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Abstract

In this thesis, we study various aspects of string theory on geometric and non-
geometric backgrounds in the presence of branes.

In the first part of the thesis, we study non-compact geometries. We introduce
"brane tilings" which efficiently encode the gauge group, matter content and super-
potential of various quiver gauge theories that arise as low-energy effective theories
for D-branes probing singular non-compact Calabi-Yau spaces with toric symmetries.
Brane tilings also offer a generalization of the AdS/CFT correspondence.

A technique is developed which enables one to quickly compute the toric vacuum
moduli space of the quiver gauge theory. The equivalence of this procedure and the
earlier approach that used gauged linear sigma models is explicitly shown. As an
application of brane tilings, four dimensional quiver gauge theories are constructed
that are AdS/CFT dual to infinite families of Sasaki-Einstein spaces. Various checks
of the correspondence are performed.

We then develop a procedure that constructs the brane tiling for an arbitrary toric
Calabi-Yau threefold. This solves a longstanding problem by computing superpoten-
tials for these theories directly from the toric diagram of the singularity.

A different approach to the low-energy theory of D-branes uses exceptional collec-
tions of sheaves associated to the base of the threefold. We provide a dictionary that
translates between the language of brane tilings and that of exceptional collections.

Geometric compactifications represent only a very small subclass of the landscape:
the generic vacua are non-geometric. In the second part of the thesis, we study
perturbative compactifications of string theory that rely on a fibration structure of
the extra dimensions. Non-geometric spaces preserving .A = 1 supersymmetry in four
dimensions are obtained by using T-dualities as monodromies. Several examples are
discussed, some of which admit an asymmetric orbifold description. We explore the
possibility of twisted reductions where left-moving spacetime fermion number Wilson
lines are turned on in the fiber.

Thesis Supervisor: John McGreevy
Title: Assistant Professor
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Part I

Introduction



Our current understanding of Nature is centered around two theories: general

relativity which describes gravity, and quantum field theory which describes the strong

and electroweak interactions and various low-energy phenomena. Naive attempts

to unify these two theories lead to insurmountable difficulties. Moreover, a unified

theory would ideally explain recent cosmological observations such as the acceleration

of the universe, dark matter and cosmic inflation. This presents challenges to our

understanding that must be addressed by new ideas.

As of today, the best candidate framework for unification is string theory. The

best understood solutions of the theory are, however, ten dimensional. The extra six

dimensions may be compactified. The various deformations of the compact space can

lead to light moduli fields. Fields with flat potentials typically modify the gravita-

tional law in a way which is experimentally ruled out. More generic states of string

theory also contain field strengths and heavy solitonic objects, branes, which can

generate a potential for the moduli fields. It is in fact possible to fix all the moduli in

particular examples. There is expected to exist a large set of consistent string theory

vacua which is referred to as the 'landscape'. It is important to study the properties

of these vacua through examples and determine possible correlations between their

features. It is conceivable that this way one can obtain predictions for low-energy

physics and constrain the set of effective field theories.

After compactifying, the structure of the extra dimensions governs the particle

content and interactions of the four-dimensional effective field theory. Much of the

work in this thesis has focused on this interesting correspondence. In many cases,

the basic features of the field theory depend only on the local structure of the extra

dimensions. In this introduction, we briefly explain the results which fully solve

this correspondence for the case of 'toric' geometries. The tools that we developed

can also be used to generalize the recent discoveries for M2-branes in M-theory.

Finally, we describe results in global compactifications, in particular, in constructing

4d N = 1 perturbative non-geometric backgrounds. Global issues are of importance

since certain mechanisms (e.g. inflation) can depend on the structure of the entire

compact space.



Local geometries and singularities

A popular scenario for phenomenology describes visible particles as excitations of

three-dimensional branes. In order to generate the chiral particle content of the

Standard Model in Type II string theory, the compact space must contain singularities

(or intersecting branes in a dual picture) where the branes are placed. Although

general relativity breaks down in the presence of such singularities, string theory can

still be well-defined [73, 71]. The data for specifying the low-energy effective theory

on the brane include the superpotential and the quiver which encodes the gauge

groups and the particle content. These features depend only on the local region near

the singularity.

The existing methods for analyzing the correspondence were computationally pro-

hibitive for most singularities. For Calabi-Yau geometries with toric symmetries, we

introduced "brane tilings" which efficiently solved this problem in a graphical way

[94]. This paper is the basis of Chapter 3. The tiling can be interpreted as a physical

configuration of branes. It encodes the gauge group, matter content and superpoten-

tial of the gauge theory. Brane tilings give the largest class of K = 1 quiver gauge

theories yet studied and they offer a generalization of the AdS 5/CFT 4 correspondence

to infinite sets of non-spherical horizons.

The technique we developed also enabled one to quickly compute the toric vacuum

moduli space of the quiver gauge theory. In [100], we explicitly proved the equivalence

between this procedure and the earlier approach that used gauged linear sigma models

[232]. This is summarized in Chapter 4.

As an application of brane tilings, in [97] we found the four dimensional quiver

gauge theories that are AdS/CFT dual to the recently discovered La',b, families of 5d

Sasaki-Einstein metrics. Chapter 5 is based on this paper. We perform various checks

of the correspondence, such as volume calculations on the string side which match

the R-charges on the gauge theory side which are determined by a-maximization.

In [132], we developed a procedure that constructs the brane tiling for any toric

Calabi-Yau threefold. This is summarized in Chapter 6. The algorithm solved a



longstanding problem by computing superpotentials for these theories directly from

the toric diagram of the singularity. The rules for the consistency of tilings were also

determined. In general, the correspondence between field theories and geometries

is not one-to-one: various field theories can have the same moduli space. This

ambiguity manifests itself as Seiberg duality which was further elucidated by the

results.

Brane tilings give a simple pictorial way to determine the low energy gauge theory

on a stack of D3-branes probing a toric singularity. Another more abstract approach

to this problem uses so-called exceptional collections of sheaves associated to the

base of the threefold. Although this method is not restricted to the toric case, it

is considerably more complicated. In [125] we provided a dictionary that translates

between these two languages. These results are described in Chapter 7.

In order to gain a better understanding of the field theory / geometry correspon-

dence, in [51] we discussed in detail the problem of counting BPS gauge invariant

operators in the chiral ring of quiver gauge theories. These operators are dual to

generalized giant gravitons, i.e. D3-branes wrapped on generically nontrivial three-

cycles on the gravity side. We found an intriguing relation between a certain decom-

position of the generating function and the discretized Kdhler moduli space of the

Calabi-Yau space.

In [95] we developed techniques for orientifolding toric Calabi-Yau singularities.

With these new tools, one recovers many orientifolded theories known so far. Fur-

thermore, new orientifolds of non-orbifold toric singularities were obtained. One

particular application of the results is the construction of models which feature dy-

namical supersymmetry breaking as well as the computation of instanton induced

superpotential terms.

As discovered recently, Chern-Simons-matter theories play a role in M-theory

[210, 20, 21, 122]. In particular, they are conjectured to describe the 2+1 dimen-

sional low-energy theory living on M2-branes. Understanding the physics of these

branes will be a further important step towards understanding M-theory and non-

perturbative strings. Brane tilings proved to be efficient tools for studying a subset of



N = 2 Chern- Sinous-matter theories [135]. In [133], we described a te( Iique which

computes the three dimensional toric diagram of the non -compact imodili space of a

single probe brane. As a byproduct, one obtained new examples for the AdS 4/CFT 3

correspondence. These examples may be useful for the study of 2+1 (liniensional

condensed matter systems.

Global non-geometric compactifications

The study of geometric compactifications is possible due to the abundance of available

mathematical tools. Such vacua, however, represent only a very small subclass of the

landscape: the generic vacua are non-geometric. The classification of such theories

seems prohibitively difficult and therefore simple tractable examples are valuable. A

first step can be made in a controlled environment using perturbative string dualities

to build non-geometric spaces.

The second part of this thesis (Chapters 8-9) focuses on implementing these ideas

to obtain four-dimensional M = 1 compactifications [229]. At the 'large complex

structure point' in the moduli space, Calabi-Yau spaces can be approximated by

torus fibrations [113, 220]. Instead of using only geometric SL(n) transformations to

glue the torus fibers, one wishes to use the whole T-duality (or more ambitiously,

U-duality) group [138]. The non-geometric spaces that we obtain this way have a

nice geometric representation. The construction is dual to G 2 compactifications of

M-theory and has asymmetric orbifold limits. It also allows for new ways to stabilize

the moduli fields. In particular, it is useful in eliminating the modulus that is related

to the overall size of the compact manifold which otherwise poses an intrinsic difficulty

for ordinary (geometric) string compactifications. We also give a simple explanation

for the Hanany-Witten brane-creation mechanism [134] and for the equivalence of

the T5/Z 2 Type IIA orientifold and Type IIB on S' x K3 [234, 67].



Part II

Local geometry



Chapter 1

D-branes and quiver gauge theories

String theory contains a wide variety of extended objects. In addition to 1+1-

dimensional strings, it also contains branes, which are higher dimensional analogs

of two-dimensional membranes. There exist various types of branes1 : NS5-branes,

Dp-branes (in Type II string theory) and also M2- and M5-branes (in M-theory).

In this first part of the thesis, we will focus on the physics of D-branes and how local

features in the geometry affect their dynamics.

In perturbative string theory, D-branes are submanifolds in spacetime where

strings can end. The effective action for a D-brane is given by the Dirac-Born-

Infeld action coupled by a Wess-Zumino term to other spacetime fields [182]. One

can consider a limit where the length scale of the strings vanishes and the massless

modes on the D-brane decouple from the tower of massive open string modes and

other modes arising from closed strings in the bulk of spacetime. For a single D-brane

in flat space, the low-energy limit corresponds to the dimensional reduction of the

ten-dimensional A = 1 supersymmetric Yang-Mills theory with U(1) gauge group.

Placing D-branes in curved background geometries offers an immediate general-

ization to the flat space configuration. The following question arises naturally: for a

given geometry, what field theory governs the low-energy dynamics of the D-branes?

A possible approach to study this question, which is particularly interesting due

to its relationship with different branches of geometry, is to use D-branes to probe

'The numbers indicate the (spatial) dimensionality of the branes.



a >inigllarity in the geometry. The geometry of the singularity then determines the

an oit of supersymmetry, the gauge group structure. the matter content and the

siperpotential interactions on the worldvolume of the D-branes.

The richest of such examples which are both tractable and non-trivial, are given

by t he 4d KV 1 gauge theories that arise on a stack of D3-branes probing a singular

Calabi- Yau 3-fold. This scenario is depicted in Figure 1-1. The background is a

product of (3+1)-dimensional Minkowski space and a six-dimensional Calabi-Yau

space. The D3-branes are filling the Minkowski factor. Their position in the extra

six dimensions is given by a point in the Calabi-Yau manifold. If this is a smooth

point in the Calabi-Yau geometry, we obtain M = 4 SYM on the D-branes. However,

if the point is a singular point, the low-energy theory of the D-branes will be more

interesting.

space-filling D3-branes

0 4 
<

singular Calabi-Yau

Figure 1-1: D3-branes probing the transverse geometry.

This setup also provides generalizations of the celebrated AdS/CFT correspon-

dence [189, 118, 236, 6]. The AdS/CFT conjecture states that the large N 't Hooft

limit of K = 4 SU(N) super Yang-Mills is equivalent to type IIB string theory on

AdS x S' with N units of Ramond-Ramond 5-form flux on the S'. The K = 4 gauge

theory in question arises as the worldvolume theory of a stack of N D3-branes in flat

ten dimensional space. Since its original formulation, the AdS/CFT correspondence

has been extended to and checked in a variety of more realistic, less supersymmetric

situations. The worldvolume theory of D3-branes over a singular Calabi-Yau three-

fold is an K = 1 "quiver" gauge theory [73, 71]. The structure of the gauge theory



reflects the properties of the singular manifold. When the Calabi-Yau is a metric

cone over an X5 Sasaki -Eiiistein manifold, the corresponding dual is type IIB string

theory on AdS 5 x X5 .

The matter content of the quiver gauge theory is neatly summarized in the quiver

graph [73] which also generalizes the familiar Dynkin diagrams. Each node in the

quiver (see e.g. Figure 1-2) may carry an index, Ni, for the ith node and denotes a

U(Nj) gauge group. The edges (arrows) label the chiral bifundamental multiplets.

These fields transform in the fundamental representation of U(Nj) and in the anti-

fundamental of U(Nj) where i and j represent the nodes in the quiver that are the

head and tail of the corresponding arrow.

1 z 2

1 2

U"X Ua

4 VaY 3  3
Figure 1-2: Quiver of dP 1 . The theory contains four U(N) gauge groups labeled by
the nodes of the quiver. The arrows label bifundamental fields transforming in the
(anti-)fundamental representation of the groups at the endpoints.

In order for the gauge theory to be gauge anomaly free, for each gauge group, the

number of chiral fermions in the fundamental representation must equal the number

in the antifundamental representation. This anomaly cancellation constraint means

that for a fixed node in the quiver, the number of incoming and outgoing arrows are

the same.

In order to write down the Lagrangian of the quiver gauge theory, we further need

to give the superpotential, which is a polynomial in gauge invariant operators. For



example, for dP1 the superpotential is 2

W =ea3U1 VY1 - E1a/U 2Y2YS - %-2U1 YUZ . (1.0.1)

By deleting certain arrows in the quiver, one obtains another graph, the so-called

Beilinson quiver. This type of quiver will be important in Chapter 7. In this

quiver there exists an ordering of the nodes such that there are no arrows pointing

backwards (for an example see Figure 1-3). Generically, there are many Beilinson

quivers corresponding to a given quiver. These quivers can be thought of as subquivers

that contain no oriented loops.

2
1 2 3 4

Figure 1-3: dP1 Beilinson quiver.

21n this usual schematic notation the coefficients and traces in front of the terms are not shown.



Chapter 2

Toric geometry

In this chapter, we give a brief introduction to toric geometry, focussing on features

that are relevant for this thesis. In particular, we will concentrate on singular non-

compact toric varieties Y whose Calabi-Yau metric is a cone over an X5 Sasaki-

Einstein manifold. For more detailed discussions, we refer the reader to [185, 102, 45]

Toric non-compact Calabi-Yau spaces are a particularly simple, yet extremely

rich, subset in the space of Calabi-Yau threefolds. Their simplicity resides in that

they are defined by a relatively small amount of combinatorial data. This will allow

us to extract the data of the quiver gauge theory that arises on D3-branes probing

such toric spaces without knowing the metric explicitly. This is very important since

Calabi-Yau metrics are rarely known in general.

In order to use toric methods, we restrict the class of possible spaces to toric ones,

i.e. we assume that the isometry group of Y contains a 3-torus. The variety then can

be defined by a "strongly convex rational polyhedral cone" U on the integer lattice

N (see Figure 2-1). Such a cone has the origin of the lattice as its apex and it is

bounded by a finite set of hyperplanes (this is the "polyhedral" property). The edges

of the cone are spanned by lattice vectors {Vr}. We also assume this set of vectors is

minimal in the sense that removing any vector in the definition changes the cone.

The lattice N is three dimensional so that we obtain a (complex) 3d space. Let

M = Hom(N, Z) be the dual lattice with pairing denoted by (-, -). The dual cone a'

is the set of vectors that are nonnegative on u.



0

Figure 2-1: The cone for the variety. The coordinates of the spanning vectors are
integers. The endpoints are coplanar following from the Calabi-Yau condition.

A collection of cones E is a "fan", if each face of a cone is also present in E.

Moreover, the intersection of two cones in E is a bounding face of each. Let us denote

the one-dimensional cones in E by vi (i = 1... k). We can associate to each vi an

homogeneous coordinate zi E C defining a C' space.

From this space we first remove an S set,

S=U(Z1,...,Zk) I z2=0 for alli EI} (2.0.1)

where I C {1, ... , k} labels the sets for which the {vi I i E I} vectors are not in the

same cone in the fan.

After subtracting this set, we can define the toric variety as a quotient,

_ Ck\S

S= F
(2.0.2)

where G is (C*)k-3 and F is a finite Abelian group. This finite Abelian group arises

when the vi vectors generate only a sublattice N' of N. The quotient by G is given

as follows. We define Q' integer vectors by the relation,

k

(2.0.3)Qivi = 0.

The quotient is given by identifying points with the following equivalence relations,

(2.0.4)Qk
(Z1.... Zk),,,(AQ'zl,...,A Zk)



where A E C*. There are k - 3 independent relations and thus the toric variety is

three dimensional.

A simple two-dimensional example is given by CP 2. The fan is given by the

following three vectors,

Vi = (1, 0) V2 = (0, 1) V3 = (-1, -1).

The S subset is simply the origin, and the toric space is given by,

C3\{0}
C*

The action of C* can be easily determined since

1 x v1 + 1 x v2 + 1 x v3 = (0, 0).

(2.0.5)

(2.0.6)

(2.0.7)

therefore Qi = (1, 1, 1) and thus the equivalence relation is (z1i, z2, z3 ) ~ A(zi, z2, z3 ).

We see that this is just the usual definition of CP 2 .

For each spanning vector v, there is a corresponding D, (Weil) divisor in the toric

variety. Principal divisors are of the form

Z (m, vr)D , (2.0.8)
r

for m c M. The Calabi-Yau condition states that c1(Y) = 0, i.e. the canonical class

is trivial

K =-ZD = - ,(m,vr)D,. (2.0.9)

The last equality implies that the endpoints of the {Vr} vectors are coplanar, so with

an appropriate SL(3, Z) transformation a convex integer polygon in two dimensions

can be obtained (see e.g. Figure 2-4). We will refer to this polygon as the toric

diagram of the singularity [191, 190, 97]. Weil divisors can be specified as integer

functions over the external lattice points of the toric diagram. Principal divisors are



simply linear functions: t he canonical class is a constant function.

Figure 2-2: The toric diagram for the conifold which can also be described by lie
equation z1z2 = z3z4 with zi C C. The normal vectors are also shown.

(0,1) (1,1)

(-1,0) (0,0)

(0,-1)

Figure 2-3: The toric diagram for the del Pezzo 1 surface is shown.

Figure 2-4: The toric diagram for L' 7,3 which is part of the recently discovered series
of Labc metrics ([61, 60]).



Chapter 3

Brane tilings

In this Chapter, we introduce the concept of brane tilings. They can be thought of as

configurations of NS5- and D5-branes that generalize the brane box [131] and brane

diamond [5] constructions and are dual to gauge theories on D3-branes transverse

to arbitrary toric singularities. From now on, we proceed assuming that the dual

geometry is toric and introduce the relevant brane configurations. The reason for the

requirement that the corresponding singularities are toric will become clear in this

and subsequent sections.

In our construction, the NS5-brane extends in the 0123 directions and wraps a

holomorphic curve embedded in the 4567 directions (the 46 directions are taken to

be compact). D5-branes span the 012346 directions and stretch inside the holes in

the NS5 skeleton like soap bubbles. The D5-branes are bounded by NS5-branes in

the 46 directions, leading to a 3+1 dimensional theory in their world-volume at low

energies. The branes break supersymmetry to 1/8 of the original value, leading to 4

supercharges, i.e. .A = 1 in four dimensions. In principle, there can be a different

number of D5-branes N, in each stack. This would lead to a product gauge group

IIh SU(N). Strings stretching between D5-branes in a given stack give rise to the

gauge bosons of SU(N) while strings connecting D5-branes in adjacent stacks I and

J correspond to states in the bifundamental of SU(N) x SU(Ni). We will restrict

ourselves to the case N, = N for all I. Theories satisfying this restriction on the

ranks were dubbed toric phases in [80], We should emphasize though, that there



are quivers that are dual to toric geometries but that do not satisfy this condition.

It is worthwhile here to note a few properties of NS5-branes that are relevant

for this construction. As is well-known, an NS5-brane backreacts on its surrounding

spacetime to create a throat geometry. When we have two sets of D5-branes ending

on different sides of the NS5-brane, the throat separates the two sets of branes. The

D-branes may then only interact via fundamental strings stretching between them;

these are the bifundamentals in the quiver gauge theory. Initially it might seem like

there are two conjugate bifundamentals which pair up to form hypermultiplets, but

in this case, where the NS5-brane wraps a holomorphic curve, the orientation of the

NS5-brane projects one of these out of the massless spectrum [76]. Thus the resulting

quiver theory will generically have arrows pointing in only one direction (it is easy to

get quivers with bidirectional arrows as well, but these will instead come from strings

stretching across different NS5-branes rather than both orientations across the same

NS5-brane).

The important physics is captured by drawing the brane tiling in the 46 plane.

The NS5-branes wrap a holomorphic curve, the real section of which is a graph G in

the 46 plane, which we will later show must be bipartite. A graph is bipartite when

its nodes can be colored in white and black, such that edges only connect black nodes

to white nodes and vice versa. By construction, G is Z2-periodic under translations

in the 46 plane since these directions are taken to be compact. We will see in the

next section that the existence of G is associated to the duality between quiver gauge

theories and dimer models.

Given a brane tiling, it is straightforward to derive its associated quiver gauge

theory. The brane tiling encodes both the quiver diagram and the superpotential,

which can be constructed according to the dictionary given in Table 3.1 (see the

following section). Conversely, we can use this set of rules to construct a brane tiling

from a given quiver with a superpotential. In the following section we will make this

correspondence precise.

Several interesting consequences follow naturally from this simple set of rules.

Some of them are well known, while others are new. The fact that the graphs under



Brane tiling String theory Gauge theory

2n-sided face D5-branes Gauge group with n flavors
Edge between two String stretched between D5- Bifundamental chiral multiplet
polygons I and J branes through NS5 brane. between gauge groups I and J;

We orient the arrow such that
the white node is to the right.

k-valent vertex Region where k strings Interaction between k chiral
interact locally. multiplets, i.e. order k term in

the superpotential. The signs for
the superpotential terms are
assigned such that white and
black nodes correspond to plus
and minus signs respectively.

Table 3.1: Dictionary for translating between brane tiling, string theory and gauge
theory objects.

consideration are bipartite implies that each edge has a black and a white endpoint.

Edges correspond to bifundamental fields while nodes indicate superpotential terms,

with their sign determined by the color of the node. Thus, we conclude that each

bifundamental field appears exactly twice in the superpotential, once with a plus and

once with a minus sign. We refer to this as the toric condition and it follows from

the underlying geometry being an affine toric variety [80].

The total number of nodes inside a unit cell is even (there are equal numbers

of black and white nodes). Thus, we conclude that the total number of terms in

the superpotential of a quiver theory for a toric singularity is even. Although this

condition is reminiscent of the toric condition, it is different. It is comforting to see

that it is satisfied by all the examples in the literature (orbifolds, del Pezzos, Fo,

pseudo-del Pezzos, SPP, yp,q XP', etc).

Bidirectional arrows and even adjoint fields in the quiver can be simply imple-

mented in this construction, by suitably choosing the adjacency of polygons. We will

present an example containing both situations in section 3.2.1.



Let us define

Brane tiling Gauge theory

F: number of faces N,: number of gauge groups

E: number of edges A: number of fields

N: number of nodes Nw: number of superpotential terms

According to the dictionary above, F = N,, E = Nf and N = Nw. Applying Euler's

formula to a unit cell in the graph, we see that F + N - E = 2g - 2 = 0 (where

we have used that the graph lives on the torus), which translates into the following

identity for quiver theories':

Ng + Nw - Nf = 0. (3.0.1)

The geometric intuition we gain when using brane tilings make the derivation of this

remarkable identity straightforward.

It is interesting to point out here that the Euler formula has another interpretation.

Let us assign an R-charge to each bifundamental field in the quiver, i.e. to each edge

in the brane tiling. At the IR superconformal fixed point, we know that each term in

the superpotential must satisfy

E Ri = 2 for each node (3.0.2)
iEedges around node

where the sum is over all edges surrounding a given node. We can sum over all

the nodes in the tiling, each of which corresponds to a superpotential term, to get

Zedges,nodesR = 2N. Additionally, the beta function for each gauge coupling must

vanish,

2 + 3 (Ri - 1) = 0 for each face (3.0.3)
icedges around face

where the sum is over all edges surrounding a given face. But we can now sum this

'This identity was derived empirically with Barak Kol using the known examples. The brane
tiling gives a proof for a generic M = 1 toric theory.



over all the faces in the tiling to get 2F + 2N - 2E = 0, where we have used the fact

that the double sum hits every edge twice, and (6.1.1). The sums edg,,,nod,,s R and

Zedges,f aces R are equal because each double sum has the R-charge of each bifunda-

mental contributing twice. Thus we see that the requirements that the superpotential

have R(W) = 2 and the beta functions vanish (i.e. that the theory is superconformal

in the IR) imply that the Euler characteristic of the tiling is zero. This condition is

the analog of a similar condition for superconformal quivers discussed in [155, 27].

Conversely we see that, in the case in which the ranks of all gauge groups are equal,

the construction of tilings over Riemann surfaces different from a torus leads to non-

conformal gauge theories.

Let us illustrate the concepts introduced in this section with a simple example,

one of the toric phases of dP 3 , denoted Model I in [80]. Its corresponding quiver

diagram is presented in Figure 3-1 and its superpotential is

W = X12X23X34X45X5X6i - (X23X 35X56 X6 2 + X 13X 34X 46X61 + X 12X 24X 45X51 )

+(X1 3X 35 X5 1 + X 24X 46X 62).
(3.0.4)

The quiver diagram has 6 gauge groups and 12 bifundamental fields. Hence, the

brane configuration will have 6 faces and 12 edges in a unit cell. The superpotential

(3.0.4) has 1 order six, 3 quartic and 2 cubic terms. According to (3.0.1) we thus

have 1 6-valent, 3 4-valent and 2 3-valent nodes. The final brane tiling is shown in

Figure 3-1.

3.0.1 Unification of quiver and superpotential data

An K = 1 quiver gauge theory is described by the following data: a directed graph

representing the gauge groups and matter content, and a set of closed paths on

the graph representing the gauge invariant interactions in the superpotential. An

equivalent way to characterise this data is to view it as defining a CW-complex; in

other words, we may take the superpotential terms to define the 2-dimensional faces



4 45 2 5 2

4: 3 4 3
5/ 2

4 A3 -X23 X35X 56 X62

Figure 3-1: A finite region in the infinite brane tiling and quiver diagram for Model I of
dP 3. We indicate the correspondence between: gauge groups +-+ faces, bifundainental
fields +-- edges and superpotential terms - nodes.

of the complex bounded by a given set of edges and vertices (the 1-skeleton and

0-skeleton of the complex). Thus, the quiver and superpotential may be combined

into a single object, a planar tiling of a 2-dimensional (possibly singular) space. Toric

quiver theories, as we will see, are defined by planar tilings of the 2-dimensional torus.

This is a key observation. Given the presentation of the quiver data (quiver graph

and superpotential) as a planar graph tiling the torus, the bipartite graph appearing

in the dimer model (the brane construction of the previous section) is nothing but

the planar dual of this graph! Moreover, as we have argued, this dual presentation

of the quiver data is physical, in that it appears directly in string theory as a way to

construct the 3 + 1-dimensional quiver gauge theory in terms of intersecting NS5 and

D5-branes. The logical flow of these ideas is shown in Figure 3-2.

Let us see how the properties of the brane tiling arise from those of the quiver

theory. We will show that we can think of the superpotential and quiver together as

a tiling of a two-dimensional surface, where bifundamentals are edges, superpotential

terms are faces, and gauge groups are nodes. We refer to this as the "periodic quiver"

representation. The toric condition, which states that each matter field appears in

precisely two superpotential terms of opposite sign, means that the faces all glue
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superpotential terms A K )hdet[Kasteleyn matrix]

Inverse algorithm\
(partial resolution)

Quiver gauge theory Toric diagram
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Figure 3-2: The logical flowchart.

together in pairs along the common edges. Since every field is represented exactly

twice in the superpotential, this tiling has no boundaries. Thus, the quiver and

its superpotential may be combined to give a tiling of a Riemann surface without

boundary; this periodic quiver gives a discretization of the torus. Since the Euler

characteristic of the quiver is zero for toric theories (as discussed in the previous

section), the quiver and superpotential data are equivalent to a planar tiling of the

two-dimensional torus. See Figure 5 of [82] for an early example of a periodic quiver.

This tiling has additional structure. The toric condition implies that adjacent

faces of the tiling may be labelled with opposite signs according to the sign of the

corresponding term in the superpotential. Thus, under the planar duality the vertices

of the dual graph may be labelled with opposite signs; this is the bipartite property of

the dimer model. Since the periodic quiver is defined on the torus, the dual bipartite

graph also lives on the torus.

Anomaly cancellation of the quiver gauge theory is represented by the balancing

of all incoming and outgoing arrows at every node of the quiver. In the dual graph,

bipartiteness means that the edges carry a natural orientation (e.g. from black to

white). This induces an orientation for the dual edges, which transition between

adjacent faces of the brane tiling (vertices of the planar quiver). For example, these

dual arrows point in a direction such that, looking at an arrow from its tail to its head,

the black node is to the left and the white node is to the right (this is just a convention



and the opposite choice is equivalent by charge conjugation). Arrows around a face

in G alternate between incoming and outcoming arrows of the quiver; this is how

anomaly cancellation is manifested in the brane tiling picture. Alternatively, we

can say that arrows "circulate" clockwise around white nodes and counterclockwise

around black nodes.

B

Planar
2,4 1

quiver

C

Quiver

Dual graph

3
74

A 9 B :5
1 8 2 x12

~0D 10C 6

4

Figure 3-3: The quiver gauge theory associated to one of the toric phases of the cone
over FO. In the upper right the quiver and superpotential (3.0.6) are combined into
the periodic quiver defined on T2 . The terms in the superpotential bound the faces of
the periodic quiver, and the signs are indicated and have the dual-bipartite property
that all adjacent faces have opposite sign. To get the bottom picture, we take the
planar dual graph and indicate the bipartite property of this graph by coloring the
vertices alternately. The dashed lines indicate edges of the graph that are duplicated
by the periodicity of the torus. This defines the brane tiling associated to this J = 1
gauge theory.

Figure 3-3 shows an example of the periodic quiver construction for the quiver

gauge theory associated to one of the toric phases of the Calabi-Yau cone over Fo.

The superpotential for this theory is [83]



W = X 1 X 1 oX8 - X 3X 1oX7 - X 2 X8X9 - X 1X6 X 12  (3.0.5)

+ X3X6X11 + X4X7X9 + X2X12X5 - X4X11X5.

3.1 Dimer model technology

Given a bipartite graph, a problem of interest to physicists and mathematicians is

to count the number of perfect matchings of the graph. A perfect matching of a

bipartite graph is a subset of edges ("dimers") such that every vertex in the graph is an

endpoint of precisely one edge in the set. A dimer model is the statistical mechanics

of such a system, i.e. of random perfect matchings of the graph with assigned edge

weights. As discussed in the previous section, we are interested in dimer models

associated to doubly-periodic graphs, i.e. graphs defined on the torus T 2 . We will

now review some basic properties of dimers; for additional review, see [128, 168].

Many important properties of the dimer model are governed by the Kasteleyn

matrix K(z, w), a weighted, signed adjacency matrix of the graph with (in our

conventions) the rows indexed by the white nodes, and the columns indexed by the

black nodes. It is constructed as follows:

To each edge in the graph, multiply the edge weight by t1 so that around every

face of the graph the product of the edge weights over edges bounding the face has

the following sign

(+1 if (# edges) = 2 mod 4
sign(f ei) = (3.1.6)

-1 if (#edges) = 0 mod 4

It is always possible to arrange this [165].

The coloring of vertices in the graph induces an orientation to the edges, for

example the orientation "black" to "white". This orientation corresponds to the

orientation of the chiral multiplets of the quiver theory, as discussed in the previous

section. Now construct paths -y, 72 in the dual graph (i.e. the periodic quiver) that



wind once around the (0, 1) and (1, 0) cy(cles of the torus, respectively. We will refer

to these fundamental paths as flux lines. In terns of the periodic quiver, the paths 'y

pick out a subset of the chiral multiplets whose product is gauge-invariant and forms

a closed path that winds around one of the fniidaniental cycles of the torus. For every

such edge (chiral multiplet) in G crossed by -, multiply the edge weight by a factor

of w or 1/w (respectively z, 1/z) according to the relative orientation of the edges in

G crossed by y.

The adjacency matrix of the graph G weighted by the above factors is the Kaste-

leyn matrix K(z, w) of the graph. The determinant of this matrix P(z, w) = det K

is a Laurent polynomial (i.e. negative powers may appear) called the characteristic

polynomial of the dimer model

P(z, w) = E cpzwi. (3.1.7)
tij

This polynomial provides the link between dimer models and toric geometry [128].

Given an arbitrary "reference" matching MO on the graph, for any matching M

the difference M - MO defines a set of closed curves on the graph in T2 . This in turn

defines a height function on the faces of the graph: when a path in the dual graph

crosses the curve, the height is increased or decreased by 1 according to the orientation

of the crossing. A different choice of reference matching MO shifts the height function

by a constant. Thus, only differences in height are physically significant.

In terms of the height function, the characteristic polynomial takes the following

form:

P(z, w) = zho whYo )7 Chx,hy (l)hx+hy+hhyZhxWhy (3.1.8)

where Chx,h, are integer coefficients that count the number of paths on the graph with

height change (hx, hy) around the two fundamental cycles of the torus.

The overall normalization of P(z, w) is not physically meaningful: since the graph

does not come with a prescribed embedding into the torus (only a choice of period-

icity), the paths 7z, winding around the primitive cycles of the torus may be taken



to ro any edges en route. Different choices of paths -> multiply the characteristic

p)1\ iBlynial by an overall power zzW,, and by an appropriate choice of path P(z, w)

can always be normalized to contain only non-negative powers of z and w.

The Newton polygon N(P) is a convex polygon in Z2 generated by the set of

integer exponents of the monomials in P. In [128], it was conjectured that the Newton

polygon can be interpreted as the toric diagram associated to the moduli space of

the quiver gauge theory, which by assumption is a non-compact toric Calabi-Yau 3-

fold. In the following section, we will prove that the perfect matchings of the dimer

model are in 1-1 correspondence with the fields of the gauged linear sigma model that

describes the probed toric geometry.

Let us illustrate how the computation of the Kasteleyn matrix and the toric di-

agram works for the case of Model I of dP 3. The brane configuration is shown in

Figure 3-4a. The corresponding unit cell is presented in Figure 3-4b. As expected,

it contains one valence 6, three valence 4 and two valence 3 nodes. It also contains

twelve edges, corresponding to the twelve bifundamental fields in the quiver.

a) 6 1-b)a) 'b) 2 6

-6 1-'-'- J-- +w ' ' Z+
' ' 4 3 -

'~~~1 '- 42 : o'

+ 

+

4 3 ':1 4 354 3

Figure 3-4: a) Brane tiling for Model I of dP 3 with flux lines indicated in red. b) Unit
cell for Model I of dP 3. We show the edges connecting to images of the fundamental
nodes in green. We also indicate the signs associated to each edge as well as the
powers of w and z corresponding to crossing flux lines.

From the unit cell, we derive the following Kasteleyn matrix



2 4 6

1 1+w 1-zw 1+z

3 1 -1 -w 1

5 -z- 1  -1 1

We observe that is has twelve monomials, associated to the twelve bifundamental

fields. This matrix leads to the characteristic polynomial

P(z,w) = w-1 z-1 - z- 1 - w 1 - 6 - w - z + wz. (3.1.10)

The toric data corresponding to this gauge theory can be read from this polynomial,

and is shown in Figure 3-5.

z

6

w

Figure 3-5: Toric diagram for Model I of dP 3 derived from the characteristic polyno-
mial in (3.1.10).

The Kasteleyn matrix is a square matrix whose size is equal to half the total

number of points in the unit cell. Thus, for a given toric quiver K is a Nw/2 x

Nw/2 matrix. This is remarkable, since this size can be very modest even for very

complicated gauge theories. The simplicity of computing the toric data using this

procedure should be contrasted with the difficulty of the Forward Algorithm.

This procedure has a profound impact on the study of quiver theories for arbitrary

toric singularities. Given a candidate quiver theory for D3-branes over some geom-

etry, instead of running the lengthy Forward Algorithm, one simply constructs the

associated brane tiling using the rules of Section 4.2 and computes the corresponding



characteristic polynomial. We can thus refer to the determinatioin of toric data from

brane tilings as the Fast Forward Algorithm2 . This simplificat ion will become

clear when we present explicit results for infinite families of arbitrarily large quivers

in Sections 3.7.3.

3.2 An explicit correspondence between dimers and

GLSMs

In the previous section we have argued that the characteristic polynomial encodes

the toric data of the probed geometry. We now explore the reason for this connec-

tion, establishing a correspondence between fields in the gauged linear sigma model

description of the singularity and perfect matchings in the brane tiling.

Given a toric Calabi-Yau 3-fold, the principles of determining the gauge theory

on the world-volume of a stack of D3-brane probes are well established. Conversely,

the determination of the toric data of the singularity from the gauge theory is also

clear. This procedure has been algorithmized in [82] and dubbed the Forward Algo-

rithm. Nevertheless, although a general prescription exists, its applicability beyond

the simplest cases is limited due to the computational complexity of the algorithm.

Let us review the main ideas underlying the Forward Algorithm (for a detailed

description and explicit examples, we refer the reader to [82]). The starting point is

a quiver with r SU(N) gauge groups and bifundamentals X, i = 1, . .. , m, together

with a superpotential. The toric data that describes the probed geometry is computed

using the following steps:

o Use F-term equations to express all bifundamental fields X, in terms of r + 2

independent variables v. The vj's can be simply equal to a subset of the

bifundamentals. The connection between these variables and the original bi-

fundamental fields is encoded in an m x (r + 2) matrix K (this matrix should

not be confused with the Kasteleyn matrix; which of them we are talking about

2A name coined by Pavlos Kazakopoulous.



will be clear from the context), such that

Xi=Jv , i= 1, 2,..., m, j = 1, 2,..., r +2. (3.2.11)

Since the F-term equations take the form of a monomial equated to another

monomial, it is clear that generically Kij has negative entries (i.e. negative

powers of the v3 can appear in the expressions for the Xi).

" In order to avoid the use of negative powers, a new set of variables pa, a =

1, ... , c, is introduced. The number c is not known a priori in this approach,

and must be determined as part of the algorithm. We will later see that it

corresponds to the number of perfect matchings of G, the periodic bipartite

graph dual to the quiver.

" The reduction of the c pa's to the r + 2 independent variables vi is achieved by

introducing a U(1)c-(+ 2 ) gauge group. The action of this group is encoded in

a (c - r - 2) x c charge matrix Q.

* The original U(1)r1 action (one of the r U(1)'s is redundant) determining the

D-terms is recast in terms of the p, by means of a (r - 1) x c charge matrix QD-

* Q and QD are combined in the total matrix of charges Qt. The U(1) actions of

the symplectic quotient defining the toric variety correspond to a basis of linear

relations among the vectors in the toric diagram. Thus, the toric diagram

corresponds to the columns in a matrix Gt such that Gt = (ker Qe)T.

At this stage, it is important to stress some points. The main difficulty in the

Forward Algorithm is the computation of T, which is used to map the intermediate

variables vi to the GLSM fields p. Its determination involves the computation of

a dual cone, consisting of vectors such that K -T > 0. The number of operations

involved grows drastically with the "size" (i.e. the number of nodes and bifundamen-

tal fields) of the quiver. The computation becomes prohibitive even for quivers of

moderate complexity. Thus, one is forced to appeal to alternative approaches such



as (un-)Higgsing [81]. Perhaps the most dramatic examples of this limitation are

provided by recently discovered infinite families of gauge theories for the ypq [26]

and Xp'q [127] singularities. The methods presented in this section will enable us to

treat such geometries. This also represents a significant improvement over the brute

force methods of [128], since the relevant brane tiling may essentially be written down

directly from the data of the quiver theory.

It is natural to ask whether the possibility of associating dimer configurations

to a gauge theory, made possible due to the introduction of brane tilings, can be

exploited to find a natural set of variables playing the role of the p,'s, overcoming

the main intricacies of the Forward Algorithm. This is indeed the case, and we now

elaborate on the details of the dimer/GLSM correspondence. The fact that the

GLSM multiplicities are counted by the cij coefficients in the characteristic polynomial

provides some motivation for the correspondence.

We denote the perfect matchings as pa. Every perfect matching corresponds to a

collection of edges in the tiling. Hence, we can define a natural product between an

edge ej, corresponding to a bifundamental field Xj, and a perfect matching p.

< ejp. >= 1 if ej C P, (3.2.12)
0 if ej $ pia

Given this product, we propose the following mapping between bifundamental

fields and the perfect matching variables p.,

X = f p fa> (3.2.13)

According to (3.2.12), the Xi involve only possitive powers of the pc. We will now

show that F-term equations are trivially satisfied when the bifundamental fields are

expressed in terms of perfect matchings variables according to (3.2.13). For any given

bifundamental field Xo, we have

W = X 0 P 1 (Xz) - X 0 P 2(Xi) + ... (3.2.14)



where we have singled out the two terms in the superpotential t hat involve X0. P1 (Xi)

and P2(X,) represent products of bifundamental fields. The F-term equation associ-

ated to X, becomes

9xO W = 0 P1 (Xi) = P2(Xi). (3.2.15)

This condition has a simple interpretation in terms of the bipartite graph, as shown

in Figure 3-6.

PI(X d)- P2(X d),

X

Figure 3-6: F-term equations from the brane tiling perspective.

After excluding the edge associated to Xo, the product of edges connected to node

1 has to be equal to the product of edges connected to node 2. In terms of perfect

matchings, (3.2.15) becomes

nf < =i J > j<eif).> (3.2.16)
iEP1 a, iP 2 a

Every time that a given pc, appears on the L.H.S. of (3.2.16), it has to appear on the

R.H.S. Here is where the fact that the P,'s are perfect matchings becomes important:

since nodes 1 and 2 are separated exactly by one edge (the one corresponding to Xo)

every time a perfect matching contains any of the edges in P 1, it contains one of the

edges in P2 . This is necessary for the p. to be a perfect matching (nodes 1 and 2 have

to be covered exactly once). Thus, perfect matchings are the appropriate choice of

variables that satisfy F-term conditions automatically. We conclude that the perfect

matchings can be identified with the GLSM fields p. = pa. Then, the matrix that

maps the bifundamental fields to the GLSM fields is

(KT) j. = < ej, & > . (3.2.17)



3.2.1 A detailed example: the Suspended Pinch Point

Let us illustrate the siinplifications achieved by identifying GLSM fields with perfect

matchings with an explicit example. To do so, we choose the Suspended Pinch Point

(SPP) [196]. The SPP has a quiver shown in Figure 3-7 with superpotential

W = X21X12X23X32 - X 32X 23X31X13 + X 13X 31X11 - X 12X 21X 11. (3.2.18)

.Q1

3 2

Figure 3-7: Quiver diagram for the SPP.

It is interesting to see how our methods apply to this example, since it has both

adjoint fields and bidirectional arrows. Figure 3-8 shows the brane tiling for the SPP.

The adjoint field in the quiver corresponds to an edge between two faces in the tiling

representing the first gauge group. The Kasteleyn matrix is

Figure 3-8: Brane tiling for the SPP.



2 4

K + W z+w- z (3.2.19)

3 1 1 +W--1

from which we determine the characteristic polynomial

P(z, w) = w- 2 + 2w- 1 + 1 - w- 1 z - z. (3.2.20)

From it, we construct the toric diagram shown in Figure 3-9.

P5 P6

2

P i P2,P3 P4

Figure 3-9: Toric diagram for the SPP. We indicate the perfect matchings correspond-
ing to each node in the toric diagram.

There are six perfect matchings of the SPP tiling. We show them in Figure 3-10.

Setting a reference perfect matching, we can compute the slope (hw, hz) for each of

them, i.e. the height change when moving around the two fundamental cycles of the

torus.

Using (3.2.12) and (3.2.17), it is straightforward to determine the KT matrix.

Pi P2 P3 P4 P5 P6

X11 0 0 0 0 1 1

X 12  1 1 0 0 0 0

KT= X 2 1  0 0 1 1 0 0 (3.2.21)
X31  1 0 1 0 0 0

X 13  0 1 0 1 0 0

X23  0 0 0 0 1 0

X32  0 0 0 0 0 1

This agrees with the computation of this matrix done in Section 3.2 of [82].
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Figure 3-10: Perfect matchings for the SPP. We indicate the slopes (hm, hg), which
allow the identification of the corresponding node in the toric diagram as shown in
Figure 3-9.

3.3 Massive fields

By definition, massive fields appear in the superpotential as quadratic terms. There-

fore they appear in the brane tiling as bivalent vertices. In the JR limit of the gauge

theory, these massive fields become non-dynamical and should be integrated out using

their equations of motion. We now show how to perform this procedure on the brane

tiling and Kasteleyn matrix.

By performing a suitable relabelling of fields, one can always write the super-

potential as follows (up to an overall minus sign if the quadratic term comes with

opposite sign):

W(1 2 ) = 12 - GiPi(i) - I2 P2 (I) + . .. (3.3.22)

where the omitted terms do not involve 1 , 42, and P1, P2 are products of two

disjoint subsets of the remaining <}> that do not include I1 or <b2. This structure



follows from the tori( condition, which specifies that each field appears exactly twice

in the superpotenltial. with ternis of opposite signs.

Integrating out q1 and 42 by their equations of motion gives

W( ) = -P 1(4i))P2 (Di) + - .-. (3.3.23)

This operation takes the form shown in Figure 3-11 and collapses two nodes separated

by a bivalent node of the opposite color into a single node of valence equal to the sum

of the valences of the original nodes.

Figure 3-11: Integrating out a massive field corresponds to collapsing the two vertices
adjacent to a bivalent vertex into a single vertex of higher valence.

The operation of integrating out a massive field can also be implemented in terms

of the Kasteleyn matrix. From this perspective, it is simply row or column reduction of

the matrix on rows or columns with two non-zero entries (or a single entry containing

two summands, if both neighboring vertices to the bivalent vertex are identified in

the graph). In the example of figure 3-11, if the bivalent white node has label 1 and

the adjacent black nodes are 1' and 2' (this can always be arranged by a reordering of

rows or columns, with the corresponding action of (-1) to preserve the determinant),

the Kasteleyn matrix (or its transpose) has the following structure:



v I

K-

(2)
V1

(1) (2)
V2 V2 (3.3.24)

0 ... 0

(1)
vn

(2)
Vn

where (0 and V(2 index the adjacent nodes to 1' and 2', i.e. contain deg(P,2 (<b)) + 1

non-zero entries.

Performing elementary column operations3 , the matrix can be brought to the

following form4 :

1 0

K = v2 /l o2o! - 2 1va

v 1)/V1) V2) 1) (1) V 2)

(3.3.25)

0 ... 0

and therefore can be reduced in rank without changing the determinant, by deleting

the first row and column, giving the reduced Kasteleyn matrix

V(2) V(1) (1) V(2)
v 2  V - V 2  V1

K =:
(2) (1) (1) (2)

Vn V1 -Vn V1

* * ...
* * ...

corresponding to the graph with bivalent vertex deleted.

31t is possible that some row and column operations produce a bipartite graph corresponding to
a gauge theory with different matter content and interactions, but the same IR moduli space. It

would be interesting to study the physical meaning of these operations in more detail.

'If the sets of vertices v(0, V(2) adjacent to vertices 1' and 2' (excluding the common neighbor 1)
are not disjoint, then after integrating out there will be two or more edges between the same pairs
of vertices. In such cases, these multiple edges may be replaced by a single edge carrying the sum of
the weights of the individual edges, since this reproduces the correct counting of matchings of the
graph. This is indeed what happens in the column reduction process, which may produce entries
that are the sum or difference of two non-zero entries.

(3.3.26)



3.4 Seiberg duality

3.4.1 Seiberg duality as a transformation of the quiver

We now discuss how one cai understand Seiberg duality from the perspective of the

brane tilings. To motivate our construction, let us first recall what happens to a

quiver theory when performing Seiberg duality at a single node. This was first done

for orbifold quivers in [208]. Recall first that since Seiberg duality takes a given gauge

group SU(Nc) with Nf fundamentals and Nf anti-fundamentals to SU(N - Nc), if

we want the dual quiver to remain in a toric phase, we are only allowed to dualize oi

nodes with Nf = 2Nc. Dualizing on such a node (call it I) is straightforward, and is

done as follows:

" To decouple the dynamics of node I from the rest of the theory, the gauge

couplings of the other gauge groups and superpotential should be scaled to

zero. The fields corresponding to edges in the quiver that are not adjacent to I

decouple, and the edges between I and other nodes reduce from bifundamental

matter to fundamental matter transforming under a global flavor symmetry

group. This reduces the theory to the SQCD-like theory with 2Nc flavors and

additional gauge singlets, to which Seiberg duality may be applied.

" Next, reverse the direction of all arrows entering or exiting the dualized node.

This is because Seiberg duality requires that the dual quarks transform in the

conjugate flavor representations to the originals, and the other end of each

bifundamental transforms under a gauge group which acts as an effective flavor

symmetry group. Because we want to describe our theory with a quiver, we

perform charge conjugation on the dualized node to get back bifundamentals.

This is exactly the same as reversing the arrows in the quiver.

" Next, draw in NJ bifundamentals which correspond to composite (mesonic)

operators that are singlets at the dualized node I and carry flavor indices in

the pairs nodes connected to I. This is just the usual QiQi -+ Mi "electric

quark -+ meson" map of Seiberg duality, but since each flavor group becomes



gauged in the full quiver theory. t I Seiberg mesons are promoted to fields in

the bifundamental representation of tlie gauge groups.

o In the superpotential, replace any composite singlet operators with the new

mesons, and write down new terms corresponding to any new triangles formed

by the operators above. It is possible that this will make some fields massive

(e.g. if a cubic term becomes quadratic), in which case the appropriate fields

should then be integrated out.

3.4.2 Seiberg duality as a transformation of the brane tiling

By writing the action of Seiberg duality in the periodic quiver picture, one may

derive the corresponding transformation on the dual brane tiling. This operation

may be encoded in a transformation on the Kasteleyn matrix of the graph, and the

recursive application of Seiberg duality may be implemented by computer to traverse

the Seiberg duality tree [93, 92] and enumerate all toric phases '.

Consider a node in the periodic quiver. For the toric phases of the quiver all nodes

in the quiver correspond to gauge groups of equal rank. If the node has 2 incoming

arrows (and therefore 2 outgoing arrows by anomaly cancellation, for a total of 4

arrows), then for this gauge group Nf = 2Nc, and Seiberg duality maps

N N = Nf - N = Ne (3.4.27)

so after the duality the theory remains in a toric phase.

At such a node V, a generic quiver can be represented as in Figure 3-12. The

4 faces F adjacent to V share an edge with their adjacent faces, and contain some

number of additional edges.

The neighboring vertices to V are not necessarily all distinct (they may be identi-

'Assuming this graph is connected. In fact, this is not allways the case and it is possible for the
toric phases to appear in disconnected (i.e. connected by non-toric phases) regions of the duality
tree. A simple example of this situation is given by the duality tree of dP 1. This tree is presented
in [93], where the connected toric components where denoted "toric islands". In addition, it is
interesting to see that if the theory is taken out of the conformal point by the addition of fractional
branes, the cascading RG flow can actually "migrate" among these islands [?].



Figure 3-12: The action of Seiberg duality on a periodic quiver to produce another
toric phase of the quiver. Also marked are the signs of superpotential terms, showing
that the new terms (faces) are consistent with the pre-existing 2-coloring of the global
graph.

fied by the periodicity of the torus on which the quiver lives). However by the periodic

quiver construction, if there are multiple fields in the quiver connecting the same two

vertices, these appear as distinct edges in the periodic quiver.

Note that the new mesons can only appear between adjacent vertices in the planar

quiver, because the edges connecting opposing vertices do not have a compatible

orientation, so they cannot form a holomorphic, gauge-invariant combination. There

are indeed 4 such arrows that can be drawn on the quiver corresponding to the

2 x 2 = 4 Seiberg mesons.

It is easy to translate this operation to the dual brane tiling. Gauge groups with

Nf = 2Nc correspond to quadrilaterals in the tiling. Performing Seiberg duality on

such a face corresponds to the operation depicted in Figure 3-136

Note that this operation (and the dual operation on the quiver) are local operations

on the graph, in that they only affect a face and its neighbors, and the global structure

of the graph is unaffected7 .

As a simple example, consider FO. This is a Z2 orbifold of the conifold, and

as such one can simply take the two-cell fundamental domain of the conifold and

6The extension to non-toric Seiberg dualities appears obvious on the periodic quiver, although
there are subtleties involved in the precise operation on the Kasteleyn matrix.

7The transformation that we have identified with the action of Seiberg duality on the bipartite
graph was discussed in [205], where it was referred to as "urban renewal". This work used a different
assignment of weights in the transformed graph in order to keep the determinant (i.e. the GLSM
field multiplicities, in our language) invariant across the operation. This is not what we want for
Seiberg duality, which maps a toric diagram with one set of multiplicities to the same toric diagram
with (in general) different multiplicities.



Figure 3-13: Seiberg duality acting on a brane tiling to produce another toric phase.
This is the planar dual to the operation depicted in Figure 3-12. Whenever 2-valent
nodes are generated by this transformation, the corresponding massive fields can be
integrated out as explained in Section 3.3.

double its area (with an appropriate choice of periodicity) to get the FO fundamental

domain; this phase of this theory is given by a square graph with four different

cells. In Figure 3-14, we have drawn this phase of the theory as well as the phase

obtained by dualizing on face 1. The blue dotted lines are the lines of magnetic flux

delineating the fundamental region, which do not change during Seiberg duality. It

is straightforward to see that these regions give the correct Kasteleyn matrices, and

reproduce the known multiplicities of sigma model fields [128].

3 2 3 2 3 2

4 4~ Dualize on 4

3 2 3 2 3 2

4 14 1 4 1
4 4

Figure 3-14: The operation of Seiberg duality on a phase of FO.

It is useful to see how this action of Seiberg duality can be understood from the

brane perspective. Since the area of each cell (volume of the D-brane) is related to

the gauge coupling of the corresponding group [130], one would expect that Seiberg

duality could be viewed as a cell shrinking and then growing with the opposite ori-

entation, e.g. as branes move through one another. It is possible to see this from



Figure 3-14: we can simply take the NS5-b ranes at the sides of region 1 and pull

them through one another. In doing this. we generate the diagonal lines. Since we

are in a toric phase with Nf = 2N(., the rniks of the gauge groups do not change in

this crossing operation and no new branes tre created.

3.5 Partial resolution

Many of the first known examples of gauge theories dual to toric geometries were

described by embedding them in orbifolds [82, 83, 24]. For example, partial resolutions

of C3/Z3 X Z3 give the first three del Pezzo theories and FO, among others. Partially

resolving the orbifold singularity corresponds to turning on Fayet-Iliopoulos terms in

the dual gauge theory, which by the D-flatness conditions gives vacuum expectation

values to bifundamental fields. These vevs then reduce the rank of the gauge group

via the Higgs mechanism. From the standpoint of the toric diagram, this is simply

removing an external point. Doing so decreases the area of the toric diagram, and

consequently decreases the number of gauge groups in the dual superconformal theory.

It is straightforward to see how Higgsing operates from the perspective of the

dimer models. We give a non-zero vev to a bifundamental field, which reduces the

two gauge group factors under which the bifundamental is charged to the diagonal

combination. Hence, Higgsing is nothing more than the removal of an edge from the

fundamental region of the graph, which causes two faces of the graph to become one.

This method was used in [128] to obtain the bipartite graphs corresponding to an

arbitrary toric singularity, but the algorithm presented was computationally expensive

since it was unknown how to identify the desired Higgsing in the quiver side. Using the

duality between the quivers and brane tilings, it is straightforward to identify the edge

of the bipartite graph to be removed that corresponds to the Higgsing of any given

field in the quiver. Thus, the relations between quiver theories under Higgsing may

be easily followed on the dual brane tiling, avoiding any computational difficulties.

Let us begin with Model I of dP 3, since we have already studied this tiling in a

previous section. Since this model is perfectly symmetric and contains only single



bifundamental field between any two gauge groups, giving a vev to any field should

result in the same theory. This theory is dP2, which has five nodes in its quiver.

One can easily check that removing any edge from this tiling for dP 3 results in

the expected gauge theory. Figure 3-15 illustrates this process: removing the edge

between regions 5 and 6 is equivalent to removing the bifundamental between the

corresponding nodes.

6 15 6

46 1

6 1 5 4 3 2 6 1

5 2 
5 2

4 3 6 1 4 3

5 2 3 2

4 3

5 5

23 2

4 3

Figure 3-15: Removing the edge from between faces 5 and 6 Higgses Model I of dP3

(top) to one of the two toric phases of dP2 (bottom).

The example of taking Model I of dP3 to one of the two toric phases of dP2

(called Model II in [80]) is particularly simple, since no fields acquire a mass when

X5 6 gets a vev. It is not any more difficult to see what happens when bifundamentals

do become massive, as we can see by considering the dP2 example. We know that

the dP 2 theory can be Higgsed to either dPi or F0 ; this corresponds to giving a vev

to X34 (or equivalently X12 by the symmetry of the quiver) or X23, respectively. In

the brane tiling, we delete the edge between regions 2 and 3 of the tiling. This puts

an isolated node between the two regions. As per our discussion in Section 3.3, we

then simply collapse those two edges to a point, which corresponds to integrating out

the fields X35 and X5 2. See Figure 3-16.
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4 3 -

4 3 2

4

2 1 2
I 2

4 33

23 
3

Figure 3-16: The dP 2 tiling (top) can be taken to either dP1 (bottom left) or FO
(bottom right), depending on which edge gets removed. In the FO tiling, one should
collapse the edge between regions 2 and 4 to a point; this corresponds to the bifun-
damentals on the diagonal of the quiver.

We expect from string theory that we may enibed any toric quiver in an appropri-

ately large Abelian orbifold theory of the form C3 /Zm x Z,. The tiling for C3/Zm x Zn,

is hexagonal, so one expects that we can reach any tiling by removing edges from

hexagons. This is indeed the case, as noted by [169] and used extensively in [128].

3.6 Different toric superpotentials for a given quiver

Dimer methods can be used to tackle another interesting problem. Given a quiver

diagram, it is sometimes possible to construct more than one consistent toric superpo-

tential. Constructing the corresponding tilings shows immediately how these theories

differ and enables a straightforward computation of their toric data.

Let us consider a concrete example, given by the quiver diagram shown in Figure 3-

17. This is the quiver for Model II of dP 3 [80]. This quiver has 6 gauge groups and 14

bifundamental fields. From (3.0.1), we see that the number of superpotential terms

is Nw = 14 - 6 = 8. There are two possible toric superpotentials consistent with the

node symmetry group of the quiver. They have been considered in [80] and [88] and



3

12

5

Figure 3-17: Quiver diagram admitting two toric superpotentials.

are

WA = [X 12X 26X 61 - X 12X 25 X5 1 + X 36X64X 43 - X35X54X 43]

+[-X61X13X36 + X51Y13X351 + [-X26X6 4X41Yi 3X32 -I- X25X54X41X13X32)
(3.6.28)

1'B Y13X36X61 + X 13X35X51 - X61X12X26 - X43X35X54
+X1 2X25X54X41 + X26X64X43X32 - X25X51Y13X32 - X64X41X13X36

(3.6.29)

WA corresponds to a brane tiling with six valence-3 and two valence-5 nodes. This

brane tiling is shown in Figure 3-18. For WB the brane tiling has four valence-3 and

four valence-4 nodes and it is shown in Figure 3-19. The Kasteleyn matrices for

these tilings are



Figure 3-18: Brane tiling corresponding to the quiver diagram in Figure 3-17 and the
superpotential in (3.6.28).

Figure 3-19: Brane tiling corresponding to the quiver diagram in Figure 3-17 and the
superpotential in (3.6.29).

2 4 6 8

1 z-1 0 w

-1 1 1 0

-z

1 0 1 1

KB =

2 4 6 8

1 1 0 w- 1 w-1

3 z 1 0 w-1

5 1 1 -1 1

7 z -1 z 1

(3.6.30)

The corresponding characteristic polynomials are

PA(z,w)= w-z-1 +z-1 - w- +7- w+z+wz

PB(z, W)=-w 2 2w-1 _ 1 _ W-2Z 7w-1 z _ Z - 1 z 2

KA =

z+w-1 w-1 1

(3.6.31)

(3.6.32)



From (3.6.31) and (3.6.32), we extract the toric diagrams shown in F igure 3-20.

A) B)

7 7
0 0

2

Figure 3-20: Toric diagram for the quiver in Figure 3-17 and suiperpotentials WA and

WB

Thus we see that WA leads to Model II of dP 3 (the multiplicities of GLSM fields

are in agreement with the ones derived in [80]) while WB leads to a non-generic

blow-up of CP 2 at three points, denoted PdP3b in [88].

3.7 Examples

Here we present the brane tiling configurations for several interesting gauge theo-

ries. Many of them can be obtained using the Seiberg duality and partial resolution

ideas discussed in previous sections. When doing so, we generate data on GLSM

multiplicities for all these models.

3.7.1 Del Pezzo 2

There are two toric phases for dP 2. Their corresponding quivers and superpotentials

can be found in [80]. We now construct their corresponding brane tilings.

Model I

The brane tiling for this model is shown in Figure 3-21. The Kasteleyn matrix is

1 W -1 W-1 -1

1 1-- 0-i -

K = 1z(3.7.33)
0 1 -1 -w

z 0 1 1



Figure 3-21: Brane tiling for Model I of dP 2 .

leading to

P(z, w) = w-lz-' + z-' + w-1 - 6 + w + z

Model II

The tiling for this model was obtained in Section 3.5 by means of partial resolution.

We show it again in Figure 3-22. The corresponding Kasteleyn matrix is

2 '

3-1 4 3
-5 5

4 314
' ' 5

2 2'

1 4 4

5

Figure 3-22: Brane tiling for Model II of dP2.

1

-1+w Iz-1

w 1

1 z

1 1,
(3.7.35)

(3.7.34)



which leads to tHie following characteristic polynomial

P(z, w) = w-'ze - z- 1 + 5 - w - z - wz (3.7.36)

From (3.7.34) and (3.7.36) we can determine the toric diagrams along with the GLSM

multiplicities, which are in agreement with the results in [80].

Del Pezzo 3

There are four toric phases for dP 3. We refer the reader to [80] for their quivers and

superpotentials. We have already presented the tiling for Model I in Figure 3-1. Its

Kasteleyn matrix and characteristic polynomial are written in (3.1.9) and (3.1.10).

Figure 3-18 shows the tiling for Model II. Its Kasteleyn matrix and characteristic poly-

nomial are presented in (3.6.30) and (3.6.31). We now proceed with the construction

of the brane tilings for Models III and IV.

Model III

We show the brane tiling in Figure 3-23. The Kasteleyn matrix is

Figure 3-23: Brane tiling for Model III of dP 3.



2 4 6 8

1 1 W- W-iz 1

3 1 1 -z- 1 0o

wz

z

(3.7.37)

1 -1 -w

0 1 1

from which we compute the determinant

P(z, w) = w-'z~1 + z-' - w-1 - 8 + w + z + wz (3.7.38)

This corresponds to the toric diagram of dP 3 with multiplicity 8 for the central

point. This result agrees with the Forward Algorithm computations in [80].

Model IV

Figure 3-24 shows the brane tiling for this theory.

Figure 3-24: Brane tiling for Model IV of dP 3.

The Kasteleyn matrix is given by



2 4 6 8 10 12

1

1

0

0

-1

0

-z- 1

S11 0 0

and the characteristic polynomial is

Once again, this corresponds to the toric diagram of dP 3 . In this case, the mul-

tiplicity of the central point is 11, in agreement with the computations in [80].

-wz

0

0

1

-1

0

-w- 1

0

0

1

(3.7.39)

(3.7.40)P(Z, w) = -W- 1z_ 1 - z~ I - W- 1 + 11 - w-z - wz



3.7.2 Pseudo del Pezzo 5

We now consider a complex cone over non-generic, toric blow-up of CP2 at five points.

The geometry corresponds to a Z2 x Z2 orbifold of the conifold and was dubbed PdP

in [81], where the corresponding gauge theories were studied. There are four toric

phases for this geometry. We refer the reader to [81] for the quivers and superpoten-

tials. The brane tilings for these four phases are shown in Figure 3-25

Model I Model II

Model III Model IV

Figure 3-25: Brane tilings for the four toric phases of PdP5 .
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0
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(3.7.41)
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w

0
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-w
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-z- 1

0 0
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0 0
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-1 -1
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0

1
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0
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0 0
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1 0

0 -1

0 1
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From these matrices, we compute the corresponding characteristic polynomials

1

3
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7

K I I I =

1

3
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9
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2 4

-1

0

-z-1

0

12

-wz

0

-1

-w

0

-1

(3.7.42)

1

3

5

7

9

11

13

15

14 16

U W

0 0

-1 0

1 1

(3.7.43)
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Pi(z, w)= I u)= z-2 + 2z' + 2wz' +1 - 12w + w 2 + 2w:+-- 2w 2z + w 2z 2

P 11(z, )= z 2 + 2z- 1 + 2wz + 1 - 14w + w 2 + 2w: + 2wzz +w 2 z 2

Piv(, 1) = z - 2z 1 - 2wz 1 + 1 - 21w +w2 - 2z - 2w 2z +w 2z 2

(3.7.44)

Remarkably, although Kr and KII, are different matrices with different dimen-

sions, their characteristic polynomials turn out to be identical. This is a counterexam-

ple to the conjecture that GLSM multiplicities are in one to one correspondence with

the dual phases of the gauge theory. Different phases can indeed lead to exactly the

same multiplicities. We present the toric diagrams with multiplicities in Figure 3-26.

2 2 2 2
2 2 2 2

12 14 12 21
e 0 e 0

2 2 2 2
2 2 2 2

Model I Model II Model III Model IV

Figure 3-26: Toric diagrams with multiplicities for the four toric phases of PdP. We
observe that the GLSM multiplicities are the same for Models I and III.

3.7.3 Tilings for infinite families of gauge theories

One of the problems for which dimer methods show their full power is in the deter-

mination of dual geometries for infinite families of gauge theories. Infinite sets of

quiver theories have recently been constructed in [26] and [127]. On one hand, we

have already discussed that the application of the Forward Algorithm to large quivers

becomes computationally prohibitive. In addition, it is obviously impossible to apply

the Forward Algorithm to an infinite number of theories. Hence, the determination

of gauge theories dual to an infinite number of geometries usually involve indirect

evidence such as: (un)higgsing, global symmetries, computation of R-charges and

central charges and comparison to volumes in the underlying geometry [26, 127].



ypq tilings

Let us discuss now how the ypq theories [26] appear in the brane tiling picture. A

simple way to construct the YPLqs is to start with ypq=P and decrease q by introducing

"impurities" into the quiver [29]. This procedure can be similarly carried out with

tilings. Since YP' is the base of the orbifold C3 /Z2p, it corresponds to the hexagonal

graph with a fundamental cell containing 2 xp hexagons. This is shown in Figure 3-27

for Y 3,3 .

Figure 3-27: Brane tiling for Y3 ,3

Let us put now a single impurity into the tiling. The impurity covers four

hexagons, and is indicated in blue in Figure 3-28. Two disjoint single impurities

Figure 3-28: Brane tiling for Y3,2. The impurity is the blue area.



can be generated by adding an identical shaded region into the tiling, separated from

the first one by some hexagonal faces. For Y3 1 this is not possible because the fun-

damental cell consists of only six hexagons, whereas two separated single impurities

would cover eight of them. Instead, we can consider the case in which the two impu-

rities are adjacent. This corresponds to a similar impurity graph, which is shown in

Figure 3-29.

61

3 3-9 3 a 3

155

One can continue adding impurities and discover the simplicity of the Kasteleyn

matrix for YPA.~ It contains elements only in the diagonal and its neighbors and

in the corners. It can be written down immediately, without actually drawing the

corresponding brane tiling. One starts with the following 2p x 2p Kasteleyn matrix

for YP'P.

1 1 0 0 0. z

1iwl1O0.......... 0

0 1 10....... 0

K= 0 0 1 w 1 0 ... 0 (3.7.45)

0........011 1

zO. ........ 01wm



We see that the elements around the diagonal consist of the alternating "codons:

A1 := (1, 1, 1)

A2 := (1, w, 1)

(3.7.46)

(3.7.47)

We define three other codons

= (1,w,w)

= (1,-1+w, w)

= (1,-1+ w,1)

(3.7.48)

(3.7.49)

(3.7.50)

Placing impurities into the quiver means changing the A1, A2, A1, A2 ,... sequence

in the matrix. For n single impurities we get YP'p-" and the Kasteleyn matrix gets

smaller, it is now a (2p - n) x (2p - n) matrix. We change the sequence of the codons

as the following. In the second row we put S (start codon), then n - 1 times the I

(iteration codon), and we close it with E (end codon). Then we continue the series

with A1, A2, A1 , A2 , .. . until the end of the matrix. As an example, we present the

Kasteleyn matrix for Y5'3 (i.e. n = 2)

A1

S

I

E

A1

A2

A1

A2

0

w

-1+w

1

0

0

0

0

0

0

w

-1+w

1

0

0

0

z- 1

0

0

0

0

0

1

w

(3.7.51)

The determinant of the Kasteleyn matrix is then

P(w, z) = -1 + 16w - 41w2 +33w 3 - 1Ow 4 +w-z- -w 2 z, (3.7.(3.7.52)



and the toric diagam (with GLSM multiplicities) is given in Figure 3-30.

S

33

41

16

Figure 3-30: Toric diagram of a phase of Y5'3

We note that the above rules for constructing the Kasteleyn matrix produce the

toric diagrams for all ypq with p > q > 0. To check this, we can see that the correct

monomials appear in the determinant. First, the only powers of z that appear in

det K are -1,0, and 1. Terms of the form zowk appear for all k = 0, ... , p; these come

from the diagonal. Second, there is a term z'w that comes from the lower off-

diagonal. Finally, the term zw", where n = p - q is the number of single impurities,

comes from the upper off-diagonal and gets contributions from only the S and I

codons. Thus, we have shown that the moduli spaces of the ypq quivers reproduce

the correct toric geometries.

For Yp' 0 the matrix gets too small and there is not enough space for A1 and A2 .

The Kasteleyn matrix consists of only I codons:

-1+w w 0 0 ............... z-

1 -1-+ W w 0 ............... 0

0 1 --1+w w 0 ............ 0

K= 0 0 1 -1+w w 0 ... 0 (3.7.53)

0 .......................... 0 1 - 1+ w w

wz 0 .................... 0 1 -1+ W



For example, the Kasteleyn matrix of Y 3- is:

-1 + w v w z-

K = 1 -1 + w w (3.7.54)

wz 1 -1W

with determinant

P(w, z) = -1 + 6w - 6w2 + w 3 + z 1 + w 3 z (3.7.55)

and the toric diagram of Figure 3-31.

@6

Figure 3-31: Toric diagram of a phase of Y 3,0 with three single impurities.

These Kasteleyn matrices give the toric diagrams of a certain phase of the theories

(the one with only single impurities, all of them together). Other phases can be

obtained by performing Seiberg duality transformations. As discussed in section 3.4

this may be efficiently implemented on a computer and used to enumerate the toric

phases of the theory, together with the duality graph showing the interconnections

between phases.

Ys" with double impurity

In [29], it was shown that all toric phases of yp4q theories can be constructed by

adding single and double impurities to the C 3 /Z2p quiver. Double impurities arise

when Seiberg duality makes two single impurities "collide". As an example of Seiberg

duality, we now study the double impurity phase of Y3' 1 . This phase can be obtained

by dualizing face 3 (see Figure 3-32). The resulting graph can be deformed to the more

symmetric form which is shown in Figure 3-33. The determinant of the Kasteleyn

matrix again gives the P(w, z) polynomial, from which we get the toric diagram



(Figure 3-34).

I Seiberg duality

2 2 2 2

3 4: 3 4: 3,4

1 6 1 1 16
12 12 12 '2

Figure 3-32: Dualizing face 3 in Y3 1 with two single impurities. In resulting tiling,
we indicate the double impurity in pink.

Figure 3-33: The double impurity in Y3 ,1

1 1 0 0 0 z-1

W-1 W-1 0 0 0

0 1 1  1 0 0

0 0 w- 1 1 1 0

0 0 0 1 -1

0 0 0

-1

1

(3.7.56)

P(w, z) = -7 - w2 + 9w 1 + w + wz- 1 + zw- 1

Sz- 1

(3.7.57)



Figure 3-34: Toric diagram for Y3 1 in the double impurity phase

All the multiplicity results in this and previous section agree with the ones derived

using the Forward Algorithm.

Xp'q tilings

We now describe the brane tilings for the Xp'q spaces constructed in [127]. Recall that

these spaces are defined by the property that an Xp'q theory can be Higgsed to both

ypq and ypq-1. Constructing the brane tilings for the Xp'q is quite straightforward,

but it will be convenient for our purposes to use a slightly modified (but entirely

equivalent) description of the ypq spaces from the one used in the previous section.

We use the following description of ypq, with p - q single impurities. For this

tiling, we need 2(p - q) quadrilaterals and 2q hexagons. We build the quadrilaterals

by starting with a hexagonal grid, and drawing lines through the center of a given

hexagon, connecting opposite vertices. This divides the hexagon into two quadrilat-

erals. A given ypq is then given by placing these hexagons and divided hexagons

along a single diagonal such that the divided hexagons are separated from each other

by an even number of non-divided hexagons; this is simply the requirement that the

single impurities be separated from each other by an odd number of doublets. For

examples of this construction, see Figure 3-35.

Constructing the Xp'q brane tilings is now straightforward. We give the example

of X 3, below; the other Xp'q tilings work similarly. To build the tilings, simply insert

diagonal lines in hexagons such that removing the line from the Xp'q tiling gives

the ypq to which it descends. This diagonal line should always share a node with

one of the horizontal lines subdividing a hexagon in two; this is what allows one to

blow down to ypq-1 as well as ypq. In Figure 3-36, one may remove the line between
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Figure 3-35: Brane tilings for y 3
,q.

regions 6 and 7 or the line between regions 5 and 6 to yield Y 3,1 and Y 3,0 , respectively.

Figure 3-36: A brane tiling for X 3,1.



The Kasteleyn matrix for this tiling is

2 4 6 8

1 1+w- 1  1 0 z

K= 3 1 -1 -- w 1 0 (3.7.58)

5 0 1 w-1 1

7 z- 1  1 1 -1

which has determinant det K = 7w- 1 + w- 2 + 8 + w - ~1 - z + w-z. This yields

the proper toric diagram and multiplicities for this phase of X,'1 .
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Chapter 4

Equivalence of algorithms

4.1 Introduction

In the previous Chapter, we introduced the brane tiling approach to quiver theories on

D-branes over toric singularities. We have seen a striking correspondence between the

perfect matching partition function and the toric diagram of the underlying geometry.

In addition, a specific correspondence between GLSM fields and perfect matchings

was conjectured, noticing also how perfect matchings are natural variables to solve F-

term equations. This correspondence, which we call Mathematical Dimer Conjecture,

leads to impressive simplifications in the study of branes on toric singularities and lies

at the core of the breakthrough of the dimer ideas. The main result of this Chapter

is the proof of the Mathematical Dimer Conjecture.

We devote Section 4.2 to a discussion of toric quivers and brane tilings. Section

4.3 presents the gauged linear sigma model (GLSM) approach for computing toric

moduli spaces of toric gauge theories. In Section 4.4 we present the conjecture of

[94], splitting it into the Mathematical and Physical dimer conjectures. Finally, we

prove the Mathematical Dimer Conjecture in Section 4.5. We illustrate all discussions

with the relatively non-trivial example of a quiver theory for D3-branes probing a

complex cone over the second del Pezzo surface.



4.2 Toric quivers and brane tilings

We consider the .N'= 1 superconformal gauge t lieories that live on the worldvolume

of a stack of N D3-branes probing a non-compact toric Calabi-Yau 3-fold. For every

singularity, the gauge theory on the D3--branes is not unique. In fact, we have an

infinite number of gauge theories connected by Seiberg duality [211, 24, 86, 53, 93]

that flow to the same universality class in the infrared limit. Every gauge theory

is specified by a gauge group and a matter content, which are encoded in a quiver

diagram, and a superpotential. We will concentrate on a particular subset of this

infinite set of dual theories, denoted toric phases. A toric phase is defined as

a phase in which the gauge group is f[ SU(N), i.e. the ranks of all gauge group

factors are the same. Non-toric phases are obtained by Seiberg duality on a node

for which the number of flavors is larger than twice the number of colors. The fact

that the probed geometry is an affine toric variety constraints the possible structure

of the superpotential. It has to be such that all F-term equations are of the form

"monomial = monomial". This constraint is dubbed the toric condition [80] and

can be rephrased by saying that every field in the quiver must appear exactly in two

terms of the superpotential, with both terms having opposite signs. In addition, all

superpotential coefficients can be normalized to 1 by rescaling the fields.

Figure 4-1 shows one toric phase for the complex cone over dP 2 [82, 80], usually

referred to as Model II. The corresponding superpotential is given by

W = [X34X45X53] - [X53Y31X15 + X34X42Y231 (4.2.1)
+ [Y23X31X15X52 + X42X23Y31X14| - [X23X31X14X45X52]

where we have grouped terms to make a Z2 global symmetry that acts by interchang-

ing nodes 1 - 2 and 4 +-* 5 and charge conjugating all the fields manifest. We will

use this example to illustrate all our discussions.

In [94], it was realized that all the information in the quiver diagram and the

superpotential of a toric phase can be encapsulated in a single object: the periodic

quiver. A periodic quiver is a planar quiver drawn on the surface of a 2-torus
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Figure 4-1: Quiver diagram for Model II of dP 2.

(equivalently, a doubly periodic infinite quiver on the plane) s. t. every plaquette

corresponds to a term in the superpotential. The sign of the superpotential terms is

given by the orientation of the corresponding plaquettes, which alternates between

clockwise and counterclockwise. The toric condition is automatically incorporated in

the periodic quiver, since every field appears precisely in two neighboring plaquettes

with opposite orientation.

It has been conjectured that any quiver corresponding to D3-branes probing non-

compact, toric Calabi-Yau threefolds can be embedded in a T 2 [94]. Furthermore,

the two cycles around the T 2 have been identified with the non-R symmetry U(1)

isometries [31]. In Section 4.2.1, we discuss how conformal invariance restricts the

possible embeddings of the periodic quiver. Figure 4-2 shows the periodic quiver for

our dP2 example.

2 2 3 2
51 1 5' 1 4 5

2 3 2 3 2

55 1 4 5(

3 2 3 2 3

Figure 4-2: Periodic quiver for Model II of dP 2. We show several fundamental cells.

Our working hypothesis will be that we consider gauge theories that are described

by periodic quivers on T 2. For this class of theories, we will show that the GLSM



determination of the moduli space can be translated into a dimer problem.

The superpotential can be written schematically as

w = W (4.2.2)
P

where every superpotential term W, is a gauge invariant mesonic operator with R-

charge equal to 2 and neutral under the U(1) x U(1) flavor symmetry1 . We have

explicitly indicated the sign of each term, which satisfy the toric condition.

In toric quivers, F-term equations can be used to show that all these operators

are equivalent in the chiral ring. The toric condition implies that every field Xi

appears (linearly) in exactly two superpotential terms. Let us call them W and -W2

(according to the toric condition both contributions have opposite signs). Then

0 = X (X W = X OX (W1 -W 2) = W1 -W 2  (4.2.3)

This becomes very intuitive from the perspective of the periodic quiver (see Fig-

ure 4-3), where one can show that any two adjacent plaquettes are equal by using

the F-term relation for the common field. Iterating this process we see that, once

F-term equations are taken into account, all superpotential terms are identical. This

idea has already been used in [31].

2 3 2

51 1 4 5

3 2 3

Figure 4-3: Two plaquettes are equal once the F-term equation for the common field

is imposed.

In [94], an alternative representation of the gauge theory, dubbed brane tiling

was introduced. The brane tiling is constructed by dualizing the periodic quiver

'In some cases the U(1) 2 global symmetry can be enhanced. For example, for ypq theories the

flavor symmetry is SU(2) x U(1) [26].



graph: Nodes, arrows and plaquettes of the periodic quiver are replaced by faces,

transverse lines and nodes, respectively.

The resulting tiling is a bipartite graph. This means that it is possible to assign

nodes two colors (by convention we choose black and white) such that white nodes

are only connected to black nodes and viceversa. The coloring of nodes is in one-to-

one correspondence with the orientation of plaquettes in the periodic quiver (hence

the sign of superpotential terms). Edges in the tiling carry a natural orientation (for

example from white to black nodes), which corresponds to the orientation of arrows

in the periodic quiver.

We can translate among periodic quiver, brane tiling and gauge theory concepts

using the following dictionary

Periodic quiver Brane tiling Gauge theory

node face SU(N) gauge group

arrow edge bifundamental (or adjoint)

plaquette node superpotential term

We denote F, E and N the number of faces, edges and nodes in the tiling. They

correspond to the number of gauge groups, chiral multiplets and superpotential terms

in the gauge theory.

For a comprehensive description of brane tilings we refer the reader to [94]. Fig-

ure 4-4 shows the brane tiling for the dP2 example under consideration, obtained by

dualizing the periodic quiver in Figure 4-2

In analogy to the chemical terminology, every edge in the tiling is denoted a

dimer. A perfect matching is a collection of edges (dimers) such that every node

in the tiling is the endpoint of exactly one edge in the set. For later reference, we

list all perfect matchings for the dP2 brane tiling in the Appendix. Perfect matchings

play a fundamental role in our forthcoming discussion.



Figure 4-4: Brane tiling for Model II of dP 2.

4.2.1 Geometry of the tiling embedding from conformal in-

variance

In the previous section we stated that we will focus on tilings of a two dimensional

torus. Since the gauge theories under consideration have a finite number of gauge

groups, fields and superpotential terms, it is natural to represent them by a tiling of

a compact Riemann surface E. But, is any E a valid option? Why do we choose a

T 2 ? Interestingly, as we discuss in this section, the gauge theory actually constraints

the geometry of E.

Conformal invariance at the IR fixed point requires the beta functions for all

superpotential and gauge couplings to be zero. For superpotential couplings this

implies that

R, = 2 for every node (4.2.4)
i E edges

around node

while vanishing of gauge coupling beta functions corresponds to

2 + E (Ri - 1) = 0 for every face (4.2.5)

i E edges

around face

Adding (4.2.5) over all faces and using (4.2.4) we conclude that



(4.2.6)

Hence, conformal invariance implies that the Euler characteristic of E has to be

zero.

4.2.2 Height function

Given a perfect matching M, it is possible to define an integer-valued height func-

tion h over the brane tiling [168, 169]. In order to do so we fix a reference perfect

matching Mo and a face fo. The difference M - Mo defines a set of closed curves over

the tiling. The minus sign flips the orientation of bifundamentals associated with

the edges of Mo, giving the resulting closed curves a definite orientation. The height

function jumps by t1 when crossing a curve, where the sign is given by the orienta-

tion of the crossing. The height for fo is set to be zero. Notice that the difference of

the height functions of two matchings is well-defined independently of Mo.

The slope of a perfect matching is defined as the height change (hi, hy) when mov-

ing from one unit cell to the next one along the two fundamental directions. Changing

Mo amounts to a constant shift (h.O, h1o) in the slopes of all perfect matchings.

We exemplify the concepts presented in this section with dP 2. Figure 4-5 shows a

perfect matching, a reference perfect matching and the corresponding height function.

In this case, we see that the slope is (hr, hy) = (-1, 0).

Figure 4-5: (a) The dimers in the a perfect matching M are shown in cyan. (b)
The dimers in the reference perfect matching Mo are shown in red. (c) The height
function, whose level curves are given by M - Mo.



There is an equivalent way to define slopes, that later will turn oit to be useful.

To every perfect matching we can associate a unit flow on its edges. directed from

white to black nodes. The slope then corresponds to the net flux between adjacent

fundamental regions in the x and y directions. The Appendix gives the slopes for

all perfect matchings of Model II of dP 2. We will come back to the interpretation of

matchings as unit flows in Section 4.5.2.

It is straightforward to count the number of perfect matchings with a given slope

[168, 169]. In order to do so, we first introduce the Kasteleyn matrix of the tiling

K(x, y). It is a weighted, signed, (N/2) x (N/2) adjacency matrix defined as follows.

In our convention, the rows of K(x, y) are indexed by white nodes and its columns by

black nodes. We associate a ±1 weight to every edge ei in the tiling such that when

we multiply the weights around every face we have

J+1 if (#edges) = 2 mod 4
sign e)= (4.2.7)

-1 if (# edges) = 0 mod 4

Next we take two fundamental paths C, and Cy in the graph dual to the brane

tiling winding once around the (1, 0) and (0, 1) cycles of the 2-torus. These paths

are conventionally denoted flux lines and can be visualized as the boundaries of the

fundamental region. The weight of every edge in the tiling that is crossed by C2 is then

multiplied by x or x- 1 depending on the orientation of the crossing. Respectively,

edges crossed by C, are multiplied by y or y- 1 .

The determinant of the Kasteleyn matrix P(x, y) = det K(x, y) is a Laurent poly-

nomial, the so-called characteristic polynomial of the dimer model. It has the

following general form

P(x, y) = xhxOyhYO 1 chx,hy Xh (4.2.8)

P(x, y) is the partition function of perfect matchings on the brane tiling, in the

sense that the integer coefficients |Chx,hl Icount the number of perfect matchings with

slope (h, hy) [169].
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In our example, we have

1-X~1 y 1

K = I x (4.2.9)

Then

P(x,y)= x-ly -x- +5-x-y -xy (4.2.10)

which gives the following counting of perfect matchings

slope # matchings

(-1,-i) 1

(-1,0) 1

(0,0) 5

(1,0) 1

(0,1) 1

(1,1) 1

that is in precise agreement with the direct counting in the Appendix.

4.3 Toric geometry from gauge theory

We now review the procedure for computing the moduli space of a given toric quiver

(i.e. quiver plus toric superpotential). For N D3-brane probes, the moduli space

along the mesonic branch corresponds to the symmetric product of N copies of the

probed geometry. This procedure has been algorithmized in [82] and dubbed the

Forward Algorithm. It involves the following steps:

* Use F-flatness equations to express the fields in the quiver (which transform in

bifundamental or adjoint representations) Xi, i = 1,... , E in terms of F + 2

independent variables v. Although the vj's can be taken to be a subset of

the Xi fields, other choices are also possible. For example, as we will discuss

later, dimers pick other combinations which turn out to be more natural. The

final answer does not depend on this choice. Since for toric quivers the F-term
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equations are of the form monomial = monomial, each Xi is given by a product

of vJ's to appropriate powers. This can be encoded in an E x (F + 2) matrix

K according to

Xi = j o", i = ,.. E, I=1..., F + 2 (4.3.11)

The Xi can involve negative powers of the vj's, i.e. Kij may have negative

entries. The row vectors Ki of K span a cone M+ in RF+2, corresponding to

non-negative linear combinations of them.

" Next, to get rid of the negative powers, we introduce new variables pa, a =

1,..., N,. In order to do so, we compute the cone N+ dual to M+. N+ is

spanned by vectors Ta, such that Ki -Ta > 0. These vectors can be organized as

the columns of an (F+2) x N, integer matrix T such that K-T > 0 for all entries.

The dimension of the dual cone N, is not known a priori and is determined by

explicitly computing N+. The intermediate and original variables vj and Xi are

expressed in terms of the pa as follow

v= pTso Xf = 11 pfj KjTja,
Vi fXi=Fp~~i~~ (4.3.12)

The amount of operations required to compute N, grows with the size of the

gauge theory. This growth becomes prohibitive when trying to apply the For-

ward Algorithm to gauge theories with large quivers. Later, we will explain how

this difficulty is circumvented by the dimer model.

* A convenient way to encode the relations among the N, variables pa and the

original F + 2 vj is by obtaining them as D-terms of an appropriately chosen

U(1)Nr(F+2) gauge group. Its action is given by an (N, - F - 2) x N, charge

matrix QF (where the subindex F indicates that QF contains all the information

about F-term equations). Gauge invariance of the vf's under the new gauge
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group gives rise to the desired relations. Hence, QF is such that

T- FQTF-0(.-3

e The charges of fields under the F gauge groups of the quiver are summarized

by the F x E incidence matrix d. It is defined as dli = o1,head(Xj) - 6 1,tail(X)

Every column associated to a bifundamental field contains a 1 and a -1 and the

rest of the entries are O's. Adjoint fields are represented in quiver language by

arrows starting from and ending at the same node. Hence, the corresponding

columns have all 0's. It is clear that one of the rows of d is redundant. Thus, we

define the matrix (F - 1) x E matrix A, which is obtained from d by deleting

one of its rows. For our example, we have

X 14  X3 1  X 15  Y31  X 23  X 5 2  Y23  X 42  X3 4  X53  X 45

1 -1 1 -1 1 0 0 0 0 0 0 0

A= 2 0 0 0 0 -1 1 -1 1 0 0 0

3 0 -1 0 -1 1 0 1 0 -1 1 0

4 1 0 0 0 0 0 0 -1 1 0 -1
(4.3.14)

The F-I independent D-term equations of the original theory are implemented

by adding a U(1)F- 1 gauge symmetry to the GLSM. The charges of the p, under

these symmetries is given by an (F-1) x N, matrix QD which can be determined

in two steps. First, we construct an (F - 1) x (F + 2) matrix V that translates

the charges of the Xi's to those of the vf's. Thus,

V-KT = A (4.3.15)

Next, we find an (F + 2) x N, matrix U that transform the charges of vj's into

those of the p0 's

U- TT = Id(F+2) x (F+2) (4-3-16)
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Finally, we hawv

QD = V - U (4.3.17)

QD and QF are collbihined into a single (N, - 2) x N, charge matrix Q

Q D 4318)
(QF)

The construction we outlined can interpreted as a Witten's two dimensional

gauged linear sigma model (GLSM) of N, chiral fields p and U(1)N.-3

gauge group with charges given by Q.

9 The U(1) charges defined above are exactly those that appear in the construc-

tion of a toric variety as a symplectic quotient. In toric geometry it is standard

to encode the charge matrix by means of a toric diagram.

G = (Ker(Q)) T  (4.3.19)

One of the rows in G can be set to have all entries equal to 1 by an appropriate

SL(3, Z) transformation. This is the Calabi-Yau condition and amounts to

the fact that the sum of the charges of all the p, under any of the U(1) gauge

symmetries is zero. Effectively, we are left with a two dimensional toric diagram.

Every GLSM field pa, corresponds to a point in the toric diagram, which is a

vector ', in Z3. Q is given by linear relations of the form

n

Q aa=0 (4.3.20)
i=1

satisfied by the i7's.

Figure 4-6 summarizes the relevant matrices in the Forward Algorithm.
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F+2 T
SNa

Na -3

F-1

3

Figure 4-6: Relevant matrices in the Forward Algorithm.

4.4 The conjecture

Having introduced all necessary concepts, we are ready to study the conjecture of

[94]. It is convenient to divide the conjecture into two parts, to which we refer as the

Mathematical and the Physical Dimer Conjectures.

Mathematical dimer conjecture

The mathematical dimer conjecture states that there is a one-to-one correspondence

between fields p, in the gauged linear sigma model construction of the toric moduli

space of the given toric gauge theory and perfect matchings in the brane tiling dual to

the toric quiver. Here, when we refer to a toric gauge theory we mean a gauge theory

whose quiver can be drawn on a surface of a 2-torus, s. t. the plaquettes give the

terms in the superpotential (see discussion in Section 4.2.1). Furthermore, accord-

ing to the conjecture, the toric diagram is the Newton polygon of the characteristic

polynomial (i.e. the set of integer exponents of monomials [169]) which, as we have

already discussed, is the set of height function monodromies ("slopes") of the perfect

matchings.
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Physical dimer conjecture

The physical dimer conjecture identifies dimers and tilings with physical objects.

According to the conjecture, the brane tiling is interpreted as a physical brane con-

figuration. It consists of an NS5-brane extended in the 0123 directions that wraps an

holomorphic curve in 4567. The 5 and 6 directions are periodically identified giving

rise to the 2-torus. D5-branes extend in 012346, suspended within the "holes" of the

NS5-brane in the 46 torus. Every stack of D5-branes gives rise to a gauge group.

Strings crossing every NS5-brane segment and connecting two D5-brane stacks cor-

respond to chiral multiplets transforming in the bifundamental representation of the

corresponding gauge groups. Gauge invariant superpotential terms are produced by

the coupling of massless string states at the nodes of the NS5-brane configuration.

This configuration is conjectured to be related to the D3-branes over the singularity

by two T-dualities. The suspended D5-branes are dual to the probe D3-branes and

the NS5-brane structure is dual to the singular geometry.

The correspondence between dimers and a physical brane system could be more

subtle and might differ from the one suggested by the physical dimer conjecture.

However, the validity of the mathematical dimer conjecture, which is the main subject

of this chapter, is completely independent of how tilings are realized in terms of
2branes.

Having introduced the conjectures of [94], we devote the rest of the chapter to

proving the mathematical dimer conjecture.

2Recently, another physical description of the tiling has been developed in [87]. Using mirror
symmetry, the D3-branes are mapped to a system of D6-branes that wraps a self-intersecting
T 3 torus. The mirror geometry is a double fibration over the complex W plane, one being the
W = uv torus fibration degenerating at the origin and another being the W = P(w, z) fibration
degenerating at some critical points. Here P(w, z) = det(Kasteleyn) is the spectral curve with
(w, z) = (es+iO, et+Ni) E (C*)2. The spectral curve can then be projected to the non-compact space
(s, t) which yields the amoeba whose spine is the pq-web of the toric diagram. Projection on the
compact (0, Wp) coordinates gives the so-called alga of the curve. Its skeleton is the rhombus loop
diagram that has been used to construct the brane tiling for a given toric diagram [132, 87]. This
construction supports the D5-NS5 tiling proposal of [94], which appears when T-dualizing along
the S1 fibre in the uv plane.
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4.5 The proof

In this section we prove the Mathematical Dimer Conjecture. As we said before, we

prove it for toric gauge theories whose quivers (and hence their brane tilings) are

embedded in a two-torus. A considerable amount of evidence supporting its validity

has been accumulated in the literature. This includes:

* Construction of the correct toric diagram for the moduli space of gauge theories

for an infinite number of singularities. This number is infinite thanks to the

determination of the tilings for the ypq [94] and Labc manifolds [97, 52].

* Precise agreement between the number of perfect matchings and the multiplicity

of GLSM fields in toric diagrams for various models [97].

* Derivation of Seiberg dual theories by transformations of the tilings preserving

the Newton polygon of the characteristic polynomial [97, 132].

" In [97], it was shown that given a simple proposal to express quiver fields in

terms of perfect matchings, F-term conditions are straightforwardly satisfied.

This proposal will be derived as part of our proof.

" The geometry of brane tilings has been investigated in [87]. The results of

this paper show how tilings appear in the description of toric gauge theories

by explicitly deriving them from the mirror geometry but do not prove the

correspondence between perfect matchings and GLSM fields.

Our computations with dimers will closely follow those of the Forward Algorithm.

It is important to keep in mind that some of the steps (or intermediate matrices)

are naturally skipped by the inherent simplifications of the dimer approach. In order

to avoid confusion we will use tilded variables at some stages of the proof. In the

end, we will show that they can be identified with the untilded ones of the Forward

Algorithm.
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4.5.1 Solving F-term conditions: gauge transformations and

magnetic coordinates

The tiling is bipartite, therefore each edge has a natural orientation from its white

vertex to its black vertex. Any weight function e(e) on the edges defines a 1-form,

satisfying e(-e) = -e(e), where -e is the edge with opposite direction [169]. We

denote the linear space of 1-forms on the tiling by Q'. Analogously, the functions on

nodes and faces define 0- and 2-forms in Q0 and Q2 . The three spaces are related by

differentials

0 -> 0 d ) 1 d ) 2 -4 0 (4.5.21)

We can now define gauge transformations on the tiling, whose action on the

1-forms is given by [169]

E'(ei) = e(e2 ) + df f C Q0 (4.5.22)

That is

8'(el) = E(ej) + f (bi) - f (wi) (4.5.23)

with bi and wi the black and white nodes at the endpoints of edge ej. These gauge

transformations of the tiling should not be confused with the gauge symmetries of

the quiver theory. We are confident that the distinction between both types of gauge

transformations will be clear from the context in which we use them. Given a closed

path on the tiling

y = {wo, bo, wi, bi,. ., b_1, Wk} Wk = WO (4.5.24)

we define the magnetic flux through -y as

B(7) = 8 = [E(wi, bi) - e(wi+ 1 , bi)] (4.5.25)
__Y =1
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Magnetic fluxes are clearly gauge invariant. The brane tiling is embedded in a two

dimensional torus. Hence, gauge inequivalent classes of 1-forms are parameterized

by RF- D R2. The first term corresponds to dE e 2 , a function on the faces of

the tiling subject to the condition E dE = 0. We can specify the RF-1 part by the

magnetic fluxes Bz(j) (j = 1, . . . , F - 1) through the 'yi contours around F - 1 faces.

The remaining two parameters (B., B.) correspond to fluxes around two non-trivial

cycles (-y,, -yy) winding around the torus.

Gauge transformations are of particular interest because taking E to be the energy

function they do not modify the energy difference between perfect matchings. Hence,

the probability distribution of perfect matchings is invariant under gauge transfor-

mations.

In this section, we will exploit gauge transformations with a different goal, namely

to provide a convenient set of variables (mostly in Q 2 ) that solve the F-term equations.

For this purpose, we define the complex 1-form

E(ei) = In Xi = under gauge transformations: Xj = Xief (bi)-f (wi) (4.5.26)

In this context, we refer to the Xi's as weights3

Using (4.5.26), we can define new variables associated to closed paths

k-1 k-1X(wi, bi)
O()= ek = i) (4.5.27)

X (wi, bi)

where the product runs over the contour -y. Then {, = i(-yj), , .y } provides a

parametrization of inequivalent gauge classes.

We define a convenient basis of 0-forms F(P), y = 1, ... , N,

F() =1 (4.5.28)
f,=0 for vfyp

3If we regard -E(ei) as the energy of a link, the Xi's can be interpreted as complex valued
Boltzmann weights.
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Their virtue is that superpotential terms transform simply under the correspold-

ing gauge transformations. Taking the gauge transformation for aF(A), with e, a

complex coefficient, we get

W= W sig"(4)""", (4.5.29)

where vA is the valence of node p (i.e. the order of the associated superpotential tern

W,) and following (4.5.26) sign(p) is 1 for black nodes and -1 for white nodes.

As discussed in Section 4.2, solving F-term conditions corresponds to setting all

the W.'s equal. Given arbitrary values of the W,, it is possible to set them equal to

W1 by the basic gauge transformations of (4.5.29) with

sign((p) In W1
v11  lnW= (4.5.30)v. In W,

In other words, solving F-term equations corresponds in this language to par-

tially fixing the gauge. Each gauge choice can be labeled by the common value

of W, = W1 . Equivalently, one can label gauge choices using the more symmetric

variable V defined as
N E

V= wN =flW,1 =flX (4.5.31)

We denote V, the i5j's, f, and i, the flux variables.

We have just seen that on each gauge orbit there exists a unique solution to F

term equations for every value of V. Hence, we conclude that solutions to F-flatness

equations are parametrized by the F + 2 flux variables: the value of V indicating

a partial gauge fixing, along with the variables fby (j = 1,... , F - 1), ', and i,,

parametrizing gauge equivalence classes. It is now clear that these fluxes can be

identified with the vj (j = 1,. . . , F + 2) variables of the Forward Algorithm.

With this identification, it is straightforward to write down a left inverse matrix for

K, which we call KZ1 . This is an (F+2) x E matrix such that KZ 1 K = Id(F+2)x (F+2)-

For our dP 2 example, we have

4We thank Alastair King for discussions on related ideas.
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X 14  X 1  X15  Y31  X 23  X52 2 X 42  X 3 4  X5 3  X 45

V1 1 1 1 -1 0 0 0 0 0 0 0

V2 0 0 0 0 1 -1 1 -1 0 0 0

K1 ' s) 0 1 0 1 -1 0 -1 0 1 -1 0
K-1 = 3 0

i4 -1 0 0 0 0 0 0 1 -1 0 1

fX -1 0 0 1 -1 0 0 1 0 0 0

, 1 -1 0 0 0 0 0 0 0 1 -1

V 2 2 2 2 2 2 2 2 2 2 2
(4.5.32)

for which we have taken the yj loops to run clockwise around faces, and -yx and -y

are the two non-trivial cycles shown in Figure 4-7, i.e.

_X= XiX 4 2X2Y 31

S = X 1 4 2 3(4 .5 .3 3 )
f) = X53X371XX4

With this choice of contours, it is clear that the first F - 1 rows of K71 are equal

to -A (see (4.3.14)). There are other paths equivalent to 'yx and Yy that are obtained

by deforming them using F-term equations.

1 4 1 4
5 3 -- - 53

3 2 - 3 2 -

Figure 4-7: Contours defining ii and i\y.

The matrix K converts magnetic variables into weight variables. We do not deter-

mine K explicitly in this section as it is not necessary for our discussion. As explained

in Section 4.3, the vectors ni corresponding to rows in K (i = 1, ... , E) span a cone

S in RF+2

4.5.2 The GLSM fields are perfect matchings

In the previous section we discussed at length how the F-flatness conditions can be

satisfied in terms of the i9j magnetic fluxes that are in one-to-one correspondence
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with the variables v according to (4.5.27). The relation between these variables and

the original Xi fields are encoded in the matrix K, whose rows span the cone M+ in

RF+ 2. The Forward Algorithm proceeds by computing the cone dual to M+:

N+ = {x E RF+2 I (K, x) > 0 for i = 0, ... , E} (4.5.34)

There are N, spanning vectors for this dual cone N+. These N, vectors define the

columns T of the matrix T and they are in one-to-one correspondence with the

homogeneous p,, GLSM coordinates.

We would like to understand the computation of the dual cone in terms of tiling

techniques. In order to do so, we introduce a slightly different viewpoint that will

prove to be useful.

An arbitrary real weight system on the edges can be interpreted as a white-to-

black flow' [169]. The (possibly negative) strength of the flow from white to black

node along an edge ej is given by the corresponding real weight ci. The real weights

considered in this section are not to be confused with the complex weights given by

Xi that we have discussed earlier.

A flow is nonnegative if it has a nonnegative strength on all edges of the tiling

(ci > 0 for all el). The flows are typically not divergence free, therefore there can be

sinks and sources at the vertices. The net flux coming out of a given white node or

into a black node is denoted the vorticity of the node.

For each point in flux space x E RF+2 we define a real flow on the tiling whose

strength at the ith edge is given by Ej Kijzx. Hence the points inside N+ correspond

to nonnegative flows in this picture.

We want to find the spanning vectors Ta of the dual cone N+ E RNF+2 . Following

our discussion in Section 4.5.1, we can rescale the vectors T, by a positive real number

using the gauge transformations of the dimer model. Thus we can set their vorticity

to one. Therefore, we can focus on the hyperplane H C RNF+ 2 such there is a unit

source residing at every white vertex and a unit sink at the black ones. The flows

5The flow space should not be confused with the flux space, which was introduced in the previous
section and is RF+2
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associated with this hyperplane are called unit flows.

The vectors T, span the cone N+, hence they also span the intersection H n N+

in flux space. From the previous discussion, we know that this intersection is linearly

mapped by Kij to nonnegative unit flows P C RE in flow space. It is well-known

in the literature that the set of nonnegative unit flows is a convex polytope in the

flow space and that perfect matchings are vertices of this polytope (Perfect Matching

Polytope Theorem, [75]). Their preimages are the spanning vectors T0 in flux space.

For T, the flow on the ith edge is given by E Kij(T 0 )j = E KijT 0 . We conclude

that there is a one-to-one correspondence between the GLSM fields in the Forward

Algorithm and perfect matchings.

Perfect matchings are naturally represented as unit flows, hence they immediately

determine KT. By introducing the following "product" between perfect matchings

and edges in the tiling

(ei I Pa) 1 if ej (E pa 45-5(ej, p0 ) = { a(4.5.35)
0 if ej $ PC,

the matrix KT is simply

(KT)ia = (ei, p.) (4.5.36)

The correspondence between GLSM fields and perfect matchings and the computation

of KT in terms of perfect matchings that we derived in this section was originally

proposed in [94].
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(4.5.36) for dP 2, we haveUsin

KTT=

23 X42 X34 X53

As we discussed in the previous section, the left inverse of K, which we called

KZ , arises naturally using dimer methods. Then, it is straightforward to write down

T = KL 1KT (4.5.38)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

1 -2 1 0 0 2 -1 1 -1 1 -1

V2 0 -1 -2 2 0 -1 1 1 1 -1

03 3 0 -1 -3 1 0 -2 0 0 2

f4 -1 2 1 0 -2 1 -1 1 -1 -1

f), 1 1 1 -1 -1 2 -2 -1 0 0

v0, -1 -1 1 1 1 1 2 -2 0 -1

V 6 6 6 6 6 6 6 6 6 6

(4.5.39)

Notice that the fact that T may

important point is that (KT)ia > 0.

of T in terms of the tiling, similar to

have

In fact

(4.5.36

negative entries is not a problem. The

we can give a straightforward definition

). In order to do so, we take into account

the edges ej in the curves -yj that define the magnetic fluxes (similarly, all ei's are

included for V). The -yj's have an orientation and then the fields Xi associated to
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X14  X 31  X 15  Y31  X 23  X72

Pi 0 1 0 1 0 0

P2 0 0 1 0 0 0

P3  0 0 0 0 0 1

P4  0 0 0 0 1 0

P5  1 0 1 0 0 0

P6 0 0 0 1 0 0

P7  1 0 0 0 1 0

P8 0 1 0 0 1 0

9 0 0 1 0 0 0

Pio 0 1 0 0 0 1

X45
0

1

0

0

0

0

0

1

0

0
(4-5.37)
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edges ei appear with a ±1 power that we denote sign(ej). Combining these ideas, we

get

Ta= sign(ei)(ei, p0 ) (4.5.40)

4.5.3 Height changes as positions in a toric diagram

So far we have shown that GLSM fields are perfect matchings. This is half of the

proof of the Mathematical Dimer Conjecture, which in addition states that the height

changes (h_, hy) of a given perfect matching should be interpreted as the position in

the toric diagram of the corresponding GLSM field.

Let us define the following 3 x N, matrix

hx

Gh = hy (4.5.41)

1

The non-trivial piece of Gh is given by (h., hy). We have included a third row

with value 1 for all perfect matchings that plays the role of the trivial coordinate of

the toric diagram.

Our goal is to prove that Gh defines the GLSM charge matrix Q through the

vanishing linear relations among its columns, and thus can be identified with G in

(4.3.19). I.e. we want to show that

Q Gi = 0 T QFG - 0QGh0 QFG (4.5.42)
and QD GT = 0

For the third row of Gh, (4.5.42) means that the trace over perfect matchings of

any given GLSM U(1) charge vanishes. It is straightforward to see that this condition

is always satisfied. Thus, from now on we concentrate on the (h,, hy) piece of Gh.

Let us first show that QF G[ = 0. From (4.5.43), we have

TQT = 0 (4.5.43)

115



Hence. it is sufficient to prove that h, and hy are given by linear combinations

of the rows of T. It is straightforward not only to show that this is the case but

also to identify the precise form of these linear combinations. The key ideas are the

interpretation of height changes as horizontal and vertical net flows as discussed in

Section 4.2.2 and that KT is computed as the "overlap" of perfect matchings and

edges (4.5.36). With this in mind, we can express the height changes as

hx(pQ) = Z( S sign2(ei)Kij) Ta (4.5.44)
j e EE.

hy(pa) = ( signy(ei)Kij) T. (4.5.45)
j e1EEy

where Ex and Ey denote the set of edges crossing the horizontal and vertical bound-

aries of the unit cell (i.e. the flux lines C2 and C.), and signx(ei) and signy(ei) indicate

the direction of the crossing. For illustration, let us consider our dP 2 example, for

which

Ex= {X 52 , X 53, Y23 } signx(ei) = - 1, 1(45.46)

E ={X 23 , Y23 } signy(e ) = {1, -1}

Figure 4-8 shows Ex and Ey in the tiling.

1 4 1, 14-
5 3 -'' -'' 53

-3 ' 3 2

Ex Ey

Figure 4-8: Sets of edges Ex and Ey that enter the computation of (hr, hy).

Using (4.5.43), the fact that (hr, hy) is given by the linear combinations con-

structed in (4.5.44) and (4.5.45) implies that

QF GT = 0 (4.5.47)

as we want. The missing part of the proof is to show that QD G[T = 0. This can be
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done as follows

(QD G/ j = signx(ei) (VUTTKT) = sign'(o) (VKK )T
e EEx e EE,

S signx(ei)AL = 0 (4.5.48)

In the first equality we have used (4.5.44) and (4.3.17). In the second one, we used

(4.3.16). In the third one, we used (4.3.15). The last step uses the following reasoning.

Every face 1 of a tiling (1 = 1,. . . , F) is crossed by C, over an even number of edges 6.

Typically, as in the dP2 example we are considering, this intersection number is 0 or

2, but larger values are also possible. Every edge intersected by C', corresponds to a

field Xi in E_ that transforms either in the fundamental (Ai = 1) or antifundamental

(Al = -1) representation of the SU(N) gauge group associated with face 1 7. Let

us consider two edges in ej and ey in E. that are consecutive as we move around

face 1. Then, Au/Aij = 1 or -1 provided ei and ej are separated by and odd

or even number of edges, respectively. Conversely, sign'(e )/sign'(ej) = 1 or -1

if they are separated by and even or odd number of edges. Hence, we have that

sign'(ei)Ali/sign'(ej) A\j = -1, and thus E signx (i)i = 0.

With identical reasoning, it follows that

(QD G T)  = signv(ei)Ai = 0 (4.5.49)
eiEEy

From (4.5.48) and (4.5.49), we conclude that

QDG = 0 (4.5.50)

6Actually, a face of the tiling may be crossed by C, over an odd number of edges. This happens

when there are chiral multiplets transforming in the adjoint representation of the corresponding

gauge group. Adjoint fields are represented in the tiling by edges such that the faces at both of its

sides are identified (arrows beginning and ending at the same node in the dual quiver). For a field

Xi in the adjoint representation of the 1th gauge group Ali = 0 and thus the derivation of (4.5.48)

still holds. The reader should keep in mind this subtlety.
'As we explained, it is straightforward to incorporate fields in the adjoint representation to the

proof.
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Hence. we have Q G' = 0 and we can identify

Gh- G (4.5.51)

We have shown that the slopes of the perfect matchings are the positions of the

corresponding GLSM fields in the toric diagram, completing our proof of the Mathe-

matical Dimer Conjecture.

Before closing this section we notice an interesting result that was possible due

the use of dimers. Equations (4.5.44) and (4.5.45) give the positions of GLSM fields

in the toric diagram directly as linear combinations of rows of KT. Nothing like these

expressions was clear from the Forward Algorithm and shows, once again, how dimers

manage to pick the natural variables for computing the moduli space.

4.6 Conclusions

In this chapter we have proved the Mathematical Dimer Conjecture. That is, we have

explicitly shown that there is a one-to-one mapping between the GLSM fields that

realize the moduli space of a toric quiver and perfect matchings in the brane tiling

dual to the periodic quiver. We have also demonstrated that the position of each

GLSM field in the toric diagram is given by the slope of the corresponding perfect

matching.

We have witnessed how dimers often provide an intuitive interpretation of other-

wise obscure steps in the computation of the moduli space. An example of this type

is that F-term equations can be easily solved using gauge transformations of weights

as shown in Section 4.5.1. This leads to the magnetic flux variables and V as natural

intermediate variables of the Forward Algorithm.

Perfect matchings for dP 2

Figure 4-9 presents the ten perfect matchings for Model II of dP2 and their slopes.
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1 4
5 3

3 2

(0,0)

(0,0)

(1,1)

(0,0)

1 4
5 3

~3 2.

(0,0)

1,4
53 3

(1,0)(0,0)

(0,1) (-1,-1)

(-1,0)

Figure 4-9: Perfect matchings and their slopes for Model II of dP 2.
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Chapter 5

Infinite families of examples

5.1 Introduction

At low energies the theory on the D3-brane is expected to flow to a superconformal

fixed point. The AdS/CFT correspondence [189, 118, 236] connects the strong cou-

pling regime of such gauge theories with supergravity in a mildly curved geometry. For

the case of D3-branes placed at the tips of Calabi-Yau cones over five-dimensional

geometries Y5, the gravity dual is of the form AdS5 x Y5 , where Y5 is a Sasaki-Einstein

manifold [167, 174, 2, 196]. There has been considerable progress in this subject re-

cently: for a long time, there was only one non-trivial Sasaki-Einstein five-manifold,

T1", where the metric was known. Thanks to recent progress, we now have an infi-

nite family of explicit metrics which, when non-singular and simply-connected, have

topology S 2 x S3. The most general such family is specified by 3 positive integers a, b, c,

with the metrics denoted La,b,c [61, 192]1. When a = p-q, b = p+q, c = p these reduce

to the ypq family of metrics, which have an enhanced SU(2) isometry [107, 106, 191].

Aided by the toric description in [191], the entire infinite family of gauge theories

dual to these metrics was constructed in [26]. These theories have subsequently been

analyzed in considerable detail [142, 29, 202, 28, 187, 37, 99, 54, 48, 32, 98, 31, 42).

There has also been progress on the non-conformal extensions of these theories (and

'We have changed the notation to La',b, to avoid confusion with the p and q of YPq. In our

notation, ypq is Lp+q,p-q+p.
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others) both from the supergravity [142, 48] and gauge theory sides [99. 54. 32., 98, 42].

These extensions exhibit many interesting features, such as cascades [1731 and dynam-

ical supersymmetry breaking. In addition to the yp'q spaces, there are also several

other interesting infinite families of geometries which have been studied recently: the

XP'q spaces [127], deformations of geometries with U(1) x U(1) isometry [187], and

deformations of geometries with U(1) 3 isometry [10].

Another key ingredient in obtaining the gauge theories dual to singular Calabi-

Yau manifolds is the principle of a-maximization [154], which permits the determi-

nation of exact R-charges of superconformal field theories. Recall that all d = 4

K = 1 gauge theories possess a U(1)R symmetry which is part of the superconformal

group SU(2, 211). If this superconformal R-symmetry is correctly identified, many

properties of the gauge theory may be determined. a-maximization [154] is a simple

procedure - maximizing a cubic function - that allows one to identify the R-symmetry

from among the set of global symmetries of any given gauge theory. Plugging the

superconformal R-charges into this cubic function gives exactly the central charge a of

the SCFT [14, 12, 140]. Although here we will focus on superconformal theories with

known geometric duals, a-maximization is a general procedure which applies to any

K = 1 d = 4 superconformal field theory, and has been studied in this context in a

number of recent works, with much emphasis on its utility for proving the a-theorem

[178, 156, 177, 59, 22, 179, 23].

In the case that the gauge theory has a geometric dual, one can use the AdS/CFT

correspondence to compute the volume of the dual Sasaki-Einstein manifold, as well

as the volumes of certain supersymmetric 3-dimensional submanifolds, from the R-

charges. For example, remarkable agreement was found for these two computations in

the case of the ypq singularities [41, 26]. Moreover, a general geometric procedure that

allows one to compute the volume of any toric Sasaki-Einstein manifold, as well as

its toric supersymmetric submanifolds, was then given in [190]. In [190] it was shown

that one can determine the Reeb vector field, which is dual to the R-symmetry, of any

toric Sasaki-Einstein manifold by minimizing a function Z that depends only on the

toric data that defines the singularity. For example, the volumes of the ypq manifolds
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are easily reproduced this way. Remarkably, one can also compute the volumes of

manifolds for which the metric is not known explicitly. In all cases agreement has

been found between the geometric and field theoretic calculations. This was therefore

interpreted as a geometric dual of a maximization in [190], although to date there is

no general proof that the two extrenal problems, within the class of superconformal

gauge theories dual to toric Sasaki-Einstein manifolds, are in fact equivalent.

In this chapter, we will use this recent progress in geometry, field theory, and

dimer models to obtain a lot of information about gauge theories dual to general

toric Calabi-Yau cones. Our geometrical knowledge will specify many requirements

of the gauge theory, and we describe how one can read off gauge theory quantities

rather straightforwardly from the geometry. As a particular example of our methods,

we construct the gauge theories dual to the recently discovered L',b,' geometries. We

will realize the geometrically derived requirements by using the brane tiling approach.

Since the La,b,c spaces are substantially more complicated than the ypq's, we will not

give a closed form expression for the gauge theory. We will, however, specify all the

necessary building blocks for the brane tiling, and discuss how these building blocks

are related to quantities derived from the geometry.

The plan of the chapter is as follows: In Section 2, we discuss how to read gauge

theory data from a given toric geometry. In particular, we give a detailed prescrip-

tion for computing the quantum numbers (e.g. baryon charges, flavor charges, and

R-charges) and multiplicities for the different fields in the gauge theory. Section 3 ap-

plies these results to the Labc spaces. We derive the toric diagram for a general L',bA

geometry, and briefly review the metrics [61, 192] for these theories. We compute the

volumes of the supersymmetric 3-cycles in these Sasaki-Einstein spaces, and discuss

the constraints these put on the gauge theories. In Section 4 we discuss how our

geometrical computations constrain the superpotential, and describe how one may

always find a phase of the gauge theory with at most only three different types of

interactions. In Section 5, we prove that a-maximization reduces to the same equa-

tions required by the geometry for computing R-charges and central charges. Thus

we show that a-maximization and the geometric computation agree. In Section 6,

123



we construct the gauge theories dual to the La'b,c spaces by using the brane tiling

perspective, and give several examples of interesting theories. In particular, we de-

scribe a particularly simple infinite subclass of theories, the La'b," theories. for which

we can simply specify the toric data and brane tiling. We check via Z-minimization

and a-maximization that all volumes and dimensions reproduce the results expected

from AdS/CFT. Finally, in the Appendix, we give some more interesting examples

which use our construction.

5.2 Quiver content from toric geometry

In this section we explain how one can extract a considerable amount of information

about the gauge theories on D3-branes probing toric Calabi-Yau singularities using

simple geometric methods. In particular, we show that there is always a distinguished

set of fields whose multiplicities, baryon charges, and flavor charges can be computed

straightforwardly using the toric data.

5.2.1 General geometrical set-up

Let us first review the basic geometrical set-up. For more details, the reader is referred

to [190]. Let (X, w) be a toric Calabi-Yau cone of complex dimension n, where W is

the Kihler form on X. In particular X = C(Y) R-1- x Y has an isometry group

containing an n-torus, T'. A conical metric on X which is both Ricci-flat and Kshler

then gives a Sasaki-Einstein metric on the base of the cone, Y. The moment map

for the torus action exhibits X as a Lagrangian T' fibration over a strictly convex

rational polyhedral cone C C R'. This is a subset of R' of the form

C = {y E R' I (y, vA) > 0,A= 1, .. ., D} . (5.2.1)

Thus C is made by intersecting D hyperplanes through the origin in order to make a

convex polyhedral cone. Here y E R" are coordinates on R" and VA are the inward

pointing normal vectors to the D hyperplanes, or facets, that define the polyhedral
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cone. The normals are rational and hence one can normalise them to be primitive2

elements of the lattice Z". We also assume this set of vectors is minimal in the sense

that removing any vector VA in the definition (5.2.1) changes C. The condition that

C be strictly convex is simply the condition that it is a cone over a convex polytope.

Figure 5-1: A four-faceted polyhedral cone in R3.

The condition that X is Calabi-Yau, c1 (X) = 0, implies that the vectors vA may,

by an appropriate SL(n; Z) transformation of the torus, be all written as VA = (1, WA).

In particular, in complex dimension n = 3 we may therefore represent any toric

Calabi-Yau cone by a convex lattice polytope in Z2 , where the vertices are simply

the vectors WA. This is usually called the toric diagram.

From the vectors VA one can reconstruct X as a Kshler quotient or, more physi-

cally, as the classical vacuum moduli space of a gauged linear sigma model (GLSM).

To explain this, denote by A C Z" the span of the normals {VA} over Z. This is a

lattice of maximal rank since C is strictly convex. Consider the linear map

A: RD -+ n

(5.2.2)

eA - VA (5.2.3)

which maps each standard orthonormal basis vector eA of RD to the vector VA. This

induces a map of tori

TD RD/ZD -+ R"/A. (5.2.4)

2A vector v G Z" is primitive if it cannot be written as my' with v' E Z" and Z 3 m > 1.
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In general the kernel of this map is A 2 TD-n x F where F is a finite abelian group.

Then X is given by the Kihler quotient

X=CD//A. (5.2-5)

Recall we may write this more explicitly as follows. The torus TD-n C TD is specified

by a charge matrix Q' with integer coefficients, I = 1,... , D - n, and we define

K Z...,ZD) E CD IQ ZAj2 =o CCD (5.2.6)
A

where ZA denote complex coordinates on CD. In GLSM language, IC is simply the

space of solutions to the D term equations. Dividing out by gauge transformations

gives the quotient

X = K/TD-n X F. (5.2.7)

We also denote by L the link of C with the sphere S2D-1 C CD. We then have a

fibration

A ---+ L -+Y (5.2.8)

where Y is the Sasakian manifold which is the base of the cone X = C(Y). For a

general set of vectors VA, the space Y will not be smooth. In fact typically one has

orbifold singularities. Y is smooth if and only if the polyhedral cone is good [183],

although we will not enter into the general details of this here - see, for example,

[190].

Finally in this subsection we note some topological properties of Y, in the case

that Y is a smooth manifold. In [184] it is shown that L has trivial homotopy groups

in dimensions 0, 1 and 2. From the long exact homotopy sequence for the fibration
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(5.2.8) one concludes that [184]

wi(Y) 7 n(A) F = Z"/A (5.2.9)

72 (Y) 71K (A ) Z 1)"-. (5.2.10)

In particular, Y is simply-connected if and only if the {VA} span Z" over Z. In fact we

will assume this throughout in the following any finite quotient of a toric singularity

will correspond to an orbifold of the corresponding gauge theory, and this process is

well-understood by now.

From now on we also restrict to the physical case of complex dimension n = 3.

Moreover, throughout this section we assume that the Sasaki-Einstein manifold Y

is smooth. The reason for this assumption is firstly to simplify the geometrical and

topological analysis, and secondly because the physics in the case that Y is an orbifold

which is not a global quotient of a smooth manifold is not well-understood. How-

ever, as we shall see later, one can apparently relax this assumption with the results

essentially going through without modification. The various cohomology groups that

we introduce would then need replacing by their appropriate orbifold versions.

5.2.2 Quantum numbers of fields

In this subsection we explain how one can deduce the quantum numbers for a certain

distinguished set of fields in any toric quiver gauge theory. Recall that, quite generally,

N D3-branes placed at a toric Calabi-Yau singularity have an AdS/CFT dual that

may be described by a toric quiver gauge theory. In particular, the matter content

is specified by giving the number of gauge groups, N9 , and number of fields Nf,

together with the charge assignments of the fields. In fact these fields are always

bifundamentals (or adjoints). This means that the matter content may be neatly

summarised by a quiver diagram.

We may describe the toric singularity as a convex lattice polytope in Z2 or by giv-

ing the GLSM charges, as described in the previous section. By setting each complex
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coordinate ZA = 0, A = 1, . , D, one obtains a toric divisor DA in the Calabi-Yau

cone. This is also a cone, with DA = C(EA) where EA is a 3-dimensional supersym-

metric submanifold of Y. Thus in particular wrapping a D3-brane over EA gives rise

to a BPS state, which via the AdS/CFT correspondence is conjectured to be dual to

a dibaryonic operator in the dual gauge theory. We claim that there is always a dis-

tinguished subset of the fields, for any toric quiver gauge theory, which are associated

to these dibaryonic states. To explain this, recall that given any bifundamental field

X, one can construct the dibaryonic operator

B[X] - . . . XN3 N1 (5.2.11)

using the epsilon tensors of the corresponding two SU(N) gauge groups. This is dual

to a D3-brane wrapped on a supersymmetric submanifold, for example one of the

EA. In fact to each toric divisor EA let us associate a bifundamental field XA whose

corresponding dibaryonic operator (5.2.11) is dual to a D3-brane wrapped on .

These fields in fact have multiplicities, as we explain momentarily. In particular each

field in such a multiplet has the same baryon charge, flavor charge, and R-charge.

Multiplicities

Recall that DA = {ZA = 0} = C(EA) where EA is a 3-submanifold of Y. To each

such submanifold we associated a bifundamental field XA. As we now explain, these

fields have multiplicities given by the simple formula

mA = |(vA_1,vAvA+1)| (5.2.12)

where we have defined the cyclic identification VD+1 = vi, and we list the normal

vectors VA in order around the polyhedral cone, or equivalently, the toric diagram.

Here (-, -, -) denotes a 3 x 3 determinant, as in [190].

In fact, when Y is smooth, each EA is a Lens space L(ni, n2) for appropriate ni

and n2 . To see this, note that each EA is a principle T 2 fibration over an interval,
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say [0, 1]. By an SL(2; Z) transformat ion one can always arrange that at 0 the (1, 0)-

cycle collapses, and at 1 the (ni, ni2) cycle collapses. It is well-known that this can

be equivalently described as the quotient of S' C C2 by the Z, action

(zi,Wz2) -1 (ziniz 2 w") (5.2.13)

where hcf(ni, n 2) = 1 and w,, denotes an nith root of unity. These spaces have a

rich history, and even the classification of homeomorphism types is rather involved.

We shall only need to know that r1(L(ni, n 2 )) Z Zni, which is immediate from the

second definition above.

Consider now wrapping a D3-brane over some smooth E, where ri (E) = Z,,. As

we just explained, when E is toric, it is necessarily some Lens space L(m, n2). In fact,

when the order of the fundamental group is greater than one, there is not a single such

D3-brane, but in fact m D3-branes. The reason is that, for each m, we can turn on a

flat line bundle for the U(1) gauge field on the D3-brane worldvolume. Indeed, recall

that line bundles on E are classified topologically by H 2( E; Z) 2 H1(E; Z) 7r1(E),

where the last relation follows for abelian fundamental group. A torsion line bundle

always admits a flat connection, which has zero energy. Since these D3-brane states

have different charge - namely torsion Di-brane charge - they must correspond to

different operators in the gauge theory. However, as will become clear, these operators

all have the same baryon charge, flavor charge and R-charge. We thus learn that the

multiplicity of the bifundamental field XA associated with DA is given by m.

It remains then to relate m to the formula (5.2.12). Without loss of generality,

pick a facet A, and suppose that the normal vector is VA = (1, 0, 0). The facet is

itself a polyhedral cone in the R2 plane transverse to this vector. To obtain the

normals that define this cone we simply project VA1, VA+1 onto the plane. Again, by

a special linear transformation we may take these 2-vectors to be (0,1), (n1 , -n 2 ),

respectively, for some integers ni and n2. One can then verify that this toric diagram

indeed corresponds to the cone over L(ni, n2 ), as defined above. By direct calculation
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we now see that

(VA_1, VA, VA i 0. 1) x (n1, -- n2) = ni (5.2.14)

which is the order of rl(EA). The deterinant is independent of the choice of basis

we have made, and thus this relatioi is true in general, thus proving the formula

(5.2.12). One can verify this formuli in a large number of examples where the gauge

theories are already known.

Baryon charges

In this subsection we explain how one can deduce the baryonic charges of the fields XA.

Recall that, in general, the toric Sasaki Einstein manifold Y arises from a quotient

by a torus

T ~3 - L -+ Y . (5.2.15)

This fibration can be thought of as D - 3 circle fibrations over Y with total space

L. Equivalently we can think of these as complex line bundles MI. Let CI, I

1, ... , D - 3, denote the Poincar6 duals of the first Chern classes of these bundles.

Thus they are classes in H3 (Y; Z). Recall from (5.2.9) that r2(Y) D-3 when Y is

smooth. Provided Y is also simply- connected 3 one can use the Hurewicz isomorphism,

Poincar6 duality and the universal coefficients theorem to deduce that

H3(Y; Z) _ ZD-3 . (5.2.16)

In particular note that the number of independent 3-cycles is just D - 3. A fairly

straightforward calculation4 in algebraic topology shows that the classes Cr above

actually generate the homology group H3 (Y; Z) - ZD-3. Thus {Cr} form a basis of

3-cycles on Y.

3 Recall this is also one of our assumptions in this section.
4For example, one can use the Gysin sequence for each circle in turn.
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In Type IIB supergravity one can Kaluza-Klein reduce the Ramond-Ramond

foir-form potential C4 to obtain D - 3 gauge fields Ar in the AdS 5 space:

D-3

C4 = A, AH. (5.2.17)
I=1

Here RI is a harmonic 3-form on Y that is Poincar6 dual to the 3-cycle CI. In

the superconformal gauge theory, which recall may be thought of as living on the

conformal boundary of AdS 5 , these become D - 3 global U(1) symmetries

U(1)D-3. (5.2.18)

These are baryonic symmetries precisely because the D3-brane is charged under C4

and a D3-brane wrapped over a supersymmetric submanifold of Y is interpreted as

a dibaryonic state in the gauge theory. Indeed, the EA are precisely such a set of

submanifolds.

Again, a fairly standard calculation in toric geometry then shows that topologically

D-3

[EA] = ZQf CIE H3 (Y;Z) . (5.2.19)
I=1

This perhaps requires a little explanation. Each GLSM field ZA, A = 1,..., D, can

be viewed as a section of a complex line bundle LA over Y. They are necessarily

sections of line bundles, rather than functions, because the fields ZA are charged

under the torus TD-3. Now ZA = 0 is the zero section of the line bundle associated

to ZA, and by definition this cuts out the submanifold EA on Y. Moreover, the first

Chern class of this line bundle is then Poincar6 dual to [EA1. Recall that the charge

matrix Q specifies the embedding of the torus TD- 3 in TD, which then acts on the

fields/coordinates ZA; the element QA specifies the charge of ZA, which is a section

of LA, under the circle MI. This means that the two sets of line bundles are related
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D-3

LA = M . (5.2.20)
I=1

Taking the first Chern class of this relation and applying Poincar6 duality then proves

(5.2.19).

It follows that the baryon charges of the fields XA are given precisely by the matrix

Q that enters in defining the GLSM. Thus if Br[XA] denotes the baryon charge of

XA under the Ith copy of U(1) in (5.2.18) we have

BI[XA] Q . (5.2.21)

Note that from the Calabi-Yau condition the charges of the linear sigma model sum

to zero

LBI[X]= ZQ = 0 I = 1, ... , D - 3 . (5.2.22)
A A

Moreover, the statement that

Avi [EA] = 0 (5.2.23)
A

may then be interpreted as saying that, for each i, one can construct a state in the

gauge theory of zero baryon charge by using vi copies of the field XA, for each A.

Flavor charges

In this subsection we explain how one can compute the flavor charges of the XA.

Recall that the horizon Sasaki-Einstein manifolds have at least a U(1) 3 isometry

since they are toric. By definition a flavor symmetry in the gauge theory is a non-R-

symmetry - that is, the supercharges are left invariant under such a symmetry. The

geometric dual of this statement is that the Killing spinor V' on the Sasaki-Einstein

manifold Y is left invariant by the corresponding isometry. Thus a Killing vector field
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VF is dual to a flavor symmetry in the gauge theory if ad only if

EvF p = 0 (5.2.24)

where $ is a Killing spinor on Y. In fact there is always precisely a U(1) 2 subgroup of

U(1)' that satisfies this condition. This can be shown by considering the holomorphic

(3, 0) form of the corresponding Calabi-Yau cone [190]. It is well known that this is

constructed from the Killing spinors as a bilinear

Q = 4 IF(3) #b , (5.2.25)

where 1'(3) is the totally antisymmetrised product of 3 gamma matrices in Cliff(6, 0).

In particular, in the basis in which the normal vectors of the polyhedral cone C are of

the form VA = (1, WA), the Lie algebra elements (0, 1, 0), (0, 0, 1) generate the group

U(1)' of flavor isometries. Note that, for ypq, one of these U(1)F symmetries is

enhanced to an SU(2) flavor symmetry. However, U(1)' is the generic case.

We would like to determine the charges of the fields XA under U(1)'. In fact

in the gauge theory this symmetry group is far from unique - one is always free to

mix any flavor symmetry with part of the baryonic symmetry group U(1)D-3. The

baryonic symmetries are distinguished by the fact that mesons in the gauge theory,

for example constructed from closed loops in a quiver gauge theory, should have zero

baryonic charge. Thus the flavor symmetry group is unique only up to mixing with

baryonic symmetries, and of course mixing with each other.

This mixing ambiguity has a beautiful geometric interpretation. Recall that the

Calabi-Yau cone X is constructed as a symplectic quotient

x = CD//TD-3 (5.2.26)
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where the torus TD- 3 c TD is defined by the kernel of the map

A: RD - 3 (5.2.27)

e A VA . (5.2.28)

lore precisely the kernel of A is generated by the matrix Qf, which in turn defines

a sublattice T of ZD of rank D -3. The torus is then TD-3 RD- 3 /T. We may also

consider the quotient ZD/T. The map induced from A then maps this quotient space

isomorphically onto Z3 and the corresponding torus T 3 = TD TD- 3 is then precisely

the torus isometry of X.

Let us pick two elements a1 , a 2 of ZD that map to the basis vectors (0, 1, 0), (0, 0, 1)

under A. From the last paragraph these are defined only up to elements of the lattice

T, and thus may be considered as elements of the quotient ZD/T. Geometrically,

0 1, a 2 define circle subgroups of TD that descend to the two U(1) flavor isometries

generated by (0, 1, 0) and (0, 0, 1). The charges of the complex coordinates ZA on

CD are then simply a1 , a2 for each A = 1,..., D. However, as discussed in the

last subsection, the ZA descend to complex line bundles on Y whose Poincar6 duals

are precisely the submanifolds EA. Thus the flavor charges of XA may be identified

with aj4 , a2. Moreover, by construction, each a was unique only up to addition by

some element in the lattice T generated by Qf. But as we just saw in the previous

subsection, this is precisely the set of baryon charges in the gauge theory. We thus

see that the ambiguity in the choice of flavor symmetries in the gauge theory is in

11 correspondence with the ambiguity in choosing a1 , a 2.

R-charges

The R-charges were treated in reference [190], so we will be brief here. Let us begin by

emphasising that all the quantities computed so far can be extracted in a simple way

from the toric data, or equivalently from the charges of the gauged linear sigma model,

without the need of an explicit metric. In [190], it was shown that the total volume of

any toric Sasaki-Einstein manifold, as well as the volumes of its supersymmetric toric
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submanifolds. can be computed by solving a simple extremal problem which is defined

in terms of the polyhedral cone C. This toric data is encoded in a function Z, which

depends on a "trial" Reeb vector living in R3. Minimizing Z determines the Reeb

vector for the Sasaki-Einstein metric on Y uniquely, and as a result one can compute

the volumes of the EA. This is a geometric analogue of a-maximization [154]. Indeed,

recall that the volumes are related to the R-charges of the corresponding fields XA

by the simple formula

7r vol(E A)
R[XA] = -v . (5.2.29)

3 vol(Y)

This formula has been used in many AdS/CFT calculations to compare the R-charges

of dibaryons with their corresponding 3-manifolds [34, 155, 146, 147].

Moreover, in [190] a general formula relating the volume of supersymmetric sub-

manifolds to the total volume of the toric Sasaki-Einstein manifold was given. This

reads

D

r Tvol(EA) = 6vol(Y) . (5.2.30)
A=1

Then the physical interpretation of (5.2.30) is that the R-charges of the bifundamental

fields XA sum to 2:

R[XA] = 2 . (5.2.31)
A

This is related to the fact that each term in the superpotential is necessarily the sum

D

ZEA (5.2.32)
A=1

and the superpotential has R-charge 2 by definition. We shall discuss this further in

Section 4.
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5.3 The La'bl, toric singularities

In the remainder of this chapter, we will be intere'ter i the specific GLSM with

charges

Q = (a, -c, b, -d) (5.3.33)

where of course d = a + b - c in order to satisfy the Calabi-Yau condition. We will

define this singularity to be Labc. The reason we choose this family is two-fold: firstly,

the Sasaki-Einstein metrics are known explicitly in this case [61, 192] and, secondly,

this family is sufficiently simple that we will be able to give a general prescription for

constructing the gauge theories.

Let us begin by noting that this is essentially the most general GLSM with four

charges, and hence the most general toric quiver gauge theories with a single U(1)B

symmetry, up to orbifolding. Indeed, provided all the charges are non-zero, either

two have the same sign or else three have the same sign. The latter are in fact just

orbifolds of S', and this case where all but one of the charges have the same sign is

slightly degenerate. Specifically, the charges (e, f, g, -e - f - g) describe the orbifold

of S' C C3 by Ze+f+g with weights (e, f, g). The polyhedral cones therefore have

three facets, and not four, or equivalently the (p, q) web has 3 external legs. By our

general analysis there is therefore no U(1) baryonic symmetry, as expected. Indeed,

note that setting Z4 = 0 does not give a divisor in this case, since the remaining

charges are all positive and there is no solultion to the remaining D-terms. The

Sasaki-Einstein metrics are just the quotients of the round metric on S' and these

theories are therefore not particularly interesting. In the case that one of the charges

is zero, we instead obtain K = 2 orbifolds of S', which are also well-studied.

We are therefore left with the case that two charges have the same sign. In

(5.3.33) we therefore take all integers to be positive. Without loss of generality we

may of course take 0 < a < b. Also, by swapping c and d if necessary, we can

always arrange that c < b. By definition hcf(a, b, c, d) = 1 in order that the U(1)

action specified by (5.3.33) is effective, and it then follows that any three integers are
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copriie. Tlie explicit Sasaki-Einstein metrics on the horizons of these singularities

were (onst ruc ted in [611. The toric description above was then given in [192]. The

manifolds were named LP in reference [61] but, following [1921. we have renamed

these L"1 in order to avoid confusion with ypq. Indeed, notice that these spaces

reduce to YI'M when c = d = p, and then a = p - q, b = p + q. In particular there

is an enhanced SU(2) symmetry in the metric in this limit. It is straightforward

to determine when the space Y = Labc is non-singular: each of the pair a, b must

be coprime to each of c, d. This condition is necessary to avoid codimension four

orbifold singularities on Y. To see this, consider setting Z1 = Z4= 0. If b and c had

a common factor h, then the circle action specified by (5.3.33) would factor through

a cyclic group Zh of order h, and this would descend to a local orbifold group on the

quotient space. In fact it is simple to see that this subspace is just an S' family of

Z orbifold singularities. All such singularities arise in this way. When Y = Labc is

non-singular it follows from the last section that r2(Y) 2 Z and hence H 2(Y; Z) 2 Z.

By Snale's theorem Y is therefore diffeomorphic to S2 x S3. In particular there is

one 3- cycle and hence one U(1)B for these theories.

The toric diagram can be described by an appropriate set of four vectors VA =

(1, WA). We take the following set

Wi = [1, 0] w2 = [ak, b] w3 = [-al, c] w 4 = [0, 0] (5.3.34)

where k and I are two integers satisfying

c k + b l = 1 (5.3.35)

and we have assumed for simplicity of exposition that hcf(b, c) = 1. This toric diagram

is depicted in Figure 5-2.

The solution to the above equation always exists by Euclid's algorithm. Moreover,

there is a countable infinity of solutions to this equation, where one shifts k and 1

by -tb and tc, respectively, for any integer t. However, it is simple to check that
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(ak,b)

(-al,c)

(0,0) (1,0)

Figure 5-2: Toric diagram for the L',6,c geometries.

different solutions are related by the SL(2; Z) transformation

1 -ta
() (5.3.36)

acting on the WA, as must be the case of course. The kernel of the linear map (5.2.2)

is then generated by the charge vector Q in (5.3.33).

It is now simple to see that the toric diagram for La,b,c always admits a trian-

gulation with a + b triangles. It is well known that this gives the number of gauge

groups Ng in the gauge theory. To see this one uses the fact that the area of the toric

diagram is the Euler number of the (any) completely resolved Calabi-Yau X obtained

by toric crepant resolution, and then for toric manifolds this is the dimension of the

even cohomology of X. Now on 0, 2 and 4-cycles in X one can wrap space-filling

D3, D5 and D7-branes, respectively, and these then form a basis of fractional branes.

The gauge groups may then be viewed as the gauge groups on these fractional branes.

By varying the Kshler moduli of X one can blow down to the conical singularity X.

The holomorphic part of the gauge theory is independent of the Kshler moduli, which

is why the matter content of the superconformal gauge theory can be computed at

large volume in this way. To summarise, we have

Ng = a + b. (5.3.37)

Note that, different from YPq, the number of gauge groups for Labc can be odd.
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We may now draw the (p, q) web [8, 7, 185]. Recall that this is sinply t he graph

theoreric dual to the toric diagram, or, completely equivalently, is the projection of

the polyhedral cone C onto the plane with normal vector (1, 0, 0). The ext ernal legs

of the (p, q) web are easily computed to be

(pi, qi) = (-c, -al)

(p2 , q2 )= (c - b, a(k + 1))
(5.3.38)

(p3, q3 ) = (b, -ak + 1)

(P4, q4) = (0, -1)

This (p,q)-web is pictured in Figure 5-3. Using this information we can compute the

(c-b,ak+al)

(-c,-al)

(0,-i)
(b,-ak+1)

Figure 5-3: (p,q)-web for the Lab, theories.

total number of fields in the gauge theory. Specifically we have

Nf = 2 det . (5.3.39)
i,jelegs Pi qj

This formula comes from computing intersection numbers of 3-cycles in the mirror

geometry [126]. In fact the four adjacent legs each contribute a, b, c, d fields, which

are simply the GLSM charges, up to sign. The two cross terms then contribute c - a

and b - c fields, giving

Nf = a+ 3b. (5.3.40)

To summarise this section so far, the gauge theory for Labc has N. - a + b gauge
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groups, ainl = a + 3b fields in total. In Section 3.2 we will determine the multi-

plicities of the hilds, as well as their baryon and flavor charges, using the results of

the previous sc t ion.

5.3.1 The sub-family Laaba

The observant ieader will have noticed that the charges in (5.3.38) are not always

primitive. In fact this is a consequence of orbifold singularities in the Sasaki-Einstein

space. In such singular cases one can have some number of lattice points, say m - 1,

on the edges of t he toric diagram, and then the corresponding leg of the (p, q) web in

(5.3.38) is not a primitive vector. One should then really write the primitive vector,

and associate to that leg the label, or multiplicity, m. Each leg of the (p, q) web

corresponds to a circle on Y which is a locus of singular points if m > 1, where m

gives the order of the orbifold group. Nevertheless, the charges (5.3.38) as written

above give the correct numbers of fields.

Rather than explain this point in generality, it is easier to give an example. Here

we consider the family Laob', which are always singular if one of a or b is greater than

1. In fact by the SL(2; Z) transformation

(5.3.41)
0 1

one maps the toric diagram to an isosceles trapezoid as shown in Figure 5-4.a.

Notice that there are a - 1 lattice points on one external edge, and b - 1 lattice

points on the opposite edge. This is indicative of the singular nature of these spaces.

Correspondingly, the (p, q) web has non-primitive charges (or else one can assign

positive labels b and a to primitive charges). Indeed, the leg with label a is just the

submanifold obtained by setting Z3 = Z4= 0. On Y the D-terms, modulo the U(1)

gauge transformation, just give a circle S'. However, the U(1) group factors through

a times, due to the charges of Z1 and Z 2 being both equal to a. This means that

the S' is a locus of Z orbifold singularities. Obviously, similar remarks apply to
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(1,b) (a-b,1)

(1,0)
(1,0)
(1,0) b

(0,a) (1,,) '
a (1,0)

(0,0) (1,0) (0,-1)

(a) (b)

Figure 5-4: a) Toric diagram and b) (p, q) web for the LAb," sub-family.

Z= Z2 = 0. The singular nature of these spaces will also show up in the gauge

theory: certain types of fields will be absent, and there will be adjoints, as well

as bifundamentals. The LA,b,, family will be revisited in Section 5.6.2, where we will

construct their associated brane tilings, gauge theories and compare the computations

performed in the field theories with those in the dual supergravity backgrounds.

5.3.2 Quantum numbers of fields

Let us denote the distinguished fields as

X 1 =Y X2 = U1  X 3 = Z X4 = U2 . (5.3.42)

In the limit c = d = p we have that La',b,' reduces to a ypq. Specifically, b = p + q

and a = p - q. Then this notation for the fields coincides with that of reference [26].

In particular, the U, become a doublet under the SU(2) isometry/flavor symmetry in

this limit.

The multiplicities of the fields can be read off from the results of the last section:

mult[Y] = b mult[U1] = d mult[Z] = a mult[U2] = c . (5.3.43)

This accounts for 2(a + b) fields, which means that there are b - a fields missing. The
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(p, q) web suggests that there are two more fields V and V2 with multiplicities

mult[V1 ] = c - a mult[V2 ] = b - c . (5.3.44)

Indeed, this also reproduces a ypq theory in the limit c = d, where the fields Vi again

become an SU(2) doublet.

It is now simple to work out which toric divisors these additional fields are asso-

ciated to. As will be explained later, each divisor must appear precisely b times in

the list of fields. Roughly, this is because there are necessarily a + 3b - (a + b) = 2b

terms in the superpotential, and every field must appear precisely twice by the quiver

toric condition [80]. From this we deduce that we may view the remaining fields

V1, V2 as "composites" - more precisely, we identify them with unions of adjacent

toric divisors Di U D in the Calabi-Yau, or equivalently in terms of supersymmetric

3-submanifolds in the Sasaki-Einstein space:

V : E3 U E4

(5.3.45)

V2 : E2 U E. (5.3.46)

We may now compute the baryon and flavor charges of all the fields. The charges

for the fields V1, V2 can be read off from their relation to the divisors EA above. We

summarise the various quantum numbers in Table 5.1.

Notice that the SL(2; Z) transformation (5.3.36) that shifts k and I is equivalent

to redefining the flavor symmetry

U(1)F2 -- U(1)F 2 - tU(1)B + taU(1)F1 . (5.3.47)

Note also that each toric divisor appears precisely b times in the table. This fact

automatically ensures that the linear traces vanish

TrU(1)B = 0 and TrU(1)F1 = TrU(1)F2 = 0 , (5.3.48)
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Table 5.1: Charge assignnents for the six different types of fields present in the

general quiver diagram for Lab.

as must be the case. As a non-trivial check of these assignments, one can compute

that the cubic baryonic trace vanishes as well

TrU(1)3 = ba3 - de_ + ab3 - cd + (b - c)(c - a) 3 + (c - a)(b - C) 3 = 0 .(5.3.49)

5.3.3 The geometry

In this subsection we summarise some aspects of the geometry of the toric Sasaki-

Einstein manifolds Labc. First, we recall the metrics [61], and how these are associated

to the toric singularities discussed earlier [192]. We also discuss supersymmetric

submanifolds, compute their volumes, and use these results to extract the R-charges

of the dual field theory.

The local metrics were given in [61] in the form

p2 dX2  p2 d02  Ax sin2o Cos 2 0 2
ds2 = 4A + AO+ A A d p+ d0 )

(5.3.50)

+ A sin2 0 cos 2 0 (a-xdp - d7p + (dr + -)2 (5.3.51)
p 2 (a 0
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where

o- = sin 2 9dp + cos2 Od#b

(5.3.52)

AX = .(a-x)(3-x) - p, p2 A _X

(5.3.53)

AO = a cos 2 0 + # sin 2 0. (5.3.54)

Here a, 0, y are a priori arbitrary constants. These local metrics are Sasaki-Einstein

which can be equivalently stated by saying that the metric cone dr 2 + r2 ds2 is Ricci-

flat and Kahler, or that the four-dimensional part of the metric (suppressing the T

direction) is a local Kihler-Einstein metric of positive curvature. These local metrics

were also found in [192]. The coordinates in (5.3.50) have the following ranges:

0 < 0 < 7/2, 0 <p < 27r, 0 < 5b < 27r, and x1 < x < x 2, where x 1, x 2 are the

smallest two roots of the cubic polynomial Ax. The coordinate T, which parameterises

the orbits of the Reeb Killing vector 0/r is generically non-periodic. In particular,

generically the orbits of the Reeb vector field do not close, implying that the Sasaki-

Einstein manifolds are in general irregular.

The metrics are clearly toric, meaning that there is a U(1)3 contained in the isom-

etry group. Three commuting Killing vectors are simply given by O/&4@, 0/0@, 0/T.

The global properties of the spaces are then conveniently described in terms of those

linear combinations of the vector fields that vanish over real codimension two fixed

point sets. This will correspond to toric divisors in the Calabi-Yau cone - see e.g.

[191]. It is shown in [61] that there are precisely four such vector fields, and in par-

ticular these are 8/8tp and o/&/, vanishing on 0 = 0 and 0 = 7/2 respectively, and

two additional vectors

fi = ai + b2 + ci i = 1,2 (5.3.55)
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which vanish over x = x1 and x - X 2 , respectively. The constants are given by [61]

i ac, b - Oci

(5.3.56)

c. (a -x)( xj) (5.3.57)
2(a + )xi - a/ - 3x?

In order that the corresponding space is globally well-defined, there must be a linear

relation between the four Killing vector fields

0 _

af 1 +be 2 +c +d =0 (5.3.58)

where (a, b, c, d) are relatively prime integers. It is shown in [61] that for appropri-

ately chosen coefficients aj, bi, ci there are then countably infinite families of complete

Sasaki-Einstein manifolds.

The fact that there are four Killing vector fields that vanish on codimension 2

submanifolds implies that the image of the Calabi-Yau cone under the moment map

for the T 3 action is a four faceted polyhedral cone in R3 [191]. Using the linear relation

among the vectors (5.3.58) one can show that the normal vectors to this polyhedral

cone satisfy the relation

a vi - cv 2 + bv 3 - (a + b -c) v 4 = 0 (5.3.59)

where VA, A = 1, 2, 3, 4 are the primitive vectors in R3 that define the cone. Note that

we have listed the vectors according to the order of the facets of the polyhedral cone.

As explained in [192], it follows that, for a, b, c relatively prime, the Sasaki-Einstein

manifolds arise from the symplectic quotient

C4//(a, -c, b, -a - b + c) (5.3.60)

which is precisely the gauged linear sigma model considered in the previous subsection.
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The volume of the Sasaki Einstein manifolds/orbifolds is given by [6 1

vol(Y) = 2a( 2 - xi)(a + 13 - xi- x 2 )AT
2ka/3 (5.3.61)

where here k =gcd(a, b) and

AT = 27rkIci I (5.3.62)

This can also be written as

V r3 (a + b)3 W
vol(Y) 8abcd (5.3.63)

where W is a root of certain quartic polynomial given in [61]. This shows that the

central charges of the dual conformal field theory will be generically quartic irrational.

In order to compute the R-charges from the metric, we need to know the volumes

of the four supersymmetric 3-submanifolds EA. These volumes were not given in [61]

but it is straightforward to compute them. We obtain

7r C1vol(E 1 ) = - A
k a1b1

vol(E 3) = ar 2
k a2b2

vol(E 2 ) = (X2 - x 1 )AT
ko

vol(E4) = 'T(X2 - X1)Ar .
ka

We can now complete the charge assignments of all the fields in the quiver by giving

their R-charges purely from the geometry. The charges of the distinguished fields

Y, U1, Z, U2 are obtained from the geometry using the formula

7r vol(EA)
R[XA] = 3 (

3 vol (Y)
(5.3.66)

while those of the V1, V2 fields are simply deduced from (5.3.46). In particular

R[V1 ] = R[Z] + R[U2] R[V2] = R[Z] + R[U1 ] .

It will be convenient to note that the constants a, /3, y appearing in A. are related
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to its roots as follows

t1 - Xif 2X 3

(5.3.68)

a+/3 - 11=+2+X3

(5.3.69)

a# = iz2 + iz+ , (5.3.70)

where X3 is the third root of the cubic, and X3 > X2 > x1

(5.3.65), we then obtain the following set of R-charges

2
R[Y] = 2(3 - Xi)

3X3

2
R[Z] = 2(X - X2)

3X3

To obtain explicit expressions,

of the integers a, b, c. This can

> 0. Using the volumes in

R[U1] = 2a
3X3

2)0
R[U2] = 3X33

one should now write the constants xi, a, 3

be done, using the equations (9) in [61]. We

XI(3 - I) = a

z2 (3 - X2 ) b

a(X3 - a) c

O/3 x-/3 d

(5.3.71)

(5.3.72)

in terms

have

(5.3.73)

(5.3.74)

Notice that a = 13 implies c = d, as claimed in [61]. Combining these two equations

with (5.3.70), one obtains a complicated system of quartic polynomials, which in

principle can be solved. However, we will proceed differently. Our aim is simply to

show that the resulting R-charges will match with the a-maximization computation

in the field theory. Therefore, using the relations above, we can write down a system of
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equations involving the R-charges and the integers a, b, c, d. We obtain the following:

R[Y](2 - 3R[Y]) a

R[Z](2 - 3R[Z]) b

R[Ui](2 - 3R[U]) c
R[U2 ](2 - 3R[U 2]) d

3
3 (R[U1]R[U2] - R[Y]R[Z]) + R[Z] + R[Y] = 1
4

R[Y] + R[U1 ] + R[Z] + R[U2] = 2 . (5.3.75)

With the aid of a computer program, one can check that the solutions to this system

are given in terms of roots of various quartic polynomials involving a, b, c. For the

case of La,b,a the polynomials reduce to quadratics and the R-charges can be given in

closed form. These in fact match precisely with the values that we will compute later

using a-maximization, as well as Z-minimization. Therefore we won't record them

here.

In the general case, instead of giving the charges in terms of unwieldy quartic

roots, we can more elegantly show that the system (5.3.75) can be recast into an

equivalent form which is obtained from a-maximization. In order to do so, we can

use the last equation to solve for R[U1 ]. Expressing the first three equations in terms

of R[U2] = x, R[Y] = y and R[z] = z, we have

b(2 - 3y) + az(3z - 2) = 0

c(x+y-2)(3x+3y-4)- (a+b-c)(x-z)(3x-3z-2) = 0 (5.3.76)

3x 2 -4y+2(z-+ 2)+x(3y-3z-6) = 0.

Interestingly, the third equation does not involve any of the parameters. For later

comparison with the results coming from a-maximization, it is important to find a

way to reduce this system of three coupled quadratic equations in three variables to

a standard form. The simplest way of doing so is to 'solve' for one of the variables x,

y or z and two of the parameters. A particularly simple choice is to solve for y, a and

b. The simplicity follows from the fact that it is possible to use the third equation to

solve for y and the parameters then appear linearly in all the equations. Doing this,
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we obtain

c(3x - 2) (3x(x - z - 2) + 2(2 + z))

(3x - 4)2(X - z)

cz(3z - 2)

(3x - 3z - 2)(x - z)

= -2(2 + z) - 3x(x - z - 2) (5.3.77)
(3x - 4)

This system of equations is equivalent to the original one, and is the one we will

compare with the results of a-maximization.

Of course, one could also compute these R-charges using Z-minimization [190].

The algebra encountered in tackling the minimization problem is rather involved, but

it is straightforward to check agreement of explicit results on a case by case basis.

5.4 Superpotential and gauge groups

In the previous sections we have already described how rather generally one can

obtain the number of gauge groups, and the field content of a quiver whose vacuum

moduli space should reproduce the given toric variety. In particular, we have listed

the multiplicities of every field and their complete charge assignments, namely their

baryonic, flavor, and R-charges. In the following we go further and predict the form

of the superpotential as well as the nature of the gauge groups, that is, the types of

nodes appearing in the quivers.

5.4.1 The superpotential

First, we recall that in [94] a general formula was derived relating the number of gauge

groups N., the number of fields Nf, and the number of terms in the superpotential

Nw. This follows from applying Euler's formula to a brane tiling that lives on the

surface of a 2-torus, and reads

Nw = Nf - Ng. (5.4.78)
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Using this we find that the number of superpotential terms for L1A' is Nw = 2b.

Now we use the fact each terni in the superpotential W must be

UA1EA. (5.4.79)

In fact this is just the canonical class of X - a standard result in toric geometry. One

can justify the above form as follows. Each term in W is a product of fields, and each

field is associated to a union of toric divisors. The superpotential has R-charge 2,

and is uncharged under the baryonic and flavor symmetries. This is true, using the

results of Section 2 and (5.4.79).

A quick inspection of Table 5.1 then allows us to identify three types of monomials

that may appear in the superpotential

Wq= Tr YU1ZU 2  WC, = Tr YU1V1  Wc2 = Tr YU2 V2 . (5.4.80)

Furthermore, their number is uniquely fixed by the mutiplicities of the fields, and

the fact that Nw = 2b. The schematic form of the superpotential for a general LAb

quiver theory is then

W = 2[aWq + (b-c)We,+(c-a)W2 ] . (5.4.81)

In the language of dimer models, this is telling us the types of vertices in the brane

tilings [94]. In particular, in each fundamental domain of the tiling we must have 2a

four-valent vertices, 2(b - c) three-valent vertices of type 1, and 2(c - a) three-valent

vertices of type 2.

5.4.2 The gauge groups

Finally, we discuss the nature of the Ng = a + b gauge groups of the gauge theory, i.e.

we determine the types of nodes in the quiver. This information, together with the

above, will be used to construct the brane tilings. First, we will identify the allowed

types of nodes, and then we will determine the number of times each node appears
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in the quiver.

The allowed types of nodes can be deduced by requiring that at any given node

1. the total baryonic and flavor charge is zero:

2. the beta function vanishes:

ZiEnode U(1)j = 0

EiEnode(R- 1)+2=0

3. there are an even number of legs.

These requirements are physically rather obvious. The first property is satisfied

if we construct a node out of products (and powers) of the building blocks of the

superpotential (5.4.80). Moreover, using (5.2.31), this also guarantees that the total

R-charge at the node is even.

Imposing these three requirements turns out to be rather restrictive, and we obtain

four different types of nodes that we list below:

A: U1YV1 -U1YV

D: U2YV2 U2YV 2

B: V2YV -U1YU2

C: U1YU 2Z

Next, we determine the number of times each node appears in the quiver. Denote

these numbers nA, nBn, 2nc respectively. Taking into account the multiplicities of

all the fields imposes six linear relations. However, it turns out that these do not

uniquely fix the number of different nodes. We have

nc = a

(5.4.84)

nB + 22nA = 2(b-c)

(5.4.85)

nB + 2 nD = 2(c - a) . (5.4.86)

Although the number of fields and schematic

fixed by the geometry, the number of A, B and D

form of superpotential terms are

nodes are not. We can then have
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different types of quivers that are nevert heless described by the same toric singularity.

This suggests that the theories with different types of nodes are related by Seiberg

dualities. We will show that this is the case in Section 6.

It is interesting to see what happens for the L"Aa geometries discussed in Section

5.3.1. In this case c - a = 0 (the case that b - c = 0 is symmetric with this) and the

theory has some peculiar properties. Recall that this corresponds to a linear sigma

model with charges (a, -a, b, -b). These theories have no V2 fields, while the b - a

V1 fields have zero baryonic charge, and must therefore be adjoints. Moreover, from

(5.4.86), we see that nB = nD = 0, so that there aren't any B and D type nodes,

while there are b - a A-type nodes. In terms of tilings, these theories are then just

constructed out of C-type quadrilaterals and A-type hexagons. We will consider in

detail these models in Section 5.6.2.

Finally, we note that the general conclusions derived for L',b,' quivers in Sections

5.4.1 and 5.4.2 are based on the underlying assumption that we are dealing with a

generic theory (i.e. one in which the R-charges of different types of fields are not

degenerate). It is always possible to find at least one generic phase for a given La,,c

and thus the results discussed so far apply. Non-generic phases can be generated by

Seiberg duality transformations. In these cases, new types of superpotential inter-

actions and quiver nodes may emerge, as well as new types of fields. This was for

instance the case for the toric phases of the ypq theories [29].

5.5 R-charges from a-maximization

A remarkable check of the AdS/CFT correspondence consists of matching the gauge

theory computation of R-charges and central charge with the corresponding calcula-

tions of volumes of the dual Sasaki-Einstein manifold and supersymmetric subman-

ifolds on the gravity side. This is perhaps the most convincing evidence that the

dual field theory is the correct one. Since explicit expressions for the Sasaki-Einstein

metrics are available, it is natural to attempt such a check. Actually, the volumes of

toric manifolds and supersymmetric submanifolds thereof can also be computed from
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the toric data [190], without using a metric. This gives a third independent check

that everything is indeed consistent.

Here we will calculate the R-charges and central charge a for an arbitrary Lab,

quiver gauge theory using a-maximization. From the field theory point of view,

initially, there are six different R-charges, corresponding to the six types of bifunda-

mental fields U1, U2 , V1 , V2, Y and Z. Since the field theories are superconformal,

these R-charges are such that the beta functions for the gauge and superpotential

couplings vanish. Using the constraints (5.4.80) and (5.4.83) it is possible to see that

these conditions always leave us with a three-dimensional space of possible R-charges.

This is in precise agreement with the fact that the non-R abelian global symmetry is

U(1) 3 ~ U(1)2 x U(1)B. It is convenient to adopt the parametrization of R-charges

of Section 5.3.3:

R[U1] = x-z R[U2] 2-x-y

R[V] = 2-x-y+z R[V2] = x (5.5.87)

R[Y] = y R[Z] = z.

This guarantees that all beta functions vanish. Using the multiplicities in Table 5.1,

we can check that trR(x, y, z) = 0. This is expected, since this trace is proportional

to the sum of all the beta functions. In addition, the trial a central charge can be

written as

1
trR3 (x, y, z) = -[a (9(2 - x)(x - z)z - 2) + b (9 x y (2 - x - y) - 2 )

3
+ 9(b - c) y z (2x + y - z - 2)]. (5.5.88)

The R-charges are determined by maximising (5.5.88) with respect to x, y and z.
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This corresponds to the following equations

D, trR3(x, y, z) = 0 = -3 b y (2x + y - 2z - 2) + 3 z (a(2 - 2x + z - 2cy))

9, trR3 (x, y, z) = 0 = -3b(x-z)(x+2y-z-2)-3cz(2x+2y-z-2).

az trR3 (x, y, z) = 0 = -3a(x-2)(x-2--)+3(b-c)y(2x+y-2z-2)

(5.5.89)

It is straightforward to show that this system of equations is equivalent to (5.3.77).

In fact, proceeding as in Section 5.3.3, we reduce (5.5.89) to an equivalent system by

'solving' for y, a and b. In this case, there are three solutions, although only one of

them does not produce zero R-charges for some of the fields, and indeed corresponds

to the local maximum of (5.5.88). This solution corresponds to the following system

of equations

a c(3x - 2) (3x(x - z - 2) + 2(2 + z))
(3x - 4)2(X - z)

b =cz(3z - 2)

(3x - 3z - 2)(x - z)

= -2(2 + z) - 3x(x - z - 2) (5.5.90)
(3x - 4)

which is identical to (5.3.77). We conclude that, for the entire La,b,c family, the gauge

theory computation of R-charges and central charge using a-maximization agrees

precisely with the values determined using geometric methods on the gravity side of

the AdS/CFT correspondence.

5.6 Constructing the gauge theories using brane

tilings

In Sections 5.3 and 5.4 we derived detailed information regarding the gauge theory

on D3-branes transverse to the cone over an arbitrary Labc space. Table 5.1 gives

the types of fields along with their multiplicities and global U(1) charges, (5.4.80)

presents the possible superpotential interactions and (5.4.83) and (5.4.86) give the
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types of nodes in the quiver along with some constraints oii t heir multiplicities.

This information is sufficient for constructing the corresponding gauge theories.

We have used it in Section 5.5 to prove perfect agreement between the geometric

and gauge theory computations of R-charges and central charges. Nevertheless, it is

usually a formidable task to combine all these pieces of information to generate the

gauge theory. In this section we introduce a simple set of rules for the construction of

the gauge theories for the La',', geometries. In particular, our goal is to find a simple

procedure in the spirit of the 'impurity idea' of [26, 29].

Our approach uses the concept of a brane tiling, which was introduced in [94],

following the discovery of the connection between toric geometry and dimer models

of [128]. Brane tilings encode both the quiver diagram and the superpotential of

gauge theories on D-branes probing toric singularities. Because of this simplicity,

they provide the most suitable language for describing complicated gauge theories

associated with toric geometries. We refer the reader to [94] for a detailed explanation

of brane tilings and their relation to dimer models.

All the conditions of Sections 5.3 and 5.4 can be encoded in the properties of four

elementary building blocks. These blocks are shown in Figure 5-5. We denote them

A, B, C and D, following the corresponding labeling of gauge groups in (5.4.83). It

is important to note that a C hexagon contains two nodes of type C.

Y Y Y Y
U ,V 2  ~V 1  U1  U U2V

2
Ui U2 'UI U 2\ UI V2CU

Y Y Y Y
(A) (B) (C) (D)

Figure 5-5: The four building blocks for the construction of brane tilings for La,,c.

Every edge in the elementary hexagons is associated with a particular type of field.

These edge labels fully determine the way in which hexagons can be glued together

along their edges to form a periodic tiling. The quiver diagram and superpotential

can then be read off from the resulting tiling using the results of [94]. The elementary

hexagons automatically incorporate the three superpotential interactions of (5.4.80).

The number of A, B, C and D hexagons is nA, nB, nc and nD, respectively. Taking
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t heir values as given by (5.4.86), the multiplicities in Table 5.1 are reproduced.

Following the discussion in Section 5.4, the number of A, B, C and D hexagons

is not fixed for a given La'b,c geometry. There is a one parameter space of solutions

to (5.4.86), which we can take to be indexed by nD. It is possible to go from one

solution of (5.4.86) to another one by decreasing the number of B hexagons by two

and introducing one A and one D, i.e. (nA, nB, rC, rD) --+ (nA +t1, nB -2, rC, rD + 1).

We show in the next section that this freedom in the number of each type of hexagon

is associated with Seiberg duality.

5.6.1 Seiberg duality and transformations of the tiling

'5
We now study Seiberg duality [211] transformations that produce 'toric quivers

We can go from one toric quiver to another one by applying Seiberg duality to the

so-called self-dual nodes. These are nodes for which the number of flavors is twice

the number of colours, thus ensuring that the rank of the dual gauge group does not

change after Seiberg duality. Such nodes are represented by squares in the brane

tiling [94]. Hence, for LAbc theories, we only have to consider dualizing C nodes.

Seiberg duality on a self-dual node corresponds to a local transformation of the

brane tiling [94]. This is important, since it means that we can focus on the sub-

tilings surrounding the nodes of interest in order to analyse the possible behavior of

the tiling.

We will focus on cases in which the tiling that results from dualizing a self-dual

node can also be described in terms of A, B, C and D hexagons. There are some

cases in which Seiberg duality generates tilings that are not constructed using the

elementary building blocks of Figure 5-5. In these cases, the assumption of the six

types of fields being non-degenerate does not hold. We present an example of this

non-generic case below, corresponding to L2,6 ,3 .

Leaving aside non-generic cases, we see that we only need to consider two pos-

5This term was introduced in [82] and refers to quivers in which the ranks of all the gauge groups
are equal. Toric quivers are a subset of the infinite set of Seiberg dual theories associated to a given
toric singularity, i.e. it is possible to obtain quivers that are not toric on D-branes probing toric
singularities.

156



sibilities. They are presented in Figures 5-6 and 5-7. Figure 5-6 shows the case in

which dualization of the central square does not change the number of hexagons of

each type in the tiling. The new tiling is identical to the original one up to a shift.

Figure 5-7 shows a situation in which dualization of the central square removes two

type B hexagons and adds an A and a D.

YL Z C YSeiberg B Y

B/D Y A/B duality A/B Y ~B/D

Figure 5-6: Seiberg duality on a self-dual node that does not change the hexagon
content.

Y 7 CI YSeiberg B
B B, duality D

2 B Y2

Figure 5-7: Seiberg duality on a self-dual node under which (nA, nB, nc, nD)
(nA +1,nB~ 2 , nC, nD + )-

The operations discussed above leave the labels of the edges on the boundary of

the sub-tiling invariant 6. Hence, the types of hexagons outside the sub-tilings are

not modified. The above discussion answers the question of how to interpret the

different solutions of (5.4.86): they just describe Seiberg dual theories.

5.6.2 Explicit examples

Having presented the rules for constructing tilings for a given La,,c, we now illustrate

their application with several examples. We first consider L2,6,3, which is interesting

since it has eight gauge groups and involves A, B and C elementary hexagons. We

also discuss how its tiling is transformed under the action of Seiberg duality. We then
6There is a small subtlety in this argument: in some cases, identifications of faces due to the

periodicity of the tiling can be such that the boundary of the sub-tiling is actually modified when
performing Seiberg duality.
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present tilings for L2 ,6 ,4 , showing how D hexagons are generated by Seiberg duality.

Finally, we classify all sub-families whose brane tilings can be constructed using only

two types of elementary hexagons. These theories are particularly simple and it is

straightforward to match the geometric and gauge theory computations of R-charges

and central charges explicitly. We analyse the La'b,, sub-family in detail, and present

other interesting examples in the appendix.

Gauge theory for L2,6,3

Let us construct the brane tiling for L2',' 3. We consider the (nA, ni, no, nD) -

(2, 2, 2, 0) solution to (5.4.86). Hence, we have two A, two B and two C hexagons.

Using the gluing rules given by the edge labeling in Figure 5-5, it is straightforward

to construct the brane tiling shown in Figure 5-8.

86 5

6 5
4 7y4
5 6 5

Figure 5-8 Brane tiling for L2 ,683

From the tiling we determine the quiver diagram shown in Figure 5-9. The multi-

plicities of each type of field are in agreement with the values in Table 2. In addition,

we can also read off the corresponding superpotential
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6 %z 5

Figure 5-9: Quiver diagram for L2,6,3

W~ ~ =Y1 V -42Vf +42Vf +Y 3 V 3w2 23 23 ±4 211 + ,U1/r)

+ - Y63V3(8) U) - Y28V1 U1- Y17U 7V22

+Z456 Y63U -34U Y31U -8 Z65 Y56 + Z67U Y228Us6

(5.6.91)
where for simplicity we have indicated the type of U and V fields with a superscript

and have used subscripts for the gauge groups under which the bifundamental fields

are charged.

Having the brane tiling for a gauge theory at hand makes the derivation of its

moduli space straightforward. The corresponding toric diagram is determined from

the characteristic polynomial of the Kasteleyn matrix of the tiling [128, 94]. In this

case, we obtain the toric diagram shown in Figure 5-10. This is an additional check

of our construction.

Let us now consider how Seiberg duality on self-dual nodes acts on this tiling.

Dualization of nodes 4 or 7 corresponds to the situation in Figure 5-6. The resulting

tiling is identical to the original one up to an upward or downward shift, respectively.

The situation is different when we dualize node 5 or 6. In these cases, Seiberg duality

'splits apart' the two squares corresponding to the C nodes forming C hexagons.
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(2,3)

(0,2)
e

0

(1,0) (2,0)

Figure 5-10: Toric diagram for L2,' 3 determined using the characteristic polynomial
of the Kasteleyn matrix for the tiling in Figure 5-8.

Figure 5-11 shows the tiling after dualizing node 5. This tiling seems to violate the

classification of possible gauge groups given in Section 5.4.80. In particular, some

of the hexagons would have at least one edge corresponding to a Z field. As we

discussed in Section 5.4.2, this is not a contradiction, but just indicates that we are

in a non-generic situation in which some of the six types of fields are degenerate.

65 42

8 6 5

7 8

44

44

Figure 5-11: Brane tiling for a Seiberg dual phase of L2 ,s,3

Generating D hexagons by Seiberg duality: L2,6 ,4

We now construct brane tilings for L2,6,4. This geometry is actually a Z2 orbifold of

L1 ,3 ,2 . This example illustrates how D hexagons are generated by Seiberg duality. We

160



start with the (nA, nB, nc, nD) (0, 4, 2, 0) solution to (5.4.86), whose corresponding

tiling is shown in Figure 5-12.

3
4

4

Figure 5-12: Brane tiling for L 2,6,4

We see that all self-dual nodes are of the form presented in Figure 5-7. Seiberg

duality on node 4 leads to a tiling with (nA, nB, nc, nD) = (1, 2,, 1), which we show

in Figure 5-13.

Figure 5-13 Brane tiling for L2, 4

The La'b'" sub-family

It is possible to use brane tilings to identify infinite sub-families of the La'b'c theories

whose study is considerably simpler than the generic case. In particular, classifying

the geometries whose corresponding tilings can be constructed using only two different

types of hexagons is straightforward. We now proceed with such a classification.

Let us first consider those models that do not involve C type hexagons. These

tilings consist entirely of 'pure' hexagons and thus correspond to orbifolds [128, 94].

We have already discussed them in Section 5.3, where we mentioned the case in which

a, and thus nc0 , is equal to zero. The orbifold action is determined by the choice of a

fundamental cell (equivalently, by the choice of labeling of faces in the tiling).
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We now fo us on theories for which one of the two types of hexigons is of type C.

There are only three possibilities of this form:

Hexagon types Sub-family

n1 =n = 0 A and C Laba

nA = nD = 0 B and C LA = Y (5.6.92)

TIA = nB =0 C and D LaAb

It is interesting to see that the ypq theories emerge naturally from this classification

of simple models. In addition to orbifolds and ypq's, the only new family is that of

La,b,a. The LOAb family is equivalent to the latter by a trivial reordering of the GLSM

charges, which in the gauge theory exchanges Ui - U2 and V +-+ V2.

Let us study the gauge theories for the Laba manifolds. These theories were first

studied in [224] using Type IIA configurations of relatively rotated NS5-branes and

D4-branes. The simplest example of this family is the SPP theory [196], which in

our notation is L1,2,1, and has GLSM charges (1, -1, 2, -2). The brane tiling for this

theory was constructed in [94] and indeed uses one A and one C building block. We

will see that it is possible to construct the entire family of gauge theories. We have

already shown in Section 5.5 that the computation of R-charges and central charge

using a-maximization agrees with the geometric calculation for an arbitrary La'b'c.

We now compute these values explicitly for this sub-family and show agreement with

the results derived using the metric [61] and the toric diagram [190]. These types

of checks have already been performed for another infinite sub-family of the La,b,c

geometries, namely the ypq manifolds, in [26] and [190].

Let us first compute the volume of Lab, from the metric. The quartic equation

in [61] from which the value of W entering (5.3.63) is determined becomes

(1024 a2 (a - b)2 b2 +64 (2a - b)(2b - a)W _ 27 W2 0. (5.6.93)
(a + b)6 (a + b)2

Taking the positive solution to this equation, we obtain
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vol(Lab,,a) 273 [(21 - a)(2a - b)(a + b) + 2 (a2 - ab + b2) 3/2] . (5.6.94)
27 a~b

There is an alternative geometric approach to computing the volume of Laba which

uses the toric diagram instead of the metric: Z-minimization. This method for cal-

culating the volume of the base of a toric cone from its toric diagram was introduced

in [190]. For 3-complex dimensional cones, it corresponds to the minimization of a

two variable function Z[y, t]. The toric diagram for Lab'a , as we presented in Section

5.3.1, has vertices

[0, 0] [1, 0] [1, b] [0, a]. (5.6.95)

We then have

Z[y, t] = 3 y(b-a)3a (5.696)
t(y - 3)y(t - y(b - a) - 3a)

The values of t and y that minimize Z[y, t] are

1= -(a + b + W) ymin w (5.6.97)
2 a-b

where

W = Va 2 - ab + b2 . (5.6.98)

Computing vol(Y) = 7r3 Zmin/3, we recover (5.6.94), which was determined using the

metric. We now show how this result is reproduced by a gauge theory computation.

The unique solution to (5.4.86) for the case of La'b'a is (nA, nB, nc, nD) = (b-a, 0, a, 0),

so the brane tiling consists of (b - a) A and a C hexagons. This tiling is shown in

Figure 5-14. First, we note that these theories are non-chiral. Figure 5-15 shows

their quiver diagram.

Their superpotential can be easily read from the tiling in Figure 5-14. These

models do not have V2 fields. Nevertheless, the parametrization of R-charges given

in (5.5.87) is applicable to this case. Using it, we have
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Figure 5-14: Brane tiling for La',b,

(b-a)

Figure 5-15: Quiver diagram for L',b,. It consists of 2a C nodes and (b - a) A nodes.
The last node is connected to the first one by a bidirectional arrow.

trR3 (x, y, z) =
1
- [b (9 y(z
3

- x)(x + y - z - 2) - 2) + a (9(2 - x - y)(x + y - z)z - 2)]

(5.6.99)

Maximising (5.6.99), we obtain the R-charges

= 1 b-2a+w
3 b-a

= 2 2b-a-w
3 b-a

R[U2]

R[Y]

1 2b-a-w
3 b-a

S1 b-2a+w
3 b-a

R[U1]

R[V1]

R[Z) = {2b-a-w3 b-a

The central charge a is then
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a(Laba) =27 21)2 [(2b - a)(2a - b)(a + b) + 2 (a2 - ab + b2 )3 / 2  (5.() 1
16

which reproduces (5.6.94) on using a = r3 /4 vol(Y).

5.7 Conclusions

The main result of this chapter is the development of a combination of techniques

which allow one to extract the data defining a (superconformal) quiver gauge theory

purely from toric and Sasaki-Einstein geometry. We have shown that the brane

tiling method provides a rather powerful organizing principle for these theories, which

generically have very intricate quivers. We emphasise that, in the spirit of [190], our

results do not rely on knowledge of explicit metrics, and are therefore applicable in

principle to an arbitrary toric singularity. It is nevertheless interesting, for a variety

of reasons, to know the corresponding Sasaki-Einstein metrics in explicit form.

For illustrating these general principles, we have discussed an infinite family of

toric singularities denoted LAb,c. These generalise the ypq family, which have been

the subject of much attention; the corresponding La,b,c Sasaki-Einstein metrics have

been recently constructed in [61] (see also [192]). The main input into constructing

these theories came from the geometrical data, which strongly restricts the allowed

gauge theories. Subsequently, the brane tiling technique provides a very elegant way

of organizing the data of the gauge theory. In constrast to the quivers and superpo-

tentials, which are very complicated to write down in general, it is comparatively easy

to describe the building blocks of the brane tiling associated to any given LaAc. We

have computed the exact R-charges of the entire family using three different meth-

ods and found perfect agreement of the results, thus confirming the validity of our

construction.
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5.8 Appendix: More examples

In this appendix, we inclide additional examples that illustrate the simplicity of our

approach to the construction of brane tilings and gauge theories.

5.8.1 Brane tiling and quiver for L1 ,5 ,2

Figure 5-16 shows a brane tiling for L1,5, 2 with (nA, nB, nc, nD) = (2, 2, 1, 0).

Figure 5-16: Brane tiling for L', 2

The corresponding quiver diagram is shown Figure 5-17.

6 Y 5

Figure 5-17: Quiver diagram for L,',2.

The toric diagram computed from the tiling according to the prescription in [128,

94] is presented in Figure 5-18.
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(1,3)

0
(0,1)

(2,1)

(0,0)

Figure 5-18: Toric diagram for Li' 2.

5.8.2 Brane tiling and quiver for L'7,3

The brane tiling for Li,7,3 corresponding to (nA, nB, nc, fD) = (2,4, 1, 0) is presented

in Figure 5-19.

1/

Figure 5-19: Brane tiling for L1 ,7,3

Figure 5-20 shows the quiver diagram for this phase.

The toric diagram is given in Figure 5-21.
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1
1 U1

2 2

8 J5

2

7 U1  6

Figure 5-20: Quiver diagram for L1,7,3

(3,3)

(0,2)

(0,1)

(1,0)

Figure 5-21: Toric diagram for L, 7',3.
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Chapter 6

Fast Inverse Algorithm

In this chapter, we describe a simple "Fast Inverse" algorithm that computes brane

tilings for a given generic toric singular Calabi-Yau threefold. This therefore gives

AdS/CFT dual quiver gauge theories for D3-branes probing the given noncompact

manifold. We study the parameter space of a-maximization; this study is made

possible by identifying the R-charges of bifundamental fields as angles in the brane

tiling. We also study Seiberg duality from a new perspective.

6.1 Superconformal fixed point and R-charges

In this section we are going to find a new connection between R-charges of funda-

mental fields and some basic properties of the tiling configuration.

The quiver gauge theories described by the brane tilings are expected to flow at low

energies to a superconformal fixed point. The global symmetry group of the theory

contains the U(1) R-symmetry. The Sasaki-Einstein manifolds have a canonical

Killing vector field called the Reeb vector. This is dual to the R-symmetry of the

quiver gauge theory.

It has been shown in [154] that the superconformal R-charges can be determined

by a-maximization: the R-symmetry is the U(1) symmetry, which maximizes the

combination of 't Hooft anomalies a(R) -= (9TrR3 - 3TrR)/32. The maximal value

of a is then suggested to be the central charge of the superconformal theory (for

169



details see [14, 13]).

The R-charges are related by the AdS/CFT correspondence to volumes of super-

symmetric submanifolds in the dual Sasaki-Einstein manifold. Recently, it has been

shown [190] that these volumes can be extracted from the toric data of the Calabi-Yau

singularity without knowing the metric explicitly. The R-charges can be obtained by

minimizing a function Z that depends only on the toric data of the singularity and

the trial Reeb vector. This method is called the geometric dual to a-maximization.

Let us assign an R-charge to each bifundamental field in the brane tiling. At the

IR superconformal fixed point, each term in the superpotential satisfies

RZ = 2 for each node (6.1.1)
iEedges around node

where the sum is over all edges surrounding a given node. The (numerator of the)

NSVZ beta function for each gauge coupling vanishes, which leads to the following

equation:

(1 - R,) = 2 for each face (6.1.2)
iEedges around face

where the sum is over all edges surrounding a given face. These constraints will get

a nice geometric interpretation in section 6.2.

Let F denote the number of faces, E the number of edges and V the number

of vertices in the brane tiling. By summing equation (6.1.1) over the nodes, we get

2edges Ri = 2V. Using this and summing equation (6.1.2) over all the faces in the

tiling we arrive at the Euler formula for a torus:

F - E + V = 0 (6.1.3)

This is a non-trivial statement about the quiver theory which was first observed in

[129] and derived in [94].

In our case the linear 't Hooft anomaly vanishes [27]: TrR = E beta functions =
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0, so we have to maximize the following function:

a(Ri) = (RI - 1)(6.1.4)
2(

The computation of a-maximization for a given quiver gauge theory has by now

turned into a standard procedure for solving for supersymmetric gauge theories. Fur-

thermore, it serves as good probe for consistency checks on quiver theories. Indeed,

while there are many theories for which this procedure leads to nice and impressive

results, it turns out that there is a large class of quiver gauge theories for which

a straightforward application of a-maximization gives rise to negative or zero R-

charges. This obviously indicates some sign of inconsistency. Such theories were

termed in [19] as having tachyons, in [84] as fractional Seiberg duals and in [144] as

mutations. All these examples share the same property of having negative R-charges.

6.2 Isoradial embeddings and R-charges

Let us consider again the constraints for the R-charges (section 6.1):

SRi = 2 for each node (6.2.5)
iEedges around node

2 + 5 (Ri - 1) = 0 for each face (6.2.6)
iEedges around face

After multiplying both equations by 7r and rearranging the second one, we arrive at

S (7rRi) = 27 for each node (6.2.7)
iEedges around node

E (7R) = (#edges - 2)7r for each face (6.2.8)
iEedges around face

Now, if we think of 7rRi as an angle, then we see that the first equation is just the

statement that the angles around a node sum up to 27, whereas the second equation

tells us that the sum of the internal angles in a polygon is (#edges - 2)7r.
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9 10

Figure 6-1: Isoradially embedded part of an arbitrary brane tiling (in green).

Where are these angles in the brane tiling? To show this, we need the notion of

isoradial embedding [74, 194, 168}. So far the brane tiling was only a graph for us, we

could freely move around its nodes without causing self-intersection. The isoradial

embedding is an embedding of the tiling graph into the plane, where the nodes of

each face are on a circle of unit radius. (The edges of the tiling are straight lines).

The square lattice for the conifold provides a trivial example (Figure 4 (i)), where

the unit circles are just the circumcircles of the squares in the tiling. The squares are

of same size so the circumcircles will have the same radius which can be chosen to be

one.

2 
3

4 0

5 6 7

8 9
10

Figure 6-2: (i) Circumcircles around the faces (in black), (ii) and the corresponding
rhombus lattice (in red).

To demonstrate a non-trivial example, Figure 6-1 shows a small part of a brane

tilingi. This tiling graph is isoradially embedded into the plane. This can be seen in

eFrom now on, green lines will always denote edges in the brane tilings, red lines are edges of the
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Figure 6-2 (i), where the black circles are the circumcircles of unit radius of the faces

in the tiling. The nodes of the brane tiling are sitting at the intersection points of

the circles.

Once we have the tiling isoradially embedded, we can immediately draw the corre-

sponding rhombus lattice2 (Figure 6-2 (ii) shows the rhombus lattice in red), which

can be obtained by simply connecting the center of the circles with the nodes of the

face in the brane tiling. The rhombi (a.k.a. "diamonds" in [170]) in this lattice have

edges of unit length. This is guaranteed by the equality of the radii of the circles.

We see that by isoradially embedding our original tiling we gain a lattice of rhombi.

The bifundamental fields of the quiver theory (i. e. edges in the brane tiling) are in

one-to-one correspondence with the rhombi of this rhombus lattice.

A

D a B

C

Figure 6-3: A rhombus in the lattice. The green line is an edge in the brane tiling,
the magenta line is the corresponding bifundamental field in the periodic quiver.

Let us study now a single rhombus that is shown in Figure 6-3. The green bi-

fundamental edge (AC in Figure 6-3) is just one of the diagonals of the rhombus. If

instead of the green lines we draw the flipped magenta ones (BD in Figure 6-3) into

the rhombus lattice, then we obtain the dual graph to the tiling, the periodic quiver

(which is also isoradially embedded). We immediately see that on the level of the

rhombus lattice, the quiver and the brane tiling are on the same footing.

In the figure, 0, denotes the DCB and BAD angles in the rhombus. The shape

of the rhombus is characterized by this single angle. We are now in the position to

rhombus lattice and (directed) blue lines denote the rhombus loops.
2Also known as quad-graph or diamond lattice.
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visualize the R-charges if we set

0, -Ri (6.2.9)

We see that the condition for vanishing beta function to superpotential terms, equa-

tion (6.2.7) says that the angles around a node in the brane tiling sum up to 27,

whereas the condition for vanishing beta function to gauge groups, equation (6.2.8)

is equivalent to the statement that the sum of the internal angles of each face in the

tiling is (#edges - 2)7. This is certainly true for a flat torus.

It is not a priori clear that an arbitrary brane tiling graph can be isoradially

embedded into the plane. If the exact R-charges are strictly greater than zero and

less than one, then they provide a good embedding of the rhombus lattice, hence an

isoradial tiling. If some R, = 0 (or 1), then 62 = 0 (or r), that is the corresponding

rhombus becomes degenerate.

The results of this section is that we identified the R-charges of the bifundamental

fields with certain angles in the brane tiling. For any periodic embedding of the

rhombus lattice of the brane tiling into the plane the trial R-charges (defined by the

O6 angles in the rhombi) automatically satisfy the equations (6.2.7) and (6.2.8), and

vice versa, the set of exact R-charges of the quiver gauge theory gives a good rhombus

lattice and thereby an isoradial embedding of the brane tiling.

Finally, let us transform equation (6.1.4) into the following form using the angles

in Figure 6-3:

a = 32 o3 (6.2.10)

Here we used the fact that ao = 7r - 62 = 7r(1 - R2). The parameter space of the

different possible embeddings of the rhombus lattice is nothing, but the manifold

over which one has to do a-maximization. This space will be investigated in the next

section.
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6.3 Rhombus loops and zig-zag paths

In the last section we introduced a very special type of embedding of the tiling, the

so-called isoradial embedding. This has been used to visualize tlhe R-charges of the

bifundamental fields. In this section we go further and develop new mathematical

concepts that will allow us to study the moduli space of isoradial embeddings that is

the parameter space of a-maximization.

910

Figure 6-4: (i) Rhombus path in the rhombus lattice. (ii) Equivalent zig-zag path in
the brane tiling. We will use blue lines to depict rhombus loops schematically. The
edges which are crossed by the blue line in (i) are all parallel. Their orientation can
be described by an angle, the so-called rhombus loop angle.

The most important new concept that we will continuously use in the present

chapter is the notion of the rhombus path (a.k.a. "train track" [170]). A rhombus

path is defined in the rhombus lattice as a path on rhombi which "does not turn",

i. e. after entering to a rhombus on one edge, we are exiting on the opposite side (see
Figure 6-4). We can assume that the rhombus path is extended to its maximal size,

which means that in a rhombus lattice on the surface of T2 (or, equivalently, in the

periodic rhombus lattice) it is a closed loop, the rhombus loop. The rhombus loops

will be of great importance in the Fast Inverse Algorithm in section 6.4.

The rhombus edges we are crossing while going along the rhombus loop are all

parallel. Their direction, which can be parametrized by a characteristic angle, the

rhombus loop angle (oa and #3 in Figure 6-17). This angle can be changed by tilting

the rhombus loop as in Figure 6-5.

In [170] it was shown that: (i) No rhombus path crosses itself (or it is periodic), and

(ii) two distinct rhombus paths cross each other at most once. These conditions are
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not always true in our case, because we allow the existence of degenerate rhombi.

Two-valence nodes also result in collapsing rhombi, they have to be integrated out

before drawing the rhombus lattice.

R R

Figure 6-5: Tilting along the horizontal R rhombus loop. The rhombus loop angle
a changes during the Dehn-twist. Here we have chosen a = 0 to be the vertical
direction (|), hence a = r/4 corresponds to the skew edges (/).

If the R-charge of a bifundamental field is one, the corresponding rhombus col-

lapses (O = 7r). This happens for example in the square-octagon phase of the zeroth

Hirzebruch surface. We can also squash the rhombus in the perpendicular direction,

if we set the R-charge equal to zero. As opposed to the Ri = 1 situation, this case is

not allowed, it leads to the so-called tachyonic quivers.

If we color the edges in the brane tiling corresponding to the rhombus loop (the

blue lines in Figure 6-4), we get the so-called zig-zag path [168]. This is a path

in the tiling which turns maximally left at a node, then maximally right at the next

node, then again left, and so on. An example is presented in Figure 6-4. The first

picture shows the rhombus path, the second one is the corresponding zig-zag path in

the brane tiling. See Figure 6-15 for another example in SPP. Here the blue zig-zag

path is periodic.

The zig-zag paths and the rhombus loops are equivalent, the only difference is

that they refer to the same path in different lattices. Henceforth we will use both

terms depending on the context. At first, it might be non-trivial to understand why

there are exactly two zig-zag paths going through each tiling edge. This is best seen

in the rhombus lattice where these two paths are the two "perpendicular" rhombus

loops that are crossing the corresponding rhombus.

The zig-zag paths in the tiling are in one-to-one correspondence with zig-zag

paths in the periodic quiver. These paths in the quiver are oriented loops hence

there are gauge-invariant trace operators that can be constructed by multiplying the
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bifundamentals one after the other along the path. Such an operator is called the

zig-zag operator.

6.3.1 Inconsistent theories

In the previous sections we reviewed the construction of brane tilings, visualized R-

charges as certain angles in the tiling and introduced the new concept of zig-zag

paths. One may now imagine that for any arbitrary bipartite tiling there exists a

corresponding quiver theory. Unfortunately, this is not the case and there exist some

bipartite graphs which do not give meaningful quiver theories. So far in the literature

there was no other restriction on consistent tilings, than bipartiteness. In this chapter

we are going to give a simple constraint that has to be satisfied by every consistent

brane tiling.

One can construct the Y Calabi-Yau manifold as a Kshler quotient [175] that is as

the (classical) vacuum moduli space of a gauged linear sigma model (GLSM) [232, 71].

The "Fast Forward Algorithm" ([94], see also [128]) computes the toric diagram of the

singular Calabi-Yau from the brane tiling. The algorithm also gives the multiplicities

of the GLSM fields, these appear in the toric diagram. It is possible that from a given

tiling the Fast Forward Algorithm produces a toric diagram, whose area is smaller

than what we expect from the number of the corresponding gauge theory. This is a

good sign of inconsistency of the theory. Then, typically, a-maximization gives zero

R-charges for some of the bifundamental fields3 . For such theories, we also get GLSM

field multiplicities in the corners of the toric diagram (see Figure 6-7).

Partial resolutions of the singularity correspond to turning on Fayet-Iliopoulos

terms in the supersymmetric gauge theory side and leads to Higgsing in the quiver

gauge theory. The FI terms govern the size of the blow-ups. The effective theory

at scales smaller than the expectation value of the Higgsed field can be described

by the Higgsed quiver and superpotential [82, 81]. Here we consider the inverse of

this process, the so-called un-Higgsing. In the level of brane tiling this can be

implemented by adding a new edge to the graph. This edge divides a face into two

31n [91] such tachyonic quivers were investigated in the context of (p, q)-webs.
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Figure 6-6: Hirzebruch zero brane tiling.

faces, therefore the number of gauge groups increases by one, the number of bi-

fundamental fields increases by one while the number of terms in the superpotential

remain the same. Alas, not all possible un-Higgsings of the theory are consistent, in

fact, it is a non-trivial problem to determine the allowed un-Higgsings for a given

brane tiling.

To demonstrate consistent and inconsistent un-Higgsing, we consider the Hirze-

bruch zero (FO) surface. FO has two toric phases that are connected by Seiberg

duality. The brane tiling for one of the phases is the square lattice. We will study

the other phase that is the square-octagon lattice which is depicted in Figure 6-6.

We consider two possible un-Higgsings of the theory that are shown in Figure 6-9.

The new edge (dashed line) is dividing the original face 4 into two faces 4 & 5. The

first un-Higgsing (i) leads to an inconsistent theory. By means of the Fast Forward

Algorithm we can compute its toric diagram with the multiplicities of the GLSM

fields. The results are shown in Figure 6-7. We see that during the un-Higgsing the

area of the diagram remained the same, meanwhile an external multiplicity (the 3 in

the corner) appeared.

un-Higgsing 3

5 6

*. INCONSISTENT

Figure 6-7: (i) Hirzebruch zero toric diagram (ii) un-Higgsed Hirzebruch. The area
remains the same, external multiplicities appear.
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un-Higgsing

Figure 6-8: (1) Hirzebruch zero toric diagram (ii) un-Higgsed Hirzebruch. The area
increases by 1/2 corresponding to the new face in the brane tiling.

We now consider another un-Higgsing that adds the line with a different orienta-

tion (see Figure 6-9 (ii)). This theory is consistent. The corresponding toric diagram

is shown in Figure 6-8.

Figure 6-9:
Higgsing.

(i) Hirzebruch zero inconsistently un-Higgsed. (ii) Consistent un-

In the Fast Forward Algorithm it is a priori unclear why these small changes in

the tiling lead at one time to a consistent and at another time to an inconsistent

theory. Having discussed the main mathematical concepts that we need, we can now

understand what causes the inconsistency.

Figure 6-10 shows the rhombus loops4 for the two different un-Higgsing of FO.

The blue lines are crossing edges which are the edges of the corresponding zig-zag

paths. The pictures show the rhombus loops only inside the fundamental cell. For

the inconsistent tiling (i) we obtain only three rhombus loops, it does not reproduce

the (p, q)-legs of the toric diagram which we obtained by the Fast Forward Algorithm

4We can choose the direction of the rhombus loops so that they pass the black nodes on the
left-hand side.
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Figure 6-10: (i) Inconsistently un-Higgsed Hirzebruch. The rhombus loops are indi-
cated with the blue lines. The zig-zag paths contain the edges that are crossed by
the blue paths. The following rhombus loops are obtained: A : (0, -1) B : (-2,2)
C : (2, -1). Here (a, b) denotes the homology class of the path.
(ii) Consistently un-Higgsed FO. The rhombus loops reproduce the (p, q)-legs of the
toric diagram (Figures 6, 7): A : (0, -1) B : (0, 1) C : (-2, 1) D : (1, -1) E : (1, 0).

(Figure 6-7). On the other hand, the zig-zag paths of the consistent tiling (ii) give

the legs properly (Figure 6-8).

In the first tiling the edge between face 4 and 5 is at the intersection point of the

B loop with itself. The corresponding rhombus in such cases is always degenerate,

because all the four edges of the rhombus must be parallel, therefore the first tiling is

inconsistent. We can state this in general: Self-intersecting zig-zag paths lead

to inconsistent brane tilings.

1 2

Figure 6-11: The subgraph connects to the rest of the tiling through its four nodes in
the corner. No consistent brane tiling can contain this subgraph, because it results
in collapsing rhombi and vanishing R-charges.

This example demonstrated how zig-zag paths can be used to determine whether

the tiling is consistent or not. Besides these computations, the rhombus loop tech-
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nique enables us to generate simple rules that must be satisfied by any consistent

tiling. This might help in the construction of such tilings. An example is presented

in Figure 6-11. This subtiling cannot be part of any consistent tiling. It is clear from

the corresponding (degenerate) rhombus lattice that there are zero R -charges as the

reader may check. The inconsistency can be also seen by performing Seiberg duality

on face 1 that creates a face with only two edges.

6.3.2 Conjecture of (p, q)-legs and rhombus loops

In the previous section we investigated rhombus loops in the rhombus lattice and

equivalent zig-zag paths in the brane tiling. We have seen that one can use these

paths to decide whether the tiling is a priori consistent or not (i. e. before doing

a-maximization). In the followings we make an observation which will enable us to

develop the Fast Inverse Algorithm in section 6.4.

To state the conjecture we introduce the notion of (p, q)-webs. (p, q)-webs were

introduced in [7] to study five dimensional gauge theories with 8 supercharges (i. e.

g = 1). The (p, q)-web describes a configuration of 5-branes in Type JIB string

theory. These webs might be interpreted as "dual graphs" to toric diagrams as it was

noticed in [8]. This observation has been proven in [185]. An example is shown in

Figure 6-12. The geometry can be described by a T2 fibration over the web. A circle

in the fibre degenerates at each line of the diagram and at the nodes the whole fibre

collapses. The lines of the web have rational slopes denoted by two integers: (pi, qi).

These are the (p, q) charges of the branes. A D5-brane is assigned a (1, 0) charge

whereas the NS5-brane carries (0, 1) charge. These two type of branes correspond

to horizontal and vertical lines in the web. At each node we have three branes

intersecting each other and their charges must sum up to zero:

S pi = 0 E qi = 0 (6.3.11)
i i

In the followings we will use (p, q)-legs. These are the external lines in the (p, q)-

web and they extend to infinity. Their direction is perpendicular to the corresponding
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edge of the (dual) toric diagram.

(-1,1)(0,1)

(1,0)

(-1,-i) (1,-i)

Figure 6-12: Toric diagram (i) and (p, q)-web (ii) for del Pezzo 2. The charges of
the external branes are shown. According to the conjecture, these correspond to the
homology classes of the rhombus loops in the brane tiling.

An important observation is that for each rhombus loop of homology class

(p, q) there is a corresponding (p, q)-leg in the toric diagram. We will heavily

use this in section 6.4. The conjecture has been checked for many consistent brane

tilings. Inconsistent tilings tipically do not satisfy this criterion. By reading off the

zig-zag paths from the tiling we might arrive at the toric data faster than by the

usual Kasteleyn matrix process [94, 128]. We simply need to draw all the zig-zag

paths (each edge has two of them) and from their homology classes the (p, q)-legs are

obtained. These legs uniquely determine the toric diagram of the Calabi-Yau cone.

Another observation 5 is that we can generate zig-zag paths by means of perfect

matchings. A perfect matching is a subgraph of the tiling which contains all the

nodes and each node has valence one [169, 168. This means that a perfect matching

is a set of dimers (edges in the brane tiling) that are separated, i. e. they don't touch

each other, furthermore they cover all the nodes. Therefore, we have altogether V/2

dimers in each perfect matching, where V denotes the number of nodes in the tiling.

To demonstrate this, we have drawn the periodic perfect matchings for the Suspended

Pinch Point (Figure 6-14) whose toric diagram is shown in Figure 6-13.

It can be easily checked by the reader that if we put two perfect matchings A and

B on top of each other (this is denoted by A + B), then we obtain loops and separate

edges which we neglect. Let us fix a reference perfect matching R. Now for each

5The results of the rest of the chapter will not depend on this observation.
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(0,1)

(0,0) (1,0) (2,0)

Figure 6-13: Toric diagram for the SPP. We have drawn the blue (p, q)- leg between
the nodes (1, 1) and (2, 0). The zig-zag path corresponding to the leg is shown in
Figure 19.

matching Ai we can define an integer height function. The loops of R + A denote

the change in the height as in an ordinary map. The height function is a well-defined

function on the infinite periodic tiling, but on the 2-torus it has monodromy that is

described by two integers: (s, t). These numbers are the change in the height as we

go along the two non-trivial cycles of the torus of the brane tiling. Such pairs are

assigned to every perfect matching. For SPP these vectors are shown in Figure 6-14.

(Here we used the first perfect matching as a reference matching.) These pairs are

coordinates of points in the toric diagram, in fact, the toric diagram is the (convex)

set of all such points. The change in the reference matching merely translates the

toric diagram.

Now if we choose two adjacent points in the toric diagram then there are perfect

matchings corresponding to them whose superposition is (experimentally) a zig-zag

path. We demonstrate an example for SPP. The two neighboring matchings have

(1, 1) and (2, 0) coordinates in the toric diagram. Their superposition is shown in

Figure 6-15. The emerging non-trivial blue cycle (zig-zag path) has homology (1, 1)

which precisely corresponds to the blue (1, 1) leg in Figure 6-13 which is sitting

between the two adjacent points.

For further informations on perfect matchings and the dimer model the reader

should refer to [94, 128, 169, 168].

In a recent paper [98], fractional branes were studied in the context of brane

tilings. The fractional brane is a D5-brane wrapped on a 2-cycle that vanishes at the

tip of the cone. Adding M fractional branes changes the rank of the SU(N) gauge

groups of the quiver. For deformation branes some of the ranks increase by M. One

can shade these tiles as shown in Figure 6-16. Zig-zag paths naturally show up as
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Figure 6-14: The six periodic perfect matchings of SPP [9} The green edges are
contained in the matching, the dashed lines are the other edges of the tiling. The
(s, t) numbers are the corresponding points in the toric diagram (Figure 17).

boundaries of these shaded areas.

6.3.3 Parameter space of a-maximization

We have defined the rhombus loop angle that is assigned to a rhombus path. This

angle gives the relative orientation of the parallel edges in the path. We have seen

that we can tilt the rhornbi in a rhombus path by changing its rhombus loop angle

(Figure 6-5). In fact, we can parametrize the entire space of different embeddings

of the rhombus lattice (i. e. the isoradial embeddings of the brane tiling) by these

rhombus ioop angles [170]. At the intersection point of two rhombus paths, we find

a single rhombus, whose angles (0 and ir - 0) are determined by the difference of the

rhombus loop angles of the paths (Figure 6-17), because they fix the orientation of

the edges of the rhombus. This angle 0 is proportional to the R-charge of the field

sitting in the rhombus as we have seen in section 6.2.
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(1,1)+ (2,0)

Figure 6-15: The (1, 1) and (2, 0) perfect matchings on top of each other. We see
the emerging (1. 1) homology zig-zag loop which corresponds to the blue (p, q)-leg in
Figure 17.

This means that we can parametrize the convex polyhedron space [170] of trial

R-charges by the set of rhombus loop angles. The number of such loops is d, which is

equal to the number of the edges of the toric diagram according to our conjecture in

section 6.3.2. One of the rhombus loop angles can be set to zero by a global rotation

of the rhombus lattice. This reduces the dimension of the parameter space to d - 1.

In Figure 6-17 this has already been done, because the a angle is zero (the parallel

edges in the corresponding rhombus path are horizontal).

Let us see how can we identify the d - 1 different parameters in the quiver gauge

theory: In the superconformal quiver gauge theory the R-symmetry can mix with

every anomaly-free global U(1) symmetry that commutes with charge conjugation.

The global baryonic U(1)'s are gauge symmetries in the gravity dual picture.

H 3 (X5 , Z) = Zd-3 (see [96]), i. e. the number of independent 3-cycles in the X5

Sasaki-Einstein manifold is d - 3, hence the Kaluza-Klein reduction of the Ramond-

Ramond 4-form gives d - 3 different gauge fields in AdS 5 . These local symmetries

correspond in the dual quiver theory to global baryonic U(1)'s.

Tilting the lattice along a rhombus loop means that the R-symmetry is mixing

with a certain U(1) charge. The bifundamentals along the loop have +1 and -1

charges alternatingly under this U(1) and all the other fields have zero charges. The

baryonic U(1)'s are linear combinations of these charges.

We identified d - 3 degrees of freedom as the mixing of the R-charge with the

baryonic charges. The two remaining charges correspond to the mixing with the two

flavor U(1) charges. These are dual to the Abelian part of the isometry group of
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Figure 6-16: PdP4 model I brane tiling with a (1,0,1,0,1,0,0) N=2 fractional brane
[98]. The bounding rhombus loops (A and B zig-zag paths) are shown in blue.

the Sasaki-Einstein manifold which is mixing with the Reeb vector in the sense of Z-

minimization (see [190] for details). The corresponding tiltings are roughly speaking

Dehn-twists along the two nontrivial (1, 0) and (0, 1) cycles.

One can compute the number of possibly different R-charges for the quiver theory

in the following way. Let us fix two rhombus loops (zig-zag paths). It is clear that

whenever they cross one another, they produce a bifundamental field with the same

R-charge. This follows from the fact that the rhombus loop angles of the two loops

fully determine the orientation of the rhombus edges, i. e. they fix the R-charge of

the field. Therefore we can get different charges only from different rhombus loop

intersection points. We can count the number of different possible R-charges. Out of

the d loops we are choosing two in all possible ways:

d d(d -- 1) (-.2
2 2

which gives the maximum possible number of different R-charges of the quiver theory.
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Figure 6-17: Assigning angles (0) to the rhombus loops. The figure shows two inter-
secting blue rhombus paths. There is a single rhombus and a green bifundamental
edge at the intersection of these paths. This bifundamental has an R-charge that is
proportional to the angle 0 of the rhombus. This angle is just the difference of the
rhombus loop angles a and 13 assigned to the two rhombus paths: R7r = 6 = |a - #1
(or ir - la- 3 depending on the orientation).

6.4 Fast Inverse Algorithm

The above discussed techniques based on the isoradial embeddings, rhombus loops and

zig-zag paths allow us to develop the Fast Inverse Algorithm, which constructs the

brane tiling from arbitrary toric diagrams. The brane tiling encodes the quiver (dual

graph), the superpotential data (nodes), hence uniquely describes the quiver gauge

theory. Therefore, by means of the Fast Inverse Algorithm we are able to compute

an AdS/CFT dual to any toric singularity. (The algorithm is somewhat complicated

by the fact that the resulting theory is highly non-unique. This phenomenon will be

investigated in section 6.5.)

In the following, we describe the algorithm by presenting examples.

6.4.1 C3  (V= 4)

In Figure 6-18 the toric diagram of the flat C3 Calabi-Yau manifold is shown. The

polygon has three edges, hence three (p, q)-legs (the blue arrows) with homology

classes (-1, 0), (0, -1) and (1, 1). These correspond to the three rhombus loops in
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the rhombus lat tice. or to the zig-zag paths in the tiling.

Figure 6-18: C3 toric diagram

We now draw these (p, q) cycles in the fundamental cell (see the blue lines in

Figure 6-19) this is the rhombus loop diagram. In the language of the rhombus

lattice, at each intersection point we have a single rhombus, which is shown in red.

Each rhombus comes with a single bifundamental edge in the brane tiling, these

edges are shown in green. To obtain the rhombus lattice, we have to glue these

rhombi together (in a periodic fashion), so that along the blue lines we get rhombus

paths (Figure 6-20). Once we have the (red) rhombus lattice it is trivial to obtain

the (green) brane tiling which encodes the quiver gauge theory.

B

Figure 6-19: Rhombus loop diagram of C3 . The blue rhombus loops are the D6-
branes. At the intersection points we get massless fields. The dark faces are terms in
the superpotential, the light faces are the gauge groups. These correspond respectively
to nodes and faces in the brane tiling. The rhombi are shown in red, the brane tiling
edges are green.

We shaded some of the faces in the rhombus loop diagram. From the algorithm it

is clear that these correspond to the (black or white) nodes, whereas the light faces

correspond to the faces in the brane tiling (see also Figure 6-26 where the green brane
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tiling is drawn directly on top of the rhombus loop diagram of L13 1 ). We see that the

rhombus loop diagram treats the gauge groups and the terms in the superpotential

on equal footing.

gluing together

periodic lattice

extracting the tiling

Figure 6-20: From the rhombi to the brane tiling. We glue the rhombi together that
arise at the intersections of rhombus loops (Figure 27). We glue the edges that are
connected by the rhombus loops. Each rhombus has a green tiling edge in it, from
which we obtain the entire (hexagonal) brane tiling.

For this simple example, we have only three rhombi, i. e. three fields, which turn

out to be adjoints, because we have only one gauge group in the tiling. In Figure 6-20

we recover the hexagonal lattice of M = 4.
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6.4.2 Conifold

We now turn to the conifold and will see how we can reproduce the well-knowil square

lattice brane tiling for this theory (Figure 4). The toric diagram (Figure 6-21) has

four legs, these cycles can be seen in the rhombus loop diagram in Figure 6-22.

Figure 6-21: Conifold toric diagram

Figure 6-22: Conifold rhombus loops and brane tiling

We can actually skip the rhombus lattice step and draw the brane tiling immedi-

ately in the rhombus loop diagram. The emerging green square tiling is better seen

in Figure 6-23 where we have drawn a 2 x 2 block of adjacent fundamental cells. The

square lattice tiling reproduces the superpotential of [174, 196].

Refining the integer lattice of the toric diagram means orbifoldizing the singular

Calabi-Yau manifold. The resulting toric diagram has more (p, q)-legs as seen in Fig-

ure 6-24. Clearly, we can realize orbifolding by increasing the size of the fundamental

cell of the rhombus loop diagram to n x m times the size of the original cell. This
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Four fundamental cells of the conifold rhombus loop diagram. If we
consider these cells as one big fundamental cell then we gain the rhombus loop diagram
of the Z2 x Z2 orbifold of the conifold.

means orbifolding the space by Z, x Z,,. The action is generated by

(zi, z2, z3) F-* (z1, Wz2, W' z3),

A m 1

w = 1

(6.4.13)

(6.4.14)

Multiplying the unit cell of the rhombus loop diagram is the same as increasing the

size of the fundamental cell in the brane tiling therefore it justifies the observations

made in [128].

orbifoldization

Figure 6-24: Z 2 X Z2 orbifold of the conifold.
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6.4.3 L131

As a more complex example, we generate brane tiling for L131 which denotes one of

the recently discovered 5d Sasaki-Einstein metrics ([61], see also [60]). The space

is topologically S2 x S3 . The toric diagram (Figure 6-25) has six legs, one possible

rhombus loop diagram for them is shown in Figure 6-26. We notice that by moving

the blue loops around, we may get a different tiling. This important phenomenon is

toric duality and will be investigated in section 6.5.

Figure 6-25: L13 1 toric diagram

Figure 6-26: L13' rhombus loops and brane tiling

We can immediately draw the green tiling edges in the rhombus loop diagram, the

final brane tiling can be seen in Figure 6-27 (i). From the tiling we trivially obtain the

quiver (the "compactified" dual graph to the tiling, Figure 6-27 (ii)) and the following
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superpotential:

W = X 11X 12X 21 + X 22X 23X 32 + X 43X 34X 41X 14  (6.4.15)

-X21X12X22 - X32X23X34X43 - XnX14X41 (6.4.16)

The fundamental cell in the tiling is denoted by a red box, this is the same as the

fundamental cell of the rhombus loop diagram.

Closed oriented loops in the rhombus loop diagram (Figure 6-26) have a corre-

sponding gauge invariant trace operator which is the product of the bifundamentals

(at the intersection points) along the loop. These operators give a subset of all pos-

sible gauge invariant operators. Superpotential terms are trivial examples, these are

small loops around the dark faces in the diagram. Another example is provided by

the zig-zag operator, for which the above mentioned oriented loop is just one of the

rhombus loops.

3 1 3 1

4 2 41 2

3 1

3 13 1

4 2 4

3 1 3 1 4 3

Figure 6-27: (i) L131 brane tiling (ii) and the corresponding quiver.

If there are no degenerate rhombi, then we can use the results of [170] and count

the number of bifundamental fields directly from the toric diagram. This can be done

by summing up the intersection numbers as in [126]. The number of fields coming

from the crossing (pi, qi) and (P2, q2) rhombus loops is simply

#( S -S3 ) = #(C, - C,) = |p1q2 - p 2q1| (6.4.17)
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Hirzebruch zero has two phases. one of them is non-degenerate (i. e. there are no

degenerate rhombi). The formula gives the right value (eight) for the number of fields.

The other phase has R = 1 for some of the bifundamentals, so the above formula

can't be used.

6.4.4 L" 2

Our last example6 is L152 , its toric diagram is in Figure 6-28.

Figure 6-28: Toric diagram of L1 5 2

The drawing of the rhombus loop diagram (Figure 6-29) is more involved than

in the previous cases. To obtain an anomaly free tiling, one has to make sure that

every other face (the light areas) has an even number of bounding rhombus loops

(i. e. in the tiling the the corresponding face has even number of edges). To decide

which face is dark and which one is light, we recall that the dark superpotential faces

are distinguished by the fact that the rhombus loops are oriented around them. The

gauge invariant trace operators built up from these small oriented loops are present

in the superpotential, the order of the operator is given by the number of bounding

rhombus loops of the dark face (this can be arbitrary).

Again, to see the tiling emerging out of the rhombus loop diagram, we have drawn

more fundamental cells next to each other (Figure 6-30). The dark faces get black

and white nodes, the edges of the tiling are stretching between them.

Finally, Figure 6-31 shows the resulting brane tiling and quiver. Six gauge groups

are present in the theory.

6The quiver gauge theory for L*6' has been constructed recently in [96, 30, 521.
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Figure 6-29: Li 5 2 brane tiling from the rhombus loops

We can check the resulting tiling by computing the characteristic polynomial

(6.4.19) of the dimer model by means of the determinant of the Kasteleyn matrix

(6.4.18) (for details see [94]). The Newton polygon reproduces our starting point, the

toric diagram of L15 2 (Figure 6-28) therefore justifies our computation.

1 1 -1 w-1 0

W 1 0 0 z

K= 0 1 1 1 0 (6.4.18)

0 0 1 1

z-1 0 1 0 1

P(w, z) = det(K) = 6 - 6w + w 2 + Z~1 + W-1z-4 + z (6.4.19)

6.5 Toric duality and Seiberg duality

We have seen ambiguities while constructing the brane tilings for a given singularity.

The non-uniqueness manifests itself through the fact that we can freely move the

rhombus loops which certainly changes the tiling and therefore the quiver gauge

theory. Some of the resulting tiling might not be bipartite. Out of the bipartite

tilings we are also only interested in the consistent ones. These "phases" of the
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Figure 6-30: 2 x 2 fundamental cells of the rhombus loop diagram of Li"2 . The brane
tiling is shown in green.

theory are believed to be Seiberg-dual to each other [24, 86, 53, 33].

The simplest transformation is when we move a single rhombus loop across an

intersection point as in Figure 6-32. This is the Yang-Baxter transformation.

We can build up a generic transformation from such elementary steps. The Yang-

Baxter move changes the rhombus lattice locally which is shown in Figure 6-33.

On the other hand, the brane tiling (and the periodic quiver) has been changed

globally. Apart from the local change in the rhombus lattice, we are forced to "flip"

the tiling edges in the rhombi (Figure 6-3), i. e. the periodic quiver and the brane tiling

get interchanged. The periodic quiver is usually non-bipartite (the only exception

is the square lattice), therefore the resulting tiling is non-bipartite. However, one

can perform more such Yang-Baxter transformations so that the final brane tiling is

anomaly-free. Then, by definition, the resulting theory is toric dual to the original

one. We provide an example in the followings.
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1

4 2

2 6 %'ZE
15 4

Figure 6-31: (i) L15 2 brane tiling (ii) and the corresponding quiver

A B C A B C

Yang-Baxter

transformation

C B A C B A

Figure 6-32: The elementary Picard-Lefschetz-Yang-Baxter transformation.

6.5.1 Seiberg duality in the hexagonal lattice with extra line

Let us consider an arbitrary brane tiling with a subtiling shown in Figure 6-34 (i).

This setup has been used in [96]. If we dualize group F, the extra edge moves into

the neighboring hexagon.

What happened to the rhombus loops during this dualization? We can see that

immediately, if we draw the (red) rhombus lattice (Figure 6-35). The relevant rhom-

bus loops (A,B,C,D) are shown in blue as usual. Only these loops are affected by

the transformation.

Figure 6-34 shows the rhombus loops only. In this picture we see how Seiberg

duality can be realized on the level of rhombus loops. It can be easily checked that

the transformation contains four elementary Yang-Baxter steps. For another brane
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Y Yang-Baxter Y

X X
transformation

Z Z

Figure 6-33: The Yang-Baxter-Reidemeister transformation on the rhombus lattice.
Star-triangle

Seiberg

duality

Figure 6-34: (i) Four hexagon with one extra line. (ii) Seiberg dualizing the red
square (F). The extra edge in the upper hexagon (B & F) gets into the lower one
(F & C).

realization of Seiberg duality see [134, 78].

With this knowledge, a thorough study of the possible moves of the rhombus loops

(and the inconsistencies of the tiling).should reveal whether or not Seiberg duality is

equivalent to toric duality.
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Seiberg

duaiy4

B A B A

Figure 6-35: Seiberg duality in the hexagonal tiling with extra edge. The brane tiling
is shown in green, the (deformed) rhombus lattice is in red, the relevant rhombus
loops are in blue.

A B Seiberg

Figure 6-36: Seiberg duality in the level of the rhombus loops.
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Chapter 7

Exceptional Collections

7.1 Introduction

Determining the low energy gauge theory on a stack of D-branes probing a Calabi-

Yau singularity is an important, interesting, and in general unsolved problem. These

D-brane constructions can be used to build flux vacua in string theory, and they play

an important role in the AdS/CFT correspondence, where they yield a geometric

understanding of strongly coupled gauge theories. While much progress has been

made in understanding orbifold, toric, and other simple Calabi-Yau singularities, the

general case remains elusive.

Two of the most powerful techniques for unearthing these gauge theories are the

brane tiling method pioneered by [128, 94, 97] and exceptional collections first men-

tioned in the AdS/CFT context in [53]. 'The relation between these two methods has

up to this point remained obscure. In this chapter, we show how to translate one

language into the other.

One of the best features of the brane tiling method is the ease with which the

superpotential of the quiver gauge theory can be extracted. A brane tiling is a

bipartite tiling of the torus T 2 , and the superpotential terms are just the nodes of

this tiling with coefficient +1 given by the coloring of the node. No other method of

relating gauge theory to geometric singularity has as yet produced such a simple way

of extracting the superpotential.
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For the brane tiling method to work, one starts with a toric Calabi-Yau three-fold

singularity. The toric condition means that Y possesses three U(1) isometries. There

are countably many interesting toric Calabi-Yau singularities, but the toric condition

is a substantial restriction on Y. By using brane tilings, older algorithms ([82, 83])

get vastly simplified and reinterpreted.

For the exceptional collection method to work, one needs to be able to resolve

partially the Calabi-Yau singularity by blowing up a complex surface - the exceptional

collection lives on this surface. There are many both toric and non-toric Calabi-Yau

singularities which can be resolved in this manner. The exceptional collection method

was in large part developed to study some simple non-toric singularities, the non-toric

del Pezzos [231].

While the superpotential can be extracted from an exceptional collection, the

process is more abstract and less intuitive than for the brane tiling. In the exceptional

collection case, deriving the superpotential requires working with A-infinity algebras

[18, 17].

The exceptional collection method as applied to deriving quiver gauge theories

rests on relatively firm mathematical and physical foundations [144, 19, 145, 38, 147].

From the perspective of the topological B-model, the objects in the collection can be

understood as a nice basis of D-branes and the maps between the objects as massless

open strings.

By providing a translation between the brane tiling and the exceptional collection,

we put the brane tiling, along with its easy superpotential calculation, on a firmer

mathematical and physical footing. Our results fall short of a general proof that

the brane tiling method is equivalent to exceptional collections for toric Calabi-Yau

singularities. Instead, we provide a well motivated conjecture of the way this map will

work which we can prove example by example. By relating the tiling to exceptional

collections which are topological B-model objects, our approach is complementary to

that of [87].

In order for our translation between the brane tiling and the exceptional collection

to work, we henceforth restrict to toric Calabi-Yau threefold singularities which can
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be partially resolved by blowing up a complex surface.

The next section contains a brief review of the exceptional collection method

and a map from the exceptional collection to the brane tiling. We argue that the

periodic quiver which is the dual graph of the brane tiling can be constructed from a

consideration of Wilson lines.

We then proceed in the other direction, mapping the brane tiling onto an excep-

tional collection. The cornerstone of this mapping is the realization that internal

perfect matchings are in one-to-one correspondence with exceptional collections of

line bundles.

7.2 Exceptional collections

Exceptional collections provide a powerful tool for deriving the low energy gauge

theory description of a stack of D-branes probing a Calabi-Yau singularity. Given a

Calabi-Yau cone Y, a stack of D-branes at the singularity will fragment into a set

of fractional branes from which the gauge theory is easily deduced. These fractional

branes are best described as objects in D"(Y), the derived category of coherent sheaves

on Y. Exceptional collections provide a way of finding a good set of fractional branes

and avoiding a direct confrontation with Db(Y).l

If Y can be partially resolved by blowing up a possibly singular complex surface

V, instead of looking for fractional branes on Y, we look for an exceptional collection

of sheaves on V. There is then a simple procedure for converting this collection into

a good set of fractional branes [144, 19], and in fact the gauge theory can often be

deduced directly from the exceptional collection.

An exceptional collection of sheaves E = (Ei, E2, ... , E,) is an ordered set of

sheaves which satisfy the following special properties:

1. Each E is exceptional:

Ext' (E,, E,) = 0 for q > 0 and Ext0 (Ei, Ei) = Hom(E, E,) = C.

'For earlier physics applications of exceptional collections to Landau Ginzburg models, see [193,
222, 109, 149, 237].
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2. Fxtr 1(F,E) = 0 forti >j andVq.

In tb'se iot es, we will be most interested in the case where the collection is strongly

exceptional. in which case EXt4(Ei, Ej) = 0 for i < j and q > 0. For smooth toric

surfaces. Ihe collection must be strong to generate a physical quiver gauge theory

[144. 191. and the same is true for singular surfaces as well.2

For t Hie most part, our sheaves can be thought of as line bundles, and line bundles

are easy to describe in a toric context.3 For each ray v, in the fan, there is a toric

Weil divisor Dr. The line bundles can then be expressed as 0 (E arD,) for a, E Z.

One very special line bundle is the anti-canonical bundle:

0(-K) = 0 Dr . (7.2.1)

As we said earlier, the Calabi-Yau cone is the total space of the canonical bundle

over our surface. The fact that our fan defines a convex polygon means that K is

negative.

Given a strongly exceptional collection E, the quiver gauge theory can be con-

structed from the inverse collection E'. The members of E' are no longer sheaves

but objects in Db(V). Lifting these objects to Y yields the fractional branes. At the

level of D-brane charges, the inverse collection can be constructed from the Euler

character on V, x(Ei, EY) = 6 ig. As a set of objects in Db(V), Ev is constructed via

a braiding operation called mutation described in detail in [144]. The inverse collec-

tion is also exceptional although no longer strongly exceptional. The Euler character

X(E>, E') can be interpreted as the number of arrows in the quiver from node i to

node j minus the number of arrows from node j to node i [147, 19]. This matrix

is sometimes referred to as the antisymmetric part of the adjacency matrix. More

precisely, the Euler character tells us the net number of Homib(y) (EY, EY) maps in

the Calabi-Yau between the fractional branes. For each of these maps, we have a

massless open string which translates into a bifundamental field in the quiver gauge

2For a recent gauge theory interpretation of more general exceptional collections, see [230].
3For singular surfaces when D is not a Cartier divisor, O(D) is actually not a line bundle but

only a reflexive sheaf. Nevertheless, for simplicity, we will not emphasize this point further.
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theory.

It is often convenient to write down an intermediate quiver, the so-called Beilinson

quiver, which lives on V instead of Y. This quiver contains arrows corresponding only

to the negative entries of x(EY, EY), or more precisely maps in Ext'(E,, EY). The

Beilinson quiver algebra can be thought of as

EE ,Hom(Ej, Ej) (7.2.2)

but the quiver contains arrows only for the generators of this algebra which are en-

coded simply in EV. Because V is compact, the Beilinson quiver contains no oriented

loops.

7.2.1 From Exceptional Collection to Periodic Quiver

In this section we assume that we have a compact toric surface V with positive anti-

canonical class and a strongly exceptional collection of line bundles S on V. We would

like to construct from this data a periodic quiver. In particular, we will write the

Beilinson quiver on a torus.

Any toric surface can be described by a fan by which we mean a collection of

at least three vectors vr, r = 1, ... , n on an integer lattice Z2. That the surface is

compact means that the polygon defined by the endpoints of the vectors v, includes

the origin. That the anti-canonical class of this surface is positive means that the

polygon is convex. (We would like to allow V to have quotient singularities.)

One way of understanding V is as a quotient of C". Given n vectors in Z2, we

expect that there will be n - 2 linearly independent relations between the vr, which

we write as

QarVr = 0 (7.2.3)

where a = 1, . .. , n - 2 and Qar E Z. Geometrically, we quotient

C" - Fn
(7.2.4)

(C*)n-2
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where the action of the (C*)n- 2 is given by the Qar. The set FA is a small set of

points inside C' which we need to remove to have a well defined quotient.

As an example, consider P2 for which the fan is vi = (1, 0), v2 = (0, 1), and

V3 = (-1, -1). There is just one relation which we write as Q = (1, 1, 1). This

quotient construction is nothing but the usual equivalence relation of the homogenous

coordinates on P2 , namely (X 1 , X 2 , X 3 ) - (AX 1, AX2, AX3 ) for A E C*. FA is the

origin (0, 0, 0) of C3.

For arbitrary V, we can think of X E C" as generalized homogenous coordinates.

The n - 2 equivalence relations (7.2.3) leave a two complex dimensional space which

is V itself:

(X 1 , X 2 ,.. ., Xn) (AQX 1, AQ.2X 2 ,..., AQ"X) . (7.2.5)

This two complex dimensional space V is a fiber bundle 7r : V -+ B where B is a

real two dimensional surface and the fibers are real, two dimensional tori. More simply

put, the fibers are coordinatized by the phase angles of the complex coordinates on

V. First, we characterize this torus in greater detail.

Given the n - 2 vectors Qa and using the standard inner product on Z", we find

two additional vectors qi and q2 such that qi - Qa = 0 and qi and q2 are linearly

independent. A canonical set of qi are the vr reinterpreted as two n dimensional

vectors rather than n two dimensional vectors: we could set qir = Vr,1 and q2r = Vr,2-

These qi can be used to measure relative positions on the real two torus. Given the

homogenous coordinates (X1, X 2, .. . , Xn), we define the two torus coordinates to be

(01, 0 2) (E qirArgXr, 1 q2rArgXr) . (7.2.6)
r r

Notice that if we shift Xr by AQar, (01, 02) remains invariant because qi - Qa = 0.

Our D-branes are line bundles on V, and thus we can think of them as Euclidean

D4-branes filling all of V. If we perform fiberwise T-duality twice on the two torus,

we should find D2-branes localized at points on the torus. The open strings will then

connect these points together. The periodic Beilinson quiver is nothing but this web

of D2-branes and open strings.
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We will characterize this web using the original line bundle (or D4 brane) de-

scription. The notation O(P) indicates a D4-brane with a dissolved D2 brane: this

dissolved D2-brane has the same charges as a D2-brane wrapping the divisor D c V.

We can describe this (lissolved D2-brane as magnetic flux. Because the line bundle

is holomorphic, the field strength components Fi = 0 = Fjy vanish, and locally the

field strength takes the form

F = iOzOB(f + f*)dy' A di (7.2.7)

where Aj = -iOjf, A= i=zf* and f is some function of the coordinate patch. By a

gauge choice, we may take the imaginary part of f to vanish.

In a toric variety, the phase angle directions O6 are isometries, and the field strength

F describing the D2-brane should not depend on the O. Because our variety is toric,

we can choose a complex structure such that y- = ln ry + i03 = pj + i*O,. In this

coordinate system, the field strength becomes

F = + dpi A do3 + (dpi A dpj + dO6 A dOj) . (7.2.8)
Opj Op3  86O8O )00op,

In order for F to be independent of O, f must take a very special form. In particular,

f = g(r) + CiyigJ where the second term leads to a constant field strength. We will

assume this second term in f vanishes in which case the vector potential takes the

very simple form
Of

A = dOt . (7.2.9)
Opi

At this point, we fix a point (ri, r 2) E B and look at the T 2 fiber, where we

recognize a Wilson line. Locally on the T 2, A = wjdOj is pure gauge; A = id ln A where

A = exp(-iyw6). However, globally, A does not respect the periodicity conditions.

We have a distinct set of Wilson lines for 0 < wj < 1, with (wI, w 2 )~ (wi+n, W2+m)

for n and m integers. This set of Wilson lines lives on a dual torus we will call T2 .

Given a collection of line bundles, we can calculate the value of the Wilson line

for each such bundle and plot that point (w1 , w2 ) on our t 2 of length and height one.
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This plot gives us the nodes of the periodic Beilinson quiver.

The strings between the D4-branes come from the generators of the Beilinson

quiver algebra and as such are maps of the form Hom(Ej, Ej). Since the branes are line

bundles, we may write Ej = O(D), Ej = O(D'), and Hom(Ej, Ej) = H0 (V. O(D' -

D)). We expect, given a generating element in Hom(Ej, Ej), to find a corresponding

string between O(D) and O(D'). Moreover, O(D) and O(D') should be separated

by a vector on the torus given by the value of the Wilson line for O(D' - D).

From the derived category point of view on Y, we know how to compute the

masses of these open strings [144, 19, 16], and the answer depends on being able

to understand instanton corrections as we move in the Kshler moduli space of Y.

From the point of view of the complex surface V and the Wilson line discussion, our

intuition is that a string stretching between two of these D4-branes will have a mass

proportional to the distance between the corresponding points on T2 [204]. As we

change the base point, the Wilson lines will all move around. Our naive expectation is

that for massless strings, there is a particular choice of base point for which the Wilson

line corresponding to 0(D'- D) vanishes. It would be interesting to understand these

masses better from the Wilson line point of view.

7.2.2 Line Bundles and Curvature Forms for Toric Surfaces

In the previous section, we sketched a procedure for converting a set of line bundles

on a toric variety into a periodic quiver, but we did not explain why the construction

would respect the periodicity of the torus. For example, take two linearly equivalent

divisors D and D'. The corresponding line bundles O(D) and O(D') correspond to

the same D-brane. Why then are the Wilson lines for O(D) and O(D') the same?

In this section, we will attempt to answer this question and elucidate the structure

of the corresponding vector potentials.

Given a line bundle, O(D), and a particular choice of Kshler metric on a toric

variety, one can construct an explicit coordinate dependent expression for a represen-

tative of c1(D) E H2 (V, Z). These representatives were first worked out by [119] (for

a readable and more recent account see [1]). This representative of O(D) is holomor-
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phic, i.e. locally of the form iJf. Also, it is independent of the angular coordinates

0, and so takes the form (7.2.9) discussed previously.

These representatives have a number of disadvantages. In most cases, these rep-

resentatives do not satisfy the remaining equation of motion gzJFi = p. Here, p is

a constant often called the slope. Moreover, they depend on a particular canonical

choice of Kshler metric which is usually not the one of physical interest. Typically, we

would be more interested in a metric which is compatible with a Ricci flat metric on

the cone over V.4 Despite these disadvantages, we use these explicit representatives

for they form a useful beginning from which to argue more general results.

We have thus far been working with complex coordinates p + iO, but these rep-

resentatives are most easily expressed in symplectic coordinates on V, x + iO. The

phase angles O6 remain the same in both the complex and symplectic system. For the

x, we define a polytope

A {x E R2 : (x, vr) > -1 Vr} . (7.2.10)

The symplectic form is then w = E dxi A d6t.

In these symplectic coordinates, the Kshler metric and complex structure depend

on a potential function g(x). Define

02  (X) (7.2.11)
gi=xiOX

The line element becomes

ds 2 = gijdxidxj + g23dOid6j (7.2.12)

where g'J is the inverse of gij and summation on the indices is implied. The symplectic

coordinates are related to the complex ones by a Legendre transformation, p = 8g/&x.

'It may be that the metric compatible with a Ricci flat metric on the cone is not Kshler. For
example, the metric on dP1 compatible with the Y2, 1 Sasaki-Einstein metric is not Kihler [191].
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The representatives of H2 (V, Z) depend on a particular choice of g,

gcan = ,f loge , (7.2.13)
r

where we have defined

E4 = (X, Vr) + 1 . (7.2.14)

In the case of projective space, this metric is physically interesting: it's Einstein and

is thus compatible with a Ricci flat metric on the cone over V. In general 9 can will

produce a metric which is physically uninteresting albeit simple. A general Kshler

metric is related to gcan in a smooth way:

g = gcan + h (7.2.15)

where h is a smooth function on A.

We have seen already that a holomorphic vector bundle has a curvature form which

may be written as 2iBof(p) for some locally defined function of f. In symplectic

coordinates, this two-form becomes

2i&D f = ( g kj dx, A dOk. (7.2.16)
j,k

For the canonical choice of metric, we take the vector potential corresponding to

O(D,) to be

Ar = 1 gcan)k1 9 dOo k (7.2.17)
2 ax,

This Ar yields a curvature two-form which represents the class c1 (Dr) but is in general

not harmonic. Note that Ar is only well defined away from the side , = 0.

Using (7.2.17), we will prove a result about the Ar and then argue that the same

result must hold more generally for non-canonical metrics and Ar which do satisfy
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the equations of motion. The result is that

Z Vr,iAr = dO6 (7.2.18)
r

or in other words, this particular combination of the A, is pure gauge. The result

follows simply from noting that

(gcan)ij = VrVrj (7.2.19)
r 24r

More generally, because every divisor D = E, arDr can be expressed as a sum of

primitive Weil divisors, we expect there to be a basis of primitive vector potentials

Ar, r = 1, ... , n such that AD Zr arAr. We have now chosen the Ar to satisfy the

equations of motion, but they should be related to the canonical Ar in a smooth way.

We say two divisors D and D' are linearly equivalent when they have the same Q

charges, Er Qar(ar - a') = 0. All such linear equivalence relations are generated by

the qj. If D and D' are linearly equivalent, then O(D - D') - 0. But 0 corresponds

to a single D4-brane with no dissolved D2-brane charge. The associated field strength

must vanish, and it must be that

S qirAr (7.2.20)
r

is pure gauge for i = 1 and 2.

We can deduce more from the statement that (7.2.20) is pure gauge. A gauge

transformation A --+ A + id ln A must respect the periodicity of the torus. Since the

A, take the form f(r)dO, the gauge transformation ln A which annihilates (7.2.20)

must depend only linearly on 0 and not at all on x. The only choice is A = exp(in6),

from which we conclude that

E qirAr = nid61 + ni2 d62  
(7.2.21)

r

for integers rij. The 'Vr and our Wilson line torus are only defined up to an SL2 (Z)
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transformation so we choose

E q1rAr = dO1 ; Y q2rAr = dO2 , (7.2.22)
r T

recovering the canonical result (7.2.18) in a more general context. This reasoning

answers the question posed earlier about why for linearly equivalent D and D', O(D)

and O(D') give the same Wilson line.

Before moving on, we study the vanishing of the generating set Ar because of a

possible relation to massless open strings. We wish to show that the Ar will vanish

at corners of A where Ar is well defined. For this demonstration, we rely on a result

of Abreu [1] that

det(gij) = ,(x) i,(X) , (7.2.23)
. r=1 .

where 6 is a smooth function on A. Since we are on a surface, at a corner of A,

the determinant of gZj involves a double zero, and it is straightforward to show that

gi must vanish. Since g'- vanishes, from (7.2.16) we see that Ar will vanish as well

unless the corner is associated with the vanishing of 4,-

7.2.3 Bundles on P2

To illustrate these ideas concretely, we present them for P2. There are three Weil

divisors D 1, D 2, and D 3 on P2 corresponding to the three rays of the fan vi =

(1,0), v2 = (0,1), and v3 = (-1, -1). From (7.2.17), the vector potentials for the

corresponding three line bundles, which in this case satisfy the equations of motion,

are
1 1

A 1 = -1(xi - 2)d01 -- (1 + x 2 )d0 2 , (7.2.24)
3 3

1 1
A2 = -- (1 + x1)d61 - -(x 2 - 2)d62 , (7.2.25)

3 3
1 1

A 3 = -(1 + x1)d01 -(1 + x 2 )d6 2 , (7.2.26)
3 3
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where the xi lie inside the triangle defined by .r1 > -1, X2 > -1 and Xi+X2 < 1. These

A, are all gauge equivalent to each other, which is expected since the corresponding

divisors are all linearly equivalent. The gauge transformation takes the form A ->

A + dA where A = n 101 + n202 and ni is an integer. The Wilson line corresponding

to the A, will not change because the gauge transformation respects the periodicity

of this square torus of height and length one. Thus we see that O(D 1 ), O(D 2) and

O(D 3) appear as the same point on T 2 . Indeed, for any line bundle of the form

0(aD1 + bD2 + c.D3 ), the point on the torus will depend only on a + b + c. Any line

bundle of the form 0(aDi + bD2 + cD 3 ) can equivalently be written as 0(a + b + c).

We can take the vector potential corresponding to 0(n) to be

(1 + xi)dO1 - -(1 + x 2 )d0 2  (7.2.27)
3 3

Thus, given the exceptional collection 0, 0(1), 0(2), we should plot points at pi =

(0, 0), P2 = (-1 - X1 , -1 - x 2 )/3 and P3 = 2(-1 - X1 , -1 - x 2 )/3 or their translates

on '2. These three points correspond to the D-branes.

To connect these three D-branes with open strings, we return to the Ai (7.2.24)-

(7.2.26). Between 0 and 0(1) or between 0(1) and 0(2), there are three possible

paths corresponding to D 1, D2 , and D3 . The path corresponding to Di is defined by

the Wilson line associated to Ai. Instead of thinking of the Wilson line as a point on

the torus, we now think of it as a vector that joins two points. The resulting Beilinson

quiver for P 2 is shown in Figure 7-1. We do not need to draw in additional arrows

corresponding to maps between 0 and 0(2). All the requisite maps can be formed

by joining together the arrows already drawn.

These vectors corresponding to the Di shrink to zero size at special base points

on the polytope A. In particular, the string corresponding to Di shrinks to zero at

(2, -1), D2 shrinks to zero at (-1, 2), and D3 shrinks to zero at (-1, -1).

One startling feature of this Beilinson quiver is that the arrows will never cross, no

matter what our choice of basepoint (X1 , X2 ). As the (X1 , X2) moves to the boundaries

of A, arrows may become parallel and the three points may touch, but the arrows
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Figure 7-1: Four unit cells of the P2 periodic quiver for basepoint (Xi, x 2 )
(3/4, -1/2).

never cross.

7.2.4 Constructing the Quiver in General

Given a set of generating field strengths for the O(D,), we can construct a family

of periodic quivers from an exceptional collection. A particular quiver in the family

will depend on the choice of basepoint (X1 , x 2 ) E A. If the metric is of physical

interest, e.g. it lifts to a Ricci flat metric on the cone and provides a starting point

for AdS/CFT constructions, and the field strengths satisfy the equations of motion,

we expect this periodic quiver to be the quiver of physical interest. Thus, the quiver

we described for P2 should be the "correct" quiver. Unfortunately, we in general do

not have explicit expressions for the metric and the field strengths, only the canonical

representatives detailed above.

In the absence of physical data, we will work with the canonical metric and hope

that the resulting quiver is topologically if not geometrically accurate. Because we

only expect topological data, we will fix a particularly convenient choice of basepoint

in A: (X1, X2 ) = (0, 0). In this case, the vector potential becomes

Ar = -gkIv ,,O . (7.2.28)
2

From this vector potential, we see that a general line bundle of the form O(E, ar )
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will be plotted on the torus with coordinates

(Z q1,ar, q2r . (7.2.29)

where

qjr = 1v . (7.2.30)2

These two qi, are orthogonal to the Qa and are in fact the same as the qi discussed

previously. Because g"k is complicated and we are after only topological information,

let us rescale the qi, and the associated torus by a gkl E GL 2(R) transformation,

choosing qir = Vrj as before.

The procedure for constructing the quiver is very simple. Given a strongly ex-

ceptional collection of line bundles S = (E1 , E2 , .. . , E,,), take Ej = O(E, arDr) and

Ek = O(Z, brDr). The homomorphisms from E. to Ek are generated by the global

sections of O(Er(br - ar)Dr). Start with the monomial

j X o . (7.2.31)
r

This monomial has charges E, Qar(b, - ar). To be a global section, br - ar > 0 for

all r (or there will be a pole). However, there may be more than one such monomial

with this charge. Construct all such monomials. Call the set of such monomials Mjk.

For each m E Mjk, where m = 1r X7r, we compute

(01, W2) = qircr, q2, r (7.2.32)

This vector (W1, 02) is the relative position of nodes j and k on t 2 . Fixing the position

of Ei, we now have specified the location of all the nodes of the quiver.

Instead of a t 2 of length and height one as before, because of the rescaling, the

period vectors of this torus are the qj. If we take two points of the quiver separated by

aq,i+bq2 , in the language of line bundles, we have 0(D) and 0(D+E,(aqir+bq2r)Dr).

However, since the qi are orthogonal to the Qj, D and D + E,(aqir + bq2r)Dr have
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the same Q charges and are linearly equivalent as divisors. In other words, these two

points are the same.

Starting with the set Mk,k+1, we draw an arrow from node k to node k + 1 for

each m E Mk,k+1. We repeat this procedure for line bundles of the form Ek and

Ek+2. There is an additional complication now. It may happen that the monomial

m = m 1 m 2 where mi joins nodes Ek with Ek+1 and m12 joins nodes Ek+1 and Ek+2.

If such is the case, then we do not add an arrow corresponding to m. The entries

of x(Ei', EY) let us know how many arrows we should be writing down. Recursively,

we consider Ek and Ek+i and continue until all the arrows in the Beilinson quiver are

drawn.

Take dP 1 to illustrate these ideas. A fan is vi = (0, 1), v2 = (1, 1), v3 = (0, -1),

and v4 = (-1, 0) from which we choose

--1

-1

1

0
(7.2.33)

An exceptional collection on dP 1 is 0, O(D 1 ), O(D 4 + D1 ), O(D4 + D1 + D3). Using

the procedure described above, we find the Beilinson quiver, figure 7-2.

Figure 7-2: The periodic Beilinson quiver for dP 1 with fundamental cell.

For example, consider the paths between O(D4 + D1) and O(D4 + Di + D3). We
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look for all monomials with the Q charges of D 3. in other words X3 , xIX 4 , and X1x 2.

TI iese three monomials have torus charges q, (0, 1), (1, -1), and (-1, -2) respectively.

On our torus, node 4 is indeed at relative positions (0, 1), (1, -1), and (-1, -2) to

node 3 with corresponding arrows drawn in.

7.2.5 Vanishing Euler Character

We can argue that the Euler character of the torus (to be distinguished from the

Euler character of the exceptional collection) must vanish and so the most obvious

obstruction to writing the quiver on a torus is eliminated. (Of course, we don't

have an arbitrary collection of lines, vertices, and faces, but have instead completely

specified the connectivity, and it remains unclear that the pattern of connectivity will

be compatible with a torus structure.) Given exceptional collections S and Ev, in

terms of charges, we can decompose any sheaf F into the EY or the Ej:

ch(F) = x(Ej, F)ch(EY); ch(F) = x(F, E,)ch(Ej). (7.2.34)

We are interested in quivers that come from a stack of D3-branes, which look like a

point in V. Thus, for a skyscraper sheaf

ch(Opt) = x(E,,Opt)ch(EY) = 1x(Ej, Opt)X(E, , E)ch(Ei) . (7.2.35)
ji~j

The rank component of the chern class of a skyscraper sheaf vanishes, and x(Ej, Opt) =

rk(Ei). Thus,

0 = >3rk(Ei)rk(Ej)X(E, , E,) . (7.2.36)
i~j

For these toric exceptional collections, we find exceptional collections of line bundles

where the ranks are all one. Thus, the sum over the entries of the Euler character

must vanish. But this sum has a different interpretation. The sum over the diagonal

entries is the number of gauge groups. The sum over the negative entries is the

number of arrows in the Beilinson quiver, and the sum over the off-diagonal positive
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entries is the number of relations:

x(Ei', EY) = gauge groups - arrows + relations. (7.2.37)
iji

Now for these toric quivers, we know that each relation corresponds to two superpo-

tential terms. Moreover, when we lift to the Calabi-Yau quiver, each relation also

becomes an additional arrow. Thus, for the Calabi-Yau quiver

gauge groups - arrows + superpotential terms = 0 (7.2.38)

which is exactly the condition that the Euler character of the torus vanish because for

each gauge group we have a node, for each arrow an edge, and each superpotential

term a face in the quiver.5 Moving back to the Beilinson quiver now consists of

removing a set of arrows, which cannot change the Euler character of the graph. This

demonstration of vanishing Euler character is complementary to but distinct from a

similar observation in [94] where the authors use R-charge constraints to prove that

the Euler character of the brane tiling vanishes.

7.3 Compatibility

Having established that one can derive periodic quivers from exceptional collections,

we now study the possibility of generating such collections by means of brane tilings.

In this section we define a map that assigns line bundles to paths in the quiver.

This map can be used to compute an exceptional collection on a complex surface

that shrinks to zero size at the singularity. The exceptionality can be checked on a

case-by-case basis. Given these bundles, one can reconstruct the quiver based on

mathematically rigorous procedures [53, 231, 18, 17, 144, 19, 145, 143]. By reinter-

preting paths and perfect matchings in the tiling language, we explicitly prove that

this construction gives back our original quiver.

5We would like to thank Aaron Bergman for this observation relating X(E/, EY) to the Euler
character of the torus.
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Figure 7-3: The eight periodic perfect matchings of dP1 . The green edges are con-
tained in the matching. The dashed lines are the edges left in the tiling. The (s, t)
numbers are the corresponding points in the toric diagram.

7.3.1 Beilinson quivers and internal matchings

For the exceptional collection technique to be useful when applied to toric Calabi-

Yau manifolds, we need the toric diagram to contain at least one internal point. This

restriction means that our manifold can be partially resolved by blowing up a 4-cycle.

Let us consider the tiling for this Calabi-Yau which can be most efficiently constructed
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by t be Fast Inverse Algorithm [132, 87]. Let us also fix a reference internal matching

PAL,/ that resides at one of the internal points of the toric diagram. We can set the

origin at this point.

If we remove those bifundamentals from the quiver that are contained in PMo,

then we obtain another smaller quiver. We will show that this subquiver contains no

oriented loops and therefore has the right properties to be a Beilinson quiver for the

relevant 4-cycle.6 For an example see Figure 1-3. This Beilinson quiver is generated

by deleting the bifundamentals that are contained in the 4 th perfect matching of

Figure 7-3. Recall that the Beilinson quiver was defined at the beginning of Section

7.2 from an exceptional collection. Here, we define an intermediate notion

Definition 7.3.1.1. We define a pre-Beilinson quiver to be a connected subquiver

of the gauge theory quiver that contains no oriented loops and all the nodes of the

original.

Let us summarize some additional terminology we use in the following.

Definition 7.3.1.2. An oriented path is a path in the quiver that respects the

direction of the arrows.

Definition 7.3.1.3. Paths in the quiver that also exist in a Beilinson (or pre-

Beilinson) quiver are called allowed paths.

We say that a path crosses an edge in the tiling if the path contains the cor-

responding arrow in the quiver. Paths that exist in the Beilinson quiver will not

intersect the edges of PMo. It is easy to see that F-terms transform allowed paths to

allowed paths. Closed paths may wind around the tiling torus, and the winding can

be characterized by the homology class of the loop (p, q). The (0,0) loops are called

trivial loops. By definition, the length of an oriented path is the R-charge of

the corresponding operator. Paths can be related by F-term transformations, but

these transformations will not change the total R-charge associated to a path. The

height functions of the external matchings with respect to PMo are called height

coordinates.
6 We would like to thank Robert Karp for discussion about this point.
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Lemma 7.3.1.4. In a consistent tiling, an internal perfect matching determines a

pre-Beilinson quiver by removing those bifundamentals from the quiver that are con-

tained in the matching.

Proof. Removing bifundamentals from the gauge theory quiver that are contained in

PMo does not remove nodes and does not create disconnected pieces. The nontrivial

part of the proof involves the oriented loops.

(i) First we show that trivial allowed loops cannot exist. Such a loop would contain

at least one edge e. By crossing this edge in the tiling, some of the height functions

would increase by one. The increase happens exactly when the corresponding perfect

matchings contain e. Allowed paths will never go "downhill" on the graph of any

height function, because then they would have to cross an edge in PMo which is

not allowed (the edge is not present in the pre-Beilinson quiver). See Figure 7-4 for

the schematic picture. The increase of the height function is "irreversible", i.e. the

function is monotone along an allowed path; hence we have arrived at a contradiction.

For this argument to hold one has to show that e is contained in at least one

perfect matching. We can suppose this, since otherwise we can omit this edge from

the tiling and still get the same toric diagram which questions the consistency of the

original tiling.

(ii) We also need to show that there are no non-trivial loops in the pre-Beilinson

quiver. These non-trivial loops wrap the torus cycles. Suppose that there exists such

a loop. This oriented loop is a face path on the brane tiling with homology class

(x, y) E Z2 as in Figure 7-5. Let us take an arbitrary external matching PMj at

(si, ti). We can compute the height function assigned to this matching with respect

to PMo.

The height function should not decrease along the path. As an immediate conse-

quence, the scalar product (si, ti) -(x, y) must be nonnegative. On the other hand, the

set of vectors {(si, tj)} span the whole 2d space with positive coefficients, and thus at

least one of these vectors has negative scalar product with (x, y). This is a contradic-

tion; therefore the pre-Beilinson quiver doesn't contain non-trivial loops. D
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Figure 7-4: Allowed face paths (i.e. paths in the Beilinson quiver) go always uphill.
The height function increases by one at the line constituted of the black perfect
matching and the green reference matching. The red path cannot cross the green
edges (they are not in the Beilinson quiver). Hence when crossing the contour line,
the red path has to cross a black edge. Crossing the black edge increases the value of
the height function.

Figure 7-5: Gradient vectors in the toric diagram. The coordinates of the blue (si, ti)
vectors give the monodromy of the height function of the perfect matching sitting
at their endpoints. The red (x, y) arrow is the gradient vector of the hypothetical
nontrivial loop.

7.3.2 Line bundles from tiling: The I-map

In the last section we saw that a candidate Beilinson quiver could be created from

an internal perfect matching. In this section we continue by defining a map T that

assigns a divisor to an allowed path by using external perfect matchings. We conjecture

that these divisors give exceptional collections of line bundles which we will use to

reconstruct the Beilinson quiver.

A Weil divisor can be represented by an integer function over the external vertices

of the toric diagram polygon (see Figure 7-6). We call two such integer functions

equivalent if they differ by a linear function f(x, y) = xm + yn which defines a

principal divisor. (Here x and y are coordinates on the plane of the polygon.)

Let us fix an arbitrary oriented path P. Then, I(P) gives a divisor, i.e. an integer
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-"0 1 D2

2 0

D4

1

Figure 7-6: An int eger function over the external nodes determines a divisor and
therefore a sheaf of sections of the corresponding line bundle. The numbers in the
figure denote O(D + D3 + 2D 4 ).

function over the external nodes. We define this map by using the matchings of the

tiling. For each external node vr, there is a corresponding unique perfect matching7

PMr. We assign to the divisor D, the integer q1,(P) that is the number of edges in

PM, which are crossed by the path P. In Figure 7-7 we see an example.

1 0

(0,j)

(0,0)

444

Figure 7-7: The IF-map.

The left hand side shows the brane tiling for dP1. The red path P crosses two

edges; hence it labels the operator Xia - X(1. There is a corresponding oriented

1 -+ 3 -+ 4 path in the quiver as in Figure 1-2. We have chosen the 4th matching

from Figure 7-3 as the green reference matching. To show how to compute J 8 (P) ,

we have drawn the 8th matching of Figure 7-3 (in blue). The shading of the faces

indicates the height function of this matching that has (0, 1) monodromy. The red

7 We assume that the tiling is consistent and there are no "external multiplicities", i.e. there is a
unique perfect matching corresponding to each external node of the toric diagram.
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path crosses one blue edge in the matching (namely X2l); hence i8(P) = 1. One can

compute the other integer "intersection numbers" with the help of the other external

perfect matchings. The resulting numbers are indicated in red. These numbers define

a Well divisor on the base of the threefold. The numbers can also be interpreted as

the increase in the height coordinates as we go along the path P. If the path is

an allowed path (Definition 7.3.1.3) starting at face A and ending at B, then ", is

simply the h,(B) - h,(A) difference in the height function that corresponds to the

rth external node. T is a well-defined function on the paths of the quiver. In fact,

it does not depend on the choice of the reference perfect matching (modulo linear

equivalence).

The '-map can be extended to unoriented paths, i.e. paths that do not respect

the arrow direction in the quiver. When crossing an edge in PMj in the reverse

direction, we subtract one instead of adding one in computing Jr(P).

Let C, denote the Abelian group of chains in the periodic quiver. Here the quiver

is understood as a discretization of the 2-torus. This is the free group generated by

the edges in the quiver with integer coefficients. The elements of C1 take the following

form

P= ciXi (ci E Z) (7.3.39)

where Xi denotes the ith edge. We denote the cycles in Ci by Zi and the bound-

aries by Bi. Elements of B1 are built out of trivial loops. XI can be extended in a

straightforward way to be defined on C1

, = Cpi (7.3.40)

where {p3} is the list of edges in the rth external matching. In the following, we will

study the properties of this extended '-map.

For an elementary loop around a node in the tiling, the image of T is a constant

function (the anticanonical class K). Since all the perfect matchings cover this node,

each matching is intersected by the loop precisely once; hence XIr = 1 for all r. This
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coincides with the observations made in [97]. In fact, one can easily prove that the

entire B1 subgroup is mapped to constant functions.

Gauge invariant mesonic operators can be constructed from arbitrary oriented

loops'. These are the elements of Z 1. For these loops IF assigns non-negative affine

functions on the toric diagram parametrized by three integers. These functions are

points in the dual cone.

We will now use T to compute a collection of line bundles. We choose an

internal reference matching which determines a Beilinson quiver and therefore an

ordering of the faces in the tiling. Without losing generality, we relabel the groups

such that there are no arrows from node i to j if i > j.

Let us fix an allowed path P for each face in the tiling (for dP 1 see Figure 7-8). We

will call {PJ} the set of reference paths. We choose these paths such that they start

on face 1 and end on the specific face. This is possible because the Beilinson quiver

is connected. Then, T maps each of these paths to a Weil divisor (see Figure 7-9 for

the image). These divisors determine a collection of line bundles.

2 2, ',

2 2'

Figure 7-8: The reference paths are allowed paths to each face. They start from face
1 and don't cross the edges of the green internal matching; hence they are paths in
the Beilinson quiver.

There is a general freedom in the choice of these paths. The terminal faces can

also be chosen from different fundamental cells. We demonstrate this ambiguity in

Figure 7-10. Let us pick two different paths that end on the same faces but in

different fundamental cells. Recall that T maps closed loops to linear functions;

8Related work on mesonic operators was recently done in [171, 201].
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hence the difference of the resulting divisors is linear, which mtms that they are

in fact equtivalent. Note that T gives the same set of integers for operators (paths)

related by F term equations.

0 0

0

1 ->2 1-> 3 1 ->3-->4

Figure 7-9: The three divisors computed from the paths to the faces.

2K 22""2

4

I 1 0 0 1 0

1 ~

Figure 7-10: Face 4 can be assigned with either the red or the yellow allowed path.
The resulting Weil divisors are shown on the right-hand side. We see that they differ
by a linear function, i.e. they are equivalent.

After determining the divisors that correspond to the Pi paths, we are ready to

write down an exceptional collection. We introduce the notation

O( arD,) = (ai, a 2 ,. .. an) (7.3.41)

We assign the line bundle of the divisor T(P) to the 4th face. The integer numbers

sitting at the external nodes are the ai coefficients. For the first face we assign

(0, 0,. . , 0). In our dPi example from Figure 7-9 we obtain the following collection:

(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0), (1, 0, 1, 1)

which is exactly the collection discussed in section 7.2.4.
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Another example for the YU3 2 theory is presented in the Appendix.

Before moving on, we would like to point out that the IF-map efficiently computes

the divisors that correspond to dibaryons. In order to obtain the divisor for the

bifundamental X, we simply compute xF(X). For dP1 we get the following list

in precise agreement with section 5.1 of [147]. The linear equivalence relations e are

easily established. Let us show that (0, 0, 1, 0) c (1, 0, 0, 1). The difference divisor

(1, 0, 0, 1) - (0,0, 1, 0) = (1, 0, -1, 1), shown on the right hand side of Figure 7-10,

has a T map of the form T = y - x. In other words (1, 0, -1, 1) is a principal divisor

and the linear equivalence follows.

In this section we defined the linear I-map that computes the divisors corre-

sponding to the bifundamental fields. This map can be used explicitly to write down

a collection of line bundles for the singularity. Unfortunately, we are lacking a gen-

eral proof that the generated collections are always exceptional. Strong exceptionality

may be checked on a case-by-case basis.
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7.3.3 Reconstructing the quiver

In section 7.3.2 we introduced the general method, the P-map, that computes a

collection of line bundles that is presumably strongly exceptional. Given such a

collection, we can use rigorous methods to construct the quiver of the gauge theory.

In this section we prove that the quiver obtained this way matches with the dual

graph of the tiling which was our starting point. 9

Let us denote the exceptional collection by {Ei}. We define the matrix

Sij = dim Hom(E, Ej). (7.3.43)

The matrix elements in S tell the number of ways of getting from node i to node j
in the Beilinson quiver, taking the relations into account. The inverse of this matrix

gives the quiver directly up to bidirectional arrows. The nonzero elements of S 1

(i < j) are the number of arrows from j to i minus the number of arrows from i to j
in the quiver.

Since we are dealing with line bundles on toric manifolds, the computation of

dim Hom(E, Ej) gets vastly simplified [102]. This dimension is equal to the number

of global sections of the bundle Ej 0 El, which we denote by O(E arD,). Then, the

dimension is obtained by counting the lattice points inside the polygon

Aij = {u E R2 : u-v, < a, for all r} (7.3.44)

where v, E Z 2 is the position of the rth external node in the toric diagram. See the

left-hand side of Figure 7-11 for an example.

In section 7.3.2 we computed the (7.3.42) exceptional collection for dP 1 . Using

the above described method, the S matrix and its inverse are determined

9We will prove this for the non-periodic McKay quiver.
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1 1 3 6 1 -1 -1 2

S= 0 1 5 S1 0 1 -2 1 (7-..45)
0 0 1 3 0 0 1 -3

0 0 0 1 0 0 0 1

We see that S- 1 gives precisely the quiver in Figure 1-2.

In the following, we will show that this lattice point counting method of deter-

mining the number of paths from node i to node j in the quiver is identical to the

same computation on the brane tiling. Since the number of paths essentially encodes

the quiver via S and S-1, we are proving that the collection of line bundles encodes

the quiver of the original brane tiling.

4

3

1

m HBrane tiling cells
dim Hom(Ei,E )

Figure 7-11: Determining the S2,4 matrix element. In this case E4 0 E*
(1, 0, 1, 1) - (1, 0, 0, 0) = (0, 0, 1, 1). The figure shows the lattice of the A 24 poly-
gon and its bounding inequalities. The red lattice points inside A 2,4 can be identified
with adjacent fundamental cells in the brane tiling.

The key observation is that the lattice of Aij can be identified with the lattice of

fundamental cells of the brane tiling.10 This is shown in Figure 7-11. In particular,

we will assign the lattice points to the jth faces in the cells. The simple counting of

lattice points also counts the inequivalent allowed paths from face i to face j. There

can be many such paths, but their number is finite, since no loops are allowed. The

lattice points in Aij are in one-to-one correspondence with adjacent fundamental

cells that contain the final j faces where these paths end. In Figure 7-12 these are

10 We thank Alastair King for related discussions.
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Figure 7-12: The figure shows the allowed paths that start on face 2 and end on

face 4. The endpoints of these paths are in different fundamental cells which are in

one-to-one correspondence with the lattice points inside A2,4 that has been used to

compute dim Hom(E 2 . E 4).

the five faces marked in yellow. We see that to one of these faces there are two

allowed paths leading. This shouldn't trouble us, since these are equivalent paths

related by the U2 V 2 = U22y F-term equation for the Y2 bifundamental field that

separates face 2 and face 4. In fact, it turns out that a general feature of consistent

tilings is that homotopic paths of the same length (measured by the R-charge of the

corresponding trace operator") are F-term equivalent. In the following, we will prove

this statement.

Lemma 7.3.3.1. In a consistent tiling, paths of the same length are F-term equivalent

iff they are homotopic.

Proof. F-flatness equations are local transformations of the paths (Figure 7-13); hence

they transform homotopic paths into one another. Applying such a transformation

to the path does not change the R-charge of the corresponding operator. We need to

show that two homotopic paths are equivalent.

As an illustration, Figure 7-14 shows two such paths in a square lattice that can

be deformed into one another by F-terms. The rhombi they surround are also shown

separately in the right-hand side of the figure. This area has two bounding lines:

AA 1A2A3B and AB 1B 2B 3B. On the boundary we find two kinds of rhombus nodes

alternating: Every other node is also a node of the tiling (A1 , A3 , B1 , B 3 ). We call

"In fact, any trial R-charge can be used to measure the length.
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Figure 7-13: The F-flatness equation for the X bifundamental field is CBA = VU.
This states the equivalence of the two green paths in the figure.

these odd nodes. The remaining even nodes (A, A2, B, B 2) are only vertices in the

rhombus lattice.

We can start deforming path 1 by using the F-term equation for the tiling edge

A3B3. We also see that using the F-term equation for A 1B1 is not possible because

path 1 does not contain A 1B 3. At the level of the rhombus lattice the difference of

the two nodes A3 and A1 can be quickly seen: There is no red rhombus lattice edge

in the pink area that connects A3 to another node, whereas A1 has one edge, namely

A1B 2. To summarize, the area between two paths can be reduced by F-terms where

the boundary nodes don't have rhombus edges.

A3

A

B
A,

2 B2

BI

Figure 7-14: Homotopic paths are equivalent. The left-hand side of the figure shows
two paths represented schematically by green lines. The tiling is colored black and
the underlying rhombus lattice is shown by dotted lines. The pink area surrounded
by the two paths is also shown separately.

Let us consider two homotopic paths that start and end on the same two faces.

For simplicity, we assume that the paths are not intersecting. We also assume that

the area between the two paths has been completely reduced, i.e. there are no more

231



F-terms that we can use to decrease it. This is equivalent to requiring that the o(t(d

nodes along the boundary have at least one rhombus edge going to the interior of tHie

area. One can check that by construction the even nodes always have at least one

rhombus edge. (In the previous example, such nodes were A2 and B 2.) The reduced

area can be schematically drawn as in Figure 7-15.

A2 A3 ---

A B

B B 2B

2

Figure 7-15: Two homotopic paths that pass around the pink area. Each boundary
node (A1, ... , An, B 1,... , Bm) has at least one rhombus edge which ensures that the
area cannot be reduced by F-terms.

If we suppose that there is precisely one red rhombus edge at each Ai and By node

and there are no edges at A and B, then we recognize a straight rhombus path built

out of the ri (i = 0, 1, 2, ... , n) rhombi. These are located at the boundary next to

path 1 (see Figure 7-16).

A 2 A3 ...

A Bo r

B 2 Bm

Figure 7-16: The straight rhombus path in the area contains rhombi ro, ... , rn. The
existence of this series of rhombi constrains AB1 to be parallel to BmB.

This rhombus path corresponds to a zig-zag path in the tiling. The opposite

edges of the rhombi are parallel; hence AB 1 is parallel to BmB. The same argument

applies for the rhombi on the other side of the area; hence AA 1 is parallel to AnB.

As a consequence, some of the rhombi in the area must be degenerate (here ro and

rn), i.e. the R-charges of the corresponding fields are zero or negative and the tiling
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is inconsistent. Here we used thiat Ihere is one rhombus edge for each node.

Extra rhombus edges joiningo to A,. By or to the endpoints A or B can't be

used to restore the consistency of the tiling since they make the rhombi even more

degenerate. This can also be seen by looking at the sum of internal angles of the

A, A 1,... , An, B, Bm,... , B 1, A pink polygon. This polygon has n + m + 2 vertices,

hence the sum of angles should be (n + m)r. Every rhombus next to the boundary

contributes 7r to the sum, except for the rhombi at A and B whose contribution can

be bigger. If there are extra rhonbus edges at a particular node, then we also get

contribution from those rhombi that touch this node but they don't have a common

edge with the boundary polygon. Since there are at least n + m rhombi, the total

sum of angles is greater than (n + m)Tr; hence the polygon must be degenerate. L

As an immediate corollary, the lemma proves the following observation of [31]

Corollary 7.3.3.2. The structure of the chiral ring is naturally encoded in the non-

trivial cycles of the tiling torus. In particular, the dual cone can be "embedded" in

the infinite tiling [172].

The embedding is sketched in Figure 7-17.

Figure 7-17: The embedding of the dual cone in the tiling torus.

One can assign gauge invariant mesonic operators to each of the monomials in

the dual cone. For the A, B, D monomials we assigned three green paths that are

schematically shown in the right-hand side of the figure. They start and end on the
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same square in the tiling. Keeping these endpoints and the lengths fixed, they can

be freely deformed due to Lemma 7.3.3.1.

Then, the endpoints of the paths in the lattice of fundamental cells can be identi-

fied with the projection of the monomials onto the red tiling plane. To reach the bulk

of the cone (here the monomials B and C), the path has to contain loops, e.g. small

loops around a tiling node. For instance, the tip of the cone and C are projected to

the same point; therefore the corresponding path to C must be a trivial loop. It can

be chosen to be the appropriate power of any term in the superpotential.

Corollary 7.3.3.3. For the consistency of the tiling a necessary condition is that

homotopic paths of the same length are F-term equivalent."

Figure 7-18: Inequivalent A -- B homotopic paths in an inconsistent tiling.

If the tiling is inconsistent, it might be possible to construct two inequivalent

paths surrounding the "inconsistency". An example is shown in Figure 7-18 where

the tiling contains the subgraph of Figure 15 in [132]. We recognize the two rhombus

paths and the corresponding tiling zig-zags along the boundary of the pink area.

Since no F-terms can be used, the paths are inequivalent.

After proving the lemma and investigating some of its corollaries, let us turn

back to the original problem. We want to show that the matrix element Sij gives the

number of inequivalent paths from i to j. In order to prove this, we need to show that

for each u lattice point in A, we have a unique allowed path in the tiling starting on

12An immediate question arises: Is this condition sufficient? Can consistency be defined as the

equivalence of homotopic paths? We leave this question for future study.
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the ith face and ending on the jth one. These j' faces are in different fundamental

cells that are in one-to-one correspondence with the u lattice points.

The previous lemma ensures that we have a single path for each cell. To see this,

we need to prove that allowed homotopic paths have the same length. Suppose that

there exist two homotopic paths of different lengths. Using F-term equations, we can

deform the longer path to the shorter one as in Figure 7-19. Thus, we end up with

loops around tiling nodes which are evidently not allowed, since these loops intersect

PMo. Recalling that F-terms transform allowed paths to allowed paths, we arrive

at a contradiction. This means that in a consistent tiling homotopic allowed paths

always have the same R-charge and are equivalent.

- -

-:B- - B-

Figure 7-19: Homotopic paths with different R-charge are not equivalent. After ap-
plying the F-term equation for A3B1 , the long path (solid green line) gets transformed
to the short path (dashed line) plus a small loop around the A1 node in the tiling.

Having proved that from the ith face of a fixed fundamental cell there exists at

most one inequivalent path to the jth face of any cell, we also need to show that these

cells where the paths can end are in one-to-one correspondence with the u lattice

points. In order to do so, we reinterpret the (7.3.44) bounding inequalities of Aig.

In the definition of A/j, we have a u -v, < a, constraint for each external node

of the toric diagram. For a given path, u is interpreted as the integer vector defined

on the lattice of fundamental cells giving the distance of the cells wherein the ith and

jth faces reside. In the tiling language, vr is the monodromy of the height of the

rth external perfect matching. Thus, the scalar product gives the increase in the Tth

height coordinate. Hence, the a, variables should be interpreted as height differences.
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In fact, this is exactly how we computed them with the I-map in section 7.3.2.

Figure 7-20 illustrates the correspondeiice schematically. The figure shows three

inequivalent allowed paths that connect face A to different B faces. The shading

indicates the rth height function. The height changes along the edges in the super-

position of the corresponding matching and PMo. This level set is represented by

purple dashed lines.

BB

AA

Figure 7-20: The figure schematically depicts three allowed green paths from A to
B. The shading indicates one of the height coordinates. The height increases in the

direction of the small arrows. The allowed paths can only cross the dashed lines in
this direction, and thus we obtain a bounding inequality for AAB. The remaining
edges can be determined by means of the other heights.

The right-hand side of Figure 7-20 shows the lattice of AAB along with a green

bounding line. The lattice points are in one-to-one correspondence with the red

fundamental cells on the left-hand side. In particular, we assign them to the B faces

sitting in the cells. We set the origin at the middle point which is assigned to the

upper left B face in the tiling.

How does the green constraint come about? From previous discussions in section

7.3.1 we know that allowed paths can only go uphill on the height function. For

example, in Figure 7-20 the paths can cross the dashed lines in the direction of the

small arrows; therefore we can't reach the B face in the lower right corner. This face

corresponds to the excluded point on the right-hand side shown by the dotted arrow.
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Using the above interpretation of u, we can inminediately write down a necessary

(and sufficient) condition for the allowed paths. In our schematic example, we have

r = (1, -1) which is the average "gradient vector" of the height function. Naively,

the constraint translates to the following inequality for the allowed paths

U - Vr < 0 (7.3.46)

This is not quite right, because the paths start from A not B. One can take this into

account by adding the difference in their height coordinates to the right-hand side

U - V < d, (7.3.47)

By using the PA and PB reference paths that connect the first node of the Beilinson

quiver to A and B, one can see this difference is given by dr = Tr(PB) -,(PA). 1 3 Let

us denote the ith line bundle in the exceptional collection by (ai, ai, ... , a'). Recalling

from section 7.3.2 how we have determined the collection, we obtain dr = a B - a A

Our final expression is then

uv < aB -_ a (7.3.48)

which is precisely the inequality in the definition of AAB!

We can write down the remaining inequalities for the constraints coming from the

other height functions in exactly the same way. Thus, we obtain the boundaries of

AAB-

We have seen that the inequalities are equivalent to the fact that allowed paths

can't go downhill on any of the height functions of the external matchings. This

completes the correspondence between the lattice points of A and the allowed paths,

and thus proves that Sij indeed counts the inequivalent paths in the tiling.

Let us summarize the main results of this section. Given a consistent brane tiling,

we can compute a B Beilinson quiver and an { E} collection of line bundles by means

"In the example of Figure 7-20, the difference is d, = 1 -0 = 1, i.e. there is one level line between
A and B.
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of an internal matching and the I-map.'4 One may check on a case-by-case basis

that this collection is exceptional.

In this section we have proved that the "true" Beilinson quiver of the gauge

theory living in the worldvolume of the D3-branes is the same as B, the original

quiver which is obtained directly from the tiling. In particular, we proved that the

number of inequivalent paths between two nodes are the same.

As a byproduct, we obtained that homotopic paths with the same R-charge are

F-term equivalent. Thus, we could clarify the relation of the brane tiling to the dual

cone by a projection of the lattice points of the cone onto the tiling plane. This gave

an explicit correspondence between monomials and paths.

7.4 Conclusions

Brane tilings can be deceptively simple. With a few strokes of a pen, all of the data of

a PN = 1 supersymmetric quiver gauge theory - the matter fields, the gauge groups,

the superpotential - are captured. Given these simple pictures, theorems should be

easy to prove, but we have often found otherwise. In the following paragraphs, we

outline our successes but also the work that remains to be done to prove our dictionary

between brane tilings and exceptional collections.

In section 7.2, we provided a recipe that will convert any exceptional collection of

line bundles into a periodic quiver and motivated the recipe using Wilson lines and a

little mirror symmetry. In the cases we looked at, this periodic quiver was the graph

theoretic dual of a brane tiling. Thinking of the periodic quiver as a triangulation

of a surface, we proved that the Euler character vanished. Since the exceptional

collection specifies the connectivity of all the vertices, edges, and faces, a vanishing

Euler character is not necessarily enough to ensure the quiver can be written on a

torus.

"For a specific Calabi-Yau, there are many equivalent Seiberg dual phases of the quiver theory
[83, 86, 80, 33, 84, 92, 29, 144, 1321. Notice that the exceptional collection of section 7.3.2 has the
advantage that it gives back the right phase of the theory when computing the S~1 quiver adjacency
matrix.

238



In section 7.3, we provided a recipe that will convert any brane tiling into a

collection of line bundles. Two key observations underilie this recipe. The first is

that internal perfect matchings of the tilling are in one- to one correspondence with

Beilinson quivers and hence with exceptional collections. The second is that external

perfect matchings are in one-to-one correspondence with the generating Weil divisors

D, and can be used to convert paths in the brane tiling into sums of divisors E aD,

via the 'I-map.

We left the word exceptional out of the first sentence of the preceding paragraph

on purpose. On a case by case basis, we can verify the collections are exceptional,

using for example the techniques described in [145]. However, proving that the col-

lection is exceptional in general is difficult. There is a paper by Altmann and Hille

[11] who prove strong exceptionality for quivers without relations (no superpotential)

using Kodaira vanishing. The Kodaira vanishing theorem and certain generaliza-

tions are a powerful way of proving strong exceptionality. Given a line bundle O(D)

corresponding to an ample divisor D, then

dimH4(X, O(DOK))=O, foranyq>O. (7.4.49)

Unfortunately, for us, even in relatively simple exceptional collections, one finds a D

which is not ample even though these higher cohomology groups vanish. To see the

vanishing, one must rely on techniques specific to the complex surface V in question.

We hope the future brings new progress on both these fronts.

Appendix

To demonstrate the computation of exceptional collections with the IF-map of section

7.3.2, we give another example. This is the Y 3,2 theory, whose quiver is shown in

Figure 7-21.

The brane tiling of this geometry and the 18 perfect matchings are given in Fig-

ure 7-22 and Figure 7-23. In the upper left corner of the figures the toric diagram is
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Figure 7-21: Y3,2 quiver.

shown with a red dot giving the position of the matching. For reference matching we

pick the 7 th matching of Figure 7-22. Deleting the corresponding arrows in the quiver

gives the Beilinson quiver (Figure 7-24). We need to fix allowed reference paths in

the tiling that connect the first node of the Beilinson quiver to all the other nodes.

The chosen paths are shown in Figure 7-25.
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Figure 7-23: Y 3,2 perfect matchings (10" ... 18 th).

1 2 4

3 5 6

Figure 7-24: Y3,2 Beilinson quiver. Bifundamentals in internal matching 7 are omit-
ted.
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Figure 7-25: Y 3,2 tiling. The purple lines indicate the chosen paths that are used to
compute the exceptional collections. The paths start on face 1 and connect it to the
other faces.

lI -I
I D

1->2 1->2->4->5 1->2->4->5->6

0

1->3

Figure 7-26: A set of reference paths for Y 3 ,2.

From the intersection number of the paths and the external perfect matchings we

can immediately derive the following collection:

(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 1, 0), (1, 1, 0, 0), (1, 1,1, 0), (1, 1, 2, 0). (7.4.50)
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Global geometry
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Chapter 8

Semi-flat spaces

8.1 Introduction

A great deal of progress has been made in the study of string compactification using

the ten-dimensional supergravity approximation (for a review, see [72]). However, it

has become clear that certain interesting physical features of our world are difficult

(if not impossible) to realize when this description is valid. Examples which come

to mind include a period of slow-roll inflation [141, 68, 114], certain models of dy-

namical supersymmetry breaking [89], chiral matter with stabilized moduli [44] and

parametrically-small perturbatively-stabilized extra dimensions [72]. This strongly

motivates attempts to find descriptions of moduli-stabilized string vacua which tran-

scend the simple geometric description.

One approach to vacua outside the domain of validity of 10d supergravity is to

rely only on the 4d gravity description, as in e.g. [217, 219]. This can be combined

with insight into the microscopic ingredients to give a description of much more

generic candidate string vacua. A drawback of this approach is that it is difficult to

control systematically the interactions between the ingredients. Another promising

direction is heterotic constructions, which do not require RR flux and hence are more

amenable to a worldsheet treatment [4, 3]. However, stabilization of the dilaton in

these constructions requires non-perturbative physics.

A third technique, which is at an earlier state of development, was implemented
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in [131. nti(d was inspired by [113, 226]. The idea is to build a conipactification out of

locally ten dimensional geometric descriptions, glued together by transition functions

whici include large gauge transformations, such as stringy dualities. This technique

is unlli(lielv adapted to construct examples with no global geometric description. In

this chapter. we build on the work of [138] to give 4d A = 1 examples.

In [138]. early examples of vacua were constructed involving such 'non-geometric

fluxes'. These examples were constructed by compactifying string theory on a flat

n-torus, and allowing the moduli of this torus to vary over some base manifold.

The description of these spaces where the torus fiber is flat is called the semi-flat

approximation [220]. Allowing the torus to degenerate at real codimension two on the

base reduces the construction of interesting spaces to a Riemann-Hilbert problem;

the relevant data is in the monodromy of the torus around the degenerations [113].

Generalizing this monodromy group to include not just modular transformations of

the torus, but more general discrete gauge symmetries of string theory (generally

known as string dualities) allows the construction of vacua of string theory which

have no global geometric description [138]. The examples studied in detail in [138]

had two-torus fibers, which allowed the use of complex geometry.

A natural explanation of mirror symmetry is provided by the conjecture [220] that

any CY has a description as a three-torus (T3 ) fibration, over a 3-manifold base. In the

large complex structure limit, the locus in the base where the torus degenerates is a

trivalent graph; the data of the CY is encoded in the monodromies experienced by the

fibers in circumnavigating this graph. Further, the edges of the graph carry energy

and create a deficit angle - in this description a compact CY is a self-gravitating

cosmic string network whose back-reaction compactifies the space around itself. In

this chapter, our goal is to use this description of ordinary CY manifolds to construct

non-geometric vacua, again by enlarging the monodromy group. We find a number of

interesting new examples of non-geometric vacua with 4d A T 1 supersymmetry. In

a limit, they have an exact CFT description as asymmetric orbifolds, and hence can

be considered 'blowups' thereof. We study the spectrum, particularly the massless

scalars, and develop some insight into how these vacua fit into the web of known
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constructions.

We emphasize at the outset two limitations of our analysis. First, the examples

constructed so far are special cases which have arbitrarily-weakly-coupled perturba-

tive descriptions and (therefore) unfixed moduli. Our goal is to use them to develop

the semiflat techniques in a controllable context. Generalizations with nonzero RR

fluxes are naturally incorporated by further enlarging the monodromy group to in-

clude large RR gauge transformations, as in F-theory [226]. There one can hope

that all moduli will be lifted. This is the next step once we have reliable tools for

understanding such vacua using the fibration description.

The second limitation is that we have not yet learned to describe configurations

where the base of the T 3-fibration is not flat away from the degeneration locus. The

examples of SYZ fibrations we construct (analogous to F-theory at constant coupling

[66]) all involve composite degenerations which we do not know how to resolve. The

set of rules we find for fitting these composite degenerations into compact examples

will be a useful guide to the more difficult general case.

A number of intriguing observations arise in the course of our analysis. One can

"geometrize" these non-geometric compactifications by realizing the action of the

T-duality group as a geometric action on a T 4 fiber. The semi-flat metric on the

fiber contains the original metric and the Hodge dual of the B-field. Hence, we are

led to study seven-manifolds X7 which are T4 fibrations over a 3d base. They can be

embedded into flat T4 compactifications of M-theory down to seven dimensions where

the reduced theory has an SL(5) U-symmetry. U-duality then suggests that X7 may

be a G 2 manifold since the non-geometric Type IIA configuration can be rotated into

a purely geometric solution of maximal supergravity in seven dimensions. Whether

or not these solutions can in general be lifted to eleven dimensions is a question

for further investigation. In this chapter, we study explicit examples of G2 (and

Calabi-Yau) manifolds and show that they do provide perturbative non-geometric

solutions to Type IIA in ten dimensions through this correspondence. The spectrum

of these spaces can be computed by noticing that they admit an asymmetric orbifold

description, and it matches that computed from M-theory when a comparison is
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possible.

The chapter is organized as follows. In the next section we review the seniiflat

approximation to geometric compactification in various dimensions. \e (describe in

detail the semiflat decomposition of an orbifold limit of a Calabi-Yai threefold: this

will be used as a starting point for nongeometric generalizations in section 9.2. In

section 9.1 we describe the effective field theory for type II strings on a flat T3 . We

show that the special class of field configurations which participate in T3-fibrations

with perturbative monodromies can alternatively be described in terms of geometric

T4-fibrations. We explain the U-duality map which relates these constructions to

M-theory on T"-fibered G2-manifolds. In sections 9.2 and 9.3 we put this information

together to construct nongeometric compactifications. In section 9.4 we consider

generalizations where the fiber theory involves discrete Wilson lines. Hidden after the

conclusions are many appendices. Appendix 9.6 gives more detail of the reduction on

T3 . The purpose of Appendices 9.7-9.9 is to build confidence in and intuition about

the semiflat approximation: Appendix 9.7 is a check on the relationship between the

semiflat approximation and the exact solution which it approximates; Appendix 9.8

is a derivation of the Hanany-Witten brane-creation effect using the semiflat limit;

Appendix 9.9 derives a known duality using the semiflat description. In Appendix

9.10 we record asymmetric orbifold descriptions of the nongeometric constructions

of section 9.2. In Appendices 9.11 through 9.13, we study in detail the massless

spectra of many of our constructions, and compare to the spectra of M-theory on the

corresponding G2 -manifolds when we can. Appendix 9.14 contains templates to help

the reader to build these models at home.
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8.2 Semi-flat limit

Since we want to construct non-geonetric spaces by means of T-duality, we exhibit

the spaces as torus fibrations. We ieed isometries in the fiber directions in which

the dualities act. Hence, we wish to study manifolds in a semi-flat limit where the

fields do not depend on the fiber coordinates. This is the realm of the SYZ conjecture

[220]. Mirror symmetry of Ctlabi-Yau manifolds implies that they have a special

Lagrangian T' fibration. Branes can be wrapped on the fibers in a supersymmetric

way and their moduli space is t lie mirror Calabi-Yau. At tree level, this moduli space

is a semi-flat fibration, i.e. the metric has a U(1)" isometry along the fiber. However,

there are world-sheet instanton corrections to this tree-level metric. Such corrections

are suppressed (away from singular fibers) in the large volume limit. The mirror

Calabi-Yau is then in the large complex structure limit. In this limit the metric is

semi-flat and mirror symmetry boils down to T-duality along the fiber directions1 .

As a warm-up, we will now briefly review the one-complex-dimensional case of

a torus, and the two-dimensional case of stringy cosmic strings [113]. These sec-

tions may be skipped by experts. In Section 8.2.3, we construct a fibration for a

three-dimensional orbifold that will in later sections be modified to a non-geometric

compactification.

8.2.1 One dimension

The simplest example is the flat two-torus. Its complex structure is given by modding

out the complex plane by a lattice generated by 1 and T = T1 +iT 2 E C (with T2 > 0).

The Kdhler structure is p = b + iV/2 where b = fT, B and V the area of the torus

(again, V > 0).

There is an SL(2, Z), group acting on the complex modulus T. This is a re-

dundancy in defining the lattice. The group action is generated by T i-+ T + 1 and

T -4 -1/T. Another SL(2, Z), group acts on p. This is generated by the shift in

'It is best to think of the fiber as being very small compared to the size of the base. It is thought
that in the large complex structure limit, the total space of the CY collapses to a metric space
homeomorphic to S' which is the base of the fibration (see e.g. [116]).
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the B-field b -* b + 1 and a double T-duality combined with a 90' rotation that is

p -* -1/p. The fundamental domain for the moduli is shown in Figure 8-1.

The torus can naturally be regarded as a semi-flat circle fibration over a circle.

For special Lagrangian fibers, we choose the real slices in the complex plane. In the

2 --+ oo large complex structure limit, these fibers are small compared to the base

S' which is along the imaginary axis.

Mirror symmetry exchanges the complex structure r with the Kahler structure

p. This boils down to T-duality along the fiber direction according to the Buscher

rules [49, 50]. It maps the large complex structure into large Kshler structure that is

P2 =V -> oc.

Figure 8-1: A possible fundamental domain (gray area) for the action of the SL(2, Z)
modular group on the upper half-plane. The upper-half plane parametrizes the pos-
sible values of r (or p): the moduli of a two-torus. The gray domain can be folded
into an S 2 with three special points (the two orbifold points: rz = e2,i/ 6 and rz4 =,
and the decompactification point: T --+ ioo).

8.2.2 Two dimensions

In order to construct semi-flat fibrations in two dimensions, let us consider the dy-

namics first. Type IIA on a flat two-torus can be described by the effective action in

Einstein frame

S- dxgK R+ 2 + 2 (8.2.1)
T2 p2
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where T is the complex structure of the torins. and p = b+iV/2 is the Kdhler modulus

as described earlier. The action is invariant under the SL(2, Z), x SL(2, Z), pertur-

bative duality group, which acts on T and p by fractional linear transformations.

Variation with respect to r gives

&&T + _ = 0; (8.2.2)
t - T I

and p obeys the same equation. Stringy cosmic string solutions to the EOM can be

obtained by choosing a complex coordinate z on two of the remaining eight dimen-

sions, and taking T(z) a holomorphic section of an SL(2, Z) bundle. Such solutions

are not modified by considering the following ansatz for the metric around the string2

ds 2 = ds2Mink e(z,z)dzd + dSber (8.2.3)

where

dsbe = ( (8.2.4)
T2 7( y 2T

The Einstein equation is the Poisson equation,

88V = Balog T2  (8.2.5)

Far away from the strings, the metric of the base goes like [113]

ds D IzN/12dz12  (8.2.6)

where N is the number of strings. This can be coordinate transformed by = z1-N/12

to a flat metric with 27rN/12 deficit angle.

Solutions and orbifold points. One could in principle write down solutions by

2By an appropriate coordinate transformation of the base coordinate, this metric can be recast
into a symmetric g D g form (see [220, 186]).

251



means of the j-function,

j(T) =(Tr(24(01(r) + ±O(T) + 01(r))3 (8.2.7)

which maps the Tz = e27r/6 and Tz4 = orbifold points to 0 and 1, respectively. The

-2 - oc degeneration point gets mapped to j -- oo. A simple solution would then be

j() = 1 + jo (8.2.8)
Z - Zo

At infinity, the shape of the fiber is constant, i.e. ro = j 1 (jo) and thus this

non-compact solution may be glued to any other solution with constant T at infinity.

However, since T covers the entire fundamental domain once, there will be two points

in the base where T(z) = rz, or rz4 . Over these points, the fiber is an orbifold of the

two-torus. These singular points cannot be resolved in a Ricci-flat way and we can't

use this solution for superstrings.

There is, however, a six-string solution which evades this problem [113]. It is

possible to collect six strings together in a way that r approaches a constant value at

infinity. T can be given implicitly by e.g.

y2 = x(x - 1)(x - 2)(x - z) (8.2.9)

There are no orbifold points now because T can be written as a holomorphic function

over the base. The above equation describes three double degenerations, that is, three

strings of tension twice the basic unit. In the limit when the strings are on top of one

another, we obtain what is known (according to the Kodaira classification) as a D4

singularity with deficit angle 180'.

The monodromy of the fiber around this singularity is described by

0-10Mtgn )h m o(8.2.10)

acting on ("')with T=-i This monodromy decomposes into that of six elementary
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strings which are mutually non-local 3.

This can be generalized to more than six strings using the Weierstrass equation

y2 3 + f(z)X + g(z) (8.2.11)

The modular parameter of the torus is determined by

4f3
j((z)) = 27g2 (8.2.12)

Whenever the numerator vanishes, 7 = TZ6 and we are at an orbifold point. We see

however that it is a triple root of f3 and no orbifolding of the fiber is necessary. The

same applies for the Z4 points. The strings are located where T2 --> 00 that is where

the modular discriminant A = 4f 3 + 27g2 vanishes. Note that the monodromy of the

fibers around a smooth point is automatically the identity in such a construction.

Kodaira classification. Degenerations of elliptic fibrations have been classified

according to their monodromy by Kodaira. For convenience, we summarize the result

in the following table [39]:

3 For explicit monodromies for the six strings, see [105].
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Constructing K3. One can construct a compact exam ple where the fiber experi-

ences 24 A0 degenerations. In the Weierstrass descript i1[ - 2.11), this means that f
has degree 8, g has degree 12, and A has degree 24. This is the semi-flat description

of a K3 manifold. In a certain limit where we group t he si rings into four composite

D4 singularities, the base is flat and the total space becoines T 4/Z 2. The base can be

obtained by gluing four flat triangles as seen in Figure 8-3. At each D4 degeneration,

the base has 1800 deficit angle which adds up to 47r and closes the space into a flat

sphere with the curvature concentrated at four points.

Figure 8-2: Base of the T 4/Z 2 orbifold. The Z2 action inverts the base coordinates
and has four fixed points denoted by red stars. They have 180' deficit angle. As the
arrows show, one has to fold the diagram and this gives an S 2.

As we have seen, in two dimensions the Weierstrass equation solves the problem

of orbifold points. In higher dimensions, we don't have this tool but we can still try

to glue patches of spaces in order to get compact solutions. Gluing is especially easy

if the base is flat. However, generically this is not the case. Having a look at the

Einstein equation (8.2.2), we see that a flat base can be obtained if T(z) is constant.

This happens in the case of D4 and E, singularities. Our discussion in this chapter

will (unfortunately) be restricted to these singularities.

The cosmic string metric is singular in the above semi-flat description. It must

be slightly modified in order to get a smooth Calabi-Yau metric for the total space.

This will be discussed in Appendix 9.7.
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D 4

Figure 8-3: Flat S 2 base constructed from four triangles: base of K3 in the Z2 orbifold
limit.

8.2.3 Three dimensions

In two dimensions, the only smooth compact Calabi-Yau is the K3 surface. In three

dimensions, there are many different spaces and therefore the situation is much more

complicated. The SYZ conjecture [220] says that every Calabi-Yau threefold which

has a geometric mirror, is a special Lagrangian T3 fibration with possibly degenerate

fibers at some points. For the generic case, the base is an S3 . Without the special

Lagrangian condition, the conjecture has been well understood in the context of

topological mirror symmetry [115, 223]. There, the degeneration loci form a (real)

codimension two subset in the base. A graph F is formed by edges and trivalent

vertices. The fiber suffers from monodromy around the edges. This is specified by a

homomorphism

M: 7r1(S 3 \ F) - SL(3, Z) (8.2.13)

There are two types of vertices which contribute ±1 to the Euler character of the total

space4 . At the vertices, the topological junction condition relates the monodromies

of the edges.

One of the most studied non-trivial Calabi-Yau spaces is the quintic in P4 . How-

ever, even the topological description of this example is fairly complicated [115]. The

topological construction contains 250 + 50 vertices and 450 edges in the S 3 base.

Constructing not only topological, but special Lagrangian SYZ fibrations is a much

harder task. In fact, it is expected that away from the semi-flat limit, the real codi-

4 These positive and negative vertices are also called type (1,2) / type (2,1) [115] or type III /
type II [206] vertices by different authors. For an existence proof of metric on the vertex, see [186].
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mension two singular loci in the base get promoted to codimension one singularities,

i.e. surfaces in three dimensions. These were termed ribbon graphs [157] and their

description remains elusive.

A compact orbifold example. In the following, we will describe the singular

T'/Z2 x Z2 orbifold in the SYZ fibration picture. One starts with T' that is a

product of three tori with complex coordinates zi. Without discrete torsion, the

orbifold action is generated by the geometric transformations,

a : (z1 , z2, z3) - (-z 1 , -z 2, z3) (8.2.14)

# : (zi, z2, z3 ) - (-zi, z2, -z 3 ) (8.2.15)

These transformations have unit determinant and thus the resulting space may be

resolved into a smooth Calabi-Yau manifold.

In order to obtain a fibration structure, we need to specify the base and the fibers.

For the base coordinates, we choose xi = Re(z ) and for the fibers yj = Im(zi). Under

the orbifold action, fibers are transformed into fibers and they don't mix with the

base5 .

Figure 8-4: Singularities in the base of T'/Z2 X Z2. The big dashed cube is the

original T 3 base. The orbifold group generates the singular lines as depicted in the

figure. The red dots show the intersection points of these edges.

51t is much harder in the general case to find a fibration that commutes with the group action.
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Degeneration loci in the base. The base originally is a T3 . What happens after

orbifolding? If we fix, for instance, ie X3 coordinate, then the orbifold action locally

reduces to a (since the other two ioi-trivial group elements change X3 ). This means

that we simply obtain four fixed points in this slice of the base. This is exactly

analogous to the T 4 /Z 2 example. The fixed points correspond to D 4 singularities

with a deficit angle of 1800. As we change X3 , we obtain four parallel edges in the

base. By keeping instead x1 or X2 fixed, we get perpendicular lines corresponding to

conjugate D4s whose monodromies act on another T 2 in the T 3 fiber. Altogether,

we get 3 x 4 lines of degeneration as depicted in Figure 8-4. These edges meet at

(half-)integer points in the T3 base.

Some parts of the base have been identified by the orbifold group. We can take

this into account by a folding procedure which we have already seen for T 4/Z 2 . The

degeneration loci are the edges of a cube. The volume of this cube is } of the volume

of the original T 3 . The base can be obtained by gluing six pyramids on top of the

faces (see Figure 8-5). The top vertices of these pyramids are the reflection of the

center of the cube on the faces and thus the total volume is twice that of the cube.

This polyhedron is a Catalan solid': the rhombic dodecahedron. (Note that one can

also construct the same base by gluing two separate cubes together along their faces.)

In order to have a compact space, we finally glue the faces of the pyramids to

neighboring faces (see the right-hand side of Figure 8-5). This is analogous to the

case of T"/Z 2 where triangles were glued along their edges (Figure 8-2).

'Catalan solids are duals to Archimedean solids which are convex polyhedra composed of two or
more types of regular polygons meeting in identical vertices. The dual of the rhombic dodecahedron
is the cuboctahedron.
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Figure 8-5: (i) Rhombic dodecahedron: fundamental domain for the base of T6 /Z 2 x
Z2 . Six pyramids are glued on top of the faces of a cube. Neighboring pyramid
triangles give rhombi since the vertices are coplanar (e.g. ABCD). (ii) The S' base
can be constructed by identifying triangles as shown by the arrows. After gluing,
the deficit angle around cube edges is 1800 which is appropriate for a D4 singularity.
The dihedral angles of the dashed lines are 120' and since three of them are glued
together, there is no deficit angle. The tips of the pyramids get identified and the
space finally becomes an S3 .

The topology of the base. The base is an S3 which can be seen as follows7 . First

fold the three roinbi ABCD, AFGD and ABEF, and the corresponding three on the

other side of the fundamental domain. Then, we are still left with six rhombi that

we need to fold. It is not hard to see that the problem is topologically the same as

having a B3 ball with boundary S2. Twelve triangles cover the S 2 and we need to

glue them together as depicted in Figure 8-6. This operation is the same as taking

the S 2 and identifying its points by an x -* -x flip. This on the other hand, exhibits

the space as an S1 fibration over D 2. The fiber vanishes at the boundary of the disk.

This is further equivalent to an S2 fibration over an interval where the fiber vanishes

at both endpoints. This space is simply an S3. The degeneration loci are on the S2

equator of this Sa base and form the edges of the cube.

Edges and vertices. The monodromies of the edges are shown in Figure 8-7. The

'We thank A. Tomasiello for help in proving this.
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2

Figure 8-6: The base of T 6 /Z 2 x Z 2 is homeomorphic to a three-ball with an S 2

boundary which has to be folded as shown in the figure.

letters on the degeneration edges denote the following SL(3) monodromies:

1 0 0 -1 0 0 -1 0 0

X= 0 -1 0 y= 0 1 0 Z= 0 -1 0 (8.2.16)

0 0 -1 0 0 -1 0 0 1

x
Z

z
z X

x

Figure 8-7: Monodromies for the edges.

This orbifold example contained D 4 strings. These are composite edges made

out of six "mutually non-local" elementary edges. The edges have 1800 deficit angle

around them which is 6 x 1 where ! is the deficit angle of the elementary string.6 6

Note that the base is flat. This made it possible to easily glue the fundamental

cell to itself yielding a compact space. Since the edges around any vertex meet in a

symmetric way, the cancellation of forces is automatic.

There are other spaces that one can describe using D4 edges and the above men-

tioned composite vertices. Some examples are presented in Section 9.2. The strategy

is to make a compact space by gluing polyhedra like the above described cubes, then
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make sure that the dihedral deficit angles are appropriate for the D4 singularity.

8.2.4 Flat vertices

Codimension two degeneration loci meet at vertices in the base. In the generic case,

these are trivalent vertices of elementary strings. Such strings have 300 deficit angle

around them measured at infinity. This creates a solid deficit angle around the vertex.

In some cases when composite singularities meet, the base is flat and the vertex is

easier to understand. In particular, the total deficit angle arises already in the vicinity

of the strings. An example was given in Section 8.2.3 where composite vertices arise

from the "collision" of three D4 singularities (see Figure 8-5). The singular edges

have a deficit angle 7r. The vertex can be constructed by taking an octant of three

dimensional space and gluing another octant to it along the boundary walls. The

curvature is then concentrated in the axes. The solid angle can be computed as twice

the solid angle of an octant. This gives 7r (or a deficit solid angle of 37r).

Figure 8-8: The solid angle at the apex is determined by the dihedral angles between
the planes.

In the general (flat) case, a composite vertex may be described by gluing two

identical cones (the analogs of octants). Such a cone is shown in Figure 8-8. Note

that the solid angle spanned by three vectors is given by the formula

O=a+#+-y 7r (8.2.17)

where a, # and -y are the dihedral angles at the edges. This can be used to compute
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the solid angle around a composite vertex.

A B

U7
a . p

-- ' C

Figure 8-9: Flat vertex. A, B and C are singular edges. C is pointing towards the
reader. The dashed lines must be glued together to account for the deficit angle
around C.

The singular edges have a tension which is proportional to the deficit angle around

them. This leads to the problem of force balance. In Figure 8-9, a flat vertex is shown.

The two solid lines (A and B) are degeneration loci. The third edge (C) is pointing

towards the reader as indicated by the arrow head. The deficit angle around C is

shown by the shaded area. In the weak tension limit (where we rescale the deficit

angles by a small number), one condition for force balance is that these edges are in

a plane. (Otherwise, energy could be decreased by moving the vertex.) This can be

generalized for almost flat spaces by ensuring that o + = -y. This is automatic when

we construct the neighborhood of a vertex by gluing two identical cones8.

C C

A A

B B

Figure 8-10: Junction condition for monodromies. The red loop around A can be
smoothly deformed into two loops around B and C.

Another problem to be solved is related to the fiber monodromies. These can be

described by matrices A, B and C (see Figure 8-10). The loop around one of the

8 1n the weak tension limit, the two identical cones almost fill two half-spaces. The slopes of the
edges are dictated by the tensions as in [215]. We leave the proof to the interested reader.
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edges (say A) can be smoothly deformed into the union of the other two (B, C). This

gives the monodromy condition9 ABC = 1.

Some composite strings can be easier described than elementary ones because the

base metric can be flat around them. Such singularities are D4 , E6 , E7 and Es with

deficit angles 7r, 47r/3, 37r/2 and 57/3, respectively [113]. Vertices where composite

lines meet can also be easily found by studying flat C3 orbifolds. Here we list some

of the vertices that will later arise in the examples.

Table 8.1: Examples for composite vertices.

We have already seen the Z2 x Z2 vertex in Section 8.2.3. If the vertex is located

at the origin, then the strings are stretched along the coordinate axes,

D() : (1, 0, 0) D4) : (0, 1, 0) (8.2.18)

The second example is generated by

a (z1, z2, z3) - (-z3 , z2, z1)

0 : (zi, z2, z3) F-4 (zi, -z2, -z3 )

It contains different colliding singularities. Their directions are given by

Djl): (1, 0, 0) D 2 : (1, 0, 1) E7 : (0, 1, 0) (8.2.19)

9 Since monodromy matrices do not generically commute, it is important to keep track of the
branch cut planes.
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orbifold group colliding singularities solid angle

Z2 X Z2 D4-D4-D4 T
Z2 x Z D4 -E7 r/2

A 12  D4 -E6 -E6 7r/3
A 2 4

D4 -E6 -_E7 _r/6

D(3) : (0, 0, 1)



The A 12 group has (Z2)2 and Z3 subgroups. It is generated by

a: (zi, z2, z3)

/3: (zi, z2, z3)

F-4 (z2, z, z)

F- (-zi, -Z2, Z3)

The strings directions are

D4 : (1,0,0) Ef : (111) E (1,1,-1)

The last example is generated by combining Z3 and Z4 generators,

a : (z1, z2, z3)

/ : (z1, z2, z3)

- (z2, z3, z)

- (-z2, z1, z3 )

which generate the A24 group. The direction of the strings are the following,

E6 : (1, 1, 1) E : (1, 0, 0)

This is not an exhaustive list; a thorough study based on the finite subgroups of

SU(3) [79] would be interesting.
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D4 : (1, 1, 0) (8.2.21)



Chapter 9

Non-geometric spaces

9.1 Stringy monodromies

In this section, we wish to extend the discussion by including the full perturbative

duality group of type II string theory on T 3 in the possible set of monodromies. We

will find that this duality group can be interpreted as the geometric duality group of

an auxiliary T 4 . The extra circle is to be distinguished from the M-theory circle but

it is related to it by a U-duality transformation.

For simplicity, the Ramond-Ramond field strengths will be turned off. This allows

us to use perturbative dualities only. However, in moduli stabilization these fields

play an important role. In fact, in the Appendices 9.8 and 9.9, we use U-duality [153]

monodromies which act on RR-fields in order to describe two familiar phenomena.

From the worldsheet point of view, string compactifications are expected to be

typically non-geometric, since the 2d CFT does not necessarily have a geometric

target space. Even though we construct our examples directly based on intuition from

supergravity, they will have a worldsheet description as modular invariant asymmetric

orbifolds.

For other related works on non-geometric spaces, see [176, 138, 164, 148, 117, 110,

162, 121, 111, 180, 64, 151, 90, 152, 217, 218, 25 and references therein.

In the following, we study the perturbative duality group in Type IIA string

theory compactified on a flat three-torus. We gain intuition by studying the reduced
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7d Lagrangian of the supergravity approximation. Finally we discuss how U-duality

relates non-geometric compactifications to G2 manifolds in M-theory which will be

fruit ful when constructing examples in the next section.

9.1.1 Reduction to seven dimensions

Action and symmetries. Let us consider the bosonic sector of (massless) 10d Type

IIA supergravity,

S11A = SNS + SR +SC (9-1-1)

where

-2- H32)(9.1.2)

SR ~ 2 Jd1oxv/--(gF 2 |2+| 4 |2) (9.1.3)

and the Chern-Simons term is

Scs 2  B A F4 A F4  (9.1.4)

with F4 = dA3 - A1 A dB and K! = K/27rR

First we set the RR fields to zero1 . This truncates the theory to the NS part which

is identical to the IIB SNs action. Compactifying Type IIA on a flat T 3 yields the

perturbative T-duality group SO(3, 3, Z) which acts on the coset SO(3, 3, R)/SO(3)2.

The equivalences of Lie algebras

so(3, 3) a s[(4) (9.1.5)

s o(3) (D s o(3) su (2) (D su (2) 2_- s o(4) (9.1.6)

enable us to realize the T-duality group as an SL(4, Z) action on SL(4, R)/SO(4).

This latter space is simply the moduli space of a flat T 4 with constant volume. There-

fore, we can think of the T-duality group as the mapping class group of an auxiliary

'This can be done consistently since the (-l)FL symmetry forbids a tadpole for any RR field.
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four-torus of unit volume. What is the metric on this T4 in terms of the data of the

T3? To answer this question, we have to study the Lagrangian.

Reduction to seven dimensions. One obtains the following terms after reduction

on T 3 [188] (see Appendix 9.6 for more details and notation)

S = dxv -ge' (9.1.7)

with L = L1 + L2 + L3 + L 4 and

L = R + (9.1.8)

1
L2 = (,Gapo,0'1Gc' - G0aG^1',Ba8Bps) (9.1.9)

4

L3 = - gPg"(G,3FgafpA+" UHGvaHAp) (9.1.10)

1
L4 = -H ,H"V (9.1.11)

12

The relation of these fields and the ten dimensional fields are presented in Appendix

9.6. In order to see the SO(d, d, Z) symmetry, one introduces the symmetric positive

definite 2d x 2d matrix

G-1 G-1B
M ) E SO(3, 3) (9.1.12)

BG-' G - BG-1 B

The kinetic terms £2 can be written as the o--model Lagrangian

1
£2 = -Tr(8,M-18"M) (9.1.13)

8

The other terms in the Lagrangian are also invariant under SO(3, 3).

The SL(4) duality symmetry and "N-theory". Let us now put the bosonic

action in a manifestly SL(4) invariant form (see [47]). Rewrite L2 as

L2 = -Tr(& M 1 &"M) = -Tr(8,N-18AN), (9.1.14)
8 4
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where we introduced ti svmniitric SL(4) matrix2

, = (det G) 12 G Gb (9.1.15)
T VG det G + VTGb'

1
B1) = EijkbA bi = eijkBjk. (9.1.16)

The equality of the Lagrangians can be checked by lengthy algebraic manipulations

(or a computer algebra software). We included the Hodge-dualized B-field in the

metric as a Kaluza-Klein vector. The inverse of N is

N1 = (det G)-/ 2  (det G + -b (9.1.17)
-bi 1

Keeping N symmetric, the Lagrangian is invariant under the global transformation,

N(x) - UT N(x)U, with U E SL(4). (9.1.18)

A useful device for interpreting N is the following. Note that we would get the

exact same bosonic terms of L1 and L2, if we were to reduce an eleven dimensional

classical theory to seven dimensions. This theory is given by the Einstein-Hilbert

action plus a scalar, the "1ld dilatonn3

S =J d11x - e -'(R(g) + 0,8&") (9.1.19)

This Lagrangian contains no B-field. The description in terms of (9.1.19) is only

useful when 43 and L4 vanish. This means that F(, H ,a = HAV, = 0. Since the

size of T4 is constant, its dimensions are not treated on the same footing as the three

geometric fiber dimensions. It is similar to the situation in F-theory [226], where

the area of the T 2 is fixed and the Kdhler modulus of the torus is not a dynamical

2 This matrix parametrizes the eight complex structure moduli, and one Kihler modulus of T4 .
3 We will denote the extra dimension by x10 . This is not to be confused with the M-theory circle

denoted by x".
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parameter.

We have seen that the matrix N can be interpreted as a semi-flat metric on a T4

torus fiber. Part of this torus is the original T3 fiber and the overall volume is set to

one. The T-duality group SO(3, 3, Z) acts on T4 in a geometric way. This means that

we can hope to study non-geometric compactifications by studying purely geometric

ones in higher dimension.

9.1.2 The perturbative duality group

In the previous section, we have transformed the coset space SO(3, 3)/SO(3) 2 into

SL(4)/SO(4) via Eq. (9.1.15). We also would like to see how the discrete T-duality

group SO(3, 3, Z) maps to SL(4, Z). We will denote the SO(3, 3) matrices by Q, and

the SL(4) matrices by W.

SO(3,3) SL(4) dim examples
spinor fundamental 4 RR fields

fundamental antisym. tensor 6 momenta & winding

Table 9.1: The two basic representations of the duality group.

Generators of SO(3,3,Z). It was shown in [209] that the following SO(3, 3, Z)

elements generate the whole group

0 1

0 1

(a3 nR 01 0
Qi(n) = 1X Q2(R) = ) Q3 =

0 13x3 0 (R-11 0

1 0

01
(9.1.20)

where nT = -n, det R = t1. The first two matrices correspond to a change of

basis of the compactification lattice. The last matrix is T-duality along the x7 - 8

coordinates. Instead of using Q3 directly, we combine double T-duality with a 90'
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rotation. This gives t he SO(3, 3) matrix

Q3 =

1

(9.1.21)

Generators of SL(4,Z). In the Appendix of [46], it was shown that the above

matrices have an integral 4 x 4 spinor representation and in fact generate the entire

SL(4, Z). We now list the spinor representations corresponding to these generators 4.

* Qi(n) is mapped to matrices

1

1
W1 (n) =

n23

n31

1 n12

(9.1.22)

These are the generators corresponding to

subgroups.

* Q3 is mapped to

"T" transformations of various SL(2)

~31
W3= (9.1.23)

-1

1

This corresponds to a modular "S" transformation. Note that (W 3)2 # L

4Note that [46] uses a different basis for the spinors.
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" When det R = +1, the matrix Q2(R) is mapped to the SL(4. Z) matrix

)2 (R) = (9.1.24)
(0 1)

For symmetric R matrices it coincides with the prescription of Eq. (9.1.15).

" The det R = -1 case is more subtle. Even though Type IIA string theory is

parity invariant, in the microscopic description reflecting an odd number of co-

ordinates does not give a symmetry by itself. Since this transformation flips the

spinor representations 16 <-+ 16', it must be accompanied by an internal sym-

metry Q which changes the orientation of the world-sheet and thus exchanges

the left-moving and right-moving spinors.

SO(3, 3) has maximal subgroup S(O(3) x 0(3)) and hence has two connected

components [117]. Inversion of an odd number of coordinates is not in the

identity component. SL(4, Z) is the double cover of the connected component

of SO(3, 3, Z) only. We must allow for det W = ±1 to obtain Spin(3, 3, Z), the

double cover of the full SO(3, 3, Z). Then, the reflections of the x7, x8 or x9

coordinates have the following representations 5

Wr-7= diag(-1, 1, 1, 1) WI8 = diag(1, -1, 1, 1) WI, = diag(1, 1, -1, 1)

(9.1.25)

Upon restriction to GL(3) C SO(3,3), the Spin(3, 3) group is a trivial covering.

Ramond-Ramond fields transform in the spinor representation of the T-duality

group6 . Therefore they form fundamental SL(4) multiplets. We can check

the above representation for the coordinate reflections. Reflection of say x7

5The only non-trivial element in the center of SL(4) is -1. This sign may be attached to all the
group elements not in the identity component, giving an automorphism of Spin(3, 3, Z).

'As discussed in [47], the fields that have simple transformation properties are C(3) = A(3) +
AO) / B.
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combined with a flip of the three-forim field gives

(C7, C8 , C9 , C789 ) - (-C 7, C8 , C 7 C 89 ) (9.1.26)

which is precisely the action of W 1 7 .

9.1.3 Embedding SL(2) 2 in SL(4)

In order to get some intuition for the SL(4) duality group that we discussed in the

previous section, we first look at the simpler case of T 2 compactifications. In this

section we describe how the T-duality group of T2 compactifications can be embedded

into the bigger SL(4) group.

In eight dimensions, the duality group is SL(2), x SL(2), with the first factor

acting on the r complex structure of the torus and the second factor acting on p =

b+iV/2 where b = fT2 B and V is the volume of T2 . If we consider a two dimensional

base with complex coordinate z, then the equations of motion are satisfied if r(z) and

p(z) are holomorphic sections of SL(2, Z) bundles. Monodromies of T around branch

points points describe the geometric degenerations of the fibration. Monodromies of

p, however, correspond to T-dualities and to the semi-flat description of NS5-branes.

In particular, if there is a monodromy p -* p + 1 around a degeneration point in

the base, then it implies b -- b + 1 which describes a unit magnetic charge for the

B-field, i.e. an NS5-brane. The pF-* -1/p monodromy on the other hand is a double

T-duality along the T 2 combined with a 90' rotation.

Let us denote the two-torus coordinates by x7'8 . In order to embed this SL(2) x

SL(2) duality group into the SL(4) of T 3 compactifications, we need to further com-

pactify on a "spectator" circle of size L. We denote its coordinate by ?. The metric

on T 3 (x 9 - x1 0 - Xz) is now

9n1 912

G3x3 = g2 g22 (9.1.27)
1L 2

272



Then, one can construct the 4 x 4 met ric on T 4 by the prescription of (9.1.15) which

gives

N = (det g)-1/2

Lb L(dei

Lb

g +b2)
LZ 2x2 )

(9.1.28)

with

1
T = --

-2

TV)

||J2

1
R =-

P2
(9.1.29)

1I P|2

The o-model Lagrangian

T &aN-la&N) = -2 + 2
P2/

indeed gives the familiar kinetic terms for the torus moduli (in seven dimensions).

We have seen how the metric and the B-field parametrize the relevant subset of

the SL(4, R)/SO(4) coset space. The generators of the SL(2, Z) x SL(2, Z) duality

group are also mapped to elements in SL(4, Z). We now verify that these images in

fact give the transformations that we expect.

. Geometric transformations

These are simply generated by

1 )e R2x2
1

and S = (I 2x2 (9.1.31)
0

They act on g2x2 by conjugation with the non-trivial SL(2) part as expected.

The determinant of g stays the same.

second one is a 90' rotation.

* Non-geometric transformations

The first one is a Dehn-twist and the

273

(9.1.30)

1g2x2
7x2



The generators

T'= 12 x2  i) and S' = 12x2 ( 0 i) (9.1.32)
(0 1 )(1 0)

correspond respectively to the shift of the B-field and to a double T-duality on

X 7,8 combined with a 90' rotation. The latter one has the SL(4) monodromy

1 0 0 0

0 1 0 0
M =(9.1.33)

0 0 0 -1

0 0 1 0

This is basically an exchange of the x9 - X1 0 coordinates and it transforms the

R2X2 submatrix of N into its inverse

-= (det g)-1/ 2  det g + b2  -b (9.1.34)
-b 1)

After this double T-duality, the (geometric) metric on T 3 becomes

G3x3 - (3x3 aetg+b2 92X2 (9.1.35)
0 L 2

The B-field transforms as

bb d I>=b(9.1.36)
det g + b2

The metric g on T 2 changes, in particular if b = 0, then the volume gets inverted.

Since we exchanged the x9 - x 10 coordinates, one might have expected that this

affects the metric on x9. However, we see that it remains the same as it should

since it was only a spectator circle.
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* Left-moving spacetime fermion number: (-1)FL

This is a global transformation which inverts the sign of the Ramond-Ramond

fields. It acts trivially on the vector representation of SO(3, 3) (which is the

antisynimetric tensor of SL(4)). It will be important since T-duality squares to

(-1)Fi . In [138], its representation was determined,

-1 0 -1 0
M(-)FL = ( ) E ( ) E SL(2) x SL(2) (9.1.37)

that is a D4 monodromy combined with a D' (i.e. a conjugate D4 ). This

statement can be proven as follows. Let us define complex coordinates

ZL XL + 8 (9'-138)

ZR = 7R + ixA (9.1.39)

where XL and XR are the left- and right-moving components of the bosonic

coordinates. We denote a transformation

(ZL, ZR) N (eOL ZL, eOR ZR) (9.1.40)

by 0 = (OL, OR). Then,

OD= (-7r, -7r) (9.1.41)

as it is a reflection of the bosonic coordinates. Moreover, we can use D' = S2

where S is a double T-duality with a 900 rotation. We have

7 ir 7 7
s= (-7r, 0) + (-, -) = (- -, -) (9.1.42)

22 2 2
double T-duality 900 rotation

from which we obtain

ODI = 2 x OS = (-r,7) (9.1.43)
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Finally,

OD4+D ~4 + OD -(-27, ) (9.1.44)

which acts trivially on the bosons. However, it inverts the sign of the spinors

from left movers which is precisely the action of (-1)FL. Finally, it can be

embedded into SL(4) simply as

M(-1)FL = diag(-1, -1, -1, -1) (9.1.45)

9.1.4 U-duality and G2 manifolds

We have seen that upon compactifying Type IIA on T 3 , a T 4 torus emerges. We will

be eventually interested in compactifications to four dimensions. For vacua without

fluxes and T-dualities, the total space of the T 3 fibration is a Calabi-Yau threefold.

What can we say about the total space of the T 4 fibration?

Note that there is an analogous (more general) story in M-theory. Reducing eleven

dimensional supergravity on a flat T 4 yields a Lagrangian that is symmetric under

the SL(5, R) U-duality group [153, 57, 216, 58]. By Hodge-dualizing the three-form

AIJK =E EIJKLXL (I, J, K, L = 7, 8, 9, 11), one can define a 5 x 5 matrix7

WgiJ + 1XIXJ - XI
G-1= (I (9.1.46)

which contains the geometric metric g on TV as well. We denote the dimensions8

by x7, x8, x9, x 11, x10, respectively. The bosonic kinetic terms can be written as a

manifestly SL(5) invariant o--model in terms of this metric [58].

We can embed the 4 x 4 unit determinant matrix N-1 (see Eq. 9.1.17) into the

7The relation to F-theory [226] can roughly be understood as follows. In the lower right corner
of the 5 x 5 metric there is a 2 x 2 submatrix (with coordinates x"" 0 ). In the ten dimensional
language, this matrix contains the dilaton and the three-form X" ~ C() which is "mirror" to the
C(0) axion in Type IIB. Roughly speaking, (conjugate) S-duality acts on this T2 c T .

8Note that x10 and x" are switched. This is because we want to denote the extra M-theory
dimension by x". We stick to this notation.
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5 x 5 unit-determinant matrix G- as follows

6g'j + lb'W 0 - b"

G-1= 0 1 (9.1.47)

with 6 = (det gij) 1/2. By setting w := 6, we arrive at the previous form of the metric.

If we now perform a U-duality corresponding to the x' 0 - X" flip, then the solution

is transformed into pure geometry in the 1ld picture,

Jgzj + wbW -3bz

G - b 1 ( " ) (9.1.48)

In 10d Type IIA language, this flip roughly corresponds to the exchange of the

Ramond-Ramond one-form and the Hodge-dual of the B-field in the fiber directions.

In order to preserve minimal supersymmetry in four dimensions, one compactifies

M-theory on a G 2 manifold. Semi-flat limits of G 2 manifolds are expected to exist

by an SYZ-like argument [120]. Then, by the above U-duality in seven dimensions,

a solution is obtained which is non-geometric from a 10d point of view as shown in

this diagram

M-theory on semi-flat G 2  Type IIA on "non-geometric space"

reduction on flat T 4  oxidation?

7d theory on S3 (the base of G2) -duality dual 7d theory on S 3

"Oxidation" seems obscure in this context since we only have the 7d spacetime

equations of motion. However, for the special case of D 4 singularities, we will be able

to "lift the solutions" to 10d: they turn out to be asymmetric orbifolds, similar to

some examples in [138].
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9.2 Compactifications with D 4 singularities

In the previous sections, we studied the semi-flat limit of various geometries which

had a fibration structure. This corner of the moduli space is a natural playground for

T-duality since isometries appear along the fiber directions. Almost everywhere the

space locally looks like R' x T' and the duality group can simply be studied by a torus

reduction of the supergravity Lagrangian. The idea is then to glue patches of the base

manifold by also including the T-duality group in the transition functions. Since the

duality group is discrete, such deformations are "topological" and a priori cannot be

achieved continuously. From the 10d point of view, the total space becomes non-

geometric in general. In seven dimensions, the SO(3, 3, Z) group can be realized as

the mapping class group of a T 4 of unit volume. This geometrizes the non-geometric

space by going one real dimension higher. Considering such compactifications to four

dimensions which preserve K = 1 supersymmetry, U-duality suggests that the total

space of the geometrized internal non-geometric space is a G 2 manifold.

In this section, we use these ideas to build non-geometric compactifications. We

deform geometric orbifold spaces by hand and also study particular examples of G2

manifolds. These examples will only contain (conjugate) D4 singularities. This allows

for a constant arbitrary shape for the fiber and the base is also locally flat. Even

though the examples are singular and supergravity breaks down at the orbifold points,

we can embed the solutions into Type IIA string theory where they give consistent

non-geometric vacua realized as modular invariant asymmetric orbifolds.

9.2.1 Modified K3 x T 2

Let us first consider K3. The base of an elliptic fibration of K3 is an S 2. At the

T 4 /Z 2 orbifold point, there are four D4 singularities in the base (see Figure 8-3). The

purely geometric D4 monodromies are

MD 4 = (-12x2) G 12x2 E SL(2),r x SL(2), (9.2.49)
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By changing the monodromies by hand, it is possible to construct non-geometric

spaces. In [138], K3 was modified into the union of two half K3's which we denote

by K3. This non-geometric space has two ordinary D4 's and two non-geometric D4

singularities with monodromies

MD1 = I ( (-1) (9.2.50)

If we had changed one or three D4s into D', then the monodromy at infinity would

not be trivial. In fact, it would be MD4 - MD' = M(-1)FL. This means that the

T 2 x T 2 fiber is orbifolded everywhere in the base by the Z2 action which inverts the

fiber coordinates. In principle, this could be interpreted as an overall orbifolding by

(-1)FL which moves us from Type IIA to IIB. However, it is not clear what should

happen to the odd number of D4 and D' singularities as they don't have a trivial

monodromy at infinity in IIB either. Therefore, we do not consider such examples

any further.

Let us now compactify further and consider K3 x T2 or K3 x T 2 . The base is

S2 x S1 where the second factor is the base of the two-torus as described in Section

8.2.1. The relevant monodromies are embedded in the SL(4) duality group as follows

MD4 = diag(-1, -1, 1, 1) MD' = diag(1, 1, -1, -1) (9.2.51)

Since in lower dimension the duality group is larger, one can consider another D4-like

monodromy

MD' = diag(1, -1,-1, 1) (9.2.52)

which is not in the SL(2) x SL(2) subgroup of SL(4), and thus it was not possible for

the case of T 2 compactifications. In principle, we can have spaces with monodromies

(2 x D4 ) +(2 x D1') or (2 x DI) + (2 x D") (9.2.53)

These are T-dual to each other by an x - x 10 flip. Thus, it is enough to consider the
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first one which is geometric since the monodromies act only in the upper-left SL(3)

subsector of SL(4). However, this space is not Calabi-Yau. Supersynnietry suggests

that in the base. parallel lines9 of singularities should have the same inonodromies

(possibly up to a factor of (-1)FL as in the case of K3 x T 2 ). This is not the case

for this space. A way to explicitly see the absence of supersymmetry is to exhibit the

total space as the (R x T5)/(a, 0) orbifold,

a (x, 91, 02|03, 94, 95) - (L - x, 01, -02| -3, -- 4, 05) (9.2.54)

3: (X, 1, 2 13, 4, 5) - (-x,) 1, -2 103, -04, -05) (9.2.55)

Here x, 01,2 are coordinates on the base and 93,4,5 are coordinates on the fiber. x is

non-compact and 02 are periodic. The orbifold group (a, 3) also contains the element

a/ : (X, 01,1 213, 64, 5) -4 (x + L,01i, 021 -3, 94, -5) (9.2.56)

which breaks supersymmetry because it projects out the gravitini.

We see that by considering conjugate D4 singularities, in the above reducible case

we do not obtain any other supersymmetric examples than those already considered

in [138] even if the duality group is extended. Hence, we move on to threefolds in the

next section.

9.2.2 Non-geometric T 6/Z 2 x Z2

Let us consider the orbifold T6/Z 2 x Z2 that we described in detail in Section 8.2.3.

Figure 8-7 shows the monodromies of the singular edges. These monodromies have

the following SL(4) representations,

X = diag(1, -1, -1, 1) y = diag(-1, 1, -1, 1) z = diag(-1, -1, 1, 1) (9.2.57)

9 Parallelism makes sense in the context of D4 singularities since the base has a flat metric.
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These are of coirse geometric since they only act on the first thret coordiniates. How

can we deforni the orbifold into something non-geometric? There (ire three more D4

type singularit ies that we can use. They have the following monodronies,

z a-x g 3-y f -= (9.2.58)

These all invert the x10 coordinate. A simple modification of T 6 /Z 2 x Z2 is possible

by replacing the original monodromies by t, y or f. The junction condition says that

an even number of negative signs should meet at each vertex. Therefore, consistent

monodromy assignments are given by switching signs along loops. There are five

theories obtained this way as shown in Figure 9-1. Since these simple spaces have

a geometric total space at this orbifold point of their moduli space, we call them

"almost non-geometric".

Figure 9-1: Almost non-geometric T 6 /Z 2 x Z2 spaces. Monodromies are modified
along the red loops. We refer to the models as one-plaquette, two-plaquette, "L",
"U" and "X", respectively.

9.2.3 Asymmetric orbifolds

In the previous section, we changed the monodromies by hand and obtained "almost

non-geometric" spaces. In particular, monodromies in the loops contained the extra
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action of (-1)FL, which reverses the signs of all RR-charges,

X - M(- 1 )FL = T y (-1)FL 9 Z* M(_l)FL =f

where

(9.2.60)

Hence, we can realize the non-geometric spaces of the previous section as asymmetric

orbifolds [198, 197] (see also [69, 63, 43, 104, 15, 163]). We consider the simple example

of Figure 9-2: the one-plaquette model.

5L1
Figure 9-2: Simple non-geometric T 6 /Z 2 x Z2.

If we parametrize the T' torus by angles O6, then the original Z2 X Z2 orbifold

group action is generated by

a : (01, 02, 03, 04, 05, 06) '-4 (-01, -02, -03, --04 05, , 06)

# : (01, 02, 03, 04, 05, 06) -> (-01, -02, 03, 04, -05, -06)

(9.2.61)

(9.2.62)

The base coordinates can be chosen to be (01, 03,0 0). The singular edges along these

directions have monodromies (x, y, z), respectively.

Now the example of Figure 9-2 has modified monodromies. In particular, edges

on the top of the cube have monodromies which include (-1)FL. We use the same

trick as in Section 9.2.1: let us choose the vertical X5 coordinate to be non-compact
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and then compactify it with an asymmetric action,

a: (01, 02, 03, 04, X5 , 06 ) - (-01, -02, -03, -04, X5, 06 ) (9.2.63)

(1 (01, 2, 63, 04,x5, 06 ) - (-O, -02 63, 64, -X5, -06 ) (9.2.64)

/2: (01, 02, 03, 04,x5, 06 ) (- ( 1 --2,0 3, 04, L - X5, -06 ) x (-1)F(9.2.65)

This realizes the example as an asymmetric orbifold. The Type IIA spectrum is

computed in Appendix 9.12. It has KV 1 supersymmetry with a gravity multiplet,

16 vector multiplets and 71 chiral multiplets.

The theory is consistent since decorating D 4 singularities with (-1 )FL does not

destroy modular invariance. In the Green-Schwarz formalism, adding (-I)FL changes

the boundary conditions for the four complex left-moving fermionic coordinates as

D 4 : (++ -- ) -+ D4 x (-1)FL : (--++) (9.2.66)

Hence, the energy of the twisted sector ground state does not change and thus level-

matching is satisfied [225]. In the RNS formalism, (-I)FL does not act on the world-

sheet fields and therefore the moding does not change. However, the left-moving

GSO projection changes and various generalized discrete torsion signs show up in

the twisted sectors as discussed in the Appendices. (See also related literature [15,

139].) For Abelian orbifolds, one-loop modular invariance implies higher loop modular

invariance [225]. Here we are actually considering a non-Abelian orbifold10 for which

level-matching is not sufficient for consistency. Further constraints may arise if a

modular transformation takes a pair of commuting group elements (g, h) into their

own conjugacy class [101],

(g, h) - (gahb gchd) = (pgp 1 , php- 1 ) (9.2.67)

where a, b, c and d are the elements of an SL(2, Z) matrix. In this case, the path

integral with boundary conditions (g, h) and (pgp- 1 , php- 1 ) for the torus world-

10... since x '-4 -x and x F-> L - x do not commute.
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sheet should give the saii( result. Since we only consider D 4 singularities, the

twists of world-sheet ferniion by orb)ifold group elements do commute and thus non-

commutativity can only come from the action on the bosons. However, left-moving

and right-moving bosons are t reated symmetrically and thus we do not get any further

constraints. Therefore, one expects this model to be modular invariant. Moreover,

this theory has an alternative presentation as a (Z2)3 Abelian orbifold of T' as we

will see in Section 9.2.5.

The rest of the modified T 6/Z 2 x Z2 spaces (Figure 9-1) have asymmetric orbifold

descriptions as well. These are listed in Appendix 9.10. The modular invariance

argument of the previous paragraph applies to these as well. Some of the models are

dual to each other. This will be discussed in Section 9.2.5.

9.2.4 Joyce manifolds

In Section 9.1.4, we saw how a class of non-geometric spaces can be transformed

into geometric M-theory compactifications by U-duality. Naturally, one can try to

interpret existing G 2 spaces from the literature as "non-geometric" Type IIA string

theory vacua.

Let us denote the coordinates on R' (and T) by x1 , x 2 , x 3 (base), Y1, Y2, Y3, Y4

(fiber). The exceptional group G2 is the subgroup of GL(7, R) which preserves the

form

(p = dx1 A dy1 A dy2 + dx 2 A dy1 A dy3 + dx3 A dy2 A dy3 + dx 2 A dy2 A dy4

-dxa A dy1 A dy 4 - dx1 A dy3 A dy 4 - dx1 A dx 2 A dx3

It also preserves the orientation and the Euclidean metric on R7 and so it is a sub-

group of SO(7). In this section, we consider particular compact examples. Joyce

manifolds [158, 159] are (resolved) T7/(Z2) 3 orbifolds which preserve the calibration.
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We consider the following aii ion,

a (Xi, X2, x31 Y1- !2- Y3, Y4) e (Xi, -X2, -X3 I Y1, Y2, -Y3, -Y4)

13 (Xi, X2, X3 Y1 !2 Y3, Y4) - (-xi, X2, A1 - X3 Yi, -Y2, Y3, -Y4)

(X : 1z, X2, -X3| Y1 -2, -Y3, Y4) (A2 - x1, A3 -X2, Xa l -Yi, Y2, Ya, -Y4)

where Ai E {0, }}. Note that a 2 -2 =2 = 1 and a, 3 and -y commute. Some of

the choices of A = (A1, A2, A3) are equivalent to others by a change of coordinates.

Only shifts for the base coordinates are included since fiber shifts can't be realized by

a linear transformation. (We comment on this later in Section 9.2.6.) The blow-ups

of these spaces are described in [159, 160].

These orbifolds can be interpreted as non-geometric Type II backgrounds as fol-

lows. The T 4 fiber coordinates are already chosen to be {yj}. One needs to pick a

direction for the extra x10 circle. Theories that differ in this choice are T-dual to each

other. Then, whenever a generator contains a minus sign for the x10 circle, a (-1)FL

must be separated from its action. The geometric action is then given by inverting

the fiber signs (and omitting the extra circle). For instance, if y4 is the x10 circle,

then a will become

ao : (XI, X2, £3 l Y1, Y2, Y3) '-4 (XI, -X2, -1 l -Yi, -Y2, Y3) (9.2.68)

and this geometric action will be accompanied by (-I)FL.

In the following, we list the spaces of different shifts and discuss their singularity

structure.

SA= (0, 0, 0)

(i) Let us first consider the Z2 x Z2 orbifold generated by only a and 13. Then, by

identifying y4 with the extra x10 coordinate, we obtain the model in Figure 9-24.

This is U-dual to the pure geometry T 6 /Z 2 x Z2 by a yi - Y4 flip.

(ii) Let us now include -y. This gives the most singular example of Joyce man-

ifolds. The xi and y, coordinates parametrize the S3 base and the T 4 fiber,
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respectively. The (Z2)3 orbifold group is equally well generated by (a, 0, a3 -y).

It is important to note that the product ao3 does not act on t he base coordi-

nates. In principle, this could be interpreted as globally orbifolding" by (-1)FL.

However, this leads to problems similar to those in our earlier discussion in Sec-

tion 9.2.1.

It is also easy to see that U-duality does not work in this case". Compactifying

M-theory on a G 2 manifold gives K = 1 supersymmetry in 4d. However, the

above configuration in Type II has K = 2 supersymmetry13 , and therefore

cannot be equivalent to the M-theory configuration. Thus we will not discuss

this example any further.

" A = (0, 0, j) ~ (0, j, 0) ~ (1, 0, 0)

The extra identification by -y cuts the fundamental cell of T 6 /Z 2 x Z2 in half. The

resulting base is again an S 3 which can be constructed as shown in Figure 9-3.

The non-geometric space has the same monodromies as the model in Figure 9-25

that we already constructed by directly modifying the monodromies of T6 /Z 2 X

Z2.

" AZ= (0, i, 1) ~ (11,0, j) ~ (1, j,0)

Let us consider A = (0, j, j), as the others are equivalent by a coordinate

transformation. The action of a and /3 generate T6 /Z 2 x Z2 as usual. The

third Z2 is generated by y. It has a fixed edge which goes through two parallel

faces of the cube (see Figure 9-4). The base is again an S 3 . (The proof of this

statement goes roughly as that of T6 /Z 2 x Z2.)

"This interpretation would give T6 /Z 2 X Z2 in Type IIB. This is mirror to Type IIA on T6/Z2 x Z2
with discrete torsion turned on [227].

12The general fiber in a Lagrangian fibration on any symplectic manifold is a torus. However,
the general fiber for a coassociative G2 fibration is expected to be T4 or K3 [181]. The adiabatic
argument for U-duality only works for the T4 case [228, 212] which must be taken into account when
choosing the fiber coordinates.

13Although one of the gravitini is projected out by (-1)FL, it comes back in the twisted sector to
give extended supersymmetry.
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Figure 9-3: (i) Fundamental domain of the base after modding by Y: half of a rhombic
dodecahedron. The arrows show how the faces are identified. (ii) Schematic picture
indicating the structure of the degenerations.

(i) Let us first omit the action of -y. This gives a somewhat simpler space with

base depicted in Figure 9-5. It is the union of a truncated tetrahedron, plus a

small tetrahedron. This base can be obtained as the intersection of fundamental

domains of the two commuting Z2 actions. Both of these domains are S1 times

the square (with solid edges) depicted in Figure 8-2. The identification of the

faces and the schematic structure of the degenerations are shown in Figure 9-6.

(ii) Let us now include -y as well. The coordinate shifts in the Z2 actions make

sure that the fixed edges do not intersect. The structure of the base is shown

in Figure 9-7.
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Figure 9-4: (i)
picture.

Half of the fundamental domain after modding by 7. (ii) Schematic

Figure 9-5: The base of T6 /(Z2) 2 where the generators of Z2's include coordinate

shifts. Four non-intersecting D4 strings (dashed green lines in the middle of hexagons)

curve the space into an S3 . See the figure in Appendix 9.13 for a pattern that can be

cut out.

288



/
/

/ ,,

-A
~-1-~~~'

I I
I - -

I. 

-I

:~'

I,

Figure 9-6: (i) The base can be constructed by gluing the truncated tetrahedron
(dashed lines) to itself along with a small tetrahedron. It is easy to check that the
D 4 strings (solid lines) have 1800 deficit angle whereas the dashed lines are non-
singular. (ii) Schematic picture. The truncated tetrahedron example can roughly be
understood as four linked rings of D 4 singularities. All of the rings are penetrated by
two other rings which curve the space into a cylinder as they have tension 12. This
forces the string to come back to itself.

z

y

Figure 9-7: (i) The base of the (j, j, j) Joyce orbifold. There are six strings located on
the faces of a cube. These faces are folded up which generates the 180' deficit angles.
(ii) Schematic picture. The degenerations form three rings of D 4 singularities.
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9.2.5 Dualities between models

The two-plaquette model caii be realized as T'/Z2 X Z2 by the following orbifoMil

action14 ,

a: (01,0 2, 03. 04, 05, 06)

03: (01, 02, 03, 0 4, :s, )

(-01, -02, -03, -04,05,06)

- (-1, -02,03,04,-05,-06) x (-1 )FL

Performing a single T-duality on 06 turns # into

(01, 02, 03, 04 , X5 , 06 ) F-+ (-01, -02, 03, 04, -05, -06) (9.2.69)

and keeps a intact' 5 . We thus learn that Type IIA on the two-plaquette model is dual

to Type IIB on T 6 /Z 2 x Z2. The details of the spectrum computation is presented in

Appendix 9.11.

I I

Figure 9-8: Monodromies of the one-shift Joyce orbifold.

Another duality is provided by considering the A= (j,0,0) Joyce orbifold,

a : (Xi, x2, X3 Y, y2, Y3, y4) 1 ( i, -X 2, -X3  yi, Y2, -Y3, -Y4)

(X1, x2, s X3 YI, Y2, Y3, Y4) - ( -X1 , X2, - Y, -Y2, Y3, -Y4)

: (Xi, x2, x3 |Y1, Y2, Y3, y4) - ( -X, -X2, 3 -y, Y2, Y3, -Y4)

14 The action of a creates four parallel edges of the singular cube in the base. Then, 3 and a/3
generate 4 + 4 edges with (-1)FL. These give the two "red plaquettes" (see Figure 9-1).

is1n the T 2 fiber language, the duality exchanges r and p and therefore takes a D' singularity
into D 4.
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Tihe moiiodromies of the singularities in the base are shown i Figure 9-8 (see also

Figure 9-3). The action of (v and -y creates the usual cubic structure and /3 cuts the

cubec in half.

This G2 orbifold can be interpreted as a Type IIA backgrotnd in more than one

way depending on which coordinate we choose for the X") circle. As discussed in

the previous section, a minus sign in the x10 direction is interpreted as (-1)FL (this

interpretation is accompanied by an inversion of fiber signs). From Figure 9-8 it is

clear that x10 = Y2 or Y3 gives the one-plaquette model since in these cases 0 or a,

respectively, will contain (-1)FL. On the other hand, choosing xio = Yi or y4 gives

model "U". Since relabeling x10 is an element of the SL(4) T-duality group, these

backgrounds are T-dual to each other. The spectrum is computed in Appendix 9.12.
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9.2.6 U-duality and affine monodromies

For usual orbifolds, it is known that the untwisted sector contains information about

the singular space, whereas the twisted sectors describe resolutions (or deformations

[227, 103]) thereof. It is typically said that string theory "knows" about the non-

singular resolution and the number of the various particles are determined by the

Hodge numbers. Here we can see this happening in a more general setup. In M-

theory, the number of M = 1 vector and chiral multiplets are respectively determined

by the b2 and b3 Betti numbers of the G2-manifold. When U-duality works, one should

obtain the same massless spectrum from the asymmetric (non-geometric) orbifold of

Type IIA.

Joyce [158, 159] computed Betti numbers for blown-up T7/(Z 2 )3 examples. These

examples, however, contained 1/2 shifts also in directions that were interpreted as

fiber coordinates in the previous section16,

o : (x1, X2 , X3 Y1, Y2, Y3, y4) 1( X1, -X2, -X3 | Y1, Y2, -Y3, -Y4)

#: (Xi, x2, X3 Y1, Y2, Y3, y4) - ( -X1, X2, b2 -X 3 | Y, -Y2, Y3, bi -y4)

y: (Xi, x2, X3 |yi, Y2, Y3, y4) -( c - i, C3 - X2, X3 -Yi, Y2, 3, C1 - y4)

These shifts are recommended, otherwise one encounters "bad singularities" which

can't easily be resolved. If interpreted as a fibration, the monodromies acting on T'

are affine transformations which also include half-shifts for some of the fiber coor-

dinates. Although these orbifolds can readily be interpreted as non-geometric back-

grounds for Type IIA, the naive U-duality map does not necessarily work and the

spectrum does not match with that of M-theory.

In Appendix 9.13, we discuss the cases of two Joyce manifolds, with two and

three shifts (bi, b2 ,ci,c 3 ,c5 ) = (0, j j, 0, 0, 0) and (0, , , 1 , 0, 0). Naive U-duality

works well for the three shift example and one obtains the same spectrum from the

non-geometric compactification. However, the two shift example gives a different

spectrum from what we expect from the Betti numbers of the G2-manifold17 . The

16The notation bi and ci is from [159]. These constants should not be confused with the Betti
numbers.

7An ambiguity is immediately discovered by noticing that a redefinition the fiber coordinates
= y+1/ 4 changes the naive interpretation of (-1)FL as diag(-1, -1, -1, -- 1). The new monodromy
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puzzle can simply be resolved by choosing a different (coassociative) fiber. Taking

{ X1, x2 , 2 Y2 } for fiber coordinates, the Z2 transformations have no shifts in these

directions and the non-geometric Type IIA spectrum indeed matches the M-theory

spectrum.

9.3 Compactifications with En singularities

In this section, we list geometric orbifolds containing singularities other than D4 .

Non-geometric modifications of these orbifolds may be done similarly to the previous

section. For D4 singularities, the constant shape of the fiber can be arbitrary. The

main difference in the E, case is that the fiber shape is determined by the symmetry

group. In practice, this means that in two dimensions T = i or T = e

9.3.1 Orbifold limits of K3

Simple warm-up examples are provided by considering T 4/Z" orbifolds. These have

been analyzed from the F-theory point of view in [66].

The T4 /Z 3 orbifold. The action of the generator of the orbifold group is given by

a : (z1 , z2 ) -* (ei/ 3 zi, e-/ 3z 2) (9.3.70)

which respects the torus identifications

zi ~ zi + 1 ~ zi + eix/ 3  (9.3.71)

The base is T 2 /Z 3 and can be parametrized by zi. It contains three E6 singularities

action for (-l)FL will now include 1/2 shifts in the fiber. In some cases, this ambiguity can be
exploited to match the IIA and M-theory spectra.
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of deficit angle 47r/3. The monh-(iomy around these are given by

M l :,, =(S T )2 -( (9.3.72)

A fundamental cell is shown in Figure 9-9.

Figure 9-9: The base of the T 4 /Z 3 orbifold contains three E6 singularities.

The T4 /Z 4 orbifold. The generator of Z4 is given by

a: (zlz 2) v- (izi, -iz2) (9.3.73)

with the torus identifications

zr - z + 1 ~ Zi + i (9.3.74)

The base is T 2/Z 4 . This orbifold contains two E7 and one D4 singularity. They have

deficit angles 3-r/2 and -r, respectively. The E7 and D4 monodromies are given by

ME7 S = MD4 ( (9-3.75)

A fundamental cell is shown in Figure 9-10.

The T4 /Z 6 orbifold. The base is T 2 /Z. This orbifold contains E8, E6 and D4
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Figure 9-10: The base of the T 4 /Z 4 orbifold contains two E7 and one D4 singularities.

singularities. The Es monodromy is given by

ME8 ST= ( (9.3.76)-1,

A fundamental cell is shown in Figure 9-11.

' D4 D E

Figure 9-11: The base of the T 4 /Z 6 orbifold contains E8 , E6 and D4 singularities.
The three black dots denote one non-singular point.

9.3.2 Example: T6/Z 3

We continue by discussing three dimensional examples. The simplest one is T 6 /Z 3 -

This is created by orbifolding the square T6 by cyclic permutations of (complex)

coordinates

(9.3.77)
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Clearly, this action preserves the holomorphic volume form,

Q = dzi A dz 2 A dz 3
(9.3.78)

and the Kahler form

w = Z dzi A dZi (9.3.79)

Let us now choose the real parts of zi for the base coordinates. Before orbifolding,

the base is a cube as shown in Figure 9-12. The fixed loci of a are at zi = Z2 = Z3

that is along a diagonal. The cube has a Z3 symmetry about this diagonal, and thus

the orbifolding procedure respects the torus identifications.

Figure 9-12: The base of T6 /Z 3. The green line shows the E 6 singularity. Six triangles

bound the domain. Two triangles touching the singular green line are identified by

folding. Two triangles should be identified according to the orientation given by the

arrows. The remaining two triangles are identified in a similar fashion.

Since Z3 C SU(2), this example preserves M = 4 supersymmetry in four dimen-

sions. By making the identifications of the bounding triangles, one can check that

the only singularity is E6. It is along the diagonal which gives a closed loop in the

base. Since there are no other gravitating strings to curve the space, this is a good

sign that the space factorizes. In particular, we do not expect it to be an S 3.
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9.3.3 Example: T6/A 1 2

A more complicated example is gained by orbifolling T6 / (2) 2 by the above described

cyclic permutations. These permutations do not commute with the sign flips and

together they give A12 C SU(3). This group has the faithful representation described

by the following matrices (see [112], and also [35. 124. 85]) which act on the (zi, z2 , z3)

complex coordinates

(-1)P 0 0 0 0 (-1)P 0 (-1)P 0

0 (-1)q 0 (-1)q 0 0 0 0 (-1)q

0 0 (-1)p+q 0 (-1)p+q 0 (-1)p+q 0 0

(9.3.80)

It can be generated by two elements.

a : (zi, z2, z3) - (z2, z3, z1)

# : (Zi, Z2, Z3) (-zi, -z2, Za)

The fundamental domain is shown in Figure 9-13. There are two E6 and four D 4

singularities in the base. They meet in E6 -E6-D 4 and D4-D 4-D 4 vertices. The solid

angle around these vertices are 7r/3 and 7r, respectively. The base is topologically an

S 3.

9.3.4 Example: T6/( 2 )2 X Z

Another example is obtained from T6 / (2) 2 by further orbifolding it by Z4. This is

possible because the rhombic dodecahedron has fourfold symmetry axes. These are

the axes of the green cube in Figure 8-5.

The resulting base is shown in Figure 9-14. There is one E7 line which is topo-

logically a circle. In contrast to the T 6/Z 3 example, this happens because the other

D4 singularities curve the base and make this contractible loop a geodesic. The base

only contains familiar D4-D 4-D 4 vertices.
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Figure 9-13: (i) The base of T6 /A 12 . The red and green lines indicate E6 , D4 singular-
ities, respectively. The other edges are non-singular. The solid green cube indicates
the D 4 singularities of the original T6 / ( 2 )2 orbifold. (ii) Schematic picture describ-
ing the topology of the singular lines. See Appendix 9.14 for building this polyhedron
at home.

9.3.5 Example: T6/A 24

Our final example can be constructed by first taking T'. Its base is a cube with

opposite faces identified. We now place E7 singularities on the twelve edges of the

cube. We also add diagonal E6 singularities as in Section 9.3.3. These are realized

by the following matrices which act on (zi, z2 , z3 ) complex coordinates

0 1 0 0 -1 0

oE6= 0 0 1 3E7 = 1 0 0 (9.3-81)

1 0 0 0 0 1

These generate the A24 group. Compared to A 12, it also contains odd permutations

of the coordinates. Since odd permutations come with an odd number of minus signs,

the volume form is again invariant.

In Figure 9-15, the resulting base is shown. The green cube around the base is

1/8 or the original base of T6 . The faces should be folded as indicated by the arrows.

The rear faces touching E 6 should be also folded. This gives an S3 with curvature
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Figure 9-14: (i) The base of T6 /(Z2) 2 x Z4. The red and green lines indicate E7 , D4
singularities, respectively. The other edges are non-singular. The solid green cube
indicates the D4 singularities of the original T 6/(Z2) 2 orbifold. (ii) Schematic picture
describing the topology of the singular lines.

concentrated in the singular lines (see the right-hand side of the figure). The base

contains two types of composite vertices. One is an intersection of E7 , E6 and D4

edges. The other one comes from the collision of an E7 and two D 4 singularities.

9.3.6 Non-geometric modifications

Having discussed the geometric structure of the fibrations with exceptional singulari-

ties, we can try to modify them into non-geometric spaces. Similarly to the examples

in Section 9.2.2, closed loops of D4, E7 and E8 singularities 18 may be decorated with

the action of (-1)FL. For example, E8 = ( 1 ) G ( 1 0 ) with (-1)FL has the
same monodromy as a composite of A2 =( _ _ and a D (which acts on the

other T 2 C T 4 ). The tension four A2 and the tension six D4 give the original deficit

angle of the tension ten E8 (see 8.2.2 for the Kodaira classification of singularities).

The simplest example is to add (-1)FL to the D4 and one of the E7 singularities

of the T 4/Z 4 orbifold (Figure 9-10), or instead decorate both E7 singularities. The

T 4/Z 6 orbifold (Figure 9-11) can similarly be modified by adding (-I)FL to the D4

18Since the monodromy of E 6 is an order three modular transformation, adding a sign would make
it order six.
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Figure 9-15: (i) The base of T6 /A 24 . The cyan, red and green lines indicate E7, E6

and D4 singularities, respectively. (ii) Schematic picture describing the topology of

the singular lines.

and the E8 singularities. By performing a single T-duality in the fiber, the T 4 /Z4

monodromies can be changed to act on SL(2), instead of SL(2),. The resulting Type

IIB theory has a D' = D 4 x (-)FL and two E' singularities. The E' corresponds to

a double T-duality and thus the background is globally non-geometric, even though

it has a geometric dual.

Turning to the three dimensional examples, (-i)FL can be added to the D 4 loop of

T'/,A2 as shown in Figure 9-16. This is obtained by orbifolding the last example in

Figure 9-1. The D4 loops or the E7 loop of T6 /( 2) 2 X Z4 can similarly be modified.

An example is shown in Figure 9-17 where a single D4 has been changed into D4

corresponding to the first example of Figure 9-1. A single T-duality on the geometric

T'/ 2)2 x Z4 gives Type IIB with a circle of E7' and thus the dual background is

non-geometric. T 6/A 24 can similarly be modified (Figure 9-18).

These spaces can serve as perturbative string backgrounds. The consistency of

these vacua, however, needs further investigation.
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Figure 9-16: Non-geometric T6/A 12. The red lines indicate extra (-l)FL factors.

E7

D D4

Figure 9-17: Non-geometric T 6/ (2) 2 X Z4.

9.4 Chiral Scherk-Schwarz reduction

In previous sections, we studied non-geometric spaces mainly by using a (-i)FL mon-

odromy around singular loci in the base. Another possibility is to have this transfor-

mation in the fiber as a Wilson line. Fields still do not depend on the fiber coordinates,

and in this sense this is a (chiral) Scherk-Schwarz reduction.

9.4.1 One dimension

Let us consider Type IIA compactified on a circle with (-I)FL Wilson line. This will

be a one-dimensional fiber. The configuration breaks half of the supersymmetry keep-

ing sixteen right-moving supercharges. In M-theory, (-I)FL is described as reflection

of x". Hence, the background lifts to M-theory as compactification on a Klein bottle

[65].

An important feature of the background that one can try to exploit in the con-

struction of non-geometric spaces is that T-duality on the circle takes Type IIA to

301



E7 ( 1 )L

Figure 9-18: Non-geometric T6 /A 24.

IIA (not IIB as usual) [123, 137, 9]. Although the duality switches between the

SO(8) spinor and conjugate spinor representations in the right-moving sector, it also

exchanges the untwisted and twisted R/NS sectors [137]. Therefore, when the circle

decompactifies, the two massless 10d gravitini have different chiralities and thus the

theory is still Type IIA.

At self-dual radius, the bosonic string has additional massless states and one

obtains the gauge group SU(2) x SU(2). In Type II strings, these extra states are

destroyed by the GSO projection and one is left with U(1) x U(1) only. With the above

Wilson line, however, an extended SU(2) x U(1) gauge symmetry is obtained. In the

effective theory, T-duality is part of the SU(2) gauge group and thus a T-duality

monodromy can be regarded as a Wilson line.

A simple two-dimensional non-geometric space is obtained by compactifying on

another base circle with a monodromy that is a T-duality on the fiber circle. The

consistency of this model has to be further investigated.

9.4.2 Two dimensions

These ideas can be generalized by considering T' compactifications and turning on a

(-1)FL Wilson line. This still preserves half of the supersymmetry. In order to glue

spaces, only those monodromies can be considered which preserve Wilson lines, that

is the "spin structure" of the T' fiber. Therefore, the perturbative duality group will

be a proper subgroup of O(n, n, Z).

In the following, we consider the simplest examples where the base is taken to be
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two dimensional and is parametrized by the complex coordinate z. The shape of the

two-torus fiber is described by the T complex parameter. We take the Wilson line1 9 to

be along the real direction denoted by x'. Theii. along this coordinate axis, a single

T-duality is possible. Applying the Buscher rules, this duality is mirror symmetry for

the two-torus fiber.

Let us denote the components of an arbitrary SL(2, Z) element M by

M=( b) ad-bc= 1 (9.4.82)
=(c d

Geometric transformations must preserve the (-,+) spin structure. If (x, y) C Z2

denotes the homotopy class of a one-cycle, then this constraint is equivalent to

(-1)x = (-1)ax+ (9.4.83)

that is

(a - 1)x + by = 0 (mod 2) (9.4.84)

Since y is arbitrary, b must be even. Then, det M 1 forces a (and d) to be odd and

the above equation is satisfied. Therefore, the geometric part of the duality group is

the Fo(2) C SL(2) congruence subgroup of index three. A maximal subgroup of it is

F(2) that contains matrices with even off-diagonal elements. Fo(2) can be generated

by F(2) and the TST- 1 transformation which exchanges two cycles in the fiber. Its

fundamental domain is shown in Figure 9-19. The full duality group contains another

copy of Fo(2) for p, and a single T-duality along x9.

A geometric K3 fibration 20 with such restricted transformations can be described

19The case of Wilson lines turned on for both fiber circles is the same since a modular T trans-
formation converts the (-, -) spin structure into (-, +).

20 This K3 fibration has been used in the literature ([36], see also [40]) to describe F-theory duals of
8d CHL strings [55, 56]. Nine dimensional CHL strings are defined by taking E 8 x E8 heterotic strings
and orbifolding by a Z2 action which shifts the ninth coordinate and interchanges the two E 8 factors.
For a recent study of the moduli space of nine dimensional theories with sixteen supercharges, see

[9].
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Figure 9-19: Fundamental domain (gray area) for the action of the Fo(2) on the upper
half-plane.

by [36]

y2 + X4 + X2W 2f 4 (z) + W4g9(Z) = 0 (9.4.85)

where (x, y, w) E CP12,2, 1 and f4, g8 are holomorphic sections of degree 4 and 8, re-

spectively. The j-function is given by

. (f42_+_12g)
3(T) = (f 4 + 4g8 )2  (9.4.86)

1089g8(-f42 +4982

The discriminant of the elliptic fibration vanishes generically at 16 points out of

which 8 are double zeros. The moduli space is ten dimensional, in contrast to the 18

dimensional space of the cubic Weierstrass equation.

As explained in Appendix 9.7 of [36], the types of possible degenerations are A,

D, and E7. The K3 geometry can reach the T4/Z 2 orbifold limit where four D4

singularities close the base into an S 2. The orbifold is then generated by

a : (Xi, x 2 |Y1,Y 2) - ( 1 , -X 2 | -Y1, -Y2)

#: (XI, X2|Y1, Y2) X I, X2| Y1, + Y2)

with 3 containing (-1)F. This is the same theory as the asymmetric orbifold limit

of the 12 + 12' model of [138]. The anomaly free M = 1 6d spectrum contains a
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supergravity multiplet, nine tensor multiplets, eight vector multiplets and twenty

hypermultiplets. The strong coupling limit is M-theory on a Z2 orbifold2 1

(K3 x Sl)/{o - (y -+ -y)} (9.4.88)

where y E [0, 1) is the S' coordinate and o is an involution on K3 that acts with eight

fixed points. It preserves twelve of the harmonic (1, 1) forms and changes the sign of

the other eight harmonic (1, 1) forms. The spectrum computation [213] matches that

of the asymmetric orbifold.

The resolved 12 + 12' model used a doubly elliptic Weierstrass fibration over an

S2 base,

y2 3 + p4 (z)x + q6 (z) #2 _ ;3 + P4 (z)z -;- + 6 (z) (9.4.89)

The constants in the polynomials give a 19 dimensional moduli space. In the above

orbifold limit, the complex base coordinate includes Y2 (which has the Wilson line).

The Fo(2) construction resolves the orbifold in a different 'frame': it chooses a different

set of base coordinates, namely x1 and x2. It presumably slices out a different subspace

in the full moduli space of the model.

Finally, T-duality along the x9 circle can also be considered. The T(z) and p(z)

sections can be described by considering a doubly elliptic fibration over the base. In

[138], the fiber tori were independent and thus T(z) and p(z) were unrelated. For the

present configuration with a Wilson line, however, a single T-duality can exchange

them and result in more complicated non-geometric spaces. The construction of such

backgrounds is left for future work.

21This is to be compared with the CHL string in six dimensions which is dual [40] to M-theory on

(K3 x S)/ {o- - (y -+ y + 1/2)} (9.4.87)

by utilizing the heterotic-Type II duality [233].

305



9.5 Conclusions

A perturbative vacuum of string theory is specified by a conformal field theory on

the worldsheet. Only in special cases will the CFT have a geometric description.

Such cases include flat space, Calabi-Yau and flux compact ificat ions, which have

been studied in great detail. The development of a more systematic understanding of

the set of consistent string vacua will inevitably require the study of non-geometric

compactifications.

String dualities allow for the construction of string vacua that are locally geometric

but not necessarily manifolds globally. Using this idea, we have constructed non-

geometric compactifications preserving K = 1 supersymmetry in four dimensions.

In the two dimensional case, the Weierstrass equation with holomorphic coefficients

solves the equation of motion and allows for sharing the Z4 and Z6 orbifold points

which is necessary for SU(2) holonomy. Since an appropriate generalization of the

Weierstrass equation was not at our disposal, we were only able to describe such

spaces at the asymmetric orbifold point in their moduli space. A strong motivation

for departing the flat-base limit is that it presumably generates a non-trivial potential

for the overall volume modulus. Note that for D 4 singularities, the size of the fiber is

an arbitrary free parameter which (typically) runs to large volume.

Although our explicit examples were all orbifolds, in principle, it is possible to

build non-orbifold examples by means of D 4 and E. singularities. Since the base in

this case is flat, it could be obtained by gluing various polyhedra along their faces.

By carefully choosing the dihedral angles of the building blocks, one can create the

appropriate deficit angles for the edges. However, it is not easy to satisfy the con-

straints on monodromies coming from supersymmetry and the constructions quickly

get complicated. A good step in this direction would be to find a good basis of build-

ing blocks which suffice even to reconstruct the orbifold examples. By the relation

discussed in Section 9.1.4, such spaces would presumably give new examples of G2

manifolds.

In Appendix 9.12, Type IIA string theory has been compactified in a non-geometric
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way oii the -one-shift" T 7/(Z 2)3 orbifold down to four dimlensions. The massless spec-

trurn is equivalent to that of the M-theory compactification on a particular resolution

of this orbifold with (b2 , b3 ) = (16, 71). The orbifold has, however, numerous other

resolutions with very different Betti numbers [160]. It would be interesting to see

whether these other resolutions arise in Type IIA by the introduction of discrete

torsion (and possibly NS5-branes).

In t he other direction, we have seen that a general T 3 fibration with SO(3, 3, Z)

T-duality monodromies has a globally geometric M-theory dual. This is striking given

the difficulty of describing such creatures from the string theory point of view. More

generic constructions with SL(5) monodromies presumably have no duality frame

where they are globally geometric.

We have focussed on compactifications where the monodromy group was a sub-

group of the perturbative duality group. There is no obstacle in principle to the ex-

tension of the monodromy group to include the full SL(5) U-duality group2 2 . In this

manner one can extend these techniques to include in the compactification Ramond-

Ramond fields, D-branes and orientifolds, and presumably to find vacua with no

massless scalars. In Appendices 9.8 and 9.9 we build confidence that such objects can

be treated consistently in the semiflat approximation by rederiving from this view-

point the Hanany-Witten brane-creation effect and the duality between M-theory on

T 5 /Z 2 and type IIB on K3. Although we studied vacua of Type II string theory,

the discussion can be applied to heterotic strings as well where the duality group

0(16 + d, d) is much larger [90].

Another interesting direction is the study of leaving the large complex structure

limit. Our special flat-base examples had a worldsheet description as modular invari-

ant asymmetric orbifolds. However, in the generic case, this powerful tool is missing.

Any available tools, such as the gauged linear sigma model [232], should be brought

to bear on this problem.

In [113] it is proved for the T 2-fibered case that a solution in the semiflat approx-

imation determines an exact solution. While the power of holomorphy is lacking in

22 An early attempt to geometrize such examples was made in [176].
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the T3-fibered case, the physical motivation for this statement [138] remains. The

idea is that the violations of the semiflat approximation are localized in the base, and

we have a microscopic description of the degenerat ions, as D-branes or NS-branes or

as parts of well-understood CY manifolds or orbifolds or U-duality images of these

things.

It is expected that the singular edges in the base transform into ribbon graphs

as we move away from the semi-flat limit [157, 195]. It seems possible that one can

construct local (in the base) invariants of the fibration which give 'NUT charges'

[150]. These invariants, which are analogous to the number of seven-branes in the

stringy cosmic strings construction, appear in the [217] mirror-symmetry-covariant

superpotential.

9.6 Appendix: Flat-torus reduction of type HA to

seven dimensions

The following discussion is based on [188]. Let us consider the action for the massless

NS-NS fields of type II strings (in any number of dimensions)

S = dx f dy - e-- [R(') + dn - ftVpfnkP]. (9.6.90)jJ~~ -~. g 12 (..0

The x coordinates label so-far-noncompact directions, and y are coordinates on a

Td. We want to reduce the theory and eliminate the y coordinates. Let p, v,... and

a, /3... label the corresponding indices. Taking the following ansitze,

(gv + AAy At N
g = (9.6.91)

AVQ Gap3

< : -log det Gp F(1) " := A" - a (9.6.92)

Hyp0 :=HSyn0 - AHSav0 -H AO (9.6.93)
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one obtains the following ternis after reduction

S = dxov- e - (9.6.94)

with L = L1 + L2 + 3 + 4 and

1= R + a"p8p (9.6.95)
1

L2 = -(a8G,0"G0" - G"G 68,BQ,8IB)3b) (9.6.96)
4

£C = - 9iI9qVA(GQ F3F("' 3 + GcaH,,,aH,,,) (9.6.97)

1
L4 = HtvpHA"? (9.6.98)

12

In order to see the SO(d, d, Z) symmetry, one introduces the 2d x 2d matrix

G-1 G-1B

BG-1 G - BG-1B

This symmetric matrix is in SO(d, d), that is

MT 7M = T1
0

1 2x2

12x2)

(9.6.99)

(9.6.100)

M is positive definite which can be seen as follows.

properties of M imply that the eigenvalues are present

MV = AV- M(,q6) = A-1(n6)

First notice that the above

with their reciprocals,

(9.6.101)

Let us now turn off the B-field. The eigenvalues of M(B = 0) are simply the eigenval-

ues of G and the reciprocals: Ai and 1/Ai, all positive. As we turn on the B-field, we

do not expect any singularities in the eigenvalues since M is quadratic in B. Therefore

the eigenvalues remain positive.

Let us introduce

Htv = ,1 Bv0 - avBv, =: F (9.6.102)
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we can collect the field strength in the following SO(d, d) vector

F_ := V1 a (9.6.103)

With these ingredients. one can explicitly see the SO(3, 3) invariance of the La-

grangian. 41 is trivially invariant. The kinetic terms can be written as

1
£2 = -Tr(8,M-1 8"M) (9.6.104)

8

Also,

13 = 4P,,(M-1)gFP'i (9.6.105)

which is invariant. Since H,,, does not change under the duality group, L4 is also

invariant.

9.7 Appendix: Semi-flat vs. exact solutions

In this section we compare the exact supergravity solutions to the semi-flat descrip-

tion. We study the approximation through the example of an NS5-brane. NS5-branes

are parametrically heavier than D-branes23 and they curve spacetime even to zeroth

approximation.

Semi-flat approximation. In order for the semi-flat machinery to work, we need

to compactify the transverse space. The transverse space is now a two-torus fiber

over a complex z-plane. The NS5-brane can be described by a p 1- p + 1 monodromy

around a singular point in the z-plane. This can be achieved by the following solution

[113]
1

p(z) ~ log(z) (9.7.106)
27rz

23D-branes have a tension TDp-brane 9/gs(1s)P+1 where g is the string coupling and i, is the
string length. On the other hand, NS5-branes have tension TNS5-brane = 1/(9s)2()6 which is much
larger at weak coupling.
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As we approach the brane (Izi --+ 0), the torus fiber decompactifies,

Vfiber ~ P2 -log z| (9.7.107)

Since the eight dimensional dilaton can be set to constant [1381, the ten dimensional

dilaton is (Appendix 9.6)24
1

2p= -log det GO (9.7.108)
2

that is

e2W = Vfiber (9.7.109)

and the dilaton grows near the origin25.

Exact NS5 solution. If xm are transverse to the NS5-brane and xz' are tangent to

it, then the exact non-compact classical solution in the string frame is given by (see

[203], page 183)

Gmn = e 2,p mn GV = AV (9.7.110)

1
Hmn = -mnp~q(# e 2 2772r 2  (9.7.111)

where r 2 = (Xm) 2 . The geometry has an infinite throat: the origin x" = 0 is at

infinite distance and the angular S 3 approaches an asymptotic constant size. In the

Einstein frame (Gn"stei" = e- / 2 Gstjn), the singularity is at finite distance. There

is a growing dilaton in the throat and string perturbation theory eventually breaks

down. At infinity, the metric asymptotes to flat space.

In order to derive the semi-flat solution from the exact one, we need to compactify

the latter on a two-torus. In the covering space, this amounts to placing an infinite

number of NS5-branes in a 2d lattice A in the 4d transverse space. For sake of

simplicity, we take this to be a square lattice. Since the branes are BPS, the solution

24There is a slight change of variables compared to Appendix 9.6 which includes <p -+ 2<p.
25The Kshler potential for such 2d semi-flat solutions can be computed and is given in [113, 186].
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comes from simple superposition 26

e 2 (x) - ep + 2w2  1 ( 12 -e1 +2 (9.7.112)

(n,m)EA

where x and Xn,m are four-vectors, the latter one denoting the positions of the lattice

points parametrized by two integers n and m.

If we neglect distances smaller than the lattice spacing, then we obtain

(z,z) e2 (oo) + - 1 (9.7.113)
72 zn2+ M2 42+ M2

n,m

where we introduced a complex z coordinate perpendicular to the 2d lattice. This is

the base coordinate. This expression can now be compared to the semi-flat solution.

If we denote r = Izi, then taking the derivative w.r.t r gives for the semi-flat solution

0, e2 semiflat =Or Vfiber '- 1 (9.7.114)
r

For our expression,

1 2r 2r 1
8, e dz,2) = ~ - dr d--2 2 (9.7.115)

22 1r2+ n2 + m2 2 + 2 + v r
n,m

where we approximated the sum by an integral. Thus, we reproduced the semi-flat

dilaton from the exact one.

Although the semi-flat approximation reproduces the qualitative features of the

exact solution, due to the partially compactified transverse space, we have to deal with

another problem. The function (9.7.106) is valid only close to the brane. A semi-flat

solution that extends to the entire complex plane may be given by means of the j-

function. This solution suffers from the problem of orbifold points as we described in

Section 8.2.2 and it is not possible to describe a single NS5-brane consistently. The

26 Note that the sum was made convergent by subtracting an infinite constant. For two dimensional
lattices, this constant does not depend on x. This is the same trick that one uses in the definition
of Weierstrass's elliptic function. Elliptic functions have been generalized to higher dimensions (see
[207] and references therein, [136]).
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exact solution avoids this problem by roughlv speaking going to the limit very close

to the brane (in the z-plane) compared to i he size of the fiber. Hence, any possible

orbifold points are pushed to an infinite disi aiice (in the base) and thus are invisible.

example potential
flat space V(i) =

Taub-NUT V(y) = 1 +

Eguchi-Hanson V (7) = ifI +

Table 9.2: Some well-known examples for the Gibbons-Hawking ansatz.

The Gibbons-Hawking ansatz. A perhaps more visual comparison of the semi-flat

and exact metrics is possible through the aiisatz 27,

ds 2 = V(i)dz 2 + V(z) 1 (dt + A- dX) 2  (9.7.116)

where A is given through V x A = VV. This defines a circle fibration over a three

dimensional base parametrized by Y. A semi-flat solution for a degenerating fiber is

given through
1

(z) log(z) (9.7.117)
27ri

This corresponds to [199]
1

V = 2= log zJ (9.7.118)
27r

1
AX = 1= log(z/z) AZ = 0 As = 0 (9.7.119)

47ri

where the 3d j? space has been decomposed into (x, z, ). This gives a singular metric

which is translationally invariant in the x direction.

The exact non-singular hyper-Kshler metric is not translationally invariant, but

periodic.
1 11

V = -- ErI)-+I + const. (9.7.120)
A=-r (OX - n)2 + zz |n

In Figure 9-20 (i), red dots indicate where this potential is singular. An S 3 (the

27Every 4d hyper-K~ihler metric with a (triholomorphic) Killing vector can be written in this form
[108].
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semiflat exact FT ,
xI

z-plane z-plane

Figure 9-20: (i) Comparing semi-flat and exact metrics for around degenerating fibers.

The base is 3d, parametrized by the periodic x coordinate and the complex z-plane.

The red line / red dots indicate where the S' fiber vanishes. Translational invariance

of the semi-flat solution is replaced by periodicity of the exact metric in the x direction.

(ii) The same (exact) metric from a different viewpoint. The horizontal direction in

the torus fiber is the x coordinate. The torus pinches at the degeneration point (red

dot) in the 2d base. Topologically, the singular fiber is an S2 with two points glued

together. This replaces the degenerating T2 -+ oo torus of the semi-flat solution.

"throat") close to such a degeneration point can be seen as a Hopf-fibration with

fiber t above the S2 surrounding the singularity. On the right-hand side of Figure 9-

20, we see again the SYZ-like fibration with a two-torus fiber above the complex

plane. The torus fiber degenerates into a "pillow" 28 above a codimension two locus.

It is possible to glue an approximate K3 metric from 24 such patches. For details,

see [116]. A more conventional way to obtain a smooth approximate metric is to start

with the singular T 4 /Z 2 orbifold and blow up the 16 fixed points. This is possible by

cutting out a small neighborhood (whose boundary is homeomorphic to RP'3) around

the fixed point and gluing there an Eguchi-Hanson space. This is the unique smooth

hyper-Kshler metric which asymptotes to C2 /Z 2.

28 ToTus was the Latin word for a torus-shaped cushion.
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9.8 Appendix: The Hanany-Witten effect from the

semiflat approximation

The Hanany-Witten effect [134] is an interesting phenomenon of brane creation. It

can be used to construct brane configurations that realize four dimensional M = 1

supersymmetric gauge theories [78] which exhibit Seiberg duality. This duality relates

two different gauge theories which give the same infrared physics [211]. In string

theory, it is realized in a very geometric way: as the branes move around, new branes

appear which can change the rank of the gauge group in the 4d theory29

The Hanany-Witten setup co tains D4-branes stretched between NS5-branes in

the presence of D6-branes. The D6, D4 and NS5 are magnetically charged under

CM), C and B, respectively. The branes that we are going to use have the following

orientations

0 1 2 314 5 617 8 9
NS5 x x x x x x
D6 x x x x x x x
D4 x x x x x

Table 9.3: Branes in the Hanany-Witten setup. 456 are the base, 789 are the fiber
coordinates.

Let us now consider an NS5-brane and a D6-brane as in the left-hand side of

Figure 9-21. As the two branes pass though each other, a new brane is created. In

order to verify that it is indeed a D4-brane, we need to determine its monodromy.

Ramond-Ramond charges (C7, 08, 9, C789) transform in the dual fundamental rep-

resentation of SL(4), which means that we have to use the transposed monodromy

matrices.

2 9 See related works [166, 200, 235, 77, 82, 173, 53, 24, 86, 33, 94, 132] and references therein.
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Figure 9-21:

A 1A~3-
/

Hanany-Witten brane creation mechanism. A and B are the mon-
odromies of the NS5- and D6-branes, respectively. As the two branes pass through
each other, a new brane appears with a monodromy around the green circle (see right-
hand side). This monodromy can be easily computed in the original configuration
(left-hand side) where the green path was a deformed loop around the two branes.
The result is ABA- 1 B-' which is simply the monodromy of a D4-brane.

The NS5 monodromy,

A = MNS5 =

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

(9.8.121)

and the D6 monodromy3 0

B : C9 -- C + 1 (9.8.122)

From these ingredients, we need to determine the monodromy along the green

loop in the left-hand side of Figure 9-21. A moment's thought will convince the

reader that it is the (group-theoretic) commutator, ABA- 1 B-1 . This is best seen by

choosing "branch cut planes" that start from the branes and studying how the green

loop intersects these (see Figure 9-22).

Finally, the commutator can be computed

ABA- 1B- 1 : 0789 " 0789 + I (9.8.123)

3 0The D4- and D6-brane monodromies can be realized linearly if we include the x1 M-theory
circle in the discussion.
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NS5
D)

B'

Figure 9-22:
brainch cuts.

Determining the monodromy around the green loop by means of 2d

which is the monodromy of a D4-brane.

31A similar observation about monodromies has recently been made by 't Hooft in [221]
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9.9 Appendix: Type IIA on T 5 /Z 2 and Type IIB

on S' x K3

Type IIA string theory on T 5 /Z 2 has been conjectured to be equivalent to Type IIB

on S1 x K3 [234, 67]. We study this equivalence by means of the semi-flat machinery.

The IIA orientifold T 5 /Z 2 is generated by the action a - Q that reverses the sign

of all the circles32,

a : (x 5 z, x6 7 x 8, x9) X (x 5 , -x,6 - x --x9 ) (9.9.124)

and changes the parity of the world-sheet. There are 32 D4-branes located at the

fixed points which cancel the RR tadpoles.

We cast the geometry in a fibration structure as follows. The 2d base coordinates

will be x' and x. Since a inverts these coordinates, the base becomes T 2 /Z 2 , i.e. a

semi-flat S2. Over this sphere there is a T 3 fiber parametrized by x 7, x 8 and x9 . The

fiber degenerates at four points in the base. These singularities have a deficit angle

of 1800 (tension six, like D4 ). The monodromy around the singular points in the base

is then

M = R7s9 - Q (9.9.125)

where R, is reflection of the i-th coordinate, Q is the world-sheet parity transforma-

tion. This monodromy already includes the monodromies of eight D4-branes which

cancel the RR-charges of the 04-plane. This is analogous to the orientifold limit of

F-theory where the 07-plane monodromy is

M 0 7 - = -T- 4  with T = MD7-brane (9.9.126)
(0 1)

which combines with the monodromy of the four D7-branes (T 4) to cancel the RR-

32An Op-plane has charge 2P- 5  and is generated by the action of{R9_ ifp=O,1 (mod 4)
R 9 _,Q(-l)FL if p = 2,3 (mod 4).
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charge. The final monodromy matrix is then diagonal.

T3 (x7 x1x 9)

x x

x x
2

S (xx)

Figure 9-23: T5/Z 2 as a fibration over S2 . The geometric T3 fiber gets promoted to
T5 by adding x10 and the M-theory circle x. The monodromy M then acts on this
T .

What is M explicitly? Type JIB orientifolds at strong coupling can be described

by F-theory. As already mentioned in Section 9.1.4, the torus fiber of F-theory is

analogous to the x"1 -xi0 coordinates in our case. Therefore, perturbative dualities are

not sufficient for determining the monodromy around the orientifold fixed points and

the x"l coordinate should be included in the discussion. In the following, we determine

the 5 x 5 U-duality monodromy matrices in the basis of x7 - X- X- x - x10 .

Reflection has an immediate interpretation in the vector representation of SO(3, 3).

Since inversion of a coordinate exchanges the two spinors that have different chiral-

ity, only an even number of reflections give a symmetry of Type IIA. For instance,

reflection of both x7 and x8 can be represented by

R7 8 = diag(-1, -1, +1, -1, -1, +1) E SO(3,3) (9.9.127)

which inverts the momentum and the winding as well. It has the spinor representation

R78 = diag(-1, -1, +1, +1) E SL(4) (9.9.128)

Odd number of reflections must be accompanied with other internal symmetries.

However, we can still determine the corresponding monodromies, keeping in mind

that we have to combine them with other symmetries. The relevant reflection is that
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of X7 - x8 - X9 which gives

R 78 9 = (iag(-1, -1, -1, +1, -1) (9.9.129)

The inversion of x'0 comes about because the three coordinate reflections change the

sign of the Levi-Civita pseudotensor that we used to convert the three-form field into

a vector.

Let us consider the world-sheet parity transformation Q. In the Type IIA lan-

guage, under this transformation the metric, the dilaton and the Ramond-Ramond

one-form are even, whereas the B-field and the three-form are odd. In M-theory lan-

guage this means that the three-form switches sign. From this, one can determine

the Q monodromy to be

Q = ± diag(+1, +1, +1, +1, -1) (9.9.130)

In order to fix the overall sign, let us consider an 06 orientifold plane. It is obtained

by the action of R7 89 11 which reduces to (-1)FL QR789 in the IIA limit ([214], see also

[228, 161]).

Since (-1)FL changes the signs of the RR-fields, the corresponding monodromy is

easy to determine, 33

(9.9.131)

Since

R78911 = diag(-1, -1, -1, -1, +1) (9.9.132)

we obtain34

Q = diag(-1, -1, -1, -1, +1) (9.9.133)

From these ingredients we can now write down the explicit form of the monodromy

33This transformation effectively reflects the x1" coordinate. In principle there could be an overall
sign, but this can be fixed by remembering the SL(4) representation of (-l)FL which is simply

- 1 4x4-
34This reflects the well-known fact that conjugation by S-duality takes (-1)FL to Q in Type IIB.
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in the T5/Z 2 orientifold of Type IIA,

M = R7s9 - Q = diag(+1, +1, +1, -1, -1) (9.9.134)

where we immediately recognize the monodromy of a (conjugate) D 4 singularity

M = U diag(-1, -1, +1, +1, +1) U-1 (9.9.135)

Therefore by flipping x7 - x" and x8 - , we obtain Type IIA on K3.35 The volume

of the T 2 fiber is the inverse of the volume of the original T3 fiber,

vol(T 2) = RtRg = Rn1 R 10 = R1
R7R8R9Rn

1 _ 1

R7 RsR9 vol(T 3)

Here we used the fact that the T5 torus has unit volume in appropriate units.

Finally, by T-dualizing the spectator x' (Rg = 1/R 9 ), we arrive at the final

equivalence,

Type IIA on T 5/Z 2 orientifold " Type IIB on K3 x S' (9.9.137)

3 5For the weak coupling limit where Type IIA is defined, we need R- 1 = R 7 -4 0.
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9.10 Appendix: List of asymmetric orbifolds

In this Appendix, we list the asymmetric orbifold aW TionS that realize the almost

non-geometric spaces of Section 9.2.2. The one-plagiw te example was described in

Section 9.2.3. We use the following trick [138]: soiie of the compact dimensions are

"unfolded" and compactified back with an asymmetric action. The complexity of the

model depends on how many dimensions have to be unfolded.

Two-plaquette model

Yz X
ZZZZ

Z X

Figure 9-24: Almost non-geometric T'/Z2 X Z2 Which is also a Joyce orbifold. It is
T-dual to T 6/Z2 X Z2-

a : (61,62 6, 4,6AB) (-61,7-02, -03,--04,05,6)

# : (61, 2, 63, 4,065A6) - (--61, -2, 63, 4, -6, -- 6) X (-I)FL
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Model "U"

Figure 9-25: This modified T 6 /Z 2 x Z2 is also a Joyce manifold.

a : (61, 2, 03, 04, X 5 i 6) - (-01, -02, 03 -0~4,X 5 , 06) X (-)FL

71 :(O1, 2, 63, 4, X5, 6) (O1, 62, ~3, -O4,~--X5i -~6) X (-I)Ft

Y2 :(01, 02, 03, 04, x5, 06) -* (61, 02, -03, -O, L - x5 , -06)

Model "L"

ai:(Xi,162,703,704,iX5,06) '- (-zli,-62, -63, -4, zs, 6) X (-I FL

a2 : (xi,02,03,04,z,066) F-+ (L-Xi,-0 2,-0 3,-0 4,iX,0 6)

Y1 : (xi,02,03 ,04,X 5, 6) F-4 (X1,02 ,-03,-04,-X5,-06) X (-1)FL

'Y2 :(x 1, 02, 03, 04, 5, 6) '-4 (X1, 02, ~03 04, L - X, -06)
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Model "X"
ai (i,02,X3,04,X5, 6)

a2: (Xi, 02, X3,04, X5, a

as: (Xi, 02, X3, 04, X5,66)

a4 :(X1, 02, X3, 04, X5, 06)

e1 (1, 02, X3, 04, X, 06)

(-x - , 01 3, 04 X5, 06)

(L -X I-Oi-X3 -OX5,O) XFL

(-XI1 -02, L - X3, -04, X5, 06) X

(L - 1 -02 L - X3, -04, 25,06)

(XI, 02, L - 3, -04, , -06) F

( , -02, - ~3, 04, L - 5i, 06) X ( )FL

(Xi, 02, L - 3, - 04, L - '5 -06)
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9.11 Appendix: Spectrum of T6//Z 2 x Z2 and the

two-plaquette model

For comparison and as a warm-up exercise, in this Appendix we review the details

of the computation of massless spectra for T 6 /Z 2 X Z2 [227] and for its T-dual, the

two-plaquette model. We will work in the RNS formalism. The compactification

preserves A = 2 supersymmetry in four dimensions. The K = 2 multiplets are listed

in the Table 9.4.

hypermultiplet 2 fermions, 4 scalars
vector multiplet vector, 2 fermions, 2 scalars

supergravity multiplet graviton, 2 gravitini, vector

Table 9.4: Massless K = 2 multiplets in four dimensions (Weyl fermions and real
scalars).

The massless spectrum of T 6/Z 2 x Z2

e untwisted sector

The spectrum contains the states that are invariant under the orbifold projec-

tion. Each of the orbifold group generators invert four spacetime coordinates.

The action should also be specified on the fermions. We use the following con-

vention36,

a (, x,0) 13: (-7r, 0, 7r) a# : (0, -7r, 7r) (9.11.138)

The action of these elements on the states are summarized in the following

table,

These states combine into 1 supergravity multiplet, 3 vector multiplets and 4

hypermultiplets according to Table 9.4.

36 Other conventions give the same spectrum but preserve different supercharges.
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Table 9.5: Untwisted NS and R sectors. In the R sector, only the spins of compact

complex dimensions are indicated. The remaining one is determined by the GSO
projection as indicated by the ",so" label. This depends on whether it's the left or
right R sector.

Table 9.6: Untwisted sectors. The signs show the matter GSO projection (which, due

to the superghost contributions, differ from the full GSO in the NS sectors).
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sector state a, 3, a charge
NS _ 2 0; k) +++

)-_1 20; k) - -+

_ 6, 2 10; k) + -

-1_'8 1 0; k) + - -

R so +++), Igso - ) ++

so++), so -+) + - -

|so ++), gso - +) + -

so+), |so - ++) -- +

sector fields
NS_/NS_ Gm, Bt, dilaton, 12 real scalars
NS-/R+ gravitino, 7 Weyl fermions
R_/NS_ gravitino, 7 Weyl fermions
R_ /R+ 4 vectors, 4 cx. scalars



* twisted sectors

Fliere are 16 + 16 + 16 = 48 fixed tori under a, 0 and a,4. The zero-point

energies vanish and both NS and R sectors have zero modes in the twisted and

unthwisted directions, respectively.

sector state a, /, a/ charge

NS I..++) -i,i,1

R gso+. . ) i, i, 1
|so -. . ) -i, i, 1

Table 9.7: (a3)-twisted NS and R sectors. The other twisted sectors are analogous.
The dots indicate half-integer moded oscillators which generate massive states.

Table 9.8: Each twisted sector gives an N = 2 vector multiplet.

These states give 48 vector multiplets".

Vertex operators are local with respect to the eight supercharges

e-<p/ 2e(Ho±H1)± (H2+H3+H4) (9.11.139)

e-g/ 2 -(Ho±H1)±(H2±H3+H4) (9.11.140)

In K = 2 language, this gives altogether one supergravity, 51 vector and 4 hyper-

multiplets. This is consistent with the expectations that Type IIA compactified on a

Calabi-Yau should result in h1'1 = 51 vector multiplets and h2 ,1 + 1 = 4 hypermulti-

plets [227].
3 1f we take Type IIB instead, then we get complex scalars in the R-R sectors which then combine

into 48 hypermultiplets. Turning on discrete torsion has the same effect: in each twisted sector it
changes the sign of projection for the other two non-trivial group elements of Z2 X Z 2 . For example,
in the (a)-twisted sector, the surviving R-R states must be even under a3 (as in the case without
torsion), but odd under the o and # transformations.
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sector fields
NS+/NS+ cx. scalar
NS+/R- Weyl fermion

R+/NS+ Weyl fermion
R+/R_ vector



In NK= 1 language, a hyper is two chirals, a vector is a vector+chiral, and the

supergravity multiplet is a gravity + gravitino multiplet as seen from Table 9.9.

Therefore, we obtain a gravity, a gravitino, 51 vector and 59 chiral multiplets.

chiral multiplet fermion, 2 scalars
vector multiplet vector, fermion

gravitino multiplet gravitino, vector
gravity multiplet graviton, gravitino

Table 9.9: Massless Af = 1 multiplets in four dimensions (Weyl fermions and real

scalars).

The massless spectrum of the two-plaquette model. The theory is described

in Section 9.2.2 (see Figure 9-1 for the singularity structure). As discussed in Section

9.2.5, Type IIA on this background is T-dual to Type JIB on ordinary T 6 /Z 2 x Z2 -

As a further exercise, we compute the spectrum. The theory is defined as a Z2 X Z2

orbifold generated by a and #, similarly to the previous section. In this case, however,

a includes the action of (-1)FL. In the RNS formalism, (-I)FL does not act directly

on the worldsheet fields. It changes the sign of the left-moving spin-fields and hence

acts as charge conjugation on RR-fields. The GSO projection is switched in left-

moving sectors twisted by R - (-1)FL compared to sectors twisted by R only. (Here

R inverts four spacetime coordinates.) This can be deduced using the equivalence of

the RNS and Green-Schwarz formalisms. In the latter description, (-1)FL changes

the sign of the 0' left-moving world-sheet spinor fields in the light-cone gauge (for a

review, see e.g. [62]).

We again need to impose GSO and orbifold invariance. In the twisted sectors, an

ambiguity arises: one can keep even or odd states under the action of a certain Z2

generator. The choices are constrained by modular invariance. The signs are shown

in Table 9.10.

The signs on the diagonal are directly related to the coloring of the edges (Figure 9-

1). Perhaps the off-diagonal signs can be encoded in faces of the SYZ graph.

By the logic of Section 9.2.5, successive T-dualities attach 2 x 2 blocks of minus

signs to Table 9.10. T-duality on a T3 then produces Table 9.11 which is precisely
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a-twisted 3-twisted a/3-twisted
P0  - +±

PO + + +
P1O +

Table 9.10: Signs of projections in various twisted sectors.

the choice of discrete torsion identified by [227] in the mirror of T6 /Z 2 x Z2 (see also

[103, 70]).

a-twisted -twisted ao-twisted
Pa + -

P 3  - +-
pOl +

Table 9.11: Assignment of signs for discrete torsion.

* untwisted sector: Same result as untwisted T 6 /Z 2 x 22.

* / twisted sectors

There are 16 fixed tori under /. The zero-point energies vanish and the GSO

projection is the same as that of the T 6 /Z 2 x Z2 twisted sectors. In particular,

we have +/+ in the NS/NS sector and +/- in the R/R sector. The orbifold

projection preserves a even and /3 even states. Due to (-1)FL, a and a# have

an extra minus sign in the left R sector. The left and right states combine to

give 16 hypermultiplets.

sector state a, 3, a/3 charge
NS .-+ .+) i, 1, i

. --) -i, 1, -iRleft |+ .+.) i,1i

Rright -.. ) -i, 1, -i

|+ .-_._ ) i, 1, i

Table 9.12: /3-twisted NS and R sectors.
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* a and a,3 twisted sectors

There are 16+16 fixed tori under the two group elements. The GSO projectioni

is +/- in the NS/NS sect or and -/- in the R/R sector. The orbifold projection

preserves a odd and /3 even states, i.e. the twisted-sector vacuum has a-charge

(-1). These twisted sect ors give 16 + 16 = 32 hypermultiplets.
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Table 9.13: (a/3)-twisted NS and R sectors.

Altogether we obtain a gravity multiplet, 52 hypermultiplets and 3 vector multi-

plets. Thus, the counting reproduces the massless spectrum of Type IIB on T6 /Z 2 x

Z2.

9.12 Appendix: Spectrum of the one-plaquette model

The background is flat space divided by

a: (01,0 2, 03, 04, 05, 06) (-01, -02,-03,-04, +05, +06)

#1 : (01, 02, 03, 04, 05, 06) - (-01, -02, +03, +04, -05, -06)

#2 : (01, 02, 03, 04, 05, 06) (-01, -02, +03, +04, - 05, -06) x (-)FL

This gives AN = 1 supersymmetry as we will see. Note that 32 -#1 defines a (-1)FL

Wilson-line for the 05 base coordinate 38 . The signs of the projection in the twisted

sectors we employ are given in Table 9.14. They are motivated by the logic of the

previous example.

9 untwisted sector

We need to carry out a projection on the invariant subspace. On the left NS

states, (-l)FL acts trivially. Therefore, the NS/NS and NS/R sectors are the

same as those of T6 /Z 2 x 22.
38For generic circle radius, the resulting states are massive however. Massless states arise from

the sector of zero momentum and winding. For further details, the reader is referred to [137].
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Table 9.14: Assignment of phases for the twisted sectors (columns). Dots indicate

signs that do not affect the spectrum calculation. The group elements that are not

listed here have no non-trivial fixed loci.

The R/NS and R/R sectors on the other hand do not contribute anything

because there is no massless state invariant under both 1 and /2. In particular,

this means that half of the gravitini are projected out compared to T'/Z2 x Z2.

We will see that no extra gravitini arise in the twisted sectors and hence only

K = 1 supersymmetry is preserved in four dimensions. The fields combine into

a gravity multiplet and seven chiral multiplets.

Table 9.15: Untwisted closed sectors.

* a twisted sectors

There are 16 fixed tori. Zero point energies vanish both in the NS and R

sectors. These states give 16 chiral multiplets. The R/R and R/NS sectors do

not contribute because no states are invariant under both 01 and #2.

* #1, ao 1 twisted sectors

There are 8 + 8 invariant fixed tori, respectively, because /32 permutes them in

pairs. Zero point energies vanish both in the NS and R sectors. Each fixed

locus gives an K = 2 vector multiplet, so in K = 1 language we obtain 16
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a 01 32 a3 1  (f32

PO + + + + +

P 1  + + - +
Ff32  + . - . -

Pool1  + + +

P0 2 + . - . -

sector fields
NS_/NS_ GA, B,,,, dilaton, 12 real scalars
NS_/R+ gravitino, 7 Weyl fermions
R_/NS_
R_/ R+



Table 9.16: a-twisted sector: a chiral multiplet.

chiral multiplets and 16 vector multiplets.

Table 9.17: Twisted sector: a vector and a chiral multiplet.

e #2, a02 twisted sectors

These 8 + 8 sectors contain a twist by (- 1)FL . The GSO projection is switched

for all the left-moving states. Zero point energies still vanish as moding is not

affected by (-1)FL. These states give 32 chiral multiplets.

Table 9.18: Twisted sectors that include (-1)FL: two chiral multiplets. The left-
moving GSO projections are modified compared to the usual twisted sectors.

The other orbifold group elements have no fixed points. Vertex operators are local

with respect to four right-moving supercharges,

e-g/ 2 !(Ho±H1)± !(H 2 +H 3+H 4) (9.12.141)
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sector fields
NS+/NS+ cx. scalar
NS+/R- Wevl fermion

R+/NS+
R+/ R_

sector fields
NS+/NS+ cx. scalar
NS+/R_ Weyl fermion
R+/NS+ Weyl fermion
R+/R_ vector

sector fields
NS_/NS+ cx. scalar
NS_/R_ Weyl fermion
R_/NS+ Weyl fermion
R_/R_ cx. scalar



Finally, we obtain an M = 1 gravity initiplet, 16 vector multiplets and 71 chiral

multiplets. It would be good to explicitly check modular invariance of the partition

function for this example.

9.13 Appendix: Spectra of Joyce orbifolds

In this Appendix, we describe the spectra of two seven dimensional Joyce manifolds

interpreted as non-geometric Type IIA compactifications down to four dimensions.

The T 7/(Z 2 )3 orbifolds are generated by the following involutions,

a: (xi, x2 , x3 |y, Y2 , Y3, y4) -1 ( X, -X 2 , -X3 Yi, Y2, -Y3, -Y4)

: (xi, x2, x3 |yi, Y2, Y3, y4) -+( -XI, X2, b2 - X3  Yi, -Y2, Y3, bi - y 4)

7 : (X1, x2, X3 Y 1, y2, Y3, y4) - ( C5 - X1, C3 - X2, X3 -yi, Y2, Y3, Ci - y4)

where bi, b2, c1, c3 , c5 C {0, }} are constants. Note that a 2 
=32 = _y2 = 1 and a, #

and -y commute. The action preserves the G2-structure

<p = dx1 A dy1 A dy2 + dx2 A dy 1 A dy3 + dx 3 A dy2 A dy3 + dx 2 A dy2 A dy4

-dx 3 A dy1 A dy4 - dx 1 A dy3 A dy4 - dx1 A dx 2 A dX3

The notation is the same as that of [159], but we reshuffled the coordinates to distin-

guish between base and fiber directions.

Example with three shifts: (bi, b2 , c1, c3, c5) = (0, -, 1, 1, 0, 0)

This is Example 3 in [159]. The Betti numbers are computed to be b2 = 12, b3

43. Therefore when M-theory is compactified on this manifold, 12 vector multiplets

and 43 chiral multiplets are obtained. In order to compute the U-dual Type IIA

spectrum, we first need to choose the x10 direction. This can be chosen to be yi since

none of the Z2 actions contain a shift in this direction. However, y inverts yi and thus

(-l)FL must be separated from this transformation. This means that the geometric

action on T' has inverted fiber coordinates for -y,

ao : (xI, x 2, x 3 Y2, Y3, Y4) 1 ( X, -x 2, -x 3  Y Y2, Y3, -Y4)

30 : (x, x2, X3 y2, Y3, Y4) - ( X, X2, X - 3  - Y2, Y3, -Y4)

YO : (xi, x2, x3 |y2, Y3, Y4) - ( -x 1 , -x 2 , X3 | -Y2, -Y3, + y4) x (-)FL
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The base and fiber coordinates nicely pair up. The orbifold group preserves tlie

volume form of T' whose real part is obtained from <p. The untwisted sector con-

tributes a gravity multiplet and seven chiral multiplets similarly to the non-geometric

T'/Z2 x Z2 in Appendix 9.11. Twisted sectors arise at the fixed T 2 tori of ao, 130 and

03 -yo. On the set of fixed loci for an element say ao, the other two group elements (3o

and #o'yo) act freely by permuting the tori. Therefore, we obtain 4 + 4 + 4 two-tori

each giving a vector and three chiral multiplets. This gives altogether 12 vector and

43 chiral multiplets which matches the U-dual M-theory result39 .

Table 9.19: Twisted sectors for (bi, b2 , ci, c 3,c5 ) = (0,2, j, j, 0,0) give a vector and
three chiral multiplets.

Example with two shifts: (bi, b2 , ci, c3, c5 ) = (0, j j 0, 0, 0)

This is Example 4 in [159]. The Betti numbers are b2 = 8 + 1, b3 = 47 - 1 where

1 C (0,. .. , 8}. The non-trivial elements with fixed loci are a, 3 and -y. These fix

48 copies of T 3 . The group (, y) permutes the 16 three-tori fixed by a, and (a, -y)

permutes the tori fixed by /. These give 4 + 4 copies of T 3. However, the action

of the element a# is trivial on the tori fixed by -y. Therefore, we obtain 8 copies of

T 3/Z 2 . There are two topologically distinct ways to resolve each of these singularities

and the choice of 1 distinguishes between the various cases.

Similarly to the previous example, we can try to interpret this G 2 space as a Type

IIA background

ao :(x1, x2, x3 |y2, Y3, Y4) - ( i X2, -X3 Y2, -Y3, -Y4)

,30 (X1, x 2 , X3 y 2 , Y 3 , y 4 ) - ( -X 1 , X2, 1/2- x 3  -Y2, Y3, -Y4)

xo 1 , X2 , X3|Y2, Y3, Y4) -* ( ~1, -X 2 , X3 -Y2, -Y3, 1/ 2 + Y4) X (-1)FL

where -yo also includes the action of (-1)FL . The untwisted sector again gives a gravity

3 9This may be a coincidence since there was a half-shift in the fiber.
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sector fields
NS/NS 2 cx. scalars
NS/R 2 Weyl fermions
R/NS 2 Weyl fermions
R/R vector, cx. scalar



multiplet and seven chiral multiplets. The non-trivial elements ao, #o, aoTo and /3 yo

give twisted sectors with aiissless fields. Taking into account the permutations by

other group elemiits. on and Jo give 4 + 4 T 2 tori. These sectors each contribute a

vector and three ciiral iiltiplets.

Let us now consider the sectors that contain a twist by (-1)FL. As opposed to the

seven dimensional interpretation where one obtained 8 copies of T 3 /Z 2, here the 16+

16 two-tori fixed by aoy}o and f30oyo are permuted by the other group elements which

gives 8 copies of T2 . Since each of them gives a vector and three chiral multiplets,

the spectrum does not match that of the M-theory compactification.

What went wrong? Since the monodromies contained a 1/2 shift, there is an

ambiguity in the definition of (-i)FL. This can be seen by redefining the coordinates

y + 1 which adds half-shifts for the fiber coordinates for the action of (-1)FL.

The resulting monodromy is an affine transformation. We do not know how to fix

this ambiguity in the general case.

By separating the T' coordinates into xi and yj, we have chosen a coassociative

four-cycle for the fiber (i.e. Plfiber = 0). The terms in the flat G2-structure o basically

tell us which coordinate triples can be chosen for base coordinates. Out of (7) = 35

choices, there are precisely seven for which the T 4 fiber is coassociative. For some

of the choices, however, an element of the (Z2 )3 group would be interpreted as an

overall orbifolding by (-1)FL in which case U-duality does not work. For example,

if we choose x1 , yi and Y2 for the base coordinates, then a inverts the four fiber

coordinates everywhere and the local model as T4 over a base breaks down.

In the case of the three-shift example, the puzzle with the fiber shifts can be

avoided if instead of xi, we take x 3 , Yi and y4 for base coordinates. Then, there will be

no shifts in the fiber and we expect a perfect agreement with the M-theory spectrum.

Picking Y3 for the xrn coordinate, the generators have the following interpretation in

Type IIA,

ao (X3 , Y1, Y4 | 1, x2, Y2) - ( -X 3 , y1, -y4 | -xi, X2, -Y2) X (-1)FL

)o (X3 , Y1, Y4 |x1, x2, y2) ( X - 3 , Yi, -Y4 -X 1 , X2, -Y2)

^o (X3 , y1, Y4 X1, 2, Y2) X ( 3, -Yi, 2 Y4 -X 1 , -x2, Y2)
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Twisted sectors come from ao, #0 and Yo. Similarly to the M-theory case, 130 and -yo

contributes 4 + 4 fixed T 2 . The ao-twisted sector gives 8 T 2/Z 2 and thus this Type

IIA spectrum indeed reproduces the U-dual M-theory spectrum.

Another representation of the same model is possible by noticing that a# defines

a (-1)FL Wilson line for the x3 fiber coordinate. Using this Wilson line, we are left

with two generators,

00 (x 2 ,y 2,Y4 |1XX 3,Y1) ( X2, -Y2 -Y4 -X1, -X3, Y1) X (-)FL

^YO : (X2, Y2, Y4|IX1, X3, Y1) - X--2, Y2, i -- Y4 ~X1, X3, ~Y1)

It is an example for chiral Scherk-Schwarz reduction (see Section 9.4).

Example with one shift: (bi, b2 , c1, c3 , c5 ) = (0, j, 0, 0, 0, 0)

For too few 1/2 shifts, the orbifold has "bad singularities" (intersecting fixed

loci) and the proper desingularization to a smooth G2 holonomy manifold is more

complicated [160]. These spaces can, however, still be embedded in string theory.

a'o :(X1, X2, X3 Y 2, Y3, Y4) X 1, -X2, -X3 Y 2, -Y3, -Y4)

00 (XI, x2,X3 y2, y3 ,Y4) - X ( x1, X2, -3 |-2, Y3, -Y4)

YO (Xi, X2 ,X3 |Y2 , Y3, Y4 ) - ( -Xi, -X2, 3 -Y2, -Y3, Y4) X ()FL

This background is dual to the one-plaquette model. Assuming that U-duality works,

the spectrum calculation of Appendix 9.12 is a prediction for the Betti numbers of

a resolution of this singular G 2 orbifold. Indeed, b2 = 16 and b3 = 71 is one of

the possibilities as discussed in Section 12.5 in [160]. Some of the many remaining

possibilities are presumably connected to this model by turning on discrete torsion

[103].
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