
Community Computation

by

Fulu Li

MASSACHUSETTs INSTITUTE
OF TECHNOLOGY

" . 0 6 2009

LIBRARIES

ARCHNES
MSc., Media Arts and Sciences,

Massachusetts Institute of Technology (2005)

Submitted to the Program of Media Arts and Sciences,
School of Architecture and Planning,

In partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

© Massachusetts Institute of Technology, 2009. All rights reserved.

Signature of Author

Certified by

Program in Media Arts and Sciences
May 1, 2009

Andrew B. Lippman
Senior Research Scientist of Media Arts and Sciences

Program in Media Arts and Sciences
Thesis Supervisor

Accepted by
Deb K. Roy

Chairman, CAmittee on Graduate Studies
Program in Media Arts and Sciences

/IV



Community Computation

by

Fulu Li
Submitted to the Program of Media Arts and Sciences,

School of Architecture and Planning,
On May 1, 2009 in partial fulfillment of the

requirement for the degree of
Doctor of Philosophy

Abstract

In this thesis we lay the foundations for a distributed, community-based computing
environment to tap the resources of a community to better perform some tasks, either
computationally hard or economically prohibitive, or physically inconvenient, that one
individual is unable to accomplish efficiently. We introduce community coding, where
information systems meet social networks, to tackle some of the challenges in this new
paradigm of community computation.

We design algorithms, protocols and build system prototypes to demonstrate the power of
community computation to better deal with reliability, scalability and security issues,
which are the main challenges in many emerging community-computing environments,
in several application scenarios such as community storage, community sensing and
community security. For example, we develop a community storage system that is based
upon a distributed P2P (peer-to-peer) storage paradigm, where we take an array of small,
periodically accessible, individual computers/peer nodes and create a secure, reliable and
large distributed storage system. The goal is for each one of them to act as if they have
immediate access to a pool of information that is larger than they could hold themselves,
and into which they can contribute new stuff in a both open and secure manner. Such a
contributory and self-scaling community storage system is particularly useful where
reliable infrastructure is not readily available in that such a system facilitates easy ad-hoc
construction and easy portability. In another application scenario, we develop a novel
framework of community sensing with a group of image sensors. The goal is to present a
set of novel tools in which software, rather than humans, examines the collection of
images sensed by a group of image sensors to determine what is happening in the field of
view. We also present several design principles in the aspects of community security. In
one application example, we present community-based email spain detection approach to
deal with email spams more efficiently.
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Chapter 1

Introduction

With the growing popularity of the Internet, the expansion of wireless local and personal

area networks, the ubiquity of mobile devices, nowadays people are living in an

increasingly networked world. In general, a community consists of three pillars, which

are connectivity, communication and coordination. Underpinned by a wide range of

technologies that facilitate better connectivity, better communication and better

coordination among people, the notion of community has taken on new meanings. In a

sense, a community can be regarded as a group of connected things, composed of

hardware, software and/or people and formed by common interests through activities.

With the evolution of digital world, we found ourselves surrounded by three clouds

[168]: the first cloud is the connectivity utility such as the Internet, the second cloud is

the resource utility such as Web 2.0, iPhones, etc., the third cloud is the interaction utility

driven by social networks. The big question we want to address in this thesis is how to

harness and unleash the power of a community and how to maximize the sum of the

utilities of all the community members, given their heterogeneous resource constraints.

The answer that we propose is by means of efficient community computation. We will

address several aspects of community computation, which are community storage,

community sensing and community security.



The central thread of this thesis is the community coding optimization framework that we

introduced, where information systems meet social networks. Community coding is an

emerging field of social computation and coding theory, which provides a method of

aggregating resources from a community to maximize the sum of their utilities by

allowing the community members to coordinate their contributions of resources based on

some predefine rules such as proportional fairness and minimum utility rules.

With great popularity of peer-to-peer (P2P) community-based applications comes great

challenge. One ancient three monks' story is particularly intriguing and inspiring. One

monk has to shoulder two buckets of water by himself. Two monks can share the load,

which is kind of nice. But add a third, no one wants to fetch the water any more due to

the fact that every one expects the other two monks will do the job. This story tells us

that making a concerted effort is the key for community computation and we need

innovations for community-computing environments, which is fundamental for our

society. We address the incentive issue in a community-computing environment by

adopting a proportional fairness rule in the framework of community coding, where the

more resources one contributes, the more utilities one is entitled to have.

In our daily lives, communities like to share things. People share photos on Flikr [169],

share videos on YouTube [170], and even share bandwidth via BitTorrent [171]. People

also like to help each other, reward each other and look after each other's welfare. In this

thesis, we present a set of tools to help to tap the resources of a community for the

benefits of all the community members. In one application scenario, we develop a



community storage system that is based upon a distributed P2P (peer-to-peer) storage

paradigm, where we take an array of small, periodically accessible, individual

computers/peer nodes and create a secure, reliable and large distributed storage system.

The goal is for each node to act as if they have immediate access to a pool of information

that is larger than they could hold themselves, and into which they can contribute new

stuff in a both open and secure manner. When there is a collection of materials such as

the whole collection of American literature that is used by more than one person, it is far

more efficient to use people as the redundant elements than it is to store duplicate copies

of the information in each peer node's machine. We assume that peer nodes may enter

and leave the e-library network randomly, and we make different parts of the e-library

available, depending on which peer nodes are operating. Such a community storage

system is particularly useful where reliable infrastructure is not readily available in that

such a system facilitates easy ad-hoc construction and easy portability. One important

property of such a community-based system is that every community member contributes

resources to the whole community as a whole including bandwidth, storage and

computing power, etc. Thus, as more members join the community, the total capacity of

the system also increases accordingly. Another important property of such a system is its

robustness against node failures due to its distributed nature.

In another application example, we develop a collaborative offline Wikipedia system

where the information of the whole Wikipedia is spread using our novel erasure codes

among a group of community members, whose online access to Wikipedia may not be

available due to some sort of failure such as a natural disaster. Each community member



is not only able to access the whole contents of Wikipedia by providing a small portion of

the total required storage burden, they can also contribute new contents and share

annotations of the articles among the community.

One basic principle that we recommend for a community-computing environment is to

treat the system, consisting of a variety number of devices that belong to community

members, not just as a data system or communication system, but also as a human

system. This is clearly one of the major differences between RAID [172] (redundant

array of inexpensive disks) and the community storage that we proposed. RAID is used

for computer storage systems that can divide and replicate data among multiple hard

disks to provide redundancy and reliability. The nature of RAID is just a collection of

hard disks, which is dramatically different from the dynamic nature of community

storage systems that involves with people and the community. For RAID, the collection

of hard disks is static, which are much easier to manage. On the other hand, for

community storage system, people can join or leave the network on the fly, which makes

it much more challenging to manage. For RAID, the communication cost among those

collection of hard disks are fixed, but for community storage system, the communication

cost among community member nodes can change over time dramatically, due to the

fluctuation of the congestion level of the network traffic and the nomadic nature of

people who carry and control those devices. Typically, an array of disks in RAID are

attached to a central machine or located within the same room or building, which could

lead to correlated failures of those disks when the subnet covers that machine or room go

down or when some accident like fire occurs to that room or building. On the other hand,



community member nodes in the community storage system are widely distributed,

which could gracefully migrate correlated failures in some region and still maintain its

availability and functionalities.

Another basic principle that we recommend is to let the community members coordinate

to collectively achieve cooperative welfares, security. This is clearly one of the major

differences between relying on the 3rd party services and relying on community members

to collectively provide services for themselves. Nowadays there are so many online

services that are provided by third parties such as dropbox services for storage, etc.

According to some statistics, almost 90% of the PC disks in today's corporate America

are free. The question here is: can we take advantage of those free disk spaces and do

something good? Community storage is the answer that we propose. In community

storage system, the community members have the preference to store their contents at

their trusted partners such as friends, families, colleagues, etc. It is a natural feeling that

people would trust more in their friends, families rather than a third party that they have

never encountered before and they may never encounter in the future. For the sake of

contents security, one thing to keep in mind is not to put all the eggs in one basket.

Community storage is a good example to realize this basic principle. Each node only

stores partial encoded data object. If you lose your device, other people can not see the

information on that device and you can also retrieve your contents back from other

community member nodes. For the attackers, they have to compromise enough nodes in

order to reconstruct the original data object.



The major contribution of this thesis is the introduction of a new field of community

coding and the presentation of a novel erasure code of community codes. Community

coding provides an optimization framework to maximize the total utilities of all

community members given their heterogeneous resources constraints based upon some

predefined rules such as proportional fairness and minimum utility rules. An erasure code

transforms a data object of n blocks into more than n blocks such that only a subset of the

encoded blocks is required to reconstruct the original data object. Erasure codes are

widely used for a variety of applications such as data storage and reliable data

communication to enhance availability and reliability by adding redundancy via coding.

For example, in the case of community storage, the benefits to use such an erasure code is

that only a subset of the stored pieces at other community member nodes are required to

reconstruct the original data object. This can gracefully meet the challenge that it is not

guaranteed that every community member is always available. In the case of P2P

streaming for application level multicast, the use of community coding systematically

maximizes the total number of received streaming content stripes among all community

members given their incoming and outgoing bandwidth constraints. The proportional

fairness component is seamlessly integrated in the community coding framework for P2P

streaming. In addition, the use of erasure code in P2P streaming provides another level of

flexibility and adaptability besides multiple description code (MDC) [62] in that the users

can randomly select a subset of the stripes to reassemble the original media stream based

upon the distribution of the dynamic traffic congestion levels in the network, the

availability of the media contents at other community member nodes, and the incoming

and outgoing bandwidth constraints at each community member node.



The main objective of this thesis is to lay the foundations to harness and unleash the

power of a community by the presentation of the theory of community coding and a set of

tools (algorithms, protocols, and prototypes) in several application areas such as

community storage, community sensing and community security. The set of novel

algorithms and protocols that we presented is to deal with reliability, security and

scalability issues in several community-computing scenarios to tap the resources of a

community to better perform some tasks, either computationally hard or economically

prohibitive, or physically inconvenient, that one individual is unable to accomplish

efficiently. We show its utility through actual prototypes.

Information storage and storage sharing are key components of modern networked

computer systems. Most of the existing networked file systems or distributed storage

systems are accomplished by the distribution of multiple file/storage servers. The

distinguishing features of our proposed community storage system include the novel

elements of community coding, the novel erasure code of community codes, and the

novel aspects of P2P media sharing.

In another application scenario, we develop a novel framework of community sensing

with a group of image sensors. The goal is to present a set of novel tools in which

software, rather than humans, examines the collection of images sensed by a group of

sensors to determine what is happening in the field of view.



We also present several design principles in the aspects of community security. In one

application example, we present community-based email spain detection approach to deal

with email spams much more efficiently.

The rest of the thesis is organized as follows. We present the theory of community coding

in Chapter 2. The community storage prototypes are presented in Chapter 3. We present a

set of analytical results, novel algorithms and protocols for community sensing in

Chapter 4. We address different aspects of community security in Chapter 5. The

contributions of this thesis are summarized in Chapter 6. We conclude this dissertation in

Chapter 7.



Chapter 2

Community Coding

2.1 The Overview

To tackle some of the challenges in community computation, we introduce community

coding, where information systems meet social networks. Community coding is an

emerging field of social computation and coding theory, which provides a method of

aggregating resources from a community to maximize the sum of their utilities by

allowing the community members to coordinate their contributions of resources.

2.1.1 Community Coding

Formally, we introduce the notion of community coding as follows.

Let R, stand for the available resources at node i in a community of N members. We

define C as the committed resources from node i for a given joint event of the

community. Let U, denote the utilities for node i, resulted from the given event. Let UF

stand for the utility floor limit for members of the community.

The goal is to maximize the sum of the utilities among all the community members,

subject to some given constraints.

N

max U, (2.1)
Ci

Subject to

Ci R, for 1 & i N (2.2)



U >U F for 1i N (2.3)

U 'C for 1l i, j N (2.4)
U. C.

U, = f(C, C2,..., C,,...,CN) for 1l i N (2.5)

Notably, the utility for each community member is not only determined by its committed

resources but also by those contributed from other community members. Constraint 2.3

indicates the floor limit of the community member's utility, similar like the concept of

minimum wage in our society. Constraint 2.4 denotes the proportional fairness issue in

that the more resources one contributes, the more utilities that community member will

be awarded.

2.1.2 Community Coding versus Network Coding

Network coding, which refers to coding at the nodes in a network [160], is a field of

information theory and coding theory, which provides a method of attaining maximum

information flow in a network.

The core notion of network coding is to allow mixing of data from multiple sources at

intermediate network nodes to increase the entropy of the transmitted information. A

receiver sees these data packets and deduces from them the messages that were originally

intended for that data sink. Routing, which only routes information without mixing of the

data at intermediate network nodes, can be regarded as a special case of network coding.

(2.3)



On the other hand, community coding is a field of social computation and coding theory,

which provides a method of aggregating resources from a community to maximize the

sum of their utilities by allowing the community members to coordinate their

contributions of resources based upon some predefined rules such as the proportional

fairness rule and the minimum utility rule.

In the following, we present several application scenarios of community coding, which

are network-aware source coding with multiple sources, P2P streaming for application

level multicast, and a novel erasure coding approach of community codes.

2.2. NASC with Multiple Sources

In this section, we present a network-aware source coding (NASC) approach for wireless

broadcast channels with multiple sources in the framework of community coding. In this

case, each source is regarded as a community member and the utility for each community

member is the delivery of the information with the least total required resources. The

proposed NSAC approach takes into account the information of the network topology

during the source coding process and tends to maximize the sum of the utilities of all

community members as a whole. We derive the optimal bounds for two scenarios: the

minimization of the total traffic load and the minimization of the total required energy.

Implementation issues are also discussed.

Traditional source coding schemes solely assume the role of data compression, e.g., the

process of encoding information using fewer bits than an un-encoded representation. The



proposed NSAC approach takes into account the information of the network topology and

tends to maximize the sum of the utilities of all community members as a whole.

2.2.1 Related Work

Other researchers also address the source coding, power efficiency issues in wireless

networks. The classic algorithm on source coding by Ziv and Lempel is described in

[163]. The Huffman coding approach for deterministic sources is given in [76]. In [62],

Goyal presented techniques for one single information source with several chunks of

data, e.g., "descriptions", so that the source can be approximated from any subset of the

chunks. The broadcast channel with degraded message set problem was described in

multi-user information theory [37]. Bergmans present a similar broadcast channel

scenario in [17]. Energy efficient issues for wireless ad hoc networks are described in

[61] and [108]. Barr et al present an energy-aware lossless data compression approach in

[15]. Scaglione and Serveto analyze the interdependence of routing and data compressing

in wireless sensor networks in [129]. Zhao in [162] presents network source codes to take

advantage of network topology for broadcast and multiple access systems. Li et al in [95]

give an indepth analysis on the capacity of wireless ad hoc networks and observe that the

throughput for each node's applications is limited by the relaying load imposed by distant

nodes in the network.

2.2.2 Problem Formulation

We consider the situation that a sender wants to simultaneously transmit n independent

messages from n distinct sources to n different destinations. Due to the popularity of



multi-user and multi-task (process) operating system, the situation that a sender wants

to send multiple messages simultaneously to different receivers could be commonplace

in reality. Without loss of generality, we assume that the i' source is destinated to the

i'h receiver. We also assume that each message traverses different path with different

path metrics, e.g., different number of hops, to its destination. The information from

n different sources is multiplexed by the source encoder and the encoded information is

further processed by the channel encoder and the modulator. The signal is propagated

through radio channel. Each receiver receives its intended messages through the process

of demodulation, channel decoding and source decoding. The communication structure is

shown in Figure 2.1.

Receiver 1

Noise

Transmitter

Chne+Suc Dst
Demodulator Decoder i ecoder+

Noise

Receiver n

Radio Channel

Figure 2.1: The communication system architecture.



We also assume the model of memoryless sources in the sense that the symbols for each

message are generated independently of each other. Let s. (1 < i i n) stand for the

number of independent symbols for the i't source and p,1 (1 5 i s s,, 1 1 ! n ) denote the

probability of occurrence for the i' symbol of the j' source. Notably, for any source, say

the i' source, we have

S;
SP,=1 (2.6)
k=1

Without loss of generality, the minimization of the average codeword length is often used

for the performance evaluation of a source encoder. From the network engineering

perspective with a cross-layer design philosophy, we are most concerned with the total

network throughput and the network lifetime. The total network throughput is determined

by the total traffic load and the network lifetime largely depends on the energy

consumption of each network node. Thus, the minimization of the average codeword

length is not the only ultimate design object in our case. Rather, we consider the

minimization of the total traffic load or the total required energy.

Let L,(1 i n) stand for the possible number of symbols in the ith message and

normally L is a large number. Then we can have the normalized probabilities among

symbols in all possible sources. Let p (1 < i sj, 1 j n) denote the normalized

probability of occurrence for the ith symbol of the jth source and we have

, Pij xL p,1 xL (2.7)

Z E(pmxLk) ELk
k=1 m=1 k=1



n Sj

p ,=1 (2.8)
j=1 i=1

Now let us recall the two basic principles on source coding, e.g., the prefix-free condition

and the Kraft inequality. In order to guarantee instant decoding and to avoid confusion in

the decoding process, the codeword of any symbol can not be the start part of the

codeword of another symbol. The prefix-free condition guarantees unique decodability. It

is known in this literature that any binary code satisfying the prefix-free condition, the

codeword lengths {i } must satisfy the Kraft inequality [55]. Let N stand for the total

number of symbols and li denote the codeword length for the ith symbol and the Kraft

inequality constraint states that

N

2 - < 1 (2.9)
i=1

Without considering the minimization of the traffic load or the total require energy, an

extended Huffman coding approach based on the normalized probabilities among

symbols in all the possible sources can be used to minimize the average codeword length.

Let ij stand for the codeword length for the i' symbol of the jth source. Notably, the

average codeword length in this case is downwards bounded by

n Sj

S ll X (2.10)
j=1 i=1

where = -log 2 p11  (2.11)

2.2.3. NASC for Minimizing Total Traffic Load



We define the total traffic load to send the given n different messages from a given

sender to n different destinations as the sum of the outgoing traffic, originated and

forwarded/relayed traffic, at each node on the path from the sender to each destination

node from the beginning of the transmission till all the n messages are completely

delivered to the intended destination. Let hi (1 < i < n) denote the number of hops that the

i' source will traverse in order to reach its destination. Thus, we have the total traffic

load

n Sj

TL = Z(Lj x h x ( 1 xp )) (2.12)
j=1 i=I

Under the Kraft inequality constraint (Formula (2.9)), we apply Lagrange multiplier

method to minimize the total traffic load (Eq. (2.12)) and we have

n Si

min L = (E (Lj x hj x (lj xp ))

(2.13)
n si

+Ax(EE2- -1)
j=1 i=1

Notably, in the above expression we consider L and h(1 j n) as constants. By

performing the minimization process using Lagrange multiplier method, we have

~3L
=Lxhxp +2x2"j xIn2=0

ai~j

(1 jn, 1<i:ss) (2.14)

2 -1=0 (2.15)
aF j=1 (=1

From (2.6), (2.8), (2.14) and (2.15), we have



L xh, xP p
2 = - L'' (2.16)

A x In 2

n L
I(Lj x hj x n )

ILk

_A- k=1

In 2 (2.17)

(L2 xhj)
j=1

ln2x L
k=1

From (2.16) and (2.17), we obtain that the traffic load gets its minimum when the

following choice hold

E Lk

1i, =-log2 (L xh, xpx , = ) (2.18)
3 (L x hk)

k=1

From Equation (2.18) we can see that the symbol with a higher occurring frequency

should get a shorter codeword and the message that traverses more hops to its destination

should get a shorter codeword. We can also see that the longer the message, e.g., more

total number of symbols, the shorter the codewords for its symbols should be.

jLk
Let us define # = =

I (L2 x hk)
k=1

Thus from (2.12) and (2.18), the total traffic load is downwards bounded by

n Sj

TLmin =E(Lj x hj xE((-log 2 (L, x h x p x#3)xp;)) (2.19)
j=1



In reality the total number of symbols in a message, say Li for the j' message may not

be known a priori. We can relax this constraint by assuming the lengths of all the

messages are approximately equal. With this relaxation, the minimization of the total

traffic load is only bounded with the number of hops that a message traverses and the

probability that a symbol occurs.

Equation (2.7) can be rewritten as

pI - '' - (2.22)
n Si n

j=1 i=1

Equation (2.18) can be rewritten as

h
l1, = -log 2 (P1 ,1 X ,~ ' ) (2.21)

k=1

Equation (2.19) can be rewritten as

n S> h p.
TL. =CxZ(hxZ((-log2(Pi,jX n )x'')) (2.22)

1=1 =1 _h n
k=1

where C is a constant, approximately representing the lengths of the messages.

2.2.4. NASC for Minimizing Total Required Energy

Although the path loss model, e.g., the power attenuation is proportional to d where

d stands for the distance between the transmitter and receiver antennas and the exponent

a often takes a value between 2 and 4, depending on the communication media

characteristics, is often used to quantify the energy consumption in wireless



communication protocols, it has been reported in [108] that the path loss model often

fails to capture the energy overheads of the hardware. Following a similar model used in

[72], we consider the radio dissipates E, nJ / bit to run transmitter or receiver circuitry

and Eamp pJ/bit /m 2 for the transmit amplifier to achieve an acceptable EN We

define the total required energy to send the given n different messages from a given

sender to n different destinations as the sum of the required energy at each node on the

path from the sender to each destination node from the beginning of the transmission till

all of the n messages are completely delivered to the intended destination nodes. Let l

stand for the codeword length for the ith symbol of the J' source and dj denote the

distance of the i't hop on the path that the j'message traverses. Thus, we have the total

required energy

n hi sj

E = f((2xh xE, +Eamp x d,)x L, x (lx xpZ;)) (2.23)
j=1 k=I i=1

Under the Kraft inequality constraint (Formula (2.9)), we apply Lagrange multiplier

method to minimize the total required energy (Eq. (2.23)) and we have

n hj si

minE=(>((2xhixE, +Eampxld",)xLjx (l1 xp11 ))
I'J j=1 k=1 i=1(2.24)

n si

+Ax(ZZ2-' -1)
j=1 i=1

Notably, in the above expression we consider L, and h, (1 j ! n) as constants. By

performing the minimization process using Lagrange multiplier method, we have



= (2xh, xEtr +Eamp x daj )xL, x p1
li,ij k-

+ Ax 2' x n 2= 0

(1 > j >n ,1< i < s.) (2.25)

3E " S

=ZZ2 -" -1=0 (2.26)
ai j=1 i=1

From (2.6), (2.8), (2.25) and (2.26), we have

hi

(2xh xE,, +Ea,, x d" j)xLjxp

2 (2.27)

((2xhxE.r Eampx d" )xLi x )
k=1

2=- hn2 (2.28)

E((2xhjxE,, +Ea, x d"j)xL2)

j=1 k=1 k

kk1

From (2.27) and (2.28), we obtain that the total required energy gets its minimum when

the following choice holds

Yh n

(2xh, E,,. +Ea, x d

ii,] = -log 2 (Ljp .Xij X h, =1 )(2.29)

Z (Li x( 2 xh x E,,. ±Ea,,p x~d,,a)
k== m=

From Equation (2.29) we can see that the symbol with a higher occurring frequency

should get a shorter codeword and the message that traverses more hops over larger

distances to its destination should get a shorter codeword. We can also see that the longer



the message, e.g., more total number of symbols, the shorter the codewords for its

symbols should be. Let us define

hj n

(2h E,, +Eap Zd", )k, Lk

Ri. = *=1 *=1 (2.30)

(L 2(2h E, + Ea,, da
k=1 k=1

Thus from (2.23) and (2.29), the total required energy is downwards bounded by

n hi si

Emin = ((Lj (2hjE, + E ,, daj)I(P (- log 2 (Lp xR,))) (2.31)
j=1 k=1 i=1

In reality the total number of symbols in a message, say Li for the jth message may not

be known a priori. We can relax this constraint by assuming the lengths of all the

messages are approximately equal. With this relaxation, the minimization of the total

traffic load is only bounded with the number of hops that a message traverses and the

probability that a symbol occurs.

Equation (2.7) can be rewritten as

' __ ij (2.32)

Ij n, si p

j=1 i=1

Equation (2.29) can be rewritten as

hi

2xh xE,, +Ep xZ d"

l = -log 2(p11 X ) (2.33)

Z(2xhkxE,, +E xjd")
k=1 m=1

Equation (2.31) can be rewritten as

n h s

Emin = CZ ((2hjEtr+Eap, d") ((-log2(pi xR)x ))) (2.34)
j=1 k=1 i=1



where C is a constant, approximately representing the lengths of the messages.

2.2.5. Summary

In this section, we present a network-aware source coding (NASC) approach for wireless

broadcast channels with multiple sources in the framework of community coding. In this

case, each source is regarded as a community member and the utility for each community

member is the delivery of information with the minimal required resources. The proposed

NSAC approach takes into account the information of the network topology and tends to

maximize the sum of the utilities of all community members as a whole.

2.3. P2P Streaming for ALM

Recent advancement in peer-to-peer (P2P) technologies has enabled a wide range of new

applications. In this section, we present community coding formulations to realize

efficient P2P media streaming for application level multicast (ALM). In this case, each

peer is regarded as a community member and the utility for each community member is

the receiving of the streamed contents. Community coding is the key to simultaneously

satisfy a large group (potentially hundreds) of peers' needs given limited network

resources. The key to our approach is to cast the P2P media streaming problem as a

community coding problem. In addition, we propose the use of erasure code in P2P

streaming. The use of erasure code provides another level of flexibility and adaptability

besides multiple description code (MDC) [62] in that the users can randomly select a

subset of the stripes to reassemble the original media stream based upon the distribution

of the dynamic traffic congestion levels in the network, the availability of the media



contents at other community member nodes, and the incoming and outgoing bandwidth

constraints at each community member node. We intend to answer the following

question: given a source node, a group of intended destination peer nodes with

heterogeneous network resources, what is the best way to distribute information among

these peer nodes?

2.3.1. Introduction

In P2P streaming, the media streaming is accomplished in a peer-to-peer (P2P) fashion in

the sense that each receiver node does not have to get the media content from the original

media source, which may be far away geographically. Instead, each receiver node just

needs to find if one of its peer neighbors is currently tuning in to receive the same media

stream. Recursively, its neighbor will find its neighbor's neighbor all the way up to the

original media source node.

Notably, P2P protocols/applications have received a great deal of attention recently in

both academia and industry [16,35,41,77,101,102,120,161]. BitTorrent-like protocols

[35] do not address the real-time needs of streaming as it is mainly designed to

redistribute the file downloading and uploading cost among a group of peer nodes to

achieve more robustness and scalability than traditionally centralized client-server model.

P2P media streaming can be roughly classified into two categories: (1) P2P on-demand

media streaming with known traffic profiles a priori; (2) P2P live media streaming with

uncertainty of the live media stream traffic. The work in [41,120] assumes stored videos

where the video traffic is known a priori. In live P2P media streaming, the dynamic



traffic of the live media stream cannot be predicted accurately and one has to resort to

stochastic models for robust network optimization [18].

The work in [41,120] on P2P video streaming do not consider application level multicast.

In this section, we focus on application level multicast (ALM) [7,11,28,32,144,161] for

P2P media streaming from one source to multiple intended peer destination nodes. Each

peer node is equipped with network connectivity capability, which allows them to receive

the data stream over the network and feeds the signal into the display devices.

In this section, we present community coding formulations in the framework of multiple

interior-disjoint trees and mesh-based P2P streaming for application level multicast. The

key to our analytical approach is to cast the P2P media streaming problem as a constraint

system and to maximize the sum of the utilities of all community members. We intend to

answer the following question: given a source node, a group of intended destination peer

nodes with heterogeneous network resources, what is the best way to distribute

information among these peer nodes?

2.3.2. Related Work

In the following, we give a general overview on application level multicast (ALM),

SplitStream [28] and mesh-based P2P streaming, which are the basis for community

coding formulations.

2.3.2.1 Application Level Multicast



While application level multicast (ALM) is a well-studied research area [7,11,28,32,144],

it has to have some new ingredients in the realization of P2P streaming to satisfy the real-

time needs in a distributed P2P fashion.

First, the ALM tree has to be constructed in such a way that media quality fluctuation is

minimized among all peer viewers given limited network resources at each peer node.

This is a particular challenge in the face of the uncertainty of the live media stream traffic.

Secondly, as discussed in [7], the ALM protocol has to operate well in adversarial

scenarios. For example, the protocol must be able to deal with frequent node failures,

rapid node joining and leaving (also called churn), denial of service (DoS) attacks,

uncooperative peers, etc.

Thirdly, it is essential that the ALM system is contribution-aware as the contributions

from the peer nodes are most likely to be heterogeneous due to the heterogeneous

environments at each peer node in the real world. Contribution-awareness is also needed

to establish meaningful charging models and incentive mechanisms in P2P media

streaming.

2.3.2.2 SplitStream

The SplitStream scheme in [28] provides a multi-tree data delivery framework, which can

leverage the distribution of the streaming data with interior-node-disjoint trees to better

use the outgoing bandwidth among participating peer nodes. If TI and T2 are two

spanning trees which have no interior nodes in common then TI and T2 are said to be



interior-node-disjoint. Notably, each node in a set of trees is interior node in at most one

tree and leaf node in the other trees [28].

Notably, high bandwidth rate for watching media stream may not be available

consistently to some P2P clients from a set of peers. Using this SplitStream framework

[28], peer nodes self-organize themselves into a forest of s trees, all rooted at media

source node. The media source node encodes media content with source rate R evenly

into s stripes of size R / S [144], each of which is distributed along a different tree. The

low-rate stripes are re-combined upon playing-out at each destination node to obtain a

high fidelity copy of the media content. The more stripes one receives, the better media

quality it plays out. A layered codec based on multiple description coding (MDC) is

typically used to realize this goal [25,144]. For example, Fine-Grained Scalable Coding

(FGSC) is widely available in current video codec and is now part of the MPEG4

standard. FGSC is being increasingly used to encode videos in P2P networks [120].

2.3.2.3. Mesh-based P2P Streaming

As an alternative to the tree-based approaches, recent work in [101,102,161] present a

mesh-based P2P streaming framework to better utilize outgoing bandwidth among

participating peers. As the name suggests, participating peers initially form a directed

mesh in mesh-based P2P streaming. Each peer node can have multiple parents and

multiple child peers. Each peer node maintains a sufficient number of parents that can

collectively fill its incoming link bandwidth, where each parent node provides a specific



sub-stream of the content. In [101,102], the content delivery combines two phases: the

diffusion phase along a diffusion tree (the black arrows), e.g., the push-based streaming

from parents at lower level to child nodes at higher level (see Fig. 2.2), and the swarming

phase (the red arrows), e.g., the pull-based streaming from parents at higher level to child

nodes at lower level in a mesh-based overlay. As we can see from Figure 2.2 that the

swarming phase maximizes the utilization of the outgoing bandwidth of the leaf nodes in

the diffusion tree.

Source

Level 1 2

Level 2 5 6 7

Figure 2.2: An illustration of mesh-based P2P streaming.

2.3.3. Community Coding Formulations

In this section, we present community coding formulations to realize P2P media streaming

for application level multicast (ALM).

Let us defme tkas the k'h epoch in time (0 ! k N). Let si, be the number of stripes

used at peer i in the playout of the kthepoch tk (0 i s n -1,05 k < N). Let b/ be the

.... ..................................................



incoming bandwidth limit at node i (0 i n -1) and b,2 be the outgoing bandwidth limit

at node i (0 i n -1). Let /1k denote the number of stripes transmitted from node i to

node j (no other peer nodes inbetween) during the k'h epoch tk. Without loss of

generality, we assume that the media source node is Node o. We further define XiJk as

the decision variable to indicate if there is a transmission from node i to node j (no other

peer nodes inbetween) during the k' hepoch tk. The variable x1 jk is equal to one if there

is a transmission from node i to node j (no other peer nodes inbetween) during the

kth epoch tk, and zero otherwise. Let S denote the number of stripes when encoding the

media source and Rk be the media source rate during the kth epoch tk. Let us define a

decision variable x, which is equal to one if edge e is included in the tree, and zero

otherwise. Let abs(f(x)) denote the absolute value of a function f(x).

2.3.3.1 Multiple Interior-Disjoint Trees

In this section, we present a community coding formulation for the construction of

multiple interior-disjoint multicast trees. The SplitStream scheme in [28] uses multiple

interior-node-disjoint trees to leverage the distribution of P2P streaming to better use the

outgoing bandwidth among participating peers.



Table 2.1: Some notations for the community coding formulation of multiple interior-

node-disjoint trees.

In Table 2.1, we summarize some of the notations used in the community coding

formulation of the multiple interior-node-disjoint trees.

In the scenario of multiple interior-disjoint trees, fk takes a value of either one or zero

as each stripe of the media source is distributed along a different interior-disjoint tree. We

need to defme two additional variables to distinguish constraints among different trees.

We assume that variable xijks is equal to one if there is a transmission from node i to

NOTATION
tk the kth epoch in time

Sjk the number of stripes used at peer i in
the playout of the k'h epoch tk

bl the incoming bandwidth limit at node i

bo the outgoing bandwidth limit at node i

the number of stripes transmitted
from node i to node j (no other
peer nodes inbetween) during
the kt' epoch tk

Xijk the decision variable to indicate if there
is a direct transmission from node i to

node j during the k'h epoch t
k

S the number of stripes when encoding
the media source

Xe the decision variable to indicate if
edge e is included in the tree

Rk the media source rate during the k'h
epoch tk



node j (no other peer nodes inbetween) during the k'h epoch tk along the sthtree, and

zero otherwise. Let us define a decision variable xe,s, which is equal to one if edge e is

included in the sth (1 s S) tree, and zero otherwise.

Given a directed network graph G = (V,E), where V is the vertex set and E is the edge

set, the community coding problem can be formulated as a mixed integer programming

(MIP) problem:

(2.35)
n-1 N

maximize s
i=1 j=1

subject to:

R
k Xfi,j,k b, for0! i n -1, 0 5 k N

S

Rk X fi,j,k b' forO] j n-l, 0 k N
S

Sik f Zfik S, for0 ! i! n -1, 0 k N

fi~~ 1!I for 0! ij! n -1, 0! k! N

n-I

EXiOks 0 , for 0 k N 1!< s ! S
i=0

xi~~ = 0,for 0!! i!!n-1, 0:! k!!N, 1! s! S

n-1

j=1

1, for0 k N, 1 i s i S

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

fi,j,k " f,i,k if xm,i,k,s =1, for 1 5 j # i! n -1,

0 k N ,1 s S (2.43)



n-I n-1

I x = n-l, forO 5 k N,1 I s S (2.44)
i=0 j=1

S n-I

L(min( x ik, l))= ,forO:i n-1,0!k N (2.45)
s=1

Now, let us define A, as a non-empty set ( A, c V ) and E(A,)= {(i, j) e E I (i, j) e A,}.

We have the following constraint to eliminate all cycles:

xe As -1, forAs c V, A, # <D , V (2.46)
eEE(A,)

n-1 N

Z I abs(s _1 -sf 1 ) 1 (2.47)
i=1 j=1

Our objective is to maximize the overall received stream data among all community

members with constrained media playout quality fluctuation (Constraint 2.47) given

limited network resources with multiple interior-disjoint trees. Constraint 2.36 indicates

that the outgoing bandwidth has to be limited by the outgoing link capacity at each peer

node. Likewise, Constraint 2.37 requires that the incoming bandwidth have to be limited

by the incoming link capacity at each peer node. Constraint 2.38 and Constraint 2.39

indicate the number of stripes constraint for playout and traffic flow, respectively.

Constraint 2.40 ensures that there is no flow to the root node (the media source node,

Node 0) in each of the interior-disjoint trees. Constraint 2.41 indicates that no node

transmits to itself. Constraint 2.42 means that at least there is one outgoing flow from the

media source node (Node 0) in each of the interior-disjoint trees. Constraint 2.43 indicates

that the downstream flow from a node is upper-bounded by incoming flow from its parent

node. Constraint 2.44 means that there are exactly n -1 edges in each of the interior-

disjoint trees (we have n nodes). Constraint 2.45 ensures that the final trees are interior-



disjoint. Constraint 2.46 guarantees that there is no cycle in each of the final interior-

disjoint trees. This is due to the fact that this constraint recursively guarantees that the

number of included edges is less than or equal to the number of included vertices minus

one, which eliminates any cycles in the tree [18]. Finally, Constraint 2.47 ensures that the

media playout quality fluctuation among all peers is constrained and the parameter rq can

be set empirically based on user experiences.

2.3.3.2 Mesh-based P2P Streaming

As illustrated in Figure 2.2 that in mesh-based P2P streaming each participating peer node

can have multiple parent nodes, which collectively fill its incoming link bandwidth,

delivering as much sub-streams as possible to the given node. As described in [101,102],

media data delivery is accomplished within two phases: the push-based diffusion phase

and the pull-based swarming phase. We first consider the formation of the diffusion tree,

rooted from the source node to reach every other participating peer node. Then we

construct the swarming relationship among those peer nodes, where the swarming

delivery operations only occur from a leaf node to the intermediate nodes or other leaf

nodes in the diffusion tree.

Besides the notations defined earlier, we have the following additional definitions for

mesh-based P2P streaming. Let f denote the number of stripes transmitted from node

i to node j (no other peer nodes inbetween) during the kth epoch tk along the diffusion

tree. Likewise, let fi1 k denote the number of stripes transmitted from node i to node

j (no other peer nodes inbetween) during the kth epoch tk in the swarming delivery phase



of operations. We assume that variable xTj is equal to one if there is a transmission from

node i to node j (no other peer nodes inbetween) during the kth epoch tk along the

diffusion tree (see Fig. 2.2), and zero otherwise. Likewise, we assume that variable x,k

is equal to one if there is a transmission from node i to node j (no other peer nodes

inbetween) during the k' epoch tk in the swarming delivery phase of operations (see Fig.

2.2), and zero otherwise. Let us defme a decision variable Xe,,T which is equal to one if

edge e is included in the diffusion tree, and zero otherwise.

To facilitate our discussion, we summarize some of the notations in the following table.

NOTATIO_

f T  the number of stripes directly
transmitted from node i to node j
during the k'h epoch tk along the
diffusion tree

jW the number of stripes directly
SJk transmitted from node i to node j

during the k th epoch tk in the
swarming delivery phase

xT the decision variable to indicate if
there is a direction transmission from
from node i to node j during the

k' epoch t k along the diffusion tree

xy the decision variable to indicate if
there is a direction transmission from
from node i to node j during the

kth epoch tk in the swarming
delivery phase

Table 2.2: Some notations for the community coding formulation of mesh-based P2P

streaming.



For the mesh-based P2P streaming, we have the community coding formulation as

follows:

n-1 N

maximize sw
i=1 j=:
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(2.56)

(2.57)=n-1, for 0< k N

Now, let us define A Tas a non-empty set (AT c V) and E(AT) = {(i,j) e E (i, j)e Ar}.

We have the following constraint to eliminate all cycles in the diffusion tree:

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)



Xe ' AT |-1, for AT cVAT# <bD,V (2.58)
eeE(A7)

if X. =1 ,then XT , =0, 1 j# i:n-1,

0 k N (2.59)

if =1 ,then X =0, 1 j#isn-l,

0 k N (2.60)

For the bandwidth per flow ratio constraint for each connection, we have:

if X, =1 or x, = 1, then

abs( ' )k Z +,

1 j# i i n -1, 0 k N, (2.61)

where y is a given parameter.

n-1 N

lzabs(s _, -s, 1 ) (2.62)
i=1 j=1

Our objective is to maximize the overall received stream data among all peers with

constrained media playout quality fluctuation (Constraint 2.62) given limited network

resources in a mesh-based P2P streaming framework. Constraint 2.49 indicates that the

outgoing bandwidth has to be limited by the outgoing link capacity at each peer node.

Likewise, Constraint 2.49 requires that the incoming bandwidth have to be limited by the

incoming link capacity at each peer node. Constraint 2.51 and Constraint 2.52 indicate the

number of stripes constraint for playout and traffic flow, respectively. Constraint 2.53

ensures that there is no flow to the root node (the media source node, Node 0) in both



diffusion and swarming phases. Constraint 2.54 indicates that no node transmits to itself.

Constraint 2.55 means that at least there is one outgoing flow from the media source node

(Node 0) in the diffusion tree. Constraint 2.56 indicates that the downstream flow from a

node is upper-bounded by incoming flow from its parent node in the diffusion tree.

Constraint 2.57 means that there are exactly n-i edges in the diffusion tree (we have

n nodes). Constraint 2.58 guarantees that there is no cycle in the diffusion tree, which is

part of the final mesh-based overlay. This is due to the fact that this constraint recursively

guarantees that the number of included edges is less than or equal to the number of

included vertices minus one, which eliminates any cycles in the tree. Constraint 2.59

indicates that the swarming delivery operation only occurs from a leaf node to other leaf

nodes or intermediate nodes in the diffusion tree. Constraint 2.60 ensures that there is no

swarming delivery operation from a child node to its parent node in the diffusion tree.

Constraint 2.61 means that the bandwidth per flow ratio has to be roughly the same for

each connection in the final mesh-based overlay. Finally, Constraint 2.62 ensures that the

media playout quality fluctuation among all peers is constrained.

2.3.3.3 Contribution-Awareness

To provide tangible incentives to encourage peer nodes to increase their contributions, in

[144] a contribution-aware overlay broadcast framework is presented to ensure that it

distributes more bandwidth to nodes that contribute more.

t
Sijk

a! n- k=0 -I , , 0 i n - 1, 0 t N (2.63)

0 fi,,k
j=O k=O



where a and 8 are threshold parameters to ensure contribution-awareness and the

variable k denotes the k'h epoch in time.

2.3.4. Methods to Solve MIP

The most widely-used approaches to solve the integer programs (IPs) is to intelligently

and efficiently search the solutions to the related linear programs (LPs) and check if the

integer conditions are satisfied.

With appropriate transformations, the presented mixed integer programming formulations

can be converted into the following standard matrix forms:

max c'x+h'y

subject to: Ax + By = b

x(e Z", y >0 (2.64)

where x and y are the decision vectors, matrix A, B and vector b are determined by the

constraints in the formulations.

After the transformation to the above standard matrix form, Gomory cutting plane

algorithm or branch and bound method can be used to obtain the optimal solution based

on the solutions for the corresponding linear programming (LP) problem.

An elastic constraint approach was presented in [111], aiming at increasing the possibility

of finding the feasible solution of the problem. In [59], Glover outlined some key areas for



integer programming including controlled randomization, learning strategies, induced

decomposition and tabu search.

2.3.5. Summary

In this section, we present community coding formulations to realize efficient P2P media

streaming for application level multicast (ALM). In this case, each peer is regarded as a

community member and the utility for each community member is the receiving of the

streamed contents. Community coding is the key to simultaneously satisfy a large group

(potentially hundreds) of peers' needs given limited network resources. The key to our

approach is to cast the P2P media streaming problem as a community coding problem.

P2P media streaming may give rise to a wide range of new and exciting applications in

the environment of community computation. We also discuss the means to obtain the

optimal solution based on the community coding formulations. In addition, we propose

the use of erasure code in P2P streaming. The use of erasure code provides another level

of flexibility and adaptability besides multiple description code (MDC) [62] in that the

users can randomly select a subset of the stripes to reassemble the original media stream

based upon the distribution of the dynamic traffic congestion levels in the network, the

availability of the media contents at other community member nodes, and the incoming

and outgoing bandwidth constraints at each community member node.

2.4. Erasure Codes



Erasure code is special tool for community coding to provide redundancy and failure-

resistance in various application scenarios among a community such as reliable data

transmission and distributed data storage, etc.

2.4.1. Introduction

An erasure code is a mathematical transformation by which a data object of size S bytes

is divided into n fragments of equal sizes (ofS / n bytes), which are then encoded into

n + m total fragments and the reception of any n out of the n + m total fragments suffice

to recover the original data object [75,116,123]. The rate of the coding is determined by

the quantity of n , which is less than one. Erasure codes can be roughly divided into
n+m

two categories: fixed rate erasure code such as Reed-Solomon code [116,117,122], and

rateless erasure code such as fountain code [26,44,45,98]. In general, an erasure code has

a rate parameter, which indicates the transmitted information per bit for the encoded

message. In other words, a rate denotes the fraction of the encoded output blocks required

to reconstruct the original message [104]. An optimal erasure code with a rate of

r transforms a message of n blocks into n / r blocks such that any n of those n / r blocks

are sufficient to recover the original message. Rateless codes have the property that each

message of size n has practically infinite encoding [104]. Essentially, the rate for rateless

codes can asymptotically approach to zero. Notably, LT codes [98], online codes [104]

and the presented community codes in this thesis are all rateless codes.

We say one code is locally encodable if any one encoding block can be computed quickly

and independently of the other encoded blocks [104]. Similarly, we say one code is



locally decodable if the given erasure codes have extremely efficient sublinear-time

decoding algorithm [159].

2.4.2. Reed-Solomon Codes

Reed-Solomon codes [122] are well-known coding techniques for error correction in data

transmission, fault tolerance in data storage systems, etc. For error correction, a Reed-

Solomon code with m message symbols and n = m + 2e code symbols can correct up to

e errors [70]. The decoding algorithm for Reed-Solomon error-correction codes was

discovered by Berlekamp and Welsh [70], who patented it in 1983.

Here we focus on the fault-tolerance (erasure) aspects of Reed-Solomon codes, where a

data object is divided into n fragments of equal sizes, which are then encoded into n + m

total fragments and the availability of any n out of the n + m total fragments suffice to

recover the original data object. There are three main components of the Reed-Solomon

algorithm for the implementation of erasure codes in RAID-like systems, which are the

Vandermonde matrix to calculate and maintain checksum words, the Gaussian

elimination to recover from failures, and the Galois Fields to perform arithmetic [116].

Notably, all the encoded blocks are calculated together, so Reed-Solomon codes are not

locally encodable. All the decoded blocks are also calculated together and the

computation complexity of the decoding process is not sublinear, so Reed-Solomon codes

are not locally decodable.

2.4.3. LT Codes



LT codes (Luby transform codes) are the first class of practical fountain codes that are

near optimal erasure codes invented by Michael Luby [98]. The distinctive feature of LT

codes is its simple algorithm based on the exclusive OR operation (XOR) to encode and

decode message. LT codes are rateless in that the encoding algorithm can in principle

generate an infinite number of encode blocks. For the encoding process, it divides the

message into n blocks, then it randomly pick d (1 d n) of them to perform XOR

operation to generate one encoded block. For the decoding process, it uses XOR

operation recursively to retrieve the encoded message, starting from fully decoded blocks

or the blocks with d =1. LT codes are locally encodable in that each encoded block is

computed independently. LT codes are not locally decodable in that the computation

complexity of the decoding process is not sublinear.

2.4.4. Raptor Codes

Raptor codes were invented by Amin Shokrollahi [134]. Raptor codes are one of the first

known classes of fountain codes with linear time encoding and decoding. A distinctive

feature of Raptor codes, compared with LT codes, is that Raptor codes are formed by the

concatenation of two codes. The outer code is normally a fixed rate erasure code and the

inner code is a form of LT code. The benefit of using LT code as an inner code is that the

conditions for the decoding of the fixed rate erasure code, the outer code, can be relaxed.

In general, concatenated codes are not a new idea and Thommesen addressed

concatenated codes for error correction in [146] in 1987. For the decoding process, the

inner code is decoded first.



2.4.5. Online Codes

In [104], Maymounkov and Mazieres present online codes, which are rateless codes and

it is specifically designed for P2P multi-source big downloads. Online codes aim for the

maximization of the utility of nodes with partial knowledge of a file to each other and the

minimization of the bandwidth during the reconciliation phase to recover the original file.

Online codes share a similar structure to that of LT codes [98] in that they both use the

operation of XOR as the main computation operation for message blocks during the

encoding and decoding process. LT codes have 0(log n) encoding time and

0(n log n) decoding time for a message of length n, while the encoding time and

decoding time for online codes are 0(1) and 0(n), respectively. However, online codes

require preprocessing and LT codes require no preprocessing. Online codes are rateless

codes and they are also locally encodable.

2.4.6. Expander Codes

An expander graph is a graph in which every set of vertices has an unusually large

number of neighbors [136]. One common way to determine if a particular graph is a good

expander is to examine the gap between the largest and the second largest eigenvalues of

the graph. If the second largest eigenvalue is far from the first, then the graph is a good

expander [136].

Sipser and Spielman presented a family of error-correcting codes that are derived from

expander graphs [136] and they termed those codes as expander codes. Expander codes

belong to the class of low-density parity-check (LDPC) codes introduced by Gallager



[54] in early 1960s. To build an expander code, they begin with an unbalanced bipartite

expander graph. Each of the n nodes on the large side of the graph is identified with one

of the bits in a code of length n. They refer to these n bits as variables. Each of the

vertices on the small side of the graph will be associated with a constraint on the

variables. Each constraint indicates a set of linear restrictions on the variables that are its

neighbors. The assumption is that those constraints are linearly independent. Despite the

nice properties of expander codes in terms of encoding and decoding efficiencies, they

are rarely used in practice due to the difficulty to verify the correctness of the constructed

expander graph and the hypothesis of the linearly independent nature of the constraints.

2.4.7. Community Codes

We present a novel erasure code, termed as community codes. The distinguishing feature

of community codes is its algorithm based on simple long binary arithmetic to encode

and decode message. Another feature of community codes is that its encoding process

involves mostly only two blocks and the expansion of distinct encoded block space is

achieved by simple binary operations such as bit-shifting.

For the encoding process, it divides the message into n blocks, then it randomly pick

d (1 d 2) of them based on certain probability to perform simple long binary

arithmetic to generate one encoded block. The probabilities to pick each block are

reshuffled after the completion of each encoded block to ensure that distinct encoded

blocks are generated. For the decoding process, it first looks for fully decoded blocks or

the blocks with d =1 or two encoded blocks that involve the same two original blocks.



Community codes are locally encodable in that each encoded block is computed

independently. Community codes are locally decodable in that the computation

complexity of the decoding process is sublinear due to the fact that on average the

number of inquiries can be as small as two to retrieve one original block.



Chapter 3

Community Storage

3.1 The Overview

Information storage and storage sharing are key components of modern networked

computer systems. In this chapter, we study collaborative storage in P2P systems, where

contributory storage infrastructure is constructed among a group of peer nodes for a

variety of emerging applications. We analyze the design tradeoffs of the collaborative

storage system via concrete application examples in different settings. In this work, we

focus on two main performance metrics: (1) the availability rate for a stored item in

collaborative storage system when a peer node tries to access the given item, and (2) the

uploading and retrieval delay for a stored data object of different sizes in a variety of

circumstances. We experimentally verify the performance and feasibility of the

constructed prototype of a shared e-library with a collection of e-books based upon the

paradigm of collaborative storage in P2P systems, where a number of erasure-code

encoded e-books are spread among a group of peer nodes.

With the ever-growing popularity of the Internet, the expansion of wireless local and

personal area connectivity, the ubiquity of mobile devices, there is a tremendous social

phenomenon of online sharing, either sharing video (like YouTube), pictures (like

Flickr), webcam, or even bandwidth (like BitTorrent), for the benefits a large group of

viewers/peers. Recent advancement in P2P (peer-to-peer) technologies has enabled a

wide range of new applications based upon the online sharing of storage where



contributory storage infrastructure is constructed among a group of peer nodes. In this

chapter we study collaborative storage in P2P systems based on the needs of concrete

application examples such as shared e-library with a collection of e-books, collaborative

offline Wikipedia as well as file backup, etc.

Distributed P2P storage has attracted a great deal of research efforts recently

[2,19,21,22,33,34,39,40,43-45,75,82,123,127,137]. In essence, distributed P2P storage is

to build emerging networked storage services in a P2P fashion based upon contributory

storage from a group of peer nodes in a networked computer system. One common

challenge for such a system is to provide enough redundancy for the stored objects while

minimizing the overall storage overhead. This is due to the fact that peer nodes may not

be always online and storage devices like hard disks could fail. The most common

practice to provide redundancy is accomplished by either replication or erasure code

[2,33,44,45,75,82,117,123,125,127,137,154]. In a typical erasure code scheme, an

original data object of size s bytes is split into n data fragments (often of the same size,

e.g., S /n bytes) and a certain mathematical transform maps n data fragments into n + m

total fragments (n original data fragments and m redundant data fragments) such that

any n encoded fragments out of the n+m total fragments can recover the original data

object [75,116]. We will elaborate more on erasure code in subsequent sections. There

are a number of studies on the performance of replication vs. erasure code [19,125,154]

and we will discuss more on this topic in Section 3.2. Nevertheless, replication can be

viewed as a special form of erasure code of "1 out ofR " if we have R replicas stored on

peer nodes. One notable observation is that unbalanced storage may occur if some files



are very large and some files are very small for the replication scheme if the operation

unit is a file for storage on one peer node, compared with the erasure code approach.

In order for such a collaborative storage system to be highly useful, it has to guarantee a

reasonable availability rate for a stored object when peer nodes are trying to access the

given object. Here, the availability rate means the probability of the event that a peer

node is able to successfully access a given data object stored in the distributed

collaborative storage system. Moreover, the delay to upload an object to peer nodes or to

retrieve a stored object from peer nodes has to be reasonably small, otherwise, the users

may choose to renege from the system.

In this chapter, we examine the engineering design tradeoffs for such systems regarding

availability rate and uploading/retrieval delay. We conduct quantitative and qualitative

experiments to verify the performance and feasibility of the constructed prototype of a

shared e-library with a collection of e-books based on the collaborative storage paradigm.

3.2. The Related Work

The early work by R. Anderson in [6] envisioned the construction of a storage medium

for the eternity service with the property of being able to withstand denial of service

attacks to safeguard the availability of the data. The basic idea is to use redundancy and

scattering techniques to replicate data across a large set of machines and add anonymity

mechanisms to drive up the cost of selective denial of service attacks to assure the

availability of stored data.

In [43], Dimakis et al present methods on how to use random linear network coding to

achieve the lower bounds on bandwidth that is required to maintain any distributed



storage architecture. They also derive necessary and sufficient conditions on the amount

of data that a newcomer has to download in order to generate a new erasure code

fragment.

In [30], Chakrabarti et al discovered that the information survival threshold in a P2P

network depends not only on the link and node fault probabilities but also on the largest

eigenvalue of the connectivity matrix of the given P2P network. They use non-linear

dynamical systems and fixed point stability theorems to derive a closed-form formula for

the information survival threshold in P2P networks under dynamic network conditions

with nodes' ups and downs. In [40], Datta and Aberer analyze the steady-state behavior

of Internet-scale P2P storage system under churn (with rapid node joins and leaves) and

they conclude that given a fixed rate of churn and a specific maintenance strategy, the

system operates in a corresponding steady-state, e.g., dynamic equilibrium.

Availability issue for distributed storage systems was studied in [19,21,125]. In [19],

Bhagwan et al presented TotalRecall, a P2P storage system that automates the task of

availability management. The presented TotalRecall system automatically measures and

estimates the availability of its constituent host components and predicts their future

availability based on past behaviors. In [21], Blake and Rodrigues address reliable

storage systems in P2P networks and the challenges they face. They conclude that large-

scale cooperative storage is limited by likely dynamics and cross-system bandwidth, not

by local disk space. In [125], Rodrigues and Liskov studied high availability issues in

DHTs (distributed hash table) and compared two popular redundancy schemes:

replication and erasure code. They conclude that in some cases the benefits of erasure

coding are limited due to the complexity introduced by erasure coding to the system (the



complexity of encoding/decoding process and the redundancy maintenance). In this work,

we will particularly investigate the encoding/decoding delays introduced by Reed-

Solomon code in a variety of circumstances for the applications that we are concerned

with.

The availability of a stored item in the P2P storage paradigm is always negatively

affected by disk failures. Recent study on disk failures [115] reveals that annual disk

failure rate ranges from 1.7% to 8.6%, which is much higher than the listed annual disk

failure rate of 0.88% by the manufactures. Another recent study on disk failures in [130]

also found that annual disk replacement rate exceeds 1%, with 2-4% common and up to

13% on some systems. Both studies in [115,130] observe that time between failures

exhibit strong auto-correlation and long-range dependence. Another work on latent sector

errors in disk drives in [8] focused specifically on latent sector errors (errors that go

undetected until the corresponding disk sectors are accessed) with large scale disk

samples, , and analyze their implications on the design of reliability of storage systems.

In our analysis of availability rate in P2P storage systems, we will consider the factor of

disk failures.

The seminal work Pond in [123] was the first realization of the Oceanstore concepts

presented in [82]. It touches many aspects of an Internet-scale, persistent data store

including location-independent routing, Byzantine update commitment, push-based

update of cached copies, etc. In [123], the authors also reported retrieval delay

measurement but the erasure code encoding/decoding process is performed on a 42-

machine cluster, which may not be a common practice for the applications that we are

concerned with in this chapter. In this chapter, we report Reed-Solomon encoding and



decoding delay measurements based on the process on individual peer nodes with

different computing capabilities, e.g., different CPU speed and/or different memory

space, for the shared e-library application that we are concerned with based upon the P2P

collaborative storage paradigm.

The work on transparent file system (TFS) for contributory storage [34] aimed at

removing barriers to contribution in P2P collaborative storage systems. TFS is designed

to avoid impacting the performance of ordinary file access operations and provides

significant improvement on storage efficiency compared with a user-space storage

mechanism.

Rowstron and Druschel addressed storage management and caching in PAST [127],

where a large-scale, P2P storage utility is constructed. PAST is built on top of P2P

routing and lookup substrate and aims at scalability, self-organization, and persistence for

Internet-scale P2P storage. In PAST system, redundancy is achieved by purely replicating

data files, leaving the consideration of erasure code as its future directions. The

cooperative file system (CFS) in [39] was intended as a file sharing medium. CFS is

block-oriented and each block is stored on multiple nodes to provide redundancy. A

conventional UNIX-like file system is layered on top of CFS. CFS is built on top of

Chord (a P2P lookup mechanism based on DHT - distributed hash table), which

maintains routing tables to find blocks. Another distributed P2P storage work based on

DHT in [137] is intended for a cooperative off-site backup system. It uses Information

Dispersal Algorithm (IDA) for its erasure code to provide redundancy. We refer

interested readers to [127,39,137] for details due to limited space.



In [69], Haeberlen et al presented the storage system of Glacier to deal with correlated

failures in distributed storage systems.

In this chapter, we focus on the availability rate analysis, uploading/retrieval delay

analysis and experimental measurements for two emerging applications -- the shared e-

library and collaborative offline Wikipedia in the framework of collaborative storage in

P2P systems.

3.3. On the Choice of Erasure Codes

As discussed earlier, an erasure code is a mathematical transformation by which a data

object of size S bytes is divided into n fragments of equal sizes (ofS / n bytes), which are

then encoded into n+m total fragments [75,116,123]. The rate of the coding is

determined by the quantity of n , which is less than one. Erasure codes can be
n+m

roughly divided into two categories: fixed rate erasure code such as Reed-Solomon code

[116,117,122], and rateless erasure code such as fountain code [26,44,45,98]. LT (Luby

Transform) code is the first realization of fountain code. In the following discussion, we

use LT code [98] as an example of rateless erasure code.

There are several subtle performance differences between fixed rate erasure code and

rateless erasure code, which are: (a) for fixed rate erasure code like Reed-Solomon code,

it is guaranteed that any n fragments out of the n + m total encoded fragments suffice to

recover the original data object; for rateless erasure code like LT code, it gives

probabilistic guarantee that any n fragments out of the n + m total fragments can recover

the original data object in that on average a slightly more than n fragments out of the



n + m total fragments are needed to recover the original data object; This is due to the

fact that for LT code the n + m total encoded fragments may not be distinct, depending on

the degree distribution function [98]; (b) for fixed rate erasure code, all of the n + m total

encoded fragments are encoded together; while for rateless erasure code, each of the

n + m total encoded fragments is encoded independently; For rateless erasure code like

LT code, it could generate infinite number of encoded fragments for a given data object

because of the independent encoding nature for each encoded fragment, which may be an

ideal property for packet/message recovery in communication system. (c) LT code (a

rateless erasure code) employs a very simple algorithm based on XOR (exclusive OR)

operation to encode and decode a data object; Reed-Solomon code (a fixed rate erasure

code) uses Vandermonde matrix calculations, Galois field arithmetic as well as Gaussian

Elimination techniques for encoding/decoding processes, which is much more complex

than that of LT code. If the erasure code parameter n + m and/or the data object size are

very large, then the encoding/decoding process of Reed-Solomon code will be very slow.

We will elaborate more on this in our experimental measurements for encoding/decoding

delay of Reed-Solomon code with a number of e-books of different sizes in Section 6. (d)

For LT code, a degree d (1 d n) is chosen at random, which determines the number

of fragments from the original n data fragments that are going to be XOR-ed to generate

a new encoded fragment. The performance of LT code largely depends on the degree

distribution function on which the random number of degrees is determined. Assume that

a data object is divided into n fragments of equal sizes, which are then encoded into

n + m total fragments. The maximum number of distinct encoded fragments according to

LT code based on the XOR operation among different original fragments is 2" -1. If the



condition of( n+ m>> 2" -1) holds, then a lot of encoded fragments might happen to be

the duplication, in which case the performance of LT code must deteriorate as it has to

fetch much more than n encoded fragments to recover the original data object due to the

duplication of encoded fragments. Notably, an erasure code requires n distinct fragments

in order to recover the original data object.

As we discussed earlier in Chapter 2, the community codes that we presented are rateless,

locally encodable and locally decodable.

3.4. Availability Analysis

We first give a brief overview on two of the emerging applications (shared e-library and

collaborative offline Wikipedia) based on collaborative storage paradigm in P2P systems,

which are the central threads of our discussions throughout this chapter.

3.4.1. Shared e-Library

Our vision for a shared e-library among a group of peer nodes is as follows. We take an

array of small, periodically accessible, individual computers/peer nodes and create a

secure, reliable and large distributed storage system. The goal is for each one of them to

act as if they have immediate access to a pool of information, e.g., a shared e-library with

a collection of e-books, that is larger than they could hold themselves, and into which

they can contribute new stuff, e.g., uploading new e-books to the system, in a both open

and secure manner. The more peer nodes you can reach, the larger the e-library you can

access. When there is a collection of materials such as the whole collection of American

literature that is used by more than one person, it is far more efficient to use people as the



redundant elements than it is to store duplicate copies of the information in each peer

node's machine. We assume that peer nodes may enter and leave the e-library network

randomly, and we make different parts of the e-library available, depending on which

peer nodes are operating.

There are different approaches to realize the above vision of a shared e-library. The first

approach, say Approach A, is to store different e-books on different peer nodes. For

this approach, anyone can read a given e-book provided that they can reach that peer

node where that e-book is stored. The second approach, say Approach B, is to split any

e-book into pieces and encode those pieces with erasure code to add redundancy and

distribute those encoded pieces among a group of peer nodes. In this case (with

Approach B), anyone can read a given e-book as long as a small group of peer nodes are

reachable (the number of required peer nodes is determined by the erasure code

parameters). In our prototype implementation, we adopted Approach B due to the

following reasons: (a) for Approach A, if a peer requests an e-book that is stored at node

X and node X is not currently reachable for this peer, then this peer is stuck; for

approach B, even if node X is not reachable for this peer, he may still be able to fetch

enough encoded segments for this e-book from other peer nodes and recover the given e-

book; we call this "higher availability" advantage for Approach B. (b) For approach A,

it will likely cause unbalanced storage if some e-books are very large and some e-books

are very small. We call this "better-balanced storage" advantage for Approach B. (c)

For approach A, if some e-book is very popular like "Harry Potter", then the peer node

who stores the given e-book will be overwhelmed. For approachB, it leads to better

network load balance as it spreads the load among several nodes that stored the encoded



fragments of that e-book. We call this "better network load balance" advantage for

Approach B.

According to M. Hart, the founder of project Gutenberg [75], an average US public

library has about 30,000 books, which can be transformed into an e-library of 12

Gigabytes in zipped file format, assuming each e-book has one million characters. With

the growing availability of e-books and the decreasing of the price of storage devices, it is

possible for the people to own the civilization, instead of for the civilization to own the

people [75]. With the advancement of collaborative storage techniques in P2P systems, it

is very possible for the materialization of people's ambition to be the true possessor of

the civilization even if an individual peer node may not have enough disk space.

3.4.2. Collaborative Offline Wikipedia

Wikipedia is an on-line encyclopedia with free content, written collaboratively by

volunteers worldwide. It is probably one of the best examples of free information sharing

for millions of people around the world so long as they have Internet access. However,

the Internet connectivity may not be always available for rural countryside areas, places

in poor countries, or for people who are on the road. Inspired by the offline Wikipedia

project by T. Tsiodras [148], we consider the problem of collaborative offline Wikipedia,

where the whole Wikipedia (of the size of 2.9 Gigabytes in a compressed form for the

English version up to Aug. 27, 2007) are collaboratively stored over a group of peer

nodes where the connectivity to the Internet is not available but the connectivity among

the group of peer nodes is readily available, e.g., peer nodes equipped with WiFi

capabilities can communicate among themselves in WiFi ad hoc mode. For example, if a

group of friends go to mountain areas for an outing or a group of colleagues are on a



business trip, it would be nice if they can still search information using collaborative

offline Wikipedia platform with their laptops in WiFi ad hoc mode, provided that each of

the laptops only needs to contribute a small amount of storage space (compared with

more than 12 Gigabytes space requirement in uncompressed form for English version

only if it is stored at one single machine).

Compared with the shared e-library application, collaborative offline Wikipedia presents

unique challenges due to the much bigger size of the whole Wikipedia file compared with

an e-book and the associated content search/inquiries within the entire Wikipedia.

3.4.3 Availability Analysis

In the following analysis, we assume that the total number of peers in the given P2P

collaborative storage system is N. We also assume that a data object is divided into

n fragments of equal sizes, which are then encoded into n + m total fragments using

Reed-Solomon code. As mentioned earlier, the availability rate means the probability of

the event that a peer node is able to successfully access a given data object stored in the

distributed collaborative storage system. Let p stand for the online probability of a peer

node when other peers are trying to access data stored on this given peer node. Let

f denote the disk failure probability. For the sake of simplicity, we also assume that so

long as a peer node is online, the information stored on its dedicated space for

collaborative storage is retrievable by other peers. We will not discuss the corresponding

authentication and authorization mechanisms due to limited space.



We analyze availability rate in two different scenarios: Scenario A: not every peer has an

encoded fragment for a given stored data object, i.e., n + m < N; Scenario B: every peer

has an encoded fragment for a given stored data object, i.e., n + m = N.

3.4.3.1 Scenario A: n + m < N

For Scenario A in which not every peer has an encoded fragment for a given stored data

object, i.e., n + m < N, the availability of a stored data item not only depends on which

peers are available (only peer node with an encoded fragment of the given data item

matters) but also on how many of these peers (with a distinct encoded fragment of the

given data item) are available.

A. The shared e-library case:

Regarding the availability rate for a stored data item using Reed-Solomon erasure code

with parameters of ( n, n + m) in the shared e-library case, we have the following closed-

form formula:

m+n-1 (N(

Av -rate= 1 - I i x(1-I)(N-i) i XC- ( m _ _ m+n--

i=O j=0

where 2 n<N, 1 m<N, m+n<N,0 f,p 1. (3.1)

The first part of the formula, e.g., (1(1 - p)(Ni) x p' )), means that we need

to find n + m peers from the total number of N peers to store the corresponding encoded

fragments for a given data object in the first place. The second part of the formula means

that after the storage of the n + m encoded fragments on n + m peer nodes (one per peer



node), we need to retrieve n fragments out of the total of n + m encoded fragments in

order to recover the original data object.

There are two possible reasons why a peer is not online: (a) its disk fails; (b) its disk is

functional but it is not online. On the other hand, if a peer is online, its disk must be

functional.

The numerical results for the shared e-library case are shown in Fig. 3.1~3.3, where n is

equal to 10 and N is equal to 100.

When the condition of (N >> n+m) holds and for a reasonable value ofp, say p > 0.5,

the first part of the formula, e.g., (1 - (N x (1- p)(N-i) Xpi )), is very close to I

and the 2nd part of the formula dominates the outcome.

We show the availability rate vs. different number of redundant fragments, e.g., m, in a

variety of circumstances in Fig. 3.1-3.2. In Fig. 3.1, we assume that the peer online

probability is 0.8. In Fig. 3.2, we assume that the peer online probability is 0.7. These

values may be reasonable as most people have the similar kind of work schedule in the

sense that when a peer is trying to access data stored on other peer nodes, they are mostly

online due to the similar work schedule.

From Fig. 3.1-3.2, we can see that as m goes up, the availability rate for a given stored

data item increases. This is due to the fact that a bigger m means more redundant



fragments for a given stored data object. In particular, when the redundancy rate is up to

around 80%, e.g., m = 8 and n = 10, the availability rate of a given stored data item is

more than 99% for a reasonable disk failure rate, e.g., f = 1%, and a reasonable peer

online probability, e.g., p = 0.8. We also observe that the smaller the disk failure rate, the

higher is the availability rate for a given stored data object. Compared with Fig. 3.1, the

availability rate slightly goes down in Fig. 3.2 with the same settings due to a smaller

peer online probability. High online probability of the peer nodes is the key for P2P

collaborative storage applications when a peer tries to access data stored on other peer

nodes. Otherwise, we have to increase the data redundancy. It is a tradeoff between

storage space overhead and the online probability of peer nodes in order to achieve high

data availability rate in P2P collaborative storage systems.
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Figure 3.1: The availability rate with p =0.8, n =10, N=100 and m =- 10 .
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Figure 3.2: The availability rate with p = 0.7, n = 10 , N= 100 and m = 1 10 .

Figure 3.3 shows the tradeoff between per-node upload capacity and the availability rate.

In this example, we assume that each node dedicates 500 Mbytes for collaborative

storage. As we can observe that when per-node upload capacity goes up, the availability

rate for a stored data item goes down due to the decrement of the number of redundant

fragments. For the same availability rate, as peer online probability goes up, per-node

upload capacity also increases.
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Figure 3.3: Tradeoff between upload capacity and availability rate with f =0.02, n =10,

N=100,and m=1-10.

B. The fie backup case:

It is reported that on average nearly 90% of the hard disk space is free for today's

enterprise desktop PCs. Thus, there is tremendous economic incentive to use

collaborative storage paradigm for file backups instead of using dedicated highly

expensive backup servers/disks.

Regarding the availability rate for a stored data item using an erasure code with

parameters of (n,n+m) in the file backup case, we have the following closed-form

formula:

Av rate= 1-f x [1-(1- ( x (1- P)(N-i) X Pi

i=oi

...............



n-1 m

x(1- I ( .~ )((1- f) xp)j x(1- (1-f) xp)'"*"-))]

j=o 1

where 2 n <N, 1 m< N, m+n <N,0 5 f, p s 1. (3.2)

If a stored file is not available, it has to be the case that both the original disk fails and the

backup version stored on the peer nodes can not recover. The second part of the formula

(the part starting with f x [1-(1-...) indicates the quantity of the disk failure probability

times the probability that the back up version stored on the peer nodes can not recover.

The availability rate follows by subtracting the above quantity from one.

The corresponding numerical results are shown in Fig. 3.4-3.6. We see similar trends

compared with the results in Fig. 3.1~3.3. However, compared with the results in Fig.

3.1-3.3 for the shared e-library case, we observe that the availability rate is slightly

higher for file backup case with the same settings. This is due to the fact that a peer node

itself has a local copy of the original data object and the data stored on other peer nodes

are just for backup purpose.
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Figure 3.4: The availability rate for file backup case withp = 0.7, n =10, N =100 and

m=1~10.
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Figure 3.6: Tradeoff between upload capacity and availability rate for the file backup

case withf =0.02, n =10, N=100 , and m= I- 10 .

C. How many bad peers attribute to a really bad situation?

In this subsection, we intend to answer the following question: with the consideration of

some uncooperative (bad) peers who might have deleted some fragments stored at their

nodes for a given stored data item and have never shown up again, what the availability

rate for that stored data item is going to be?

Let w denote the number of bad peers. For the shared e-library case, we have

Av rate =(1- ( X (1 -P)(N-i) X pi ))X(1
=0

n-1mn-

I( .~n ((1- f) xP) X(1-(1 -f) xP)''M"~-w))

o= ( 1W

.. .. .................................................................................................................. .................................



where 2 n<N, 1 m<N, m+n<N, 0 w!m+n, 0 f,p1. (3

The first part of the formula, e.g., (1 - ( x (1- p)(Ni) p' )), means that we need
= i

to find n + m peers from the total number of N peers to store the corresponding encoded

fragments for a given data object in the first place, which is the same as the first part in

Eq. 3.1. The second part of the formula, e.g., (1-

n-I m+n-w mnw
I ( (.(1 -(1-f)x p)'"*-WI)) , means that after the storage of the

n + m encoded fragments on n + m peer nodes (one per peer node), we need to retrieve n

fragments out of n + m - w encoded fragments after excluding w bad ones in order to

recover the original data object. Essentially, Eq. 3.1 is a special case of Eq. 3.3 with the

condition of w =0.

For the file backup case, we have

m+n-1

Av-rate=1I- f X [1-(1 ( (1- (IP)(N-i)~ )Xi _

ii=0

where2 n<N, 1 m<N, m+n<N, 0 w:m+n, 0f,p 1. (3.4)

Compared with Eq. 3.2, Eq. 3.4 means that after the storage of the n+mencoded

fragments on n + m peer nodes (one per peer node), we need to retrieve n fragments out

of n + m - w encoded fragments after excluding w bad ones in order to recover the

(3.3)



original data object. Essentially, Eq. 3.2 is a special case of Eq. 3.4 with the condition of

w =0.

The corresponding numerical results are shown in Fig. 3.7 and Fig. 3.8. Fig. 3.7 shows

the results with one bad peer for the shared e-library case with p = 0.8, n = 10, N = 100

and m = 1 10 . Fig. 3.8 shows the results with one bad peer for the file backup case with

the same settings as that in Fig. 3.7. Essentially, the curve is a shifted version to the right

by the number of bad peers compared with the case without bad peers. Clearly, the more

data redundancy, the more bad peers the system can tolerate. By comparing Fig. 3.7 and

Fig. 3.8, we also observe that the impact by bad peers for the shared e-library case is

more severe than that for the file backup case as a peer node in the file backup case has a

local copy of the original data object on its own storage.
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Figure 3.7: The availability rate for the shared e-library case with one bad peer

andp =0.8, n=10,N=100 and m=l-10.
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Figure 3.8: The availability rate for the file backup case with one bad peer and p = 0.8,

n=10,N=100 and m=1-10.

3.4.3.2 Scenario B: n + m = N

Let us take the shared e-library as an example and analyze how to maximize the

availability rate of all e-books given limited storage space and predefined preference

levels (dictated by the availability of the required number of peers in order to view an e-

book) for each e-book. In this scenario, to view an e-book does not depend on which

peers are available but only on how many peers are available because every peer has an

encoded fragment for a given stored data object.

Depending on the importance of an e-book or how frequently it will be used, we may

choose different erasure code parameters in the sense that the number of required peers'

availability may vary for different e-books in order to view the given e-books. For
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example, one may only needs the availability of one other peer node in order to view an

important e-book, in which case the erasure code only requires an encoded fragment from

one other peer node and one local encoded fragment to recover the original data object.

For an unimportant e-book, one may need to retrieve 10 encoded fragments from 10 other

peer nodes in order to view the given e-book. The problem is how to maximize the

availability rate of all e-books in the collaborative storage system given limited storage

space and predefined preference levels for each e-book.

Let N be the total number of peers in the collaborative storage system and L be the total

number of e-books to be stored on those peer nodes using collaborative storage paradigm.

Let d, (1 i N) stand for the available storage space in bytes at ithpeer node for this

joint effort of collaborative storage among those peers. Let b. (1 < i! L) indicate the size

of the i' e-book in bytes. In terms of the erasure code parameters, we assume that

n, + m, = N (1 i L) and n, is always greater than one, where at least (n, -1) peers'

availability is required in order to view the i' e-book (note that one encoded fragment is

always available from the local node itself). The value of ni is determined by the

importance of the e-book for the peers. The more important of an e-book, the fewer

peers' availability is required in order to view the given e-book. The problem is how to

maximize the total availability rate of all the e-books given limited storage resources and

predefined preference levels for each e-book. We further define v.(1 <is L) as a

variable to indicate the required number of peers' availability in order to view the i' e-

book. Another way to view this problem is how to minimize the required number of



peers, e.g., v, (1 i L ), in order to view the given e-books, given predefmed preference

levels, which are dictated by the set of parameters { n , n2.. n... nL } that is given a

priori. The optimization problem can be formulated as follows:

L

minimize v, (3.5)
i=1

subject to:

1 v, n, -1 , 1 i L (3.6)

Lb&

d, 1 j N (3.7)

Constraint (3.6) indicates the value range for each vi. Constraint (3.7) ensures that the

storage quota for the collaborative storage effort at each peer node is not surpassed. We

will further explore this optimization problem with concrete numerical examples as one

of our future directions.

We also assume that the online probability for each peer node is p. Without the

consideration of disk failure rate the availability for the ith e-book when a peer tries to

view it is then given by

v-1

Av _rate= 1- .K XP' x(1-p)N-i (3.8)
i=0

The corresponding numerical results are shown in Fig. 3.9 and Fig. 3.10. Fig. 3.9 shows

the results withn+m=N, n=1~10andN=20. Fig. 3.10 shows the results

withn+m=N, n=1-10andN=40.



Compared with the case of n+m<N, this one has much higher availability rate due to

much more redundancy in that each peer has stored an encoded fragment for a given data

object. With the same setting, the bigger value of N, the higher is the availability rate.

When N is reasonably large, e.g., N =40, even the peer online probability is very low,

say p = 0.3, the availability rate to view a given stored item is still very high with a

reasonable data redundancy level.
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Figure 3.10: the availability rate for the share e-library case with n+m= N , N=40 and

n=1~10.

3.5. Delay Analysis

We characterize the delay aspects of collaborative storage in P2P systems into two

categories: the uploading delay and the retrieval delay. Let b stand for the size of a given

data object in bytes and the erasure code parameter is (n, n + m), where any n out of

(n+m) encoded fragments are required to recover the original data object. Let 1,

(1 i n + m) stand for the uploading link speed in bits per second for the th fragment

between the uploading/retrieving node and the corresponding peer node to/from which

the uploading/retrieving node is trying to upload/retrieve the ith fragment (the thselected

fragment in the retrieval case) of the given data object. Notably, the uploading delay

consists of the preprocessing delay (mainly the encoding delay of the erasure code for the

..... ..... ........ ....... .. ....... ..... ..



given data object), the transmission delay to transmit all (n+m) encoded fragments as

well as the corresponding propagation delay and queueing delay. On the other hand, the

preprocessing delay for retrieval involves the decoding delay of the erasure code for the

given data object. Let d(n, n + m, b),, denote the processing delay for the erasure code to

encode a data object of the size of bbytes with the parameters of (n,n+m). Let

d(n, n + m, b)dec stand for the processing delay for the erasure code to decode a data

object of the size of b bytes with the parameters of (n,n+m). Let dpindicate the

propagation delay from the uploading/retrieving node to the peer node where the

ith fragment (the i'h selected fragment in the retrieval case) of the given data object will be

uploaded/retrieved to/from. Let dq, represent the queueing delay during the transmission

of the i' fragment (the i'h selected fragment in the retrieval case) of the given data object.

Assuming sequential uploading, we have

"+'" 8 xb /n
dseq upld d(n,fn+ m,b)enc+ ( +d J+dq,) (3.9)

Note that the first term is the preprocessing delay of the encoding of the given data object

with erasure code, the second term is the sum of the transmission delay, propagation

delay and queueing delay to sequentially upload each fragment to the corresponding peer

node. The factor of 8 in the second term indicates the conversion from byte to bits.

Assuming parallel uploading, we have

dpri _upid = d(n,fn+m,b),nc +

max ( + dJ + dq,) (3.10)
lisn+m i,



Accordingly, the retrieval delay can be summarized as follows. Assuming sequential

retrieval, we have

dseqrtv = d(n,n+m,b)dec +

" 8xb/n
(+ dp,, + dqj) (3.11)

Assuming parallel retrieval, we have

dpr, rtv = d(n,n+m,b)de, +

8xb/n
max( +d, + d ) (3.12)
1 i!n 1 iqi

Notably, in the retrieval process only n fragments are involved instead of (n+m)

fragments for the uploading process.

Additionally, we also need to consider the delay to open the e-book reader. For example,

in our experiments we use Mozilla browser as an e-book reader to open html files of

those e-books. Sometimes, it takes a short while (in the order of several seconds) to open

the Mozilla browser. It is desirable to use a light-weighted e-book reader instead of a full-

featured web browser.

In general, the term of propagation delay is relatively small and queueing delay largely

depends on the dynamic network traffic conditions. With the popularity of high-speed

Internet and the continued trend of increased link speed (for example, the link speed for

the new WiFi standard of 802.1 In offers raw data rate up to 300 Mbps [155]), we expect

that the preprocessing delay due to erasure code will be a dominant factor in a long run.

Of course, when the file is very large, transmission delay is also noticeable.



Also, for collaborative offline Wikipedia, it may add one or more RTT (round trip time)

among peer nodes to the total delay due to content search/inquiries within the entire

Wikipedia.

As mentioned earlier, due to the huge size of the Wikipedia file with entire contents

(2.9Gbytes in compressed form for the English version only by Dec. 2007), it is not

feasible to encode/decode the whole Wikipedia file with Reed-Solomon code as it will be

extremely slow due to the memory requirement and the processing overhead of the

erasure code. In the following, we take collaborative offline Wikipedia as an example to

analyze how to minimize the preprocessing delay imposed by this emerging application.

As mentioned in [148], we can use the bzip2recover tool (part of bzip2 distribution) to

recover the individual parts of this compressed file. Basically, bzip2 splits its input into

blocks of 900 Kbytes (by default), and compresses each of them individually.

Bzip2recover seeks out the signature that identifies the beginning of each block, and

dumps each block it finds as an individual file. With the help of the bzip2recover tool, we

can convert the huge downloaded .bz2 file into a large set of smaller files, each of which

is individually uncompressible. The problem is that the delay to encode/decode a 900

Kbytes file with Reed-Solomon code may be still large (see the experimental results in

Fig. 3.11-3.17), depending on the erasure code parameters as well as the CPU speed of

the peer node. As we will see from the experimental measurements in Section 3.6

regarding the encoding/decoding delay of Reed-Solomon code, the delay is still more



than 10 seconds for a 900 Kbytes file with reasonable erasure code parameters on

reasonably fast machines. Notably, bzip2 has nine options in terms of the block sizes

when compressing a file, which are 100 Kbytes, 200 Kbytes, ... , 900 Kbytes (with the

option of "-1" meaning the choice of 100 Kbytes block size and 900 Kbytes is the default

block size). With this in mind, we could download the entire contents of Wikipedia file of

the size of 2.9 Gbytes in compressed form (the block size is 900 Kbytes), uncompress it

and recompress it by setting a reasonable block size for a reasonable preprocessing delay.

We will encode the small files with Reed-Solomon code and spread the encoded

fragments of each individual files among the peer nodes. When a file is requested, we

first need to retrieve enough encoded fragments from peer nodes, decode it and recover it,

then uncompress it.

In the following, we show how to optimize the block size of bzip2 for a reasonable

preprocessing delay with Reed-Solomon code while the total number of small files is not

too large in that too many small files add more complexity to calculate and maintain the

index for content search within the entire Wikipedia.

Let N be the total number of peers in the collaborative storage system and W be the file

size of the entire Wikipedia in bytes. The erasure code parameter is (n, n + m), where any

n out of (n+m) encoded fragments suffice to recover the original data file. In terms of

the erasure code parameters, we assume that every peer node has an encoded fragment

for a given small file, i.e., n + m = N . Let / stand for the block size in Kbytes for bzip2

when compressing a file. Let d(n, n + m,b),,, and d(n, n + m, b)dec denote the encoding



delay and decoding delay for the erasure code with parameters of (n, n + m) for a file of

b bytes respectively. Let F be the limit of the total number of small files. Let D denote

the limit of the encoding/decoding delay. The optimization problem can be formulated as

follows:

minimize / (3.13)

subject to:

1 e {100,200,...,900} (3.14)

W ; F (3.15)
1 x1024

d(n, N,1x1024)enc s D (3.16)

d(n, N,1x1024 )dec < D (3.17)

Constraint (14) indicates the value options for the variable I. Constraint (3.15) ensures

that the total number of small files is limited. Constraint (3.16) and Constraint (3.17)

means that the encoding /decoding delay to encode/decode the given small file of /

Kbytes has to be smaller than D. We will further explore this optimization problem with

concrete numerical examples as one of our future directions.

3.6. Experiments

We conduct two a series of quantitative measurements of the encoding/ decoding delay

using Reed-Solomon code for a set of e-books with different erasure code parameters in a

variety of circumstances. The large delay due to costly computation by Reed-Solomon

code during the encoding and decoding process is one of the main reasons for the

development of our fast and computationally much less-demanding erasure code, the

community codes.



In the first part of the experiments, we repeated the same test for five times on the same

machine and the results are very close for the same test with the same settings as

environment is little changed on the same machine. In total, we conducted 600 runs of

experiments in terms of encoding and decoding delay measurements. Our shared e-

library prototype is written in Python and the precision of Python's time.clocko is in the

order of microsecond. The Reed-Solomon codes implementation is based upon the open

source code by Emin Martinian. The Reed-Solomon encoding/decoding is performed on

three different types of machines with different computing capabilities. The three types of

computers are: computers of relatively low-end with 1GHz CPU and 1 Gbytes memory;

computers of middle-end with 1.8 GHz CPU and 2 Gbytes memory and computers of

relatively high-end with 3.2 GHz CPU (dual core) and 3 Gbytes memory.

The sizes of the e-books used in the experiments are shown in Fig. 3.11, where the e-

book sizes are in the order of Kbytes (ranging from 24 Kbytes to 704 Kbytes). The

encoding and decoding delays in a variety of circumstances are shown in Fig. 3.12~3.17.

We need to emphasize that the e-book sequence in the e-book size figure (Fig. 3.11) is

the same as those appeared in Fig. 3.12-3.17 in terms of encoding/decoding delay of

those e-books.

The results with Reed-Solomon code of 3-out-of-10 are shown in Fig. 3.12-3.14. The

results with Reed-Solomon code of 14-out-of-20 are shown in Fig. 3.15-3.17. In general,

the bigger of the e-book size, the bigger is the encoding/decoding delay with Reed-

Solomon code with the same settings. We also observe that the bigger value of m, the



longer is the delay for encoding in that more computation is needed to calculate more

redundant fragments. On the other hand, the bigger value of n, the longer is the delay for

decoding in that more computation is needed to recover the original n data fragments in

order to reconstruct the original data object. In general we observe that the encoding

delay is slightly larger than the decoding delay counterpart for Reed-Solomon code in all

the tests we have performed with a variety of settings.

We notice that the retrieval delay reported in [123] is much smaller than the results we

are reporting here. The seemingly disparity in terms of processing delay is caused by the

dramatically different test setup in that a 42-machine cluster is used for the reconstruction

of the file object in the test setup in [123] while we use only one single machine to

perform the encoding/decoding of Reed-Solomon codes. For the applications that we are

concerned, the encoding/decoding processes are most likely to be performed on a single

machine of a peer node.

Figure 3.11: The sizes of the ten e-books used in the experiments.
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Figure 3.12: the encoding and decoding delay with n= 3, n + m = l0on a computer with

1 GHz CPU and 1 Gbytes memory.

Figure 3.13: the encoding and decoding delay with n = 3, n + m =10 on a computer with

1.8 GHz CPU and 2 Gbytes memory.
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Figure 3.14: the encoding and decoding delay with n =3, n + m = l0on a computer with

3.2 GHz CPU and 3 Gbytes memory.

Figure 3.15: the encoding and decoding delay with n =14, n + m =20 on a computer

with 1 GHz CPU and 1 Gbytes memory.
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Figure 3.16: the encoding and decoding delay with n =14, n + m =20 on a computer

with 1.8 GHz CPU and 2 Gbytes memory.

Figure 3.17: the encoding and decoding delay with n = 14, n+ m = 20 on a computer

with 3.2 GHz CPU and 3 Gbytes memory.
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3.7. Prototypes

We build a shared e-library prototype based on the community storage paradigm with a

group of network nodes.

Figure 3.18: the shared e-library prototype with a collection of e-books.
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We conduct a series of qualitative experiments on the availability of e-books in the

shared e-library prototype based on collaborative storage paradigm.

We repeatedly verify the availability of a set of e-books based on the collaborative

storage paradigm by intentionally disconnect some of the peer nodes from the Internet

(making it unavailable). We build a user interface of the prototype that one can browse

the stored e-books with e-book cover image icons. For a given e-book, if there are

enough peers online, i.e., one can retrieve enough encoded fragments to recover the

original e-book, the e-book icon glows. On the other hand, if there are not enough peers

online, i.e., one can not retrieve enough encoded fragments to recover the original e-

book, the e-book icon grays out. We intentionally and selectively disconnect some of the

peer nodes from the Internet, the availability of the e-books are always as what we

expected. If we re-connect some of the peer nodes to the Internet, once there are enough

encoded fragments for a given e-book that one can retrieve, the icon of the given e-book

then turns into glowing again from graying out.



The Project Gitenberg eBook, The Begines
Amecan History, by D1. H. MontgNry

Title: The Beginner's American History

Author D. H. Montgomery

Release Date: April5, 2006 felook #18M27I

Languag; English

Character set encoding: ISO68591

*START OF THE PROJECT GUTENBERG EBOOK THE BINNER'SAMERICAN STORY*

.t prp, iy --... S..

Figure 3.19: an e-book is reassembled and displayed.
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Figure 3.20: the collaborative offline Wikipedia prototype.

The community members are not only able to access all the contents of Wikipedia by

providing a small portion of the total required storage even if they do not have the

Internet access, they can also easily contribute articles and share annotations of the

articles among the community.

................. .......... - ...



In the following we show some empirical results in terms of the overhead (the retrieval

delay in this example) when the number of required encoded blocks to reconstruct the

original data object varies. In the example shown in Fig. 3.21, we assume that there is a

data object of 1 Mbytes and the link speed is 3Mbps on average. The number of required

encoded blocks to reconstruct the original data object ranges from 3 to 200. We assume

that sequential retrieval is used for downloading the required blocks from other

community member nodes. As we discussed earlier that the retrieval delay consists of the

transmission delay, processing delay and queueing delay. For the sake of simplicity, we

assume that the processing delay is in the form of (0.5 second + block size/Mbytes/sec)

and the queueing delay ranges from 10 ms to 1 second.

Fig. 3.21 shows the retrieval delay for a varying number of required encoded blocks for a

data object of 1 Mbytes. As we can observe from Fig. 3.21 that when the number of

required encoded blocks increases, the overhead in terms of the retrieval delay also

increases accordingly. Therefore, it is very important to consider a reasonable number of

required encoded blocks when we use erasure code to encode the given data object to be

stored on the community storage system. If the number of required encoded blocks is too

small, the level of distribution and the level of load balance could be limited. If the

number of required encoded blocks is too large, the overhead in terms of retrieval delay

could be intolerable for the community members who use this system to upload and

retrieve contents.
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Figure 3.21: the retrieval delay for a varying number of required encoded blocks for a

data object of 1 Mbytes.

3.8. Summary

In this chapter, we investigate the availability rate and uploading/retrieval delay in P2P

collaborative storage systems, where contributory storage infrastructure is constructed

among a group of peer nodes for the sake of high availability and storage efficiency. In

particular, we focus on two emerging applications: the shared e-library with a collection

of e-books and collaborative offline Wikipedia based on the collaborative storage

paradigm among a group of peer nodes. For these two compelling applications, it is often

burdensome to put the whole contents on one single node but collectively a group of peer

nodes can hold the entire contents easily, each of which only needs to contribute a small

amount of its own storage space. We take into account disk failure rate and peer online
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probability as well as erasure code parameters when deriving the availability rate for a

stored data object in the collaborative storage system.

Due to the popularity of high-speed Internet and the continued trend of increased link

speed, we believe that the dominant factor of uploading/retrieval delay will be the

encoding/decoding delay imposed by erasure code. We conduct extensive experiments on

the encoding /decoding delay of Reed-Solomon code in a variety of circumstances. As we

can see from the experimental results that Reed-Solomon code must be performed with

an input of a reasonably-sized data object/block in order to avoid substantial delays. For

example, an ideal size for a data object/block with a reasonable Reed-Solomon code

parameters (say 14-out-of-20) should be less than 200 Kbytes with a commodity

computer (say 3.2 GHz CPU) for a tolerable delay (say 5 seconds for decoding).

The large delay due to costly computation by Reed-Solomon code during the encoding

and decoding process is one of the main reasons for the development of our fast and

computationally much less-demanding erasure code, the community codes.

Finally, we want to thank Emin Martinian for his open source code of the Reed-Solomon

codes in Python.
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Chapter 4

Community Sensing

The challenge here is how to aggregate the information sensed by various sensors around

us to live in a better world as a community. It is reported that in 2008 there are more than

4 billion people in the world carrying a cell phone, typically with Bluetooth, cameras, etc.

In particular, we are interested in the community computation aspects of a group of

image sensors.

4.1 View Coverage

In this section, we study the probabilistic view coverage problem for image sensing with

a community of image sensors in wireless sensor networks. The view coverage of an

image sensor network determines the quality of the surveillance services that an image

sensor network can provide. In this chapter, we present an indepth analysis on

probabilistic view coverage in an image sensor network, where omnidirectional image

sensors are randomly dropped to a given field and the locations of the image sensors may

not be immediately known. We intend to answer the following question: if we randomly

drop a given number of image sensors into a targeted field, what is the probability that a

given area of interest can be effectively imaged and view-covered. The key to our

analytical approach is to cast the probabilistic view coverage problem in wireless image

sensor networks as a geometric one and then use the geometric techniques to find the

solution. The analysis in this chapter provides probabilistic assurance of the view
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coverage that one can expect for random dropping of omnidirectional image sensors into

a given field.

4.1.1. Introduction

As image sensing emerged as a hot research topic, the view coverage problem of an

image sensor network with random dropping of image sensors, one of the fundamental

issues for image sensor networks, has yet to be well explored. The view coverage of an

image sensor network determines the quality of the monitoring services that an image

sensor network can provide. With the advent of omnidirectional image sensors [157],

image sensing has enabled a wide range of new applications such as object identification,

localization and detection, etc.

Existing work on coverage problems in wireless sensor networks focuses on the sensing

coverage issues. The seminal work by Meguerdichian et al in [106] addressed the best

sensing coverage problem in a sensor network using computational geometry techniques

to find the best support path where the region of interest and the locations of the sensors

are known a priori. Recent work in [10] studied a new type of sensing coverage problem

in wireless sensor networks, termed as barrier coverage, where the sensors form a barrier

for the intruders in a given belt region. In [10], Balister et al further derived the critical

density needed to achieve barrier coverage and/or connectivity in such thin strips of finite

length.

While the sensing coverage problems [10,106] in wireless sensor networks have all been

well explored, little has been known for the scenarios of probabilistic view coverage on

some strategic spots within a given region such as boundaries and corners with random
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dropping of omnidirectional image sensors. In a hostile environment, e.g., battlefields,

hazardous areas, forests, mountains, etc., where sensors can not be deployed manually,

random dropping of sensors to a given targeted area is required and the locations of the

sensors may not be known. In this chapter we focus on the probabilistic view coverage of

an image sensor network with random dropping of omnidirectional image sensors.

4.1.2. The Related Work

In the seminal sensing coverage work by Meguerdichian et al [106], the authors presented

an optimal polynomial time algorithms that uses Voronoi diagram and Delaunay

triangulation techniques to solve the best support path and the maximal breach path

problems across a given sensor field where the locations of the sensors are known a

priori. In [96], Liu et al showed that mobility improves sensing coverage of wireless

sensor networks. In [152], Wang et al examined the sensing coverage problem in hybrid

networks with both static and mobile sensors. They addressed the trade-offs between

mobility and density for sensing coverage in wireless sensor networks. In [131], the

authors considered a grid-based sensor network and they derived necessary and efficient

conditions for the grid network to cover a given region.

The work in this section is partly motivated by the ringtoss game described in [83] by

Larsen and Marx. Players throw a ring onto a grid of squares. If the ring touches no lines,

then the player wins a prize. In [56], the authors analyzed the redundancy of sensing

areas in a wireless sensor network to achieve energy efficiency by minimizing the

redundant sensing areas covered by neighboring sensors.
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As we address the problem of probabilistic view coverage of omnidirectional image

sensors, to some extent the work in this chapter is also related to the packing of spheres

[52,138]. As described in [138], the densest packing of identical circles in two

dimensions is the hexagonal lattice packing (Appendix E), which is equal to 0.9069. It is

known that optimal packing and covering in the plane are NP-complete [52].

4.1.3. Probabilistic View Coverage

In hostile and hazardous environments, e.g., battle fields or areas with biochemical

hazards, image sensors have to be dropped into the fields of interest remotely and

randomly and the locations of the dropped sensors may not be immediately known as the

hostile environment may hinder the arrangement of communications. To understand the

quality of surveillance in the above situations, we need to know the probabilistic

assurance of the view coverage for a given area of interest that one can expect, in

particular for some strategic spots like boundaries and corners.

4.1.3.1. The Model

An omnidirectional image sensor allows everything around the image sensor, i.e., full-

circle 360 degree, to be imaged within a range [157]. Without loss of generality, we

assume each omnidirectional image sensor can effectively detect an object of a given

size, say s, within some distance from it, which is termed as the effective view coverage

radius throughout this chapter. We also assume that all image sensors in the network are

homogeneous with the same image sensing radiuses. If an object of a given size is too far
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away, it could become a single pixel on the image, which does not contain enough

information to identify the given object. Of course, the area of view of a given image

sensor is always affected by the line of sight such as obstacles, topography and other

conditions like the weather (fogs, raining, snow), etc. In the following analysis, we will

consider flat terrain of a given area under normal weather conditions. The situation under

extreme conditions can be approximated from that of normal ones. Recent work in [84]

presents a framework for Bayesian analysis of light field projections, which could be

used to infer view coverage of image sensors under extreme conditions. We determined

this as one of our future directions.

4.1.3.2. View Coverage in a Disk Field

In the first scenario, we consider a circular field with a radius ofR , where

Nhomogeneous omnidirectional image sensors are to be randomly deployed. Each

image sensor has an effective view coverage radius of r, meaning for an object of a given

size, say s, it can be effectively detected by the image sensor within the circular area

centered at the image sensor with a radius of r. We assume that an image sensor's

effective view coverage area is far smaller than the disk field, i.e., r << R. Throughout

this chapter, we always assume that an image sensor is a point in the plane and an image

sensor's effective view coverage is a circular area centered at the image sensor with a

radius of r in the plane. Regarding the image sensor's effective view coverage in the

given disk field, we have the following observations.
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Proposition 4.1.1: Define A as the event that all of the Nrandomly-dropped image

sensors' effective view coverage falls within the circular disk field, and we have

Pr{ A} (Rr))N (4.1)
R

As Illustrated in Fig. 4.1, if an image sensor's effective view coverage falls within the

circular field with a radius of R , then the sensor has to fall within the shaded area, i.e.,

the inner circular area with a radius of (R - r). The probability that a randomly-dropped

sensor's view coverage falls within the disk field is the ratio of the shaded area of the

inner circle and the area of the disk field, i.e., - r)2  (R - r)2  Thus if all of the
2d R2

N image sensors' effective view coverage falls within the disk field, the probability is

(R 2 )N , assuming that the dropping

concludes the proof of Proposition 4.1.1.

of each image sensor is independent. This

Figure 4.1: An illustration of the image sensor coverage.
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Now let us define that event A, stand for the case that the ith image sensor's effective view

coverage falls within the disk field without overlapping with other sensors' coverage.

Lemma 4.1.2: Regarding the probability that all of the N image sensors' effective view

coverage fall within the disk field without overlapping among one another, we have

(R -r2 -i 1)2
Pr(A, fA 2f ...f AN} (Rr)2 i1)r (4.2)

To see this, we have

Pr{A, n A2 n A3  ... AN}

= Pr{AN A,1A2 ... AN-1 Ix...xPr{A 2 I 1 xPA 1}

ff(R -r) 2

=Pr{AN IAA 2 ... fAN-1} ... xPrA2 A}X 2
rR2

Pr{AN I AlA 2 f...fAN x... r(R-r)2 -_7r2  r(R-r)2

s r{N 2"' N-1 Iz2 2

ix(R - r)2 -xr(N -1I)r 2 x )(R - r)2 -11Y2 x (R - r)2
<__x...x_ x

2 2 2

N (R - r) 2 - (i - 1)r 2

iR 2

This concludes the proof of Lemma 4.1.2. Essentially, Lemma 4.1.2 provides an upper

bound on the probability that all of the N image sensors' effective view coverage fall

within the disk field without overlapping among one another.

4.1.3.3. View Coverage in a Grid Field

Inspired by the ringtoss game described in [96], next we consider a rectangular m xn grid

field (see Fig. 4.2.a), where the edges of the grid units consist of possible moving routes
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of targeted objects that may traverse this given area. Let / stand for the length of the edge

of the small square grid unit and r denote the radius of the effective view coverage area

by each omnidirectional image sensor. Assume N image sensors are randomly dropped

to the given grid field.

Proposition 4.1.3: If I 2r, the event that each image sensor's effective view coverage

touches edges in the grid field is always true. Define H as the event that all of the

N omnidirectional image sensors' effective view coverage touches no edges with / > 2r,

and we have

Pr{ }=l-2r 2N
Pr H}I=( 12r) 2N(4.3)

The rationale behind Proposition 4.1.3 is illustrated in Fig. 4.2.b. If an image sensor's

effective view coverage falls within the grid unit field with an edge length ofl, then the

sensor has to fall within the shaded area, i.e., the inner square area with an edge length

of(I - 2r). The probability that a randomly-dropped image sensor's effective view

coverage falls within a grid unit field is the ratio of the shaded area of the inner square and

the area of the grid unit field, i.e., (- 2r)2 Thus if all of the N image sensors' effectivethe reaof he gid nitfie12

view coverage fall within grid unit fields without touching of the edges with / > 2r, the

probability is ( 2 )N _ 2r) 2 N, assuming that the dropping of each image sensor

is independent from the droppings of other sensors. This concludes the proof of

Proposition 4.1.3.
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4.2.a: The grid field. 4.2.b: Sensor's view coverage in a grid unit.

Figure 4.2: The grid field and the randomly-dropped image sensors' effective view

coverage.

Figure 4.3 shows different view coverage scenarios with different ratio values between

the edge length of the grid unit field, i.e.,1, and image sensor's effective view coverage

radius, i.e., r, which will be used in the illustration of the following lemmas regarding the

image sensors' effective view coverage of the conjunction points, i.e., the corners in the

grid field, which may be regarded as strategic positions in the field. It might be of more

importance for an image sensor to cover a corner in the field than part of a grid unit edge.

In Fig. 4.3, the outer squares in each of the six sub-graphs depict the grid unit field and a

%-circle is drawn with each of the four vertices of the grid unit field as its center to

illustrate image sensors' effective view coverage scenarios.
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In the following, we give a formal definition of the coverage symmetry rule (CSR).

Definition: If a circle centered at point X with a radius of r can cover a pointY, then a

circle centered at point Y with the same radius of r must be able to cover point X.

Without loss of generality, we call it the coverage symmetry rule. Throughout this

chapter, we will repeatedly use this observation in the proof of some analytical results.

Proposition 4.1.4: Define H'as the event that all of the N omnidirectional image

sensors' effective view coverage touches no corners in the grid field withl > 2r, we have

12 _ 2

Pr{ H'} =( 12 (34

As illustrated in Fig. 4.3.a, if an image sensor's effective view coverage touches no

conjunction points, then the sensor has to fall within the central shaded area, i.e., the inner

area in the grid unit field with the exclusion of four -circles. This observation is obvious

due to the coverage symmetry rule. The probability that a randomly-dropped sensor's

effective view coverage touches no corners is the ratio of the inner shaded area and the

2 2

area of the grid unit field, i.e., . Thus if all of the N image sensors' effective view

2 2

coverage touches no corners in the grid field with 1 > 2r, the probability is ( 2 N

assuming that each image sensor is dropped independently. This concludes the proof of

Proposition 4.1.4.
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4.3e: -- r <l s r 4.3.f: l -r
2 2

Figure 4.3: Image sensors' effective view coverage scenarios with different ratio values

between land r .
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Lemma 4.1.5: Define E as the event that all of the N omnidirectional image sensors'

effective view coverage touches no corners in the grid field with NFr <l< 2r, and we

have

l2 -1_r2 + 4r 2 arccos(l /2r) - 2lr sin(arccos(l /2r)) N

Pr{ E}--( ,2 ) (4.5)

As illustrated in Fig. 4.3.b, if an image sensor's effective view coverage touches no

corners, then the image sensor has to fall within the central shaded area in the grid unit

field. The probability that a randomly-dropped image sensor's effective view coverage

touches no corners is the ratio of the central shaded area and the area of the grid unit field.

Based on trigonometry, the ratio of the central shaded area and the area of the grid unit

2 -)r2 + 4r 2 arccos(l / 2r) - 21r sin(arccos(l / 2r))
field is calculated as 2-

Thus if all of the N image sensors' effective view coverage touches no corners in the grid

field with fr < / < 2r, the probability is

12- r2 + 4r 2 arccos(l / 2r) - 21r sin(arccos(l / 2r)) N assuming that each image sensor

is dropped independently. This concludes the proof of Lemma 4.1.5.

Lemma 4.1.6: Define G as the event that each of the N omnidirectional image sensors'

effective view coverage touches two corners in the grid field with hr <1< 2r, and we

have

4r 2 arccos(l/2r) - 2rsin(arccos(l/2r)))N (4.6)
Pr{ G } =1 2)(46
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As illustrated in Fig. 4.3.b, if an image sensor's effective view coverage touches two

corners, then the sensor has to fall within any of the four leaf-like overlapping areas by the

-circles centered at each of the four vertices of the grid unit field. The probability that a

randomly-dropped image sensor's effective view coverage touches two corners is the

ratio of four leaf-like overlapping areas and the area of the lattice unit field. The sum of

the four leaf-like overlapping areas in Fig. 4.3.b is

8(uZr 2 arccos(-)/ 2z - 1/2 x r sin(arccos(-)) / 2). The ratio of the four leaf-like
2r 2r

overlapping areas and the area of the lattice unit field is equal to

4r 2 arecos(l / 2r) - 2lr sin(arccos(l / 2r)).
a2 Thus if all of the N image sensors' effective

view coverage touches two corners in the grid field with rJr <I < 2r , the probability is

4r 2 arccos(l / 2r) - 21r sin(arccos(l / 2r)) N assuming that each sensor is dropped

( ~2 ) ,asmn htec esri rpe

independently. This concludes the proof of Lemma 4.1.6.

Lemma 4.1.7: Withl = Vir, the event that each of the N omnidirectional image sensors'

effective view coverage touches corners is always true. Define G'as the event that each of

the N image sensors' effective view coverage touches two corners in the grid field

withl= Vr, and we have

Pr{ G' ( 1)N (4.7)
2

As illustrated in Fig. 4.3.c, withl = hr the event that each of the N image sensors'

effective view coverage touches corners is always true. This is due to the coverage
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symmetry rule (CSR). It is also shown in Fig. 4.3.c that if an image sensor's effective

view coverage touches two corners, then the image sensor has to fall within any of the

four petal-like shaded areas in the grid unit field. The probability that a randomly-dropped

sensor's coverage touches two corners is the ratio of the four petal-like shaded areas and

the area of the grid unit field. The ratio of the four petal-like shaded areas and the area of

A7 12 _ 12

the grid unit field is equal to -2 2 -1. Thus if each of the N image sensors'
1 2

effective view coverage touches two corners in the grid field with / = -5r, the probability

is (- " 1)N , assuming that each image sensor is dropped independently. This concludes the
2

proof of Lemma 4.1.7.

Corollary 4.1.8: Define G as the event that each of the N omnidirectional image sensors'

effective view coverage touches one and only one corner in the grid field withl = -v2-r,

and we have

Pr{G 0} = (2 (48)
2

As illustrated in Fig. 4.3.c and discussed in Lemma 4.1.7, withl = NVir the event that a

randomly-dropped image sensor to a grid field covers corners is always true. Further, a

randomly-dropped omnidirectional image sensor to a grid field covers either one corner or

two corners with l = vJir, depending on the landing areas in the lattice unit field. This is

again due to the coverage symmetry rule as we discussed before. From Lemma 4.1.7, we

obtain that the probability of the event that a randomly dropped image sensor's effective
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view coverage touches two corners in the grid field with 1 = -Fhr is (-T - 1). Therefore, the
2

probability of the event that a randomly dropped image sensor's effective view coverage

touches one and only one corner in the grid field with l= 2r is 1- 1), i.e., 2--
2 2

The result follows for N independently-dropped omnidirectional image sensors.

Lemma 4.1.9: Define M as the event that each of the N omnidirectional image sensors'

effective view coverage touches one and only one corner in the grid field with r < 1 < -r,

and we have

Pr{M}=4Ni2Pr{ M 4 = 4N(r) [sin(- - arccos(r2 4))( + Cos(
1 4 2 4

arccos( l/r)))--+arecos( . /r)]N
2 4 2

(4.9)

The proof of the lemma is given in Appendix A.

Lemma 4.1.10: Define M as the event that each of the N omnidirectional image sensors'

effective view coverage touches exactly four comers in the grid field with r < <Vr,

and we have

2 1
Pr{ M }=( 2 (2r 2 ( arccos(-l/r)

2
- )-l(r sin(arccos(-l /r))

4 2

(4.10)

The proof of the lemma is given in Appendix B.
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Lemma 4.1.11: Define M as the event that each of the N omnidirectional image sensors'

effective view coverage touches exactly three corners in the grid field with r < 1 <-r5,

and we have

Pr{ M } = ((4(r 2 arccos( -l/r) - / rsin(arccos(-l/r))) -
2 2 2

4 r (2 r (arccos(- l/ r) -- ) - F21 sin(arccos( l//r) 1)))/2 )N (4.11)
2 4 2 4

The proof of the lemma is given in Appendix C.

Corollary 4.1.12: Define M as the event that each of the N omnidirectional image

sensors' effective view coverage touches exactly two corners in the grid field

with r < / < -r , and we have

Pr{ ]V1 } = (1 -(Pr{f })l/N1N _(Pr{ I )1IN

(Pr{ M })I/N )N (4.12)

As illustrated in Fig. 4.3.d, the effective view coverage of a randomly dropped

omnidirectional image sensor to the grid field with r <l< NF3r has four possible

scenarios: (1) it covers one and only one corner (see Lemma 4.1.9); (2) it covers exactly

two corners; (3) it covers exactly three corners (see Lemma 4.1.11); (4) it covers exactly

four corners (see Lemma 4.1.10). From Lemma 4.1.9~4.1.11, the result follows

for N independently-dropped image sensors.
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Lemma 4.1.13: Define Was the event that that each of the N omnidirectional image

sensors' effective view coverage touches more than four corners in the grid field

with--r < 1 i r, and we have
2

2/ 1 /2 )/2)
Pr(W) ((4r2 (arccos( )--)-2(rsin(arccos( ))-l/2))/l2 N (4.13)

r 4 r

The proof of the lemma is given in Appendix D.

In Fig. 4.3.f, we illustrate a -circle centered at the left lower vertex of the grid unit field

with r > -51. As we can see that with r >> 1 an omnidirectional image sensor's effective

view coverage could touch many corners of the grid field and we do not discuss further

due to limited space.

Theorem 4.1.14: There is a rectangular mxn grid field that consists of mn square units

(see Fig. 4.2.a). Each randomly-dropped omnidirectional image sensor can cover one and

only one square unit, assuming that the physical size of the sensor is much smaller than its

effective view coverage area. In order to cover all of the mn square units in the grid field,

the expected total number of randomly-dropped image sensors has to be O(mn ln(mn)).

Proof: the expected number of randomly-dropped image sensors for the 1lt covered

square unit is 1. The expected number of randomly-dropped image sensors for the 2 "d

covered square unit is mn as the probability that a randomly-dropped image sensor
mn-I

mn-i
covers a square unit other than the 1st covered square unit is . Similarly, the

mn
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expected number of randomly-dropped image sensors for the kth covered square unit

is mn . So, in order to cover all the mn square units, the expected total number of
mn - (k -1)

randomly-dropped sensors (ETS) is

mn m
ETS = mn (4.14)

,=1 mn -(-1

We also have (see Appendix F)

1 1 1 1
1 +-I+... +-I=1x1+-Ix1+...+-IX1

2 n 2 n
n+1 I(4.15)

~ dx=lnx|"*=ln(n+1)-In1=ln(n+1)~ Inn
i=1 X

From (4.14), by bringing the term mn to the front we have

1
ETS=mn (4.16)

j=1 mn -(i -1)

Define a new variable j to replace (imn - (i -1)) and Equation (4.16) can be rewritten as

'1
ETS=mnZ- (4.17)

j=mn I

Equation (4.17) can be further rewritten as

"" 1
ETS=mn - (4.18)

]=1I

From Equation (4.15) and Equation (4.18), we have

n 1
ETS = mn -=0(mn ln(mn)) (4.19)

]=1 I

This concludes the proof of Theorem 4.1.14.
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4.1.4. Numerical Results

In Fig. 4.4, the number of randomly-dropped omnidirectional image sensors, i.e., N,

ranges from 1 to 10 in this illustration. From Fig. 4.4, we can see that the bigger value of

the ratio between the radius of the circular field, i.e., R and the radius of an image

sensor's effective view coverage, i.e., r, the more likely that all of the N randomly-

dropped image sensors' effective view coverage fall within the circular disk field with the

same value of N. On the other hand, the smaller of the value of the number of image

sensors, i.e.,N, the more likely that all of the Nrandomly-dropped image sensors'

effective view coverage fall within the circular disk field with the same ratio of R / r.

When N is equal to one and the value of the ratio of R / r goes to infinity (R is far greater

than r), the probability of the event A defined in Proposition 4.1.1 will asymptotically

approach to one.

In Fig. 4.5, the number of randomly-dropped omnidirectional image sensors, i.e., N, also

ranges from 1 to 10. From Fig. 4.5, we can also see that the bigger value of the ratio

between the length of the edge of the square grid unit field, i.e., 1 and the radius of an

image sensor's effective view coverage, i.e., r, the more likely that all of the N randomly-

dropped image sensors' effective view coverage touches no edges in the grid field

with / > 2r for the same value ofN. On the other hand, the smaller of the value of the

number of image sensors, i.e., N, the more likely that all of the Nrandomly-dropped

image sensors' effective view coverage touches no edges in the grid field withI > 2r for

the same ratio of / / r. When N is equal to one and the value of the ratio of 1 / r goes to
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infinity (1 is far greater than r), the probability of the event H defined in Proposition 4.1.3

will asymptotically approach to one.

Compared with Fig. 4.5 regarding the effective view coverage of the edges of the grid

field, we see similar trends in Fig. 4.6 regarding the view coverage of the corners in the

grid field. We observe that the bigger value of the ratio between the length of the edge of

the square grid unit field, i.e., I and the radius of an image sensor's effective view

coverage, i.e., r, the more likely that all of the N randomly-dropped image sensors'

effective view coverage touches no corners in the grid field with 1 > 2r for the same value

of N. On the other hand, the smaller of the value of the number of image sensors, i.e., N,

the more likely that all of the N randomly-dropped image sensors' effective view

coverage touches no corners in the grid field with / > 2r for the same ratio of / /r . When

N is equal to one and the value of the ratio of / / r goes to infinity (1 is far greater than r),

the probability of the event H'defined in Proposition 4.1.4 will asymptotically approach

to one.

Fig. 4.7 and Fig. 4.8 illustrate the trend of the probability of the event regarding the

effective view coverage of the corners in the lattice field withl=,Vir. Notably,

with / = NFEr the probability that an image sensor's effective view coverage touches two

corners is a constant, i.e., -1, independent of the value of lor r. Likewise,
2

with 1 = V-fr the probability that an image sensor's effective view coverage touches one

and only one corner is also a constant, i.e., 2--, independent of the value of lor r. As
2
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we can observe from both Fig. 4.7 and Fig. 4.8 that the larger the value of the number of

randomly-dropped sensors, i.e., N, the less likely that all of the N randomly-dropped

image sensors' effective view coverage touches either two corners or only one corner. As

N goes to infinity withl = NF2r, the probability of the event G'defined in Lemma 4.1.7

and the event G defined in Corollary 4.1.8 will both asymptotically approach to zero.

Finally, we illustrate the trend of the probability of the event regarding the view coverage

of all grid field units presented in Theorem 4.1.14 in Fig. 4.9. In this illustration, without

loss of generality we consider that m is equal to n, i.e., square grid fields. In Theorem

4.1.14, we assume that each randomly-dropped sensor can cover one and only one lattice

unit field. According to Theorem 4.1.14, in order to view-cover all of the m2 grid field

units, the expected total number of randomly-dropped omnidirectional image sensors

becomes m2 ln(m 2 ), i.e., 2m 2 In(m). As we can observe from Fig. 4.9 that with the

growing of the number of grid field units, the expected total number of randomly-dropped

image sensors to view-cover all the grid field units grows almost linearly, which is due to

the counter effects of the square function of M 2 , and the logarithm function of ln(m).
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Figure 4.4: Numerical results for Proposition 4.1.1. The x-axis indicates the value of the

ratio between R and r . The y-axis is the probability of event A defined in Proposition

4.1.1.

Figure 4.5: Numerical results for Proposition 4.1.3. The x-axis indicates the value of the

ratio between land r. The y-axis is the probability of event H defined in Proposition

4.1.3.
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Figure 4.6: Numerical results for Proposition 4.1.4. The x-axis indicates the value of the

ratio between land r. The y-axis is the probability of event H'defmed in Proposition

4.1.4.

Figure 4.7: Numerical results for Lemma 4.1.7. The x-axis indicates the value ofN. The

y-axis is the probability of event G'defmed in Lemma 4.1.7.
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Figure 4.8: Numerical results for Corollary 4.1.8. The x-axis indicates the value ofN.

The y-axis is the probability of event G defined in Corollary 4.1.8.
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Figure 4.9: Numerical results for Theorem 4.1.14. The x-axis indicates the value of mn,

i.e., the total number of grid field units. The y-axis is value of the expected total number

of randomly-dropped omnidirectional image sensors (ETS).
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4.1.5. Summary

In this section, we present an indepth analysis on the probabilistic view coverage problem

in wireless sensor networks with random droppings of omnidirectional image sensors. We

assume that each image sensor is randomly dropped to a targeted field and the locations

of the sensors may not be immediately known, where hostile environments such as

battlefields or hazardous circumstances may hinder the arrangement of communications.

We derive the probability of view coverage assurance in a variety of circumstances using

the coverage symmetry rule, geometric techniques and applied probability. We also

derive that if a randomly dropped image sensor can cover one and only one grid unit field,

the expected total number of randomly dropped image sensors has to be O(mn ln(mn)) in

order to cover all of the mn grid unit fields.
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4.2. Image Data Aggregation

In this section we address the problem of efficient image data aggregation in community

sensing. We present a novel framework of photo tourism [139] via wireless image sensing

with a group of image sensors. We address several of the key challenges to achieve Photo

tourism experience efficiently and effectively in this new platform. For example, we

present efficient algorithms and protocols to minimize the overall communication loads

during the image data aggregation process among images collected from a group of image

sensors to reduce the redundancy before sending the aggregated image data out to the

remote Photo tourism center. We also build image sensor prototypes with commodity

cameras to demonstrate it. Essentially, we propose to conduct clustering and data

compression at the sensor network level for the sake of reducing communication cost and

energy consumption, instead of doing it at the Photo tourism stage.

4.2.1. Introduction

Photo tourism is developed by Microsoft and the University of Washington to transform

regular digital photos into 3D and 360-degree experience [139]. On Aug. 20, 2008,

Microsoft officially released Photo tourism to the public, allowing users to upload their

images and create their own Photo tourism experience. The Photo tourism technology

works in two steps [139]: the first step is to analyze multiple photographs taken of the

same area; the second step is to intelligently display and navigate through the 3D point

cloud offeatures identified in the first step. In this work, we envision a novel framework

to create even "richer" Photo tourism experience from images automatically generated by

wireless image sensors, even for some humanly inaccessible places.
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With the advent of image sensors with wide field of view (180 ~ 360) [4,5,157], the

advancement of image processing and computer vision techniques (image segmentation,

motion estimation, etc.) [147], the improvement of low power image sensing

technologies, wireless image sensing has enabled a wide range of new applications.

Nowadays, image sensors are being used widely in defense, homeland security,

entertainment, biomedical, education and scientific communities. In this chapter, we

envision wireless image sensors with wide field of views, where nearly everything around

the image sensor to be imaged within a range [4,5,157].

In this work, we present a novel framework to create even "richer" Photo tourism

experience via wireless image sensing with a group of image sensors, in particular for

some places like remote deserts, mountain pinnacles, hazards areas, even battleground

fields, where image sensors can not be placed manually. In the above scenarios, image

sensors have to be dropped to the given area remotely and randomly. Those image sensors

self-organize themselves into a network to accomplish some tasks like location

estimation, time synchronization, image data aggregation and image data transmission,

etc., cooperatively. We address several key challenges in this new platform. We just list a

few as follows:

e How to aggregate the image data in such a way that the overall communication

load among all image sensors is minimized while maximizing the number of common

feature points among images from nearby image sensors during image data aggregation

process?
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0 How to maximize the lifetime of the image sensor network given limited energy

resources equipped at each image sensor node?

e How to construct the Photo tourism experience with images obtained from the

image data aggregation process in a simple and efficient way?

We present a distributed algorithm in tackling the first two challenges in two steps. The

first step is to remove the redundant images before image data aggregation. The basic idea

is that if one image sensor's field of view is already covered by images from its

neighboring image sensors, the image from that sensor is no longer valuable from Photo

tourism perspective at a later stage. The second step is to choose several supersensors

among all image sensors in the network as local image data aggregation leaders based on

multiple factors, which include the Euclidean distance among image sensors, the residual

power at each image sensor, the network distance among image sensors, as well as the

communication channel conditions among image sensors. In the image data aggregation

process, a supersensor broadcasts the information of its own image data and all thefeature

points, say f s, in its image data to its cluster members to take advantage of the wireless

broadcast advantage (all of the intended receivers within the communication range can

get the data with one single transmission) and each cluster member will send back only

the difference of the image data (the shift values offeature points positions, say, 4f, s, if

any in the overlapping area as well as the image data in the non-overlapping areas) to the

corresponding supersensor for aggregation. In some sense, the problem of choosing

several supersensors as local image data aggregation bases is related to the domain of

clustering techniques [53], but none of them is directly applicable to the problem we are
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addressing, that is the minimization of the overall communication load among all image

sensors while maximizing the number of common feature points during the image data

aggregation process. Moreover, we need to take into account multiple factors as we

mentioned earlier. To some extent, the minimization of communication load and the

minimization of energy consumption are coupled in that more communication load often

leads to more energy consumption at image sensor nodes.

For the third challenge, the choosing of supersensors as local cluster heads also facilitates

the construction of the Photo tourism experience at the later stage. The images from the

local cluster heads serve as the bases for the construction of Photo tourism experience. All

we need to do is to reconstruct the images with common feature points to reset (f, + Aft )s

and feed all the images into the interpolation process by Photo tourism.

The major contribution of this work is the presentation of a novel framework for Photo

tourism via wireless image sensing with a group of image sensors in order to achieve even

"richer" and "up-to-date" experience with images taken and uploaded automatically and

remotely, for some places that are even humanly inaccessible. As the old saying goes, the

most beautiful scenes are often observed from some dangerous vantage points, which are

usually humanly inaccessible. Imagine that if we can randomly drop some image sensors

to some mountain pinnacles or remote deserts, this type of platform would enable us to

get "fresh" and "up-to-date" 3D and 360-degree experience of the beautiful scenes

observed at those vantage points right on our computer screen in the office.
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4.2.2. Related Work

This work is mostly motivated by the newly released groundbreaking work of Photo

tourism [139] and the advancement of lower power image sensing technologies [4,5,157].

Photo tourism was born of the seminal research by Snavely, Seitz and Szeliski and it was

initially termed as "photo tourism". The basic idea is to create a 3D photo tour from a

collection of images taken from the same place. We refer interested readers to [139] for

more implementation details of the Photo tourism technology.

In [4,5], Aliaga et al presented techniques to reconstruct 3D interactive walkthroughts

with omnidirectional images. One key feature in the approaches in [4,5] is to exploit the

multiple paths that can be followed between images to increase the number of feature

correspondences between distant images.

In [80], Koizumi and Ishiguro presented town digitizing with omnidirectional images

using an interpolation process termed zooming stereo, where a zooming ratio between a

pair of omnidirectional images is used as a parameter to estimate the changes of visual

appearance along lines connecting two omnidirectional images.

In the image acquisition process in both [4,5] and [80], a powerwheel or motorized cart is

used to take images around an environment. In this chapter, we consider a scenario in

which a group of image sensors are randomly and remotely dropped to a given field, in

particular for some humanly inaccessible areas. In our case, those randomly dropped

image sensors self-organize themselves into a wireless image sensor network, which

132



automatically generates and uploads the images from that given field to afaraway Photo

tourism center. The major challenge in our case is how to self-organize those image

sensors for efficient image data aggregation and transmission, as well as for easy

construction of Photo tourism experience with those images.

The work in [149] by Tumblin et al proposed an approach to measure the intensity

difference between adjacent pixel pairs among photosensors within a camera instead of

measuring direct pixel intensity. The benefit of their approach is that it achieves finer

quantization and higher contrast, compared with the existing intensity-based cameras. In

this chapter, we consider the image data aggregation of multiple image sensors (cameras),

where each image sensor only sends the difference of the image data (the shift values of

feature points positions, say, Af, s, if any in the overlapping area as well as the image data

in the non-overlapping areas) to its corresponding supersensor. The goal here is to reduce

the overall communication loads among all image sensors while maximizing the number

of common feature points among images from nearby image sensors during the image

data aggregation process.

The LEACH (Low-Energy Adaptive Clustering Hierarchy) protocol presented in [72]

proposed methods to utilize randomized rotation of local cluster heads to distribute the

energy consumption evenly among the sensors in the networks so that the lifetime of the

sensor network can be maximized. In the LEACH protocol, the cluster heads are

randomly picked and each sensor chooses its cluster head based on the minimum required

communication energy. In this chapter, the supersensors are chosen to minimize the total
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communication load during the image data aggregation process while maximizing the

number of common feature points among images from nearby image sensors.

In [49], Estrin et al proposed localized algorithms for coordination in wireless sensor

networks, where a promotion timer is set to be inversely proportional to the sensor's

remaining power. The cluster head is chosen locally when one's promotion timer expires

first to declare its promotion. In [49], the number of cluster heads is not fixed and in our

case the number of supersensors is pre-determined and fixed. In [49], the criteria to

choose the cluster heads are solely based upon the residual power of the sensor nodes. In

our case the residual energy is just one of the factors to be considered in choosing the

supersensors.

Traditionally, we often compress the image data soon after sensing, which leads to the

waste of valuable sensing resources. In [9,13,48,126], a compressive image sensing

platform is proposed, in which the signal is sampled at a greatly reduced rate. We will

address the problem of Photo tourism via wireless image sensing in the context of

compressive image sensing as one of our future directions.

4.2.3. The Framework

4.2.3.1. The Model

An image sensor with a wide field of view allows almost everything around the image

sensor to be imaged within a range [4,5,157]. Without loss of generality, we assume each

image sensor can effectively detect an object of a given size, say s, within some distance

from it, which is termed as the effective view coverage radius throughout this chapter. We
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also assume that all image sensors in the network are homogeneous with the same image

sensing radiuses. If an object of a given size is too far away, it could become a single

pixel on the image, which does not contain enough information to identify the given

object. Of course, the field of view of a given image sensor is always affected by the line

of sight such as obstacles, topography and other conditions like the weather (fogs,

raining, snow), etc. In the following discussion, we will consider flat terrain of a given

field under normal weather conditions. The situation under extreme conditions can be

approximated from that of normal ones.

4.2.3.2. The Framework

Given a group of image sensors that are randomly deployed in a field and a far-away

Photo tourism center, we want to create the Photo tourism experience from images taken

from those wireless image sensors in an efficient way. First of all, we want to remove

those images whosefeature points are already covered by images from neighboring image

sensors. Then, we choose a portion of the image sensors, say k of them, as supersensors,

each of which acts as a local image data aggregator to further reduce the redundancy

among images from its neighboring sensors while maximizing the number of common

feature points before sending out to the remote Photo tourism center.

An illustration of the image data fusion model is given in Fig. 4.12. The local image data

aggregation process operates as follows: each supersensor broadcasts the information of

its own image data and all the feature points, say f; s, in its image data to its cluster

members. Each cluster member will send back only the difference of the image data (the

shift values offeature points positions, say, Af, s, if any in the overlapping area as well as
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the image data in the non-overlapping areas) to the corresponding supersensor. The

supersensor will then send the aggregated image data to the remote Photo tourism center

for further processing.

In the example shown in Fig. 4.12, we have chosen three supersensors (denoted in dark-

shaded circles), named A, B and C. Those un-shaded red squares in the upper left part of

the field represent the image sensors belonging to the cluster headed by supersensor A.

Those un-shaded black triangles in the upper right part of the region are the image sensors

belonging to the cluster headed by supersensor C. Those un-shaded blue rhombuses in the

lower part of the region belong to the cluster headed by supersensor B. Notably, each

image sensor belongs to one and only one cluster.

The problem here is how to find these supersensors in a way such that the overall

communication loads among image sensors can be minimized while maximizing the

number of common feature points among images from the same cluster during the image

data aggregation process. As we mentioned earlier, the minimization of the overall

communication loads also means the minimization of the overall consumed transmission

energy among those sensor nodes, each of which is often equipped limited energy

resources such as batteries. Intuitively, we need to find sensors that have the most

overlapping view areas with their nearby neighboring image sensors.
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Figure 4.12: An illustration of the image data fusion model.
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Figure 4.13: The field of view coverage relationship between two neighboring image

sensors.

In Fig. 4.13, we show the view coverage relationship between two neighboring image

sensors. As we can observe that the closer the two image sensors (sensor A and sensor B),

the more overlapping field of view they have. Now let us have a look at a simple example

with only three image sensors. It is easy to see that image sensor B (the middle one) might

be the best candidate to be the supersensor among those three image sensors only from the

field of view coverage perspective, as the choice of sensor B as supersensor potentially

leads to the minimal communication loads and the most common feature points among

images from all three image sensors.
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Figure 4.14: An example with three image sensor nodes.

However, in the case of hundreds of tiny image sensors it is no longer a trivial problem to

choose multiple supersensors based on multiple factors in such a way to minimize the

overall communication loads while maximizing the number of common feature points

among images from the same cluster during the image data aggregation process.

4.2.3.3. The Protocol to Choose Supersensors

The basic idea is to group the image sensor nodes in a given unage sensor network into

non-overlapping clusters such that the "center" (based on the given cost function) of each

cluster is a chosen supersensor. Each image sensor node belongs to one and only one

cluster. Assuming that we have a fixed number of clusters, say k of them, at first we can

apply the modified version of k -means clustering algorithm [53] with a weighted cost

function to find the corresponding k supersensors.
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The modified k -means clustering algorithm operates as follows: (a) Randomly initialize

k clusters with k centers; (b) Assign image sensor nodes to the clusters with the least cost;

(c) Calculate the centroid of each cluster, then move the corresponding center to the new

centroid in that cluster; (d) Repeat Step (b) and Step (c) until convergence; (e) Choose the

image sensor node that is "closest" to the centroid in each cluster based on the cost

function as the corresponding supersensor. After Step (e), we have exactly k

supersensors.

4.2.3.4. A Weighted Cost Function

As mentioned earlier, the potential factors that determine the choice of those supersensors

include proximity, network distance (usually measured by the round trip time (RTT)),

communication channel conditions (usually measured in the form of RSSI (radio signal

strength indicator)), and residual power at each image sensor, etc. The reason we choose

proximity as one of the factors is due to the fact that the closer the two image sensors the

more overlapping view area they might have in common (see Fig. 4.13).

To accommodate multiple factors, we use a weighted cost function as follows:

C, a~d +~RT a _1 1
C.. = a, x dj + a2 x RTT I + a3 x + a 4 x -, where node j is a supersensor

RSSI, pi

candidate, d11 indicates the Euclidean distance between node i and node j, R TT1, stands

for the round trip time between node i and node j, RSSIJ is the received signal (from

node j) strength indicator by node i, p1 is the residual power at node j, the weights a, s

satisfy the equation of a, = 1.
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4.2.3.5. Distributed Implementation

Assume that we have a total of n image sensor nodes in a given image sensor network and

we want to choose k of them as supersensors.

The first step of randomly choosing k centers can be done in a distributed way by using a

k
random process that has a fixed probability of - in selecting oneself by each image

n

sensor. This means that each sensor node, say node i, picks a uniform random number,

say r[i], in the range of [0,1), and then decides that it is an initial supersensor if and only

k
if r[i] <-. Each supersensor candidate broadcasts a probe packet to its neighboring

n

nodes with the information of the supersensor's name, its residual power, the timestamp in

order to calculate RTT. Once a non-supersensor candidate receives the probe packet, it

will record the RSSI and figure out the cost based on the weighted cost function to

determine which supersensor it should associate with. After the non-supersensor candidate

figures out which supersensor's cluster it belongs to with the least cost, it will send the

confirmation to the corresponding supersensor with its own information in order for the

supersensor to calculate the new centroid. The adjustment will be made accordingly till its

convergence or after a certain number of iterations.

4.2.3.6. Photo tourism Processing

In order to smoothly interpolate images obtained from the image sensors to create Photo

tourism experience, we first gather the information of those feature points (f, s and
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(f +Af,)s) in each cluster to reconstruct all the images. We then feed those images into

Photo tourism to create 3D and 360 degree environment.

4.2.4. Empirical Results

In our simulation, we randomly placed 300 image sensor nodes on a 10 by 10 plane. In the

following examples, we choose a variety of numbers of supersensors for the same

network topology in a variety of circumstances. The empirical results are shown in Fig.

4.15 ~ Fig. 4.22.

In the first set of experiments, we consider the scenarios that all of the image sensors have

high residual power while we choose different number of supersensors for the same

network topology. In Fig. 4.15 we show the case in which five supersensors are chosen,

which are shown in dark-shaded squares. The number of image sensors in each of the five

clusters is depicted in Fig. 4.16. In Fig. 4.17 we show the case in which ten supersensors

are chosen, which are shown in dark-shaded squares. The number of image sensors in

each of the ten clusters is depicted in Fig. 4.18. From Fig. 4.15 to Fig. 4.18, we observe

that with different number of supersensors, the chosen supersensors have changed

accordingly.

In the second set of experiments, we consider that some of the image sensors have very

low residual power while we choose the same number of supersensors for the same

network topology. In Fig. 4.19 we show the case in which 20% of the total image sensor

nodes have very low residual power (those illustrated in pink triangle icons) and those
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image sensors with very low residual power are chosen randomly among all image

sensors. The number of image sensors in each of the ten clusters is depicted in Fig. 4.20.

In Fig. 4.21 we show the case in which 50% of the total image sensor nodes have very

low residual power, which are shown in pink triangle icons. The number of image sensors

in each of the ten clusters is depicted in Fig. 4.22. From Fig. 4.19 to Fig. 4.22, we observe

that with different number of image sensors with very low residual power, the chosen

supersensors have changed accordingly.

Figure 4.15: The 5 supersensors are shown in dark-shaded squares.
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Figure 4.16: The number of image sensors in each cluster.

0 1 2 3 4 5 6 7 8 9 10
x-axis

Figure 4.17: The 10 supersensors are shown in dark-shaded squares.
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Figure 4.18: The number of image sensors in each cluster.

Figure 4.19: The 10 supersensors are shown in dark-shaded squares and those pink

triangle icons (20% of them) indicate those with very low residual power.
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Figure 4.20: The number of image sensors in each cluster.

Figure 4.21: The 10 supersensors are shown in dark-shaded squares and those pink

triangle icons (50% of them) indicate those with very low residual power.
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Figure 4.22: The number of image sensors in each cluster.
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4.2.5. Summary

In this work we present a novel framework of Photo tourism via wireless image sensing

with a group of image sensors. We address several of the key challenges in this new

platform in order to achieve even "richer" Photo tourism experience in a simple and

efficient way with images generated from image sensors automatically and remotely, in

particular for some humanly inaccessible places. In the first step, we remove redundant

images whose feature points are already covered by images from neighboring sensors.

Then, we choose k supersensors to serve as local image data aggregators to further reduce

the redundancy before sending the image data out to the remote Photo tourism center. We

presented a distributed algorithm in choosing k supersensors among n image sensors and

conducted extensive simulations to examine its adaptability and feasibility. We build

image sensor prototypes by attaching our sensor nodes with commodity cameras for a

quick demonstration of the concept. Essentially, we propose to conduct clustering and

data compression at the sensor network level for the sake of reducing communication cost

and energy consumption, instead of doing it at the Photo tourism stage.
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Chapter 5

Community Security

In this section, we address the issue of community security in several aspects. First, we

present several basic principles in the design of community-based computing systems to

safeguard community security. Then, we introduce community-based anti-spam method

to deal with spammers as communities instead of dealing with each email spam

individually.

5.1. Principles

The first principle is that "don't put all your eggs in one basket". Although this is a well-

known quote, people often tend to overlook it in practice. Community storage is a good

example to realize this basic principle in community security. In the community storage

system, each community member (node) only stores partial encoded information. If you

lose your device, it is not a big problem as other people can not see anything meaningful

for the stored data on that device. Furthermore, you can retrieve the stored information

back from other community members. Lastly, the attacker has to compromise enough

nodes in order to reconstruct the original data object.

The second principle is that "treat the bad guys (attackers) as a community". One

example is the email spammers. It is reported that email spams already account for more

than 97% of the total email traffic [165] and it is hard to imagine that those spammers

acted individually. As will be shown in our empirical study that those spammers
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demonstrated highly organized community behavior. It is far more efficient to block

email spams collaboratively among email servers by exchanging the real time community

behavior of spammers, instead of dealing each email spam individually. Once the email

spams reach the inbox of the email clients, the damage is already done.

5.2: Community-based Anti-Spam Method

In this section, we (joint work with M. Hsieh and P. Gburzynski [90,91]) analyze the

community behavior of spammers and propose community-based anti-spain approach to

deal with email spams more efficiently.

5.2.1. Spam Data Source

Our spam data was obtained from Jaeyeon Jung and Nick Feamster at CSAIL MIT, where

it has been collected at a domain mail server in such a way that the IP addresses of the

spam sources were recorded when the spammer tried to establish the TCP connection

with the domain mail server to deliver the spam message. The IP address of the spammer

recorded during the 3-way handshake should be the real IP address of the spammer in

most cases even though there are rare scenarios in which the spammer could try IP

spoofing. In this context, practically the only workable case of IP spoofing involves

presenting a formally unused IP address within the subnet on which the spammer's host is

actually located. One can argue that in such a case the defacto compromised subnet can

be viewed as a single source of spam. Another remote alternative is BGP hijacking to

propagate fake route entries with unused IP addresses to the nearby ISPs. As BGP

hijacking is considerably more difficult (and less predictable) than compromising random
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hosts in random subnets, we can assume that the impact of such cases on our studies (if

present at all) is negligible. Spamming becomes more and more distributed, with the

spammer controlling thousands of bots and having several levels of indirection to cover

his/ her identity. Consequently, the returns from IP spoofing (which the spammer can

seldom bet on) quickly diminish to the point that this technique can be safely ignored.

Besides, by blocking email from knowingly unused IP sources, one will never risk a false

positive.

The spam mail data contains the full mail header information and the full mail contents

including the attachment files. The mail header information contains the real IP address

of the spam source, the route information (which can be fake up to the real IP address of

the actual sender), and the TCP SYN fingerprint, which can be used to identify the OS

information of the spam source. The data set covers one week of operation and consists of

86,819 spam messages.

5.2.2. The Community Behavior of Spammers

In this section, we group the spammers in terms of the URLs, stock symbols, monetary

amount, which appear in most of the spam messages. Figure 5.1 visualizes the clustering

relationships based on the URLs in the spain in day 1. If the same URL appears in a spam

message sent from source A and source B (where A and B represent IP addresses of two

spammers), then an edge is plotted to connect the nodes A and B. The clustering structure

is clear. The number of members in each cluster ranges from 1 to 716.
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According to [164], a typical botnet consists of several hundred compromised machines,

which is consistent with the sizes of some clusters visible in Figure 5.1. The major

component with 716 spammers is further illustrated in Figure 5.2. An interesting

observation is that the spam mail at the pivoting point often comes earlier than those

homogenous points further away from the cluster's center. Another key observation is

that the more groups a spammer's IP address is associated with (due to multiple distinct

URLs appeared in the spam mail from this spammer), the higher the probability that spam

mail from this IP address will arrive in the near future. We hypothesize that those

pivoting points play an important role in the botnet.

Figure 5.1: The clustering structure of the spammers based on the URLs in spam

messages in day 1.
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Figure 5.2: The major component of the clustering structure from Figure 5.1.

Figure 5.3: The clustering structure of the spammers based on the URLs in spam

messages in day 2.
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Figure 5.4: The clustering structure of the spammers based on the URLs in spam

messages in day 3.

Figure 5.5: The clustering structure of the spammers based on the URLs in spam

messages in day 4.
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Figure 5.6: The clustering structure of the spammers based on the URLs in spam

messages in day 5.

Figure 5.7: The clustering structure of the spammers based on the spam messages arriving

in day 6.
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Figure 5.8: The clustering structure of the spammers based on the URLs in spam

messages in day 7.

As shown in Fig. 5.3 ~ Fig. 5.8, similar clustering patterns have been observed for the

remaining days (Day 2 ~ Day 7).

In Fig. 5.9, we depict the clustering structure of the spammers based on the money

amounts in spain messages in day 1. As most of the spain is related to money, the

clustering structure in Fig. 5.9 seems quite interesting and relevant. Normally, the

products, services, commodities, stocks, etc., advertised in span come with unit prices, so

it is unlikely that the spammers would intentionally make those attributes random (e.g., to

diversify the signatures of their spam). Consequently, such values are likely to be good
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discerning and unifying features of spam arriving from different sources. Unfortunately,

compared with Figures 5.1 ~ 5.8, we observe that the cluster sizes in this case are

relatively small, which hints that this characterization may not work well by itself

Nevertheless, it can be at least applied as a supplementary feature, e.g., together with the

URL-based criteria. In Fig. 5.10, we show the clustering structure of the spammers based

on stock symbols in spam messages in day 1. Clearly, both the number of clusters and the

cluster sizes are small. We determine that stock symbol may not be a good criterion to

classify the spammers.

Figure 5.9: The clustering structure of the spammers based on the monetary amounts in

day 1.
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Figure 5.10: The clustering structure of the spammers based on the stock symbols in day

1.

Now, let us examine the correlation coefficient of the inter-arrival time of the spam

messages from the spammers belonging to the same cluster. This coefficient is given by

following formula [90]:

1 N-k (x_ -i:)(x(i+k) ~)(
Ax = _ I (5.1)

N-k i=1

where N is the number of messages, k is the lag index (the separation between the inter-

arrival times being considered), x, is the ih inter-arrival time, x is the average inter-

arrival time, S is the variance in the inter-arrival time, and pk is the correlation

coefficient of the inter-arrival time with the lag index of k. The intuition is to show that

even though some spam arrivals within the same group of spammers are far apart, i.e.,
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their lag index is large, they may still be correlated, which would mean that the messages

from the same group of spammers tend to arrive in burst.

As shown in our previous results in [90], spain arrival within the same cluster of

spammers exhibits strong long-range dependency and the bursty character of the spain

arrival process. The trend is clearly visible despite the somewhat noisy character of the

curve. The correlation coefficient oscillates along the "trend line" due to the granularity

of the timestamp. This is because, within a given time grain (one second), there are often

multiple spain arrivals.

Following [3], given a clustering criterion, we define the clustering coefficient of a

spammer as the ratio between the actual number of edges among the neighbors of that

spammer node and the number of possible edges among those neighbors. Formally,

assume that node i in the network has kedges, connecting to k, other nodes. Let

E, stand for the number of edges that actually exist among these k, nodes. The total

number of possible edges among these k, nodes would be k, (k, -1)/2. The value of the

clustering coefficient of node i is thus given by

C. = 'l (5.2)
(k, x (k, -1))/2

The clustering coefficient of the whole network is the average of all the individual C,'s.

The motivation behind the clustering coefficient is to identify the spammers associated

with multiple communities (based on the given set of clustering criteria). The idea is to

be able to detect the smallest number of spammer responsible for sending the largest
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amount of spam. Whatever efforts we undertake to identify and block span, those

spammers should receive a "preferential treatment."

In Figures 5.11 and 5.12, we show the overall clustering coefficient of the community of

spammers for each day in the 7-day period, and the clustering coefficient of the largest

component from the community from day 1 to day 7. We also show the total number of

spammers in each day and the number of spammers in the largest component for the day.

As we can see from Figures 5.11 and 5.12, the overall clustering coefficient for the entire

community is very high, indicating the property of small world networks [3]. We also

observe that as the community size of the spammers grows, the clustering coefficient

decreases slightly. It has been reported that generally collaborative networks such as

movie actor networks, co-authorship networks, etc, tend to have higher clustering

coefficients [3]. It is thus consistent to say that spammers form a "collaborative" network,

organized in the form of BotNet [164], with a high clustering coefficient. This high

clustering behavior of spammers bodes well for a community-based approach to spain

elimination: it is an argument that dealing with the community as a whole is likely to

bring about better results than treating each spammer individually.
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Figure 5.11: The clustering coefficient of the community of spammers from day 1 to day

7.
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Figure 5.12: The total number of spammers and the number of spammers in the largest

component for each day.
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5.2.3. Community-based Anti-spam Strategies

In this section we briefly discuss some community-based anti-spain strategies based on

the results of our empirical study on the community behavior of spammers in Section

5.2.2. The community-based anti-spam framework can be used as a complementary

component for an existing anti-spain system, e.g., SpamAssasin, to efficiently block

spams from organized spammers. The idea is that if we can perceive some community-

based behavior/patterns of spain senders based upon some common signatures from the

email content and/or headers, e.g., URL or some other criteria, we can assign a high spain

score to the messages from this group. The more members in the given suspected

spammer group, the higher spain scores for the messages from that group. The intuition

behind this is that it is highly unlikely for a large group of legitimate senders to send

emails with exactly the same type of signatures, e.g., the same URL. The mail servers can

also act as a community to exchange real time community behavior of spammers to block

email spams more efficiently.

The source IP address of an incoming message is used as a unique identifier of the email

sender for community-based classification. We do not use the IP address of the email

sender for blacklist blocking. So, even for rare cases of spoofed source IP address, it will

have little impact on the effectiveness of our group-based anti-spain approach.

When an email comes, we first extract all the potential advertisement/commercial URLs

from the mail content, then calculate the hash value for each URL in the given email and

update the number of members counter based on distinct IP addresses for the

corresponding associated groups. Finally, we update the number of associated groups
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counter for the given IP address of the mail sender. We use a time sliding window

exponentially weighted moving average to calculate the average number of members for a

given group. The detailed algorithm is described in Section 5.2.4. We say a new group is

terminated if and only if the average number of members for a given group is below a

given threshold, say Ge . Once a group is terminated, the original group has to be

dismantled and the original members of this group have to update their state accordingly.

Based on the number of members of each group, we assign a spam score for the given

email. In this preliminary study, we assign a blocking probability for the given email

based on the number of members in that group and the number of associated groups for a

given spammer.

5.2.4. TSW-EWMA Algorithm

We use a time sliding window exponentially weighted moving average (TSW-EWMA)

algorithm [167] to dynamically calculate the state of each URL-based group and

determine if an old group should be terminated based on the spam arrivals. Let W be the

window size in terms of some time unit, say hours. Let IuRi_,, and ui-,,,, denote the

number of members, e.g., the number of distinct IP address, associated with this URL-

based group, in the previous time window and the current time window respectively. Let

IvURi be the average number of members for the given URL. We have

IURLi = ax IURLi-pre+ (1-a) xIURLi-cur (5.3)

where a is the weight, e.g., the filter constant. This type of moving average filter places

more importance to more recent email data by discounting older mail data in an
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exponential manner. At the same time, the filter smoothes transient behavior of email

traffic.

5.2.5. A Simple Hash Lookup

First, we convert the ASCII characters of a given URL into binary data format and let x,

denote the number represented by the bits in the ith character of the URL. Notably, each

ASCII character is represented with a distinct 7-bit binary data. Let m be a large number,

say, m>27 x L., where L.is the maximum length with respect to the number of

characters for a given URL, say, 80. We define a simple hash function as follows:

n

H(URL)= Zxi mod m, (5.4)
i=I

where n is the number of characters in the given URL. We use chaining, e.g., a link

bucket, for hash function collision resolution.

Alternatively, we can use a SHA- 1-based hash function, which takes an arbitrary length of

URL (less than 2 " bits in length) as input and produces a 160-bit number as the

corresponding URL digest. The SHA- 1-based hash function has the well-known property

of collision resistance. The drawback is that SHA-1-based hash function is more

computationally expensive than the one described in Eq. (5.4).

5.2.6. Preliminary Results
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Figure 5.13: The spam score distribution based on community-based approach.

As shown in Fig. 5.13, the x-axis indicates the spami scores and the y-axis denotes the

CCDF (complementary cumulative probability) of the spam score. Clearly, our

preliminary results show that the group-based approach can block 70% to 90% of the

spams, depending on the implementation parameters. To the best of our knowledge, it is

the first time that community-based anti-spam method has been explored.

5.2.7. Issues and Open Challenges

There are several challenges for group-based anti-spam strategies based on URL-

grouping. For example, if a host is running DHCP, the host IP address could change from

several hours to several days. The change of the IP addresses could change the clustering

structure of the spamnmers.
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Another issue is that the spammers could use various HTTP formats to intentionally hide

the URL information. For example, the following links all indicate the same link as

http://www.yahoo.com: http://3631052355 (a single decimal number of the IP address),

http://OxD86D7643 (a single hexadecimal number of the IP address)

http://0330.0155.0166.0103 (the dotted form in octal) [166].

The spammers can also use some steganography techniques such as html color, graph, etc.

to camouflage URL or other information used to group the spammers.

5.2.8. Summary

In this work we have investigate the community structures of spammers based on

collection of spain traffic sighted at a domain mail server. Our study shows that the

relationship among spammers demonstrates highly clustering structures based on URL-

grouping. The inter-arrival time of spams from the same group of spammers exhibits

long-range dependency in the sense that the spain messages from the same group of

spammers often arrive in burst. We also observe that spammers associated with multiple

groups tend to send more spain messages in the near future. Finally, the high clustering

coefficient of the community of spammers reveals the "collaborative" nature of those

spammers.

Finally, we would like to thank Jaeyeon Jung and Nick Feamster for the span data

sources used in this study and we also thank Jaeyeon Jung for her invaluable input and

suggestion.
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Chapter 6

Contributions

In this thesis, we lay foundations for a distributed community-computing environment.

We have made significant contributions in several fronts: community coding, community

storage, community sensing, and community security.

We introduce community coding to model a wide range of applications in the new

paradigm of community computation. The community coding approach should be

applicable to many challenging problems in this new paradigm, where information

systems meet social networks.

We propose a network-aware source coding method with multiple sources in the

framework of community coding. We also present community coding formulations for

P2P media streaming with application level multicast to maximize the sum of the utilities

of all the peer nodes, given their heterogeneous resource constraints. We present a novel

erasure code called community codes, which is rateless, locally encodable and locally

decodable, for a wide range of applications such as reliable data communication,

distributed data storage, etc.

We build the prototype of a shared e-Library for a large, secure and distributed

community storage system among a group of community member nodes. We also build
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the prototype of a collaborative offline Wikipedia among a group of community member

nodes, where the Internet connection may not available. We conduct extensive

experiments to quantitatively and qualitatively measure the performance of the

community storage system with two main metrics: the availability rate and the

uploading/retrieving delay.

We have made significant contributions in the area of community sensing in two areas:

view coverage with multiple image sensors, and an efficient, distributed method for

image data aggregation with a group of image sensors. We analyze view coverage with

random dropping of image sensors in a variety of scenarios and the analysis provides

view coverage assurance with a certain probability, which is the key for the performance

of such image sensor networks. We present a distributed clustering algorithm for efficient

image data aggregation among a group of image sensors and we conduct extensive

empirical studies for the performance of the proposed approach.

We present several basic principles for community security. As one application example,

we empirically analyze the community behavior of spammers. We propose community-

based anti-spain approaches to deal with email spams much more efficiently than existing

anti-spam tools.
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Chapter 7

Conclusions

In this thesis we lay the foundations for a distributed, community-based computing

environment to tap the resources of a community to better perform some tasks, either

computationally hard or economically prohibitive, or physically inconvenient, that one

individual is unable to accomplish efficiently. We introduce community coding, where

information systems meet social networks, to tackle some of the challenges in this new

paradigm of community computation.

The central thread of this thesis is the community coding optimization framework that we

introduced. Community coding is an emerging field of social computation and coding

theory, which provides a method of aggregating resources from a community to

maximize the sum of their utilities by allowing the community members to coordinate

their contributions of resources based on some predefme rules such as proportional

fairness and minimum utility rules.

We design algorithms, protocols and build system prototypes to demonstrate the power of

community computation to better deal with reliability, scalability and security issues,

which are the main challenges in many emerging community-computing environments,

in several application scenarios such as community storage, community sensing and

community security. For example, we develop a community storage system that is based
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upon a distributed P2P (peer-to-peer) storage paradigm, where we take an array of small,

periodically accessible, individual computers/peer nodes and create a secure, reliable and

large distributed storage system. The goal is for each one of them to act as if they have

immediate access to a pool of information that is larger than they could hold themselves,

and into which they can contribute new stuff in a both open and secure manner. Such a

contributory and self-scaling community storage system is particularly useful where

reliable infrastructure is not readily available in that such a system facilitates easy ad-hoc

construction and easy portability. In another application scenario, we develop a novel

framework of community sensing with a group of image sensors. The goal is to present a

set of novel tools in which software, rather than humans, examines the collection of

images sensed by a group of image sensors to determine what is happening in the field of

view. We also present several design principles in the aspects of community security. In

one application example, we present community-based email spam detection approach to

deal with email spams more efficiently.

In our daily lives, communities like to share things. People share photos on Flikr [169],

share videos on YouTube [170], and even share bandwidth via VidTorrent [171]. People

also like to help each other, reward each other and look after each other's welfare. In this

thesis, we present a set of tools to help to tap the resources of a community for the

benefits of all the community members. We hope that the theory of community coding

that we introduced and the suite of tools that we presented will help to pave the way for a

new way of thinking about clouds and shared resources among a community.
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Appendix A: Proof of Lemma 4.1.9.

In Fig. 4.3.d, we draw several auxiliary lines in order to calculate the area of some sub-

regions in the grid unit field. As illustrated in Fig. 4.3.d, the two diagonal lines of the grid

unit field intersect at point R . By symmetry, we have OR 1 XR and the angle ZQOR is

equal to arccos(- 1/r).
2

Then the angle ZPOQ is equal to (- - arcos( l /r)). The area of the region XWQ is
4 2

the difference between the area of the triangle AXPQ and the area of the region WPQ.

The area of the region XWQ is then equal to

12 if V if Vi V
- r 2[sin(- - arccos( l /r))(1 + cos(- - arccos( -/ r))) A + arccos(-1 /r)].
2 4 2 4 2 4 2

By the coverage symmetry rule, for a randomly dropped omnidirectional image sensor to

the grid field, the probability that its effective view coverage touches one and only one

corner with r < 1 <Viir is the ratio of the sum of the four fishtail-like corner areas and the

area of the grid unit field. The sum of the four fishtail-like areas is equal to eight times of

the area of the region XWQ. Therefore, the ratio of the sum of the four fishtail-like corner

areas and the area of the lattice unit field is then equal to

4 r2[sin(- - arccos( l/r))(1 + cos( - arccos( -l/r))) -+arccos(-l /r)]. The
P 4 2 4 2 4 2

result follows for N independently-dropped omnidirectional image sensors.
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Appendix B: Proof of Lemma 4.1.10.

As illustrated in Fig. 4.3.d, we draw the line through point S and pointR, which

intersects with the grid edge XO at point T. The angle ZTOS is equal to arccos( l/ r).
2

Then the angle ZROS is equal to (arccos(- / r)
2

4 ). The area of the region VRS is
4

r2 (ar1cos( I/r)
2 2

- ) -- (rsin(arccos(-l/r)) - 1/2). By symmetry, the area of the
4 4 2

Q n

region LJIS is eight times of the area of the region of VRS. The area of the region

0 2 1
LJIS is then equal to 2(2 r (arccos(- /r)

2
-- ) -1 (r sin(arccos ( I / r)) - 1/2)).
4 2

By the coverage symmetry rule, for a randomly dropped omnidirectional image sensor to

the grid field, the probability that its effective view coverage touches exactly four corners

with r <I< iir is the ratio of the area of the region LJIS and the area of the grid unit

field. That is 2(2 r 2(arccos(- l/ r) -) -l (r sin(arccos (i / r)) - 1/2) )/12. The result
2 4 2

follows for N independently-dropped omnidirectional image sensors.
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Appendix C: Proof of Lemma 4.1.11.

As illustrated in Fig. 4.3.d, the two diagonal lines of the grid unit intersect at point R . The

angle ZQOR is equal to arccos(-l 1/r).
2

Then the angle ZQOU is equal to

2 arccos( l/r). The sum of the area of the regions of QLSUIJ
2

4(r 2 arccos(- 1/r) - / r sin(arccos
2 2

and KSIMJL is equal to

( lir))).
2

By the coverage symmetry rule, for a randomly dropped omnidirectional image sensor to

the grid field, the probability that its effective view coverage touches exactly three corners

with r <1< V-2r is the ratio of the sum of the areas of QJL , KLS, USI and MIJ and the

area of the grid

r sin(arccos

unit field, which is (4(r 2 arccos( / 1/r) - l---1
2 2

J I / r) ))4 r (2 r (ar1cos( 1/r) -) l sin(arecos
2 2 4

( I /
2

r) )4 ) )4

12. The result follows for N independently-dropped omnidirectional image sensors.
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Appendix D: Proof of Lemma 4.1.13.

As shown in Fig. 4.3.e, we draw several auxiliary lines in order to calculate the area of

n

some regions of interest in the grid unit field. The area of the region VRS is equal to

r 2 1/2
--- (arccos(-)
2 r

-- )-- (r sin(arccos( ))- / 2). By symmetry, the area of the region
4 4 r

PSQU is eight times of the area of the region of VRS. The area of the region PSQU is

2 1/2 .r 1/2
then 4r (arccos( ) -- )-21 (r sin(arccos( )) -l /2).

r 4 r

By the coverage symmetry rule, if an omnidirectional image sensor is dropped in the

region ofPSQU, it will cover at least four corners. The probability that a randomly

dropped omnidirectional image sensor covers at least four corners is the ratio of the area

0 /22 
of the region of PSQU and the area of the grid unit field. That is (4r (arccos( ) - -

r 4

1/2 )/221 ( r sin(arecos (=)) - 1 / 2)).
r

omnidirectional image sensors.

The result follows for N independently-dropped
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Appendix E: The packing of spheres.

Figure 4.10: The packing of spheres.
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Appendix F: The approximation used in Eq. (4.15).

1.2

I ---

0.8 -- -------------------------

0.4

0 2

1 2 3 4 5 6

n

Figure 4.11: An illustration of the staircase approximation of Z =~Ldx.
i=1 i X

192

.. .. ...


