructionWd. Imposing this condition,

Wd = W(r∗) −W(rm) (5.42)

= B













1−
(

r∗
rm

)b










+ 2π (r∗ − rm) γ −
(

δAl,p(r∗) − δAl,p(rm)
)

Γ. (5.43)

Note that in the last term

δAl,p(r∗) − δAl,p(rm) = π
(

r2
∗ − r2

m

)

+

(

dm

2

)

(

2π − π2
)

(r∗ − rm) . (5.44)
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Substituting forB (Eq. 5.41) and theδAl,p(rp) terms in Eq. 5.43 and simplifying,

















2πrmγ −
(

2πrm +
(

dm
2

) (

2π − π2
))

rmΓ

b





























(

rm

r∗

)b

− 1













+ 2π (r∗ − rm) γ

−
(

π

(

r2
∗ − r2

m

)

+

(

dm

2

)

(

2π − π2
)

(r∗ − rm)

)

Γ −Wd = 0. (5.45)

b is the only unknown in Eq. 5.45, and its value can be determined by using a graphical method or

root finding algorithm. After determining the value ofb, the value ofB can be found by substitut-

ing for b in Eq. 5.41.

The third condition is that the energyW(r∗) equal the specified valueW∗. Thus,

W(r∗) = W∗ = B + C + 2πr∗γ − δAl,p(r∗)Γ. (5.46)

Substituting forδAl,p(r∗) and simplifying,

C = W∗ − B − 2πr∗γ +













π

(

r∗ +
dm

2

)2

− π2

(

dm

2

) (

r∗ +
dm

2

)

+ 2π

(

dm

2

)2










Γ. (5.47)

After substituting for the value determined forB (Eq. 5.41), Eq. 5.47 can be evaluated to give the

value of the final steric repulsion constantC.

5.5.3 Hindrance Factor

We described the hindrance factor in detail in a previous publication [43]. Here, for the conve-

nience of the reader, we provide an abbreviated description. For more details, please see Ref. [43].

The hindrance factor accounts for the effect that a solute’s size has on its transport through a pore.

The hindrance factorH is the product of an effective area factorfA and a drag factorfD [43]:

H = fA fD. (5.48)
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The effective area factorfA accounts for the fact that a solute of finite size can only access the

central region of a pore [43, 78]:

fA =

(

1− rs

rp

)2

. (5.49)

The drag factorfD accounts for the drag exerted on a solute ion by the walls of a pore [43, 79]:

fD =
6π
ft
, (5.50)

where

ft(λ) =
9
4
π

2
√

2(1− λ)−
5
2

(

1+ a1(1− λ) + a2(1− λ)2
)

+ a3 + a4λ + a5λ
2 + a6λ

3 + a7λ
4 (5.51)

andλ ≡ rs/rp. Here, rs is the solute radius andrp is the pore radius. The constantsai (i =

1, 2, . . . , 7) are shown in Table 5.2.

Parameter Value
a1 −1.2167
a2 1.5336
a3 −22.5083
a4 −5.6117
a5 −0.3363
a6 −1.216
a7 1.647

Table 5.2: Values of Constants in the Bungay-Brenner Hindrance Equation

5.5.4 Partition Factor

We described the partition factor in detail in a previous publication [43]. Here, for the convenience

of the reader, we provide an abbreviated description. For more details, please see Ref. [43].

The Born energyw0 is the energy required to place a chargezs in the center of a pore [43]:

w0(rp) = 5.3643
(zsqe)2

kT
r−1.803

p . (5.52)

Here,w0 is in units ofkT .
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The partition factorK(rp,∆ψp) is [43, 51]

K(rp,∆ψp) =
e∆ψp − 1

w0ew0−n∆ψp−n∆ψp

w0−n∆ψp
e∆ψp − w0ew0+n∆ψp+n∆ψp

w0+n∆ψp

. (5.53)

Here,qe is the electronic charge,n is the relative entrance length of a pore, and

∆ψp ≡
qezs

kT
∆φp, (5.54)

where∆φp is the transpore voltage, the voltage drop across the internal pore region.∆φp is related

to transmembrane voltage∆φm by voltage division [43] :

∆φp =
Rp,p

Rp
∆φm. (5.55)

Here,Rp,p is the resistance of the internal pore region andRp is the total resistance associated with

the pore (i.e., the sum ofRp,p and the access resistanceRp,a).
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Chapter 6

Transmembrane Molecular Transport During Versus After

Nanosecond Electric Pulses

Abstract

Recently there has been great and growing interest in the biological effects of nanosecond elec-
tric pulses, particularly apoptosis induction. These effects have been hypothesized to result from
the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells
(supra-electroporation), and more specifically, ionic andmolecular transport through these pores.
Here we address the basic question of whether such transportoccurs predominantly during or after
pulsing. First, we demonstrate that the electrical drift distance for typical charged solutes during
nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges
from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This
is much smaller than the diameter of a typical cell (∼ 16µm). This implies that molecular drift
transport during nanosecond pulses is necessarily minimal. This implication is not dependent on
assumptions about pore density or the flux through pores. Furthermore, considerations of pore
density, hindrance, and partitioning suggest that transport during nanosecond pulses is several or-
ders of magnitudes smaller. Second, we show that molecular transport resulting from post-pulse
diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven
transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux
favor transport during nanosecond pulses, these effects are too small to overcome the orders of or-
ders of magnitude more time available for post-pulse transport. Accordingly, our basic conclusion
holds across the plausible range of relevant parameters.
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6.1 Introduction

In the past decade there has been intense and growing interest in the effects that extremely short

duration (< 1µs), large magnitude (10 – 100 kV/cm) pulsed electric fields have on cells [1–30].

A number of studies [6, 8, 11, 16, 18] have reported that such pulses result in significantly less

transport than the longer duration (10µs – 10 ms), smaller magnitude (1 kV/cm–10 kV/cm) pulsed

electric fields widely used for electroporation (“conventional electroporation”). In fact, some of

these early studies [1–7, 9, 10, 13] even concluded that short pulses do not result in plasma mem-

brane (PM) electroporation.

In a previous study [27], we showed that for short duration, large magnitude pulses to escape elec-

troporation of the PM, the PM would have to endure extremely large transmembrane voltages, e.g.,

approaching∼30 V. These extremely large values have not been observed andlead to implications

that are not convincing. Moreover, such large transmembrane voltages are in marked contrast to

experimental evidence [24] that suggests the transmembrane voltage has a maximum value closer

to∼1.5 V, consistent with the results of mechanistic models of electroporation [19–22, 27, 28].

We have argued that the primary mechanism by which short duration, large magnitude pulsed elec-

tric fields affect biological systems is through the widespread perturbation of cell membranes (both

the PM and organelle membranes) by supra-electroporation [19–22, 27, 28]. The effects reported

in response to these pulses, such as apoptosis [1–4, 8, 14, 23, 25, 26, 29, 30], are not seen in

response to conventional electroporation pulses, and are thought to occur due to electroporation

of the PM and organelle membranes and resultant transport ofions and molecules through these

membranes.

To understand and potentially optimize and exploit these effects for therapeutic purposes, we must

therefore gain a better understanding of the molecular and ionic transport that results from short

pulses. To that end, here we address a basic question: When does transmembrane transport pre-
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dominantly occur for these pulses? During or after pulsing?

We have previously argued [20–22, 27, 28] that short pulses should result in minimal molecular

transport because small pores discriminate strongly basedon solute size and charge. Here, we

support and expand this assertion using simple, quantitative arguments. Specifically, we demon-

strate that very little molecular transport occurs during short pulses (.100 ns). Instead, essentially

all molecular transport takes place post-pulse. This may bea surprise. However, it is consistent

with the experimental findings that these pulses result in less transport per pulse than conventional

pulses [6, 8, 16, 18] and that a large number of pulses (of order 10 – 1000) is required to achieve

significant effects [14, 16, 23, 25, 29, 30].

6.2 Methods

Here we consider approximate descriptions, first based on bulk electrolyte and then on additional

estimates that involve pore properties. Out analysis is intentionally simplified, seeking general

insight that is essentially independent of cell details. Throughout we consider electrodiffusion.

Post-pulse inflow of water may also occur, particularly for in vitro conditions, but such hydrody-

namic effects should only strengthen our conclusion that post-pulsemolecular transport dominates.

6.2.1 Pore Creation, Expansion, and Destruction

Electroporation is a phenomenon in which pores are hypothesized to form in lipid bilayers in

response to large transmembrane voltages∆φm [31]. The process is self-limiting because the cre-

ation and subsequent expansion of pores is driven by elevated transmembrane voltage∆φm, but the

creation and expansion of pores tends to decrease∆φm by increasing the conductance of the mem-

brane and thereby decreasing the rate of creation and expansion of pores. That is, the dynamics of

electroporation are such that they diminish its own drivingforce.

Whether pore creation or expansion is dominant in increasing the membrane conductance during

a pulse, and thereby limiting further creation and expansion, is determined by the time scale and
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magnitude of the pulse. For nanosecond time scale pulses with magnitudes on the order of several

megavolts-per-meter, creation dominates and rapidly drives∆φm down to a level (∼0.5 V) at which

further pore creation and expansion effectively cease [22]. As a result, there is very little pore

expansion for these pulses [22, 28], and pores accumulate near rp = rp,min ≈ 0.8 nm [32], the radius

at which there is an energy minimum when∆φm . 0.5 V [33–35].

Rapid pore creation results in the establishment of a large pore densityN in the PM (and other

membranes) of the cell. For a nanosecond time scale pulse with a megavolt-per-meter magnitude,

the pore densityN may reach values up to∼5× 1016 pores/m2 [20, 27]. Nonetheless, the actual

value ofN is not important to the central point of this paper: Transport in response to short pulses

occurs predominantly post-pulse. While there is a short transient (e.g.,∼1 – 3 ns [19, 27], depend-

ing in part on the pulse rise-time) between the application of a pulse and the burst of pore creation,

for clarity of presentation we assume that the initial pore densityN = N0 is established immedi-

ately and remains constant for the duration of the pulse. This simplifies our description, but it is a

useful approximation.

Post-pulse, the pore densityN(t) is assumed to decay with an exponential resealing time-constant

(pore lifetime)τp:

N(t) = N0e
−t/τp. (6.1)

Estimates of the resealing time-constantτp reported for various membrane systems (bilayer lipid

membranes, vesicles, and cells) vary widely, from fractions of a second [36, 37] to minutes [38].

Here, we use an intermediate valueτp = 1 s.

Figure 6.1 shows a pore with toroidal conformation. As a hydrophilic pore forms, the lipid

molecules wrap around the interior edge of a pore, giving it atoroidal shape [32, 39–41]. This

general picture is supported by recent molecular dynamics simulation results [42–47].
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Figure 6.1: Movement of a cylindrical molecule through a toroidal pore.The cylindrical
molecule has radiusrs and lengthls, and the pore has radiusrp in a membrane of thickness
dm. As shown, the molecule is assumed to traverse the pore with its long axis parallel to the
axis of the pore [48, 49].

6.2.2 Molecular Transport in Bulk Electrolyte

Molecular transport in bulk electrolyte occurs by unhindered electrodiffusion, the combination of

electrical drift and diffusion. The electrodiffusive fluxJs is described by [50, 51]

Js = −Ds∇γ −
Ds

kT
qezsγ∇φ. (6.2)

Here,γ is solute concentration,φ is electric potential,Ds is solute diffusivity, zs is solute charge

(valence),qe is elementary charge,k is the Boltzmann constant, andT is absolute temperature.

The first term in Eq. 6.2 describes the flux of solute resultingfrom a gradient in concentration

(diffusion), and the second term describes the flux of solute resulting from a gradient in electric

potential (electrical drift).

During the application of a large electric field, molecular transport (for charged species) is domi-

nated by electrical drift. The terminal velocity (steady state)vdrift at which charged solute drifts in
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the presence of an applied electric field with magnitudeE is

vdrift =

(

Dsqe|zs|
kT

)

E. (6.3)

In time t, the solute will drift distanceddrift:

ddrift = vdrift t =

(

Dsqe|zs|
kT

)

Et. (6.4)

In the absence of an applied electric field (e.g., following the application of an electric pulse),

molecular transport is dominated by diffusion. In electroporation systems (e.g., cuvettes), the so-

lute concentrationγ tends to be uniform over large regions of the system. The important exception

is at interfaces (e.g., membranes and electrodes), where concentration may change significantly

over short distances, and it is in these regions that diffusion becomes important [52].

6.2.3 Molecular Transport Through Pores

The electrodiffusive flux equation (Eq. 6.2) for bulk electrolyte can be adapted to describe electrod-

iffusion through pores by scaling the fluxJs by the hindrance factorH and the partition coefficient

K, as described in detail in Smith and Weaver [49]. That is, theflux Js,p through a pore is simply

related to the fluxJs calculated using bulk electrolyte assumptions (Eq. 6.2) by

Js,p= HKJs. (6.5)

The hindrance factorH (0 ≤ H ≤ 1), is a function of solute size and pore radius [49, 53, 54] and ac-

counts for the effect of finite size on a solute as it interacts with and moves through a pore.H → 0

(and transport is significantly impeded) when the solute size approaches the pore size, andH → 1
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(and transport is not significantly impeded) when the solutesize is much smaller than the pore

size. We are aware of our invoking a “rigid sieving” approximation, appreciating that lipid pores

experience both fluctuations and the possibility of some pore size change as solute approaches [55].

As examples, consider the hindrance factors for yo-pro-1 and propidium for the approximate radius

of a minimum-size pore,rp,min = 0.8 nm. Yo-pro-1, which can be approximated as a cylinder with

radiusrs = 0.53 nm and lengthls = 1.71 nm [48], has hindrance factorH(rp,min) = 4.0× 10−3. The

larger propidium, which can be approximated as a cylinder with radiusrs = 0.69 nm and length

ls = 1.55 nm [48], has smaller hindrance factorH(rp,min) = 8.3× 10−5. It is important to note that

for a minimum-size poreH ≪ 1 for both molecules (and indeed all molecules of similar size), and

thus, hindrance greatly diminishes transport through minimum-size pores.

The partition coefficient K (0 ≤ K ≤ 1) is a function of the solute charge, pore radius, and trans-

membrane voltage [32, 41, 49] and accounts for the effect that the solute charge has on its inter-

action with and transport through a pore in a low dielectric constant material (e.g., lipid) [56, 57].

To first order, partitioning only affects charged molecules, and thusK = 1 (and transport is to

a reasonable approximation unimpeded by partitioning) if the solute chargezs = 0. For charged

solute (zs , 0), K → 1 (and transport is less impeded) as the pore radiusrp increases or the trans-

membrane voltage∆φm increases, andK → 0 (and transport is more impeded) as the pore radius

rp decreases or the transmembrane voltage∆φm decreases. For any givenrp and∆φm, K is smaller

for solutes with larger charge|zs| [49].

Again, consider a minimum-size pore with radiusrp,min = 0.8 nm. At ∆φm = 0 V, the partition

coefficientsK(zs) for several solute chargeszs are K(0) = 0, K(±1) = 0.51, K(±2) = 0.053,

K(±3) = 8.9× 10−4, andK(±4) = 2.6× 10−6. For a much larger (supra-physiological)∆φm = 1 V,

the partition coefficients K(zs) for these same solute chargeszs are K(0) = 0, K(±1) = 0.91,

K(±2) = 0.83, K(±3) = 0.74, andK(±4) = 0.65. (Note that yo-pro-1 and propidium both have

chargezs = +2 [49]). Thus, partitioning impedes transport through pores much more significantly
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when∆φm = 0 V (e.g., post-pulse) than when∆φm = 1 V (e.g., during a pulse).

In the results and analysis that follow, we characterize transport during a pulse by partition coeffi-

cientKduring and characterize transport after a pulse byKafter. Here,Kduring is the partition coefficient

for a minimum-size porerp,min = 0.8 nm and transmembrane voltage∆φm = 1.5 V, approximately

the maximum∆φm reported by Frey et al. [24]. This maximum transmembrane voltage value is

also seen in mechanistic models of electroporation [20, 22,27, 28].Kafter is the partition coefficient

for a minimum-size porerp,min = 0.8 nm and transmembrane voltage∆φm ≈ 0 V, the transmem-

brane voltage that persists for many multiples ofτp following a large electric pulse, as the large

number of pores shunts the resting potential sources, thereby preventing the recovery of the resting

potential until nearly all pores have resealed [27].

6.3 Results and Discussion

6.3.1 Electrical Drift Distance During Short Pulses

The electrical drift distanceddrift (Eq. 6.4) provides an explicit but approximate and intuitive means

for understanding why molecular uptake during short pulsesmust be extremely small: If molecules

drift only a short distance during a pulse, then it is not possible for many of the molecules to pass

through membrane pores and into a cell. In other words, the molecular dose (mass or molecules

per cell) delivered during a pulse will be small. This is clear in Fig. 6.2.

Consider a circular plane with areaAcell/2 (area of one side of a cell with total areaAcell) in a

standard pulsing medium containing a fluorescent probe (e.g., propidium or yo-pro-1). An electric

field of magnitudeEpulse is applied normal to the plane for a durationtpulse. The distanceddrift

through which solute molecules with diffusivity Ds and valencezs drift during the pulse is (from

Eq. 6.4)

ddrift =

(

Dsqe|zs|
kT

)

Epulsetpulse, (6.6)

whereqe is elementary charge,k is the Boltzmann constant, andT is absolute temperature. (The
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γiγe

Extracellular
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Intracellular

solute before pulse
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Figure 6.2: Electrical drift during short pulses. The position of a charged solute is shown
before (pink) and immediately after (red) application of an electric pulse. During the pulse,
the solute drifts a distanceddrift . Because the pulse is short (. 100 ns),ddrift is necessarily
much smaller than the cell diameter 2rcell (ddrift ≪ 2rcell). Consequently, only a small
number of solute molecules enter the cell during the pulse, and the intercellular concen-
tration of soluteγi immediately following the pulse is much smaller than the extracellular
concentration of soluteγe (γi ≪ γe).

grouped factor is electrical mobility.) For short pulses,ddrift is incredibly small. As an example,

consider propidium (Ds = 42.8× 10−11 m2/s, zs = +2 [48]). With an applied electric field pulse

with durationtpulse = 4 ns and magnitudeEpulse = 8 MV/m [16] at 25◦C, ddrift is only 1.1 nm, a

fraction (∼0.2) of the membrane thickness (dm = 5 nm). Even for a significantly longer pulse, with

durationtpulse= 60 ns and magnitudeEpulse= 9.5 MV/m [24], ddrift is just 19 nm, or∼4 times the

membrane thicknessdm. Thus, very little solute will enter the cell.

Note that in both of these examplesddrift is much smaller than the diameter of a typical cell

(2rcell ≈ 16µm). This implies that the amount of transport that takes place during a short pulse

must be exceedingly small compared to what is needed to causea substantial change in intracellular

concentration. The number of molecules that can be delivered to the membrane on the time scale

of a pulse is justAcellddriftγe/2, whereγe is the extracellular solute concentration (in molecules/m3).

Thus, even if the membrane posed no barrier to transport whatsoever (bulk electrolyte approxima-

tion), the relative intracellular concentrationγi/γe immediately following a short pulse would be
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limited to
γi

γe
≈ Acellddrift

2Vcell
=

3ddrift

2rcell
. (6.7)

Here,rcell is the radius of a cell with areaAcell. Again taking propidium (Ds = 42.8× 10−11 m2/s,

zs = +2 [48]) as an example and using a typicalrcell = 8µm, in the limit of the membrane posing

no barrier to transport,γi/γe ≈ 2.0× 10−4 immediately following a 4 ns, 8 MV/m pulse [16] and

γi/γe ≈ 3.6× 10−3 immediately following a 60 ns, 9.5 MV/m pulse [24]. This is orders of magni-

tude less transport than can be achieved by conventional electroporation pulses (e.g., [58]).

Moreover, the bound is very conservative because it does notconsider the limited aqueous pore

area (. 0.1 [27]), hindrance (∼8× 10−5), or partitioning (∼0.9), and accounting for these factors

the actual transport would be∼5 orders of magnitude smaller.

Figure 6.3 shows the drift distanceddrift for a wide range of pulse durations and magnitudes. For

illustrative purposes,ddrift was calculated usingDs = 40× 10−11 m2/s and charge|zs| = 1, which are

typical of small fluorescent probes [48]. The results can easily be scaled for otherzs by considering

thatddrift ∝ |zs| (Eq. 6.6).

6.3.2 Molecular Uptake During Short Pulses

Here, we extend the bulk electrolyte estimates by explicitly using basic properties of small pores.

The number of moleculesMduring entering a cell during a short pulse can be approximated by

Mduring =
1
2

(ddriftγe)(AcellApN0)(HKduring), (6.8)

whereddrift is the drift distance during the pulse (Eq. 6.6),γe is the extracellular concentration of

solute,H is the hindrance factor,Kduring is the partition coefficient during the pulse (∆φm = 1.5 V),

N0 is the pore density in the plasma membrane, andAp (= πr2
p) is the aqueous area of a single

pore. The first grouped factor,ddriftγe, is the number of solute molecules that drift through a region

of unit area during the pulse. The second grouped factor,AcellApN0, is the total area of pores in
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Figure 6.3: Electrical drift distance in bulk electrolyte resulting from rectangular electric
pulses. The electrical drift distanceddrift is shown for a range of pulse durationstpulse

and magnitudesEpulse for a molecule with diffusivity Ds = 40× 10−11 m2/s and charge
|zs| = 1. ddrift is shown only for pulses resulting in a temperature rise∆T ≤ 25◦C (assuming
electrolyte conductivityσ = 1 S/m and volumetric heat capacitys = 4.18× 106 J/(m K)).
For pulses resulting in∆T > 25◦C, ddrift is shown aswhite. For a fixed temperature rise∆T
(e.g., 25◦C), ddrift is greater for smallerEpulsebecauseddrift ∝ Epulsebut∆T ∝ E2

pulse.

the plasma membrane due to pulsing. The third grouped factor, HKduring, is the factor by which

hindrance and partitioning diminish transport (relative to transport in bulk electrolyte). The 1/2

prefactor accounts for the fact that electrical drift is only directed into the cell for one of its sides.

Put simply, half of the cell accommodates entry, and the other half departure, because of field di-

rection. Bipolar pulses can be treated by our approach, but are beyond the scope of this paper.

There are two important assumptions implicit in Eq. 6.8, both of which stem from the primary

assumption that the pulse is short. The first is that pore expansion is negligible during the pulse,

and therefore, the pores can be assumed to be distributed around the minimum-energy pore radius

rp,min [22, 27, 28]. Thus, the hindrance factorH and partition coefficient Kduring can be calculated

based onrp,min. The second assumption is thatγe at the membrane interface is constant. This is

reasonable for short pulses becauseddrift is so small. However, for a longer pulse, the solute not

immediately passing through membrane pores would accumulate at the membrane interface [52],
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thereby raisingγe (adjacent to the extracellular side of the membrane) and increasing the rate of

transport through pores.

6.3.3 Molecular Uptake After Short Pulses

The number of moleculesMafter entering a cell after a short pulse (post-pulse) can be approximated

by

Mafter =

∫ ∞

0

(

Ds
γe− γi

dm

)

(

ApAcellN(t)
)(

HKafter
)

dt, (6.9)

whereN(t) = N0e−t/τp (Eq. 6.1),γi is the intracellular concentration of solute,τp is the pore re-

sealing time constant,Kafter is the partition coefficient after the pulse (∆φm = 0 V), and all other

variables are as previously defined. The pore densityN(t) is the only time-dependent quantity.

We can assumeγi ≈ 0 molecules/m3 because very little molecular transport has been observed

following short pulses [16], and even for longer pulses thatresult in more transportγi ≪ γe [59].

Additionally, for propidium and yo-pro-1,γi ≈ 0 molecules/m3 because they are intercalating dyes

that tightly bind to nucleic acids in the cytoplasm [60], thereby resulting in low levels of free (un-

bound) intracellular solute.

Taking these considerations into account, Eq. 6.9 can be simplified to

Mafter =

(

Dsτp

dm
γe

)

(

AcellApN0
)(

HKafter
)

. (6.10)

The form of Eq. 6.10 is very similar to the form of Eq. 6.8. The first grouped factor,Dsτpγe/dm

is the number of solute molecules that would diffuse through a region of unit area during one re-

sealing time constantτp for a concentration gradientγe/dm. The second grouped factor,AcellApN0,

is the total area of pores in plasma membrane immediately following the pulse (i.e., before reseal-

ing). The third grouped factor,HKafter, is the factor by which hindrance and partitioning diminish

transport (relative to transport in bulk electrolyte).
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Implicit in Eq. 6.10 is the assumption that post-pulse transport proceeds by diffusion alone. This

is reasonable because∆φm ≈ 0 V for many multiples ofτp following a pulse [27]. Nonetheless,

we note that even a small∆φm could contribute to a drift component that would increaseMafter

(for positively charged species), and further support the primary conclusion of this study:Mafter≫

Mduring.

6.3.4 Ratio of Molecular Uptake During to After Short Pulses

Assuming drift dominates during a pulse and diffusion dominates after a pulse, the ratio of transport

during the pulse to after the pulse can be determined from Eq.6.8 and Eq. 6.10:

Mduring

Mafter
=

1
2

(

ddriftdm

Dsτp

) (

Kduring

Kafter

)

. (6.11)

Substituting forddrift (Eq. 6.6) and simplifying,

Mduring

Mafter
=

1
2

(

qe|zs|Epulsedm

kT

) (

Kduring

Kafter

) (

tpulse

τp

)

. (6.12)

Note that the hindrance factors drop out of the ratioMduring/Mafter (Eq. 6.12), thus reducing the

number of assumptions implicit in the analysis. A key assumption is that the pores have the same

radius (rp,min) both during and after the pulse and therefore the same hindrance during and after the

pulse.N0 also drops out.

Figure 6.4 shows the ratio of molecular uptake during a pulseMduring to molecular uptake after a

pulseMafter for a range of pulse durations and magnitudes. The transportratio is shown for|zs|

values of 1, 2, 3, and 4 because the partition coefficientsKduring andKafter are functions of solute

chargezs (based on the Born energy) [49]. For all of the conditions considered,Mduring/Mafter≪ 1.

Mduring/Mafter is particularly small for the smallerzs values. For any givenzs, Mduring/Mafter is largest

for the pulse withtpulse= 100 ns andEpulse= 10 MV/m (Fig. 6.4). For this pulse,Mduring/Mafter is

1.8× 10−7 for |zs| = 1, 3.2× 10−6 for |zs| = 2, 2.7× 10−4 for |zs| = 3, and 0.12 for |zs| = 4.
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Figure 6.4: Molecular uptake during vs. after short pulses. The ratio ofmolecular uptake
during a pulseMduring to molecular uptake after a pulseMafter is shown for a range of pulse
durationstpulse and magnitudesEpulse. The transport ratio is shown for|zs| values of(A) 1,
(B) 2, (C) 3, and(D) 4. Note that only thez-axis (colormap) changes withzs, and thus the
same pseudocolor plot applies for allzs. The ratioMduring/Mafter is proportional totpulse

andEpulse, and it is smaller for smaller values of solute charge|zs|. For all of the conditions
considered,Mduring≪ Mafter.



6.3 Results and Discussion 185

Consideration of the grouped factors in Eq. 6.12 provides insight into whyMduring/Mafter is so small.

The first,qe|zs|Epulsedm/kT , is the ratio of drift flux to diffusive flux over a distancedm. This factor

depends on|zs| andEpulse and is somewhat larger than 1 for typical (relevant) values of these pa-

rameters. For example, with|zs| = 1 andEpulse = 10 MV/m, the factor is∼19. Thus, this factor

favors transport during the pulse.

The second grouped factor in Eq. 6.12,Kduring/Kafter, is the ratio of the partition coefficient during

the pulse to the partition coefficient after the pulse. This factor depends strongly on|zs| and is

always larger than 1 (field-assisted charge entry) [49]. Thefactor is 1.8 for |zs| = 1, 17 for |zs| = 2,

930 for |zs| = 3, and 3.0× 105 for |zs| = 4. This factor also favors transport during the pulse,

particularly for larger|zs|.

The third grouped factor in Eq. 6.12,tpulse/τp, is the ratio of the pulse duration to the pore reseal-

ing time-constant. This factor is much smaller than 1. Here,we consider pulses with durations

tpulse. 100 ns, butτp = 1 s. Therefore, the ratiotpulse/τp < 10−7, and it dominates.

Thus, while the drift flux (during a pulse) exceeds the diffusive flux (after a pulse) over distance

dm and the partition coefficient during a pulse exceeds, sometimes dramatically (i.e., for large|zs|),

the partition coefficient after a pulse, these factors simply are too small to compensate for the ratio

tpulse/τp. In other words, the flux of solute into a cell during a pulse exceeds the flux of solute into a

cell after a pulse, but because the time available during a short pulse is so much smaller than after

a pulse, the vast majority of transport takes place after a pulse.

To this point, we developed the results presented here usingminimum-size pore radiusrp,min =

0.8 nm and pore resealing time constantτp = 1 s. However, the values reported for these parameters

vary, and it is therefore important to consider how other values would affect our estimates.
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6.3.5 Effects of the Minimum-size Pore Radius and Resealing Time

Constant Values

The value used for the minimum-size pore radiusrp,min is important because it affectsMduring/Mafter

(Eq. 6.12) through the partition coefficientsKduring andKafter [49]. Glaser et al. [32] reported that

rp,min is in the range 0.6 – 1.0 nm, and the average ofrp,min = 0.8 nm has been widely used in math-

ematical models of electroporation (e.g., [28, 35, 61]). According to Barnett et al. [33], packing

constraints require thatrp,min be somewhat larger than 0.7 nm, and they usedrp,min = 1.0 nm in

their model. In a recent study [49] in which we analyzed the bilayer lipid membrane conductance

measurements by Melikov et al. [36], we foundrp,min ≈ 1.0 nm. Nonetheless, in the interest of

taking a conservative approach, in this study we used the widely usedrp,min = 0.8 nm.

The extent to which changingrp,min affectsKduring/Kafter (and thereforeMduring/Mafter) depends on

the solute chargezs. For |zs| = 4, decreasingrp,min to 0.7 nm increasesKduring/Kafter by a factor of

36, and increasingrp,min to 0.9 nm decreasesKduring/Kafter by a factor of 12. The effect of changing

rp,min on Kduring/Kafter for smaller|zs| is much less significant. Thus, using other larger or smaller

values ofrp,min would not affect our general conclusion thatMduring≪ Mafter.

The value used for the pore resealing time constantτp is important because it directly affects

Mduring/Mafter (Eq. 6.12). Values reported for the pore resealing time constantτp vary widely. While

Glaser et al. [32] reportedτp ≈ 3 s and He et al. [62] reportedτp ≈ 0.8 – 2.2 s, Tekle et al. [37]

reported a shorterτp ≈ 0.16 s and Djuzenova et al. [38] reported a much longerτp ≈ 60 – 120 s.

Here, we used a resealing time constantτp = 1 s, which is on the lower end of the range of

experimentally determined values. Decreasingτp would decreaseMduring/Mafter, and increasingτp

would increaseMduring/Mafter. While reported values ofτp vary widely, they do not vary widely

enough to change our general conclusion thatMduring≪ Mafter.
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6.4 Conclusions

This analysis strongly suggests that the vast majority of electrodiffusive molecular transport that

results from nanosecond electric pulses (.100 ns) occurs post-pulse. Indeed, the transport during

these pulses appears to be negligible. While simplifying assumptions were made in this analysis

and some uncertainty exists in a few of the parameters (e.g.,τp), the overall estimates appear

conservative.
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Chapter 7

A Unified Model of Electroporation and Molecular Transport I :

Model Design and Validation

Abstract

Electroporation is well-established in biological research and is increasingly pursued for appli-
cations in clinical medicine. While the use of electroporation is compelling, the absence of a
quantitative, mechanistic, and predictive understandingprevents utilization of engineering princi-
ples. Even though electroporation is driven by electrical interactions, its applications rest mainly
on cumulative (net) ionic and molecular transport through transient, heterogeneous pore popula-
tions in cell membranes. Here we present a quantitative, mechanistic model of electroporation
with concomitant molecular transport. The model comprisescomponents that have been described
and validated in a series of previous studies. Specifically,these components include the charac-
terization of solute properties (size, charge, and diffusivity), electrical and molecular transport in
bulk electrolyte (electrodiffusion), electrical and molecular transport through pores (conductance,
hindrance, and partitioning), and pore energy and dynamics. We integrate these components into
a comprehensive 2-D cell model that can describe the electrical potential, molecular solute con-
centration, and pore density on time scales ranging from nanoseconds to hundreds of seconds and
length scales ranging from nanometers to millimeters. We validate the cell model by replicating
in silico two extensive sets of experiments in the literature that measured total molecular uptake
of fluorescent probes. The model predictions of molecular uptake are in excellent agreement with
these experimental measurements, for which the applied electric pulses collectively span nearly
three orders of magnitude in pulse duration (50µs – 20 ms) and a corresponding order of magni-
tude in pulse magnitude (3 – 0.3 kV/cm). We use the model and the experimental data to determine
optimal values of several important electroporation parameters, including the first estimate of the
asymmetric pore creation constantα and perhaps the most accurate estimate to date of the pore
diffusion coefficient Dp. The advantages of the present model include the ability to (1) simulate
electroporation dynamics that are difficult to assess experimentally, (2) analyze in silico the same
quantities that are measured by experimental studies in vitro, and (3) quickly screen a wide array
of electric pulse waveforms for particular applications. This is a step toward in silico screening of
electroporation conditions for optimal outcomes.
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7.1 Introduction

Electroporation is a widely used tool for delivering exogenous molecules (nucleic acids, drugs,

and fluorescent probes) into cells in biological research laboratories and is increasingly pursued

for medical applications [1, 2]. It is most often used to transfect cultured cells in vitro, though it

has also found usage for a number of other more specialized experimental applications, such as

transfecting retinal cells [3] and single neurons [4] in vivo and chick embryos in ovo [5]. Elec-

troporation is fundamentally attractive because, by transiently disrupting the plasma membrane, it

provides an operationally simple, effective means of facilitating the transport of a wide range of

different molecules into cells. Additionally, for in vivo applications, by appropriately localizing the

applied electric field, the region of tissue affected by electroporation can be controlled and limited

[6–14], which is advantageous for many applications.

Following the success of in vitro electroporation in experimental applications, researchers began

investigating potential electroporation-based medical therapies, most involving drug delivery, gene

delivery, or electroporation alone to treat or ablate tissue. A number of in vivo studies have shown

that electroporation can be used to treat solid tumors by greatly enhancing the delivery of non-

permeant anticancer drugs [15–17] or suicide genes [18], with both approaches leading to the

destruction of the treated tissue.

Perhaps even more intriguing, recent studies have shown that electric pulses alone with very short

duration and large magnitude can induce apoptosis in cells in vitro [19–22] and in vivo [23–26],

thereby leading to the destruction of treated cells or tissue without the need to introduce any drugs

or genes. Rather large conventional electroporation pulses can be used to ablate tissue in a similar

manner. However, this leads to necrosis rather than apoptosis [27, 28]. There is also ongoing in-

terest in using electroporation to transfect skeletal muscle cells in vivo [29] for applications such

as DNA vaccines [30] and increasing production of proteins like erythropoietin [31].
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The common characteristic among all of these applications of electroporation is that they involve

transmembrane transport though temporary pores. Indeed, transmembrane transport underlies not

only electroporation-based applications but also the basic mechanisms of electroporation and there-

fore our fundamental understanding of electroporation. Much of what we know about electropora-

tion has been determined though the analysis of measurements of electroporation-mediated elec-

trical and molecular transport. More direct methods of observing pores appear infeasible because

of the very short length scales (nanometers to micrometers)and time scales (nanoseconds to mil-

liseconds) characteristic of electroporation and the absence of a significant contrast mechanism for

imaging. With a few exceptions [32, 33], these measurementsinvolve the collective effects of large

ensembles of pores rather than single pores.

Specifically, most experimental studies of electroporation have examined the transmembrane volt-

age of pulsed cells during or after electroporation using voltage sensitive dyes [34–37] or patch

clamp techniques [38, 39] or examined the changes in fluorescence of cells electroporated in the

presence of fluorescent dyes [40–54]. The most insightful and useful of these molecular transport

studies used quantitatively calibrated measurement systems [40, 43–45, 48–50, 52, 54], enabling

them to report the number of transported molecules (with some quantified error), rather than just

relative fluorescence [47, 51, 53], which cannot be interpreted with a useful degree of confidence.

The important implication is that to truly understand the basic mechanisms of electroporation, we

must first come to understand electroporation-mediated transport and the implications of experi-

mental quantitative measurements of transport. Additionally, because applications of electropora-

tion rely on its ability to facilitate transmembrane transport, an improved quantitative understand-

ing of transport will enable optimization of both existing and emerging applications of electropo-

ration. Importantly, this will also set the stage for engineering, the application of science, and an

increasingly used tool in basic research.

With these primary and pragmatic objectives as motivation,in this theory-based modeling study
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we present a spatially distributed model of electroporation with mechanistic descriptions of electri-

cal transport, electrodiffusive molecular transport, and dynamic pores. The comprehensive model

presented includes independent, mechanistic components that we developed and described in a

series of basic methods papers [55–58].

Specifically: First, we developed methods of estimating thesize, charge, and diffusivity of solutes

[55]. Second, we developed a robust method of describing electrodiffusive transport in discretized,

spatially distributed systems [56]. Third, we characterized the interaction between ionic and molec-

ular solutes and lipid pores and described the factors that affect electrical and molecular transport

through pores [57]. Finally, we characterized the pore energy landscape and the role it plays in

pore dynamics [58]. Where possible, we validated each of these basic mechanisms. For example,

we used the single pore conductance measurements of Melikovet al. [32] to validate our descrip-

tions of pore conductance [57] and pore energy [58].

Although a number of theoretical models have been used to describe and investigate electropora-

tion [10, 14, 59–70], each has been limited in its scope or itsassumptions. Some of these models

have provided insights into particular aspects of electroporation, such as pore creation, but none

has characterized the process of electroporation and its effects comprehensively. The model pre-

sented here enables the investigation of electroporation from the onset of the applied electric pulse

to the resealing of pores, including the transport of molecules of interest. Thus, direct comparisons

can be made with experimental measurements of electrical and molecular transport. Additionally,

because electroporation affects biological systems by facilitating transport betweencell compart-

ments, the model can be used to investigate and optimize applications of electroporation.

To demonstrate the ability of the model to make accurate molecular transport predictions, we use

it to test in silico the extensive experimental molecular transport measurements of Canatella et al.

[49] and Puc et al. [50]. The Canatella et al. data set was specifically developed to be “used to

optimize electroporation protocols, test theoretical models, and guide mechanistic interpretations”
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[49]. The Canatella et al. [49] and Puc et al. [50] studies measured the cellular uptake of calcein

and lucifer yellow [55], respectively, in response to electrical pulses that collectively span nearly

three orders of magnitude in pulse duration (50µs – 20 ms) and an order of magnitude in pulse

magnitude (0.3 – 3 kV/cm). As we demonstrate, the model is in excellent agreement with these

results.

Additionally, we use the model and the Canatella et al. [49] and Puc et al. [50] measurements to de-

termine optimal values of several important electroporation parameters, including the asymmetric

pore creation constantα, which has not been previously estimated, and the pore diffusion coeffi-

cientDp, which has previously only been estimated to within perhaps1 – 2 orders of magnitude of

its actual value. The optimal values determined for the other parameters, including the symmetric

pore creation constantβ, the maximum size of poresrp,max, and the pore resealing time constantτp,

are all consistent with previous estimates.

The scope of this paper is such that it covers the response of the Canatella et al. and Puc et al. model

cell system responses to a large number of different applied electric pulses but does not describe

the detailed responses of the systems to particular pulses.However, in a companion paper [71], we

comprehensively examine the responses of the Canatella et al. and Puc et al. systems, as described

here, to two illustrative electric pulses. Additionally, we present a general theoretical framework

for understanding the factors that dictate electroporation-mediated molecular transport.

7.2 Methods

7.2.1 Model Cell Systems

We represent the Canatella et al. [49] DU-145 cells and Puc etal. [50] DC-3F cells as simple,

circular cells (plasma membranes) (Fig. 7.1). Though our basic approach is compatible with the

inclusion of organelles [10, 66, 68, 72], we elected not to include them as they should have negligi-

ble impact on molecular uptake but significantly increase model computational demands. Because

the model presented here is 2-D, the cells are effectively treated as cylindrical rather than spherical.
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Figure 7.1: Model cell system. The circular cell is centered in a 1 mm× 1 mm region
of electrolyte. Only the vicinity of the cell is shown. The cell has radiusrcell = 11µm
and corresponds to the Canatella system. The Puc system has the same layout butrcell =

8.55µm. The system transport properties differ between the intracellular and extracellular
regions. The solute concentrationγ, solute diffusivity Ds, and electrical conductivityσ are
shown, with subscript “i” indicating intracellular quantities and parameters and subscript
“e” indicating extracellular quantities and parameters.

(Our basic methods extend to 3-D, but the computational demands of 3-D models are prohibitive.)

Canatella et al. [49] reported an average cell radiusrcell = 11µm, and Puc et al. [50] reported an

average cell radiusrcell = 8.55µm. We use these reported values ofrcell in the respective model

systems here.

In both model systems, the cell is centered in a 1 mm× 1 mm region of electrolyte. The large

system size (relative to the cell size) ensures that concentration of solute in the region of the cell

remains relatively constant during a pulse, as expected in typical in vitro experiments. If a smaller

system were used (e.g., several multiples ofrcell in size), then all solute would drift past the cell

during a sufficiently long pulse, resulting in zero extracellular concentration. Moreover, using the

meshed approach described here, placing the boundaries farfrom the cell has minimal impact on

the model computation time.

To represent an applied, spatially uniform field, the anode is located along they = 0.5 mm system

boundary and the cathode is located along they = −0.5 mm system boundary (creating two ideal
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Table 7.1: Model System Parameters

Symbol Canatella et al. System Value Puc et al. System Value Description and Source
rcell 11µm 8.55µm Cell radius [49, 50]
∆φm,rest −50 mV −50 mV Membrane resting potential [68]
σe 1.29 S/m 1.58 S/m Extracellular conductivity [49, 73]
σi 0.3 S/m 0.3 S/m Intracellular conductivity [74–78]
σm 9.5× 10−9 S/m 9.5× 10−9 S/m Membrane conductivity [68]
ǫe 72ǫ0 = 6.38× 10−10 F/m 72ǫ0 = 6.38× 10−10 F/m Extracellular permittivity [68]
ǫi 72ǫ0 = 6.38× 10−10 F/m 72ǫ0 = 6.38× 10−10 F/m Intracellular permittivity [68]
ǫm 5ǫ0 = 4.43× 10−11 F/m 5ǫ0 = 4.43× 10−11 F/m Membrane permittivity [68]
Ds,e 46.6× 10−11 m2/s 47.7× 10−11 m2/s Extracellular solute diffusivity† [55]
Ds,i Ds,e/4 = 11.7× 10−11 m2/s Ds,e/4 = 11.9× 10−11 m2/s Intracellular solute diffusivity∗†

rs 0.58 nm 0.61 nm Solute radius† [55]
ls 1.89 nm 1.46 nm Solute length† [55]
zs −3.61 −2 Solute charge (valence)† [55]
∗Value selected or calculated as described in main text.†Calcein is the solute in the Canatella et al. system.
Lucifer yellow is the solute in the Puc et al. system.

parallel plate electrodes). Thus, when a pulse is applied, the electric field points in the−y-direction.

Accordingly, calcein and lucifer yellow drift, which are negatively charged, drift in the+y-direction

(opposite the applied field).

7.2.2 Electrical Transport Parameters

Canatella et al. [49] reported the conductivity valueσe = 1.29 S/m for their pulsing medium

(RPMI-1640 with 25 mM HEPES buffer), and we use that value for the Canatella model here. Puc

et al. [50] did not report the conductivity of their pulsing medium (SMEM) but a paper from the

same research group reported [73] the conductivity valueσe = 1.58 S/m for the same medium,

and we use that value for the Puc model here.

Intracellular conductivity values reported [74–78] for several cell types are in the approximate

rangeσi ≈ 0.23 – 0.37 S/m. Here, we use the intermediate valueσi = 0.3 S/m for both the

Canatella and Puc models.

For the unperturbed membrane, we use conductivity valueσm = 9.5× 10−9 S/m [68] and mem-

brane resting potential value∆φm,rest= −50 mV [68] for both models.

We use extracellular and intracellular electrolyte permittivity valuesǫe = ǫi = 6.38× 10−10 F/m



200 Electroporation: Model Design and Validation

(A) Calcein
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(B) Lucifer yellow
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Figure 7.2: Cylindrical approximation to molecular shape.(A) Calcein (rs = 0.58 nm,
ls = 1.89 nm) [55]. (B) Lucifer yellow (rs = 0.61 nm, ls = 1.46 nm) [55]. Note that the
molecules are not shown to the same scale. The cylindrical approximation to molecular
shape gives a more precise description of molecular shape than a spherical approximation.

and membrane permittivity valueǫm = 4.43× 10−11 F/m [68] for both models.

7.2.3 Molecular Transport Parameters

Canatella et al. [49] measured the calcein uptake. As we described previously [55], calcein can

be approximated as cylindrical with radiusrs = 0.58 nm and lengthls = 1.89 nm (Fig. 7.2A). Its

charge (valence) at pH 7.4 iszs = −3.61 [55]. We useDs,e = 46.6× 10−11 m2/s [55] for the ex-

tracellular (aqueous) diffusivity of calcein. The diffusivity of small molecules in the cytoplasm is

typically∼25 % of the aqueous diffusivity [79–81]. Thus, we useDs,i = Ds,e/4 = 11.7× 10−11 m2/s

for the intracellular (cytosolic) diffusivity of calcein.
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(B) Trapezoidal pulse
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Figure 7.3: Applied electric pulses.(A) 1 ms, 1 kV/cm exponential pulse. The pulse has
linear rise in the applied field toEapp= 1 kV/cm over rise-timetrise = 10 ns, followed by an
exponential decay to zero with time constantτpulse= 1 ms. (B) 1 ms, 1 kV/cm trapezoidal
pulse. The pulse has a linear rise in the applied field toEapp = 1 kV/cm over rise-time
trise = 1µs, a plateau atEapp of durationtplat = 998µs, and a linear fall to zero over fall-
time tfall = 1µs.

Puc et al. [50] measured the lucifer yellow uptake. Lucifer yellow can be approximated as cylin-

drical with radiusrs = 0.61 nm and lengthls = 1.46 nm [55] (Fig. 7.2B). The charge (valence) of

lucifer yellow at pH 7.4 iszs = −2 [55]. We useDs,e= 47.7× 10−11 m2/s [55] for the extracellular

diffusivity of lucifer yellow andDs,i = Ds,e/4 = 11.9× 10−11 m2/s for the intracellular (cytosolic)

diffusivity.

7.2.4 Applied Electric Pulses

In their respective experiments, Canatella et al. [49] applied decaying exponential pulses

(Fig. 7.3A) and Puc et al. [50] applied trapezoidal pulses (Fig. 7.3B). Exponential pulses are char-

acterized by a linear rise in the applied field toEapp over rise-timetrise, followed by an exponential

decay to zero with time constantτpulse (Fig. 7.3A). Trapezoidal pulses are characterized by a lin-

ear rise in the applied field toEapp over rise-timetrise, a plateau atEapp of durationtplat, and a

linear fall to zero over fall-timetfall (Fig. 7.3B). Thus, if the pulse has total durationtpulse, then

tplat = tpulse− trise− tfall .

Neither study reported the pulse rise-time. Canatella et al. [49] used a BTX pulser that generates
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an exponential pulse by means of a simple capacitor discharge [82]. Thus, in accordance with the

analysis of Pliquett et al. [83], we assume an extremely small value trise = 10 ns for the Canatella

pulses. Puc et al. used a Jouan square wave generator that uses complex circuitry to generate

trapezoidal pulses, and this results in a longer rise-time.Using the same pulser as Puc et al. [50],

Cukjati et al. [84] reported rise-time rangetrise = 0.6 – 2.1µs. Accordingly, for the Puc pulses, we

use an intermediate valuetrise = 1µs. We also use fall-time valuetfall = 1µs.

Here we defineEapp to be the applied electric field as experienced by the cells inthe pulsing

medium. It is often assumed thatEapp = Vapp/Lelec, whereVapp is the applied voltage (at the elec-

trodes) andLelec is the distance between the electrodes. However, as Pliquett et al. [83] reported,

electrochemical reactions at the electrodes can result inEapp< Vapp/Lelec, particularly for aluminum

electrodes. Canatella et al. [49] used aluminum electrodesbut took measurements to account for

this effect and reported electric field values as experienced by cells (i.e., consistent with how we

have definedEapp). Puc et al. [50] reportedVapp, rather thanEapp. However, because they used

stainless steel electrodes, which do not exhibit the same voltage drops at the electrode-electrolyte

interface [85], we assumeEapp= Vapp/Lelec, whereLelec = 2 mm [50].

Canatella et al. [49] applied exponential pulses withτpulse = 50µs, 90µs, 0.5 ms, 1.1 ms, 2.8 ms,

5.3 ms, 10 ms, and 21 ms with applied fieldEapp up to 3.1 kV/cm. Here, we examine all of these

pulses exceptτpulse= 0.5 ms because the associated data were too difficult to discern in the crowded

Canatella et al. [49] plots. Puc et al. [50] applied trapezoidal pulses with durationstpulse= 100µs

and 1 ms with applied fieldEapp up to 2 kV/cm, and we consider all of these pulses.

7.2.5 Experimental Data

The Canatella experiments [49] measured calcein uptake using flow cytometry, a single cell method

that yields cell population distributions that enable average behavior to be computed. They reported

data in a series of plots, specifically Figs. 2 and 3 of Ref. [49]. These figures show molecular up-

take plotted againstEapp for a range ofτpulse. Molecular uptake was presented as both number of
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molecules taken up per cell and the corresponding relative intracellular concentration ˆγi ≡ γi/γe,

whereγi is average intracellular concentration andγe is initial extracellular concentration. ˆγi was

determined using the number of molecules per cell and the volume of a cell with the average radius

rcell = 11µm [49].

The Puc experiments [50] measured lucifer yellow uptake using spectrofluorometry, a total popu-

lation determination yielding average behavior. The data of Fig. 6 of Ref. [50] shows the number

of molecules taken up per cell plotted againstVapp for bothtpulseused.

We digitized both sets of reported data using the open-source Engauge Digitizer software (ver-

sion 4.1, 2008, http://digitizer.sourceforge.net). Specifically, for the Canatella experiments [49]

we digitized the relative concentration data. For the Puc experiments [50], we digitized the aver-

age number of molecules taken up per cell and converted this to relative concentration using the

volume of a cell with the reported average radiusrcell = 8.55µm [50].

Canatella et al. [49] reported data for both single and multiple pulses (1, 2, 4, 10 pulses). For the

pulses withτpulse = 50µs and 100µs we use the 10 pulse data (divided by 10 to give the uptake

per pulse) rather than the single pulse data. There is a cleartrend in the data showing uptake in

proportion to the number of pulses, and the amount and quality of the multiple pulse data for the

50µs and 100µs pulses is significantly better than the single pulse data.

7.2.6 System Discretization

The systems are discretized (Fig. 7.4A) using a modified version of an open-source meshing algo-

rithm [86]. The algorithm generates very high-quality meshes with triangular elements that may

vary widely in size. The system nodes are defined by the intersections of the edges of the triangular

mesh elements. Here, the membrane for each system is lined by600 node pairs. As a result, the

spacing between nodes along the membrane is 115 nm for the Canatella model and 89.5 nm for the

Puc model.
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(A) Mesh

(B) Voronoi cells

(C) Mesh and Voronoi cells

Figure 7.4: System mesh and Voronoi cells.(A) The system mesh is shown at the level
of the cell (left) and the membrane (right). The edges of the triangular mesh elements
represent the connections between adjacent system nodes. The elements are small near the
membrane and expand in size with distance from the membrane.(B) The system Voronoi
cells (VCs) associated with the mesh in (A) are shown using the same fields of view. Each
VC defines the region of physical space represented by its associated node.(C) The VC
edges bisect the edges of the triangular mesh elements at right angles. This is an important
property that simplifies the description of transport between adjacent nodes.

A Voronoi cell (VC) (Fig. 7.4B) is associated with each node in the discretized system. Each VC

defines the region of physical space represented by its associated node. Thus, while the mesh

(Fig. 7.4A) determines the connections between nodes, the VCs determine the small volumes into

which the system is discretized. Each node is taken to be representative of the behavior of the

region represented by its associated VC. Note that VC edges bisect the edges of the triangular mesh

elements at right angles (Fig. 7.4C). This is an important property that simplifies the description of

transport between adjacent nodes [68].
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Table 7.2: Electroporation Parameters

Symbol Value Description and Source
dm 5 nm Membrane thickness [87]
dp 2.5 nm Pore thickness (internal region) [57]
r∗ 0.65 nm Pore radius at local energy maximum [57]
rp,min 1.0 nm Pore radius at local energy minimum [57]
rp,max 12 nm Maximum pore radius∗

W∗ 45 kT Energy at local maximum‡ [87]
Wm 28.341 kT Energy at local minimum†‡

Wd 24.729 kT Energy barrier to pore destruction† ‡

B 1.6301× 10−19 J Steric repulsion constant†‡

b 3.5341 Steric repulsion constant†‡

C −5.9522× 10−20 J Steric repulsion constant†‡

γ 2.0× 10−11 J/m Pore line tension‡ [59]
Γ 1× 10−5 J/m2 Membrane tension‡ [88]
Γ′ 20× 10−3 J/m2 Hydrocarbon-water interface tension‡ [89]
Fmax 6.9× 10−10 N/V2 Maximum electric force for∆φm = 1 V‡ [90]
rh 0.95 nm Electric force constant‡ [90]
rt 0.23 nm Electric force constant‡ [90]
Dp 2× 10−13 m2/s Pore diffusion coefficient∗

a 1× 109 /(m2 s) Pore creation rate density [91]
β 18 kT/V2 Symmetric pore creation constant∗

α 11 kT/V Asymmetric pore creation constant∗

τp 4 s Pore resealing time constant∗

fprot 0.5 Membrane protein fraction [66]
rs 0.19 nm Radius of charge carrier‖§ [55]
n 0.25 Pore relative entrance length‖ [57]
∗Optimal parameter. See Table 7.3 and main text for details.†Parameter value
determined by values of other parameters. The listed valuesare consistent with
parameter values listed in this table. See Ref. [58] for details. ‡Parameter used
in the pore energy equation, as given in Ref. [58].‖Parameter used in hindrance
or partitioning equation, as given in Ref. [57].§Average of corrected Stokes
radii of sodium, potassium, and chloride, as given in Ref. [55].

7.2.7 Pore Radius Space

The model presented here uses fixed pore radiirp and accounts for pore expansion and contraction

through the transport of pore densityn between adjacent radii in radius space [58]. The minimum

hydrophilic pore radius, at which pores are created and destroyed, isr∗, and the maximum pore ra-

dius isrp,max. Slightly larger thanr∗ is rp,min, the radius at which the pore energyW has a minimum

at zero transmembrane voltage (∆φm = 0 V). Here, we use valuesr∗ = 0.65 nm andrp,min = 1 nm

[58]. The value ofrp,max is varied in our results.

The pore radii are distributed non-uniformly in radius space to increase computational efficiency.

Specifically, betweenr∗ andrp,min we used discretization size∆rp = 0.025 nm, and betweenrp,min

andrp,max we linearly increased the discretization size∆rp from 0.025 nm to 0.25 nm.
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7.2.8 Transport in the Discretized Model System

The discretized system represents three types of transport: (1) electrical and (2) molecular transport

in 2-D physical space and (3) pore transport in 1-D radius space. Below we address each type of

transport in turn.

Electrical Transport

The electrical fluxJi, j
e from nodei to adjacent nodej is described by [68]

Ji, j
e = −

σi, j

li, j
(∆φ)i, j −

ǫi, j

li, j

d
dt

(∆φ)i, j, (7.1)

where (∆φ)i, j ≡ φ j −φi is the electric potential difference between nodesi and j, σi, j is the conduc-

tivity between nodesi and j, andǫi, j is the permittivity between nodesi and j. σi, j = σe, σi, orσm,

as appropriate for the system region, andǫi, j = ǫe, ǫi, or ǫm, as appropriate for the system region

(e.g., if nodesi and j are in the extracellular region, thenσi, j = σe andǫi, j = ǫe). If the connection

between nodes lies along a boundary (e.g., the membrane), then the flux associated with each side

of the connection is calculated independently [68].

The electrical currentii, j
e from nodei to node j is simply the fluxJi, j

e (Eq. 7.1) scaled by the area

Ai, j = wi, jd of the interface shared by VCsi and j (Fig. 7.5):

ii, j
e = Ai, jJ

i, j
e . (7.2)

For node pairsi and j that span the membrane (i.e., nodei on the extracellular side of the mem-

brane and adjacent nodej on the intracellular side of the membrane, or vice versa), the passive

currentii, j
e (Eq. 7.2) only accounts for the ionic and displacement current through the membrane

lipid. In addition to this current, there is ionic currentii, j
e,p through pores.

Consider a pair of nodesi and j that span the membrane, with nodei on the extracellular side and

node j on the intracellular side. The interface shared by VCsi and j represents a small region, or
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li, j

wi, j

d

γi γ j

φi φ j

J
i, j
s

J
i, j
e

Figure 7.5: Electrical and molecular transport between adjacent system nodes. Adjacent
nodesi and j are shown with their associated VCs. Nodei has electric potentialφi and
solute concentrationγi, and nodej has electric potentialφ j and solute concentrationγ j.
The distance between the nodes isli, j. The VCs share an interface with widthwi, j and area
Ai, j = wi, jd, whered is the system depth. The VC associated with nodei has volumeVi,
and the VC associated with nodej has volumeV j. Using the system transport parameters
and the local mesh geometry, the electrical fluxJi, j

e and molecular fluxJi, j
s from nodesi to

node j can be calculated.

patch, of membrane with areaAi, j. The membrane patch has transmembrane voltage∆φ
i, j
m and a

radius space with discretized pore radiirk
p with discretization (∆rp)k. The pore density associated

with eachrk
p and (∆rp)k is ni, j,k. Note that all membrane patches have a radius space described

by the samerk
p and (∆rp)k, but the pore densityni, j,k associated with each radius in each patch is

different.

The total currentii, j
e,p through pores in the membrane patch associated with nodesi and j is the sum

of the currents through pores of each radiusrk
p:

ii, j
e,p= Ai, j ∆φ

i, j
m

∑

k

ni, j,k (∆rp)k gp(r
k
p,∆φ

i, j
m ). (7.3)

Here, the functiongp(rp,∆φm) describes the conductance associated with a single pore, accounting

for the resistance of both the internal pore region and the pore access region [92, 93]. It is given by

[57]

gp(rp,∆φm) =

(

dp

σpπr2
p H(rp) K(rp,∆φm)

+
1

2σprp

)−1

. (7.4)
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Here,dp is the thickness of the internal region of the pore,σp = 2σiσe/(σi + σe) is the average

conductivity of the electrolyte within the pore,H(rp) is the hindrance factor, andK(rp,∆φm) is the

partition coefficient. H(rp) andK(rp,∆φm) are described in detail in Ref. [57].

The total currentii, j
e,tot between nodesi and j is the sum of theii, j

e (Eq. 7.2) andii, j
e,p (Eq. 7.3):

ii, j
e,tot = ii, j

e + ii, j
e,p. (7.5)

(Note thatii, j
e,p= 0 for node pairsi and j that do not span the membrane.)

The currentii, j
e,tot describes the transport between nodes, but does not specifyhow the electric poten-

tial at the nodes changes as a result. This is provided by imposing continuity. Continuity requires

that for every nodei with adjacent nodesj

∑

j

ii, j
e,tot = 0. (7.6)

In other words, the sum of the currents flowing out of each nodemust equal zero (Kirchhoff’s

Current Law).

Molecular Transport

In bulk electrolyte, the molecular (electrodiffusive) flux Ji, j
s from nodei to adjacent nodej is

described by [56]

Ji, j
s =



























−Di, j
s

(∆γ)i, j

li, j
if (∆ψ)i, j = 0,

−Di, j
s

(∆ψ)i, j

li, j

(

γi

1−e(∆ψ)i, j
+

γ j

1−e−(∆ψ)i, j

)

if (∆ψ)i, j , 0.
(7.7)

Here,ψ is the dimensionless potentialψ ≡ qezsφ/kT , (∆ψ)i, j ≡ ψ j − ψi is the difference in dimen-

sionless potential between nodesi and j, γi andγ j are the solute concentrations at nodesi and j,

andDi, j
s is the solute diffusivity between nodesi and j. Di, j

s = Ds,e or Ds,i, as appropriate for the

system region.
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In bulk electrolyte, the flow of soluteii, j
s (units: molecules/s with concentrationγ in units

molecules/m3) from nodei to node j is simply the fluxJi, j
s (Eq. 7.7) scaled by the areaAi, j of

the interface shared by VCsi and j (Fig. 7.5):

ii, j
s = Ai, j Ji, j

s . (7.8)

Note that whileii, j
s is analogous to electric current, both drift and diffusion contribute, and therefore

it applies to both charged and neutral solutes.

Like electrical transport (charge carried by small ions) through pores, molecular transport through

pores is also affected by hindrance and partitioning. For nodesi and j that span the membrane, the

flow of soluteii, j
s,p through pores is

ii, j
s,p= Ai, j Ji, j

s

∑

k

ni, j,k (∆rp)k π(r
k
p)

2 H(rk
p) K(rk

p,∆φ
i, j
m ). (7.9)

Here, the relevant diffusivity of Eq. 7.7 that determinesJi, j
s is the average diffusivity within the

poresDs,p= 2Ds,iDs,e/(Ds,i + Ds,e). H(rp) andK(rp,∆φm) are described in Ref. [57].

Noting that Eq. 7.8 describes the flow between nodesi and j that do not span the membrane and

that Eq. 7.9 describes the flow between nodesi and j that do span the membrane, the total flowii, j
s,tot

between nodesi and j is

ii, j
s,tot=



























ii, j
s if i and j do not span membrane,

ii, j
s,p if i and j do span membrane.

(7.10)

Unlike small ion charge, this means that solutes only pass through the membrane via pores.

The rate at which concentration changes as a result of soluteflux is determined by continuity,
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which requires that for every nodei with adjacent nodesj,

∂γi

∂t
= −

1
Vi

∑

j

ii, j
s,tot, (7.11)

whereVi is the volume of VCi (Fig. 7.5). In other words, a net flow of solute out of or into a node

must result in a corresponding decrease or increase in the concentration of the node.

Pore Transport

Expansion and contraction of pores is treated by behavior inpore radius space. Transport of pores

in radius space is analogous to 1-D electrodiffusion in physical space [56, 58]. Just as solute is

transported in response to gradients in concentration and electric potential (Eq. 7.7), pores are

transported in response to gradients in pore densityn and pore energyW (Fig. 7.6), with the pore

energy landscape [58].

The flux of poresJi, j
p from nodei to adjacent nodej (in radius space) is described by [58]

Ji, j
p =



























−Dp

kT
(∆n)i, j

(∆rp)i, j
if (∆W)i, j = 0,

−Dp

kT
(∆W)i, j

(∆rp)i, j

(

ni

1−e(∆W)i, j/kT +
n j

1−e−(∆W)i, j/kT

)

if (∆W)i, j , 0.
(7.12)

Here, (∆W)i, j ≡ W j −Wi is the difference in pore energy between nodesi and j, ni andn j are the

pore densities at nodesi and j, Dp is the diffusivity of pores in radius space,k is the Boltzmann

constant, andT is the absolute temperature.

The pore energyW(rp,∆φm) is described in detail in Ref. [58]. Briefly, the pore is given by

W(rp,∆φm) = Wsteric(rp) +Wedge(rp) +Wsurf(rp) +Wpolar(rp,∆φm) +Wdipole(rp,∆φm). (7.13)

Here,Wsteric(rp) is the energy that results from the steric repulsion of lipid head groups,Wedge(rp) is

the energy that results from the bending of lipid around the interior edge of a pore,Wsurf(rp) is the

interfacial energy of lipid molecules,Wpolar(rp,∆φm) accounts for the polarization energy that re-
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Figure 7.6: Pore transport between adjacent nodes in radius space (evolution of pore popu-
lations). Nodei has adjacent nodesi−1 andi+1. The pore radiusrp, energyW, and density
n for each node is indicated by its subscript or superscript. Nodesi − 1 andi are separated
by distance (in radius space) (∆rp)i−1,i, nodesi andi+1 are separated by distance (in radius
space) (∆rp)i,i+1. The region of radius space associated with nodei has length (∆rp)i. Ji−1,i

p

is the pore flux from nodei−1 to nodei, andJi,i+1
p is the pore flux from nodei to nodei+1.

The pore flux between adjacent nodes is determined by the poreradii, energies, and densi-
ties of the nodes, as well as pore (e.g., diffusivity) and system (e.g., temperature) properties.
The rate at which the pore densityni changes is determined by the net fluxJi−1,i

p − Ji,i+1
p into

nodei and the length (∆rp)i.

sults from the force exerted on the pore edge by the electric field, andWdipole(rp,∆φm) accounts for

the energy associated with rotation of dipoles within the pore edge. A quantitative description of

the dipole energy term is given in theAppendix. All other energy terms are described in Ref. [58].

A basic, established assumption is that all pore creation and destruction occurs at pore radiusr∗.

Thus, pore creation and destruction can be cast as additional flux terms at ther∗ node. The pore

creation flux is described by [58]

J∗,cp (∆φm) = a fce(β(∆φm)2+α∆φm)/kT . (7.14)

Here,a is the pore creation rate density,β is the symmetric pore creation constant,α is the asym-

metric pore creation constant, andfc is the fraction of the membrane available for pore creation,as

discussed below.

The pore destruction fluxJ∗,dp results from applying an absorbing boundary condition atr∗ [58, 61].

Specifically,J∗,dp is equal to the flux fromr∗ to a slightly smaller radiusr∗ − ∆rp node with pore

densityn(r∗ − ∆rp) = 0.
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The rate at which pore density changes as a result of the pore flux is determined by continuity,

which requires that for every nodei with adjacent nodesj,

∂ni

∂t
= −

1
(∆rp)i

∑

j

Ji, j
p . (7.15)

Here, (∆rp)i is the size (length) of the region of radius space associatedwith nodei (Fig. 7.6). Note

that for nodesi with ri
p = r∗, the creation fluxJ∗,cp and destruction fluxJ∗,dp are considered flux from

“adjacent” nodes.

In Eq. 7.14, fc is the fraction of the membrane available for pore creation [58]. Specifically, fc

accounts for the fact that (1) a fractionfprot of the total membrane area is occupied by protein and

(2) a fraction of the membrane is occupied by existing pores.Both are unavailable for pore creation.

Specifically, the fractionf i, j
c of the membrane available for pore creation in the membrane patch

spanned by nodesi and j is [58]

f i, j
c = 1− fprot −

∑

k

ni, j,k (∆rp)k π

(

rk
p +

dm

2

)2

. (7.16)

Accordingly, as the membrane becomes saturated with pores,f i, j
c → 0, and thereforeJ∗,cp → 0 for

the membrane patch. Thus,fc prevents the generation of nonphysical pore density in response to

very large magnitude pulses.

7.2.9 Numerical Implementation

Each of the continuity equations (Eqs. 7.6, 7.11, and 7.15) has a time derivative term that can be

isolated on the left-hand side (LHS) of the equation. Lety be an array containing allφ andγ for

the physical space nodes andn for the radius space nodes. The corresponding system of continuity

equations can be constructed:

M
∂y
∂t
= f (t, y), (7.17)
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whereM is a sparse matrix of constants andf (t, y) is a nonlinear function that evaluates the right-

hand size (RHS) of the continuity equations. This system of equations can be solved numerically.

We use MATLAB (version 7.8, 2009, http://www.mathworks.com) to construct, solve, and subse-

quently analyze the system of transport equations. The steps in this process are:

1. Define model system regions and properties.

2. Generate system mesh and find associated VCs.

3. Evaluate mesh and VC geometry.

4. Assign transport properties associated with node connections.

5. Construct system of equations (Eq. 7.17).

6. Solve system using MATLAB functionode15s.

7. Analyze results.

7.2.10 Determination of Optimal Electroporation Parameters

Because our model features a mechanistic description of molecular transport by electrodiffusion

[56], our model results can be directly compared to quantitative experimental measurements of

cellular uptake, e.g., those of Canatella et al. [49] and Pucet al. [50]. We took advantage of this to

use the Canatella et al. [49] and Puc et al. [50] measurementsof uptake to determine optimal values

for several important electroporation parameters that have not been well-established. Specifically,

we examined the asymmetric pore creation constantα, the symmetric pore creation constantβ, the

pore diffusion coefficient in radius spaceDp, the maximum pore radiusrp,max, and the pore reseal-

ing time constantτp. The range of values reported for these parameters in the literature, as well as

the range we examined here, are shown in Table 7.3.

For each combination of electroporation parameters, we simulated the response of the Canatella

model and Puc model for the specific pulses for which experimental data was provided in the ex-

perimental studies [49, 50]. Because we considered five different parameters, the total number of

parameter combinations was potentially very large. Therefore, we use an approach in which we



214 Electroporation: Model Design and Validation

performed successive rounds of simulations and tightened the range of parameter values consid-

ered in reach round.

Initially we chose approximately three values spanning theplausible range for each parameter

(e.g.,β = 10 kT/V2, 17 kT/V2, and 25 kT/V2). We then used each combination of parameters to

simulate the responses of the Canatella model and Puc model for the pulses for which molecular

uptake data was provided [49, 50]. We assessed the agreementbetween the model results and the

experimental results by calculating the average relative error and also visually by using plots like

those shown in theResults and Discussionsection (e.g., Fig. 7.7).

After each round of simulations we tightened the window of plausible parameter values. For

example, using the valueDp = 1× 10−14 m2/s, the transport predicted for both model systems

was far smaller than the experimentally measured transport, regardless of the values of the other

electroporation parameters examined. Thus, in the next round of simulations we raised the lower

bound onDp from 1× 10−14 m2/s to 5× 10−14 m2/s. With each successive round of simulations,

we tightened the bounds on the parameters until we arrived atthe optimal set.

7.3 Results and Discussion

7.3.1 Optimal Electroporation Parameters

Using the model and the described approach for iteratively determining optimal values of select

electroporation parameters, we obtained those shown in Table 7.3. Table 7.3 shows the range of

values previously reported in the literature, the range of value we examined with our model, and

the final optimal set of values. In general, the optimal parameters are well within the range reported

in the literature.

In the sections that follow, we compare our model results with the Canatella experiments [49]

and Puc experiments [50], and then vary each tested electroporation parameter to demonstrate its

effect on the model results. This sensitivity testing is an important part of our overall methods,
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Table 7.3: Optimal Electroporation Parameters

Symbol Values in Literature Values Examined Optimal Value Description and References
α 0 – 20 kT/V 11 kT/V Asymmetric pore creation constant [94]
β 15 – 20 kT/V2 10 – 25 kT/V2 18 kT/V2 Symmetric pore creation constant [62, 91]
Dp (0.001 – 110)× 10−14 m2/s (1 – 110)× 10−14 m2/s 20× 10−14 m2/s Pore diffusion coefficient [59, 60, 95, 96]
rp,max 3 – 2200 nm 5 – 50 nm 12 nm Maximum pore radius [14, 59, 60, 64, 67,69, 89]
τp 0.16 – 120 s 1 – 10 s 4 s Pore resealing time constant [48, 87, 97, 98]

made realistic by having sufficient computational capability to examine many versions ofboth the

models and the applied pulses.

7.3.2 Comparison of Model Results with Experimental Results

Figure 7.7 shows a comparison of the relative intracellularconcentration ˆγi predicted by our model

with the experimental measurements reported by Canatella et al. [49] and Puc et al. [50]. For

the Canatella experiments, the model slightly overestimates transport in response to the 2.8 ms

exponential pulses, and for the Puc experiments, the model slightly overestimates transport in

response to the 100µs pulses withEapp . 1.5 kV/cm. However, overall the model results are

in excellent agreement with the experimental results, particularly considering the large range of

pulses durations and magnitudes considered. Pulse durations span nearly three orders of mag-

nitude (50µs – 20 ms) and corresponding pulse magnitudes span about one order of magnitude

(3 kV/cm – 0.3 kV/cm), viz., larger pulses pair with shorter pulses.

Several interesting results are evident in Fig. 7.7. First,transport in the Canatella experiments

occurs almost entirely during the pulse (Fig. 7.7A). (For the exponential pulses applied in the

Canatella experiments, we can take “during” to mean∼ 4τpulse.) Post-pulse transport is propor-

tional to the total number of pores created (during the pulse), and the total number of pores cre-

ated increases rapidly withEapp. Yet, the total transport in response to the largest pulses with

Eapp≈ 3 kV/cm is justγ̂i ≈ 0.01, far below equilibrium with the extracellular medium. Post-pulse

transport in response to the pulses with smallerEapp is even smaller because the number of pores

created by these pulses is much smaller. This is an example ofthe highly nonlinear nature of elec-

troporation, but here examining the net molecular transport rather than electrical behavior.
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(A) Canatella comparison
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(B) Puc comparison
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Figure 7.7: Comparison of model predictions of molecular transport with experimental
measurements for the(A) Canatella experiments and(B) Puc experiments. Line color indi-
cates the pulse duration (τpulse for the Canatella experiments andtpulse for the Puc experi-
ments) (inset). Open circlesanderror bars, where available, indicate experimental measure-
ments [49, 50]. For the Canatella experiments, the model slightly overestimates transport in
response to the 2.8 ms exponential pulses, and for the Puc experiments, the model slightly
overestimates transport in response to the 100µs pulses withEapp . 1.5 kV/cm. Other-
wise, however, the overall model results are in excellent agreement with the experimental
results. Note that the pulse durations span nearly three orders of magnitude (50µs – 20 ms)
and pulse magnitudes span one order of magnitude (0.3 kV/cm – 3 kV/cm)

In contrast, significant post-pulse transport occurs in thePuc experiments (Fig. 7.7B). In general,

for pulses withEapp& 1 kV/cm, essentially all pore creation occurs during the first fewmicrosec-

onds of a pulse. (See the companion paper [71] for an example.) Therefore, to first approximation

the total transport during a pulse is proportional to pulse duration tpulse and the total post-pulse

transport is determined by pulse magnitudeEapp. It follows that if all transport in the Puc experi-

ments occurred during the pulse, then the 1 ms pulses would result in 10 times pore transport than

the 100µs pulses of the same magnitude. If all transport in the Puc experiments occurred post-

pulse, then the 1 ms pulses would result in the same amount of transport as the 100µs pulses of

the same magnitude. The actual transport ratio between the 1ms and 100µs pulses (of the same

magnitude) is∼3 – 4 for the pulses withEapp& 1 kV/cm (Fig. 7.7B). This implies that a significant

fraction of the transport in the Puc experiments occurs post-pulse.

The reason that there is relatively little post-pulse transport of calcein but significant post-pulse
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transport of lucifer yellow results from the difference in the Born energy barrier and its impact on

the partition coefficient [57]. Calcein has chargezs = −3.61, and lucifer yellow has chargezs = −2.

In our approximation, the Born energy goes asz2
s. Therefore, the Born energy for calcein is 3.3

times larger than the Born energy for lucifer yellow, and calcein is much less likely to pass through

a minimum-size pore post-pulse.

A second interesting result that is evident in Fig. 7.7 is that for any givenEapp transport during a

pulse is approximately proportional to pulse duration. This is clear for transport in the Canatella

experiments (Fig. 7.7A), for which the transport during thepulse is approximately equal to the

plotted total transport, but not for transport in the Puc experiments (Fig. 7.7B), for which the trans-

port during the pulse is significantly less than the plotted total transport (due to the large amount

of post-pulse transport). As previously mentioned, most pore creation and expansion occurs soon

after the pulse onset (unlessEapp is small). As a result, the rate of transport (transmembraneflux)

does not depend strongly on pulse duration. Therefore, the total transport scales with pulse dura-

tion.

A final interesting result in Fig. 7.7 is that each curve has aninflection point at which transport

γ̂i shifts from superlinear (increases faster than linear) inEapp to sublinear (increases slower than

linear) in Eapp. For the Canatella experiments, the inflection occurs atEapp ≈ 0.8 kV/cm, and for

the Puc experiments, the inflection occurs atEapp≈ 0.9 kV/cm. This transition can be understood

by considering the factors that influence transport and how they change withEapp.

For the smallestEapp, there is very little transport, regardless of pulse duration becauseEapp is too

small to charge the membrane to a large enough transmembranevoltage∆φm to cause significant

pore creation. That is, transport in response to pulses withsmallEapp is pore creation-limited [71].

When transport is creation-limited any change that increases the number of pores will result in a

corresponding increase in transport. A small increase inEapp gives rise to a large increase in the

number of pores. Therefore ˆγi increases superlinearly inEapp.
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In the creation-limited range ofEapp, the pores that are created will tend to expand. (In the compan-

ion paper [71] this is described as an expansion-dominated initial trajectory in pore phase space.)

This occurs because∆φm is large enough (&0.5 V) to drive pore expansion but not large enough to

cause a high rate of pore creation.

As Eapp increases beyond the value at which ˆγi has its inflection point, the rate of pore creation

increases dramatically, and the initial pore trajectory [71] shifts from expansion-dominated to bal-

anced. That is, pore creation and expansion are both significant in increasing the membrane con-

ductance and thereby decreasing∆φm. As a result, an increasing fraction of the pores remain small

(rp ≈ rp,min) and a decreasing fraction of the pores expand.

Due to hindrance and partitioning, transport through poresdepends strongly on pore size relative

to solute size [57]. Thus, asEapp increases, the number of pores increases but a smaller fraction

of the pores become the large pores that predominate in transporting solute. As a result, the total

transport ˆγi increases sublinearly inEapp. In short, at the inflection point transport shifts from being

creation-limited to expansion-limited.

7.3.3 Electroporation Parameters and Their Impact on ModelResults

In this section, we discuss the optimal electroporation parameters (Table 7.3) and examine the

impact that the value of each has on the model results.

Symmetric Pore Creation Constant

The symmetric pore creation constantβ largely determines the relationship between the creation

rate and transmembrane voltage∆φm (Eq. 7.14). The larger the value ofβ, the larger the pore

creation rate for any given∆φm.

Krassowska and colleagues have generally used the value (expressed in a different but equivalent

form) β = 15 kT/V2 [61, 62, 64, 67]. According to DeBruin and Krassowska, [62],this value
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Figure 7.8: Impact of symmetric pore creation constantβ on model predicted transport in
the (A) Canatella experiments and(B) Puc experiments. Line color indicates the pulse du-
ration (τpulse for the Canatella experiments andtpulse for the Puc experiments) (inset). Line
style indicates the value ofβ (inset). Open circlesindicate experimental measurements
[49, 50].β partly determines the relationship between the creation rate and transmembrane
voltage∆φm. Increasing the value ofβ results in increased transport during pulsing over the
range ofEapp for which γ̂i is creation-limited (Eapp . 0.8 kV/cm) and decreased transport
during pulsing over the range ofEapp for which γ̂i is expansion-limited (Eapp& 0.8 kV/cm).
Increasing the value ofβ also results in increased transport post-pulse for allEappby increas-
ing total pore creation. Decreasing the value ofβ has the opposite effects.

was chosen to fit the experimental data of Kinosita and colleagues [34–36]. We (Weaver and col-

leagues) usedβ = 15 kT/V2 in Stewart et al. [99], but have subsequently [65, 68, 69, 91]used

β = 20 kT/V2 based on a fit to the Melikov et al. [32] experimental data, as described in Vasilkoski

et al. [91].

Figure 7.8 shows the impact that the value ofβ has on the model results. The overall impact across

the range of values used in the literature (15 – 20 kT/V2) is relatively small. In the Canatella ex-

periments (Fig. 7.8A), increasing the value ofβ from 18 kT/V2 to 20 kT/V2 results in increased

transport over the range ofEapp for which γ̂i is creation-limited (Eapp . 0.8 kV/cm) and results

decreased transport over the range ofEapp for which γ̂i is expansion-limited (Eapp & 0.8 kV/cm).

Decreasing the value ofβ from 18 kT/V2 to 15 kT/V2 has the opposite effect.

In the Puc experiments (Fig. 7.8B), increasing the value ofβ from 18 kT/V2 to 20 kT/V2 results in
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slightly increased transport across allEapp. While the changing the value ofβ has the same impact

on transport during a pulse as described for the Canatella experiments (Fig. 7.8A), the impact

on post-pulse transport (which, as discussed, is much more significant in the Puc experiments) is

larger. Specifically, increasing the value ofβ results in increased pore creation and therefore results

in increased post-pulse transport. Decreasing the value ofβ results in decreased pore creation and

decreased post-pulse transport.

Asymmetric Pore Creation Constant

Like β, the asymmetric pore creation constantα affects the relationship between the creation rate

and transmembrane voltage∆φm (Eq. 7.14). Unlikeβ, the impact ofα depends on the sign of

∆φm. For calcein and lucifer yellow, transport during a pulse occurs entirely through the cathodic

side of the membrane, and most post-pulse transport also occurs through the cathodic side of the

membrane because it has higher pore density than the anodic side [71]. Thus, the results presented

here show the impact that the value ofα has on transport through the cathodic side of the cell,

specifically.

Esser et al. [94] introducedα to account for some of the experimentally observed asymmetry in

transmembrane voltage [37] and transport [41, 42, 46, 48, 100, 101] during electroporation of

mammalian cells. The mechanism is not yet fully understood but is hypothesized to involve the

rotation of lipid and other dipoles within the edge of a pore as it is created and as it expands. Minor

asymmetry is also expected from the resting potential and, for excitable cells (muscle, nerve), the

conductance change due to many ion channels. Esser et al. [94] estimates additional contributions.

Figure 7.9 shows the impact that the value ofα has on the model results. In the Canatella ex-

periments (Fig. 7.9A), increasing the value ofα from 11 kT/V to 18 kT/V results in a substantial

decrease in transport by significantly increasing the rate of pore creation and thereby limiting pore

expansion. Decreasing the value ofα from 11 kT/V to 0 kT/V results in increased transport by

decreasing the creation rate and thereby leading to greaterpore expansion. Note that the results are

more sensitive to the value ofα (Fig. 7.9) than to the value ofβ (Fig. 7.8), particularly at smallEapp.
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Figure 7.9: Impact of asymmetric pore creation constantα on model predicted transport in
the (A) Canatella experiments and(B) Puc experiments. Line color indicates the pulse du-
ration (τpulse for the Canatella experiments andtpulse for the Puc experiments) (inset). Line
style indicates the value ofα (inset). Open circlesindicate experimental measurements
[49, 50].α partly determines the relationship between the creation rate and transmembrane
voltage∆φm. The effect of the value ofα depends on the sign of∆φm. For the negatively
charged solutes considered here, which predominantly enter the cell through the cathodic
side [71], increasing the value ofα results in decreased transport during pulsing and in-
creased transport post-pulse. Decreasing the value ofα has the opposite effects.

This is because in the pore creation rate equation (Eq. 7.14), α scales∆φm andβ scales (∆φm)2.

Therefore, the creation rate is more sensitive to the value of α when∆φm < 1 V.

In the Puc experiments (Fig. 7.9B), the impact of the value ofα on total transport is more muted be-

cause of the significant post-pulse transport. The general effect that the value ofα has on transport

in response to the 1 ms pulses is the same as in the Canatella experiments (Fig. 7.9A). However,

for the 100µs pulses, the effect on transport is reversed, with increased transport for the value

18 kT/V than for the value 11 kT/V. This occurs because the increase in post-pulse transportmore

than compensates for the decrease in transport during the pulse.

Pore Diffusion Coefficient

The pore diffusion coefficient Dp is the perhaps the least precisely determined electroporation pa-

rameter relative to its impact on transport. Indeed, there are few values ofDp in the literature.Dp

determines the rate at which pores expand and contract in response to a gradient in pore energy.
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The only estimate ofDp based on fundamental physical considerations, of which we are aware,

is that of Powell and Weaver [95]. By treating water as analogous to a dense ideal gas, they ar-

rived at the order of magnitude estimateDp ≈ 1.1× 10−12 m2/s. Subsequently, Barnett and Weaver

[59] and Freeman et al. [60] chose to use the somewhat reducedvalueDp = 5× 10−14 m2/s based

on simulation results and the assumption that the viscosityof water, which was not considered

in the Powell and Weaver [95] estimate, should somewhat reduce the value ofDp. The value

Dp = 5× 10−14 m2/s has been widely used since, as it has been the best estimate available, but

there is little reason to think that it is very accurate.

There is one other estimate ofDp in the literature [96], but the valueDp = 1× 10−17 m2/s appears

much too small. If the value ofDp were∼1× 10−17 m2/s, then under essentially all conditions pore

dynamics would be creation-dominated and there would be insignificant pore expansion. This is

clear from the following order of magnitude estimate of the pore expansion rate. The drift speed

of pores in radius space (i.e., rate of expansion and contraction) is [58]

drp

dt
= −

Dp

kT
∂W
∂rp

. (7.18)

For pores withrp & rp,min, W(rp) is dominated by the edge energy and electrical energy. Assuming

that the electrical contribution is equal to its asymptotic(in rp) value−Fmaxrp(∆φm)2, then the drift

speed may be approximated by

drp

dt
≈ −

Dp

kT

(

2πγ − Fmax(∆φm)2
)

. (7.19)

Generously assuming that∆φm is clamped at 1 V, we can use Eq. 7.19 to determine how much

time is required for a pore to expand by 1 nm. Using the valueDp = 2× 10−13 m2/s determined

here, pores expand at rate 27 mm/s. Thus, it takes 37 ns for a pore to expand by 1 nm. Using the

much smaller valueDp = 1× 10−17 m2/s, pores expand at rate 1.4µm/s. Thus, it takes 0.71 ms for

a pore to expand by just 1 nm. Here, we assumed that∆φm = 1 V, but if pore expansion required
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Figure 7.10: Impact of pore diffusion coefficient Dp on model predicted transport in the
(A) Canatella experiments and(B) Puc experiments. Line color indicates the pulse duration
(τpulse for the Canatella experiments andtpulse for the Puc experiments) (inset). Line style
indicates the value ofDp (inset). Open circlesindicate experimental measurements [49, 50].
Dp determines the rate at which pores expand and contract in response to gradients in pore
energy. Increasing the value ofDp results in increased transport during pulsing, particularly
over the range ofEapp for which γ̂i is expansion-limited (Eapp & 0.8 kV/cm). Increasing
the value ofDp also results in decreased transport post-pulse for allEapp by decreasing
total pore creation. For the Canatella experiments, the increase in transport during pulsing
is greater than the decrease in transport post-pulse. For the Puc experiments, for which
post-pulse transport is a much larger fraction of total transport, increase in transport during
pulsing is smaller than the decrease in transport post-pulse. Decreasing the value ofDp has
the opposite effects.

durations on the order of milliseconds, then pore creation would lead to a decrease in∆φm (the

driving force for pore expansion) long before a pore could expand by even 1 nm. Therefore, the

valueDp = 1× 10−17 m2/s is inconsistent with the amount of pore expansion requiredto explain

the levels of molecular transport observed experimentally. Without the present cell system model

analysis that yields quantitative new molecular transportestimates, it would have been very diffi-

cult to testDp values.

The valueDp = 2× 10−13 m2/s that we determined here is well within the range of earlier estimates

[59, 60, 95]. Indeed, it is approximately equal to the geometric mean of their values, and thus lies

in the middle of the previous estimates in a logarithmic sense.
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Figure 7.10 shows the impact that the value ofDp has on the model results. The overall impact is

quite large across the range 5× 10−14 – 80× 10−14 m2/s. In the Canatella experiments (Fig. 7.10A),

increasing the value ofDp from 20× 10−14 m2/s to 80× 10−14 m2/s generally results in increased

transport, and decreasing the value ofDp from 20× 10−14 m2/s to 5× 10−14 m/s2 generally results

in increased transport. The relative impact of the value ofDp on transport is larger over the range

of Eapp for which γ̂i is expansion-limited (Eapp& 0.8 kV/cm).

In the Puc experiments (Fig. 7.10B), increasing the value ofDp from 20× 10−14 m/s2 to

80× 10−14 m/s2 results in slightly decreased transport across allEapp, and decreasing the value

of Dp from 20× 10−14 m/s2 to 5× 10−14 m/s2 results in slightly increased transport across allEapp.

While the changing the value ofDp has the same impact on transport during a pulse as described

for the Canatella experiments, the impact on post-pulse transport (which, as discussed, is much

more significant in the Puc experiments) is larger. Specifically, increasing the value ofDp results

in decreased pore creation and therefore results in decreased post-pulse transport. Conversely,

decreasing the value ofDp results in increased pore creation and increased post-pulse transport.

Maximum Pore Radius

In contrast to artificial membrane systems (e.g., bilayer lipid membranes and vesicles), cell mem-

branes contain a substantial amount of protein [102]. Presumably, the protein impedes expansion

and limits the size to which pores can generally grow. We recognize, however, that the distribution

of protein, therefore the maximum pore radius, is likely to vary with membrane region.

Pores are clearly large enough to transport macromoleculeslike DNA [15, 103–109], dextran

[40, 43, 54, 108], lactalbumin [44], and BSA [43–45]. Indeed, electroporation is widely used

for cell transfection. That these macromolecules are transported through pores suggests that pores

can grow at least as large∼5 – 10 nm.

In the context of our model,rp,max should be viewed as the maximum radius to which pores gen-

erally expand. That is, there may be membrane sites that permit greater pore expansion, butrp,max
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Figure 7.11: Impact of maximum pore radiusrp,max on model predicted transport in the
(A) Canatella experiments and(B) Puc experiments. Line color indicates the pulse duration
(τpulse for the Canatella experiments andtpulse for the Puc experiments) (inset). Line style
indicates the value ofrp,max (inset). Open circlesindicate experimental measurements [49,
50]. rp,max is the maximum radius represented in the model. Large pores predominate
in transporting solute during pulsing. Therefore, increasing the value ofrp,max results in
increased total transport across allEapp by increasing transport during pulsing. The relative
impact is greater over the range ofEapp for which γ̂i is creation-limited (Eapp. 0.8 kV/cm).
Decreasing the value ofrp,max has the opposite effects.

is intended to capture the maximum radius to which pores expand on average. We note that the

models of Krassowska and colleagues [64, 67, 89] do not require (nor do they choose to impose) a

set value ofrp,maxbecause they represent discrete pores rather than continuum-based pore distribu-

tions. As a result, the largest pores predicted by these models range from∼300 nm [67] to 2.2µm

[64, 89]. However, we are unaware of compelling evidence demonstrating that pores of this size

form in cell membranes for widely used pulses.

Because we consider only small solutes here, the ability of our model to resolve an optimal value

of rp,max is relatively weak. Using the model to analyze quantitativeexperimental transport results

of a larger solute would provide greater insight, but that isbeyond the scope of the present paper.

Figure 7.11 shows the impact that the value ofrp,maxhas on the model results. Increasing the value

of rp,max from 12 nm to 25 nm results in increased transport across allEapp for both the Canatella

and Puc experiments. As noted above, large pores predominate in transporting solute. Therefore,
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increasing the size of the largest pores results in increased transport. The relative impact is greater

over the range ofEapp for which γ̂i is creation-limited (Eapp . 0.8 kV/cm). In this range, pores

are limited in number but large in size. Thus, increasing their size results in increased transport.

Increasing the value ofrp,max also results in a slight decrease in value ofEapp at which γ̂i has its

inflection point. Decreasing the value ofrp,max from 12 nm to 5 nm results in decreased transport

and a slight decrease in value ofEapp at whichγ̂i has its inflection point.

Pore Resealing Time Constant

The pore resealing time constantτp strongly influences the amount of post-pulse transport. Specifi-

cally, post-pulse transport is proportional toτp. Post-pulse transport is also strongly affected by the

value ofrp,min, the pore radius at which pores accumulate post-pulse (∆φm ≈ 0 V). In this study, we

usedrp,min = 1.0 nm based on our previous analysis [58] of the Melikov et al. [32] pore conductance

measurements. Because post-pulse transport is very sensitive to the value ofrp,min due to hindrance

and partitioning, ourrp,min choice necessarily affected the optimal value ofτp determined. If we

had used a smaller value ofrp,min, then we would have arrived at a larger value ofτp, and vice versa.

Values reported for the pore resealing time constantτp vary widely. While Glaser et al. [87] re-

portedτp ≈ 3 s and He et al. [98] reportedτp ≈ 0.8 – 2.2 s, Tekle et al. [97] reported a shorter

τp ≈ 0.16 s and Djuzenova et al. [48] reported a much longerτp ≈ 60 – 120 s.

Here, we found the valueτp = 4 s to be optimal. This value is well within the range reportedin

the literature but, as noted, is inextricably tied to our assumption thatrp,min = 1.0 nm. Puc et al.

reported [50] significant post-pulse transport a minute after pulsing. This suggests that the value

of τp in their cells system was much larger than 4 s, which would also imply thatrp,min < 1.0 nm.

Figure 7.12 shows the impact that the value ofτp has on the model results. In both systems, in-

creasing the value ofτp from 4 s to 6 s results in increased post-pulse transport, andthereby results

in increased total transport. Decreasing the value ofτp from 4 s to 2 s results in decreased transport.
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Figure 7.12: Impact of pore resealing time constantτp on model predicted transport in the
(A) Canatella experiments and(B) Puc experiments. Line color indicates the pulse duration
(τpulse for the Canatella experiments andtpulse for the Puc experiments) (inset). Line style
indicates the value ofτp (inset). Open circlesindicate experimental measurements [49,
50]. τp determines the time available for post-pulse transport. Increasing the value ofτp

results in increased post-pulse transport, and thereby results in increased total transport. The
impact of the value ofτp is larger for the Puc experiments, for which post-pulse transport is
a significant fraction of total transport. In the Canatella experiments, post-pulse transport is
a significant fraction of total transport for the shortest pulses only, as shown.

For most of the Canatella experiments (Fig. 7.12A), only a small fraction of total transport occurs

post-pulse, and thus the impact of the value ofτp is weak. The exception is for transport in re-

sponse to pulses that are short in duration (τpulse = 50µs and 90µs). Because such short pulses

result in relatively little transport during the pulse, post-pulse transport comprises a larger fraction

of the total transport.

In the Puc experiments (Fig. 7.12B), a large fraction of the total transport occurs post-pulse. As a

result, total transport is sensitive to the value ofτp.

7.4 Conclusions

We have described a robust, spatially distributed, mechanistic model of electroporation that fea-

tures coupled quantitative descriptions of electrical transport, electrodiffusive molecular transport,

and pore dynamics. The modeling approach allows the calculation of electric potential, molecular

concentration, and pore density throughout the system on time scales ranging from nanoseconds
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to minutes with a level of spatial and temporal resolution that cannot be achieved by typical exper-

imental methods.

Importantly, the model enables direct comparison of model results with experimental measure-

ments, which generally report molecular transport, not electrical behavior.

We validated the ability of the model to make accurate predictions of molecular transport at the

cell level by using it to replicate (in silico) two sets of experiments in the literature that measured

electroporation-mediated transport of fluorescent probes. The model predictions of molecular up-

take are in excellent agreement with these experimental measurements, which collectively span

nearly three orders of magnitude in pulse duration (50µs – 20 ms) and an order of magnitude in

pulse magnitude (0.3 – 3 kV/cm).

We further exploited this comprehensive experimental datato determine the optimal values of

several electroporation parameters. Included among theseare the first estimate of the asymmetric

pore creation constantα and perhaps the most accurate estimation to date of the pore diffusion

coefficientDp.

7.5 Appendix

7.5.1 Dipole Pore Energy Term

The pore energy termWdipole(rp,∆φp) accounts for the energy associated with rotation of lipid

dipoles within the pore edge [94]. The dipole energy scales with the number of lipid dipoles

involved, which we assume to be proportional to the lipid edge areaAl,e(rp), and the sine of the

average lipid orientation̄Θl,e(rp) relative to the electric field, which we assume to be parallel to the

axis of the pore. Thus, the dipole energy is given by

Wdipole(rp,∆φp) =
α

kT

(

Al,e(rp)

Al,e(r∗)

) (

sin
(

Θ̄l,e(rp)
)

sin
(

Θ̄l,e(r∗)
)

)

∆φp, (7.20)
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where∆φp is the voltage drop across the internal pore region [57]. Forsimplicity, the form of

Wdipole(rp,∆φp) is such that

Wdipole(r∗,∆φp) =
α

kT
∆φp. (7.21)

The area of lipid in the pore edge is given by [58]

Al,e(rp) = π
2

(

dm

2

) (

rp +
dm

2

)

− 2π

(

dm

2

)2

. (7.22)

The average orientation of lipid molecules in the pore edge can be found by taking an area-

weighted integral ofΘl,e over the pore edge:

Θ̄l,e(rp) =
2π

(

dm
2

)

Al,e(rp)

∫ π

2

0

(

rp +
dm

2
−

dm

2
sinΘl,e

)

Θl,e dΘl,e (7.23)
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=
πdm

Al,e(rp)

(

π
2

8

(

rp +
dm

2

)

−
dm

2

)

. (7.25)

Substituting forAl,e(rp) and simplifying,

Θ̄l,e(rp) =
2π2rp +

(

π
2 − 8

)

dm

8πrp + 4(π − 2) dm
. (7.26)
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Chapter 8

A Unified Model of Electroporation and Molecular Transport I I:

Dynamics of Electrical, Molecular, and Pore Transport

Abstract

Cell membrane electroporation involves complex interactions among electrical transport, molecu-
lar transport, and pore dynamics. In a companion paper, we describe and validate a quantitative,
mechanistic model of cell electroporation with concomitant molecular transport. Here, we use this
model to examine in detail the electrical transport, molecular transport, and pore dynamics that
result from the application of electric pulses. First, we discuss pore dynamics in general terms
and demonstrate that the membrane electroporation response in a local membrane region may be
creation-dominated, expansion-dominated, or balanced (neither dominates). This has important
implications for molecular transport: If the response is creation-dominated, then resulting molecu-
lar transport is expansion-limited because pores are largein number but small in size. Conversely,
if the response is expansion-dominated, then resulting molecular transport is creation-limited be-
cause pores are large in size but few in number. Second, we describe the response of our model
of the Canatella et al. (Biophys. J., 80:755–764, 2001) experimental system to a 1 ms, 1 kV/cm
exponential pulse. Similarly, we describe the response of our model of the Puc et al. (Bioelectro-
chemistry, 60:1–10, 2003) experimental system to a 1 ms, 1 kV/cm trapezoidal pulse. Specifically,
we examine the spatiotemporal evolution of the electric potential, solute concentration, and pore
density distribution throughout the systems during and after pulsing. The model results are in good
agreement with experimental studies of electroporation-mediated molecular uptake and theoretical
studies of the electrical and dynamic pore responses to applied electric pulses. While this study
focuses on the transport of fluorescent probes, our basic approach can be used to investigate and
optimize delivery of bioactive solutes, such as drugs and oligonucleotides.
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8.1 Introduction

In a companion paper [1], we describe the design and validation of a model of electroporation and

concomitant molecular transport. Here we consider in detail the electrical transport, molecular

transport, and pore dynamics that result from two pulses. Specifically, we examine the response

of the Canatella et al. [2] system [1] to a 1 ms, 1 kV/cm exponential pulse and the response of the

Puc et al. [3] system [1] to a 1 ms, 1 kV/cm trapezoidal pulse.

Previously, spatially distributed, mechanistic models with dynamic pores [4–8] have been used to

examine the electrical transport and pore dynamics that result from the application of pulsed elec-

tric fields. However, to our knowledge, this is the first modelto couple a spatially distributed model

of electrodiffusive molecular transport [9] with a mechanistic model of electroporation assigned to

curved membranes [10]. Using this model we can thus begin to address fundamental issues, such

as which regions of the membrane contribute most significantly to transmembrane molecular trans-

port, as well as total (cumulative) transport, which is needed for molecular dose (amount delivered

per mass cell or mass tissue).

Here we consider the fluorescent probes calcein and lucifer yellow, which were used in the Cana-

tella et al. experiments [2] and Puc et al. experiments [3]. However, essentially any solute of

interest can be characterized [11] and used in the model. As aresult, the model may produce

new insights into electroporation-mediated applications, such as drug delivery [12–21], nucleic

acid delivery [22–40], and tissue ablation [5, 41–48]. Thus, the model opens the possibility of

screening cell, molecule, and pulse combinations for specific applications.

8.2 Methods

As described in the companion paper [1], we designed and validated a mechanistic, 2-D model

of cell electroporation using quantitative measurements [2, 3] of total transport (during and after

pulsing) for which the applied electric pulses collectively span a wide range of durations (50µs –
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20 ms) and magnitudes (3 kV/cm – 0.3 kV/cm) and include two different waveforms (trapezoidal

and exponential). The model characterizes electrical transport and molecular (electrodiffusive)

transport in physical space and pore transport in radius space.

Here, we describe in detail the spatiotemporal dynamics of electrical, molecular, and pore evo-

lution (transport in radius space) for two pulses. Specifically, we examine the response of the

Canatella model system [1] to an exponential pulse with peakmagnitudeEapp= 1 kV/cm and time

constantτpulse= 1 ms, and we examine the response of the Puc model system [1] toa trapezoidal

pulse with magnitudeEapp= 1 kV/cm and durationtpulse= 1 ms.

Both model systems characterize mammalian cells in vitro but are somewhat different. The Cana-

tella model system [1] has a cell with radiusrcell = 11µm, extracellular conductivityσe =

1.29 S/m, and contains the (initially extracellular) fluorescent probe calcein, which has radius

rs = 0.58 nm, lengthls = 1.89 nm, and charge (valence)zs = −3.61 [11]. The Puc model system

[1] has a cell with radiusrcell = 8.55µm, extracellular conductivityσe = 1.58 S/m, and contains

the (initially extracellular) fluorescent probe lucifer yellow, which has radiusrs = 0.61 nm, length

ls = 1.46 nm, and charge (valence)zs = −2 [11].

The basic modeling approach [1] involves discretizing (meshing) the cell system and describing

electrical and molecular transport between adjacent nodesin terms of the mesh geometry, trans-

port parameters, and the electric potentialφ and solute concentrationγ of the nodes. In addition,

for the node connections that span the membrane, a discretized radius space is used to determine

the evolution (transport) of pore densityn between the discretized radii. This creation, expansion,

contraction, and destruction of pores is largely determined by the local transmembrane voltage

∆φm(t), and electrical and molecular transport through the membrane is largely determined by the

local pore densityn(rp, t). Thus, the electrical, molecular, and pore transport are closely linked, but

with electrical and pore behavior governing molecular transport that does not alter electrical and

pore behavior.
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The time-dependent system behavior is determined from the transport relations by imposing conti-

nuity [1]. That is, solute, charge, and pores must be conserved (except for pores at the creation and

destruction boundary radiusr∗). These continuity equations are assembled into a large system of

nonlinear equations and solved using MATLAB (version 7.8, 2009, http://www.mathworks.com).

MATLAB is also used for analysis of the results.

Presently a typical cell model with a curved plasma membranecontains∼ 11 000 nodes, with

∼30 000 local models for passive aqueous media regions and 600local membrane models that ac-

count for (1) a resting potential source, (2) a passive (fixed) component of the membrane resistance

and (3) a highly nonlinear and hysteretic local membrane electroporation response with dynamic,

heterogeneous pore populations.

For more details on the basic methods and system parameters,please see the companion paper [1].

8.3 Results and Discussion

Electroporation involves complex interaction among electrical transport, pore dynamics, and

molecular transport. Thus, before considering in detail the results of the simulations of the Puc

and Canatella model systems, it is instructive to consider in general terms how these transport phe-

nomena interact. Specifically, we consider the interactionbetween electrical transport and pore

dynamics and how both of these influence molecular transport. As noted above, molecular trans-

port is assumed not to affect electrical transport or pore dynamics.

8.3.1 Interaction Between Electrical Transport and Pore Dynamics

Electrical transport and local pore populations (pore density and size distribution) affect one an-

other through the transmembrane voltage∆φm. (Unless otherwise noted,∆φm should be taken to

mean|∆φm|.) ∆φm arises as the result of spatially distributed voltage division between the mem-

brane (including pores) and the bulk electrolyte [49]. Because the conductance of the electrolyte
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is time-invariant (fixed),∆φm is determined by the magnitude of the electric field applied to the

system and the spatially distributed conductances of the membrane, which in turn are determined

by the local distribution (size and number) of pores in the membrane.

The pore density distributionn(rp) in a local membrane region is the result of the transmembrane

voltage∆φm(t) that the local region has experienced [10]. Note that the pore distribution is hys-

teretic: it depends not only on the instantaneous∆φm, but also the on the history of∆φm. Specif-

ically, ∆φm is the driving force for both pore creation and expansion. That is, as∆φm increases,

the rate of pore creation increases and the tendency of poresto expand also increases. However,

pore creation and expansion both increase conductance of the membrane, and therefore decrease

∆φm. Thus, pore creation and expansion tend to diminish the driving force for further creation and

expansion. As a result of this negative feedback, electroporation is self-limiting.

Because pore creation and expansion are driven by elevated∆φm but then diminish∆φm, a compet-

itive process is involved. In other words,∆φm may be diminished predominantly by pore creation,

pore expansion, or a mix of both. Electrical and molecular transport through pores is strongly

affected by pore size, and therefore the particular combination of pore creation and expansion that

results from a given pulse has a large effect on net transport.

The interpretation of that electrical transport and pore dynamics can most clearly be explained in

the context of pore phase space [10], as shown in Fig. 8.1. In our model, the rate of pore expan-

siondrp/dt is fully determined by the pore radiusrp and transmembrane voltage∆φm. For clarity,

Fig. 8.1 was constructed with simplification that the electroporation parameterα = 0 kT/V such

thatdrp/dt is independent of the sign of∆φm. Therefore, all pores lie somewhere on the phase plot

(Fig. 8.1).

As described above, pore creation and expansion are relatedprocesses that compete to lower∆φm

to a level at which pore creation and expansion are slowed. Figure 8.1 only shows the rate of pore
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Figure 8.1: Pore dynamics phase space. The rate of pore expansiondrp/dt is shown as
a function of pore radiusrp and transmembrane voltage magnitude|∆φm|. (For simplicity,
this plot was created withα = 0 kT/V such that the results are independent of the sign
of ∆φm.) The white curve indicatesdrp/dt = 0. Note that the unit of the rate of pore
expansion, mm/s, is equivalent toµm/ms, nm/µs, and pm/ns. Elevated∆φm is the driving
force for both pore creation and expansion, and both pore creation and expansion diminish
∆φm. These the two processes compete to push the system toward a quasi-steady state for
which all pores are distributed along thewhite curve(drp/dt = 0). Whether pore creation
or expansion is dominant depends on the rate of the increase in∆φm. When∆φm rises very
quickly to a large value, the response is creation-dominated (CD), and the pores follow the
CD initial trajectory. When∆φm rises slowly, the response is expansion-dominated (ED),
and the pores follow the ED initial trajectory. Intermediate between these responses is a
balanced (B) response that exhibits significant pore creation and expansion. The balanced
response is indicated by the B initial trajectory.

expansion. Therefore, a little imagination is required to account for the impact of pore creation.

The key is that the rate of pore creation is highly nonlinear in ∆φm [1, 10, 50], much more so than

the rate of pore expansion [10]. Thus, the rate of pore creation increases much more dramatically

with ∆φm than does the rate of pore expansion.

Nevertheless, whether by pore creation or expansion, time is required for the pores be become

sufficient in number or size to significantly diminish∆φm. Therefore, the faster∆φm rises at the

beginning of a pulse, the larger the peak∆φm. The larger the peak∆φm, the larger the total number

of pores created because, as noted, the rate of pore creationis highly nonlinear in∆φm. It follows
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from these considerations that the faster∆φm rises, the more dominant pore creation is, relative to

pore expansion, in reducing∆φm. On the other hand, if∆φm rises slowly, the pore creation rate

remain smalls, but provided∆φm is large enough to drive pore expansion (∆φm & 0.5 V), then the

pores that are created expand torp ≈ rp,max = 12 nm. (This maximum pore radiusrp,max = 12 nm

is a construct of the present model. The value was determinedin the companion paper [1] and

appears reasonable given the 50 % protein in the plasma membrane [51].) Thus, when∆φm rises

slowly, pore expansion is dominant in reducing∆φm.

These basic principles are demonstrated by the initial poretrajectories shown in Fig. 8.1. Whether

by pore creation or expansion, the pores tend to evolve toward the quasi-steady state indicated by

the white curve. Along thewhite curve, drp/dt = 0 and the pore creation rate is small, though

nonzero. Note that (1) pores assume a distribution of radiirp as the result of thermal fluctuations

(diffusion in radius space), (2) all pores in a local membrane region experience the same∆φm, and

(3) thewhite curveindicatingdrp/dt has a slight negative slope (forrp & 2 nm). Thus, in a pore

distribution that lies along thewhite curve, the smaller pores in the distribution liebelow thewhite

curve(drp/dt < 0) and the larger pores in the distribution lieabovethewhite curve(drp/dt > 0).

This leads to a striking expectation: the smaller pores contract and the larger pores expand, thereby

resulting in the formation of two pore subpopulations, one with large pores and the other with

small pores. The combined effect is such that the∆φm remains approximate at the approximate

value∆φm ≈ 0.5 V. This outcome, in which there the rates of pore creation and expansion are

relatively balanced (insofar as they diminish∆φm), and result in subpopulations of small and large

pores is illustrated by the balanced (B) initial trajectoryshown in Fig. 8.1.

The other possible initial pore trajectories are creation-dominated (CD) and expansion-dominated

(ED) (Fig. 8.1). The CD initial trajectory results from a very rapid rise in∆φm such that pores are

created in a rapid burst that diminishes∆φm to a level for which the driving force for expansion

is small and over such a short duration that expansion duringthe burst of pore creation is negligi-
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bly small. The CD initial trajectory describes the responseof the membrane to submicrosecond,

megavolt-per-meter pulses [52].

The ED initial trajectory (Fig. 8.1) results from a very slowrise in∆φm such that rate of pore cre-

ation is too slow to appreciably diminish∆φm on the time scale required for pores to expand to the

maximum pore radiusrp,max. In other words, pores are created slowly but every pore thatis created

expands torp,max. The expansion of these pores diminishes∆φm, but until a sufficiently large num-

ber of pores are created and expand,∆φm remains elevated above the level (∼0.5 V) required for

pores to expand. If the pulse is long enough, then eventuallya sufficient number of pores is created

to diminish∆φm to a level at which a subpopulation of the pores contracts.

It is important to recognize that a full spectrum of pore trajectories is possible (Fig. 8.1). The CD

and ED initial trajectories lie at the extremes of the spectrum, and B trajectory lies in the middle.

The initial trajectories (Fig. 8.1) characterize the general response of a local region of membrane.

However, the initial pore trajectory, and pore behavior more generally, varies with location in a

membrane (e.g., plasma membrane). This arises because the rates of charging are location depen-

dent. Specifically, the poles of a cell charge faster than thelateral regions [53]. Therefore, the

response of the polar membrane regions tends to be relatively more creation-dominated and the

response of the lateral membrane regions tends to be relatively more expansion-dominated.

8.3.2 Impact of Electrical Transport and Pore Dynamics on Molecular

Transport

Molecular transport through the membrane (via pores) depends strongly on (1) the number of

pores and (2) the size of pores. The number of pores is important because, all else being equal,

total transport is proportional to the number of pores. The size of the pores, and in particular the

size of the pores relative to the size of the transported solute, is important because steric hindrance

and partitioning [49] are highly nonlinear in pore radius such that larger pores permit a much larger
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solute flux than smaller pores.

Thus, the initial pore trajectories, which characterize the balance between pore creation and ex-

pansion in a region of membrane, have significant implications for net molecular transport. In

general, neither extreme maximizes transport for typical solutes. (An exception: small, uncharged

molecules that are predominately transported through small (rp ≈ rp,min) pores post-pulse are trans-

ported in greater amounts when the pulse results in a CD initial pore trajectory because the total

number of pores available for post-pulse transport is larger.)

When the membrane response is CD, molecular transport is expansion-limited (EL). There are

many pores available to transport solute, but because the pores are small they do not transport

significant amounts of solute due to hindrance and partitioning. Thus, transport is limited by the

minimal amount of pore expansion.

When the membrane response is ED, molecular transport is creation-limited (CL). The pores are

large enough to transport solute without significant hindrance or partitioning, but because the pores

are so few in number they do not collectively transport significant amounts of solute.

The overall implication is that the membrane response that results in maximal molecular transport

lies somewhere in between the CD and ED responses. The soluteproperties (size, shape, and

charge) are then important. As noted, the local membrane response varies with location. Therefore,

somewhere between the more CD response of the cell pole and the ED response of the more lateral

regions lies a region of membrane with just the right balanceof creation and expansion to maximize

transport. By examining the responses of the Puc and Canatella model systems, we show where

this membrane region lies.
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8.3.3 Puc Model System Response to a 1 ms, 1 kV/cm Trapezoidal Pulse

The response of the Puc model system [1] to a 1 ms, 1 kV/cm trapezoidal pulse is shown in

Figs. 8.2 and 8.3. Figure 8.2 shows the electrical and pore response and Fig. 8.3 shows the molec-

ular response.

Upon application of the electric field pulse (Fig. 8.2C), themembrane begins to charge (Fig. 8.2D),

with similar charging rates for both the anodic (Θ = 90°) and cathodic (Θ = 270°) sides of the cell.

However, due to electroporation asymmetry, the anodic sideof the cell must overcome a larger

energy barrier to create pores than the cathodic side. Thus,the burst of pore creation (Fig. 8.2B)

commences earlier for the cathodic side and at a lower peak∆φm than the burst of pore creation on

the anodic side (Fig. 8.2D). Specifically, the cathodic pole∆φm reaches a peak value of 1.02 V at

t = 0.93µs, and the anodic pole∆φm reaches a peak value of 1.58 V att = 1.24µs.

∆φm is the driving force for pore expansion with larger∆φm driving faster expansion (Fig. 8.1).

Thus, because the cathodic pole electroporates at a lower peak value of∆φm than the anodic pole,

the response of the cathodic pole is more CD than the responseof the anodic pole. As a result, a

greater fraction of the pores on the cathodic pole remain small (rp ≈ rp,min) than on the anodic pole

(Fig. 8.2B). However, the total number of pores (of any size)created on the cathodic pole is∼7

larger (1.2× 1014/m2 vs. 1.8× 1013/m2).

As each side of the cell electroporates, the increased penetration of the electric field into that that

side of the cell is manifest in the electric potentialφ (Fig. 8.2A). An interesting aspect of the elec-

trical behavior is that it permits behavior of one region of the system to affect another. All regions

are coupled. Specifically, the burst of pore creation on the cathodic pole results in a decrease in

the cathodic∆φm from its peak. Slightly later, the burst of pore creation andexpansion on the

anodic pole results in a decrease in the anodic∆φm from its peak. Note that as the anodic pole∆φm

decreases, the cathodic pole∆φm increases (Fig. 8.2D). Thus, spatially distributed voltage division

links the behavior on the two sides of the cell.
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The charging rates of the lateral membrane regions are slower than at the poles (Fig. 8.2E and F).

As a result, electroporation of the lateral regions occurs slightly later and at a smaller peak∆φm

than at the poles. Therefore, the lateral membrane regions feature an ED response, with relatively

few pores created but all pores expanding torp,max (Fig. 8.2B). In the lateral regions,∆φm remains

elevated relative to the poles (Fig. 8.2E and F) because, though all pores maximally expand, the

rate at which they are created is too small to appreciably decrease∆φm on the time scale of the

pulse.

After ∼10µs, the changes in the pore density distribution and electricpotential are small, and these

components of the total system response settle into a quasi-steady state. However, the time scale

for molecular transport is much longer. Thus, as the electrical transport and pore dynamics are

settling into a quasi-steady state, the uptake of solute is just beginning.

During the pulse, essentially all molecular transport occurs through the cathodic side of the cell

(Fig. 8.3A) because lucifer yellow molecules drift in the+y-direction. Uptake begins immediately

after electroporation of the cathodic side (Fig. 8.3E), andthe rate of uptake is approximately con-

stant for the duration of the pulse (Fig. 8.3C, D, and E) because, as described, the pore density and

transmembrane voltage change very little following a transient at the beginning of the application

of the pulse.

The transmembrane fluxJs,m during the pulse (Fig. 8.3D and E) is largest atΘ = 240° and 300°.

TheseΘ correspond exactly to the positions of the transitions fromCD to ED in shown in Fig. 8.2B.

It is in this transition region that pores are large in size relative to in the CD region and large in

number relative to in the ED region. Thus, the transition region has the optimal pore density dis-

tribution for maximal transmembrane flux.

Post-pulse, all pores contract torp ≈ rp,min (Fig. 8.2B) and∆φm ≈ 0 V for many multiples of the
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Figure 8.2: Electrical transport and pore dynamics in the Puc model system in response to a 1 ms, 1 kV/cm
trapezoidal pulse.(A) The electric potentialφ(x, y) at select time points.White lines indicate membrane
regions with fractional aqueous areafAp > 10−5, with thicker lines corresponding to largerfAp. (B) The
pore density distributionn(rp, Θ) (pores per area perdrp) at select time points.(C) The applied electric
field Eapp(t) on two time scales: the first 3µs of the pulse (left) and the entire simulation (right). (D) The
transmembrane voltage|∆φm(t)| atΘ = 90° (facing anode) and 270° (facing cathode) on time scales corre-
sponding to those in(C). (E) |∆φm(Θ)| at select time points (inset). (F) |∆φm(Θ, t)| during the pulse.
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Figure 8.3: Molecular transport in the Puc model system in response to a 1ms, 1 kV/cm trapezoidal pulse.
(A) The relative concentration ˆγ(x, y) at select time points.White lines indicate membrane regions with
fractional aqueous areafAp > 10−5, with thicker lines corresponding to largerfAp. (B) The applied electric
field Eapp(t) on two time scales: the duration of the pulse (left) and the entire simulation (right). (C) The rel-
ative intracellular concentration ˆγi(t) on time scales corresponding to those in(C). (D) The transmembrane
flux of soluteJs,m(Θ) at select time points (insets) during (left) and after (right) the pulse.(E) Js,m(Θ, t)
during (left) and after (right) the pulse.
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pore resealing time constant (τp = 4 s) (Fig. 8.2A and D) as the membrane pores shunt the resting

potential sources. As pores reseal, the resting potential is slowly re-established.∆φm reaches 90 %

of its resting potential (∆φm,rest= −50 mV) value in 36 s.

Post-pulse, molecular transport occurs through both the cathodic and anodic sides of the cell

(Fig. 8.3D and E). Post-pulse transport into the cell is predominantly diffusive, and the trans-

membrane fluxJs,m is smaller than during the pulse by∼4 orders of magnitude (Fig. 8.3D and E).

Because all pores have radiirp ≈ rp,min post-pulse, the transmembrane fluxJs,m through a region

of membrane is proportional to its pore density. As a result,the Js,m is substantially larger on the

cathodic side of the cell than on the anodic side.

Post-pulse transport continues until all pores reseal. Thetime scale for resealing is much longer

than the characteristic time for diffusion on the size scale of the cell (Fig. 8.3C and E). Therefore,

the concentration within the cell becomes approximately uniform (Fig. 8.3A) long before the end

of post-pulse uptake (Fig. 8.3C and E).

The total amount of post-pulse transport of lucifer yellow is quite large. At the end of the pulse,

the relative intracellular concentration is ˆγi = 0.035. Post-pulse, ˆγi increases to 0.045. Thus, 22 %

of the total transport occurs post-pulse.

8.3.4 Canatella Model System Response to a 1 ms, 1 kV/cm Exponential

Pulse

The response of the Canatella model system [1] to a 1 ms, 1 kV/cm exponential pulse is shown in

Figs. 8.4 and 8.5. Figure 8.4 shows the electrical and pore response and Fig. 8.5 shows the molec-

ular response. Broadly, the response of the Canatella modelsystem is similar to that described

for the Puc model system. Therefore, we emphasize how the Canatella model system response is

different.
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Because the rise-time of the Canatella pulse is 10 ns [1] (Fig. 8.4C), significantly shorter than the

1µs rise-time of the Puc pulse [1], the membrane charges more quickly (Fig. 8.4D), which results

in a burst of pore creation somewhat earlier in the pulse (Fig. 8.4B). The cathodic pole∆φm reaches

a peak value of 1.04 V at t = 0.29µs, and the anodic pole∆φm reaches a peak value of 1.61 V at

t = 0.50µs.

The much faster rise in∆φm in the Canatella model system (Fig. 8.4D) also results in a more CD

response (Fig. 8.4B) than that of the Puc model system. The total number of pores (of any size)

created on the cathodic pole is 2.7× 1014/m2, and the total number of pores created on the anodic

pole is a smaller (by a factor∼6) 4.5× 1013/m2). These pore densities are∼2.5 times larger than

those in the Puc model system. Because of the large pore density, there is little pore expansion on

the cathodic pole (Fig. 8.4B), relative to both the anodic pole (Fig. 8.4B) and both poles of the Puc

model system (Fig. 8.2B).

As in the Puc model system response, the lateral membrane regions charge more slowly than the

poles (Fig. 8.4E and F), electroporate at smaller peak∆φm, and exhibit a more ED response. How-

ever, only narrow bands of the lateral membrane regions experience significant pore expansion on

the cathodic side of the cell (Fig. 8.4B). The lateral membrane regions on the anodic side of the

cell experience greater pore expansion (Fig. 8.4B).

Because the Canatella pulse is exponential (Fig. 8.4C), it does not have a well-defined end. Rather,

the applied field decays to zero with time constantτpulse= 1 ms. As a result, the pore density dis-

tribution and electric potential do not settle in to a quasi-steady state, as they do in the Puc model

system. Instead, they experience slow, but continual downward changes on the time scale of the

pulse time constantτpulse.

In each local region of membrane, the pore density distribution shifts to smaller pores in order to

maintain∆φm ≈ 0.5 V (Fig. 8.4B) as the applied field decreases (Fig. 8.4C). Because the anodic
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Figure 8.4: Electrical transport and pore dynamics in the Canatella model system in response to a 1 ms,
1 kV/cm exponential pulse.(A) The electric potentialφ(x, y) at select time points.White lines indicate
membrane regions with fractional aqueous areafAp > 10−5, with thicker lines corresponding to largerfAp.
(B) The pore density distributionn(rp, Θ) (pores per area perdrp) at select time points.(C) The applied
electric fieldEapp(t) on two time scales: the first 2µs of the pulse (left) and the entire simulation (right).
(D) The transmembrane voltage|∆φm(t)| atΘ = 90° (facing anode) and 270° (facing cathode) on time scales
corresponding to those in(C). (E) |∆φm(Θ)| at select time points (inset). (F) |∆φm(Θ, t)| during the pulse.
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Figure 8.5: Molecular transport in the Canatella model system in response to a 1 ms, 1 kV/cm exponential
pulse. (A) The relative concentration ˆγ(x, y) at select time points.White lines indicate membrane regions
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(E) Js,m(Θ, t) during (left) and after (right) the pulse.



256 Electroporation: Dynamics of Electrical, Molecular, and Pore Transport

side of the cell has fewer but on average larger pores than thecathodic side, the anodic side has

a greater ability to “buffer” ∆φm through the contraction of large pores [10]. In contrast, the ca-

thodic has predominantly small pores, which cannot contract belowrp ≈ rp,min, and therefore the

cathodic side has a more limited ability to buffer∆φm as the applied field decreases. As a result,

the cathodic∆φm begins to decrease long before the anodic∆φm. Specifically, the cathodic∆φm

reaches (decreases to) 0.25 V (half of the plateau∆φm ≈ 0.5 V) at t = 1.1 ms, whereas the anodic

∆φm reaches (decreases to) 0.25 V much later att = 2.4 ms. Thus,∆φm remains elevated on the

cathodic side for nearly twice as long as on the anodic side.

Note the significant changes in the pore density distribution associated with this electrical behavior.

By t = τpulse, the pore density distribution on the cathodic side, including both the polar and lateral

regions, collapses torp ≈ rp,min (Fig. 8.4B). In contrast, att = τpulse, the anodic side, including both

the polar and later regions, still has many large pores withrp ≈ rp,max (Fig. 8.4B).

During the Canatella pulse, which we may take to mean∼4τpulse, essentially all molecular transport

occurs through the cathodic side of the cell (Fig. 8.5A) because the calcein molecules drift in the

+y-direction. Uptake begins immediately after electroporation of the cathodic side (Fig. 8.5E). In

contrast to the Puc model system, for which the rate of uptakeis approximately constant (Fig. 8.3C,

D, and E), the rate of uptake in the Canatella system decreases rapidly in time (Fig. 8.5C, D, and E),

as the cathodic∆φm decreases (Fig. 8.4D, E, and F) and the pore density distribution collapses to

rp,min (Fig. 8.4B). Additionally, as the applied field decreases (Fig. 8.5B), the drift speed of calcein

decreases, and thus the rate at which calcein reaches the cathodic side of the cell decreases.

The transmembrane fluxJs,m during the pulse (Fig. 8.5D and E) is largest atΘ = 234° and 306°.

As in the Puc model system, theseΘ correspond to the positions of the transitions from CD to

(more) ED response shown in Fig. 8.4B.Js,m in these regions is much larger than at the ca-

thodic pole (Fig. 8.5D and E). For example, att = 0.2 ms, the peak value in the later regions

is Js,m = 1.57/(m2 s), whereas on the cathodic pole it is a much smaller (by a factor of ∼ 5)
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Js,m= 0.31/(m2 s). The relative difference between the two is larger than in the Puc model system

because the Canatella model system experiences a more CD response, and thus the pore density

distribution near the pole is strongly dominated by small pores (rp ≈ rp,min) (Fig. 8.4B) that impede

molecular transport to a much greater extent than large pores.

By t = 1 ms, Js,m is much smaller than att = 0.2 ms (Fig. 8.5D and E) because essentially all

pores on the cathodic side of the cell, including those in thelateral regions, have contracted to

rp,min (Fig. 8.4B) and thus significantly impede the transport of solute. Because all of the pores

are small,Js,m is approximately proportional to the pore density. Therefore, Js,m is largest at the

cathodic pole (Fig. 8.5D and E), which has a larger pore density than the lateral membrane regions

(Fig. 8.4B).

The post-pulse electrical and pore behavior in the Canatella model system is similar to that of the

Puc model system. Specifically,∆φm ≈ 0 V for many multiples of the pore resealing time constant

(τp = 4 s) (Fig. 8.4A and D). Eventually, after the vast majority ofpores have resealed, the resting

potential is re-established.

As in the Puc model system, post-pulse molecular transport in the Canatella model system occurs

through both the cathodic and anodic sides of the cell (Fig. 8.5D and E), and the transmembrane

flux Js,m is smaller than during the beginning of the pulse by∼5 orders of magnitude (Fig. 8.5D

and E). Post-pulse,Js,m is substantially larger on the cathodic side of the cell thanon the anodic

side because it scales approximately with pore density. Post-pulse transport continues until essen-

tially all pores reseal.

The total amount of post-pulse transport of calcein is quitesmall, much smaller than the amount of

post-pulse transport of lucifer yellow in the Puc model system. At the end of the pulse, the relative

intracellular concentration is ˆγi = 0.0142. Post-pulse, ˆγi increases to 0.0146. Thus, just 2.7 % of

the total transport occurs post-pulse. The reason that there is much less post-pulse transport of
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calcein than lucifer yellow is that calcein has a significantly larger charge (zs = −3.61) than lucifer

yellow (zs = −2), and thus calcein must overcome a much larger Born energy barrier to enter the

cell post-pulse.

8.3.5 Comparison of Model Results with Other Results

The model results presented here are in good general agreement with experimental and theoretical

results in the literature.

Several experimental studies [54–58] have examined the time course and location of molecular

transport into cells using fluorescent probes. It is important to note that most of these studies have

used intercalating dyes [59], like ethidium and propidium.These dyes fluoresce strongly when

bound to DNA, and therefore allow intracellular dye to be easily distinguished with “washing”

steps. However, because they tightly bind to DNA, the time course for transport of intercalating

dyes within the cell is much slower than of typical, non-intercalating dyes and molecules, like

lucifer yellow and calcein. Lucifer yellow and calcein are intrinsically fluorescent and thus ex-

tracellular dye must be washed away before the amount of intracellular dye can be determined.

Therefore, they are not useful for examining the time courseof transport.

Despite these differences, in most experiments the fluorescent probe is observed to predominantly

enter the side of the cell into which it electrically drifts during the pulse. I.e., (positively charged)

intercalating dyes predominantly enter the anodic side of the cell. This determination is made by

assessing the spatial distribution of fluorescence within the cell after the pulse. However, because

the time scale for post-pulse transport is relatively long based on both experiments [54–58] and

our model results (Figs. 8.2C and 8.4C), this delayed measurement approach appears reasonable.

Taking the Tekle et al. studies [54, 55] of ethidium (zs = +1) uptake as examples, the earliest

post-pulse fluorescence images (t ≈ 0.3 s) show fluorescence on the anodic side of the cell only,

while later images (t > 1.5 s) show fluorescence on both sides of cell, with the fluorescence of the
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cathodic side eventually approaching (qualitatively) that of the anodic side. This general timeline

of events is in agreement with what we expect based on our model results. Specifically, we expect

transport during the pulse to occur predominantly through the anodic side of the cell (because of

the drift direction of ethidium) and later post-pulse transport to predominantly occur through the

cathodic side (because it develops more pores). We expect significant post-pulse transport of ethid-

ium because it is singly charged.

The model results are also in good general agreement with other spatially distributed models of

electroporation with dynamic pores [4–8]. Krassowska and Filev [4] developed a model that rep-

resents discrete pores rather than continuum distributions of pores in radius space, as in our model.

Despite this basic difference in approach, the results are broadly consistent. Specifically, the results

of both models exhibit∆φm ≈ 0.5 V at poles following electroporation, somewhat elevated∆φm in

the lateral membrane regions, and the largest pores in the lateral membrane regions.

There are two major differences between our model results and those of Krassowska and Filev [4].

First, the largest pores in the Krassowska and Filev [4] model results are much larger (rp ≈ 400 nm)

than the largest pores here (rp = rp,max= 12 nm) because we place a specific constraint on pore size

[1, 10], based on the large content of protein in cell membranes [51]. Krassowska and Filev [4]

did not constrain the pore size. Additionally, we include electroporation asymmetry, which was

recently proposed by Esser et al. [8], and thus our model results exhibit greater asymmetry in the

pore density distribution and transmembrane voltage than the results of Krassowska and Filev [4].

Esser et al. [6] used a similar modeling approach to our approach here, and the results are in good

agreement. Specifically, both models exhibit∆φm ≈ 0.5 V at poles following electroporation and

the tendency of the membrane to buffer changes in∆φm as the applied field decreases during expo-

nential pulses. The primary difference between the results of Esser et al. [6] and those presented

here, is the inclusion of electroporation asymmetry [8] in our present model [1].
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8.4 Conclusions

We have described the responses of two model cell systems to applied electric pulses. Specifically,

we examined electrical transport, molecular transport, and pore dynamics in the Canatella and Puc

model systems [1] during and after pulsing.

The interaction between the electrical behavior, specifically the transmembrane voltage, and the

creation and evolution of pores resulted in heterogenous pore density distributions throughout the

plasma membrane. The polar membrane regions exhibited a pore creation-dominated response and

the lateral membrane regions exhibited a pore expansion-dominated response. The transmembrane

flux of solute was largest for the balanced regions located between the creation-dominated and

expansion-dominated regions, where the pores were large insize relative to the polar regions and

large in number relative to the lateral regions. The exact site of maximal uptake is expected to

depend on the applied electric pulse.

In this study, we examined the transport (uptake) of the fluorescent probes calcein and lucifer

yellow in response to pulses used by Canatella et al. [2] and Puc et al. [3]. However, we emphasize

that the basic methods [1] are general. The solute, cell system properties, and applied electric

pulses can be varied. Thus, the approach opens the possibility of in silico screening of candidate

electric pulses for specific applications.
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voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin.Hum Gene Ther,
19(11):1261–71, 2008.

[40] Cemazar, M., Golzio, M., Sersa, G., Hojman, P., Kranjc,S., Mesojednik, S., Rols, M., and Teissie, J.
Control by pulse parameters of DNA electrotransfer into solid tumors in mice.Gene Ther, 2009.

[41] Davalos, R.V., Mir, I.L.M., and Rubinsky, B. Tissue ablation with irreversible electroporation.Ann
Biomed Eng, 33(2):223–231, 2005.

[42] Nuccitelli, R., Pliquett, U., Chen, X.H., Ford, W., Swanson, R.J., Beebe, S.J., Kolb, J.F., and Schoen-
bach, K.H. Nanosecond pulsed electric fields cause melanomas to self-destruct.Biochem Bioph Res
Co, 343:351–360, 2006.

[43] Edd, J.F., Horowitz, L., Davalos, R.V., Mir, L.M., and Rubinsky, B. In vivo results of a new focal
tissue ablation technique: Irreversible electroporation. IEEE T Bio-Med Eng, 53(7):1409–1415, 2006.

[44] Garon, E.B., Sawcer, D., Vernier, P.T., Tang, T., Sun, Y., Marcu, L., Gundersen, M.A., and Koeffler,
H.P. In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a
local therapy for human malignancies.Int J Cancer, 121(3):675–682, 2007.

[45] Esser, A.T., Smith, K.C., Gowrishankar, T.R., and Weaver, J.C. Towards solid tumor treatment by
irreversible electroporation: Intrinsic redistributionof fields and currents in tissue.Technol Cancer
Res T, 6(4):261–273, 2007.

[46] Rubinsky, B., Onik, G., and Mikus, P. Irreversible electroporation: A new ablation modality–Clinical
implications.Technol Cancer Res T, 6(1):37–48, 2007.

[47] Nuccitelli, R., Chen, X., Pakhomov, A.G., Baldwin, W.H., Sheikh, S., Pomicter, J.L., Ren, W., Osgood,
C., Swanson, R.J., Kolb, J.F., Beebe, S.J., and Schoenbach,K.H. A new pulsed electric field therapy
for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence.
Int J Cancer, 125(2):438–45, 2009.



264 Electroporation: Dynamics of Electrical, Molecular, and Pore Transport

[48] Nuccitelli, R., Tran, K., Sheikh, S., Athos, B., Kreis,M., and Nuccitelli, P. Optimized nanosecond
pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single
treatment.Int J Cancer, 127(7):1727–36, 2010.

[49] Smith, K.C. and Weaver, J.C. Effects of hindrance and partitioning on ionic and molecular transport
through small lipidic pores (in preparation).

[50] Vasilkoski, Z., Esser, A.T., Gowrishankar, T.R., and Weaver, J.C. Membrane electroporation: The
absolute rate equation and nanosecond time scale pore creation. Phys Rev E, 74(2), 2006.

[51] Engelman, D.M. Membranes are more mosaic than fluid.Nature, 438(7068):578–580, 2005.

[52] Smith, K.C. and Weaver, J.C. Transmembrane molecular transport during versus after nanosecond
electric pulses (in preparation).

[53] Stewart, D.A., Gowrishankar, T.R., Smith, K.C., and Weaver, J.C. Cylindrical cell membranes in uni-
form applied electric fields: Validation of a transport lattice method.IEEE T Bio-Med Eng, 52:1643–
1653, 2005.

[54] Tekle, E., Astumian, R.D., and Chock, P.B. Electro-permeabilization of cell membranes: Effect of the
resting membrane potential.Biochem Bioph Res Co, 172(1):282–7, 1990.

[55] Tekle, E., Astumian, R.D., and Chock, P.B. Electroporation by using bipolar oscillating electric field:
An improved method for DNA transfection of NIH 3T3 cells.P Natl Acad Sci USA, 88(10):4230–4,
1991.

[56] Tekle, E., Astumian, R.D., and Chock, P.B. Selective and asymmetric molecular transport across
electroporated cell membranes.P Natl Acad Sci USA, 91(24):11512–6, 1994.

[57] Djuzenova, C.S., Zimmermann, U., Frank, H., Sukhorukov, V.L., Richter, E., and Fuhr, G. Effect of
medium conductivity and composition on the uptake of propidium iodide into electropermeabilized
myeloma cells.Biochim Biophys Acta, 1284(2):143–52, 1996.

[58] Sun, Y., Vernier, P., Behrend, M., Wang, J., Thu, M., Gundersen, M., and Marcu, L. Fluorescence
microscopy imaging of electroperturbation in mammalian cells. J Biomed Opt, 11(2), 2006.

[59] Wilson, W.D., Krishnamoorthy, C.R., Wang, Y.H., and Smith, J.C. Mechanism of intercalation: Ion
effects on the equilibrium and kinetic constants for the interaction of propidium and ethidium with
DNA. Biopolymers, 24(10):1941–61, 1985.



265

Chapter 9

An In Silico Study of Potential Mechanisms by Which

Extremely Large Pulsed Electric Fields Induce Apoptosis in

Cells

Abstract

Large magnitude pulsed electric fields have been shown to induce apoptosis in cells, but the ba-
sic mechanisms remain poorly understood. Here we use a quantitative, mechanistic computational
model of cell electroporation to investigate two candidatemechanisms: (1) release of calcium from
the endoplasmic reticulum (ER) into the cytoplasm through electropores in the ER and (2) release
of pro-apoptotic proteins from the mitochondrial intermembrane space (IMS) through electropores
in the outer mitochondrial membrane (OMM). First, we present the model cell system, which
includes realistic representations of the ER and mitochondria. Second, we describe the supra-
electroporation response, in which a large number of small pores (∼1 nm radius) form in mem-
branes throughout the cell, including both the plasma membrane and organelle membranes. Third,
we examine the release of calcium from the ER through electropores, and show that the release
is large, occurs predominantly post-pulse, and results in alarge increase in cytoplasmic calcium
concentration. Fourth, we examine the release of cytochrome c from mitochondria through elec-
tropores, and show that the release is small, occurs entirely during pulsing, and is highly sensitive
to pulse duration. Experimental studies have shown that a large number (∼102 – 103) of pulses is
required to reliably induce apoptosis. Thus, our model results and interpretation of experimental
results in the literature suggest that calcium release alone is unlikely to be the sole mechanism
leading to apoptosis. Instead, the large number of pulses required to induce apoptosis is consistent
with the need to transport a large species through OMM electropores. A solely calcium-based
mechanism of apoptosis induction is inconsistent with thisobservation, as the model results and
experimental results in the literature both support a long duration (minutes) increase in cytoplasmic
calcium concentration from just a single pulse. However, a pro-apoptotic protein-based mechanism
of apoptosis is consistent with experimental observations, as our model describes a small release
per pulse and therefore the need for many pulses to achieve a total release of the magnitude required
to induce apoptosis.
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9.1 Introduction

Within the past decade, extremely large magnitude pulsed electric fields have been shown to induce

apoptosis in cells in vitro [1–8] and in vivo [9–12]. Not surprisingly, there is considerable interest

in both elucidating the basic mechanisms by which these pulses lead to cell death and in potential

clinical applications of these pulses, such as tumor treatment [9–12].

Here, we use a quantitative, mechanistic model of electroporation with concomitant molecular

transport [13] to investigate two possible mechanisms by which large magnitude electric pulses

may induce apoptosis: (1) release of calcium from the endoplasmic reticulum (ER) and result-

ing increase in cytoplasmic calcium concentration and (2) direct release of pro-apoptotic proteins

from mitochondria into the cytoplasm. Here, we focus on the release of cytochromec while

noting that there are other pro-apoptotic proteins that maybe released from mitochondria, such as

SMAC/DIABLO and OMI/HTRA2 [14]. That is, we take cytochromec to approximately represent

these proteins (“death molecules”). Importantly, each of these candidate mechanisms, increased

cytoplasmic calcium concentration and release of pro-apoptotic proteins from mitochondria, is

involved in natural, biochemically controlled apoptosis,though the basic details and pathways in-

volved differ.

The fundamental response of cell membranes to large magnitude electric pulses is hypothesized

to involve the creation of a large number of small pores (radius rp ≈ 1 nm) in cell membranes

(plasma membrane (PM) and organelle membranes), in a process termed supra-electroporation

[15–22]. What is striking about supra-electroporation is that its effects mimic several important

aspects of natural apoptosis.

First, calcium, which plays an important role in apoptosis [23–29], is released from the intracel-

lular stores in response to large magnitude electric pulses[4, 30, 31, 31–35], and the increase in

cytoplasmic calcium concentration can persist for a time scale of minutes [32].
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Second, a critical step in apoptosis is mitochondrial outermembrane permeabilization (MOMP)

[14, 36, 37] and the subsequent release of pro-apoptotic proteins into the cytoplasm. Indeed, in

their comprehensive review article, Kroemer et al. [36] state that “mitochondrial membrane perme-

abilization is frequently the decisive event that delimitsthe frontier between survival and death”.

The underlying mechanisms of MOMP remains unclear [14, 37].Candidate mechanisms include

the formation of protein channels [38, 39] or lipidic pores [40–42] in the outer mitochondrial mem-

brane (OMM). That the OMM pores may be lipidic is particularly intriguing, as it implies a pore

structure similar to the electropores that models have shown to form in mitochondrial membranes

in response to large pulsed electric fields [15, 16, 18, 20].

Third, loss of the inner mitochondrial membrane (IMM) resting potential during apoptosis inter-

feres with the ability of mitochondria to perform their basic biological functions [14, 43]. Electro-

poration models have shown that pore formation in mitochondrial membranes results in a loss of

the resting potential as pores shunt resting potential sources [15, 16, 18, 20].

Given these fundamental similarities, we hypothesize thatlarge magnitude electric pulses may

induce apoptosis by causing a supra-electroporation response that replicates critical features of

natural apoptosis and thereby triggers downstream apoptotic pathways.

9.2 Methods

9.2.1 Basic Methods

In a previous study [13], we developed a mechanistic, 2-D model of cell electroporation with con-

comitant molecular transport and demonstrated that the model predictions are in excellent agree-

ment with quantitative experimental measurements [44, 45]of total molecular uptake (during and

after pulsing), for which the applied electric pulses collectively span a wide range of durations

(50µs – 20 ms) and magnitudes (3 kV/cm – 0.3 kV/cm).
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Here, we use the same basic modeling approach [13] to describe the response of a model cell sys-

tem with organelles to applied electric pulses. The basic approach involves discretizing (meshing)

the system and describing electrical and molecular transport between adjacent nodes in terms of

the mesh geometry, transport parameters, and the electric potentialφ and solute concentrationγ of

the nodes. For node connections that span the membrane, a discretized pore radius space is used

to describe the dynamic behavior of pores (pore creation, expansion, contraction, and destruction)

in terms of the pore density distributionn(rp). The dynamic behavior of pores is largely deter-

mined by the local transmembrane voltage∆φm, and in turn, the electrical and molecular transport

through the membrane is largely determined by the local poredensityn(rp). Thus, the electrical,

molecular, and dynamic pore responses are coupled.

The transport relations are assembled into a large system ofnonlinear equations and solved using

MATLAB (version 7.8, 2009, http://www.mathworks.com). MATLAB is also used for subsequent

analysis of the simulation results (model solutions).

9.2.2 Model Cell System

The model cell system includes a nucleus, ER, and four mitochondria (Fig. 9.1). The 2-D cell is

centered in a 200µm × 200µm region of electrolyte. The anode is located along they = 100µm

boundary, and the cathode is located along they = −100µm boundary. Thus, when a pulse is

applied, the electric field points in the−y-direction.

The cell has radiusrcell = 8µm and the system has depthd = (4/3)rcell = 10.67µm, such that the

cylindrical cell has the same volume as a spherical cell of the same radius. The nucleus is circular

with 3µm radius. The ER has large membrane area and a spatial extent that is similar to that of the

nucleus. The mitochondria are elliptical with 1µm length and 0.5µm width. Each mitochondrion

has an OMM that is elliptical and an IMM with cristae. Note that while the system has only 4

mitochondria, each one has system depth (d = 10.67µm). Thus, assuming mitochondria have an

actual depth equal to their width (0.5µm), each of the mitochondria effectively represents∼21 mi-
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(A) Model cell system
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(B) Mesh of model cell system
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Figure 9.1: Model cell system and mesh.(A) The model cell system is shown at level of
the cell (left), ER (center), and a mitochondrion (right). The cell has radiusrcell = 8µm
and is centered in a 200µm × 200µm region of electrolyte. Only the vicinity of the cell
is shown.(B) Mesh of the model cell system with fields of view corresponding to those in
(A).

tochondria, for∼84 total. Nonetheless, this still underestimates the totalnumber of mitochondria

in a typical cell. Taking 0.045 to be a typical volume density of mitochondria [46, 47], acell of the

size considered here has∼500 mitochondria. This underrepresentation of the number of mitochon-

dria is unlikely to significantly affect the main conclusions of this study because we correct forthis

by appropriately scaling the amount of cytochromec per mitochondrion, as described below.

The initial concentrations of calcium in the cytoplasm and organelles are set in accordance with

published values, as indicated in Table 9.1. Here the initial concentration of calcium in the

extracellular medium is zero. Calcium is assumed to have radius rs = 0.34 nm [48], charge
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Table 9.1: Model System Parameters

Symbol Value Description and Source
PM NM ERM OMM IMM

∆φm,rest −90 0 90 0 −200 Membrane resting potential (mV) [18]
σm 9.5 950 9.5 950 47.5 Membrane conductivity (nS/m) [18]
fprot 0.5 0.5 0.5 0.5 0.75 Membrane protein fraction [18]

ECF C N ER IMS MM
γCa,0 0 0.2 0.2 500 0.31 0 Initial calcium concentration (µM) [53, 54]
γCytc,0 0 0 0 0 905 0 Initial cytochromec concentration∗ (µM)
∗Value selected or calculated as described in main text. PM: plasma membrane. NM: nuclear membrane.
ERM: endoplasmic reticulum membrane. OMM: outer mitochondrial membrane. IMM: inner mitochon-
drial membrane. ECF: extracellular fluid. C: cytoplasm. N: nucleus. ER: endoplasmic reticulum. IMS:
intermembrane space of mitochondria. MM: mitochondrial matrix.

(valence)zs = +2, extracellular diffusivity Ds,i = 79.2 m2/s [49], and intracellular diffusivity

Ds,i ≈ Ds,e/4 = 19.8 m2/s. (The diffusivity of small species in the cytoplasm is typically∼25 % of

the aqueous diffusivity [50–52].)

Cells contain∼ 70 fg cytochromec [55, 56]. Because the molecular mass of cytochromec is

12.2 kg/mol [48], this amounts to 5.7× 10−18 mol per cell. We distributed this amount of cy-

tochromec evenly among the intermembrane spaces (IMS) of the four mitochondria in the sys-

tem, which equates to an initial IMS concentration of 905µM cytochromec. The cytochromec

molecules were approximated as cylindrical with radiusrs = 2.04 nm, lengthls = 4.27 nm, and

chargezs = +9 [48]. We use extracellular diffusivity Ds,i = 13.5× 10−11 m2/s [48], and intracel-

lular diffusivity Ds,i ≈ Ds,e/4 = 3.38× 10−11 m2/s. The structure of cytochromec is shown in

Fig. 9.2.

All electroporation parameters are the same as in our previous study [13], except as noted below.

We assume that the PM exhibits asymmetric electroporation [57], characterized by the asymmetric

pore creation constantα = 11 kT/V, as determined in our previous study [13]. However, we as-

sumeα = 0 kT/V for the organelle membranes (i.e., no asymmetry), as the orientation and degree

of asymmetric electroporation has not been determined for these membranes. In contrast to our

previous model [13], we assume for simplicity that the membrane tension is constant, rather than a

function of pore density. This assumption is reasonable, because under the conditions considered

here (low membrane tension and small pores), the effect of membrane tension on pore dynamics is
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Figure 9.2: Cytochromec structure. Cytochromec is approximated as cylindrical with ra-
diusrs = 2.04 nm and lengthls = 4.27 nm [48]. The radius of cytochromec is significantly
larger than the minimum-size pore radius (rp,min ≈ 1 nm) and is highly charged (zs = +9)
[48]. As a result, it is only transported through pores during pulsing, when a small fraction
of pores expand sufficiently to accommodate its size.

negligible [58].

9.2.3 Applied Electric Pulses

Trapezoidal pulses with durationstpulse = 100 ns, 300ns, and 1000 ns and magnitudeEapp =

3 MV/m were applied to model cell system (Fig. 9.3). All three pulses have the same rise-time

trise = 30 ns and fall-timetfall = 30 ns. Note that these pulses, with the exception of the 1000 ns

pulse, are typical of the pulses that Nuccitelli et al. [9, 11, 12] have used to treat melanomas.
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Figure 9.3: Trapezoidal electric pulses. Trapezoidal pulses with durations tpulse = 100 ns,
300ns, and 1000 ns (inset) and magnitudeEapp= 3 MV/m. All three pulses have the same
rise-timetrise = 30 ns and fall-timetfall = 30 ns.
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9.2.4 Simplifying Assumptions

Our model has two important simplifying assumptions. First, we assume that binding can be ne-

glected. Under normal physiologic conditions most intracellular calcium is bound because the

cytoplasm has a large calcium binding capacity [59]. The calcium binding capacity of the ER is

also large, though much smaller than that of the cytoplasm [59]. However, the ER can release the

majority of its calcium into the cytoplasm on a time scale of seconds [60]. This implies that binding

of calcium within the ER does not significantly affect total calcium release, the subject of this study.

Cytochromec electrostatically interacts with cardiolipin on the outerside of the IMM [14, 43, 61].

However, the ionic strength in the IMS following permeabilization of the OMM is hypothesized

to be sufficient to disrupt these electrostatic interactions [61]. The large magnitude electric fields

here may also disrupt these interactions. Other pro-apoptotic proteins, like SMAC/DIABLO and

OMI/HTRA2, do not exhibit similar interaction with the IMM [61].Given these considerations, it

is reasonable to neglect cytochromec binding here.

The second simplifying assumption is that active transportmechanisms (e.g., ions pumps) can be

ignored. Intracellular calcium concentration oscillations are a well known mechanism of intracel-

lular signaling that results from active and passive transport of calcium within the cell [53]. The

frequency of these oscillations is typically∼10−3 – 1 Hz. Thus, the shortest characteristic time of

oscillations is∼1 s. This is approximately the upper limit of the durations weconsider here. Thus,

to first order it is reasonable to neglect the impact of activetransport mechanisms here.

9.3 Results and Discussion

9.3.1 Supra-electroporation of Cell Membranes

Supra-electroporation is the creation of many small pores (rp ≈ rp,min = 1 nm) in cell membranes

(PM and organelle membranes) in response to large pulsed electric fields [15–22]. The supra-

electroporation response is in marked contrast to the conventional electroporation response, in
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which pores predominantly form in the PM and may expand significantly [13, 62–67].

Elevated transmembrane voltage∆φm is the driving force for both pore creation and pore expansion

[58]. As pores are created and expand, they cause∆φm to decrease by increasing the membrane

conductance. As a result, both pore creation and pore expansion tend to diminish the driving force

(∆φm) for both process. Pore creation and expansion can thus be seen as competing to reduce∆φm.

Whether pore creation or pore expansion predominates in decreasing∆φm depends on the applied

pulse.

When the increase in the applied field magnitude is very fast,as it is for the pulses considered

here, the cell membranes charge rapidly and the membrane response is dominated by pore creation

[58, 67]. Pore creation occurs in a quick burst that causes the transmembrane voltage∆φm to reach

its peak and then plunge to∼0.5 V on a time scale much too short for pore to expand. Moreover,

after reaching∆φm ≈ 0.5 V, the driving force for pore expansion disappears and there is little sub-

sequent pore expansion [58].

Post-pulse,∆φm ≈ 0 V until the large majority of pores reseal because pores shunt resting potential

sources. Pores remain minimum-size with radiusrp ≈ rp,min = 1 nm until resealing. The process

of resealing is characterized by an assumed exponential time constantτp = 4 s [13]. Thus,∆φm

remains small and pores persist for long after the pulse.

The essential features of supra-electroporation are illustrated in Fig. 9.4, which shows the PM pore

density distribution (pores per area perdrp) (Fig. 9.4A), spatial extent of electroporation (Fig. 9.4B,

C), and the concentration of calcium (Fig. 9.4B) and cytochromec (Fig. 9.4C) throughout the cell

system at select time points in response to a 1000 ns, 3 MV/m applied pulse. Note that the 1000 ns

pulse shown in some sense “includes” the 100 ns and 300 ns pulses (minus their fall-times).

Most pore creation occurs within 20 – 50 ns of the pulse onset (not shown). The spatial extent of
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Figure 9.4: Cell system response to a 1000 ns, 3 MV/m electric pulse.(A) The PM pore
density distribution (pores per area perdrp) at select time points. Note that the anodic pole
hasΘ = 90° and the cathodic pole hasΘ = 270°. (B) Concentration of calcium at select
time points shown at the level of the cell (left) and the ER (right). (C) Concentration of
cytochromec at select time points shown at the level of the cell (left) and a mitochondrion
(right). White lines indicate membrane regions with fractional aqueous areafAp > 10−5,
with thicker lines corresponding to largerfAp.
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pore formation is considerable, with significant pore formation in nearly all membrane regions

(Fig. 9.4B, C). The only membrane regions without pores are those that are parallel to the electric

field. In these regions, the membrane does not charge significantly, and thus pores are not cre-

ated. Regions of membrane that are nearly (but not quite) parallel to applied field charge slowly

and electroporate later than other membrane regions. Indeed, these slowly charging regions are

the only regions that exhibit significant pore expansion (Fig. 9.4A). (Note that these larger pores

contribute little to molecular transport because they are few in number and oriented nearly parallel

to the applied field. Thus, drift-dominated transport during pulsing is not directed through these

membrane regions as it is in membrane regions that are perpendicular to the applied field.)

Pore expansion is minimal in most membrane regions, with nearly all pores distributed around

rp ≈ 1 nm. Only an extremely small fraction of pores expand beyond∼2 nm (Fig. 9.4A). Note that

only the PM pore density distribution is shown in Fig. 9.4A, but it is representative of the response

of organelle membranes as well. That the pores remain small has significant implications for the

transmembrane (transpore) transport that results from large magnitude pulses [22].

9.3.2 Calcium Release from the Endoplasmic Reticulum

The model results show that supra-electroporation of the ER(Fig. 9.4B) facilitates a large ef-

flux of calcium. Essentially all of this transport occurs post-pulse through minimum-size pores

(rp ≈ 1 nm). While the rate of calcium transport is greater during the pulse than after, the total

time available during the pulse is much smaller than the timeavailable post-pulse. As result only

a small fraction of the total transport occurs during the pulse.

Figure 9.5 shows how the concentration of calcium in the ERγCa,ER and cytoplasmγCa,c change

with time for the three pulses. The change inγCa,ER is minimal during the pulse. Indeed theγCa,ER

differences among the three pulses are barely perceptible (Fig.9.5). However, post-pulseγCa,ERde-

creases tremendously. Concomitant with decrease inγCa,ERis the initial increase inγCa,c. However,

γCa,c increases only transiently because the influx into the cytoplasm from the ER is eventually
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Figure 9.5: Calcium concentration in the ER and cytoplasm. Supra-electroporation of the
cell membranes by 100 ns, 300 ns, and 1000 ns, 3 MV/m pulses leads to a predominantly
post-pulse efflux of calcium from the ER into the cytoplasm and from the cytoplasm into the
extracellular space. Byt ≈ 10 s, the calcium concentration is uniform across the three com-
partments. The rate and total amount of calcium release is independent of pulse duration
(inset).

exceeded by the efflux of calcium from the cytoplasm to extracellular space. By∼10 s post-pulse,

the concentration of calcium in the ER, cytoplasm, and extracellular space reach equilibrium (uni-

formity) (Figs. 9.4B and 9.5).

Thus, supra-electroporation enables calcium to transportbetween the ER and cytoplasm and be-

tween the cytoplasm and extracellular space. This has important implications. Here, we assume

that the extracellular concentration of calcium is zero. However, in vivo, the typical concentration

of calcium in the extracellular fluid is∼2.5 mM [68]. Therefore, these results suggest that in vivo

γCa,c would increase as a result of influx from the ER and influx from the extracellular fluid. In

that case, the initial increase inγCa,c shown in Fig. 9.5 would not be followed by a rapid decrease.

Rather,γCa,c would continue to increase in the short term, until reachingan equilibrium with ER

and extracellular fluid. Longer term, active cell mechanisms that are not represented in our model

would be expected reduceγCa,c.

The model calcium release results are broadly consistent with the experimental measurements of

White et al. [32]. They measured the concentration of calcium in the cytoplasm following the ap-
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plication of 60 ns pulsed electric fields with magnitudes in the range 0.4 – 1.5 MV/m. Importantly,

they performed these experiments both with and without extracellular calcium. For both cases,

they reported [32] an immediate post-pulse increase inγCa,c. When the experiment was performed

without extracellular calcium (and with extracellular chelating agent EGTA), the initial increase

in γCa,c was followed by a relatively rapid decrease inγCa,c and an asymptotic approach to zero

concentration. The decay inγCa,c appears approximately exponential with a time constant∼30 s.

When the experiment was performed with extracellular calcium, γCa,c remained significantly ele-

vated (much higher than the initialγCa,c), decreasing only slightly from its peak over the∼100 s

time scale of the measurements.

The primary differences between our model results (Fig. 9.5) and the white etal. [32] experimental

results are in the magnitude and time scale of the changes inγCa,c. Specifically, the peakγCa,c pre-

dicted by our model is much larger than the peak measured by White et al. [32] and the time scale

of the subsequent depletion ofγCa,c is significantly shorter in our model results. These differences

likely result from the absence of calcium binding and buffering in our model. We expect that the

inclusion of these effects would blunt changes in concentration and slow the rate which calcium is

transported.

Nonetheless, both the model results and the White et al. experimental results are consistent with

significant transmembrane transport of calcium in responseto large applied electric fields. In the

absence of extracellular calcium, the increase inγCa,c is transient as the stores of calcium initially

released from the ER eventually find there way into the extracellular fluid. In the presence of

extracellular calcium (e.g., in vivo), the increase inγCa,c is long-lived as the ER and extracellular

calcium both contribute to the increase inγCa,c. We speculate that active transport mechanisms

may eventually restoreγCa,c to normal physiologic levels, though this may be difficult on the time

scale for which pores remain in the membranes because they enable passive calcium transport (i.e.,

down transmembrane concentration gradients) that counteract the action of active transport mech-

anisms (i.e., transporting calcium into the ER and extracellular space against the transmembrane
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concentration gradients).

9.3.3 Cytochromec Release from Mitochondria

The model results show that supra-electroporation of the mitochondria (Fig. 9.4C) facilitates a

small amount of cytochromec release into the cytoplasm. In contrast to the release of calcium from

the ER, which occurs predominantly post-pulse and in large amounts, the release of cytochrome

c from mitochondria occurs entirely during pulsing and in small amounts. Unlike calcium, which

is relatively small and weakly charged, cytochromec is large and highly charged. As a result, it

cannot pass through the small pores that exist in the membrane post-pulse. Therefore, the total re-

lease of cytochromec is limited to the small amount that occurs during the appliedpulse (Fig. 9.6).

Figure 9.6 shows how the concentration of cytochromec in the cytoplasmγCytc,c changes with

time for the longer two of the three pulses applied (i.e., 300ns and 1000 ns). The 100 ns pulse was

also examined, but the resultingγCytc,c < 1 pM. Figure 9.6A showsγCytc,c for 10 ns to 10 s, and

Fig. 9.6B showsγCytc,c during (and slightly after) the pulses. It is clear from Fig.9.6A that there

is no post-pulse release of cytochromec. Because of its size and charge, all cytochromec releases

occurs during the applied pulses.

The model results show that pulse duration has a large impacton the amount of cytochromec

released.γCytc,c is 5.4× 10−11 M after the 300 ns pulse and 9.3× 10−9 M after the 1000 ns pulse

(Fig. 9.6). Thus, while the 1000 ns pulse is∼3.3 times longer than the 300 ns pulse, the amount of

cytochromec released is 170 times larger.

There are two primary reasons why longer duration pulses result in a highly nonlinear increase in

cytochromec release. First, pore creation and (very limited) expansionrequires a finite amount of

time to occur (for a given applied field magnitude). Second, cytochromec requires time to drift to

the inner side of the OMM. Upon reaching the OMM, only a small fraction of the cytochromec

is transported through the OMM pores into the cytoplasm. Therest of cytochromec accumulates
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Figure 9.6: Cytochromec concentration in the cytoplasm(A) during and after pulsing and
(B) during pulsing. Supra-electroporation of the OMM by 300 ns and 1000 ns, 3 MV/m
pulses leads to release of cytochromec during pulsing only (no post-pulse transport). The
total amount of cytochromec released is highly dependent on pulse duration (inset), with
the 1000 ns pulse resulting in much more cytochromec release than the 300 ns pulse.

on the inner side of the OMM. As time passes, more cytochromec reaches the inner side of the

OMM and accumulates. This accumulation leads to an increasein the gradient in cytochromec

concentration across the OMM, which in turn results in a larger rate of cytochromec transport

through the pores in the OMM. Thus, the accumulation of solute on the inner side of the OMM

increases the local supply concentration for transmembrane transport. Because the concentration

on the inner side of the OMM continues to increase during the pulse [69], the rate of cytochrome

c transport also continues to increase. Note that this local interfacial accumulation is general and

applies to all solutes, not just cytochromec.

That cytochromec is not transported post-pulse is consistent with experimental observations that

short pulses results in minimal (i.e., less than measurement threshold) uptake of fluorescent probes

[6, 31, 35, 70, 71], such as propidium. These probes are far smaller and much less charged than

cytochromec [48]. Thus, we expect that the post-pulse transport of cytochromec is even less than

that of these probes.

The release of cytochromec into the cytoplasm has been reported in response to large magnitude
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pulses [5, 8], observed long after pulsing. It is thus unclear whether the release occurs through

electropores in the OMM or as a downstream step in apoptosis.

If cytochromec release does occur through electropores, then the model results suggest that many

pulses would be required to release an amount sufficient to induce apoptosis. Experiments have

shown that microinjection of cytochromec into cells can result in apoptosis [55, 56, 72, 73]. The

required cytoplasmic concentration of cytochromec is ∼10 – 20µM [72, 73], which amounts to

most of the cytochromec in a cell. However, given the simultaneous electroporation-mediated

release of calcium from the ER, it is conceivable that the total release of cytochromec through

electropores required to induce apoptosis is somewhat smaller because of an amplification loop

between calcium and cytochromec [43].

9.3.4 Implications for Apoptosis Induction

Calcium is well-known to play an important role in apoptosisinduction generally [23–29]. Some

studies have speculated [6, 10] that increases in cytoplasmic calcium concentration may contribute

to the induction of apoptosis in cell exposed to large pulsedelectric fields. Such increases in in-

tracellular calcium have been reported in a number of experimental studies [4, 30, 31, 31–35]. In

an early study, Beebe et al. [4] reported that calcium is not required for large magnitude pulses to

induce apoptosis. In their experiments [4], they found no significant difference in caspase activa-

tion between cells that had and had not been preloaded with the calcium chelating agent BAPTA

before pulsing. We agree with their assessment. Based on ourresults here and interpretation of ex-

perimental observations that have been reported since the Beebe et al. study [4], it appears unlikely

that pulsed electric fields induce apoptosis by elevating cytoplasmic calcium concentration alone.

The model results (Fig. 9.5) exhibit a large release of calcium that is independent of duration for the

pulses considered here, consistent with experimental observations of significantly elevated cyto-

plasmic calcium concentration persisting for>100 s when cells are electroporated in the presence

of extracellular calcium [31, 32], as in in vivo conditions.Yet a number of studies have reported



9.3 Results and Discussion 281

that extremely large numbers of pulses (of order 10 – 1000) are required to achieve significant ef-

fects [7–9, 11, 12, 71]. For example, in their 2006 study, Nuccitelli et al. [9] found that applying

100 pulses (300 ns, 2 MV/m (nominal) each) to tumors in vivo led to a much larger reduction in

tumor size than applying 10 pulses. In their more recent 2010study, Nuccitelli et al. [12] applied

2000 pulses (100 ns, 3 MV/m each). Given that the time scale for elevated cytoplasmic calcium

concentration following a single pulse is on the order of minutes [32], the need for such a large

number of pulses is inconsistent with induction of apoptosis resulting from elevated cytoplasmic

calcium concentration alone. Moreover, Nuccitelli et al. [12] reported greater efficacy when ap-

plying pulses at 7 Hz than at 1 Hz. Yet, applying 2000 pulses at1 Hz takes seven times longer than

applying 2000 pulses at 7 Hz (2000 s vs. 286 s), which implies that the total duration of elevated

cytoplasmic calcium should be much longer for the 1 Hz treatment than for the 7 Hz treatment.

Thus, if calcium is the primary actor in inducing apoptosis,we would expect that the 1 Hz treat-

ment would be more effective, but it is not.

Our results here suggest that the need to apply large numbersof pulses to achieve maximal effi-

cacy is consistent with a larger solute being involved in inducing apoptosis induction in response

to pulsed electric fields. That solute could be cytochromec, another pro-apoptotic protein, or some

other solute altogether. Given available results, it is simply not clear.

What is clear is that transmembrane (transpore) transport (release) of larger solutes due to short

duration, large magnitude pulses (1) occurs entirely during pulsing (Fig. 9.6) and (2) occurs in

small amounts. (This basic conclusion is consistent with experimental observations of minimal

transport of fluorescent probes in response to these pulses.) Thus, to achieve significant transmem-

brane (transpore) transport of large solutes using large magnitude, short duration pulses requires

many pulses.

There is a straightforward means of testing the hypothesis that the release of a larger solute is

involved in apoptosis induction by pulsed electric fields. Figure 9.6 shows that the relationship
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between cytochromec release and pulse duration is highly nonlinear, and we expect that this basic

relationship holds for other large solutes, i.e., larger than the minimum-size pores characteristic

of supra-electroporation. Thus, if a large solute is involved in apoptosis induction, then far fewer

pulses of longer duration (e.g., 1000 ns) should be requiredthan pulses of shorter duration (e.g.,

300 ns) to induce apoptosis.

As yet, experimental support for this hypothesis is somewhat mixed and incomplete. In a 2003

paper, Beebe et al. [4] reported greater caspase activation(20 minutes after pulsing) in both Jurkat

and HL60 cells in response to a single 300 ns, 2.6 MV/m pulse than in response to a single 60 ns,

6 MV/m pulse or a single 10 ns, 15 MV/m pulse. Similarly, in a 2004 paper, Beebe et al. [31]

reported much greater caspase activation (1 hour after pulsing) in response to 5 300 ns, 2.6 MV/m

pulses than in response to 5 60 ns, 6 MV/m pulses. However, Hall et al. [8] reported similar cas-

pase activation (45 minutes after pulsing) in response to 10300 ns, 6 MV/m pulses and 50 60 ns,

6 MV/m pulses. We suspect that experiments that examine the response to pulses that differ more

significantly in duration would yield clearer results.

A final potential mechanism by which large magnitude pulses may induce apoptosis is by con-

tributing to osmotic rupture of mitochondria and concomitant release of pro-apoptotic proteins.

According to Garrido et al. [74] and Kroemer et al. [36], permeabilization of the IMM may con-

tribute to water influx into the mitochondrial matrix, leading to distention, OMM rupture, and

release of pro-apoptotic proteins into the cytoplasm. It isplausible that large magnitude pulses

could lead to apoptosis by a similar mechanism since such pulses do electroporate the IMM, as

shown in Fig. 9.4. However, as in the case of calcium release,it is unclear why hundreds or thou-

sands of pulses would be required to achieve membrane rupture, as even a single pulse results in

supra-electroporation of the mitochondrial membranes (Fig. 9.4).
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9.4 Conclusions

We have described the response of a model cell system with organelles to 3 MV/m pulsed electric

fields with durations of 100 ns, 300 ns, and 1000 ns. These pulses cause supra-electroporation of

the plasma and organelle membranes. This leads to a large post-pulse release of calcium from

the endoplasmic reticulum and a concomitant increase in cytoplasmic calcium concentration that

is independent of pulse duration. These pulses and the resulting supra-electroporation also lead

to a small amount of cytochromec release from mitochondria during pulsing and concomitant

increase in cytoplasmic cytochromec concentration that depends strongly on pulse duration, with

the 1000 ns pulse resulting in the most cytochromec release, by far.

Our model results suggest that the increase in cytoplasmic calcium resulting from the applica-

tion of large magnitude pulses is unlikely to be the sole cause of apoptosis induction by these

pulses. Rather, our model results, coupled with the experimental observation that large numbers

of pulses are required to achieve significant cell killing, are consistent with apoptosis involving the

electroporation-mediated release of a larger solute, suchas cytochromec or other pro-apoptotic

proteins.
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Chapter 10

Conclusions

In this thesis, we developed a robust, mechanistic model of cell electroporation with concomi-

tant molecular transport. The model yields quantitative, mechanistic descriptions of electrical

transport, electrodiffusive molecular transport, and pore creation, evolution, and destruction. The

comprehensive cell electroporation model, which integrates these basic mechanisms, provides new

methods and insights into the complex processes of electroporation and electroporation-mediated

transport.

The key advantages of the model:

• The model features robust mathematical characterizationsof electrical and molecular

transport. Thus, direct comparisons can be made between model results and experimen-

tal results. This is essential for model validation and generation of experimentally testable

predictions.

• The model has been validated against quantitative experimental results in the litera-

ture. Specifically, the descriptions of pore conductance and poreenergy have been validated

against the individual pore conductance measurements of Melikov et al. [1], and the com-

prehensive cell model predictions of net molecular transport have been validated against the

many experimental uptake measurements of Canatella et al. [2] and Puc et al. [3].

• The model simulates electroporation dynamics that are difficult to assess experimen-

tally. Many interesting and important aspects of electroporationoccur on time scales and

length scales that are extremely difficult to investigate experimentally. The model enables

calculation of electric potential, solute concentration,and pore density throughout the sys-
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tem on time scales ranging from nanoseconds to minutes with alevel of spatial and temporal

resolution that cannot be achieved by experimental methods. As a result, the model results

provide new insights into the underlying dynamics that leadto experimentally observable

endpoints.

• The model enables screening of electric pulse waveforms forparticular applications.

Systems and solutes of interest for a particular application can be represented in silico. The

model can then be used to find optimal electric pulse waveforms for the application, e.g.,

maximal delivery of a biologically active solute. This approach does not replace experi-

ments but enhances planning, guiding, and interpreting experiments.

It is our sincere hope that the theoretical framework provided by this model will further understand-

ing, development, and optimization of both existing and emerging applications of electroporation.
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Chapter 11

Appendix

11.1 Temperature Rise in Electrolyte

The temperatureT of the electrolyte in a system places a fundamental bound on the duration of

pulse at a given field strength. Beyond∼42◦C, cells are irreparably damaged .

The temperature rise∆T in response to a field with durationt and magnitudeE is

∆T =
σ

s
E2t, (11.1)

whereσ ands are the conductivity and volumetric heat capacity of the electrolyte, respectively.

Note that it is the maximum temperature reached that limits the pulse duration at a given applied

electric field strength, not the temperature rise. If the initial electrolyte temperature is 37◦C, then

the maximum allowable temperature rise is 5◦C. However, if the initial electrolyte temperature is

17◦C, then the maximum allowable temperature rise is 25◦C.

The temperature rise (Eq. 11.1) depends on the conductivityand volumetric heat capacity of the

electrolyte. For the purposes of making calculations, we use typical conductivity valueσ = 1 S/m

and volumetric heat capacity values = 4.18× 106 J/(m K).

Figure 11.1 shows the temperature rise∆T calculated using these parameters for pulse durations

tpulseranging from 1 ns to 1 s and pulse electric field magnitudes ranging from 103 V/m to 107 V/m.
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Figure 11.1: Temperature rise resulting from rectangular electric pulses. The temperature
rise∆T is shown for a range of pulse durationstpulse and magnitudesEpulse for electrolyte
with conductivityσ = 1 S/m and volumetric heat capacitys = 4.18× 106 J/(m K). The
maximum temperature rise shown is∆T = 25◦C. For pulses resulting in∆T > 25◦C, ∆T
is shown aswhite.

This spans the full range typically used for electroporation.




