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Abstract

This thesis aims at better understanding of the tokamak pedestal, which is a defining

feature of the so-called "High Confinement Mode" or "H Mode" of tokamak operation.

This region is characterized by a drastic plasma density drop over a relatively short radial

distance, typically of order of the poloidal ion gyroradius (p,,). Experiments demonstrate

that H Mode plasmas have superior transport properties compared to other known

regimes, making them important for practical fusion energy generation. However, the

nature of this improvement is still poorly understood and this thesis provides key new

insights.

According to experiments and simulations, plasmas in a tokamak are turbulent and

therefore their physics can only be addressed with a formalism that retains short
perpendicular wavelengths such as gyrokinetics. To be applicable in the pedestal, the
formalism must also be capable of treating background scales as short as p, and

conveniently accounting for the effects of finite ion drift orbits whose size scales with p,,
as well. To this end, we develop a special version of gyrokinetics that employs canonical
angular momentum in place of the standard radial gyrokinetic variable. Using this

formalism to find the leading order ion distribution function we conclude that the

background ion temperature profile in the H Mode regime cannot have a steep p,, wide

pedestal similar to the one observed for the plasma density.



Having obtained this result, we next deduce that a strong electric field is inherently

present in a subsonic pedestal to sustain ion pressure balance, making the ExB drift enter

the leading order streaming operator in the kinetic equation. We proceed by analyzing

novel features that the existence of the pedestal introduces in collisionless zonal flow, the

dominant mechanism controlling the anomalous transport. In particular, we find that due

to the electric field modifying ion orbits, the zonal flow residual in the pedestal is

enhanced over its core value. This allows us to suggest a new scenario for the pedestal

formation.

Since the turbulence level is lowered, we are led to consider neoclassical mechanisms of

plasma transport by retaining collisions in our gyrokinetic equation. Then, we observe

that the ExB drift entering the gyrokinetic equation makes the neoclassical ion heat

conductivity sensitive to the pedestal electric field. Next, with the help of the same

technique we evaluate the neoclassical poloidal ion flow. Importantly, we predict that

once the equilibrium electric field goes beyond a certain value this flow changes its

direction. This result elucidates the discrepancy between the conventional banana regime

predictions and recent experimental measurements of the poloidal impurity flow

performed at Alcator C-Mod.
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1 Introduction

The focus of this thesis is in the physics of a tokamak, the most developed version of

fusion reactors employing magnetic confinement of plasmas. The idea of such a device

was initially proposed by Sakharov and Tamm in 1953

HMO and since then many experimental and theoretical

tokamak studies have been conducted. Along the way,

LMode a widely recognized break-through was the

r

Fig 1.1. Density profiles in H and L experimental discovery of the so-called High
modes

Confinement Mode or H Mode (1] in which energy

transport from plasma in the core of a tokamak is significantly reduced. The distinctive

feature of this regime as compared to the Low Confinement Mode or L Mode that had

been known before is the existence of the pedestal, the region in which plasma density

drops significantly over a relatively short radial scale length.

The most obvious advantage of the H Mode is higher plasma energy content. Indeed, as

shown on Fig 1.1, the area below the profile with a pedestal is greater than that below the

smoother L Mode curve. More importantly, it was observed that anomalous transport

becomes noticeably lower as a tokamak switches from L to H Mode. This transport is due

to the so-called drift wave turbulence that is inevitably present in any fusion reactor due

7
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to the enormous change between the core plasma temperature, which must be as high as a

million degrees to initiate the nuclear fusion reaction, and the reactor walls, which can

only tolerate plasma at about 1000C. Evidently, in H Mode such microturbulence is

well controlled and hence, understanding the mechanism of attaining and sustaining this

regime is crucial for practical fusion power generation.

A great number of studies are concerned with the mechanism of the L-H transition which

is still poorly understood. Here we instead concentrate on the physics of the pedestal

itself considering it as given. Such an approach, however, will allow us to make

reasonable conjectures about the formation of this region of a tokamak. In other words, in

this thesis we start with an existing steep density profile, such as sketched in Fig 1.1, and

then investigate the consequences. Then, having the self-consistent model of a pedestal in

hand we are able to speculate on a possible scenario for the L-H transition.

Theoretical modeling of the H Mode is complicated by existence of two different

background scales with the larger one relevant to core plasmas and the shorter to the

pedestal region. Therefore, for a formalism aiming at studying such a regime it is

desirable to encompass both of these scales in an uncoupled manner. Also, to address the

issue of turbulent transport the formalism must be capable of retaining perturbations with

wavelengths ranging from the ion Larmor radius to the size of a tokamak. To this end, we

have developed a special version of gyrokinetics , an approach that has been successfully



used for describing tokamak core plasmas [2-8], but is not conveniently applicable to

sharp density regions in its conventional form.

The original idea of using gyrokinetic variables was proposed by Catto in 1978 [9] who

suggested a new way of eliminating the fast Larmor motion scale from the kinetic

equation. The need for this elimination took on added importance once it became clear

that choosing the time step below the cyclotron period would make the computation time

unrealistically large. The technique that had been employed before then is called drift

kinetics and based on splitting the yet unknown distribution function into two pieces with

one evolving on the cyclotron period time scale and the other being slowly varying. The

key point of gyrokinetics is that we can conveniently retain the rapidly oscillating

dynamics by introducing a certain change of variables. While giving the same physical

results as drift kinetics in the case of perturbation wavelengths much greater than the ion

gyroradius, this new technique is more elegant and significantly reduces the amount of

analytical work in the process.

More importantly, the gyrokinetic formalism allows retaining the perturbations with

perpendicular wavelengths comparable to the ion gyroradius, a feature that drift kinetics

does not have. Hence, it soon became a vital instrument in turbulent studies. Nowadays, it

has been successfully implemented in codes such as GYRO [6] and GS2 [3] or GTC [5]

that are aimed at investigating the fusion relevant plasmas. In addition, its first

application in astrophysics has recently appeared [10].
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The distinctive feature of the gyrokinetic formalism developed in this thesis is employing

the canonical angular momentum in place of usual radial variable. Obviously, this choice

makes direct use of the axisymmetry of a tokamak. Furthermore, it naturally separates the

ion Larmor radius and poloidal gyroradius spatial scales, responsible for the classical and

neoclassical phenomena respectively, thereby conveniently allowing investigations of

these two groups of effects in a systematic manner.

When formulated in such a form, gyrokinetics gives important pedestal results in leading

order in the poloidal gyroradius expansion parameter. In particular, it suggests that in H

Mode the profile of the background ion temperature cannot have a radial scale as short as

the poloidal ion gyroradius scale of the plasma density, and so can only vary slowly

across the pedestal. By going to the next order, we are able to find the equation that

describes zonal flow and neoclassical collisional transport with both the fmite Larmor

radius (FLR) and finite drift orbit (neoclassical) effects retained. Putting aside the

classical FLR effects, we can then concentrate on novel features that these drift

phenomena acquire in the pedestal as compared to their well known core counterparts.

Zonal flow is a very common mechanism limiting the turbulence in dynamical systems. It

was revealed by drift wave turbulence simulations [4, 11-13] that in the core of a

tokamak the zonal flow drastically reduces anomalous transport near marginality by

shearing the so-called "turbulent eddies", thereby improving plasma confinement. Soon

10



after, a proper analytical treatment was performed by Rosenbluth and Hinton [14, 15]. In

particular, they found that the plasma shields or reduces the zonal flow by means of

neoclassical polarization, but that some fraction of it, the residual, survives.

In the pedestal, neoclassical orbits are modified due to the strong electric field inherent to

this region of a tokamak. Therefore, in this thesis we are led to substantially extend the

Rosenbluth and Hinton [14] calculation. By studying tokamak particle trajectories in the

presence of a strong external electric field and implementing the results in our

gyrokinetic formalism we find the pedestal zonal flow is qualitatively different from that

in the core. In particular, we demonstrate that for a steep enough density profile the

residual is enhanced. This feature in turn allows us to suggest a mechanism for the L-H

transition.

Once we realize that ion orbits in the pedestal are different from those in the core due to

the electric field, we have to revisit the conventional calculation of neoclassical transport

in the banana regime. To carry out this pedestal calculation in the most efficient way we

adopt the general framework used by Kovrizhnikh [16], Rosenbluth [17] and others

[16-20], along with our formalism that naturally accounts for the presence of background

electric field. Then, by introducing a special treatment of the collision operator, we obtain

an explicit expression for the neoclassical ion heat flux and parallel flow. Remarkably,

we find that in the pedestal the electric field is likely to change the direction of the latter

as compared to its core counterpart. This result elucidates the discrepancy between the

conventional banana regime predictions and recent experimental measurements of the

impurity flow performed at Alcator C-Mod [21].



In the three chapters to follow, each prefaced by a detailed introduction, we consecutively

discuss the preceding issues. Accordingly, in the next chapter we derive our special

version of gyrokinetics and demonstrate its first applications by clarifying the allowed

behavior of the background ion temperature profile in the pedestal. This chapter

culminates in deriving the equation for the perturbation of the distribution function that

contains both the neoclassical and zonal flow drives. In chapter 3 we proceed by using

this equation to see how the pedestal zonal flow is modified as compared to the

conventional core case. This result then allows us to suggest a model of pedestal

formation based on the turbulent transport picture. Finally, in chapter 4 we employ the

same equation to calculate the neoclassical banana regime ion flow and heat flux in the

pedestal. We then discuss the impact of the electric field modified ion flow on the

impurity measurements in C-Mod. Chapter 5 summarizes our findings and draws an

overall conclusion for the thesis.



2 Gyrokinetics and arbitrary poloidal gyroradius effects in

a tokamak pedestal

2.1 Introduction

Understanding tokamak pedestal physics [22-24] is one of the more crucial challenges

currently facing magnetic fusion science. A self-consistent, predictive description of this

region is necessary to understand the reason for improved confinement or H mode

operation [1] and to gain insight into the Greenwald density limit [25]. As the barrier

between the core and scrape-of-layer, the pedestal also helps control particle and heat

fluxes [26] to the first wall and divertor [27]. One of the many reasons that the pedestal

appears complicated is that the well known kinetic approaches [9, 20, 28-30] fail in the

presence of the strong plasma gradients associated with the pedestal [30, 31] as well as

internal transport barriers (ITB) [32, 33]. In these regions, as well as near the magnetic

axis [34, 35], finite ion orbit [29, 30], orbit squeezing [36], and even neutral [37-39]

effects on the pedestal may need to be addressed. To deal with the geometrical

complications associated with large drift departures from flux surfaces [40], a variation of

standard gyrokinetics [9, 41, 42] using the canonical angular momentum as the radial

variable is developed and applied. This alternate description is constructed to exactly

preserve conservation of canonical angular momentum and energy and is thereby able to

provide key insights into the behavior of the ions in regions with step gradients.



Canonical angular momentum has been employed as a variable in drift kinetic quasilinear

descriptions [43, 44], but we are not aware of it being used in gyrokinetic descriptions.

Gyrokinetics is a well established formalism capable of handling phenomena with high

perpendicular wavenumbers that is being successfully used for studies of turbulence in

tokamak core plasmas [2-8]. However, its application to steep gradient regions becomes

more transparent if an alternative analytical treatment involving canonical angular

momentum is employed. We focus on the development and insights provided by such an

electrostatic gyrokinetic formulation that explicitly makes use of the axisymmetric

magnetic field of a tokamak while allowing strong radial variation of the background ion

profiles so that barrier widths comparable to the poloidal ion gyroradius may be treated in

fully turbulent plasmas.

The technique we employ is a generalization of a standard linear gyrokinetic procedure

[45, 46] and its nonlinear counterpart that is used to consider the shortcomings of

gyrokinetic quasineutrality at long wavelengths [47]. By modifying these procedures we

construct nonlinear gyrokinetic variables to higher order than is typically done while

retaining finite poloidal ion gyroradius effects. The resulting fully nonlinear gyrokinetic

equation is not only valid for kp ~ 1, as any gyrokinetic approach would be, but also

due to our choice of canonical angular momentum as one of the variables, it is naturally

separable into departures from flux surfaces caused by neoclassical drifts and classical

finite Larmor radius (p) effects. This feature is what makes the analysis of the leading

14



order solution for the ion distribution function in a tokamak pedestal and an ITB (and

near the magnetic axis) intuitively easy to understand since it precisely retains the

isothermal limit [48]. In particular, it allows us to conclude that in the pedestal and an

ITB (and near the magnetic axis) the lowest order ion distribution function must be nearly

isothermal in the banana regime. As a result, an ion temperature pedestal or internal ion

heat transport barrier is not allowed in a tokamak operating in the banana regime.

Having this result, we go further to formulate the gyrokinetic equation for the next order

corrections to the ion distribution function. The relevant gyrokinetic equation obtained

consistently contains neoclassical effects [20, 28-30] and zonal flow phenomena [15, 49-

51] in the pedestal or an ITB along with the terms responsible for orbit squeezing [52]

and potato orbits [34, 35]. This gyrokinetic equation is also valid for zonal flow and

neoclassical studies in core tokamak plasmas since our full nonlinear gyrokinetic

equation with turbulence retained is constructed to smoothly connect to the core where it

remains valid.

The remainder of the chapter is organized as follows. In sections 2.2 - 2.3 we outline the

gyrokinetic procedure we use to derive the full nonlinear gyrokinetic equation and

discuss how it differs from standard nonlinear gyrokinetics [47, 53-56] including a

version developed especially for the edge [56]. The expressions for the gyrokinetic

variables we employ and the orderings under which they are obtained are given in brief in

sections 2.4 - 2.5 and in detail in appendices A - C. In section 2.6 the full nonlinear

15



gyrokinetic equation is derived and its main properties are discussed. An entropy

production analysis is employed in section 2.7 (with some details relegated to appendix

D) to obtain the most general form of the leading order solution for the ion distribution

function. Section 2.8 provides further insight into the physics of a pedestal or an ITB with

the help of pressure balance equations. The gyrokinetic equation for zonal flow and

neoclassical phenomena is presented in section 2.9. We close with a brief discussion of

the results in section 2.10.

2.2 Gyrokinetic procedure

An assumption that is a basis of the gyrokinetic procedure to be described is the slow

spatial variation of the equilibrium magnetic field. In particular, the background magnetic

field of interest is assumed to obey the ordering

6 = L- < 1, (2.1)
L

where L IV In (B) -1 and pi = vi/Rg with v 2T/M the ion thermal speed and

Qi = ZeB/Mc the ion cyclotron frequency. For simplicity, the magnetic field will be

also assumed constant in time so that electric field can be treated as electrostatic;

however, the slowly evolving induced electric field in a tokamak can easily be retained.

Consider the Vlasov operator written in terms of {F, F, t} variables:



d 0 - ^ Ze \
=-+ V -V + v x n - -HV > VV. (2.2)

Then, the evolution of the distribution function is given by

df = C{f }, (2.3)
dt

where C is the collision operator. Equation (2.3) includes the fast time scale associated

with the gyromotion of particles in the external magnetic field. Generally, in order to

remove this time scale an averaging over gyrophase (o) is performed. This, in turn,

requires switching to a new set of magnetic field aligned variables that includes the

gyrophase and then gyrophase averaging (2.3) written in terms of these variables. If the

new variables are denoted by { q1, .. .q5, }, then (2.3) transforms into

Of + _f dq, + 9 .. __5+ _ Cf

t + - +f dq (2.4)
Ot aq, dt Oq5 dt OV dt

The gyroaverage to be employed is defined as

(-) dp (2.5)

where the integration is performed holding the q 's fixed.

If the new variables are chosen so that ,... , do not depend on p the

averaging of the left side of (2.4) becomes particularly convenient. However, it is

difficult to find variables that possess this property exactly. Fortunately, the existence of

17



the small parameter (2.1) allows us to construct variables whose total time derivatives are

gyroindependent to the desired order in 6. The procedure follows.

d
We first choose a suitable set of initial variables {q 0),.. 0)} and apply the operator

to them as well as to o. Then, we extract the gyrodependent part of these total time

derivatives and define the corrections {q .. q6, (' } such that -q ) + ql) ) is

gyroindependent to next order, where q o) + g(1) is the improved variable. This

procedure employs the lowest order result

d ()

dt I

Thus, we can recover q1 ) by performing an integration over p as follows:

9 q () S±qo) - (do)

This results in q ' ~ 6q 0), thereby allowing us to determine the variables up to any
3 j

given order by repeating the steps above. What this procedure yields is a particularly

convenient set of gyrokinetic variables.

(2.6)

(2.7)

~ a- q(1).
19 i



Note, that by this procedure we only find the gyrodependent part of qj) that results in

the gyroindependency d(q 0) + q(1). Thus, we can arbitrarily choose

(q ~q)) if it is convenent. Generally, we will set (q) ) = 0, but sometimes a

clever choice of (q ' ) can further simplify (2.4). This freedom is what allows us to

define a magnetic moment variable that will be an adiabatic invariant order by order, as

will be demonstrated. Moreover, it is just the freedom needed to replace the regular radial

gyrokinetic variable with the canonical angular momentum.

2.3 An alternative to regular gyrokinetics

Often, the initial set of variables is chosen as [9, 45, 46, 53-56]

SV 
2

r-1+2 #(+) or v1; y'o

2
v-I

However, in the case of tokamaks it is convenient to make use of conservation of the

toroidal component of the canonical angular momentum. To do so we employ

p, Ze R (2.8)

as the radial variable. The other initial variables are chosen to be the poloidal angle 0, the

2

toroidal angle (, the magnetic moment -o, and the kinetic energy 2 . The gyrophase is

defined such that



S= v? ±+ ve( cosy + 82 sin) (.

where v - = Av2 -,2pB, n $/B,and B 2t .Also, e^ (r) and 82(-) are

orthogonal unit vectors in the plane perpendicular to B such that X 82 = 'h

2.4 Orderings

We desire to develop a formalism to handle both neoclassical (large spatial scale) and

turbulent (small spatial scale) phenomena. For this purpose we adopt the ordering used in

[34]. Basically, this ordering allows only weak variations along the magnetic field while

rapid perpendicular gradients are allowed for small amplitude fluctuations of the

potential. Mathematically, our orderings are expressed as

1
A -V ~ (2.10)

and

eI~pki 1
T kL'

(2.11)

where the subscript k denotes a Fourier component. Physically, (2.11) implies that the

E x B drift can be only of order 6th or smaller.

The distribution function f is ordered analogously to the potential by taking

(2.9)



fk 1~k , (2.12)

where the equilibrium solution f0 is assumed to have spatial scales of order L. These

orderings allow perturbations of the potential, density, and temperature with sharp

gradients, and are relevant to turbulence, zonal flow, and the pedestal, ITBs, and near the

magnetic axis in tokamaks.

In addition to the preceding orderings, we assume the characteristic frequency of the

turbulent behavior to be that of drift waves,

(2.13)

and allow the species collision frequency v to be of order of its transit frequency,

V , Vth
L'

(2.14)

where Vth is the species thermal speed and p is its Larmor radius.

2.5 Gyrokinetic variables for an axisymmetric magnetic field

We next briefly consider the explicit expressions for the gyrokinetic variables that result

from the procedure of Sec. 2 along with the orderings of section 4. Gyrokinetic variables

resulting from an initial variable q(O) will be denoted as q,, at each order. We perform the

w, ~ kip ,



calculation up to the second order in 6 starting from the initial variables given in section

3. Here we summarize the results correct up to the first order, with the details of the

derivation given in appendix A. Second order corrections and details of their derivation

are given in appendix B.

2.5.1 Spatial variables

Applying the gyrokinetic procedure to 60 = 0 and ( 0 (we find

,= +v x n-V0 V (2.15)

and

+ x -V(. (2.16)

No first order correction to the V)* of equation (2.8) is needed. Equations (2.15) and

(2.16) give the usual 0 and ( coordinates of the gyrocenter, while 0* labels the so-

called "drift surface" [20, 30]. The total time derivatives of the spatial variables to the

requisite order are given by

(2.17)

6, e (#,) = (v1 i* + Vd) - (V6) + , (2.18)

4, ~(0,) =c ,



where

Io 11 (o 11 -V()
B. (2. ( + ) - (V(). + ~ V -

+ - v 1v2

V xi + A x (fi - Vh) + n x VB,

= ( ') # , (,, E,

(2.19)

(2.20)

(2.21)

and I = RBt, with Bt the toroidal magnetic field and R the tokamak major radius. The

axisymmetric tokamak magnetic field is taken to be [30]

B = I()VC + V( x VV, (2.22)

so that 0, can be rewritten as

-x - V (2.23)

Also, in the preceding formulas and throughout the paper we use the following notation.

If a certain quantity is given in terms of initial variables by Q = Q (V, 0, , E, p, p), then

we define

Q, = Q (,,0,,(,, E,, y,<p(2.24)

For example,



v* = VE, - pB,. (2.25)

The difference between Q and Q, is of order 6Q and sometimes is unimportant. For

instance, in the last term in (2.18) we can replace vl by v* and still stay within the

required precision. However, in the first term of the same equation we must distinguish

between these two.

2.5.2 Energy

Applying the gyrokinetic procedure to EO v2/2 we find

v2  Ze -
E = + H , (2.26)

and to requisite order

Ze.O853 ? o I( Ze oqE ~( = M *(b. + 4 . + )/1+M E , (2.27)

where

# # - # . (2.28)

In (2.27) the expressions for @., 64, and (. are given by (2.17) - (2.19), and the small

8O5/8E. term is given by (B.21) and must be retained to ensure that total energy remains

an exact constant of the motion in the steady state.



2.5.3 Magnetic moment

The gyrokinetic procedure applied to yo = v2/2B gives

V -VM [ ( Ze- + (pi), (2.29)
1k B 4BQ~v( + MB (I1 2.9

where

VM = L x (h - Vi)+ -i x VB. (2.30)

As mentioned at the end of section 2, (i) can be chosen arbitrarily as long as

(pk ) - opto. For all the other variables we set the gyroindependent part of the correction

equal to zero (notice that 0,$ automatically retains a gyroindependent term). However, as

the magnetic moment is an adiabatic invariant [57], we show we can define (pi ) such

that (f, ) = 0 order by order. This feature is checked in the appendix C by choosing

2B(p V V x (2.31)

to find

(+i± )/1n ~ (2.32)



This choice allows us to neglect the Of/ap term in the gyrokinetic equation even with

kp - 1 potential fluctuations retained.

2.5.4 Gyrophase

For the ordering we employ, af/o = 0 to lowest order. As a result, for our purposes it

is adequate to use <p, = <p as defined by (2.9). Then, we find

V Z2e2 84
g, ~ ~ ~ 1 ~ h-2 -V x A + vn1 -V82 ' e1

2 2 M2c By

ZeI O#$
Mo1 a,

& ln B
Iv k =

(2.33)

The first order correction to the gyrophase is given in appendix A for completeness.

2.6 Electrostatic gyrokinetic equation

Having defined the gyrokinetic variables we can now insert them into (2.4) and

gyroaverage to find our full nonlinear gyrokinetic equation

+ 2-- = (C(),
0C, OE,

+ ,at 89, + 4, L +0,
(2.34)



where f (f ) and expressions (2.17) - (2.19) and (2.27) give , 0, ,,, and E, .Note

Ze-
that for E, defined by (2.27) the total energy E - E, + A 4 is exactly conserved by

the gyrokinetic Vlasov operator. Consequently, we can construct an exact solution to

(2.34) in the isothermal case in the same way as Catto and Hazeltine in [48].

To do so we observe that for a stationary and axisymmetric plasma any function of e and

, makes the left side of the equation exactly vanish. On the other hand, to make the

right side vanish f has to be Maxwellian as ion-ion collisions dominate over those

between ions and electrons. Combining these two statements we find an exact solution

for arbitrary collisionality to be the rigidly toroidally rotating Maxwellian

M %2 M (V - wR()f= n 27r (() (2.35)

with the density given by

Ze~p Mw2R2 Ze
n=i7exp(- T + 2T cT (2.36)

where T, w, and q are constants. In terms of the gyrokinetic variables this solution is

only a function of the constants of motion e and 0* since

(2M 
% e Ze

f,=g27rT ere .(.7



2.7 Entropy production

Now we analyze the case with spatially varying T still assuming a/O( = 0. Physically,

this assumption implies that non-axisymmetry can be only due to the fluctuations of the

distribution function and potential in our axisymmetric magnetic field. It is convenient to

switch to 0, and e variables so that our gyrokinetic equation becomes

+ (CZf) ~ e t alf (2.38)

Using orderings (2.12) and (2.13) the first term on the left side of (2.38) can be estimated

as follows

af 'Yth~ Vth (2.39
L kpf, ~ f , (2.39)

where fo stands for the leading order distribution function. In the similar way it can be

shown that the last term on the right side of (2.38) is of the same order. At the same time,

S* ~ L f, (2.40)

where (2.18) was used to estimate 6,. Thus, the equation for the leading order

distribution function f0 is found to be

4, =M(C{f0 }). (2.41)

Transit averaging (2.41) we obtain the solubility constraint
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(C{ff}) = 0, (2.42)

where the transit average is defined by

fQ ./. (2.43)

The full nonlinear constraint (2.42) must be satisfied for any physically acceptable

stationary solution f0 = fo ( ,, e, p,), and the transit average is performed holding

0, e and t,, fixed by integrating over a complete bounce for trapped particles and a full

poloidal circuit for the passing. Next, we use the preceding to determine the lowest order

ion distribution function f0 in a tokamak pedestal and internal transport barrier (ITB).

We define the radial scale w of the distribution function as

V 8n = . (2.44)

In a pedestal or in an internal barrier region we assume strong spatial gradients by

allowing

w ~pr, 1 < L, (2.45)

where p,,0 is the poloidal ion gyroradius. Gradients along the flux surface will be

allowed to be strong as well



Oln f 1
VO < -, (2.46)

although we will demonstrate that only weak derivatives over 0 are physically possible

in the banana regime. The electrostatic potential # is assumed to scale analogously to f .

With these assumptions, we demonstrate that in the pedestal or an ITB the leading order

solution to (2.42) remains Maxwellian (from now on we refer to the pedestal case only as

proof for an ITB is exactly the same). Before doing so we remark that the original

orderings (2.11) - (2.12) we used to derive the axisymmetric gyrokinetic equation imply

that the characteristic scale of the leading order axisymmetric distribution function and

potential is the size of tokamak L. However, all our results remain valid provided

p < pp, <; w. Indeed, in all the estimates required for the derivation of the gyrokinetic

variables we can then replace L by pp so that the outcome of the gyrokinetic procedure

stays unchanged. As a result, (2.41) is still a valid equation for fo . However, the

comparison among different terms in the gyrokinetic formulas can be affected. In

particular, in (2.18) for 6, the contribution of the E x B term in Ug becomes comparable

to that due to the v1 if the potential gradient is of order 1/p,, so that orbit squeezing

effects enter [36].

We begin our demonstration by multiplying (2.41) by In f, transit averaging, and

integrating it over e and y, to obtain the steady state result



(2.47)0 = ffdedy* *4 dp ln foCii{fo},

where we employ

in Of= a(foln f - f)Info979* (2.48)

to annihilate the left side. Notice that all the integrals in equation (2.48) are performed

holding 4, fixed. Next, we recall (2.18) and ordering (2.46) to find the leading order

result

O, ~v11 - V 0 + UE 0, (2.49)

where we must retain the E x B term as noted at the end of the previous paragraph.

Contributions of the other terms from (2.18) are always one order smaller in p1w.

Rewriting we obtain

-= d0 dedlp~dp* In foC i{fo} = 0, (2.50)
fB-V6 * vI/B + (cI/B2)aq#/] 0

where the inner integrations are performed holding 4', fixed.

To clarify the novel features of a pedestal plasma, we first review the analysis of (2.47) in

the weak gradient limit (w - L) relevant to the core (see [30] for example). In this



simpler case we can hold @ fixed instead of 4, without an error to leading order. Then,

neglecting the 84/8@ term in the denominator, equation (2.47) becomes

-0 dl ff dedy,u d, B In foCy {fO} = 0 .B -V6 o11
Finally, employing

dedp,d9,
d'v

dEod pzod oo
d'v

_ vI
B

(2.52)

we see that the left side of (2.51) is the flux-surface averaged entropy production on a

given flux surface. Thus, we can employ the Boltzmann H-theorem to determine that fA

is Maxwellian.

In the pedestal (@0 - 8f/89) -(P" 011 w)f ~ f and integrating holding 0. fixed

(2.51)

rather than V@ becomes important. To adjust the logic to the pedestal we need to integrate

(2.50) with respect to 0, over the entire pedestal region. Then, we can use

VO) (v1 +
d@,,dOdd ed pdV,

d 3rd 3V

cI 49#
B 0,0)

(2.53)

(see appendix D for the derivation) to transform (2.50) into

(2.54)f d3rf d3vln foCi{fo} = 0,
VPed



where V denotes the pedestal volume. As a result, we conclude from the H-theorem

that f, = f (,, 4, c, p, ) must be Maxwellian in the pedestal as well.

It is interesting to notice, that the proof for the core plasma only requires integration over

a given flux surface, while for the pedestal plasma we have to integrate over the entire

pedestal region (the presence of a separatrix complicates the pedestal case as discussed at

the end of this section and in section 10; however for the ITB case this proof is robust).

This feature suggests that in the absence of sharp gradients each flux surface equilibrates

by itself, while within the pedestal all flux surfaces are coupled. Physically, this coupling

is due to the order p,,, departures of ions from a flux surface. This effect is not

important in the core plasma, where spatial variation is weak on the p,,, scale and

therefore we can consider any given flux surface a closed system. However, when the

radial gradient scale is as large as i/p1 p, these flux surface departures affect the

equilibrating of the neighboring flux surfaces and therefore it is the entire pedestal region

that is a closed system rather than its individual flux surfaces.

As a result of the preceding observations, the leading order ion distribution function must

be Maxwellian, thereby satisfying constraint (2.42) and making (C{f 0}) = 0 as well.

Therefore, in the banana regime (2.41) results in 8fo/'O, = 0 so that fo can only

depend on e, I,, and p, and allowing strong poloidal gradients [recall (2.46)] was



unnecessary. The only Maxwellian that satisfies these conditions must be independent of

p-, and given by the relations (2.35) - (2.37), in which T, w, and q are now allowed to

be slowly varying compared to p :

p, 01V In T < 1 (2.55)

and

p, 01V In w < 1, p 01V In < 1. (2.56)

Thus, for the ions we have proven that the solution to (2.41) in a pedestal or an ITB is an

isothermal Maxwellian to lowest order in p / p,,,, no other solution is possible. Non-

isothermal modifications enter in next order as indicated by (2.55) and (2.56). As a result,

in the banana regime a pedestal in the background ion temperature is unlikely to exist in a

tokamak. In the Pfirsh - Schluter regime ion departures from a flux surface are much

smaller and an ion temperature pedestal cannot be ruled out. The plateau regime is a

transitional case.

In addition, an ion temperature pedestal in the near scrape-of-layer (SOL) (or at the

separatrix) is unlikely since our kinetic equation (2.41) remains valid there and is

satisfied by the very same nearly isothermal Maxwellian ion distribution function we find

inside the separatrix. As a result, no entropy production or entropy flow occurs to lowest



order in the near SOL and no ion temperature pedestal is anticipated there as long as the

near SOL remains in the banana regime.

2.8 Pressure balance in pedestal or ITB

In the previous section we studied pedestal and internal transport barrier plasmas given

that the ion distribution function radial gradient is of order 1/ . This gradient can only

be associated with the density (and potential) as the ion temperature is proven to be

slowly varying. In this section we comment on how such large density gradients can be

sustained.

We start by noting that from the ion pressure balance equation and (2.55) we find to

lowest order that

dqp cT du
W. = -c o c (2.57)

*d$o Zen d$ '

where dn/dk obeys ordering (2.45). Then we estimate that

w. /c T, dn , w(2.58)
*en d,0 vi

with wR the net ion flow. Thus, unless ions are sonic the left side of (2.57) must be

smaller to lowest order than each of the terms on the right. Consequently, plasma density

and potential must be connected through the lowest order radial Boltzmann relation

35



d# T dn
do Zen d

(2.59)

Also, dn/d@ < 0 and therefore (2.59) yields d#/db < 0, so the electric field in the

pedestal is inward, as indeed observed for pedestals in the presence of subsonic ion flow

[58, 59].

Next, we consider electron flows in the pedestal by writing the net electron velocity as

(2.60)

with K, a flux function so that V- (n Ve) = 0 to lowest order. Then, total pressure

balance, J x B = cV (pe + pi), reduces to the lowest order electron pressure balance

result

We -c - + C dPe
de @ en d/

(2.61)

when (2.59) is employed. But here the terms on the right side have the same sign and

therefore cannot cancel as in the ion equation. Estimating,

We ~ c B#/8 ~- (c/en)I Ope/aib we find a large electron flow,

WeR ~ v,. (2.62)

Thus, the electrostatic potential associated with the density gradient in the pedestal or an

ITB can only be sustained by a large electron flow. As a result, it is the electron dynamics

V, = weR( + B Ke ()n,



that underlies pedestal or ITB physics, and we can say that ions are electrostatically

confined by the electrons. Although it is not clear what establishes the pedestal, it is clear

that subsonic ion flow implies the pedestal is maintained by a large electron current with

the ions electrostatically confined. Any small small departure of the ions from a radial

Maxwell - Boltzmann relation must be due to weak ion temperature variation.

2.9 Zonal flows and neoclassical transport

Now that we have the leading order solution to (2.38) we can seek higher order

corrections to it. We proceed by writing

f = fy (2.63)

with g < f, and f, given by (2.35) - (2.37) but with T, r, and w allowed to be slowly

varying functions of 0, Then, equation (2.38) becomes

Og og _ Ze &#Of*
+ o) \ - (C {f* + g}) ~ M tO (2.64)

Notice that due to (2.59) there is a significant equilibrium potential in the pedestal that

will be denoted by 0. Accordingly, we can write # = #0 + 6#, with 6# standing for

the zonal flow perturbation of the potential that is time dependent and driven by the

turbulence. Thus, on the right side of (2.64) we can replace 0# / at with NO# / at since

a0 /at is negligibly small.



To evaluate the collision operator term in (2.64) we expand the slowly varying terms of

f, around b to obtain

M
27rT (O,)

Me Ze(O4)
e T(V,-) cT(,.)

% Me Zew(4')0
e T(O) cT(ib) [1 +

2 T ) I@ + .. ]1. (2.65
Me OT

* T g0
Zew@O OT

+ cT 2 Ob
1 a?) )

The expression preceding the square parentheses is a toroidally rotating Maxwellian at

any given point in space

Me Zew().

e T(OP)cT(O)* M(p - w(#)R)
exp( - - 2T (@)

= fM

where n = n (F) is given by (2.36). We use

Cii{fMI = 0

and employ the linearized ion-ion collision operator

(2.67)

Ci along with momentum

conservation to note that

Ci{ifM = 0 (2.68)

Recalling that @,* - @ = -(Mc/Ze) R - and using properties (2.67) - (2.68) we find

Ze4, aw
cT &b

)2 Ze$b

(2.66)

f, = q (@,*)

77( M
9()27rT (0)

M
27rT(

( M Y2
2,7rT (b)



C {f,} 

M2cR v2i -( T
Ze 2T 2 ft

Zew T McR
c T2 9qV)Ze

Ze Ow McR.
cTV(Ze

Finally, we can neglect the last two terms in the collision operator for subsonic flows

because of (2.55) - (2.56) to obtain the simple result

(Ca {f,}) ~ C MV2OT.
(2.70)

Next, we evaluate the 64 term on the right side of (2.64) assuming 6# = 6#(', t ) to the

requisite order [15, 49-51], and using an eikonal form

6# = e'se( ) (2.71)

with k, = VS(4'). Then, expanding S(4') around 4, and gyroaveraging # holding

0,, fixed yields

)-i-VS3'+...

KeiS(O* = #,J 0 e,(2.72)

where #,, aSe(**) and Q (Iv11 / )S', with S' = OS/Op and S assumed slowly

varying.

Ci (2.69)

-2 fm

~ e ei 3(* +- +.) ..) I



Now we insert (2.70) and (2.72) into (2.64) and use &f,/&e a (- M/T) fM to obtain the

equation for g to be

ag og- I f Mv2 BT Ze 84,fmj ( V k vi Q (02.73)
at + g f 22

Finally, we consider the banana regime in which Og/a0* = 0 to lowest order, so that

transit averaging (2.73) gives

g Cii[ vf Mv 2 T MA
g-__ 2 at f1$*f(kIV) iQ (2.74)

at Qi i y M 2 T T Q

with transit average defined as in (2.43). The distinctions between fM , Q, vI, JO and f*,

Q, v*, J* respectively are unimportant in (2.73) and (2.74). Equation (2.74) contains

both neoclassical and zonal flow drives in an uncoupled manner. The neoclassical drive

enters in the collision operator and for it the time derivatives in (2.74) are negligible. The

zonal flow drive is due to the a#,/at term that requires keeping ag/at, but for which

the neoclassical drive does not matter. This gyrokinetic equation is capable of retaining

fmite Larmor radius effects on these phenomena, as well as finite poloidal gyroradius and

orbit squeezing effects since it is derived using 0, as the radial variable.

2.10 Discussion

An electrostatic gyrokinetic formalism for tokamaks is developed and its first

applications are performed. Based on an entropy production argument that retains orbit
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squeezing as well as E x B shear effects, the most important prediction is that in the

banana regime the background ion temperature is not allowed to have a pedestal similar

to the ones observed for plasma density, electrostatic potential, and electron temperature

since inequality (2.55) must be satisfied. Although this prediction may seem to disagree

with some widely cited experimental observations it is important to keep in mind that

currently there are almost no direct measurements of the background ion temperature in a

tokamak pedestal. The majority of existing ion temperature measurements are for

impurities which have a smaller ion gyroradius and are more collisional than the

background ions. Moreover, it must be noticed that in the pedestal temperature

equilibration between impurities and background ions is no longer local (flux surface by

flux surface) because finite orbit effects, and impurity radial heat transport and

equilibration can compete. Indeed, the only direct measurements of the background ion

temperature in the pedestal that we are aware of were performed in helium plasmas at the

DIII-D tokamak and fully supports our conclusion [60].

Of course, the entropy production proof that the background ions do not have a

temperature pedestal has some limitations. First, we can only apply it when the collision

operator does not dominate over the streaming term in the kinetic equation. Therefore,

our proof is valid in the banana regime, but not in the collisional Pfirsch-Schluter regime

(with any plateau regime behavior expected to be transitional). Only in the banana regime

does the distribution function being Maxwellian result in it being independent of 0, and

therefore p,, , which in turn leads to slow radial temperature variation.



Another issue is the implicit assumption of the absence of any significant entropy flow

from the pedestal into divertor plates that is needed to obtain (2.54). This assumption

requires the pedestal region to be within the tokamak separatrix in such a way that all the

flux surfaces carrying a significant amount of plasma are closed. If the separatrix were to

fall part way up the pedestal our proof would no longer be mathematically robust.

However, our almost isothermal Maxwellian solution remains valid in the near SOL so

entropy flow into the divertor is negligible. Therefore, we expect that in the banana

regime, it will be difficult to sustain strong background ion temperature variation

comparable to that of the plasma density in ITER [61] unless the pedestal scale length is

many poloidal gyroradii.

Other limitations of our proof are associated with the neglect of charge exchange and

ionization, and direct orbit loss to physical structures outside the SOL, which may or may

not be playing a role in establishing the pedestal [61]. Orbit loss results in non-

Maxwellian features that cause the entropy production to be finite so we anticipate that

ion orbit loss will have to remain a weak effect in a well defined pedestal in local

equilibrium. Moreover, in the short neutral mean free path limit the velocity dependence

of the neutral distribution function will become the same as that of the ions causing

charge exchange collisions of the ions with the neutrals to produce no entropy. For longer

neutral mean free paths we expect little entropy production due to the presence of the



neutrals based on a self-similar treatment of the neutrals which finds results roughly in

agreement with short mean free path results [62].

Interestingly, we can apply our nonlocal entropy production proof to the case of the so-

called "potato regime" near the magnetic axis [34, 35] that is the potato analog of the

regular banana regime. In this region of a tokamak ppo0 becomes large so that (2.55)

requires an almost constant ion temperature in the vicinity of the magnetic axis meaning

that there is no transport in a conventional sense. This analysis is in agreement with the

point made in [35] that near the magnetic axis we should speak about a global solution in

the entire region rather than about a local diffusive process. This point is in turn similar to

the point about the non-local equilibration of the pedestal that we make in section 7.

Finally, we remark that a favorable consequence of the lack of a background ion

temperature pedestal in the banana regime is the probable enhancement of the bootstrap

current in the pedestal. To see this effect we employ the usual Z = 1, large aspect ratio

expression

S T dnndinT g .2dinT~ 25

jBS = ftTeR 1.66(1 + Te )d$ + 0 .47 d T 0.29 d , (2.75)

where ft is a trapped particles fraction (e.g. see [30]). We use (2.75) only as an estimate

because neoclassical transport in the pedestal can be slightly different from this result in

the large aspect ratio form due to strong shaping effects in the pedestal. Experiments



show that T and n profiles are very similar with strong electron temperature variation

being allowed by the small poloidal gyroradius of the electrons. We recall that (2.55)

prevents T from having a gradient comparable to that of n and Te, so the ion

temperature gradient term is expected to be negligible in the pedestal, but more

importantly (2.55) leads us to expect TITe >> 1 to hold in the coefficient of the ion

density gradient term. Thus, the first term in square parentheses in (2.75) is expected to

be greater in pedestal than in the core resulting in a larger bootstrap current closer to

plasma edge.

In summary, the modified gyrokinetic approach we employ promises to be a useful tool

for studies of plasma turbulence and transport in tokamaks. The choice of V, as the

gyrokinetic radial variable results in a convenient treatment of arbitrary poloidal

gyroradius effects in the pedestal, in ITBs, and about the magnetic axis, while still

allowing neoclassical collisional effects and zonal flow to enter naturally along with

finite Larmor radius phenomena including orbit squeezing. As a result, our formalism is

capable of handling such problems as collisional zonal flow damping with kopp,, - 1,

zonal flow in a pedestal, and neoclassical transport in a pedestal, as well as turbulent

phenomena.



3 Zonal flow in a tokamak pedestal

3.1 Introduction

Zonal flow is observed in nearly all the systems with turbulent behavior [63]. In

tokamaks, zonal flow is a poloidally and toroidally symmetric sheared flow produced by

drift wave turbulence on a time scale greater than the cyclotron period. By suppressing

this turbulence, it limits anomalous transport and in turn improves plasma confinement.

This mechanism seems to be rather universal and works for turbulence caused by ion

[11, 12, 64] and electron [13] temperature gradient modes. Moreover, experimental

observations of the zonal flow in the tokamak pedestal [65, 66] suggest that this

phenomenon may be responsible for the transition between the high and low confinement

modes. In this connection, the question of what limits zonal flow itself takes on special

significance.

The pioneering work by Rosenbluth and Hinton [14] demonstrated that in the absence of

collisions the zonal flow amplitude is controlled by neoclassical polarization, with a

significant portion of it, the residual, surviving in the turbulent steady state. In their

calculation, the assumptions of circular flux surfaces and large radial wavelengths were

used. In subsequent work the effects of collisions on zonal flow were analyzed [50, 67] as

well as those of the flux surfaces shape [68, 69] and shorter wavelengths [70, 71].

However, all of the preceding analyses involved an essentially homogeneous equilibrium
45



solution since the wavelength of the zonal flow perturbation was assumed to be much less

than all background radial scale lengths. While plausible in the tokamak core, such an

assumption is inappropriate in a pedestal whose background scale is comparable to the

ion poloidal gyroradius p,,, v o2Mc / ZeB,,,, where V = (2T / M)1/2 is the ion

thermal velocity and B,, is the poloidal magnetic field. The purpose of the present

calculation is to generalize the zonal flow calculation to the pedestal case.

A better understanding of the pedestal region is a key to modeling high confinement or H

Mode operation [1, 23] for controlled fusion power production. In the first chapter of this

thesis, we theoretically found some basic features inherent to a pedestal. The formalism

developed there allows the radial pedestal width to be of the order of ion poloidal

gyroradius while assuming p < p,,, where p is the ion gyroradius. This assumption

decouples the neoclassical phenomena from classical finite Larmor radius (FLR) effects

and allows the development of a version of gyrokinetics that is particularly convenient

for pedestal studies. With the help of this formalism we proved that in the banana regime

the background ion temperature in the pedestal is not allowed to vary significantly on the

poloidal gyroradius scale even if plasma density does. This result was recently confirmed

by direct measurements in He plasmas in DIII-D [60]. Moreover, it allows the shape of

the pedestal electric field to be deduced for subsonic ion flow since the E x B drift and

diamagnetic flow must cancel to lowest order in p / p,, .



When the pedestal width is of order p,,, it is important to recall that ion departures from

a flux surface also scale with pl and therefore finite drift orbit effects on the zonal flow

are significant. For the problem of ion transport these effects were considered by Shaing

and Hazeltine [52], who presented the derivation of ion orbits in the presence of a

strongly sheared radial electric field. They focused their studies on orbit squeezing [36]

by assuming large electric field shear and expanding the potential around the flux surface

where the radial electric field vanished. However, the electric field is large for most flux

surfaces in the pedestal and we are led to solve for the particle motion in a tokamak

retaining the electric field. A preliminary numerical investigation of this issue along with

some analytical estimates is given in [72]. Here we present a fully self-consistent

derivation of particle trajectories in a pedestal.

To carry out the pedestal zonal flow calculation we employ the Kagan and Catto [73]

version of gyrokinetics derived in the previous section that readily provides the relation

between the density and the potential perturbations. The explicit evaluation of the

potential involves trajectory integrals and this is where the finite orbit effects enter. We

find that for strong enough electric field the trapped particle fraction becomes

exponentially small so that the neoclassical shielding disappears. This means that

turbulent transport can be lower in the pedestal than in the core for the same turbulent

drive, and may impact for how a sharp density gradient is established on the transport

time scale.



The remainder of this chapter is organized as follows. In section 3.2 we derive the

integral relation between the density and potential perturbations and give the expression

for the zonal flow residual. Section 3.3 investigates ion motion in a tokamak pedestal and

the results of this study are applied in section 3.4 to obtain explicit expressions for the

neoclassical polarization and the zonal flow residual in the pedestal. Finally, in section

3.5 we summarize our findings and discuss their implications.

3.2 Neoclassical polarization in the presence of strong background

electric field

Rosenbluth and Hinton demonstrated that neoclassical polarization is the key factor

affecting the zonal flow dynamics in a tokamak [14, 67]. Thus, to see how zonal flow is

modified as we move from the tokamak core to the pedestal, we have to evaluate

neoclassical polarization in the presence of a sharp density gradient.

It may seem that as polarization density is due to modifying single particle orbits by the

perturbation of the electric field, the density gradient should not have a strong impact on

it. However, while a density gradient cannot affect single particle motion directly, it

necessarily builds up a strong electric field to sustain pressure balance according to

equation (2.59). Moreover, equation (2.49) yields that in a subsonic pedestal with a

density gradient as large as 1 / pp0,, the resulting Z x B drift (FE) contributes to the

poloidal angular velocity 9 of the ions in leading order so that
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0 = vn -V6+ -V[ = v + cI#'()/ B]f -VO, (3.1)

where the two terms on the right side are comparable (unlike the core where v1

dominates). Therefore, the distinctive pedestal feature that is crucial for the zonal flow

dynamics is the existence of the strong background radial electric field as it directly

affects equilibrium particle orbits. Accordingly, in this section we discuss the role of the

equilibrium electric field on the neoclassical plasma polarization.

Plasma polarization 6 P01 relates density and potential perturbations on and 6# through

EpolkL6# = -47rZe6n. (3.2)

Therefore, what one technically has to do to evaluate ePo is to assume that a small

density perturbation is introduced into the pedestal and find the potential response to this

perturbation. To this end, it is convenient to start from the equation (2.64) derived in the

previous chapter

Og !g I Vf Mv2 OT Ze( 4)OfM-+ 0. CN g fL - - = - -. (3.3)at 80, ( Mt 2T2 aog M at aE

The distinction between 64, poloidal angular velocity of the ion gyrocenters given by

(2.18), and the poloidal ion angular velocity 0 as given by (3.1) will turn out to be

unimportant in this chapter.



Here, to apply (3.3) to the problem of the neoclassical polarization we evaluate (#) in a

slightly different manner as compared to the procedure outlined in Sec. 2.9. To do so we

still notice that there is a significant equilibrium potential in the pedestal and therefore #

consists of the unperturbed piece #0, whose gradient balances the diamagnetic drift to

keep the ion flow subsonic [0#) / 0@ ~ -0( T / en) On / 04], and the perturbation 6#

such that a(#) /t = 0(6#) /8t. Assuming an eikonal form for 6# we write

64) = eiG() iG(+o/- -(3.4)

In Sec. 2.9 we expanded G around 0,, to obtain

G()) ~G(#4') + (Iv/ Q - v- x n-V /Q)G' (3.5)

and gyroaveraged this result to find

(6#) ~ #JO ( kv, / Q)j e'Q, (3.6)

where #, 4ei(*), Q- (Iv,, / Q)G' and k1 = VG. However, the underlying

assumption made to perform expansion (3.5) is that, for the particles of interest, vl is

small. In the conventional case this is justified because neoclassical response is mainly

due to the trapped and barely passing particles whose oi is indeed small in the large

aspect ratio limit. Now that we allow a strong electric field, the poloidal motion described

by (3.1) suggests that the trapped-passing boundary is shifted to o ~ -cI#'())/ B. In

the pedestal, cI'/ B is of order vi while the wavelengths of interest are of order p

or less. Thus, the particles contributing the most to the neoclassical polarization, have
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(Ivj / Q) G' ~ G (), making (3.5) inappropriate. To address this issue we expand G

around @, - Iu / Q rather than around 0, itself, where u accounts for the effect of

E x B drift and is approximately equal to -cl#'/ B. The explicit definition of u in

terms of constants of the motion will be provided in the next section where single particle

orbits are analyzed. Now, anticipating that trapped and barely passing particles still lie

within a narrow vicinity of the trapped-passing boundary, we replace (3.5) with

G(O) ~ G(@, - Iu/Q) + [I(vo + u)/Q - V x n - VO/]G', (3.7)

so that we can directly adopt (3.6) by redefining Q as

Q [-I(V + u) / Q]G' (3.8)

and #, as e iG(?-Iu/Q).

Next, we transit average (3.3), using &g /&6, = 0 to leading order in the banana regime,

to find

9 g C gII f MV fJ9T Ze , (.

where the transit average of a quantity A is defined over a full bounce (for trapped) or a

complete poloidal circuit (for passing) by

_ Ad(3 /10
A d . . (3.10)



We consider the collisionless limit, use JO (kv 1 / Q) ~ 1 - kv'/2Q2 since we assume

B >> Bp,, and extract the kLo /22 piece as the classical polarization that will be

added back later to give the overall plasma response. With these assumptions (3.9) yields

Ze -

g 4fy e. (3.11)
T

To relate g and of , the perturbation of the distribution function from its equilibrium

value, we write

6f f - f= fm (,, E ) + g - fo ~ T f + g +

fM *, EO) - fm (, EO )],(3.12)

where we used that fo = fM ( 0 ) and Taylor expanded fM for small of . We do

not explicitly perform the 9* expansion in the square brackets because the resulting terms

are linear in V and therefore do not contribute to density perturbation. Then, we obtain

the linearized neoclassical relation between the density and potential response on a flux

surface in a form similar to the one found in [70]:

6n = 6# d3vf 0 (e- - , (3.13)

where (... stands for the flux surface average. Again using that parallel velocities of

the particles of interest are localized around -u, we expand the right side of (3.13) up to

the second order in Q to obtain



6n= T 6(f d vf iQ iQ- ~ 2 (3.14)

In the Rosenbluth-Hinton case [14], the terms of the first order in Q do not contribute to

the density perturbation. Indeed, in the absence of the electric field 5 and Q are odd

functions of vl while fo is even in it. That is, for each particle passing clockwise there is

a particle with the same absolute value of F passing counterclockwise so that their

cumulative response is canceled. Also, for any trapped particle F = 0 = Q. Thus, in the

Rosenbluth-Hinton limit, it is the terms quadratic in Q that give the leading order

response.

In our case, there is a preferred direction of rotation in the poloidal plane due to the

E x B drift. Therefore, Q is no longer an odd function of v . Neither have we V= 0

for trapped particles. Thus, the terms linear in Q are expected to contribute to the

neoclassical polarization. Interestingly, these terms have a preceding factor of i making

the plasma susceptibility complex. Consequently, in contrast to the Rosenbluth-Hinton

case there is now a spatial phase shift between the density and potential perturbations.

Once we explicitly relate on and 6# with the help of (3.14) we are able to predict the

long-term behavior of the zonal flow using the Rosenbluth-Hinton framework. Namely,
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we will assume that at times greater than the cyclotron period, but less than the bounce

period, the potential response to the zonal flow density is solely provided by the classical

polarization esos, whereas at the times much greater than the bounce period neoclassical

shielding enters as well so that EPl (t -+ 0) = e" + eP1O. Thus, solving for the

potential response to a constant density step, on (t) = 6n (t = 0), we obtain

6#q(t -+oo) EPoI
= 1 l (3.15)

6#(t =0) ep01 + 40

with ep" = w / w2 , where w, and we are the plasma and ion cyclotron frequencies

respectively. Notice, that in our case ene"? is complex and therefore the zonal flow

residual is phase shifted with respect to the initial perturbation of the potential. In the

following section, finite E x B drift departures from flux surfaces will be shown to

substantially modify the Rosenbluth-Hinton [10] result further.

3.3 Particle orbits in a tokamak pedestal

In this section we analyze single ion motion in a tokamak in the presence of a strong

electrostatic field. Namely, we investigate how accounting for the E x B drift on the

right side of (3.1) modifies poloidal dynamics of an ion. It is necessary to emphasize that

the E x B drift itself need not be comparable to v1 in order to have significant effect. In

fact, due to geometrical factors even vE of order (p / p,0 ) vi < v1 , causes qualitative



changes. Indeed, for p / p,, < 1, ' is nearly perpendicular to the poloidal plane, while

OE is almost parallel to it as shown in Fig 3.2. Consequently, if I ZeV# / TI 1 / p,,,

these two streaming contributions in (3.1) compete in the poloidal cross-section of a

tokamak.

B

flux surface t1

poloidal
cross-section

FIG 3.2. Gyrocenter motion on a torus with poloidal orbit projection plotted (in green). Even though v is much greater than their
contributions to the poloidal motion are comparable due to geometrical effects.

The evaluation of particle orbits to follow assumes a quadratic electric potential well. In

such a case we can expand 0 (0) about 0*

#0 (0) = #0 ($) ) + (0 - 0,)#0 (0*)+ 2(0 - , ( 0) (3.16)

Because of the preceding expansion, results of this section can strictly be applied only in

the pedestal with a perfectly quadratic electric potential. However, providing that the

radial extent of particle orbits is much less than p,,,, we can Taylor expand the realistic

equilibrium electric potential around a point on the trajectory to extend our solution to the

general case.
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We assume further that the radial variation

B(4,0) ~ B (@ - A,0) ~ B (@b,0). Then, denoting

is weak so that

S 0 (p*),5 4 (p*) ' 4'($, )

we can rewrite (3.1) as

qR0# = 1 cI
+B

where R0 stands for the major radius and finite orbit effects are retained. Defming

U* = cI(/SB

(3.18) becomes

qR 4 = S(vo + u,), (3.20)

where S =1+ cI 2 '/B2 is the orbit squeezing factor [33]. Next, we use an aspect ratio

expansion to write

B = BO (1 + e) /(1 +

with BO = B(0 = 0)

V0= v (0 = 0),

and 0 = 0

U*O -=u* (0

E cos 6) P B0 ( 1 + 2e sin 2 0 (3.21)

at the outer equatorial plane. We also define

= 0) = cIq/SOBO and So 1 ± cI 2="/B 0Q0 so that

qRe$o 9 = So (uO + v ).

(3.17)

(3.18)

(3.19)

of B



Next, we employ energy conservation

(3.22)E =!I + pB + < )=const.
2

Using V4 conservation this becomes

S_____+__ 3 Su~
+ pB - - = const..

2 2

As a result, we can describe the particle motion solely in terms of 0 and 9:

2S
S _(qRo~ 0 ) 2

+ ptB - s =
2 2SO

+ p00 - .S0
2

(3.23)

(3.24)

In the Eq. (3.24), for S < 0 the ($)2 term is negative and therefore trapped particles

reside on the inside of the tokamak. For what follows we assume S > 0 so that banana

particles are localized on the outside of the tokamak as in the conventional case.

Evaluating the 9 dependence of u and S with the help of (3.21) and solving (3.24) for

0 we obtain

qRe = k±OqR0 K1 - x2 sin 2 (0/2), (3.25)

where we assume 4e(So -1) / So < 1 and define

24eg uo + pBo
K =-~ 4e o qR )2

_ 4e u* + paBo

go (u*o + v1 )2
(3.26)



with the trapped particles corresponding to , > 1 and the passing to 0 < K < 1, and

where pB0 = v / 2. For 4e / So < 1 the particles of interest are indeed localized

around the trapped-passing boundary justifying our initial assumption.

Notice, that u. is defined through the electric field evaluated at #. that is p,,, far from

the particle orbit for u. ~ vi . On the other hand, for some applications it is convenient

to operate with quantities evaluated on a given orbit. To address this issue we introduce

U = cI#'(0)/B (3.27)

and

U0 = cI#,'(@ )/Bo , (3.28)

where #bo is the outermost point on the particle orbit. To relate uo and u.0 we write

$' (,) = #' ()+#"(@)(@, - @4),

where @, - = -Iv1/G . Then, recalling (3.19) and (3.28) we find

v + u = S(v + U )

(3.29)

(3.30)

and

S(v11 + U* ) = v110 + u0 . (3.31)

Inserting (3.31) in (3.26) then gives



uo2 + paB
K2 S 4 (g0  2+ 2

( o + VII )2

(3.32)

where we drop terms small by e . Also, upon using that S ~ So near the trapped-

passing boundary equation of motion (3.25) becomes

V+u= (v+uo) 1 - 2 sin2 (/2). (3.33)

Equations (3.32) - (3.33) will be used in the next chapter to find the neoclassical ion heat

flux and poloidal flow in the pedestal.

It is instructive to plot the trapped-passing boundary on the (vO, v1 ) plane as shown in

Fig 3.3. Compared to the conventional case there

disrbion _2w/ are two novelties worth mentioning. First, due to

the effective poloidal potential well, particles

with no magnetic moment can be trapped.

Second, as anticipated, the trapped particle region

-O 27sis no longer centered at v, = 0, which is the

V-
0 /Vi

FIG 3.3. The trapped particle region is shifted by a
1/2

factor of u,,, while its width scales like (e/S) . For

4e/S<1, as u., grows, the trapped particle fraction

decays exponentially.

Maxwellian distribution axis of symmetry.

Consequently, the terms linear in Q on the right

side of (3.14) no longer vanish. Furthermore, for

4e / So < 1, as u.0 grows the overlap between the trapped region and the distribution
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function decreases exponentially. Thus, we expect neoclassical phenomena to disappear

for a strong enough electric field!

The important qualitative change in the (vO, v10 ) plane is due to the large electric field,

rather than its shear. Indeed, for u.0 = 0 and So > 1 the trapped particle region is still

a cone centered at the origin [52] and therefore electric field shear alone can only modify

the Rosenbluth-Hinton result algebraically. Therefore, even though So is expected to

contribute to neoclassical polarization, the key features in the pedestal zonal flow

behavior are governed by the parameter u. 0 .

We are now in a position to revisit our localization assumption which allowed us to

replace a general electric potential with the quadratic one given by (3.16). To do so we

recall (3.33) along with (3.31) to find that for a given particle

1P ~ IN I / QO ) (UO + Vil ) 41 - r2 sin (/2 ) <; 2e |/SO ( Ivth |/ ), (334

as required, while @, - 4 (0) ~ 'Vh / . Thus, provided E /So is small enough our

results apply to a general pedestal potential with characteristic radial scale of order p, .

In order the eikonal expansion of the previous section to be valid we also require

kp, 2e /-So < 1, as well as kp , 1 :> 1. The integrals in (3.14) are evaluated in the

next section in the limit of no orbit squeezing (S = 1).



3.4 Evaluation of the neoclassical response

Now that we have solved for the particle trajectories we can obtain an explicit expression

for the neoclassical polarization in the pedestal. To do so it is convenient to define

Y~-~f3VfdQ Q2 -2QQ +Q2]
Y o =_ d'0 iQ-i -9 2 +(3.35)

so that the zonal flow residual is given by

6 #( t -* 0) _ k p i ,

6q(=O 2p+ (3.36)
6# (t =0) kLpi +y'

where (3.2), (3.14), and (3.15) are used along with E" Yo / (wk p2). To evaluate

Y we first transit average Q and Q2 based on the particle equations of motion, and then

perform the integration over velocity space and the flux surface average on the right side

of (3.35). In the calculation to follow we set S = 1 to focus on the qualitative changes

that are due to the electric field itself rather than its shear.



3.4.1 Transit Averages

We start by noticing that to the requisite order Q = (G'I / Q) (v, + u) as well as

= (G'I / Q)2 (v + u)2 . Then, for passing particles (0 < , < 1),

7r (o V, + u0 )
2K(.)

(3.37)

and

= (G'I / q) 2 (v0 + o )2E , (3.38)

where (3.33) is used and K and E are the complete elliptic integrals of the first and

second kinds respectively:

7r/2

E ( f d(4 -.8 sin2(, (3.39)

(3.40)K ( f) a d.
, 1-x sin2

For trapped particles (i K> 1),

(3.41)

and



Q2(GI 2 (V )2 E(1 ) /2(GIK(1/) +1- . (3.42)

3.4.2 Velocity and Flux Surface Average Integrals

Equations (3.37) - (3.42) provide us with Q and Q2 in terms of (vo + u.) and K.

Therefore, it is convenient to switch from integration over ' to integration over

(vO + uo) and K in (3.35). To account for the Jacobean of this transformation we use

(3.33) to obtain

2irv~dTdrB1 o o u0 )2 dK2d(v 1 -+-uo)27rvi-dvidov = rB(I+ 2 Kdvl+u... (3.43)
2eB41 - K2 sin 2 (9 / 2)

Then, upon performing the flux surface average we rewrite (3.35) as

QO2 M 3/2 Mu /2r 1 + i X

s 27rT) TQO )

f 2d . u )(v".+ u )4 -Mr2({v +ua)2/4eT

-2 E(K)- r 2 1 -2)K(1/r)+K2E(1/K) -, (3.44)
7r E K() +rK/

O~r.<l 01K>1

where Q0  IG' / Q. In equation (3.44), the first term in the curly brackets is employed

for the evaluation of the passing particle response by integrating over 0 < K < 1 after
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performing the v, + uO integration from IuV 1(2 / r)E to +oo and from -oo to

-I u0 1(2 / ,) ',/E (see Fig 3.3). The second term is used for the integration over the

trapped particle region r > 1 and again between ± I (2 / ,) ,E and ±oo. Letting

y = M2 (v 0 + uO ) 2 / 4T - Mu2 / T and replacing r, with 1 / r in the 1 < r

range, the trapped particle response on the right side of (3.44) can be evaluated explicitly

to obtain

k2p (2 )3/2 e-Mu /2T +iMuO I

4
97 +

dK 2E (>
K 4 7r

7r
2K~s> 9

dye- (y+ Mu2
T J 3/2, (3.45)

where numerical evaluation of the expression in the curly brackets gives an approximate

value of 0.193. Absent the electric field, uO = 0 and So = 1 so that the last integral in

(3.45) is equal to 3-f7F / 4 and (3.45) recovers the Rosenbluth-Hinton result [10]

(3.46)YRH 1.6kp2 )3/2.

Therefore, normalizing (3.45) to YRH we obtain the final answer in a more compact form

Y

YRH

4-(uO/vi)2 oc)
= 1+2i u/] 4e fdye-Y y

k10pol 3 0

+ 2(uo /o) (3.47)

Y =4



Expression (3.47) possesses the features qualitatively expected. In particular, it captures a

spatial phase shift between density and potential perturbations as well as exponential

decay in the large electric field limit. Notice, that for the wavelengths of order pedestal

size the imaginary part of the residual is comparable to its real part and therefore

simulations should reveal a non-trivial phase shift between the initial and resulting zonal

flow potentials.

To see in greater detail how neoclassical

I Y I/YanI (k_ p,01)2=2

polarization depends on the electric field we plot

o' o y IYY' for kppo, = 1 in

Fig 3.4, where eol 1.6('Hq2 2 is

the neoclassical polarization in the tokamak

0.5 - / 1.2 core [14]. Notice that e "'(no ) has a
0 0.5 1 1.5 2 2.5 3

U10 /Vi
FIG 3.4. Neoclassical polarization normalized to the maximum at u0 ; 1. 2v4. To the right of this
Rosenbluth-Hinton result as a function of the
equilibrium electric field.

maximum, an increase in the equilibrium electric field leads to an increase of the zonal

flow residual according to (3.36). Recalling that in a subsonic pedestal pressure balance

yields the radial Boltzmann relation between the equilibrium potential and plasma density

(2.59), we find that, for a steep enough density profile, its further sharpening leads to the

enhancement of the zonal flow residual. This feature has an important consequence as

noted in the next section.
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3.5 Discussion

In the preceding section we present an explicit evaluation of the collisionless neoclassical

polarization and zonal flow residual in the pedestal. It importantly generalizes the classic

Rosenbluth-Hinton result [14] because it allows for the strong electric field that is an

intrinsic feature of a subsonic pedestal in a banana regime. The mechanism by which

strong radial electric field modifies the zonal flow in the banana regime can be

schematically explained in the following way. In a pedestal of width pp,, the

electrostatic potential satisfies I ZeVO / TI ~ 1/ p,,0 to sustain pressure balance. A

simple estimate then gives that the E x B drift significantly contributes to the poloidal

motion of an ion, thereby qualitatively changing ion orbits compared to those in the core.

Consequently, the neoclassical response to a density perturbation provided by these

changed orbits modifies the Rosenbluth-Hinton zonal flow dynamics and the residual.

As it can be seen from (3.47), even in the absence of orbit squeezing the zonal flow the

electric field makes the neoclassical polarization complex, resulting in a zonal flow

residual that is phase shifted with respect to the initial perturbation. Moreover, for

uIv > 1 the neoclassical polarization decays exponentially as the square of the electric

field so that the zonal flow is no longer neoclassically shielded! In this limit, the zonal

flow residual approaches unity so once it is generated it can continue to act strongly in

regulating the turbulent transport. For a device such as C-Mod or DIII-D tokamaks, the



electric field corresponding to ne/vi ~ 1 is approximately equal to 200 V/cm. Such a

magnitude of the field is indeed observed in experiments [59], thereby making the theory

presented in this chapter physically relevant.

If we now imagine that zonal flow is the dominant factor limiting turbulent transport in

the tokamak edge, the preceding results suggest that a strong background electric field

reduces transport. This in turn suggests a feedback mechanism that could play a role in

pedestal formation. Indeed, consider a tokamak with a shallow density profile and initial

zonal flow. Assume that a perturbation causes a sharp density gradient. We might expect

this gradient to be eliminated by transport processes. However, when the flow is

subsonic, creating such a density step at the same time increases the radial electric field to

sustain pressure balance (2.59). When this field becomes large enough for uO to go

beyond the maximum of the curve in Fig 3.4 it enhances the zonal flow residual in that

region making the turbulent transport level lower and sharpening the density profile

further. Thus, this feedback phenomenon may allow creation of a steep density profile

before it can be relaxed by anomalous transport and therefore it could be involved in

establishing, as well as maintaining, a tokamak pedestal. Importantly, it is the strength of

the electric field, rather than its shear, that is expected to play the key role since it enters

exponentially.



4 Neoclassical radial ion heat flux and poloidal flow in a

tokamak pedestal

4.1 Introduction

The neoclassical theory of plasma transport considers transport processes that are due to

the non-uniformity of the confming magnetic field. In the original work by Galeev and

Sagdeev in 1968 [19] it was pointed out that such non-uniformity results in more

complicated particle trajectories as compared to simple Larmor orbits in straight

magnetic field line geometry. More specifically, they observed that in toroidal magnetic

fields the gyrocenters of these orbits perform cyclic motion that allow them to depart

noticeably from their reference magnetic field surface. In a tokamak, particles can be

classified as either trapped or passing based on the character of their gyrocenter

trajectory. In particular, the poloidal projection is banana like for the former and an off-

center circle with respect to the reference flux surface for the latter. These orbits of

particle gyrocenters are often referred to as drift surfaces.

For ions, the characteristic size of the drift surface departure from its flux surface scales

with poloidal ion gyroradius, p,,, viMc/ZeB,,, where v = 42T/M is the ion

thermal speed and BO, is the poloidal magnetic field. Accordingly, in the so-called

"banana regime", in which collisions are rare enough for an ion to circulate several times
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over its neoclassical orbit before being scattered, it is pp,, that defines the elementary

diffusive step in contrast to classical transport in a uniform magnetic field that is

governed by a step in the Larmor radius p = viMc/ZeB. For most tokamaks, the

poloidal component of the magnetic field is much less than toroidal, making p < p,.

Therefore, neoclassical transport normally dominates over classical.

Neoclassical radial transport in the core of a tokamak has been investigated in great detail

[16-20, 28, 30]. Extensions to the potato orbits near the magnetic axis have also been

considered [34, 35]. However, all these works rely on the Galeev and Sagdeev equations

of particle motion, making their results inapplicable to the pedestal case. The reason for

this limitation is the strong electric field, present in a subsonic pedestal. It is needed to

sustain ion pressure balance, making the ions nearly electrostatically confined as it is

pointed out in the first chapter of this thesis. The strong electric field substantially

modifies ion orbits, thereby requiring reconsideration of the conventional neoclassical

results. The effect of strongly sheared but weak electric field on the neoclassical ion

transport in the banana regime, usually referred to as orbit squeezing [36], was

considered in [52]. However, this model can realistically apply only to a narrow tokamak

region, because over a reasonably long distance large field shear results in a large field.

Moreover, the calculation of the neoclassical polarization in a pedestal, carried out in

chapter 3, demonstrates that the shear free electric field introduces qualitatively novel

features resulting in crucial kinetic implications. Therefore, we are led to investigate the



full effect of strong radial electric field on the banana regime neoclassical ion heat flux

and poloidal flow to gain insight into transport properties of the tokamak pedestal.

The evaluation of the neoclassical ion heat flux in the tokamak core has been done in a

number of ways [16-18, 20, 30]. Our calculation of its pedestal counterpart extends the

logic outlined in [30] to the retention of a strong radial electric field. To do so, in the

second section of this chapter we utilize the linearized Rosenbluth form of the full like

particle collision operator [74] to derive a model collision operator that is particularly

convenient for describing processes near the E x B modified trapped-passing boundary.

In the next section we employ the model to solve the kinetic equation with only the

neoclassical drive term retained. This solution provides us with the first order correction

to the distribution function so that we can continue to section 4.4 where we explicitly

evaluate the neoclassical ion heat flux with the help of the moment approach. The insight

developed to calculate the ion heat flux is then employed to determine the parallel ion

flow in section 4.5. Finally, in the last section we discuss implications of these newly

obtained results.

4.2 Model collision operator in the pedestal

We start by deriving a model of the like particle collision operator that conveniently

describes the collisional transitions across the trapped-passing boundary in the pedestal.

In the core of a tokamak, this boundary is a cone centered at the origin of the (v, V)



plane and therefore to retain neoclassical transport processes in the large aspect ratio limit

it is sufficient to use a momentum conserving pitch-angle scattering operator. In a

subsonic pedestal with a width comparable to pp,,, the dramatic density drop gives rise

to a strong radial electric field to compensate the ion pressure gradient. The resulting

E x B drift enters poloidal ion motion in leading order, thereby modifying particle

orbits. Consequently, as shown on Fig 4.5, the trapped-passing boundary is curved and

shifted so that the energy scattering component of the collision operator contributes to

neoclassical transport as well.

energy
scattering pitch-angle

scattering

00

0

FIG 4.5. The trapped-passing boundary in the core (upper curves) and pedestal (lower curves) cases. In the pedestal,

energy scattering can take an ion across the trapped passing boundary, whereas in the core this transition is solely

due to pitch-angle scattering. Therefore, we employ a new set of variables, Wand A, such that the gradient of the

former is parallel to the trapped-passing boundary in the pedestal and gradient of the latter is perpendicular to it. As

a result, our model collision operator (4.21)-(4.22) involves the 8/OA terms only. Notice that in the pedestal, the

trapped region axis of symmetry is shifted by u/ from its core counterpart. As the equilibrium Maxwellian is still

centered at v,=O, we therefore expect neoclassical ion heat flux to decay exponentially for u/v> 1.
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To find a model collision operator more relevant to our problem, we use the fully

consistent calculation of the tokamak particle trajectories in the presence of a strong

radial electric field performed in section 3.3. There, conservation of the total energy

E = v2/2 + Ze# (O)/M and canonical angular momentum 'p ~ - Iv,/f, as well

as the adiabatic invariant y = v/2B, allowed us to write the pedestal trapping

condition in terms of the parameter K

2 = 4eg0 + pB 2' (4.1)
(Uo + V1 )

such that

oI + U = (vo + uO ) 1 - 2sin2 (0/2), (4.2)

where u(0) = (cI/B)#'(#), S 1 + cI2#"/BQ, #(0) stands for the electrostatic

potential, = ZeB/Mc and I = RBtor with Btor the toroidal magnetic field. Here, 9

denotes the poloidal angle and the subscript "0" refers to quantities evaluated in the

equatorial mid-plane (9 = 0) on a given particle orbit. In the kinetic calculation to

follow the distinction between So and S is unimportant. Consequently, we replace So

with S hereafter.



To obtain equations (4.1) and (4.2) the potential < (0) must be expanded about

4 - Iu/Q to second order to retain orbit squeezing as well as the finite u effects.

Finally, equation (4.2) is derived in the large aspect ratio limit so that

B/B 1 + 2e sin 2 (0/2), (4.3)

where e < 1 is the inverse aspect ratio and we assume 4eS < 1. Notice that the range

0 < K 2 < 1 corresponds to passing particles and n2 > 1 to trapped so that near the

trapped-passing boundary (v110 + uO) v/ for S ~ 1. These ions are the ones of

most concern since we will need to carefully evaluate the portion of the ion distribution

function localized to this region.

To capture collisional processes near the trapped-passing boundary in a simple manner it

is convenient to employ some function of K2 as an independent variable in the model

collision operator. Also, it is convenient to choose variables that reduce to the

conventional ones, 2pBo /v2 and v2 /2, in the limit of no electric field to make it easier

to keep track of the changes associated with the pedestal case. Finally, to simplify solving

the kinetic equation it is desirable to have these variables conserved along a single

particle orbit.

To this end, it is useful to employ the variables



W - (v1 o + U 0
2SO

(tBO + U2) and A _ pB 0 +u2
W

As long as particle dynamics is described by equation (4.2), W and A are useful

constants of the motion through order ES. Also observe that (4.1) and (4.4) give

2 2A
1 - A (4.5)

and therefore

A 2 ' .
K2 + 2E

(4.6)

That is, A can be defined solely in terms of ,2 and therefore VVA is orthogonal to the

trapped passing boundary.

For many purposes it is convenient to rewrite (4.4) so that v + u is expressed in terms

of W and A similarly to how vl is expressed in terms of v2/2 and 2pBo /v2 in the

conventional calculation. The desired form is derived with the help of (4.1) - (4.3) to

obtain

(VI + u)2/2S = W (1 - AB/B,,). (4.7)

In the following sections this form will be found helpful for evaluating integrals over A.

Here, we employ it to check orthogonality of the variables by evaluating

vW = (V + U)/S + V-

(4.4)

(4.8)



(B/BO) WVA = (I - AB/B 0 )VW - (vj + u)/S]h

(B/B,) WVvA -VvE = pB(v, + u)2/SW - (ABS2B )(vo + u)2 .

In the vicinity of the trapped-passing boundary (vl + u) ~vK for S ~ 1, making W

and A nearly orthogonal. Thus, we may anticipate that once the collision operator is

written in terms of these variables, the main contribution to neoclassical transport will

come from the O/OA terms. We proceed by finding an explicit expression for such an

operator.

To do so we first recall the Rosenbluth form of the collision operator [74]

(4.11)
CR{ f } = V - {Wf }

{6f} -yfoVVGm V(6fM)
(4.12)

with fM a stationary Maxwellian and

TyVVGM = (v2I (4.13)

The collision frequencies v1 and v are functions of v2 only and defined by

and

to find

(4.9)

(4.10)

where

-- P-4i + VII .



3( I 3 IW
v 2x [ er f (x )-- ( x|vyand vI x 3s,

(4.14)

where vB = 47ri/2Z 4e4ni In A/3M1/2T3/2 is the Braginskii ion-ion collision frequency,

2 erf (x) - x erf'(x) an2 r et2dt

0
(4.15)

with x = v)M/2T= v/v.

Switching to W, A and gyrophase o variables and writing (4.11) in conservative form

we obtain

V JW) + 1 8 (Jf' -V W)+ (Jr"Jp a
VP), (4.16)

where the 8/89 term is set equal to zero since classical effects are ignored. Upon

accounting for both signs of (og + u), equation (4.9) gives the Jacobian of the

transformation to be

d'v
dcpdWdA

2BWS
BO (vjj + u)

(4.17)

The model collision operator to be constructed will eventually be applied to g - h,,

where h, denotes the neoclassical collisional drive term in the kinetic equation, whose

explicit momentum conserving form convenient for our purpose we provide in the next

C{6f} -= r
J BA



section, while g is the neoclassical response to h.. In the absence of the electric field,

is localized around the trapped-passing boundary,

0 (F-1) while (g - h,)/fM ] W = 0(1)

so that

[17, 30].

Assuming that these estimates remain appropriate in the pedestal, equations (4.8), (4.9)

and (4.13) give

F {g - h,}- VA ~ fMVA -V 2- + '

where due to our orderings we may drop the 8/8 W term. The same reasoning allows us

to drop the /8 W term on the right side of (4.16) as well.

To simplify (4.18) further we use that for the calculation to follow it is sufficient to

account only for particles lying in the close proximity of the trapped-passing boundary

and therefore we can consider A - BO/B e 1 to obtain

U)2 /s2 (4.19)

and

W2(i . )2 U 2 (v1o +u)2/S2 (4.20)

Thus, we rewrite equation (4.18) as

(-Au + ) 2
rg- h, I}.VvA\ -fm s 2w2 V2

4- + _ 2] g - h
124J] 0\OA fM

g - h,

VA a9- hoM (4.18)

(4.21)



to obtain our pedestal collision operator to lowest order to be

C{g - h} - I -(v u ) B vA (4.22)
B O A BO (vll + u)'*V I

The model operator defined by equations (4.21) - (4.22) must manifestly conserve

momentum. To explicitly display this property, intrinsic to the full like particle collision

operator, we introduce a free parameter a to redefine f -VVA by

If{g - h,} -VA =

(v +u) 2 !L v2 V v 2 a g -h o-I(v, +u)aT
fm S2v2 + !L 0 (4.23)

M 2W2 4 2 4 A fM QT O.)

where

h, v h + fM T (4.24)
f T 894

with the drive term h defined in the next section. Then, after solving for the first order

correction to the distribution function we determine a such that the operator given by

(4.22) - (4.23) conserves momentum.

4.3 Passing constraint

Now that we have a convenient model of the collision operator we can solve for the first

order distribution function that is responsible for the neoclassical transport. A form of
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kinetic equation appropriate in the pedestal is obtained section 2.9 whose expression (11)

readily provides the equation for the perturbation of the equilibrium Maxwellian fM.

Setting aside zonal flow phenomenon by omitting the 0/Ot terms and transit averaging,

we obtain the neoclassical constraint on the distribution function in the pedestal to be

C{g - h} = 0, (4.25)

where the bar on top of the full linearized like particle collision operator denotes transit

averaging, g stands for the non-diamagnetic perturbation of the leading order

Maxwellian and the neoclassical collisional drive h is defined by

h = fm .j2 0T (4.26)
Q 2T 2 ggb

Written in this form our passing constraint looks identical to the conventional one [30].

Notice, however, that in contrast to the core case transit averaging in the pedestal must

keep the distinction between the flux function 0 and canonical angular momentum

~ @ - Ivo/Q and account for the effect of the E x B drift in leading order of the

poloidal ion velocity. That is, transit averaging of a quantity Q is now defined by

-di9Q IrdO
Q f, (4.27)

where the integration on the right side must be performed holding $4, y and total energy

fixed as indicated by the * subscript on the integral. In the core of a tokamak u is

negligible compared to v, and 0 is approximately constant along the ion trajectory. In



such a case, equations (4.25) - (4.27) reduce to the conventional ones by dropping the u

terms and * subscript on the trajectory integrals.

To proceed with solving for g we use the number, momentum, and energy conservation

properties of the linearized like particle collision operator to replace the drive term h by

I(v1 u+ u)M(v2 +u2)0T (4.28)
fM 2T2 g

For A - 1 equation (4.4) gives

v2 + 2(4.29)

2

so that (4.28) becomes

I(v 1 +u) MW OT
h f . (4.30)

Analogously to the conventional case, for the trapped particles g = 0 since the drive

term vanishes upon transit averaging over a complete bounce. The goal of this section is

therefore to solve (4.25) for g in the passing region of the (W, A) space.

Employing our collision operator (4.22) - (4.23) along with the fact that A and W are

constants of the motion we obtain

~d(v+u)a g I(v 1 +u) M(W -To/M)OT
d6v +i u) f- 02. (4.31)

f* mAy T2g



In the banana regime g/fm is independent of 6 to leading order giving

I( u) &f d6(vl + IM(oI + u)(W - To/M) .T

We observe that due to (4.7)

(vI + U)a I I + U) = -SW B
OA BO

Thus, setting B/B ~ 1 we obtain

SIMW(W -To-/M) T

(v + u) 0 2 04'
(4.34)

where angle brackets denote the flux surface average such that

(o1 +=u) =f d6(vj + u). (4.35)

Now we can verify the localization assumption made to derive our model collision

operator. To do so we form

SIMW(W -o-T/M)&T

QO072 o
1 1

- +.(4.36)
V,+ U (vII+ U)

To estimate the expression on the right side of (4.36) we flux surface average it and

notice that

(4.33)

01 9g-h- fk

0 A fu

OA fM -p



1 1 1 (4.37)KVi+U/ (v +u) K1-, sn26 1-sin26/2 (F1 -K2sin 0/2) (

We also observe from (4.5) that at the trapped-passing boundary A = 1/(1 + 2e) when

K2 = 1. However, once A leaves the e vicinity of the trapped-passing boundary, K 2

becomes small and we can Taylor expand the expression on the right side of (4.37) to

find

1 12 ~ O r < 1 . ( 4 .3 8 )
1 - 2 si2 62 1 82sin20/2 2

Thus, for the particles of interest, the A derivative of the function inside the collision

operator in (4.25) indeed goes like 0 (E-1), justifying our dropping of the 0/8 W terms

in the equations (4.16) and (4.18).

It is necessary to emphasize that because of approximations made, solution (4.34) is only

valid for A ~ 1 and should not be applied in the freely passing particle region.

Fortunately, the integral for the ion heat flux calculated in section 4.4 involves the

expression (4.36) rather than ag/OA alone, thereby making the freely passing particles

unimportant for the final result. Evaluation of the neoclassical parallel ion flow does not

have the same advantage and therefore requires the alternate treatment presented in

section 4.5.



Next, we have to ensure momentum conservation by choosing an appropriate value of a.

That is, we have to find o- such that

fSd3VvCfgI - h} = f (VII h}) = 0, (4.39)

where the number conservation property of the full like particle collision operator is

employed. To evaluate the right side of (4.39) we approximate C ( g - h} by (4.22) and

use (4.23) along with (4.36) to write

j fh
V A = (U + VI )2VfM s2w 2

(4.40)Hv2 + 44
4 2

Then, we recall (4.17) and (4.22) and integrate (4.39) by parts over A to obtain

f dWdAfMW(W - To/M) I - V2 +

(oII + U) oI + U 4
±IL1U 2 = 0 ,(4.41)
41

where (4.33) is used to find O(vi + u)/DA . Using (4.7) we now complete the

integration over A in (4.48) by employing [17]

f dA~
1- AB/B

B0 /B dA4 1/B -(
o 41 -AB/BO ,P

(1-AB/Bo
dA

1.384E,
1 --AB/BO)

(4.42)

vL ' SIMW (W - To-/M) aT 1I

4 QOT 2 a8 VI + U ( vII + U)



where the p subscript on the second integral denotes that only the passing region is

integrated over. Then, (4.41) reduces to

fSdWW/2(W -T/M) [ v2 +(2v v)u2]M I

we introduce a new variable of integration

y = M(v2 _ U2)/2T = M(W - u2)/T in (4.43) and solve for a to obtain

dye-Y (y + Mu2/T ) v2 [VLy + v (Mu2/T)I

f dye-v ( y + Mu2/T )1/2 [ v y
0

where frequencies v, and vi are defined in terms of x = y + Mu2/2T by (4.14).

In the absence of the background electric field u = 0 and x2 = y so that

00

fdxe-_2 X [erf (x) - x

fdxe-X2xIerf (x) - ' (x)]

= ~ 1.33
2[2 --ln(1 + -f)]

which agrees with the conventional result [17, 20, 30].

Finally,

(4.43)

+ V1 Mu2/T

(4.44)

(4.45)



4.4 Neoclassical ion heat flux in the pedestal

Here we proceed by calculating the neoclassical radial ion heat flux in the pedestal using

the moment approach [30] so we need only evaluate

McITf dov 3Mv2

(f 7) AZ B 2T
- VCfg - h}).

To evaluate the integral on the right side of (4.46) we first employ the number,

momentum and energy conservation properties of the linearized collision operator to

rewrite it as

McIT fd'vM (V2 +Us)(v?+U) fmcg
(O VZe ( B 2T M

(4.47)

Now we can continue in a manner similar to the one used in the previous section to find

o- . That is, we again replace C { g - h} with (4.22), then use (4.40) inside the collision

operator and integrate the result by parts using (4.33) and (4.29). Then, (4.47) transforms

into

47rM 252S OT
Q 2  &f

0T2 OV
dWdAfMW 2 (W - ToM)(

1

(±I+U u/Jx

(4.48)adV2 + can car o U24 2 4

and we can carry out the A integration with the help of (4.42) to obtain

IrM 2I 2 a T
(q -V ) = -1.38 r2T2 8 Tes

0T2 g
f d WW3/2 (W - To/M) x

(4.46)



Ivv2 + (2v - v)u2]fM (4.49)

Finally, we again substitute y for W to find

n.TI 2e-Mu2/2T aT

q ~ ~ ~ M .8w'
45 d ye-' (y + Mu2/T

(Y + Mu2/T - o-uy + v Mu2/T , (4.50)

where n stands for the ion density and the parameter o is provided by equation (4.44).

To proceed with the analysis we insert expression (4.14) for the collision frequencies into

(4.50) to obtain

= -4.14e(U/)2 + 2(u o )2 3/2

y + 2 (u/vs )2 (u/V )2 y3/2 erf - 4' (x)] + 2(u/v )F (X) .(4.51)

First, we consider the conventional limit in which u = 0 and S = 1. In this case, o- is

given by (4.45) and y = x2 so that (4.51) becomes

(q - V@) ~-4.14ni VBTI2 8/ T 0d x 2e 3 (X2
Q2M f@

- 1.33) [erf (x) - T (x) ~

-1.35nv TI2PT
B M 8

(q- -VO)

(4.52)

(4.49)

nI2 dye- y
Q2M Ve@

-0 1 Y +



in agreement with the usual neoclassical result [17, 20, 30]. Now we can write the full

result (4.51) in a normalized form as

(q -VO) = -1. 3 5 iLvB TIe 9TG(U)\ , (4.53)
Q2M ao

where G (u) is given by

G(u) = 1.53e (u/v)fdye- y + 2(u/vi )2 ]3/2 fy + 2(u/vi )2 - x
0

y + (u/V )2 -3/2 y[erf (x) - 4 (x)]+ 2(u/vi )2 T (x)} (4.54)

so that G(0) = 1. The dependence of the normalized neoclassical heat flux on u is

plotted in Fig 4.6. Notice, that as u goes beyond unity G (u) decays exponentially with

the electric field. As in the problem of the zonal flow in the pedestal discussed in the

previous chapter, this decay is due to the trapped-passing boundary shifting towards the

tail of the ion distribution function, thereby making the number of particles contributing

to neoclassical heat flux negligible once the electric field is large enough as sketched in

Fig 4.5.
G 1.4

1.2

FIG 4.6. Normalized banana regime ion heat flux
as a function of the equilibrium electric field. 0.8-
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4.5 Poloidal ion flow in the pedestal

Based on the technique of the previous sections it is also possible to evaluate the parallel

ion flow in the pedestal. The ion velocity V is defined by

nV. f d'vsf (4.55)

giving

+R(O if3v 1  (4.56)
* Ze o 7P

where the two toroidally directed terms on the right side are diamagnetic and E x B

while the parallel term is neoclassical, with ( the toroidal unit vector. To proceed it is

convenient to rewrite (4.56) further as

, =wR -A- d + + g (4.57)
ni fni

where w = -c(8tp/8) - (cZen, )(ap/8@) with p = niT.

It is shown in Appendix E that to leading order in ES

f d3Vg = 0. (4.58)



Therefore, we only have to evaluate the last integral on the right side of (4.57). At this

point, the previously mentioned difference between the treatment of the neoclassical ion

heat flux and poloidal flow enters. The former is carried by the trapped and barely

passing particles, which is mathematically manifested by the integrand in (4.46) being

localized at A ~ 1. This feature is what justifies our procedure of evaluating the ion heat

flux because our model collision operator, as well as the resulting solution for the

distribution function (4.34), is derived under the same localization assumption.

However, the integral for the neoclassical ion flow does not have this property. As in the

conventional case, freely passing particles are expected to contribute to give the final

answer to zeroth order in the ES expansion. To ensure validity of the calculation we

rewrite the last integral on the right side of (4.57) as follows

f d3V(v1v + u) g = fd3v vI + u)( g - h, ) + f d'v (v + u) h,

-47rf dWdAWA &(g - h,) + f d3v(v + u)h', (4.59)

where the integration by parts over A is completed upon employing the Jacobian (4.17)

with B/B set equal unity. The first integral on the right side of (4.59) involves the

function a(g - h, )/A that satisfies our localization assumption as discussed after

equation (4.36), thereby making appropriate our solution (4.34) for Og/OA. The second

integral on the right side of (4.59) only involves h, defined by equations (4.24), (4.28),

and (4.44) that are valid for the freely passing particles as well as for the trapped and
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barely passing. Thus, equation (4.59) is appropriate for evaluating the neoclassical ion

flow in a self-consistent manner.

To proceed with finding an explicit expression for the ion flow we notice that the first

integral on the right side of (4.59) can be evaluated in the same way as the neoclassical

ion heat flux in section 4.4 to give a non-zero answer at first order in eS . Based on the

conventional calculation we anticipate that the overall result for the neoclassical flow is

of the zeroth order in this expansion parameter and therefore it is the second integral on

the right side of (4.59) that contributes to the leading order flow, whereas the first one is

negligible and of the same order as f d3vg already ignored.

Having made the preceding comments, the calculation becomes straightforward. We use

(4.24) and (4.28) to write

I dT 3+1h + fd2 M(v2 +u2).

d' (2T+u h d fM, (4.60)

that is easily evaluated to obtain

fd3v(v + u)h, = (5/2 - o)+ 2(1 - o)(U/Vi) + 2(u/vi ). (4.61)

To recover the conventional result, we insert (4.45) for a to obtain



- d3v (II + u)h = 71 OT 1.17 I OT (4.62)
ni 6QOM ft QOM ft@

matching the answer given in [30]. To write (4.62) in a normalized form we introduce

J (U) = (5/2 - o,) + 2 (1 - a) (uv )o + 2 (u/vi )4 (4.63)

such that

- d3v(v 1 +u)g= 71 J(U) (4.64)
ni 600M o

with J(0) = 1. Thus, recalling equation (4.57) we find the poloidal ion flow in the

pedestal to be

V?ol = -I T J(U) (u),T (4.65)
6QOMB p 6M0 M or

where r stands for the minor radius of a given flux surface.

As shown on Fig 4.7, this normalized neoclassical flow does not decay exponentially

with u/vi in contrast to the behavior of the neoclassical heat flux found in the previous

section and neoclassical polarization discussed in chapter 3. This aspect can be

understood by observing that, unlike neoclassical ion heat flux and polarization, the

leading order neoclassical ion flow is provided by the freely passing particles, making

this flow persist even if the trapped and barely passing particle populations are

diminished by a strong electric field. The replacement of (4.26) by (4.28) in (4.24) is due
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to the electric field modified trapped-passing boundary along with the need to conserve

momentum during ion-ion collisions which changes o- from its usual value. We discuss

this result further in the next section.

J 5

0.5 1 1.5 2

u/v

FIG 4.7. Neoclassical current as a function of the equilibrium electric field.

4.6 Discussion

In the preceding sections, we introduce the technique for evaluating the neoclassical ion

behavior in the presence of a strong background electric field and use it to explicitly

calculate the neoclassical ion heat flux and poloidal flow in the pedestal. A key step is the

construction of the model collision operator (4.22) - (4.23) to replace the pitch angle

scattering operator employed in the conventional calculation. The need for choosing a

different model to describe collisions in the pedestal is due to the electric field modifying
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the trapped-passing boundary in velocity space, thereby making the conventional

operator inadequate for the particles that contribute the most to neoclassical ion heat flux.

Importantly, the effects of the electric field modified trapped-passing boundary impact

the freely passing particles along with the need to conserve momentum in the like particle

collisions. As a result, the neoclassical poloidal ion flow, carried by these particles, is

rather sensitive to the electric field (though independent of orbit squeezing). Due to this

sensitivity the ion flow can change direction within the pedestal as indicated by the sign

change of J(u) for u > 0.6vi as plotted in Fig 4.7. This new feature may explain the

results of the experiments performed in the Alcator C-Mod by Kenneth Marr and

coauthors [21] in which the absolute values of the observed banana regime ion flows are

much bigger than those predicted by conventional formulas. Of course, their

measurements focus on the impurity ion velocities, whereas the theory presented here

applies to the background ions. However, for the purposes of an estimate we can neglect

the effect of the electric field on the more collisional impurity orbits. In such a case, the

net velocity of impurity ions can be evaluated given that of the background ions with the

help of the following formula [28, 75-77]

VPol = V? - cIB,0  1 Opj 1 aPz J (4.66)
z0 eB n Znz 0 )

where we have dropped all terms small in NE. Employing the conventional banana

regime formula for the poloidal ion flow in (4.66) gives that ViPOI and the sum of the

diamagnetic terms have opposite signs, thereby resulting in a relatively low prediction for
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the impurity flow. However, for a more realistic pedestal case of u/vi > 0.6 the newly

obtained expression (4.65) gives the terms on the right side of (4.66) adding to make

VfP" larger. Thus, accounting for the effect of the electric field on the background ion

orbits is expected to lead to better agreement between the theoretical and experimental

results for the impurity ion flow. Also, because the neoclassical electron current depends

on the net ion velocity [30], the bootstrap current will be increased in the pedestal.

Our new result for the banana regime ion heat flux possesses the same qualitative feature

as the neoclassical polarization discussed in [78]. Namely, the neoclassical ion heat flux

given by (4.53) decays exponentially in u. Obviously, this behavior is again explained

by the fact that the trapped particle region is shifted to the tail of the Maxwellian

distribution once electric field is large enough. We observe that the qualitative

modifications of the pedestal case as compared to the conventional one are due to the

parameter u, while the orbit squeezing parameter S only enters algebraically. In other

words, it is the magnitude of the radial electric field rather than its shear that is the central

quantity governing neoclassical phenomena in the pedestal.

The case of substantial electric field shear in the absence of a significant electric field

itself was considered by Shaing and Hazeltine in [52]. It is important to emphasize that

their problem formulation is not appropriate for most of flux surfaces in the pedestal,

with the only possible exceptions being the very top or very bottom of this region, where

the electric field can be considered small. Our calculation for the ion neoclassical heat
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flux therefore captures the more important physics of the electric field, while still

retaining orbit squeezing. Notice, that the heat conductivity given in [52] has the factor of

S3 2 in the denominator contradicting our equation (4.53) which involves S1/2 instead.

As far as we can follow the calculation carried out in [52] this contradiction is due to

different approaches to modeling and treatment of the like particle collision operator. In

particular, these differences result in our finding the effective ion-ion collision frequency

to be ~ vS/E, rather than the Shaing and Hazeltine estimate of ~ v//S. We provide

the further comparison of our technique against that of [52] in Appendix F.

In brief, the banana regime ion heat conductivity we derive accounts for the presence of a

strong radial electric field. As this electric field is inevitably present in tokamak regions

such as a pedestal, it is this newly derived expression that has to be used there instead of

the conventional formula. Moreover, as the parallel ion flow is altered by the electric

field, we expect the bootstrap current to be enhanced in the pedestal.



5 Summary

This thesis encompasses several aspects of the physics of the pedestal, a tokamak region

with a strong density gradient that is a defining feature of the High Confinement Mode of

operation. Experiments find that the drastic density drop across the pedestal must be

responsible for superior transport properties of H Mode plasmas as compared to those for

L Mode, but the mechanism of this improvement is still poorly understood. In fact, it is

this existence of short background scale, comparable to poloidal ion gyroradius, that

greatly complicates the theoretical description of the H Mode regime. In this thesis we

suggest an elegant resolution to this issue by developing a special version of the

gyrokinetic formalism that allows both the larger background scale of the tokamak core

and the shorter scale of the pedestal. This feature makes it a promising simulation tool

capable of global H Mode modeling. Furthermore, this formalism allows us to determine

analytical consequences about crucial pedestal features such as the allowed ion

temperature profile; and neoclassical and turbulent transport coefficients.

The cornerstone of our version of gyrokinetics is employing the canonical angular

momentum #4 as the radial variable. This choice accounts for classical Finite Larmor

Radius effects and neoclassical Finite Drift Orbit effects in a systematic manner that is

illustrated by equation (2.23), where the second and the third terms on the right side are

of order (p / L) and (pp01 / L) respectively. Moreover, by omitting the (p / L)#
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term we can investigate the effect of the pedestal size being as small as p,,, in a natural

way. Applying this framework, we find that the leading order pedestal solution for ions in

the banana regime must be a Maxwellian with temperature slowly varying over the p,,,

scale of the plasma density. In other words, the background ion temperature profile

cannot have as steep a pedestal region as the plasma density. This new insight is

supported by recent direct measurements of helium ions temperature made at the DIH-D

tokamak [60].

Our version of gyrokinetics culminates in the full nonlinear equation (2.74) for the first

order correction to the distribution function which retains neoclassical collisional

transport and the zonal flow drives. This equation has a general gyrokinetic feature of

allowing small perpendicular wavelengths. It also includes the E x B drift in leading

order in the streaming operator, a feature that is relevant specifically to the pedestal.

Therefore, equation (2.74) is capable of describing turbulent phenomena in the pedestal

that cannot be conveniently treated with currently prevailing approaches. Of course, a

complete turbulent study requires implementing our equation in a code. However, we can

get an idea of how plasma turbulence in the pedestal is different from that in the core by

considering the zonal flow, which is done by solely analytical means in the second

chapter of the thesis.



By revisiting the pioneering calculation of Rosenbluth and Hinton [11, 49] we find that in

contrast to the core case there is a spatial phase shift between the zonal flow perturbations

of the density and potential in the pedestal. This novelty is due to the strong electric field

that is necessary to sustain the pedestal ion pressure balance. More importantly, we

demonstrate that if this electric field goes beyond a certain critical value the zonal flow is

effectively undamped since the residual starts approaching unity. Therefore, as zonal

flow is the dominant mechanism limiting the turbulent transport and electric field is

connected to density gradient by radial Boltzmann relation (2.59), we demonstrate for the

first time that having a steep enough density profile improves confinement. That is, based

on our analysis we suggest a first principles explanation for the advantage that H Mode

operation has over L Mode as observed in experiments. Moreover, this logic also

provides a new qualitative model of pedestal formation. Indeed, the preceding means that

for a well developed zonal flow, once a steep enough density step is introduced over an L

Mode type of density profile, turbulent transport is reduced, thereby causing this step to

sharpen further.

Having said that anomalous transport in the pedestal is lowered by the background

electric field we are led to consider neoclassical transport mechanisms. Accordingly, in

chapter 3 we present the first fully self-consistent calculation of the neoclassical ion heat

flux and poloidal flow in a banana-regime pedestal. Not surprisingly, we find that these

quantities are also sensitive to the local electric field. In particular, the change in the

parallel ion flow is consistent with recent C-mod observations [21] and will have a



significant impact on the tokamak stability and equilibrium because of the increased

pedestal bootstrap current.

In summary, this thesis provides a multifaceted analytical description of the pedestal in

tokamaks by focusing on the different physics issues underlying its formation and

sustainment. It also presents a special version of gyrokinetics (a convenient tool that

could be implemented in a code) that can successfully address the issue of finding an

overall solution for the ion distribution function in H Mode in both the core and pedestal

regions.
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7 Appendices

A First order corrections to gyrokinetic variables

We show in this appendix how the gyrokinetic procedure we describe in section 2 is

implemented to obtain our gyrokinetic variables correct up to first order in 6.

Spatial variables. Following the steps outlined in section 2 we first apply the Vlasov

operator to 0 = 0 to obtain

dt
=t V -V .

Next, we extract gyrodependent part of d0o/dt by writing

dO- = -V.
dt de

Then, we have to solve for 01 such that to lowest order

Using (A.68) and (2.6), (A.69) gives the equation

O1  dO0 _ /dO0
a 61 dt \ d t6 /
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(A.67)

(A.68)

(A.69)

(A.70)

+061)- (6 + 61)) = 0 .



To perform the integration over <p we use f 5dVp = x n. Thus, setting (6) = 0

gives 61 = Q-1V xh -V6, reproducing the relation (2.15) given in Sec 2.5.

We get the first order correction to ( by similar procedure to find ( = Q-1v x A -V(

and (2.16).

As has already been mentioned, the @, variable does not require a first order correction.

However, if we were to simply take as the initial variable and then proceed

analogously to 6 and (, we find

~v x n
- (A.71)

If we define

Mc
RV (A.72)

Ze

then we see the gyrodependent part of # is equal to 4' . This can be verified by using

(2.22) for the magnetic field in tokamaks to rewrite #b1 as

= QY1v x A - V@ - Iv/Q, as in (2.23).
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Magnetic moment. Here we will only show the derivation of the gyrodependent part of

pl denoted as p,. The gyroindependent term (p, ) will be considered in the appendix C.

As usual, we first evaluate

dI~d~v2J
- -PLVIl - V In B - pov V - - VInB - B Vi-

x n)(Vx n)] : Vn

We notice that

dt -pov (n -V In B - V -n)

giving dya/dt as purely gyrodependent. Then, we write

dt dt

- 1 [PVU -(

2B
-VlnB

= -po1vV - B = 0,

V2 Ii*-
B I.

Ze( VA -V

Our ordering allows large gradients for the electric potential and therefore the last term in

(A.75) must be analyzed carefully. To do so, notice that

0P , , C.
- 0q5O'z~1

a~ a~
0q$ 0
09 a0o

000c
a( 0p0

(A.76)

Using the relations for 01, Q , and $1 we obtain
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-i [ ' - (- Ze
MB U #. (A.73)

(A.74)

(A.75)

8# (@. - 01,6 . - 01,(,C - (Q )



( 00 0# - - Vb

~ 8@ Q
0#q- iV0

86,O (A.77)

This form is conveniently integrated over <p to find (2.29).

Energy. Once again, we begin by applying the Vlasov operator to the initial variable to

find

dE0  d v2

dt -dt 2
Ze. Ze .. Ze V
MV = M v- V4 M vn

Next, with the help of (A.77) we extract the gyrodependent part of the total time

derivative to find

dE, dE0
dt dt

Ze Oq4
M . (A.79)

Our orderings allow us to neglect the first term on the right side of (A.79) and therefore

the equation for E1 can be written as

dE0  (dE\= t - t (A.80)Ze a

Integrating setting (El ) = 0 gives

El =Ze
E . (A.81)
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V-L V, -

Ze -
M vn - 5



A useful expression. Before deriving the first order correction to the gyrophase we obtain

a useful relation that will also be helpful during the calculation of the second order

corrections. Suppose we have a physical quantity given in terms of original spatial

variables Q = Q (V,0,(). Then, according to (2.24) we define Q, =- Q ( ,C,(). As

it has been already mentioned there is a first order difference between Q and Q,. For a

slowly varying function we have upon Taylor expanding

el..' - aQ - B Q - Q

Note that this expansion is not normally valid for such quantities as electric potential and

distribution function because they contain strong spatial gradients. Inserting the relations

for 01, Q1, and 1 we find

Of V x A Of V x A Of xOf Mc
Q~ Q* -V6- -VC -V ,+2-M Ron-,h

or defining I as in (2.22)

Q ~0 Q, - -. VQ + . (A.82)

Gyrophase. Evaluating do/dt gives

d o Ze (A.83)
dt v'v A
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To extract the gyrodependent part of d~o/dt we have to take into account that Q

becomes slightly gyrodependent when expressed in terms of the starred variables. To do

so we employ Eq. (A.82) to write

1v11 0Q (A.84)~ x n

In addition, we use the vector relation

V'h - (V- x ) s +' Uh X

v2
-in-ix +

(A.85)

where ' = A -Vni and the double-dot notation is defined by d2 : T = c -T -a.

Finally, we rewrite the (+ x n) -V# term so that it can be integrated over p. For this

purpose we notice that

( 0 0c
84$(0, - 1,0, - 01, -c,)

Op.,, 04' Op_9 84 @p &4 8Ol
06 ap

0( 8 1
O( Op'

(A.86)

Using the relations for 01, (1, and #', we find that

- B Mc &#
x n'. - - I .

v11Ze 0op( 0q$~i ,J1p*,9*,4
B -V

QV! (A.87)
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v xn-V# _ QL B Mc .
v - B (p v11 Ze '/op)

(A.88)

On the right side of the last formula the original variables can be replaced by the starred

ones without an error to the order of interest. Thus, the only 0 dependence in

(i4 x A) -V# enters through the electric potential.

Inserting (A.84), (A.85), and (A.88) into (A.83) and gyroaveraging we obtain

( dp 0/dt) = -U as given by (2.33). Extracting the gyrodependent part of dWp0/dt and

using Q a81/8o = dpo/dt - (dp/dt) yields

9,=-I-r-nxVi22 s

Ze (d5 B Mc 104
+ -+--I-

MB Op v, Ze ,,,

f #( 0,, (,, E., y,, pl) d&p

where

(A89)

(A.90)

with ('i) = 0 .
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Expression for V_1 p. To complete appendix A we give an expression that will be used

in appendix C to prove that the magnetic moment correction given by (2.29) and (2.31)

makes y a good adiabatic invariant. This expression is obtained by using the relations

(A.77) and (A.88) to decompose the perpendicular component of electric field as

Q g# -. Q &#+ BI &# -.
Vi# = v_ +?j v xAn. (A.91)

v <p B p vn 8p

B Second order corrections to gyrokinetic variables

In this appendix we perform a second iteration to evaluate the gyrokinetic variables to

second order in 6. To carry out this calculation we apply the gyrokinetic procedure to the

variables correct up the first order that were calculated in appendix A.

Spatial variables. We begin by evaluating

(00 + 01) = oIf -V6 : VV --12 V x V -V6 - cV x -V6.(B.1)

Here, the first term is one order larger than the others and therefore it needs to be

expressed in terms of the new variables up to order 6. To do so for A -VG, we employ

(A.82),

v x n McI a
'h -V6 = (n -V6)* - V (n -VO) + -vi - (n -VO). (B.2)G ~Zei p
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In addition, vl requires some special care. Writing

v = 2(E 0 - pOB(i))

and using v* from (2.25) we expand to obtain

V po - p ) B, + ( B - B* I p, + ( E, - En )

Va

Using (2.29), (2.3 1), and (A. 81) and applying (A. 82) to B we find

VB + p* I BB

Q Opbv,* - o = V"

(B.3)

(B.4)

X V - VA x )+

(B.5)
2

+ !nf - V X .
2Q

Having (B.2) and (B.5), we can now gyroaverage yn^ -VO by writing

vn VO = v,* (- ), + (v(A - v*)(i- VO), + [ . VO - (ni -V6)*

and after some algebra find

(B.6)

(vni - 6V) = v* (n - V6), +II 10 ( vIn -V )+ O
2

V( 
xV2Q ~ )i V)

Next, we need to gyroaverage the rest of the terms in (B. 1). These calculations give

K x A:VV )= Q: VV9 = 0, (B.8)
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- px n +K : (n -
4Q



V9) = Lx 2 + VlnBJ + n - n x V0, (B.9)

(jV# x A V) = jV x n -V0.

Collecting the terms we reproduce the relation (2.18) for (d (0 +

Now, we can extract the gyrodependent part of (B.1) and, using

2 = (0 +01)- (0 + 0_),

integrate it over < setting (02) = 0 to obtain 02 as

V~~~ XVV Xf
V-I-I +v i[(L

4- + x + V X :V xV6+

A + vx; Xn ; VH

V2
-

BC
(B11)

The calculation of (2 involves exactly the same procedure as used for 02 giving (2.19) as

well as

+
v X n) x n - v 1 V

4
± 1 . x A + - x A
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V
XQ

and

(B.10)

2=

C2 =

61)/dt) = (6,,).

+ VI

) :Vn +- + -(VjVx

+ VII : V QX 17( +



-, + !(jv x h + xh )
8

VAI+ LU V - Vn - V( - c 7i x n - VC,(B.12)
Q2 1BQ

where V = /R and VV( = -( N+ E&)/R 2 .

The total time derivative of 0, has been already given in the appendix A. Here we only

have to extract the gyrodependent part of 4, in order to obtain (P" )2'

' , = c . (B.13)

Integrating Q20(@, )2 /O 0 = * - ( *) along with using ((Vy, )2) = 0 gives

(B.14)

where to second order 'L* -+ - (Mc/Ze) R - + (4 )2 '

Energy. To evaluate the Vlasov operator with the required precision it is convenient to

write

d(E 0 +E 1 ) Ze. Zed$

dt M M dt

Ze
M

(- dM dt

0# Zed

Ot)F M dt

(B.15)
+ )t.2-
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We can express the total time derivative in terms of the starred variables as

-1-a+ 2 EI+*I.,

where the B/By, term can be neglected since A, = 0 to the requisite order. Also,

using

at t t*,
r.6J

at IF

62~k±pq$

and inserting (B.16) into (B.15) we find

d (E0 + E1 )
dt

Ze &#$
M at

Ze o
M ac"* +0 * (B.17)+ a' * o

Gyroaveraging and using ((ko + E1 )) ~~ ,, we solve for ,* to find (2.27).

Next, we extract the gyrodependent part of d (Eo + E1 )/dt to obtain the equation for E2

to be

E(
0 ,- ,0

Ze a#
= Mat ,

(B.18)

which upon integrating and setting (E2 ) = 0 yields

(B.19)
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To finish this section we analyze the a85/aE, term

,E- Rvi- ,- . (B.20)

Note, that in conventional gyrokinetics the first order corrections to the spatial variables

involve only v, and therefore do not depend on E in leading order. Here, the correction

to @,. involves v1 and therefore this term needs to be retained. From (B.20) we find

0# Mc &# v I ao-M R &q-&% I . (B.21)

This expression will be helpful for proving that the magnetic moment is a good invariant.

Also, for numerical simulations the right side of the relation (B.21) may be more

preferable to use than #/OE, . Indeed, the E, dependence of 4 is weaker than the @,

dependence of # and therefore numerical evaluation of 0#/E, potentially contains a

greater error than that of Oq5/a@, .

C Magnetic moment

This appendix verifies that the corrections to the magnetic moment we employ allow us

to neglect Of/8pi term in the kinetic equation. To do so, we need to prove that
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(A4 )/p 63Qf. This has been already proven for the case without electric potential

[39,47,57]. Here, we need only check that the first and second order terms of A explicitly

involving the electric potential gyroaverage away. These terms are given by

Ze
(A) = -- V Us

Ze
M

(C.1)

where we define

p - VVMFL1I B - (V X fi) + (' X V) : -- 7__ - V x n.
4BQ Q

It is convenient to consider the first two terms on the right side of (C. 1) together

Ze -.
MBo V-

Ze d3
MB di tI qr d Ze

+dt MB'

Using the preceding allows us to rewrite (fA ), as

Ze d5
- MBI dt

(#q ZeV Vin -
MB

In the following subsections we evaluate each term of (C.3) up to order 62
0 po in terms

of the starred variables and then gyroaverage.

Third term. Here, we express vIn V# in terms of starred variables before considering

the first three terms together. We start by writing
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(C.2)

Ze
V#

+d Ze ~-#+dt MB VV(i1'V ),

onV#P V. +d( Ze ~
-V+t MB

- oni -V# I VV (p, ').(C.3)



V V = VV
a*

+ ±VO,
009~* + *VC*+ V E, + 0Vp, + -vv4.a(P (C.4)

To evaluate the right side of (C.3) to the required order, relations (2.17), (2.15), (2.16),

and (2.26) must be inserted for 4, 04, (, and E, respectively. To the same order, for

y, and p, we only need insert the zero order expressions in terms of 6. As a result,

(C.4) becomes

VC +vVq5 +0- V + 4V'+.

+ -VV6 I+ 20-V x - 6

o PV In B +

oq Ze
aE* M

+ Vi2 -2 (C.5)

The first three terms in the preceding equation are one order larger than the rest so the

difference between V(, V9, V4' and (V(),, (VO),, (VO), has to be taken into

account. To do this we employ (2.23) and (A.82) so that Eq. (C.5) transforms into

IV,, 0I4 (V() Oq$ O(VO)~oo~ ap +4 - (vL)o
04' 04

(pV In B + BV - + 2 0LV -. (-x

To the required order we can write
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20 +

-- ( C+
6*

+ 0-

(C.6)

o (RC - +

L V -. - 0A v) + I-L L 17,h -(V' xh)
B aw* V 2

I

-L# V?)+ 2-1

- 0 M V (oRd 1)+ 20 Ze -
A -VO

OE M

X



x - V + LV0

= - - + I v x V,
G G2

and with the help of relation (A.91) we get

BI&~ 2
± -- BI VnB±+TvA -v

Finally, by inserting (C.8) into (C.6) we end up with

(V@). + (V9). + (V).

+ -(9v2V(InB) + vVn - )+ pL VInB
QVII490"Ott

&q$ a(VO)
+09 &ab

* C 01 V (v RdMc 00

In the preceding expression the first three terms are one order larger than the rest.

Then, relating v11 and v1 and nh and A. using (A.82) and (B.5), noting that

.* (9VO)* = (fi -V9)* = 0 , and observing that the (O#/'8E, ) v1, -V term is higher

order, we evaluate ozn -V# to find
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/fl\
V~) ~=

(C7)

V xj X 21Vl V
r 1

+0q5 a(V()
49C 1' b

+ LoVC

-(V x n).(C.8)

V# ~ 2- +IV, (O

+ 0V82 - e n)+ V



- a# 8(VC)po n -V0V n vn -
O# 8 (V6)+2 0 0# & (V4')+-2-0

+ Lo ( vA - V(ln B) + v 1 1 '

Mc # V
Ze .1- R

v xini lB
Ai * .VB +

* Qvi*

-v) + povj -n - V nB + vj 57n - V82 * e1

0n IVo

2
L1V V

4Qi
V x A n - V#(C.9)

Then, we use

0# a (VO)
ao9 &ab

0q# 8(V')] -_
+ 4' 04

Vi o (o nf 0 -ve)+ Vn VC)I

and

nV(v R [= - -V(V -n)] = K + V R( - R.

Gyroaveraging then gives

n+ - (V()

+ poV 0 nA0 1y, aA

+ 06( )
V n(o - +) (VI8(n - V0)490 O~ Io

Mc 0q R - A

Ze ., 2Q

(C.10)

First three terms. Next, we analyze dq/dt. We start by writing
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'\II

2oI
BB ^

yo n

(V.+4L IV, 1
(V 0, (V70), + n

- n-V-n) -v

:~ ~ ~ A (nxV nx +

-V+2h 8# 8(V()-1 a4+ v o-

,(Vin -,70) ~~v*

+JV Iva8

V x n.,,,
V11 Q -vo).



dt t *, (C.11)

where we insert (2.17) - (2.19) for , 04, and (4, respectively, while for E, we need

only the leading order result

(C.12)

To eliminate the terms quadratic in 4 we use (B.21) along with the observation that

~VE .vo+-a~.VE

where vE=E (c/B)n x V5 . Then, (C.11) becomes

+

I (oin -V )
-0

Combining (C.13) with (C.10) we obtain

i a -s V (Vn V\ at ,./

Mc 2 ap 2lZe OP* 2 7 x n)( -V ) -

(IV2ap
_L~~p

VIx n- Vii

+ /t V- V In B

# (C. 14)
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.V('-VIP,

dt 6= -a
dt ( t , +VM a 09 BR2

+VM) (C.13)

dt

di
+ - .V 86,

+4 + + , ,

Ez~ - o vjn -VO.

+3 a ,.+ - (in



Remaining terms. Finally, we analyze the last two terms in (C.3). As in the conventional

gyrokinetics we find

-BV# -Vv(pAl) = V (V x h) -Vn B

+ (x) -Vn-V# +

+ L(vXA-) -(n-V )+ U(Ux) + (

+ M-V+ (V# x f) - Vnh -

Then, we notice that

( Q (

and therefore

v xn) -VlnB h) -V ln B = (# ) - V ln B,

- -VlnB
B

VM#+V(V V (q li,

41+ V2 (
V 2QB

n-Vxn )n-v

Vxn)-V .V# . (C.15)

combine the terms in the triangle brackets from (C.15) with the

term from (C.14). With the help of relation (A.91) and

V(V# X i) Vn --
2Q

-4 VII/( 4Vj- -2QV X n )V.V# =
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V 2 -V x IA.V#.

Next, we

v x n

=(O x X
a p V

+ V1(
(2QB

V x n) -vi-

+ p X -)(- Xh) = V2 ('_ -^), we obtainvv, v n v _ I An



+6 BI Mc &&$ -iVlB-o0 y- + nM -V In B.
p 0Qvy,, Ze oI

(C.16)

Combining terms. Finally, we combine the results from the subsections of this appendix

to obtain

MB
Ze = &,bVM -V+ 2-0 -L, n

Iv2,/2Q)n -V In BNoticing that VVB V@ = -(

- VnB4p Mc Rv2 -- Ze

and UO v@ = (Mc/Ze) Rv21 - we

find to the requisite order the desired result

A )= 0.

D Jacobian in the strong potential gradient case

(C.17)

To follow is the derivation of the leading order Jacobian of the transformation from the

original set of variables to the one consisting of 0, 0, e, y, and s, . We start by

writing

VO*

1v9*
V(*vC*

Vve

Va~

vvII* vv~*. (D.1)

Keeping only the leading order terms in all the blocks yields
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In

Vo:

0

z

V

0 0

-oxnA
2

V1

(D.2)

In the absence of sharp potential gradient we would neglect the V# term in the upper-

right block to obtain the usual expression for the leading order Jacobian, namely,

1 _ x
J X

v (Vv)x V6 -V= B$- -V6. (D.3)

To calculate the determinant for w ~ pp we multiply the first column of matrix (D.2)

by (Ze/M)(/&z), the second by and the third by

(Ze/M) (0#/O(), add them together and subtract the resulting linear combination from

the fourth column of matrix (D.2) to obtain

VO

-- n
Q

0 0 I + I#
BBp

0 0 0

B

(D.4)

V2_L-

The preceding determinant is easily evaluated to find

(D.4)

Notice, that if 1/w = (e/T) (0#/89V)) 70 is of order 1/pj the two terms on the right

side of (D.4) are comparable.
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E The integral on the right side of (4.57)

When evaluating the parallel ion flow we used (4.58) to neglect one of the integrals on

the right side of (4.58). Integrals of this type do not appear in the conventional case and

require special treatment which is presented here.

We start by switching to W and A variables,

d d4ABwd (v + u)fdvg = 4,rSS S=-4,S w (Ag , E.1)B (v + u) aA
where (4.33) is used to obtain the integral in the expression on the

Before integrating by parts it is convenient to rewrite (E. 1) as

right side of (E.1).

f d3Vg =47f dWdAg( {v +u)- 2w/s] -

A (1 - AB/BO - 1)
-4,,SadwaA42Swg a .

(E.2)

Then, observing that

f (1 -AB/BO - 1) ( Atrapped-passing
dAg 1 - B -1 y|f aBA \ / I freely passing

(E.3)dA 1- AB/B -1 ,

P
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and, using that g = 0 at the trapped-passing boundary as well as A --+ 0 for the freely

passing particles, we transform (E.2) into

f d3Vg =4rfdd WdASW (1 - AB/BO

Next, we insert (4.34) into (E.4) to find

3Vg = 47rIMf T
QOT 2 8q

dWdAW(W - To/M
1 - AB/BO - 1

.(E.5)( i-AB/BO )

Replacing the A variable with r,2 using (4.6), along with the observation that

dA = 2Edr2 ,
K2 + 2E

equation (E.5) becomes

87rIMeS 0 T 22 W(W -To-/M)Sds~ -fd ds
QOT 2 190 K2 + 2E

~ dvg ~ r0
2  2p K2 ±2

1 - 2sin2 (/2) - 1 + K2/2S

1 r 2 sin2 (0/2))

where (4.2) is used for (o, + u) and the r 2 integral is only

passing(0 < K2 < 1) region.

(E.4)

(E.6)

(E.7)

over the
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To leading order

1-,2sin2(0/2) - 1+ 2/2e1

1 r 2 sin 2 (0/2))

r1- 1+ 2/2eJ

2E (n)

where the elliptic function in the denominator changes from r/2 at , = 0 to 1 K = 1.

Our goal is to demonstrate that integral (E.1) is small in e . For this purpose we can

replace E (r.) with E (0) = 7r/2 since this does not change the order of the estimate for

(E. 1). Thus, the integral over K2 in (E.7) is approximately evaluated to give

d2 7r~j 1 + K2 2S

1 dK2  f 1 2S

0f( 22S) 2E(Kc)

1 1 d2(gE _ '2 + 2eS)

(K2 + 2ES)
~2 1 (E.9)

Hence, noticing that in (E.7) the integral (E.9) is preceded by a factor of eS we obtain

the desired result (4.58) to leading order in the expansion parameter,

f dg oce <1.

F Comparison to Shaing and Hazeltine
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Here, using s streamlined notation that ignores all irrelevant functions (such as B, Q,

W, I, OfM/O8@, ...) we illustrate the subtle difference between our solution and that of

Shaing and Hazeltine for the localized piece of the distribution function. To do so we

define w v o + u = S(vl + u.) = Sw, and employ w22S = (1 - A) to write

w O/OA = -S and /1A = - (S/w) 0/O. Then, the constraint equation to be solved

in our variables is

while in the variables of Shaing and Hazeltine our equation becomes

((w)/w)Og/Ow = 1,

where the derivatives and averages are to be taken at fixed $4, and we write

f = 0* - 0 - u + g = g - w. In terms of f we find the localized piece of the

distribution function to be

Of/Ow = (/(w)) - 1.

Shaing and Hazeltine write fsH = -- 0 + gsH and solve

((w)/w)9SH/w = C

and rewrite this equation in terms of fsH to obtain

afSH/Ow = C(w/(w)) -b/O,
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where C is a constant and the w derivative of 0 must be performed holding

. = @ - o'g fixed. To perform this derivative Shaing and Hazeltine implicitly assume

that they can replace V by 0 + u. since OB,4/ow = 0 as the use

ft/aw = a( + U )/Bo =a (o, + u)/w = 8w*/Ow = i/S.

As a result, they obtain

OfsH/Bw = C(w/(w)) - 1/s.

The boundary condition the give them C = 1/S and the localized piece of the

distribution function becomes

fSH/aw = (w/(w)) - 1]I,

which has the extra 1/S factor. This extra 1/S results from u* being implicitly inserted,

instead of including the u factor by employing fsH = - - u + gSH at the outset. By

inserting the u at the start we are making use of the energy conservation property of the

ion-ion collision operator, namely C { uv2 M 0. Inserting u* later gives an error

because C { o2fM - 0. The erroneous 1/S factor gets squared in the Shaing and

Hazeltine evaluation of the ion heat flux, thereby accounting for the difference between

our result and theirs.


