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ABSTRACT

We present a new networking protocol, AirRAID, intended for wireless de-

vices that, using the collective power of multiple devices within short-range

communication sight, extends the availability of a secondary medium over an

ad-hoc mesh network, resilient to the erratic movements of the mobile nodes

from which it is comprised. We suggest improvements to the Bluetooth dis-

covery algorithm, making use of a quantized hop velocity space to lower the

probability of two devices missing each other completely during discovery, and

introduce the concept of redundant backup paths to the wireless mesh, allowing

for improved reliability in dynamic mesh network situations
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Chapter 1

Overview

We introduce the AirRAID protocol, a novel protocol for the sharing of a

secondary medium (such as 3G or 802.11 WiFi) over an extremely dynamic

wireless mesh network supported by Bluetooth-enabled handheld cellular de-

vices. Making use of the Symbian and iPhone operating systems, we explore

the possibility of implementing, over hand-held devices, a reliable mesh net-

work designed to reduce load on existing cellular networks. We envision the

possibility of having to rely less on existing (expensive) network infrastructure

as we take most of the cellular load off of towers themselves, and place it into

the hands of the consumers, saving power, cost and construction of additional

cellular towers.

Perhaps due to insufficient technology or algorithmic investigation, we be-

lieve that the field of hand-held wireless mesh networking has yet to be explored

to its full potential, yet as technology races forward with respect to innovation,

so does the potential for the Bluetooth chipset on most mobile phones to be

able to handle networks such as an AirRAID mesh. With this in mind, we

also introduce an improvement over existing Bluetooth discovery algorithms to

reduce the time needed for network creation.
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1.1 Introduction and Motivation

As the number of hand-held devices increase in the world, so does the need

for constant connectivity to that amorphous network of data that we simply call,

'the cloud'. The introduction of new data network overlays on top of the existing

cellular phone infrastructure brought internet connectivity to areas where cell

signals may penetrate; however, the base speed, throughput and reliability of

such connections are often suspect, dependent on load, in particular, the number

of users looking to send transmissions through the same network at the same

time.

In addition to having capabilities for high-speed data transfer through cel-

lular transmissions, many of the new handheld devices have support for ad-hoc

communication between one another, typically in the form of either 802.11 WiFi

ad-hoc connections, or Bluetooth radio communication, and yet, oddly enough,

these forms of inter-device communication are often forgone for the alternative

of sending data through the 'cloud' over cellular connections, even when devices

are within close proximity.

With such infrastructure in place, it seems that only for lack of correct

routing algorithms and protocols, mobile devices are stuck using suboptimal

paths to communicate not only between devices, but also to the internet as a

whole.

Our case example is the Apple iPhone, a handheld 'smart phone' which is

able to connect to the internet in two different ways, either by making use of

the AT&T cellular data network (Edge or 3G), or by connecting to a wireless

router that is within range. The iPhone prefers, when given the option, to

connect to the internet using 802.11, and will switch active connections from

using the Edge/3G networks to a WiFi connection the minute it is able. This

switch produces transition delays, where while the iPhone attempts to secure

a new IP address, it is temporarily rendered blind to the internet and all open

connections. It is readily apparent that Apple has provided no infrastructure
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for the device to temporarily be dual-homed, hence requiring that this switch

occur.

As an example of an inefficiency, there exist many apps for the iPhone that

share data across two mobile phones, and yet choose to send data through

the internet rather than through bluetooth when the two phones are in close

proximity. The popular vcard-sharing application 'Bump' (an application which,

when two phones are bumped together, allows the two phones to store each

other's contact information without manual entry) as of the publication date

of this thesis, was still exchanging contact information by beaming the location

of the two devices to a remote server through the 3G/Edge network, requiring

the server to make the determination as to proximity, despite the availability of

bluetooth on the two devices.

The complex communication schema currently employed by the iPhone would

make it seem, then, antithetical to propose making use of yet another commu-

nication schema for accessing the internet, however, with this project, we aim

to show that by using a unique routing protocol, as well as a robust data packet

structure, we can achieve multiple goals with respect to improved function-

ality, including minimizing transition times between communication schemas,

increasing overall throughput, and reducing load on the cellular data networks,

all while correcting the inefficiencies seen in the current routing protocols and

providing a protocol that is meant to work seamlessly with existing APIs.

1.2 Mesh Network Motivation

In densely populated environments, where one can make an assumption that

very few handheld devices are ever completely isolated from another device, it

is conceivable that one could extend the concept of the now common-place In-

ternet Protocol, Border Gateway and Address Resolution protocols, allowing

each handheld device to act as a router to which other handheld devices could

connect, sharing data in a manner much akin to that of wireless router and lap-
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top computer. However, handheld devices are unlike the static wireless routers

of previous projects, but rather are extremely non-static nature, altering the

topology of the potential mesh at a relatively high rate.

If we are able to solve the issue of the possible ever-changing network topol-

ogy, devices with idle bluetooth connections and active connections to the in-

ternet, whether it be through 802.11 or a cellular data connection, are perfect

candidates for allowing peers, who may or may not have an active internet

connection, to connect and bounce data to the internet through the idle device.

In addition, it is conceivable that one could, much like a RAID controller

given multiple hard drives, split the transfer of data across two or more connec-

tions to the internet (much akin to the idea of 'striping' seen in RAID devices),

theoretically resetting the maximum wireless throughput to be that of bluetooth

chipset's data transfer limitations (further throttled, of course, by the available

bandwidth of the internet connection at the mesh network's exit point).

1.3 Proposed Protocol

With this idea in mind, we propose a novel mesh network system, the Air-

RAID (or an over-the-Air Redundant Array of Independent Devices), making

use of the mostly unused bluetooth transmitters in hand held devices, and em-

ploying a revised version of a robust path routing algorithm to allow for a

secondary mesh network infrastructure to arise from the bluetooth transmit-

ters commonly found in handheld devices today. In addition to providing an

additional method of access to the internet from these handheld devices, we

also envision said network acting as an extension of the actual cellular network,

eventually allowing for fewer cell towers to be placed in densely populated en-

vironments, allowing cell phones themselves to act as replacement towers.
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Technology

2.1 Cellular Data Network Replication

2.1.1 Architecture

Cellular networks function by partitioning a geographic space into (typically)

hexagonal areas simply known as 'cells', in which a single frequency is used to

communicate between towers and handheld devices. Towers are placed on the

corners of these 'cells', and are outfitted with directional antennas, allowing for

minimal interference or overlap of frequency use.

A device may operate within one cell, but as it moves towards another, we

wish for communication to continue uninterrupted. What occurs in a typical

cellular network is known as a 'soft handoff', a way for the device to switch over

to a new frequency in the new cell, without losing any data packets along the

way. In order to complete this switch losslessly, the handheld device temporarily

maintains two separate connections across two frequencies (at the border of

the two cells), and, after checking that the new frequency is indeed safe to

communicate on, cuts the former connection, leaving the new connection intact

and functional for continuing the data streams involved.

All this is fine if the device is currently involved in a conversation, as the
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towers and core network of the cellular system are in constant communication

and able to track the device, knowing where to send data packets that are meant

for that particular device; however, what if there is no active connection to the

device, and the core network needs to make contact? To track the multiple

devices across the numerous cells, the core network keeps a database that tracks

in which cell(s) the device was least seen. When wanting to contact the device,

the towers go through a process known as paging, sending out a message on

multiple control frequencies on multiple towers to attempt to locate the phone.

Rather than sending a broadcast message across the entire network of cells,

using the database that tracks the devices, the core network sends the message

to a small subset of towers (known as the "Location Area") in which the phone

is most likely to be given its last location and the time since its last contact [2].

2.2 Replicating a Cell Network

In order to replicate a cell network, one must begin to apply a small amount

of what we like to call 'fractal logic' to the challenge. Let handheld devices, those

that are in sight of real towers, take the place of what we would typically call

towers, and let handheld devices which are unable to see a cellular connection

take the place of what we would typically call handheld devices. For simplicity,

let's call handheld devices that are within sight of real towers "repeater nodes",

and those that are not "blind nodes".

There are behaviors that we must now replicate given the new identities of

these devices; namely, paging and handing off connections.

2.2.1 Paging

To accomplish paging, and to do so with scalability in mind, we'd like to

replicate the idea of the "Location Area" from section 2.1.1. The core network

needs to modify the way in which it stores the location of its handheld devices.

Rather than being able to calculate a list of towers in range of which the device
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may likely lie, in an ideal implementation the core network would also maintain a

"Location Area" of repeater nodes near which a potentially blind node is likely

to be. In a simplistic implementation, the core network may send a paging

message to the location area, and have each repeater node check their blind

neighbors (if any) to see if one matches for whom the paging message was sent.

If so, a connection can be set up to be forwarded through the repeater node to

the tower.

2.2.2 Handing Off Connections

Handing off connections adds a whole new level of complexity to the system,

now that there are two levels of communication at work. In addition, the amount

of complexity is dependent on the motivations of the respective parties, both

users and cellular providers, for it may be in the best interest of the cellular

provider to keep as many connections off of its towers as possible (a behavior

we'll refer to as provider-centric), while users may prefer connections through

towers (user-centric), as they may be more reliable than connections through

repeater nodes.1 We leave the exact tuning of the system up to the cellular

providers, encouraging the detailed analysis of performance versus cost before

defaulting to the expected provider-centric behavior.

We detail four scenarios in which a handoff must take place, and describe

the behavior that we would prefer to see in each situation. In each scenario, we

assume that providers have selected to be user-centric, namely that the cellular

providers are not looking to minimize load on their networks, and would prefer

that data traffic be kept directly between tower and node.

Tower to Tower handoff

In this new system , we expect to keep tower to tower handoffs unchanged.

Their behavior would remain as it is outlined in section 2.1.1

'Despite the labels of the two behaviors, we make no assumptions as to the preferred
behavior on either party's behalf. It is very possible that providers would prefer to have
traffic over their towers for profit-based reasons
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Tower to Repeater Node Handoff

In an ideal world, being able to monitor the device to tower signal strength,

we may have an idea of when a handoff would be necessary. As signal drops, the

AirRAID system begins to scan on bluetooth for local repeater nodes within as

few bluetooth hops as possible.

Once it has located a suitable repeater node within range, the device may

start replicating data/voice packets sent to the tower to avoid loss, and finally,

once signal is completely lost, the device will rely solely on the bluetooth mesh

network to communicate packets through to the cellular network, dropping the

cellular connection, and completing the soft handoff described in section 2.1.1.

Repeater Node to Tower Handoff

If a node remains on the bluetooth mesh, but comes to be in sight of a tower,

the reverse of the above handoff should occur. Once again, data is replicated

until the connection between node and tower is deemed reliable (assuming a

preference for tower communication). Only then will the device cease sending

packets through the bluetooth mesh, and begin solely sending packets directly

to the tower.

Repeater Node to Repeater Node Handoff

In the event that a tower is not visible, and the current repeater node looks

as though it is unreliable (which, given the dynamic topology of a handheld-

device-based network, may occur quite often), it is in the best interest of the

blind node to seek a backup repeater node such that it may perform a soft

handoff to the other repeater.

During anytime that the node is active on the bluetooth mesh, meaning

that it has an active data/voice connection that traverses the mesh), the node

will poll for other 'backup paths' to the tower. For maximal reliability, the

node should look for paths that are as disjoint from possible from its current

primary path. Keeping this backup path in memory, the node only performs
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a soft handoff when either packet loss percentage is deemed to be too high to

maintain a reliable stream of data, or when the backup path is deemed as more

reliable (i.e. fewer hops) than the primary path. If the latter occurs, then the

old primary path is swapped with the new backup path, such that a backup

(albeit, a potentially lossy one) is still available in case of topology changes.

At no point during its membership on the mesh network should a node be

without a backup path unless it is in the process of actively searching for one.
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Chapter 3

Bluetooth Communication

Technology

3.1 Bluetooth Overview

Bluetooth, used to allow devices to communicate over a short range (typi-

cally, 100 meters or less), operates on the ISM (2.4 GHz) band, and uses channel

hopping over 79 distinct channels to minimize interference from other devices

operating on the same band.

3.1.1 Bluetooth Discovery Algorithm

The true Bluetooth discovery algorithm splits the wireless spectrum in half,

creating two subsets of channels. After pseudo-randomly sorting the two subsets,

the device hops through the first subset for approximately 2.5 seconds, after

which point it jumps to the other subset, and again hops through that set. We

simplify the logic below to assume that the device does not split the spectrum

in half, but instead randomly jumps through the 79 channels.

When one bluetooth device would like to communicate with another, they

first must "discover" each other on the bluetooth spectrum. To accomplish
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this, each device randomly scans a subset of the available frequencies, listening

for evidence of other active bluetooth devices. Assuming two devices are both

attempting to discover each other, the average discovery time for the two is

relatively long, and, in some earlier implementations of bluetooth, had an upper

limit of 10.24 seconds.

In the worst case, if both devices are in "discovery" mode, it is probabilis-

tically possible that the two devices will never even encounter each other on

their random traversals through channel space, each presuming that the other

doesn't even exist (despite perhaps extremely close proximity).

Bluetooth has often been written off as a meaningful communication schema

simply because of its relatively long acquisition time, and as such, many at-

tempts have been made to improve the timing of the primary discovery method.

Woodings et al. worked on improving the close-proximity device situation,

where two devices that were practically next to each other may not discover

each other on the bluetooth spectrum in the 10.24 seconds that were allotted

to the discovery method. To speed up the discovery process, et al. used the

added medium of infrared to communicate and mutually agree upon a bluetooth

channel on which the two devices would be able to communicate.

While this method works extremely well for situations that they devised

(for example, checking out at a store using your phone at a cash register), when

devices are not in line of sight, their method returns to the failure mode of

typical bluetooth discovery, and even adds additional timing onto the discovery

scheme as the devices must first ensure that they are not in infrared range [12].

3.1.2 A theoretical improvement

Introducing randomness to the bluetooth discovery algorithm also introduces

the very real possibility that the two devices will never find each other on the

bluetooth spectrum, and perhaps, that if they do, the timing of the ordeal is

simply too long for a user to sit through patiently.

The problem lies with the random jumping. With randomness, there always
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exists the possibility that the two devices will simply miss each other at each

jump. That is to say:

The probability that a device lands on any one channel during a jump is

where n is the number of channels available on the bluetooth spectrum. The

probability, then, simply assuming complete randomness and perfectly-timed

jumps (i.e. each device jumps at the same time), of two devices finding each

other on the same channel is .

When n is 79, this probability of mutual discovery is less than 1% per jump.

To be more specific, assuming independence of all stochastic processes:

The probability that, at each hop, two nodes see each other in channel is:

1 (the probability they each pick the same channel)

The probability that, then, the two nodes miss each other is simply: (1 - 7)

Given that the nodes hop channels at a speed of approximately 1600 hnl"jS,

and have an upper limit search time of 10.24 seconds, the likelihood that, in

10.24 seconds, the two nodes miss each other completely is:

(1 - 7927)(10.24 * 1600) = 0.072 = 7.2%

With each discovery, there is approximately a 1 in 14 chance that the two

devices miss each other completely. In a mesh network that relies on mutual

discovery, it is likely that many acquisition failures would occur, especially as

the network size scales; however, our overall goal of a relaible mesh network

certainly would gain from the construction of a network that is accurate in

terms of determining its own edge connectivity (which nodes are able to see each

other). With the current Bluetooth acquisition protocol, the network is likely to

miss a significant portion of edge information, degrading overall performance.

An improvement may be found in eliminating a portion of the randomness.

Imagine, for the sake of comprehension, a racetrack along which two blind run-

ners, staggered, are running in the same direction. The goal of the two runners

is to pass off a baton between the two of them, and hence, to do so, they must

be at the same part of the track at the same time.

Bluetooth's current discovery method works as though these two blind run-
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ners had the miraculous ability of teleportation, and as though the two had

imagined that the best way to encounter each other on the track was to ran-

domly appear in different places along its length, hoping to bump into each

other at some point if they continue teleporting randomly.

Were this teleportation method the norm in relay races, the two runners

would be a comical, albeit confusing, sight to observe. Luckily, in normal relay

races, a forerunner runs somewhat slower than his/her counterpart with the

baton, allowing him/her to catch up and make the hand-off.

To find an analog in bluetooth radio discovery schemas, let's let one device

begin 'running' the channels, numbered 1 - 79, sequentially at a given speed v.

Let another device also begin running the channels, in the exact same order, but

not necessarily starting in the same location, and at a different speed. Given

enough time, the faster device will eventually catch up to the slower device, and

be able to communicate on whichever channel they both happen to have landed

at the time. This situation eliminates the possibility that, given enough time,

the two runners would never find each other.

In the worst case scenario, a faster device 'A' would start one channel above

device 'B'. In this situation, the amount of time it would time for the two to

meet, assuming 'velocity' is in channels per second, is simply:

1 V- * 79channels
V. -1gb

Naturally, the larger the difference, the faster the acquisition time.1 In abso-

lute worst case, Va approaches V, asymptotically bringing the acquisition time

to approach infinity. In order to improve upon the current acquisition method,

it is in our best interest to select speeds which would produce a guaranteed

acquisition time of less than 10.24s (assuming Va! = Vb). We use this bound to

find the minimum size of quantized channel-hopping speeds:

v *79 < 10.24

1.< Va - Vb

'Note that the best case, of course, would be for one node to sit completely still. However,
deciding which node should sit still is yet another relatively similar problem to the original
case at hand
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7.71 < V - V

Vb + 7.71 < Va

Therefore, in order for this new technique to not only work, but also perform

better than the previous algorithm, distinct nodes must be assigned unique 'hop

velocities' which are at least 7.71 channels apart from each other.second

Normal bluetooth pseudo-random channel hopping occurs at approximately

1600 channels per second. Presuming both a maximum speed of 1600 channelssecond

as well as wanting to always have each device's 'hop velocity' to be at least

7.71 channels away from others, we should quantize the space in such a manner
second

as to allow 207 different speeds (numbered 1 through 207, and multiplied by

7.71 to get the true channel-hopping speed).

Again, we have a similar problem as before. With only 207 speeds to choose

from, it's possible that two devices may pick the same speed, yet, unlike before,

they would be guaranteed to not find each other; however, if, in a simple

implementation, we choose to pick a pseudorandom speed for each discovery

process, the probability that two nodes pick the same speed (assuming, again,

independence), is just 1 = 2.33 * 10-, which is significantly less than 1%.

To analyze further, we note that, in the second-to-worst case (where two

non-equal velocities are chosen, but they are proximal to one another), the

acquisition time is approximately 10.24 seconds.

With our algorithm, we are able to quantize the space differently based on

the minimization of two (unfortunately, conflicting) parameters: The probabil-

ity of a complete miss, or the maximum time spent before successful discovery.

We have already minimized our probability of a complete miss given a maximum

time of 10.24s and have shown that the optimal quantization implies speed dif-

ferences of at least 7.71 channels, but similarly we can retweak the quantizationsec

to minimize the discovery time. The larger the channel-hopping quanta, the

faster the acquisition time, but the more likely a complete miss becomes. Hold-

ing the probability of a complete miss to be at the original 7%, we will solve for
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Tuning BT parameters on Velocity Quantization
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Figure 3.1: Tuning Bluetooth Parameters; Those values pointed to on the graph
are channel-hopping speeds

the largest size of the quanta possible:

The number of quanta, given a quanta size Q is assumed to be:

Hence, the probability of two nodes picking the same speed is:

(1)2
Q

We would like to bound this probability at 7%:

( )2 < 0.07 Q < 423.3channels

Meaning, if we were to quantize our velocity space with maximal differences

of 423.3 channels we would expect a 7% chance of a complete miss during dis-

covery.

To further understand the trade-offs, the graph below shows the tradeoffs

associated with selecting different quantizations of the channel velocity space:

The actual implementation of this protocol is outside of the scope of this

thesis, but its description is included as an additional hurdle to jump before a

bluetooth mesh network becomes a strong viable option for inter-device connec-
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tivity.
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Chapter 4

Previous Mesh Networking

Examples

4.1 Roofnet Approach

Growing out of an MIT research group, the company Meraki presents a

unique solution that creates a mesh network out of static signal repeaters for

WiFi. Intended for use in cities and towns as a way to provide wireless access to

the public, there is little indication that Meraki has worked with incorporating

mobile devices (laptops, phones, etc) as additional repeater nodes [9].

4.2 Cartalk Approach

Cartalk, also known as the WAVE standard, has emerged as a possible

method to connect motor vehicles to the internet. As one of the faster-moving

nodes that would require connectivity, a car proves to be a difficult challenge in

terms of maintaining said connectivity, especially as network conditions change

(presumably at an extremely fast rate). The WAVE solution employs the use of

stationary access points for providing internet connectivity, as well as creating

secondary structure for car-to-car communication and routing.
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Through the use of advanced routing algorithms meant to adapt to ever-

changing topology, Cartalk approaches closely what we wish to implement for

the mobile pedestrian, albeit requires additional infrastructure and hence in-

creased cost to implement on national highways, at the very least [11].

4.3 Dynamic Source Routing

A routing algorithm by the name of Dynamic Source Routing works by

creating a mesh network that is extremely flexible in the case that nodes leave

or join the network. But the DSR algorithm has not yet been publically applied

to hardware such as cell phones or any other wireless-enabled device where a

media-to-media adapter interface (e.g. Bluetooth to CDMA, Bluetooth to WiFi,

etc.) would serve a constructive purpose [7].

DSR is an extremely promising routing algorithm for situations in which the

arrangement of the nodes in the network is dynamic or even unknown. Paths are

generated by flooding the network with a request, having each node forward the

request until it hits the target node. Upon reception, the target node replies back

to the source with a traversal list of the original path request packet, which has

now become a valid path between the two nodes in question. Requesting paths

through the mesh as they are needed, DSR can be relatively flaky, dropping

connections as often as nodes exit the mesh, but is easily recoverable by simply

requesting a new path. In addition, the DSR specification implies optional

optimizations including path-fusion, wherein if a node A receives a request to

another node B, and that node A already has a known path to node B, rather

than continuing to forward the path request, node A will simply reply back with

a fused path of the requests's traversal list and its known path.
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4.4 The AirRAID Approach

The AirRAID protocol is based heavily off of DSR, yet adds additional

optimizations to minimize the number of nodes involved in communication at

any given time. AirRAID puts an inherent value on knowing and keeping paths

between nodes. Rather than throwing them away as they become invalid, each

node in an AirRAID mesh is responsible for maintaining each path for which it

is an active node. In doing so, each node maintains a backup node for which it

is able to forward traffic should its original forwarding node exit the mesh for

any reason.

In addition, to minimize the number of hops traversed in any transmission,

each AirRAID node continuously searches for ways to minimize the number

of hops that any path contains. Just as moving to using a backup node may

potentially lengthen a path, each AirRAID node can 'tighten' a path by finding

a way to skip nodes on its traversal list.
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Chapter 5

Initial Work on the

Symbian Operating System

Originally, with the idea of using the Symbian operating system, along with

its port of the python language for the initial implementation of AirRAID, we

considered the boon of having each node be able to conceive a map of the

mesh, for if each node had an idea of where its data's destination were located,

each could employ intelligent geo-informed routing techniques to minimize what

could otherwise be a large amount of flooding across the mesh.

5.1 Forming a map from minimal information

Forming a map of a mesh network when one node is only able to directly

see its neighbors is akin to pinpointing the location of lost spelunkers in a cave

while being anchored to the floor, equipped with nothing but a weak flashlight.

In other words, to form the map, there is going to be a good deal of shouting.

We considered, then, the possibility of taking a page from the link state routing

protocol, namely, having each node inform all other nodes in the mesh of its

neighbors, but with an added bit of information. In addition to sending its list

of neighbors to all neighbor nodes, each node would send what it considered to
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Figure 5.1: Example Triangulation of 3 Handsets

be the approximate distance between itself and its neighbors to anyone in range.

Approximating distance, however, with a weak flashlight, is not an easy

task. Straight line distance can be approximated using low level bluetooth signal

strength measurements, such as the RSSI[4]. The biggest limitation, however,

would be the lack of directionality with any measurement obtained. The good

news is that this too can be overcome in dense networks.

Imagine that we have a very simple network of three handsets, labeled A, B,

and C. Presuming that all three handsets were in range of each other, without

necessarily being able to absolutely locate each handset in an absolute position-

ing manner, each handset would be able to know at least the relative position of

the others. Each handset would not only report their perceived distance to each

other, but would also report to each handset the complete set of distances be-

tween itself and all other in range handsets, allowing each handset to construct

its own map.

As an example, let handset A be 10 units away from handset B. Handset B

is 5 units away from handset C. Finally, node A reports a distance of 12 units

to handset C. Constructing the triangle between the three of them would allow,

for example, handset A to conclude the angle between handsets B and C using

the law of cosines:

0 = cos- ( 2ab 

If every handset was in site of at least two other handsets, this method could

be done repeatedly in order to obtain a complete map of all the handsets in an

AirRAID network.

Even phones that were out of range of a given handset could be approxi-

mately placed relative to known handsets by assuming the worst case scenario
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Figure 5.2: Example Triangulation of 3 Handsets

(i.e. the handset that is out of range is as far as possible away from the handset

generating the map). If in the above example, we knew as we did above that

the distance between A and B was 10, and that between B and C was 5, we

wouldn't be able to relatively position all three handsets. However, knowing

that C is not in visible range of A, we can assume the worst, and ascribe a

straight line relationship between all three handsets.

We need to remember that a map is not necessarily what we are trying to get

out of these calculations, but rather we are trying to determine whether a given

phone is worth routing packets through. With this in mind, we are perfectly

happy working with the worst case scenario in deciding which connections to

maintain in the mesh network.

5.2 Initial Experiments with Symbian Bluetooth

Work in the 2008 spring semester focused on testing the feature set of a

Symbian phone using Bluetooth to communicate to a fake handset simulated

by a computer. Using python, the following tests were carried out to evaluate

the feasibility of the entire project.

5.2.1 Water Interference Test

Concern had been expressed that, as water absorbs electromagnetic radia-

tion, that the more humans (read: handsets) introduced into a small area, the

larger the number of packets lost. This wouldn't bode well for the system as

voice quality is dependent on the number of lost packets in a given connec-

tion. However, the denser the network, the more connections that can be made,
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hence the more reliable the overall end-to-end connections. This test served to

show that there is little to worry about in most normal situations involving a

relatively densely packed area.

Implementation

We installed onto a Symbian handset a python script which allowed the

phone to act as a simple echo service. Once another bluetooth device connected

to the handset and identified itself, anything sent from the computer to the

handset would be immediately reflected back to the computer.

On the PC we ran a python script which, after finding and connecting to

the phone, would send timestamps repeatedly to the phone over an RFCOMM

connection. Every time a packet returned, the PC would mark the time that

it came back. After sending approximately 2000 packets, the computer would

calculate average transit time for each packet, as well as sum up the number

of lost packets. A packet was labeled as lost if it took longer than 0.5 seconds

to return to its source. We chose to impose this definition of lost packets as

any voice data that returns after a significant delay might as well be considered

useless, as the playback time for the data in question may have already passed.

This test was to be run multiple times in varying environments. Most impor-

tantly, at least two runs of the test were to take place in each location, one with

a large number of people between transmitters, and another with a relatively

few number of people between transmitters.

Results

Various runs of the test in a 10x15 foot room produced the following results:

Discussion

The above data shows no visible correlation between the amount of people in

the nearby area and the number of dropped packets and/or packet transmission

time. This may have been for any one of a number of reasons.
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Test Run Missed Turnaround Time (avg in seconds)
1 0 0.074
2 0 0.071
3 0 0.071
4 0 0.071
5 0 0.074
6 0 0.071
7 0 0.071
8 0 0.071
9 0 0.072
10 0 0.071

Figure 5.3: Water Interference Tests run with Dense Population

Test Run Missed Turnaround Time (avg in seconds)
1 0 0.070
2 0 0.070
3 0 0.072
4 0 0.071
5 0 0.071
6 0 0.072
7 2 0.073
8 0 0.071
9 0 0.072
10 0 0.072

Figure 5.4: Water Interference Tests run with Sparse Population
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Because the computer implementation was done on a Windows machine us-

ing Python, the typical bluetooth voice protocol, SCO, was unavailable as an

option to test. SCO is an asynchronous protocol optimized for voice communi-

cation over a bluetooth link, and as such would be the natural choice for testing

a network meant to carry voice data.

With RFCOMM, packets are expected to arrive in order. If there is a delay

in one packet, all the following packets are delayed until the packet in question

can be reliably transmitted.

It's also possible that the layout of the testing location shown above was

sufficient enough to guarantee packet delivery in a timely manner, despite the

number of nearby people, simply by bouncing the signal off of nearby architec-

tural sounding boards.

5.2.2 Distance Curve Test

As Python on the Symbian OS is a relatively comfortable language to pro-

gram in, we had originally hoped that we would not need low level operations in

implementing the overall system. As a substitute, we had hoped that we could

use the transit time for a ping between handsets, combined with the number of

lost packets, to estimate the distance between two handsets.

Implementation

Much like the implementation outlined above for 5.2.1, we placed on a Sym-

bian phone a script that turned it into an echo system, as above, but with extra

features in that keypresses on the keypad of the phone would be sent back to

the laptop to be used in data collection.

On the laptop, a continuous stream of packets were sent from computer

to phone once identification was complete. As the handset holder walked away

from the computer, he would press a button on the phone to notify the computer

that the physical distance between the phone and the computer was increasing.

He would similarly press a separate button to notify the computer that distance
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Distance (paces) Average Transmission Time Standard Deviation
0 0.033 0.020
1 0.033 0.017
2 0.032 0.010
3 0.030 0.017
4 0.030 0.015
5 0.030 0.017
6 0.033 0.023
7 0.035 0.020
8 0.048 0.033
9 0.033 0.019
10 0.035 0.022
11 NO DATA NO DATA
12 0.045 0.036

Figure 5.5: Test Results for Distance vs Packet Turnaround Time

Roundtrip Time vs Distance
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Figure 5.6: Round Trip time Versus Distance

had decreased.

When the test was over, the handset user could press another key on the

phone to signal the computer to tally up the statistics, including average trans-

mission time as well as the number of missed packets at each distance level.

Results

Discussion

The data above shows little to no correlation of distance to packet turnaround

time using a bluetooth RFCOMM connection. The data point with distance 8
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appears interesting, but due to a high standard deviation, is likely not signif-

icant to the original goal of the test. As we are trying to obtain a heuristic

for distance, such similar values and high standard deviations imply that this

method will not work for identifying distances between handsets.

As the handset holder walked out of range of the computer, it became quickly

evident that issuing further commands to the computer was not possible until

the user walked back into range. The packets that were then marked at an

incorrect distance were only a small part of the dataset, and as such were not

worrisome in consideration of the results.



Chapter 6

Implementation of the

AirRAID Communication

Layer

In this chapter we explain the overall algorithm that, learning what was and

was not possible from Symbian experiments, we imagined would be feasible on

existing hardware. The AirRAID communication layer, when implemented cor-

rectly, should expose nothing more than a method for sending data to a certain

peer (given an IP address). Ideally, AirRAID should act as an additional layer

in between the application and physical medium layers, and do so with mini-

mal changes necessary for an application to implement it as a communication

framework.

6.1 Mesh Creation

Each node periodically sends out service advertisements to the primary

radio network (in our case, Bluetooth), notifying local nodes that a specific

35
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application-specific AirRAID network is available. 1

Upon hearing that a new neighbor has become available, other nodes in

range will attempt to connect. Once the connection is established, we begin

to exchange AirRAID packets to establish paths as well as communicate basic

information between participants in the mesh network.

6.1.1 AirRAID Packets

AirRAID packets are, in essence, associative dictionaries that are encoded

upon transmission into a sendable format, such that they may traverse a lower-

level communication layer. Upon reception at a node, a PacketDecoder looks

at the data received, and determines what type of Packet it has received, prop-

agating the packet up to the AirRAID communication layer. There are many

different types of Packets, but each has many data fields in common. Each

packet contains a source id (the ID of the originating node), as well as the id of

its destination. In addition, it maintains the address of where the packet should

be forwarded to next (it's "Next Hop"), as well as a list of the nodes that it has

traversed thus far. Finally, each packet maintains a separate dictionary of data,

used to contain the payload of each Packet subtype.

Each time that a packet leaves a node, the node updates the packet's list

of traversed nodes with the node's ID. Otherwise, most of the processing for

packets is type-specific, and will be explained in the sections that follow.

In the following sections, we will introduce the packet subtypes in order of

relevance.

6.1.2 Pleasant Introductions

Upon connection, and periodically thereafter, each node produces what is

known as a HELLO-ACKET, which contains information pertinent to its exis-

tence in the mesh, including its bluetooth id, its connectivity to the internet and

1Note that we chose to separate applications for anticipated performance issues. In sepa-
rating applications, we are able to avoid the challenge of fair load balancing. Future versions
of AirRAID will attack this challenge.
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cellular networks, its approximate location, its neighbors, and even its battery

life. HELLO-PACKETs are only allowed to travel one hop, and are actively

dropped by each receiving node, that is, once it has finished storing the relevant

information about the sender.

6.1.3 Path Requisition

In our system, requesting a path to an internet destination is analogous to

requesting a path to a wifi-connected node, and as such, the two are treated as

one process in that the bluetooth id 'WIFI' is used to represent a hop to WiFi,

'CELL' to hop to the cellular data network, and 'INTERNET' to represent

either.

Based off of the path routing algorithm used in DSR, AirRAID allocates

new paths based on user demand, and by progressively populating a traversal

list as path requests propagate through the network.

To request a path, a node fires, to its neighbor nodes, a specific kind of

packet known as a PATH.REQUEST packet, containing a destination ('WIFI',

'CELL' or 'INTERNET' being acceptable options), an empty traversal list,

and a unique 'Path ID'. At the same time, we store a table of path statuses

in the communcation layer, marking down any outgoing request along with a

timestamp of the request.

When a node receives a PATHREQUEST packet, it performs one of two

actions, depending on where the request is headed:

If the destination of the PATHREQUEST packet is not the current node, we

append the bluetooth identifier of the current node onto the traversal list, and

forward the packet on to each of our neighbor nodes. Note that to avoid dupli-

cate PATHREQUEST packets, at each node, when forwarding a path request,

we act as though the PATH.REQUEST were originating at the forwarding node,

up to and including marking it down on a table of path statuses (labeling the

current path as a new request). If a duplicate PATH-REQUEST does come in

later from another node, we can compare its path id to those stored in our table,
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and ignore those that are already known.

If on the other hand, the PATH.REQUEST packet's destination is the cur-

rent node, then we know that the traversal list inside the PATHREQUEST

packet is a valid path to transmit data between the two nodes. The current

node constructs a response packet known as a PATH packet, containing the

path id, as well as the full traversal list of the original request (appending itself

as the terminus), and sends the packet back along the path from which it came.

When a node receives a PATH packet, it first ensures that its own bluetooth

identifier is on the traversal list, and, if so, forwards the packet to the previous

packet on the list (hence, propagating the PATH back to the origin). At the

same time, the node updates its Path Status Table (path-id -Z alive).

In the scenario in which there exists no path between the two nodes (i.e., the

destination node is not on our mesh subnet), the PATHREQUEST packets are

naturally dropped by attrition, and a timeout on the originating node notifies

the system that the request has failed. In our implementation, we have set the

timeout to be around 3 seconds.

All of this assumes an ideal situation with no errors, no drops, and no changes

in network topology. However, it would be foolish to assume that none of

these occur, especially given our network constituents, namely, nodes that can

potentially move at speeds of 90 mph. We will address this further in section

6.1.4.

6.1.4 Path Maintenance

Retaining resilience in the face of a changing topology is critical. To ac-

complish this task, the AirRAID communication layer not only listens for when

its neighbor nodes disappear, but also periodically checks each of its allocated

paths to see if it is able to find a backup node through which it could forward

traffic if the normal node were to suddenly fail.
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Figure 6.1: The path request process. Dashed blue lines represent active path
requests. Dashed black lines represent past path requests. Solid blue lines
represent confirmed paths propagating backwards. Solid green represents a
completed path, while it's yellow neighbor edges represent backup paths, which
are allocated at each backwards propagation phase.

9
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Figure 6.2: The path maintenace process. In this situation, as before, green
lines represent active paths. The red line between A and B represents a failed
edge. A requests its backup path to activate (asking B, who in turn alerts C).
Once the path is re-established, new backups are acquired for all nodes.
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Finding a Backup from Scratch

After the allocation of a path, every 20 seconds, at each node the AirRAID

communication layer enumerates through its paths, and evaluates the backup

situation for each path. In the situation where a path has no backup node, the

current node looks at its neighbors for two different types of nodes: those who

have the path's next hop in their neighbor list, and those who have the node 2

hops down in their neighbor list. It is clearer with an example:

Let there be an allocated path with nodes N1 to N 4 . It turns out that an

additional node N2.5 arrives in the mesh, connecting to nodes N2 and N3 . N2 ,

during its normal backup search, sees that it can forward packets to N2 .5 and

have it in turn forward packets to N3 . This effectively would increases the path

length by 1 node, but allows for reliability in the face of a changing topology.

To initialize this arrangement, N2 sends a BACKUPINIT packet to N2 .5.

Inside this packet are wrapped two data fields: the path id of the path that

N2 .5 is acting as backup for, as well as a traversal list that it is expected to use

should its need as backup arise. Upon receiving this packet, N 2.5 enters a new

path into its records, and records the status as "BACKUP".

In another example, perhaps N2 .5, instead of being connected to N 3, con-

nects to N 4 . Using it as a backup in this situation keeps the path length the

same, but reliability, again, increases.

During this periodic maintenance check, if a backup already exists for a given

path at a certain node, the node with the backup sends a BACKUP-IEEPALIVE

packet to its backup, signifying that, despite having not had to forward data

as a backup path, the backup node should continue to keep its path available.

Upon receiving a BACKUPKEEPALIVE packet, a node looks at its path sta-

tus table and determines if it really is a backup for that path. If so, if updates

the path status with a new expiration time, effectively keeping it alive, and then

forwards the BACKUPKEEPALIVE packet to the next node on its traversal

list for that path id.
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Path Tightening

In addition, every 20 seconds at each node, the communication layer enu-

merates through its paths once more, and begins what we call 'path tightening'.

Examining the traversal list for the path, as well as the current node's informa-

tion on all of its neighbors (thanks to periodic HELLOPACKETs), the node

determines whether it is able to shorten the allocated path by skipping over any

number of nodes in order to reach its destination. As an example, let us assume

a path has been allocated between nodes N1 and N10 (with of course, numbers

2 through 9 connected in a straight line between the two endpoints). At its path

maintenance stage, N3 may realize that it N8 is actually within range, and hence

it can forward packets directly to it. As our goal is to keep paths short, N3 then

makes the decision to modify the path permanently. In doing so, it first sends

a PATHMODIFIEDPACKET to N8 ; This PATH-MODIFIED.PACKET con-

tains within it the path id in question, as well as a new traversal list for the

path, such that each subsequent node can be informed as to what has happened

upstream. Then, no matter what the current backup situation is, N 3 will re-

place its current backup with N 4 (who we know is a reliable backup as we've

been sending data through it previously). 2

Activating Backup Paths

In the event that an allocated path has an interruption at a given node, and

that node has a backup ready to go, to activate the backup path, that node only

need send a PATH-MODIFIEDPACKET to its backup, which in turn notifies

the backup that it can expect traffic.

Backup Failure

Backup nodes do not actively perform maintenance on the paths for which

they act as backup. Instead, when a BACKUPKEEPALIVE packet comes in,

2 Note that any previous backup will automatically deallocate its path upon not hearing a
continued supply of keep alive packets
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the backup node attempts to forward it to the next node on the path traver-

sal list. If it transfer fails, the backup node assumes that it is no longer safe

for it to act as a backup for the path in question, and in turn, it sends a

BACKUPFAILED packet backwards through its stored traversal list.

Once the BACKUP.FAILED packet arrives at an active node (or, in other

words, a node for which the path status is not listed as "BACKUP"), that node

removes the backup node from its memory, and temporarily, until it can find

another backup, becomes a point of instability.

Overall Behavior of Tightening and Backup Recovery

In the optimal case, as nodes move physically throughout the mesh, paths

should contract and expand to accomodate the changing conditions. Ideally,

the paths contract as best they can to minimize the number of failure points,

and yet, as an additional complication, the fewer nodes to traverse in a path,

the fewer backups there are in case of failure; however, one can always simply

maintain additional backups at each node. The discussion on keeping additional

backups is left until section 7.2.3.

6.1.5 Data Packets

When a node wishes to communicate over an allocated path, it creates and

broadcasts a DATA-PACKET. For a DATA.PACKET to traverse the mesh, it

must be tagged with a path id, telling each node that it encounters implicitly

where it is headed and how it got to where it is now. Besides that, it need only

have a block of data.

Upon receiving a DATA.PACKET, a node looks at the packet's destination

field, and decides whether or not the packet has encountered its final destination.

If so, the data is recovered and propagated up to a delegate of the AirRAID

communication layer.

If, on the other hand, the DATAPACKET's destination is not the current

node, the path id is examined and used to look up the traversal route for the
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packet. We assume that if a DATA.PACKET arrives at a node, that it must

be on the path's traversal route, and hence, using the path information stored

at the node (namely, the entire traversal list), the node finds itself on the list,

and simply forwards the packet to the next node on the list.

There is always the possibility that the transfer of a DATAPACKET to its

next destination will not proceed without a failure. In that event, if the node

transferring the DATA-PACKET has a backup, it simply activates the backup

path, and continues the transfer. If on the other hand, it has no backup node

to turn to, it must send a PATHFAILED packet, containing the path id as well

as the reason for failure, back upstream along the path.

Upon receiving a PATHFAILED packet, if a node has a backup, it will

activate it, but if not, further back propagation of the PATH.FAILED packet

continues until it reaches the source, at which point the device is notified of the

failure, leaving further action in the hands of the developer.

6.1.6 Path Expiration

Once a path has been allocated, it would normally be in our best interest to

keep the path alive, even if there is no current active data transfer over the path;

however, doing so is expensive in that it has the potential to hog connection

resources, and so, it is best if we consider no path to be permanent.... After 60

seconds of non-activity, any path on a given node is deemed expired and invalid

for further forwarding.

Activity is considered to be either a DATAPACKET or a BACKUPKEEPALIVE

packet (if the node is indeed a backup for the given path).

When this happens, if a DATAPACKET comes through after its path's

expiration, a PATHFAILED packet is sent back explaining that, rather than a

topology change, simply a lack of activity caused the path to close.
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Dealing with Path Request errors

There are multiple points of failure during the path request phase of the

AirRAID DSR implementation. As our nodes are potentially constantly moving,

it is certainly conceivable that a PATH-REQUEST packet will never be able to

reach its destination. Timeouts at each node allow feedback to the software to

notify it that a path was simply not available at the time of request. We leave

it up to our users as to what behavior they wish to implement in such an event.

6.2 AirRAID Optional Flags

6.2.1 Non-Bidirectional Paths

Above, in section 6.1.3, we assumed that, once a PATH-REQUEST packet

has made its way to its destination, that the traversal list should contain a valid

path for the two nodes to communicate. This is, for the most part true, as long

as the topology of the mesh is relatively stable, for instance when dealing with

something as simple as, say, a small and or quick file transfer between nodes A

and B. For the most part, A is doing most of the communication; perhaps B

sends back ACK packets periodically in response to data packets, but for the

most part, little data need travel spontaneously on the reverse path. Potentially,

the path from A to B may become invalid, and A may simply request another

path, resubmit any data for which an ACK was not received, and continue the

transfer.

In another situation, however, node B may have information for A that is not

necessarily in response to a packet that A sent, or in other words, it is possible

that A, rather than B, after a period of silence, would be expecting data from

the other and, due to a path invalidation or even modification in said period

of silence, be unable to receive it. For instance, should the path from A to B

suddenly have a tightening, B would not be informed, leaving it to assume the

incorrect path as a viable data channel. In our above implementation, B would
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likely wait for A to reinitialize a path (which could take some time, perhaps sped

up if A sends periodic keep-alive packets) until it is able to submit its data.

As an optimization, we have coded into the first testing suite of AirRAID

the option of asking for a non-bidirectional paths. That is to say, upon hearing

a path request, B (as in our above scenario) initializes its own unique path

request back to A, performing similar maintenance on this reverse path. By

maintaining this extra path, B is able to spontaneously send any information it

needs back to A, even if the topology of the network changes.

The advantage to this method lies in its resilient nature. For mutual data

transfer to truly fail, both paths must be severed. The disadvantage, unfor-

tunately, lies in the amount of resources that the additional path consumes.

Each path, remember, must have periodic checks and maintenance performed

to ensure its reliability, and in doing so a number of cycles and data packets are

sent between nodes, whereas with a bidirectional path, only one path need be

maintained, albeit should the path go down, node B (the destination) would be

unable to communicate additional data to A without explicitly opening another

path.

Non-Bidirectional paths become extremely useful in high-latency communi-

cation, such as when asking another node to contact the secondary medium,

say, for an HTTP request. In the time it takes for the request to be completed

on the internet, node A should not need to constantly monitor and react to

path failures on a path through which no data is necessarily traveling. Node

B, rather, in maintaining its backwards path, has the responsibility of finding

node A when data begins to stream back from the remote destination.

6.3 AirRAID Implementation on the Apple iPhone

We decided to implement the first draft of AirRAID on the Apple iPhone,

as it has come to garner a large percentage of the market, including such a

particularly large number of phones in New York City, that AT&T has had
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to expand its operational radio range to account for air time demand. With a

network stretched to its breaking point, and a phone on which it is fairly easy to

develop, there seems no better fit for the AirRAID protocol to make its debut.

In addition, with the release of the 3.0 SDK, Apple opened up the possibility

for phone-to-phone Bluetooth communication, allowing us to demonstrate a

functional, albeit rudimentary, implementation of AirRAID on what seems to

be a fairly ubiquitous phone.

Due to the lack of access to actual call information, the current implementa-

tion of AirRAID focuses on the forwarding and maintenance of active internet

connections between handheld devices; however, expanding the implementation

to include voice calls would require nothing more than the cooperation of the

phone manufacturers (Apple) to obtain access to the radio API, and the cel-

lular network (AT&T) to slightly modify their existing backend technology to

account for the new mesh network option for connectivity.

In the following sections, we assume that the reader is familiar with basic

Objective-C and at least somewhat familiar with Apple Cocoa and Foundation

classes. For those who are not, Stanford's archives of the class CS193P prove

extremely useful in bootstrapping one's way to proficiency[10].

The goal of the iPhone implementation of AirRAID is to provide a seamless

integration with current networking APIs available on the iPhone OS. To begin

with, however, we focus on creating a communication layer that takes existing

NSUrlRequests (a typical way of accessing the internet through the iPhone OS)

and adds additional functionality as to facilitate the potential forwarding of

requests to other phones in range, should the phone issuing the request have no

internet connection.

The current Apple iPhone implementation of the AirRAID protocol exposes

more than is necessary: a requestPathTo method, as well as a sendData method.

Ideally, the two would be combined such that any application making use of the

protocol would require little more than the inclusion of our libraries to facilitate

the added benefit of using an AirRAID mesh.
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6.3.1 Utilizing the Bonjour over Bluetooth API

Apple's iPhone SDK is available at no cost (however, deploying applications

to the Bluetooth enabled phones requires a one-time fee), and allows access to

many of the phone's APIs. In its most recent release, Apple made available

a slightly irregular, albeit functional, version of bluetooth available to devel-

opers; however, unlike traditional bluetooth, the task of polling, hopping, and

most other low level actions are abstracted behind another communication layer

(Apple's traditional network protocol: Bonjour).

In its strange implementation, rather than actively polling for other blue-

tooth enabled devices, the iPhone Bluetooth API allows for one to instantiate

what's called a 'Session' (GKSession), which, once given a particular name and

set to any of Server, Client or Peer mode, begins looking for other phones which

have a similarly named session that is active. When the phone asynchronously

(and may we add, clandestinely) discovers another node, it is able to notify a

delegate of its discovery. At that point, one can decide to tell the session to

connect to the device. All of the intricacies of polling, discovery, and channel

hopping are purposefully abstracted underneath the API layer, leaving little for

the iPhone programmer to do but assume that the phone is able to accurately

and with appropriate frequency poll the airwaves for other devices. Sending

data between the phones, once connected, is as simple as specifiying to which

phones (specified by a unique bluetooth identifier) one wishes to send an NSData

object.

Sessions can be thought of as blobs into which nodes(phones) conglomer-

ate. Once a node has joined a session, it is technically connected to all other

phones within that session. Much like a switched network, data can be targeted

towards a single node, but no one node may choose to disconnect from any

other node individually. Rather, each node, should it wish to disconnect, must

disconnect from the conglomerate. This model is disconcerting to the mesh-

network programmer, as it would seem as though Apple has already solved the

mesh-networking problem. We discuss this further in section 6.3.2
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6.3.2 The Implications of the Session Model

In terms of mesh networking, the required behavior of using 'sessions' is

both useful and worrisome. Its usefulness becomes clear when one reconsiders

our initial goal of effectively extending the range of another radio communication

medium. One can imagine the cellular network (or the internet, as we implement

it) to be the metaphorical siphons into an ever-expanding pool of nodes. The

idea of jumping from one subnet to another is a mute point, as the iPhone

SDK seemingly handles the behavior seamlessly; however, the conglomeration

behavior has an extreme negative: No phone can actively decide to which other

phones it maintains active connections to at any given time. Instead, while it is

able to choose who it connects to initially, it must disconnect from a session, as

opposed to an individual node, leaving little options for dynamic rearrangement

of the mesh.

An additional complication exists in that Apple's Session model implements

its own form of multi-hop mesh networking, albeit a somewhat riskier version

than what AirRAID is able to provide. Whenever two nodes connect to each

other (or rather, when they connect to a session through each other), each shares

the list of nodes that they are aware of, much like the networking methods of a

simple link-state system.

The good news is, assuming that there are either very few, or a large num-

ber, of phones within a given area, and knowing that bluetooth has connection

limits, the iPhone Bluetooth API seems to be intelligent enough to not allow

connections over its limit, meaning that the network somewhat self-organizes. If

one phone cannot connect to another due to the connection limit, it will simply

seek out other phones that have not yet reached their limit.

The bad news is that there seemingly is no redundancy implemented into

the Bonjour over Bluetooth system. If a node A is connected to another node

C through yet another node B, and node B disconnects, whether A and C are

within range or not, C loses its connection to the session.

One additional issue that arises by using Apple's Bluetooth API is the ran-
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dom creation of separate disjoint subnets, when what we really prefer is a rela-

tively wide-spread connected mesh (for optimal reachability without having to

resort to forwarding packets over the secondary medium, namely WiFi or the

cellular data network).

In later versions of AirRAID, we expect to implement a controller that,

reachable by the internet, is able to forward traffic intelligently from one subnet

to another (see section 7.2.1)

6.3.3 Overriding Apple Bluetooth Mesh Networking - ARGK

Overlay

In order to overcome the automatic mesh networking that Apple attempts

in its implementation of Bluetooth, we needed to find a way to prevent multiple

hops at the Bonjour layer. To do so, rather than using the provided GKSession

object to maintain connections, we have extended it and created a new kind of

session object (named for the moment a ARGKSession) which presents a new

model for handling connections.

Rather than having a Bluetooth ID, each node is identified on the AirRAID

network by a ARGKID, a lengthy hexademical string unique to each device.

In addition, we initialize multiple GKSessions, each with a different service

name (i.e. AirRAID-1, AirRAID-2...), equating each session to a 'spoke' on a

metaphorical bicycle wheel with the node at its center.

Each spoke is programmed to allow only 1 connection at a time, preventing

nodes from sharing neighbor lists with each other (and hence preventing Apple

from utilizing its multihop algorithm).

When a data packet for a node (addressed at the packet level by ARGK_ID,

and at the bluetooth level by a Bluetooth id) comes in to any other node, the

ARGK overlay notifies the AirRAID Communication Layer that a packet for

the given ARGKJD has arrived.

The communication layer then does its work to determine to where the

packet should be forwarded next, and notifies the ARGK layer that it wishes
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- (void)session:(GKSession *)session peer:(NSString *)btID
didChangeState :( GKPeerConnectionState) state {

// ..

switch (state) {

case GKPeerStateConnected:
// ...

[session setAvailable:NO];
case GKPeerStateDisconnected:

// ...

[session setAvailable :YES]
// ..

}

Figure 6.3: Sample code for intentionally limiting the iPhone Bluetooth API.
Assuming correct mutex handling, this code limits sessions (spokes) to one con-
nection. Intentionally left out is further bookkeeping code from the ARGKSes-
sion module

to forward the packet onward to another node (identified, again, by ARGK id).

Here, the abstraction becomes slightly taxing in processor cycles. In order to

forward a packet on to the next node, the ARGK layer must decide to which

bluetooth id and on which spoke it will send the packet.

During initial connection negotiation, the ARGK layer creates and maintains

a bidirectional list between Bluetooth IDs and ARGKADs, but remember that

while, when given a Bluetooth ID, there exists but one ARGKJD, when given

an ARGKJD, it is possible that there are multiple Bluetooth IDs for a single

ARGKAD (one Bluetooth ID per open GKSession 'spoke' at each node). As

such, when a packet is to be forwarded to a node D, the ARGK layer must

search for each of D's Bluetooth IDs on each of its spokes, and once it finds it,

may forward the packet onward.
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6.4 Experimental Run

While the AirRAID module has no visual user interface associated with it,

we coded up a simple debug console and map for use with AirRAID tests. The

user interface consists of 6 labeled (albeit cryptically) buttons on the limited

space at bottom of the screen:

1. "RP" - Request Path - Allows for a user to specify a specific node to

request a path to

2. "HB" - Heartbeat - Performs maintenance on all paths (typically run

periodically, but also on demand here)

3. "WIFI" - Request Path to WiFi - Sends out a Path Request to all nodes

looking for a WiFi connection

4. "TI" - Request to download a remote web-hosted file of approximately 50

kilobytes through the AirRAID layer

5. "T2" - Request to download a remote web-hosted file of approximately

1.2 MB through the AirRAID layer

6. "PA" - Show Paths - Shows general status of the AirRAID and ARGK

Layers

In general, our tests were set up such that a user could request to download a

remote file off of a webserver by accessing WiFi through the AirRAID layer. To

do so, the user of a local node first presses "WIFI", allocating a wireless path.

Once the AirRAID layer notifies the UI that a path has been found, the user

may click on the "TI" button, which issues a request for the remote file over

the path on AirRAID. On a remote node with WiFi, hearing the request, the

node allocates a reverse path back to the requesting node, and then issues the

web request on WiFi. As return packets from WiFi come in, they are forwarded

over AirRAID to the original requesting node. When the transfer finishes, the
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remote node sends a simple signal "DONE", telling the local node that it was

finished sending packets for the moment.

Meanwhile, as a metric, the local node starts a timer when the user presses

"T1", and stops when the "DONE" packet comes in. From this time, approxi-

mate transfer rate is calculated and shown in the debug console. Tests were run

in only two arrangements, due to budgetary constraints. Results are discussed

below.

6.4.1 Complications during Testing

Apple's Bluetooth API, not being perfect, suffers from numerous discon-

nects, as well as a seemingly extremely finicky Bluetooth chip. At times, despite

allocating a number of sessions on a given node, Bluetooth would not activate

unless one restarted the node. At times, these sorts of failures occurred during

testing itself, causing disconnects and irrecoverable connection/path failures.

The tests described below are the successful tests that were recorded. Ideally,

for a deployable release of AirRAID, we would find a way to circumvent the

Apple Bonjour over Bluetooth API and hopefully have tighter control over the

Bluetooth chipset.

6.4.2 Single-hop Tests

Single hop tests typically consisted of two iPod touches, one with wireless

networking and Bluetooth enabled, and the other with only Bluetooth enabled.

We placed a single file of approximately 50 kilobytes on a remote webserver

(hosted at MIT), and launched AirRAID on both devices.

Once connections and HELLOs were exchanged, we ran the same test but

from the two separate nodes. Acting as a control experiment, we do the above

steps on the node that already has WiFi access, recording the bit rate without

using AirRAID. From there, we run the test on the Bluetooth-only node, and

record the bit rate. We'd imagine a significant hit on bit rate, due to the latency

behind allocating paths, as well as forwarding the traffic through the Bluetooth
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layer.

However, for the most part, with only two nodes in the AirRAID constella-

tion, we observed little to no performance hit on bitrate on the Bluetooth-only

node versus the WiFi-enabled node. Working with a slow connection in the first

place, accessing the 50 kB file from the WiFi-enabled node garnered for one test

a 12 kB/sec rate, while the Bluetooth-only node maintained an 11 kB/sec rate.

6.4.3 Multi-hop Tests

Multi-hop tests of the AirRAID system involved a small mesh of 3 nodes:

two iPod touches and one iPhone. For initial tests of multi-hop wireless access,

each node was set to allow for no more than 2 spokes to be instantiated at the

ARGK layer, meaning that, typically, the network would arrange itself into a

line.

Much like above, we ran two tests, one from the WiFi-enabled node, and the

other from furthest Bluetooth-only node. On one particular test, we observed

12 kB / sec for the WiFi-enabled node, and 6 kB/sec on the Bluetooth-only

node, a 50% hit on bandwidth.

6.4.4 Discussion

A 50% hit on bandwidth is significant, but remember that at this juncture,

our goal is not to maximize throughput, but to extend coverage of a wireless

network further using a secondary radio medium. Any reasonable bit rate is a

successful test in our eyes.

6.4.5 Further tests

Ideally, with a larger number of nodes, it would be interesting to test the

path backup and tightening methods to be sure that little to no packet loss

occurred.
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6.5 Simulation

For the purposes of evaluation, rather than simply trust results from a live

simulation, we decided to implement a test simulation, using a simulated blue-

tooth net, including simulated noise: dropped packets, and random disconnects

- all with the hope of determining the efficacy of the redundancy of the algo-

rithm. We choose to measure throughput, as well as the dropped packet per-

centage, and comparing the results with existing protocols (including Apple's

Bonjour + Bluetooth protocol, native to the iPhone platform).

6.5.1 Simulation Code Structure

With a nod to the modularity of the implementation described above, im-

plementing simulation code simply meant replacing all existing communication

modules below the Communication Layer level.

Replacing the ARGKSession object with a simulation version (simply dis-

connecting the module from any reliance on Bluetooth hardware), as well as

defining a Bluetooth simulation network on which the new ARGKSimulationS-

essions can communicate, for the most part, a complete simulation could use all

of the original code used in the live demonstration.

We introduce the concept of a 'SimulationNode', or a simulated user device,

positioned somewhere in a cartesian plane. Phones are considered in range if

there distance is below a certain threshold. Packets are transmitted only to

those phones that are within range, and are transmitted successfully with a

predefined drop-rate of a.

In addition, small modifications were made to the Communication Layer,

preventing it, again, from using actual bluetooth hardware.

6.5.2 Testing Method

While we were unable to gather data from simulation runs, we provide a

description of the testing method for the reader to duplicate should s/he wish
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to expand upon our implementation: Running on the iPhone simulator, the Air-

RAID simulation constructs 10 artificial phones (SimulationNodes), and drops

them onto a 2D plane. Each running in its own thread, the phones begin to

look for each other, sending packets as they see fit for AirRAID infrastructure,

as well as moving randomly but not necessarily discontinuously.

After a brief delay, the first node created is told to send approximately 1

MB of data to the furthest node it can find.

Calculating throughput would be relatively trivial, whereas on the other

hand, calculating the number of dropped packets is not. Rather than explicitly

count each dropped packet, we recommend counting the number of path status

packets transmitted, including backup control messages, as well as any packets

that imply that a path has suffered a failure (PATH.FAILED packets).
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Future Implementations of

AirRAID

Future implementations of AirRAID will focus on implementing additional

functionality in terms of connectability, especially across disparate subnets.

Much like the existing cell infrastructure, it may be possible that there ex-

ists a need for a node on one AirRAID subnet to contact another directly. In

addition, we expect to implement even more reliable modes of transfer over the

existing routing infrastructure.

7.1 Other Platforms

The iPhone has proved to be a relatively closed medium for presenting the

first iteration of AirRAID. Potentially, as the algorithm exists for extending

one radio communication schema over another, we have limitless venues for

implementation. Sticking to Bluetooth and WiFi, moving an implementation

to laptops could prove useful; however, most laptop users tend to be rather

statically placed, thus the mesh topology is not dynamic enough to warrant DSR

or any algorithm that would be robust against changes in network topology.

AirRAID may work well in other dual-band situations, such as in inter-
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satellite communication, where potentially a signal from Earth to a single geosyn-

chronous satellite may be propagated to another non-geosynchronous satellite

through an AirRAID mesh.

7.2 Improvements on AirRAID itself

7.2.1 Implementing an Internet-based Traffic Controller

In order for subnet-to-subnet communication to function, much like the ex-

isting cell infrastructure, there must be a third party that is reachable by all

nodes, able to locate a certain node amidst a number of mesh subnets. Future

versions of AirRAID could make use of a traffic controller server (TCS) that

sits on the internet, which keeps track of which subnet each node is on. When

a node joins a given subnet, and sends its HELLO.PACKET to its neighbor,

assuming internet access somewhere in the subnet, each neighbor could report

its sighting of the node on its subnet to the TCS. When a node from another

mesh subnet wishes to find this node, it can contact the TCS, asking for the IP

of a WiFi-enabled node on the AirRAID subnet. PATH-REQUESTS and other

packets would then be allowed to transfer from the AirRAID network over to

IP, using WiFi-enabled nodes as gateways.

7.2.2 Implementing TCP/IP over AirRAID

Despite our backup and path tightening methods implemented in AirRAID,

there is still a certain amount of packet loss that can occur. Future versions of

AirRAID could implement TCP/IP streams over the existing AirRAID infras-

tructure, ACK packets, sequence numbers and transmission windows included.

Rather than deal with AirRAID directly, users could open up TCP/IP streams

between themselves and their targets, establishing additional reliability.
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7.2.3 Multiple Backups

Future versions of AirRAID could potentially and easily maintain a larger

list of backup nodes in case of path failure. As nodes fail, the communication

layer could remove and use backup nodes from a priority queue keyed on any

heuristic of reliability (potentially, round trip times, if that becomes available

for use in later versions of the iPhone SDK).

7.2.4 Data Striping

Original goals of the AirRAID protocol involved using the mesh for more

than just data transfer reliability. Included on the idealist list of features was

the option to stripe data, or to split data transfers across multiple paths for

faster overall transfers. Once an implementation of AirRAID has become se-

cure in providing reliable communication over a mesh, we intend to focus on

implementing an option to stripe data across disjoint paths in the mesh. Po-

tential applications include video conferencing, which by itself can require not

only an amount of bandwidth large enough to warrant striping, but also timely

delivery of unreliable packets, which can potentially be better guaranteed by

multiple streams on disjoint paths.

7.3 Conclusion

As the world becomes increasingly mobile, the need to extend communication

connectivity scales accordingly. More and more focus is being placed on mobile

computing, and yet the idea of a constant mobile connection to the internet

and/or other devices has yet to become part of our vernacular. Devices such

as the Kindle, smart phones, and other mobile-enabled devices are off to a

good start with respect to providing connectivity to users who are, themselves,

becoming increasingly mobile.

The AirRAID protocol serves as a method to strengthen the mobile com-

munication infrastructure, acting as an adapter between two media. By using
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a short range communication protocol with high reliability, connected via the

AirRAID protocol to a (potentially) low reliability long range communication

protocol, we can take advantage of the additive power of multiple mobile devices

to provide a highly reliable and far-reaching mobile communication solution.

While the iPhone seemed an ideal platform for AirRAID's debut, unfor-

tunately, the amount of developer control over its functionality is simply not

enough to provide an ideal implementation of the protocol. However, as an

initial testbed, the implementation on the iPhone serves its purpose in showing

that the protocol would function reliably and provide a certain level of added

mesh-network functionality fueled by an already robust 3G or WiFi data con-

nection.

Whether the AirRAID protocol is adoptable into a communications stan-

dard of mobile devices remains to be seen, but its theoretical as well as limited

measured efficacy makes it a good potential candidate for future cellular com-

munication schema.
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