
Path Optimization Using sub-Riemannian Manifolds with

Applications to Astrodynamics

by

James K Whiting
S.B., Aeronautics and Astronautics, Massachusetts Institute of Technology (2002)

S.B., Electrical Engineering and Computer Science, Massachusetts Institute of
Technology (2002)

S.M., Aeronautics and Astronautics, Massachusetts Institute of Technology (2004)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of ARCHIVES

Doctor of Philosophy MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEB 2 5 2011

February 2011 LIBRARIES
@ James K Whiting, MMXI. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

A uthor

;epartment of Aeronautics and Astronautics
September 24, 2010

C ertified by
Prof. Olivier deWeck

Associate Professor of Aeronautics and Astronautics and Engineering Systems
Thesis Supervisor

Certified by....$
Prof. Manuel Martinez-Sanchez

Professor of Aeronautics and Astronautics
Thesis Supervisor

C ertified by
C i bProf. Ray Sedwick

Assisstant Professor of Aeronautics and Astronautics, University of Maryland
Thesis Supervisor

A ccepted by ...
Eytan H. Modiano

Chair, Committee on Graduate Students

Path Optimization Using sub-Riemannian Manifolds with Applications

to Astrodynamics

by

James K Whiting

Submitted to the Department of Aeronautics and Astronautics
on January 26, 2011. in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Differential geometry provides mechanisms for finding shortest paths in metric spaces. This work
describes a procedure for creating a metric space from a path optimization problem description so
that the formalism of differential geometry can be applied to find the optimal paths. Most path
optimization problems will generate a sub-Riemannian manifold. This work describes an algorithm
which approximates a sub-Riemannian manifold as a Riemannian manifold using a penalty metric
so that Riemannian geodesic solvers can be used to find the solutions to the path optimization
problem. This new method for solving path optimization problems shows promise to be faster than
other methods, in part because it can easily run on parallel processing units. It also provides some
geometrical insights into path optimization problems which could provide a new way to categorize
path optimization problems. Some simple path optimization problems are described to provide
an understandable example of how the method works and an application to astrodynamics is also
given.

Thesis Supervisor: Prof. Olivier deWeck
Title: Associate Professor of Aeronautics and Astronautics and Engineering Systems

Thesis Supervisor: Prof. Manuel Martinez-Sanchez
Title: Professor of Aeronautics and Astronautics

Thesis Supervisor: Prof. Ray Sedwick
Title: Assisstant Professor of Aeronautics and Astronautics, University of Maryland

4

Acknowledgments

I would like to thank everyone who made this research possible: my committee members - Olivier de

Weck, Manuel Martinez-Sanchez, and Ray Sedwick - for providing advice as I navigated the depths

of differential geometry NASA and the MIT School of Engineering (through a TA position for 1.00)

for providing funding as I worked through the mess of equations to create a small amount of order

in the chaos of Newtonian gravity: my official readers Thomas Lang and Paulo Lozano for feedback

as I completed my research; and my unofficial proofreaders Dale Winter, Rachel and Alan Fetters,

Sarah Rockwell, and Allen Bryan for helping me to realize where my explanations needed more

clarification.

I would like to thank my many friends for making life more enjoyable while I toiled on a seemingly

endless task of translating PhD level theoretical math into moderately usable engineering concepts.

I would especially like to thank the Boston change ringers for providing a. steady rhythm in my life.

Tech Squares for reminding me to peel off from my research and shoot the stars every now and then,

Metaphysical Plant for reminding me that all hunts for knowledge are eventually completed, and

MIT Hillel and TBS for the services and prayers that provided regular cycles in my life to mark the

passage of time. I would like to thank my high school cross-country team for training me to have

the endurance to keep going forever, my high school math club for encouraging me to study math

beyond what I was taught, and the Cows for being good friends.

I would like to thank my parents for everything they have done: providing a good home for me

to grow up in, encouraging me to explore the abstract world of ideas, letting me rush off to MIT

where I got stuck for years in an endless maze of equations that I may have finally found a path

through (suboptimal as it may have been), and most of all for teaching me the value of hard work,

honesty, and persistence. I would like to thank my many siblings for living their lives so fully while

I was too busy to do so on my own, providing me with many niblings to enjoy, and making the

holidays so full of love and excitement. I would like to thank my in-laws for providing some local

family and support as Mira and I toiled through the challenges of graduate school. I would like to

thank my extended family for being a good and supportive family, and Mira's extended family for

welcoming me so quickly and filling our lives with love and happiness. I would also like to thank my

son Jesse for making the final months of this work much more exciting than they would have been

without him.

And most of all I would like to thank my wife Mira, without whom I would never have made it

all the way to the end. She has provided support and encouragement at every step of this process.

I have learned how to move the heavens and the earth for her and I would like to remind her

that some things really are rocket science. Melanyecce iluv6renenya oio, mo bhean ch ile luinnar

silamiradilenya.

6

Contents

1 Introduction

2 Previous Path Optimization Methods

2.1 Analytical Methods

2.1.1 Hamiltonian

2.1.2 Lagrangian

2.1.3 Differential Inclusion

2.1.4 Kurush-Kuhn-Tucker Conditions .

2.2 Discretization Methods....

2.2.1 Runge-Kutta Shooting.. ...

2.2.2 Finite Differences..........

2.2.3 Pseudospectral Methods

3 An Introduction to Differential Geometry

3.1 Manifolds...................

3.1.1 Coordinates

3.2 Tensors

3.2.1 Vectors

3.2.2 Covectors

3.2.3 General Tensors . . .

3.2.4 Summation convention

3.2.5 Tensor Fields

3.2.6 Flows

3.2.7 Wedge Product

3.2.8 Inner Product

3.3 Bundles

3.3.1 Bundles

3.3.2 Frames.........

..............

..............

3.3.3 Tangent Spaces 25

3.4 Parallel Transport and Connection................ 26

3.4.1 Connection 26

3.4.2 Parallel Transport . 26

3.5 Derivatives. 26

3.5.1 Partial Derivatives............................ 27

3.5.2 Exterior Derivatives........................... 27

3.5.3 Lie B rackets . 27

3.5.4 Covariant Derivatives.......................... 28

3.6 Distributions. 28

3.6.1 Connection and Curvature....................... 28

3.7 Measurements. 29

3.7.1 Metric and Cometric.......................... 29

3.7.2 Metric Connection........................... 30

3.8 Geodesics. 30

3.8.1 Geodesic Divergence........................... 30

3.8.2 Geodesic Uniqueness.......................... 30

3.8.3 Singular Geodesics............................ 31

3.9 Branches of Geometry.............................. 31

3.9.1 Riemannian Geometry. 31

3.9.2 Pseudo-Riemannian Geometry....................... . .. 32

3.9.3 Sub-Rienannian Geometry................... 32

3.10 Formulas 34

3.10.1 Christoffel Symbols................. 34

3.10.2 Riemann Curvature Tensor . 34

3.10.3 Ricci Curvature Tensor . 35

3.10.4 Sectional Curvature . 35

4 Path Optimization and sub-Riemannian manifolds 37

4.1 Problem Formulation. 37

4.1.1 Manifold............................. 37

4.1.2 Moving Frame............... 38

4.1.3 Metric. 39

4.1.4 Changing Frames 40

4.2 O ptim al Paths . 41

4.2.1 Uniqueness of Solutions. 41

4.3 Discussion.................................... 42

4.3.1 Hamiltonian Equivalence 42

4.3.2 3-D Exam ple . 44

5 Searching for Geodesics 47

5.1 Finite Difference Methods........................... 47

5.1.1 Flat Space. 47

5.1.2 Curved Riemannian Spaces................ 49

5.1.3 Computational Efficiency...................... 49

5.2 Pseudospectral Method.......................... 51

5.2.1 Computational Efficiency...................... 53

5.3 Stream Processing.............................. 53

6 Heisenberg Manifolds 55

6.1 Definition. 55

6.2 3-Dimensional Heisenberg Group................... 56

6.2.1 R esults . 58

6.3 Tank................................ 60

6.3.1 Implementing the Algorithm.................. 64

6.3.2 R esults . 67

6.3.3 Curvature and Geodesic Uniqueness................ 67

6.4 Summary. 74

7 The Astrodynamics Manifold 75

7.1 Coordinates and Frames............................. 75

7.2 Metric and Comnetric................... 79

7.3 Christoffel Symbols. 81

7.4 Lie B rackets . 83

7.5 Connection, Curvature, and Torsion. 85

7.6 R esults . 86

8 Conclusions and Future Work 91

8.1 Comparison to other methods . 91

8.2 Future W ork . 92

A Simulation Code 95

A.1 Common Functions. 95

A.2 Generic Algorithm................................. 95

A .2.1 Setup . 95

A.2.2 Finite Difference Calculations.................. 97

A.2.3 Pseudospectral Method......... 100

A.3 The Heisenberg Manifold........................ 104

A.3.1 Finite Difference M ethod . 104

A.3.2 Pseudospectral Method. 105

A.4 The Tank Manifold. 105

A.4.1 Problem Specific Code (Pseudospectral)............ 105

A.4.2 Full Code (Pseudospectral Method)................ 107

A .4.3 Jacobi Fields . 112

A.4.4 Hamiltonian Integration.......................... 116

A.4.5 Geodesic Integration. 117

A.5 Astrodynamics. 120

A.5.1 Finite Difference M ethod . 120

A.5.2 Pseudospectral Method....................... 124

A.5.3 Hamiltonian Integration...................... 125

List of Figures

4-1 The tank m anifold . 38

4-2 Diagrams showing how an optimal path could be found on a circle or sphere. The

upper left diagram shows the optimal path with no constraints. As the penalty

function is increased, the path moves towards the valid surface as shown in the upper

right diagram. This method will not work if the path is completely orthogonal to the

constraints, because the projection operation will not work...... 46

6-1 The Heisenberg manifold path optimization problem. Find the shortest path that

encloses a fixed area. The enclosed area goes from the origin to the initial point in a

straight line, along the path to the final point, and then in a straight line to the origin. 57

6-2 Movement of a single point in the path as the algorithm converges (a moves from .07

towards 0). The horizontal line shows the analytically determined correct location of

the point. The "breaks" in the line are from adding more points to the path. 59

6-3 Convergence rate of basic algorithm and extroplated movement algorithm 60

6-4 Convergence rate of the extrapolated movement algorithm with and without final

point extrapolation........................ 61

6-5 The tank manifold path optimization problem................. 62

6-6 Pseudo-code description of the algorithm................. 65

6-7 Trajectory Variation as a function of 0. Higher values of _ lead to more movement

in the x-direction and shallower steering angles. The lowest 3 curve is the one closest

to being vertical, the highest # curve is the one that moves farthest horizontally. 0

values here are equally spaced logarithmically from 0.2 to 200...... 68

6-8 logio magnitude of the 2 Jacobi vector fields for a geodesic of the tank manifold with

3 = 5 71

6-9 Angle between the 2 Jacobi vector fields for a geodesic of the tank manifold 72

6-10 Comparison of the original geodesic and the geodesic found by checking the Jacobi

condition.................................. 73

6-11 Close-up view of the geodesic found from the Jacobi condition, showing the very tight

back and forth movements that allow the tank to move nearly sideways 73

7-1 The astrodynamics manifold path optimization problem. This is for a coplanar orbital

transfer using a two-body Newtonian gravitational model with point masses. 76

7-2 Av as a function of dr for a sample trajectory. The Av is increasing as the algorithm

converges, while dr decreases until the penalty is too large, and then dr begins to

increase. 88

7-3 Av ratio (geodesic divided by Hamiltonian) minus one. The graph shows the distri-

bution of the error of the Av calculation for the 216 generated paths. The table shows

the summary statistics of the distribution. The max and min are the ratio without

subtracting one. 89

List of Tables

1 List of Symbols........... 14

2 Notation Directory.... 14

p seni-latus rectum
h modified angular momentum (p/nt)
e eccentricity in the projected x direction (e cos(w + Q))
eY eccentricity in the projected y direction (e sin(w + Q))
f true anomaly
Q longitude of the ascending node
W argument of perihelion
wu longitude of perihelion (Q + w)
L true longitude (f + =)
S1+ ex cos L + ey sin L = p/r

The basis directions are radial, tangential, and normal to the orbital plane. This is effectively a
spherical coordinate system.

Table 1: List of Symbols

Wedge Product
Inner Product
Vector
Covector
Summation Convention
Exterior Derivative
Lie Bracket
Covariant Derivative
Christoffel Symbols

This work deals only wi

a A b
<a,

(12,

ai

da

[x, y]
Va

th real

3.2.7
b > 3.2.8

3.2.1
3.2.2
3.2.4
3.5.2
3.5.3
3.5.4
3.10.1

numbers. While most of what is done here would also apply to
complex manifolds, the variable i is not meant to indicate the imaginary unit.

Table 2: Notation Directory

Chapter 1

Introduction

Path optimization problems have been studied for over 300 years. Methods of solving path opti-

mization problems have two parts: an analytical part that derives the optimality conditions and

a numerical part that finds a solution to the optimality conditions. This work focuses on a new

analytical approach.

A recent paper[1] described the various analytical approaches taken to solving path optimization

problems. Many analytical methods use the calculus of variations to derive some local optinality

condition. The most common example is adding a costate to create a Hamiltonian system.

The current work is a fundamentally different approach to solving the path optimization prob-

lem. Instead of working directly with the equations of motion as prior methods have done, this

method is based on formulating the problem geometrically and then using the results of differential

geometry to develop an answer. Control problems have a natural geometric interpretation based

on using the state-space description of the problem to provide coordinates on a manifold. The cost

functions provide a metric for the manifold., which is then sub-Rieniannian. The optimal paths are

the geodesics of the manifold.

One advantage of using sub-Riemannian geometry to solve path optimization problems is that

the features of the manifold can be studied to discover interesting properties of the underlying

problem. For example, the curvature of the manifold can be used to determine if a geodesic is

unique. If it is not unique. then there may be a different geodesic connecting the same points with

a shorter length. Additionally, there is a class of curves called singular geodesics which do not

satisfy the geodesic equation but are still length-minimizing curves. These solutions would never be

found through calculus of variations based methods because they do not generally satisfy the local

optimality conditions.

Previous methods of solving path optimization problems are summarized in chapter 2. This is

followed by a brief introduction to differential geometry in chapter 3. which should be sufficient

to allow most people with an undergraduate degree in engineering to understand the math in this

work. References to more detailed math texts are included for readers who are interested in a

more thorough discussion of the mathematical concepts. These two chapters provide the relevant

background information for this research.

The most significant part of this work is chapter 4, which explains the relationship between

path optimization problems and geometrical manifolds. A method is presented which will produce

a sub-Riemannian manifold that corresponds to any path optimization problem. Another method

is presented to produce a reasonable penalty metric for the sub-Riemannian manifold that produces

a compatible Riemannian manifold. Chapter 5 includes the other major part of this work, which is

two related methods for finding geodesics in Riemannian manifolds with penalty metrics.

The next two chapters provide several detailed examples showing how the algorithms work. Chap-

ter 6 includes an example based on the simplest possible sub-Riemannian manifold. the Heisenberg

manifold. It also has an example of working through all the calculations for the tank problem, with

a detailed description of every step of the algorithm. Chapter 7 goes through the more complicated

problem that originally motivated this research: coplanar orbital transfer trajectory optimization.

The final chapter summarizes the findings of this research and provides some further research topics

that have been opened by this work.

Chapter 2

Previous Path Optimization

Methods

A path optimization problem can in general be stated as:

Minimize the cost function

J[x,u] = F(x(t). u(t), t)dt (2.1)

subject to the dynamic constraints

(2.2)

and the end point constraints

x(to) = xo

x(t) = Xf

(2.3)

(2.4)

where x(t) is the state-space description of the system and u(t) is the control vector of the system.

x(t) and u(t) are both vector-valued functions of time (t).

There are two steps to creating an algorithm to solve path optimization problems. First, an

analytical method has to be used to derive conditions that will determine when a path is optimal.

Then a discretization method has to be used to convert the problem into one with a finite number

of points so that a computer can calculate a solution{1].

f (t) = f (x W), u (t), t)

2.1 Analytical Methods

2.1.1 Hamiltonian

The Hamiltonian formulation leads to a Hamiltonian function[2][3][4]

H(x., u, A, t) = F(x, u, t) + A Tf (x, ,, t) (2.5)

where F and f are the cost and constraints (as defined in section 2) and A is the costate.

The solution to the optimal path problem is then

OH
- OH (2.6)

OH
A = (2.7)

Ox
OH

O = 0 (2.8)

When these equations can be satisfied, the solutions are optimal paths. For cases where the equations

cannot be satisfied (normally the result of an overconst rained problem), Pontryagin's minimum

principle provides the solution. Pontryagin's principle states that the optimal solution is the feasible

solution which minimizes the Hamiltonian.

For an n dimensional optimal control problem, the Haniltonian method adds an n dimensional

costate, which doubles the dimensionality of the optimization problem from n to 2n. However, the

equations can be solved more easily, so the problem is often easier to solve even with twice as many

dimensions.

2.1.2 Lagrangian

The Lagrangian formulation defines a Lagrangian function

L(x, .i, A. t) - F(x, ±, t) + A'f (x, i, t) (2.9)

where A is the vector of Lagrange multipliers and varies with time.

The solution is found by use of the Euler-Lagrange equation

d (OL) - (2.10)
dt 0-i Ox

which will lead to the same equations as the Hamiltonian formulation. This method is slightly more

restrictive, because the controls do not appear in the Lagrangian, which means that this method can

only be used if it is possible to solve for the controls based on the trajectory. This will be the case

as long as the controls are linearly independent, so that the equation for i f(u) can be inverted

to produce u = g().

The Lagrangian formulation also provides a way of finding singular solution paths. The singular

paths are the solution with the Lagrangian

L (X,, A, t) = A T f (2.11)

Not all problems have singular solutions. A singular solution occurs when the constraints on a

probleim are sufficiently restrictive that some paths have no local variations. These paths will not in

general satisfy local optimality conditions, but may still be part of an optimal path solution.

This formulation will also lead to a TPBVP (two-point boundary value problem). However, the

dimensionality does not necessarily double. The dimensionality of the problem goes from n to rn +k.

where k is the number of constraints imposed on the dynamics.

2.1.3 Differential Inclusion

Differential inclusion is based on allowing functions to produce a range of values instead of a single

value. If the control variables can be computed from the changes in state, then the cost function

can be calculated from the changes in state. Rather than calculating optimality conditions, the

differential inclusion method derives formulas for the cost functions based only on the trajectory.[5]

This formulation produces a non-linear programming (NLP) problem.

2.1.4 Kurush-Kuhn-Tucker Conditions

The KKT conditions add another set of constraints for inequalities that must be satisfied by the

solution:

g(t) < 0 (2.12)

where g(t) is also a vector-valued function of time. The formulation is then similar to the Lagrangian

with more constraints. The solution satisfies the following relations:

VF(x, i. t) + pg(x. ±. t) + Af (, ±, t) = 0 (2.13)

py > 0 (2.14)

pigi = 0 (2.15)

where p is a vector of constants similar to Lagrange multipliers.

2.2 Discretization Methods

2.2.1 Runge-Kutta Shooting

A common method for solving a TPBVP is to integrate a path from one of the points until it either

reachs the second point or it is clear that it will not reach the second point. The convergence of

shooting methods is relatively slow., because it is difficult to determine how to modify the initial

trajectory in a way that will modify the endpoint in a desired manner.

2.2.2 Finite Differences

A continuous differential equation can be approximated by finite difference equations at a set of

discrete points. Finite difference equations approximate the derivative of a function by the differences

of the value of the function at nearby points. For example, dy/dx at point nI could be approximated

by (yn+1 yn)/(xn+1 - xn).

2.2.3 Pseudospectral Methods

A pseudospectral method uses a set of orthogonal functions to approximate a continuous function at

a series of grid points. This can often provide better estimates of the derivatives of the function at

the grid points than finite difference equations. Some common orthogonal functions include Fourier

series (sines and cosines), Chebyshev polynomials, and Legendre Polynomials. For some of these

polynomials, it makes more sense to have non-uniform spacing between the discretization points.

This allows the points to be located such that the orthogonal functions are easier to compute (for

example. nodes can be placed where many of the functions are equal to 0).

Chapter 3

An Introduction to Differential

Geometry

This chapter provides a brief introduction to differential geometry. Differential geometry is the study

of geometrical objects and how they change. There are many texts on the subject that provide a

more comprehensive description and derivation of these concepts and formulas. Spivak's series

on differential geometry[6] provides a thorough explanation of differential geometry. Differential

Geometry for Physicists[7] is particularly good for people without a strong background in theoretical

math. There are a few books on sub-Riemannian geometry, including one by Montgomery[8] and

another by Calin and Chang[9]. The Riemannian geometry book by Manfredo Perdigio do Carmo[10]

has a detailed discussion of the mathematics behind geodesics.

3.1 Manifolds

A manifold is a set of connected points. Each point in a manifold is near some set of points (called the

neighborhood of that point). The neighborhood of each point is similar to a Euclidean space. The

dimension of the manifold at each point is the dimension of the Euclidean space that it resembles.

A smooth manifold has the same dimension at every point.

Mathematical functions can be defined which have some specified value at every point in a

manifold. A smooth function does not vary much within a small neighborhood of any point in the

manifold. A differentiable function has continuous derivatives at all points in the manifold.

Manifolds can be divided into submanifolds. Each submanifold has all the properties of the

original manifold except that it does not contain all the points (but all the points it does contain

must be connected).

3.1.1 Coordinates

Coordinates are a set of functions that taken together uniquely identify the points in a manifold. The

minimum number of functions required to do this for an n-dimensional manifold is n. A coordinate

chart is a set of coordinate functions that span a portion of a manifold - meaning that they uniquely

identify every point in that part of the manifold. An atlas is a set of charts that taken together span

the entire manifold. Some manifolds can have a single chart that spans the entire manifold, while

other manifolds (such as a sphere) cannot.

Any set of functions with the uniqueness property define a valid coordinate system. This means

that there are no "natural" or "intrinsic" coordinates for a manifold. The coordinates will also

not in general have any relationship to the geometrical properties of the manifold (other than the

dimension).

Coordinates are used to identify the points in a manifold. Without the coordinates, the manifold

still exists in some abstract sense. The geometrical properties of the manifold are the same in every

coordinate system. What the coordinates provide is a means of turning geometry problems into

algebra and calculus problems. With coordinates on a manifold, there is some way of measuring

how close points are.

3.2 Tensors

3.2.1 Vectors

A vector is a geometrical object with a length and a direction.

A vector space is a set of vectors that is closed over addition and scalar multiplication. Being

closed over addition means that any two vectors in the vector space can be added and the result will

also be in the vector space. Being closed over scalar multiplication means that any vector in the

vector space can have its length multiplied by a scalar to produce another vector which is also in

the vector space. A vector space also has a linear operation for addition and scalar multiplication.

All vectors in a vector space have the same dimension, which is also the dimension of the vector

space. Each point in a manifold has a vector space attached to it, which has the same dimension as

the manifold at that point.

When writing out the components of a vector, the indices of the components are raised:

v-= tiei (3.1)

where ei are the basis vectors.

3.2.2 Covectors

A covector is a linear function from a vector space to the real numbers. One result of this definition

is that covectors also form a vector space, which is why they are also called dual vectors. A vector is

also a linear function from a covector space to the real numbers. An informal explanation of vectors

and covectors is that they function as row and column vectors (however that is not a matheniatically

precise definition). An alternate name for a covector is a 1-form.

When writing out the components of a covector, the indices of the components are lowered:

a = aie (3.2)

where ei are the basis covectors.

3.2.3 General Tensors

A tensor is a multi-linear geometrical object that is made of some number of vectors and covectors.

A (k, 1) tensor is a linear function that maps k vectors and 1 covectors to the real numbers, which

also makes it the product of k covectors and I vectors. In particular, a (1. 0) tensor is a covector

and a (0,1) tensor is a vector. Vectors and covectors are combined through the tensor product to

make tensors. A (n, 0) tensor is also called an n-form.

Tensors are geometrical objects, so they have an abstract geometrical existence that is indepen-

dent of any coordinate systems. A tensor space can be defined at each point in a. manifold for every

type of tensor. In general, the tensor space is only defined at a point, so tensors at different points

cannot be directly compared.

Tensor components are written with their indices raised and lowered in accordance with which

indices correspond to vectors and which ones correspond to covectors.

3.2.4 Summation convention

When writing out tensor formulas, it is common to want to sum the different components to produce

something like a dot product. For example., with the vector v and the covector a., the product a(v)

is written in components as

a(ft) = ai ii iVi (3.3)

so the summation is implied and unwritten. Only repeated indices are summed, and only when one

is raised and the other is lowered.

3.2.5 Tensor Fields

A field is a mapping of some type of tensor to every point of a manifold. A smooth field has objects

that vary smoothly in the neighborhood of every point in the manifold.

A smooth vector field is the solution to a differential equation (it specifies a derivative at every

point).

3.2.6 Flows

The flow of a vector field is the set of paths that are produced by using the vector field as a tangent

vector at each point. If a fluid were flowing in the manifold with the velocity at each point given by

the vector field, then the flow of the vector field would be the flow of the fluid.

3.2.7 Wedge Product

The wedge product (denoted a A b) is a mathematical operation defined on two tensors. The precise

mathematical definition of the wedge product is fairly complicated, but it has properties similar to

the cross product. The wedge product is a linear antisymmetric operator, meaning that it has the

following properties:

aAb = -bAa (3.4)

(a+b)Ac = (aAc)+(bAc) (3.5)

aAa = 0 (3.6)

where a, b, and c are tensors. The wedge product of a k-form and an i-form is a (k + 1)-form. These

are the properties that matter for this work, and a more detailed description is available in any book

on differential geometry.

3.2.8 Inner Product

The inner product (denoted < a, b >) is a mathematical operation defined on two vectors from a

vector space with a metric that produces a real number (metrics are discussed more in section 3.7.1).

If the metric is the 2-form g,3, then the inner product is defined as:

< a. b >= g(3pa b (3.7)

The inner product is symmetric and linear in Riemannian and sub-Riemannian geometry.

3.3 Bundles

3.3.1 Bundles

A bundle is a manifold with a tensor space at every point in the manifold. The total space of

a bundle is the set of points in the manifold combined with the vector space at every point - in

other words the total space is every possible tensor at every point in the manifold. A bundle has

a projection operation which associates every point-tensor combination in the total space with the

correct point in the manifold.

A bundle is itself a manifold, where every point-tensor combination can be considered a point.

A tensor field is then a submanifold of the bundle, where every point has only one tensor associated

with it.

3.3.2 Frames

Frames are similar to coordinate systems in that they provide numerical values for geometrical

objects. A frame is a set of linearly independent tensors that form a basis of a tensor space. Every

tensor in that tensor space can then be described uniquely by the linear combination of the basis

tensors that is equal to the desired tensor. This allows tensors to be numerically compared and

manipulated.

A smooth frame field is called a moving frame. A moving frame assigns a frame to every point in a

smoothly varying manner. Typically only the vector moving frame is specified, because the covector

frame can be determined from the vector frame (given a metric), and all other tensor frames can be

determined from the vector and covector frames.

Any smooth frame field can be used as a moving frame. Any moving frame can be modified by

rotations and stretching to produce another moving frame. Like coordinates, there is no "natural"

or "intrinsic" moving frame on a bundle. However, every coordinate system produces a natural

moving frame by differentiating the coordinate functions.

A moving frame and coordinate system together produce a coordinate system on a bundle.

3.3.3 Tangent Spaces

The tangent space of a manifold is the vector space of all tangent vectors. A tangent vector is a

vector which points in a direction that is tangent to a feasible path in the manifold. For most types

of manifolds, the tangent space is of the same dimension as the manifold and feasible paths run

through the point to all neighboring points. For sub-Riemannian manifolds, the tangent space is of

lower dimension and there are some neighboring points that are not directly connected by a feasible

path in the manifold. The tangent space at every point forms a vector bundle on the manifold.

called the tangent bundle.

3.4 Parallel Transport and Connection

Every point in a manifold has its own tensor spaces (for vectors. covectors, and other types of

tensors). The basis vectors and covectors are defined independently at each point in the manifold.

This means that there is no intrinsic way to compare tensors at different points in the manifold.

The main topic of differential geometry is how to connect the basis vectors and covectors at different

points in a manifold in a geometrically reasonable way. Once the basis vectors and covectors can be

compared at nearby points, it is possible to move tensors along a path and calculate how they are

changing in a geometrically meaningful way.

3.4.1 Connection

The connection provides a one-to-one mapping of tensors from the tensor space at a point to the

tensor space of a nearby point. Two tensors at different points in the manifold are geometrically

identical if and only if the connection says they are the same. The connection provides a way of

"connecting" the tensor space at each point to the tensor space at nearby points.

3.4.2 Parallel Transport

Parallel transport is a geometrical operation that moves a tensor along a path in a. manifold while

keeping it geometrically constant. It uses the local transport of the connection to move from one

point to the next in the manifold. The connection is like a differential equation that specifies how

things change locally, while the parallel transport is like an integration of that equation to go from

the beginning of a path to the end.

In general, parallel transport will be path dependent. The only exception is when the curvature

of the manifold is 0, in which case all paths connecting two points will provide the same mapping

of vectors from the initial point to the final point.

3.5 Derivatives

In differential geometry, different points in a manifold cannot be directly compared. In particular.

the tangent space at each point is a unique vector space that is not directly related to any other

tangent space. This means that there is not in general any natural way to measure derivatives along

a vector or a path. Instead there are several reasonable ways to define derivatives.

3.5.1 Partial Derivatives

A partial derivative can be calculated by ignoring the differences between different tangent spaces

and treating the space as Euclidean. This is mathematically useful as a component in calculating

other derivatives, which can be defined in terms of how they nodify the partial derivative. The

notation for a partial derivative is the same as in regular calculus: 0, is the partial derivative in the

x direction.

3.5.2 Exterior Derivatives

The exterior derivative operator only applies to n-forms. It converts an n-form to an (n + 1)-form.

including converting a function (0-form) to a 1-form. The exterior derivative is written as d. For

any form a. d(da) = 0.

For a function f, df is the standard differential of the function - it is a linear operator on vectors

that produces the directional derivative of the function in the direction of the vector, which is the

gradient of the function.

df (X) = (Vf, X) (3.8)

where in this case, Vf is the gradient of f, and (X, Y) is the dot product.

For an n-form a = f dzi A dX2 A ... A dzi= fdxj, the exterior derivative in coordinates is

da = (dxi A dxj (3.9)Oxi
3.5.3 Lie Brackets

The Lie derivative uses vector fields to equate different points in the manifold. A common use of

the Lie derivative is to calculate the Lie bracket of two vector fields. The Lie bracket measures the

change in a vector field as it moves along the flow of a second vector field. The notation for the Lie

bracket of vector fields a and b is [a, b]. The Lie Bracket is anti-symmetric on its two arguments,. so

[a., b] = - [b, a]. If two vector fields commute, then [a, b) = [b., a] = 0. The vector fields are only said

to commute when the Lie bracket is 0 everywhere, not just at some points.

Physically, if two vector fields commute then movement along the two vector fields can happen in

any order and the same point will be reached. This is the case in Euclidean coordinates. An example

of non-commuting vector fields would be dx and dr as part of the standard coordinate vector fields

for Cartesian and polar coordinates. Moving along the dx flow a distance of x and then along the dr

flow a distance r does not in general lead to the same point as moving along the dr flow a distance

r and then moving along the dx flow a distance x. The only exception is when the path starts on

the x axis, in which dr = dx.

Any set of moving frames where all pairs of basis vector fields comninute can be used to form

a coordinate system by integrating the basis vectors from a chosen origin. A moving frame where

some or all of the basis vector fields do not commute cannot be used to define a coordinate system.

In coordinates:

[a, b]2 = a og b' - bOoa' (3.10)

3.5.4 Covariant Derivatives

Covariant derivatives use parallel transport to make the tangent space at different points equivalent.

which then allows derivatives to be calculated in a natural way. The covariant derivative is indicated

with the V operator: V, is the covariant derivative in the v direction. In coordinates,

~Du
(Vu)' - Ou' + I 'u - v -+ 1 + vink (3.11)

where u and t, are vectors. If a is instead a covector, then

(Vu)i = Bui - I vUk = - O - Vk (3.12)

Higher order tensors have similar formulas, with the Christoffel symbol term (17k ... , defined in

section 3.10.1) subtracted for lower indices and added for rasied indices.

3.6 Distributions

A distribution of rank k is a smooth k-dimensional subbundle of the tangent space on a manifold. A

rank k distribution in an n-dimensional manifold can be defined by the n - k linearly independent

1-forms O6 with the property that 0j(X) = 0 for all vectors X in the distribution. A distribution is

called involutive if [X, Y] is in the distribution for all vectors X and Y in the distribution. A sub-

Riemannian manifold is a Riemannian manifold with the tangent space restricted to a non-involutive

distribution.

3.6.1 Connection and Curvature

A (listribution has a curvature and connection that are based on the geometry of the distribution

independent of any metric. These are based on the Carnot structure equations.

For a rank k distribution spanned by the one forms 01, .. 0
k, the connection is the matrix of one

forms w such that

dO, = j A /\6 + 02 (3.13)

where E) is the torsion matrix of 2-forms for the (listribution. The distribution curvature is

' = d2. + wk Aw (3.14)

The distribution connection, torsion, and curvature determine how the distribution twists along

the manifold that it is embedded in.

3.7 Measurements

While it is possible to solve some geometrical problems by using drawings, many problems are easier

to solve if the geometrical objects are measured so that the problems can be solved using algebra

and calculus. Coordinates and moving frames provide the measurements, but it is important to

remember that any chosen coordinate system or moving frame is not intrinsic to the manifold and

that the numerical results only have meaning when attached to the chosen coordinate system and

moving frame. Additionally, the geometrical answers will be the same regardless of the choice of

coordinates or moving frames.

3.7.1 Metric and Cometric

A metric defines the inner product of a vector space. That means that a metric is a (2,0) tensor

because it is a function which takes two vectors and produces a real number (the value of their clot

product). Since the metric is a geometrical object, the numerical values will depend on the frame

that has been chosen, but the computed lengths of vectors will be the same in all frames.

A comietric is the inverse of a metric. It is a (0,2) tensor which takes two covectors and produces

a real number. In any given frame, the metric and cometric are the matrix inverses of each other.

A metric on a manifold is a (2,0) tensor field that provides a metric at every point in the manifold.

A Riemannian metric is a smooth metric field that is positive definite at all points in the manifold.

A pseudo-Riemannian metric is similar except that instead of being positive definite, the metric is

only required to be non-degenerate. A positive definite metric has the property that every vector has

a positive length, which will be the case if the metric written out as a matrix is positive definite. A

non-degenerate metric is one in which there are no vectors other than the zero vector that have a dot

product of zero with all other vectors. This will be the case if the metric has the same rank as the

dimension of the manifold (meaning that all the rows of the metric matrix are linearly independent).

Path lengths can be found by integrating the tangent vector along the path. Similar computa-

tional methods can be used to find areas. volumes, etc.

3.7.2 Metric Connection

A metric connection is a connection that keeps the clot products of vectors constant as both vectors

are parallel transported along any path in the manifold. For any smooth metric on the manifold, it

should be possible to define a metric connection.

3.8 Geodesics

A geodesic is a geometrically straight line on a manifold. It is formed by moving along a tangent

vector and parallel transporting the tangent vector along the path. Geodesics will not generally

have a simple equation like they do in Euclidean spaces. If the curvature of a manifold is zero

everywhere, then the manifold is Euclidean and it is possible to use Cartesian coordinates and

moving frames. Any manifold with non-zero curvature anywhere is non-Euclidean and will have at

least some geodesics that do not have a linear equation.

A geodesic is the locally shortest path between two points in a manifold. It is possible that more

than one geodesic connects two points in a manifold, in which case only one of them is the global

minimum. There are some conditions that can be checked to prove that all geodesics are global

minimums.

3.8.1 Geodesic Divergence

Two nearby geodesics will follow different paths. The divergence between geodesics is described by

the Jacobi equation:

dt2X -R(X,T)T (3.15)

where X is the vector describing the difference between geodesics at length t, T is the tangent

vector to the geodesic at length t, and R is the Riemann curvature tensor (defined in section 3.10.2).

This equation is only valid when the geodesics are still close enough that the Riemann tensor will

not be significantly different on the two geodesics.

3.8.2 Geodesic Uniqueness

In a Riemannian manifold, any two points can be connected by at least one geodesic. Since each

geodesic is locally length minimizing, it is useful to determine when geodesics are unique and when

they are not. If only one geodesic connects two points on a manifold, then it is the global minimum

path length between the points. If multiple geodesics connect two points, then one of them will be

the global minimum (although it is also possible to have multiple geodesics with the same length,

for example the great circles on a sphere connecting antipodal points).

The simplest case where geodesics are unique is when the sectional curvature for every surface

at every point is negative. That will lead to the Jacobi equation taking the form:

X =KX (3.16)
dt 2

where K is a positive function. When X is positive, it will become more positive. When X is

negative, it will become more negative. This means that the divergence between geodesics will grow

as they spread out farther. If the sectional curvature is 0 everywhere then the second derivative is

0 and the geodesics will diverge at a linear rate (this corresponds to a Euclidean space). In both of

these cases, the geodesics will diverge from each other, so they will never intersect a second time.

The only way for the geodesics to converge is if the sectional curvature is positive at some point

along the geodesic. If this happens., then it is possible for some geodesics to converge at multiple

points. An example of such a case is a sphere, which has a constant positive curvature. All the lines

of longitude on the globe are geodesics that intersect at the poles.

Jacobi Fields

The Jacobi equation can be used to generate Jacobi vector fields[10]. A Jacobi field is a vector field

that satisfies the Jacobi equation. The Jacobi fields can be used to determine when geodesics are

unique.

Conjugate points on a geodesic are points where a Jacobi field is 0 at both points. Geodesics

can only intersect at multiple points if the points are conjugate to each other.

3.8.3 Singular Geodesics

In some sub-Riemannian manifolds, it is possible to have only one path connecting two points in

the manifold. This path is then the minimum length path, as no other paths exist. Since it is a

minimal length path, it is a geodesic., but in general it will not satisfy the geodesic equation. These

geodesics are called singular geodesics[11].

3.9 Branches of Geometry

3.9.1 Riemannian Geometry

Riemannian geometry is the main branch of differential geometry; it is the study of Riemannian

manifolds. A Riemannian manifold has a smooth, positive-definite metric and a tangent space that

has the same dimension as the manifold. Riemannian manifolds have many useful properties that

make them relatively easy to work with. In particular, every Riemannian manifold has a torsion-free

metric compatible connection, called the Levi-Civita connection.

3.9.2 Pseudo-Riemannian Geometry

A pseudo- Riemannian manifold is like a Riemannian manifold, but the metric is only required to

be non-degenerate instead of positive definite. The spacetime of General Relativity is a pseudo-

Riemannian manifold. Because of the application to Relativity, this is the most studied area of

applied differential geometry

3.9.3 Sub-Riemannian Geometry

A sub-Riemannian manifold is like a Riemannian manifold, except the tangent space is of lower or

equal dimension to the manifold. This means that Riemannian manifolds are actually a subset of

sub-Riemannian manifolds. In order for a manifold to be sub-Riemannian when it is not Riemannian.

the tangent space has to change from point to point. The Lie brackets of the basis vectors for the

tangent space have to include some components that are outside of the tangent space. This is

an equivalent condition to the problem having non-Holonomic constraints. This is a complicated

statement which can best be described by an example.

The state of a car can be described by its position (x,y), the angle the car is pointing in (0),

and the angle of the steering wheel (#). The car can move forward or backwards along a circle (ds)

and can change the radius of the circle, but cannot translate sideways or rotate in place. The total

space is four dimensional, but the tangent space is only two dimensional. All points in the space can

still be reached through some path. The tangent space restriction makes some problems difficult to

solve, such as parallel parking.

* When the car is pointing along dx, 0 = 0

e d0 = a[db. dx] for some value of a

* (ly = b[dV, dx] - ab[[d$, dx], dx] for some values of a,b

Vertical and Horizontal Vector Spaces

In a sub-Riemuannian imanifold. it is possible to partition the vector spaces into a horizontal part

and a vertical part. The horizontal part is the tangent space at each point. The vertical part is

everything else. All vectors can be divided into their horizontal part and their vertical part, although

one of these will be 0 for some vectors.

Compatible Riemannian Manifolds

In a sub-Riemannian manifold, lengths are only defined for horizontal vectors. The vertical vectors

have an undefined length. It is possible to create a Riemannian manifold such that all the horizon-

tal vectors have the same length and all the vertical vectors have a defined length. The manifold

can be further restricted by requiring all the vertical vectors to be orthogonal to all the horizontal

vectors (which means their dot products are 0). A manifold with these properties is called a com-

patible Riemannian manifold. Every sub-Riemannian manifold has an infinite number of compatible

Riemannian manifolds, because the lengths for the vertical vectors can be any arbitrary function.

The only change between the sub-Riemannian manifold and the various compatible Riemannian

manifolds is the metric. Each compatible Riemannian manifold defines a compatible Riemannian

metric.

Creating a compatible Riemannian manifold allows all the results of Riemannian geometry to

be applied to a manifold which is sinmilar to the sub-Riemannian manifold. A particularly useful

family of compatible metrics is the penalty metrics, which have vertical vector lengths approaching

infinity. In the sub-Riemannian metric, the vertical vectors have infinite length. Therefore the

penalty metrics approach the sub-Riemannian metric as the penalty terms approach infinity. This

also means that the geodesics in the penalty manifolds approach the sub-Riemannian geodesics.

The Step of a Distribution

Every sub-Riemannian manifold has a tangent distribution of some dimension n. A new distribution

can be formed by adding the Lie brackets of the tangent vectors to the original distribution, which

will generally increase the dimensionality of the distribution. The step of the distribution is the

number of times that the Lie brackets have to be added to increase the dimension of the distribution

all the way to the dimension of the manifold (plus one for the original vectors). A Riemannian

manifold has a step 1 distribution.

For the car manifold, the distribution has a 2-dimensional tangent space (ds and dq). The Lie

bracket is dO = a[ds, d#] for some scaling constant a. This brings the tangent space up to three

dimensions (ds, d6, and dO). The Lie bracket on these three vectors adds the fourth dimension

through [ds, dO].

The growth vector of a distribution describes the number of dimensions spanned by the distri-

bution plus the Lie brackets of the distribution. For the car problem, the growth vector is (2, 3, 4).

Categories of sub-Riemannian Manifolds

The simplest type of sub-Riemannian manifold is a Heisenberg manifold. A Heisenberg manifold

has the following properties:[91

" The manifold is step 2 everywhere

" The tangent space distribution is fully spanned by n orthonormal vector fields Xi

" There are p = n -rm locally defined 1-forms o, with w, (Xi) = 0, which satisfy the nonvanishing

conditions Det {oa([Xi, Xjl])} f 0

where n is the total dimension of the manifold and m is the dimension of the tangent space (m) < nI).

One consequence of these properties is that the rank of the distribution (m) has to be even for a

manifold to be a Heisenberg manifold. If the rank is odd, then the skew symmetric matrix defined in

property 3 will always have a determinant of 0. Additionally, Heisenberg manifolds have no singular

geodesics. [9]

It is worth noting that the definition of a Heisenberg manifold depends only on the tangent space

of the manifold and is independent of the metric.

A Grushin manifold is like a Riemannian manifold that has a metric which is singular at some

places in the manifold (for example, if it contains a term such as 1/x 2). A Hormander manifold

is a sub-Riemannian manifold which is step 3 or greater. More details about different types of

sub-Riemannian manifolds can be found in [91.

3.10 Formulas

3.10.1 Christoffel Symbols

The Christoffel symbols are used to measure how much the covariant derivatives differ from partial

derivatives. The formula for calculating the Christoffel symbols is

- +9" ("O + (3.17)
S2' Oxk Oxi Oxn

with gij as defined in section 3.2.8.

3.10.2 Riemann Curvature Tensor

The Riemann curvature tensor describes how a manifold is different locally from a flat manifold.

Geometrically, the Riemnann tensor is defined as

R(u. v)u - VVow - VVuw - V["V~w (3.18)

The Riemann tensor measures the noncommutivity of the covariant derivative. If it is zero every-

where. that means that the covariant derivative is conunutative, so parallel transport is independent

of path and depends only on the endpoints. This makes the space equivalent to a Euclidean space.

The formula for calculating the components is

Ri17ki = + + a g rz -, (3.19)

Rxla x k + ox2x .x iok x
0 x+x q j_(OXjOXk OX'Qx-X DXijx - OXiOXk) +k m ikl j1 i9k) (3.20)

The Rieniann tensor has ,n4 components, but it has the following symmetries:

Rijki - Rktij = -Rink = -RJijk (3.21)

In addition, the Bianchi identities further reduce the number of independent components:

Rijkl + R1jjk + RjAIj = 0 (3.22)

VflR'kl + +VR +VkR l, = 0 (3.23)

These identities leave only n 2 (,r 2 1)/12 independent components in the Riemann tensor. The

following chart describes the number of independent components as a function of the dimension of

the manifold.
dimension components

1 0

2 1

3 6

4 20

5 50

6 105

3.10.3 Ricci Curvature Tensor

The Ricci tensor is a contraction of the Riemann tensor.

ark or
-~J gklRjAjl, gklR Rkij &xk - + r k 1711 - F ' (3.24)

The Ricci tensor is also symmetric (Rij = Ri).

3.10.4 Sectional Curvature

The sectional curvature is the Gaussian curvature of a 2-dimensional submnanifold within the man-

ifold. If the sectional curvature of all surfaces at all points is non-positive, then every geodesic is

unique in the sense that only one curve satisfying the geodesic equation connects any two points on

the manifold. This condition means that geodesics are global optima instead of just local optima.

It can be calculated as

K(u, v) (R (u (3.25)
s(, U) (V,. V) - (U 35))

where u and v are vectors in the 2-dimensional submanifold.

36

Chapter 4

Path Optimization and

sub-Riemannian manifolds

4.1 Problem Formulation

Many path optimization problems can be formulated using the language of sub-Riemnannian georn-

etry. This formulation provides a convenient and straightforward method of finding the optimal

path. A simple problem of a tank on a flat surface will be used to illustrate the method. Any other

vehicle that can rotate in place and move freely along a plane with a cost function based on the

total distance moved and the total angular rotation would be mathematically identical. Figure 4-1

shows a diagram of the problem.

4.1.1 Manifold

The manifold for a path optimization problem is the same as the state-space formulation for the

problem. Each state corresponds to one dimension of the manifold and provides one coordinate

function.

For the tank, the state can be described using three variables. The position of the tank is given by

its x and y coordinates and the current pointing direction is given by an angle 0. Other coordinates

could be chosen, such as using polar coordinates for the position. The only requirement for the

coordinates is that they must have a unique value (as a set) for every point in the manifold. It is

useful to choose coordinates that are natural and simple for the problem. For example, Cartesian

coordinates are often simpler than polar coordinates, but polar coordinates would generally be

simpler for rotational problems. The best coordinates to use will depend on the nature of the

problem.

Tank Manifold - Path Optimization Problem

How to optimally move a tank vehicle between points?

P1(0.1,1,0) Y

Tank can move forward and back X

Tank can rotate in place

Tank cannot move sideways

P2 (0,0,0)

Figure 4-1: The tank manifold

4.1.2 Moving Frame

A moving frame for the problem has to be chosen in order to find the metric. The moving frame

should be chosen to produce a simple metric. This can be done by examining the cost function of

the problem. For the tank problem, there is a cost for driving and a cost for turning. These are the

only feasible motions, so the tangent space is two dimensional.

When solving a problem where the tangent space is of lower dimension than the total space,

additional vectors have to be chosen to complete the moving frame. The additional vectors can be

any vectors that fully span the vertical portion of the vector space. It is best to choose vectors that

are in some natural sense orthogonal to the feasible movements.

For the tank. one more vector has to be chosen. A reasonable choice is moving the tank sideways.

This is naturally orthogonal in the sense that there is no way to make these motions in any state

the tank will be in. Another possible option would be translation in the x direction, but this is

sometimes the same as driving the tank forward. which makes it a bad choice. The above choice of

a vector is also relatively simple so it will not complicate the math. Another possible option would

be rotating the tank about some fixed point (which changes the pointing direction of the tank and

its location), but this would lead to a more complicated metric.

For the tank, the entire moving frame is a representing the basis vector for moving the tank

forward. b representing the basis vector for rotations in place. and c representing the basis vector

for translating the tank sideways.

4.1.3 Metric

The sub-Riemannian metric is given by the cost function. The lengths and angles of vectors in

the vertical sub-bundle are not well defined for a sub-Riemannian manifold, so they can be chosen

arbitrarily. The simplest choice is to define the basis vectors of the moving frame to be orthogonal to

the horizontal space. This choice will change the metric based on which vertical vectors are chosen,

but in the limit as their lengths are made infinite., all of these metrics will converge to the same

sub-Riemannian metric. The lengths of the vertical basis vectors should depend on a parameter, so

they can be written as 1/a or something similar.

Any function that can be determined by just the path through the state-space can be used as

a cost function. The metric is the derivative of the cost function, which makes the metric a linear

function of the tangent vector at each point, but this does not impose any constraints on the cost

function. However, if the cost function depends on the history of the path as well as the current

state, the cost function will be complicated and the method might not work well. An example of

this would be if the cost function for driving a car depends on the amount of fuel in the car, so that

driving around a circle back to the same point would lead to a different local cost function. This can

be solved by adding all variables that the cost function depends on to the state-space description of

the problem (which would mean adding the amount of fuel in the car as a variable in the description

of the car's state).

The cost function for the tank is a cost of one to move the tank a unit of distance and a cost

of 3 to rotate the tank one radian. The parameter 13 represents the ratio of the cost of steering to

the cost of moving. A high value of 3 will lead to solutions with little steering and lots of back and

forth movements, while a low value of # will lead to tight turns with little movement. These two

operations are naturally orthogonal, so a - b = 0. The lengths of the other basis vector will be set

to 1/a with a small. The metric is diagonal in this moving frame.

Using the column vector = (a, b, c) to represent the physical motion, the cost function is

Tg(). g(() is the diagonal matrix with entries (1, 1/a,/3). So the cost function is

1 0 0 a

Cost = (Tg(()g a b c 0 1/a 0 b (4.1)

0 0 B c

4.1.4 Changing Frames

In order to change frames to the coordinate-based frame, the relationship between the coordinate

vectors and the physical movement vectors must be determined. This is done by determining the

differential equations that relate the movements to the state changes. For the tank,

x = cos Oa - sin Oc

y = sin Oa + cos Oc

0 = b

(4.2)

(4.3)

(4.4)

In matrix form, this is

xx
X y

X Y

cos 0

sin 9

0

- sin 0

cos 9

0

The inverse transformation is

(4.5)

a cosO sinO 0 x

b -sin0 cos0 0 y = T-X (4.6)c 0 0 1
The metric in the new moving frame is derived from the old metric multiplied by the columns

of the inverse transformation matrix. For example, x is the same vector as cos Oa - sin Oc, so

g. = cos2 9 + (1/a) sin 2 0. The other entries are all generated in the same way. In equations,

cost - (T- IX)Tg()T lX

= XT(T-)Tg()T-lX

- X'g(X)X

(4.7)

(4.8)

(4.9)

(4.10)

Cos 2 o (1/a) sin2 9

Y(X) = (1/a) cos 0 sill 9

0

(1 - 1/a) cos 0 sin 0

Sin2 0 + (1/a) cos 2 0

0

0 12] (4.11)

g (X) =_ (T -1)Tg (()T-i

The cometric is the inverse of the metric and is produced in a similar way from the rows of the

basis transformation matrix:

g(X)-1 = Tg()- TT (4.12)

cos 2 06+ a sin 2 0 (1 - a) cos6sin6 0

g = (1 - a) cos 6 sin 6 sin2 0 + a cos2 0 (4.13)

0 0 1//B

This is now a Riemannian metric on a Riemannian manifold.

4.2 Optimal Paths

The optimal paths for the control problem correspond to the geodesics of the manifold. Any method

which will find geodesics in a Riemannian manifold can be used to find the optimal control trajec-

tories. One method for finding the geodesics is given in chapter 5.

4.2.1 Uniqueness of Solutions

As stated in section 3.8.2, the geodesics of a Riemannian manifold are unique if the sectional curva-

ture of every two-dimensional submanifold is negative at every point. For many control problems,

the resulting manifold is likely to have sectional curvatures that are sometimes positive and some-

times negative. This will sometimes produce unique geodesics, but there may be some points that

are connected by multiple geodesics.

Unless the sectional curvatures are always negative, Jacobi fields have to be used to determine if

the geodesics are unique.' This will not in general be possible to do analytically, but it can be done

numerically.

Once a geodesic has been found that connects two points, Jacobi fields can be generated along

the geodesic. The initial value of all the Jacobi fields can be set to 0. Then the geodesic is unique if

the Jacobi fields are all linearly independent along the geodesic. If the Jacobi fields are not linearly

independent, then it is possible to create a Jacobi field by adding some of the Jacobi fields together

so that the new Jacobi field is 0 at a second point.

It is easiest to generate the Jacobi fields by using a slightly modified version of the Jacobi

equation. Starting at the initial point with an orthonormal basis that includes a vector tangent

to the geodesic, the basis can be parallel transported along the geodesic. Since parallel transport

preserves length and angles, these vectors will remain orthonormal. Then there will be n - 1 basis

'Jacobi fields are described in section 3.8.2

vectors that are perpendicular to the geodesic (where n is the dimension of the manifold). Each of

these can be used to generate a Jacobi field. Any other Jacobi field will be generated by some linear

combination of these n - 1 fields. The rewritten Jacobi equation is

J(t) = fi(t)e (t) (4.14)

where ei is the parallel transported basis vectors.

Defining

aij (t) =(R (y'(f), ei (t)) y'(t), ej (t)) (4.15)

leads to the differential equation

f'(t) + Zaj (t)fi(t) = 0 (4.16)

with the initial conditions f (0) = 0 and fi(0) - 1 for one of the functions and fj(0) = 0 for the

other i - 2 functions. The differential equation can be numerically integrated along the geodesic

for each of the n - 1 Jacobi vector fields to determine their values. If they are linearly independent

at all points along the geodesic, then the geodesic is a global minimum. If they are not linearly

independent at some point along the geodesic, then they provide the tangent vector at the initial

point which will produce a second geodesic which should converge with the first geodesic at the

conjugate point.[10]

4.3 Discussion

It is important to consider when this method is expected to work. Mathematically, this method is

identical to formulating the path optimization using a Hamiltonian method. Any control problem

that can be solved with a Hamiltonian method can also be solved by geodesic search.

4.3.1 Hamiltonian Equivalence

Starting with a manifold with a cometric gab, we can define a function H = jgabPP and call this

a Hamiltonian function. Using the standard notation from Hamiltonian mechanics,

da OabPb (4.17)
Ba

a I Pgb , (4.18)a OXa aaP1

The second derivative of x is

a abp b+ g Pb
Ogacib 1 ab09"

: x Pb - b ci
Dv' 2 Orb pep'

0 gab -) ab Ci

S Pb-- 9cj9ilOb
bO9jk b - ab9 9 bl

ai.-OxYk-1- 2- aoxblqa9qbA X'gqhlX + -9 'r - x i-
Ox' 2 ix b

-9a.1 .giqk *ik 1 ab091lJ,
Oxi 2 Oxb

ai 0 9ic b-c 1 ai 0 9bc ,bgc

Oxb 2 Ox'
ai (Oic ± ib 09bc

IFcibie (4.19)

which is the standard Riemannian geodesic equation[12]. This shows the mathematical equiv-

alence of the two methods, which are both based on finding geodesics in a Riemannian or sub-

Riemannian manifold. This also provides an alternate method for determining the cometric of a

control problem if the Hamiltonian solution has already been found.

The Hamiltonian method of path optimization is based on creating a symplectic manifold which

corresponds to the covector bundle of the base manifold. In other words, the Hamiltonian costate

is the component representation of the tangent covector. The Hamiltonian function is a calculation

of the tangent covector length., which is why the Hamiltonian function is constant along an optimal

path. The path on the manifold is found by projecting the covector onto the tangent space and

parallel transporting the tangent covector along the path. This produces an optimal trajectory

because a geodesic is found by following a tangent vector as it is parallel transported along the path

it generates.

In general, the sub-Riemannian cometric is singular, so it cannot be inverted to produce a metric.

The cometric is used to convert a covector into a vector, which is why the costate can be used to

find the tangent vector for the path. The metric is used to convert a vector into a covector, which

is why the derivatives of the state do not uniquely determine the costate. The rank of the cometric

is the same as the dimension of the tangent space in the control problem. If the manifold dimension

is n and the tangent space dimension is k, then there are n, - k more dimensions in the covector

space than in the vector space. In principle, it would be possible to use only n - k costates in the

Hamiltonian method because the other k costates could be found from the derivatives of the state.

Differences

There are two major differences between the methods. The first is that the Hamiltonian method

works with no modifications even if the cometric is singular, which makes the metric degenerate.

The second difference is in how the geodesic equation is solved.

The Hamiltonian method solves the geodesic equation by choosing a tangent covector and parallel

transporting it along a path. This will produce a, geodesic, but there is no way to control where the

geodesic will go. The geodesic search method (described in chapter 5) will always produce a path

from the starting point to the ending point, but may not fully converge to a geodesic in a reasonable

amount of time.

In a Riemannian manifold, a tangent vector at a point fully defines a geodesic path. However,

in a sub-Riemannian manifold, the tangent vector does not have enough information to fully specify

a unique geodesic. Any vertical vector can be added to the tangent vector without changing its

projection into the tangent space. All of these different vectors will appear the same in the sub-

Riemannian manifold, but will produce different geodesic paths. It is this fact which complicates

the solution process for sub-Riemannian control problems.

The Hamiltonian method solves this problem by using the tangent covector instead of the tangent

vector. Since the cometric is singular but still finite, the tangent covector space is complete. The

projection of a covector onto the tangent, space (performed by the cometric) produces the proper

tangent vector at each point. Parallel transporting the covector will then produce a geodesic.

The penalty metric method solves the problem by allowing small deviations from the actual

tangent space. These small deviations permit the tangent vector space to be complete. In the

limit as the penalty terms become infinite, the tangent space collapses back to the sub-Riemannian

tangent space.

4.3.2 3-D Example

A representation of how this method (described in chapter 5) works can be demonstrated by con-

sidering the problem of how to find the shortest path between 2 points on a sphere. The method

presented here is equivalent to drawing a straight line between the two points as an initial estimate of

the path (this corresponds to having a very low penalty term). The path is easy to find and optimal

in some sense. but it does not actually satisfy the constraints of the problem. As the penalty term

is increased, the path is penalized for failing to meet the constraint. The result of this is that the

path is projected onto the surface of the sphere, producing the geodesic of the original problem. It

is important to note that this projection operation is ambiguous when the path is connecting two

antipodal points on the sphere, because there is no particular direction to move the path in to better

meet the constraints. The method presented here does not have a means to correct the projection

operation for cases where the non-constrained path is perpendicular to the tangent space.

a

Figure 4-2: Diagrams showing how an optimal path could be found on a circle or sphere. The upper
left diagram shows the optimal path with no constraints. As the penalty function is increased, the
path moves towards the valid surface as shown in the upper right diagram. This method will not
work if the path is completely ort iogonal to the constraints, because the projection operation will
not work.

Chapter 5

Searching for Geodesics

The geodesic equation is
d 2X dvb dxc

+ 2 g =b (5.1)
ds2

cds ds

with the terms summed over all values of b and c and the equation applied separately for each

value of a (a., b, and c take on values corresponding to each dimension of the problem).

In general this cannot be solved analytically. Previous methods of solving the geodesic equation

involve discretizing the manifold.

The algorithm developed here solves the geodesic equation directly by moving each point of the

solution until it is in the right place. The geodesic equation is modified to include an error term F"

d2xa dxb dxc
ds2 + F ds ds F" (5.2)

For a geodesic, the error term will be 0. For any other curve, the error term will provide

information about how to modify the curve to make it closer to a geodesic.

5.1 Finite Difference Methods

5.1.1 Flat Space

For a Euclidean space, the modified geodesic equation is

d2 .a
d =2 F" (5.3)
ds82

Consider the curve x = s2 from (s, x) = (0, 0) to (s, x) = (1, 1). The derivatives are

d - 2s (5.4)
ds

d2X
__ = 2 (5.5)

which means that F" has the constant value of 2. The geodesic with the same endpoints is x - s.

For all points on the curve, s > s2, so the values of x should be increased. Adding some multiple of

F" onto each point in the path will move the path closer to a geodesic. This is the general principle

of this method.

If the line is discretized into some number of points, the derivatives can be calculated numerically.

Using a finite difference method, the derivatives are

dX _ .n+1 - n-1
(5.6)

ds Sn+1 - sn-1

d 2 X _ (xn+1 - Xn)/(sn+1 - sn) - (xn - zni_)/(sn - Sn_1) (5.7)
ds 2

sn+1 - sn-1

with constant step sizes in s, this becomes

dx Xn+1 - Xn-1
(5.8)

ds As
d 2 X -

t n+1 + Xn-1 -
2

*n (5.9)
ds 2 2(As) 2

Putting this into the geodesic equation for flat space,

(zn+1 + In-1)/2 - XI = F (5.10)
(2As) 2

The only way that F can be 0 is if xn = (x,,+1 + xn-1)/2, which is the expected equation for

a straight line. When F is not 0, then the point x, should be moved. Using AXn to represent the

amount that x, should be moved for the next iteration of the method,

A X = (in+ 1 + Xn_)/ 2 - X" (5.11)
K(As) 2

where K is a stiffness parameter that determines how much each point moves from one step to the

next. If KAs 2 = 1 then each point will be moved to the midpoint of its adjacent neighbors at each

step. However, those neighbors will also have moved, so it will still take multiple iterations before

the algorithm converges. If the stiffness is too high, then the points will not move far enough at

each step. If the stiffness is too low, then the points will overshoot at each step and oscillate around

the correct solution. If KAs 2 < 1/2., then the points will overshoot by a larger amount than the

current error terms, which means the error terms will grow with each iteration of the algorithm.

Having the correct stiffness is critical to the performance of the algorithm. If the stiffness is too

high. then the algorithm will converge too slowly. When first starting the algorithm, it is best to

have a low stiffness, so that the points can nove quickly to somewhere near their correct locations.

But once the algorithm has come close to converging, the stiffness has to be increased so that the

points will not overshoot or oscillate. The stiffness should be adapted as the algorithm converges.

One way to do this is with an overrelaxtion method - increasing the stiffness whenever the point

overshoots, which can be determined by looking for a sign change in Ax between iterations. and

decreasing the stiffness whenever the point moves in the same direction for two iterations.

5.1.2 Curved Riemannian Spaces

The algorithm also works for curved Riemannian spaces. For an n-dimensional curve, the derivatives

for all coordinates have to be calculated. The calculations are still the same as before, but in curved

space the Christoffel symbols are generally not equal to 0.

A simple curved space is the hyperbolic plane, which is a surface with constant negative curvature.

The algorithm has been tested on this surface and finds geodesics with no difficulties.

5.1.3 Computational Efficiency

The finite difference algorithm converges fairly quickly for Riemannian spaces. The convergence

rate is determined by how many points the path has and by how stiff the path is (based on the K

parameter). The stiffness can be varied based on how the path is changing, which will automatically

tune it to the proper value for the manifold.

If a high accuracy is desired for the path, then the answer will have to have a large number of

points. Adding points to the path increases the effective stiffness, because more points have to be

moved and at each iteration the points will only move a small amount (because the points will be

close to their neighbors). The most computationally efficient way to find paths with a large number

of points is to start with a small number of points and then add points as the path converges. As

an added benefit, more points can be added to the parts of the path with more curvature, which is

where a higher accuracy is needed most.

Adding points can be done in two ways. One way is to add points to the entire path such that

the new step size is constant, but smaller than the previous step size. The other way is to only add

points to sone part of the path, which will lead to a variable step size.

The benefit of adding points to only some parts of the path is that the grid can be left coarse

where it does not affect the accuracy of the curve. The benefit of adding points everywhere is that

it is computationally easier, so it might be faster even with more points.

Variable Step Size

Allowing a variable step size can provide a more efficient algorithm in some cases. However, if

the step sizes are not constant, then the derivatives are a little more complicated to calculate. A

quadratic polynomial can be fit to the three points, which will provide the derivatives. The following

substitutions are used in this derivation:

X = X1 - xn

= xn+1 - xn

Si = 1S-1 - Sn

= Sn+1 - -Sn

The equations to be solved are

aS, + bSi = X1

aS 2+bS 2 = X2

b(S 2 - S/S/ 1) = - (S/S2)X1

SSX2 SX 1b = 2 2

S S2(S1 - S2)

S2 1x + Sx ±sXIx
XX2 S 1X1

SS2(S -S2)

S2 -Sl X2 + S X1 + S1S2X1 S2X1

aS~ = Sx

2 I S 2(S1- S2)

S2 -S12X2 + SIS2X
a 2(1-S2)

a2 S1 S2X1 - S1X2

S 2 S1-S 2
1 S2X1 - S1X2

a
S1S2 1 - S2

X1/351 - X2|S2
a =

-SS1- S2

SX2/S 2 - X 11S 1a-=

The derivatives are

dx
-= b

ds

SIX 2 - SX1
S1S2 (S2- S 1)

(sn+1- 8n) 2 (Xn - r "_1) + (sn - sni) 2 (X+1 - za)

(sn - s
5 n I)(snrI+1 - sn)(sn+1 - Sy-1)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

d 2 = 2 a (5.30)

2 (xn+ 1 - Xr,)/(Sn+1 - Sn) - (Xn - Xn-)/(Sn - Sn-1) (5.31)
Sul 1 - Sa_1

This modified algorithm has been tested with both flat space and the hyperbolic plane. In both

cases it converges well to the same solution as with constant step sizes.

Adding Points

When adding points to the path, the most useful places to add more points is to the parts of

the path where the pointwise approximation is least accurate. These will be the areas where the

second derivatives are changing most rapidly, because the path is effectively interpolating quadratic

polynomials between the points. Another useful place to add more points is where the manifold itself

has a higher curvature. Higher curvature will lead to faster changes in the Christoffel symbols, which

means that the approximation will be less accurate. Further work will be required to determine if

there is a good way to determine where to add points so as to minimize the number of points needed.

A much simpler algorithm is to just add a point between the two most separated points. This

will add points to the path so that they are almost evenly spaced, but requires using algorithms

similar to what will be required for more adaptive point adding, so it is a good intermediate step.

A simulation was run that started with a path in the hyperbolic plane with only 5 points.

Whenever the total movement of all the points in the path was small enough. another point was

added. This led to convergence with 1000 points in the final path in about 7500 iterations. By

comparison, starting with 1000 points requires about 900,000 iterations. (about 120 times as many

iterations). Using variable step sizes reduces the computational rate by about a factor of four, but

it is still much faster because an approximate solution is found with a small number of points and

then the grid is made finer. However, it is even faster to double the number of points each time the

solution converges and maintain a constant step size for any given number of points.

5.2 Pseudospectral Method

Pseudospectral methods are based on using some number of orthogonal functions to approximate

the curve. The functions are evaluated at the points on the path to determine where the path goes

and what its derivatives are. Once the point locations and derivatives are computed, the algorithm

is identical for calculating the virtual forces and point movements.

There are several different sets of orthogonal polynomials that have been used for pseudospectral

methods. The most common ones are Legendre polynomials, Lagrange polynomials. Chebyshev

polynomials, and Jacobi polynomials. For this research, the Chebyshev polynomials were used. The

Chebyshev polynomials of the first kind are defined as

To(x) =

T1(x) = x

T.n+1(x) 2

(5.32)

(5.33)

(5.34)XT"(x) - T_ 1(x)

The Chebyshev polynomials of the second kind are defined as

Uo(x)

U1(x) =-

Un+1(x) =

1

2x

2xU,(x) - U,_1 (x)

(5.35)

(5.36)

(5.37)

The derivatives are:

d

dx

dx2 T(r

= nUn 1(x)

S (n + 1)TW(x) - U(x)
x2 _

(5.38)

(5.39)

The path and its derivatives can be described as a sum of the first m Chebyshev polynomials:

f(xI)

f'(x)f (W)

= ZanT(x)no

n=O

=na, U"_1()
n=1

(n- + 1) T,(x) - (x)
= nan 22-1
n=2

(5.40)

(5.41)

(5.42)

This allows the first and second derivatives to be computed algebraically once the path has been

fit by the polynomials. If the collocation points are used, then the best fit to the path can be

computed by a process similar to a Fourier transform: the sum of the path function multiplied by

each polynomial function at all the points provides the coefficient of each polynomial (with some

correction to normalize the results). The collocation points are the solution of the equation

x = - cos(a7r/(m - 1)) (5.43)

with a taking on the values from 0 to m - 1.

The computational benefit of the pseudospectral method is that it converts a calculus problem

into a linear algebra problem. The current point locations are multiplied by a matrix to generate

the Chebyshev coefficients, which are multiplied by another matrix to generate the first and second

derivatives. These values are then combined through the geodesic equation to produce the virtual

force vectors, which provide the amount that each point should be moved in each iteration of the

algorithm (as described in section 5.1).

Using pseudospectral methods to solve differential equations with constant coefficients converts

the differential problemr into a relatively simple linear algebra problem of adding and inverting

matrices. However, the geodesic equation does not have constant coefficients, because the Christoffel

symbols change depending on what points the path goes through. It may be possible to perform

some kind of convolution procedure to multiply the Christoffel symbol functions in the differential

equation to produce a pure linear algebra problem. If this can be done, then the path optimization

problem could be transformed into a small number of matrix operations.

5.2.1 Computational Efficiency

As with finite difference methods, there is a tradeoff between accuracy and speed. Using more

points (and therefore more orthogonal functions) requires larger matrices and more computation

(roughly 0(n 2)). However, using fewer points reduces the range of functions that can be accurately

represented by the polynomials. As with the finite difference methods, the most efficient way to

use pseudospectral methods is to start with a small number of points and then add more as the

solution converges. For most of the path optimization problems tried in this research, only the first

ten coefficients are significantly different from zero, so eliminating the remaining polynomials would

lead to only a tiny error. However, increasing the number of points still increases the accuracy of

the solution, because the differential equation is solved at more points along the path.

5.3 Stream Processing

One computational advantage of both forms of this algorithm is that they are easily adapted for

stream processing. Stream processing is a form of vector processing that applies the same operation

to many data items. Many graphics processors can implement stream processing with as many

as 128 parallel processing units. This provides performance of up to 1000 billion floating point

operations per second (GFLOPs). By contrast, traditional CPUs can only compute at a rate of

about 25 GFLOPs per core, making the stream processors up to 40 times faster.

The algorithms described here are well suited to stream processing because the exact same

operations are performed on every member of the data set (each point in the path). The finite

difference algorithm only requires information from three points for each point's computations, while

the pseudospectral method reduces to linear algebra operations that can be run on parallel execution

units easily. Both algorithms require computing the Christoffel symbol values, which have no cross-

dependencies between different points. Many other path optimization algorithms cannot be run fully

in parallel, because they require information from other parts of the path. For example, shooting

methods can only integrate from each point to the next point, so they cannot take advantage of

parallel execution capabilities.

Chapter 6

Heisenberg Manifolds

Heisenberg manifolds are the simplest and most regular sub-Riemannian manifolds. This chapter

provides a description of two Heisenberg manifolds that the geodesic search algorithm can be applied

to. The first example has an analytic solution, so the numerical solutions can be checked for accuracy

and the convergence properties can be determined. The second example is a little more complicated,

but the math is still simple enough that the equations can be written out fully and still be understood.

so it provides a good problem for explaining the algorithm in more detail. The geodesic search

algorithm works well for these two examples, and it is likely that it will work well for any other

Heisenberg manifold.

6.1 Definition

Heisenberg manifolds are an important category of sub-Riemannian manifolds. Heisenberg manifolds

locally resemble the Heisenberg group, similar to how Riemannian manifolds are locally Euclidean.

A sub-Riemannian manifold with a tangent space of dimension m and a total space of dimension

n = m + p is a Heisenberg manifold if it has the following properties:[9]

1. There are min locally defined vector fields {Xi} such that the tangent space is fully spanned by

{xi}

2. The vector fields ({Xj}) are orthonormal

3. There are p > 1 locally defined 1-forms w, with w (Xi) = 0., which satisfy the nonvanishing

conditions Det{w'([Xi, Xy])ig} f 0

4. If local vector fields {Xi} and {Y} are defined on local charts, then both vector fields fully

span the tangent space where the charts overlap

There are some other properties that can be derived from this definition. In particular, a Heisen-

berg manifold is step 2 everywhere and the dimension of the tangent space has to be even.[9]

One important consequence of the nonvanishing condition is that all Heisenberg manifolds satisfy

the strong bracket generating condition.

6.2 3-Dimensional Heisenberg Group

The simplest Heisenberg manifold is the 3-dimensional Heisenberg group. This manifold has tangent

vectors

a , - (y/ 2)DO (6.1)

b = O, + (x/2)Ot (6.2)

The Lie Bracket of these two vectors

[a, b] = Ot (6.3)

The Heisenberg manifold describes a path in the x, y plane with the t coordinate representing

the area enclosed by the path (defined as f r 2dO in polar coordinates). The path length is equal to

the path length in the x, y plane. The geodesics are therefore the paths which enclose the desired

total area (specified by the t coordinate) with a minimum perimeter (see Figure 6-1).

Applying the methodology of the previous chapters, we need to add a third vector to span the

full space of the manifold. c = Ot is a suitable choice because it is not in the tangent space and is

comnputationally easy to work with. a and b both have a length of 1, while c has a length of oc

(which will be approximated as 1/a) because it represents a physically infeasible movement. The

basis change matrices are

a 1 0 0 xb = 0 1 0 y (6.4)
Lcl y/2 -x/ 1 IJ [t(.

x 1 0 0 a

y = 0 1 0 b (6.5)

t -y/2 x/2 1 c

Heisenberg Manifold - Path Optimization Problem

Shortest path between two points that encloses a fixed area ?

'-
-''

Enclosed Area A is given

P2(x2,y2)\

Origin (0,0)

Figure 6-1: The Heisenberg manifold path optimization problem. Find the shortest path that
encloses a fixed area. The enclosed area goes from the origin to the initial point in a straight line,
along the path to the final point, and then in a straight line to the origin.

So the metric in the (x, y, t) system is

+ y 2/4ca

g = -xy/4a

y/2a

1

g4 = 0

-Xy/4a y/2a1

1 + X2 /4a -x/2a

-x/2a 1/a

1 x/2

/2 x/2 (x2 +y 2)/4+a

The corresponding connection coefficients are:

r; [y/

) y/4a 0

4a -/2a 1/2a

0 1/2a 0

P1(xl,yl)

(6.6)

(6.7)

(6.8)

-y/2a x/4a
P = x/4a 0

-1/2a 0

-xy/4a

F' (x2 _ Y2)/8a
-x/4a

The resulting geodesic equations are:

-1/2a]
0

0

(x 2 _ y2)/8a

xy/4a

-y/4a

d2
x y d dy x dy2 1 dy dt

ds 2 2ads ds 2a ds adsds

d2y y (dx 2 x dxdy 1dxdt
ds2 2a ds }2adsds adsds

dx 2 X2_Y2dxdy x dxdt xy dy 2 y dydt
ds 4 dsds 2adsds 4a ds 2adsds

x (ydx x dy dt dx y ydx x dy dt dy
2a 2 ds 2ds ds/ ds 2a (2ds 2 ds ds/ ds

d2.x 1 1y dx x dy dt dy
ds 2 a 2ds 2ds ds ds

d2 y 1 (ydx xdy dt dx
ds 2 (2ds 2ds ds, ds

d2 t 1 ydx
(S2 2a k2ds

xdy dt) (dx
+-- s x-

2 ds das ds
dy
ds

= 0 (6.11)

0 (6.12)

0 (6.13)

= 0 (6.14)

= 0 (6.15)

= 0 (6.16)

0 (6.17)

The solution to this system of equations projects to circles in the (x, y) plane. This is the

expected result that a circle has the lowest perimeter of any curve that encloses a specified area.

Using the algorithm described in the previous chapter produces the geodesic paths rapidly even

when the initial conditions are randomized.

6.2.1 Results

The sample problem used for this section is the path from (x, y) = (1, 0) to (x, y) (-1, 0) with

the enclosed area equal to pi/ 2 , which is a half circle centered at the origin with radius of 1. A few

different algorithm variations were tried to compare how quickly they converge and to demonstrate

the convergence properties of the method.

Figure 6-2 shows the way that a single point in the path moves as the algorithm converges. The

value of a is decreased as the algorithm runs, which increases the penalty function and forces the

path to approach the sub-Riemannian geodesic. At high values of a, the points are all moderately

far away from the desired location, but they move closer as a is decreased. The graph shows that

the points approach the expected location approximately as a linear function of a. This suggests a

-x/4a

-y/4a

0

(6.9)

(6.10)

d2t
ds 2

xy
4a

d2t

ds2

0.645

0.64

0.635

0.63

0.625

0.62

0.615

0.61

Convergence motion of one point in the path

Tracked Point location
- Ideal Point Location

-. -. .

' ' ' '

0 0.01 0.02 0.03
alpha

0.04 0.05 0.06 0.07

Figure 6-2: Movement of a single point in the path as the algorithm converges (a moves from .07
towards 0). The horizontal line shows the analytically determined correct location of the point. The
"breaks" in the line are from adding more points to the path.

useful variation on the algorithm. At each step of the algorithm, as a is decreased, the algorithm

can estimate how far each point will be moved based on how far each point has moved over the past

several iterations.

Figure 6-3 compares the convergence rate of the basic algorithm to the convergence rate of

the algorithm that extrapolates how far each point will move at each iteration step. Adding the

extrapolation allows the algorithm to converge to a more accurate solution. Both algorithms are

limited in how far they converge by the number of points used and the numerical limits of the

computers calculating the paths.

Another variation based on extrapolating the position of each point allows stopping the algorithm

early. Instead of actually trying to have the algorithm decrease a all the way to 0, the trajectory

of each point can be tracked and a linear extrapolation can be used to predict where the point

would end up if the algorithm were allowed to run all the way to a = 0. Figure 6-4 shows how the

convergence changes. In this case, the most recent 30 iterations are used to extrapolate the location

Convergence rate of algorithm variations
102

- 1 .4. . - - - - - -.

- 1 .6 - - - - - - -.-.- . -. -.-. -. -. -. -

.-1.8 - - - -

E

-22

-2 .4 - -----

-2.6
0 200 400 600 800 1000 1200

Computation time (s)

Figure 6-3: Convergence rate of basic algorithm and extroplated movement algorithm

of each point with a = 0. The algorithm produces better results, but not in an entirely steady way.

The extrapolation eventually converges to the same total error as not extrapolating, after having

achieved a lower error if the algorithm had been stopped. In general, an analytical solution will

not be available to compare the results to. While extrapolating the final point positions is likely to

provide solutions much faster, more work needs to be done to determine how to tell which estimate

of the final path is the best one to use.

6.3 Tank

The tank problem described earlier provides a good example of a path optimization problem that

can be solved with this algorithm. The math for the tank problem is more interesting than the math

for the Heisenberg manifold, but still simple enough to be understandable.

The coordinate system used to describe the problem is (x. y, 0), describing the position in the

(x, y) plane and the current angle the tank is pointing in. The basis vectors are

a = cos 00x + sin 0., (6.18)

b = o (6.19)

60

Linear Extrapolation at Each Convergence
- Regular Algorithm

- I

0.5

0

-0.5

60
Computation time (s)

80 100 120

Figure 6-4: Convergence rate of
extrapolation

the extrapolated movement algorithm with and without final point

The bracket of these two vectors is

[a, b] = sin 0Bo - cos BOy (6.20)

A third basis vector can be added to span the total space, such as c -sin 0., + cos g0y. a has

a length of 1, b has a length of 3. and c has a length of 1/a.

The metric can then be translated from (a, b, c) to (x, y, 9) with a basis change transformation.

The matrix that changes the basis is

x]
y

0J

cos 0

sin 0

0

The inverse transformation is

a
bJ=

c

cos 0

- sin 0

0

-sin 0

cos 0

0

x
y

0

sin0

cos 0

0

(6.21)

(6.22)

Convergence of extrapolated point locations

- - Point Location Error
Extrapolated Point Location Error_

-.- --.-

.-I

-2 F

-2.5-

-3

-3.5-

-4
0

Tank Manifold - Path Optimization Problem

How to optimally move a tank vehicle between points?

P1(0.1,1,0)

Tank can move forward and ba

Tank can rotate in place

Tank cannot move sideways

IcK A

P2 (0,0,0)

Figure 6-5: The tank manifold path optimization problem

This matrix also has the one form w = - sin Odx + cos Ody that defines the distribution through

the relation w(Xi) - 0. w([a, b]) = -1, so

0 -1
1 0

(6.23)

which proves that this manifold satisfies the nonvanishing condition and is a Heisenberg manifold.

The metric in coordinates is

cos 2 0-i+ (1/a) sin2 o

(1- 1/a) cos 0 sin 0

0

cos2 0 + a sin2 0

(1- a) cosO sin 0

0

(1 - 1/a) cos 0 sin 0 0

sin 2 0 + (1/a) cos 2 0 0

0

1 a) cos 0 sin 0 0

sin2 0 + acos 2 O 0

0 1/0

9-

91

(6.24)

(6.25)

D eto ([Xi, Xj]) = D et

The corresponding connection coefficients are:

F 0 (6.26)

- 0 (6.27)

F (cos 2 0 + a sin 2 0)(1/a - 1) sin 0 cos 0 - 1a cos 0 sin 0(1/a - 1)(cos 2 0 sin 2 0)
1/6 -Co 1 i
1/a -1 (cos2 0 + sin 2 0 + a cos 2 0 + a sin 2 0) cos 0 sin 0

2
1/a - a

- cos 0 sin 0 (6.28)
2

F - 0 (6.29)

y± (COS a sin2 0)(1 - 1/a)(cos 2 0-sin2 0) + (1 - a)(1 - 1/a) cos2 Osin 2 0

S (Cos20 - a sin2 0)(1 - 1/a) (6.30)
2

F 0 (6.31)

- 0 (6.32)

- 0 (6.33)

FY~- (1 - a)(1/a - 1) sin 2 Ocos 2 0- (sin2 0 + a cos 2 0)(1/a - 1)(cos 2 0 sin 2 0)x 2
1
- (1/a - 1)(sin 2 0 cos 2 0 + sinl 4 - a sin2 0 cos 2 0- a cos 4 0)2
1
(1/a - 1)(sin 2 0 -a cos 2 0) (6.34)

2
- 0 (6.35)

Y - 2 (1 - 1/a)(cos 2 0-sin2 0) cos 0 sin 0 + (sin 2 0 ± a cos2 0)(1 - 1/a) cos sinl 0

(1 + oz) cos 0 sin 0 (.6(1+aessn(1- 1/a) (6.36)
2

- 0 (6.37)

1 1 cos 0 sin0 (6.38)

F - l /a(sin2 0 - cos 2 0) (6.39)

F 0 (6.40)

F /a- os 0 sin 0 (6.41)
yy 13

- 0 (6.42)

-= 0 (6.43)

/0-a cos 0 sin 1-1/a (cos 2 0 - a sin2 0)2 2

FO -[

1/a-a Cos 0 sin 0

1-1/a (cos 2 0 a sin 2 0)

0

1/ 1(sin29 - a cos 2 g)

"2"cos 0 sin 0

0

9)0
0

0

6.3.1 Implementing the Algorithm

With the geometrical objects calculated, it is now possible to actually implement the algorithm. A

pseudo-code description of the algorithm is given in Figure 6-6. The first step in the algorithm is

setting up the conditions of the problem. Some initial guess of a reasonable path has to be provided

for the algorithm to work with. A linear interpolation from the initial state to the final state works

well. The initial value of a has to be set to a reasonable value, which can be determined by trying

different values to see how well the algorithm converges. Starting with a high value of a will force

the algorithm to go through extra iterations to reduce a more, while starting with too low of a value

of a will prevent the algorithm from converging. For the tank, an initial value of a = 0.05 was used.

An initial value for the stiffness also has to be set, which should also be determined by trial and

error. For the tank. an initial value of 104 was used.

With the initial problem setup completed, the main algorithm loop can be started. The first step

in the loop is calculating all the derivatives. This can be done using either finite difference methods

or pseudospectral methods (or any other method that can compute derivatives from a sequence of

points). The first and second derivatives are put into the modified geodesic equation to calculate

the virtual forces on each point.
d2 Xi dx' dxk

F = + F
ds82 i ds ds

(6.47)

For example, the x direction force for the tank problem is

(12x. F/a - a dx(I dO ~1(os ~I(dy dO
F' - 2 + 2 cos 0sin0 ±2 [(COS20 - asin2 0)(1- 1/a) d (6.48)

ds2 2 1ds ds 12 1ds ds

d2 x sin 29 dx d/ 20(dyd (649
= d 2X+ (1/a - a) sin + (cos2 0 -a sin2 0)(1 - 1/a) (6.49)

ds2 2 dsds dsds

The factor of two shows up because (dx/ds)(d9/ds) = (d0/ds)(dx/ds) and the Christoffel symbols

/ (sin2 0 - a cos2 0) a21/' cos 0 sin 0

1 1/" cos 0 sin 0 2 (sin 2 0 - cos 2

(Sinl2 0 - cos2 0) cos 0 sin 0203 3~i -_

(6.44)

(6.45)

(6.46)

XSetup initial values
X=initial path guess vector

alpha=0.05

stiff=10^4 %vector valued

Xouter loop

while (penalty should be increased) and (path is still converging)

dX=calculate derivatives vector

dX2=calculate second derivatives vector

G=calculate connection coefficients vector

F=dX2+G*dX*dX %vector valued terms

move=F/stiff %vector valued terms

move=max(limit,move) %prevent any one point from moving too much

X=X+move

foreach point where sign(move)=sign(prev move)

stiff=stiff*.95

forall other points

stiff=stiff*1.5

end

if sum(move)<1e-3

save solution

alpha=alpha*.95

end

end

if path stopped converging

use last saved converged path

else
use last path

end

Figure 6-6: Pseudo-code description of the algorithm

are symmetric, so the two terms can be added together.

Once the virtual forces have been computed, the next step in the algorithm is to move all the

points (except, for the first and last points, which represent the unchanging boundary conditions of

the problem). The previous movement is saved for comparison, and then the forces are divided by

the stiffness, which is different for every point, to calculate the new movement. It is generally a

good idea to limit how far each point can move at one step, to prevent minor numerical instabilities

from causing the path to explode out and become divergent. For the tank, individual steps were

limited to a movement of 0.01 in each direction (the distance between two consecutive points was

not limited, just the actual movement from one iteration of the algorithm to the next).

After moving the points, the stiffness vectors are updated. Any point that moves in the same

direction two iterations in a row will have its stiffness decreased, and any point that changes direction

will have its stiffness increased. The stiffness is stored separately for each direction at each point,

and each stiffness parameter is updated separately, so a point could have its x direction stiffness

increased while its y direction stiffness is decreased. The stiffness parameters are multiplied by a

factor just under one to decrease them and a factor over one to increase them. If these numbers

are too high (such as 0.99 and 5) then the path will not move enough at each iteration and the

convergence rate will be very slow. If the numbers are too low (such as 0.5 and 1.01) then the path

will fail to converge. For the tank, the factors are 0.95 and 1.5. The stiffness parameters are also

limited by a maximum and minimum value. As the path converges, the stiffness parameters will

approach the maximum value. Once the value of a is decreased (a few steps later in the algorithm),

these high stiffnesses have to be brought back down. If the maximum value is too high, then a large

number of iterations will be required each time that a is reduced so that the path can be modified

again. The maximum value for the tank is 1015. The minimum value for the tank is 1.

The above steps are the main loop of the algorithm: calculate derivatives, calculate forces, move

points, and update stiffness. This is the entire algorithm for a Riemannian manifold. However, with

a sub-Riemannian manifold with a penalty metric, the penalty has to be increased. Each setting

of the penalty provides a different Riemannian manifold that approximates the sub-Riemannian

manifold. Once the path has converged enough, the penalty should be increased. The penalty term

is 1/a. so it is increased by reducing a by multiplying it by a factor lower than 1. For the tank. this

factor is 0.95. Once the penalty term is increased too far, the algorithm will no longer converge, so

the solution should be saved before the penalty is increased.

In addition to increasing the penalty, it can be useful to increase the number of points used to

represent the path. Using more points will lead to a slower convergence rate, but it also makes the

algorithm more stable. especially with a higher penalty term. The most efficient way to balance

these considerations is to start with a small number of points and then add points as the penalty is

increased. That will provide rapid convergence with a small number of points initially and a more

fully specified path with more stable convergence as the path converges to the solution. Additionally.

using more points allows the path to converge to a more accurate solution.

6.3.2 Results

Putting these relations into the geodesic equation and using the algorithm previously described

produces optimal trajectories for the control problem. Varying the value of 3 changes the cost of

steering, with higher values making steering more expensive.

The effect of changing 3 is shown in Figure 6-7. For all trajectories, the tank begins pointing in

the x direction at x = 0.1 and y = 1 and ends pointing the same way with x and y both equal to 0.

The movement is nearly a sideways translation, but with some x movement to reduce the symmetry

of the problem (if x started and ended at 0, then some solutions would start by increasing x and

others would start by decreasing x, because neither direction would be naturally preferred). The

lower values of # make translation more expensive relative to steering, so the trajectory uses sharp

turns and moves the tank along a nearly vertical path. The higher values of # make steering more

expensive, so the tank moves further in the x direction to avoid having to turn as far to obtain the

necessary translation in the y direction.

In general., this sort of result is expected in control problems that have a tunable cost. There

is a whole family of control problems represented by the same metric, with some parameter that

determines which control problem is actually being solved. In the case of the tank problem, different

vehicles could have differing costs for steering relative to moving. The math is fundamentally

the same and the algorithm does not change for any of these problems. The solution changes as

expected, by having more movement in the lower cost directions and less movement in the higher

cost directions.

6.3.3 Curvature and Geodesic Uniqueness

The non-zero components of the Riemann tensor for the tank problem are:

RX (a - 1)3 sin(20) (6.50)
£X? 80

RXIyX = -R (6.51)

- (1 - 1/a)2 (6.52)

RXY 4 =(a sin 2 cos 2 (652)

R = -R>Y (6.53)

(a 2 - 1) cos(20) (a - 1)2
2a 4a(

OO = -RyOx (6.55)

RY (a - 1/a) cos(t) sin(t)) (6.56)

Change in trajectory as a function of beta

- -..I.

-. -. .

-. -.. . .- . . .- ..-. .-

-.

5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
x

Figure 6-7: Trajectory Variation as a function of ,3. Higher values of 3 lead to more movement in
the x-direction and shallower steering angles. The lowest # curve is the one closest to being vertical,
the highest ,3 curve is the one that moves farthest horizontally. 0 values here are equally spaced
logarithmically from 0.2 to 200.

R = -(6.57)

((-1 + a)2(1 + a + (-1 + a) cos(2t)))/(8a 23)

-Rxyx

(a - 1)3 sin(26)
8a 2 03 RxxY

-RYxy

(a - 1/a) cos(t) sin(t)) = ROYO

-((-1 + a)(-1 + a + 2(1 + a) cos(2t)))/(4a)

-Rizo

((-1 + a)(-1 + a + 2(1 + a) cos(2t)))/(4a)

-((-1 ± a)(-1 + a2 + (1 + 6a + a 2) cos(2t)))/(8a 2O)

68

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

0.8

0.6

0.4

0.2

-0.2'
-2.

R Y

Ryo =-((-1+--a)(1 +6a + 2) sin(2t))/(8a2 3)

RO ((-1 + a)(-1 + a 2 + (1 + 6a a2) cos(2t)))/(8a 2)

o ((-1 + a)(1 + 6a + a 2) sin(2t))/(8a2 6)

R -O = -((-1 + a)(1 + 6a + a 2) sin(2t))/(8a2 ,d)

RY 0 ((-1 +)(1 - a 2 + (1 + 6a + a 2) cos(2t)))/(8a 23)

RO ex =((-1+ a)(1+6a +a 2)sin(2t))/(8a 26)

R00Y 4 =-((-1 + a)(1 - a 2 + (1 + 6a + a 2) cos(2t)))/(8a26)

(6.67)

(6.68)

(6.69)

(6.70)

(6.71)

(6.72)

(6.73)

This shows some of the many symmetries of the Riemann tensor, such as the anti-symmetry on

the last two components (Rged = RdC). In this particular problem, all the components of the

Riemann tensor are of the form a + b sin 20 or a + b cos 20, but this would not be expected to happen

for general control problems.

With the Riemann tensor calculated, it is possible to integrate the Jacobi equation:

d2 j

ds2 = -R(T, J)T (6.74)

where J is the Jacobi vector being integrated and T is the tangent vector to the geodesic that

defines the integration path. In components, this equation is

d2J1
ds 2 -R ,T J T' (6.75)

with implied summation over j, k, and 1. For example, the x component of this equation (leaving

out the O's in the Riemann tensor and taking advantage of symmetry) is

d 2 jx
ds2

-RL Tx(JxTy JyTx) -R ,T(JxTY JyTx)

-Rx OT"(JT- JOTx) Rx 0T"(JYT" - JOTY)

R ,TX+ R TY)(j"TY-JYTx)

-RO.LOTO(JxT" - JUTx) - Rx OTO(,JYTO - J0 TY) (6.76)

Integrating this equation provides a Jacobi vector field along the geodesic. The Jacobi field

provides information about how two nearby geodesics will evolve relative to each other. If two

geodesics start at the same point, but move in different directions, then a Jacobi field can be used to

determine whether they intersect at a second point or not. The Jacobi vector (J) is set to 0 at the

initial point, with the initial value of its first derivative equal to the difference between the tangent

vectors of the two geodesics. If the Jacobi field is ever 0 again, it means that the geodesics will

intersect again at the point where the Jacobi vector is 0. Since both paths are geodesics, either one

could be found by the algorithm. They are both local minima in the path optimization problem.

but in general one of them will be shorter, so they need to be checked to determine which one is the

global minimum.

Points along a geodesic where a Jacobi field is 0 are called conjugate points. A geodesic with

no conjugate points cannot intersect another geodesic in two points, which means that it is a global

minimum as well as a local minimum, at least within the region where the Jacobi equation accurately

describes the deviation between nearby geodesics - which is the region where the curvature tensor

does not vary too much.

A geodesic is therefore globally unique (or at least unique in a region) if there is no Jacobi field

which is equal to 0 at two points along the geodesic. Because the Jacobi equation is a linear function

of the Jacobi vector, different solutions can be combined linearly to find new solutions. With an

initial condition of J(0) = 0, there are n - 1 linearly independent values for J'(0) because using

J'(0) = T will produce a Jacobi field that represents the null divergence between a geodesic and

itself. Integrating these n - 1 Jacobi fields will produce all the information necessary to find every

Jacobi field along the geodesic. If these n - 1 Jacobi fields remain linearly independent along the

entire geodesic, then the geodesic is unique. If at some point, the Jacobi fields are not linearly

independent, then the geodesic is not unique and the combination of Jacobi fields which produces a

conjugate point provides information about how to find an alternate geodesic connecting the same

end points.

Figure 6-8 shows a graph of the magnitude of the Jacobi vectors along a geodesic in the tank

manifold (corresponding to the same initial and final positions as in section 6.3.2 with #3 = 5). The

vectors grow exponentially, showing that once two geodesics start to diverge, the distance between

them will always grow larger.

Once the Jacobi vectors have been computed, there are a few ways to check for linear indepen-

dence. In this case, the check used was to calculate the dot product of the vectors and use that to

compute the angle between them. This works well when there are only two vector fields, but may

not work as well with more vectors (each pair has to be checked separately). The Gramian matrix

can be used with more vectors. The Gramian matrix is defined as

Gi = (Ji, JI I) (6.77)

which means that the dot product of the i-th and j-th vectors is at the (i, j) location in the matrix.

This will be a symmetric matrix. If the vectors are not linearly independent, then the determinant

of the matrix will be zero. It will generally be worth checking anywhere along the path where the

determinant is very small to see if the Jacobi vectors will actually produce a second geodesic.

Whatever method is used to check for linear independence has to be done at every point along

the path. If the path as found is defined by only a small number of points, then an interpolating

C

S 1 0 -. . . .- ..-. .-.-. .-

0

>

0

-5'
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6-8: logio magnitude of the 2 Jacobi vector fields for a geodesic of the tank manifold with
3 = 5

function should be used to determine that path at more points to increase the numerical accuracy

of the integration. Otherwise, the integration may not be accurate enough to verify that the vectors

remain linearly independent and the vectors will not even be properly checked except at a few points

along the path. For the example problem, an interpolation function was used to provide 100,000

points along the path from the 30 points calculated in the pseudospectral method.

The angle between the Jacobi vectors for the example problem (shown in figure 6-9) decreases

to as little as half a degree. Given that the Jacobi field is only completely accurate if the curvature

is constant, it is worth checking to see if there is actually a geodesic which intersects the original

geodesic a second time. This will also provide a detailed example of how to check for uniqueness

and what to do if the Jacobi field condition is not satisfied.

If a point is found where the vectors are not linearly independent, then the linear combination

of vectors which will produce a zero vector has to be calculated. In the example problem, this was

calculated to be J1 - 18.23J 2 . The initial derivatives of this sum of vectors (dJi (0)- 18.23dJ2 (0)) was

then used as the tangent vector for a path. That path was then integrated forward and compared

120

..100

2 8 0- - --.--.. --. --.-.

0

60 . 1. 03 .4 .5. 0. 0 . . .9. 1

CMj

a)

........................

20

0 01 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6-9: Angle between the 2 Jacobi vector fields for a geodesic of the tank manifold

to the original geodesic.

The second geodesic does not quite intersect the original geodesic, however it does pass close to

the same endpoint. Both geodesics are plotted in figure 6-10. The original geodesic is a z-shaped

path, while the second geodesic has a large amount of moving back and forth to produce a path

that is almost a sideways translation (shown in figure 6-11). The large amount of back and forth

translation leads to a higher overall cost by a significant amount - the total cost of the original

geodesic is 27.308 while the total cost of the second geodesic is 37,283, over one thousand times as

high. While it is probably possible to modify this geodesic so that it meets the original one at the

endpoint, it is clearly going to still have a higher cost. This means that the original geodesic can be

taken as a global minimum.

Comparison of the two paths

-0.2 ' ' ' ' i 1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

Figure 6-10: Comparison of the original geodesic and the geodesic found by checking the Jacobi
condition

Part of the Jacobi field check path

0.95 I-

08 5

0.0984 0.0986 0.0988 0.099 0.0992 0.0994 0.0996 0.0998 0.1 0.1002
x

Figure 6-11: Close-up view of the geodesic found from the Jacobi condition, showing the very tight
back and forth movements that allow the tank to move nearly sideways

---_ --_ - L-- - . --

6.4 Summary

Heisenberg manifolds are the simplest type of sub-Riemannian manifolds. They represent some path

optimization problems. The algorithm described in chapters 4 and 5 works with no difficulties on

Heisenberg manifolds to quickly find optimal trajectories. Two example Heisenberg manifolds were

analyzed to demonstrate the accuracy and convergence properties of the method. The examples

were worked through in detail to provide a description of the algorithm.

Chapter 7

The Astrodynamics Manifold

The astrodynamics manifold is the mathematical representation of all possible orbits, with each

orbit represented by a line (each position within an orbit is represented by a point). There are

actually many different astrodynamics manifolds, with each one corresponding to a representation

of the orbits around some real central body with a non-ideal gravitational field. Assuming two-body

Newtonian gravity with point masses produces the simplest astrodynamics manifold which is a good

approximation to the real astrodynamics manifold for most planets and stars. Restricting the orbits

to a plane provides a further simplification of the manifold.

7.1 Coordinates and Frames

In order to calculate any numerical properties. coordinates and a moving frame have to be selected

for the astrodynamics manifold. The coordinates are derived from the orbital elements described

below. The moving frame is based on the physical movements in space - thrusting in 2 perpendicular

directions. coasting along the orbit, and moving radially. The basis vector that corresponds to

coasting includes both the position and velocity changes such that none of the orbital elements

change except for the angular position.

For the purposes of describing motions and orbital elements in real space, the directions are:

x the standard x direction

y the standard y direction

r the radial direction, positive outward

t the tangential direction, positive in the direction of orbital motion

The orbital elements to be used are

Astrodynamics Manifold - Path Optimization Problem
How to optimally transfer between coplanar orbits?

Final Orbit

(h1 L1)

Continuous thrust
trajectory

Initial Orbit
(hO=1,LO=O)

CentralI Body

Figure 7-1: The astrodynamics manifold path optimization problem. This is for a coplanar orbital
transfer using a two-body Newtonian gravitational model with point masses.

h angular momentum

er radial component of the eccentricity vector

et tangential component of the eccentricity vector

e, x-component of the eccentricity vector

ev y-component of the eccentricity vector

L true longitude

The basis vectors are

da, radial thrusting

dat tangential thrusting

da, x-direction thrusting

day y-direction thrusting

dt natural movement along the orbit

dr radially outward translation with no velocity change

= 1 + e, - 1 + e, cosL + ey sin L

In terms of position and velocity, the orbital elements are

h = rot (7.1)

e = r - 1 (7.2)

Ct -ruret (7.3)

C -"1 _~' r1i0iX V - (7.4)

C r~v Z.- r~uv - -y (7.5)

L = atan (7.6)

where the atan function is one which gives the correct four-quadrant angle. The simpler form of the

eccentricity components in radial/tangential form is the reason those components are being used

initially.

The derivatives of these elements are:

dh
da = 0 (7.7)
dar
dh

=h r (7.8)
dat
dh

d = 0(7.9)

=h Vt (7.10)
dr

For the next two derivations, I am going to abuse the notation and pretend that der/dt = 0

without thrusting, even though the rotating frame causes er and et to vary cyclically. I am actually

interested in calculating c and e,. which do not have this cyclical variation, but the differential

equations for er and et are easier to derive.

der 0 (7.11)
dar
de, 2rrt (7.12)
dat

r= 0
(7.13)

dt

der = (7.14)dr '

de = -rt
(7.15)

da,.

(I 'r (7.16)
dat
de = 0 (7.17)
dt

vvt (7.18)
dr

dL
dL 0 (7.19)
dar
dL
d - 0 (7.20)dat

IL
(7.21)

dL
- 0 (7.22)

dr

Translating these into orbital elements:

r =(7.23)

-et
h =(7.24)

vt =(7.25)
h

dh~
= 0 (7.26)dar

dh h2
(7.27)

dat
= 0 (7.28)

(it
- - (7.29)

dr h

der
d e, 0 (7.30)da,.

d 1 - 2h (7.31)dat

der d 0e.(7.32)

der _2

d c, h (7.33)

det
A h (7.34)
da,
-ct _ it

(7.35)
dat
det
dt =0 (7.36)

78

dCt
dr

dL
da,
dL
da,
dL
dt
dL
dr

(7.37)

0

-2

0

(7.38)

(7.39)

(7.40)

(7.41)

The metric from the velocity-position basis vectors is

grv = diag(1, 1, 1/0, o) (7.42)

where a and 0 are parameters that describes how close to the true astrodynamics manifold the

metric is. The correct values are both 0. but higher values allow the computations to be performed.

If the limit of some quantity exists as a and 0 approach 0., then that limit is the correct value of

that quantity for the astrodynamics manifold.

7.2 Metric and Cometric

The metric can then be translated

tion. The matrix that changes the

dh

de,

det

dL

The inverse transformation is

from (o)

basis is

0

0

-h

0

,t, r, t) to (h, er, et, L) with a basis change transforma-

2h

he0|l

0

|h

{2 /h2

eit/h,2

0

0

0

0

(2|O

da,

dat

dr

dt

(7.43)

da r et/h2 0 -1/h 0 dh

dat -/h 2 1/h 0 0 der

dr 2h/j -h 2/ 2 0 0 det

dt 0 0 0 h3 |g 2 dL

It is more useful to use the x and y components of the eccentricity vector

components change as a function of L.

(7.44)

because the r and t

ett

h2

dh

de,

deY

dL

dh

der

det

dL

0

cos L

sin L

0

0

cos L

- sin L

0

0

- sin L

cos L

0

0

sin L

cos L

0

It is useful to define the terms E, = ex + cos L and EY = ey + sin L

hcosL + hE1J|

hsinL + hEY1

0

(sin L)/h

(cos L)/ h

(h2 cos L)

0

E|h 2

{ Ej~h2
{ Ey/h 2

0 (

-(cos L)/h

(sin L)/h

-(h 2 sin L)/g 2

0

0

0

0

2|h3

0

0

0

2 31/

These matrices allow converting numerical representations of vectors from one basis to the other.

Since the metric for one set of basis vectors is known, the metric for the other set can be calculated.

Converting each of the basis vectors in orbital elements to their numerical representation in physical

movements allows their dot products to be determined.

Using the transformation of basis matrix, the metric in orbital elements coordinates is

efj+(+ 4h
2

ha 4(20

-Ex 2h 3 cos L

g
-Ey 2h

3
sin L

h
3 30

L 0

(e? + 2)/h 4

-E/h 3

-Ey /h 3

0

-E7 2h
3

cos L -Ey 2h
3

sin L
h 3 h

3
33

1 h' cos
2

L h
4

cos L sin L
TT + 4/3

4L3

h
4

cos L sin L I h
4

sin
2

(40 2 40

0 0

-E,/ha 3

1/1 2

0

0

Ey /h3

0
11 2

1/0 2

0

0

0

0

0

(7.45)

dh

der

det

dL

dh

de,

dey

dL

L

dh

de,

dey

dL

da,

dat

dr

dt

0

h sin L

-hcosL

0

et/h 2

2h/

0

da,

dat

dr

dt

dh

dex

dey

dL

(7.47)

(7.48)

0

0

0
ha

(7.49)

(7.46)

4h2 /2 -2h 3 cos L/ 3

-2h 3 cos L/g 3 h cos 2 L/g

-2h,3 sin L/g 3 h cos L sin L/g

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 h6
g

4

hi 4 2 ,,2
2 h

2[h
3

3+
2

9%-[(5 LE +(coL) EE+ 3&E
0 (E. + ce L) + 42E h

2
+ 2h

2
Ex co L h 2 E

+3 snL+ 2 EY h2 [(Ey COSLI E sin L)I EEy 1 32 E E

-2h 3 sin L<3 0

h4 cos L sin L/g4 0 1

h4 sin 2 L<g 0

0 0

(7.50)

(Ey +(sin L)+ E0

h
2

[(Ey coS L i Er sin L) Ex Ey] 3.2 E y

h2 2h2 E sinL h2 2 ,3 2 F
2

h7.51

-~ F 7T +h
6

c, _

h2 h(Ex + cos L)

h2 h(E+ cosL) 2 +2E cosL+E

2 h(Ey+ sinL) {(EycosL+ExsinL)+ExEY

0 0

h2 hEr hEy 0

pg2 hEx E2 E -Ey 0

h hEy ExEy E 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 00 4

7.3 Christoffel Symbols

The corresponding connection coefficients are:

-
4
h

-rh - -3 cos L

h(Ey + sinL)

EjcosL+E sinL) + ExEy

2 + 2EY sin L + E'

0

(7.52)

(7.53)

(7.54)

0

0

0

0

F1, -3 sin L (7.55)

hh16 et 2et et ,3 2 et (.6
1h T - + 2 + (7.56);h 3 5 2 2 2h6

- 2hcos2 L (757)

ry sin2L (7.58)

h 072 sin L h7 et cos L
= 22 (ey + 2 sin L + 2 et cos L) + 2h 26(7.59)

ph - 2h sin2 L
LW, (7.60)

Fh hx7 et sin L h(ex cos 2L + e, sin 2L - 2Ex) 032 cos L (7.61)
y = 2 6 2(2 2h 5

I - h9a h 3 a/ (7.62)LL - 6 2

72 6(ex + cos L) (7.63)hh7 ~ 62

-3 - 6ex cos L - 3 cos 2L - 2 (7.64)
2h

-3(ex + cos L) sin L (7.65)

rx - h5 (Ey + ey + etex) E e,(32 (7.66)
L h 2h(7

+ (-4erey cos L - 2(1 + 2e!)ey cos 2L - 2exey cos 3L + sin L + 4e! sin L

+2ex sin 2L + 2e3 sin 2L - 2e, e2 sin 2L + e sin 3L - e sin 3L / (2h 2

- 2(ex + cos L) cos2 L (7.67)
xx 2

x (ex + cos L) sin 2L (7.68)

- h6 (Ey +(cy + etex) cos L Ex 2 sinL + (8exey + Hey cosL (7.69)
2(6/3 2h 6

+4cxcy cos 2L + e cos 3L + 7ex sin L + 6 sin 2L - 4c sin 2L - e sin 3L)/(8 2)

- 2(ex + cos L) sin 2 L (7.70)
yy 2

h6 (Ey + ey + et ex) sin L Ex(26 cos L + (-6-8 2 - 17ex cos L (7.71)
2 60 2h 6

(4- 6) cos 2L + cx cos 3L + ey sin L + 4 Cxcy sin 2L + e' sin 3L)/(8$2)

a ha(Ex + (cos L) h2 Ea4 (7.72)
Fx, 6 2

pY 6(ey + sin L) (7.73)
hh g

hx -3(ey + sin L) cos L (7.74)

-3 - 6ey sin L + 3 cos 2L - 2 (7.75)
2h(

-h 5(Ex + ex - ct ey)

-5,3
+(C - C2) cos 3L + 4c t + 2ey (1

2(e 0 + sin L) cos 2 L

XV

F 0 (y + sin L) sin 2L
F", =

h6 (E E + ex - et ey) cos L

Eyet(2 3 2)
-7- [cos L + 2ex (1 + 2e) cos 2L

e(+ e) sin 2L + 2 cc sin 3L/(2h(2).7 0 Y i 3] (

Ey(23 sin L
+ 2h6 -+ (6 + 8C - ex cosL

+ (4e2 - 6) cos 2L + ex cos 3L + 17e0 sin L - 4exe0 sin 2L + e0 sin 3L)/(8(2)

fy 2(c. + sin L) sin 2 L
00 =2

h5 (EX + $Cx - eteY)
=s-- + EyCt(/3977 [(1 + 4e2) cos L + 2e(1 I+ 2e2) cos 2L

+e2 cos3L - e 2cos
3 L - 4eey sin L + 2e sin 2L

-2e ,Y sin 2L + 2ey sin 2L + 2e.rey sin 3L]/(2h(2

h8a(EY + (sin L) h 2 a3E0

(e, sin L - e. cos L)(+ 4 (ey cos L - e, sin L)

h,1la h4 a/3
-$ sin L 3et cos L + sin L
2h9a hsaO

$ 'cos L 3et sin L - cos L
2h9a hao3

3

Ey cos L + et cos2 L

-3e, cos L - 2 cos 2L + ex cos 3L + 3ey sin L + ey sin 3L
4h 2 oG,3

p0
hL

(7.82)

(7.83)

(7.84)

(7.85)

(7.86)

(7.87)

(7.88)

(7.89)

(7.90)

(7.91)

(7.92)

rL -2 cos L

L - E sin L + et sin2 L
00y h2co g

FL -2sin L
FyL i

FL 2(x sin L - y cos L)
PLL

7.4 Lie Brackets

It is also useful to compute the Lie brackets for the horizontal vectors (everything except dr). The

formula for the Lie bracket in coordinates is

[X, Y]' = X3 . Yax (7.93)

(7.76)

(7.77)

(7.78)

(7.79)

(7.80)

(7.81)

F0
LL

r L

r T

ryt

-h 2 , c L -h2 sin L
sin L 2hcosL

=0 (7.94)

h sin 2 L + het cosLsin L -h sin L cos L + het sin 2 L h2 sin L
[dar., dat]' = he sin L - h-cos L 2

= 0 (7.95)

-h cos L sin L - het cos2 L h cos 2 L - het cos L sin L ,2 cos L

[dar, dat]* = hsinL 22hcos L

= 0 (7.96)

(7.97)

(7.98)[dar,dat] = (0,0,0,0)

[dar, dt]h

[dar, dt]e-

[dar. dt]"

[dar, dt]

[dar, dt]

(7.99)

2
- hcosL

-2 cos L

2

= hsinL

-2 sin L

= -hsinL 2 cos L + h cos L 2 sin L

= 0L

= h2 (0, cos L , sin L, 0)

(7.100)

(7.101)

(7.102)

(7.103)

(7.104)

-het cos L + he, cos L sin L + hey sin 2 L + het sin L(e. cos L - e, sin L))

+ 2

1 (2 2 sin L - 2e, cos L sin L + ey g(cos2 L sin 2 L) - (ey cos L - ex sin L) 2 sin L)

1
h2~ (262 sin L + g~t cos L - e. sin L) e1 sin L)

[dat, dt]'y
= h 3 hcos L +

-het sin L - hex cos2 L - hey cos L sin L het cos L(ey cos L - ex sin L)
2

[da,. dat]h

[-2 -h 2 (ey cos L - e, sin L)
[dat ,dt] a

cy cos L - e, sin L

h
Ct

h

[dat,dt](- hV -2hsinL +

(7.105)

[dar, dat] '

= (- 22 cos L + 2ey$ cos L sin L + eC (cos 2 L - sin 2 L) + (ey cos L - ex sin L)2 cos L)

1
= 7 (-22 cos L + ±(cr cos L + et sin L) + e cos L)

h2 -3$2 2ht cos L - hct sin L 2$ cos L 2ht sin L + het cos L 2$ sin L
[dot. dt] T = -- h + h h3

7.5 Connection, Curvature, and Torsion

In addition, the connection 1-form (o), curvature 2-form (Q) and torsion 2-form (0) can be calcu-

lated.

dO = -a A 0 + 0-

Q = dw + w A w

(7.108)

(7.109)

where 0 is the basis 1-forms for a moving frame.

et sin L
da, = dh + h dc,

h2 h
cos L

h de2

+ cos L sin L
dat = h2dh+ hde+ h de

2h h2 cos L h2 sin L
dr - -dh - dee - de y$ 2 $2

dt =-dL
$2

- sin L cos L
ah) dhAdex+ dhAde

e, cos L si
-- dL A dh+ dL A dc +

- dL A dat + 2dL A dh

cos L

dhAde

(7.110)

(7.111)

(7.112)

(7.113)

sin L cos L
h2 derAdh+ h2 de Adh

n L
_ dL A deyhi

(7.114)

sin L cos L sin L
- -dh A dey - . de, A dh - 2de A dh

h2 ? 1,2Y

et sin L cos L
-- dL A dh - dL A de,+ dL Ade

dLh h
dL Ada.(715

2hcosL
- 2 dh A de

2h cos L 2h sin L 2h sin L
$2 der Adh - dh A dey 2 de A dh

2ht -2 -j sin L - 2et cos L ' cos L - 2et sin L
htdL A dh - h dL A dx sL -h12 sn dL A de

$2 $3 3

$t h2 sin L + et cos L/ld
dL A dr + $2 dL A de

2et het h73---dL A dr + hdL A dh+ h -dL A da,$ 2 $ 2

h2 cos L et sin L/$d
2 Ad

(7.116)

(7.106)

(7.107)

d(d

d(dat)

(7.115)

3h2
d(dt) - c2 dh A dL

2hd
= dr A dL -

0

dL

S =- 0

0

2ht d

Lei

0 0

0 0
dw =

0 0

0 0

0 0

0 0
wAw

0 0

0 0

0 0

0 0

0 000

2h3 cos L 2h3 sin L
- , A dL - ((y A dL

- dh A dL

-dL

0

0

0

2hdL

0

2dL

2dL

0

0

0

hdh

L Adh

0

L A dh

0

!hdhA dL - 2h
3
costde AdL- 2h3sinLdey AdL

0
-2$ sin L+2e, cos L 2$ cos L+2et sin L

$2 '(xAL 2 dyAd

- 2 h (cos Ldcx + sin Lde) A dL + -dh A dL

0 0

0 0

0 0

2h dh AdL 0

dhAdL_2hcostde AdL _ 2h
3
snLde AdL

0
-2 sin L+2ecos de A dL 2cos L2et sinLde AdL

C2 osLdex sinL A 2 dhAdL

-,2h (cos Ldex + sin Lde.) A dL + 2+2h
2 dh A dL

$2

7.6 Results

With all of the properties of the astrodynamics manifold computed, it is possible to use the algorithm

to compute geodesics. In order to determine whether the generated trajectories are actually optimal,

they need to be compared to some known optimal trajectories. This was done by using a Hamiltonian

shooting method to generate a family of trajectories with different starting conditions. The resulting

trajectories provided a large number of trajectory optimization problems that could be solved using

the geodesic method.

The Hamiltonian integrator was initialized with a variety of initial values for the costate (changing

Ph and pe,) while keeping the initial state constant. The path was integrated forward until L > 1 or

(7.117)

(7.118)

(7.119)

(7.120)

(7.121)

(7.122)

100,000 points had been integrated. All paths where the final value of L was greater than 0.1 were

included in this analysis. This provided 216 paths for comparison.

The endpoints of each path were then used to define a path optimization problem for the geodesic

search algorithm. The geodesic algorithm was run using a pseudospectral method with Chebyshev

polynomials and 30 collocation points. The value of 0 was decreased until it was determined that

the solution was not getting better (this is explained in the next paragraph). For each value of 0.
the algorithm found the best solution to the geodesic equation (starting with the solution for the

previous value of 0). This geodesic was then analyzed to calculate the horizontal and vertical cost

of the trajectory.

The path with the smallest vertical cost was considered to be the best path, because it violates

the constraints by the least. Figure 7-2 shows the typical evolution of the horizontal cost (Av, the

actual cost) and vertical cost (f dr, the constraint violation cost) of a trajectory. The horizontal

cost increases as the vertical cost is decreased because enforcing the constraints forces the path to

take a more expensive, but also more feasible route. Eventually, the constraints begin to dominate

the path selection and further increases to the constraints do not improve the path accuracy. This

can be seen in the graph at the point where the vertical costs start to increase. At that point, the

constraints are being enforced too strictly and the algorithm no longer has enough freedom to search

for a better path, so the path already found is used.

After computing all of the paths, the Av's were compared to determine how accurate the geodesic

method is. Figure 7-3 shows the CDF (cumulative distribution function) of the Av ratio. This ratio

is determined by dividing the Av of the path determined by the geodesic method by the Av of the

path determined by the Hamiltonian method and subtracting one to show the error. These would

not in general be expected to be identical., in part because the Hamiltonian method uses several tens

of thousands of points while the geodesic method uses only thirty points, so the geodesic path is by

its nature more approximate. Most of the Av calculations appear to be within one percent of the

Hamiltonian Av, which is fairly close for such a coarse path approximation.

The algorithm works well with small transfers, but with larger transfers it needs too many points,

which increases the computational cost, making the algorithm impractically slow. This is most likely

due to the high curvature of the astrodynamics manifold, particularly in the L direction (which has

4th order trigonometric functions). The high curvature requires more points because the connection

coefficients vary rapidly from one point to another, so a large number of points are required in order

for the equations to accurately represent the problem.

The result of this is that the method as presented works well for small transfers (less than 2

revolutions), but is impractical for long spiral transfers. Shooting methods tend to work well for long

spiral transfers, but are unstable with a small number of revolutions. This means that prior methods

of optimizing orbital transfers work well where this one is currently computationally inefficient (but

1.05

1 .0 4 -- - - -- - - -

1.02 -

1 .0 1 -.
09

0 97 -.

0.96

0.95 -

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
dr x 10-3

Figure 7-2: Av as a function of dr for a sample trajectory. The Av is increasing as the algorithm
converges, while dr decreases until the penalty is too large, and then dr begins to increase.

may still be improved), while other methods do not tend to work very well for transfers that the

geodesic search method does work well for. More research is required to find the crossover between

methods in terms of computational efficiency, accuracy, and stability.

The method as presented also works for a wide range of possible thrust levels. It will work best if

the thrust level is allowed to vary continuously with no limits, but it will also work fine if the thrust

is constrained to be in some range (varying continuously from a minimum to a maximum). Turning

the engine off completely for part of the trajectory might be numerically difficult for the algorithm,

but it should be possible to produce approximate solutions for such problems by turning the engine

off whenever the thrust is below some threshold.

Statistic Value
mean .0076

standard deviation 0.00465
median 0.0070

within 1% 155/216
within 2% 213/216

max 1.02266
min 0.9764

50 100 150 200 250

Figure 7-3: do ratio (geodesic divided by Hamiltonian) minus one. The graph shows the distribution
of the error of the AL calculation for the 216 generated paths. The table shows the summary statistics
of the distribution. The max and min are the ratio without subtracting one.

0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

-0.025

Chapter 8

Conclusions and Future Work

Most path optimization problems can be represented geometrically as sub-Riemannian manifolds.

The concepts of sub-Riemannian geometry can then be applied to better understand the path op-

timization problems. Additionally, the geodesics of the manifold are the solutions to the path

optimization problems.

A method has been presented for characterizing the sub-Riemannian manifold that corresponds

to a given path optimization problem. This method should be flexible enough to work for any path

optimization problem. The cometric could be used to generate the Hamiltonian function so that the

path optimization problem can be solved using a Hamiltonian method. Alternatively, the penalty

metric can be used to find the geodesic equation for the path optimization problem.

An algorithm has been presented which can find geodesics in sub-Riemannian manifolds using

a penalty metric. The algorithm converges well for manifolds with small amounts of curvature.

Manifolds with large curvature require more points in the path, which slows down the convergence

rate.

The geometrical properties of the Astrodynamics manifold have been calculated. Based on these

properties, it seems that astrodynamics is a Hdrmander manifold. It is step 2 everywhere, but does

not have the strong bracket generating property. The curvature is very high in some places, which

makes the convergence rate somewhat slow for the algorithm as described.

8.1 Comparison to other methods

The biggest difference between this method and other methods is that this method translates path

optimization problems into geometrical manifolds. This reformulates the problem into a different

branch of math than previous path optimization methods. There is a large body of work in differ-

ential geometry, which has mostly not been applied to path optimization problems. It is likely that

studying the different types of manifolds that correspond to different path optimization problems

will lead to new insights that may be useful for future work in path optimization. Determining the

type of manifold that a problem corresponds to may provide guidance as to what solution method

is likely to work best.

Beyond the conceptual differences, this path optimization method is essentially a direct opti-

mization method, but unlike most direct optimization methods it has explicit optimality conditions

that provide information about how the path should be improved and when the path has converged

to the optimal solution.

Another benefit of this method is that the Jacobi equation can be used to check the solution

and determine if it is unique or not (or at least determine a region within the manifold that a given

geodesic is unique). Other path optimization methods can only determine if a geodesic is a local

optimum and provide no information about how large of a change would be necessary to potentially

find a different local minimum.

A major disadvantage of this method is that it requires a lot of algebra. However, the algebra

is all straightforward enough that computer programs such as Mathematica can be used for all the

symbolic work, so this disadvantage is not actually as severe as it could be.

8.2 Future Work

This work presents a new optimization method. It is not yet clear under what circumstances this

method will be better than other methods. It is likely that the method could be improved in many

ways. Some possible improvements that will require further work include:

" Determining the effect of picking different, vectors for spanning the non-tangent space portion

of the manifold

" Determining how to modify the penalty in the metric to achieve fast convergence

" Determining how close the points in the path should be (possibly as a function of the local

curvature)

" Determining when to increase the number of points in the path

" Using pseudospectral methods to compute the connection coefficients explicitly as part of the

optimization process

" Implementing the geodesic search algorithm with parallel or stream processing

The first item in this list may change the convergence properties of the algorithm. Choosing a

different set of vectors to represent the infeasible motions in the problem will change the Riemannian

penalty manifolds. In the limit as the penalty is increased to infinity, all of the penalty manifolds

will converge to the same sub-Riemnannian manifold. However, the properties of the manifold could

vary depending on which basis vectors are used. There is no natural guidance for choosing these

vectors, so they can be chosen in any way that produces linearly independent vectors. It is likely

that choosing different vectors will normally not make much difference, but in some cases it could

alter the properties of the problem.

The next three items deal with tradeoffs between the convergence stability and the convergence

rate. Increasing the penalty too slowly will waste computational time, but increasing it too quickly

will prevent the algorithm from converging. Similarly, having more points than necessary will waste

comnputational resources, but not having enough destabilizes the algorithm. It is likely that for most

problems, starting with a small number of points and adding nore as the path converges will lead

to faster convergence times.

The fifth improvement idea is to calculate the values of the connection coefficients using pseu-

dospectral methods and convolutions or some similar process. This would allow the connection

coefficients to be calculated as functions along the path, rather than calculating their numerical

value at each point. The biggest obstacle to convergence is that the connection coefficients change

depending on the path, so as the path changes, the numerical values in the differential equations

defining the path also change. If the connection coefficients were computed as functions of the path.

then a method similar to fourier transforms could potentially be used to find the solutions to the

differential equations much more quickly. Such a method would probably be substantially faster

than any current path optimization methods.

The final improvement is the most straightforward one. The algorithm requires no substantial

modifications to be able to take advantage of parallel processing, it only requires the code to be

rewritten. It may be even possible to use the same code with linear algebra libraries that take care

of the parallel processing.

Other areas of future work include characterizing path optimization problems based on the

properties of the sub-Riemannian manifolds they correspond to. There are a few classes of sub-

Riemannian manifolds (Heisenberg, Grushin, Hrmnander, etc), and it is likely that control problems

which lie in different categories have different properties. These differences are likely to matter

even when using other optimization algorithms. Furthermore, the curvature and other properties of

the manifolds are intrinsic properties of the optimization problems related to the manifolds. Sub-

Riemannian geometry is still a relatively new branch of math, and as it is studied further, it is

likely that more useful results will be discovered which could provide insights into better methods

for solving path optimization problems.

94

Appendix A

Simulation Code

A.1 Common Functions

This function inserts a new point in the middle of each pair of points in the path.

function new = half(old)

[a b]=size(old);

c=(b-1)*2+1;

new=zeros(a,c);

new(:,1:2:c)=old(:,1:b);

new(:,2:2:c)=(old(:,1:b-1)+old(:,2:b))/2;

A.2 Generic Algorithm

This section contains the generic algorithm code. For a specific problem, the initial values would

have to be tuned and the connection coefficients would have to be entered. The generic code only

has space for two dimensions (x and y), but more can be added by adding similar lines.

The setup code is similar for both cases, with the pseudospectral method needing a little bit more

code to calculate the polynomials. After the setup code, either the finite difference or pseudospectral

code will actually optimize the path.

A.2.1 Setup

clear 1 F2 F3 F4 trackx tracky trackz

X Set Initial Values

addn=1;

lastadd=100;

plotting=O;

n=5;

maxn=400;

track=1;

alpha=.07;

stiffup=1.5;

stiffdown=.9;

dl=1/(2*pi);

basestiff=100;

stiffx=ones(1,n)*basestiff;

stiffy=ones(1,n)*basestiff;

% Set initial guess for path vectors here

X=

xO=

yo=

xf=

yf=

x(1)=x0;

x(n)=xf;

y(1)=yO;

y(n)=yf;

trackx=[];

tracky=[];

count=1;

Fx=x;

Fy=y;

deltax=x*O;

deltay=y*O;

totaldelta=O;

errmin=1;

XThe rest is for setting up the Chebyshev polynomials

XIt is not needed for the finite difference method

cheby=sort(cos((2*(1:n)-1)/2/n*pi));

s=cheby/2+.5;

T=cheby*0+1;

U=T;

T(2,:)=cheby;

U(2,:)=2*cheby;

for count=3:m

T(count,:)=2*cheby.*T(count-1,:)-T(count-2,:);

U(count,:)=2*cheby.*U(count-1,:)-U(count-2,:);

end

A.2.2 Finite Difference Calculations

while max(sqrt(Fx.^2+Fy.^2+Fz.^2))>.O1*totaldelta

XFinite difference equations

diffx=diff(x);

dx=[0 (diffx(1:n-2)+diffx(2:n-1))/2 0]./dl;

d2x=[O diff(diffx) O]./(2*dl^2);

diffy=diff(y);

dy=[O (diffy(1:n-2)+diffy(2:n-1))/2 0]./dl;

d2y=[0 diff(diffy) O]./(2*dl^2);

X Enter connection coefficients here

Fx=d2x+

Fy=d2y+

%Calculate movements from forces

deltax2=deltax;

deltax=Fx./stiffx;

samex=(sign(deltax)==sign(deltax2));

stiffx=stiffx.*samex*stiffdown+stiffx.*(1-samex)*stiffup;

stiffx=min(lelO,max(stiffx,.01));

deltay2=deltay;

deltay=Fy./stiffy;

samey=(sign(deltay)==sign(deltay2));

stiffy=stiffy.*samey*stiffdown+stiffy.*(1-samey)*stiffup;

stiffy=min(lelO,max(stiffy,.01));

XThis code limits how far the points can move at each step.

XIt often stabilizes things, but may just slow down convergence in

Xsome cases

' X

mdx=mean(min(.1,abs(deltax)));

mdy=mean(min(.1,abs(deltay)));

deltax=max(-mdx,min(deltax,mdx));

deltay~max(-mdy,min(deltay,mdy));

XKeep track of where the points were and then move them

px=x;

py=y;

x=x+deltax;

y=y+deltay;

totaldelta=sum(sqrt((px-x).^2+(py-y).^2));

count=count+1;

l=sum(sqrt(diffx.^2+diffy.^2));

XThese conditions determine when to reduce alpha and when to increase

Xthe number of points. They should be adjusted to provide a good

Xconvergence rate while maintaining stability

decalpha=0;

if (totaldelta*min(10,sqrt(n))<max(alpha,sqrt(alpha)/10))&&(count>lastadd+20)

alpha=alpha*.99;

lastadd=count;

decalpha=1;

XTrack what the path was each time that the path converges for a new

%value of alpha

[a b]=size(trackx);

trackx(1:n,b+1)=x;

tracky(1:n,b+1)=y;

trackcount(b+1)=count;

%Linear extrapolation at each convergence step

if b>20

x=x+mean(diff(trackx(:,b-8:b+1)'))/2;

y=y+mean(diff(tracky(:,b-8:b+1)'))/2;

end

end

XIncrease the points if more points are still desired.

XIt may be useful to have a condition relating the number of points

Xto the value of alpha, such as

Xif (n<alpha^(-1))&&(n<maxn)

if (decalpha)&&(n<maxn)

stiffx=stiffx*10;

stiffy=stiffy*10;

addn=[addn count];

A=half([x;y;deltax;deltay;stiffx;stiffy]);

x=A(1,:);

y=A(2,:);

deltax=A(3,:);

deltay=A(4,:);

stiffx=A(5,:);

stiffy=A(6,:);

dl=dl/2;

n=n*2-1;

lastadd=count;

trackx=half(trackx')';

tracky=half(tracky')';

end

end

A.2.3 Pseudospectral Method

while (alpha>le-3)

XCalculate the polynomial coefficients. The projection works if the

%collocation points are used, except for the first value

Xa

xa=2*(T*x'/n)';

ya=2*(T*y'/n)';

xa(1)=mean(x);

ya(1)=mean(y);

XCalculate derivative coefficients

dxb=(1:m-1).*xa(2:m);

dyb=(1:m-1).*ya(2:m);

for count=2:m

d2xa(count)=count*(count-1)*xa(count);

d2xb(count)=-(count-1)*xa(count);

d2ya(count)=count*(count-1)*ya(count);

d2yb(count)=-(count-1)*ya(count);

end

XCalculate derivatives

dx=dxb*U(1:m-1,:)*2;

dy=dyb*U(1:m-1,:)*2;

d2x=(d2xa*T+d2xb*U)./(cheby.^2-1)*4;

d2y=(d2ya*T+d2yb*U)./(cheby.^2-1)*4;

100

XCalculate forces. Insert connection coefficients here.

XThis is the same as for the finite difference method

Fx=d2x+

Fy=d2y+

deltax2=deltax;

deltax=Fx./stiffx;

samex=(sign(deltax)==sign(deltax2));

stiffx=stiffx.*samex*stiffdown+stiffx.*(1-samex)*stiffup;

stiffx=min(lelO,max(stiffx,.01));

deltay2=deltay;

deltay=Fy./stiffy;

samey=(sign(deltay)==sign(deltay2));

stiffy=stiffy.*samey*stiffdown+stiffy.*(1-samey)*stiffup;

stiffy=min(lelO,max(stiffy,.01));

%This code limits how far the points can move at each step.

%It often stabilizes things, but may just slow down convergence in

%some cases

mdx=mean(min(.%,abs(deltax)));

mdy=mean(min(.1,abs(deltay)));

deltax=max(-mdxmin(deltaxmdx));

deltay=max(-mdy,min(deltay,mdy));

%Keep track of where the points were and then move them

px=x;

py=y;

x=x+deltax;

y=y+deltay;

%It is difficult to not accidentally move the initial and final

%points with this method, so these lines return them to the

%path endpoints

%/

101

x(1)=x0;

x(n)=xf;

y(1)=yO;

y(n)=yf;

count=count+1;

totaldelta=sum(deltax.^2+deltay.^2);

%These conditions determine when to reduce alpha. They should

%be adjusted to provide a good convergence rate while

Xmaintaining stability

if (totaldelta<min(alpha/10,alpha^2))&&(count>lastadd+100)

[a b]=size(trackx);

xa=(2*T*x'/n)';

ya=(2*T*y'/n)';

xa(1)=mean(x);

ya(l)=mean(y);

trackx(1:m,b+1)=xa;

tracky(1:m,b+1)=ya;

trackcount(b+1)=count;

tracka(b+1)=alpha;

alpha=alpha*.99;

if b>20

xa=xa+mean(diff(trackx(:,b-8:b+1)'))/2;

ya=ya+mean(diff(tracky(:,b-8:b+1)'))/2;

x=xa*T;

y=ya*T;

end

lastadd=count;

%Check to see if adding more points would be desirable

if (n<alpha^(-1))&&(n<1e3)

stiffx=stiffx*10;

stiffy=stiffy*10;

addn=[addn count];

102

dxa=(2*T*deltax'/n)';

dya=(2*T*deltay'/n)';

sxa=(2*T*stiffx'/n)';

sya=(2*T*stiffy'/n)';

oldm=m;

XAdd points slowly at first, then add them faster

if n<100

n=n+10;

else

n=n+100;

end

if (n>1e3)

n=1e3;

end

m=n;

XIf we actually added points, calculate new polynomials

Xand point locations

if m>oldm

cheby=sort(cos((2*(1:n)-1)/2/n*pi));

s=cheby/2+.5;

T=cheby*0+1;

U=T;

T(2,:)=cheby;

U(2,:)=2*cheby;

for count=3:m

T(count,:)=2*cheby.*T(count-1,:)-T(count-2,:);

U(count,:)=2*cheby.*U(count-1,:)-U(count-2,:);

end

XAdd the new points with all the new polynomials having a

Xcoefficient of 0

103

x=mean(x)+xa(2:oldm)*T(2:oldm,:);

y=mean(y)+ya(2:oldm)*T(2:oldm,:);

deltax=mean(deltax)+dxa(2:oldm)*T(2:oldm,:);

deltay=mean(deltay)+dya(2:oldm)*T(2:oldm,:);

stiffx=mean(stiffx)+sxa(2:oldm)*T(2:oldm, :);

stiffy=mean(stiffy)+sya(2:oldm)*T(2:oldm,:);

lastadd=count;

end

end

end

end

A.3 The Heisenberg Manifold

The generic code has been removed to save space. This is the parts that need to be inserted to

specify the Heisenberg manifold problem.

A.3.1 Finite Difference Method

XSet up path

xrand(1,n)*2-1;

y=rand(1,n)*2-1;

x0=1;

xf=-1;

y0 =0 ;

yf=0;

zO=0;

zf=pi/2;

z=(0:n-1)/(n-1)*zf;

%Calculate forces

Fx=d2x+(y/2.*dx.*dy-x/2.*dy.^2+dy.*dz)/alpha;

Fy=d2y+(-y/2.*dx.^2+x/2.*dx.*dy-dx.*dz)/alpha;

Fz=d2z+(-x.*y/4.*dx.^2+(x.^2-y.^2)/4.*dx.*dy-x/2.*dx.*dz \

104

+(x.*y)/4.*dy.^2-y/2.*dy.*dz)/alpha;

%Condition for decreasing alpha

if (totaldelta*min(10,sqrt(n))<max(alpha,sqrt(alpha)/10))&&(count>lastadd+20)

alpha=alpha*.99;

XAdditional conditions for adding points (conditions for decreasing

%alpha must also be met

if (n<maxn)

A.3.2 Pseudospectral Method

The setup and force calculations are the same. The only difference from the finite difference method

(other than the changes to the generic code) are the conditions for decreasing alpha and adding

points.

%Condition for decreasing alpha

if (totaldelta<min(alpha/10,alpha^2))&&(count>lastadd+100)

alpha=alpha*.99;

lastadd=count;

XAdditional conditions for increasing the number of points

if (n<alpha^(-1))&&(n<1e3)

A.4 The Tank Manifold

For this problem, the code will be shown first with the generic code removed to save space. and

then the full program will be shown. This will remove any ambiguity about how the generic code is

combined with the problem specific code.

A.4.1 Problem Specific Code (Pseudospectral)

X/

105

%initial values

n=11;

alpha=0.05;

beta=10^(loop/3-1);

stiffup=1.5;

stiffdown=.95;

%path definition

x0=.1;

xf=0;

y0=1;

yf=0;

t0=0;

tf=0;

%connection coefficients

Fxx=(1/alpha-alpha).*sin(t).*cos(t).*dt;

Fxy=(1-1/alpha).*(cos(t).^2-alpha*sin(t).^2).*dt;

Fxt=0;

Fx=d2x+Fxx.*dx+Fxy.*dy+Fxt.*dt;

Fyx=(1/alpha-1).*(sin(t).^2-alpha.*cos(t).^2).*dt;

Fyy=(alpha-1/alpha).*cos(t).*sin(t).*dt;

Fyt=0;

Fy=d2y+Fyx.*dx+Fyy.*dy+Fyt.*dt;

Ftx=(1-1/alpha)/beta.*(cos(t).*sin(t).*dx+(sin(t).^2-cos(t).^2).*dy);

Fty=(1/alpha-1)/beta.*cos(t).*sin(t).*dy;

Ftt=O;

Ft=d2t+Ftx.*dx+Fty.*dy+Ftt.*dt;

%Condition for decreasing alpha

if (totaldelta/n<alpha/10)&&(count2>lastadd+1e2)

lastadd=count2;

106

XAdditional condition for adding points

if (n<alpha^(-1))&&(n<100)

oldm=m;

if n<100

n=n+50;

end

if n>100

n=100;

end

m=n;

A.4.2 Full Code (Pseudospectral Method)

for loop=1:10

clear d2xa d2xb d2ya d2yb d2ta d2tb

addn=1;

lastadd=1;

plotting=0;

movavg=l;

n=11;

m=n;

alpha=0 .05;

beta=10^(loop/3-1);

stiffup=1.5;

stiffdown=.95;

x0=.1;

xf=0;

y0=1 ;

yf=0;

t0=0;

tf=0;

cheby=sort(cos((2*(1:n)-1)/2/n*pi));

s=cheby/2+.5;

T=cheby*0+1;

U=T;

107

T(2,:)=cheby;

U(2,:)=2*cheby;

for count=3:m

T(count,:)=2*cheby.*T(count-1,:)-T(count-2,:);

U(count,:)=2*cheby.*U(count-1,:)-U(count-2,:);

end

basestiff=le4;

stiffx=ones(1,n)*basestiff;

stiffy=ones(1,n)*basestiff;

stifft=ones(1,n)*basestiff;

x=xO+(xf-xO)*s;

y=y0+(yf-yO)*s;

t=tO+ (tf-to) *s;

r=x*O;

trackx=[];

tracky=[];

trackt=[];

trackl=[];

trackl2=[];

count2=1;

totaldelta=0;

Fx=x;

Fy=y;

Ft=t;

deltax=O*x;

deltay=O*y;

deltat=O*t;

while ((max(sqrt(Fx.^2+Fy.^2+Ft.^2))>.1*totaldelta)&&(count2<1e5))

xa=2*(T*x'/n)';

ya=2*(T*y'/n)';

ta=2*(T*t'/n)';

xa(1)=mean(x);

ya(1)=mean(y);

ta(1)=mean(t);

dxb=(1:m-1).*xa(2:m);

dyb=(1:m-1).*ya(2:m);

108

dtb=(l:m-1).*ta(2:m);

for count=2:m

d2xa(count)=count*(count-l)*xa(count);

d2xb(count)=-(count-l)*xa(count);

d2ya(count)=count*(count-l)*ya(count);

d2yb(count)=-(count-l)*ya(count);

d2ta(count)=count*(count-l)*ta(count);

d2tb(count)=-(count-l)*ta(count);

end

dx=dxb*U(l:m-l,:)*2;

dy=dyb*U(l:m-l,:)*2;

dt=dtb*U(l:m-l,:)*2;

d2x=(d2xa*T+d2xb*U)./(cheby.-2-1)*4;

d2y=(d2ya*T+d2yb*U)./(cheby.-2-1)*4;

d2t=(d2ta*T+d2tb*U)./(cheby.-2-1)*4;

Fxx=(l/alpha-alpha).*sin(t).*cos(t).*dt;

Fxy=(1-1/alpha).*(cos(t).-2-alpha*sin(t).-2).*dt;

Fxt=O;

Fx=d2x+Fxx.*dx+Fxy.*dy+Fxt.*dt;

Fyx=(l/alpha-1).*(sin(t).-2-alpha.*cos(t).-2).*dt;

Fyy=(alpha-1/alpha).*cos(t).*sin(t).*dt;

Fyt=O;

Fy=d2y+Fyx.*dx+Fyy.*dy+Fyt.*dt;

Ftx=(1-1/alpha)/beta.*(cos(t).*sin(t).*dx+(sin(t).-2-cos(t).-2).*dy);

Fty=(l/alpha-l)/beta.*cos(t).*sin(t).*dy;

Ftt=O;

Ft=d2t+Ftx.*dx+Fty.*dy+Ftt.*dt;

deltax2=deltax;

deltay2=deltay;

deltat2=deltat;

deltax=Fx./stiffx;

deltay=Fy./stiffy;

deltat=Ft./stifft;

samex=(sign(deltax)==sign(deltax2));

samey=(sign(deltay)==sign(deltay2));

samet=(sign(deltat)==sign(deltat2));

109

stiffx=stiffx.*samex*stiffdown+stiffx.*(l-samex)*stiffup;

stiffy=stiffy.*samey*stiffdown+stiffy.*(l-samey)*stiffup;

stifft=stifft.*samet*stiffdown+stifft.*(l-samet)*stiffup;

stiffx=min(lel5,max(stiffxl));

stiffy=min(lelSmax(stiffyl));

stifft=min(lel5,max(stifftl));

maxmove=le-2;

deltax=max(-maxmovemin(deltaxmaxmove));

deltay=max(-maxmovemin(deltaymaxmove));

deltat=max(-maxmovemin(deltatmaxmove));

px=x;

py=y;

pt=t;

cond3=0;

x=x+deltax;

y=y+deltay;

t=t+deltat;

r=x*O;

x(l)=xO;

Y(1)=yO;

t(l)=to;

x(n)=xf;

y(n)=yf;

t(n)=tf;

deltax=x-px;

deltay=y-py;

deltat=t-pt;

count2=count2+1;

totaldelta=sum(sqrt((px-x).-2+(py-y).-2+(pt-t).-2));

if (totaldelta/n<alpha/10)&&(count2>lastadd+le2)

[a bl=size(trackx);

xa=(2*T*x'/n)';

ya=(2*T*Y'/n)';

ta=(2*T*t'/n)';

xa(l)=mean(x);

ya(l) =mean (y) ;

110

ta(1)=mean(t);

trackx(1:m,b+1)=xa;

tracky(1:m,b+1)=ya;

trackt(1:m,b+1)=ta;

trackcount(b+1)=count2;

tracka(b+1)=alpha;

dd=cos(t).*dx+sin(t).*dy;

da=-sin(t).*dx+cos(t).*dy;

db=-r.*cos(t).*dx-r.*sin(t).*dy+dt;

trackl2(b+1)=sum(sqrt(da.^2).*[O diff(s)]);

trackl(b+1)=sum(sqrt(dd.^2+db.^2*beta).*[0 diff(s)]);

if b>20

xa=xa+mean(diff(trackx(:,b-8:b+1)'))/2;

ya=ya+mean(diff(tracky(:,b-8:b+1)'))/2;

ta=ta+mean(diff(trackt(:,b-8:b+1)'))/2;

end

x=xa*T;

y=ya*T;

t=ta*T;

r=x*0;

alpha=alpha*.95;

lastadd=count2;

if (n<alpha^(-1))&&(n<100)

dxa=(2*T*deltax'/n)';

dya=(2*T*deltay'/n)';

dta=(2*T*deltat'/n)';

sxa=(2*T*stiffx'/n)';

sya=(2*T*stiffy'/n)';

sta=(2*T*stifft'/n)';

oldm=m;

if n<100

n=n+50;

end

if n>100

n=100;

end

m=n;

cheby=sort(cos((2*(1:n)-1)/2/n*pi));

s=cheby/2+. 5;

T=cheby*0+1;

U=T;

T(2, :)=cheby;

U(2,:)=2*cheby;

for count=3:m

T(count,:)=2*cheby.*T(count-1,:)-T(count-2,:);

U(count, :)=2*cheby.*U(count-1, :)-U(count-2,:);

end

x=mean(x)+xa(2:oldm)*T(2:oldm,:);

y=mean(y)+ya(2:oldm)*T(2:oldm,:);

t=mean(t)+ta(2:oldm)*T(2:oldm,:);

r=x*O;

deltax=mean(deltax)+dxa(2:oldm)*T(2: oldm,:);

deltay=mean(deltay)+dya(2:oldm)*T(2:oldm,:);

deltat=mean(deltat)+dta(2:oldm)*T(2:oldm,:);

stiffx=mean(stiffx)+sxa(2:oldm)*T(2:oldm,:);

stiffy=mean(stiffy)+sya(2:oldm)*T(2:oldm,:);

stifft=mean(stifft)+sta(2:oldm)*T(2:oldm,:);

addn=[addn count2];

lastadd=count2;

end

end

end

fname=['tank.' 'O'+loop-1];

save("-binary", fname);

end

A.4.3 Jacobi Fields

This is the code for calculating the Jacobi fields.

[a b]=size(trackx);

x=interpl(s,trackx(: ,b)'*T, (O:1e5)/1e5, 'spline','extrap');

y=interpl(s,tracky(:,b)'*T, (O:1e5)/le5, 'spline','extrap');

t=interpl(s,trackt(:,b)'*T,(O:le5)/1e5,'spline','extrap');

112

dx=diff(x);

dy=diff(y);

dt=diff(t);

alpha=tracka(b);

Rulll2=((-l+alpha).-3.*sin(2.*t))./(8.*alpha.-2.*beta);

Rull2l=-((-l+alpha).-3.*sin(2.*t))./(8.*alpha.-2.*beta);

Rul2l2=-((-l+alpha).-2.*(-l-alpha+(-l+alpha).*cos(2.*t)))./(8.*alpha.-2.*beta);

Rul221=((-l+alpha).-2.*(-l-alpha+(-l+alpha).*cos(2.*t)))./(8.*alpha.-2.*beta);

Rul3l3=((-l+alpha).*(l-alpha+2.*(I+alpha).*cos(2.*t)))./(4.*alpha);

Rul323=((-l+alpha).*(l+alpha).*cos(t).*sin(t))./alpha;

Rul331=-((-l+alpha).*(l-alpha+2.*(l+alpha).*cos(2.*t)))./(4.*alpha);

Rul332=-(((-l+alpha).*(l+alpha).*cos(t).*sin(t))./alpha);

Ru2ll2=-((-l+alpha).-2.*(l+alpha+(-l+alpha).*cos(2.*t)))./(8.*alpha.-2.*beta);

Ru2l2l=((-l+alpha).-2.*(l+alpha+(-l+alpha).*cos(2.*t)))./(8.*alpha.-2.*beta);

Ru2212=-((-l+alpha).-3.*sin(2.*t))./(8.*alpha.-2.*beta);

Ru2221=((-l+alpha).-3.*sin(2.*t))./(8.*alpha.-2.*beta);

Ru2313=((-l+alpha).*(l+alpha).*cos(t).*sin(t))./alpha;

Ru2323=-((-l+alpha).*(-l+alpha+2.*(l+alpha).*cos(2.*t)))./(4.*alpha);

Ru2331=-(((-l+alpha).*(l+alpha).*cos(t).*sin(t))./alpha);

Ru2332=((-l+alpha).*(-l+alpha+2.*(l+alpha).*cos(2.*t)))./(4.*alpha);

Ru3ll3=-((-l+alpha).*(-l+alpha.-2+(1+6.*alpha+alpha.-2).*cos(2.*t)))

./(8.*alpha.-2.*beta);

Ru3l23=-((-l+alpha).*(1+6.*alpha+alpha.-2).*sin(2.*t))./(8.*alpha.-2.*beta);

Ru3l3l=((-l+alpha).*(-l+alpha.-2+(1+6.*alpha+alpha.-2).*cos(2.*t)))

./(8.*alpha.-2.*beta);

Ru3l32=((-l+alpha).*(1+6.*alpha+alpha.-2).*sin(2.*t))./(8.*alpha.-2.*beta);

Ru3213=-((-l+alpha).*(1+6.*alpha+alpha.-2).*sin(2.*t))./(8.*alpha.-2.*beta);

Ru3223=((-l+alpha).*(l-alpha.-2+(1+6.*alpha+alpha.-2).*cos(2.*t)))

./(8.*alpha.-2.*beta);

Ru3231=((-l+alpha).*(1+6.*alpha+alpha.-2).*sin(2.*t))./(8.*alpha.-2.*beta);

Ru3232=-((-l+alpha).*(l-alpha.-2+(1+6.*alpha+alpha.-2).*cos(2.*t)))

./(8.*alpha.-2.*beta);

Jl=[O*x) O*x' O*x)];

J2=Jl;

if (dy(l)==O)&&(dt(l)==O)

dJl(:,I)=[O 1 01;

113

dJ2 (: , 1)=[0 0 11 ;

elseif (dx(1)==O)&&(dt(1)==0)

dJl (: , 1)=E 0 0] ;

dJ2(:,1)=[0 0 1];

elseif (dx(1>==0)&&(dy(1)==0)

dJl(:,1)=E1 0 0];

dJ2(:,l1>40 1 0];

else

dT=Edx(1) dy(1) dt(1)];

dTdT/sqrt (dT*dT');

dJl=[1 0 01;

dJldJl-(dJl*dT')*dT;

dJl=dJl/sqrt (dJl*dJl');

dJ2=[0 1 01;

dJ2=dJ2- (dJ2*dT')*dT- (dJ2*dJl) *dJl;

dJ2=dJ2/sqrt (dJ2*dJ2');

end

dT=[dx (1) dy (1) dt (1)]

dJldJl*sqrt(dT*dT');

dJ2=dJ2*sqrt (dT*dT');

dJl(1e5,3)=0;

dJ2(le5,3)=0;

for count=l:le5

J1(courit+l,:)=J1(count, :)±dJl(count,:);

J2(count+l,:)=J2(count,:)+dJ2(count,:);

dJl(count+1,1)=dJl(count,l)-Rulll2(coumt)*dx(count)*Jl(count,1)*dy(count)\

-Ruli2l(count)*dx(count)*Jl(count,2)*dx(count) \

-Ru12l2(count)*dy(count)*J1(count,1)*dy(count) \

-Ru1221(count)*dy(count)*Jl(count,2)*dx(count) \

+dt(count)*(Ru13l3(count)*J1(count,l)*dt(count)\

-Ru1323(count)*J1(count ,2)*dt(count)\

-Ru1331(count)*J1(count,3)*dx(count)\

-Rul332(count)*J1(count,3)*dy(count));

dJl(count+1,2)=dJl(count,2)-Ru2112(couit)*dx(count)*J1(count, 1)*dy(count)\

-Ru2121(count)*dx(count)*J1(count,2)*dx(count) \

-Ru2212(count)*dy(count)*J1(count,1)*dy(count) \

114

-Ru2221(count)*dy(count)*Jl(count,2)*dx(count)

+dt(count)*(Ru2313(count)*Jl(countl)*dt(count)

-Ru2323(count)*Jl(count,2)*dt(count) \

-Ru2331(count)*Jl(count,3)*dx(count) \

-Ru2332(count)*Jl(count,3)*dy(count));

dJl(count+1,3)=dJl(count,3)-Ru3ll3(count)*dx(count)*Jl(countl)*dt(count)

-Ru3l23(count)*dx(count)*Jl(count,2)*dt(count) \

-Ru3l3l(count)*dx(count)*Jl(count,3)*dx(count) \

-Ru3l32(count)*dx(count)*Jl(count,3)*dy(count) \

+dy(count)*(Ru3213(count)*Jl(countl)*dt(count)

-Ru3223(count)*Jl(count,2)*dt(count)

-Ru3231(count)*Jl(count,3)*dx(count)

-Ru3232(count)*Jl(count,3)*dy(count));

dJ2(count+1,1)=dJ2(countl)-Rulll2(count)*dx(count)*J2(countl)*dy(count)

-Rull2l(count)*dx(count)*J2(count,2)*dx(count) \

-Rul2l2(count)*dy(count)*J2(countl)*dy(count) \

-Rul221(count)*dy(count)*J2(count,2)*dx(count) \

+dt(count)*(Rul3l3(count)*J2(countl)*dt(count)

-Rul323(count)*J2(count,2)*dt(count) \

-Rul331(count)*J2(count,3)*dx(count) \

-Rul332(count)*J2(count,3)*dy(count));

dJ2(count+1,2)=dJ2(count,2)-Ru2ll2(count)*dx(count)*J2(countl)*dy(count)

-Ru2l2l(count)*dx(count)*J2(count,2)*dx(count) \

-Ru2212(count)*dy(count)*J2(countl)*dy(count) \

-Ru2221(count)*dy(count)*J2(count,2)*dx(count) \

+dt(count)*(Ru2313(count)*J2(countl)*dt(count)

-Ru2323(count)*J2(count,2)*dt(count)

-Ru2331(count)*J2(count,3)*dx(count)

-Ru2332(count)*J2(count,3)*dy(count));

dJ2(count+1,3)=dJ2(count,3)-Ru3ll3(count)*dx(count)*j2(countl)*dt(count)

-Ru3l23(count)*dx(count)*J2(count,2)*dt(count) \

-Ru3l3l(count)*dx(count)*J2(count,3)*dx(count) \

-Ru3l32(count)*dx(count)*J2(count,3)*dy(count) \

+dy(count)*(Ru3213(count)*J2(countl)*dt(count)

-Ru3223(count)*J2(count,2)*dt(count)

-Ru3231(count)*J2(count,3)*dx(count)

115

-Ru3232 (count) *J2 (count , 3) *dy(count));

end

for count=1:length(J1)

if dot(J1(count,:),J1(count,:))~=O

uJl(count,:)=Ji(count,:)/sqrt(dot(J1(count,:),J1(count,:)));

else

uJ1(count, :)=J1(count,:);

end

if dot(J2(count,:),J2(count,:))~=O

uJ2(count,:)=J2(count,:)/sqrt(dot(J2(count,:),J2(count,:)));

else

uJ2(count, :)=J2(count,:);

end

end

clear a b

M=18:le-5:18.5;

for count=l:length(M)

mul=M(count);

a(count, :)=J1(98359, :)-mul*J2(98359,:);

b(count)=a(count, :)*a(count,:)';

end

plot(M,log(b));grid on

A.4.4 Hamiltonian Integration

loop=O;

alpha=0.05;

beta=10^(loop/3-1);

x=O;

y=O;

t=0;

px=le-2;

py=le-1;

pt=O;

ds=le-3;

count=1;

while count<15

116

%dp-a=-1/2*(dg-bc/dx-a)p-bp-c

c=cos(t(count));

s=sin(t(count));

dptx=c*s*px-(c^2-s^2)*py;

dpty=-c*s*py;

dpt=dptx*px+dpty*py;

pt (count+1)=pt (count)+dpt*ds;

co-g=[c^2 c*s O;c*s s^2 0;0 0 1/beta];

dX=co-g*[px py pt(count)]';

x(count+1)=x(count)+dX(1)*ds;

y(count+1)=y(count)+dX(2)*ds;

t(count+1)=t(count)+dX(3)*ds;

count=count+1;

end

A.4.5 Geodesic Integration

clear

load tankjacobi

n=length(x);

%dJ3=dJ3*length(x)/n;

addn=1;

lastadd=1;

plotting=1;

movavg=l;

stiffup=1.5;

stiffdown=.95;

x=rand(1,n)*2-1;

y=rand(1,n)*2-1;

t=rand(1,n)*.1-.05;

x(1)=x0;

y(1)=yO;

t(1)=t0;

x(2)=dJ3(1)+xO;

y(2)=dJ3(2)+yO;

t (2) =dJ3 (3) +tO;

basestiff=1e8;

117

stiffx=basestiff;

stiffy=basestiff;

stifft=basestiff;

totaldelta=O;

Fx=x;

Fy=y;

Ft=t;

deltax=O,

deltay=O;

deltat=O,

last=O;

count=3;

counter=1;

while count<=n

dl=l/n;

dx=(x(count)-x(count-2))/2/dl;

d2x=(x(count)+x(count-2)-2*x(count-1))/(2*dl-2);

dy=(y(count)-y(count-2))/2/dl;

d2y=(y(count)+y(count-2)-2*y(count-1))/(2*dl-2);

dt=(t(count)-t(count-2))/2/dl;

d2t=(t(count)+t(count-2)-2*t(count-1))/(2*dl-2);

s=sin(t(count-1));

c=cos(t(count-1));

Fxx=(l/alpha-alpha)*s*c*dt;

Fxy=(1-1/alpha)*(c-2-alpha*s-2)*dt;

Fxt=O;

Fx=d2x+Fxx*dx+Fxy*dy+Fxt*dt;

Fyx=(l/alpha-l)*(s-2-alpha*c-2)*dt;

Fyy=(alpha-1/alpha)*c*s*dt;

Fyt=O;

Fy=d2y+Fyx*dx+Fyy*dy+Fyt*dt;

Ftx=(1-1/alpha)/beta*(c*s*dx+(s-2-c-2)*dy);

Fty=(l/alpha-l)/beta*c*s*dy;

Ftt=O;

Ft=d2t+Ftx*dx+Fty*dy+Ftt*dt;

deltax2=deltax;

118

deltay2=deltay;

deltat2=deltat;

deltax=-Fx/stiffx;

deltay=-Fy/stiffy;

deltat=-Ft/stifft;

samex=(sign(deltax)==sign(deltax2));

samey=(sign(deltay)==sign(deltay2));

samet=(sign(deltat)==sign(deltat2));

stiffx=stiffx*samex*stiffdown+stiffx*(l-samex)*stiffup;

stiffy=stiffy*samey*stiffdown+stiffy*(l-samey)*stiffup;

stifft=stifft*samet*stiffdown+stifft*(l-samet)*stiffup;

stiffx=min(lel3,max(stiffxl));

stiffy=min(lel3,max(stiffyl));

stifft=min(lel3,max(stifftl));

maxmove=le-2;

deltax=max(-maxmovemin(deltaxmaxmove));

deltay=max(-maxmovemin(deltaymaxmove));

deltat=max(-ma-xmovemin(deltatmaxmove));

px=x;

py=y;

pt=t;

x(count)=x(count)+deltax;

y(count)=y(count)+deltay;

t(count)=t(count)+deltat;

x(l)=xO;

Y(1)=yo;

t(l)=to;

x(2)=dJ3(1)+xO;

y(2)=dJ3(2)+yO;

t (2) =dJ3 (3) +tO;

deltax=x(count)-px(count);

deltay=y(count)-py(count);

deltat=t(count)-pt(count);

totaldelta=sum(sqrt((px-x).-2+(py-y).-2+(pt-t).-2));

if (totaldelta<le-10)

count=count+l;

119

stiffx=basestiff;

stiffy=basestiff;

stifft=basestiff;

if count<=n

x(count)=x(count-1);

y(count)=y(count-1);.

t(count)=t(count-1);

end

end

counter=counter+1;

if mod(counter,50)==1

[counter totaldelta count mean([stiffx stiffy stifft])]

end

end

A.5 Astrodynamics

For this section, only the problem specific code will be given.

A.5.1 Finite Difference Method

%Initial setup

n=5;

beta=le-1;

stiffup=1.2;

stiffdown=.95;

basestiff=100;

%path endpoints are defined before starting

x

x=x0+(xf-x0)*(0:n-1)/(n-1);

y=yO+(yf-yO)*(O:n-1)/(n-1);

h=h+(hf-hO)*(O:n-1)/(n-1);

L=LO+(Lf-LO)*(O:n-1)/(n-1);

120

%stopping condition

deltar=1;

while (deltar(length(deltar))<1.5*min(deltar))I(count<5e5)

XCalculate some parameters to make the lines somewhat readable

XThen calculate forces

X=x+cos(L);

Y=y+sin(L);

t=y.*cos(L)-x.*sin(L);

r=x.*cos(L)+y.*sin(L);

xi=1+r;

Fxh=6*X./h.^2.*dh-(3+6*x.*cos(L)+3*cos(2*L)+2*xi)/2./h./xi.*dx*2 \

-3*X.*sin(L)./h./xi.*dy*2;

Fxx=2*X.*cos(L).^2./xi.^2.*dx+X.*sin(2*L)./xi.^2.*dy*2;

Fxy=2*X.*sin(L).^2./xi.^2.*dy;

FxLbp=beta*(X.*t.*xi.^2/2./h.^7.*dh*2+X.*xi.^2.*sin(L)/2./h.^6.*dx*2 \

-X.*xi.^2.*cos(L)/2./h.^6.*dy*2-h.^2.*X*alpha./xi.^2.*dL);

FxLh=(-4*x.*y.*cos(L)-2*(1+2*x.^2).*y.*cos(2*L)-2*x.*y.*cos(3*L) \

+sin(L)+4*x.^2.*sin(L)+2*x.*sin(2*L)+2*x.^3.*sin(2*L) \

-2*x.*y.^2.*sin(2*L)+x.^2.*sin(3*L)-y.^2.*sin(3*L))./(2*h.*xi.^2).*dh*2;

FxLx=(8*x.*y+11*y.*cos(L)+4*x.*y.*cos(2*L)+y.*cos(3*L)+7*x.*sin(L) \

+6*sin(2*L)-4*x.^2.*sin(2*L)-x.*sin(3*L))./(8.*xi.~2).*dx*2;

FxLy=(-6-8*x.^2-17*x.*cos(L)+(4*x.^2-6).*cos(2*L)+x.*cos(3*L) \

+y.*sin(L)+4*x.*y.*sin(2*L)+y.*sin(3*L))./(8.*xi.^2).*dy*2;

FxLL=h.^8*alpha.*(X+xi.*cos(L))./xi.^6.*dL;

FxL=FxLh+FxLx+FxLy+FxLL;

FxLbn=(h.^5.*(Y+xi.*y+t.*x)./xi.^5.*dh*2 \

-h.^6.*(Y+xi.*y+t.*x).*cos(L)/2./xi.^6.*dx*2 \

-h.^6.*(Y+xi.*y+t.*x).*sin(L)/2./xi.^6.*dy*2)/beta;

Fx=d2x+Fxh.*dh+Fxx.*dx+Fxy.*dy+FxL.*dL+(FxLbp+FxLbn).*dL;

Fyh=6*Y./h.^2.*dh-3*Y.*cos(L)./h./xi.*dx*2 \

+(-3-6*y.*sin(L)+3.*cos(2*L)-2*xi)/2./h./xi.*dy*2;

Fyx=2*Y.*cos(L).^2./xi.^2.*dx+Y.*sin(2*L)./xi.^2.*dy*2;

Fyy=2*Y.*sin(L).^2./xi.^2.*dy;

121

FyLbp=beta*(Y.*t.*xi.^2/2./h.-7.*dh*2+Y.*xi.-2.*sin(L)/2./h.-6.*dx*2 \

-Y.*xi.-2.*cos(L)/2./h.-6.*dy*2-alpha*h.-2.*Y./xi.-2.*dL);

FyLh=-((1+4*y.-2).*cos(L)+2*x.*(1+2*y.-2).*cos(2*L)+x.-2.*cos(3*L) \

-Y.-2.*cos(3*L)-4*x.*y.*sin(L)+2*y.*sin(2*L)-2*x.-2.*Y.*sin(2*L) \

+2*y.-3.*sin(2*L)+2*x.*y.*sin(3*L))./(2*h.*xi.-2).*dh*2;

FyLx=(6+8*y.-2-x.*cos(L)+(4.*y.-2-6).*cos(2*L)+x.*cos(3*L)+17*y.*sin(L) \

-4*x.*y.*sin(2*L)+y.*sin(3*L))./(8*xi.-2).*dx*2;

FyLy=-(8*x.*y+7*y.*cos(L)-4*x.*y.*cos(2*L)+y.*cos(3*L)+11*x.*sin(L) \

+6*sin(2*L)-4*y.-2.*sin(2*L)-x.*sin(3*L))/8./xi.-2.*dy*2;

FyLL=h.-8*alpha.*(Y+xi.*sin(L))./xi.-6.*dL;

FyL=FyLh+FyLx+FyLy+FyLL;

FyLbn=(-h.^5.*((l+x.-2-Y.-2).*cos(L)+2*x.*(l+y.*sin(L)))./xi.-5.*dh \

+h.-6.*(X+xi.*x-t.*y).*cos(L)./2./xi.-6.*dx

+h.-6.*sin(L).*C(l+x.-2-y.-2).*cos(L) \

+2*x.*(l+y.*sin(L)))/2./xi.-6.*dy)/beta*2;

Fy=d2y+Fyh.*dh+Fyx.*dx+Fyy.*dy+FyL.*dL+(FyLbp+FyLbn).*dL;

Fhh=4./h.*dh-3*cos(L)./xi.*dx*2-3*sin(L)./xi.*dy*2;

Fhx=2*h.*cos(L).-2./xi.-2.*dx+h.*sin(2*L)./xi.-2.*dy*2;

Fhy=2*h.*sin(L).-2./xi.-2.*dy*2;

FhLbp=beta*(xi.-2.*t/2./h.-6.*dh*2+xi.-2.*sin(L)/2./h.-5.*dx*2

-xi.-2.*cos(L)/2./h.-5.*dy*2-h.-3*alpha./xi.-2.*dL);

FhL=(-2*t./xi+t/2./xi.-2).*dh*2+h/2./xi.-2.*(y+2*sin(L)+2*t.*cos(L)).*dx*2

+h.*(x.*cos(2*L)+y.*sin(2*L)-2*x-2*cos(L))/2./xi.-2.*dy*2

+h.-9*alpha./xi.-6.*dL;

FhLbn=(h.-6.*t./xi.-5.*dh-h.-7.*t.*cos(L)/2./xi.-6.*dx

-h.-7.*t.*sin(L)/2./xi.-6.*dy)/beta*2;

Fh=d2h+Fhh.*dh+Fhx.*dx+Fhy.*dy+FhL.*dL+(FhLbp+FhLbn).*dL;

FLh=-t.*xi.-4./h.-10/alpha.*dh-xi.-4.*sin(L)/2./h.-9/alpha.*dx*2

+xi.-4.*cos(L)/2./h.-9/alpha.*dy*2;

FLhb=4*t.*xi./h.-4/alpha.*dh-(3.*t.*cos(L)+xi.*sin(L))./h.-3/alpha.*dx*2

-(3*t.*sin(L)-xi.*cos(L))./h.-3/alpha.*dy*2;

FLxb=(Y.*cos(L)+t.*cos(L).-2)./h.-2./xi/alpha.*dx

+(-3*x.*cos(L)-2*cos(2*L)+x.*cos(3*L)+3*y.*sin(L)

+y.*sin(3*L))/4./h.-2./xi/alpha.*dy*2;

FLyb=(-X.*sin(L)+t.*sin(L).-2)./h.-2./xi/alpha.*dy;

FLL=3./h.*dh*2-2*cos(L)./xi.*dx*2-2*sin(L)./xi.*dy*2-2*t./xi.*dL;

122

FLb=(FLhb.*dh+FLxb.*dx+FLyb.*dy)/beta;

FL=d2L+FLh.*dh+FLL.*dL+FLb*0;

XLimits on point movement

maxmove=le-4;

mdx=mean(min(maxmove,abs(deltax)));

mdy=mean(min(maxmove,abs(deltay)));

mdh=mean(min(maxmove,abs(deltah)));

maxmove=(Lf-LO)/100;

mdL=mean(min(maxmove,abs(deltaL)));

deltax=max(-mdx,min(deltax,mdx));

deltay=max(-mdy,min(deltay,mdy));

deltah=max(-mdh,min(deltah,mdh));

deltaL=max(-mdL,min(deltaL,mdL));

%Limits on path range

h=max(0.5,min(3,h));

x=max(-.6,min(.6,x));

y=max(-.6,min(.6,y));

L=max(LO,min(Lf,L));

L(n)=Lf;

%Conditions for decreasing beta

savex(mod(count-1,1e3)+1,:)=x;

savey(mod(count-1,1e3)+1,:)=y;

saveh(mod(count-1,1e3)+1,:)=h;

saveL(mod(count-1,1e3)+1,:)=L;

totaldelta=sum(sqrt((max(savex)-min(savex)).^2+(max(savey)-min(savey)).^2 \

+(max(saveh)-min(saveh)).^2+(max(saveL)-min(saveL)).^2));

if (totaldelta/n<le-3)&&(count>lastadd+100)

if (beta>2.5e-4)

beta=beta*.95;

else

123

beta=beta*.99;

end

XAdditional ondition for adding points

if (n<1000)%&&(n<beta^(-1))

A.5.2 Pseudospectral Method

%Setup that differs from the finite difference method

n=30;

m=n;

beta=0.1;

stiffup=1.7;

stiffdown=.95;

%Stopping condition

while (length(trackdr)<10) \

||((trackdr(length(trackdr))<1.2*min(trackdr(10:length(trackdr)))) \

&&(deltar<10*min(trackdr(10:length(trackdr)))))

XForces are the same as for finite differences

%Limits on path range

h=max(O.5,min(2,h));

x=max(-.6,min(.6,x));

y=max(-.6,min(.6,y));

L=max(LO,min(Lf,L));

%Conditions for decreasing beta

totaldelta=sum(sqrt((max(savex)-min(savex)).^2+(max(savey)-min(savey)).^2 \

124

+(max(saveh)-min(saveh)).^2+(max(saveL)-min(saveL)).^2));

if (totaldelta/n<min(beta/10,10*beta^2))&&(count2>1astadd+1e2)

dar=t./ih.^2.*dh+sin(iL)./ih.*dx-cos(iL)./ih.*dy;

dat=-xi./ih.^2.*dh+cos(iL)./ih.*dx+sin(iL)./ih.*dy;

dr=2*ih./xi.*dh-ih.^2.*cos(iL)./xi.^2.*dx-ih.^2.*sin(iL)./xi.^2.*dy;

dt=ih.^3./xi.^2.*dL;

index=ceil(count2/100);

deltav(index)=sum(sqrt(dar.^2+dat.^2))+sum(abs(dt))*alpha;

deltar(index)=sum(abs(dr));

deltatot(index)=deltav(index)+deltar(index)/beta;

trackdv(b+1)=deltav(index);

trackdr(b+1)=deltar(index);

trackdtot(b+1)=deltatot(index);

beta=beta*.95;

lastadd=count2;

XAdditional conditions for adding points

if (n<beta^(-1))&&(n<30)

lastadd=count2;

A.5.3 Hamiltonian Integration

clear Vx Vy Vh VL PL

addn=1;

lastadd=1;

plotting=1;

movavg=1;

n=1e5;

m=n;

alpha=le-3;

x=xO;

y=yo;

h=hO;

L=LO;

%px=-.1;

Xpy=o;

125

%ph=5;

%pL=O;

dl=le-6;

count=1;

Vx=x;

vy=y;

Vh=h;

VL=L;

Px=px;

py=py;

Ph=ph;

PL=pL;

while (count<n)&&(L<l)

X=x+cos(L);

Y=Y+sin(L);

t=y.*cos(L)-x.*sin(L);

r=x.*cos(L)+y.*sin(L);

xi=l+r;

c=cos(L);

s=sin(L);

co-g=h-2/xi-2*[h-2 h*(X+xi*c) h*(Y+xi*s);h*(X+xi*c)

xi-2+2*X*xi*c+X-2 xi*(Y*c+X*s)+X*Y;h*(Y+xi*s)

xi*(Y*c+X*s)+X*Y xi-2+2*Y*xi*s+Y-21;

D=co-g*Eph;px;pyl;

dh=D(l);

dx=D(2);

dy=D(3);

dL=xi-4/h-6/alpha*pL;

Gxhh=6*X./h.-2;

Gxhx=-(3+6*x.*cos(L)+3*cos(2*L)+2*xi)/2./h./xi;

Gxhy=-3*X.*sin(L)./h./xi;

GxhL=(-4*x.*Y.*cos(L)-2*(1+2*x.-2).*y.*cos(2*L)-2*x.*y.*cos(3*L)+sin(L)

+4*x.-2.*sin(L)+2*x.*sin(2*L)+2*x.-3.*sin(2*L)-2*x.*Y.-2.*sin(2*L)

+x.-2.*sin(3*L)-y.-2.*sin(3*L))./(2*h.*xi.-2);

Gxxx=2*X.*cos(L).-2./xi.-2;

Gxxy=X.*sin(2*L)./xi.-2;

126

GxxL=(8*x.*y+ll*y.*cos(L)+4*x.*y.*cos(2*L)+y.*cos(3*L)+7*x.*sin(L)

+6*sin(2*L)-4*x.-2.*sin(2*L)-x.*sin(3*L))./(8.*xi.-2);

Gxyy=2*X.*sin(L).-2./xi.-2;

GxYL=(-6-8*x.-2-17*x.*cos(L)+(4*x.-2-6).*cos(2*L)+x.*cos(3*L)+Y.*sin(L)

+4*x.*y.*sin(2*L)+y.*sin(3*L))./(8.*xi.-2);

GxLL=h.-8*alpha.*(X+xi.*cos(L))./xi.-6;

Gyhh=6*Y./h.-2;

Gyhx=-3*Y.*cos(L)./h./xi;

Gyhy=(-3-6*y.*sin(L)+3.*cos(2*L)-2*xi)/2./h./xi;

GyhL=-((1+4*y.-2).*cos(L)+2*x.*(1+2*y.-2).*cos(2*L)+x.-2.*cos(3*L)

-Y.-2.*cos(3*L)-4*x.*y.*sin(L)+2*y.*sin(2*L)-2*x.-2.*Y.*sin(2*L)

+2*y.-3.*sin(2*L)+2*x.*y.*sin(3*L))./(2*h.*xi.-2);

Gyxx=2*Y.*cos(L).-2./xi.-2;

Gyxy=Y.*sin(2*L)./xi.-2;

GyxL=(6+8*y.-2-x.*cos(L)+(4.*y.-2-6).*cos(2*L)+x.*cos(3*L)+17*y.*sin(L)

-4*x.*y.*sin(2*L)+y.*sin(3*L))./(8*xi.-2);

Gyyy=2*Y.*sin(L).-2./xi.-2;

GyyL=-(8*x.*Y+7*y.*cos(L)-4*x.*Y.*cos(2*L)+Y.*cos(3*L)+11*x.*sin(L)

+6*sin(2*L)-4*y.-2.*sin(2*L)-x.*sin(3*L))/8./xi.-2;

GyLL=h.-8*alpha.*(Y+xi.*sin(L))./xi.-6;

Ghhh=4./h;

Ghhx=-3*cos(L)./xi;

Ghhy=-3*sin(L)./xi;

GhhL=(-2*t./xi+t/2./xi.-2);

Ghxx=2*h.*cos(L).^2./xi.-2;

Ghxy=h.*sin(2*L)./xi.-2;

GhxL=h/2./xi.-2.*(Y+2*sin(L)+2*t.*cos(L));

Ghyy=2*h.*sin(L).-2./xi.-2;

GhYL=h.*(x.*cos(2*L)+Y.*sin(2*L)-2*x-2*cos(L))/2./xi.-2;

GhLL=h.-9*alpha./xi.-6;

GLhh=-t.*xi.-4./h.-10/alpha;

GLhx=-xi.-4.*sin(L)/2./h.-9/alpha;

GLhy=xi.-4.*cos(L)/2./h.-9/alpha;

GLhL=3./h;

GLxx=O;

GLxy=O;

GLxL=-2*cos(L)./xi;

GLyy=O;

GLYL=-2*sin(L)./xi;

GLLL=-2*t./xi;

Fhh=Ghhh*dh+Ghhx*dx+Ghhy*dy+GhhL*dL;

Fhx=Ghhx*dh+Ghxx*dx+Ghxy*dy+GhxL*dL;

Fhy=Ghhy*dh+Ghxy*dx+Ghyy*dy+GhyL*dL;

FhL=GhhL*dh+GhxL*dx+GhyL*dy+GhLL*dL;

Fxh=Gxhh*dh+Gxhx*dx+Gxhy*dy+GxhL*dL;

Fxx=Gxhx*dh+Gxxx*dx+Gxxy*dy+GxxL*dL;

Fxy=Gxhy*dh+Gxxy*dx+Gxyy*dy+GxyL*dL;

FxL=GxhL*dh+GxxL*dx+GxyL*dy+GxLL*dL;

Fyh=Gyhh*dh+Gyhx*dx+Gyhy*dy+GyhL*dL;

Fyx=Gyhx*dh+Gyxx*dx+Gyxy*dy+GyxL*dL;

Fyy=Gyhy*dh+Gyxy*dx+Gyyy*dy+GyyL*dL;

FyL=GyhL*dh+GyxL*dx+GyyL*dy+GyLL*dL;

FLh=GLhh*dh+GLhx*dx+GLhy*dy+GLhL*dL;

FLx=GLhx*dh+GLxx*dx+GLxy*dy+GLxL*dL;

FLy=GLhy*dh+GLxy*dx+GLyy*dy+GLyL*dL;

FLL=GLhL*dh+GLxL*dx+GLyL*dy+GLLL*dL;

Fh=Fhh*ph+Fxh*px+Fyh*py+FLh*pL;

Fx=Fhx*ph+Fxx*px+Fyx*py+FLx*pL;

Fy=Fhy*ph+Fxy*px+Fyy*py+FLy*pL;

FL=FhL*ph+FxL*px+FyL*py+FLL*pL;

ph=ph+Fh*dl;

px=px+Fx*dl;

py=py+Fh*dl;

pL=pL+FL*dl;

x=x+dx*dl;

y=y+dy*dl;

h=h+dh*dl;

L=L+dL*dl;

count=count+l;

Vx(count)=x;

Vy(count)=y;

Vh(count)=h;

128

VL(count)=L;

Px(countk=px;

Py(count)=py;

Ph(count) =ph;

PL(count)=pL;

end

xf=x;

yf=y;

Lf=L;

hfh;

129

130

Bibliography

[1] I.M. Ross and F. Fahroo. A perspective on methods for trajectory optimization. In Proceedings

of the AIAA/AAS Astrodynamics Specialist Conference, Monterey, CA. pages 5 8, 2002.

[2] J.K. Whiting. Orbital Transfer Trajectory Optimization. Master's thesis, MASSACHUSETTS
INSTITUTE OF TECHNOLOGY, 2004.

[3] James K Whiting. Three-dimensional low-thrust trajectory optimization, with applications.

Huntsville, Alabama, 2003. 39thAIAA/ASME/SAE/ASEE Joint Propulsion Conference and

Exhibit, AIAA.

[4] Vyacheslav Ptukhov. Optimal multirevolution transfers between non-coplanar elliptical orbits.

[5] V. Coverstone-Carroll and S.N. Williams. Optimal low thrust trajectories using differential

inclusion concepts. Journal of the Astronautical Sciences, 42:379-393, 1994.

[6] Micahel Spivak. A Comprehenrsive Introduction to Differential Geometry, volume I-V. Publish

or Perish, Inc., Houston, Texas, third edition, 1999.

[7] Chris J Isham. Modern Differential Geometry for Physicists. World Scientific Publishing Com-

pany, Singapore., second edition, 1999.

[8] Richard Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and Applications.

American Mathematical Society Providence, Rhode Island, 2002.

[9] Ovidiu Calin and Der-Chen Chang. Sub-Riemannian Geometry General Theory and Examples.

Cambridge University Press, New York, New York, 2009.

[10] Manfredo Perdigio do Carmo. Riemannian Geometry. Birkhiuser, Boston, 1992.

[11] R. Montgomery. A survey of singular curves in sub-Riemannian geometry. Journal of Dynamical

and Control Systems, 1(1):49-90, 1995.

[12] Jirgen Jost. Riemannian Geometry and Geometric Analysis. Springer, Berlin, Germany, fifth

edition, 2008.

