
Zooming in on Quasar Accretion Disks

using Chromatic Microlensing

by

Jeffrey A. Blackburne

B.S., California Institute of Technology (2003)

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSYITTUTE
OF TC Y

NOV 18 210

LIBRRIES

September 2009

@ Jeffrey A. Blackburne, MMIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author ..........
Department of Physics

August 20, 2009

I ~

C ertified by ....... ......................... .............................
Paul L. Schechter

William A. M. Burden Professor of Astrophysics
Thesis Supervisor

A

A ccepted by ................................
omas J. Greytak

Lester Wolf rofessor of Physics
Associate Departme Head for Education



2



Zooming in on Quasar Accretion Disks

using Chromatic Microlensing

by

Jeffrey A. Blackburne

Submitted to the Department of Physics
on August 20, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Observing the temperature profiles of accretion disks around black holes is a fundamental
test of an important astrophysical process. However, angular resolution limitations have
prevented such a measurement for distant quasars. We present a new method for deter-
mining the size of quasar accretion disks at a range of wavelengths, thus constraining their
temperature profiles. The technique uses single-epoch, multi-wavelength optical and near-
infrared imaging of gravitationally lensed quasars in conjunction with X-ray imaging, and

takes advantage of the presence of microlensing perturbations to the magnifications of the
lensed images. The dependence of these perturbations on the angular size of the source,
combined with the temperature structure of quasar accretion disks, causes the flux ratio
anomalies due to microlensing to appear chromatic. This allows us to probe regions of the
quasar that are too small to be measured by any other technique. We apply this method
to observations of 12 lensed quasars, and measure the size of the accretion disk of each in 8
broadband filters between 0.36 and 2.2 microns (in the observed frame). We find that the
overall sizes are larger by factors of 3 to 30 than predicted by the standard thin accretion
disk model, and that the logarithmic slope of the wavelength-dependent size is ~ 0.2 on
average, much shallower than the predicted slope of 4/3. This implies that the temperature
is a steeper function of radius than the thin disk model predicts. With this new approach to
determining quasar accretion disk sizes, we are thus able to rule out the standard thin disk
model as the source of the (rest-frame) ultraviolet and optical continuum in these bright
quasars.

Thesis Supervisor: Paul L. Schechter
Title: William A. M. Burden Professor of Astrophysics
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Chapter 1

Introduction: Quasars and

chromatic microlensing

Microlensing by stars in foreground lensing galaxies can substantially alter the flux ratios

of quadruply lensed quasars. But the microlensing effects are greatly diminished if the

quasar has an angular extent comparable to the Einstein radius of a star in the lens galaxy.

The work described in this thesis takes advantage of this size discrimination provided by

microlensing to measure the angular extent of quasar accretion disks. This is a crucial test

of theories of quasar structure.

In this chapter, we give the requisite background about quasars, strong lensing by galax-

ies, and perturbations to the lensing potential such as microlensing. We also describe the

structure of the thesis.

1.1 Quasars: Accretion disks and other structures

Much theoretical work has been done in the past several decades on the subject of accre-

tion disks in quasars. The most prominent model is that of Shakura and Sunyaev [1973],

who describe a solution to the equations of mass and momentum conservation featuring a

geometrically thin disk of material orbiting a massive central object. The material follows

roughly Keplerian orbits, but is perturbed by viscous stresses which transport angular mo-

mentum outward in the disk, while transporting the material inward. The energy released



during the infall is radiated locally, with a blackbody spectral distribution parameterized

by a local temperature (the disk is taken to be optically thick). Since the material is heated

as it falls further into the gravitational potential of the central object, the temperature falls

with increasing radius (see Section 6.2).

Accretion disks are thought to occur in active galactic nuclei (AGN) because of the high

efficiency they afford in converting the mass-energy of the infalling material to radiative

energy.

Other AGN structures include regions of tenuous gas clouds that produce line emission,

both broad lines and narrow; a dusty region thought to resemble a torus, which can heavily

obscure the nucleus depending on the inclination angle; and in some cases a jet emerging

along the axis of the disk.

Many refinements have been made to the model, including general relativistic corrections

[Novikov and Thorne, 1973] and magnetic fields, which provide a possible mechanism for the

viscosity via the magneto-rotational instability [Balbus and Hawley, 1991], and are almost

certainly involved in the formation of jets [Lovelace, 1976].

The spectral energy distribution of quasars is remarkably broad, with roughly equal

power per decade for many decades in frequency [see, e.g., Elvis et al., 1994]. In this thesis

we are mostly concerned with the rest-frame ultraviolet (UV) and optical continuum, the

X-ray continuum, and to a lesser extent the emission lines in the optical region and the mid-

infrared (IR) continuum. The optical continuum is thought to come from the accretion disk;

likewise, the mid-IR continuum comes from the dusty torus surrounding it. The emission

lines arise from ionization regions distributed roughly spherically around the nucleus, at

radii dependent on the local density, the ionization potential of the line, and the luminosity

of the nucleus. The X-ray continuum is more of a mystery. Its spectrum is non-thermal,

meaning it does not arise from the disk (the disk probably does not get hot enough). Its

origin might lie in the base of a jet, or in a hot corona above the accretion disk [e.g., Haardt

and Maraschi, 1991].

There is, however, not a lot of data to constrain this model for distant quasars, partic-

ularly the accretion disk model [Blaes, 2007]. Spectral fitting has not provided a definitive

answer for the temperature structure of the disk, and direct imaging is not an option: at



cosmological distances (e.g., 1 Gpc), an accretion disk 1000 astronomical units (AU) in size

only subtends a microarcsecond, far too small to be resolved.

We describe in this thesis a unique method for determining the size of quasar emission

regions, and apply it to quasar accretion disks. The method works for quasars that are

gravitationally lensed into multiple images by foreground galaxies, and takes advantage of

the microlensing of the quasar images by stars in the lens galaxies.

1.2 Strong gravitational lensing and microlensing

Gravitational lensing is the term for the deflection of light by the gravitational potential.

Every ray that reaches our telescopes is deflected to a small extent by the intervening

mass. In this thesis we focus on quasars whose light is deflected by appreciable angles

by the chance superposition of a massive foreground galaxy close to their line of sight.

This manifestation of gravitational lensing is called strong lensing, and is characterized by

multiple images (or mirages) of the background quasar. Like an optical lens, gravitational

lensing can magnify or demagnify the images, though gravitational images are typically

distorted as well (though in the case of quasar images, the distortion is not observable,

because they are still unresolved).

1.2.1 Strong lensing theory

The most powerful treatment of the problem of gravitational lensing is the use of the

Fermat time delay surface [Schneider, 1985]. The following discussion relies on the thin

lens approximation (i.e., the bending occurs only along a small fraction of the light's path),

and follows loosely that of Narayan and Bartelmann [1996]. As the rays of light from

the background quasar traverse the gravitational potential of the foreground galaxy, their

path is lengthened, and they accrue an additional delay relative to each other [the Shapiro

time delay; Shapiro, 1964]. The delay is proportional to the gravitational potential of the

foreground galaxy (projected onto the sky), and is added to the paraboloidal geometric time

delay due to the difference in path length for a bent light path. The total delay (up to a



constant) is given by

T(O) 1 + ZL DOLDoS 11_ 2
c DLS 2  1

where ZL is the cosmological redshift of the lens, 3 is a 2D vector on the sky describing the

position of the source, and DOL, Dos, and DLS are the angular diameter distances from

observer to lens, observer to source, and lens to source. The 2D gravitational potential @b

is defined as the scaled projection onto the plane of the sky of the 3D potential:

00 DLS 2f

6) = -D<D(DOLG, z)dz - (1.2)

The two terms on the right hand side of Equation 1.1 are the geometric time delay and

the gravitational delay, respectively. If the flux of a lensed quasar varies in time, the

delay introduced by lensing will manifest in the observed variation of the images; a cross-

correlation of their light curves will reveal their relative delays.

The positions of the lensed images are located at the stationary points of the Fermat

time delay surface:

(1.3)

A distinction may be made between images that lie at local minima of the time delay surface

and those that lie at saddle points

When a circularly symmetric potential is centered directly on top of a source, the dis-

torted images merge to form an Einstein ring. The radius of the ring is determined by

Equation 1.3, and depends on the strength of the potential and the geometric distances.

Finally, the tensor magnification of an image is given by

(M )--- - - ( -- _ . (1.4)

The above matrix is often written in terms of rK and -y, called the convergence and shear,

'There are local maxima as well near the cores of the lens galaxies, but the curvature there is so large
that they are strongly demagnified; see Equation 1.4. Only one has been observed [Winn et al., 2004].



respectively. They are defined as follows:
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(The shear is actually a vector, but we are only concerned with its magnitude.) Notice

that K is the Laplacian of the gravitational potential; by Poisson's equation it is therefore

proportional to the surface mass density. We will make use of the convergence and shear

when we create microlensing magnification maps in Section 8.1; apart from that we are only

concerned with the scalar magnification, which is the determinant of M.

Equations 1.1, 1.3, and 1.4 describe the three strong lensing observables: time delays

(from the potential), image positions (from the gradient of the potential), and magnifications

(from its curvature).

Strong lensing is used to measure mass distributions, both of galaxies and of clusters

of galaxies, and to make distance ladder-independent estimates of HO. Its magnifying

property is also used to study very distant lensed objects that would otherwise be too faint

to observe. The statistics of lensing are used to constrain cosmological parameters, as well

[for an exhaustive review, see Meylan et al., 2006]. In this thesis we use lensing in a different

way, to study the structure of bright quasars. For this we use microlensing.

1.2.2 Flux ratio anomalies and microlensing

The lensing theory in the previous section can be combined with observations of lenses

to create models for the mass distributions causing the deflection. Circular or elliptical

distributions with reasonable radial profiles, in combination with external shear resulting

from other massive structures near the line of sight, are able to match the positions of

quasar images well, in almost all cases. But often the ratios of the images' fluxes are more

difficult to reproduce [Kochanek and Dalal, 2004].

This phenomenon is most often seen in the quadruple quasars. In some fraction of lens

systems, a lens galaxy is so well-aligned with a background quasar that (with the help of



a quadrupole moment in the potential) it produces four images of the quasar, arranged

in one of a number of characteristic configurations. In Appendix A we provide images of

a sample of quadruple quasars (or quads). Examination of the images reveals three main

configurations: the cross, where the four images are roughly evenly spaced; the fold, where a

pair of images are very close to one another; and the cusp, where three of the four images lie

near each other one one side of the lens galaxy, and the fourth lies directly counter to them.

The quads provide more constraints to the lens model than do doubly imaged quasars;

indeed, their image positions alone are usually enough to constrain a simple model. In

these cases, the flux ratios of the images can be independently compared to those predicted

by the model. They are often anomalous, sometimes extravagantly so [see, e.g., Inada et al.,

2003a].

There exist several possible mechanisms to explain the flux ratio anomalies, including

differential extinction in the lensing galaxy (where the images are separated by the greatest

physical distance), insufficient lens models, and perturbations to the lensing potential due

either to dark matter subhaloes (known as millilensing) or to stars (microlensing). We will

comment on these in order.

Since most lensing galaxies (including, almost certainly, all of those in our sample; see

Appendex A) are red ellipticals, they are not likely to contain large amounts of dust. This

is supported by the fact that X-ray spectra of lensed quasars are usually consistent with no

absorption by neutral hydrogen within the lens galaxy [Pooley et al., 2007]. Additionally,

propagation effects such as extinction are unable to explain the observed parity dependence

of the anomalies - specifically, high-magnification saddle point image are empirically more

likely to be very demagnified than minima. This parity dependence is naturally explained

by substructure [Schechter and Wambsganss, 2002, Kochanek and Dalal, 2004]. For these

reasons, differential extinction is not considered to be an important source of flux ratio

anomalies.

Similarly, the variation in predicted flux ratios for different lens models with reasonable

parameters is quite small. Dalal and Kochanek [2002] suggest error bars of 10%; Keeton

et al. [2003] call this "quite conservative." For quadruple lenses in the fold configuration,

a model-independent theorem states that the close pair of images will be highly magnified,



and their magnification ratio will be close to 1 [Gaudi and Petters, 2002]. Likewise, the

three nearby high-magnification images in a cusp-like lens have signed magnifications 2 that

add to zero; therefore, the middle image will be as bright as the two flanking it put together

[Schneider and Weiss, 1992]. As we will see in the following chapters, flux ratio anomalies

often violate these universal relations. So model uncertainties cannot contribute significantly

to them.

The best candidate for the cause of the flux ratio anomalies is substructure within the

primary lens galaxy, whether it be dark matter subhaloes or stars. Though substructure

may not make a large difference in the time delay surface or its gradient, it is possible for

even a (suitably located) star of - 1M 0 to significantly change its curvature, and thus the

magnification of an image. The difference between perturbations by subhaloes and stars is

one of scale: dark matter subhaloes likely have masses between 103 and 109M® and Einstein

radii between 0.03 and 30 milliarcseconds, whereas stars have masses averaging below 1MD

and Einstein radii around a microarcsecond (thus the labels millilensing and microlensing,

respectively). The Einstein radius of a point perturber (such as a microlens) is given by

(4Gm DLS 1/2

c2 DOLDos) 
(

where m is the mass of the perturber. The difference in scale between microlensing and

millilensing leads to a difference in the time it takes for a source (moving at constant angular

speed with respect to the lens) to cross the substructure Einstein radius; this time is on

the order of a decade for quasar microlensing, and millenia for millilensing. It also matters

when the source is extended: a dark matter subhalo will affect a greater fraction of the

source than a single star will.

1.3 Chromatic microlensing and source sizes

In this thesis we report a chromatic dependence in the anomalous flux ratios of several

lensed quasars. This is contrary to expectations for gravitational lensing of point sources;

2The sign of the magnification indicates the parity of the image. Saddle-point images have negative
magnification.



because the geodesic equation for light is wavelength-independent, gravitational effects are

achromatic. The explanation for chromatic flux ratio anomalies lies in the combination of

two effects: the dependence of substructure lensing on source size, and the temperature

structure of quasar accretion disks.

The Einstein ring of a perturbing mass is a measure of its area of influence. If a lensed

quasar has an angular extent large compared to the Einstein radius of the perturbing masses,

the effect will be washed out, since one part of the source will be magnified while another

part is demagnified. So the presence of anomalous flux ratios already tells us that the source

is smaller than the Einstein radius.

If millilensing is responsible for the anomalies, this is not a very strong limit. At the

distance of these quasars, a milliarcsecond corresponds to a several parsecs, far larger than

the accretion disk, or even the dusty torus. But microlensing can probe distances of several

hundred AU, which is about the size of quasar accretion disks. Since these disks have a

temperature structure, it is reasonable that longer wavelengths, originating from a larger

area of the disk, should be less affected by microlensing than shorter wavelengths.

Microlensing may be distinguished from millilensing by the presence of chromatic flux

ratio anomalies or by observing uncorrelated variability in the lensed images (millilensing

variability operates too slowly for us to observe). Millilensing, on the other hand, is char-

acterized by anomalous flux ratios at mid-infrared or radio wavelengths, where quasars are

large enough that microlensing is ineffective. In this thesis, we operate under the assumption

that the flux ratio anomalies are predominantly due to microlensing (with one exception; see

Section A.2). This assumption is justified by observations, even apart from the chromatic

flux ratios we report: several lenses have shown uncorrelated microlensing variability [e.g.,

Wozniak et al., 2000, Chartas et al., 2009, Pooley et al., 2009]. Also, mid-IR observations

of lensed quasars have shown that the flux ratios match the models predictions quite well

in general [Chiba et al., 2005, Minezaki et al., 2009], as expected in the case of microlensing

for flux arising from the relatively large dusty torus.

No method besides microlensing is able to probe the accretion disks of distant quasars

at scales as small as these. Even high-frequency very long-baseline interferometry (VLBI)

[e.g., Doeleman et al., 2009] cannot reach the required resolution. Some progress has been



made using reverberation techniques [e.g., Kaspi et al., 2000], but only in measuring the

sizes of the broad line region.

Though we focus on the effects of finite-size sources, microlensing is also able to constrain

the local fraction of the surface mass density of the lens galaxy made up of stars, as opposed

to smoothly distributed (presumably dark) matter. The X-ray flux ratios we describe

starting in Chapter 3 are useful for this purpose, since they come from a very compact

region. Using these ratios removes the need to simultaneously vary the stellar mass fraction

and source size. See Schechter and Wambsganss [2004] and Pooley et al. [2009] for details

on this.

1.4 Thesis structure

The structure of this thesis follows in rough chronological order the work the author (JAB)

has done in the past six years, along with collaborators David Pooley (DP), Saul Rappaport

(SAR), and Paul Schechter (PLS). Chapters 2 through 5 are each based on a published

paper; these are Blackburne et al. [2008], Blackburne et al. [2006], Pooley et al. [2006],

and Pooley et al. [2007], respectively. Chapters 6 through 9 contain material that is being

prepared for publication.

Chapter 2 contains the earliest work, though its publication was delayed until after the

others. It reports the discovery of HE 1113-0641, a very small-separation lens. Chapters

3 and 4 report strong anomalous flux ratios in X-rays for two lenses, and begin to explore

the implications for the size of the quasars at optical wavelengths. Chapter 5 extends the

analysis of the previous two chapters to a sample of ten lenses and finds that X-ray flux

ratios are more anomalous than optical ones, in general.

In Chapter 6 we introduce the primary project of this thesis, the multi-wavelength

optical survey designed to measure the size of twelve quasars' accretion disks as a function

of wavelength. Chapter 7 describes the data we obtained, while Chapter 8 details our

quantitative analysis method. In Chapter 9 we examine the results, compare them to

results from the literature, and review our conclusions. Finally, in Chapter 10 we describe

future work.



Throughout this thesis, we calculate distances and time delays using a geometrically flat

universe with QM = 0.3, QA = 0.7, and Ho = 70 km/s/Mpc.



Chapter 2

HE 1113-0641: A lensing case

study

2.1 Introduction

This chapter describes the discovery of HE 1113-0641, the smallest-separation quadruply

lensed quasar ever found with a ground-based optical telescope. Quad lenses are useful for

studying the baryonic and dark matter components of galaxies [e.g. Schechter and Wambs-

ganss, 2004], as well as the properties of the background accretion disk [Pooley et al., 2007,

Poindexter et al., 2008] and emission line region [Keeton et al., 2006]. So each new one is

significant, especially in the southern hemisphere, as there is no analog there to the Sloan

Digital Sky Survey (SDSS), where many lenses are currently being found [e.g., Oguri et al.,

2008b].

The exceptionally small separation of the images in this lens highlight the value of high-

resolution imaging, both from the Hubble Space Telescope (HST) and from ground-based

observatories. In particular, the Magellan telescopes' superior image quality enabled the

discovery of this lens. The small separation has a downside, as well - the faint lens galaxy

is difficult to observe, and we have little hope of measuring its redshift. And the necessity

of excellent seeing makes this lens difficult to monitor. The four quasar images demonstrate

flux ratio anomalies, indicating that microlensing is likely to be taking place.



Table 2.1. Observations of HE 1113-0641

Date

2002 February 16

2003 January 26

2003 November 06

2003 November 07

Instrument

MagIC

MagIC

NICMOS

ACS/WFC

FiIter Exposure

g' 7 x 60 sec
i' 7 x 60 sec

g' 1 x 60 sec
i' 3 x 120 sec
H 3 x 640 sec

1 x 704 sec
V 3 x 120 sec

2 x 480 sec
I 3 x 85 sec

2 x 346 sec
1 x 370 sec

In Section 2.2, we report the observations made using Magellan and the HST. Section

2.3 describes our analysis of the data. In Section 2.4 we construct a simple model of the

lensing potential, and in Section 2.5 we make a rough estimate of the lens redshift. In Section

2.6 we discuss the conclusions we can come to regarding HE 1113-0641. This chapter is

adapted from Blackburne et al. [2008]'.

2.2 Observations

HE 1113-0641 was originally discovered to be a z = 1.235 quasar in the Hamburg/ESO

digital objective prism survey [Wisotzki et al., 2000]. Based on its redshift and apparent

magnitude B = 17.01, it was found to have a relatively high lensing probability, and was

selected for a follow-up observation.

We observed the object in early 2002 and early 2003 in the Sloan g' and i' bands using

the Magellan 6.5 meter telescopes. In Autumn 2003, we observed it in three bands using

the Advanced Camera for Surveys (ACS) and the Near-Infrared Camera & Multi-Object

Spectrometer (NICMOS) aboard the HST. These observations are tabulated in Table 2.1.

Copyright 2008, The American Astronomical Society. Reprinted by permission.

Seeing

W'52
0'!43
0'!47

'!33



2.2.1 Magellan 6.5 meter imaging

HE 1113-0641 was identified as a quadruple gravitational lens on 2002 February 16 using

the Baade 6.5 m telescope at the Las Campanas Observatory. Seven 60-second exposures in

each of the Sloan i' and g' bands, and a single exposure in the r' band, were taken using the

Magellan Instant Camera (MagIC), a 2048x2048 pixel CCD camera with a 2.4 arcminute

field of view. The average seeing varied from 0'43 in i' to 0'!50 in r' to 0'!52 in g'. Because

of the combination of mediocre seeing with the existence of only a single image in the r'

band, and the absence of any corresponding images in the 2003 dataset, we did not carry

out any analysis in r'.

Second-epoch images were obtained on 2003 January 26, again using MagIC, which had

meanwhile been moved to the Clay telescope, 60 meters to the northwest. The three i' band

images had an average seeing of 0'!33, while the single g' band image had a seeing of '47.

The data were bias-corrected, flattened, and combined using standard techniques. The

stacked 2003 i' band image may be seen in Figure 2-1.

2.2.2 Hubble Space Telescope imaging

On 2003 November 6 and 7, HE 1113-0641 was observed using both the NIC2 camera of

NICMOS and the Wide Field channel of the ACS. The NICMOS images had 256x256

pixels and a 19'!2 field of view, while those from the ACS were significantly larger, with

4096x4096 pixels filling a 3.4 arcminute field of view. Three filters were used, F160W with

NICMOS and F555W and F814W with the ACS (hereafter H, V, and I, respectively).

Because of the diffraction-limited quality of the images, they were not well sampled, with

the width of point spread function (PSF) ranging from 1.5 pixels in H to 2.1 pixels in I.

We used the Multidrizzle program of Koekemoer et al. [2002a], version 2.2, to register

the ACS images, clean them of cosmic rays, and combine them into a single image per filter.

The drizzling process also corrects for geometric distortion arising from the design of the

camera. We likewise drizzled the NICMOS images into a single image using the procedure

detailed in Koekemoer et al. [2002b]2.

2The HST Dither Handbook [Koekemoer et al., 2002b] is available at
http://www.stsci.edu/hst/HST-overview/documents/dither-handbook



Figure 2-1 2003 Magellan i' band image of the HE 1113-0641 field, trimmed slightly and
binned to 0'!276 per pixel. The image is 2.2 arcminutes on a side. The quasar is circled,
and the five field stars a through e are labeled. North is up; east is to the left.

30



The drizzled ACS and NICMOS images of HE 1113-0641 may be seen in Figure 2-2.

2.3 Analysis

The small separation of this lens, combined with the relative faintness of the lensing galaxy,

complicated the task of disentangling the four quasar components and the galaxy, partic-

ularly for the ground-based data. To address this issue, we used an iterative PSF-fitting

process to find the relative positions and brightnesses of the objects. First we performed

a fit to each image for the relative positions of the objects, then averaged the positions

thus obtained and repeated the fit, holding constant the relative positions, to determine the

photometry.

We used a variant of the DoPHOT photometry package [Schechter et al., 1993] called

Clumpf it to carry out the fits using a standard nonlinear least-squares algorithm. We

used empirical PSFs provided by field stars for the quasar components and an elliptical

pseudo-Gaussian profile [Schechter et al., 1993] for the lensing galaxy. Though this is not a

physical profile choice, we found that the choice of galaxy profile had a negligible effect on

the goodness of the fit. We also used DoPHOT to obtain astrometry and aperture photometry

for several other stars in the wider-field (ACS and Magellan) images.

2.3.1 Magellan data

A fit consisting of four empirical PSFs (provided by a field star) was made to the stacked

i' band Magellan images. This came to a total of 13 free parameters: two-dimensional

position and normalization for all four objects, and the sky level. It was clear from the

residual images that a small amount of leftover flux remained; indeed, that the four point

sources had been over-subtracted in an attempt to compensate (see Figure 2-3). So a second

fit was attempted using a model with four point sources and a circularly symmetric galaxy;

however, there was not enough galaxy flux for the fit to distinguish between radial profiles

or converge upon a scale size. We therefore chose a fixed-width circular pseudo-Gaussian

profile for the galaxy and repeated the fit, which now had 16 free parameters. The width

of the galaxy was set to the width chosen for the ACS data (see Section 2.3.2), suitably



Table 2.2. Relative Astrometry of HE 1113-0641

B C D G
z y x y x y x y

i' (2002) +0.515 +0.428 +0.515 -0.091 +0.148 +0.433 +0.431 +0.188
i' (2003) +0.517 +0.424 +0.523 -0.086 +0.149 +0.432 +0.422 +0.134
V +0.518 +0.424 +0.523 -0.085 +0.152 +0.427 - -

I +0.519 +0.422 +0.523 -0.083 +0.152 +0.429 +0.320 +0.145
H +0.518 +0.425 +0.522 -0.083 +0.146 +0.429 +0.308 +0.169

Note. - The positive directions for x and y are west and north, respectively. All
positions are measured in arcseconds, and are given relative to component A.

broadened by the PSF. This fit was able to account for the leftover flux.

The relative astrometry resulting from the 16-parameter fits in i' and other filters is listed

in Table 2.2. The relative positions of the four quasar components were then weighted by

the inverse of their uncertainties and averaged, yielding final values, which may be found

in Table 2.5. In the case of the lensing galaxy, only the HST positions were averaged (see

Section 2.3.2).

Once the relative astrometry had thus been determined, we repeated the fit with fixed

relative positions and a fixed galaxy width. The results of this fit may be seen in Table 2.4,

and residual images are in Figure 2-2.

For the g' band images, which had poorer seeing, the quasar components were too

blurred for a successful fit until relative positions were fixed. The residual images of these

fits may also be seen in Figure 2-2. There was no indication in the residuals of leftover flux

indicative of a lens galaxy, so we conclude that we have not detected it in the g' band.

Aperture photometry was also obtained for several field stars, including those used as

model PSFs. The positions of these stars, labeled a through e in Figure 2-1, may be found

in Table 2.3, and their magnitudes are listed in Table 2.4.

To enable absolute flux calibration, aperture photometry was obtained for standard stars

from the sample of Smith et al. [2002]. For the 2002 data we used PG 1047+003A, and for

that of 2003 we used RU 152. We applied a first-order correction for atmospheric extinction



Table 2.3. Field Stars a through e

x y

a -40.04 -66.50
b +5.70 -79.16
c -66.47 -29.91
d -85.97 -29.07
e -44.84 +39.90

Note. - The pos-
itive directions for x
and y are west and
north, respectively. All
positions are measured
in arcseconds, and are
given relative to com-
ponent A.

when calculating the zeropoints, using extinction coefficients from Table 4 of Smith et al.

[20071. It is worth noting that the Sloan u'g'r'i'z' system is a broadband approximation to

the (monochromatic) AB magnitude system, and is given by

m = -2.5 lo d(log u)fvSum = -2.5 log - 48.60 (2.1)
f d(log v) S,

where f, is the energy flux per unit frequency, and S, is the filter response. The system

is defined by 158 standard stars, and is calibrated by synthetic spectra of BD +17'4708.

The u'g'r'i'z' deviates from the true AB system by less than 5% [Smith et al., 2002], and is

presented in Table 2.4.

We estimate the uncertainty in the relative photometry to be 0.1 magnitudes in g' and

0.05 magnitudes in i'. Absolute photometry is less certain, with error bars a factor of 1.4

larger. With these uncertainties the data are consistent with a slight overall brightening

of all four images between 2002 and 2003, probably caused by intrinsic variability of the

quasar. However, they fail to convincingly demonstrate uncorrelated changes in the flux

ratios over time, even when combined with HST data; such variations might have been



Table 2.4. HE 1113-0641 Photometry

g' (2002) g' (2003) i' (2002) i' (2003) V I H g' - i' (2003) V - I I - H

A 18.37 18.19 18.02 17.96 18.33 18.32 18.25 +0.23 +0.00 +0.07
B 18.28 18.24 18.09 18.02 18.40 18.35 18.27 +0.22 +0.05 +0.08
C 18.53 18.39 18.46 18.37 18.64 18.61 18.74 +0.02 +0.03 -0.13
D 18.91 18.91 18.79 18.76 19.06 19.01 18.92 +0.15 +0.06 +0.08
G ... .-- 22.36 22.17 ... 22.47 21.05 -.- ... +1.42

aa 20.63 20.70 18.08 18.05 20.16 17.86 ... +2.65 +2.30 ...

b . . 18.39 20.66 18.04 ... -±- +2.62 ...

c 19.29 19.34 16.62 16.62 18.91 16.39 ... +2.72 +2.52 ...

d 18.78 18.77 18.36 18.36 18.69 18.45 ... +0.41 +0.24 ...

e 22.51 22.59 20.01 20.02 22.06 19.81 ... +2.57 +2.25 -

aa through e are field stars.

Note. - All magnitudes are in the Sloan u'g'r'i'z' photometric system (see Section 2.3.1).



Figure 2-2 Top row: Stacked images of HE 1113-0641 from the HST (V, I, and H) and
Magellan (g' and i'). Magellan data are from 2003. The images are displayed with logarith-
mic stretch. Bottom row: Residual images after subtraction of the best model. The images
are in a linear stretch from -20o- to 20o, where o- is the sky noise. All images are 4'!0 on a
side.

Figure 2-3 Residual images of HE 1113-0641 in the redder filters after only four point
sources, and no central galaxy, have been fit and subtracted. Leftover flux from the lensing
galaxy may be seen near the center. Stretch and size are equal to those of the second row
of Figure 2-2.

indicative of microlensing.

Despite our use of fixed positions for the g' band images, there are inconsistencies in

the g' - i' colors of the quasar components. It is likely that these are due to the confusion

caused by mediocre seeing in the g' band.

There can be little doubt that the lensing galaxy has been detected in the i' band in both

data sets. However, its size and shape remain poorly constrained. By fitting a fixed circular

pseudo-Gaussian to both epochs of data, we were able to estimate its i' band flux, but

with substantial uncertainty (0.2 magnitudes of difference between epochs). We were able

to determine the position of the galaxy using HST data, but its size and shape remained

elusive (see Section 2.3.2).



2.3.2 Hubble Space Telescope data

The HST images did not suffer from inadequate seeing, but rather from undersampling

of the PSF, leading to complications in the interpolation of empirical PSFs. We therefore

resampled the ACS images to a scale of '03 per pixel, and the NICMOS image to a scale

of W'!0375 per pixel, when combining images.

ACS

Since the ACS PSF is known to vary across the field of view and also with time, we

searched the HST archive for images with a suitable PSF star located close to the position

of HE 1113-0641 on the chip, and obtained at a time close to 2003 November 7. In the V

band, we used a field obtained on 2003 October 73, and in I we used a field obtained on

2003 November 254. In order to minimize differences in the PSF caused by the drizzling

process, we used the same Multidrizzle process on these images as on the HE 1113-0641

images. We chose PSF stars that were close to the correct position on the chip, and were

not saturated. In both cases, these stars were about 1 magnitude fainter than image A.

The fits proceeded as they had in the case of the Magellan images. There was appreciable

leftover flux in the I band, concentrated in the center of the lens system (see Figure 2-3).

Since the noisy residuals of the quasar components again prevented a measurement of the

lensing galaxy's radial profile or scale size, we fit it as a circular pseudo-Gaussian with

a fixed width of ''35 (broadened slightly by the ACS PSF). The width was chosen by

inspection of the residual image, since the choice had little to no effect on the goodness of

fit parameter. No sign of the galaxy was visible in the V band residual image.

Both of these fits were repeated once we had determined and fixed the relative positions.

The resultant residual images are visible in Figure 2-2. The magnitudes were calibrated

using AB zeropoint keywords from the HST data headers. The HST broadband flux cali-

bration is based on synthetic spectra of four primary white dwarf stars [Bohlin, 1995], and

agrees with the AB zeropoints of Smith et al. [2002] to within 3% [Bohlin and Gilliland,

2004]. The photometric data are presented in Table 2.4.

3The exposure was associated with program #9756, and started at 4:08 AM.
4 The exposure was associated with program #9822, and started at 10:07 PM.



Astrometric measurements were made using DoPHOT on the I band image. A plate solu-

tion was found using sixteen USNO-B stars. This solution gives the position of component

A as (11h 16n 23s56, -6' 57' 38'!6; J2000) to a precision of 0S01 in right ascension and 0'!1

in declination.

NICMOS

The analysis of the NICMOS data was similar to that of the ACS data. A 2003 September

5 observation of SA 107-626 provided a model PSF5 . In this case, the PSF star was much

brighter than the quasar components.

Leftover flux from the lensing galaxy was visible in the H band image, as it had been

in the I band image (see Figure 2-3). We again modeled it as a circular pseudo-Gaussian,

with the same fixed width (broadened slightly by the NICMOS PSF).

A second fit was performed with the relative positions of the quasar components fixed

to the averaged value. The photometry that resulted from this second fit was calibrated

to the AB system using keywords from the data headers, and is visible in Table 2.4. The

residual image may be seen in Figure 2-2.

2.4 Modeling the lens

Using the Lensmodel software of Keeton [2001], we modeled the lensing galaxy as a sin-

gular isothermal sphere model plus external shear. This model consists of a projected

2-dimensional lensing potential given by

T(6) = br - r2 cos 2(# - #,), (2.2)
2

where b is the monopole Einstein radius in arcseconds, r and # are the radial and angular

components on the sky of the position vector 0, and -y and #., are the strength and direction

of the external shear. Note that in this convention the position of a companion mass causing

a shear would be along the t#, direction. (No such perturber is observed in this case,

5 The exposure was associated with program #9875, and started at 4:56 AM.



consistent with the apparently small shear strength.) This model has seven free parameters,

and was constrained by the averaged positions for the four components and the galaxy.

We found the best model to have a monopole Einstein radius of W'!332, with -y = 0.04

and 0. = 37.7 degrees east of north. The source position was predicted to be (x, y)=('!308,

W'!151) relative to the position of component A, where the positive directions of x and y

are west and north. Table 2.5 contains a summary of the model's predictions, compared to

observed data.

The model fits the component positions very well, even with the tight constraints pro-

vided by the HST. It does not, however, correctly predict the flux ratios. This is in keeping

with experience; optical flux anomalies can be seen in many lensed quasars [Keeton et al.,

2003]. In particular, the D component, a saddle point image, is predicted to be brightest,

but is observed to be the faintest, too faint by as much as a factor of 2.5. The predicted

position of the lensing galaxy is '01 from the observed position. This is well within the

estimated measurement error.

Finally, the model allows us to predict the time delays between the images, given a lens

redshift. We used ZL = 0.7, as estimated in Section 2.5. This yields the predicted time

delays seen in Table 2.5, with the maximum delay being -1.5 days. We also calculated

predicted time delays for zL = 0.4 and ZL = 1.0; these changes reduced and increased

(respectively) the time delays by a factor of ~3. This strong dependence suggests that a

measurement of the time delays might constrain the lens redshift; however, the unknown

radial mass profile of the lensing galaxy is likely to have a similarly strong effect on time

delays.

By way of comparison, HE 0435-1223, which has a shape similar to that of HE 1113-0641

but a larger image separation, has a maximum time delay of two weeks [Kochanek et al.,

2006].

2.5 Estimating the lens redshift

In order to estimate the redshift of the lensing galaxy and determine what its I - H color

could tell us about its morphology, we combined the results of our lens model with properties



Table 2.5. HE 1113-0641 Astrometry & Lens Model

Observeda
x y

0" 0"
+0.518 +0.424
+0.522 -0.085
+0.150 +0.429
+0.313 +0.158

Predicted

x y

+0.002 +0.001
+0.518 +0.423
+0.524 -0.084
+0.150 +0.428
+0.314 +0.148

Observedb Predicted

p p

+16.0 +12.6
+15.7 +15.7
-10.2 -9.6
-8.6 -16.7

Predicted
Time Delays'

0
7.9

36.9
16.4

aWeighted average of positions from i' band data and HST data.

bFlux ratios from H band data; normalized so that component
model. Negative magnification denotes saddle point images.

cIn hours.

B matches the

Note. - The positive directions for x and y are west and north, respectively. All
positions are measured in arcseconds.

of typical galaxies.

From the lens strength b = ''332 we found the line-of-sight velocity dispersion O~L of the

lens using

DLS 47ro.2
b= 2 L

Dos c2
(2.3)

[Narayan and Bartelmann, 1996], where DLS is the angular diameter distance from the lens

to the source, and Dos is the angular diameter distance from the observer to the source.

These distances depend on both the source redshift zs = 1.235 and the unknown lens

redshift ZL.

By combining this equation with the Faber-Jackson relation [Faber and Jackson, 1976]

for elliptical galaxies, or the Tully-Fisher relation [Tully and Fisher, 1977] for spiral galaxies,

we generated a predicted observed magnitude for each filter as a function of lens redshift.

The Faber-Jackson relation is given by

Mj(B) = -19.4 + 5 log h - 10(log o - 2.3) (2.4)



[de Vaucouleurs and Olson, 1982], which becomes

MB = -18.9 + 5 log h - 10(log - - 2.3), (2.5)

after applying the extinction correction BT - BT = 0.22 [de Vaucouleurs et al., 1976], and

with Bj = BT + 0.29 [Peterson et al., 1986]. The Tully-Fisher relation is the same, but

with o replaced by circular velocity, which for an isothermal sphere is just v/2-.

The predicted magnitude in the i' band is given by

me = MB + DM(ZL) + KB,i'(ZL) (2.6)

where DM(ZL) is the cosmological distance modulus, and KB,i'(zL) is the generalized K-

correction between the lensing galaxy's rest-frame B band magnitude and the observed i'

band magnitude [see, e.g., Hogg et al., 2002]. To calculate the K-correction for an elliptical

galaxy at each potential lens redshift, we used a spectral energy disbribution (SED) gener-

ated by the Bruzual and Charlot [2003] spectral evolution code. Our model consisted of a

solar-metallicity, instantaneous starburst at a redshift of 3.0, followed by passive evolution.

For a spiral galaxy, we used an empirical Scd galaxy spectrum from Coleman et al. [19801,

redshifted appropriately.

The observed magnitudes of the lensing galaxy matches those predicted for an elliptical

galaxy for a range of redshifts 0.4 < z < 1.0. A spiral galaxy model also matches the H band

observations, but would be brighter than observed at all redshifts in I by > 1 magnitude.

The galaxy's brightness and colors seem to be more consistent with an elliptical galaxy than

a spiral.

In addition to this method, we estimated the probability distribution of the lensing

galaxy's redshift by calculating lensing optical depth as a function of redshift, following the

approach of Kochanek [1992]. We found that the median redshift was 0.66, with a 68%

confidence interval of [0.41,0.88}. This is consistent with the results of the Faber-Jackson

method.



2.6 Conclusions

The zs = 1.235 quasar HE 1113-0641 is lensed into a cross configuration, with four compo-

nents ranging from 18.0 to 18.8 magnitudes in i'. The maximum image separation is W'!67.

A combination of ground-based and HST imaging has yielded reliable astrometry and pho-

tometry of the four quasar components of HE 1113-0641, as well as a good estimate of the

position of the lensing galaxy. However, we were unable to measure the size or morphology

of the galaxy. By assuming a circular pseudo-Gaussian shape and fixing a width for the

galaxy, we were able to estimate its flux in the redder bands.

A singular isothermal sphere (SIS) model succeeded in matching the positions of the

quasar components and of the lensing galaxy, but was unable to match the observed flux

ratios. Based on what has been seen with other gravitational lenses, it seems likely that

this is due to perturbations from stellar microlensing or dark matter substructure in the

lens galaxy.

The redshift of the lens galaxy remains elusive, but we estimate that ZL ~ 0.7 ± 0.3,

based on its observed flux and colors. At this redshift, its velocity dispersion, as measured

by its lensing potential, would be 180 km/s.

Because of its small separation, HE 1113-0641 will likely prove difficult to monitor using

ground-based telescopes, and there is little hope for measuring a spectroscopic redshift of

the lensing galaxy. Nevertheless, it is an interesting example of a small-separation lens, and

may prove useful for studies that can take advantage of telescopes with very good seeing.

We undertake such a study in Chapters 6 through 9.
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Chapter 3

Chromatic anomalies I:

RXJ1131-1231 in X-rays and

optical

3.1 Introduction

RX J1131-1231 is a rather spectacular gravitationally lensed quasar. The quasar, at a

redshift of 0.658, is lensed by a nearly round elliptical galaxy at a redshift of 0.295 into a

cusp configuration, with three bright images on one side of a round elliptical-type galaxy,

and a counter-image on the other side. There is also a prominent ring made up of emission

from the host galaxy of the quasar.

The optical flux ratios reported in the discovery paper [Sluse et al., 2003] differ signif-

icantly from the predictions of simple lens models. In this chapter, we report the results

of X-ray observations made with the Chandra X-ray Observatory at a single epoch, and

optical observations made at the Magellan telescopes at six epochs over the course of four-

teen months. We find that the optical brightness of the source varied by no more than 0.3

magnitudes during this time, and continued to differ from model predictions by factors of

about 2. However, the X-ray flux ratios are discrepant by factors of 3 to 9!

We discuss possible explanations for this wavelength-dependant discrepancy in the flux



ratios, and conclude that microlensing, in combination with the effects of a finite-size source,

is the most likely culprit. With the exception of that of Morgan et al. [2001], which reported

a strong flux ratio anomaly in the lensed quasar RX J0911+0551, this is the first work to

use Chandra to measure flux ratio anomalies.

This chapter is adapted from Blackburne et al. [2006]1. Section 3.2.1 was written by

DP, and describes the analysis he carried out on the Chandra data. Sections 3.3.3, 3.3.4,

and 3.4 were written with guidance from SAR. The remainder is the author's own work.

3.2 Observations

3.2.1 X-Ray observations

RX J1131-1231 was observed for 10.0 ks on 2004 April 12 (ObsID 4814) with the Advanced

CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory. Each ACIS chip

has 1024 x 1024 pixels and is 8'3 on a side (with a pixel size of 0'49). The PSF is both

energy-dependent and position-dependent. Near the aimpoint, the half-power diameter is

about 0'!8 at 1 keV, broadening to about 1" at 8 keV. The data were taken in timed-exposure

mode with an integration time of 3.14 s per frame, and the telescope aimpoint was on the

back-side illuminated S3 chip. The data were telemetered to the ground in very faint mode.

The data were downloaded from the Chandra archive, and data reduction was performed

using the CIAO 3.2.2 software provided by the Chandra X-ray Center 2. The data were re-

processed using the CALDB 3.1.0 set of calibration files (gain maps, quantum efficiency,

quantum efficiency uniformity, effective area) including a new bad pixel list made with the

acis.runihotpix tool. The reprocessing was done without including the pixel randomiza-

tion that is added during standard processing; this omission slightly improves the point

spread function. The data were filtered using the standard ASCA grades and excluding

both bad pixels and software-flagged cosmic ray events. Intervals of background flaring

were searched for, but none were found.

The IDL-based software package ACIS Extract v3.79 [Broos et al., 2002) was used

'Copyright 2006, The American Astronomical Society. Reprinted by permission.
2http://asc.harvard.edu



for subsequent reduction and analysis. An image of the X-ray data (see Figure 3-1) was

constructed by reprojecting the events around RX J1131-1231 in the 0.5-8 keV energy

range using a spatial bin size of '.'163. Model PSFs were produced for the images using the

CIAO tool mkpsf at energies of 0.277, 1.4967, 4.51, 6.4, and 8.6 keV. The 1.4967 keV PSF

was used in a maximum-likelihood reconstruction image of the data (10,000 iterations) in

order to determine precise positions for each of the four lensed images.

Small apertures (about 0'.'3 in radius) centered on these positions were used to extract

counts and spectra, and the CIAO tools mkacisrmf and mkarf were used to produce response

files. ACIS Extract corrected the effective area response at each energy based on the

fraction of the PSF enclosed by the extraction aperture at that energy, interpolating from

the five model PSFs. The apertures enclosed roughly 30% of the PSF at 1.5 keV and

roughly 25% of the PSF at 6.4 keV. These small apertures were desirable in order to

reduce contamination from the other lens images, but image A still suffered some small

contamination from images B and C. To correct for image A being in the wings of the PSF

of both B and C, five extraction regions were placed around B and five around C at the

same radial distance as A. The averages of each set of five regions were used for subtraction

from A. The contribution of the cosmic X-ray background in the lens extraction regions is

negligible (roughly 0.005 counts).

The spectrum of each lens image was fit in XSPEC 12.2 [Arnaud, 1996] with a powerlaw

model absorbed by two components, one fixed at the Galactic column to RX J1131-1231

of nH = 3.64 x 1020 cm- 2 [Dickey and Lockman, 1990] and one allowed to vary. Acceptable

fits were obtained for each image, with reduced x 2 of 0.37, 1.3, 0.59, and 1.8 for images A,

B, C, and D, respectively. For each of the images, the additional absorption components

were consistent with zero, and the upper ends of the 1-o- confidence intervals were 6.0, 1.4,

2.1, and 4.4 x 1020 cm-2, indicating similar (and small) absorbing columns for each image.

The powerlaw indices (with 1-o confidence intervals) were 1.21+027 1.23+t880, 1.63+0- ,

and 1.93 0, indicating some intrinsic spectral differences (i.e., not due to absorption)

among the lens images. To further quantify these differences, the spectral hardness ratio

3The satellite continuously dithers in a Lissajous pattern on the sky, requiring all images to be reprojected.
Standard processing produces an image with pixels that are 0.'492 on a side to match the physical CCD
pixel size. ACIS Extract produces images with pixels matched to the size of those in the model PSFs.



Table 3.1. X-Ray and Optical Properties

X-Ray Optical Model

FBa 1.8 x 10-1' 7.5 x 10-14 1 (+)
FA/FB 0.18 + 0.04 1.10 t 0.155 1.703 (-)
FC/FB 0.27 i 0.03 0.47 i 0.063 0.962 (±)
FD/FB 0.06 ± 0.01 0.17 ± 0.061 0.113 (-)

LBb 3.2 x 1044 1.3 x 1044 -..

SR(A)c 1.05 ± 0.28 1.10; 0.86 ±0.13
SR(B)c 1.14 i 0.09 0.96; 0.94 t0.13 -..

SR(C)c 0.72 t 0.10 0.96; 0.82 ±0.13
SR(D)C 0.58 ± 0.16 0.93; 0.77 ±0.13 -..

aFlux in units of erg cm-2 s- 1; corrected for a mag-
nification of 13.9, as determined from a model of the
lens.

bLuminosity in units of erg s-1 for a source at
z = 0.658 and a corresponding luminosity distance of
3840 Mpc. No k-corrections have been made.

eSpectral ratios in the X-ray and optical bands. X-
ray ratios are defined as the observed photon flux in the
2-8 keV band to that in the 0.5-2 keV band. The first
of the optical spectral ratios is for the Sloan g' band
to r' band; the second is for the r' to i' bands. The
optical spectral ratios are given in linear flux units.

(SR) was defined as the observed photon flux (photons cm- 2 s-1) in the 2-8 keV band to

that in the 0.5-2 keV band (see Table 3.1). To characterize the intensity of each image,

the unabsorbed power-law flux was integrated over 0.5-8 keV. Table 3.1 lists this flux for

image B and the flux ratio for the other images.

3.2.2 Optical observations

The lens was observed at six epochs over the course of fourteen months in 2004 and 2005

at the Magellan 6.5-meter Clay telescope at Las Campanas Observatory. The observations

made use of MagIC, a 2048 x 2048 direct imaging instrument with a plate scale of W'.'069

per pixel and a 2.4 arcminute field of view. One epoch of observations included imaging in

of RX J1131-1231



three bands - Sloan g',r', and i'; the others were limited to the i' band only. The seeing

on these nights varied from O'.'4 (on the night of multicolor observations) to 1'0.

Three images from the night with the best seeing were used to produce the pseudocolor

optical image shown in Figure 3-1. The g' band was mapped to blue, while r' was mapped

to green and i' to red. The color stretch has been matched to the square root of the flux to

bring out the faint Einstein ring.

The DoPHOT PSF-fitting photometry program was used to measure the positions and

magnitudes of the four quasar components and the lensing galaxy, as well as five nearby

reference stars. The presence of the Einstein ring, which has a red color and thus is especially

strong in the i' band, has resulted in some additional small uncertainties, both in astrometric

and photometric measurements, which are difficult to quantify. We estimate the astrometric

errors at W'.'01.

The standard stars 101 207 and RU 149F [Landolt, 1992] were used to bring the multi-

band observations to the AB magnitude system. The transformations from Johnson colors

to Sloan AB colors were taken from Fukugita et al. [1996]. The colors thus obtained for the

four quasar images are reported in Table 3.1, in linear flux units.

The five field stars were used to calibrate the i' band photometry for all six epochs to

the same magnitude system as the multi-band observations. After this normalization, the

magnitudes of the 5 stars had rms fluctuations of between 0.02 and 0.07 magnitudes. The

magnitudes of the four quasar components thus derived are presented in Table 3.2. Because

of the effects of the Einstein ring, the uncertainties are larger for these than for the reference

stars; we estimate them to be 0.15 magnitudes. Within this level of uncertainty, the data

are almost consistent with a steady brightness over time, although there appears to be a

slight dimming trend in the last three epochs.

3.3 Discussion

3.3.1 Modeling the lens

Following the lead of Sluse et al. [2003], we used the Lensmodel software of Keeton [2001]

to model the lens as a singular isothermal sphere (SIS) with an external shear. Including



Table 3.2. Optical Variability of RXJ1131-1231

Date Image A Image B Image C Image D

2004 February 19 17.69 17.70 18.49 19.71
2004 February 22 17.76 17.79 18.69 19.80
2004 May 9 17.56 17.52 18.51 19.95

2004 May 26 17.54 17.58 18.48 19.64
2005 January 5 17.85 18.16 18.82 19.67
2005 April 14 18.04 18.33 18.95 19.73

Note. - All values are Sloan AB i' band magnitudes, after cor-
rection for reference stars in the same field of view.

the position of the source as well as the lens position and strength and the shear strength

and direction, there were seven free parameters. We used the Magellan positions of the

four lens components, which had uncertainties of '01, for a total of eight constraints. We

did not constrain the position of the lens, in order to allow for the possibility that mass

may not strictly follow the light. The fit yielded a reduced X2 of 1.1. The lensing mass was

predicted to be 0'!14 southeast of the observed galaxy position, indicating that our model

is not perfect; this is typical of such simple lens models. We find the lens strength to be

1'78, and the shear to be 0.12 in a direction 73'3 west of north. These values are similar

to those reported by Sluse et al. [2003] of 1"82, 0.12, and 14?8 east of north4 .

The magnifications predicted by the best fit model are -23.7, 13.9, 13.4, and -1.58 for

images A, B, C, and D, respectively, with signs indicating image parity. These appear as

flux ratios in Table 3.1. The C/B and A/B ratios are low by factors of ~2 in the optical,

and by factors of -3-9, respectively, in X-rays. The model relative intensities were used to

create a simulated image as it would appear through the Magellan telescope. This image

is shown in Figure 3-1. It is clear that the predicted flux ratios are different from those

observed.

4A 90' offset between the two position angles is due to differing sign conventions for the shear term.



3.3.2 Genuine optical anomalies

The X-ray flux ratios clearly appear to be anomalous, but one may fairly wonder if another

relatively simple lens model might fit the optical data better. Keeton et al. [2003] use the

"cusp relation" (which predicts in a model-independent way that the flux of image A should

be approximately the same as the sum of images B and C) to establish convincingly that

a simple smooth model with an elliptical galaxy cannot explain the optical flux ratios in

RX J1131-1231. A highly flattened model such as an edge-on disk might explain them, but

the morphology of the galaxy and the round unbroken Einstein ring rule out this possibility.

Our own modeling efforts bore out this conclusion. We constrained the fluxes to equal

the optical values and modeled the lens both as an isothermal ellipsoid with external shear,

and as an isothermal sphere with another isothermal sphere off-center, to provide shear.

These models did not fit nearly as well as our best fit model above, with the extra contri-

bution to X2 coming nearly exclusively from the flux constraints. We also tried loosening

the constraints on the positions of the images. This did improve the flux fits somewhat,

but caused the positions to be fit far from their observed values.

3.3.3 Quasar variability

Another possibility for explaining the differences in the X-ray and optical flux ratio anoma-

lies might be to invoke temporal variability in the intrinsic output of the quasar, since the

observations in the two wavebands were made at different epochs - though the X-ray obser-

vation was made about half way between the second and third of the optical observations.

We have shown directly that the optical flux did not undergo any major secular changes in

the intensity during that year. RX J1131-1231 has a luminosity which is about midrange

(on a log scale) for quasars. Therefore it may undergo substantial temporal variability in

both its intensity and spectral slope [see, e.g., Green et al., 1993]. However, a sustained

(> 104 s) change in intensity by a factor of ~9 within a day (the time delay difference be-

tween images A and B) would be quite unusual [Green et al., 1993]. Thus, it seems doubtful

that temporal variability explains the principal flux ratio anomaly in this source.



Figure 3-1 Chandra, Magellan, and model images (top to bottom) of RX J1131-1231. The
raw Chandra image was convolved with a Gaussian with a width -70% the width of the
Chandra PSF in order to produce a smoother appearance. The model image positions and
brightnesses are from the model described in Section 3.3.1, as are the predicted source and
lens positions, marked with circle and diamond-shaped caustic, respectively. Also plotted
is the critical curve.
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3.3.4 Anomalies due to substructure

As is the case for most anomalous quadruply lensed quasars [Kochanek and Dalal, 2004],

the sense of the flux anomaly in RX J1131-1231 is to demagnify the brightest saddle point

image (image A), and possibly to further magnify the brightest minimum (image B). This

discrimination by image parity is expected for both micro- and millilensing [Schechter and

Wambsganss, 2002, Kochanek and Dalal, 2004]. In addition, the fact that the anomaly in

image A is more severe in X-rays, which originate from a smaller region than the optical

light, supports microlensing rather than millilensing.

To help understand what substructure might do to the intensities of the optical and

X-ray images, we estimate the ratio of the angular sizes of the emitting regions near the

quasar black hole to the Einstein radius of a point object (e.g., a star) in the lensing galaxy

[see also Mortonson et al., 2005]. Objects orbiting near the central black hole at radius r

subtend a characteristic angle at the earth of:

0 ~ r = r_) GMBH
Dos \R 9 } c2Dos '

where MBH is the black hole mass, Rg is the gravitational radius of the black hole, and

Dos is the angular-diameter distance to the source. By comparison, the Einstein radius of

a micro- or millilensing point mass Min is

in =(4GMmi DLS 1/2 (3.2)
c2 DOLDos )

where DOL and DLS are the lens and lens-to-source angular diameter distances, respectively.

We can define a dimensionless ratio of these quantities (, which is related to the degree

to which micro- or millilensing can occur:

S 35 -4 r MBH) (Mmi -1/2 DOL(Gpc) (3.3)
Ein R 9 08MJ MG) DosDLS



For RX J 1131-1231 the above expression reduces to

(~3 x 10-4 T)(MH ( m 12(3.4)
R9 108MO MO '

or )-2# ( MBH (Mmi\ -1/2
'O.01 108M M) '(

where # is the characteristic speed of orbiting or free-fall objects around the black hole, and

we have taken Dos ~ 1400, DOL ~ 900, and DLS ~ 865, all in units of Mpc.

Thus, X-ray and optical continuum emission which is emitted by the accretion disk

within several hundred R9 of the black hole can be substantially microlensed (see Equa-

tion 3.4). Any broad-line emission features (with # ~ 0.01) could be only marginally mi-

crolensed (see Equation 3.5). In contrast, any narrow-line emission region (with # ~ 10-3)

would not be microlensed. In this study, we are limited to X-ray and continuum optical

emission, both of which should be about equally microlensed.

Therefore, the clear differential in the flux ratio anomalies between the optical and X-ray

bands, factors of -2 in the former, and -3-9 in the latter, presents something of a puzzle

(see Section 3.4). If, on the other hand, the continuum optical emission originates farther

from the center, possibly due to scattering of visible light or reprocessing of higher energy

radiation, then the differential flux anomalies between X-ray and optical could be explained

by microlensing. In this case we can directly estimate the size of the optical emission region

as ~ 104 Rg (see Equation 3.4) for a ~108 M 0 black hole.

Finally, to determine if it is plausible to explain a factor of 9 demagnification using

microlensing, we examined the microlensing simulations described by Schechter and Wamb-

sganss [2002]. For a saddle-point image with a magnification of -20 such as image A, the

probability of a demagnification a factor of 9 or greater ranges from virtually zero for a

100% stellar local projected mass density to nearly 17% for a mass density made of 10%

stars and 90% smooth dark matter. We expect that at this distance from the galaxy's

center, stars would make up about 15-30% of the projected mass, and so conclude that it

is possible for microlensing to explain the X-ray anomaly.



3.4 Summary and conclusions

We have analyzed optical and X-ray images of the quadruple lens RX J1131-1231 and find

anomalous flux ratios among the four images that are different in the optical than in the

X-ray, with the more extreme anomalies being present in the X-ray band. In particular,

the ratio FA/FB is a factor of 9.4 t 1.7 smaller in the X-ray band that is predicted from

the model image. The effects of microlensing in connection with anomalous flux ratios have

been discussed extensively in the literature [see, e.g., Metcalf and Zhao, 2002, Mortonson

et al., 2005]. Above, we discuss why we would nominally expect the microlensing of both

the continuum optical and the X-ray images to be almost the same.

If the flux ratio anomaly differences between the X-ray and optical are ultimately re-

solved via microlensing, then we can turn the argument around and infer the approximate

dimensions of the optical emission region [see, e.g., Mortonson et al., 2005]. First, we de-

fine f = Lx+opt/LEdd, where f is the fraction of the Eddington limiting luminosity that

the X-ray plus optical luminosity represents. The parameter f incorporates the fact that

Lx+opt (~ 5 x 1044 ergs s-1) is less than the bolometric luminosity which, in turn, is less

than Eddington. The mass of the black hole can then be written as (MBH ~ 2 x 106 Me)/f.

Equation 3.4 can then be recast as:

ropt 3 R9  0.02 (3.6)

where rpt is the size of the optical emission region, and we have taken ( ~ 0.3 in or-

der to weaken the microlensing significantly [see, e.g., Schechter and Wambsganss, 2002,

Mortonson et al., 2005], and Mi 1 Me.

This estimate of the size of the optical-emitting region is somewhat rough, but our

methods of estimation will improve in the next few chapters.
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Chapter 4

Chromatic anomalies II:

PG 1115+080 in X-rays and optical

4.1 Introduction

PG 1115+080 is another example of a gravitationally lensed quasar with a flux ratio anomaly

that is much stronger in X-rays than at optical wavelengths. It is the first quadruple lens

discovered, and only the second overall [Weymann et al., 1980]. Its four images are in a

fold configuration, which means that there is a universal relation in effect which requires

the two bright merging images (the minimum Al and the saddle point A2) to be roughly

equal in brightness. Optical observations have shown non-trivial deviations from this rule,

which have varied as a function of time (see Table 4.2, and references therein).

Concluding from this variability that microlensing is the cause of the low-level anomaly,

Peeples et al. [2004] predict that the saddle-point image should have been demagnified by

a factor of order 2 at some time within its 25-year history. But the quasar has thus far

"declined to cooperate", in the words of PLS. In this chapter we report the discovery of

this strong demagnification, not at optical wavelengths, but in X-rays. In Section 4.2 we

describe the X-ray and optical observations and our analysis. In Section 4.3 we discuss

implications for the lensing galaxy and (more to the point for this thesis) for the relative

sizes of the quasar's X-ray and optical emitting regions. We summarize the results of this



chapter in Section 4.4.

This chapter is based on Pooley et al. [2006]1. JAB wrote Sections 4.2.2 and 4.3.1,

created Table 4.2 and Figure 4-4, and collaborated with DP and SAR in the writing of

Sections 4.3.2, 4.3.4, and 4.4.

4.2 Observations and analysis

4.2.1 X-ray observations

PG 1115+080 was observed for 26.5 ks on 2000 Jun 02 (ObsID 363) and for 9.8 ks on

2000 Nov 03 (ObsID 1630) with ACIS aboard the Chandra X-ray Observatory. These

observations were used by Grant et al. [2004] to study the X-ray properties of the lensing

group of galaxies. The data were taken in timed-exposure mode with an integration time

of 3.24 s per frame, and the telescope aimpoint was on the back-side illuminated S3 chip.

The data were telemetered to the ground in faint mode.

The data were downloaded from the Chandra archive, and reduction was performed

using the CIAO 3.3 software provided by the Chandra X-ray Center2. The data were re-

processed using the CALDB3.2.1 set of calibration files (gain maps, quantum efficiency,

quantum efficiency uniformity, effective area) including a new bad pixel list made with the

acis-run-hotpix tool. The reprocessing was done without including the pixel randomiza-

tion that is added during standard processing. This omission slightly improves the point

spread function. The data were filtered using the standard ASCA grades and excluding

both bad pixels and software-flagged cosmic ray events. Intervals of strong background

flaring were searched for, but none were found.

For each observation, an image was produced in the 0.5-8 keV band with a resolution

of W'.'0246 per pixel (see Figure 4-1). To determine the intensities of each lensed quasar

image, a two-dimensional model consisting of four Gaussian components plus a constant

background was fit to the data. The background component was fixed to a value determined

from a source-free region near the lens. The relative positions of the Gaussian components

'Copyright 2006, The American Astronomical Society. Reprinted by permission.
2http://asc.harvard.edu



Table 4.1. X-ray and Model Flux Ratios of

Ratio ObsID 363 ObsID 1630 Model

Al/C 3.9 t 0.3 4.3 ± 0.5 3.91
A2/C 0.6 + 0.1 1.2 + 0.3 3.73
B/C 1.0 + 0.1 0.9 ± 0.1 0.67

A2/Al 0.16 ± 0.03 0.29 t 0.08 0.96

were fixed to the separations determined from HST observations [Kristian et al., 1993], but

the absolute position was allowed to vary. Each Gaussian was constrained to have the same

full-width at half-maximum, but this value was allowed to float. The fits were performed in

Sherpa [Freeman et al., 2001] using Cash statistics [Cash, 1979] and the Powell minimization

method. The intensity ratios (relative to image C) are listed in Table 4.1. The best-fit full

width at half-max (FWHM) was 0'!83i0'!01 for ObsID 363 and 0'!80 t 0'02 for ObsID 1630;

both consistent with the overall width of the instrumental PSF as found in the Chandra

PSF Library [Karovska et al., 2001] supplied by the Chandra X-ray Center. In addition

to the Gaussians, models of the form f(r) = A[1 + (r/ro)2] - were also tried; these gave

similar results to the values in Table 4.1.

Based on the best fit Gaussian shape and the relative intensities, we constructed an

idealized representation of the data. In Figure 4-1 we have plotted Gaussians of a common

width (fwhm = '22), with the fitted intensities and at the fitted locations (see Table 4.1).

We used the largest source width consistent (at 3o- confidence) with no blurring of the

intrinsic Chandra PSF. A maximum likelihood deconvolution of the image is presented by

Chartas et al. [2004a] and appears consistent with our "model" image.

Spectra of the quasar images were extracted using the ACIS Extract package v3.94

[Broos et al., 2002]. A single spectrum of Al and A2 was extracted because of the significant

overlap, but B and C were extracted separately. Both the Chandra effective area and PSF

are functions of energy, and ACIS Extract corrected the effective area response for each

spectrum based on the fraction of the PSF enclosed by the extraction region (at 1.5 keV,

these fractions were 0.9 for A1+A2, 0.8 for B, and 0.9 for C). The spectra were grouped

PG 1115+080



Figure 4-1 X-ray and optical images of PG 1115+080. Each image is 6" x 6". Top left: Raw
Chandra data from ObsID 363 (2000 Jun 02) in the 0.5-8 keV band. Top right: Adaptively
smoothed Chandra image. Bottom left: "Model" image based on fits to the raw Chandra
data. Bottom right: Sloan i'-band Magellan image from 2005 Jun 07.
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Figure 4-2 Light curve of the 0.5-8 keV count rate of A1+A2 in ObsID 363 showing a rather
constant flux. Horizontal bars indicate the 2 ks time bins, and vertical bars show l errors.

to contain at least ten counts per bin, and x2 fitting was performed in Sherpa using a

simple absorbed power law model. The column density was fixed at the Galactic value

of 3.56 x 1020 cm- 2 [Dickey and Lockman, 1990]. The individual fits were all acceptable

and yielded consistent results, so joint fits were performed with the power law indices

tied to each other and the normalizations allowed to float. The best fit photon index for

ObsID 363 is 1.57 i 0.04 and for ObsID 1630 is 1.54 t 0.07, which compares well with

the values found from the fits of image C alone (1.55 i 0.09 and 1.46 ± 0.08, respectively).

Based on the individually fitted power laws, the unabsorbed 0.5-8 keV flux of image C is

(6.2 i 0.4) x 10-14 erg cm- 2 S-1 in ObsID 363 and (6.9 t 0.9) x 10-14 erg cm s-I in

ObsID 1630. These serve as useful reference fluxes since image C is fairly uncontaminated

by flux from the other images and is also a low-magnification minimum image and therefore

less susceptible to microlensing fluctuations.

ACIS Extract was also used to obtain light curves from the above extraction regions

for each observation. No significant signs of short-term variability were found within either

observation; Kolmogorov-Smirnov tests showed that each light curve had a greater than

10% chance of being consistent with a constant count rate. The light curve for the A1+A2

region is plotted in Figure 4-2.

Given the time delays among the lensed images, it is fair to ask if intrinsic short-term



quasar variability combined with a time delay could masquerade as a genuine X-ray flux

ratio anomaly. We can rule this out in the X-ray band for ObsID 363. The time delay

between Al and A2 from our lens model (see Section 4.3.1) is 14.5 ±2 ks (with A1 leading).

The 26.5 ks observation therefore covers 1.8 time delay cycles. If we split the observation

into two equal parts, we obtain the same A1/A2 ratio as in Table 4.1. To produce this

ratio as well as the constant A1+A2 lightcurve in Figure 4-2 purely by variability is highly

implausible.

4.2.2 Optical observations

PG 1115+080 has been observed repeatedly with the Magellan 6.5-meter Baade and Clay

telescopes at Las Campanas Observatory between 2001 March and 2006 February using

MagIC. The instrument has a scale of W'.'0691 per pixel and a 2.36 arcminute field. We

present here results from three epochs for which the seeing was especially good, making

the decomposition of Al and A2 easier and less uncertain, and reducing the contamination

from the lensing galaxy. Three 60-second exposures were obtained with a Johnson V filter

on UT 2001 March 26. Two 60-second exposures each were obtained obtained with a Sloan

i' filter on UT 2004 Feb 22 and 2005 June 07.

The data were flattened using standard procedures. ClumpFit, an empirical PSF-fitting

photometry program based on DoPHOT, was used to measure fluxes and positions for the

four quasar images and for the lensing galaxy. The profile for the galaxy was taken to be an

elliptical pseudo-Gaussian. As we presently concern ourselves only with flux ratios, we have

not put our photometry onto a standard system. The fluxes for the Al, A2 and B images

are given relative to the C image, for which the microlensing fluctuations are expected

to be smallest. It should be remembered that variations of 0.1 mag have been seen on a

timescale of weeks and that image C leads the A images and the B image by 10 and 25

days, respectively [Schechter et al., 1997, Barkana, 1997]. The results of our photometry are

given in Table 4.2, along with selected results (typically those obtained in the best seeing)

from prior epochs.

We note that the flux ratios for contemporaneous observations appear to be consistent

to within a few percent over the optical wavelength region. We therefore make no attempt



Table 4.2. Optical Photometry and Flux Ratios of PG 1115+080

UT date

1984 Mar 26a
1985 Mar 19a
1986 Feb 19b

1986 Feb 19b

1991 Mar 03c
1991 Mar 03c
1995 Dec 20de
2001 Mar 26'
2004 Feb 22e
2005 Jun 07e

Filter

B
V
V
B

F785LP
F555W

V
V
i'
i'f

FWHM

W'!75
0'!62
O'!6

HST
HST
0'!85
0'!56
0'!48
0'!43

Magnitude differences
A-C A2-C B-C

-1.26 -1.21 0.41
-1.18 -0.83 0.49
-1.27 -0.99 0.48
-1.23 -0.97 0.48
-1.46 -1.07 0.50
-1.47 -1.02 0.50
-1.50 -1.04 0.47
-1.48 -1.04 0.42
-1.40 -1.18 0.42
-1.40 -1.19 0.42

Lens Model - -1.48 -1.43 0.44 0.96

aVanderriest et al. [1986]

bChristian et al. [1987]

cKristian et al. [1993]

dSchechter et al. [1997]

epresent work

to account for bandpass in presenting the present and past optical results.

4.3 Discussion

4.3.1 Modeling the lens

Using the Lensmodel software of Keeton [2001], we modeled the lensing potential as a

singular isothermal sphere accompanied by a second, offset singular isothermal sphere, which

provides a quadrupole moment. This choice of model was motivated by the presence of a

group of galaxies to the southwest of the lensing galaxy. We used the image positions

provided by the CASTLES lens survey3 [Mufioz et al., 1998], and did not constrain the

fluxes. Our best-fit model predicts an Einstein radius of 1'!0 for the primary lensing galaxy,
3http://www.cfa.harvard.edu/castles/

Flux ratios
A2/A1

0.95 ± 0.07
0.73 ± 0.04
0.77 ± 0.03
0.79 ±0.03
0.70 ± 0.01
0.66 ± 0.01
0.66 ± 0.01
0.68 ± 0.01
0.81 ± 0.01
0.81 ± 0.01



with a second mass having an Einstein radius of 2'.'6 located 12'.'5 away at a position angle

116' west of north. This places it close to the observed location of the associated group of

galaxies. The model yields a total reduced X2 of 3, with the greatest contribution coming

from the position of the primary lensing galaxy. The flux ratios predicted by this model

are listed in Tables 4.1 and 4.2, and may be expected to vary between different plausible

models of the lens on the few percent level.

4.3.2 Anomalous flux ratios and microlensing

Simple smooth analytic models [Metcalf and Zhao, 2002] predict that the A2/A1 flux ratio

should be very nearly equal to unity. For our lens model, the ratio is 0.96. Chiba et al.

[2005] observe a mid-infrared flux ratio of 0.93 i 0.06, consistent with this prediction. In

1984, Vanderriest et al. [1986] measured a flux ratio of 0.95 ± 0.07, but since then, as seen in

Table 4.2, the optical flux ratio has varied on a timescale of years between 0.66 and 0.81. As

noted in Section 4.2.1, the contemporaneous X-ray flux ratio is less than 0.2, inconsistent

not only with the predictions of the smooth models, but with the optical observations as

well.

Microlensing by stars in the lensing galaxy could in principle account for such flux ratios,

but only if the X-ray source is small compared to the Einstein radii of the microlensing

stars. Our simple model has convergence, r, and shear, -y, roughly equal at the image

positions, with magnifications p of +19.9 for the Al image and -19.0 for the A2 image.

Examples of point source magnification histograms for pairs of images very much like those

in PG 1115+080 are presented by Schechter and Wambsganss [2002], with magnifications

for Al and A2 of 10 and 16, respectively. They present histograms both for the case when

100% of the convergence is due to stars and for the case when only 20% of the convergence

is due to stars and the rest is due to a smooth dark component. The X-ray flux ratio rules

out neither hypothesis but is considerably more likely if dark matter is present.

Until now, it was a bit of a puzzle why the optical flux anomalies had failed to deviate

from unity as much as was predicted by these histograms. Now it appears that it was

because the optical region is too large to be strongly microlensed (see Section 4.3.4). As

Schechter and Wambsganss [2004] note, the determination of the dark matter fraction of
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Figure 4-3 Long-term X-ray light curve of PG 1115+080 showing the combined flux of all
four images. For most observations, the plotted error bars are smaller than the plotting
symbols.

lensing galaxies using the statistics of flux ratio anomalies is made considerably more difficult

if the source size is comparable to that of a stellar Einstein ring. It seems now that the

X-ray flux ratio anomalies offer a cleaner determination of the dark matter fraction than

the optical anomalies.

4.3.3 Long-term X-ray variability

According to the microlensing model for flux-ratio anomalies, discussed below, A2 is ex-

pected to brighten in X-rays on a timescale of -10 years. A follow-up study has confirmed

this prediction [Pooley et al., 2009]. As A2 brightens, the unresolved flux also increases.

To look for past signs of this effect, we searched the High Energy Astrophysics Science

Archive Research Center, provided by NASA's Goddard Space Flight Center, for other X-

ray observations of PG 1115+080 and found two ROSAT observations and three relevant

XMM-Newton observations. The ROSAT observations and an earlier Einstein observation

are analyzed by Chartas [2000].

The ROSAT count rates were converted to unabsorbed 0.5-2 keV fluxes using WebPIMMS

[Mukai, 1993] with the assumptions of an absorbed power law of photon index 1.65 and a

column density of 3.56 x 1020 cm- 2. For the XMM observations, we extracted spectra of



PG 1115+080 from the EPIC-PN and both EPIC-MOS detectors. We performed joint spec-

tral fits (on all quasar images added together) in the 0.5-10 keV band for each observation

with simple absorbed power laws with the column density fixed at the Galactic value. These

gave acceptable fits, from which we computed the unabsorbed 0.5-2 keV fluxes. We also

used our previous Chandra joint fits to compute the total 0.5-2 keV fluxes (from all quasar

images added together) from the Chandra observations. The long-term X-ray light curve is

shown in Figure 4-3.

From the seven measurements of the lensed flux from PG 1115+080 over the course of

12.5 years, the mean is 1.75 x 10-13 erg cm- 2 s-1, and the sample standard deviation is

6.7 x 10-14 erg cm- 2 s- 1, or ~40%. There is no evidence for strong short term variability

from the individual lensed images in the Chandra data, nor is there evidence for strong

short term variability within the three XMM observations (in which the individual images

are unresolved).

As discussed above, if the demagnification of A2 is due to microlensing, the unresolved

flux will rise as A2 becomes less demagnified. The observed relative X-ray fluxes of the four

images A1:A2:B:C are 1 :0.16 :0.25: 0.25 (based on ObsID 363; see Table 4.1). If A2 were

to rise in flux to match Al, the overall change in flux would be -50%. The recent XMM

observations show that the X-ray flux has risen -30% since the Chandra observations from

six years ago (Figure 4-3). However, there is an obvious degeneracy between a rise in the

flux of A2 and typical quasar variability over the course of many years.

4.3.4 Sizes of quasar emission regions

The size scales of the emission regions in quasars are difficult to probe directly since they

are on the microarcsecond scale or smaller. The use of reverberation methods for inferring

sizes is so far limited to emission line regions, and becomes impractical for distant quasars.

By contrast, microlensing directly explores angular scales of (by definition) microarcseconds

and works for very distant quasars. Of the emission features of the quasar, only those which

subtend smaller angles on the sky than the Einstein radius of the microlenses will exhibit

strong variations in flux.

Figure 4-4 demonstrates the predictions of the standard thin disk theory for PG 1115+080.



Here we have plotted the ratio of expected angular scale for different regions of the quasar,

04, to the Einstein radius of a solar-mass microlens, 6 Ein. For ratios greater than unity,

microlensing should be strongly suppressed [for a detailed analysis see Mortonson et al.,

2005]. The ratio 6s/OE1 is plotted against the assumed mass of the central black hole,

MBH. For every value of MBH there is a corresponding Eddington luminosity which can

be compared to the observed values of L_ (2.4 x 1044 erg cm 2 s-1; 0.5-8 keV; this work)

and Lopt (1.2 x 104' erg cm 2 S-1, from a sum of the V, I, awnd H band data provided by

the CASTLES lens survey) for PG 1115+080 (see the top axis label). Within the Os/OEin

vs. MBH plane we plot contours of constant size in units of Rg, the gravitational radius

of the black hole (GMBH/c 2 ). As is evident from the plot, the X-rays, which should arise

deep in the gravitational potential well of the black hole, should be microlensed for any

MBH < 1010 M®. This is in clear agreement with the large X-ray flux ratio anomalies ob-

served for PG 1115+080 and for two other quad lenses: RXJ0911+0551 and RXJ1131-1231

[Morgan et al., 2001, Blackburne et al., 2006]. By contrast, the broad-line emission region

should not be microlensed, except for a lower mass black hole (i.e., MBH < 3 x 107 Me).

Finally, the dotted and dashed curves mark the radii within which 50% of the power in the I

and V bands emerge, respectively, for a simple thin accretion disk model [e.g. Shakura and

Sunyaev, 1973]. According to these curves, the optical continuum ought to be microlensed

by approximately the same amount as in the X-ray band, in agreement with Mortonson

et al. [2005]. But clearly it is not!

Using HST spectra, Popovid and Chartas [2005] found that the A2/A1 ratio in the

ultraviolet continuum is ~0.5 and decreases to shorter wavelengths, indicating that the UV

is more severely microlensed than the optical but less microlensed than the X-rays.

Therefore, within the microlensing scenario, we can conclude that the continuum optical

emission from PG 1115+080 comes from much further out than the UV, which in turn comes

from further out than the X-rays. In particular, we find that the optical emission comes from

a region ~3-30 times larger than expected for a thin accretion disk model (for MBH in the

range 3 x 109 -_ 108 M® and 0, ~ OEin/3). Since Lopt dominates L. in PG 1115+080 (and

for many other luminous quasars), this is difficult to understand from an energetics point

of view, since the energy released goes as r- 1. Of course the optical light could be scattered
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Figure 4-4 Predicted source sizes at X-ray and optical wavelengths for PG 1115+080. The
blue line represents the rough boundary between regions large enough to avoid microlensing
and smaller microlensed regions. The gray lines show constant size in units of gravitational
radii. The expected emission regions for X-rays and broad emission lines are marked. The
dashed lines denotes the prediction of the thin disk model for the half-light radius of the
source in I (red) and V (green) bands. The top axis compares the measured X-ray plus
optical luminosity of PG 1115+080to the Eddington luminosity implied by the black hole
mass. Both X-rays and optical disk emission are predicted to be strongly microlensed for a
wide range of black hole masses.
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by a large-scale plasma region; however, in that case one would expect the X-rays to be

scattered as well, and hence share a similar effective emission region. Thus, while the X-ray

images clearly appear to be microlensed, the bulk of the optical emission must be coming

from ~100-1000 R9 from the central black hole (for MBH in the range 3 x 109 -* 108 MD).

In coming to these conclusions, we have neglected special- and general-relativistic effects

in the emissions from the accretion disk, except for cosmological redshift. In addition, we

have followed Mortonson et al. [2005] in assuming a Kerr black hole with a large spin

parameter (a = 0.88). This is consistent with estimates for a typical quasar [Wang et al.,

2006], and implies an innermost disk radius of 2.5Rg and a binding energy per mass 'r =

0.146. We have also set the bolometric luminosity to 33% of the Eddington luminosity, as

advocated by Kollmeier et al. [2006]. Neither of these parameter assumptions has a strong

effect on the size of the predicted optical emission region for a thin accretion disk model.

4.4 Conclusions

We have made use of optical data collected over the past 22 years to demonstrate that the

bright, close pair of lensed images of PG 1115+080 has a consistent flux ratio (A2/A1) of

-0.7-0.8. X-ray observations with Chandra, covering two epochs separated by 5 months,

indicate a much more extreme flux ratio of -0.2. Both the optical and X-ray ratios are

anomalous with respect to smooth lensing models, which predict a flux ratio of 0.96. Flux

ratios in the near-IR, on the other hand, match the models very well, confirming that

microlensing is causing the anomalies. We used a comparison of the optical and X-ray flux

ratio anomalies to show that the optical emission region is much larger (i.e., -3 - 30) than

predicted by a simple thin accretion disk model.
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Chapter 5

X-ray and optical anomalies in 10

lenses: Large accretion disks

5.1 Introduction

In Chapters 3 and 4 we reported very strong X-ray flux ratio anomalies in two gravita-

tionally lensed quasars, RX J1131-1231 and PG 1115+080. We argued that microlensing

was the cause of these anomalies, and that optical observations showed weaker anomalies

because of the finite extent of the optical emission region. In this chapter, we carry out a

systematic, uniform study of ten quadruply lensed quasars for which both optical and Chan-

dra data exist, including those in the previous two chapters. The ten lensed quasars are

HE 0230-2130 [Wisotzki et al., 1999], MG J0414+0534 [Hewitt et al., 1992], RX J0911+0551

[Bade et al., 1997], SDSS J0924+0219 [Inada et al., 2003a], PG 1115+080 [Weymann et al.,

1980], RX J1131-1231 [Sluse et al., 2003], H 1413+117 [Magain et al., 1988], B 1422+231

[Patnaik et al., 1992], WFI J2033-4723 [Morgan et al., 2004], and Q 2237+0305 [Huchra

et al., 1985].

The X-ray data are taken from the Chandra archive. In three cases - MG J0414+0534

[Chartas et al., 2002], H 1413+117 [Chartas et al., 2004b], and Q 2237+0305 [Dai et al.,

2003] - microlensing has been invoked to explain the observed X-ray properties. In this

chapter (and this thesis) we use a different approach, using the X-rays as a means to explore



the size of the optical emission regions.

In Sections 5.2 and 5.3 we describe our analysis of the X-ray and optical data, and

construct simple lens models for the sample of lenses. In Section 5.4 we find that in general

the X-ray flux ratios have stronger disagreements with the models than the optical ratios do,

implying that the X-rays come from a more compact region than the optical. We compare

the implied optical sizes to those predicted by the standard thin disk model [Shakura and

Sunyaev, 1973] in Section 5.5 and find that the disks appear to be larger than the models

predict by factors of - 3 - 30. We summarize our findings in Section 5.6.

This chapter is based on Pooley et al. [2007]1. JAB wrote Section 5.3, created Tables

5.3, 5.4, and 5.6 and Figures 5-4 and 5-6, and collaborated heavily in the analysis described

in Sections 5.4 through 5.6.

5.2 X-ray observations

The data were downloaded from the Chandra archive, and reduction was performed us-

ing the CIAO 3.3 software provided by the Chandra X-ray Center 2. The data were re-

processed using the CALDB 3.2.2 set of calibration files (gain maps, quantum efficiency,

quantum efficiency uniformity, effective area) including a new bad pixel list made with the

acis-run-hotpix tool. The reprocessing was done without including the pixel randomiza-

tion that is added during standard processing. This omission slightly improves the PSF.

The data were filtered using the standard ASCA grades and excluding both bad pixels and

software-flagged cosmic ray events. Intervals of strong background flaring were searched

for, and a few were found. In all cases, the flares were mild enough that removing the

intervals would have decreased the signal-to-noise of the quasar images since it would have

removed substantially more source flux than background flux within the small extraction

regions. Therefore, we did not remove any flaring intervals. The observation IDs, dates of

observation, and exposure times are given in Table 5.1.

'Copyright 2007, The American Astronomical Society. Reprinted by permission.
2http://asc.harvard.edu



Table 5.1. X-ray fluxes and flux ratios for 10 lenses

Lensed Quasar Image Flux Ratiosb LM unabs. Fo. 5-8keV'
ObsIDa Date Exp. (s) HS/HM HS/LM HM/LM LS/LM (10-4 erg Cm~2 s-1)

HE 0230-2130
1642 2000 Oct 14.4 14764

MG J0414+0534
417 2000 Jan 13.7 6578
418 2000 Apr 2.9 7437
421 2000 Aug 16.9 7251
422 2000 Nov 16.6 7504

1628 2001 Feb 5.1 9020
3395 2001 Nov 9.3 28413
3419 2002 Jan 9.0 96664

RX J0911+0551
419 1999 Nov 2.7 28795

1629 2000 Oct 29.8 9826

SDSS J0924+0219
5604 2005 Feb 24.0 17944

PG 1115+080

B/A B/C A/C D/C
0.44 0.70+13 1.6+.2 0.45 8

A2/A1  A 2/B A1/B C/B
0.82+01 1.9+0* 2.3+.5 02 .7

0.50+01 1.3 +03 2.6 +. .301
0.38201 0.96+0 2.5+. 0.45ii0
0.67 1.80. 2.620 0.652A1
0.35+0.0 0.8928 2.5ii0. 0.352 r
0.90+00 1.80. 1.9 02 05+-5

A/B A/D B/D C/D

D/A D/B A/B C/B
0.14.07 0.45.2 5 3.2i8 0.42-

0.06 -0.190.35 -. 1

26492 0.16+ .0
9826 0.2810.

FB
121
13-
152
149
16-5
133
14-3

FD
1.9+8
1.8+0.

FB
1.22-

Fc
6.8211
8.32.

363 2000 Jun 2.8
1630 2000 Nov 3.3

A2/C
0.622
1.2i03

A1|C
3.90.3

4 .4 
3

B/C
1.1+0"1
1.0201

A2/A1



Table 5.1

Lensed Quasar Image Flux Ratiosb LM unabs. Fo.5- 8 keV
ObsIDa Date Exp. (s) HS/HM HS/LM HM/LM LS/LM (10-14 erg cm- 2 s1)

RXJ1131-1231 A/B A/C B/C D/C Fc
4814 2004 Apr 12.2 10047 0.102:21 0.22 +0.0 2.2+0-1 0.30+0i.03 50t5

H 1413+117 A/B A/C B/C D/C Fc
930 2000 Apr 19.7 38 185 1.8t0 4.01 2.2- 1.2+.5 2.7+ -

5645 2005 Mar 30.1 88863 1.7i0.4 1.5 0.9io 0.7+" 3.3+0-5

B 1422+231 B/A B/C A/C D/C Fc
367 2000 Jun 1.6 28429 0.68i20 1.1+0.1 1.6+i-1 0.11+of1 37+6

1631 2001 May 21.5 10651 0.62 0.87+00- 1.4+0 0.08j 02 40 12

4939 2004 Dec 1.6 47729 0.55-.4 0.95-0.07 1.701 0.101"o 33-i5

WFI J2033-4723 A2 /A1  A2 /B A 1 /B C/B FB
5603 2005 Mar 10.1 15420 1.10. 1.0i0. 0.87+" 16 0.64+toj1 3.59

Q 2237+0305 D/A D/B A/B C/B FB
431 2000 Sep 6.7 30287 0.17ti-1 0.852:" 5.0i0. 2.1+0.2 5.91.

1632 2001 Dec 8.8 9538 0.20 0.95 4.7t7 1.7. 6.1+

aThe observation identifier of the Chandra dataset.
bHS = Highly magnified Saddle point; HM = Highly magnified Minimum; LS = Less magnified Saddle point;

LM = Less magnified Minimum. See Section 5.4.

cThe unabsorbed flux of the LM image is computed from the best fit power-law model described in Section 5.2.1.



Table 5.2. Comparison of gaussian fitting to aperture extraction of SDSS 1004+4112

X-ray Image Flux Ratios

Method A/B A/C B/C D/C

Gaussian fit 0.77+0: 0 0.9624 1.24+0: 0 0.57+0: 0
Extraction 0.77 +:.0 0.93 +:_0 1.20+0:05 0.55+8:i0

5.2.1 Determining X-ray flux ratios

For each observation, a sky image was produced in the 0.5-8 keV band with a sampling of

0'!0246 per pixel. Because of the significant overlap of the lensed images (especially the close

image pairs) in many cases, the intensities were determined by fitting to each sky image a

two-dimensional model consisting of four Gaussian components plus a constant background.

The background component was fixed to a value determined from a source-free region near

the lens. The relative positions of the Gaussian components were fixed to the separations

given in the CASTLES online database, but the absolute position was allowed to vary. Each

Gaussian was constrained to have the same full-width at half-maximum (FWHM), but this

value was allowed to float. The fits were performed using Cash [1979] statistics and the

Powell minimization method in Sherpa [Freeman et al., 2001].

From the best fit 4-Gaussian model, the image flux ratios were calculated for the high

magnification pair (saddle point and minimum; HS & HM, respectively) as well as for each

image relative to the less magnified minimum (LM) image. The uncertainties on these ratios

were determined with Sherpa via the projection command, which varies each ratio in turn

along a grid of values while all other parameters are allowed to float to the new best-fit

values. The results are given in Table 5.1.

Because the Chandra PSF is only approximately described by a Gaussian, we sought to

test this method by utilizing a Chandra observation (ObsID 5794) of the large-separation

quad SDSS 1004+4112, for which all four images are well separated3. We extracted counts

from the 90% encircled energy region of each image, as determined by ACIS Extract v3.94

3SDSS 1004+4112 [Inada et al., 2003b) is lensed by a dark matter-dominated cluster of galaxies, and is
unique enough that we did not include it in our sample of lenses.



[Broos et al., 2002], and formed a number of flux ratios. We also followed the above method

of fitting Gaussians. The agreement in flux ratios is excellent (see Table 5.2).

Finally, a spectrum of the LM image was extracted for each observation with ACIS

Extract and fit in Sherpa via a simple absorbed power law. The absorption consisted

of a fixed Galactic component [Dickey and Lockman, 1990] plus a variable component.

This simple model provided an acceptable fit in all cases, and the additional absorption

component was usually consistent with zero. The 0.5-8 keV flux of the unabsorbed power

law is given in Table 5.1.

5.2.2 X-ray variability

As the numbers in Table 5.1 indicate, many of the flux ratios vary to some degree for the

quads that have been observed multiple times. This may be due to varying degrees of

microlensing or to normal quasar variability combined with time delays among the images.

In fact, variability plus a time delay could masquerade as a flux ratio anomaly. Figure 5-1

shows the X-ray lightcurves of the sum of the high magnification pair of images for each

system, which are seen to be fairly constant in all systems; only small amplitude (factor of

two or less) variability is observed, even in cases when the length of the observation exceeds

4
the predicted time delay between the brightest images

For the rest of the analysis, we utilized the observation with the highest signal to noise

ratio for the quads observed multiple times by Chandra. We chose not to average over

multiple epochs in order to avoid averaging out variations due to changes in microlensing.

We use ObsID 3419 for MG J0414+0534, ObsID 419 for RX J0911+0551, ObsID 363 for

PG 1115+080, ObsID 5645 for H 1413+117, ObsID 4939 for B 1422+231, and ObsID 431

for Q 2237+0305.

4 Predictions of time delays are subject to large uncertainties, especially for pairs of images with small
separations. Indeed, the time delay for RX J1131-1231 is now known to be greater than predicted by a
factor of ~ 12 [Morgan et al., 2006]. This is mitigated by the fact that the optical and X-ray observations
for this particular source were made on the same day.
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5.3 Optical images and lens models

We turned to the existing literature for optical data with which to compare our X-ray flux

ratios. For each lens, we used data near 8000 A, either Sloan i', Cousins I, or HST F814W.

An effort was made to choose the observations closest in time to the deepest Chandra

observation. The dates of the observations, along with the optical bandpasses and the

image magnitudes, may be found in Table 5.3. The images are arranged according to their

magnifications and parity (see Section 5.4).

Under ideal circumstances, the X-ray and optical observations would have been made

on the same day, in order to minimize systematic errors resulting from quasar variability

and microlensing variability. But for most of these lenses, such contemporaneous observa-

tions have not been made. Three lenses have X-ray and optical observations separated by

about 6 to 10 years, three by 2 to 4 years, and four by 15 months or less. One of these,

RXJ1131-1231, was observed in both bands on the same day [Sluse et al., 2006].

These delays between observations can add systematic uncertainty to the results. How-

ever, there are reasons to believe that their effect is not a strong one. The general lack of

strong quasar variability seen in X-rays (see Section 5.2.2), coupled with the limited success

of campaigns to measure lens time delays (which rely on quasar variability), suggest that

quasars do not often vary by the factors that would be required to explain the flux ratio

anomalies. The fact that RX J1131-1231 has an extremely strong discrepancy between

X-ray and optical flux ratios despite simultaneous observations in both bands shows that

time variability cannot fully explain the anomalous ratios.

We used the Lensmodel software of Keeton [2001], v1.06, to model each of the ten lenses

as a singular isothermal sphere (SIS) with an external shear. This model has seven free

parameters (lens strength, shear strength (y) and direction (g.), and the positions of source

and lens), making it overconstrained by the ten input measurements (the positions of four

images and the lensing galaxy). The position measurements were obtained from the online

CASTLES database. The observed fluxes of the lens images were not used as constraints.

The models fit the image positions fairly well in all cases except that of HE 0230-2130,

where the position of the D image is significantly altered by a second galaxy. Since this



Table 5.3. Optical photometry for 10 lenses

Lensed Quasar Optical magnitudes
Obs. date HS HM LS LM Filter

HE 0230-2130
2002 Jul 29

MG J0414+0534
1994 Nov 08

RX J0911+0551
2000 Mar 02

SDSS J0924+0219
2003 Nov 19

PG 1115+080
2004 Feb 22

RX J1131-1231
2004 Apr 12

H 1413+117
1994 Dec 22

B 1422+231
1999 Feb 06

WFI J2033-4723
2003 Aug 01

Q 2237+0305
1999 Oct 20

B A D C
19.22 19.02 21.21 19.59

A2  A1  C B
21.36 20.43 22.10 21.24

A B C D
18.38 18.64 19.36 19.66

D A C B
21.59 18.69 19.86 19.52

A2  A1  B C
15.86 16.08 17.68 17.26

A B D C
17.43 17.42 19.72 18.44

A B D C
17.77 17.84 18.15 18.06

B A D C
15.85 15.88 19.68 16.41

A2  A1  C B
19.14 18.68 19.41 19.32

D A C B
17.39 15.92 16.77 17.21

F814Wa

F814Wa

F814Wa

F814Wb

i'c

F814Wa

F814Wa

F814Wa

aSee http: //www. cf a. harvard. edu/castles

bKeeton et al. [2006]

cRelative magnitudes from Pooley et al. [2006]; zeropoint
from this work.

dSluse et al. [2006]

eMorgan et al. [2004]



Table 5.4. Models for 10 lenses

Magnificationb
Quasar 0 Ein a HS HM LS LM Z1 z,

HE 0230-2130c -- - . -- -11.80 +11.50 -2.32 +6.22 0.52 2.162
MG J0414+0534 1"20 0.13 +7701 -20.72 +19.07 -1.68 +5.36 0.96 2.64
RX J0911+0551 1"11 0.32 + 1?1 -4.41 +8.10 -3.23 +1.77 0.77 2.80
SDSS J0924+0219 0"88 0.04 +84?6 -23.19 +26.78 -12.57 +10.98 0.39 1.524
PG 1115+080 1"'15 0.12 +65?0 -13.37 +14.54 -3.02 +3.88 0.31 1.72
RX J1131-1231 1'78 0.12 -73?3 -23.72 +13.93 -1.58 +13.40 0.295 0.658
H 1413+117 0'"61 0.11 +21?8 -5.17 +5.46 -3.32 +5.05 - 2.55
B 1422+231 0"78 0.27 -54?6 -12.04 +8.86 -0.35 +5.69 0.34 3.62
WFI J2033-4723 1'12 0.15 +26?3 -6.61 +7.69 -2.20 +3.17 0.66 1.66
Q 2237+0305 0"88 0.07 +6701 -9.81 +9.21 -5.32 +7.93 0.04 1.69

aMeasured in degrees East of North.

bNegative magnifications signify saddle point images.

CHE0230-2130 has a unique mass model with an extra companion galaxy. See text for lens
parameters.

lens has an obvious strong perturbation from a companion lens galaxy, we added a second

mass component to the model. Allowing its position and strength to vary, and using its

measured position as a constraint, gave us eleven free parameters and twelve constraints.

We found that a steeper projected profile than isothermal was required for this second mass

component, so we modeled its projected mass density as a circular power-law profile with

an index of -1.3. This model allows a much better fit to the data, and predicts an Einstein

ring radius of 0'79 for the main lensing galaxy and W'!42 for the perturber, and an external

shear of 0.10 in a direction 60?1 west of north.

Parameters for the remaining lenses may be found in Table 5.4. The predicted magnifi-

cations may be expected to vary with different choices of lens models at the several percent

level [Metcalf and Zhao, 2002].

Our model, in which the quadrupole term of the gravitational potential arises from an

external tide, gives larger magnifications (and therefore smaller bolometric luminosities)

than would a model in which the quadrupole is due to the flattening of the lens galaxy.

Holder and Schechter [2003] have argued that the high ratio of quadruply lensed quasars to

doubly lensed quasars can be explained if most of the quadrupole is tidal in origin.



5.4 Comparison of anomalous flux ratios: X-ray vs. optical

Figure 5-2 provides a visual guide to the optical-to-model and X-ray-to-model flux ratios of

each quad. It shows representations of each system using two-dimensional Gaussians, the

positions of which come from the CASTLES database. As a point of reference, the left-

most frame for each quad shows Gaussians of unit amplitude. The center frame represents

the optical-to-model ratio of the images, normalized by each rms (described below). The

amplitude Ai of image i is given by

_ Fopt,i/rmsoptA= - ,ims~ (5.1)
jpil/rmsji

where i = 1, 2, 3,4, Fopt,j is the (linear) optical flux of image i, and pi is the image magni-

fication from Table 5.4. The right frame gives a similar representation for the X-rays. The

rms of the optical (and X-ray) observations is first computed as

S (Fopt,i)2  . (5.2)
i=1,4

However, because the rms can be dominated by one highly anomalous image, we remove

the largest deviator and then recompute the rms. The largest deviator is defined as the

image i with the maximum value of I logio(Ai,opt) + logio(Ai,x-ray)|. This new rms is then

used in eq. (1) to compute the amplitudes, the values of which are given in Table 5.5.

In every case save one, the most anomalous image was the highly magnified saddle point

image. This is not surprising, since Schechter and Wambsganss [2002] have shown that

microlensing is likely to affect high-magnification saddle points most strongly. In order to

give the lenses a uniform treatment, we have classified the four images in each lens according

to their magnifications and the local morphology of the travel-time surface. Henceforth in

this thesis, "HS" will designate the highly magnified saddle-point and "HM" the highly

magnified minimum. Likewise, "LS" will designate the less magnified saddle-point and

"LM" the less magnified minimum.

In this work, we are most interested in the optical-to-model and X-ray-to-model ratios of

the HS/HM flux ratio. The comparison between optical and X-ray ratios is shown for each
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Figure 5-2 Representation of the deviations from the models in X-rays and optical. Each of
the three frames for a system is constructed by placing Gaussians at the relative positions
taken from the CASTLES online database. The leftmost frame in each set has the intensity
of each Gaussian set to unity. In the center frame, the intensities are set to the ratio of
the optical flux (normalized by the optical rms as defined by Equation 5.1) to the model
flux (normalized by the model rms; see Equation 5.1). The same is done for X-rays in the

rightmost frame of each set. The same color scaling is applied to every frame. For aesthetic
reasons, the FWHMs of the Gaussians are a constant fraction of the frame size; a W'5 scale
bar is shown at the bottom right of each "unity" frame, and this frame also gives the image
names and image types (see Section 5.4).
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Table 5.5. Flux-to-model ratios normalized by rms

(Fi,obs/rmsobs) / (IiI /rmsll)

Quasar Band HS HM LS LM

HE 0230-2130

MG J0414+0534

RX J0911+0551

SDSS J0924+0219

PG 1115+080

RX J1131-1231

H 1413+117

B 1422+231

WFI J2033-4723

Q 2237+0305

Optical
X-ray

Optical
X-ray

Optical
X-ray

Optical
X-ray

Optical
X-ray

Optical
X-ray

Optical
X-ray

Optical
X-ray

0.76 0.94 0.62
0.46 1.06 1.50

1.02
1.24

0.43 1.10 2.68 1.86
0.58 1.03 2.33 1.72

1.49 0.64 0.82 1.14
1.76 0.36 0.24 1.29

0.09 1.10 0.80
0.20 1.20 0.34

1.25
0.92

1.02 1.15 1.04 1.19
0.20 1.14 1.48 1.10

1.03 1.76 1.87 0.72
0.10 1.72 2.08 0.82

1.12 0.99 1.23
1.23 0.69 0.96

0.88
0.87

0.76 1.00 0.77 0.96
0.49 1.22 1.78 1.10

Optical 0.71 0.93 1.65 1.25
X-ray 0.84 0.65 1.66 1.81

Optical
X-ray

0.33 1.36 1.08
0.22 1.41 1.00

0.48
0.33

Note. - The rms values were computed from the three least
anomalous images in each quad. See Section 5.4 for details.
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Figure 5-3 Comparison of X-ray (blue x) and optical (red o) ratios to lens model ratios for
select image pairs for each lensed quasar. The leftmost frame shows the ratio of the highly
magnified saddle point (HS) to the highly magnified minimum (HM), while the center and
rightmost frame show the ratio of each of these, respectively, to the less magnified minimum
(LM). The ratios for the X-ray are based on the observation with the highest signal to noise,
and those for the optical are based on the observation closest in time to the chosen X-ray
data. The light blue x's show the variation in the X-ray ratios for quads observed multiple
times by Chanda.

quad in Figure 5-3. The first panel shows the observed HS/HM ratio relative to the model

HS/HM ratio, and the second and third panels show how each of HS and HM compare to the

less magnified minimum image (LM). In almost all cases, the HS/HM ratio is more extreme

in X-rays than in the optical; when the observed ratio is greater then the model ratio, the

X-ray ratio is greater than the optical, and, when the observed ratio is less than the model

ratio, the X-ray ratio is less than the optical. The second and third panels show whether

the discrepancy with the model comes from the HS or the HM image (or a combination of

the two). In general, the LM image is much less susceptible to microlensing than either the

HS or HM image [Kochanek and Dalal, 2004].

The group statistics for the flux ratio anomalies presented in Figure 5-3 and Table 5.5

are summarized in Figure 5-4. The error bars represent the trms spread in the logarithm

of the flux ratios (normalized by the smooth model values) between various image pairs

for our quasar sample. The black outer bars result from including all 10 quasars; the

heavy blue bars result when we exclude the systems Q 2237+0305 and SDSS J0924+0219.

Q 2237+0305 is excluded because the uniquely small redshift of its lensing galaxy causes

the projected microlens Einstein radius to be bigger than any region of the source, while

SDSS J0924+0219 might also be excluded because the source size is thought to be so small

........ .......
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Figure 5-4 The rms of the flux ratio anomalies in the optical vs. X-ray (see Figure 5-3 and
Table 5.5 for the flux ratios of individual sources). The black outer bars result from including
all 10 quasars in our sample; the heavy blue bars result from excluding Q 2237+0305 and
SDSS J0924+0219; the red bars result when we exclude only Q 2237+0305.

that even its broad line region is partially microlensed [Keeton et al., 2006].

It may be seen from the blue bars in this figure that the ratios of the HS to HM images

deviate more (from their expected values) in the X-ray band than in the optical band by a

factor of -2.4. The discrepancy is somewhat smaller for the HS/LM ratios at a factor of

-1.7. The HM/LM and LS/LM ratios are not as anomalous in either band, but the X-ray

ratios still have a wider range than do the optical ratios. It is on the larger anomalies in the

X-ray band for the HS/HM and HS/LM ratios, as compared to those for the optical band,

that we base our analysis of the size of the optically emitting regions of the accretion disks

in the next section.

5.5 Sizes of quasar emission regions

For the purpose of interpreting our results, we adopt the working hypothesis that the

anomalous flux ratios presented in this paper are the result of microlensing. Microlensing

by stars in the lensing galaxy can account for the observed flux ratio anomalies, but only

if the source is small compared to the Einstein radii of the microlensing stars. Figure 5-3

shows dramatic evidence for microlensing in the X-ray band for at least 7 of the 10 lensing

systems in our study. In general, the optical emission of these same systems, while still

.................... :: ......... .. ................. ...............



being microlensed, has less extreme flux ratio anomalies than in the X-ray band by a factor

of ~2 (see Figure 5-4 and the discussion above). Since the X-rays are expected to be emitted

very near to the black hole, the condition for microlensing is easy to meet - the source

should indeed be quite small compared to the Einstein radius of the microlensing stars. By

contrast, the markedly lower degree of microlensing in the optical band implies that the size

of the optical emission region in many of these sources is roughly comparable to the size of

the stellar microlens Einstein radius.

Many authors have studied the effect of source size on the microlensing of quasars by

intervening galaxies. Typically the results are presented as plots of microlensing light curves

[e.g., Wambsganss and Paczynski, 1991] rather than rms fluctuations in the logarithm of

the flux. There are no analytic techniques for estimating rms fluctuations, so one must

simulate the microlensing process.

5.5.1 Microlensing simulations

Ideally we would run point source simulations for each of the 40 images in our sample, taking

into account the theoretical magnification (which in turn depends upon two independent

parameters, a convergence and a shear) and the fraction of baryonic matter. Each simulation

would produce a magnification map, which might then be convolved with sources of different

sizes, producing magnification histograms.

We undertake such an effort in Chapter 8, but for the present we can draw upon such

simulations as have been carried out. In particular we use the work of Mortonson et al.

[2005], who studied in detail the effect of source size on minima and saddlepoints with

magnifications of +6 and -6 respectively, assuming that the convergence , (a dimensionless

surface density) is due entirely to equal mass stars and taking the shear -y to be equal to the

convergence, as would be the case for an unperturbed isothermal lens. The magnifications

observed for our highly magnified minima and saddlepoints are larger than this, typically by

a factor of two, while our less magnified images are typically fainter than this by a factor of

two. Moreover there is reason to think that the stellar component comprises only a fraction

- somewhere between 1/10 and 1/2 - of the mass surface density. But in the absence of

a complete set of simulations we take those of Mortonson et al. as representative.



They find that, independent of the detailed radial profile of the source, the rms loga-

rithmic fluctuations depend only upon the ratio of the half-light radius of the source to the

Einstein radius, rl/ 2/rin. The rms logarithmic fluctuations decrease from their maximum

value at rl/ 2 /rin = 0 to one half that value at rl/ 2 /rin ~ 1/3. Since our optical fluctua-

tions are roughly one half the amplitude of the X-ray fluctuations (which we take to arise

from a region of negligible extent) we infer that the line-of-sight projected size of the optical

region is roughly 1/3 the Einstein radius of the stars.

5.5.2 Predicted disk size: Energy considerations

To estimate a rough size for the expected region of the optical emission from quasar accretion

disks, we adopt a generic thin disk model [see, e.g., Shakura and Sunyaev, 1973]. In such a

model the gravitational energy release is redistributed via internal viscous stresses in such

a way that, independent of the detailed nature of the origin of the viscosity, the rate of

energy release per unit area of the disk at radius, r, is:

F = 3GMM(1 r) (5.3)
87rr3 r

where M, M, and ro are the black-hole mass, accretion rate, and the inner radius of the

accretion disk, respectively. Note that in this formulation neither special nor general rel-

ativistic effects are included, except implicitly via the location of ro. In our context, such

relativistic effects are unimportant in the case of a Schwarzschild black hole. Relativis-

tic corrections, including those for accretion disks around Kerr black holes [Novikov and

Thorne, 1973, Page and Thorne, 1974] are only likely to exacerbate the difficulties with

understanding the size of the optical emission regions discussed below.

In the context of the thin-disk model around a Schwarzschild black hole, the fractional

luminosity that emerges within a radial distance r is

fL(< r) = j 1 - fo/r)r dr --2 2 2(5.4)
ro r/ro (r/ro)3/2

The complement of this quantity, [1 - fL(< r)], i.e., the fraction of the luminosity released
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Figure 5-5 Fraction of luminosity (fL) emitted beyond radius r in a geometrically thin
accretion disk for a variety of black hole masses. The arrows indicate the physical sizes
of the Einstein radii of 0.7 M® stars in each of the nine lensing galaxies of known redshift
projected back onto the the lensed quasar.

at radii > r, is plotted in Figure 5-5. Here we have labeled the axis in physical units starting

at ro = 6GM/c2 = 2.5 x 1014 cm, i.e., the last stable orbit about a Schwarzschild black hole

of 3 x 108 M®, an illustrative quasar mass. We also show curves for other possible black

hole masses. For black holes with appreciable angular momentum, the value of ro moves

progressively inward, and radii at which equal fractions of the luminosity are emitted do

likewise.

Also overplotted on Figure 5-5 are nine arrows, one for each of our sources with known

redshifts, marking the physical size of the Einstein radius of a 0.7 Me star in the lensing

galaxy as projected back onto the lensed quasar. What we see is that the arrows are virtually

all located at radii where only a tiny fraction of the quasar luminosity can emerge from the

disk - at least for our fiducial black-hole mass of 3 x 108 Me. These fractional luminosity

values are typically < 2% for sizes comparable to the backprojected stellar Einstein radii.

Only for black-hole masses > 3 x 109 MD does a significant fraction of the luminosity (i.e.,

-20%) originate from radial distances comparable in size to the Einstein radius. However,

even then, as we showed in Pooley et al. [2006] and demonstrate below, much of this

radiation should be emitted at wavelengths well beyond the optical or near IR. Given that

the optical radiation (e.g., 0.4-1.5 pm) typically comprises a substantial fraction of quasar



luminosities, e.g., -15% [Elvis et al., 1994], it appears difficult for the optical emission

to be released from a thin disk at radii that are sufficiently large to allow for the partial

suppression of microlensing - as observed. We further quantify this conclusion below.

5.5.3 Predicted disk size: Thin disk calculation

Figure 5-5 and Equation 5.4 imply effective upper limits to the size of thin accretion disks

in the optical by evaluating the bolometric luminosity emitted within a radial distance r

of the central black hole. We now proceed to compute more quantitatively how large the

accretion disk is expected to appear for a fixed waveband, e.g., V, R, I. Based on the

relativistic invariant I/v 3,we find the following expression for the half-light radius, r1 / 2, of

a thin accretion disk in a waveband centered at v (in the Earth's frame):

f r/[ehv(1+z)/k(r) 1 rdr 1
r' 0 1 -(5.5)

fr'0 [ehv(1+z)/kT(r) - 1] -1 rdr 2 55

where ro is the location of the inner edge of the accretion disk, and T(r) is the local

temperature of the accretion disk, which in the Shakura and Sunyaev [1973] model, is

- - 1/4

T(r) = 3GMBM 1 - ro/r 4 . (5.6)
87ro-r3 (1 /-/r

In this simple picture, calculation of the half-light radius requires knowledge of three pa-

rameters: MBH, M, and ro. We use primarily the optical-based method of Kaspi et al.

[2000] (discussed below) to estimate the bolometric luminosity of each of the 10 sources

in our sample. We also utilize the X-ray luminosity, coupled with a bolometric correction

factor (also discussed below) to provide a sanity check on the Kaspi et al. [2000] approach.

We further assume that all of the quasars are operating at the same fraction, fEdd - 1/4,

of their respective Eddington limits [Kollmeier et al., 2006]. We show below from a sim-

ple scaling argument, that our final results for ri/2 are relatively insensitive to this choice.

Finally, we assume that the radiation efficiency (rest mass to radiant energy conversion

efficiency, TI) of all the quasars in our sample is q = 0.15 [see, e.g., Yu and Tremaine,

2002]. For this choice of efficiency, the dimensionless black-hole spin parameter would be



a = 0.88 and the innermost stable orbit would be located at ro ~ 2.5R9 = 2.5GMBH/C2

[e.g., Bardeen, 1970]. However, in our simple non-relativistic disk model, we can only fix

ro, and accept whatever the non-relativistic energy release is. For ro = 2.5 Rg this turns

out to yield an equivalent 71 = 0.2, which is sufficiently close to the Kerr value to provide

the desired accuracy in computing r1 /2-

We summarize the computed and inferred properities of our quasar sample in Table

5.6. The second column gives the bolometric luminosity as calculated from the Kaspi et al.

[2000] prescription. In this approach, Lbol is taken to be 9[AFA]51oo41rd2. To estimate

the 5100 A flux in the rest frame of the quasar, we used the flux measured in the closest

available broadband filter, usually the HST NICMOS F160W band, and extrapolated using

an assumed power-law spectrum FA ~ A-1-7 [Kollmeier et al., 2006]. The third column in

Table 5.6 gives an independent estimate of the bolometric luminosity for each quasar based

on the measured X-ray luminosity and a bolometric correction factor of 20, as inferred from

the composite AGN spectrum of Elvis et al. [1994]. The fourth column provides the black-

hole mass inferred from the bolometric luminosity (in column 2) divided by the Eddington

fraction, fEdd = 1/4, which then yields LEdd, and thence MBH - It should be noted that since

Kollmeier et al. [2006] derive fEdd = 1/4 using the prescription of Kaspi et al. [2000], and

since we follow suit, the masses we derive are independent of the dimensionless factor (of 9)

in Kaspi's prescription. The error bars on the mass represent the uncertainties inferred from

the t rms (logarithmic) spread in the bolometric luminosities obtained via three different

estimates: (i) the Kaspi et al. [2000] method, (ii) the X-ray luminosity, and (iii) (in 7 of

the 9 cases) the mass estimate directly provided by Peng et al. [2006], which is based on

a virial method involving broad-line widths and sizes of broad-line regions. The values of

the half-light radius, r1 / 2, computed with Equations 5.5 and 5.6 for the I band are given in

the fifth column. In the sixth column are Einstein ring radii of typical 0.7MO microlenses,

projected onto the plane of the source. Finally, in the last column we give the logarithm of

the ratio of the half-light radius to the microlens Einstein radius.

The results of our thin-disk estimates for the ratio rl/ 2 /rEin (last column of Table 5.6)

are plotted in Figure 5-6. The central heavy point within each error bar is based on the

black-hole mass given in column 4 of Table 5.6. The error bars on the ratio rl/2/rin are



Table 5.6. Properties of 10 quasars

Lbol,Opta Lbol,xb log MBHC 1/2d d1/2 stellar rEine log rl/2/rEin
Quasar (1045 erg s- 1) (1045 erg s- 1) (M(D) (1015 cm) (Rg) (1015 cm)

HE 0230-2130 2.9 6.3 7.95 ± 0.24 0.93 70 43 -1.66 ± 0.16
MG J0414+0534 36 28 9.04 ± 0.17 3.8 23 31 -0.91 ± 0.11
RX J0911+0551 13 13 8.60 ± 0.18 1.9 32 35 -1.26 ±0.12
SDSS J0924+0219 0.6 0.3 7.27 ± 0.56 0.42 152 48 -2.06 ± 0.37
PG 1115+080 11 6.6 8.53 ± 0.37 2.5 50 55 -1.35 ± 0.25
RXJ1131-1231 0.80 1.3 7.39 ± 0.19 0.84 230 38 -1.65 ± 0.13
H 1413+117 56 6.5 9.24 ± 0.51 5.4 ... ---

B 1422+231 250 135 9.89 ± 0.18 13 11 47 -0.55 ± 0.12
WFI J2033-4723 5.7 3.8 8.24 ± 0.12 1.6 62 36 -1.35 + 0.08
Q 2237+0305 32 2.7 8.99 ± 0.76 5.5 38 150 -1.43 ± 0.51

aBolometric luminosities computed using Lbol = 9[AFA]51oo47rdL. Computed from HM, LS, and LM images, corrected
for magnification [Kaspi et al., 2000].

bApproximate bolometric luminosities derived from the X-ray (0.5-8 keV) luminosities (computed from LM image)
with a bolometric correction factor of 20 (see Section 5.5).

cCalculated from the bolometric luminosities in column 2. See Section 5.5.

dr1/2 is computed according to Equation 5.5 for the I band.

eEinstein radius of a 0.7M® star, projected back to the lensed quasar, in units of 1015 cm.
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propagated from the black hole mass uncertainties given in Table 5.6. The vertical line

at rl/ 2 /rEin = 1/3 is our estimate of the ratio required to suppress microlensing in the

optical band by the (logarithmic) factor of -2 discussed in Section 5.4. The vertical line

at rl/2/rEin = 1/10 represents a more conservative lower limit on rl/2/rEin that might

plausibly still be consistent with the suppressed microlensing in the optical. An inspection

of Figure 5-6 shows that 7 of the 9 systems (for which rl/ 2 /rin could be calculated) lie

below the limit of 1/10, and therefore the disk size in the optical that we predict appears

to be too small to explain the reduced microlensing. Only one of the systems, B 1422+231,

has a ratio of ri/ 2/rin that slightly exceeds the 1/3 value which we think is reasonable to

account for the reduced microlensing in the optical for this particular source. Note that

this particular source has a flux ratio anomaly at radio wavelengths, an indication that

millilensing is at work [Mao and Schneider, 1998].

Arguably the largest contribution to the uncertainty in the calculation of ri/2 arises from

the errors in estimating the bolometric luminosities of the quasars in our sample. We believe

we can make a fairly robust estimate of the uncertainty in r1/2 - due to the uncertainties

in Lbol - by inspection of Figure 5-6. As discussed above, the plotted error bars are derived

from the logarithmic rms scatter among the three (two) different and independent methods

we have employed to infer Lbol (see above discussion) for 7 (2) of the sources. As Figure 5-6

indicates, the uncertainties in ri/ 2 range between factors of 1.2 and 3.2, with an average

value of a factor of 1.7. We take this to be a fairly reliable estimate of the uncertainty in

our values for r 1 / 2 due to errors in estimating Lbol.

In our calculations leading to the set of values for ri/2/rin we assumed values for

two key parameters of the quasars: (i) the radiative efficiency q, and (ii) the fraction

fEdd Lbol/LEdd. Based on a simple scaling argument, we can show how our results for

ri/ 2 depend on 7 and fEdd. Equation 5.5 provides the exact definition of ri/ 2 that we use.

However, if we use the expression for T(r) in Equation 5.6 to find the radius where T/(1+z)

equals hv/kB, where v is the center of the observation band, this is to a good approximation

proportional to ri/2. If we further neglect the factor (1 - fro/r) in Equation 5.6, we find



a handy scaling relation for r1/2:

ri/2 ( MBHM 1 3  (5.7)

If we consider the bolometric luminosity to be a measured quantity for each system, then

MBH oC Lbol/fEdd and M oc Lbol/q. Combining these, we can see how r1/ 2 depends on the

assumed parameters fEdd and 7:

r1/ 2 oC (fEddn)- 1 / 3  , (5.8)

which is a fairly weak dependence, and not likely to lead to uncertainties in r1/2 of more

than an additional factor of ~2.

5.6 Summary and conclusions

We have presented a study of ten quadruply gravitationally lensed quasars for which high

spatial resolution X-ray and optical data are available, paying particular attention to the

differences between the observed flux ratios of the high magnification pairs of images (i.e.,

HS/HM) and the predicted flux ratios from smooth lensing models. The Chandra data were

analyzed in a uniform and systematic manner, and the X-ray flux ratios were determined

via two-dimensional Gaussian fits. The optical fluxes and image positions were found in

the existing literature, with the bulk coming from the CASTLES project. We also mod-

eled each lensing system as a singular isothermal sphere with external shear (except for

HE 0230-2130, where a second mass component was necessary), and these simple models

fit the image positions quite well.

As illustrated in Figures 5-2 through 5-4, almost all systems show evidence for an

anomaly in the ratio of high-magnification saddle point and minimum images (HS/HM)

as compared to the smooth model prediction. In the systems which show a pronounced

anomaly, the X-rays are generally seen to be more anomalous than the optical.

For a number of reasons, we believe that the anomalous flux ratios, and the differences

between these ratios in the X-ray and optical bands, are best explained by microlensing. In



previous work [Blackburne et al., 2006, Pooley et al., 2006] we have shown that extinction

in the visible band and absorption of soft X-rays cannot provide the explanation. Second,

we show in this study (as well as previous work) that temporal variability intrinsic to

the source, in conjunction with lens time delays, also cannot, in most cases, explain the

observed anomalies. Third, since images in both the X-ray and optical bands exhibit these

flux ratio anomalies, but to differing degrees, no smooth lens model can reproduce these

anomalies. Finally, we find that in the preponderance of systems, it is the highly magnified

saddle point image (HS) whose flux is anomalous. This is in agreement with microlensing

magnification distributions [Schechter and Wambsganss, 2002]. Since there is no reason for

the HS location to systematically produce larger optical extinctions or X-ray absorptions,

this is another argument against differential extinction/absorption being the cause of the

flux ratio anomalies.

Under the hypothesis that the anomalies are produced via microlensing by stars (of

typical mass 0.7 MD) in the lensing galaxy, the implication is that the optical emitting

region, which suffers rms (logarithmic) microlensing variations only half as big as those of

the X-ray region, must have a typical size -1/3 of the Einstein radius of the microlensing

stars (see discussion in Section 5.5). Likewise, the X-ray emitting region, being more severely

microlensed, must be substantially smaller than this.

In the context of a thin accretion disk around a black hole, the X-ray requirement is

easily satisfied, as this emission likely arises from the inner parts of the disk. However, the

optical emission poses something of a problem. It is generally thought to arise from a region

not much larger than the X-ray region, but this is in conflict with the observed microlensing

results which require larger optical emitting regions by factors of - 3 - 30 (see Figure 5-6)

than are commonly accepted.

Therefore, we are left with a conundrum. Either there is a mechanism to transport

the optical radiation to larger radii (and which does not affect the X-rays), or there is a

missing piece of the puzzle. Regardless, we have demonstrated how the X-ray and optical

observations can provide a micro-arcsecond probe of the lensed quasars, and thereby yield

potentially important results.

From the work in this paper and the above discussion we draw three summary conclu-



sions:

* microlensing is the primary cause of the flux ratio anomalies.

9 the optical emitting regions in the quasars involved in this study have sizes of -1/3

of a stellar Einstein radius, i.e., ~ a microarcsecond, corresponding to -1000 AU.

* millilensing (e.g., by dark matter haloes) is ruled out as an explanation of the flux

ratio anomalies by virtue of the above conclusion since this implies that both the X-ray

and optical emission regions are small compared to the milliarcsecond scale, and should

therefore be lensed by the same amount.



Chapter 6

Accretion disk structure:

Introduction

6.1 Introduction

In Chapters 3 through 5 we developed the argument that the accretion disks around quasars

(or at least the regions which produce UV and optical light) are in general large - large

enough to significantly suppress the microlensing variability and flux ratio anomalies ex-

pected for point sources, and larger than expected from a simple Shakura-Sunyaev thin ac-

cretion disk model. In this chapter and those that follow, we build upon this foundation in

two ways: we develop a quantitative method for measuring the size of a microlensed source,

and we explore the dependence of the source size on wavelength within the (observer-frame)

optical/IR band.

Since the publication of Pooley et al. [2007], several recent studies have used microlensing

to probe the structure of individual, or a few, lenses. Some obtain a separate spectrum of

each image, a feat requiring either carefully-placed slits or integral-field techniques. The

lensed quasars HE0230-2130, RXJ0911+0551, SDSSJ0924+0219, RXJ1131-1231, and

H 1413+117 have been studied in this way, and in each case the flux ratios were found

to be less anomalous in the emission lines than in the continuum; this is a signature of

microlensing [Keeton et al., 2006, Sluse et al., 2007, Sugai et al., 2007, Anguita et al.,



2008a]. Another study constrains the profile of the accretion disk of Q 2237+0305, using

spectroscopic monitoring [Eigenbrod et al., 2008].

Other work has made use of time-series data, monitoring lensed quasars for years at a

time. This technique is capable of measuring the sizes of accretion disks at the wavelengths

in which the lenses are monitored, and has an advantage over single-epoch measurements

in that it is able to glean information about the location of the source in the magnification

map. However, it also suffers from a dependence on the unknown relative angular velocity

of the source and the microlens stars. Several lensed quasars have been studied using this

method; Morgan et al. [2007] used it to plot the relationship between accretion disk sizes

and black hole mass. Most of the work thus far has been done in one or two broadband

filters [Morgan et al., 2008a, Anguita et al., 2008b], but one study has extended the analysis

to several optical/IR filters, and thus measured the temperature profile of an accretion disk

[Poindexter et al., 2008]. Still other papers have combined optical monitoring data with

X-ray monitoring to improve their results [Morgan et al., 2008b, Chartas et al., 2009, Dai

et al., 2009].

But spectroscopy is difficult, and monitoring is expensive (especially with Chandra).

So a few studies have used single-epoch imaging to constrain quasar structure. Agol et al.

[2009] use IR measurements of Q 2237+0305 to confirm that the accretion disk and the

dusty torus both contribute to the SED around 1 micron. Bate et al. [2008] and Floyd

et al. [2009] use optical data nearly identical to ours to study the temperature profile of two

quasars (MG J0414+0534 and SDSS J0924+0219, respectively), putting upper limits on the

disk sizes and slopes.

In this work, we describe a method of analysis which allows us to measure the size of

the source using single-epoch optical/IR and X-ray flux ratios. We measure flux ratios in

eight optical and IR broadband filters, for twelve quadruply lensed quasars, and apply this

method to them. We put constraints on the size of the accretion disks and the dependence

of that size on wavelength.

Eleven of the twelve quasars were chosen from the known quadruple quasars that are

observable from the southern hemisphere and have available Chandra data. In order to

explore the dependence of size on wavelength, we needed imaging in multiple filters from



a large telescope with good image quality. The Magellan telescopes at Las Campanas

Observatory fit this description, and are available to MIT astronomers; thus the focus

on the southern sky. The need for Chandra data comes from our strategy of comparing

anomalous flux ratios at X-ray wavelengths to those at optical wavelengths. Chandra is the

only X-ray observatory with the resolution needed to separate the quasar images. Seven of

these lenses are from the sample of Chapter 5 [Pooley et al., 2007]. They are HE 0230-2130,

MG J0414+0534, RX J0911+0551, SDSS J0924+0219, PG 1115+080, RX J1131-1231, and

WFI J2033-4723. Four do not appear in that work; their X-ray observations are more

recent, and are published for the first time here. They are HE 0435-1223, HE 1113-0641,

SDSS J1138+0314, and WFI J2026-4536.

The final lens, SDSS J1330+1810, was added to the sample after its discovery was re-

ported in 2008 [Oguri et al., 2008a]. It does not have any X-ray data; our microlensing

analysis of it can therefore only provide upper limits on the accretion disk size. But we

do report improved positions for its quasar images and photometry in several bands (see

Chapter 7).

No attempt was made to choose a "representative" sample of quasars, but there is no

reason to believe that the sample is particularly biased, either. All are bright quasars at

redshifts between 0.7 and 2.8, and all but MG J0414+0534 are radio-quiet. Projecting the

Einstein ring of a microlens star back to the plane of the quasar results in very similar

distances for all the lenses in our sample - around 4 x 1016 cm(m/0.7Me)1/ 2. We excluded

the lensed quasar Q 2237+0305 because its projected Einstein ring size is much larger than

the others'.

In Section 6.2 we review the predictions of the standard thin disk model for the size of

the disk as a function of wavelength. The model depends on the mass of the black hole; we

describe our estimates of these masses in Section 6.3.

6.2 Theory of thin accretion disks

Our analysis (see Chapter 8) yields estimated sizes for the quasar accretion disks at various

wavelengths, as a fraction of the projected Einstein radius of the microlens stars. Mul-



tiplying by the Einstein radius, we arrive at a physical size. In this section we derive

for comparison the size predicted by the the standard thin disk (or "alpha disk") model

[Shakura and Sunyaev, 1973].

The following analysis is a slightly simplified version of that of Section 5.5.3; we have

included it because the previous version was written by SAR, whereas this section is original

to this thesis. We would like to lay to final rest a misconception that we have seen [e.g., in

Chartas et al., 2009] regarding the theoretical accretion disk sizes we calculated in Section

5.5. It has been stated that our sizes were calculated using the observed flux and assuming

the disk radiates like a blackbody at an assumed temperature. This is not what we did;

we performed the full thin-disk analysis, as presented below. The only differences are in

our estimates of the black hole masses (see Section 6.3) and a slight streamlining of the

treatment (neglecting the correction factor in Equation 6.1 and using the rest wavelength).

The salient feature of the thin disk model for our purposes is its temperature profile,

which is famously independent of the unknown a parameter which parameterizes the vis-

cosity, and after which the model is named.

-11/4

Teff(r) = 3GM M 1 - rO/r 4 (6.1)

where MBH is the black hole mass, M is the mass accretion rate, o-B is the Stefan-Boltzmann

constant, and ro is the innermost radius of the accretion disk (generally considered to be

the innermost stable circular orbit). This equation is the same as Equation 5.3. For the

remainder of this chapter we will ignore the factor [1 - (ro/r)1/ 2] 1/ 4, because the optical

emission regions of interest lie at a sufficient distance from the innermost radius ro that the

factor is essentially unity (see Figure 6-1). This approximation simplifies our analysis; now

the effective temperature of the disk is simply a power law in radius.

We define a wavelength-dependent scale size rx, such that the blackbody described by

Teff(rA) peaks at A (we neglect the numerical factor in Wien's Law):

- 1/3 -11/3

1  3GMBHM 45GMBHrest (
S 87FroB (hpc/ArestkB)4 167r6hpc 2 (



where hp is Planck's constant. This radius is only intended as a rough scale, but the A 4 3

dependence of the size of the disk is already apparent in this definition.

Based on the findings of Mortonson et al. [2005], we have parameterized our analysis of

the data using the half-light radius of the disk at various wavelengths. To find the theoretical

prediction for the half-light radius, we must integrate the flux from the inner edge of the

disk out, and stop when the flux is half the total flux of the disk:

fr/2 [exp[hpc/ArestkBT(r)] - 1]- rdr [i/2 [exp[(r/rA) 3/4] -1 rdr 1
(6.3)

[exp[hpc/ArestkBT(r)] - 1]_1 rdr [exp[(r/rA) 3/4 - 1 rdr 2

(see Equation 5.5). We performed the integration numerically, setting the lower bound of

the integral to zero, and found that ri/2(Arest) = 2.44rA. Setting the lower limit to zero has

a very small effect on this result if (as with these lensed quasars) rA is much larger than the

inner radius of the disk. Indeed, there is only a 6% change if we dial ri/2 all the way down

to 10ro.

It only remains to determine the black hole mass M and the mass accretion rate M. We

express the latter in terms of the fraction of the Eddington luminosity at which the quasar

is emitting:
Lbol _ rMcoT

AEdd = Lbl ?A1OT(6-4)
LEdd 4 7rGMBHmp

where oY is the Thomson scattering cross-section, m, is the proton mass, and q is the

efficiency of the accretion disk in converting the infalling mass to energy. In thin disks

around rotating black holes, q is thought to be around 0.15 [Yu and Tremaine, 2002]. Thus

45G 2 MBHmpfEddicest 1/3
ri/2 =2.44 47fc3 T7 I os z

= (1.68 x 1016cm) ( MBH 2/3 fEdd 1/3 Arest 4/ (6.5)
x10 9 MOJ 77 ,Am(

(we have included a factor of cosi to account for the inclination of the disk with respect

to our line of sight, and set it to a reasonable average value of 2-1/2 in the second line).

For this analysis we follow Pooley et al. [2007] (see also Chapter 5) in adopting an

Eddington fraction of 0.25 for our sample of quasars [Kollmeier et al., 2006]. The impact
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Figure 6-1 Comparison of effective temperature curves for three simple models for accretion
disks. Top curve: r-3/4 power law. Middle curve: Shakura and Sunyaev [1973] model.
Bottom curve: Relativistic Novikov and Thorne [1973] model. The spin parameter a/M
has been set to 0.88. Changing it does not qualitatively change the curves; its primary
effect is to move the inner edge of the disk.

of this approximation is mitigated by of the weak dependence of r1/2 on fEdd-

In order to ensure that our model is applicable in the disk regions we are interested in,

we compare the temperature profile of our simple power-law model to the Shakura-Sunyaev

disk and to the fully relativistic Novikov and Thorne [1973] model in Figure 6-1. For all

values of the black hole spin parameter a/MBH, the error in our power-law model is less

than 1% at radii greater than 50 gravitational radii. This region is where we measure the

optical disk size. Note that in Figure 6-1,

3GMBHM 1/4
TO 87 O.BR J (6.6)

6.3 Determining the black hole masses

There are two methods for estimating the mass of a supermassive black hole. The first is

to measure the quasar's luminosity and apply an assumption about its Eddington fraction.

The second is to measure the width of the broad emission lines in the quasar's spectrum,

with the idea that the Doppler broadening of the lines is due to the Keplerian motion of the
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emitting gas around the black hole. The latter virial method requires an estimate of the

distance of the gas from the central object; for quasars this is normally obtained using an

empirical relationship between the luminosity of the object and the size of the broad line

region, calibrated by reverberation mapping of nearby AGN [Vestergaard, 2002].

The virial method has become very popular, and is generally regarded as more accurate

than the use of the bolometric luminosity. Indeed, in our case the latter method must

estimate not only the bolometric correction, but one or more lensing magnifications, since

the unlensed source is impossible to observe. For this reason, we adopt where we can

the virial estimates that exist of the black hole masses of our lensed quasars. Peng et al.

[2006] use the virial method to estimate the masses of 6 of our sample: MG J0414+0534,

HE0435-1223, RXJ0911+0551, SDSSJ0924+0219, PG 1115+080, and RXJ1131-1231.

Morgan et al. [2007] make use of these estimates, and use the same method to estimate the

mass of SDSS J1138+0314. Of the remaining quasars in our sample, HE 0230-2130 and

WFI J2033-4723 have mass estimates in Pooley et al. [2007, see Chapter 5] based on their

optical and X-ray luminosities.

For the remaining quasars (HE1113-0641, SDSSJ1330+1810, and WFIJ2026-4536)

we use bolometric luminosities to estimate the black hole masses, in exactly the same way

as Pooley et al. [2007] did. To get a bolometric luminosity via optical wavelengths, we take

the HST NICMOS F160W (~ H, 1.6 microns) magnification-corrected magnitude of the

LM image from the CASTLES database and convert it to a flux at the central wavelength

of that filter. We then extrapolate to the redshifted analogue of (rest-frame) 5100 A using

an assumed power-law spectrum fA ~ A- 1-7 [Kollmeier et al., 2006]. We use this flux in the

formula

Lbol = 9[AfA] 5 ooA47rdL (6.7)

where dL is the luminosity distance of the quasar [Kaspi et al., 2000]. Our second approach

was to multiply the 0.3 - 8 keV X-ray flux (see Section 7.1) by a bolometric correction

factor of 20 [Elvis et al., 1994].

Table 6.1 lists all of these black hole mass estimates. We visually compare the virial mass

estimates to those calculated using bolometric luminosities in Figure 6-2. The luminosity
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Table 6.1. Black hole Mass Estimates

Lbol,opt Lbol,X MBH,opt MBH,vir

Quasar (1046 erg/s) (1046 erg/s) (10 M0 ) (10 M®)

HE 0230-2130 0.29 0.63 0.092 -..

MG J0414+0534 3.6 2.8 1.1 1.82
HE 0435-1223 0.38a 0.46a 0.12 0.50
RX J0911+0551 1.3 1.3 0.41 0.80
SDSS J0924+0219 0.06 0.03 0.019 0.11
HE 1113-0641 0.27a 0.10a 0.087 -..

PG 1115+080 1.1 0.66 0.35 0.92/1.23b
RXJ1131-1231 0.08 0.13 0.025 0.06
SDSSJ1138+0314 0.38a 0.25a 0.12 0.04c
SDSS J1330+1810 4.7a - 1.5

WFI J2026-4536 2.5a 1.1a 0.79 -..

WFI J2033-4723 0.57 0.38 0.18 -..

aThis work.

bTwo values are from the C iv and Mg ii lines, respectively. We adopt
the Mg ii value.

cMorgan et al. [2007]

Note. - Unless otherwised indicated, bolometric luminosity estimates
are from Pooley et al. [2007] and virial mass estimates are from Peng et al.
[2006].
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Figure 6-2 Comparison of virial mass estimates from Peng et al. [2006] to those estimated
using the bolometric luminosity method of Pooley et al. [2007]. See Section 6.3 and Table
6.1. The solid line represents a 1:1 correspondence; it is not a fit.

masses are systematically smaller than the virial masses, by factors of - 3; this could

lead to under-predictions of the accretion disk size by factors of ~ 2 for the lenses in

which we use the bolometric mass estimate (in the absence of a virial estimate). This

systematic bias is a little surprising, since the bolometric luminosity technique we are using

is calibrated using the virial method [Kollmeier et al., 2006]. It may be partially due to a

bias in our magnification correction, but it is difficult to imagine that we have systematically

overestimated magnifications by a factor of three.

6.4 Putting it all together

With mass estimates in hand (or, rather, in Table 6.1), and adopted values of 0.25 and 0.15

for the Eddington fraction fAdd and accretion efficiency q7, respectively, we can predict with

no free parameters what the projected size of the accretion disk should be as a function of

103



wavelength, according to the thin disk model (see Equation 6.5). Though the black hole

masses are uncertain by factors of - 3, and the Eddington fraction and accretion efficiency

are uncertain as well, the relatively weak dependence of ry2 on these parameters ensures

that the predictions are secure to within a factor of - 3. In Chapter 9 we will compare

these predictions to our measurements. But first, we describe the data in Chapter 7 and

our new quantitative analysis method in Chapter 8.
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Chapter 7

Accretion Disk Structure: X-ray

and optical/infrared data

7.1 X-ray observations

The X-ray flux ratios for this survey all come from the Chandra X-ray Observatory; its

resolution allows us to distinuguish the four quasar images. For five of the lenses among our

sample (specifically HE 0230-2130, MG J0414+0534, RX J0911+0551, SDSS J0924+0219,

and WFI J2033-4723) we adopt the X-ray flux ratios reported in Pooley et al. [2007]. For

PG 1115+080 we adopt the X-ray flux ratios from Pooley et al. [2009]; they are more con-

temporaneous with our optical/IR observations. For the same reason, for RX J1131-1231

we use observations reported by Chartas et al. [2009]. Specifically, we use the 2007 February

13 observation (for comparison with MagIC data) and the 2007 April 16 observation (for

comparison with PANIC data). We also make use of X-ray flux ratios for four other lenses:

HE 0435-1223, HE 1113-0641, SDSS J1138+0314, and WFI J2026-4536. These come from

recent Chandra observations, which are reported in an upcoming paper [Pooley et al., 2009,

in preparation]. For these four, as well as RX J1131-1231, we have performed an analysis

nearly identical to that described in Section 5.2 [Pooley, 2009, private communication]. The

remaining lens, SDSS J1330+1810, has no X-ray observations.

Three of the four new X-ray lenses posed special challenges while fitting. In the cases
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Table 7.1. X-ray fluxes and flux ratios

Quasar Image Flux Ratiosb LM unabs. Fo.5-s keVC

ObsIDa Date Exp. (s) HS/LM HM/LM LS/LM (10-14 erg cm- 2 s-1)

HE 0230-2130
1642 2000 Oct 14 14764

MG J0414+0534
3419 2002 Jan 9 96664

HE 0435-1223
7761 2006 Dec 17 10 130

RX J0911+0551
419 1999 Nov 3 28795

SDSS J0924+0219
5604 2005 Feb 24 17944

HE 1113-0641
7760 2007 Jan 28 15180

PG 1115+080
7757 2008 Jan 31 28800

RX J1131-1231
7787 2007 Feb 13 5190
7789 2007 Apr 16 5190

SDSS J1138+0314
7759 2007 Feb 13 19080

WFI J2026-4536
7758 2007 Jun 28 10 170

WFI J2033-4723
5603 2005 Mar 10 15420

B/C A/C D/C
0.7010:13 1.6 +0:2 0.452+.-08

A2/B Al/B C/B
1.3+_0:- 2.1+0:1 0.42 " +00

B/C A/C D/C
-0. 15 2.6-0:3 0.96+-14

A/D B/D C/D
3.4+0:.6 1.3+ 0:4 0.35+0' 1

D/B A/B C/B
0.45+-0:19 3.2+0:8 0.42+0-1

D/A B/A C/A
0.782:0 0.63-:.4 0.20AlC1

A2/C A1/C B/C
0.62+-0: 1 3. 9+0:3 1.1+1

A/C
5.53+0.38

5.43-0:.36

B/C
3.09+0:23
2.87-0:20

D/C
0.611 0.06

0.37t0.0

D/C A/C B/C
1.3+-0:' 3.2 0: 1.0+0.

A2/B Al/B C/B
2.0+1-7, 5.8+1:8 0.40+0.0

A2/B Al/B C/B
1.0 .2: 0.871:- 0.64+0-o

aThe observation identifier of the Chandra dataset.

bHS = Highly magnified Saddle
Saddle point; LM = Less magnified

point; HM = Highly magnified Minimum; LS = Less magnified
Minimum. See Section 5.4.

cThe unabsorbed flux of the LM image is computed from the best fit power-law model described in

Section 5.2.1. We only report new measurements here; see Table 5.1.
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of HE 1113-0641, SDSS J1138+0314, and WFI J2026-4536, the least-squares optimization

settled on a PSF larger than for any of the other observations. We fixed the width of

the PSF in these cases to the average of the other X-ray PSFs. The flux in image A2 of

WFI J2026-4536 was very sensitive to the PSF, so we allocated a generous 1.5 magnitudes

of uncertainty to its flux ratio, added in quadrature to the other sources of uncertainty (see

Section 7.4.2).

Table 7.1 summarizes the Chandra observations and the flux ratios measured.

7.2 Optical observations

Between 2007 February and 2008 May, we undertook an optical observing campaign to

obtain multi-band, contemporaneous images of our sample of lenses. At IR wavelengths, we

used the J, H, and K, filters with Persson's Auxiliary Nasmyth Infrared Camera (PANIC),

on the 6.5-meter Baade telescope at Las Campanas. In the optical, we used the Sloan

u'g'r'i'z' filters with MagIC, which was on the neighboring Clay telescope when we began

our campaign, but was moved to Baade while the observations were still underway. This

change of location allowed us to use both instruments during the same observing run,

and even during the same night! MagIC and PANIC have fields of view 2'4 and 2'1 on

a side, respectively, large enough for each image to include stars appropriate for use as

PSF templates. The instruments' pixel scales are ''069 and ''125 pixels, which more than

adequately sample the PSF. The details of the observations are listed in Table 7.2. The

author carried out most of the observations.

During our 2007 September observing run, MagIC was offline for an upgrade, so we

instead used the the Inamori Magellan Areal Camera System (IMACS) in its imaging mode.

With its f/4 camera, the instrument has a pixel scale of 0'11 and a 15'5 field of view, but

in order to reduce the readout time we used only a subraster 2'2 on a side. We used this

instrument for our observations of HE 0230-2130, MG J0414+0534, and HE 0435-1223.

The images were bias-corrected, flattened, and corrected for cosmic rays using standard

techniques. Where multiple exposures were obtained, they were combined, so that we ended

up with a single image per filter per lensed quasar.
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Table 7.2. Optical observations

Quasar

HE 0230-2130

MG J0414+0534

HE 0435-1223

RX J0911+0551

SDSS J0924±0219

HE 1113-0641

PG 1115+080

RX J1131-1231

SDSS J1 138+0314

SDSS J1330+1810

WFI J2026-4536

WFI J2033-4723

Date

2007 Sept 16
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2008
2008
2008
2007
2007
2007
2007
2008
2008
2008
2008

July 29
Sept 21
Sept 22
Sept 16
Sept 22
Feb 13
Feb 14
Apr 7
Feb 13
Apr 7
Feb 14
Apr 7
Feb 1
Feb 2
Feb 4
Feb 13
Apr 6
Feb 13
Apr 8
Feb 1
Feb 3
May 13
May 12

2007 June 15
2007 July 4

MagIC u'g'r'i'z' 720; 240; 120; 300; 480
PANIC JHK, 135; 135; 90

Because of the small separations of the lensed quasar images in our sample, we observed

only under the best atmospheric seeing conditions. The excellent image quality at the

Magellan telescopes was crucial to the success of our survey. The i'- and J-band seeing is

reported in Table 7.2, which outlines the optical/IR observations obtained for this work. The

seeing in the other filters was roughly consistent with the rule of thumb: FWHM oc A-1/5.

Because we are primarily interested in the flux ratios of lensed quasars (indeed, we

cannot measure absolute magnifications), we did not, in general, obtain images of standard

stars for the purpose of calibrating our photometry. In the case of SDSS J1330+1810,

however, we did observe standard stars in the optical bands, so we report (in Section 7.3)

calibrated photometry for this lens. We also estimate the photometric zero point in the

J and KS bands, based on images taken the same night which contain several calibrated
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Instrument

IMACS
PANIC
IMACS
PANIC
IMACS
PANIC
MagIC
MagIC
PANIC
MagIC
PANIC
MagIC
PANIC
MagIC
MagIC
PANIC
MagIC
PANIC
MagIC
PANIC
MagIC
PANIC
MagIC
PANIC

Filters

u'g'r'i'z'
JHK,
r'i' z'

JHK,

JHKS,

g'r 'i' z'
U,

JHK,
u'g'r 'i' z'

JHK,
g'r 'i' z'

JHK,
g'r 'i' z'

U/

JHKs

u'g'r'i'z'JHKs

JHKs
U/ I /rI*I/

JHKs

u'g'r'i' z'
JHKS

Exposures (s)

720; 240; 240; 240; 480
540; 540; 540
360; 240; 480
810; 720; 720

720; 240; 240; 270; 480
810; 1080; 1080

240; 240; 300; 480
720

540; 405; 405
720; 240; 240; 180; 480

540; 540; 540
240; 180; 120; 240

450; 450; 450
120; 120; 150; 240

720
540; 540; 540

480; 120; 120; 120; 240
486; 405; 405

1080; 480; 480; 360; 960
540; 540; 540

360; 120; 120; 150; 240
540; 540; 540

720; 240; 240; 360; 480
135; 135; 90

Seeing (")

0.43
0.64
0.67
0.76
0.67
1.06
0.70
0.63
0.72
0.61
0.64
0.49
0.45
0.55
0.87
0.56
0.65
0.76
0.75
0.47
0.53
0.68
0.54
0.43
0.88
0.51



2MASS sources.

7.3 Optical and infrared photometry

Despite the high quality of our data, careful PSF subtraction was necessary to disentangle

the compact clumps of point sources and lens galaxies that make up our sample. For each

image, we used a non-linear least-squares fitting technique to simultaneously fit the positions

and relative fluxes of the 4 quasar components and the lens galaxy.

For lenses that presented no obvious difficulty (such as a blended pair of merging quasar

components), we performed a simultaneous fit to the images in all filters, with the relative

positions of the quasar components and the lens galaxy allowed to vary, but constrained to

be the same in all filters. The amplitudes of the quasar components were completely free

to vary. The best-fit positions were consistent in every case with the HST positions listed

on the CASTLES website.

In cases where merging pairs (or triples) would have caused strong correlations between

positions and flux ratios, we fixed the relative positions of the quasar components and the

lensing galaxy to the CASTLES positions.

RX J1131-1231 required special treatment. Because of its very bright Einstein ring,

the quasar components were over-subtracted by the least-squares minimizer, especially at

the longer wavelengths. So we performed a second fit to this system's r' through K, data,

fixing all of the quasar fluxes to values that resulted in residuals that looked like an unbroken

Einstein ring. Though it was completely ad-hoc, we think that this "chi-by-eye" technique

gave flux ratios less affected by systematic errors. Section 7.4.1 describes our method for

estimating the uncertainty of these flux ratios.

In all cases we modeled the lensing galaxy as a 2D "pseudo-Gaussian" function, with a

full-width at half-max as a fixed parameter. The width was chosen using a trial-and-error

technique, examining the residuals by eye. (Because of the frequent presence of a faint

Einstein ring due to the quasar's host galaxy, least-squares minimization often overestimated

the width). Because the lens galaxy nearly always had a low signal-to-noise ratio compared

to the quasar images, the goodness of the fit was insensitive to this approximation. The
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Table 7.3. Differential astrometry for SDSS J1330+1810

Image x y

A -1.258 ± 0.01 -1.168 t 0.01
B -0.839 t 0.01 -1.190 t 0.01
C =0 =0
D -1.488 ± 0.01 0.444 + 0.01
G -1.037 t 0.02 -0.195 ± 0.02

Note. - Positive x and y point west
and north, respectively.

galaxies were mostly round, but for the few exceptions we treated the axis ratio and position

angle as we did the width.

The fitted fluxes of the lens galaxies are uncalibrated, and therefore of little interest;

we do not report them. SDSS J1330+1810 is the exception to this rule; because it was

discovered relatively recently, and because observing conditions were photometric on the

night it was observed, we observed standard stars in all bands but H, for the purpose of

calibrating its fluxes. The calibrated magnitudes of this lens galaxy are reported in Table

7.4. The optical calibration relies on aperture photometry of the standard stars SA 107-

351 (for u') and G163-50 (for g'r'i'z'), and places the fluxes on the Sloan u'g'r'i'z' system,

which closely approximates the monochromatic AB system [Smith et al., 2002]. The IR flux

calibration makes use of a field containing several 2MASS sources; we performed aperture

photometry on them and compared their measured magnitudes to those reported in the

NASA/IPAC Infrared Science Archivel to obtain photometric zero points. This places our

calibrated J and K, fluxes on the 2MASS photometric system [Cohen et al., 2003].

The lack of HST positions for SDSS J1330+1810, combined with the relative brightness

and elliptical shape of the lensing galaxy, made it a special challenge. In order to get the

shape of the galaxy right, we adopted an iterative approach. First we fixed the galaxy

parameters to reasonable guesses and fit the positions and fluxes of the quasar components,
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Table 7.4. Photometry for SDSS J1330+1810

Filter HM HS LM LS

A-C B-C C D-C G
u' -0.75 ± 0.06 +0.27 i 0.06 19.69 + 0.06 +1.70 + 0.08 -..

g' -0.79 t 0.06 +0.17 i 0.06 20.99 ± 0.06 +1.78 i 0.08 25.08 ± 0.11
r' -0.86 i 0.06 -0.18 ± 0.06 20.57 t 0.06 +1.63 ± 0.08 23.48 ± 0.11
i' -0.90 ± 0.03 -0.13 ± 0.03 21.07 t 0.06 +1.71 i 0.06 23.26 t 0.10
z' -0.88 i 0.04 -0.12 i 0.04 21.55 + 0.06 +1.95 i 0.11 23.46 + 0.10
J -0.85 t 0.07 -0.18 t 0.08 18.88 t 0.06 +1.34 i 0.14 18.94 i 0.10
H -0.84 + 0.07 -0.24 + 0.08 ... +1.54 + 0.18 -..

Ks -0.89 ± 0.07 -0.36 ± 0.08 17.78 t 0.06 +2.29 i 0.55 17.13 t 0.10

Note. - Optical magnitudes for image C and lens galaxy G are calibrated to the
u'g'r'i'z' system, while J and K, magnitudes are calibrated to the 2MASS system.
All values are in magnitudes.

subtracting them from the image. To the residual image (which contained only the lens

galaxy) we then fit a single elliptical pseudo-Gaussian [Schechter et al., 1993], with all

parameters allowed to vary. The best-fit FWHM of the galaxy was 1'!0 along the major

axis; the axis ratio and position angle were 0.67 and 24 5 east of north. Finally, we fit the

original image again, fixing the galaxy shape parameters to the best-fit values, in order to

find the quasar positions and fluxes. The results are consistent with those of Oguri et al.

[2008a], but have higher precision; they are reported in Tables 7.3 (astrometry) and 7.4

(photometry).

We used nearby bright (but not saturated) stars in each frame as PSF templates in our

fitting.

For each lens, the transformation between pixel coordinates and sky coordinates was

determined by fitting the star positions in our i' and J band images to the USNO-B catalog.

On average, there were - 10 - 15 objects for each fit. The pixel scale and rotation angle

thus determined for i' and J were assumed to apply to the remaining MagIC/IMACS data

and PANIC data, respectively.

Relative photometry for all the lenses in our sample (except SDSS J1330+1810) is listed
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in Table 7.5. We also list the calculated rms deviation of the flux ratios in each filter from

those predicted by the lens models. This number is an indication of how anomalous the flux

ratios are. For comparison with the optical flux ratios, we also list the X-ray and predicted

model ratios, in magnitudes.
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Table 7.5. Relative photometry for the rest of the lenses

Quasar Filter HM HS LM LS rmsa

HE 0230-2130

MG J0414+0534

HE 0435-1223

RX J0911+0551

A
0 0.00
0 t 0.00
0 ±0.00
0 ± 0.00
0 0.00
0 ± 0.00
0 ± 0.00
0 0.00

Al
+0.20 ± 0.40
-0.40 ± 0.15
-0.65 ± 0.06
-0.93 ± 0.01
-0.84 ± 0.05
-1.01 ± 0.01

C
+0.94 ± 0.03
+0.73 ± 0.05
+0.69 ± 0.03
+0.58 ± 0.05
+0.57 ± 0.03
+0.53 ± 0.05
+0.49 ± 0.05
+0.41 ± 0.02

B
+0.39 ± 0.03
+0.19 ± 0.10
+0.25 ± 0.05
+0.17 ± 0.05
+0.13 ± 0.02
+0.03 ± 0.03
+0.11 ± 0.03
-0.11 ± 0.04

B
+0.26 + 0.06
+0.25 ± 0.06
+0.23 ± 0.05
+0.17 ± 0.02
+0.12 ± 0.06
+0.15 ± 0.02
+0.12 ± 0.06
+0.07 ± 0.05

A2
+0.30 ± 0.38
+0.13 ± 0.29
-0.01 ± 0.10
-0.42 ± 0.02
-0.84 ± 0.06
-0.86 ± 0.01

B
+1.00 ± 0.04
+0.78 ± 0.05
+0.70 ± 0.04
+0.65 ± 0.06
+0.61 ± 0.04
+0.54 ± 0.05
+0.51 ± 0.06
+0.42 ± 0.02

A
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00

C
+0.97 ± 0.05
+0.69 ± 0.05
+0.62 ± 0.05
+0.58 ± 0.02
+0.55 ± 0.06
+0.54 ± 0.02
+0.50 ± 0.06
+0.50 ± 0.06

B
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02

A
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00

D
+1.64 ± 0.09
+1.15 ± 0.13
+1.31 ± 0.10
+1.22 ± 0.10
+1.16 ± 0.09
+1.07 ± 0.09
+1.03 ± 0.10
+0.93 ± 0.10

D
+2.60 ± 0.17
+2.41 i 0.14
+2.44 i 0.20
+2.37 ± 0.37
+2.95 ± 0.64
+2.64 ± 0.95
+2.74 ± 1.21
+3.48 ± 1.66

C
+0.41 ± 0.21
+1.05 ± 0.19
+1.01 ± 0.09
+0.96 ± 0.05
+0.96 ± 0.07
+0.94 ± 0.05

D
+0.90 ± 0.04
+0.86 ± 0.06
+0.85 ± 0.04
+0.81 ± 0.06
+0.87 ± 0.04
+0.84 ± 0.06
+0.84 ± 0.06
+0.84 ± 0.03

C
+1.28 ± 0.03
+1.09 ± 0.10
+1.09 ± 0.05
+0.97 ± 0.05
+0.85 ± 0.02
+0.71 ± 0.03
+0.73 ± 0.04
+0.69 ± 0.05
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0.17
0.14
0.17
0.15
0.38
0.26
0.31
0.62

0.89
0.52
0.45
0.29
0.19
0.15

0.45
0.35
0.32
0.29
0.27
0.25
0.24
0.20

0.45
0.45
0.43
0.40
0.38
0.34
0.38
0.35



Table 7.5

Quasar Filter HM HS LM LS rmsa

SDSS J0924+0219

HE 1113-0641

PG 1115+080

RX J1131-1231
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0.71
1.00
1.07
1.08
1.03
0.81
0.76
0.69

0.46
0.39
0.40
0.49
0.50
0.42
0.37

A
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00

B
+0.20 ± 0.05
+0.14 ± 0.05
+0.11 ± 0.01
+0.13 ± 0.01
+0.18 ± 0.01
+0.14 ± 0.01
+0.11 ± 0.02

Al
-1.51 ± 0.05
-1.44 ± 0.05
-1.41 ± 0.01
-1.41 ± 0.05
-1.39 ± 0.01
-1.42 ± 0.05
-1.45 ± 0.05
-1.41 ± 0.03

B
-1.29 ± 0.02
-1.06 ± 0.05
-1.10 ± 0.04
-1.00 ± 0.10
-0.90 ± 0.08
-0.78 ± 0.17
-0.64 ± 0.18
-0.51 ± 0.12

D
+1.68 ± 0.51
+2.78 ± 0.08
+2.97 ± 0.05
+2.98 ± 0.08
+2.86 ± 0.08
+2.25 ± 0.10
+2.12 ± 0.12
+1.90 ± 0.10

D
+0.87 ± 0.05
+0.75 ± 0.05
+0.76 ± 0.01
+0.96 ± 0.02
+0.96 ± 0.02
+0.77 ± 0.02
+0.68 ± 0.02

A2
-0.86 ± 0.05
-1.30 ± 0.05
-1.24 ± 0.01
-1.23 ± 0.05
-1.23 ± 0.01
-1.19 ± 0.05
-1.18 ± 0.05
-1.17 ± 0.03

A
-1.74 ± 0.03
-1.52 ± 0.05
-1.55 ± 0.06
-1.46 ± 0.12
-1.33 ± 0.11
-1.21 ± 0.23
-1.04 ± 0.22
-1.12 ± 0.20

B
+1.47 ± 0.06
+1.53 ± 0.05
+1.43 ± 0.01
+1.36 ± 0.05
+1.35 ± 0.02
+1.15 i 0.06
+1.12 ± 0.06
+1.02 ± 0.04

A
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00
0 ± 0.00

C
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02

C
0 ± 0.01
0 ± 0.01
0 ± 0.01
0 ± 0.01
0 ± 0.01
0 ± 0.01
0 i 0.01
0 ± 0.01

C
+2.64 ± 0.51
+2.59 ± 0.06
+2.41 ± 0.02
+2.28 ± 0.06
+2.27 ± 0.04
+1.88 ± 0.08
+1.65 ± 0.08
+1.40 ± 0.06

C
+0.42 ± 0.05
+0.54 ± 0.05
+0.52 ± 0.01
+0.44 ± 0.01
+0.38 ± 0.01
+0.42 ± 0.02
+0.47 ± 0.02

B
+0.36 ± 0.05
+0.30 ± 0.05
+0.35 ± 0.02
+0.39 ± 0.05
+0.39 ± 0.02
+0.41 ± 0.05
+0.35 ± 0.06
+0.48 ± 0.06

D
+0.63 ± 0.08
+0.94 ± 0.09
+1.00 ± 0.11
+0.97 ± 0.10
+1.00 ± 0.08
+0.75 ± 0.12
+0.65 ± 0.15
+0.97 ± 0.18

0.26
0.10
0.10
0.09
0.09
0.10
0.13
0.10

0.74
0.62
0.61
0.61
0.61
0.71
0.77
0.64



Table 7.5

Quasar Filter HM HS LM LS rmsa

SDSS J1138+0314

WFI J2026-4536

WFI J2033-4723

A
0 ± 0.05
0 ± 0.05
0 ± 0.05
0 0.05
0 ± 0.05
0 ± 0.05
0i 0.05
0 ± 0.05

Al
-0.61 ± 0.01
-0.99 ± 0.05
-1.25 ± 0.05
-1.36 ± 0.01
-1.38 ± 0.05
-1.53 ± 0.01
-1.50 ± 0.07
-1.49 ± 0.05

Al
-0.41 ± 0.03
-0.52 ± 0.05
-0.51 ± 0.01
-0.54 ± 0.05
-0.52 ± 0.03
-0.60 ± 0.05
-0.58 ± 0.06
-0.58 ± 0.03

D
+1.98 ± 0.10
+1.17 ± 0.10
+1.29 ± 0.05
+1.36 ± 0.02
+1.17 ± 0.06
+1.33 ± 0.03
+1.26 ± 0.07
+0.83 ± 0.07

A2
-1.30 ± 0.01
-1.27 ± 0.05
-1.21 ± 0.05
-1.17 ± 0.01
-1.13 ± 0.05
-1.11 ± 0.01
-0.90 ± 0.07
-0.77 ± 0.05

A2
±0.06 ± 0.04
+0.14 ± 0.06
+0.05 ± 0.02
-0.05 ± 0.06
-0.05 ± 0.04
-0.12 ± 0.05
-0.13 ± 0.06
-0.09 ± 0.04

C
+1.70 ± 0.07
+1.28 ± 0.10
+1.27 ± 0.05
+1.28 ± 0.01
+1.19 ± 0.05
+1.16 ± 0.02
+1.06 ± 0.06
+0.89 ± 0.07

B
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02
0 ± 0.02

B
0 ± 0.04
0 ± 0.04
0 ± 0.04
0 ± 0.04
0 ± 0.04
0 ± 0.04
0 ± 0.04
0 ± 0.04

B
+1.35 ± 0.07
+1.33 ± 0.10
+1.38 ± 0.05
+1.37 ± 0.02
+1.25 ± 0.06
+1.40 ± 0.03
+1.34 ± 0.07
+1.24 ± 0.08

C
+0.19 ± 0.01
+0.22 ± 0.05
+0.22 ± 0.05
+0.09 ± 0.01
+0.25 ± 0.05
+0.29 ± 0.01
+0.30 ± 0.05
+0.24 ± 0.05

C
+0.69 ± 0.06
+0.48 ± 0.06
+0.38 ± 0.04
+0.24 ± 0.06
+0.29 ± 0.06
+0.17 ± 0.06
+0.15 ± 0.07
+0.11 ± 0.05

aMinimum root-mean-square deviation of the four image fluxes from the model prediction, in
magnitudes.
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0.72
0.42
0.45
0.47
0.41
0.45
0.42
0.27

0.34
0.20
0.12
0.06
0.12
0.18
0.19
0.22

0.07
0.06
0.05
0.10
0.08
0.12
0.13
0.14



7.4 Uncertainty estimation

Aside from statistical measurement uncertainty in the flux ratios, systematic errors may

arise from several directions. At optical and IR wavelengths, quasar emission lines, quasar

variability, or contamination from a lens galaxy or an Einstein ring may contribute. In

X-rays, quasar variability is again a factor, and delays between X-ray and optical/IR ob-

servations combine with microlensing variability to contribute additional uncertainty.

7.4.1 Optical uncertainties

Quasar emission lines are thought to come from a region too large to be strongly affected by

microlensing 2 [Schneider and Wambsganss, 1990]. Therefore the presence of emission line

flux in our broadband measurements will cause errors if we assume we are measuring the

continuum from the accretion disk. The strength and effect of these errors is very difficult

to predict. In lieu of a full treatment, we allocated a 5% (0.05-magnitude) uncertainty in

our flux ratios for filters into which one of the following lines has been redshifted: Civ,

Ciii], Mgii, H0, or Ha. (This is roughly the percentage of the broadband flux within the

filter taken up by one of these lines, in general.) Occasionally, Lya falls in a filter, or there

are two emission lines present; in these cases we allocated 0.1 magnitudes of uncertainty.

The multiple images of a strongly lensed quasar arrive with relative delays of hours to

weeks because of the different paths taken by their light. Quasar variability can conspire

with these time delays to mimic flux ratio anomalies. We do not expect this to be a very

strong effect, because the most interesting anomalies tend to happen in pairs of images will

small relative time delays. In order to quantify the effect, we extrapolated the empirical

quasar variability structure function in Figure 18 of de Vries et al. [2005] using a power

law: log(S(T)) = 0.8 - 0.651og(r). This gave us an estimated standard deviation S for the

quasar brightness (in magnitudes) as a function of time delay T.

Time delays have been measured for five of the lenses in our sample. For HE 0435-1223,

RX J0911+0551, PG 1115+080, RX J1131-1231, and WFI J2033-4723, we used, respec-

tively, the time delays reported by Kochanek et al. [2006], Hjorth et al. [2002], Barkana

2Some degree of broad line emission microlensing has been observed, however [e.g., Keeton et al., 2006].
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[1997], Morgan et al. [2006], and Vuissoz et al. [2008]. For the remaining lenses we used the

time delays predicted by our lens model (see Section 7.5). In the cases of HE 1113-0641

and WFI J2026-4536, the lens redshift is unknown, so we used ZL = 0.7. The resulting

quasar variability uncertainties were only significant for a few quasar images (e.g., image D

in RXJ1131-1231 or RXJ0911+0551).

Finally, a few of our lenses present special observational challenges to those who would

measure their flux ratios. HE 0230-2130 is one such lens, as its image D is only O"4 from a

bright companion to the main lens galaxy. We added in quadrature an extra error equal to

the change in measured brightness if 25% of the galaxy light were attributed to the quasar

image. This ranged from 0.1 magnitudes in g' to 1.6 magnitudes in K,. RXJ1131-1231 is

another example; its bright Einstein ring, which is due to the quasar's host galaxy, causes

the PSF fitting routine to over-subtract the quasar. We fit the brightnesses of the quasar

components by hand (see Section 7.3), and estimated the uncertainties as half the difference

between our estimates and those of the fit. In addition, we allocated some uncertainty to

images that were only marginally detected (e.g., SDSS J0924+0219 images C and D in the

u' band).

For each flux ratio in each filter, we added in quadrature the uncertainties, both sta-

tistical (measurement error) and systematic (broad emission lines, quasar variability, mi-

crolensing variability, and blending with other emission). The results may be seen in Table

7.5.

7.4.2 X-ray uncertainties

Like the optical flux ratios, the X-ray ratios had uncertainties due to measurement noise

and the blending of close pairs; in this case both errors were generally larger because the

X-ray observations have fewer photons, and a broader PSF. There were also contributions

from intrinsic quasar variability, as before. But the X-ray ratios had an additional source

of error, because unlike the optical/IR ratios, they were not measured contemporaneously

with the other wavelengths.

Crucial to our analysis is the assumption that the arrangement of the source and the

microlenses is the same for all wavelengths. But when observations are not contempora-
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neous, the source and the microlenses have the opportunity to reconfigure themselves. To

estimate the magnitude of this effect, we again used a structure function; this time it was

not empirical, but was derived from microlensing magnification maps (see our description

of these maps in Section 8.1). For each image, we chose the appropriate map (with a mass

fraction in stars of 0.1) and ran 1000 tracks across it, in random directions, measuring the

RMS variation in the log of the magnification as a function of distance moved.

The conversion to a structure function (with a time delay on the abscissa instead of a

distance) required the transverse velocity of the source relative to the lens. We added four

velocity components in quadrature: the velocity dispersion of the stars in the lens galaxy (as

estimated by our lens model), the tangential component of the velocity of the sun relative to

the rest frame of the cosmic microwave background (CMB), and the two peculiar velocities

of the quasar and the lens galaxy [as estimated using equation 14.10 of Peebles, 1980]:

v 2 1 aL Do) + ((370km/s) sin a S) 2

=((1+ zL) DOL \ DOL/

+ (V(235km/s) f(zs) 2 ( V'(235km/s) f(zL) Dos (7
(1 + zs) 3/ 2  f(0) (1 + zL)3/2 f(0) DOL (

where DOL, Dos, and DLS are angular diameter distances from observer to lens, observer

to source, and lens to source, respectively; we use these distances to project all velocities

to the source plane. The angle a is the angle between the sun's velocity with respect to

the CMB rest frame and the line of sight to the lens, and f(z) is the cosmological growth

factor (we approximate it as f oc QM(z) 0.6 ). The numerical factors for the CMB dipole

velocity and present-day galaxy velocity dispersion we have taken from Lineweaver et al.

[1996] and Kochanek [2004], respectively. The stellar velocity dispersion o-L of the lens

we estimate from the monopole component of our lens model (see Section 7.5) using the

relation [Narayan and Bartelmann, 1996]

of2 DLS
b = 47 -L (7.2)

c2 Dos

All velocities are corrected for cosmological time dilation. Factors of vl2 convert one-
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dimensional velocity dispersions to two dimensions.

Multiplying this estimated source speed by the delay between our optical/IR observa-

tions and their X-ray counterparts, we determined the distance traveled by the source along

the map, and from the structure function read off the predicted error in our X-ray flux ratio.

For each X-ray flux ratio, we added in quadrature the uncertainty contributions from

measurement errors, intrinsic quasar variability, and microlensing variability. The resulting

uncertainties are quoted in Table 7.5. In general, the largest contributions came from

microlensing variability, though measurement errors were also substantial in some cases.

As in the optical case, the uncertainty due to quasar variability is relatively insignificant.

7.5 Modeling the lenses

We used the Lensmodel program [Keeton, 2001] to create models of each lens. The models

were constrained by the positions of the four lensed images, and that of the lensing galaxy,

a total of ten constraints. We did not use fluxes for constraints, since most of our lenses

suffer from flux ratio anomalies. Nor did we use time delays.

Positions for the quasar images and lens galaxies came from the CASTLES survey.

Our default model consisted of a singular isothermal sphere for the lensing galaxy, with

a quadrupole component of the potential provided by a constant external shear. With the

position of the lens fixed, this model has five free parameters: the monopole strength of the

lens, the magnitude and direction of the shear, and the position of the source.

In some cases, such as HE 0435-1223, this simple model fit the image positions well. But

in several cases the X2 goodness-of-fit was poor enough to warrant further sophistication. In

these cases, we made changes to the model motivated by the appearance of the lens galaxy.

The lensing galaxy of HE 0230-2130 has a prominent companion, located close to image

D. We modeled this companion as a second isothermal sphere, fixing its position to its HST

measured value but allowing its mass to vary (because its position was fixed, we did not need

to steepen its density profile, as in Section 5.3). Despite only adding one free parameter to

the model, this addition improved the fit considerably.

We followed a similar strategy when modeling MG J0414+0534, RX J0911+0551, and
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WFI J2033-4723, each of which displays a faint smudge in its HST image which is arguably

a satellite to the lens galaxy. Adding secondary lenses at the positions of the smudges

improved the fits to acceptable levels.

The lens galaxy in PG 1115+080 does not have a nearby companion, but is a member

of a small galaxy group centered to the southwest of the lens. We explicitly modeled the

group as a second isothermal sphere for this lens. We parameterized its position using polar

coordinates, and allowed its mass and distance from the main galaxy to vary while fixing its

position angle to that of the brightest galaxy in the group. We did not include an external

shear in this fit.

Finally, the lens galaxy in SDSS J1330+1810 displays significant ellipticity. In this case

we used an isothermal ellipsoid instead of including an external shear. We allowed the

ellipticity and position angle to vary, along with the galaxy position, for a total of seven

free parameters. Since there are no HST data for this lens, we used our measured image

positions for constraints (see Section 7.3 and Table 7.3). SDSS J1330+1810 was the only

lens system where an isothermal ellipsoid made for a better fit than an isothermal sphere

with external shear.

We used the local convergence r, and shear -y predicted at the image positions by these

models to generate our microlensing magnification maps (see Section 8.1). We also used

the magnifications implied by K and -y to contrast with our measured flux ratios. These

magnifications are listed in Table 7.6. We note that in the case of MG J0414+0534, we did

not contrast our measured flux ratios with the magnifications predicted by our model, but

with the mid-IR fluxes reported by Minezaki et al. [2009 (see Section A.2).

The salient features of our best-fit models are listed in Table 7.6. Though these models

are very simple, they should be sufficient for our purposes, because of the relative insen-

sitivity of flux ratio predictions to "reasonable" variations in lensing potentials [Metcalf

and Zhao, 2002]. Because there is some variation in the predicted flux ratios with different

models, we allocated a model uncertainty to our flux ratios at a level of 0.03 magnitudes for

merging cusp or fold images and 0.05 magnitudes for the other images. These uncertainties

were added in quadrature to the other uncertainties described in Section 7.4.
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Table 7.6. Lens model parameters

Primary lens Secondary lens Linear Magnification
Quasar b y <pF b2 x2b Y2b HM HS LM LS

HE 0230-2130 '!87 0.11 -60*0 '33 - 0.283 +0.974 +9.42 -9.65 +4.95 -1.35
MG J0414+0534 1"14 0.11 +746 0'!12 - 0.385 +1.457 +22.9 -24.2 +6.23 -3.11
HE 0435-1223 1'!20 0.078 -13?8 - - - +7.49 -7.90 +7.14 -4.73
RX J0911+0551 0'!97 0.27 + 702 '24 - 0.754 +0.665 +11.0 -5.96 +1.97 -4.99
SDSS J0924+0219 '!87 0.063 +84 8 - - +14.9 -13.0 +6.62 -6.55
HE 1113-0641 0'33 0.040 +3707 - - - +15.8 -16.7 +12.6 -9.59
PG 1115+080 1"03 -. -.- 2'!57 -10.866 -5.300 +19.7 -18.9 +5.09 -3.37
RX J1131-1231 1"86 0.16 -7306 - - -- . +13.2 -22.7 +12.6 -1.05
SDSS J1138+0314 0'!67 0.10 +32?6 ... ... ... +7.17 -6.68 +5.17 -3.64
SDSS J1330+1810 '!94 0.16c -32"2c ... ... ... +27.1 -27.2 +8.41 -5.50
WFI J2026-4536 0'!66 0.11 -9000 ... ... ... +13.7 -11.5 +3.78 -4.01
WFI J2033-4723 1'!07 0.11 +36?0 '!25 + 0.229 +2.02 +6.04 -3.80 +3.88 -2.46

aAll angles are measured in degrees east of north.

bPosition of secondary galaxy, relative to main lensing galaxy, in arcseconds. The positive directions of x and
y are west and north, respectively.

cEllipticity and position angle of the lens galaxy.
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Chapter 8

Accretion disk structure:

Estimating disk sizes

We have developed a quantitative method for estimating the angular size of the quasar

accretion disk, using our measured flux ratios, at a range of wavelengths. At UV and optical

rest wavelengths, the disk must be small enough that microlensing is able to produce the

observed flux ratio anomalies, but large enough to attenuate the stronger X-ray anomalies.

8.1 Microlensing magnification maps

To simulate the microlensing of a finite-size source, we use magnification maps created using

the inverse ray-tracing technique of Wambsganss et al. [1990]. Each of the four images in

each lens has a convergence K and a shear -y which determine its magnification; these are

specified by the model of the lens (see Section 7.5). The convergence is proportional to the

surface mass density along the line of sight. To create a magnification map, we divide up

the convergence into a part due to smoothly-distributed matter (e.g. dark matter) and a

part due to point masses (baryonic matter in stars). We vary the mass fraction allotted to

stars in logarithmic steps between 1.47% and 100% to create for each quasar image a family

of 12 magnification maps, holding the total convergence fixed.

We specify a broken power-law as the mass function for the microlens stars. Between

0.08M 0 and 0.5 Me, its logarithmic slope is -1.8; above O.5M 0 it steepens to -2.7. This
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Figure 8-1 Examples of microlensing magnification maps. Top row: positive parity (min-

imum) image. Bottom row: negative parity (saddle point) image. The first column has

1.5% of the surface mass density in stars; the second 10%, and the third column 100%.

The grayscale extends from 3 magnitudes of demagnification (black) to 3 magnitudes of

magnification (white). The regions shown are 4.5 x 6.5 solar-mass Einstein radii. The stars

are scattered randomly across the sky, and their masses are drawn from our broken power

law mass function (see Section 8.1).
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Figure 8-2 Example of the effect of convolving a map with a finite-size source. Left: No
convolution. Middle: Convolution with a source with half-light radius 10-0.8 times the size
of a solar-mass Einstein radius. Right: Convolution with a source with a half-light radius
equal to a solar-mass Einstein radius. Dimensions and grayscale are identical to those of
Figure 8-1.

mass function is very similar to that of Kroupa [2001]. We cut off the mass function at

1.5 M®, because the stellar populations in these early-type lens galaxies are typically old.

With this mass function, the average microlens mass is (m) = 0.247 M®.

Each map provides the deviation in the magnification of its quasar image from that

produced by a smooth mass distribution, as a function of the position of the source. They

are 2000 pixels on a side; this is 20 times the Einstein radius of a solar-mass microlens star.

When projected back to the quasar, the side length is - 5 x 1017 cm for our sample (the

exact number depends on the redshifts of the lens and the quasar). The pixel size is thus

~ 2.5 x 1014 cm, or a few gravitational radii for a 109M® black hole. This is much smaller

than the size of the optical accretion disk. Some examples of these magnification maps are

provided in Figure 8-1.

We convolve these magnification maps with circular Gaussian kernels of varying half-

light radii, to represent the smoothing effect of a finite source brightness distribution. Mor-

tonson et al. [2005] showed that microlensing variations are mainly sensitive to the half-

light radius of a source rather than the details of its radial profile, so a Gaussian shape

was deemed sufficient. Our product is then a family of magnification maps for each quasar
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image with two parameters: the stellar mass fraction and the half-light radius of the source.

We marginalize over the former in the next section, as a detailed investigation of the ratio of

stellar to dark matter in the lens galaxies is outside the scope of this thesis [but see Pooley

et al., 2009]. The effect of the convolution is to blur the map and reduce its dynamic range;

this is demonstrated on an example map in Figure 8-2.

8.2 A Bayesian estimation method using optical flux ratios

A suitably normalized histogram of a magnification map is an estimate of the probability

distribution for deviations from the macrolensing model magnification. Figure 8-3 shows

four such magnification histograms, one for each image in SDSS J1330+1810, for a particular

source size and stellar mass fraction. The abscissa of these plots denotes the microlensing

deviation from the model in magnitudes. We use 16 bins per magnitude in this figure,

and also throughout the remainder of our analysis. Atop the histograms have been plotted

vertical lines, indicating the observed deviation from the model in the i' band.

Though we have plotted four vertical lines in Figure 8-3, we have only actually measured

three magnification ratios among the four images. Thus, the "center of mass" position of

the four lines is unknown. In Figure 8-3 it is set to zero, but in reality the four lines are

free to slide from side to side in formation. Each position corresponds to a distinct value of

the source quasar luminosity.

As the half-light radius of the source increases, the histograms will become narrower. As

this brings each vertical line (representing an observed data point) farther into the wings

of its associated probability distribution, the likelihood of this source size will fall. We

use a Bayesian method to find these likelihoods. Assuming a uniform prior probability

distribution for source size,

L(sizeldata) oc P(datalsize) . (8.1)

To find the total probability of observing the flux ratios that we do, we must marginalize

over the unknown quasar luminosity. To do this, we shift the four histograms horizontally,
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SDSS J1330+1810 i'

-4 -2 0 2 4
Microlensing magnification (magnitudes)

Figure 8-3 Histograms derived from magnification maps for the four images of
SDSS J1330+1810, with a source size 10% of a solar-mass Einstein radius. Images A, B,
C, and D are red, green, blue, and purple, respectively. Flux ratios from our i' band data
have been overplotted in dotted lines. The abscissa denotes deviation from the predicted
flux ratios; if the dotted lines all fell at zero, the lens would have no flux ratio anomaly.
Magnifications are in magnitudes, so positive numbers denote demagnification.

SDSS J1330+1810 i'

-4 -2 0 2 4
Quasar luminosity (magnitudes)

Figure 8-4 Histograms identical to those in Figure 8-3, but shifted so that the observed
magnifications line up. The abscissa now denotes quasar luminosity (in magnitudes relative
to some arbitrary standard); see Section 8.2 for an explanation.
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Figure 8-5 Product of the four shifted histograms in Figure 8-4. The total area under this
curve is the probability of observing flux ratios we did, given the source size we chose (see
Figure 8-3).

together with their associated measurements, until the vertical lines fall atop one another.

The shifted versions of the four histograms in Figure 8-3 are shown in Figure 8-4. We

then multiply the four shifted histograms to obtain a single "product histogram" (shown in

Figure 8-5). This is mathematically equivalent to marching the vertical lines across the four

original histograms in lockstep, bin by bin, and tallying the product of the bins occupied by

lines. For this reason, in Figures 8-4 and 8-5 the abscissa denotes quasar luminosity rather

than microlensing magnification. To find the total probability of observing these particular

flux ratios, we integrate under the product histogram. This process is repeated for several

source sizes, in order to find the right hand side of Equation 8.1 for each. The resulting list

of probabilities serves as a relative likelihood distribution for the source size.

Since each bin in the product histogram corresponds to a different quasar luminosity, we

impose a weighting when integrating under it, to account for the scarcity of bright quasars

relative to fainter quasars. For our weighting function we take a power law with slope -2.95;

this is the slope (for bright quasars) of a redshift-independent quasar luminosity function

estimated by Richards et al. [2006].
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SDSS J1330+1810 I
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Figure 8-6 Likelihood distribution for the size of SDSS J1330+1810, using the i' band data.
The histograms were convolved with the measurement uncertainties, and the quasar lumi-
nosity function was used as a weighting factor when integrating the product of the his-
tograms. A logarithmic prior was used. See Appendix B for the complete set of likelihood
distributions.

It is worth noting that because our source sizes are equally spaced in logarithmic space,

our prior is a logarithmic one, that is, uniform in log space. For completeness, we also use

a linear prior; this simply involves multiplying the likelihood distribution by a power law of

slope 1.

We repeat this technique for each of the 12 stellar mass fractions and take a weighted

average of the resulting likelihood distributions. The weights are a measure of how likely

we view each stellar mass fraction to be; we interpolated them from the values shown in

Figure 6 of Pooley et al. [2009].

Figure 8-6 shows the likelihood distribution resulting from the use of this technique

on the i' band flux ratios of SDSS J1330+1810. (More accurately, this figure shows the

result of the refinements in Section 8.3). The results for the rest of the filters are given in

Appendix B.

Examination of Figure 8-6 demonstrates the ability of this method to rule out large sizes

(i.e., greater than an Einstein radius). This decrease in likelihood to zero occurs when two
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of the shifted histograms become narrow enough that they no longer overlap at all; at this

point the likelihood is zero.

There is no such decrease for small source radii. This is to be expected on a common-

sense basis, since the optical flux ratio anomalies simply indicate that the source is under-

going microlensing. To set a lower limit on the size, we must discern why the observed

anomalies are not stronger than they are - finite-size attenuation, or simply the fact than

the source at the time of observation fell by chance in a non-extreme region of the mag-

nification map? Though some size discrimination is possible by comparing the likelihood

distributions derived from blue filters versus red filters, the ability to rule out very small

sizes will only come from comparing the optical likelihood distributions to those derived

from X-ray observations (see Section 8.4).

8.3 Taking uncertainties into account

This technique treats the measured flux ratios as perfectly known quantities. They deter-

mine the distance by which the magnification histograms are shifted before being multiplied

together. The width of the final likelihood distribution for the source size is the result of the

width of the microlensing histograms (i.e., the statistical nature of quasar microlensing).

However, there are significant uncertainties in our measured flux ratios. The various

sources of uncertainty are discussed in detail in Section 7.4, but they include measurement

uncertainties, confusion of close pairs of images, lensing time delays, emission line contam-

ination, and non-contemporaneous observations. The upshot is that the uncertainties on

our flux ratios range from a few percent to factors of 2 or more.

The effect of uncertainties is to broaden the spikes representing the measured flux ratios

into Gaussians. We must now consider a range of possible shifts for the four histograms. The

easiest way to do this is to convolve the histograms with Gaussian kernels representing the

uncertainties in the shifts. It may be illuminating to think of this as "adding the variances"

due to uncertainties to those due to the width of the histograms. Because the histograms

are broadened by the convolution, they overlap more than they did previously, causing the

likelihood distribution for source size to widen as well.
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8.4 Adding X-ray flux ratios to the mix

SDSS J1330+1810, the lens we chose for the examples in the previous section, is unique

among our sample of lenses in that it has never been observed in X-rays. But for the

remainder we have at least one measurement of the X-ray flux ratios. In general, these

flux ratios deviate from smooth lens model predictions more strongly than do the optical

ratios, leading us to believe that the X-ray emitting region is much smaller than the optical

emitting region [Pooley et al., 2007, see Chapter 5].

We again wish to find the value of the right hand side of Equation 8.1, but this time,

we want the probability of observing both the X-ray and optical flux ratios simultaneously,

given a source size. Because we estimate that the X-rays originate from a very compact

region, we assume the X-ray ratios are drawn from the original (unconvolved) magnification

distribution. Then, for each source size, we construct a two-dimensional histogram, as

follows. Let 0 be the magnitudes by which the optical flux deviates from the model-

predicted value, and X be the same in X-rays. Then we tally each pixel in a bin whose

two coordinates 0 and X are given by the pixel's value in the convolved map and its value

in the unconvolved map, respectively. This histogram, after appropriate scaling, is the

joint probability distribution for the optical and X-ray microlensing magnifications; it is

the 2D generalization of the histogram in Section 8.2. Two such histograms, corresponding

to images Al and A2 of PG 1115+080, are shown in Figure 8-7.

The rest of the analysis proceeds much like the 1D case. The joint distributions for the

four components of a given lens are shifted in two dimensions by their measured flux ratios

and multiplied together to obtain the product distribution, which is then summed to obtain

the likelihood for the current source size.

For very small source sizes, the two maps from which each histogram is constructed are

nearly identical, so the histogram lies nearly along the line X = 0. So for this source size

to be assigned any significant likelihood, the optical and X-ray shifts must be the same.

As the source size increases, the histogram's extent in the 0 direction decreases, until it is

nearly aligned with the X axis. In this case, the optical shifts must be nearly zero for the

likelihood to be appreciable. This evolution of the 2D histogram is shown in Figure 8-8.
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PG 1115+080 i'

-4 -2
Optical

0 2
magnification

Figure 8-7 Two-dimensional histograms derived from pairs of magnification maps for
PG 1115+080, for a compact X-ray source and an optical source 10% the size of a solar-mass
Einstein radius. Red: image Al. Green: image A2. Images B and C are suppressed for
clarity. The histograms are already shifted according to the observed flux ratios. The axes
signify deviation from the predicted magnification, in magnitudes; positive numbers denote
demagnification.
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Figure 8-8 Two-dimensional histogram for image A2 of PG 1115+080. On the horizonal axis
is microlensing magnification at optical wavelengths, in magnitudes. On the vertical axis
is X-ray microlensing magnification. Contours are logarithmically spaced. At the top left
of each plot is the half-light radius of the optical source, in units of a solar-mass Einstein
radius. As the optical source gets larger, the histogram narrows in the horizontal direction.
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In section 8.2 we applied a weighting function to account for the quasar luminosity

function. Here we expand this treatment to include not only the luminosity function, but

the correlation between X-ray and optical flux in quasars.

The first component of our new weighting function enforces the correlation between

optical and X-ray quasar luminosities usually parameterized using

aox = 0.3838 log(L2kev/L 25 ooA) . (8.2)

According to Gibson et al. [2008], aox = -0.217log(L 25ooA) plus a constant. This implies

that X = 0.43460 plus a constant. Their scatter in aox is about 0.1, corresponding to

0.65 magnitudes. So we construct a band centered on a line with a slope of 0.4346 in the

OX plane, with a Gaussian cross-section. In order to be conservative, we double the scatter

and set the width of the Gaussian to correspond to o- = 1.3 magnitudes. The intercept of

the line we adjust so that the line falls on the "center of mass" of the product histogram.

The second component of our weighting function accounts for the quasar luminosity

function. In Section 8.2 we used a power-law with slope -2.95. We recycle this luminosity

function now, and apply it in the direction along the line of correlation. Note that the

luminosity function for X-ray selected bright quasars has the very similar slope of -2.8,

according to Silverman et al. [2008].

We multiply the product histogram by both of these weighting functions before inte-

grating it. They take the luminosity function into account, and ensure that scenarios with

a large optical luminosity and a small X-ray luminosity, and vice versa, are suppressed.

This technique is effective at ruling out very small sizes for the optical emitting region.

Indeed, the likelihood of an optical point source must be zero unless the optical and X-ray

flux ratios are identical (or at least consistent).

As before, we iterate this technique over magnification maps representing a variety of

stellar mass fractions, and marginalize the likelihood distributions.
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8.5 Uncertainties revisited

A new wrinkle presents itself once we start considering the uncertainties in the X-ray flux

ratios. Because the size estimates in all the optical/IR filters depend on the same X-ray

flux ratios, their errors (that is, the widths of the likelihood distributions) are correlated.

To properly treat the correlations in the source size likelihood distributions, we use

a Monte Carlo method to determine the covariances between the sizes in various filters.

Instead of convolving our two-dimensional histograms with the measurement errors, we cal-

culate the most likely size for each filter, for each of a sample of 1000 sets of flux ratios from

the normal distributions implied by our measurement errors. This allows us to construct

the covariance matrix C, where Cij = Cov(ri/ 2,i, ri/ 2,j) and i and j are filter indices. The

diagonal elements of the matrix are, of course, simply the variances of the half-light radii

due to measurement uncertainty.

To this covariance matrix we add the variance due to the intrinsic width of the two-

dimensional histograms:

WV-1 = C + S ,(8.3)

where Sig = (olist) 2 for i = j and Sij = 0 otherwise. In turn, (oist)2 is the variance

in the half-light radius in the ith filter due to the width of the histograms; it is derived

from the 68% confidence interval of the original (no measurement uncertainty) likelihood

distribution. We have written the left hand side of Equation 8.2 as an inverse, so that W

is the weight matrix used in the least-squares fit in Equation 9.3.

8.6 Source size as a function of wavelength

After running the Monte Carlo error propagation described in the last section and calculat-

ing the covariance matrix for the uncertainties on the source half-light radii, we averaged

for each filter the 1000 likelihood distributions representing different realizations of the

measured flux ratios. An example of this final distribution is shown in Figure 8-9; the full

sample, with linear and logarithmic priors, is given in Appendix B.

In the next chapter we describe how we interpret these likelihood distributions, including
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Figure 8-9 Likelihood distribution for the size of PG 1115+080 in the i' band, resulting
from considering both i' band and X-ray flux ratios. The Monte Carlo method described
in Section 8.5 was used to account for measurement uncertainties. A logarithmic prior was
used. See Appendix B for the complete set of likelihood distributions.

136



fitting power-law models to the disk size as a function of wavelength.

8.7 An alternative analysis method

Our analysis takes advantage of the fact that the flux ratios in a given optical/IR filter and

those in X-rays are simultaneously different, both from each other, and from the model pre-

dictions. We create two-dimensional histograms to serve as joint probability distributions.

But because we compare the X-rays to each filter in turn, correlated errors arise in our size

estimates. We must then use a Monte Carlo method to characterize the correlations.

The covariances we calculated in Section 8.5 are moments of the full nine-dimensional

joint probability distribution for the flux ratios in 8 optical/IR bands and one X-ray band.

This suggests an alternative strategy for analyzing the flux ratios: generalize from two

dimensions to nine, creating a 9D histogram for each quasar image from an ensemble of

nine magnification maps, one unsmoothed (for the X-ray magnification) and the others

smoothed by various sizes. The sizes would be chosen by fixing a size offset and power-law

slope with wavelength (the same two parameters for which we fit in the next chapter).

The 9D histograms would then be convolved with measurement errors (no need for

Monte Carlo techniques), shifted, and multiplied, and the product summed (with the ap-

propriate weighting for luminosity function, etc.). The resulting number would be the

relative likelihood of the size and slope chosen when constructing the histograms. A new

size and slope would then be chosen, and the process would be repeated.

This method would not give rise to correlated errors in the size estimates. The end

result would be a two-dimensional likelihood distribution for the size of the accretion disk

and the slope with wavelength.

In practice, we have not been able to carry out this analysis due to computational limi-

tations. The limiting step is the convolution of the histogram with Gaussian measurement

errors. In nine dimensions, the computational and (more importantly) storage requirements

are beyond our reach at this time.
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Chapter 9

Accretion disk structure: Results

and conclusions

Chapter 8 described how we measured the half-light radius of the accretion disk of each lens

in our sample, at a variety of wavelengths. In this chapter, we compare these measurements

with the predictions of the standard thin disk theory (see Section 6.2) and with similar

measurements reported elsewhere.

9.1 Determining the source sizes

The likelihood distributions produced in the previous chapter are all in units of rl/ 2/rin,

where rEin is the Einstein radius of a solar mass microlens in the lensing galaxy, projected

back to the source plane (see Equation 1.6). From this point on, we multiply our size

estimates by this scaling factor. If we have seriously misestimated the mass function of the

stars in the lensing galaxy, this scaling will introduce a systematic shift in the physical sizes;

a rule of thumb is that the scaling is proportional to the square root of the average mass

divided by the Hubble constant:

r1/2 C o t a - (9-1)

In Figures 9-1 through 9-12 we plot the half-light radius of the accretion disks as a
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function of rest wavelength. The medians and modes of the likelihood distributions are

plotted as squares and crosses, respectively. The error bars come from the covariance

matrix C and the width of the likelihood distributions (see Section 8.5).

For each lens we fit a power law to the medians of the distributions:

ri/2 = ri/2,central A , (9.2)
Acentral )

where Acentrai is the geometric mean of our observed wavelengths, corrected for cosmological

redshift, and rl/2,central is the half-light radius of the source at that wavelength. Since the

errors on the medians are correlated, we minimize the statistic

X2=(y-m) - W -(y-m) , (9.3)

where y and m are the data and the power-law model, respectively, and W is the weight

matrix defined in Equation 8.2. The best-fit power law is plotted in Figures 9-1 through

9-12 as a dashed line. The parameters thus determined are listed in Table 9.1.

Finally, we plot the prediction of the standard thin disk model as a solid line in these

figures. This prediction comes from Equation 6.5, where we use 0.25 for fEdd, 0.15 for rI,

and the values from Table 6.1 for MBH (we use the virial estimates where possible, and fall

back on the estimates based on bolometric luminosity). There are no free parameters, so it

is not a fit.

The choice of prior has a small effect on the disk size measurements. In general, the

linear prior favors larger sizes than the logarithmic prior does. This is to be expected, since

it is more heavily weighted at larger sizes. In general, the difference in ri/2 is - 0.2 dex.

The measured slope is unaffected by the choice of prior, in most cases (the exception being

HE 0230-2130). Since a logarithmic prior seems more appropriate for the disk size, we

focus on these results.
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9.2 Comparison with the thin disk prediction

9.2.1 Disk size as a function of wavelength

For all of the lenses in our sample, the measured overall sizes are larger than predicted by

the thin disk model, by factors ranging from - 2 to more than 30. The logarithm of this

factor is listed for each quasar in Table 9.1. Comparing the logarithmic offset to our errors

in log(ri/2), we see that we have ruled out the thin disk normalization by at least 3- in all

cases except MG J0414+0534, and as many as 100o in some cases. This result is completely

consistent with that of Pooley et al. [2007], though our current analysis method is more

quantitative.

The average offset between rl/2,central and the thin disk prediction at the same wave-

length is 0.89 dex - a factor of 7.5. A chi-square test yields a x 2 of 36 per degree of freedom

when comparing the measured sizes to expected sizes.

With the exception of MG J0414+0534, all of our quasars show power-law slopes v

flatter than the expected A4/3 dependence by 1.2 to 2.6o or more. Even though these do

not individually rule out the thin disk slope at high significance, the combination of ten out

of eleven lenses makes a convincing case that quasar accretion disks have slopes flatter than

4/3. Treating the measurement for each quasar as an independent constraint, the average

value of v is 0.20 (if we exclude HE 0230-2130, MG J0414+0534, and WFI J2033-4723,

the average slope rises to 0.31). Running a chi-square test on all eleven lenses, we find

that comparing the slopes to the expected 4/3 yields a x2 of 5.5 per degree of freedom.

It is worth noting that nearly all of our measured slopes are consistent with v = 0 - an

accretion disk with size independent of wavelength!

Since the temperature profile is given by Teff o r1/V, our result implies that the effective

disk temperature is a steeply falling function of radius.

MG J0414+0534 is the one quasar with a slope v consistent with 4/3. It is intriguing

that the same quasar that matches the thin disk size prediction is also consistent when

it comes to slope. MG J0414+0534 is also the only radio-loud quasar in our sample. It

is perhaps too early for such speculation, but it may be that this quasar is in a different

accretion state from the rest of our sample.
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Two lenses present an interesting puzzle: both HE0230-2130 and WFIJ2033-4723

seem to decrease in size with wavelength. This result does not seem to arise from a flaw in

our analysis method, since the flux ratios themselves become more anomalous with wave-

length, implying a smaller source size (see Table 7.5). It cannot be due to microlensing

variability, since the optical/IR measurements are coeval. It is difficult to imagine a physi-

cal scenario where this takes place; it seems very unlikely, purely on energy grounds, that

the disk would be hotter (i.e., bluer) at large sizes than at small sizes. Further observation

of these lenses at a range of wavelengths will shed more light on this question.

9.2.2 Disk size as a function of black hole mass

In Figure 9-13 we plot the dependence of the disk's half-light radius on black hole mass

at fixed rest wavelength, using 11 of our 12 lenses (we excluded SDSS J1330+1810). We

choose 2500 A for our wavelength in order to match that used by Morgan et al. [2007]. We

use the best-fit power law from Section 9.1 to find the 2500 A size; Morgan et al. [2007]

had to extrapolate from single-wavelength measurements. Like this previous study, we find

the expected ri 2 oc M2 dependence (see Equation 6.5). However, our results disagree

with those of Morgan et al. [2007] when it comes to the normalization of the relation -

where they find agreement with thin disk models, we find an overall offset of one order of

magnitude. The only quasar that is consistent with the prediction is MG J0414+0534.

The best-fit slope for ri/2 versus MBH is 0.42 ± 0.09. The x 2 value per degree of freedom

for this fit is 6.1, indicating that there is some scatter (though this high value is partially

due to unmodeled errors in the black hole mass estimates).

9.2.3 Ruling out systematic errors

The discrepancy between our results and the expectations of the thin disk model obliges us to

ensure that our analysis method is not affected by systematic errors. Perhaps an unforeseen

systematic has crept in, causing a bias toward larger disks or a flatter dependence of size

on wavelength. The latter is very plausible: if the microlenses happen to be arranged so

that the microlensing anomaly of a quasar image is near zero, its flux ratio will be fairly

independent of wavelength. Of course, this would have to happen to all four of the images
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Table 9.1. Best-fit parameters for disk size vs. wavelength

Acentrala Logarithmic Prior Linear Prior

Quasar (angstroms) log(ri/ 2, central) log(rl/2/rpred) v log(ri/ 2, central) log(rl/2/rpred) V

HE 0230-2130 2763 16.17 ±0.19 +1.31 -0.80 ± 0.64 16.68 ± 0.18 +1.82 -0.25 ± 0.63
MG J0414+0534 3075 15.90 ±0.19 +0.11 +1.50 0.84 16.10 ±0.16 +0.31 +1.49 ±0.74
HE 0435-1223 3250 16.09 ± 0.19 +0.64 +0.67 ± 0.55 16.37 ± 0.16 +0.93 +0.55 ± 0.49
RX J0911+0551 2299 15.09 ±0.16 +0.71 +0.23 ±0.43 16.29 ± 0.18 +0.90 +0.24 ±0.46
SDSS J0924+0219 3462 15.79 ± 0.16 +0.75 +0.17 ± 0.49 15.97 ± 0.13 +0.92 +0.19 ± 0.42
HE 1113-0641 4438 15.86 ± 0.18 +0.74 +0.05 ± 0.49 16.03 ±0.11 +0.91 +0.05 ± 0.38
PG 1115+080 3212 16.72 ± 0.12 +1.02 +0.40 ± 0.45 16.90 ± 0.11 +1.20 +0.45 ± 0.39
RX J1131-1231 5270 15.55 ±0.14 +0.43 +0.40 ± 0.50 15.80 ± 0.12 +0.69 +0.20 ± 0.46
SDSS J1138+0314 2540 16.01 ± 0.19 +1.44 +0.41 ± 0.54 16.26 ± 0.16 +1.68 +0.43 ± 0.45
WFI J2026-4536 2705 16.52 ± 0.15 +1.04 +0.27 ± 0.53 16.68 ± 0.12 +1.20 +0.17 ± 0.42
WFI J2033-4723 3285 16.71 ± 0.16 +1.55 -0.63 ± 0.52 16.91 ± 0.13 +1.75 -0.67 ± 0.41

aAcentral is the geometric average of the rest wavelengths of our observations.



in a given lens system to affect our analysis, but such an occurrence could very well cause

the flattening we see.

To test this possibility, we ran a small-scale Monte Carlo simulation. We generated 30

sets of fake flux ratios from the magnification maps designed for PG 1115+080, using the

maps with 10% of the mass in stars. The source profile used to generate the flux ratios

followed the expectations of the thin disk model. We then ran our analysis on the fake flux

ratios and examined the results. On average, the correct slope was recovered - the mean

slope was 1.17, and the X2 per degree of freedom was 0.98. This tells us that the observed

discrepancy in v is real. We did find a small systematic offset in the size normalization;

the measured sizes were about 0.3 dex larger than the input sizes. This slightly reduces the

significance of the measured average offset, but does not eliminate it.

9.3 Comparison with other work

A few other studies have measured or put limits on quasar accretion disk profiles using

microlensing. In this section, we compare our results to theirs.

Bate et al. [2008] put an upper limit on the half-light radius of the disk of MG J0414+0534

in the (observed) r' band of 1.8 x 1016 cm. This is consistent with our result; our r'-band

size measurement is about 3 x 1015 cm. They also constrain the slope v to be between 0.77

and 2.67 (at 95% confidence), consistent with the predictions of the thin disk model, and

consistent with our measurement. The reason for our improved measurement, particularly

of the half-light radius, is our use of X-ray flux ratios.

Floyd et al. [2009] repeat this analysis using measurements of SDSS J0924+0219. They

place an upper limit on the u'-band size of the disk of 3.04 x 1016 cm; this is again consistent

with our u'-band size of 1 x 1016 cm. They put an upper limit of 1.34 on v at 95% confidence;

this agrees with our value of 0.17.

Poindexter et al. [2008] use time-domain measurements of the doubly lensed quasar

HE 1104-1805 at a variety of wavelengths to constrain the structure of its accretion disk.

They measure a B-band radius of 6.7 x 1015 cm and a power-law slope 1/v of 0.61. Their

results are consistent with the predictions of the standard thin disk. Since this lens is not
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in our sample, we cannot directly compare size measurements. However, their work does

disagree with ours on the applicability of the thin disk model.

Finally, Eigenbrod et al. [2008] use spectrophotometric monitoring of Q 2237+0305 to

measure the accretion disk profile. Their results are dependent on the prior chosen for the

relative angular velocity of the quasar and the microlensing stars. They adopt a prior which

yields a disk profile consistent both in slope and normalization to the thin disk model, but

a different value of the velocity could yield a much larger disk with a flatter profile similar

to our results.

9.4 Conclusions

The work in Chapters 6 through 9 was motivated by our observation in Chapters 3 through

5 of a general chromatic dependence in the flux ratio anomalies due to microlensing. Specif-

ically, the anomalies are more pronounced in X-rays than they are at optical wavelengths.

In this work we have found that chromatic microlensing can be observed between optical

and near-IR broadband filters, and not only by comparing X-rays and optical wavelengths.

We have adopted a "snapshot" observational strategy, which does not depend on moni-

toring observations and is thus much more economical in its use of telescope time. This has

enabled observation at a range of wavelengths between 3600 A and 2.2 microns, and allowed

us to work with a sample of 12 lensed quasars, roughly tripling at a stroke the sample of

quasars with microlensing data on the disk profile.

We have developed a method for combining X-ray flux ratios with those at our optical/IR

wavelengths to set both upper and lower limits on the size of the accretion disk of each quasar

as a function of wavelength. This measurement is so far only possible using microlensing,

and it puts direct constraints on accretion models for quasars.

We have found that in most cases the thin accretion disk model [Shakura and Sunyaev,

1973, Novikov and Thorne, 1973] correctly predicts the dependence of the size of the disk

at 2500 A on the black hole mass, but underpredicts the absolute size of the disk at this

wavelength by factors of - 10. The measured sizes are also inconsistent in the aggregate

with the predicted A4/ 3 dependence on wavelength, preferring a much flatter logarithmic
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slope around 0.2 (though the individual measurement errors and the scatter are fairly large).

The temperature profile slope is the inverse of the slope, so our observations imply a steeper

temperature profile than expected.

Systematic underestimates of black hole masses, underestimates of Eddington fraction,

or underestimates of the accretion efficiency could be responsible for the discrepancy in

size (though not the slope). However, they would have to be very large errors - factors

of ~ 30 in black hole mass, or ~ 1000 in Eddington fraction or accretion efficiency. If we

have overestimated the average mass of the stellar microlenses by a factor of ~ 100, then

our conversion from angular to spatial units is suspect, but we doubt that this is the case,

with (m) = 0.25. In all, it appears that the rest frame UV and optical emission from bright

quasars does not, in general, originate in a standard thin disk, but from something larger,

with a temperature profile steeper than r-3 4
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Figure 9-1 Estimated half-light radius of HE 0230-2130 as a function of wavelength. Solid
line predicts the radius predicted by the thin disk model. Top panel: Linear prior. Bottom
panel: Logarithmic prior.
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MG J0414+0534
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Figure 9-2 Estimated half-light radius of MG J0414+0534 as a function of wavelength. Solid
line predicts the radius predicted by the thin disk model. Top panel: Linear prior. Bottom
panel: Logarithmic prior.
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Figure 9-3 Estimated half-light radius of HE 0435-1223 as a function of wavelength. Solid
line predicts the radius predicted by the thin disk model. Top panel: Linear prior. Bottom
panel: Logarithmic prior.
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Figure 9-4 Estimated half-light radius of RX J0911+0551 as a function of wavelength. Solid
line predicts the radius predicted by the thin disk model. Top panel: Linear prior. Bottom
panel: Logarithmic prior.
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Figure 9-5 Estimated half-light radius of SDSS J0924+0219 as a function of wavelength.
Solid line predicts the radius predicted by the thin disk model. Top panel: Linear prior.
Bottom panel: Logarithmic prior.

151

16.5

6.0|

14.5

-3 ...1



HE 1113-0641
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Figure 9-6 Estimated half-light radius of HE 1113-0641 as a function of wavelength. Solid
line predicts the radius predicted by the thin disk model. Top panel: Linear prior. Bottom
panel: Logarithmic prior.
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PG 1115+080
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Figure 9-7 Estimated half-light radius of PG 1115+080 as a function of wavelength. Solid
line predicts the radius predicted by the thin disk model. Top panel: Linear prior. Bottom
panel: Logarithmic prior.
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Figure 9-8 Estimated half-light radius of RX J1131-1231 as a function of wavelength. Solid
line predicts the radius predicted by the thin disk model. Top panel: Linear prior. Bottom
panel: Logarithmic prior.
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Figure 9-9 Estimated half-light radius of SDSS J1138+0314 as a function of wavelength.
Solid line predicts the radius predicted by the thin disk model. Top panel: Linear prior.
Bottom panel: Logarithmic prior.
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Figure 9-10 Upper limits on the half-light radius of SDSS J1330+1810 as a function of
wavelength. Solid line predicts the radius predicted by the thin disk model. Top panel:
Linear prior. Bottom panel: Logarithmic prior.
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WFI J2026-4536
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Figure 9-11 Estimated half-light radius of WFI J2026-4536 as a function of wavelength.
Solid line predicts the radius predicted by the thin disk model. Top panel: Linear prior.
Bottom panel: Logarithmic prior.
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Figure 9-12 Estimated half-light radius of WFI J2033-4723 as a function of wavelength.
Solid line predicts the radius predicted by the thin disk model. Top panel: Linear prior.
Bottom panel: Logarithmic prior.
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Figure 9-13 Half-light radius at a rest wavelength of 2500 A, as a function of black hole
mass. The solid line is the prediction of the thin disk model, while the dotted line is the
best fit to the data. Black hole masses estimated using the virial method are plotted as red
squares; those estimated using bolometric luminosity are plotted as blue diamonds. Black
hole masses have (unplotted) uncertainties of -0.3 dex.
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Chapter 10

Epilogue: Future work

10.1 Reduce uncertainties

As we mentioned in Section 8.3, the width of our source size likelihood distributions results

both from the intrinsic width of the magnification histograms and from the uncertainties

in our flux ratios. Of these, the former is unavoidable without extending our observing

strategy into the time domain. It is very possible, however, to improve our error bars by

working to decrease the latter.

The largest contribution to the uncertainties in most of our flux ratios was due to the

delay between the X-ray and optical observations. In the future, it is entirely reasonable to

schedule multi-wavelength observations of lensed quasars to coincide with Chandra obser-

vations.

10.2 Complementary observation styles

The single-epoch multi-wavelength analysis method developed in this thesis is complemen-

tary to time-domain methods such as that described in Kochanek [2004]. The time-domain

style of observation allows us to rule out parts of the microlensing magnification map, reduc-

ing the uncertainty stemming from the width of the histograms. This method is best-suited

to single-band observations, because it is relatively expensive in telescope time. But com-

bining multi-epoch, single-wavelength observations with occasional multi-wavelength obser-
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vations (e.g. when a Chandra observation is scheduled) should give us the best of both

methods, allowing us to measure quasar sizes at different wavelengths while also gaining

the reduced uncertainties characteristic of the time-domain method.

10.3 Spectroscopy

Quasar emission lines contaminate our broadband measurements. Their emission comes

from a larger region than the accretion disk, so their flux anomalies should be smaller than

the surrounding continuum. But it will be possible in the future to apply our analysis

method to spectroscopic data as well. Spectroscopic data will allow us to refine our contin-

uum measurements by subtracting line emission. But even more exciting is the possibility

of measuring the sizes of the line emission regions by measuring their flux ratios. These

sizes can be combined with the line widths to make a virial estimate of the black hole mass.

Currently these estimates are made using an empirical relation between continuum luminos-

ity and size, calibrated by local reverberation mapping measurements [Vestergaard, 2002].

Direct measurement of a few lensed quasars' broad emission line region sizes would allow

us to sidestep this relation for those quasars, and may allow us to improve its calibration

for high-redshift quasars in general.

Though spectroscopic work has shown that the emission lines are usually less anomalous

than the continuum, flux ratio anomalies have been observed [Keeton et al., 2006, Sluse

et al., 2007]. This indicates that it is reasonable to be optimistic about our chances of

making this measurement.
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Appendix A

Catalog of gravitational lenses used

in this thesis

In this appendix we list the fifteen quadruply lensed quasars that we analyze in this thesis.

Twelve of the fifteen are in the sample of Chapters 6 through 9; we display postage-stamp

images of these lenses in the filters we observed them in, along with residual images from

our PSF subtraction. The other three lenses appear in Chapter 5. For these three lenses

we reproduce an image from the CASTLES survey.

We also describe each lens briefly, and cite the paper reporting its discovery.

A.1 HE 0230-2130

The quasar HE 0230-2130, at redshift zs = 2.162, is lensed into a fold configuration by a

pair of galaxies at redshift ZL = 0.52 [Wisotzki et al., 19991. Image D lies very close to the

secondary galaxy.
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Figure A-1 Postage-stamp images of HE 0230-2130 in u'g'r'i' (top to bottom). Left: orig-
inal image. Right: residuals after nonlinear least-squares fit. In the residual images, the
grayscale stretch is set to i20o of the sky level.
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Figure A-1 (cont'd) Postage-stamp images of HE 0230-2130 in z'JHK (top to bottom).
Left: original image. Right: residuals after nonlinear least-squares fit. In the residual
images, the grayscale stretch is set to i20- of the sky level.
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A.2 MG J0414+0534

The zs = 2.64 quasar MG J0414+0534 is lensed by a ZL = 0.96 galaxy into a fold config-

uration [Hewitt et al., 1992]. It is the only radio-loud quasar in our sample, and has very

red optical colors, probably due to extinction intrinsic to the source [Falco et al., 1997]. In

addition, it is the only one with clear evidence for millilensing - its mid-IR flux ratios show

a distinct anomaly [Minezaki et al., 2009]. In our analysis of this lens, we have adopted

these mid-IR fluxes as our microlensing-free fluxes, instead of those predicted by the lens

model.

Figure A-2 Postage-stamp images of MG J0414+0534 in r'i'z' (top to bottom). Left: orig-
inal image. Right: residuals after nonlinear least-squares fit. In the residual images, the

grayscale stretch is set to ±20u of the sky level.
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Figure A-2 (cont'd) Postage-stamp images of MG J0414+0534 in JHK (top to bottom).
Left: original image. Right: residuals after nonlinear least-squares fit. In the residual
images, the grayscale stretch is set to t20- of the sky level.
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A.3 HE 0435-1223

The zs = 1.689 quasar HE 0435-1223 is lensed into a cross shape by a galaxy at ZL = 0.46

[Wisotzki et al., 2002).

Figure A-3 Postage-stamp images of HE 0435-1223 in u'g'r'i' (top to bottom). Left: orig-

inal image. Right: residuals after nonlinear least-squares fit. In the residual images, the
grayscale stretch is set to ±20o- of the sky level.

168



Figure A-3 (cont'd) Postage-stamp images of HE 0435-1223 in z'JHK (top to bottom).
Left: original image. Right: residuals after nonlinear least-squares fit. In the residual
images, the grayscale stretch is set to ±20o- of the sky level.
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A.4 RX J0911+0551

The quasar RX J0911+0551, at redshift zs = 2.80, is lensed by a galaxy at redshift ZL = 0.77

into a cusp configuration [Bade et al., 1997].

Figure A-4 Postage-stamp images of RX J0911+0551 in u'g'r'i' (top to bottom). Left:

original image. Right: residuals after nonlinear least-squares fit. In the residual images,

the grayscale stretch is set to ±20u of the sky level.
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Figure A-4 (cont'd) Postage-stamp images of RX J0911+0551 in z'JHK (top to bottom).
Left: original image. Right: residuals after nonlinear least-squares fit. In the residual
images, the grayscale stretch is set to t20- of the sky level.
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A.5 SDSS J0924+0219

SDSS J0924+0219 is a quasar at redshift zs = 1.524 which is lensed into a fold configuration

by a galaxy at redshift zL = 0.39 Inada et al. [2003a]. It is notoriously the most anomalous

lensed quasar, as its image D, which as part of a merging pair of images ought to be bright,

is demagnified by an order of magnitude at optical wavelengths.

Figure A-5 Postage-stamp images of SDSS J0924+0219 in u'g'r'i' (top to bottom). Left:
original image. Right: residuals after nonlinear least-squares fit. In the residual images,
the grayscale stretch is set to t20o of the sky level.

172



Figure A-5 (cont'd) Postage-stamp images of SDSS J0924+0219 in z'JHK (top to bottom).
Left: original image. Right: residuals after nonlinear least-squares fit. In the residual
images, the grayscale stretch is set to ±20o- of the sky level.
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A.6 HE 1113-0641

The quasar HE 1113-0641, at redshift zs = 1.235, is lensed into a cross configuration by

a foreground galaxy of unknown redshift [Blackburne et al., 2008]. We estimate the lens

redshift to be zL ~ 0.7 (see Chapter 2).

.4, ,p

Figure A-6 Postage-stamp images of HE 1113-0641 in g'r'i' (top to bottom). Left: orig-

inal image. Right: residuals after nonlinear least-squares fit. In the residual images, the

grayscale stretch is set to i20- of the sky level.
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Figure A-6 (cont'd) Postage-stamp images of HE 1113-0641 in z'JHK (top to bottom).
Left: original image. Right: residuals after nonlinear least-squares fit. In the residual
images, the grayscale stretch is set to i20- of the sky level.
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A.7 PG 1115+080

PG 1115+080, at a redshift of zs = 1.72, is lensed into a fold configuration by a foreground

galaxy at redshift ZL = 0.31. It was the first quadruple quasar to be discovered [Weymann

et al., 1980].

Figure A-7 Postage-stamp images of PG 1115+080 in u'g'r'i' (top to bottom). Left: orig-

inal image. Right: residuals after nonlinear least-squares fit. In the residual images, the

grayscale stretch is set to ±20o- of the sky level.
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Figure A-7 (cont'd) Postage-stamp images of PG 1115+080 in z'JHK (top to bottom).
Left: original image. Right: residuals after nonlinear least-squares fit. In the residual
images, the grayscale stretch is set to t20- of the sky level.
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A.8 RXJ1131-1231

At redshift zs = 0.658, RX J1131-1231 is the lowest-redshift lensed quasar in our sample.

Its lens galaxy is at redshift zL = 0.295 [Sluse et al., 2003].

Figure A-8 Postage-stamp images of RXJ1131-1231 in u'g'r'i' (top to bottom). Left:

original image. Center: residuals after nonlinear least-squares fit. Right: residuals after

manually fixing the fluxes ("chi-by-eye").
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Figure A-8 (cont'd) Postage-stamp images of RX J1131-1231 in z'JHK (top to bottom).
Left: original image. Center: residuals after nonlinear least-squares fit. Right: residuals
after manually fixing the fluxes ("chi-by-eye"). In the residual images, the grayscale stretch
is set to +20a of the sky level.
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A.9 SDSS J1138+0314

The zs = 2.44 quasar SDSS J1138+0314 is lensed by a galaxy at redshift ZL = 0.45 into a

cross configuration [Eigenbrod et al., 2006].

Figure A-9 Postage-stamp images of SDSS J1138+0314 in u'g'r'i' (top to bottom). Left:
original image. Right: residuals after nonlinear least-squares fit. In the residual images,
the grayscale stretch is set to i20a of the sky level.
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Figure A-9 (cont'd) Postage-stamp images of SDSS J1138+0314 in z'JHK (top to bottom).
Left: original image. Right: residuals after nonlinear least-squares fit. In the residual
images, the grayscale stretch is set to ±20a of the sky level.
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A.10 SDSS J1330+1810

The zs = 1.393 quasar SDSS J1330+1810 is lensed into a fold configuration by a bright

elliptical galaxy at redshift zL = 0.373 [Oguri et al., 2008a]. It is alone among our sample

in that it has not yet been observed at X-ray wavelengths.

Figure A-10 Postage-stamp images of SDSS J1330+1810 in u'g'r'i' (top to bottom). Left:
original image. Right: residuals after nonlinear least-squares fit. In the residual images,
the grayscale stretch is set to i20o: of the sky level.
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Figure A-10 (cont'd) Postage-stamp images of SDSS J1330+1810 in z'JHK (top to bottom).
Left: original image. Right: residuals after nonlinear least-squares fit. In the residual
images, the grayscale stretch is set to t20o- of the sky level.

183



A.11 H 1413+117

The zs = 2.55 quasar H 1413+117 is lensed by a galaxy at unknown redshift into a cross

configuration [Magain et al., 1988]. No original optical data on this lens are included in

this thesis, though its X-ray fluxes are reported in Chapter 5. A picture of the lens may be

found on the CASTLES web site

A.12 B 1422+231

B 1422+231, at redshift zs = 3.62, is lensed into a cusp configuration by a galaxy at redshift

ZL = 0.34 [Patnaik et al., 1992]. We do not report any original optical data for this lens,

though its X-ray fluxes are reported in Chapter 5. B 1422+231 is a radio-loud quasar,

and its radio fluxes are anomalous, indicating that it is affected by millilensing by dark

matter substructure [Mao and Schneider, 1998]. A picture of this lens may be found on the

CASTLES web site.
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A.13 WFI J2026-4536

At redshift zs = 2.23, WFI J2026-4536is lensed into a compact fold configuration by a

galaxy of unknown redshift [Morgan et al., 2004]. In our analysis, we estimate its redshift

to be 0.7; this introduces only a small amount of uncertainty into our size measurements,

since the stellar Einstein ring radius depends weakly on zL.

Figure A-11 Postage-stamp images of WFI J2026-4536 in u'g'r'i' (top to bottom). Left:
original image. Right: residuals after nonlinear least-squares fit. In the residual images,
the grayscale stretch is set to ±20a of the sky level.
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Figure A-11 (cont'd) Postage-stamp images of WFI J2026-4536 in z'JHK (top to bottom).
Left: original image. Right: residuals after nonlinear least-squares fit. In the residual
images, the grayscale stretch is set to +20o- of the sky level.
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A.14 WFI J2033-4723

The quasar WFI J2033-4723, at redshift zs = 1.66, is lensed by a ZL = 0.66 galaxy into a

fold configuration [Morgan et al., 2004].

Figure A-12 Postage-stamp images of WFI J2033-4723 in u'g'r'i' (top to bottom). Left:
original image. Right: residuals after nonlinear least-squares fit. In the residual images,
the grayscale stretch is set to t20o- of the sky level.
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Figure A-12 (cont'd) Postage-stamp images of WFI J2033-4723 in z'JHK (top to bottom).
Left: original image. Right: residuals after nonlinear least-squares fit. In the residual
images, the grayscale stretch is set to ±20o of the sky level.
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A.15 Q 2237+0305

The zs = 1.69 quasar Q 2237+0305 is lensed into a cross configuration by a lens galaxy at

a redshift ZL = 0.04 [Huchra et al., 1985]. The low redshift of the lens galaxy causes the

Einstein crossing time to be much less than for the other lenses; for this reason microlensing

has been observed many times in this system [e.g., Wozniak et al., 2000]. Another result of

the low lens redshift is that the projected size of the Einstein radius in the source plane is a

factor of ~ 3 greater than the other lenses. We do not report any original optical data for

this lens, though its X-ray fluxes are reported in Chapter 5. A picture of the lens system

may be found on the CASTLES web site.
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Appendix B

Likelihood distributions for the

accretion disk sizes

This appendix contains plots of all the likelihood distributions we calculated. Most lenses

have sixteen each, since we have eight filters and a choice of linear or logarithmic priors.
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Figure B-I Likelihood distributions for the half-light radius of HE 0230-2130 in the u'g'r'i'
filters, as a fraction of a 1M® Einstein radius. Left column: logarithmic prior. Right
column: Linear prior.
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Figure B-1 (cont'd) Likelihood distributions for the half-light radius of HE 0230-2130 in
the z'JHK, filters, as a fraction of a 1M 0 Einstein radius. Left column: logarithmic prior.
Right column: Linear prior.
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Figure B-2 Likelihood distributions for the half-light radius of MG J0414+0534 in the r'i'z'
filters, as a fraction of a 1M® Einstein radius. Left column: logarithmic prior. Right
column: Linear prior.
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Figure B-2 (cont'd) Likelihood distributions for the half-light radius of MG J0414+0534 in
the JHKS filters, as a fraction of a 1M® Einstein radius. Left column: logarithmic prior.
Right column: Linear prior.
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Figure B-3 Likelihood distributions for the half-light radius of HE 0435-1223 in the u'g'r'i'
filters, as a fraction of a 1M® Einstein radius. Left column: logarithmic prior. Right
column: Linear prior.

196

HE 0435-1223 d

HE 0435-1223 '

0.5 1.0



HE 0435-1223 /

1.0-

0.8-

0.6-

0.4 -

0.2-

0.0 J
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.

log (riz/rj

HE 0435-1223 H

HE 0435-1223 Y

8

0.5 -

0.0
0 -2.0 -1.5 -1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 -2.0 -1.5 -1.0 -0.5 0.0
log (r,?/rE.) log (rr 0r,)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 -2.0 -1.5 -1.0 -0.5
log (r,/rr..) log (rr/rE,)

Figure B-3 (cont'd) Likelihood distributions for the half-light radius of
the z'JHK, filters, as a fraction of a 1MO Einstein radius. Left column:
Right column: Linear prior.
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Figure B-4 Likelihood distributions for the half-light radius of RX J0911+0551 in the u'g'r'i'
filters, as a fraction of a 1M® Einstein radius. Left column: logarithmic prior. Right column:
Linear prior.
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Figure B-4 (cont'd) Likelihood distributions for the half-light radius of RX J0911+0551 in
the z'JHK, filters, as a fraction of a 1M® Einstein radius. Left column: logarithmic prior.
Right column: Linear prior.
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Figure B-5 Likelihood distributions for the half-light radius of SDSS J0924+0219 in the
u'g'r'i' filters, as a fraction of a 1MD Einstein radius. Left column: logarithmic prior.
Right column: Linear prior.
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Figure B-5 (cont'd) Likelihood distributions for the half-light radius of SDSS J0924+0219
in the z'JHK, filters, as a fraction of a 1MD Einstein radius. Left column: logarithmic
prior. Right column: Linear prior.
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Figure B-6 Likelihood distributions for the half-light radius of HE 1113-0641
filters, as a fraction of a 1M 0 Einstein radius. Left column: logarithmic
column: Linear prior.
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Figure B-6 (cont'd) Likelihood distributions for the half-light radius of HE 1113-0641 in
the JHK, filters, as a fraction of a 1M 0 Einstein radius. Left column: logarithmic prior.

Right column: Linear prior.
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Figure B-7 Likelihood distributions for the half-light radius of PG 1115+080
filters, as a fraction of a 1M 0 Einstein radius. Left column: logarithmic
column: Linear prior.
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Figure B-7 (cont'd) Likelihood distributions for the half-light radius of PG 1115+080 in the
z'JHK, filters, as a fraction of a 1MD Einstein radius. Left column: logarithmic prior.

Right column: Linear prior.
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Figure B-8 Likelihood distributions for the half-light radius of RX J1131-1231 in the u'g'r'i'
filters, as a fraction of a 1M® Einstein radius. Left column: logarithmic prior. Right column:
Linear prior.

206



RXJ1131-1231 '

-2.0 -1.5 -1.0 -0.5
log (r 2/rE,.)

-2.0 -1.5 -1.0 -0.5 0.0
log (rls/rE.)

0.0 0.5 1.0

-2.0 -1.5 -1.0 -0.5
log (r,12/rEi)

RX J 1131-1231 J
2.0

1.5 --

1.0-

0.5 -

00 .-.-- ---
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.

log (r,,/r0,,)

RX J1131-1231 H
2.0

1.5 --

1.0-

0.5-

0.01 D
0.5 1.0 -2.0 -1.5 -1.0 -0.5

log (rm/rEi)

0.0 0.5 1.0

0.5 1.0

-2.0 -1.5 -1.0 -0.5 0.0
log (r,/rg.

0.5 1.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
log (r1,/r,.)

Figure B-8 (cont'd) Likelihood distributions for the half-light radius of RX J1131-1231 in
the z'JHK, filters, as a fraction of a 1MD Einstein radius. Left column: logarithmic prior.
Right column: Linear prior.
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Figure B-9 Likelihood distributions for the half-light radius of SDSS J1138+0314 in the
U'g'r'i' filters, as a fraction of a 1M® Einstein radius. Left column: logarithmic prior.
Right column: Linear prior.
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Figure B-9 (cont'd) Likelihood distributions for the half-light radius of SDSS J1138+0314
in the z'JHK, filters, as a fraction of a 1M0 Einstein radius. Left column: logarithmic

prior. Right column: Linear prior.

209



SDSS J1330+1810 u'
1.2

1.0 -

0.8-

0.6

0.4 -

0.2 -

0.0
-2.0 -1.5 -1.0 -0.5 0.0 0.5

log (rIr/rE.)

SDSS J1330+1810 g'
1.2

1.0

0.8-

0.6 -

0.4 -

0.2 -

0.0 \..
-2.0 -1.5 -1.0 -0.5 0.0 0.5

log (rvr/rgy

SDSS J1330+1810 /
1.0 i i i i i

0.8-

0.6 -

0.4 -

0.2 -

0.0 - - .-
-2.0 -1.5 -1.0 -0.5 0.0 0.5

log (r.fl/rE)

SDSS J1330+1810 I
1.0,

0.8-

0.6 -

0.4 -

0.2-

00 -
-2.0 -1.5 -1.0 -0.5 0.0

log (i/g

- 0.4

-0.2 -

0.0
1.0 -2.0 -1.5 -1.0 -0.5 0.0

log (rIr/rE)

SDSS J1330+1810 9'

0.5 1.0

1.0

0.8 -

0.6 -

0.4 -

0.2 -

0.0
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.1

log (r/rE,)

SDSS J1330+1810 /
0.8 

0.8-

0.6 -

0.4 -

0.2

0.0
1.0 -2.0 -1.5 -1.0 -0.5

log (r.0/r,)J

0.5 1.0

0.0 0.5 1.0

Figure B-10 Likelihood distributions for the half-light radius of SDSS J1330+1810 in the
U'g'r'i' filters, as a fraction of a 1MD Einstein radius. Left column: logarithmic prior. Right
column: Linear prior.
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Figure B-10 (cont'd) Likelihood distributions for the half-light radius of SDSS J1330+1810
in the z'JHK, filters, as a fraction of a 1M 0 Einstein radius. Left column: logarithmic
prior. Right column: Linear prior.
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Figure B-11 Likelihood distributions for the half-light radius of WFI
U'g'r'i' filters, as a fraction of a 1MD Einstein radius. Left column:
Right column: Linear prior.
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Figure B-11 (cont'd) Likelihood distributions for the half-light radius of WFI J2026-4536

in the z'JHK, filters, as a fraction of a 1M® Einstein radius. Left column: logarithmic

prior. Right column: Linear prior.
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Figure B-12 Likelihood distributions for the half-light radius of WFI J2033-4723 in the
u'g'r'i' filters, as a fraction of a 1MD Einstein radius. Left column: logarithmic prior.
Right column: Linear prior.
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