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Abstract

Consider a model of a dynamical queue with deterministic arrival and service rates,
where the service rate depends on the server utilization history. This proposed queue-
ing model occurs in many practical situations. for example in human-in-the-loop sys-
tems where widely accepted empirical laws describe human performance as a function
of mental arousal, which increases when the human is working on a task and decreases
otherwise.

Formal methods for task management in state-dependent dynamical queues are
gathering increasing attention to improve the efficiency of such systems. The focus of
this research is hence to design maximally stabilizing task release control policies to
maximize the useful throughput of such a system. Assuming that the error probability
of a server is also related to its state., the useful throughput can be defined as the
number of successfully completed tasks per unit time. Monitoring of both service and
error rates is particularly typical in the realm of human-in-the-loop and production
systems.

This research focuses on developing policies to minimize both these penalty mea-
sures. For a server with deterministic service rate, the optimal policy is found to be
a threshold policy that releases a task to the server only when the server state is less
than or equal to a certain threshold. Assuming homogeneous tasks that bring in the
same deterministic amount of work to be done, it can be shown that an appropriate
threshold policy is maximally stabilizing and that this threshold value can be uniquely
determined. This work is then further extended to the case when the server behaves
stochastically and verified using simulation. Finally, a proof-of-concept experiment
is proposed and developed to test the feasibility of the proposed theoretical policies
in real-world settings. The experiment consisted of completing multiple-choice verbal
analogy questions and the results confirm the effect of workload control in improving
human performance.

Thesis Supervisor: Prof. Emilio Frazzoli
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

There is an increasing demand for better resource allocation in many sectors of to-

day's society, particularly with the economical benefits associated with having higher

efficiency on production floors. In fact, during the last two decades, workload-based

task allocation policies have become a popular subject both in research and in prac-

tice. This is due to the fact that in many jobshop-like production situations, the main

management issue is the control of work order throughput times in order to achieve a

high level of customer service (such as short wait times and met deadlines), in com-

bination with an optimal level of resource utilization [11, 161. Moreover, scarcity of

resources often give rise to congestion phenomena, commonly known as production

bottlenecks. The reduction of congestion, optimization of resource allocation and de-

velopment of workload-based task allocation policies hence form an emerging realm

of queueing theory and performance analysis that needs to be addressed.

Studies of queueing systems typically assume a service rate that is uniform over

time, e.g.. as described by a stochastic variable with a fixed distribution. There

are however various application areas where this assumption may not be valid, such

as communication networks, production systems and even in Human Supervisory

Control (HSC) settings. In such settings, the system time may be affected not only

by the level of congestion, but also by how much work the server has processed



in the past. Queueing models with such workload-dependent rates will thus form

the main subject of this thesis and the aim of the rest of this thesis is to develop

allocation policies to achieve optimal performance metrics while preventing backlog

from accumulating in the queue.

1.2 Classical Queueing Models

The most basic queueing system consists of the following 6 basic characteristics: (1)

an arrival process of customers, (2) a service pattern for the server(s), (3) a queue

discipline, (4) a queue system capacity, (5) a number of service channels and (6) a

number of service stages. A typical queueing system would hence consist of a customer

arriving for service, waiting in the queue if service is not immediate. and leaving the

system after having been served. The term 'customer' is however used in a general

sense and indicates any arriving task that can be serviced by the server. for example

a computer program that needs to be executed.

Queueing theory was developed at the beginning of the 20 th century to provide

models to predict the behavior of systems that attempt to provide service for demands

that arise randomly. The earliest problems studied were those of telephone traffic

congestion and the first investigator was the Danish mathematician A.K. Erlang, who

in 1909 published 'The Theory of Probabilities and Telephone Conversations'. Erlang

introduced the notion of stability equilibrium and balance-of-state equations into the

realm of queues as he sought to find the optimal number of telephone operators

needed to handle a certain volume of telephone calls. These methods and his classic

Erlang Loss formulae are still in use today and are the first known considerations of

the optimization of a queueing system. Since then. queueing theory has grown into a

field with many valuable applications in the areas of operations research, traffic flow.

scheduling and facility design. For a summary of the evolution of queueing theory

until the 1980's, readers can refer to [181 while [231 gives an extensive introduction to

key concepts involved in this field.



1.2.1 Single-Server Queues

The most elementary queucing model is the single-server queue where the server

works at a constant service rate. In such a model, customers arrive one at a time

according to a deterministic process and the times between two consecutive arrivals.

referred to as interarrival times. are always constant at j, where A is the deterministicA'

arrival rate. Each arriving customer also has an associated service requirement that is

deterministic, and which is also independent of the interarrival times. Customers are

serviced one at a time by the server and this service cannot be interrupted midway.

Finally, customers that have received their full service request leave the system. This

above model is commonly referred to as the D/D/1 queue, sometimes followed by

the server discipline (the default of which is the First-Come-First-Served 'FCFS'

discipline). This notation was introduced by Kendall [8], and is now rather standard

throughout the queueing literature. The first D indicates that the interarrival times

are deterministic, while the second D indicates that the service requirements are also

deterministic. Finally, the last digit 1 indicates that there is a single server. Other

commonly used symbols include M for menory-less distributions, such as exponential

distributions and G for general distributions.

There exist many possible variations of this basic queucing model including queues

with finite capacity. The finite capacity could arise due to there being only a finite

number of waiting places in the queue and hence, when all places are occupied, arriv-

ing customers would be blocked and typically taken to be lost. This finite capacity

could also be interpreted as a bounded waiting time, where customers get impatient

if they have to wait too long and decide to leave or renege. Finally, other variants of

service disciplines could include a Last-Come-First-Served discipline or a Processor-

sharing discipline.

1.2.2 Performance Measures

The performance of a queueing system can be expressed in terms of one or more

metrics. the most common of which are queue lengths, waiting times, total system



time and throughput. The waiting time is the time spent by customers waiting in

the queue, while the total system time represents that total time spent in the system.

either waiting or in service. Throughput on the other hand is the long-run average

of the number of tasks completed per unit time. Additional performance metrics of

interest would then depend on the type of system being analyzed. For example, a

performance metric of interest in a HSC setting could be the maximum workload

during a certain period (so as not to violate union laws) or the average error rate of

tasks completed.

The main performance measure considered in this thesis is the amount of useful

throughput of the queue. that is the long-run average of the number of tasks that are

executed correctly by the server per unit time. This measure is of interest since purely

having a high service rate is useless in reality if every task is executed incorrectly.

Such a scenario would actually be akin to not having serviced any tasks at all. Given

recent emphasis on the development of error models such as the Drift Diffusion model

[35, 2, 20] and the long-standing interest in the speed-accuracy tradeoff, this thesis

attempts to merge these mathematicals models into the field of queueing theory and

to develop novel optimal policies to maximize the useful throughput of the queue.

Note that the key assumption here is that of a binary error model, meaning that

every task is either done correctly or not. In addition. this performance measure also

implies that the service and error rates of the server are controllable and hence can

be optimized. This will be elaborated on more in Chapter 2.

1.3 Queues with State-Dependent Rates

In the queueing model of Section 1.2.1, the server is assumed to work at a constant

rate each time it is assigned a task to execute. However, this assumption is not

always appropriate as the state of the system may affect the server productivity in

some practical situations; Section 1.4 introduces some real-world examples where

such behavior may occur. For now. assume the definition of 'state' to generally mean

some information summarizing the past history of the system. In our case, we take



this to be either the amount of workload in the queue or some external measure of

the server's utilization. A more detailed discussion on the notion of a 'state' will be

presented in Section 2.3.

To understand the dynamics of a queue with state-dependent arrival and service

rates, first imagine a server that is characterized by an observable and controllable

state x. The arrival rate of new customers may be influenced by x, for example for

queues with finite buffers where the arrival rate can be assumed to instantaneously

reduce to zero when the workload in the queue exceed the buffer capacity. Alterna-

tively, a system that consists of n unique queues serviced independently by n unique

servers also exhibits such phenomena if the customers constantly jockey and shift

to queues of shorter lengths. In this case, a hardworking server that works faster

than all the other servers will appear to have an arrival rate that increases with his

service rate. Similarly, the service process can depend on the number of customers

waiting for service since a server may work faster if the queue is building up or, on

the contrary, may get flustered and become less efficient. Nevertheless, despite the

more unpredictable nature of such queues, many fundamental derivations of queue

stability from typical queueing theory can still be applied and policies developed to

maximize the desired performance measures.

1.4 Examples

1.4.1 Production Systems

The classical state-dependent queue that is often quoted in literature can be observed

on production floors where the objective is to both maximize throughput and reduce

the delay between the time a job enters the system till the time it leaves the system,

which is defined as the lead time. Literature such as [17, 37, 13] employed enpir-

ical research through simulation and actual implementation of workload-based task

allocation policies into actual jobshop settings to investigate the effects of such poli-

cies in production systems. In all cases, findings report a substantial reduction in



throughput times after the implementation of workload-based policies. For example.

in [13]. the time taken to achieve the same amount of throughput with the use of

workload-based policies was found to decrease by 40% to 50%, compared to when no

policy was used.

The possibility of controlling throughput times by controlling the amount of work

in the system is due to the relationship of mean throughput against mean inventory

as shown in Equation 1.1 [12].

TL. m
PEn

where TLm is the weighted mean delay time. Im is the mean inventory or queue length

and PEm is the mean performance or mean throughput. Hence, in a production

system setting, if one seeks to have a specific flow time for a work center, meaning

that it is desired to have an incoming job completed within a certain timeframe, then

one must always ensure that a certain mean inventory is maintained. This can be

achieved by inputting only so much work during a reference period as is expected

to leave the queue in the same period. A change in the total system time of each

job can then be achieved by a change in the input (i.e. the load), or by a change in

output (i.e. the desired throughput). From the variation of the flow times with the

queue length at a certain moment, characteristic production curves can be developed

as shown in Figure 1-1.

Figure 1-1 shows the general shape of such curves and clearly demonstrates the

change in performance and mean weighted lead time as a function of the mean in-

ventory. One can observe that above a certain inventory value, which is demarcated

as the 'critical value', there is no significant increase in performance since there is

always enough work to avoid breaks in processing. On the other hand. idle time will

occur with increasing frequency below this value resulting in a drop in performance.

Similarly, when the inventory is increased beyond the 'critical value', the delay time

will increase with increasing inventory since the performance remains almost constant

as predicted in Equation 1.1. On the other hand, below this value, the lead time de-

creases with the inventory. The st ate in such a system is hence the current inventory



Fe ghted ofthn
S proctioh Leid The

T oretc
Minrrum

Cnficci 'Voue

Figure 1-1: Lead time and performance as functions of the inventory [37j

in the production system and the control variable is the workload input or the desired

workload output.

1.4.2 Human Supervisory Control Settings

The second example we will examine is concerned with situations where the server is

a human being. A typical example would involve a single human operator managing

several Unmanned Aerial Vehicles (UAVs) on a mission to patrol and survey a certain

airspace for anomalous activity. In such an example, the operator may receive from

the UAVs he or she is supervising a constant stream of tasks in the form of videos or

images, through which he or she is supposed to detect any suspicious activity. In such

cases, the supposition that the server is assumed to work at a constant speed whenever

there is any work in the system is almost definitely invalid. There exist, however, two

schools of thought on the way the state of the queue could be defined in this case.

Nevertheless, both schools of thought draw on the same conceptual law between

arousal and performance, which was originally developed by psychologists Robert

Yerkes and John Dodson in 1908. The Yerkes-Dodson law models the relationship

between arousal and performance as an inverse U-shaped curve, hence implying that



Good
Optimal level of arousal

Simple task

Performance

Complex task

Poor
Low High

Level of arousal

Figure 1-2: Yerkes-Dodson law showing the relationship between arousal and perfor-
mance [6]

for a given individual and a given type of tasks, there exists an optimal arousal level

at which the human's performance has its maximal value. Any increase in arousal

would then be considered to be negative work pressure since the human would become

less productive from it, while any decrease in arousal would result in the human

becoming less efficient. A typical plot characterizing the Yerkes-Dodson law is shown

in Figure 1-2.

The first school of thought [6] argues that arousal is caused by 'stressors' in the

environments, such as noise, anxiety and fear, but may also involve phenomena such

as time pressure. Hence, in a HSC setting, an increased level of arousal could be

associated with the psychological effect of 'trying harder', for example a human op-

erator working faster when he notices a buildup of tasks waiting for him to process,

compared to when he has no backlog of tasks to work on. Alternatively, if the number

of tasks that has accumulated in the operator's backlog increases past a certain value,

the operator may experience high stress, which in turn results in a decrease in his

ability to process infornation. For example, the operator might experience attention

narrowing, or tunneling, which in turn results in his direction of all his attention to a

single channel of information. For complex tasks involving multiple channels of infor-

mation, this may have some undesirable side-effects. Moreover, a second consequence

of stress is the loss in working-memory, which directly affects human performance. It



is interesting to note that this school of thought is somewhat similar to the definition

of state as mentioned in Section 1.4.1.

The second school of thought [3, 191 argues that the level of arousal depends

on how busy or 'utilized' the human operator has been over the last time period of

arbitrary length. In [3], the authors attempted to investigate this claim by developing

a software tool to allow human operators to supervise a team of unmanned vehicles

in a simulated operational environment. Operators were engaged in a variety of

tasks including waypoint selection, target assignment and visual classification. The

findings of the experiment showed that there existed a U-shaped relationship between

the level of situational awareness of an operator and the operator's utilization factor.

Situational awareness was measured in terms of the reaction time of an operator to

respond to a threat area once it intersected with the path of a UAV and is what we

could classify as the human's performance. On the other hand, the utilization factor

was calculated as the proportion of time over fixed intervals of 150 seconds that the

operator was busy interacting with the display during the experiment, which is very

much akin to the level of arousal of the human over that fixed interval of time.

The authors in [19] take this one step further and propose and verify (using the

same set of experimental data) a first-order differential equation to model the level

of arousal of the human operator based on whether or not the human operator is

busy or idle. Figure 1-3 shows the validity of the first-order model in deducing a

measure of the level of arousal of the human operator, since the trend observed in the

figure is validated by our expectation from the Yerkes-Dodson law. Note that in the

figure, the circles represent the average of the data in each 5% utilization factor bin,

the black solid line is the weighted least-squares quadratic approximant, the numbers

indicate the number of samples in the bin, and the error bars show the 1 -o confidence

intervals.

1.4.3 Traffic Flow Control

A third example of state-dependent queues can be seen on a day-to-day basis on

the roads we travel on. Congestion modeling has been a topic under continuous
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Figure 1-3: Plot of decision times in classification tasks verifying the Yerkes-Dodson
law [19]

consideration in traffic flow theory since Greenshields' study of traffic capacity in

1933 [4]. Greenshields postulated a linear relationship between speed and traffic

density, which proposes that the more vehicles there are on a road, the slower their

velocity would be. This in turn converts into a parabolic relation between speed and

traffic flow, where traffic flow is calculated to be the product of the traffic density with

the speed. A fundamental traffic diagram is then a diagram that gives the relation

between any 2 of the following 3 variables: the speed, the traffic flow and the density

of vehicles on a road. These diagrams are unique to each type of road network and

such a diagram has been obtained both theoretically and by simulation for one road

[29]. Figure 1-4 shows the typical fundamental traffic flow diagram under a classical

Lighthill-Whithani-Richards (LWR) model. The basic idea of this theory is that the

maximum flow rate qcap associated with the maximum point (Ocr, qcap) in the figure

determines the free flow capacity at a bottleneck. More information about this theory

can be found in [5].

Given the trend of a typical flow-density fundamental traffic diagram. and in an



qcap

0er 
Oout

Figure 1-4: Fundamental traffic diagram [5]

effort to relieve peak hour congestion on freeways, various ramp metering algorithms

have been employed to regulate the inputs to freeways from entry ramps. In fact, these

has been in use for over 30 years and are presently employed in a number of urban

areas in North America [7]. There exist several types of ramp metering strategies

including fixed-time strategies that are derived offline based on constant historical

demands and reactive strategies that aim to keep the freeway traffic conditions close

to pre-specified set values based on real-time measurements. The demand-capacity

strategy [10] for example, which belongs to the latter category, specifies the ramp

input rates at a local section of a highway as shown in Equation 1.2.

r(k) = qca- qin(k - 1) if oout(k) < ocr (1.2)
rmin else

where qcap is the freeway capacity downstream of the ramp, qin is the freeway flow

measurement upstream of the ramp, oout is the freeway occupancy measurement down-

stream of the ramp, o, is the critical occupancy at the same location at which the

freeway flow is maximum and rmin is a pre-specified minimum ramp flow value. This

policy hence attempts to add to the measured upstream flow as much ramp flow as

needed to reach the downstream freeway capacity. However, should the downstream
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Figure 1-5: Comparison of flow density without and with ramp metering [26]

occupancy exceed a critical value when congestion occurs, then the ramp flow is

reduced to a minimum flow to avoid and dissipate the congestion.

The benefits of such strategies can be seen from simulation plots in Figure 1.4.3

comparing the flow density on a multi-lane freeway without and with control [26].

1.5 Thesis Overview

The main focus of this thesis is the development of optimal policies to maximize the

useful throughput of a state-dependent queue with deterministic arrival rates: The

service times and error rates of the server are assumed to be dependent on the state of

the server, and a first-order differential equation is proposed to model the evolution of

the server state. In addition, this thesis summarizes the results and lessons learnt from

the proof-of-concept experiments, which were designed and implemented specifically

to test the feasibility of applying the optimal policy in a real-world setting. This was

done using a simple computer interface with subjects recruited from campus. Some

basic ideas for estimation of server parameters and a variety of other related case

studies are also mentioned with slight detail in this thesis.

Chapter 2 summarizes existing literature and work that have been done in the field

of state-dependent queues and in the area of optimal control of queues. In addition,

various methods that have been proposed in literature to derive a measure of the server



state are discussed,. particularly in the field of Human Factors. Chapter 3 analyzes

the D/G/1 queue with state-dependent and deterministic service rates and proves

the optimality of a one-task threshold policy in maximizing the useful throughput

of the queue. Slightly varying threshold policies are then proposed for cases where

the objective function either includes costs associated with switching the server on-

and-off and/or costs associated with task waiting times. Chapter 4 extends the work

done in Chapter 3 to the case where the server is assumed to behave stochastically

and demonstrates the infeasibility of the policy from Chapter 3 when extended to

a stochastic server. Chapters 5 and 6 introduce the proof-of-concept experiment

that was designed to test the real-world feasibility of the proposed policy on actual

human subjects and document the results and lessons learnt from the implementation

respectively. Finally, Chapter 7 summarizes our findings and conclusions from this

research.



Chapter 2

Background and Previous Work

Queueing theory is a field with a long history. In this chapter, we examine some

previous work that has been done in the field of both optimal control of queues and

in the field of state-dependent queues. In addition, various methods that have been

proposed in literature to derive a measure of the server state are discussed, particularly

in the field of Human Factors.

2.1 Background on Optimal Control of Queues

The purpose of optimal control of queueing systems is to determine when and how

to change arrival or service rates to optimize some objective function [24]. This

typically means determining the queue levels at which service should start or stop.

Much research has been focused on finding optimal operating policies for specific

settings, which turn the server on and off in ways that result in the lowest long-run

cost. Possible policies can be classified into several categories, the most common

classification of which is that of stationary and non-stationary policies. Stationary

policies are policies that always demand the same action whenever the system is in

a given state. The earliest of this model was used by Romani [14] in determining a

policy for the optimal number of servers to employ. Further elaboration on possible

policies in each of these categories will be given for our specific problem setting in

Section 3.2.



A typical problem formulation along with the usual optimal policy candidates

is presented in [1]. In the article, the authors consider a queueing system without

any state dependencies and with a single server who has the option of leaving for a

vacation period of random length as soon as the system empties out, that is whenever

the number of customers in the queue is zero. In reality, we could imagine the server

to leave to perhaps perform other activities, but from the customers' point of view,

the server is considered to be taking a vacation. The queue dynamics require that

customers are served one at a time with i.i.d service times, while the vacation times

are also considered to be i.i.d. Arrival, service and vacation times are also assumed to

be independent of each other. The cost function associated with this queueing system

consists of a holding cost rate specified by a general non-decreasing function of the

queue size, fixed costs for initiating and terminating service, and variable operating

cost incurred for each unit of time that the server is in operation, which also depends

on whether it is serving a customer or remaining idle. This is a very common set-

up of a problem from which an optimal policy is desired and in their article, the

authors prove that under varying conditions, the following three threshold policies are

optimal: the N-threshold policy, the D-threshold policy and the T-threshold policy.

This section will hence give a short summary on each of these policies to give readers

a clearer picture on optimal policies for queues without any state-dependencies.

2.1.1 N-, D-, T-, and Other Threshold Policies

Of particular interest among stationary policies are the threshold policies, which turn

the server on only when the queue size is equal to or larger than a given value, and

turn the server off when the queue is empty. Optimality of threshold policies have

been shown in much literature and readers can refer to [33, 15] for more details. We

will instead focus on the three different threshold policies that are most commonly

referred to in literature: the N-policy [27], the D-policy [21] and the T-policy [9].

The N-policy is a stationary policy that turns the server on when the total number

of tasks in the queue reaches the value N and turns the server off when the system

becomes empty. The rationale behind such a policy is to determine a tradeoff between



the average wait time of a task in the queue and the costs incurred in turning the

server on and off, versus the cost of leaving the server active all the time. Hence, in

order to minimize cost, the server is only turned on when there is sufficient number

of tasks in the queue to service in one continuous manner and turned off once there

are no more tasks to service. However, cost considerations of keeping tasks waiting

in the queue are also considered. The D-policy is a variant of the N-policy and takes

into account the service times of the waiting customers. Hence, a D-policy is also a

stationary policy that switches an idle server on when the workload reaches or exceeds

the level D and switches it back off when the system becomes empty. Using the same

cost function as before, the authors in [22] show that the D-policy is superior to the

N-policy for exponential service time distributions.

One limitation of the above two mentioned policies, however, is that in order to

employ them, the server must continuously monitor the queue for an arrival when

the server is idle. In the case that this is not possible, for example due to cost and

efficiency consideration, then the T-policy can be used. A stationary T-policy is one

where the server scans the queue T time units after the end of the last busy period

to determine if customers are now present in the queue. The presence of customers

begins a busy period and the server is active until the queue is emptied. However, if

no customers are present in the queue, then the next scan is made after T time units

again.

There exist a multitude of other variants of the above 3 policies and readers are

advised to refer to [24] for more details.

2.2 Background on Optimal Control of State-Dependent

Queues

Research on state-dependent queues differs from those without state-dependence due

to the dynamic nature of the queue behavior. For example, assuming that the state of

the queue is defined to be the amount of tasks waiting in the queue, then employing a



high service rate would be beneficial. However, as the queue empties out, maintaining

the -high service rate might be costly and hence the service rate should optimally be

lowered gradually as the queue gradually empties out. Similarly, if the state of the

queue is defined to be how much work the server has performed in the past, then

the optimal policy might be to maintain an optimal workload for the server so as to

increase overall efficiency, even though the short-sighted policy might be to overwork

the server so as to clear the backlog.

The first investigation into optinal control policies for state-dependent queues was

done in [28], which assumed that the service rate of a server could be varied at any

time and is under the control of the decision-maker. The service capacities or speeds

of the server are denoted by po, pi,.- , pl,, where p1k+1 > yk and pto = 0. The

authors found the optimal policy to be one where the service capacity is increased

from 1 - to pk when the queue length reaches a value Rk from below. On the other

hand, when the queue length drops to Sk from above, then the server speed is reduced

from pk+1 to pk. The vectors R and S are represented by {R 1, R 2, - , Rk,.-. } and

{S 1, S2 , Sk, - } respectively, where Rk+1 > Rk, Sk+1 > Sk and Rk+1 > Sk. Such

a policy can be said to be one that demonstrates hysteresis.

Much work on state-dependent queues has also been done in [31, 32, 30] where

the authors once again considered queues with service rates that are dependent on

the amount of workload in the queue. The service rate was also assumed to be first

increasing then decreasing as a function of the amount of work and the admission

of work into the system was controlled by a policy for accepting or rejecting jobs,

depending on the state of the system. In [32], the authors found that a threshold

policy is optimal in maximizing the long-run throughput within the class of stationary

deterministic policies. The authors, however, did not include in their cost function

costs for rejecting jobs as their only objective was to maximize throughput.

To the best of the author's knowledge, however, no results are available yet on

state-dependent queues where the state is dependent on the amount of work the server

has done. This will hence form the main aim of this thesis. The following section

provides some discussion on the measures of state and aims to be an elaboration of



what was discussed earlier in Chapter 1.

2.3 Measures of Server State

There exist many methods to measure the state of a server based on the amount of

work the server has done. These methods can be broadly categorized into 2 classes:

Objective measures and Subjective measures. Methods belonging to the former cat-

egory are useful in deriving mathematical proofs to obtain optimal policies and can

work 'behind-the-scenes' to monitor the server state without seeking any direct input

from the server. There are, however, many concerns over the accuracy and correctness

of such models, not to mention that the need to differentiate human behavior by uti-

lizing different model parameters is another problem in inference in itself. The latter

category consists many of models that require the server to provide some form of feed-

back to indicate how busy he thinks he is. This method is very popular in the field of

Human Factors, though results are highly subjective and unwanted correlations hard

to avoid.

2.3.1 Objective Measures

One method of measuring the server state can be done by finding the proportion

of time over fixed intervals of t seconds that the server was busy [3]. A measure of

'busyness' could be taken to be when the server interacts with a user interface or

simply when the server has been assigned a task. Another method of measuring the

server state was proposed in [19], which proposed a first-order differential equation

as shown in Equation 2.1.

(t) - b(t) - x(t) X(0) = x0 , (2.1)
T

where T is a time constant that determines the extent to which past utilization affects

the current state of the server, and x0 E (0, 1) is the initial condition. Note that the

dynamics described by Equation (2.1) is such that, for any T > 0, Xo E (0, 1) implies
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Figure 2-1: Comparison between moving average calculation and first-order model

calculation of state

that x(t) E (0, 1) for all t > 0.

Figure 2-1 compares the output from these two methods for a fixed interval of

150 seconds. The blue line represents the moving average calculation of the percent

busy time over time intervals of 150 seconds and hence only starts after 150 seconds

has passed, while the red line represents the state calculation using Equation 2.1.

The latter method was calculated using T = 150 and an initial xo = 0.5. We notice

the similarity in trend between the two methods from Figure 2-1, though apart from

that, not much else is similar. An investigation into the sensitivity of the latter

method with respect to xo is also shown in Figure 2-2, which compares the state

progression for the same set of data but using different initial conditions. We note

that the state measurement using different starting conditions eventually converges,

though the amount of time taken for the state to converge could be a hindrance during

actual implementation.

Furthermore, the latter model also has the propensity to distinguish between

different types of server behaviors, for example, in the case of the servers being human,

some humans could perform better under stress compared to others. Hence, the

....... ........ ... ................ ............................................... .. .. ...... .
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Figure 2-2: Comparison between state progression for first-order model under different
initial conditions

latter model could be able to distinguish such differences through the use of different

T values. Based on our definition, higher T values could indicate a longer working

memory and possibly less sensitivity to short-term changes in busyness. Hence, from

Figure 2-3, we notice that as the value of T increases, the server state displays less

sudden jumps over time, though the general trend of the state for all values of T is the

same. For the remainder of this thesis, we will be employing the latter mathematical

model in Equation 2.1 to measure the state of the server.

2.3.2 Subjective Measures

Subjective workload measures are pre-dominantly associated with the field of Hu-

man Factors, and hence are typically used only when the server is a human. Such

measures are popular for use due to the ease of administration and the low cost of

implementation. Some commonly used measures include the NASA-TLX and SWAT.

Nevertheless, such measures also bring about their own problems, including a high

dependence on short term memory and the subjective nature of the response illicited

from the human due to different people's interpretation.

.. .. .. . ... ............. ...................... ......... .... ... ..
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The NASA-TLX or Task Load Index is a subjective workload assessment tool

that allows users to perform workload assessments on operators working with various

human-machine systems. The NASA-TLX is a multi-dimensional rating procedure

that derives an overall workload score based on a Weighted average of ratings on six

subcategories: Mental Demand, Physical Demand, Temporal Demand, Own Perfor-

mance, Effort and Frustration. Despite the popularity of this method however, this

remains a very tedious process to obtain a workload measure and the problem of

individual differences is not addressed. Figure 2-4 shows the rating scale defitions for

the NASA-TLX.

SWAT, otherwise known as the Subjective Workload Assessment Technique, is

an alternative to the NASA-TLX and provides an easily administered subjective

scaling method that is commonly used in flight cockpits to quantify the workload

associated with various activities. SWAT postulates a multi-dimensional model of

workload comprising three, three-point dimensions: Tiie Load, Mental Effort Load

and Psychological Stress Load. Problems associated with this method, however,

include correlations between the three dimensions, the lack of diagnosticity and low

30
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RATING SCALE DEFINITIONS

Title E Descriptions

MENTAL DEMAND Low/High How much mental and perceptual activity was
required (e.g., thinking, deciding, calculating,
remembering, looking, se'archinig, etc.)? Was the
task easy or demanding, simnpI or complex,
exacting or forgiving?

PHYSICAL Low/High How much physical activity was required (e.g.,
DEMAND pushing, pulling, turning, controlling, activatig,

etc.)? Was the task easy or demanding, slow or
brisk, slack or strenuous, restful or laborious?

TEMPORAL Low/High How much time pressure didyou feel due to the
DEMAND rate or pace at whichthe tasks or task elements

occurred? Was the pace slow and leisurely oT rapid
and frantic?

EFFORT Low/High How hard did you have to work (mentally and
physically) to accomplish your level of
performance?

PERFORMANCE Good/Poor How successful do you think you were in
accomplishing the goals of the task set by the
experimenter (or yourself)? How satisfied Were
you with your performance in accomplishing the
goals?

FRUSTRATION Low/High How insecure, discouraged, irritated, stressd and
LEVEL annoyed versus secure,gratified, content, relaxed

and complacent did you feel during the t hek?

Figure 2-4: Example of rating scale definitions for NASA-TLX workload measure



Time Load IV ental Effort Load Psychological Stress Load

a. Often have spare time. a. Very ittle conscious mental a. Little confusio , risk,
Interruptions or overlap effort o concentration frustration, or an iety exists
among activities occur required. Activity is almost and can be easi
infrequently or not at all. automa ic, requiring little or no accommodated.

attentio i
b. Occasionally have spare b. Moderate stress due to
time. Interruptions or overlap b. Moderate conscious mental confusion, frustration, or
among activities occur effort o concentration anxiety noticeab y adds to
frequently. require . Complexity of workload. Signifi nt

activity s moderately high due compensation is required to

c. Almost never have spare to unce ainty, unpredictability, maintain adequae
time. Interruptions or overlap or unfa iliarity. Considerable performance.
among activities are very attentio required.
frequent, or occur all the time. c. High to very ir tense stress

c. Exte sive mental effort and due to confusio, frustration,
concen ration are necessary. or anxiety High o extreme
Very co plex activity requiring determination ad self-control
total att ntion. required.

Figure 2-5: Example of rating scale definitions for SWAT workload measure

mental workload issues. Figure 2-5 shows an example of the SWAT scale.

2.4 Human Supervisory Control

Unmanned Aerial Vehicles (UAVs) are commonly used for wide-area surveillance and

low-altitude UAVs in such a mission must provide coverage of a region and investigate

events of interest, possibly with the assistance of a human operator, as they manifest

themselves [19]. In particular, we are concerned with cases in which close-range

information is required on targets detected by high-altitude aircraft, spacecraft, or

ground spotters, after which the UAVs are then sent to the locations to service the

target under direct operator supervision. Servicing of targets could include tasks

like gathering on-site information, target classification, or engagement as shown in

Figure 2-6.

In addition, UAV operators in the future will be expected to be supervisors of

multiple UAVs. Hence, workload has become a major factor in determining the

number of UAVs a single human operator can effectively control, and therefore the

effect of workload on performance has been an important relation to study over the

years. Within the realm of Human Factors, this has led to literature investigating

such a relation and proposition of formulae for predicting the number of agents a



Scenario: Target Classification

Operators in high load.
UAVs are numerous and fast enough so as not to cause additional delay.

Figure 2-6: Target classification scenario involving cooperation between human op-

erators and UAVs [19]

human can effectively control [25]. This formula was based on the time an agent can

be neglected and the time it takes to interact with the agent to raise its performance

to an acceptable level. The formula, however, did not consider how the operator's

workload could affect his performance in interacting with the agent. Some measures of

performance could include the time taken to interact with the agent or the efficiency

of the operator when interacting with the agent. We will hence attempt to address

these issues in this thesis.

Moreover, given the hypothetical mission profile, two key performance measures

are the time it takes for a human operator to service a target (for example the time

taken for the operator to classify the target to either be a hostile or a friendly) and

the probability that the human operator makes a mistake (for example classifying

a hostile to be a friendly or vice versa). Given the findings in [19], we hypothesize

that the variation of service times with our measure of state varies according to the

Yerkes-Dodson law, though we will later also discover this to be inconsequential to the

derivation of the optimal policy. The variation of the error probability of the human

.......... ...............



operator with respect to his state is however an area that has not been discussed

previously.

For this thesis, we hypothesize that the error rates follow the Yerkes-Dodson law

as well, meaning that the error rates decrease up until a certain optimal state before

increasing again. In this section, however, we will introduce the types of error models

that have been proposed in literature in recent years.

2.4.1 Speed-Accuracy Tradeoff and Error Models

The speed-accuracy tradeoff has been a very widely studied phenomenon and the

range over which one can obtain substantial speed-accuracy tradeoff varies from 150

milliseconds in some very simple perceptual tasks to 1000 milliseconds in some recog-

nition memory tasks and probably even longer in more complex cognitive tasks. There

exist several types of speed-accuracy tradeoff theories, including the fast guess theory,

the discrete process theory with a distribution of finishing times, and the continuous

strength-integration theory [2]. For example, according to the fast guess theory [34],

a subject typically responds with either a random guess with short latency or with

a stimulus-controlled response at considerably longer latency. More information on

these theories can be found in [2]. The types of error models, however, that we will

be concerned with are binary error models, where the subject either gets it correct or

wrong, with no in-between.

For example, consider a scenario where a human has to decide on one of two

hypotheses, HO and H 1, based on the amount of stimulus or evidence collected. There

currently exist 2 models that are popular to model the speed-accuracy tradeoff in such

binary decision models. The first is the Pew's model [35, 20] which states that the

probability of selecting H1 given that H1 is true at a given time t E R>o where t is the

time from the start of the consideration of the hypotheses is given by Equation 2.2.

P(say H1 H1 , t) = PO (2.2)
1 + e-(at-b)

where po C [0, 1] and a, b C R are some parameters which depend on the human
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Figure 2-7: Speed-Accuracy Tradeoff Operating Characteristic for the Pew's Model
and the Drift Diffusion Model [36]

operator. The second is the Drift diffusion model which states that given the hypoth-

esis H1 is true, the evolution of the evidence for decision is modeled as a drift-diffusion

process given by Equation 2.3.

1 -(A-0t>2

P(say H|IHI, t) = e -2 - dA
/27r 2tJ7

(2.3)

where 3 > 0 is the drift rate, o is the diffusion rate, r/ is the decision threshold,

and A is the evidence at time t. A plot of the conditional probabilities for both models

is shown in Figure 2-7.



Chapter 3

Policies for Servers with

Deterministic Performance

In this chapter, we study the stability problem of a dynamical queue with deter-

ministic state-dependent service times and error rates. The evolution of the server

state, and hence the service times and error rates rendered by it are governed by

its utilization history. The first-order differential equation proposed in Equation 2.1

is used to model the evolution of the server state while the service times and error

rates are hypothesized, as mentioned in Chapter 2, to be related to the server state

by a continuous positive convex function. The objective of this queueing system is

to maximize the amount of useful throughput of the queue, where useful throughput

is defined to be the number of tasks executed correctly by the server per unit time.

The server is assumed to be attempting to perform optimally and hence allocating his

time resource in such a way that the objective is maximized. Finally, we also examine

cases with switching and holding costs, the details of which will become clearer later

in this chapter.

In this problem, identical and independent tasks arrive at a deterministic rate

and need to be serviced by the single server in the order in which they arrive. We

are interested in designing an operating control policy that minimizes our objective

function, which we define to be some linear combination of the number of correct

answers and the number of tasks answered. The optimal control policy is hypothesized



to be a threshold policy with a threshold value that would be somewhere in between

value that results in the minimum error rate and the threshold value associated with

purely maximizing throughput.

3.1 Problem Formulation

Consider a single-server queuing model with tasks arriving at a deterministic rate of

A. Tasks are identical and independent of each other and we assume that tasks must

be serviced in a first-come-first-served manner. The service times of the server are

assumed to be state-dependent and deterministic (that is the time taken to service

a task at a certain state is always fixed). The dynamical model for the server that

determines the service times for each task is a simple first-order model as shown in

Equation 2.1 and is redefined here for completeness.

Let x(t) be the server state at time t. Let b : R -- {0, 1} be an indicator function

such that b(t) is 1 if the server is busy at time t and 0 otherwise. The evolution of

x(t) is then governed by the simple first order model:

(t) = b(t) - x(t) x(0) = Xo, (3.1)
T

where T is a time constant that determines the extent to which past utilization

affects the current state of the server, and xo E (0, 1) is the initial condition. Note

that the dynamics described by Equation (3.1) is such that, for any T > 0, xo e (0, 1)

implies that x(t) c (0, 1) for all t > 0.

The service times are related to the state x(t) through a map S : (0, 1) -- R+. If a

task is allocated to the server at state x, then the service time rendered by the server

on that task is S(x). Since the controller cannot interfere the server while it is servic-

ing a task, the only way in which it can control the server state is by scheduling the

beginning of service of tasks after their arrival. Such controllers are called admission

controllers and will be formally characterized later on. Furthermore, we also assume

that S(x) is positive valued, continuous, convex, is bounded within the interval

X E (0, 1), and that Smin := min {S(x) |x c (0, 1)}, and Smax := max{S(0+), S(1-)}.



Similarly, the error probabilities are related to the state x(t) through a map E :

(0, 1) -* [0, 1]. If a task is allocated to the server at state x, then the probability of

the server getting the task wrong is E(x). Similar to the determination of the service

time, we also assume that E(x) is positive valued, continuous and convex. Due to its

definition, we know that this value is definitely bounded within the interval x E (0, 1),

and that min := min {E(x) | x E (0, 1)}, and Smax := max{E(0+), g(1-)}.

Given a dynamical queue with server dynamics shown in Equation (3.1), we now

examine the types of admission control policies possible. An admission controller u

acts like an on-off switch at the entrance of the queue whereby u(t) E {ON, OFF}

for all t > 0, and an outstanding task is assigned to the server if and only if the

server is idle, i.e., when it is not servicing a task, and when u = ON. Otherwise, the

task is simply left in the queue until u = ON (Note that this is unlike the admission

controllers mentioned in [31, 32, 30] which turn away tasks when u = OFF). Let U

be the set of all such admission control policies, and hence allow U to be quite general

in the sense that it includes control policies that are functions of A, S, x, etc.

3.1.1 Problem Statement

The problem statement is as follows: For a given T > 0, let fu(T) be the objective

cost that we want to maximize at time t under admission control policy u E U when

the task arrival rate is A and when the server state at time t = 0 is xo. In order to

maximize the useful throughput of the queue, which we define to be the number of

tasks executed correctly per unit time, we seek to maximize fs(r), which is in turn

defined to be:

f(r) := M hm 01tj (3.2)
t-oo t

assuming the limit to exist. Here Bs(0, t, T) denotes the number of tasks completed

correctly during [0, t] under policy u. Hence, this results in fs(r) defining the total

useful throughput over the timeframe [0, t]. Note that a policy u* is said to be

(strictly) optimal if f,.(T) > f,(T) (f,-(T) > f,(T).

Note that there exist multiple ways to calculate B,(0, t, T) and two such possi-



bilities will be introduced here. The first possibility proposes that B"(0, t, T) is a

nonlinear relationship between the average probability of getting a task correct in the

timeframe [0, t], C,(t, T) and the number of tasks that the server attempted during

the timeframe [0, t].

Bu(0, t, r) := t - Cu(t, r)a A'au

In the above expression, a , b C {0, 1}. This means that if the server is purely

maximizing his throughput and not his useful throughput, a = 0 and b = 1. On the

other hand, if the server is purely trying to maximize the percentage of questions

he answers correctly, then a = 1 and b = 0. The second possibility proposes that

Bu(0, t, T) is a linear combination of Cu(t, T) and the number of tasks that the server

attempted during the timeframe [0, t].

Bu(0, t, T) := t - (cCu(t, T) + (1 - c)Amaxu(t, T))

where c is a constant, c E [0, 1] that is uniquely determined by the server and depends

on the way the server chooses to place value on getting a task done right versus getting

as many tasks done.

In the two equations above, note that we define the maximum stabilizable arrival

rate for policy u as:

Amnx(t, T) = sup A I 3xo E (0, 1), qo E N s.t. lim sup qu(t,T, A, xo, qo) < +oo.
t-+o

where qu(t, T, A, o, no) represents the queue length (outstanding tasks yet to be be

serviced in the queue) at time t under the admission control policy u E U and when

the task arrival rate is A. xo and qo are defined to be the initial server state and

initial size of the queue respectively at t = 0. Note that in the case that we opt to

purely maximize throughput, this maximally stabilizable arrival rate will indicate that

as long as the server keeps the queue stable, all tasks will eventually be completed

and the throughput would be the highest possible. In our analysis below, we will



pre-dominantly be dealing with the latter definition of Bs(O, t, T) due to the ease in

analyzing a linear objective function though some analysis will be done for the former

definition as well.

3.2 Determining the Optimal Policy

First, assume that the decision to assign or not assign a task to the server occurs

only when the server is idle. For a given policy u, we use u(x) = 1 to denote that the

server is assigned a task when the state of the server equals x while u(x) = 0 denotes

that the server is allowed to remain idle until the next decision on whether or not to

assign a task to the server. Note that no other control actions are available for such a

queueing system since we assume that service cannot be interrupted midway through

a task. In addition, there only exist a single stream of tasks arriving at a deterministic

rate and no other secondary tasks can be added. From these assumptions, we can

hypothesize several types of policies that could be applied to such a system, drawing

on the background of optimal control in queues discussed in Chapter 2. These policies

can primarily be classified into 3 groups: Stationary, Non-stationary and Greedy.

" Stationary Policies:

- Single x-Threshold Policies: Task assigned when x is below or equal to a

certain threshold value and not assigned otherwise

- Dual Switching Threshold Policies: Task(s) assigned when x is below or

equal to a certain lower threshold value and continuously assigned there-

after until x exceeds an upper threshold value. Such policies are known

for their hysteresis property.

* Non-stationary Policies:

- n-Task Policy where n tasks are done by the server after which the server

remains idle for a certain amount of time before accepting tasks again. This

results in different server behavior for a certain server state. A randomized



policy is a variant of this whereby the amount of time that the server

remains idle is a random value.

e Greedy

- Server accepts a new task as long as server is idle and there is a task in

the queue

In the cases considered hereafter, we will restrict our attention to the class of sta-

tionary and deterministic policies that base their actions only on the current state of

the system. Later we will also show that the found optimal policy is in fact optimal

within a broader class that includes nonstationary and randomized policies as well

when the service times are deterministic.

Let us first define an excursion from state x to be the event that starts with the

acceptance of a task by the server at state x and ends with the first subsequent return

to state x. The amount of time taken for such an excursion is defined to be T(x, t, T)

where t is the amount of time the server is busy. The significance of this will become

more clear in subsequent sections. Also, given Equation (3.1), let us now examine the

system behavior without the use of an optimal policy. As the server can only exist in

two states, the server state varies in the following manner:

When the server is idle for a length of time t' (b(t) = 0):

x(t + t') = x(t)e-''T

Alternatively, when the server is busy for a length of time t' (b(t) = 1):

x(t + t') = 1 - (1 - x(t))e -t'r

Hence from the two equations above, and assuming that the server accepts a single

task when he is idle with an initial state of xO and is then busy for a time period of



t1 , the excursion time can then be calculated as follows:

1 - (1 - 1oe-
T(xo, ti, T) = T - In (1+ ti (3.3)

From the server dynamics, we note that if we opt to use a greedy policy that

allocates a task to the server every time it is idle (a policy which is very typical in

the simplest of single-server queues) and assuming that the arrival rate of the tasks is

high enough to always keep the server busy, then the server state will asymptotically

converge to 1-. This results in the server having a fixed service time of S(1-) at

steady state. Hence, without a more intelligent policy and in the long run as x

converges to 1-, Amax = 1/S(1 ). However, since we assume that S(x) is convex

and that Smin := min{S(x) I x E (0, 1)}, and Smax := max{S(0+), S(1-)}, we note

that in reality the server could perform each task with a shorter service time of Smin,

which could imply a higher Amax. Within the realm of stationary policies, this means

that we would then be restricting our attention to policies u such that either u(x) = 0

for all x > Xthreshold for some value of Xthreshold E (0, 1), which ensures the existence

of a maximally stabilizable arrival rate or such that u(x) = 1 for all x < zlower, and

remaining that way until x > Xupper after which u(x) = 0, given that Xlower < Xupper.

Note that in the case that Xloer = Xupper, the latter stationary policy would be

similar to the former one. Hence, all this implies that Amax is actually determined

exactly by the excursion time, T(zo, ti, T) when considering stationary policies and

with deterministic service times. Note that we make the assumption here that ti is

finite since the case where ti is infinite is already dealt with above using a greedy

policy and provides the lower bound on the maximally stabilizable arrival rate.

Lemma 3.2.1. For all t1 < oo, xo E (0,1), T > 0 and with deterministic arrivals, the

maximally stabilizable arrival rate using a stationary threshold policy with threshold

value x0 is:
n' (ti)

Amax(X, ti, T) = n' (t ) (3.4)
T(o, ti, r)

where n'(t1) is the number of tasks completed during the excursion. Note that for



stationary policies with deterministic service times, this value n'(t1) will be fixed.

Proof. The proof of this lemma follows from that of a standard D/D/1 queue, where

independent and identical tasks arrive at a deterministic rate of A > 0 and the service

time of each task is a constant s > 0. In order for the queue not to diverge, it is

known that the maximum stabilizable arrival rate is such that a task is completed

at the exact same moment that a new task arrives to the system. Hence, the queue

length never changes and assuming that the queue was empty to begin with, the

queue will remain empty always. In our formulation, however, the service times are

state-dependent and the server state is a function of its utilization profile. Hence

direct application of the D/D/1 result to obtain a similar stability condition is not

apparent. However, the introduction of excursions simplifies this problem since the

server's long-run behavior under a stationary threshold policy can be viewed as a

series of similar excursions lined up one after another. Moreover, we also assume

that the lengths of such excursions are finite since ti is finite and can be calculated

deterministically as shown in Equation (4.1). Hence, as long as the queue length

never grows after one excursion for a certain A, we can deduce that the arrival rate is

stabilizable. On the other hand, in order to obtain the maximally stabilizable arrival

rate, it should also be apparent that the length of the excursion during which n' tasks

were serviced should be exactly equal to the inter-arrival time between the ith and

(i + n')th arrivals. This is so that at the completion of one excursion, the first task

of the next excursion arrives at that same moment, and hence preventing the server

from unnecessary idleness.

1
n'(t) - A(X = t T) T(x, t, r)

A(x, t, T) = n'(t
T(x, t, T)

Moreover, it should also be noted that during an excursion, depending on the interar-

rival times and the service times, the queue length could potentially grow. However,

the queue length at the start and at the end of the excursion will definitely be the

same subsequently. The queue length during an excursion will also never be infinite



since the length of an excursion is assumed to be finite.

Later, we will also show that such an analysis can be extended to the case of a

stochastic server in order to derive a policy that gives a higher useful throughput com-

pared to simply a greedy policy, though there exists no guarantees on its optimality.

In addition, non-stationary policies such as n-task threshold policies, where n E N

will also be shown to be non-optimal. Finally note that in the case that Smin = Smax

and where we are only maximizing the throughput of the queue, Amax = 1/S(1-) is

optimal and, in this case, Xthreshold = -.

3.3 Case 1: Convex Objective Function

Let us first begin by examining the case with deterministic state-dependent service

times and error rates and where the server is assumed to have the following objective

function:

max fu(t, T, X) := max cC,(t, T, X) + (1 - c)Amax,(x, t, )I (3.5)
(X't) (X, t)

Note that in the equation above, each term is treated to be a function of the state

x since as mentioned in the section above, we will be primarily looking at stationary

threshold policies, meaning that the policy taken at a certain server state x will always

be the same. In addition, t is also assumed to be finite, and similar to Equation (4.1), t

represents the amount of time the server is busy during one excursion. Note that since

we are looking at stationary threshold policies with deterministic service times, every

excursion from the same threshold value would be similar to each other, assuming

that the server is constantly making the decision of whether or not to accept a task

when it is idle. Hence, the server behavior in the long-run would simply be a series of

similar excursions from the same threshold value and so for ease of analysis, we would

subsequently just need to examine the behavior of the server during one excursion to

be able to characterize its long-run behavior. Moreover, as can be seen from (3.5), in

addition to determining the optimal threshold value, we would also need to determine



the optimal excursion time from x.

The term C,(t, T, x) can be treated as the average probability of getting a task

correct in the excursion timeframe of [to, to + T(x, t, T)] when the server is busy under

policy u and with a threshold value of x and a busy time of t, assuming a task is

accepted at time to when the server state is x. Similarly Amax(T, U, X) is the maximally

stabilizable arrival rate under the same circumstances with a threshold value of x.

Given that we know that S(x) and S(x) are convex for x E (0, 1), we can manipulate

Equation (3.5):

max fu(t, T, X) min -[c (1 -- E(t, T, X)) + (1 - c) ]'T)
(x't) (x't) T(x, t, r)

min c S(t, T, X) + (1 - c) T(xt,-)+ C0
(X't) _ n' (t)I

where C consists of constants that are inconsequential to the optimization problem

and n'(t) is defined to be the solution of the following minimization problem shown

in Equation (3.7).

min n

n'-1

subject to Z S(xi) > t (3.7)
i=O

-i+1= 1 - (1 - xi)S(x)/T.

The average error rate Eu(t, r, x)) can then be found by Equation (3.8).

Eu(t, x)) :=
n' (t) (3.8)

= 1 - (1 - xi)e8 (Xi)/T

Given these definitions, the optimal choice of Xthreshold is then shown in Equa-

tion (3.9) and we are now primarily concerned with determining what is the optimal



value of t, which resultantly helps us find the optimal value of Xthreshold.

Xthreshold arg maxffu(t, T, X)
X (3.9)

Xthreshold E (0, 1)

From Equation (3.7), we note that the selection of the optimal value of t is akin

to selecting the optimal value of n'(t). This is because t is defined as the period of

time that the server must be busy with tasks and since the service times of the server

are deterministic, the value of n' is also uniquely determined. Hence, we will now

focus primarily on determining the optimal number of tasks that should be done by

the server before the server is given a break to complete the excursion from Xthreshold-

3.3.1 Determination of optimal n'(t)

First, we show that the objective function that we seek to minimize in Equation (3.6)

is convex for x E (0, 1). Define:

F1(x, t, r) :=[C Eu(X, t, r) + (1 - C) ' ') + C ] (3.10)
Term1 Term3

Term2

From Equation (3.10), we know that since c > 0, Term 1 is a convex function

with respect to x since the sum of convex functions is still convex. Also n'(t) can be

treated to be a constant for a given t. Since Term 3 is also approximated to be a

constant, we can say that F1(x, t, T) is convex if Term 2 is shown to be convex.

Lemma 3.3.1. For all t > 0, x C (0, 1) and T > 0, given that T : x - T(x)

T(x, t, T), then T(x) is convex in x.

Proof. The convexity of this function can be proven from its second derivative since

T is twice differentiable in the interval x C (0, 1).



T(x) = - In +t

ofpx) ei -1

6XO - 1 + zo)

2f(x) eg - 2e, + 2xoei + 1 - 2xo

6X2z T- ( -1 + Xo)2x2

(e I- 1)2+2xo(e ± - 1)
2= T

(e- 1+ Xo)2x

From 2 ,we see that for t > 0,1 C (0, 1) and T > 0, 7 I' >0, indicating that

T(x) is strictly convex. E

Given that the objective function F1(x, t, T) is convex, we can then say that

F1,min := min {F1(x, t, T) | x E (0, 1)}, and Fi,max := max{F(0+, t, T), F1(1~, t, T)}.

Next, let us re-define the excursion time to be a function of n'(t), T1(x, n, T), instead

of t, T(x, t, T), where n := n'(t) and is determined using Equation (3.7).

XOe- 7] I S(X1 ) n-

Tl~o~mT)=~ln1 -(1 - 0)e rT1 (zo, n, r) =T - In XO+ 1: S(zi)
-o (3.11)

zi+1 = 1 - (1 - xi)e-S(X)T

Hence, our objective function can now be written as:

min{ F1(x, t, r)} :=Min c E,,(x, n, T) + d '(X ', +) C
(xt) (xn) n(

= min c E,(x , , T) + d T(x, , T)

(x,n) n

Next, we will examine two interesting properties that will help us prove the optimal

policy. The first property is that given the server state dynamics in Equation (3.1),

the cost to complete n tasks consecutively in one excursion will always be greater

or equal to the cost to complete the same number of tasks when 1 task is done per

excursion, where n E N. This property will be useful in proving the optimal policy.

Next, the second property is that given a certain excursion, a time-shift in the start of



the busy time of the excursion will not affect the cost of the excursion. This property

in turn helps to prove the optimality of the 1-task threshold policy.

Lemma 3.3.2. For xO E (0, 1) such that £o = arg minx{F 1 (x, 1, T)}, n C N and

T > 0, F1(xo, n, T) > F1(Xo, 1, T), assuming that the former policy u E U. assigns a

task to the server right away as long as the number of tasks assigned to the server

so far is < n. Note that we also assume the arrival rate to be Amax and hence the

arrival rate is high enough such that there always is a task in the queue to assign to

the server when desired.

Proof. First, we define zo = arg minx{F 1 (x, 1, r)}. Hence, this implies that any other

choice of x as the starting threshold value would result in a greater or equal cost.

Next, since we know that F1 (x, n, T) is convex for any given n E N, we know that this

minimum exists and that xO C (0, 1). Hence, we can then prove the following lemma

by mathematical induction.

We begin by comparing the non-trivial case of n = 2, that is we want to show that

F1(xo, 2, T) > F1(xo, 1, T). Next, let us define the notation x1 and X2 to represent the

server state at the conclusion of the first and second tasks respectively. Note that in

the case of n tasks, Xn would represent the server state at the conclusion of the nth

task. Hence, when the server is busy, its state goes from zO to x1 and then to z2,

where zo < xi < X2.

F1(xo, 2, T)= c E(o, 2, T)+ d 2

1 &(Xi, 1, T) r -ln(x 2 /xo) + lo S(Xz)=c K O+ d =
2 2

( +i, 1, r) T - (ln(X2 /Xi) + ln(xi/xo)) + E S(xz)=c K O+ d =
2 2

1
= (F1(xo, 1, T) + F1(xi, 1, T))

2

> F1(xo, 1, T)

The inequality at the end holds true from the definition of zo = arg minx{F1(x, 1, T)}

which implies that F1(xi, 1, T) > F1(xo, 1, T). Hence, the lemma holds true for n = 2.

Now consider n = k +1 assuming that the lemma holds true for n = k. Now, we want



to prove that F1(xo, k + 1, T) > F1(xo, 1, T), given that F (xo, k, T) F1 (Xo, 1, T).

T(zo, k +1, T)F1 (zo, k + 1, T) = cE(xo, k + 1, r-)+ d k+I
ko E(Xi, 1, T) T ln(Xk+1/XO) + zi 0 S(zE)

= c~= + d =S(i
k+1 k+1

I k-1 k-1

k 1 (c ES(Xi, 1, T) + d(Z S(xi) + ln( O1=0 i=o

CE(Xk, 1, T) + d(S(Xk) + T ln( k+))
Xk

1
= (k - F1 (zo, k, T) + F1(Xk, 1, T))
k + 1

> F1(Xo, 1, T)

Similarly, the last inequality holds true from the definition of £O which implies that

F1(Xk+1, 1,T) Fi(zo,1,T) and also since it is assumed that F1(xo, k,T) > F1(zo, 1, r).

Hence, this concludes the proof of this lemma, which indicates that given the server

dynamics, the optimal policy should be a 1-task threshold policy, since attempting

to complete 2 tasks within 1 excursion will never give a better cost than completing

the same 2 tasks using 2 excursions, where 1 task is completed per excursion. E

The next lemma proposes that given a certain excursion, a time-shift in the start

of the busy time of the excursion will not affect the cost of the excursion. It should be

noted however that the server cannot be interrupted during service of a task. Hence,

this time-shift in reality only pertains to the policy, ii, which waits for some initial

time until the server state reaches state x- from state £o before assigning the task to

the server.

Lemma 3.3.3. For any x E (0, 1), F 1 , (x, 1, T)= F1 ,f,(x', 1, T) iff x' > x and x'~ x

Proof. Let x1 represent the server state at the completion of the task.

Fi,u,(x', 1, T) =Tln(-) + S(x) + Tln(-7 )
£ £

= S(x) + T ln(-)

F1,u(x, 1, T)



From the above two lemmas, we can infer a third lemma. First as before, we

analyze only one excursion and assume that a task is assigned to the server at the

start of the excursion, which is a reasonable assumption given the lemma above. This

is because if the policy ft lets the server idle initially until it reaches a certain state,

x-, then one can instead consider the same problem with initial state x-. Next, the

lemma states that the total cost of an excursion from state x during which n tasks

are done under policy ni with each task being assigned at state x is equal to the cost

of n excursions, where the ith task is assigned during the ith excursion with starting

server state xi.

Lemma 3.3.4. For any policy ni that assigns n tasks during an excursion, F1,(xo, n, T) =

_-01 F1,(xi,1, T), given that xi is the server state when the (i+ 1)th task is assigned.

Note that policy u is similar to that in Lemma 3.3.2.

Proof. To begin, we note that there do not exist any assumptions on the type of policy

that it should be, apart from the fact that it assigns n tasks to the server during an

excursion. From earlier, an excursion is defined to be the event from state x that

starts with the acceptance of a task by the server at state x and ends with the first

subsequent return to state x. Hence, a general form of the policy ft can be defined to

be a concatenation of a task assignment followed by a fixed period of idleness for the

server. Note that in accordance with its definition, the period of idleness during an

excursion should never be long enough such that the server state returns to zo before

the n tasks are assigned. In addition, the periods of idleness can also be taken to be

0 between tasks. In fact, the policy u can be seen to be a variant of it where each

fixed period of idleness is taken to be 0 until all n tasks are assigned, after which the

server is given a long period of idleness to return to state £O.

From the general form of the policy i, let us first assume that the periods of

idleness are never 0. First, we note that when n = 1, the equality holds true trivially.

Next, consider n = 2. Let us denote the server state at the assignment of the ith task

to be xi while the server state at the completion of the ith task is 4'. Hence, for the



case of n = 2, under policy i, the server state will go from xo up to x' down to x1

up to x' and finally back down to zO during the excursion.

F,a1(xo, 2, T) =S(xo) + rln( + S(Xi) + T ln(-K)
X1

S(Xo) + S(Xi) + T ln(-) + T ln(-i)

1

= F1(Xi, 1, r)
i=O

Given that the lemma holds true for n = 2, now consider the case n = k + 1 assuming

that the lemma holds true for n = k, that is we want to prove that F1,i(xo, k-+I, T) =

j=o F1,.(Xi, 1, T) given that F1,f(xo, k, T) =$_O F1,s(xi, 1, T).

F1,?(xo,k-+ 1,r)= (S(zi)+r )+S(+)I+Tln(d)

=~~ Z()£ + -Tl(-')
i=O +1 o

k

= (S(zj) + r- In( )
i=O X

k

= F1,(zi, 1, T)
i=O

Hence, by mathematical induction, this lemma holds true and similar to Lemma 3.3.2,

implies that the optimal policy should be of the form of a 1-task threshold policy since

the cost will only be minimum in this case if zth = arg min.{F 1 (x, 1, T)} and n = 1.

The choice of any other n will result in the summation of a cost F1(xflth, 1, T) with

F1 (zth, 1, T) where nth # Xth, which by definition would result in a greater overall

cost than if we were to adopt a 1-task threshold policy.



3.3.2 Optimal Policy

Given the lemmas defined in the previous section, we propose a simple 1-task threshold

policy that can be stated as follows:

UTpt) = ON if X(t) < Xth(),

OFF otherwise,

where Xth(T) is as defined in Equation (3.9). We subsequently show that this policy

is the optimal policy given our objective function in Equation (3.12) and will further

term this policy to be a 1-task threshold policy since based on the server dynamics

and with an arrival rate of A max, the assignment of a task to the server at zth can

be treated as an excursion for a single task from £th. The maximally stabilizing A is

then found from Equation (3.4).

1
Amax (Xth, S(Xth), T) = (3.13)

T(Xth, S(Xth), T)

Theorem 3.3.5. ForT > 0, £0 E (0, 1), £th E (0, 1), q0 E N and A < Amax(zth, S(Xth), T),

lim supt_, q(t, r, A, zo, go) < +0.

Proof. First let us define xi and ti to be the server state and time instants respectively

at the beginning of service of the ith task. Also, let q(t) represent the queue length at

time t. Assume that the server state initially is xo E (0, 1) and that the initial queue

length qo is finite. Hence, without loss of generality, let us assume that x0 > Xth.

Based on the policy defined earlier, no task is assigned to the server until the server

state is Xth. Hence, the queue length when the first task is assigned to the server can

then be defined as q(ti) = max{0, qo - 1, q0 - 1 + [AT ln(x)]}. Note that the second

entry in the maximization corresponds to no tasks arriving during the idle period

that the server state decreases from £o to zth, while the third entry corresponds to

the case where the idle time is long enough for tasks to arrive, which then end up

piling up in the existing queue. Now, we will prove that q(ti) < q(ti) + [(-Tln(1 -

Xth) + Smax)A] + [-AT ln(Xth)] for all i by considering the following two cases:



* State 1: X 1 = Xth. This case occurs when a task arrives during the period that

the server is idle or if the queue was not empty to begin with. If A = Amax, then

the inter-arrival time between tasks is the same as the excursion time under a

1-task threshold policy and hence q(tj) -- q(ti) Vi. If A < Amax, then the inter-

arrival time between tasks is more than the excursion time and hence there exists

an i' > 1 such that q(ti) < q(ti_ 1) Vi < i' and q(te' + T(Xth, S(Xth), T)) = 0 and

hence xj+ 1 < t due to the time that the server is allowed to be idle after the

queue is emptied. Thereafter, we will consider this case to be similar to the

next case by resetting xz1+ 1 and t'4+1 as 1 and ti respectively. q(ti) in the next

case will hence begin at 0.

" State 2: X1 < Xth. This case occurs when a task arrives to an empty queue

when the server state is < Xth or in the event that x0 < Xth. This is because

the server will never be idle when the queue length is non-zero. Hence, here

we seek to find an upper bound on the maximum number of outstanding tasks

possible when the server state reaches Xth. First, we note that the maximum

amount of continuous service time required for the server state to cross .th

starting from any x1 < Xth is upper bounded by -T ln(1 - Xth) + Smax where

zo = 1~. It could then be followed by an idle time which is upper bound

by -T ln(Xth), at the end of which the server state is Xth. Hence, during this

total period, the maximum number of outstanding tasks that accumulates in

the queue by the time the server state reaches Xth is upper bounded by q(ti) <
q(ti) + [(-T ln(1 - Xth) + Smax)A] + [-AT ln(Xth)]. Thereafter, we will consider

this case to be similar to the earlier case with x1  Xth and ni to be the number

of outstanding tasks when the server state reaches Xt .

Hence, in summary, when the system is in State 1 and if A = Amax, then the queue

length stays constant. Otherwise, the queue length will monotonically decrease to zero

at which point it enters State 2. On the other hand, if the system is in State 2, it

stays in it forever or eventually enters State 1 with bounded queue length. Hence,

this proves the theorem that the queue length will always be finite. E



Theorem 3.3.6. Define u E U to be any policy that achieves the 1-task threshold

policy as defined above. For T > 0 and Xth argminx{Fi(x, 1, T)}, Flu(Xth, 1,T ) <

F1,U,(x, n, T) where x E (0, 1), n E N and u' E U.

Proof. First, we prove that the policy u is optimal within the class of all stationary

policies. This encompasses policies such as a single x-threshold policy or dual switch-

ing threshold policies. Furthermore, the assignment of tasks within each excursion can

also vary from policies that assign all available tasks one after another immediately

to policies that give the server a certain period of idle time upon each completion of a

task. From Lemma 3.3.3, we can state without any loss of generality that every policy

begins with the immediate assignment of a task to the server since any policy that al-

lows the server to have a period of idleness until state xO can be redefined as the same

policy but with a starting state of x-. Hence, given deterministic service times of the

server, the only difference between various stationary policies would then be the num-

ber of tasks done within one excursion and the amount of idle time between tasks.

From Lemma 3.3.2 and Lemma 3.3.4, we note that F1,(Xth, 1, T) K F1 ,(Xth, n, T)

and F1,u(Xth, 1, T) < J:] F1 ,u(xi, 1, T) = F1,i(Xth, n, r) where xO = 1 th and n E N

respectively, hence proving the optimality of u among the class of stationary policies.

The same reasoning can be extended to the class of all non-stationary policies.

A non-stationary policy, ii is a policy that assigns a task to the server at Xth(t)-

Let us define x and t2 to be the server state and time at which the server is as-

signed the ith task. Next, using the same mathematical tricks as Lemma 3.3.3

and Lemma 3.3.4, we note that during a timeframe of [ti, tj], if x = xz, then

F1,ni, ni, T) = ~-1 F1, (Xi, 1, T). This event will occur infinitely often under i

and hence Fi,u(Xth, 1, T) < Z0,I-1 F1,u(xi, 1, T) = F1,h(xi, ni, T).

Finally, a greedy policy will also be shown to be suboptimal. A greedy policy

is defined to be a policy that assigns a task to the server as long as there exists a

task in the queue. To show this, let us assume an arrival rate Amax according to

Equation 3.13. Next, we consider the following 3 cases of the initial server state xO:

. Case 1: £O < xth: Let us define x(oo) to be the server state at t = oo. In this



case, x(oo) = 1- because the queue length will never be empty upon arrival of

the second task, based on the definition of A mx2. Hence the server will always

be busy and x -- 1-.

" Case 2: XO = xth: Assuming qO = 0, x(oo) = Xth and this case is exactly similar

to the 1-task threshold policy proposed above.

* Case 3: Xo > Xth Similar to Case 1, x(oc) = 1- since the queue length will

never be empty upon arrival of the second task.

Hence, for Cases 1 and 3, we note that the cost of operating at zth = 1- under a

greedy policy is equivalent to F1,(1-, 1, T). From observation, we can then say that

a greedy policy is suboptimal if 1 # arg minx{F1(x, 1, T)}. Thus this concludes the

proof of the optimality of the 1-task threshold policy among all possible policies in

U A. ]

3.3.3 Extension 1: Switching Costs

Given the optimal policy stated in Section 3.3.2, it is interesting to note two key

assumptions made. The first is that the server state is being continuously monitored

and the second is that there exist neither any costs in keeping a task waiting in the

queue, nor any costs in continually switching the server between periods of busyness

and idleness. This section of this thesis hence explores variants of the optimal policy

that can be employed in the event that the latter assumption does not hold true and

that such costs do need to be accounted for.

As shown from the literature review in Chapter 2, the goal of queueing systems

is to find methods to reduce delays for customers and to keep long-run costs down.

For example, in a jobshop setting, costs may be incurred if a product is unable to be

completed on time due to a bottleneck that happened somewhere along the process

chain. Such costs could be the costs of not being able to meet a scheduled deadline

or loss of investor confidence. Moreover, when dealing with machinery or even when

the server is a human, costs may be incurred for continually switching on and off



the server. This could be due to the additional energy required to 'boot-up' the

machine from a dormant state compared to if the machine has just been allowed to

stay 'active' even when it was not servicing a job. In the case of human servers, a

common explanation would be that the interruption of the server's 'train of thought'

everytime he or she is given a short break after service of one task is overall more

harmful to the server's productivity compared to the benefits of implementing the

optimal policy derived in Section 3.3.2.

The problem with switching costs can be formulated as follows: Associate a cost

of c, for each time the server is switched on or off under the optimal policy derived

in Section 3.3.2, where the server is defined to be switched off everytime it is not

busy servicing a task. Each task completed is given a reward of y units, though

only tasks that are completed correctly are rewarded. In this case, the policy derived

earlier would hence not necessarily be optimal and a dual switching threshold policy

as mentioned in Section 3.2 might be a better choice. Let Gpt represent the reward

of one excursion, associated with the policy derived in Section 3.3.2 and let Gdual

represent the reward of one excursion, during which n tasks are serviced using a dual

switching threshold policy. For now, assume that the arrival rates in both cases are

such that the queue is always kept stable. It is apparent that such an assumption

implies different arrival rates for both policies but this will be dealt with subsequently.

The reward functions of such a problem would hence look like Equation 3.14 and

Equation 3.15.

G0,p [1 - E(Xth)] ' - 2 * cs (3.14)

n-1

Gdual = J[1 - (.i)] - y - 2 - c, (3.15)

i=O

Hence, it is apparent that the optimal policy for a system with switching costs is

a single-threshold policy if n - Gopt > Gdual and is a dual switching threshold policy

otherwise. We note that these two policies can be argued to be optimal within the

realm of all stationary and non-stationary policies using the same arguments as before.
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Figure 3-1: Comparison of Reward Functions of n -Got and Gdual for n = 5, r = 300,
y = 10, E(x) = 1.9X 2 - 1.9x + 0.9 and based on the service time function from
Figure 1-3

The interpretation of such a policy is that a single-threshold policy is optimal if the

benefit of completing a task quickly and correctly far outweighs the cost of frequently

switching the server on and off. On the other hand, if switching costs are high, for

example if a human server prefers to tackle a series of tasks at one go instead of being

given time to rest after every task, then a policy that allows the server to service n

tasks consecutively before allocating a period of rest is optimal. Figure 3-1 shows an

illustration of such a phenomenon, whereby the single-threshold policy is optimal up

until the critical value, after which the switching costs are so high that it is cheaper

to implement a dual switching threshold policy.

In addition, the claim that the arrival rates in both cases are always such that

the queue is kept stable is valid as long as the queue length at the start and end of

an excursion are kept the same. Moreover, there must also be sufficient number of

tasks to be allocated in the queue for the dual switching threshold policy to work.

Hence, we notice that while Lemma 3.4 holds true for the single threshold policy,

using the same formulae to derive the arrival rate for the dual switching threshold

............... ................



policy does not actually hold true, since it can be observed that the server would have

no tasks to service for a period of time upon completion of the first task. Hence, for

the latter case to work, let us assume a batch arrival system where n tasks arrive at

an arrival rate of A,, as defined by the single threshold policy. The difference in

arrival processes, however, does not affect the selection of the optimal policy based

on our definition of the reward function since the server is rewarded for each correctly

done task.

3.3.4 Extension 2: Switching and Holding Costs

Given the assumption of a batch arrival system for the dual switching threshold policy

case, it is now imperative to note that there would almost always be tasks waiting to

be serviced in the queue, although in the long run, the queue length will never diverge

to infinity. However, the delays associated with having to wait for service in the queue

may be of concern and there may be costs associated with such delays. Let us define

CD to be the cost associated with a delay of 1 unit time for each task waiting in the

queue, otherwise known in literature to be the holding cost. The reward function for

the dual switching policy can then be modified as shown in Equation 3.16.

n-i n

Gdual = j[1 - S(xi)] y - 2 - c, - cD * (- ~ i)S(xi- 1) (3.16)
i=O i=1

Hence, the optimal policy for a system with switching and holding costs would

once again be a single-threshold policy if n - Gopt > Gdual and would be a dual

switching threshold policy otherwise. Figure 3-2 illustrates the cost variation for the

same setup as that in Figure 3-1 though this time for varying n. The switching cost

is now taken to be a constant of 0.5 and the holding cost is 0.005 per second per

task. From the figure, we notice that for some n, the reward of implementing a dual

switching threshold policy is higher than that of the single threshold policy, even

when holding costs are considered in the reward function. However, as expected, the

reward of implementing a dual switching threshold policy with holding costs is always

less than that of one without and that the reward of the former always diminishes
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at an increasing rate as n increases. Hence, this implies that in the case that delays

should be prevented and if the optimal policy is indeed the dual switching threshold

policy, then the number of tasks done per excursion, n, would always be less than or

equal to the number of tasks done per excursion if holding costs are not considered.

3.4 Case 2: General Objective Function

In this section, we relook at the assumption that the service time and error functions

have to be convex graphs and instead propose that the same arguments mentioned

throughput the chapter thus far can also be extended to cases where the objective

function is not convex. Though much literature as mentioned earlier in the chapter

validates the use of convex functions to represent the service time and error functions,

there may be instances where the assumption may not hold true. Hence, we seek

to show that the optimal policy still remains optimal, even for a general objective

function.

First, let us begin by characterizing what a general objective function means.

.. ................ . ..... ....



We define a general objective function to be any function that is neither convex nor

concave, meaning that multiple local minimum and maximum may exist. Assuming

that such an objective function is observable and characterizable in reality, then the

optimal policy can be stated as follows:

UTP M) ON if x(t) < Xth(T),

OFF otherwise,

Xthreshold := arg min{F (t, T, x)}

T threshold 6 (0, 1)

We note that the above policy is exactly the same as that defined for a convex

objective function. This is because Lemma 3.3.2 still holds true regardless of the

convexity of the objective function, as long as F(Xk+l, 1, T) > F(Xth, 1, T), which is

true by definition. Next, Lemma 3.3.4 also holds true since the 'memoryless property'

of the server is inherit in its server dynamics and not in the objective function. Hence,

these two lemmas, in combination with Lemma 3.3.3, together verify the optimality

of the above policy within the class of stationary and non-stationary policies. We now

investigate the behavior of a state-dependent queue with a general objective function

under a greedy policy.

As mentioned in Section 3.2, a greedy policy is one that allocates a task to the

server every time it is idle , assuming that the arrival rate of tasks is high enough to

always keep the server busy. Hence, the server state will converge to 1 in the long run,

resulting in the server having a fixed cost objective function of Fgreedy(t, T, A, £o, 1).

Hence, in the case that Xthreshold = 1-, then a greedy policy will perform similar

to the single threshold policy. Otherwise, a single threshold policy is optimal since

Fu(t, r, Xthreshold) Fgreedy(t, T, A, £o, 1-) by definition. This concludes the proof that

the same optimal policy derived for a convex objective function can be extended to

cases where the objective function is of a general shape.



Chapter 4

Policies for Servers with Stochastic

Performance

In Chapter 3, we assumed that the server's service rate at any state x was determin-

istic. However, this is typically invalid in reality, particularly if the server is a human

since no one can attest to behaving in the exact same way and taking the exact same

amount of time on a task all the time. Instead, a more apt model would be one where

the server's service rate is assumed to be stochastic with a certain mean and variance.

The state-dependence of such a queueing system is then modeled into the means of

the service rate, which are now assumed to vary according to the Yerkes-Dodson law

just as proposed in [19]. Moreover, if one refers back to Figure 1-3, it should be noted

that the authors did notice that the distribution of decision times was well-modeled

within each bin by a log-normal distribution as shown in Figure 4-1.

A lognormal distribution is popular for use in service time modeling due to its

existence within the quadrant of positive x- and y- values, meaning-negative service

times will be not modeled, unlike if we were to use a normal distribution. An illus-

tration of how the service times are envisioned to be distributed in reality is shown in

Figure 4-2. This chapter will hence attempt to extend the work done in Chapter 3 to

a case with a stochastic server, particularly examining the behavior of such a server

using the optimal policy derived for a deterministic server in Chapter 3. Bounds on

the maximally stabilizable arrival rate for a stochastic server will then be proposed.
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4.1 Extension of Single-Task Threshold Policy to

Stochastic Server

In this section, we examine the outcome when the single-task threshold policy that

was developed for a deterministic server is implemented for a stochastic server. Key

differences of having a stochastic server are that firstly, the actual service times for

each task is unknown to the controller until the task has been completed and secondly,

that optimal control would require some form of closed-loop feedback, unlike the open-

loop setup for a deterministic server, since the server's behavior is probabilistic.

In this chapter however, we modify our objective function to be one where we

want to maximize the total throughput through the system, hence neglecting the

error rates. This modification is done primarily to simplify our analysis subsequently

when deriving bounds for the maximally stabilizable arrival rate for the stochastic

server. Also, we make the second assumption that the variation of the service times

with the state is convex for simplicity. Based on these assumptions, we can then

envision three possible scenarios that could occur with a stochastic server and can

provide some analysis.

Let us assume that tasks are arriving at the rate Ama, as defined in Equation 3.4

with an objective function of purely wanting to maximize the throughput and an

associated threshold value of Xth. The desired service time for each task is hence S(Xth)

though in reality, the actual service time is 5stoc(xth), where SStoc(xth)~ Log-.(p, o2 ).

Finally, let xi represent the server state after A units of time from the time a task

is allocated to the server at state Xth. In the ideal case, Xi = Xth always, which is

the case for a deterministic server, allowing for predictable server behavior that can

hence be controlled.

The three possible scenarios when dealing with a stochastic server are as follows:

1. sstoc(Xa1 ) < S(Xth): In this case, xi < Xth if the queue is empty since the

total excursion time required for the server to have returned to 1 th is less than

each interarrival interval. This should be apparent given Equation 4.1 and

Lemma 3.3.4 and is illustrated in Figure 4-3(a). Assuming the queue to have



been empty to begin with, the server would then remain idle until a new task

entered the system.

Under the single-task threshold policy, however, we term this case to be stabi-

lizing but uncontrollable. This is because assuming that the queue is empty and

as can be seen from Figure 4-3(b) , should the server continually be servicing

the tasks faster than expected, then there exists a task i, i > 1 that will be

serviced starting from a state xi < Xth, such that Satc(xi) > SatOC(Xth), where

our notation is that S8 tc(x) is the mean of the random variable Satc(x). Note

that even though Xth = arg minx{T(x, t, T)} (recall that the objective function

we are minimizing is the excursion time since we are purely maximizing the

throughput), Satc(zi) need not necessarily be greater than Sat0c(Xth). Hence,

as Figure 4-3(b) depicts, this case is considered stabilizing since a server that

is constantly under-servicing his tasks will continually have excessive amount

of idle time, resulting in a corresponding decrease in the server state below

Xth. When the server state is xi, Sstoc(xi) > Sstoc(Xth), indicating that either

the server state xi+ 1 = Xth in the rare case as depicted by Figure 4-3(b), or

that xi2 t > zth, which will be dealt with in Case 3. A third possibility is that

zi+1 < Xth and we remain in Case 1. If, however, the queue is not empty when

the single-task threshold policy is in use, then a task would be allocated to the

server when its state is < Xth, hence momentarily reducing the queue size by 1.

This case, however, is classified to be uncontrollable since in the case that

the queue is empty, there exists no method of control to prevent the excessive

periods of idleness. Since the server can only be allocated tasks currently in the

queue and since there exists only a single arrival process of tasks into the queue,

we hence have no means to allocate a task to the server even if the server state

equals Xth if there exists no tasks in the queue.

2. setoc(Xth) = S(xth): This case is similar in behavior to when the server is de-

terministic. In this rare event that the time taken to service a task is exactly
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(a) Illustration that x1 < Xth. The grey line in- (b) Illustration of Stabilizing Property. A
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tic server while the black line indicates the be- results in an eventual increase in the mean ser-
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S(Xth) periods of idleness

Figure 4-3: Illustration of state behavior under single-task threshold policy and when
operating in Case 1

equal to what is desired, then x1 = Xth by definition since the total excursion

time is exactly equal to 1.

3. sStoc(Xth) > S(xth): In this third case, x1 > Xth if no policy is applied since

the server is not given sufficient amount of idle time for its state to return

to Xth. This is shown in Figure 4-4(a). This case is termed to be unstable

if left on its own but controllable otherwise. This is because since x1 > Xth,

and given that no control is implemented, Sstoc(xi) > Sstoc(Xth). The latter

statement follows from Lemma 4.1.1 and will be elaborated on subsequently.

Hence, when no control is applied, the server state at which tasks are allocated

gradually increases, resulting in a corresponding increase in the mean service

times of each task. This vicious cycle inadvertedly results in the server state

asymptoting to 1, hence indicating the instability, as depicted by Figure 4-4(b).

During this process, however, it should be noted that the queue size grows as

well since the service rate is now lower than the arrival rate.

It should be apparent then that the queue size would likewise grow under the

single-task threshold policy. This is because since the server state 1 time
Amax
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(a) Illustration that x1 > Xth. The grey line in- (b) Illustration of Instability. If stoc(xt) >

dicates the desired behavior given a determinis- S(xth), the subsequent server state at which the

tic server while the black line indicates the be- next task is allocated will be > Xth, resulting in

havior of a stochastic server when satoc(xth) > a corresponding increase in the expected service

S(xth) time for the next task

Figure 4-4: Illustration of state behavior under single-task threshold policy and when

operating in Case 3

units after the allocation of a task is greater than Xth, and since tasks are only

allocated to the server when its state is < Xth, then arriving tasks will continually

accumulate in the queue as they are withheld from the server until the server's

state decreases to Xth. Hence, in the event that the server continually takes a

longer amount of time than desired to service the tasks allocated to him, then

the queue size would resultantly grow.

However, this case is considered controllable since given that the total excursion

time required would be greater than each interarrival interval, a task allocation

policy like the single-task threshold policy can hence be implemented. As men-

tioned in Chapter 3, such policies typically are concerned with controlling the

server state by scheduling the beginning of service of tasks after their arrival

and are unable to interfere with the server while it is servicing a task. Hence,

under the single-task threshold policy, we note that since the total excursion

time required in this case would always be greater than each interarrival inter-

val, the queue length would grow. The presence of tasks in the queue hence

allow a policy to be implemented such that tasks can either be allocated or

66



withheld from the server, unlike in Case 1, where tasks could only be withheld

since the queue length is always empty.

Lemma 4.1.1. Given that Seto(x) is convex with respect to x, and that Xth

arg minx{T(x, 1, T)}, where T(x, 1, T) is the mean excursion time for state x under

a single-task threshold policy, then it can be said that xth Xmin, where xmin

arg minx{S toc()}.

Proof. The proof for this lemma is simple and is a result of the the convexity of

Sstoc(x). A necessary condition for Xmin to be the argument that minimizes Satoc(x)

is that d"*"ocdx) = 0. Given that S toc(x) is convex, there will exist only one global

minimum. Also, given that the excursion time is defined to be the sum of the service

time and the amount of idle time needed to return the server state back to t under a

single-task threshold policy, we can then use its first derivative to determine properties

of xth. Note that the result found earlier Lemma 3.3.1 can be extended in this case

to prove that the T(x, k, T) is convex for all k if Sotoc(x) is convex, and hence will not

be dealt with again.

Hence, given that both Satoc(x) and T(x, 1, T) are convex, let us examine the

derivative of the latter at xmin, that is when dSst"'(x) = 0.
dx

T(x, 1, T) =r-F n( )to + Stocx)x
dT(x, 1, T) T T S (x) _Sto(X) ,St0 (X)

dx- [(1x) t e r +e T- -1]
dz 1 - (1 - x)e T

dT(xmin, 1, T) T -sStoc(X"in)
=- [e -1] < 0dx 1-1xmneSstoc( xmin)[e-1<0

dz 1 -(1 -- min)C

Hence, as illustrated in Figure 4-5, since the first derivative of T(x, 1, T) is negative

when x= xmin, iXth > xmin. Note that xth = xmin only in the case that xmin = -

due to the limits on x. This is an important property in analyzing Case 3 previously

since it implies that accepting any task at a server state x > xth would imply that

the subsequent mean service time of that task would be longer than desired. Note

that the converse is not true and accepting any task at a server state xi < xth need
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Figure 4-5: Illustration of how the service time and excursion time curves may vary
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not necessarily imply that the subsequent mean service time of that task would be

longer than desired. This is hence the distinction between service times and excursion

times and as has been shown before in Chapter 3 and will be shown again later, useful

policies typically require the minimization of the latter and not the former. E

4.2 Derivation of Bounds for the Maximally Sta-

bilizable Arrival Rate for a Stochastic Server

In this section, we determine an upper bound for the maximally stabilizable arrival

rate for a stochastic server. To do so, we first examine what we know of this arrival

rate. First, similar to what was argued in Chapter 3, the lower bound of the maximally

stabilizable arrival rate for a stochastic server occurs in the case when the server

operates with no control and is found to be 1 This happens when the server
s-t 0 (1-)

is continually kept busy, hence resulting in the server state asymptoting to 1. Since a

maximally stabilizable arrival rate refers to an arrival rate that ensures the queue is

kept stable, that is that the queue size remains finite even as time tends to infinity,

we can then treat this similar to a D/M/1 queue and the mean service rate must



hence be at least equal to the arrival rate for the queue to remain stable.

Next, we attempt to determine an upper bound for the maximally stabilizable

arrival rate for a stochastic server. As expected, such an arrival rate has to be used

in conjunction with some task allocation policy. Let us first re-examine the behavior

of a stochastic server under a single-task threshold policy proposed in Chapter 3 for a

deterministic server with an initially empty queue. As mentioned in the earlier section,

we note that the queue length decreases by 1 with a lower bound of 0 when the actual

service time is less than what is desired and increases by 1 when the actual service

time is greater than what is desired. The desired service time is Satc(Xth), which

is the mean of the random variable Sat 0c(Xth), whose probability density function is

expected to follow a lognormal distribution as shown in Figure 4-1. Hence, if we are

to follow a similar argument to that of a D/M/1 queue and given that we know that

a single-task threshold policy outperforms any other n-task threshold policy where

n > 1 as shown in Chapter 3, then we note that a strategy to determine the maximally

stabilizable arrival rate would then be to ensure that the mean excursion time at Xth

is equal to the interarrival time between consecutive tasks.

First, let us say that the mean excursion times under a single-task policy, T(x, 1, T)

are related to the state according to Equation 4.1.

T(x, 1, T) = [r ln( - X)e) + t] f (x, t)dt

1 -(n-p )>2 (4.1)
f (x, t) - e 2a2(X)

t 2wro 2 (x)

where f(x, t) is the probability density function of t at state x. Hence, if we

define Xth,stoc to be the argument that minimizes the mean excursion time under a

single-task policy as shown in Equation 4.2, then the upper bound on the maximally

stabilizable arrival rate is hence 1

Xth,stoc arg min T(x, 1, T) (4.2)
X
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Figure 4-6: The black line in this figure illustrates how the server state could vary
under a single-task threshold policy. Two possible cases are expected under this
policy, the first of which is when a task is assigned at a state below Xthstoc (Case A)
and the second is when a task is assigned at precisely Xth,stoc (Case B). The red line
in the figure indicates the size of the queue as time progresses.

4.2.1 Upper Bound Analysis

Though we find the upper bound to be 1 from our analysis, we find thatT-(Xth,stoc,1,'r) )

there exist certain conditions in order for this to hold true. First, it is important for

readers to note that the upper bound was determined by requiring the interarrival

times of new tasks to the system to be equal to the mean of the excursion time

for a single-task threshold policy. Note that the single-task threshold policy is once

again treated as the optimal policy among the class of all stationary policies since

Lemmas 3.3.2 and 3.3.4 still hold true when considering the means of the excursion

times.

Moreover, a D/M/1 queue is stable if the arrival rate is equal to the mean service

rate since by the strong law of large numbers, the sample average of the service times

converge almost surely to the mean service time, implying that tasks are serviced

as fast as they enter the system. Hence, though the queue size need not necessarily

remain at 0 throughput, the queue is stable in the long-run and the queue length will

never diverge to oc. However, in this case, though we attempt to apply the same

argument to the excursion times, it should be apparent that this does not hold true,

as can be seen from Figure 4-6.

An excursion from state x is defined to be the event that starts with the acceptance

. ... ............... ................................ ........... ........... ..........
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Figure 4-7: Illustration of how assigning a task at zi- e0 < Xth,stoc results in an

excursion time associated with a higher mean excursion value, T(xzhstoc, 1, T). This

follows from Lemma 3.3.3.

of a task by the server at state x and ends with the first subsequent return to state x.

From Figure 4-6, we note that in Case B shown, when a task is assigned at precisely

state Xthstoc, then the mean of the associated excursion times is expected to converge

to the mean excursion time, T(xthstoc, 1, T). However, it is also apparent that if a task

is ever assigned at a state less than Xth'stoc, then the excursion time associated with

the previous task can be said to be a sample from the random variable T(xh stoc, 1, T),

where x-T is the state that the task was assigned at and is < Xth,,toc, which follows

from Lemma 3.3.3. This is illustrated in Figure 4-7. Such a scenario will occur almost

surely if the queue were empty to begin with, hence implying that the true maximally

stabilizable arrival rate should be even less than expected, since T(x-stoc, 1, r) >

T(xth,toc, 1, T) by definition. Hence, the single-task threshold policy with an arrival

rate of 1 should be applied to a non-empty queue, for example by allowing
Tr(Xth,stoc,1,r)

a buildup of a certain number of tasks in the system before the first task is assigned.

A slightly lower arrival rate, however, will guarantee stability for a stochastic server

even if the queue is empty to begin with.

................................................................................................ .....



4.3 Simulation and Conclusion

In this section, we present some simulation results for a server with stochastic service

rates, where the mean service times vary with state according to the Yerkes-Dodson

law, while the distribution of the service times for a given state follow a lognormal

distribution. An illustration is shown in Figure 4-2. The parameters used in the

simulation are summarized below.

Mean Service Time, Sstoc(x) 229x 2 - 267x + 99

1 -(in t-A(x))2

PDF of Service Time at state x, f(c, t) = e 2,2(x)

t /2iro. 2(c()

Mean Excursion Time, T(X, 1, T) = [-r In( ) + t] - f (x, t)dt
JO

Stand. Dev. of Excursion Time, o- 10

Sensitivity Parameter, T 300

Calculated Threshold Value, Xth,stoc = 0.654

Upper Bound on A, Amax = 0.031

Multiplication Factor, c = 0.05

Figure 4.3 compares the queue length when A = Amax and when A = (1 + c)Amax.

As can be seen, the queue length remains stable for the former case but grows for the

latter case. This proves the validity of the upper bound.

In conclusion, Chapters 3 and 4 provide detailed analysis on optimal policies

and upper bounds on the maximally stabilizable arrival rates for deterministic and

stochastic servers respectively. In the former case, the optimal policies were found

for objective functions that seek to maximize the total useful throughput and we

found these policies to be extendible to all cases, regardless of whether the objective

functions were convex with respect to c. In the latter case, however, we were only

able to formulate bounds on the maximally stabilizable arrival rate for the purpose

of maximizing the total throughput (that is, error rates are not considered) and these

bounds are only valid for the case that the objective function is convex. Chapter 4
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Figure 4-8: Comparison of Queue Lengths for Different Deterministic Arrival Rates

is hence most definitely not an exhaustive analysis of the behavior of a stochastic

server. In the subsequent chapters, however, we will attempt to implement the policies

introduced in Chapters 3 and 4 in a real-life setting and examine if such policies are in

fact feasible in reality. Difficulties in estimation of the sensitivity parameters and/or

the server state as well as lessons learnt will be discussed in the following 2 chapters.

........ ......... ...............



Chapter 5

Experimental Design

This chapter discusses the experimental design used for the implementation and as-

sessment of the single-task threshold policy introduced in Chapter 3 in order to maxi-

mize the total useful throughput of a human. As mentioned in Chapter 2, we envision

such policies to eventually be used in the realm of Human Supervisory Control, for ex-

ample by UAV operators involved in reconnaissance missions. Tasks such as gathering

of on-site information using a UAV or target classification from the images streamed

from a UAV's camera out in the field would then make up the types of tasks that are

continually sent to the UAV operator and the goal of the task scheduler would then

be to allocate such tasks so that the number of tasks done correctly by the operator

is maximum.

One should take note, however, that it is not claimed that these experiments

provide conclusive information of the single-task threshold policy. Instead, these

should be viewed as pilot studies to investigate the feasibility of such policies and

to examine difficulties in implementation. Moreover, theoretical policies may work

on paper but actual implementation may be difficult and the results may not be

according to what was predicted. This chapter hence summarizes the pilot study

we undertook to test the feasibility of the policy developed in Chapter 3 and the

subsequent chapter will discuss more on the results.



Please answer the analogy below

Color : Spectrum

A tone : scale

O B sound : waves

O C verse : poem

O D dimension: space

O E cell: organism

Submit

Figure 5-1: Sample Graphical User Interface used for Experiments

5.1 Design of Experiment

Figure 5-1 shows an example of the experimental interface, with the question shown

and the 5 possible answers to the question listed in bullet-form below. The type of task

we chose for the pilot experiments was verbal analogy, similar to those often posed to

examinees on the Scholaristic Assessment Test (SAT). This task was chosen as it is

classified as a cognitive task that requires subjects to both decipher the meaning of

words, form relations between the words and to make decisions on which option is the

correct answer, where the correct answer is the one that has the closest relation to the

..... ..... .



Figure 5-2: Human Information Processing Model proposed by Wickens [6]

posed question. Cognitive tasks hence involve the processing of new information and

the ability to recall or retrieve that information at a later time (from memory). Since

tasks that UAV operators typically deal with are also classified to be cognitive tasks,

the choice of verbal analogy questions seemed appropriate. Moreover, we opted for a

simple type of task and chose not to implement an actual supervisory control mission

setting for the subject to reduce the complexity of the task shown to the subject.

Performance would hence be related to how much time the subject spends solving

the task, rather than on how well the subject is able to learn and handle a complex

mission during the experiment. A model of the human information processing model

is shown in Figure 5-2.

A minimalistic style was also chosen to present the task to the subject. In fact, all

that was shown to the subject was the analogy question and 5 possible answers to the

question, with no feedback of any kind on their performance. We opted not to show

any indication of the amount of time spent or time remaining in the experiment to

avoid having any factor (apart from workload) pressurizing the subject. The number

of tasks in the queue and feedback on the subject's performance were hence not shown

as well. Questions were chosen and distributed in a manner such that there was no

bias in the difficulty of the questions at any point in the experiment. Additionally, the

questions were always posed to the subjects in the same order to avoid inconsistency.

Subjects were also not given the option to go back and change their answers upon

--- -- -- --- -- -- -- -- --- -- --



submission and were also always required to provide an answer with no option to skip

questions.

Before the experiment began, subjects were also briefed on their objectives. Sub-

jects were all told to maximize the number of correct answers while answering as many

questions as quickly as possible. Subjects were told that they would be awarded a

point for every correct answer, but also penalized with a subtraction of a point for

every incorrect answer. An assumption made during these experiments was then that

subjects understood and followed these objectives thoroughly and that they were

always trying to maximize their score. The associated predicted behavior of such

a subject would hence be one where he answers questions that are obvious quickly,

while deliberating for a longer time on questions that are not as obvious. During

this period, the subject is then making a tradeoff between answering the question

correctly or answering more questions within the allotted timeframe.

5.2 Implementation of the Task Allocation Policy

The task allocation policy implemented in the experiment is the single-task threshold

policy proposed in Chapter 3 and it is restated here for completeness.

rP () = ON if x(t) < Xth(T),

OFF otherwise,

However, though this policy appears simple, there exist many system parameters

such as the initial server state xo(0) and T that are unknown to the task controller

at the start of the experiment. Furthermore, parameters such as T would probably

differ from person to person since it is a measure of how sensitive the subject is to

sudden changes in workload. Moreover, the service time and error rate functions also

need to be derived during the experiment since they differ from person to person.

The remainder of this section hence summarizes the methods we used to obtain these

parameters, as well as some suggestions on how these methods could be improved.



5.2.1 Estimation of Initial State and Sensitivity Parameter

The first step to be taken by the controller is to estimate the initial state and sensitiv-

ity parameter of the subject. The variation of the server state with time for the same

busyness profile under different initial states and sensitivity parameters are shown

in Figures 2-2 and 2-3 respectively. The choice of £O was eventually decided to be

arbitrarily set to 0.5 since it is apparent from Figure 2-2 that given the same busy-

ness profile, the server state will eventually converge regardless of the initial state.

Since x E (0, 1), choosing the midpoint seemed appropriate. Alternative methods of

deriving this initial state could include more subjective measures such as asking the

subject to input how busy he feels at the start. This, however, does have drawbacks

since it is a subjective measure and it might be hard to ask a subject to evaluate his

busyness when he has yet to start working on a task.

Next, the sensitivity parameter was chosen to be T = 150. The resultant choice of

this value was based on a tradeoff between the amount of time it takes for the eventual

convergence of the state and the realism of the model. This is because small values of

T were found to result in faster convergence rates of the state for varying initial values.

Small values of T also allowed the state to change more drastically, which is important

in our modelling given that we do not have the luxury of running experiments that

are hours-long. However, excessively small T values would also imply that humans are

only sensitive to how busy they have been in the very recent past, hence resulting in

huge fluctuations in the server state, which do not appear realistic. The value of 150

was hence chosen since simulations based on pilot studies showed it to be a suitable

choice to model the server state, particularly since previous work in [3] had used the

same value in the calculation of the server workload using a moving average formula.

5.2.2 Determination of S(x) and E(x) Functions

After deciding on xo and T, we can then determine the S(x) and E(x) functions for

each subject. This was done by implementing a threshold policy with three different

threshold values over 30 minutes. The threshold values chosen were x1 = 0.6, X2 = 0.7,



and x3 = 0.8 and tasks were assumed to be always available in the queue during this

period. One can then take an average of the service times and error rates associated

with each threshold value, with some tolerance allowed to ensure a sufficiently large

dataset. Using these mean values and their associated xi values, one can then do a

least-squares fit to obtain an approximation of S(x) and E(x). The assumption made

here is hence that both S(x) and E(x) are convex with respect to x and that both

follow a second-order polynomial. The curve-fitting was done using QR decomposition

that is part of the JAMA package in JAVA. Finally, it should be noted that the

30 minute period was not divided equally between each threshold value. This is

because as is characteristic of all exponential variables, the server state increases at

a decreasing rate as the state increases from 0 to 1, since the state asymptotes to

1. Hence, the amount of time, toi, needed for the state to increase from xo = 0.5 to

x1 = 0.6 will always be less than t12 and t23. Since toi t12 < t23 , the amount of

time allocated to the first threshold was 300 seconds. The time allocated to collect

readings for the second threshold was 700 seconds while the time allocated for the

third threshold was 800 seconds.

Alternative methods to derive these functions include binning the service times

and error rates into arbitrarily sized Ax-intervals and finding the means related to

each bin. A curve-fit can then be done to determine the curves. This is similar to

what was done in [19]. Problems faced when using this method include difficulties

in separating transients from useful experimental data and the high sensitivity of

the data to bin-size. The first problem arises due to the need to determine how

long a transient to neglect before the data is collected. This problem is avoided by

the former method since data is only collected when the server state equals to xi

and hence the transient period is ignored. The latter problem, on the other hand,

arises due to the lack of sufficiently large datasets, especially for lower values of x,

resulting in inaccurate mean values for the left-hand side of the curve. This has

been a long-standing problem of characterizing the Yerkes-Dodson law and hence

we mitigate this by purely finding the mean values at 3 threshold values, since 3 is

the minimum number of datapoints needed to fit a second-order polynomial. While
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Figure 5-3: Classification of Possible Types of Curves Obtained for S(x) and E(x)

it is tempting to increase the number of threshold values, one must note that each

subsequent increment requires an exponential increase in the amount of time needed

to collect readings. An overly-long experiment would most probably not be welcomed

by subjects and factors such as boredom and fatigue could set in.

5.2.3 Classification

After the first 30 minutes of the experiment and with the S(x) and E(x) functions

determined, we then need to determine the Xth value. While it was proposed in

Chapter 3 that each subject's unique objective function would be a combination of

both minimizing his service times and error rates, determining the weightage that

each subject places on each factor is difficult. Hence, for our pilot study, we avoided

this problem by simply deciding to focus on either the service times or the error rates

for each subject. This was done by classifying each subject to either be service-time-

sensitive (Case 1), error-rate-sensitive (Case 2), or neither (Case 3). Future work can

then focus on determining methods to decipher each individual's preferences.

Subjects are classified using the following method. First, as shown in Figure 5-3,

each function is classified to be either convex or concave. In the event that S(x) is

convex and E(x) is concave, then the subject is determined to be service-time-sensitive



and vice versa. However, in the event that both S(x) and E(x) are convex, then the

subject is classified according to the function with the steeper average 'gradient'. A

subject is termed to be 'uncontrollable' in the event that both S(x) and E(x) are

concave. Implementing a threshold controller would not be useful to the subject in

this case and the subject is better left to his own devices.

The average 'gradient' for the service time function and the error rate functions are

defined to be AS and AE respectively and are calculated as shown in Equation 5.1.

Figure 5-4 illustrates how AS 1 and AS2 can be calculated if the penalty measure

were the service time.

AS 1 = S(0.6) - S(0.7)

AS 2 = S(0.8) - S(0.7)

AS = (|AS 1 |/S(0.7) + AS2|/S(O.7))/2

(5.1)

AE1 = E(0.6) - E(0.7)

AE2 = E(0.8) - E(0.7)

AE = (|AE1|/E(0.7) + AE2|/E(0.7))/2

Finally, upon determining if the subject is service-time-sensitive or error-rate-

sensitive, the final step would be to determine Xth. Determining this value, however,

requires one final classification of the type of convex graph. We propose there to exist

2 types of convex graphs as shown in Figure 5-3: Type 1 is when the minimum point of

the graph lies within the range (0,1), £min E (0, 1) while Type 2 is when xmin 0 (0, 1).

Determining Xth for Type 2 convex graphs is easy and Xth = arg min, S(x) in the

event that the subject is service-time-sensitive. In our case, however, we opt to

restrict Xth E {0.6, 0.7, 0.8}.

Determining Xth for a Type 1 convex graph is, however, not as straightforward.

Assuming that a subject is found to be service-time-sensitive, and that his service

time function can be classified to be a convex Type 1 convex graph such that S(x) =

asx2 + bex + cs, then we find that Xth ~ f. On the other hand, if the subject is
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Figure 5-4: Illustration of how the Ai and A 2 values are calculated

error-rate-sensitive such that E(x) = aex 2 + bex + ce, then Xth = 2.

5.3 The Experiment

The experiment was designed to last at most 45 minutes. Participants signed an

informed consent form, and filled out a demographic survey prior to the start of the

experiment. This survey requested for information such as age, a self-evaluated level

of command of the English language, and the number of years the participant has

been communicating in English. Next, a simple training session was done, which

lasts about 5 minutes. This consisted of subjects reviewing training slides, which

included a brief introduction to the experiment and the type of questions that they

would be posed since it is imperative that subjects understand how to solve analogy

questions before they are even allowed to begin the experiment. Finally, the slides also

included the objective that the subjects were to maximize and presented a scoring

system of how their performance would be evaluted. The scoring system was the

same for all participants and they were told that they would be given 1 point per

correct answer, though 1 point would be subtracted from their score for an incorrect

- I - .- - . .... .............. ................
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answer. Participants, however, were not informed that there existed a control policy

working 'behing-the-scenes' that was allocating when they would receive a task so

as to avoid biasing their responses. Participants also were also not informed about

how the experiment would be carried about and instead were simply instructed to

maximize their objective and answer the questions as they were given to them. The

use of control hence represents the independent variable of the experiment.

As mentioned earlier, the experiment began with a single-task threshold policy

implemented at x1 = 0.6 for 300 seconds. This was immediately followed by a thresh-

old policy implemented at x2 = 0.7 and za = 0.8 for 700 and 800 seconds respectively.

This was done to collect data associated with each threshold value and these data

hence aided in determining the S(x) and E(x) functions. Each subject was then

judged to be service-time-sensitive or error-rate-sensitive and the threshold value, Xth

was then calculated based on the associated curve. All this happened behind the

scenes and was unknown to the subject.

Finally, the remaining 15 minutes of the experiment was concerned with the sub-

ject's overall performance given an arbitrarily set arrival rate of A = 0.1 and with a

single-task threshold policy with threshold value Xth implemented. After the experi-

ment, the participants were then given a final survey in which he was asked several

subjective questions including rating the intensity of the experiment and his thoughts

on how he could have performed better in the experiment. Final interviews were then

done to debrief the subject.

5.4 Variables and Measurements

The only independent variable in this experiment is the use of a control policy. How-

ever, one should notice immediately that our experiment did not include a period of

testing with no control. The decision to not include such a testing period was due to

time limitations during the actual experiment, since adding in such a period would

prolong an already lengthy 45-minute experiment. Nevertheless, there is still basis for

comparison of the feasibility of the single-task threshold policy by comparison with



the performance at the 3 threshold values of 0.6, 0.7 and 0.8.

Finally, the dependent variables measured in this case were the service times and

error rates and were observed by recording data during the experiment.



Chapter 6

Experimental Results

This chapter presents the analysis of the data collected from the experiment. A sum-

mary of the experimental proceedings is first provided, followed by the experimental

results and our analysis. The last section then revisits the data and provides discusses

possible reasons for the results obtained as well as common behaviors observed during

the experiment.

6.1 Experimental Set-up

There were 26 participants, 10 male and 16 female, in the experiment for this thesis.

Subjects were recruited through word-of-mouth and mailing lists and experiments

were conducted both on-campus and online. 6 experiments were conducted at the

Behavioral Research Laboratory on the MIT campus while the remaining 20 experi-

ments were conducted using online methods. In the latter case, the experiment soft-

ware along with the instructional slides and surveys were disseminated through email

contact with each participant and effort was made to ensure that subjects in both

cases had the same level of instruction on what was required of them, particularly

with regards to the objective function they were to maximize.

Recruitment of participants was biased towards English speakers since a good

grasp of English is required for the test. However, a good command of vocabulary

was not a requirement since we did not expect participants to recognize all the words



in the test, but instead simply expect them to spend time thinking. Moreover, results

from the demographic survey showed that while English was the primary spoken

language among the participants, most of them rated their command of English to

only be a 3 out of a scale of 5. Most participants also had studied for or taken the

Verbal Scholaristic Assessment Test previously, though none admitted to having a

good grasp of answering analogy questions.

6.2 Experiment Result Tabulation and Analysis

Of the 26 participants tested, it was found that only 16 participants had the single-

task threshold policy implemented. This implies that the remaining 10 participants

either had concave curves for both their service time and error rate functions or that

the participants took extremely long (up to hundreds of seconds per question) for

each question, resulting in there being insufficient data to determine their service

time and error rate functions. The remainder of this analysis hence concentrates on

the data from the 16 participants.

Results from the 16 participants who could be classified indicated that only 3 of the

16 participants were found to be error-rate-sensitive. The remaining 13 participants

were found to be service-time-sensitive. This result is similar to the results obtained

from our preliminary testing and previous tests and possible reasons for this will

be given in the subsequent section. In addition, 14 of the 16 participants were also

found to exhibit Type I behavior, meaning that the minimum point of their associated

convex graph lies within the range x = (0, 1). This once again agrees with what was

found in our preliminary experiments. Finally, the remaining 2 participants in the

latter case had functions that were either strictly increasing or decreasing within the

range X = (0, 1).

Table 6.1 summarizes the service time behavior of the 13 participants who were

found to be service-time-sensitive. It is apparent that the implementation of the

threshold policy does result in faster service times in general. As mentioned in Chap-

ter 3, since the performance of a server without any control can be expected to be



Subject No. x1 = 0.6 '2= 0.7 X3= 0.8 thre, ' Percent Change in
Service Time (%)

S1 18.8 11.8 16.7 17.0 +2.1
S2 27.9 14.2 26.4 16.2 -38.8
S3 16.3 13.0 18.5 16.1 -13.1
S4 15.2 13.7 16.2 14.3 -11.8
S5 18.5 16.1 13.0 11.5 -11.9
S6 36.1 12.1 15.7 8.4 -46.3
S7 17.5 11.7 12.6 13.1 +3.7
S8 12.4 9.7 13.1 11.7 -10.5
S9 9.6 8.3 13.6 12.4 -9.2

S10 12.4 11.4 20.5 9.7 -52.6
S11 13.3 11.0 22.2 9.3 -58.1
S12 10.7 7.9 12.4 12.0 -3.2
S13 10.8 7.5 12.5 11.0 -11.7

Table 6.1: Summary of Results for Service-time-sensitive Participants

its performance at x = 1-, we hence compare the service times using the single-task

threshold policy and with x= zthres to the service times found when x = 0.8, which

is the closest sample we have to x = 1-. We notice an overall decrease in service time

under the optimal policy with an average decrease of 20%, with a maximum decrease

of 58% and a maximum increase of 4%. A paired t-test was performed to determine if

the effect of the optimal policy was effective. This statistical analysis test was chosen

since we are comparing two paired groups, that is using measurements from the same

subject under 2 different conditions. Moreover, though the paired-t test is only valid

for comparison of measurements drawn from Gaussian distributions, we can however

use it since our samples are assumed to be drawn from a lognormal distribution. By

taking the natural logarithm of each of these samples, the result is a value that follows

the Gaussian distribution, which we can then compare using the paired t-test. From

our analysis, the mean decrease in service time (M=3.90, SD=1.29, N=13) was sig-

nificantly greater than zero, t(12) = 3.10, two-tail p = 0.01, providing evidence that

the control is indeed effective in reducing the service times for service-time-sensitive

subjects.

Table 6.2 on the other hand summarizes the results for the error-rate-sensitive

participants. We notice that in this case, implementation of the optimal control



Subject No. x1 = 0.6 X2 = 0.7 X3 = 0.8 thres Percent Change in
Error Rate (%)

El 0.2 0 0.35 0.58 +65.4
E2 0.14 0.27 0.5 0.33 -33.3
E3 0.36 0.25 0.36 0.59 +64.6

Table 6.2: Summary of Results for Error-rate-sensitive Participants

policy appears to worsen the server's behavior.

6.3 Discussion and Common Behaviors

In this section, we provide some insight on plausible reasons for some of the results

and behaviors observed during the experiment.

First, from a review of the demographic survey associated with each participant,

we notice that all 10 of the 26 participants who were disregarded from the data

analysis due to reasons such as the lack of implementation of the control policy

were subjects who participated in the experiment online. Some feedback received

from these participants indicate that they were not able to focus fully during the

experiment, particularly since they were often told to wait. During such periods, it

is then not far-fetched to imagine participants using the time to surf the internet

though they were specifically told not to. Moreover, many such subjects also felt

alarmed with the amount of time they had to spend waiting, attributing it to lag

or slow computer processors. This evitably affected their performances and could

have caused unnecessary stress. To mitigate this, we propose that future experiments

should always be conducted in a controlled setting where subjects feel pressurized to

perform and under the watchful eye of an investigator, the presence of whom should

discourage subjects from getting distracted. Also, this exemplifies the difficulties in

implementation of such a policy since the optimal policy strictly relies on the subject

being focussed on the task and always seeking to maximize his score and deviations

can severely impact the validity of the policy.

Secondly, from the data gathered and the method of classification as presented

in Chapter 5, we notic-e that a majority of participants were classified to be service-



Subject No. Percent Change in Ser- Change in Error Rate (%)
vice Time (%) Under Xthres Under Xthres Compared to
Compared to x 3  0.8 (%) X3 = 0.8 (%)

S1 2.1 +0.32
S2 -38.8 -0.05
S3 -13.1 +0.35
S4 -11.8 +0.14
S5 -11.9 +0.11
S6 -46.3 +0.17
S7 3.7 +0.09
S8 -10.5 +0.02
S9 -9.2 -0.15

S10 -52.6 +0.38
Sil -58.0 +0.18
S12 -3.2 -0.14
S13 -11.7 +0.02

Table 6.3: Comparison of Percent Change in Service Time with the Change in Error
Rates for Service-Time-Sensitive Subjects,

time-sensitive instead of error-rate-sensitive. This indicates that a change in state will

result in a greater change in service time for most participants, compared to the error

rate. A possible reason for this may be that people simply take longer to process the

same information when under high or low workload conditions due to stress or lack of

concentration, though the amount of time spent on the task does not affect how well

the person performs in the task. Instead, factors such as the ability to understand

the question and answers given and to be able to find a relation between the words

may affect the error rates to a greater degree for such subjects. On the other hand,

subjects that are error-rate sensitive may be subjects who have a wide vocabulary and

are hence able to figure out the correct answer to the analogy. Hence, by controlling

the workload given to the subject, the subject is able to perform optimally, which

results in an associated decrease in error rate.

Next, we notice that though the implementation of the optimal policy did result in

a decrease in service times in general for service-time-sensitive subjects, this resulted

in a subsequent increase in error ratesas well, as shown in Table 6.3. This is as

expected as we mentioned in Chapter 5 that for the purpose of these pilot studies,



we were only seeking to maximize either the subject's service time or error rates, and

hence a subsequent increase in error rates due to the decrease in service time is indeed

expected from the speed-accuracy tradeoff.

Finally, we conclude with a summary of common behaviors noticed in subjects

and as gathered from the surveys handed out at the end of the experiment. In

Chapter 5, we presented the rationale for choosing to use verbal analogy questions in

our experiment. Though this task has proven to be simple to implement, the use of

difficult vocabulary also implies that subjects who do not recognize the words will be

clueless on how to answer the question. While there exist many methods to decipher

words, for example through the use of word-roots, or by selecting an answer through

the process of elimination, the type of task is indeed a hindrance to subjects with

limited vocabulary. This results in subjects guessing when they do not know how to

answer a question, many of whom would probably not even attempt to spend any

time figuring out the answer should they not even understand the question. Locating

an answer that seems to be the correct one at the top of the list of possible answers

has also been a problem. This is because some subjects have been noticed to make

their choice very quickly in such cases, without paying much attention to the other

options

Boredom and tiredness were the main complaints during the experiment, with

many subjects finding the time they spent waiting between tasks irksome. Subjects

also indicated that the time spent waiting between tasks was too long in most cases.

We foresee that this would indeed be an issue if such a policy is implemented in real-

life since the frequent start-stop nature of the policy can be disruptive to a person's

chain of thought. This, however, has been addressed in Chapter 3 by modifying the

optimal policy to a dual switching threshold policy when switching and holding costs

are considered. In addition, many subjects also proposed that the time to be spent

waiting be shown to them so that they would be able to anticipate the next task.

Other forms of information that subjects indicated they would like displayed include a

timer and an indication of the number of tasks remaining. Many subjects also found

the 45 minute experiment tiring and long, and suggested that their performance



definitely dipped at the end of the experiment due to the length of time that they

had to stay focussed.

Finally, we also noticed that many subjects tried to pace themselves such that

they would spend a longer amount of time on a task if the interarrival time between

that task and the previous task was long (that is if the subject was made to wait for

a long time in between the two tasks). This is probably based on their assumption

that the wait time was due to a long loading time and hence they tried to adjust

for this themselves by spending a longer amount of time on the previous task, in the

hope that they would not need to wait as much for the next task. This, however,

only served to worsen their performance and increase the waiting time further, and

hence proved to be a constant source of irritation for them.

In conclusion, the data gathered revealed several interesting results, and it is

our hope that when combined with the lessons learnt and the discussion of common

behaviors observed during the experiment, that the work in this thesis can indeed be

used to improve task allocation policies in a wide variety of fields. Nevertheless, it is

also important to reiterate that this experiment is simply a pilot study and further

studies would probably be required to test the performance of the optimal policy in

several different domain settings.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis presented task allocation policies for a single server state-dependent queue

with deterministic arrival rates, where the server behavior follows certain conceptual

laws. Optimal policies were derived for a server with deterministic service rates, and

when the server was attempting to maximize his useful throughput. Such policies were

found to be valid for all classes of objective functions, regardless if they were convex

or general-shaped. On the other hand, servers with stochastic service rates were also

considered, though no guarantees were given on what would be the optimal policy in

such a case. Instead, an upper bound on the maximally stabilizable arrival rate for a

server who is trying to maximize his total throughput was found, though this bound

is only valid in certain cases. These policies and their associated assumptions hence

form the key theoretical discoveries of this thesis.

In addition, a simple proof-of-concept experiment was carried out to investigate

the feasibility of implementing such a policy in a real-world setting and results from

the study have turned out as expected. A discussion of the methods that worked in

implementing such a policy in the real-world and a summary of the lessons learnt from

the experiments are hence also a key contribution of this thesis. However, the proof-

of-concept experiment only served to show that the service times would decrease for a

service-time-sensitive server when the optimal policy is used and this conclusion did



not hold for the case that the server is error-rate-sensitive. Moreover, the decrease in

service time also resulted in a corresponding increase in error rate and hence, it can

be said that there still remains much to be said about this policy.

The main benefit of the work done for this thesis is hence the direction the results

give for potential future work in the development of more complex task allocation

policies under real-world scenarios. Lessons learnt from the implementation of the

single-task threshold policy in a real world setting and the feedback obtained will also

help guide the research to be both theoretical and realistic.

7.2 Future Work

For the future, we can foresee two paths that can be simultaneously pursued given

the work done in this thesis: a theoretical path and an experimental path. Future

work on the theoretical side could include diversifying the model of the server state to

incorporate different types of tasks. Such a scenario could represent a setting where

UAV operators have to juggle both the incoming classification tasks, and more trivial

tasks such as health monitoring and communication with headquarters. Handling of

classification tasks may be very intensive for the server, while the remaining tasks

could be less demanding and may even help to lower the server's state, for example

if the server receives positive feedback on his performance from headquarters. An

interesting area to investigate would hence be the ordering of intensive and non-

intensive tasks such that the server's performance is optimal.

A second area we are interested in is the development of a decision-aid that could

assist the server in making better decisions on how to allocate his attention. For

example, given the server model, policies could be developed to inform the server

of how much time he should spend on a task and to prompt him to move on when

the time is up. On the other hand, such policies would also be able to rely on data

gathered during the experiment to determine how well the server is performing and

suggest fixes. For example, if a server spends too little time on a task, then the task

controller could reschedule the task for a relook automatically since the probability of



the server getting it wrong is high. We foresee such policies to be used in complement

with the single-task threshold policy.

Further work that can be done experimentally include investigation of better meth-

ods to estimate the server parameters, T and xO, and methods to derive the server's

self-determined weightage placed on either getting a question right or getting it done

quickly. Possible methods that have been briefly looked at for the former case in-

clude Hidden Markov Models or the EM method, while the latter case might require

more feedback from the server through qualitative questions asked throughout the

experiment.
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Effect of task admission control on productivity of
humans

Experiments for Dec. 2010

Christine Siew

MIT ARES LIDS
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The Experiment

* 45-minute long experiment

" Answer as many analogy questions as possible, with no possibility of
skipping questions

* Your participation will aid us in the development of task allocation
strategies for increased productivity

" A short survey will be given at the beginning and at the end of the
experiment for feedback

* Give yourself a unique ID which will be used to label your pre- and
post- experiment surveys.

* For more information, please contact: Christine Siew
(chrisiew@mit.edu)

Task Allocation Experiments 10 December 2010Christine Siew (MIT ARIES LIDS)
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Your Objective:

* Answer as many questions as correctly as you can AND as fast as
possible within allocated time frame

* You will be awarded 1 point for every correct answer

* Incorrect answers will be penalized with a subtraction of 1 points
from your total score per incorrect answer

* Maximize your score by:
* Maximizing number of correct answers
* Minimizing incorrect answers
* Answering the questions quickly

Task Allocation ExperimentsChristine Siewj (MIT ARES LIDS) 10 December 2010



Introduction to Analogy Questions

* Analogy questions test your ability to recognize the relationship
between the words in a word pair and to recognize when two word
pairs display parallel relationships

* To answer an analogy question, first formulate a relationship between
the words in the question word pair. Next, select the word pair from
the options given that are related to one another in most nearly the
same way

Task Allocation Experiments
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Example Analogy

WALK
A. blink
B. chew
C. dress
D. cover
E. grind

: LEGS
: eyes
: mouth
:hem

book
: nose

Task Allocation Experiments
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Example Analogy Question

WALK:
A. blink
B. chew

LEGS
eyes
: mouth

C. dress : hem
D. cover: book
E. grind : nose

Task Allocation Experiments
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Participant Identification Number:

1. Please Indicate your Sex: Male / Female

2. Please Indicate your Age:

3. Please Indicate your Occupation (If Student, Indicate your Year and Degree)

4. Please Indicate your Primary Spoken Language

5. Rate your Command of English on a Scale of 1 - 5
(1:poor and 5:excellent)

1 2 3 4 5

6. Indicate the Number of Years you have been Studying English

7. Have you ever Taken the Verbal SAT? Yes / No

8. Degree of Familiarity in Solving Verbal Analogy Questions
(1: Unfamiliar and 5: Very familiar)

1 2 3 4 5



CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

EFFECT OF TASK ADMISSION CONTROL ON PRODUCTIVITY OF
HUMANS

You are asked to participate in a research study conducted by Professor Emilio Frazzoli,
Ph.D., from the Aeronautics and Astronautics Department at the Massachusetts Institute
of Technology (M.I.T.). You were selected as a possible participant in this study because
you have a good command of the English language and good eyesight with no color
blindness, which is important for participation in this experiment. The population that this
research will eventually influence would be human operators required to engage in
persistent tasks. You should read the information below, and ask questions about
anything you do not understand, before deciding whether or not to participate.

. PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose
whether to be in it or not. If you choose to be in this study, you may subsequently
withdraw from it at any time without penalty or consequences of any kind. The
investigator may withdraw you from this research if circumstances arise which warrant
doing so.

0 PURPOSE OF THE STUDY

The objective of this experiment is to investigate the effects of task admission control on
the productivity of humans.

. PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following things:

e Participate in a timed multiple-choice GRE-like Analogy test or/
e Participate in a timed test involving identifying the number of features (e.g.

airplanes, cars) from static pictures

Following the test, you would be asked to do the following things:

e Fill out a feedback survey.
e Total time: Approximately 1 hour.



* POTENTIAL RISKS AND DISCOMFORTS

There are no anticipated physical or psychological risks in this study.

0 POTENTIAL BENEFITS

While there is no immediate foreseeable benefit to you as a participant in this study, your
efforts will provide critical insight into the development of a methodology that can help
researchers develop guidelines for support system design for human operators.

. PAYMENT FOR PARTICIPATION

You will be paid $10 to participate in this study. This will be paid upon completion of
your debrief and/or through the distribution of gift certificates to your primary email
address upon completion of the study'. Should you elect to withdraw in the middle of the
study, you will be compensated for the time you spent in the study.

a CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be identified
with you will remain confidential and will be disclosed only with your permission or as
required by law.

You will be assigned a subject number which will be used on all related documents to
include databases, summaries of results, etc. Only one master list of subject names and
numbers will exist that will remain only in the custody of Professor Frazzoli.

. IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to contact the
Principal Investigator, Emilio Frazzoli, at (617) 253-1991, e-mail, frazzoli@mit.edu, and
his address is 77 Massachusetts Avenue, Room 33-332, Cambridge, MA 02139. The
Research Scientist is Ketan Savla at (617) 324-0095, email, ksavla@mit.edu and the
Research Assistant is Christine Siew at (734) 709-6198, email, chrisiew@mit.edu.

1 Please allow several days for processing.



. EMERGENCY CARE AND COMPENSATION FOR INJURY

If you feel you have suffered an injury, which may include emotional trauma, as a result
of participating in this study, please contact the person in charge of the study as soon as
possible.

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the
provision of, emergency transport or medical treatment, including emergency treatment
and follow-up care, as needed, or reimbursement for such medical services. M.I.T. does
not provide any other form of compensation for injury. In any case, neither the offer to
provide medical assistance, nor the actual provision of medical services shall be
considered an admission of fault or acceptance of liability. Questions regarding this
policy may be directed to MIT's Insurance Office, (617) 253-2823. Your insurance
carrier may be billed for the cost of emergency transport or medical treatment, if such
services are determined not to be directly related to your participation in this study.

. RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participation in
this research study. If you feel you have been treated unfairly, or you have questions
regarding your rights as a research subject, you may contact the Chairman of the
Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E25-143B, 77
Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787.



SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

I understand the procedures described above. My questions have been answered to my
satisfaction, and I agree to participate in this study. I have been given a copy of this
form.

Name of Subject

Name of Legal Representative (if applicable)

Signature of Subject or Legal Representative Date

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed consent and
possesses the legal capacity to give informed consent to participate in this research study.

Signature of Investigator Date



Participant Identification Number:
Feedback Survey

1. On a scale of 1 to 5 (with 5 being very intense), how intense was the work allocated during
the experiment? Did the intensiveness of the work possibly hinder your best performance?

2. Was the objective (maximize the number of correct answers, minimize the number of wrong
answers and the average time taken to answer a question) clear enough? Do you think you
were indeed maximizing this objective? If not, how could the objective be changed?

3. What percentage of the questions do you think you got correct? Please explain how you
could have achieved a better score.

4. What was the strategy you utilized during the experiment to achieve the best possible score?
E.g. Did you allocate a fixed amount of time for each question and guess the answer after that, or did you
try to pick the right answer all the time, regardless of the amount of time spent
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