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Abstract

Cells are constantly bombarded with stimuli that they must sense, process, and

interpret to make decisions. This capability is provided by interconnected signal-

ing pathways. Many of the components and interactions within pathways have been

identified, and it is becoming clear that the precise dynamics they generate are nec-

essary for proper system function. However, our understanding of how pathways are

interconnected to drive decisions is limited. We must overcoming this limitation to

develop interventions that can fine tune a cell decision by modulating specific features

of its constituent pathway's dynamics.
How can we quantatively map a whole cell decision process? Answering this

question requires addressing challenges at three scales: the detailed biochemistry of

protein-protein interactions, the complex, interlocked feedback loops of transcription-

ally regulated signaling pathways, and the multiple mechanisms of connection that

link distinct pathways together into a full cell decision process. In this thesis, we

address challenges at each level. We develop new computational approaches for iden-

tifying the interactions driving dynamics in protein-protein networks. Applied to the

cyanobacterial clock, these approaches identify two coupled motifs that together pro-

vide independent control over oscillation phase and period. Using the p53 pathway as

a model transcriptional network, we experimentally isolate and characterize dynamics

from a core feedback loop in individual cells. A quantitative model of this signaling

network predicts and rationalizes the distinct effects on dynamics of additional feed-

back loops and small molecule inhibitors. Finally, we demonstrated the feasibility of

combining individual pathway models to map a whole cell decision: cell cycle arrest

elicited by the mammalian DNA damage response. By coupling modeling and exper-

iments, we used this combined perspective to uncover some new biology. We found

that multiple arrest mechanisms must work together in a proper cell cycle arrest, and

identified a new role for p21 in preventing G2 arrest, paradoxically through its action

on G1 cyclins. This thesis demonstrates that we can quantitatively map the logic of

cellular decisions, affording new insight and revealing points of control.
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Chapter 1

Introduction

The purpose of computing is insight, not numbers. - Richard Hamming

A central goal of systems biology is to develop a predictive understanding of how

cell decisions arise from the signaling pathways that sense and process information

inside the cell. To be complete, this understanding must be end-to-end: it should

quantitatively relate an input stimulus - whether the binding of an extracellular lig-

and, or damage to a cell's genetic information - to the cell's eventual commitment to

an appropriate response - cell division, differentiation or even death - while account-

ing for the appropriate context - mutational status, or the presence of pharmacological

inhibitors. Developing this understanding holds the promise of tuning cell decisions

toward therapeutic goals, or restoring them in circumstances where they have been

lost or dysregulated.

Achieving this understanding requires the combined application of experimental,

computational and theoretical tools. Decisions in response to stimuli are made by

individual cells, and not every cell reacts identically. Thus, we are challenged to

investigate these mechanisms in individual cells, and derive insight that reflects the

different choices elicited by random or probabilistic processes. Because our goal is

understanding, it is not sufficient to statistically map the cell decisions associated

with each input; rather, we must develop a quantitative rationale for how variations

over time in these intermediate signals logically determine the cell's eventual course



of action. For this, we must identify the pathways and connections that are crucial for

transmitting these signals, and that represent the functional units of these processes.

Developing mechanistic models for the intermediate connections that process, filter

and transmit these signals is a useful tool for demonstrating the sufficiency of these

intermediate steps, encapsulating existing knowledge about their connectivity, and

predicting the effect of perturbations; at its best, modeling can provide insight into

how individual features of the transmitted signal are controlled by specific interac-

tions.

The complexity of cellular processes prevents the full description of a signaling

process at this time. By focusing on specific questions, identifying major obstacles

and solving them, this thesis constitutes a step towards this goal. This work's con-

tribution arises in case studies relating network topology to dynamics across three

levels of system complexity.

The following section describes challenges faced in understanding the end-to-end

function of cell signaling networks, and introduces the model systems in which we have

their relationship in detail. Section 1.2 reviews current methods for tackling these

challenges, and the formalisms within which our contributions arise. Finally, this

introduction concludes by outlining the organization of the following thesis chapters.

1.1 Challenges in mapping signaling pathways to

cell decisions

1.1.1 Signaling pathways rely on heterogeneous dynamical

responses

Cell often respond to stimuli on different timescales compared to those of their

input signals [1-3]. In the underlying networks, the dynamics with which signals are

stored and transmitted can determine the cell's response to stimulation. In some

cases the role played by dynamics in driving proper system function can be easily

intuited. For instance, cells' orchestration of periodic processes (e.g. the cell division



cycle; changes in day/night metabolic cycles) are driven by oscillatory networks [4,5].

However, as many other signaling pathways are measured with finer temporal resolu-

tion, it is becoming clear that their activation elicits complex dynamics in the level or

activity of signaling proteins, and that these dynamics can determine the cell's down-

stream response. A notable example is found in the decision to grow or differentiate

elicited in PC12 neuroblastoma cells by EGF or NGF stimulation, respectively [6,7].

For this cell fate decision, the duration of pathway activation, but not its amplitude,

determine the cell's response. Even more complex dynamics can arise in signaling

pathways. In recent years, a growing catalog of mammalian signaling networks has

been shown to drive oscillations in the concentration of key transcription factors, such

as p53 and NF-rB [8, 9].

Here, we focus on the network driving pulses of p53 as a model system in which

to understand dynamics in cell signaling. p53 is a transcription factor activated in

response to a variety of cellular stresses, such as DNA damage or the activation of

oncogenes [10]. A series of studies characterizing the dynamics of p53 activation in

detail have ensured this transcriptional network's status as one of the canonical dy-

namical processes in mammalian cells [9,11-13]. Nearly ten years ago, it was demon-

strated that at the population level, MCF-7 cells exposed to a-ionizing radiation (IR)

undergo damped oscillation in p53 levels [11]. Subsequent studies monitoring indi-

vidual cells over time further refined this perspective [9,12,13]. These studies identify

three distinct dynamical features that are tightly controlled in this response:

1. the mean pulse amplitude does not depend on the IR dose;

2. the mean amplitude of successive pulses, averaged between cells is constant;

3. the timing of pulses is tightly controlled.

Further characterization of p53's oscillatory dynamics after IR has demonstrated the

presence of these dynamics in a variety of cellular contexts: they arise in multiple

cell lines [9,14], and have even been observed in vivo after -y-irradiation of transgenic

mice expressing luciferase in a p53-dependent manner [15]. These observations raise



a question: as p53's importance in the IR response has been known for decades, and

it is one of the most carefully studied proteins in eukaryotic cell biology, how did

its dynamics remain uncharacterized for so long? The answer lies in the technical

requirements for these experiments, which have been solved only recently. First, the

dynamics are only revealed by monitoring a system over time with fine temporal

sampling. This requires the use of minimally perturbative, and certainly nonlethal,

measurement techniques such as live cell reporters and microscopy [16,17]. Second,

even in clonal populations of cells under identical stimulation, responses between

individuals can quickly lose synchrony, requiring careful measurement and analysis of

single cells.

This last observation underscores a challenge in understanding signaling dynamics:

although individual cells are heterogeneous, some features of their responses must be

tightly controlled. Some heterogeneity arises through stochastic variation due to small

numbers of molecules [18-20]. Another important source of variation arises from time-

varying transcription rates and changes in global cellular metabolic programs [12,21].

Transcriptional noise is also of special significance because of its timescale. Many

biochemical interactions functionally act as low pass filters [22], which can suppress

fast stochastic variation to maintain synchrony of processes on timescales relevant

for cell signaling [23]. As transcriptional noise varies on the timescales of signaling

processes themselves, it cannot be filtered by frequency alone.

1.1.2 Cell decisions are driven by networks with complex

topology

The activation of eukaryotic signaling pathways is rarely specific to a single input,

or limited to initiating a single response. Rather, inputs may activate a number of

parallel and serial pathways to varying extents. The effects of signals are often com-

bined to achieve a proper response [24], and can even induce autocrine production

of additional input stimuli [25]. Moreover, this complexity is not limited to connec-

tions between pathways. Individual signaling modules frequently include seemingly



DNA Single Other
Stress double strand stranded cellular

breaks DNA stress

Upstream
kinases

Feedback -

Downstream DNA Cell cycle
targets repair Apoptosis arrest

Figure 1-1: Signals and responses acting through the p53 pathway. Many
stresses signal to p53 through a variety of upstream kinases. These signals are pro-
cessed by a feedback network (see Figure 1-2) and lead to a downstream fates including
cell cycle arrest, apoptosis, and/or repair of damaged DNA.

redundant and antagonistic connections. This phenomenon is especially prominent in

feedback connected pathways, where the activation of multiple positive and negative

feedback loops are initiated by the same signal [26].

The mammalian DNA damage response network is a model system for the com-

plex topology within and between distinct pathways. Different types of damage con-

verge to regulate shared downstream signaling processes through parallel branches

of stress-activated kinases, acting through ataxia telangiectasia mutated (ATM) and

checkpoint kinase 2 (Chk2), ataxia telangiectasia mutated and Rad-3 related (ATR)

and checkpoint kinase 1 (Chkl), and p38 or Jun N-terminal kinase (JNK) mitogen-

activated protein kinase (MAPK) cascades (Figure 1-1) [27-30]. Not all branches are

equally responsive to each input. For instance, p38 is required for the response to

ultraviolet light (UV) induced damage, but dispensable for initiating cell cycle ar-

rest after IR [28]. Ionizing radiation is canonically thought to elicit double stranded

DNA break that are sensed through the kinases ATM and Chk2 [27, 31, 32]. The

essentiality of this kinase cascade in generating a dynamic p53 response has also

been established [13]. This multiplicity of inputs is matched by a multiplicity of

p53-regulated downstream processes, including apoptosis, DNA repair and cell cycle

arrest (Figure 1-1) [33].

.. ... ........ .... ........................................................ .. ... ....................... .................



One example of the diversity of interconnections between pathways arises at the

interface between the p53 signaling pathway and its effect on the cell cycle. Progres-

sion through the cell cycle is normally driven by a network regulating the sequential

activation of cyclin dependent kinases, consisting of a Cdk kinase subunit and a reg-

ulatory cyclin subunit [4]. Halting progression through the cell cycle in the presence

of DNA damage involves multiple interactions through a variety of biochemical pro-

cesses, including the induction and repression of target cell cycle genes such as cyclins

A and B [34-36]; the binding and stoichiometric repression of cyclin dependent ki-

nases by p21 [37]; and the enzymatic inactivation by post-translational modification

of key regulators of cell cycle progression such as Cdc25 [38, 39]. The p53 signaling

pathway plays a direct role in this regulation to elicit both GI and G2 cell cycle

arrests [37,40].

Interactions within the p53 signaling pathway reveals the enormous structural

complexity of this pathway (Figure 1-2). p53 regulates many genes that can in turn

modulate its own activation or stability, as well as the activation of its upstream ki-

nases, forming multiple positive and negative feedback loops on its activity [33]. One

of the best characterized feedback loops in the network acts through Mdm2, which

can be induced by p53 even in the absence of stress and targets p53 for proteasomal

degradation [41].

p53's transcriptional activity for these targets is tightly regulated through post-

translational modification to prevent unwanted activation of downstream genes [42,

43], providing a mechanism by which subsets of feedback connections can be acti-

vated in a stimulus-dependent manner. Acetylation, a major class of activating mod-

ifications, is required for p53's ability to induce many downstream genes [44], and

different patterns of acetylation can selectively activate individual downstream gene

programs [45]. Even the induction of canonical targets with high-affinity p53 DNA

binding sites, such as p21, requires the recruitment of p53 modification-dependent

coactivators [45, 46]. Notably, supporting the homeostatic role of the p53-Mdm2

feedback loop, p53 acetylation is not required for mdm2 gene activation [44,45].

Prior work has identified some feedback loops that are required for the IR in-
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duced dynamical response, and excluded others from playing a role in this pro-

cess [9,12,13,47. The oscillatory response to IR requires at least two feedback loops:

the core Mdm2 loop, and one acting through the phosphatase Wip1's inhibition of

upstream kinases [13]. Three other connections are dispensable for the generation

of these dynamics: levels of PTEN and Cyclin G are constant and high during os-

cillation [13], and oscillations have been observed in cells lacking Arf [9]. A number

of negative and positive feedback loops, however, may yet play additional, undefined

roles.

1.1.3 Detailed biochemistry drives systems-level behavior

The preceding section describes complex interactions driving systems-level re-

sponses, both between pathways and within a single pathway. Three distinct lines of

theoretical and experimental evidence suggests they may also arise at a finer scale:

within the detailed biochemistry of interactions between small sets of proteins. First,

a recent theoretical study by Thomson and Gunawardena shows that a protein with

multiple sites of modification, coupled to a single kinase and phosphatase, provides

a mechanism to generate a vast number of stable states [48]. While untested exper-

imentally, this mechanism is plausible, as multiple modification states, multimeric

complexes and protein isoforms are present in a variety of dynamically varying sig-

naling pathways [43,49,50], often with unknown roles.

Second, theoretical studies have proposed that systems-level properties such as

bistability and oscillation can arise in networks at the post-translational level, with-

out relying on easily identifiable feedback loops [51, 52]. Notably, these phenomena

rely on the precise details of enzyme-substrate complex, enzyme-inhibitor complex,

and multimer formation (for startling examples of the importance of these details,

see [51]). Experimental studies have shown that this capability is not just theoret-

ical; natural biological systems have utilized protein-protein interaction networks in

driving complex dynamical responses [52,53].

A third mechanism of systems-level complexity in 'biochemical interactions arises

through the formation of competitive inhibitory protein-protein complexes, a common



property of nearly all biochemical interactions [54]. It was shown theoretically that ul-

trasensitive transfer functions with Hill coefficients >10 could be generated through

'molecular titration,' or competition between binding partners for complex forma-

tion [55]. This effect was subsequently demonstrated experimentally for the Weel

cell cycle kinase [56] and leucine zipper transcription factors [57]. Explicit treatment

of these effects in quantitative models is rare, often substituted by Langmuir and

Michaelis expressions to represent binding and enzymatic processes, respectively, as

models that explicitly treat these reactions grow combinatorially in the number of

modeled species. While direct approaches have been successful in some cases [50],

major questions remain how to cope with the dense connectivity and large numbers

of species in such models.

An elegant demonstration of the role played by detailed biochemical interactions

in organizing a dynamical process arose through experimental study of the circadian

clock of Synechococcus elongatus. This network enables S. elongatus to adapt its

genetic and metabolic programs to daily changes in the environment and provides a

daily rhythm to photosynthetic regulation [58,59]. In its normal context in the bac-

terium, the circadian clock involves transcriptional regulation acting through multiple

feedback loops [60]. Surprisingly, the essential characteristics of this system's dynam-

ics - oscillation with an approximately 24 h period at a wide range of temperatures

- can be reconstituted in vitro with only three proteins: KaiA, KaiB and KaiC [61].

This network is a model system of detailed biochemical complexity, as it is tractably

small (consisting of only three proteins) but tightly regulated at the level of multi-

merization [62], post-translational modification [63, 64], and incorporates molecular

titration by inhibitory complex formation [65]. Many models have been constructed

demonstrating that this complexity can drive oscillation [49, 65-67], but in many

cases, the specific network topology and interactions driving oscillations is unclear.



1.2 Gaining insight into the operation of complex

networks

The prior section outlined three levels at which complex interactions within and

between processes can give rise to a dynamic response. To develop a quantitative

understanding of the operation of these systems, we are challenged to relate specific

features of a dynamical response to the structure and parameterization of the network

generating them. Such an understanding requires models representing these features

as they cannot be quantitatively described by network connectivity diagrams alone.

This section describes the current experimental and computational approaches aimed

at mapping the relationship between network topology and dynamics, and informing

and analyzing models of dynamically varying networks.

1.2.1 Network motifs map pathways to dynamical features

A growing body of work from the Alon lab and others coined the term 'net-

work motif' to describe network structures overrepresented in transcriptional or post-

translational interaction networks that elicit a predictable qualitative effect on sig-

naling dynamics [68-70] (see [71] for a general introduction to this approach). This

approach has been used to classify and describe pathways arising in bacteria [69] and

yeast [70], as well as to exhaustively classify behavior from networks consisting of

four or fewer nodes [721. Some prevalent motifs, for which strong predictions of func-

tion could be made, were subsequently identified in their natural context, and their

effect on signal processing was validated experimentally. For instance, the coherent

feedforward motif was identified as a delayed response module with noise-filtering

capabilities [69,73]; multiple examples of this motif, each harboring these properties,

were subsequently characterized in E. coli [74,75].

Initial studies of motifs treated these network structures as signal transduction

elements that shape a dynamic response to one or more inputs, rather than as closed,

autonomous networks. Recently, efforts were made to extend the principles underly-
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Figure 1-3: Motifs in the IR-induced p53 network. Columns show three net-
work structures - a coherent feedforward motif, a double negative feedback oscillator
and their combination - whose connections have been experimentally validated as
indispensible for generating dynamics in the IR-induced p53-Mdm2 network. Rows
indicate the name, interacting species, and the canonical role (where known) associ-
ated with each structure.

ing this approach to autonomous oscillatory networks, leading to the characterization

of the principles underlying oscillations driven by delayed negative feedback loops,

and combinations of a positive and negative feedback loop [26,76,77]. In these cases,

the inclusion of a fast positive feedback loop was predicted to increase the size of the

parameter regime in which undamped oscillation can occur, and provide a mechanism

by which oscillation frequency can be tuned over a broad range without large changes

in amplitude [26].

Testing these predictions has proven challenging because most natural oscillating

networks comprise more complicated topologies, and are not amenable to manip-

ulation of key parameters. For these cases, synthetic biological studies provides a

platform to experimentally test the relationship between topology and dynamics.

Oscillating transcriptional networks have been developed in bacteria first utilizing

negative feedback loops [78] and more recently using combinations of negative and

positive feedback loops [79]. Along with the recent demonstration of an oscillatory

synthetic network in mammalian cells [80], these studies have helped confirm prop-

erties such as the robustness and frequency-tunability of oscillation driven by combi-

nations of loops.

It is noteworthy that not all bacterial signaling networks comprise single, ratio-

.. ....... . ........ . . ... . . ............ ...... - .- ...........



nalizable network motifs, and far fewer eukaryotic networks are structured in this

way. For example, the connections experimentally validated as crucial for generating

dynamics in the IR-induced p53 network contain both a feedforward motif and two

delayed negative feedback loops (Figure 1-3). Furthermore, many of the dynamical

features described in Section 1.1.1, such as combination of tight frequency regulation

and dose independence of amplitude, are not representative of either basic oscilla-

tory motif yet characterized. It is an open question whether combining motifs should

preserve, augment, or replace their isolated functions.

1.2.2 Optimization: coping with more complex systems

A variety of tools are available to gain intuition about the the principles underly-

ing the operation of large networks for which quantitative models are available. One

powerful class of methods is rooted in the concept of local optimization. Applied to

ordinary differential equation (ODE) models of biochemical processes, optimization

identifies values for parameters (e.g. reaction rate constants; initial protein concentra-

tions) that provide at least a local minimum of an objective function (a scalar-valued

function that can be evaluated at any parameterization of the model in the neigh-

borhood of an initial guess at these parameter values). The power of optimization-

based techniques lies in two sources of flexibility: the flexibility with which one may

define an objective function to be minimized and the parameters over which to op-

timize. For example, an objective function that mathematically represents the error

between modeled protein concentrations and their experimental measurements allows

the modeler to update the model to reflect new data. Choosing parameters also pro-

vides another source of flexibility. We have shown that local optimization can be used

to find time-varying inputs capable of driving a model output to match a specified

temporal pattern, and that time-varying stimuli designed in this way can be advan-

tageous for discriminating between candidate models' [82].

'As a supporting author, I contributed to the development of the mathematical and numerical
methods used for the nonlinear optimal controller, and in writing the software used to perform this
optimization. A full description of these methods and software appears in [81].



The utility of these methods is not limited to controlling model output or matching

experimental data, and a second class of applications arise through sensitivity anal-

ysis. The sensitivity of an objective function with respect to a parameter describes

the change in objective function due to an infinitesimal change of a parameter. Com-

puting sensitivities of dynamical features of interest (e.g. the amplitude of a peak in

concentration; the period of oscillation) permits the identification of reactions critical

in setting the value of those features. Sensitivity analysis has been applied to oscil-

lating biological networks, especially in the context of the eukaryotic circadian clock.

Computing period sensitivities for a complex model of the mammalian circadian clock

identified a single negative feedback loop responsible for setting this dynamical fea-

ture [83], and relationships between sensitivity profiles to multiple dynamical features

have been compared using models of the Drosophila melanogaster and murine clock

networks [84].

The computation and analysis of sensitivities of dynamical features to changes in

parameters is an area of active research, particularly for features such as oscillation

period and phase [85-88], or the amplitude or timing of a peak in concentration [89].

However, in many cases computing sensitivities is feasible even for models of large

pathways; efficient computation of sensitivities using an adjoint formulation has been

described for general ODE models [90]. Major challenges remain in interpreting these

results to gain insight from complex models, and to understand them in the context

of their network topology.

1.3 The present work

In this first part of this thesis, we set out to map out an end-to-end cell signal-

ing process, DNA damage signaling and its effect on the cell cycle, from the early

signaling after damage induction to cells' decision to sustain arrest or reenter the

cell division cycle up to days after the original introduction of damage. This path-

way is characterized by the coupling of two oscillatory networks, each consisting of

combinations of feedback loops: the p53 signaling pathway, the cell cycle, and their



interconnection. Throughout this work, we used a quantitative approach to refine

models with experimental data, and to query these models for a deeper understand-

ing of how individual interactions determine the response of cell signaling pathways.

The p53 network tightly regulates multiple distinct features of the dynamical re-

sponse to DNA damage. To understand how this network achieves such regulation it

is necessary to understand what interactions and feedback loops are responsible for

generating these dynamical features. In Chapter 2, we use an approach grounded in

synthetic biology to isolate and characterize a core regulatory feedback loop of the

p53 network. Through quantitative modeling coupled with single cell experiments, we

find that additional feedback loops and small molecule inhibitors modulate specific

features of the dynamics, predictions we confirm experimentally.

After building a quantitative description of the core regulation in the p53 pathway,

we turned to the broader regulation of cell cycle arrest through the DNA damage re-

sponse network. In this context, we were able to address a computational challenge in

systems biology, demonstrating that it is feasible to interconnect individual pathway

models to quantitatively understand the action of their combined network. Chapter 3

describes our work to interconnect our p53 model to an existing model of the cell cy-

cle, parameterized to match data from mammalian cells. A combined computational

and experimental approach reveals that individual mechanisms of cell cycle arrest

contribute specific features to the overall arrest state, and that their dysregulation

can lead to grave errors in cell cycle progression.

In the second part of this thesis, we turn to the detailed biochemistry of post-

translational networks, a third scale at which network complexity can lead to systems-

level dynamics. Through the application of sensitivity analysis tools, we identified a

previously unappreciated subtlety in the computation of sensitivities for biochemical

networks exhibiting mass conservation. Chapter 4 of this thesis develops this subtlety

in detail, showing that for a large class of ODE systems exhibiting hidden conserva-

tion laws, additional constraints must be included in the framework for oscillator

sensitivity analysis.

Finally, in Chapter 5, we set out to understand how network structure drives dy-



namics in detailed biochemical networks, using the in vitro cyanobacterial circadian

clock as a model system. We find that oscillator sensitivity analysis identifies groups

of reactions that drive dynamics as part of larger, self-consistent processes. However,

we find that many highly sensitive processes are distributed throughout the network.

This result starkly contrasts prior work in transcriptional oscillatory networks, where

oscillator sensitivity analysis identifies single feedback loops as responsible for driving

the dynamic response. By exhaustively enumerating subsets of reactions that still

undergo oscillation, we identify two network motifs - a delayed negative feedback os-

cillator and a coupled negative-positive feedback oscillator - that each contribute to

the dynamics of the full network. We suggest that this coupled oscillator combining

two well-known motifs is an excellent topology with which to tune oscillation phase

while preserving oscillation period, a crucial characteristic for a circadian system.
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Chapter 2

Modulating dynamics in a

synthetic p53 network

Many cell signaling networks sense and encode dynamical information. The cell

orchestrates periodic processes such as the cell cycle and circadian metabolic pro-

cesses using biochemical oscillators to ensure the proper timing of events [4,5], and

cell fate decisions can depend on the transient or sustained activation of upstream

signals [7]. Specific features of these dynamics must be tightly regulated in order to

ensure information is properly processed in the noisy environment of the cell. Under-

standing how specific motifs (such as feedback loops) and interactions within these

networks allow for tight control of dynamical features is a central challenge of systems

biology [91].

In recent years, synthetic biology has proven useful for engineering complex dy-

namical behaviors in designed signaling networks [78-80,92], thereby demonstrating

their sufficiency in generating these dynamics. Oscillating transcriptional networks

form a major class of these transcriptional networks, and have been developed in bac-

teria first utilizing negative feedback loops [78] and more recently using combinations

of negative and positive feedback loops [79]. Along with the recent demonstration

of synthetic network oscillations in mammalian cells [80], these studies have helped

elucidate properties such as the robustness of oscillation in cell populations, and the

tunability of oscillation frequency. Native biological networks are often more complex



and can be interconnected with other pathways [14]. Here, using the p53 oscillating

network as a model system, we show that synthetic biology also offers a powerful set

of tools for the dissection and control of natural systems.

p53 is a mammalian transcription factor that is activated in response to a variety

of cellular stresses [10]. In addition to inducing genes regulating the response to these

stresses, p53 regulates many targets that provide feedback regulation on its own ac-

tivity [33]. One of the best characterized feedback loops in the network acts through

Mdm2, which can be induced by p53 even in the absence of stress and targets p53

for proteasomal degradation [41]. After -y-irradiation (IR), individual cells undergo a

series of p53 pulses in a dynamical response that maintains tight control over three

distinct dynamical features. First, the pulse amplitude does not depend on the IR

dose. Second, these pulses are undamped; the amplitude of successive pulses remains

constant. Finally, although the amplitude of individual pulses can be highly variable,

the timing of these pulses is more tightly controlled. At least two negative feedback

loops, acting through Mdm2 and Wip1 respectively, are required for the proper dy-

namical response after IR. [13], and IR induces post-translational modifications on

both Mdm2 and p53, modulating many additional system parameters. In the context

of this complex regulation, it is unknown whether specific interactions and feedback

loops can control individual dynamical properties. Identifying these control points

may also allow tuning of these features to assess their importance or rescue them

from dysregulation.

This chapter describes the construction of a synthetic variant of the p53 network

based on transcriptional stimulation of the core p53-Mdm2 negative feedback circuit

in the absence of a cellular stress response. This reduced network undergoes damped

oscillation, and shares a subset of the features of the IR response. Using mathemat-

ical modeling coupled with experiments, we demonstrate that addition of synthetic

positive and negative feedback loops can specifically modulate the damping rate of

these oscillations, and that varying the core loop's feedback strength using a small

molecule inhibitor allows tuning of the oscillation frequency.



2.1 Transcriptional stimulation of the NF circuit

leads to damped oscillation

We identified the core p53-Mdm2 negative feedback as a suitable reduced net-

work because this feedback loop is active even in unstressed cells [93]. To bypass the

usual mode of activation through post-translational modification, we used the tran-

scriptional activation of p53 as a synthetic input. We used a cell line in which the

expression of a p53-CFP fusion protein is driven by an zinc-inducible metallothionein

promoter [94], and Mdm2-YFP is driven by its native promoter [9].

We first set out to characterize dynamics from this core p53-Mdm2 negative feed-

back loop. Stimulation with varying doses of ZnCl2 led to the induction of p53-CFP

and Mdm2-YFP observable in individual cells by time-lapse microscopy (Figure 2-1B;

see Section 2.4), and subsequent quantification of individual cell trajectories revealed

pulses of p53 and Mdm2 (Figure 2-1C). Figure 2-1D shows the collective dynamics

of individual cells tracked over time after 50 [pM zinc stimulation; cells undergo a

high amplitude, tightly synchronized first p53 pulse, reaching a maximum at about 5

h (Figure 2-1D). The corresponding first Mdm2 pulse was also tightly synchronized

and delayed by approximately 2 h (Figure 2-1E); synchrony between cells in both p53

and Mdm2 dynamics was lost in successive pulses.

These dynamics are reminiscent of those observed in p53 levels after 'y-irradiation,

in which p53 is seen to undergo a series of undamped pulses whose amplitude and

frequency are independent of the radiation dose [9, 12, 13]. To assess whether the

core p53-Mdm2 loop exhibits similar control mechanisms, we used an automated

pulse detection algorithm to identify pulse maxima and minima from individual cell

trajectories (see Appendix A); from these data we computed the mean amplitude

and timing of successive pulses in each condition (Figure 2-1F-H). This quantitative

characterization revealed key differences from the -y response. We found that the

amplitude of each p53 pulse was no longer 'digital,' but rather was highly sensitive to

the zinc concentration applied (Figure 2-1F), with a tenfold difference in first pulse

amplitude between the highest and lowest zinc concentrations. In addition, we find
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that successive p53 pulses decrease in amplitude, indicating individual cells undergo

damped oscillation after zinc stimulation (Figure 2-1F). Other features of the dy-

namics are more tightly controlled. As is the case after '-irradiation, the timing of

successive p53 pulses is also tightly controlled with approximately 5.5 h between suc-

cessive pulses (Figure 2-1G).

We next set out to validate that our reduced system did not lead to the activation

of a cellular stress response, another source of p53 dynamics, by monitoring cell death

and division in zinc-treated cells. We did not observe any difference in the number of

cells diving after 50 pM ZnCl 2 treatment compared to untreated cells ( Figure A-1D),

and fewer than 5% of cells died after treatment at any zinc dose (data not shown),

suggesting that these p53 dynamics did not lead to a cellular stress response. We

also found that p53 and Mdm2 dynamics persisted through cell division events, with

division sometimes occuring during a pulse, consistent with observations after low

levels of -- irradiation and in other transcriptional oscillating networks [12,95].

Surprisingly, our initial experiments revealed that Mdm2 amplitude was less vari-

able than p53 amplitude across both changes in zinc dose and the number of pulses

after treatment (Figure 2-1H). We reasoned that this might reflect the network's

tight control over two processes: p53-induced Mdm2 transcription and Mdm2 pro-

tein stability. In the former case, p53 activation above a threshold might saturate

Mdm2 promoter activity, leading to a controlled increase in Mdm2 level. In the latter

case, the ability of Mdm2 to regulate its own level through autoubiquitination and

subsequent degradation might prevent further increases in Mdm2 level. To separate

these two effects, we used a cell line containing the same inducible p53-CFP construct

coupled to the Mdm2 promoter driving expression of YFP. In this cell line, YFP in-

duction should be subject only to transcriptional regulation. Stimulating these cells

with zinc still led to damped p53 dynamics, as well as a slower, sustained increase in

YFP levels ( Figure A-2A). We compared the mean amplitude of the first p53 pulse

to the amplitude of the first YFP maximum at various zinc doses, and found that

YFP activation was less pronounced than p53 activation, supporting transcriptional

control as one mechanism for Mdm2 regulation (s Figure A-2B-C). However, YFP



levels were still substantially more variable than Mdm2 levels observed previously,

suggesting the presence of additional regulation on Mdm2 levels, possibly through

autoregulation of its stability.

We have shown that transcriptional stimulation of the core p53-Mdm2 negative

feedback circuit is capable of generating complex dynamics in unstressed cells, and

that these dynamics share a subset of characteristics with the response after IR. To

better understand how these different dynamical features may be controlled in the

network, we constructed a mathematical model of the core p53-Mdm2 negative feed-

back loop. Our model consists of a series of ordinary differential equations (ODEs)

representing p53 and Mdm2 (see Appendix A for details). It incorporates three

nonlinear interactions: Mdm2-mediated ubiquitation of p53 [41], the transcriptional

effect of p53 on the Mdm2 promoter [96], and autoregulation of Mdm2 on its own

stability [97]. We parameterized our model to quantitatively match our experimental

observations of amplitude, frequency and damping after zinc treatment (Figure 2-2).

To compare our model directly at the relevant zinc concentrations used experi-

mentally, we determined the transfer function from zinc dosage to MTF1-induced p53

transcription (see Appendix A). We simulated the model at five zinc concentrations

and compared the resulting p53 and Mdm2 first pulse amplitudes, frequencies, and

damping coefficients to those obtained previously from experimental data (Figure 2-

2A-C; see Appendix A for computation details). Our model captures the scaling of

p53 amplitude as well as the invariance of frequency and damping over varying zinc

concentrations (Figure 2-2A-C). While the model qualitatively exhibits a decreased

dependence of Mdm2 amplitude on zinc dose, it predicts more variability than was

observed experimentally (Figure 2-2A). In addition to these deterministic simulations,

we ran our model in the presence of multiplicative transcriptional noise to compare its

results to the cell population data of Figure 2-2 [12,21]. Figure 2-2D shows a repre-

sentative modeled cell with multiplicative noise modulating both the p53 and Mdm2

production rates. Using the same data processing algorithms from our experimental

protocol, we tabulated the p53 amplitude and timing profiles from 500 modeled cells

at each of five zinc concentrations (Figure 2-2E-F). In agreement with our experi-
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mental results, we find that noise contributes to wide variation in p53 amplitudes in

individual modeled cells but a more tightly controlled distribution of pulse times.

2.2 Addition of synthetic transcriptional feedback

loop modulates network stability

Network motifs controlling oscillations have been the subject of much recent

scrutiny, both computationally and experimentally [26, 77]. Recent work suggests

that combinations of negative and positive feedback loops can lead to both robust

oscillation and tunable frequency [26,79]. We set out to determine whether additional

positive and negative feedback loops can play these roles in the context of the core

p53-Mdm2 negative feedback circuit. We reasoned that our input to the p53-Mdm2

negative feedback loop - transcriptional induction of p53 - provides a node at which

to add new synthetic feedback connections in the network.

We first turned to our model to predict the effects of adding positive and negative

feedback loops through p53's induction of either an inducer or repressor of p53 tran-

scription. To account for the action of this new feedback connection, we augmented

our model to include delay in producing p53 and the feedback protein, as well as terms

representing p53's induction of the feedback protein and its subsequent effect on p53

(for detailed equations and parameters see Appendix A). We queried the effect of

these additional feedback loops on dynamics by sampling the synthetic loop's delay

time and feedback strength over a wide range of parameter values. We found that

incorporating additional feedback loops was unable to strongly affect the amplitude

or frequency of oscillation, but had a much stronger effect on the damping rate (Fig-

ure 2-3A-B; Figure A-3). For a broad range of parameter values where oscillation was

preserved, we found that addition of a synthetic positive feedback destabilizes the

network (lower damping rates or undamped oscillation), while a synthetic negative

feedback loop has the opposite effect.

We set out to test these predictions experimentally by supplementing the core p53-
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Mdm2 negative feedback circuit with an additional negative or positive feedback loop

on p53 transcription (Figure 2-3C-D) using variants of MTF1, the zinc-responsive

transcription factor that acts on the metallothionein promoter. Cells with synthetic

positive feedback in addition to the core p53-Mdm2 negative feedback loop (NPF

cells) were generated using a construct containing the Mdm2 promoter driving tran-

scription of MTF1 fused to the mCherry fluorescent protein [98]; in this circuit, p53

induces MTF1-mCherry, which, in the presence of zinc, induces p53 (Figure 2-3C).

Similarly, we constructed a cell line harboring a second negative feedback loop (NNF

cells) by utilizing p53 transcriptional control over a MTF1-KRAB fusion protein fused

to mCherry to repress p53 transcription [99] (Figure 2-3D).

Like NF cells, both NPF and NNF cells generated pulses of p53 after zinc treat-

ment. We found that the amplitude of the first pulse was comparable across all

three cell lines (Figure 2-3E). In NPF cells the damping rate was lower than in NF

cells, indicated by the higher amplitude of subsequent pulses (Figure 2-3E). Con-

versely, NNF cells exhibit a faster damping rate than NF cells, so that after the third

pulse the amplitude was too low to detect (Figure 2-3E). For NF and NPF cells,

which still exhibited sustained pulsing, the timing of subsequent pulses was unaf-

fected (Figure 2-3F). Together, these results confirm our prediction that additional

transcriptional feedback loops can modulate the system stability, but do not affect

the timing of pulses or the first pulse amplitude.

2.3 A small molecule inhibitor of p53-Mdm2 in-

teraction modulates oscillation frequency

The previous section's results highlight a distinguishing feature of the p53 net-

work: its tight regulation of pulse timing. This precise control arises both in our data

from the core p53-Mdm2 circuit as well as in the full network in response to IR [9].

We next set out to identify the interactions in the core negative feedback loop that

could be used to modulate oscillation frequency. We varied each parameter over two



orders of magnitude and computed the oscillation amplitude and frequency to identify

parameters capable of modifying period while maintaining oscillation of reasonable

amplitude (Appendix A and Figures A-4,A-5). We found that parameters control-

ling basal transcription rates of p53 and Mdm2 led to changes in amplitude without

significantly affecting frequency. This is intuitive, as stimulation through zinc acts

at the transcriptional level, and noise in protein production rates do not affect the

tight control of frequency. Parameters affecting p53-Mdm2 feedback strength and the

delay time of Mdm2 protein maturation were more sensitive to period. Many of the

biological processes associated with these sensitive parameters are difficult to modu-

late experimentally. However, we identified the strength of the p53-Mdm2 interaction

as a target through the use of nutlin-3A, a small molecule inhibitor of this interac-

tion [100]. To investigate this further, we predicted the effect of nutlin addition on

oscillation frequency in multiples of its IC50 (Figure 2-3G), and found that addition

of nutlin at a concentration tenfold higher than the IC50 was predicted to lead to an

approximately 30% decrease in period.

To test this prediction, we preincubated NF cells with 2.5 PM nutlin-3A for 24

h before stimulating oscillation with 50 pM ZnCl2. A representative cell from this

experiment is shown in Figure 2-3H, indicating that cells preincubated with nutlin-

3A are still able to undergo sustained oscillation but exhibit wider, lower-frequency

pulses. By tabulating the timing between consecutive pulses in individual cells, we

observed an approximately 20% decrease in oscillation frequency in nutlin-pretreated

cells (Figure 2-31). We used this data to estimated the distribution of pulse frequen-

cies in cells with or without nutlin pretreatment (Figure 2-3J). This difference is

significant by the Kolmogorov-Smirnoff test indicates that the nutlin pretreatment

frequency distribution is left-shifted with a p-value of < 10-6; examining these distri-

butions shows a distinct shift to lower frequencies. These results demonstrate that in

this core NF loop, one of the most tightly controlled dynamical features - oscillation

frequency - can be experimentally modulated.

Two major thrusts of systems biology are the better understanding of the oper-

ation of complex natural networks, and the de novo design of simple networks. The



current study suggests that these approaches need not be mutually exclusive, and

that we can elucidate fundamental properties of complex signaling networks by iso-

lating simpler subnetworks. In this work, we have described how individual feedback

loops and interactions tune each of three distinct dynamical features. Manipulating

the transcriptional rate of p53 using an inducible promoter tunes the amplitude of

oscillation without affecting oscillation frequency or damping rates. Transcriptional

synthetic feedback loops on p53 can modulate pulse damping with a less pronounced

effect on amplitude and frequency. Finally, targeted perturbation of the p53-Mdm2

interaction leads to a modulation in oscillation frequency. Taken together, these

results show that even a 'simple' oscillatory network motif - the delayed negative

feedback loop - provides a platform allowing the independent modulation of three

crucial dynamical features: amplitude, frequency and stability.

2.4 Methods

Cell lines and expression constructs

We used MCF7 cells stably transfected with MTp-p53-CFP and Mdm2p-MDM2-

YFP as described [9]. To create the NPF and NNF plasmids, Mdm2p-MTF1-mCherry

and Mdm2p-MTF1-KRAB-mCherry, we used MultiSite-Gateway recombination (In-

vitrogen). The human Mdm2 promoter [9], the MTF1 cDNA and MTF1-KRAB

cDNA [99] and mCherry (gift from Dr. Tsien) were cloned into a modified pDE-

STR4R3 vector containing the puromycin gene according to manufacturer's instruc-

tions via two sequential recombination reactions (Invitrogen). After transfection into

the MCF7 cell line containing MTp-p53-CFP and Mdm2p-MDM2-YFP (FuGene6,

Roche; [9]), cells were selected and clonal populations were obtained by single cell

dilution.

Cell lines were grown at 37C in RPMI medium supplemented with 10% fetal bovine

serum, 100U/mL penicillin, 100ptg/mL streptomycin, 250ng/mL amphotericin B and

appropriate selective antibiotics: G418 (0.4mg/mL), hygromycin (100pg/mL), and/or



puromycin (0.5pg/mL).

Time-lapse microscopy

Two days prior to microscopy, cells were plated onto poly-D-lysine-coated glass

bottom plates (MatTek Corporation). One day prior to microscopy, the media was

changed RPMI lacking ribloflavin and phenol red supplemented with only 2-5% fetal

bovine serum and antibiotics to minimize autofluorescence. Nutlin-3A was added 24

hours prior to the start of microscopy (Fig. 5). Prior to the start of the movie,

media was exchanged for fresh medium. Cells were viewed with two types of inverted

fluorescence microscope systems named FMS1 (Figs. 1, 4, and 5) and FMS2 (Fig.

2). Each is surrounded by an enclosure to maintain constant temperature, CO 2

concentration and humidity. FMS1 consists of a Nikon Eclipse-TI-E perfect focus

inverted microscope with a cooled CCD camera Hamamatsu Orca-R2. Brightfield,

CFP, YFP, and mCherry images were taken every 20 min with Prior Lumen 200 metal

arc lamp. FMS2 consists of a Nikon Eclipse TE2000-E inverted microscope with a

cooled CCD camera Hamamatsu Orca-ER. CFP and YFP images were taken every

20 min with a mercury lamp. CFP filter set: 436nm/20nm; 455nm nm dichroic beam

splitter, and 480nm/40nm emission. YFP filter set: 500 nm/20nm excitation, 515nm

dichroic beam splitter, and 535nm/30nm emission (Chroma). mCherry filter set:

560nm/40nm excitation, 585nm dichroic beam splitter, and 630nm/75nm emission

(Chroma). Images were acquired using MetaMorph software (Molecular Devices) for

48 hours.

Cell tracking and fluorescence quantification

Cell nuclei in the brightfield images were tracked manually in every frame us-

ing ImageJ (NIH). Mean nuclear fluorescence intensity was measured using custom

written MATLAB software (Mathworks Inc.) which measured and subtracted each

image's background fluorescence and excluded nucleolar regions from each tracked

nucleus. Because of autofluorescence caused by the rounding up of cells near times of



cell division, fluorescence signal was masked and interpolated for 2 h before and after

cell division events.

Data processing and automated pulse identification

For all data analysis, we followed the dynamics of a single daughter cell after each

cell division event to avoid any bias arising from correlations between daughter cells.

Trajectories were smoothened by Blaise filtering as described in [12,13]. To identify

pulse maxima and minima, trajectories were processed by reducing the depth local

minima by 0.2 fluorescence units and performing the morphological opening operation

with a width of 3 timepoints to exclude short, noisy fluctuations in amplitude. Max-

ima were identified from the processed trajectories using the watershed algorithm;

minima were identified using the watershed algorithm on the negative reflection of

the processed trajectory.

Computational methods

For all simulations, numerical integration was performed in MATLAB using odel5s

(The Mathworks, Natick MA). Optimization was implemented using fmincon config-

ured to use Quasi-Newton with BFGS in the MATLAB Optimization Toolbox Version

3.0.4.



Chapter 3

Distinct mechanisms act in concert

to mediate sustained cell cycle

arrest'

In the previous chapter, we developed and parameterized a model of p53 dynamics

to match a wealth of experimental data. This model accurately reflects the operation

of this signaling pathway but leaves open a crucial question: what role do signals from

this upstream pathway in determining downstream cell decisions? This is an example

of a broader challenge to systems biologists: as mathematical models of individual

pathways emerge, we are challenged to interconnect them into a detailed understand-

ing of how different pathways control the processing of information within the cell.

We chose to address this question in the context of one crucial downstream fate:

the control of cell cycle progression in response to DNA damage. These networks

are natural choices for such an integrative study. Each has been individually mod-

eled successfully, and a great deal is understood about how specific interactions and

regulation affect the dynamics of each network. However, in the absence of an ex-

tended model bridging these two pathways, the quantitative interaction between them

remains undescribed. Here we develop a computational model of the combined net-

'This chapter has been previously published as Toettcher JE, Loewer A, Ostheimer GJ, Yaffe
MB, Tidor B, Lahav G. PNAS 106:785 (2009).



works and use it together with experimental measurements to determine the specific

function of different cell cycle arrest mechanisms in response to DNA damage and

their relative contribution to the proper execution of this cell decision.

During the cell cycle, mammalian cells coordinate cell growth, genome replication,

and division. Two irreversible events subdivide the cell cycle into distinct phases: the

onset of DNA replication defines S phase; and cell division defines M phase. Cells

grow and carry out additional functions during the gap phases GI and G2. The

changing activity states of cyclin-dependent kinases (CDKs) regulate the transition

between different stages of the cell cycle [101]. Cyclin D/Cdk4 and 6 and cyclin

E/Cdk2 complexes drive the sequential progression from GI to S phase, respectively.

Cyclin A/Cdk2 and Cdk1 complexes become active during S and G2 phase, and

cyclin B/Cdk1 complexes control the G2/M transition as well as various processes

during mitosis. The cell cycle has long been a fruitful subject for mathematical mod-

eling [102]. Models have proven useful for understanding the impact of perturbations

to protein levels, network connections, and the cellular environment on cell cycle pro-

gression [103,104].

A separate, well-studied regulatory network senses DNA double stranded breaks

(DSBs) caused by ionizing radiation (IR). DSBs activate the ATM/Chk2 kinase

cascade that phosphorylates p53, contributing to its stabilization and activation

[27,31,32]. p5 3 transcriptionally modulates a variety of genes involved in cell cycle

arrest, DNA repair, apoptosis, and in regulating p53 itself [10]. The feedback loops

between p53, its upstream activating kinases ATM and Chk2, and its downstream

regulators Mdm2 and Wip1 generate oscillatory dynamics in single cells [9,12,13].

Mathematical modeling contributed to understanding the dynamical behavior exhib-

ited by this network as well [12,47].

Upon DNA damage, interactions between the damage sensing and the cell cycle

networks induce cell cycle arrest by modulating cyclin/Cdk activity. These interac-

tions must fulfill three main requirements: first, to prevent alterations to the genome,

they must relay the damage signal and halt the cell cycle promptly. Second, the

arrest must persist as long as damage is present. Lastly, as cyclin/Cdk activity might



be changed during the arrest, cell cycle re-entry should only proceed from a state of

cyclin activation that ensures the proper sequence of DNA replication and mitosis.

Multiple mechanisms that connect the DNA damage response to the cell cycle

have been identified [105], and there is evidence for cooperation between some of

them [106]. However, little is known about their relative contribution in the context

of the full signaling networks. Furthermore, it is unclear whether individual mecha-

nisms are sufficient to fulfill all of the above criteria, or if combinations of mechanism

confer specific characteristics to a proper cell cycle arrest.

We address these questions systematically by combining experimental measure-

ments of cell cycle distributions and cyclin levels together with the development of

an integrated model of the DNA damage response and cell cycle networks. We find

that individual arrest mechanisms act in concert to specifically establish immediate

and sustained arrest after damage, as well as to prevent improper cell cycle re-entry.

3.1 A model of the DNA damage and cell cycle

networks

We constructed an integrated model of the DNA damage response network and

the cell cycle (Figure 3-1A). The model includes interactions previously studied in

the context of the p53 network (shown in blue), and the cell cycle (shown in black).

The interactions between the two networks represent the effect of DNA damage on

the cell cycle (shown in red). The topology of the DNA damage model was derived

from the model of Batchelor et al., in which oscillations are driven by a combination

of two negative feedback loops: the core p53-Mdm2 loop and a loop in which the

upstream checkpoint kinases are inhibited by a p53-inducible gene product, the phos-

phatase Wip1 [13]. To provide an extensible framework for future modeling of the

DNA damage network, we incorporate additional feedback loops [33] in our model

(Figure B-1A). With the current parameterization, however, these loops do not sig-

nificantly affect the network's dynamics.
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Bridging connections consist of species modulating cell cycle arrest (red). The ap-
proximate cell cycle phases are shown below the diagram. Three classes of arrest
mechanisms are indicated by numerals; (I) G1 arrest by p21 induction, (II) G2 arrest
by G2 cyclin inactivation, and (III) G2 arrest by G2 cyclin transcriptional repression.
(B) Cell cycle model simulation showing cyclins E, A, and B, and phosphorylated
anaphase promoting complex (APCp). Progression through cell cycle phases and
changes in DNA content are indicated above the simulation. (C) Simulation of the
DNA damage network after onset of damage at times tD, until the repair time tR-
Nuclear p53, phospho-Chk2, and Wip1 species are shown. (D-F) Simulation of arrest
mechanisms (I-III). Dynamics are influenced by the p53 and Chk2 activity from the
DNA damage module shown in (C).
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Our cell cycle model is based on the recently published cell cycle model of Tyson

and colleagues [107]. This comprehensive model is comprised of generic network mod-

ules that have been parameterized to match data from yeast to mammals. To adapt

the model as a platform to study cell cycle arrest in human cells, it was necessary

to modify it in both parameterization and topology, while ensuring that it remains

capable of recapitulating known experimental results.

Three classes of changes are introduced in the present study: (1) species previously

treated at quasi-steady state with algebraic expressions were expanded to dynamic

differential equations, (2) protein synthesis and degradation terms were added for

each species in the model, and (3) the intracellular signal resulting from extracellular

growth factor present in the medium, M, replaced the dependence between cell size

and progression through the cell cycle [108] (see B.1).

Simulation of the freely cycling model shows qualitative similarity to trajectories

obtained previously [107], with sequential peaks of cyclins E, A, and B defining GI, S,

and G2 phase (Figure 3-IB). These cell cycle phases are associated with the transition

from a 2N DNA content to 4N and the subsequent distribution of chromosomes to

daughter cells during mitosis, which is represented by a peak in Anaphase Promoting

Complex (APC) activity (Figure 3-IB) [101]. The model also matches a variety of

experimental results from the literature including (i) GI synchronization by serum

starvation or cycloheximide treatment [109] (Figure B-1B,C), (ii) free cycling with-

out cyclin E [110] (Figure B-iD), and (iii) GI arrest at normal mitogen levels but

continued cycling at high mitogen levels for the cyclin D knockout model (Figure

B-1E) [111]. Taken together these results demonstrate that our cell cycle model re-

capitulates a wide range of experimental observations.

The two models were initially joined by incorporating well-described interactions

that represent larger classes of GI and G2 arrest mechanisms (Figure 3-lA, section

B.1). For simplicity, we divided these mechanisms into three classes and analyzed

one representative mechanism from each class (Figure 3-lA): (I) GI arrest repre-

sented by p53-dependent inhibition of cyclin E/Cdk and cyclin D/Cdk complexes

by p21 [112, 113], (II) p53-independent G2 arrest represented by posttranslational



inactivation of cyclin A/Cdk and cyclin B/Cdk complexes [38, 39], and (III) p53-

dependent G2 arrest represented by transcriptional repression of cyclin A, cyclin B,

and Cdk1 [34-36, 114].

3.2 Computational analysis of different arrest mech-

anisms

To assess the relative contribution of different arrest mechanisms, we implemented

each mechanism individually and tested the resulting network behavior (Figure 3-1C-

F). Cell cycle arrest was simulated by activating DNA damage between the time of

damage (tD) and recovery (tR) (see B.1). The damage stimulus activated the p53

network, leading to oscillations of p53 and active Chk2 with a period of about 5.5 h

(Figure 3-1C) [13]. Each arrest mechanism was capable of halting the cell cycle on its

own, but there were distinct differences in the state of the network during the arrest

(Figure 3-iD-F).

When damage was applied during G2 phase, mechanism I (implementing p21-

dependent inhibition of Cyclin E/Cdk2) led to a stable arrest in GI (2N DNA con-

tent) after one cell division (Figure 3-1D). During the arrest, p21 and cyclin E reached

high levels. After removal of the damage signal, re-entry into S phase was delayed

approximately 20 h. Mechanism II (implementing Chk2-mediated G2 cyclin inactiva-

tion) induced the arrest of 4N cells with high levels of cyclins A and B; upon re-entry,

cells immediately entered mitosis (Figure 3-1E). In contrast, p53-dependent G2 cy-

clin downregulation implemented by mechanism III led to the arrest of 4N cells in

which cyclin A and B levels progressively decreased and cyclin E levels were elevated

(Figure 3-1F). Thus, in cells arrested by mechanism III, the cyclin network uncouples

from the status of DNA replication: cyclins switch from a G2 to a Gi/S-like state,

even though cells do not divide. Upon deactivation of the damage stimulus, these

cells increase cyclin A and B levels, thereby progressing twice through the cell cycle

without an intervening mitosis. This implies a danger inherent to arrest mechanism
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Figure 3-2: Steady state cyclin levels during simulated arrest. Rows indicate
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III: downregulation of the G2 cyclins might lead to loss of information about the cell

cycle phase prior to damage and endoreduplication.

The dynamical behaviors of Figure 3-1 were obtained by applying damage at a

specific time, with fixed parameters controlling p53's and Chk2's activation of each

arrest mechanism (see B. 1). To expand this analysis, we simulated cell cycle arrest

varying the time of damage induction and the arrest strength. From the resulting

trajectories, we determined the steady state levels of cyclins E, A, and B (see B.1;

Figure 3-2). Mechanism I led to a moderate increase of cyclin E levels with low levels

of the G2 cyclins A and B, consistent with arrest in G1. Notably, mechanisms II and

III, which are both known to act in G2 cells with 4N DNA content, resulted in distinct

cyclin profiles during the arrest: mechanism II led to increased levels of cyclins A and

B and low levels of cyclin E, while mechanism III showed the reverse pattern in most

simulations. At weak arrest strengths this mechanism led to bimodality in cyclin B

and E profiles.
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3.3 Experimental measurements of cell cycle ar-

rest

Our modeling results indicate that the dominant arrest mechanism can be uniquely

identified by measuring DNA content and cyclin levels in arrested cells. Within 8 h

after irradiation, an asynchronous population of wild-type HCT116 cells arrested

with approximately 30% of the cells in GI (2N) and 70% in G2 (4N). The cells

remained arrested for at least 72 h (Figure 3-3A). Notably, we observe only low

levels of apoptosis during the time period studied (Figure 2F, [115]). Finer temporal

sampling showed that the G2 arrest was immediate, while the GI population initially

decreased and was stabilized only after 4 h (Figure B-3A). This is consistent with the

dependence of the G1 arrest on p53-mediated p21 expression (mechanism I, Figure

B-3B). The ratio of cells arrested in GI versus G2 thus depends on the initial cell

cycle distribution and the kinetics of p21 expression. To determine the contribution

of mechanisms II and III for the G2 arrested cells, we measured cyclin levels in the G2

population (4N). In freely cycling cells (Figure 3-3A; 0 h time point), most cells with

4N DNA content had high cyclin B1 and low cyclin E levels. Only a small population

had low levels of cyclin B1, which likely represent post-metaphase mitotic cells. At 8

h after IR, most of the now-arrested G2 cells maintained high cyclin BI and low cyclin

E levels, suggesting that mechanism II was dominant during this time. At later times,

the population of cells with low cyclin BI increased, with nearly all cells having low

cyclin B levels by 48 h. We observed corresponding decreases in cyclin A and Cdk1

levels during these times by western blot (Figure B-3C). Conversely, the cyclin E

distribution increased dramatically, reaching levels that exceed those observed during

GI in freely cycling cells (Figure B-5A). These results argue that in cells initially

arrested in G2, mechanism III gradually becomes dominant over mechanism II during

the course of arrest, uncoupling the cyclin state (now G1/S like) from DNA content

(4N). Similar results were obtained in non-transformed RPE-hTERT cells (Figure

B-4A-B).

These observations led us to ask whether mechanism II remains active at late
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els. Histograms of cyclin levels are gated from the 4N population only. Quantification
of apoptotic cells is shown in Figure B-4C.



times after IR, or if it turns off after mechanism III is initiated. In the first case, both

pathways play redundant roles, while in the second case, each mechanism is utilized

at different times during arrest. To distinguish between these cases, we examined

DNA content and cyclin levels in HCT116 cells lacking p53, which are restricted to

using mechanism II (Figure 3-3B, Figure B-3A). These cells arrested in G2 (4N) by

16-24 h, with most cells retaining high cyclin BI and low cyclin E levels. This is in

agreement with a G2 arrest solely mediated by the p53-independent mechanism II.

Most noticeably, the G2 arrest was transient: 24 h post irradiation, cells re-enter GI

(2N) and S, which is reflected by changes in cyclin levels. These results show that

mechanism II is sufficient to induce an immediate G2 arrest (Figure 3-3B and Figure

B-3A). However, sustained G2 arrest depends on mechanism III, arguing against

redundancy of these mechanisms. Instead, we suggest that mechanisms II and III

complement each other, with mechanism II operating on a fast and mechanism III on

a slow time scale.

3.4 Merging model and measurements

Our original model addressed individual arrest mechanisms in the context of the

generic mammalian cell cycle. After acquiring quantitative measurements of the com-

bination of arrest mechanisms and their relative timings, we next set out to param-

eterize our model to reflect this data. Our fitting procedure accounts for the steady

state concentrations of molecular species during arrest as well as the relative timing of

their induction during cell cycle progression (see B.3). The sensitivities of both were

calculated efficiently using an adjoint method. The fitted model recapitulated the

amount of time spent in G1, S, and G2/M (Figure 3-4A) and matched the cyclin lev-

els reached during arrest (Figure 3-4B). Cycloheximide treatment, serum starvation,

and cyclin knock-outs still elicited the appropriate phenotypes (data not shown).

After fitting, two features of the arrest dynamics remained undetermined: the ac-

tivation and deactivation time of each arrest mechanism. Based on the arrest profile

of p53-/- cells (Figure B-3A), we assume that mechanism II is initiated immediately
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Figure 3-4: Cell cycle model training and prediction. (A) Fractions of G1, S,
and G2 cells in freely cycling HCT p53+/+ and HCT p53-/- populations are compared
to the amount of time spent by the initial and the fitted model in G1, S, and G2. (B)
The ratios of cyclins E and B during IR-induced arrest to their maximum level during
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from model trajectories. (C) Time courses of DNA content after treatment with 10
Gy IR. HCT p53+/+ and p53-/- cells were irradiated, and the fractions of cells with
G1, S, and G2 DNA contents were measured by FACS. For apoptotic fraction, see
Figure B-4C. (D) Model-generated cell cycle distribution time courses. 500 individual
model trajectories were simulated from initial conditions distributed through the cell
cycle (see B.1).
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after damage. It is gradually deactivated between 16-48 h, as indicated by the slow

decrease of the G2-arrested population of p53-/- cells (Figure 3-4C). We modeled

mechanism II deactivation times with a mean of 35 h and a standard deviation of 10

h, kinetics that are consistent with the stochastic repair of DSBs using repair rates

found in literature (see B.1; Figure B-6A-B) [47]. For the p53-dependent mechanisms

I and III, we define the activation time to be 4 h after damage, as p53 was induced

at that time (Figure B-3B). In wild-type cells, the arrest was sustained through the

time course (Figure 3-3A), during which p53 levels remained high (Figure B-3C). We

therefore assume that mechanisms I and III are activated permanently on the time

scale of our simulations.

Our final model implements the combined action of three arrest mechanisms, as

well as their temporal organization, allowing direct comparison to experimentally

measured distributions of arrested cells over time. Indeed, simulation of an asyn-

chronous population of cells after arrest largely recapitulated the arrest dynamics and

cyclin profiles of p53+/+ and p53-/~ cells (compare Figure 3-4C-D and Figure B-7A-

B). Notably, in contrast to the modeling results, the HCT116 p53+/+ GI population

increased 8 h after irradiation, although damage was still present, while RPE-hTERT

cells do not show this behavior (Figure B-4B,D). This suggests that at early arrest

times some cells escaped G2 arrest and entered G1, which may be the result of check-

point defects in the cancer cell line used, phenomena that are not considered in our

model.

3.5 Model validation and predictions

To validate the quality of our fitted model, we tested its ability to predict the mean

protein levels in irradiated populations of p53+/+ and p53-/- cells, and the behavior

of freely cycling and arrested cells after silencing individual cell cycle genes (see B.4;

Fig. S5C; Table B.2). These results demonstrate that the fitted model accurately

reflects features of arrested mammalian cells.

One additional model prediction captured our attention. Simulating mechanism
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III individually predicted that downregulation of G2 cyclins would prime cells for

endoreduplication (Figure 3-iF). However, this phenomenon was not observed in the

model combining all arrest mechanisms. We next interrogated the model to determine

what feature of the combined arrest prevented endoreduplication. Simulations of

mechanism III alone and of the final model resulted in high total cyclin E levels and

low cyclin A and B1 levels during arrest (Figure 3-iF and Figure B-9A). However,

in the final model, cyclin E was inhibited by p21 through mechanism I, suggesting

that p21 prevented initiation of DNA replication of G2-arrested cells (Figure B-9B).

Indeed, eliminating p21 from the final model predicted that approximately 50% of

the cells will initiate a second S phase and endoreduplicate (Figure 3-5A and Figure

B-9B).

To test this prediction experimentally, we measured the cell cycle distribution of

a HCT116 cell line lacking p21 [112] (Figure 3-5B). Consistent with our modeling

results and previous reports [115], approximately half of the p21-/- population had

DNA content greater than 4N (Figure 3-5C). Surprisingly, about 20% of wild-type

cells endoreduplicated as well. We suggest that this is caused by cells attempting

to re-enter the cell cycle prematurely with remaining damage, leading to failures in

mitosis [37].

Simulation of our model suggests that p21 prevents endoreduplication by inhibit-

ing cyclin E/Cdk2 activity in G2-arrested cells. Alternatively, p21 has been implicated

in inhibiting Cdk1 activity [37,116]. In this scenario, elimination of p21 may cause

cells to prematurely enter mitosis, fail, and ultimately endoreduplicate. Morphologi-

cally, a fraction of p21-/- cells possessed fragmented nuclei, supporting mitotic failure

as a cause of endoreduplication (Figure 3-5E). To determine whether this is the only

source of endoreduplication, we used the Cdk1 inhibitor RO-3306 [117]. This drug

mimics the effect of p21 on Cdk1 and prevents cells from attempting mitosis. Under

these conditions, G2-arrested p21-/- cells still re-replicated their DNA while remaining

mononucleate, suggesting that cyclin E/Cdk2 inhibition by p21 is necessary as well

to prevent endoreduplication (Figure 3-5D-E). Taken together, these results suggest

that p21 plays an important role in maintaining the sustained G2 arrest by preventing



endoreduplication after downregulation of G2 cyclins.

3.6 Conclusions

An intricate network of protein interactions mediates cellular signaling. To fa-

cilitate our understanding, this network is often subdivided into individual units.

However, these units do not act in isolation, as they influence each other through

common interactions and complex feedbacks. Here we present the integration of two

models of subnetworks by implementing specific, experimentally verified connections

supplemented by a thorough investigation of the space of possible arrest mechanisms.

We found that a variety of interactions lead to similar arrest profiles, and that the

specific connections implemented are representative of these larger classes of arrests.

One benefit of such an approach lies in the ability to individually study these mech-

anisms and their effect on the behavior of the integrated network. Furthermore, by

fitting to experimental data, the model can be used to analyze the combined action

of multiple mechanisms and their relative contribution to the signal processing.

Upon DNA damage, cells must activate arrest immediately, maintain it as long

as the insult persists, and be prevented from re-entering into inappropriate cell cycle

phases [105]. Our analysis shows that a combination of different arrest mechanisms

contributes to fulfilling these requirements. However, the requirements seem to pose a

paradox for G2-arrested cells: cells undergoing sustained arrest lower their G2 cyclin

levels, whereas appropriate cell cycle re-entry depends on these cyclins to convey

information about the pre-arrest state. To resolve this paradox, we propose that in

response to high levels of DNA damage, cells that arrest by cyclin downregulation

must do so permanently. Downregulation of cyclins by p53 may therefore be the first

step in establishing senescence, a terminal cell fate characterized by the irreversible

exit from the cell cycle [118]. Our model can now be used to generate testable

predictions for thresholds in time, damage levels, and cyclin concentration that define

the decision between cell-cycle re-entry and senescence.

Our integrated model also revealed a function for p21 in sustaining G2 cell cycle



arrest. p21's involvement in G2 and endoreduplication arrest has been reported before

[115, 116], but the exact mechanism remains less well defined. p21 was previously

suggested to inhibit Cdk1-activating kinases [119] or alter the subcellular locations

of the Cdkl complex [120]. In addition, we now propose that p21 contributes to a

sustained G2 arrest by inhibiting GI cyclins. This function is crucial to prevent DNA

replication after downregulation of G2 cyclins and may explain previously observed

endoreduplication after recovery from transient p21 overexpression [121] or mitotic

spindle disruption [122] in cells lacking p21.

In the present study, we have abstracted certain processes involved in the DNA

damage and cell cycle networks. For example, we do not address all of the details

of DNA repair, but rather rely on a simple stochastic representation of this process.

Additionally, we use the activation of APC as a surrogate for the complex process of

mitosis. While this abstracted model was sufficient to characterize the interactions

transmitting the DNA damage signal to the cyclin network, a detailed treatment of

these processes would allow us to address further questions. For example, we show

that p53 activation is sustained for at least 96 h (Figure B-3C), and that cells lacking

p53 re-enter the cell cycle after 24 h (Figure 3-4C). This indicates either that DNA

damage is repaired by 24 h and p53 activity is sustained after DNA repair is complete,

or that DNA damage persists and cells lacking p53 adapt to the damage checkpoint.

Including the details of mitotic progression and the possibility of mitotic failure would

provide the framework necessary to better understand checkpoint adaptation. Ac-

counting for the details of DNA damage and its repair may reveal whether sustained

p53 activation is mediated by persistent damage or by the activation of additional

network interactions.



3.7 Materials and Methods

Cell culture

HCT116 p53+/+, p53~/-, and p21-/- cells were grown in McCoy's media including

10% FBS under standard conditions. 5x105 (6-cm dish) or 1.5x10 5 (10-cm dish) cells

were plated and irradiated two days later with 10 Gy using a Co60 source.

Immunoblots

Western blots were performed as described before [13]. Antibodies used were ap53

DO-1, aCyclinB1 (H433), aCyclinA (C-19), aCdk1 (all Santa Cruz Biotechnology),

ap2l (Calbiochem), and ac-tubulin (E7, Developmental Studies Hybridoma Bank).

Flow Cytometry

Cells were trypsinized and fixed in 70% ethanol at -20C. For DNA content analy-

sis, cells were washed in PBS, incubated with 25 ig/ml propidium iodide (PI), 0.1%

Triton, and 0.2 pug/ml RNase and analyzed on a FACSCalibur flow cytometer (BD

Biosciences). For cyclin A, E, and B labeling, fixed cells were washed, permeabilized

in 0.25% Triton, and blocked in 0.5% BSA. 1x106 cells were incubated with 1 pg pri-

mary antibodies, washed and incubated with Alexa488-coupled secondary antibody.

Cells were stained with PI and analyzed as above ( CyclinE (HE12), Santa Cruz

Biotechnology).

Only cell singlets were analyzed, based on the pulse width versus height ratio. To

obtain the percentages of GI, S, G2/M, and endoreduplicated cells, we computation-

ally fit the DNA content distributions using a modification of the Dean-Jett model,

augmented to include the 8N and second S phase population [123].

Computational methods

For all simulations, numerical integration was performed in MATLAB using odel5s

(The Mathworks, Natick MA). Optimization was implemented using fmincon config-



ured to use Quasi-Newton with BFGS in the MATLAB Optimization Toolbox Version

3.0.4.



Chapter 4

Oscillator sensitivity analysis in

the presence of hidden

conservation constraints

4.1 Introduction

The numerical techniques for analyzing oscillators whose trajectories satisfy sys-

tems of autonomous ordinary differential equations (ODEs), such as the systems

generated by lumped-element models of circuits or mass-action kinetics models of

biochemical networks, have been investigated from so many perspectives it is hard

to imagine that there anything new to report. The basic finite-difference, spectral,

and shooting-Newton methods have been known for decades [124,125], the issues as-

sociated with computing the impact of noise in oscillators has been examined from

a variety of perspectives [126-128], and a number of research groups in different

application domains have investigated approaches to computing parameteric sensi-

tivities [83,129,130].

Nevertheless there does seem to be an unknown subtlety, at least that the authors

have yet to find in the literature, associated with what we refer to as hidden conser-

vation constraints. The subtlety shows itself in the simplest of experiments. Consider



the following simple differencing procedure for computing oscillator parameteric sen-

sitivity:

1. Starting from an initial condition, xO, integrate the differential equation system

until the computed trajectories form a periodic orbit with period T;

2. Perturb some system parameter of interest;

3. Integrate the perturbed differential equation system, again starting from the

initial condition zo, until the computed trajectories form a new periodic orbit

with period T.

The surprising result, and the key result of this chapter, is that standard approach

to oscillator parameteric sensitivity analysis generates results that do not match the

results from the above differencing algorithm. Even the period sensitivity is inconsis-

tently predicted.

It should be noted that hidden conservation constraints are quite common in

mass-action kinetics models of biochemical systems, weighted sums of species are of-

ten conserved by sequences of reversible reactions. Hidden conservation constraints

are less common in circuits, but can occur if there are cut-sets of capacitors in the

circuit, as sometimes happens in circuits with MOS devices. If there is a cut-set of

capacitors, then there is usually a hidden conservation constraint, a weighted sum of

node voltages that is conserved.

We begin in the next section by presenting a brief review of the state-transition

function approach to computing oscillator periodic steady-states, and the techniques

for computing sensitivities for oscillating systems. In Section 4.3 we are more precise

about conservation constraints, and describe their impact on oscillator analysis. In

Section 4.4 it is shown how neglecting these conservation constraints can impact the

solution of the oscillator sensitivities for two examples, a classical circuit oscillator

and a model of a canonical biochemical oscillator, the cyanobacterial circadian clock.



4.2 Background

4.2.1 Oscillators described by ODEs

For simplicity, we will consider systems of differential equations in normal form,

though most of the results generalize directly to the nonlinear descriptor systems

typically generated by modified nodal analysis of circuits. Specifically, consider the

ordinary differential equation system

x (t, p) = f (x (t, p) , p) (4.1)

x (0, p) = (4.2)

where x is the vector of state variables of size n and p is a vector of parameters of

size m, and f (x, p) describes the time evolution of the trajectory x (t, p). Note that

the system is autonomous, the function f does not depend explicitly on time. Such

a system oscillates for a particular choice of x (t, p) if there exists a T (p) > 0 such

that

x (T (p) , p) = x (0, p) (4.3)

is satisfied. Also, if f is well-behaved (Lipschitz continuous in x and continuous in t),

uniqueness guarantees that satisfying Equation 2 implies

x (t + T (p) , p) = x (t, p) Vt. (4.4)

When analyzing oscillating ODE systems, it is convenient to consider the state

transition function defined by solving (4.2),

x (T, p) = F (T, xo, p). (4.5)

The state transition function is implicitly defined, and describes how (4.2) maps an

initial condition, xo, and an interval T to x at time T.



The state transition function can be differentiated with respect to xO, yeilding

Ox (T, p) F &F(Txo, p) (4.6)

where 2 is the Jacobian with respect to x of the state transition function, and usually

referred to as the sensitivity matrix.

In the special case where x (t, p) is a periodic solution of (4.2) with period T (p),

the sensitivity matrix has special name and special properties. To see this, consider

that if x (t, p) satisfies (4.4), then differentiating (4.5) with respect to time yields

i (t+T(p),p) = k(t, p) (4.7)

aF
= (T (p) , x (t, p)) 5 (t, p) (4.8)

where the sensitivity matrix, 2, for this periodic special case is referred to as the

Monodromy matrix. The Monodromy matrix has the important property that one

its eigenvalues is one, with a corresponding eigenvector equal to x (t).

4.2.2 Computing the periodic steady state

Given a system (4.2), we can solve for a periodic solution (xo(p), T(p)) by numer-

ically solving the system of equations

xo(p) - F(T(p), xo(p)) = 0. (4.9)

Though not guaranteed to converge, the iterative Newton's method is often used to

solve (4.9). Each Newton iteration involves solving the system

AX k+1

in - F (xkTk ) kF+1 = [xk - F(x k, Tk)] . (4.10)ax 0 a x AT k+ 1 J

where In denotes the n x n identity matrix, and the superscript k refers to the k"h

Newton's method iteration. The system solutions are used to update guesses of the



oscillation period and a point on the periodic orbit, as in

(xk+1,Tk+1) = (Xk, Tk) + (Ax k+1 ATTk), (4.11)

and the procedure is repeated until convergence is achieved.

It can be readily seen that the system described in (4.10) is underdetermined, there

are n equations but n + 1 unknowns. This indeterminacy stems from the fact that

(4.9) has a continuum of solutions, associated with any point on a periodic orbit. In

particular, once a periodic solution is found, such a solution can always be perturbed

in the direction x(0, p) without changing !I because (4.8) guarantees that such a

perturbation will always lie in the null space of I, - O(xk, Tk).

This indeterminacy, often referred to as an indeterminacy in phase, can be resolved

by adding an additional constraint, known as a phase locking condition, to select a

particular point in time along the periodic orbit of interest. Common phase locking

conditions include fixing the value some state variable or requiring that a particular

state variable reach an extremum at t = 0. These conditions can be represented by

#1 and #2 such that

# 1 : x - xi # 1 (x) = xio (4.12)

#2 : x -+ fi(x, P) #2 (x) = 0 (4.13)

Such an equation can be provided as an additional constraint in the Newton's method

formulation (4.10), leading to the augmented system

[ 8F OF iF k Xk -F(xk,Tk)
O x Ox ._4.4

_ 0 ATk L k)-#0 _4

In general, such a phase locking condition will be sufficient to isolate a solution



along an oscillating trajectory if

X(0, p) / 0 (4.15)

thereby removing 5(0, p) from the left hand matrix's null space.

4.2.3 Computing parametric sensitivities

In a variety of applications, such as oscillator circuit design [130] or determining

dominant mechanisms in circadian rhythms [83], it is important to understand how

properties of the periodic solution (such as xo and T) vary with changes in p. As

mentioned in the introduction, it is possible to compute parameteric sensitivities as

follows: for some choice of p, integrate the system for a long time to obtain a periodic

orbit. Then, after a small perturbation to the parameters p+Ap, integrate the system

from the same initial conditions a second time and use the differences between the

periodic solutions to compute approximate sensitivities. Any alternative method for

computing sensitivies should match this finite differencing technique, at least in the

limit of small Ap.

One technique for obtaining the parametric sensitivity pair ( ,T) involves

solving a two-point boundary value problem that is similar to that described in Section

4.2.2, once a trajectory satisfying (4.9) is known. Differentiating (4.9) and (4.13) with

respect to p results in a system that can be used to compute N, :

I F F Oxo 1 (xo,In Bx _x -P =X a P (4.16)
at 0 aT 0
Ox .. P

where terms have the same meaning as in (4.14).

4.3 Hidden Conservation Constraints

In this section, we consider how the analyses above change when our ODE system

contains hidden conservation constraints, ones that are not explicitly represented in



the ODE description. If weighted sum of certain state variables are invariant during

time-evolution of the system, such constraints take the form

CTx(t, p) = CTx(0, p) Vt, x(0, p) (4.17)

where C is a n x k matrix containing the k conservation constraints of the sys-

tem. Such constraints can arise from a variety of modeled phenomena. For example,

in mass action chemical kinetics models, subsets of chemical species that interact

through reversible reactions may have concentrations that always sum to a constant,

or in lumped-element circuit analysis a subset of voltages in a circuit may always sum

to a constant to maintain a certain net charge. Furthermore, such conserved quanti-

ties may not be obvious by inspection of either a network diagram or the associated

ODE system. In this section, we show that these conservation laws play a crucial role

in the proper computation of the periodic orbit and sensitivities using the boundary

value equations (4.14) and (4.16).

First, note that if there are conservation conditions, they are always left eigenvec-

tors of the sensitivity matrix with eigenvalues associated with one.

Theorem 1 If a solution to (4.2) with initial condition x0 always satisfies

CTx (t, p) = CTxo (4.18)

then
C = C (4.19)ax

Proof Using the definition of the state transition function and multiplying by CT

yields

CTx (t, p) = CTF (t, xo, p) . (4.20)

Noting that CTx (t, p) = CTxo, (4.20) becomes

CTxo = CTF (t, xo, p) . (4.21)



and differentiating with respect to xO results in

CT = CT OF (t, xo, p)
(xo

(4.22)

Transposing both sides of (4.22) proves the theorem.

Since the hidden conservation conditions are left eigenvectors of any sensitivity

matrix, they can be extracted numerically with reasonable reliability.

Theorem 2 Consider the system defined by (4.2), (4.3) with k hidden conservation

constraints (4.17). The oscillating sensitivity system (4.23) is not overdetermined.

Ix x

CT 0

0q5 0Ox j

aO
ap

OT
ap

(4.23)

Proof First, we show that systems (4.16) can always be augmented with k additional

equations representing these conservation constraints. By premultiplying (4.5) by CT

and differentiating with respect to xO, we find that

CT (In - (xo, t)) = 0 Vt, xo. (4.24)

By the biorthogonality of left and right eigenvectors for the matrix f there exist

at least k right eigenvectors vi satisfying

(I - (x0, t)) v, = 0 i c 1 ... k (4.25)

and for which CTv, $ 0. Furthermore, by differentiating (4.17) with respect to t we

find that

CTx(t, p) =0 (

D (xo, T)

0 ,

0

(4.26)Vt, p.
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Figure 4-1: The ring oscillator circuit.

Taken together with (4.8), (4.26) shows that x is still in the null space of the

first n + k rows of the matrix in (4.23). Thus, a phase locking condition satisfy-

ing (4.17) can be included as an additional row in the augmented system (4.23).

An analogous argument justifies including these conservation constraints when using

Newton's method to compute the periodic steady state (4.14). I

4.4 Examples

We have shown that inclusion of conservation constraints is always feasible in the

context of the two-point boundary value formulation of oscillator sensitivity analysis.

In this section, we will demonstrate that inclusion of these constraints is not only

feasible but necessary to ensure that the sensitivities will accurately match the direct

finite difference calculation,. We demonstrate this necessity in the following section

through considering two examples of oscillators with hidden conservation constraints,

a simple ring oscillator circuit and a minimal biochemical circadian oscillator from

Synechococcus elongatus.

4.4.1 A simple ring oscillator circuit

As a first numerical example, we consider the simple oscillator circuit shown in

Figure 4-1. For simplicity, we eliminate the capacitance variable from the result-

ing equations by setting the value of C = 1. A system of equations governing the



dynamics of this circuit can be derived of the form

Y1 = iDSS - V4 - VT VS - V- DS(V -VT ,V1)

2 = S(VS - V5 -VT) VSV- V 2 ) DS -T 2

V3 = DS(VS -V 6 -VT ,VS -V)-iS 2 -VT,V 3)
1

4 = --(V5 -V 4)
R
1

15 = -(V 4 +V 6 - 2V5 )
R
1>Y6 = - (V - V6)R

where Vi are the voltages at the six nodes depicted in Figure 4-1, and the currents

through each MOSFET iDS are each given by the simple transistor model

k (VoV - VDS - VDS) VDS < Vov
IDS (VOV, VDS)- k(VoV s-V ) VDS<_>VOV. (4.27)

kVoV VDS _ V -

In this model, VoV = VGS - VT is the overdrive voltage, and voltages are taken with

the appropriate sign conventions for N- and P-type devices. In this circuit example,

the system contains a single conservation law for the voltages at the gates of the

PMOS devices, given by

V4 + V + V6 = VTo. (4.28)

We solved for the parameter sensitivities using multiple methods, either incor-

porating or neglecting the conservation constraints on this system. Table 4.1 shows

the sensitivities to the NMOS and PMOS transistor parameters kN and kp and the

source voltage Vs. These sensitivities were computed three ways: without the conser-

vation equation 4.28 in the period sensitivity calculations ('raw'); with conservation

('cons'); and using a finite-difference approximation to the full sensitivities using the

differencing procedure outlined in Section 4.1 ('FD'). The overbars indicate that each



0 Prin
0 cons OFD

kN -3.1065 x 10-5 -2.6506 x 10-1 -2.6476 x 10-1
kp -4.1779 x 10- 5  -7.3494 x 10-1 -7.3427 x 10-
Vs -2.3996 x 10-4 -4.4972 -4.4948

Table 4-1: Normalized period sensitivities, ring oscillator.

sensitivity shown has been normalized to the total period and parameter value (i.e.

Bz = Blogx = -x). We find close agreement between sensitivities computed with

conservation and the differencing scheme, and a wide discrepancy between these re-

sults and the naive boundary value scheme. Each of these sensitivity calculations was

initiated from the same point on the system's periodic orbit, thereby showing that

even when a proper periodic orbit has been previously obtained, neglecting conserva-

tion can lead to an incorrectly computed period sensitivity.

4.4.2 A mass-action biochemical model

Conservation constraints arise naturally in many biochemical networks as a result

of the conservation of mass of chemical species. Due to the size and complexity of the

resulting networks, however, these conservation laws are often difficult to determine

by direct examination of the underyling rate equations. In this section, we consider an

example of an oscillating biochemical network harboring such conservation relations,

a mass action model of the in vitro cyanobacterial circadian clock [65].

This network consists of three proteins - KaiA, KaiB, and KaiC - that associate

with one another and undergo modification. Surprisingly, the canonical behavior of a

circadian clock, persistent oscillations with a period of about 24 h, can be experimen-

tally reconstituted in a minimal solution containing only the three purified proteins

and their cofactors [61].

Our model of this network, based on that of [65], tracks every complex formed

by the association and dissociation of the three Kai proteins, and consists of n1 = 73

state variables, nr = 277 distinct chemical reactions, and n, = 22 parameters. How-

ever, the combinatorial complexity of these reactions can be abstracted to yield a

simple diagram containing 12 species representing the four phosphorylation states of



Figure 4-2: The cyanobacterial in vitro circadian clock. The twelve major
states of KaiC are pictured, with arrows representing reactions that modulate transfer
between states.

KaiC (U - unphosphorylated; S - phosphorylated at Ser431; T - phosphorylated at

Thr432; D - doubly phosphorylated) in three KaiA-related states (lower plane - free

KaiC; middle plane - KaiC:KaiA complexes; upper plane - KaiC* after modification

by KaiA) (Figure 4-2).

To identify mass conservation reactions in this example, we implemented a general

solution that relies on the structure of mass-action biochemical models. Our model

of the in vitro cyanobacterial circadian clock is of the form

5C = S -v(x, p) (4.29)

where S is the n, x n, stoichiometry matrix, indicating the number of molecules of

each species that participates in each reaction, and v(x, p) is the n, x 1 vector of

the reaction rates. The conservation constraints exhibited by such systems can be

identified automatically from the structure of such models since they comprise a ba-

sis for the left null space of the stoichiometry matrix S [131]. Computing this null

space for our model identifies three such conservation constraints, one for the total

Method No conservation Conservation

T 20.000 h 20.468 h

Table 4-2: Oscillation period, circadian clock model.

...................... .................
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Figure 4-3: Normalized sensitivities, circadian clock model.

concentration of each of the three Kai proteins.

With these conservation relations in hand, we set out to identify whether or not

their inclusion significantly alters the periodic initial conditions identified by Newton's

method or the sensitivity of the period to parameters computed from this periodic

trajectory. We computed conditions on the limit cycle using (4.14) or by augmenting

this system to also include the three mass conservation constraints, which led to dif-

ferent periodic initial conditions and periods of oscillation (Table 4.2).

We next asked whether the differences in period sensitivity in the presence or ab-

sence of such constraints were dominated by differences in the periodic orbit obtained,

or by the subsequent sensitivity calculation. To test this, we performed the sensitivity

analysis with and without conservation constraints, from either of the two periodic

orbits identified in Table 4.2. Figure 5-3 shows the results of this calculation, where

the color of each curve indicates at which stage mass conservation was incorporated.

Two pairs of curves are evident, separated by whether or not conservation is included

in the sensitivity calculation. Our results indicate that including constraints in the

sensitivity calculation is cruicial to their accurate computation, and that (at least for

this example), this source of error is dominant.

................................................................................................................. .............................. ....



4.5 Conclusions

We showed that in order for the standard approach to parameteric sensitivity

analysis of oscillators to yield correct results, hidden conservation conditions must

be explicitly included. We also showed that the conservation conditions can be ex-

tracted by computing left eigenvectors of the the sensitivity matrix at any timepoint,

so multiple timepoints can be used to extract these hidden conservation conditions

reliably. We also showed that adding the conservation conditions does not make the

matrix needed to compute sensitivities over-determined. Finally, we demonstrated

that neglecting conservation constraints results serious errors for the period and orbit

sensitivities for a simple ring oscillator circuit and a model of a canonical biochemi-

cal oscillator, the cyanobacterial circadian clock. In the next chapter, we show how

these tools can be used to gain a new understanding of the mechanisms underlying

the operation of a mass conserved biochemical oscillator, the cyanobacterial circadian

clock.



Chapter 5

Coupled oscillators drive dynamics

in the cyanobacterial circadian

network

5.1 Introduction

Cells use signaling networks to determine how and when to divide, communicate

with one another, and orchestrate responses to environmental cues. A crucial function

of many of these signaling networks is the generation of complex time-varying sig-

nals, such as oscillation or a transient pulse of activity [4,5,7,9]. Understanding and

controlling how signaling networks reliably generate these complex dynamical signals

is a central goal of systems biology. Perturbation to the appropriate dynamics of

biological systems plays a role in many disease states, such as such as cancer [13,132]

and familial advanced sleep phase syndrome (FASPS) [133]. Similarly, dosing sched-

ules can be adjusted to a system's dynamical response to increase efficacy or decrease

undesirable side effects [134].

Mathematical modeling is a particularly useful tool for characterizing dynamically

varying systems because these dynamics cannot be understood via static diagrams of

network connectivity. In recent years, models of individual network motifs have helped



to characterize the relationship between topology and dynamics for feedforward and

feedback loops [91,135]. Oscillating networks have been the subject of special scrutiny.

Theoretical and experimental studies of two major oscillating motifs-delay oscillators

(comprising a delayed negative feedback loop) and relaxation or hysteresis oscillators

(comprising a fast positive and slower negative feedback loop)-have helped elucidate

their properties [26,77-79,1361.

As biological signaling networks are understood in greater detail, it is becoming

clear that they rarely consist of isolated motifs. Rather, networks are often more com-

plex, with seemingly redundant or antagonistic connections [5, 33]. This complexity

may arise from two sources. First, newly identified species and interactions often

result in additional feedback loops. Detailed models utilizing many combinations of

these motifs have been constructed for larger systems [13,107,137]. Fortunately, these

feedback loops are typically biochemically distinct, with few points of interaction be-

tween loops. This separability can be exploited by computationally or experimentally

perturbing species involved in individual feedback loops to probe the roles of these

loops in system operation [83,138,139].

A second source of complexity arises from a growing understanding of the detailed

biochemical interactions between previously identified system components. Biological

systems consisting of even very few proteins contain a large number of conformational,

post-translational modification and multimeric states, all of which may affect reaction

rates. In systems regulated at this level, the numbers of distinct chemical species and

reactions between them increase combinatorially with the number of states. Multi-

ple modification states, multimeric complexes and protein isoforms are present in a

variety of signaling networks [43,49,50], but the roles are often unknown. Because of

combinatorial interactions between species, such networks can be densely connected,

making even the identification of network motifs a challenging task. Furthermore,

this detailed biochemical complexity has been shown to have important consequences

for system dynamics in theoretical [51] and experimental studies [53]. Many open

questions remain in understanding such systems. What are the processes governing

dynamics in densely connected biochemical networks? What motifs or combinations



of motifs comprise these networks? What tools can be used to identify these pro-

cesses?

We address these questions in the context of a model system of detailed biochem-

ical complexity: the in vitro circadian clock extracted from Synechococcus elongatus.

The cyanobacterial circadian clock enables S. elongatus to adapt its genetic and

metabolic programs to daily changes in the environment and provides a daily rhythm

to photosynthetic regulation [58, 59]. In its normal context in the bacterium, the

circadian clock involves transcriptional regulation acting through multiple feedback

loops [60]. Strikingly, Kondo et al. have shown that oscillation with a period of

approximately 24 hours can be reconstituted in vitro with only three proteins: KaiA,

KaiB, and KaiC [61]. As this in vitro reaction lacks other proteins and nucleic acids,

no additional transcriptional or post-translational pathways can be implicated in gen-

erating these dynamics. During oscillation, the three Kai proteins traverse a variety

of modification states and multimeric complexes, making this system ideal to study

how these biochemical details contribute to complex system dynamics [49,65,140].

Several mathematical models have been proposed for this network [65-67]. Some

of these models derive oscillation from monomer exchange between KaiC hexam-

ers [66,67], a phenomenon still under experimental investigation [49,67], while others

rely on the dynamics of KaiC phosphorylation [65]. We used the model of Rust et

al. as the basis for our work [65]. This model, parameterized to experimental KaiC

phosphorylation and dephosphorylation data under a variety of conditions, concisely

treats the dynamics of the system using four ordinary differential equations (ODEs),

one algebraic equation, and thirteen rate parameters. It quantitatively describes the

dynamics of two phosphorylation sites of KaiC, serine 431 (S431) and threonine 432

(T432). The rate of transition between four phosphorylation states (U-KaiC, unphos-

phorylated KaiC; S-KaiC, S431-phosphorylated KaiC; T-KaiC, T432-phosphorylated

KaiC; and D-KaiC, doubly S431- and T432-phosphorylated KaiC) is dependent on

interaction with KaiA, which is in turn regulated by S-KaiC and KaiB, providing the

basis for feedback in the model. By examining the relative magnitude of the fitted

model's reaction rates, Rust et al. conjectured that a subset of the reactions of the



network-the phosphorylation of KaiC in the presence of free KaiA first at T432 fol-

lowed by S431, followed by the dephosphorylation of KaiC first at T432 and then at

S431-constitute the network's core oscillatory pathway.

In this work, we sought to better understand how progression through different

phosphorylation states controls dynamics in the oscillating network. Sensitivity anal-

ysis provides a powerful technique for defining how individual reactions contribute to

specific features of a dynamical trajectory. For oscillatory systems, sensitivity analysis

probes how small variations in reaction rate constants affect features of the periodic

orbit, such as oscillation period, amplitude for individual species, and the difference

in oscillation phase between two species' extrema. Oscillator sensitivity analysis has

been successfully applied to other biological models [83,138,141,142], where it has

been observed that reactions of high sensitivity can help to identify particularly cru-

cial pathway steps. Applying oscillator sensitivity analysis necessitates the careful

consideration of mathematical details. ODE models of biological oscillators are typ-

ically limit cycles, where the system will settle to the same periodic orbit regardless

of the initial conditions from which simulation is initiated. This is not the case for

a biochemical oscillator of the type described here, where certain combinations of

species (in this case, the total concentration of KaiA, KaiB, and KaiC) cannot be

changed through reactions within the system. Such a system can be characterized as

an intermediate oscillator, in which initiating simulation with different total protein

concentrations will lead to distinct periodic orbits, but varying initial conditions such

that total protein concentrations are kept constant will always converge to the same

orbit [88]. We use a recently developed approach to oscillator sensitivity analysis that

extracts the appropriate sensitivities in the subspace preserving these conservation

laws [88].

Here, we recast the Rust et al. circadian clock model into a purely mass action

description and applied oscillator sensitivity analysis to it. We find the sensitivity

profiles obtained through these methods identify self-consistent processes in the net-

work. By comparing these profiles, we found that certain features of the dynamics

co-vary regardless of which parameters are tuned. To further characterize the feed-



back connections that control dynamics, we exhaustively enumerated all subnetworks

and queried them for the ability to undergo oscillation. Using this approach, we re-

covered two feedback motifs, a delayed negative feedback loop (similar to the topology

identified by Rust et al.) and a coupled negative and positive feedback loop that are

independently capable of oscillation with similar periods. Although the core reactions

in the second motif have smaller kinetic parameters than those in the first, these loops

are coupled and each contributes to the dynamics of the full network. Finally, we

show that the full network combining the two motifs demonstrates the ability to tune

phase but preserve oscillation period, a crucial characteristic for a circadian system.

5.2 A mass action model of the circadian clock

In the in vitro circadian oscillator, the biochemical reactions between the three

Kai proteins represent processes governed by mass action chemical kinetics. This

formalism treats the bimolecular association of chemical species into complexes (such

as KaiA-KaiC or KaiB-KaiC binding), and the unimolecular dissociation and mod-

ification of both individual species and their complexes. We converted the model

of Rust et al. to a mass action kinetic model representing the association of KaiA,

KaiB, and KaiC as well as the phosphorylation of KaiC, allowing us to use modeling

and analysis tools that we had previously developed for the efficient analysis of mass

action models.

The original model of Rust et al. incorporates two types of nonlinear reactions: a

saturating expression for the fraction of KaiC in a phosphorylation-competent state,

and an algebraic relation for the concentration of available KaiA. The precise math-

ematical form of these nonlinearities can be realized by mass action processes under

the assumption that KaiA-KaiC interaction occurs fast relative to KaiC phosphocon-

version. We implemented a mass action reaction mechanism and derived the limits

in which it reduces to the original model's nonlinear relations to ensure that our

mass action model's dynamics were identical to those of the original model (see Ap-

pendix C.1). We found that the simplest mass action model of KaiC activation, in



which the KaiA-bound form of KaiC undergoes phosphorylation at an enhanced rate,

cannot oscillate because the concentration of free KaiA is depleted through binding

to KaiC. Instead, we implemented an alternative model, in which KaiA binds to and

modifies KaiC in a manner that persists after KaiA dissociation. In this model, only

the modified form of KaiC (denoted KaiC*) is capable of autophosphorylation. This

modified KaiC* state could represent a conformational change of KaiC induced by

KaiA binding, or the trans activation of other KaiC monomers in the experimentally

observed but not directly modeled hexameric KaiC complex upon KaiA binding.

The dynamics of our mass action model are identical to those of the original model

in the limit of infinitely fast reactions. To ensure that our mass action model accu-

rately reflected the original model's dynamics for finite rate constant values, we fit

our model to the output of the original model simultaneously across all conditions

under which it had been fitted [65] (for fitting procedure, see Methods). Simulation

of the fitted model generates trajectories indistinguishable from the original model

(Figure 5-1A), and all of the parameters shared between the original and fitted models

matched to within 1% (Table C.1). Additionally, the parameters governing KaiA-

KaiC binding and modification led to an effective K1 12 value close to that of the

original model (Table C.1). The simulations oscillate regularly with a period of 21.5

hours. The first period shows somewhat different dynamics than the remainder as

the simulation relaxes onto a periodic orbit from the initial conditions of Rust et al.

Our mass action model consists of 75 state variables representing the three Kai

proteins, their modification states, and their complexes. Simulations of this signaling

network demonstrate that many of these states only attain very low concentrations

during the oscillatory cycle. This reduction arises primarily from the rules assumed

to govern KaiC-KaiA-KaiB association: S-KaiC associates with KaiB and inacti-

vated KaiA dimers tightly and quickly, and all other KaiC phosphoforms undergo

fast dissociation from inactivated KaiA and KaiB. Illustrating this point, the concen-

tration of S-KaiC-KaiB complexes is > 106 higher than the concentration free S-KaiC

under oscillating conditions (where KaiB is present in excess). Also, S-KaiC-KaiB

complexes are always bound to inactive dimers of KaiA (Si, Figure 5-1C), except
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Figure 5-1: Identifying processes in a model of the in vitro circadian clock.
(A) Trajectories from a mass action circadian clock model, fit to the dynamics of the
model of Rust et al. [65]. Total concentrations of D-, 5-, T- and total phosphorylated
KaiC are shown from the original model (dashed lines) and fitted mass-action model
(solid lines). (B) Simulation of all species in the model that accumulate to;> 0.01 piM.
Major isoforms of U-, 5-, T- and D-KaiC are represented in black, red, green and blue
respectively. KaiC, KaiC-KaiA complexes and KaiC* are shown in solid, dashed,
and dotted lines respectively. Other species shown are free KaiB (orange) and KaiA
(teal), as well as S-KaiC-KaiB complexes (gray). Shaded regions indicate partitioning
of this trajectory into a dephosphorylation-dominated regime lacking free KaiA (I)
and a phosphorylation-dominated regime with KaiA present(II). (C) Diagram of the
reactions in the mass-action model. KaiC phosphoconversion is depicted by reactions
within horizontal planes, while KaiA binding, dissociation and catalytic activation of
each KaiC phosphoform is depicted by the vertical arrows. Si denotes S-KaiC-KaiB-
KaiA2 complexes, while SB denotes S-KaiC-KaiB complexes.
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when all free KaiA is depleted by this binding and excess S-KaiC-KaiB complexes

are present (SB, Figure 5-1C). During simulation, only eleven species accumulate to

appreciable concentration: free KaiA, free KaiB, and nine phospho-KaiC states and

complexes (Figure 5-1C). The detailed dynamics of these eleven species are shown

in Figure 5-1B. The model exhibits a biphasic response consisting of a dephospho-

rylation regime (Regime I marked in the figure) and a phosphorylation regime (II).

Regime I is characterized by the sequestration of KaiA to S-KaiC (S:B:Ai2, where Ai2

refers to the two sequestered KaiA molecules; red trace), the accumulation of excess

S-KaiC-KaiB complexes (S:B; gray curve), and the gradual conversion of D-KaiC and

T-KaiC to U-KaiC. In Regime II, free KaiA (A; teal curve) generates KaiC* species,

which leads to the accumulation of phosphorylated KaiC.

By focusing on the subset of species that accumulate during cycling, we developed

a simplified visual representation for the reactions between these species (Figure 5-

IC). This visual representation includes transitions between the nine populated KaiC

and KaiC* states as well as their respective KaiC-KaiA intermediates, and provides

a useful framework for visualizing the effects of individual reactions on dynamics in

what follows. The diagram consists of three planes: free KaiC (lower plane), KaiC-

KaiA complexes (middle plane) and modified KaiC* (upper plane). Reactions in the

upper plane proceed with kinetics that favor phosphorylation, while reactions in the

lower two planes proceed by dephosphorylation kinetics governed by identical rate

constants. Reactions between planes model the association and dissociation of KaiA,

and the KaiA-mediated modification of KaiC. Finally, in addition to being activated

by KaiA, S-KaiC can also tightly bind and sequester two KaiA molecules, and is

present in S-KaiC-KaiB-KaiA 2 complexes (indicated as Si in Figure 5-1C). During

the dephosphorylation phase, S-KaiC-KaiB complexes (indicated as Sb in Figure 5-

1C) accumulate when no additional KaiA is present to be sequestered. We verified

that this representation is valid because for each of the subsequent analyses performed

by noting that the largest effect of reactions excluded from this diagram is at least 5

orders of magnitude lower than the largest effect of those included.

Thus, we demonstrated that our mass action model reproduces the dynamical re-



sponse of the original model under all conditions used in the original model's fit, and

that although it introduces a large number of species, it can be compactly represented

as transitions between only eleven distinct biochemical species. Taken together, our

initial results indicate the utility of further investigation to elucidate the mechanisms

generating dynamics using our mass action model.

5.3 Diverse reactions modulate dynamical features

in a concerted fashion

We next set out to probe the importance of individual reactions in setting the

dynamical response of the network. To accomplish this goal, we performed oscilla-

tor sensitivity analysis by computing the variation in the oscillation period, angular

phase, and amplitude due to changes in the value of each of the model's "unlumped"

reaction rate constants, essentially using each rate constant as a handle to locally

perturb each reaction individually (see Methods). This type of analysis can provide

insight into the mechanisms responsible for determining specific features of the dy-

namics. A single important reaction can indicate a rate limiting step, or multiple

sensitive reactions can be clustered close to one another, indicating important mul-

tiple contributions to a single, larger scale process [83]. To visualize the resulting

sensitivity profiles, we mapped the sign and magnitude of normalized period, angular

phase, and amplitude sensitivities of each reaction onto the arrows connecting pairs

of species (Figure 5-2A-C).

Figure 5-2A shows the normalized period sensitivities obtained by this method.

The individual normalized sensitivities vary by over five orders of magnitude, indi-

cating that some reactions are significantly more important than others in setting the

period of oscillation in the network. By inspection of the sensitivity magnitudes (ar-

row weights) on this diagram, we find that there are multiple reactions of comparable

sensitivity, and that these reactions are distributed throughout the network; control

over the period of oscillation appears distributed across reactions involving all four
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Figure 5-2: Oscillator sensitivity analysis for the mass action model. (A-
C) Diagrams showing normalized sensitivities of (A) oscillation period, (B) angular
phase of Regime II, taken as the phase difference between U-KaiC and T-KaiC max-
ima, and (C) relative amplitude of total U-KaiC. Arrow thicknesses correspond to
0.01 < |s| < 0.1, 0.1 < 1§1 < 1.0, and |§| > 1.0, where 1I is the absolute value of the
appropriate normalized sensitivity. Arrows are red and green for positive and neg-
ative sensitivities, respectively. Black arrows represent sensitivities |3| < 0.01. (D)
Histogram of the magnitude of correlation between period and amplitude sensitivity
profiles, considering reactions of S-KaiC and D-KaiC phosphoforms (back vertical
plane of Figure 5-iC; brown bars) or reactions of T-KaiC and U-KaiC phosphoforms
(front vertical plane of Figure 5-iC; blue bars). Each count represents correlation
with the relative amplitude sensitivity of a single species.
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KaiC phosphoforms. This distributed sensitivity profile stands in contrast to prior

studies in which similar analyses have been performed [83], and arise regardless of

which dynamical feature is considered (see Figures C-1 and C-2). We suggest that

this distributed sensitivity may be due to the mass conserved nature of this network.

In this system any increase in the concentration of one species necessitates depletion

of others because total protein concentrations are fixed; in a transcriptional network,

an increase in protein level does not deplete its transcript, potentially insulating these

networks from such effects. Indeed, the contrasting prior studies did involve transcrip-

tional feedback [83], consistent with this suggestion. Nevertheless, other differences

between networks may also contribute, including the greater degree of connectivity

in the current network.

An important feature of the sensitivity analysis profile of Figure 5-2A is the group-

ing of sensitivities into self-consistent processes. Here, we define a 'process' as a set of

reactions exhibiting a consistent relationship between species concentration and dy-

namics. For instance, increasing rates leading to generation of S-KaiC* from S-KaiC-

whether in the association of S-KaiC with KaiA or the release of S-KaiC*-always

increase the oscillation period, whereas increasing rates towards S-KaiC production-

whether in the dissociation of S-KaiC-KaiA or in the direct S-KaiC* ---S-KaiC reac-

tivation reaction-have the opposite effect. This consistency finding generalizes to

all KaiC<-+KaiC* reactions, although the sign is flipped for the U-KaiC and T-KaiC

branches. From this framework, two larger self-consistent processes emerge: all reac-

tions from S-KaiC to D-KaiC* in the back vertical plane are of coherent sign, as are

all reactions in the front vertical plane leading from U-KaiC to T-KaiC*. Notably,

although these processes both lead to an increase in T-432 phosphorylation state,

increasing rates from S-KaiC--+D-KaiC* lead to a longer oscillation period, while bi-

asing the network towards U-KaiC--+T-KaiC* shortens the period.

Circadian oscillators might exhibit differential control over various features of their

oscillating dynamics. For instance, modulating oscillation period should have a dele-

terious effect due to the constancy of the 24-hour day, whereas the fraction of the

cycle (i.e., phase) representing day and night might be more tunable to account for



evolution of adjustable strategies and seasonal variation in daylight. We set out to

determine whether the mass action in vitro circadian clock model exhibited differ-

ential control over different dynamical features by comparing the period sensitivity

profile obtained above to those of individual species' amplitudes and phases. Fig-

ure 5-2B shows the angular phase sensitivity profile for the fraction of time spent

in the phosphorylation regime (Regime II). Such an angular phase sensitivity only

computes the fraction of the total cycle spent in the phosphorylation regime; thus,

a low sensitivity value indicates that the time spent in the phosphorylation regime

scale proportionally with the total period. Surprisingly, many reactions important

for setting the period (such as the D-KaiC-S-KaiC arrow representing the largest

magnitude period sensitivity) have a minimal effect on the relative duration of the

phosphorylation phase. We find that this analysis identifies a clustered set of high-

sensitivity reactions governing phosphorylation through T-KaiC*, suggesting that this

phosphoform represents a point of differential control over period and phase.

We next investigated whether these conclusions generalized to other types of dy-

namical sensitivities [84]. Figure 5-2C shows an example of a typical amplitude sensi-

tivity profile for the total concentration of U-KaiC. Compared to the period sensitivity

profile (Figure 5-2A), we observed a high degree of similarity between reaction sen-

sitivities in the S-KaiC/D-KaiC plane (back vertical plane of Figure 5-2C), whereas

reactions comprising the U-KaiC/T-KaiC plane (front vertical plane) varied more

widely. This relationship was preserved when the amplitude of other phosphoforms

was considered (Figure C-1). To quantify this difference, we computed the correla-

tion across all parameters between amplitude and period sensitivity profiles for those

reactions in the front vertical plane and back vertical plane (Figure 5-2D). A high cor-

relation indicates that changes made to one dynamical feature leads to proportional

changes in another feature; such features would be proportionally controlled by these

parameters. We find that for those reactions in the back vertical plane, amplitude and

period are modulated together (p > 0.9 for 7/13 species), whereas reactions in the

front vertical plane modulate these dynamical features differentially (p < 0.3 for 7/13

species). Taken together, our sensitivity results indicate that reactions modulating



S432-phosphorylated KaiC levels (S-KaiC and D-KaiC phosphoforms) broadly con-

trol shared features of oscillation, whereas reactions modulating T431-phosphorylated

KaiC can fine-tune specific features of the dynamical response.

The in vitro circadian clock exhibits a biphasic response characterized by a dephos-

phorylation (KaiA-inhibited) regime and a phosphorylation (KaiA-activated) regime

(Figure 5-1A). We reasoned that while sensitivity analysis identifies important bio-

chemical reactions for modulating dynamics over a full trajectory, the contribution

from specific reactions during portions of that trajectory might vary. To separate the

effects of parameters in the phosphorylation and dephosphorylation regimes, we com-

putationally added a fictitious enzyme cascade, E -- X, that is activated by KaiA

and catalyzes the conversion of all KaiC species to a corresponding modified form

that behaves with identical kinetics, but distinct parameters. We verified that this

procedure for isolating sensitivities in each regime does not lead to any changes in

the overall model trajectories (Figure 5-3A), and that the sum of the sensitivities in

the two regimes are equal to the overall period sensitivity (data not shown).

The resulting period sensitivities are shown in Figure 5-3B-C. In the dephospho-

rylation regime (Figure 5-3B), only a single reaction shows a sensitivity comparable

to the high magnitude sensitivities in the full model: the conversion of S-KaiC to

U-KaiC. The sign of this sensitivity indicates that increasing the dephosphorylation

rate of S-KaiC leads to a decrease in the oscillation period, as would be expected

from the rationale that phosphorylation resumes when S-KaiC levels fall below the

concentration required to fully inhibit KaiA. That this is the only reaction with appre-

ciable sensitivity suggests the dephosphorylation of S-KaiC functions as a classical

rate-limiting step governing transition from dephosphorylation to phosphorylation.

This interpretation is supported by its threefold lower magnitude than the preceding

D-KaiC* +S-KaiC* reaction.

The dephosphorylation regime's sensitivity profile contrasts starkly with that ob-

tained from the phosphorylation regime (Figure 5-3C), which much more closely

resembles the full model's sensitivity profile. In this decomposition, an additional

feature emerges. All reactions leading towards the production of S-KaiC in the phos-
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Figure 5-3: Partitioning trajectories into phosphorylation and dephospho-
rylation regimes. (A) Computational partitioning of the full model through in-
troduction of a fictional enzyme whose activity depends on the presence of KaiA.
Species active during Regime I and II are shown in dotted and dashed lines, respec-
tively, with total U-, S-, T- and D-KaiC trajectories shown in solid lines. (B-C)
Normalized period sensitivities for each parameter's contribution during (B) regime
I (dephosphorylation) and (C) regime II (phosphorylation) only. Arrows are as de-
scribed for Figure 5-1A.
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phorylation regime have negative sensitivities (green arrows) and are opposed by re-

actions with positive sensitivities (red arrows), indicating that increasing conversion

to S-KaiC decreases the period of oscillation. This suggests that progression through

the phosphorylation regime is dominated by the delay in producing S-KaiC. We note

that many of these sensitivities have comparably high magnitude, indicating that

S-KaiC formation may rely on multiple reactions rather than a single rate-limiting

step. The S-KaiC -- U-KaiC conversion is high in magnitude but opposite in sign in

the two regimes, supporting the hypothesis that reactions govern specific processes

at different times during a trajectory.

5.4 Minimal oscillating subnetworks identify feed-

back loops required for oscillation

Oscillator sensitivity analysis applied to the in vitro circadian clock identifies

modes along which dynamics co-vary, and suggests sets of reactions representing pro-

cesses with self-consistent effects on system dynamics. While sensitivity analysis has

been useful in other studies to identify feedback loops governing dynamics, the high

magnitude sensitivities in the circadian clock are distributed throughout the network

(Figure 5-2A-C). We reasoned that enumerating subsets of reactions that still undergo

oscillation would be a stringent test to identify reactions important for generating this

dynamical response.

Because the transformations between the dominant KaiC isoforms are character-

ized by twelve phosphoconversion reactions and eight KaiC<-KaiC* conversion pro-

cesses, we were able to exhaustively enumerate all models in which combinations of

these reactions were removed. (For larger networks in which enumeration would not

be feasible, other procedures such as a greedy search for reactions may be useful). In

this procedure, reactions were removed by setting their corresponding rate constants

to zero; other parameter values were not allowed to vary. Figure 5-4A shows the inci-

dence of oscillating subnetworks as all combinations of reactions are removed. Rows



represent reactions between planes, and columns represent reactions within planes

connecting the dominant KaiC isoforms (Figure 5-iC). We found that oscillation is

preserved in 9, 454/1, 048, 576 subnetworks, 0.9% of the possible configurations. The

horizontal and vertical banding pattern of Figure 5-4A indicates that the inclusion of

certain reactions can give rise to oscillation in a variety of configurations, indicating

that many of the oscillating subnetworks identified by this approach share compo-

nents of core oscillator modules.

We further probed this observation using a computational procedure to identify

these oscillating modules, which we termed minimal oscillating subnetworks (MOSs).

This was performed iteratively by (1) finding the oscillating subnetwork with the

fewest number of reactions and (2) removing all networks containing this set of reac-

tions from the remaining pool of oscillating subnetworks. This procedure identified

two sets of reactions giving rise to oscillation (Figure 5-4B-C). These two MOSs do

not share any closed loops between the different KaiC isoforms, yet simulation of

both subnetworks generates oscillating trajectories with the same ordering of S-, U-

and D-KaiC peaks, suggesting that at least two independent sets of feedback loops

are capable of driving oscillation in this network.

Although the dynamics generated by these two MOSs are similar, the subnet-

works represent very different mechanisms of oscillation. The first subnetwork con-

sists of a closed loop coupling dephosphorylation from D-KaiC through S-KaiC to

U-KaiC (bottom plane, Figure 5-4B) with phosphorylation progressing through the

T-KaiC* intermediate (top plane, Figure 5-4B), the kinetically favored intermediate

because the U-KaiC*--T-KaiC* reaction is an order of magnitude faster than the

U-KaiC*--+S-KaiC* reaction. This reaction scheme, comprising a chain of intercon-

version steps arranged in an a cycle, is very similar to that described by Rust et al. as

a likely mechanism for oscillation in the full network [65]. This subnetwork does not

include either positive feedback loop between KaiA and S-KaiC, and only includes

one of the full network's two negative feedback loops. By inspection of its topology,

we reasoned that the mechanism used by this subnetwork to generate oscillations is a

single negative feedback loop where phosphoconversion reactions represent multiple
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Figure 5-4: Identification of oscillating subnetworks. (A) Exhaustive enumer-
ation of oscillation status for knockout models. Rows represent different combinations
of the eight reactions, while columns represent the twelve KaiC phosphoconversion
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subnetworks are shown in white. (B-C) Diagrams indicating the minimal oscillating
subnetworks (MOSs) of the mass action model. (D-E) Simulations over two full pe-
riods of oscillation of representative MOSs from (B-C). The periods of oscillation in
the two MOSs are 25.7 and 30.7 h, respectively.
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intermediate delay steps.

The second minimal subnetwork utilizes a strikingly different topology to generate

oscillation (Figure 5-4C). Like the first subnetwork, it includes a delayed negative feed-

back loop operating through phases of KaiC dephosphorylation and phosphorylation

gated by the interaction between S-KaiC and KaiA. Unlike the first subnetwork, the

phosphorylation phase progresses through S-KaiC* rather than T-KaiC*. In addition

to this negative feedback loop, the second MOS requires KaiA-mediated activation of

S-KaiC, forming a strong positive feedback loop. The action of this positive feedback

loop can be intuited by considering the beginning of the phosphorylation phase, when

levels of S-KaiC decrease enough for a small amount of KaiA to escape inhibition.

Some of this free KaiA activates S-KaiC to S-KaiC*, which reacts quickly to form

D-KaiC*, freeing additional molecules of KaiA and closing the positive feedback loop.

This positive feedback loop acts quickly, as modification by KaiA is assumed to be

nearly instantaneous, and interconversion between S-KaiC and D-KaiC are among

the fastest phosphoconversion reactions in the system (Table C. 1). Oscillators uti-

lizing a fast positive and slow negative feedback loop are often termed relaxation or

hysteresis oscillators [26], and many oscillating phenomena are thought to be driven

by such a topology [77].

We identified both a hysteresis and delay oscillator in the in vitro circadian clock

network. However, in the full biological system, both oscillators are present together,

and they share many species and reactions. This mode of organization is not spe-

cific to this system; rather, many biological networks include seemingly redundant

connections [14]. We set out to identify the relative contribution from both mini-

mal subnetworks to the overall system dynamics. For metabolic networks and other

mass conserved systems, analysis of flux through different reaction pathways has long

been appreciated as a useful tool for gauging the relative utilization of these path-

ways [143,144]. We applied a flux analysis scheme to our full model to assess the

contribution of the two oscillator motifs described above. We tracked the total con-

centration flux over time through each of the twelve KaiC interconversion connections,

with the sign convention that positive flux flows towards increasing phosphorylation



and modification state (Figure 5-5A). The resulting fluxes for all twelve reactions are

shown in Figure 5-5C-E. The sum of all fluxes into each node leads to the evolution

of total protein concentrations shown in Figure 5-5B.

This procedure provides some insight into the relative importance of different

reactions along the periodic orbit. Initially the flux is dominated by dephosphory-

lation, leading to low concentrations of active KaiC* species (Figure 5-5C). During

this phase, contributions from the two oscillating subnetworks are indistinguishable,

as these subnetworks share the reactions through which dephosphorylation proceeds.

These subnetworks diverge in the subsequent phosphorylation phase, allowing their

influence to be tabulated separately. To measure fairly the contribution through each

subnetwork, we use the minimum flux along a pathway as a measure of the overall

flux through that pathway:

JT* =min{ JU*-T*, JT*-D*} (5.1)

Js* =min {JU*-s*, JS*-D*} (5.2)

where JT* and Js* are the overall fluxes through each of the two subnetworks, and

Jc-c' is the flux through a specific KaiC conversion reaction. This "flux-limiting

step" approach accounts for eddies within sets of reversible reactions that would oth-

erwise overestimate the overall flux passing through these reactions.

Figure 5-5C shows that while the U-KaiC*+-+T-KaiC * conversion is fast (green

trace; approximately 2.5 pM total KaiC flows through this branch), far less subse-

quently flows from T-KaiC* to D-KaiC* (teal trace), indicating that the overall flux

through the first subnetwork is strikingly lower than would be assumed from consid-

ering the kinetically favored T-KaiC*-*D-KaiC* reaction alone. This difference can

be understood by noting the strength of the opposing dephosphorylation reactions

that limit the amount of D-KaiC* formed by this branch. Notably, the total flux

through the T-KaiC*+D-KaiC* pathway follows a trajectory very close to that of

U-KaiC*- S-KaiC* (blue trace), the first reaction along the negative feedback loop of

the second subnetwork. (The subsequent S-KaiC*-D-KaiC* flux includes this sub-
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Figure 5-5: Analysis of fluxes in the full network. (A) Diagram of flux analysis
procedure. The flux passing between nodes along each branch was tracked during one
period of oscillation from the full model. Sign conventions are taken such that the flux
is considered positive when flowing towards increasing phosphorylation state within
each horizontal plane, or towards autokinase-enhanced KaiC between planes. (B)
Simulation of the full model, beginning at the onset of Regime I, from which all fluxes
are computed. The concentrations of total D-, S-, T- and U-KaiC are plotted over
time. (C) Integrated flux as a function of time between all KaiC* phosphoforms. As
in (B), the x-axis shows time elapsed since the beginning of Regime I. See Figure C-4
for fluxes through all other branches. (D) Integrated flux after one full period through
the T* (blue trace) and S* (green trace) subnetworks as k*su and k*r, the reaction
rates associated with these subnetworks, are simultaneously varied. (E) Variation in
oscillation period (blue trace) and the length of the dephosphorylation phase (green
trace) relative to the initial parameterization, as the reaction rates associated with
each subnetwork are varied as in (D).



network's fast positive feedback loop, leading to its larger magnitude). From these

data we reason that the flux-limiting reactions through each pathway are balanced

in magnitude throughout the phosphorylation phase; thus, the full network utilizes

each of its two oscillating submodules equally.

What benefit might be provided by driving dynamics using two balanced, coupled

oscillating motifs? Each of the two motifs we identified shares a similar oscillation

period, but varies in the timing of activation of the KaiC phosphoforms driving oscil-

lation. We hypothesized that modulating the flux through each motif might provide a

key functionality to the circadian clock: a mechanism to tune oscillation phase with-

out a strong effect on period. The cyanobacterial circadian clock has been shown to

align KaiC phosphorylation with the day/night cycle: KaiC is hypophosphorylated

during daylight hours and hyperphosphorylated at night [145]. To test this mecha-

nism, we varied the reaction rates corresponding to the flux-limiting steps for each

minimal network (U-KaiC*-+-S-KaiC* and T-KaiC*-->D-KaiC*), and monitored the

fluxes through each subnetwork, JT. and Js.. Figure 5-5F shows the total integrated

flux through each subnetwork; the full time-dependent fluxes are shown in Figure C-

4. The full network continued to support oscillation over an approximately 20-fold

variation in these rate constants, over which the flux through each subnetwork could

be tuned in a graded fashion. For each resulting parameterization, we measured the

period of oscillation and the length of the dephosphorylation phase (Figure 5-5G).

We found that varying the utilization of each subnetwork supported phases from 60%

to 200% of the initial model, with less than a 20% variation in period.

5.5 Conclusions

In this chapter, we have identified the principles underlying the operation of a

complex network, a detailed model of the cyanobacterial circadian clock. Using local

sensitivity analysis, we found that the sensitive parameters represent self-consistent

processes controlling oscillation period, amplitude and angular phase. We identified

portions of the network utilizing a classical 'limiting step' (e.g. progression through



the dephosphorylation-dominated oscillation regime) as well as those exhibiting more

distributed control. Large scale perturbations to network structure revealed that

two motifs-a delayed negative feedback oscillator and a hysteretic negative-positive

feedback oscillator-are contained in the full network. By tabulating fluxes through

these two motifs we found that they are each utilized to drive dynamics. Finally, we

suggest a mechanism by which these two motifs can provide control over day/night

phase, with only a small effect on oscillation period.

To accomplish these goals, we developed two general approaches for mapping dy-

namical features to the biochemical reactions that control them. The first approach

relies on sensitivity analysis to features of oscillation. Sensitivity analysis is typically

used to identify individual reactions to which an system output is sensitive. We take

a different approach, using sensitivities to identify clusters of important reactions and

comparing sensitivity profiles between multiple dynamical features. While sensitivity

analysis is an efficient technique for probing the effect of parameter changes on dy-

namics, it is a local method applied to individual parameters. Large-scale, concerted

changes in multiple parameters might have effects different than those expected from

this local characterization. Our work does demonstrate that in one case, large-scale

perturbation to parameters in both motifs modulate phase and period consistently

with the expected sensitivity result (Figure 5-5F; compare to Figure 5-2A-B). This

agreement may be system-dependent, and should be verified for other networks to

which such methods are applied.

In the second section of this work, we exhaustively enumerated subnetworks capa-

ble of generating an oscillatory response. This approach is especially well suited for

extracting intuition from densely connected models such as the system studied here,

but may also be useful to identify functional motifs in gene regulatory networks. For

this procedure, removal of some reactions (e.g., opposing forward and reverse reac-

tions) might be expected to occur in a concerted fashion. To ensure that the MOSs

we identify represent biologically meaningful combinations of reactions, we repeated

their identification while requiring the simultaneous removal of KaiC-+KaiC* and

KaiC*-+- KaiC reactions and of free KaiC and complexed KaiC-KaiA dephosphoryla-



tion reactions. This procedure yielded two MOSs similar to those obtained from the

large-scale approach (Figure C-3A-B). Notably, the two subnetworks undergo oscilla-

tion with a period of 21.5 h and 21.2 h respectively (Figure C-3C-D), suggesting that

their coupling productively contributes to the dynamics of the full network (whose

period is 21.5 h).

The approaches described here allow identification of reactions and motifs that

control dynamical responses of interest. Here, we chose to focus on the oscillation

period, amplitude and phase, characteristics of intuitive importance for a circadian

system. However, additional features might be important in other modes of operation,

such as this oscillating network's coupling to other transcriptionally-driven feedback

loops, or its operation under variation in light and temperature. When applied to

these other features, the methods described here might identify further subsets of

reactions, and additional network motifs.

As part of this study, we constructed a mass action model with identical dynamics

to those of the abstracted model, but that explicitly represents each protein-protein

complex and modification state. This 'unpacking' procedure proved crucial for iden-

tifying the motifs contributing to oscillation. In the original model, each KaiC phos-

phoform was represented as a single dynamical variable. In this treatment, even the

sign of KaiA's effect on S-KaiC levels-and therefore, the identification of positive

or negative feedback loops between S-KaiC and KaiA-will depend on the concen-

trations of these and other species. Thus, identifying specific positive and negative

feedback loops is challenging, as the number and sign of these loops will depend on

the network's operating point. Mass action biochemical models typically implement

network connections that are monotonic and consistent in sign, which resolves this

challenge and may allow for the application of other analytical tools [51,52].



5.6 Methods

5.6.1 Model construction

We constructed a model based on that described by Rust et al. (henceforth re-

ferred to as the original model). The model was implemented in MATLAB R2008b

and is available upon request (from BT). This model uses mass action chemical ki-

netics, implementing first- and second-order reactions that represent the association,

dissociation, and modification of the three Kai proteins. To facilitate matching the

dynamics of the original model, we ensured that in the limit of fast association and

dissociation, our mass action model simplified to the exact mathematical form of the

original model.

Our model implements three classes of reactions: (1) binding and activation of

all KaiC isoforms by KaiA, (2) the binding and sequestration of KaiA and KaiB to

S-KaiC, and (3) the phosphoconversion of KaiC. For the third class, we found that

the simplest mass action representation of the reactions described by Rust et al., in

which KaiC and KaiA reach a fast binding equilibrium and the KaiA-bound form of

KaiC undergoes enhanced autophosphorylation, did not produce oscillation. Further-

more, using optimization to vary the model's rate constants to match the oscillatory,

phosphorylation, and dephosphorylation data of ref. 65 did not lead to a close fit of

one model to the other (unpublished data). We found that this discrepancy was due

to the low total concentration of KaiA (1.3 pM) relative to that of KaiC (3.4 PM),

implying that the concentration of free KaiA would be depleted upon binding, an

effect not treated in the original model's binding equilibrium expression. We instead

implemented a three-state model in which KaiA catalyzes the modification of KaiC

after binding, and only this modified KaiC (denoted KaiC*) has an enhanced rate

of phosphorylation. The KaiC* state could approximate a persistent conformational

change undergone by KaiC after KaiA binding [145], or the effect of KaiA binding

on neighboring, unbound subunits of a KaiC hexamer [62]. Our three-state model

assumes that the phosphoconversion rates for unbound KaiC and KaiA-KaiC com-

plexes are identical, and that KaiC* becomes unmodified with first-order kinetics.



With these assumptions, the model precisely recovers the quasi-steady state limit

modeled in ref. 65 (see Appendix C.1).

Our mass action model consists of 75 state variables (concentrations), 349 re-

actions, 18 distinct reaction rates (which when unlumped correspond to 349 rate

constants) [83], and six non-zero initial concentrations. The number of parameters

is significantly smaller than the number of reactions because many species (such as

free KaiC and KaiC-KaiA complexes) are assumed to undergo certain reactions with

identical kinetics. To ensure that the mass action model matched the dynamics of the

original model, we fitted the mass action model to the U-, S-, T- and D-KaiC trajec-

tories generated by the original model in response to the three experiments used to

obtain their fit, as well as its full oscillatory dynamics. For this fitting procedure, we

performed local optimization using FMINCON configured to use Quasi-Newton [146]

with BFGS [147,148] in the MATLAB Optimization Toolbox Version 4.2. We used

parameters obtained by Rust et al. as initial guesses. For parameters not present in

the original model, representing the association, dissociation, and catalysis reactions

between KaiB, KaiA, and KaiC species, we chose values fast compared to those of

KaiC phosphoconversion. We assessed goodness of fit using the integrated squared

error objective function

tF

G(p) = F | Ymodel(t, P) - Ydata 2 dt (5.3)

where Ymodei(t, p) is a vector of the mass action model's concentration of the total

quantities of U-, S-, T- and D-KaiC, Ydata(t) is the corresponding concentration of

these KaiC isoforms in the original model, and tF is taken to be 72 h, roughly 3

oscillation cycles. The fitted model matched the original model very closely (Figure 5-

1A); all fitted rate constants were within 1% of those in the original model (Table C.1).



Computing oscillator sensitivities for models with mass con-

servation

We computed the sensitivities with respect to each parameter of the period, the

amplitude of oscillation of each species, and the relative phase of the maximum con-

centration of each species. In order to compute these sensitivities, an initial condition

on the periodic orbit and the period of oscillation must first be obtained. We devel-

oped an approach for models of the form

x (t, p) = f (x (t, p) , p) (5.4)

x (0, p) = xo, (5.5)

where x is the n x 1 vector of state variables, p is the vector of parameters and

f(x, p) describes the time evolution of the trajectory x(t, p). For such systems, the

state transition function F(T, xo, p) is defined as

x (T, p) =F (T, x 0 , p) (5.6)

and describes how Eqs. (5.4) and (5.5) map an initial condition xO and a time interval

T to x at time T. Because our system is periodic, we implemented a fixed-timestep

trapezoidal rule integrator to integrate over one period [124]. Due to the cancellation

of errors in Fourier terms, this method has the advantage of spectral convergence

when applied over one period. This formulation also allows the efficient integration

of the corresponding full sensitivity system,

8x_ f~x &f
aX(tp) = I-ax+ (5.7)
ap ' a&x p ap
axa(0, p) = 0, (5.8)

at the same points used in the integration of the forward system. In Eqs. (5.7)

and (5.8), % (t, p) denotes the sensitivity of the concentration of state variables with

respect to all parameters at time t.



For models of this type, one can use Newton's method iteratively solving for T

and xo to satisfy the equation

xO (p) - F (T (p) , xO (p) , p) = 0, (5.9)

where T is the period of oscillation, so Eq. (5.9) expresses the periodicity constraint

on the trajectory of all species relative to an initial condition. The initial condition xO

becomes a function of parameters p because it must be on the limit cycle to initiate

pure oscillation and the location and shape of the limit cycle in phase space depends on

the parameters. For any oscillating system there are infinitely many initial conditions

that satisfy Eq. (5.9) because any point on the periodic orbit will satisfy this equation;

one must add an additional constraint (known as a phase locking condition) to pick out

an isolated solution. We choose to pin the solution to a maximum of the concentration

of the ith species by defining a phase locking function #(x) and fixing its value to pick

an isolated extremum (either a maximum or minimum) on the periodic orbit:

# : x - fi(x, p) #(x) = 0. (5.10)

For the mass action model considered here, a second indeterminacy still leads to a

continuum of solutions to this problem. The oscillation period and initial condition

depend continuously not only on the parameters but also on the total concentrations

of KaiA, KaiB, and KaiC with which the system is initialized; these conservation

constraints must be included to obtain the proper solution to Eq. (5.9) [149]. We

formulate these conservation constraints as

CTx(t, p) = CTxo(t, p) (5.11)

where C is the n x 3 matrix that sums model species to obtain the three conserved

total protein concentrations. The constraint equations (5.10) and (5.11) must be

satisfied directly by the solution (xo, T); to apply them in solving for the sensitivities

in Eq. (5.12), their derivatives with respect to parameters must be included.



To compute the period sensitivity from the point (xo, T) on the limit cycle, we

followed a boundary value problem (BVP) approach [83], which solves the systemE F OF OF ,T)In - e x OX ap (X0, T

CT 0 F =1 0 (5.12)
aT

We define amplitude sensitivity for a species x as the sensitivity of difference

between the maximum and minimum concentration achieved during the cycle; this

can be calculated by evaluating the sensitivity system at the times of these maxima

and minima:

-- = -(ti,max, P) - (ti,min, P). (513)
09P 0P aP

Finally, we define the angular phase sensitivity 64j as the sensitivity to parameters

of the timing of the maxima of species xi and xi relative to the oscillation period.

Intuitively, the angular phase sensitivity measures the fraction of the period orbit

spent between these peaks. It can be computed using Eqs. (5.14) and (5.15), where

is the sensitivity of the peak time of species i to parameters, and O and O areOp O p-

the Jacobians of the ODE system with respect to state variables and parameters,

respectively.
D, t - t I OBT (5.14)

Op T Op 0p T2 ap

at* -1 (Of?, Ox Of (5.15)
8p f . f48x 9p p

For all analysis in this work, we converted the raw sensitivities described above to

their corresponding relative sensitivities,

Osi _ 05% Pj (5.16)

ayi~ - pi Si,

defined by normalizing each raw sensitivity D to both to the value of the parameter

pj and feature si.



As stated previously, many corresponding reactions in the model are assumed

to occur with identical reaction rates. In order to separate the effects on period,

amplitude, and phase of these individual reactions, we assigned a unique parameter

to each reaction and computed sensitivities with respect to these 349 'unlumped'

parameters [83]. This procedure did not change the simulated dynamics of the model,

as the 349 parameters were assigned their original 18 distinct values. We note that

this procedure is a useful computational tool, and its application is not meant to

imply that these reactions can be modulated independently in the biological system.
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Chapter 6

Conclusions and future directions

The introduction to this thesis posed a question: can we develop a predictive, end-

to-end understanding of a cell decision process? In the subsequent chapters, we have

demonstrated that interconnecting pathways to such an end-to-end understanding is

feasible. Along the way, we developed a new understand of pathways at three levels

of complexity, drawing on techniques from cell biology, biochemistry, mathematics

and computer science.

The p53 protein is a crucial node regulating the cell's response to stress and confer-

ring protection against tumorigenesis. Its importance is evidenced by its inactivation

in cancer: approximately 40% of tumors harbor p53 mutations preventing its induc-

tion of downstream genes. Alongside its clinical significance, p53 is a signaling hub,

serving as an integration point for signals arising from a variety of inputs, as well

as an activator of multiple distinct output pathways [33]. Understanding signaling

through such hubs provides a challenge to the biologist. How can distinct down-

stream fates be chosen by a single protein when it is activated by different signals,

in specific contexts? In Chapters 2 and 3, we quantitatively addressed two potential

answers to this question: the dynamics of activation may select certain downstream

programs, and the systems-level properties of the connections between upstream and

downstream pathways can provide higher-level logical control.

Dynamics offer a resolution the dilemma of hub signaling. Different patterns of

activation can select individual downstream fates, or provide a mechanism to sense



the time or duration of an input signal. However, while such mechanisms have been

proposed and tested theoretically, experimental evidence for them has been largely

lacking. To demonstrate the causal relationship between dynamics and downstream

processes such as target gene activation, features of these dynamics must be perturbed

and the resulting effect measured. This procedure is reminiscent of the classical ap-

proach for determining the function of individual network components: silencing,

knockout, and overexpression experiments can demonstrate the effect of individual

genes on system function.

In Chapter 2, we provide a framework for the application of these approaches

to probe mammalian signaling dynamics. Through quantitative construction and

investigation of a reduced p53 circuit, we identifying three perturbations that al-

low dynamical features, rather than genes, to be modulated individually. Through a

synthetic transcriptional input, we can tune p53 pulse amplitude without affecting

frequency or the rate of damping. Model prediction, coupled with experimental vali-

dation, demonstrates that additional synthetic feedback loops tune damping without

affecting amplitude, and that frequency can be modulated through parameters con-

trolling p53-Mdm2 feedback. These results provide a platform permitting a new line

of investigation. By treating individual dynamical features as entities that can be

'knocked down,' their contribution to system function can be assessed.

In Chapter 3, we have described a series of complex interactions linking DNA

damage induced by ionizing radiation to cell cycle arrest. This work demonstrates, to

our knowledge, the first attempt at integrating large models of mammalian pathways

to understand their combined function. The full model comprising both pathways re-

vealed new systems-level organization, showing that multiple mechanisms of cell cycle

arrest can each contribute individual features to the cell's response. It was also able

to match the data of combinations of mechanisms observed experimentally, showing

that multiple mechanisms interact with one another to properly maintain arrest.

One of the major sources of complexity that arises in the cell cycle is the multi-

plicity of closely related proteins participating in its regulation. Each of the cyclins

E, A and B represent families of related proteins, rather than single entities. Not one,
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but three protein phosphatases-Cdc25A, Cdc25B, and Cdc25C-can participate in

activating these cyclins. A third example of this multiplicity arises in the cyclin-

dependent kinase inhibitors, p21 and p27, which play overlapping roles in cyclin/Cdk

inactivation. This multiplicity can have surprising consequences. For instance, a

number of cell cycle regulators can be knocked out without affecting the cell's ability

to cycle, including cyclin D, cyclin E, or the Cdc25 isoforms [110,111]. Notably, our

model is able to recapitulate many of these results (B.2).

However, despite this robustness of function, some seemingly-redundant species

confer specific and irreplaceable functions. In this thesis, we identify a role for p21

in conferring protection against endoreduplication after DNA damage. This function

cannot be provided by the related cyclin-dependent kinase inhibitor p27, as it requires

the induction of p21 by p53 in response to damage. This specific role suggests an

explanation to a prior clinical observation: although p53 is so frequently mutated

in response to cancer, inactivation of p53 downstream genes such as p21 is much

rarer. Our work shows that maintaining p53 activity in the absence of p21 reveals

systems-level problems in the maintenance of cell cycle arrest, leading to reentry into

the wrong cycle phase.

This work demonstrates the possibility of deriving new insights from interconnect-

ing models of mammalian signaling pathways. Applying this approach to additional

pathways may yield immediate insights into other cell decisions. Many DNA dam-

aging agents and other stresses signal through the p53 pathway, which in turn can

regulate apoptosis and DNA repair in addition to cell cycle arrest. It will be critical to

extend these efforts through characterizing additional pathways experimentally and

computationally, and work to integrate them into a quantitative picture of the larger

network. Some important pathways that await integration are:

1. signaling through ATR/Chk1 and p38 in response to UV and DNA alkylating

agents,

2. regulation through ARF in response to oncogenic stress,

3. apoptosis and its regulation by p53 its upstream kinases, and
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4. a detailed treatment of mitosis and mitotic failure.

Incorporating these pathways into combined, mechanistic models can offer comple-

mentary insights to those obtained through statistical modeling, such as PLSR and

Bayesian network analysis. In particular, accounting for the specific temporal profiles

of signals poses a challenge to statistical models but can be naturally captured in an

ODE framework. Together these approaches hold great promise in overcoming the

challenges faced by systems biology to quantitatively predict and provide intuition

into biological processes.

Some signaling interactions are conferred by well-understood biochemical machin-

ery, such as the enzymatic action of a kinase on its substrate, or binding between

a protein and its ligand. As an increasing number of signaling processes are under-

stood in detail, however, it is becoming clear that such simple binding-equilibrium

and enzymatic processes are not ubiquitous, and might even be in the minority. ATM

activation after ionizing radiation proceeds through the cross-phosphorylation of inac-

tive dimers, and their subsequent dissociation. Scaffolding proteins can provide both

spatial and kinetic selectivity of pathway activation. While theoretical studies have

demonstrated the potential power conferred by specific biochemical mechanisms, we

lack practical techniques to gain intuition for the operation of natural systems ex-

hibiting this complexity.

We addressed these challenges by developing mathematical and computational

techniques that can be applied to a biochemical systems governed by mass action

kinetics. Using two complementary approaches, we identified the mechanisms under-

lying the operation of a detailed biochemical model of the cyanobacterial circadian

clock. By making infinitesimal perturbations to the full system, we showed that a dis-

tributed set of reactions control dynamics in the full network, but that these reactions

cluster into groups of self-consistent processes. These processes provide a principled

approach towards abstracting the detail of individual reactions to more general path-

way components with a defined effect on dynamics. We found that these processes

also controlled multiple dynamical features in concert, demonstrating their generality.

Notably, the processes we identified were not clustered into intuitive feedback loops,
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as had been observed in transcriptional networks, systems with a much lower degree

of connectivity between components.

To obtain an intuitive picture of the network topology driving dynamics in such

densely connected networks, we took an approach utilizing larger scale perturbations.

By exhaustively enumerating the subnetworks still capable of oscillation, we were able

to identify two motifs driving dynamics in the circadian system. Each oscillates with a

period of approximately 1 day, and the two motifs coupled with roughly equal weight

in the full system. Motifs, especially those driving oscillating dynamics, have been

the subject of much scrutiny in recent years, and identifying the design principles of

biological oscillators is an open area of research. Here, we reveal a novel oscillator

topology, consisting of coupled delay and hysteretic motifs, in a network consisting of

only three proteins. This topology generates robust oscillation, as is apparent from

the success of this model in explaining observed experimental data, even when oscil-

latory data was not part of the fitting procedure. Furthermore, it provides a specific

advantage in a circadian system: the ability to tune the phase of oscillation without

affecting the period. This is useful because it provides a mechanism for maintaining

a 24 hour cycle while accounting for seasonal variation in the number of daylight

hours. Indeed, cyanobacteria are found at a variety of latitudes, suggesting that this

tunability could provide a selective advantage. It should be noted that the techniques

we employed to identify these motifs are general, suggesting that in the future, more

complex motifs can be similarly identified and characterized.

Our results demonstrate that densely interconnected biochemical networks can be

both described in mechanistic detail, and analyzed to offer intuition for the function

of the full system. Future work must translate this initial success to considering larger

networks in more complex contexts. For instance, different ErbB heterdimereric com-

plexes and modification states make the EGF network an ideal candidate for these

methods' application in a mammalian system. While our sensitivity analysis based

approaches can translate immediately to more complex networks, exhaustive enumer-

ation of subnetworks is limited to smaller systems by the complexity of this approach,

scaling combinatorially with the number of reactions. However, there is considerable
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room for improvement in efficiency through the use of guaranteed search procedures,

especially if enumeration of only the minimal subnetworks are desired.

Through these studies, we have demonstrated a paradigm for coupling the anal-

ysis of detailed, mechanistic pathway models to the intuition gained from biologicial

experiments. In this paradigm, a model is quantitatively matched to a broad variety

data from a well-studied pathway, and the addition or modulation of specific compo-

nents are tested exhaustively across the parameters controlling their action, leading

to predictions that can qualitatively discriminate behavior across a range of parame-

ter values. Through application to the mammalian DNA damage response, we used

this approach to comprehensively demonstrate how synthetic feedback loops and re-

action rate constants affects p53 dynamics a reduced pathway, and to identify broad

classes of arrest states in the cell cycle network through the action of stoichiometric

and enzymatic inhibition, as well as transcriptional repression. Successive rounds of

closely coupled modeling and experimentation are an absolute requirement for this

approach, as exhaustive sampling of the behavior resulting from new connections is

only feasible if it proceeds from an existing quantitative understanding, and can be

subsequently verified experimentally.
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Appendix A

Supporting materials and methods

for Chapter 2

A.1 Estimating pulse statistics from trajectories

We used frequency, amplitude and rate of damping to quantitatively characterize

oscillatory trajectories. For both experimental and computational data, we estimated

these three characteristics from measurements of the steady state concentration (x.)

and the times tmLa and amplitudes xmax of the ith maxima during oscillation. For

experimental data, where autofluorescence near the time of cell division often obscured

dynamics, we split trajectories before and after cell division events and computed

frequency and damping independently for each.

We estimated the frequency of oscillation by computing the differences in timing

between successive peaks using the equation

LO - i~i)27r W( .1
t - t ,(A.1)

where the average is taken over all pairs of pulses throughout the population of cells.

We ensured that this approach yielded similar results to those obtained by pitch

analysis as in [12]. To estimate the amplitude of the first pulse, we computed the

ratio of the steady state concentration to the peak concentration. This measurement
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represents the fold upregulation of p53 from its basal level.

ai(= x1L/x8 . (A.2)

To estimate the rate of oscillatory damping, one must take into account both the

relative amplitude of subsequent pulses as well as the time elapsed between them.

We assumed that damping between successive extrema occurred via an exponential

decay, and that this decay is offset from the origin by the steady state level of protein:

X(tmax) - Xss (x0 - xes)e- . (A.3)

We verified that these assumptions accurately fit the behavior of successive peaks

obtained from simulation. From measurement of maxima of successive pulses, we

could compute the the decay constant of this exponential decay for each trajectory

according to the formula

log K ax - xts - log (x X (A.4)

where the average is again taken over all pairs of pulses throughout the population

of cells.

Our live cell microscopy experiments measured levels of exogenous p53-CFP fu-

sion protein in individual cells; we do not expect the endogenous p53 copy to be

affected proportionally as it is not under the control of a zinc-inducible promoter. In

order to correctly account for the endogenous protein level in our calculations of p53

pulse amplitude and damping, we used Western blotting to measure the induction of

total protein levels during the first p53 pulse after 25 and 50 pM ZnCl2 stimulation

(Figure A-1B). We observed some change in endogenous p53 levels, although these

differences were much smaller than the increase in exogenous protein levels. This

change may be due to competition for Mdm2 binding between exogenous and en-

dogenous p53, leading to indirect stabilization of the endogenous protein.
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By summing the total protein in both the endogenous and exogenous bands, we

found that zinc induction leads to an approximately 2-fold (11-fold) activation af-

ter zinc treatment at 25 (50) pM. We used these points to compute the equivalent

fluorescence intensity expected from endogenous p53 using the equation

( p53 exg+ p53 endoug( max~ +p3fdJ) - f(A.5)
(p53"xo

9 + p 5 3 endog)

where f denotes the total p53 pulse amplitude after zinc treatment (as measured by

Western blot), p53e 0 9 is the mean first-amplitude fluorescence observed by live-cell

microscopy, p5 3endog is the unknown equivalent fluorescence of endogenous p53, and

p53exog is mean initial level of exogenous p53 observed by live-cell microscopy. For our

initial experiment of zinc stimulation, we obtained a least-squares solution using our

data at 25 and 50 pM to solve for p 53endog, and computed the p53 amplitudes at each

zinc concentration using this value and the corresponding p5 3e o9 values determined

by microscopy. In every subsequent experiment, we included a 50PM zinc treatment

control to compute the corresponding value of p 53endog and obtain an estimate for the

true amplitudes associated with p53 dynamics.

A.2 Model construction and parameterization

Our model of the core p53-Mdm2 negative feedback loop was based on the topology

of Model IV from Ref. 12. Rather than a stiff delay, we implemented a boxcar

procedure of 3 linear ODEs representing the combined delay of translation, protein

folding, and nuclear translocation (i.e. 1 < i < 3 in Eq. (A.6)). The perfectly

stiff delay is recovered in the limit of an infinite number of boxcar steps, and as we

assume equally distributed b6xcar steps, our approach does not add any additional

parameters. The full model is shown in Eq. (A.6) and all results were generated using
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the parameters listed in A.1.

=a(1 +pZ(t))- 1 N(t)P

40 =0 (aO + 00 K 2 -in 0 ) (A-6)

r =amm4 - Om-- 6,mim
Kmm +m

To compare the negative feedback model with data after zinc induction, we esti-

mated the transfer function from zinc stimulation to p53 induction through the action

of MTF1. From initial model simulations, we found that the the p53 first pulse am-

plitude scaled linearly with the transcriptional stimulus applied to the model (data

not shown). However, we observed experimentally that zinc dose scaled superlinearly

with amplitude. We fit a Hill-model saturation curve (Eq. (A.7)) with n = 3 rep-

resenting this transfer function to the experimentally observed p53 increase in first

pulse concentration at five zinc concentrations (Figure A-iD), and used this transfer

function to map specific zinc doses to the model input Z(t) for all subsequent anal-

yses. The remaining parameter values matching experimentally determined pulse

amplitudes, frequencies and timings were determined by hand and are listed in Ta-

ble A.1; the qualitative features of these trajectories were observed over a broad range

of parameter values.

TF(z) = a '' (A.7)
Kgn + zn

A.3 Noise simulations

Noise in protein synthesis rates constitutes a major source of variability in mam-

malian cells, and varies with a correlation time on the order of hours [12, 21]. We

modeled variability between cells using our core NF model by implementing mul-

tiplicative transcriptional noise on the parameters a, and azmO. To incorporate a
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nonzero correlation time without driving the system with a strongly periodic signal,

we implemented a simple iterative algorithm to generate Gaussian colored noise as

described in Ref. 150. In applying this algorithm, we chose a correlation time T of

5 hours and a standard deviation a = 0.1, and a sampling time of 10 minutes. To

numerically integrate the ODE system in the presence of this noise function, we as-

sumed that the value of the noise term was constant between sampling times. Similar

results were obtained using a sampling time of 1 minute (data not shown), validating

this assumption.

A.4 Modeling synthetic feedback

For predictions and analyses of additional synthetic negative and positive feedback

loops, we constructed an augmented model in which we also included boxcar equations

for p53 and MTF1 (or MTF1-KRAB) protein production (the full models are shown

in Eq. (A.8), where 1 < i < 4). Because these models add additional positive and

negative feedback loops to the original negative feedback (NF) circuit, we refer to

them as NPF and NNF systems, respectively. No parameter values of the p53-Mdm2

interaction were modified in construction of these models. Furthermore, because the

Mdm2 promoter was used to drive MTF1 expression, the same parameter values

were used to represent p53 induction of MTF1 as used for Mdm2. We ensured that

in the absence of feedback, these augmented models led to identical p53 and Mdm2

dynamics as the NF model. Table A.2 list the parameter values used for these models.
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_Ypo(apo + p 2 P _0) (NPF model)
POK 2

ypo(aop + /pOZ(t) Kj+/2 - Po) (NNF model)

Pi lpo(Pi-1 - Pi)

P01 pP4 6P-mp
1I +N(t)

rh0  Yrno(amrn0 + 3m0K + p 2 - in)

m~ = 7Ym0(mi_1 - mi) (A.8)

T4 = O'm4 - 6 m m - 1mm
Km + m

f0 = f0 (af0 + Of0 K + p 2  fo)

fi ~ YfO(fi-1 - fi)

f = f!f f 4 - '7f f

After this procedure, two sources of parameters remained unconstrained: the delay

through the synthetic feedback loop represented by p53 and MTF1 protein synthe-

sis, and the feedback strength represented by the effect of variable MTF1 levels on

p53 production. We did not know a priori which values these processes would take,

and chose to query oscillatory characteristics over a wide range of parameter values.

For this analysis, we sampled the parameters lfo and /p0 (to change delay time and

feedback strength, respectively) at 51 points one order of magnitude above and below

their nominal parameterization, and computed the resulting p53 amplitudes, frequen-

cies and damping coefficients; the full results are shown in Figure A-3. We briefly

summarize and discuss these results here.

For the synthetic negative feedback loop, we observed damped oscillation with a

first pulse amplitude and frequency that remained consistent across delay times and

feedback strengths (Figure A-3A-C). The damping results varied widely, and trajec-

tories were both stabilized and destabilized for some values of the parameters being
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varied. Both long and short delay times stabilized the system by increasing the oscil-

lation damping rate. Examination of the corresponding trajectories showed that for

many of these, a single first pulse dominates the dynamical response. Notably, how-

ever, we found the addition of the synthetic negative feedback loop could destabilize

oscillation if its delay time is tuned near that of the corresponding parameter in the

p53-Mdm2 loop (blue region, Figure A-3A).

As we had observed for the synthetic negative feedback, addition of a positive

feedback loop did not have a pronounced effect on frequency and amplitude except

at strong feedback strengths (Figure A-3D-F). Examination of the corresponding tra-

jectories in this regime indicates a single high-amplitude pulse followed by low ampli-

tude pulses. The transition to this regime was sudden, occurring over a small range

of feedback strengths (see Figure A-3E, upper region); at lower feedback strengths,

only a small dependency of frequency and amplitude on the presence of feedback

was observed. Like the NNF system, the NPF system is predicted to have a more

pronounced effect on damping, but with opposite effects (Figures A-3A,D). For a

broad range of parameter values, the synthetic positive feedback loop is predicted to

destabilize oscillation. Furthermore, for some values of feedback strengths and delay

times, the model predicts a transition to undamped oscillation (Figure A-3D).

A.5 Parameter perturbation analysis

To map the effect of parameter variation on oscillation amplitude and frequency,

we simulated our model after individually varying each parameter at 50 logarthmically

spaced points from one order of magnitude below and above its nominal value, and

computed the oscillation frequency and amplitude at each point. Simulations were

run for until the 5000 h elapsed or five maxima were observed; simulations that

were not seen to oscillate by undergoing at least three pulses were discarded. The

resulting trajectories are shown in Figure A-4, and are colored lighter for higher

parameter values. The corresponding points in amplitude-frequency space are shown

in Figure A-5. Broadly, we found that parameters affecting the negative feedback
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loop's delay (e.g. -yo. the delay in Mdm2 protein maturation and 6p, the rate of

Mdm2-mediated p53 degradation; see Figure A-5C,D,F) had the largest effect on

frequency, while basal protein production rates (e.g. ap and co for p53 and Mdm2,

respectively; see Figure A-5A,B,E) had a smaller effect on frequency.

A.6 Supplementary experimental methods

A.6.1 Immunoblots

Western blots were performed as described previously [13]. Antibodies used were

anti-p53 (DO-1, Santa Cruz Biotechnology) and anti-#-tubulin (E7, Developmental

Studies Hybridoma Bank).

A.6.2 Cell lines and expression constructs

Mdm2p-YFP was constructed previously as described in Ref. 9. MCF7 cells were

transfected (FuGene6, Roche) and stable clones were selected by flow cytometry for

expression of YFP.

A.6.3 Time lapse microscopy

MCF7 Mdm2p-YFP cell line was imaged using FMS2 for 48 hours every 20 min

after addition of differing concentrations of ZnCl 2. Cells were analyzed as described

in Materials and Methods.
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Parameter Parameter
name value

p53 protein production rate
Zinc-mediated increase in p53 production rate

Mdm2-mediated p53 degradation rate
Nutlin-associated decrease in p53-Mdm2 assocation

Mdm2 mRNA basal transcription rate
p53-mediated Mdm2 mRNA transcription rate

Saturation of p53-mediated Mdm2 production

Mdm2 production delay
Mdm2 protein production rate
Mdm2 degradation rate
Mdm2-mediated Mdm2 degradation rate
Saturation of Mdm2-mediated Mdm2 degradation

[p53/h]
[1/Zn]
[1/h]
[1/EC50]
[Mdm2 mRNA]
[Mdm2 mRNA]
[p53]
[1/h]
[Mdm2/h]
[1/h]
[1/h]
[Mdm2]

Table A-0: Parameters for the core p53-Mdm2 negative feedback (NF)

model. The table indicates each parameter's name, its nominal value, a description

of its effect, and the units in which it is measured.

Parameter
name

Parameter
value Description Units

p53 mRNA basal transcription (txn)
NPF p53-mediated Mdm2 mRNA txn
NNF p53-mediated Mdm2 mRNA txn

Saturation of p53-mediated Mdm2 prod.
Mdm2 production delay
Mdm2-mediated p53 degradation
Mdm2-mediated p53 degradation
Nutlin-associated decrease in p53-Mdm2 assoc.
Mdm2 mRNA basal txn
p53-mediated Mdm2 mRNA txn
Saturation of p53-mediated Mdm2 prod.

Mdm2 production delay
Mdm2 protein production
Mdm2 degradation
Mdm2-mediated Mdm2 degradation
Saturation of Mdm2-mediated Mdm2 deg.
feedback species mRNA basal txn
NPF p53-mediated Mdm2 mRNA txn

NNF p53-mediated Mdm2 mRNA txn

Saturation of p53-mediated feedback prod.
Feedback protein production delay
Feedback protein production
Feedback protein degradation

[p53 mRNA]
[Mdm2 mRNA]
[Mdm2 mRNA]
[p53]
[1/h]
[p53/h]
[1/h]
[1/EC50]
[Mdm2 mRNA]
[Mdm2 mRNA]
[p53]
[1/h]
[Mdm2/h]
[1/h]
[1/h]
[Mdm2]
[feedback mRNA]
[feedback mRNA]
[feedback mRNA]
[p5 3]
[1/h]
[feedback protein/h]
[1/h]

Table A-0: Parameters for the synthetic p53-Mdm2 models. The table in-

dicates each parameter's name, its nominal value, a description of its effect, and the

units in which it is measured. Parameters changed between models incorporating

synthetic positive (NPF) and negative (NNF) feedback loops are indicated with su-

perscripts. Dynamics of the core NF loop in the absence of feedback (obtained by

setting #fo to zero) are identical to those obtained from the original NF model.
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Description Units

aP

pn

ama

#mo
Kmo

Y.0
am

Ym
6m

Km

0.040
1.529
0.329
1.738
0.052
0.554
0.744
0.239

1
0.016
0.748
2.169

agopqNPF
qNNF

YJpoKpo
7Po

au

a m o
Smo
Kmo

7Ymo
am

Yrn

6m
Km

afo
/qNPF

'- NF13f

Kf o

'Yfo
af

7YU

0.040
14.82
0.317

2
3.293

1
0.329
1.738
0.052
0.554
0.744
0.239

1
0.016
0.748
2.169
0.040
0.396
31.05
0.744

1
1

0.853

name value
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Figure A-1: Cell population data of the first p53 pulse after zinc stimu-

lation. (A) Detailed schematic diagram of the negative p53-Mdm2 feedback circuit,
showing the three nonlinear reactions (bold arrows in center) representing the ac-

tion of p53 on the Mdm2 promoter, the ubiquitination of p53 by Mdm2, and Mdm2

autoubiquitination. (B) Timecourse of endogenous p53 and exogenous p53-CFP lev-

els in MCF7 cells after addition of 25 or 50 pM ZnCl2. Cells were collected every

hour and analyzed by Western blot. (C) Timecourse of total p53 induction, quantified

from the Western blot in (A). All samples are normalized to tubulin and are shown

relative to the value at t = 0. (D) The p53 first pulse amplitudes at five zinc concen-

trations (points represent as mean + s.e.m.) are shown with the best-fit Hill equation

(Eq. (A.7)) with parameters a = 62.77, K2, = 30.47 and n = 3. (E) Percentage of

cells that divide within 24 h after zinc treatment. 25 and 50 pM data shows the

mean of four independent experiments; 0 pM (untreated) results were tabulated from

a single experiment.
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Figure A-2: p53-responsive YFP induction in response to varying inducer
levels. (A) Representative single-cell trajectory showing p53-CFP (blue curve) and
YFP fluorescence (green curve) intensities over time. Automatically identified max-
ima and minima are shown as points on each trajectory; vertical cyan bar represents
time of cell division. (B-C) First pulse amplitude (mean + s.e.m) for (B) p53 and
(C) YFP curves at three zinc concentrations. Data points are normalized to 0 pM
condition.
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Figure A-3: Predictions for addition of synthetic feedback loops. (A-C)

Prediction of (A) p53 damping, (B), p53 amplitude and (C) p53 frequency coefficient

for the model incorporating a second negative feedback in addition to the core p53-
Mdm2 loop (NNF model). X and y axes represent 51 logarithmically spaced values

from O.1x to 10x the nominal parameter value for the MTF1 protein production

delay -yfo and synthetic feedback strength fo, respectively. Colors map values as

indicated on each panel. (D-F) Predictions for the model containing a synthetic

positive feedback loop (NPF model). All plots were generated as described in (A-C).
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Figure A-4: Effect of parameter perturbations on oscillatory trajectories.
Trajectories from the core negative feedback model are shown for a range of values
of key model parameters. In each panel, p53 concentration is plotted over time for
21 logarithmically spaced values of the variable parameter, ranging from 1.5 orders
of magnitude below to 1.5 orders of magnitude above its nominal value. Parameters
shown are (A) ap, (B) pz, (C) 6p, (D) yo, (E) ao, (F) #o, (G) Ko, (H) 6., and (I) Ky.

117

C
0

'

tlJ
a )

. ......... :.: ..................... ......... .. ...

.BEasal p53 productio n Zinc-inducible p53 production



A Basal p53 production
2

.4 1.5
0 1

0.5

0 2 4 6 8 10 12

Mdm2 production delay ~
2

. 1.5

0.

0.
0 2 4 6 8 10 12

G p53-dependent Mdm2 prod. saturation H
2

-1.5-

E
< 0.5

00 2 6 8 10 12
Time between pulses [h]

b5 Zinc-inducible p53 production
2

1.5

1

0.5

00 2 4 6 8 10 12

Basal Mdm2 production
2

1.5

0.5

0 
'

0 2 4 6 8 10 12

Mdm2 degradation
2

1.5

0.5

00 2 4 6 8 10 12
Time between pulses [h]

Mdm2-dependent p53 degradation
2

1.5

1

0.5

00 2 4 6 8 10 12

F p53-dependent Mdm2 production
2

1.5

0.5
0

0 2 4 6 8 10 12

Saturation of Mdm2 degradation
2

1.5

0.5

00 2 4 6 8 10 12
Time between pulses [h]

Figure A-5: Effect of parameter perturbations on oscillation amplitude

and frequency. The variation in oscillation features are shown for a range of values

of key model parameters. In each panel, curves trace the oscillation frequency and

first pulse amplitude at different logarithmically spaced values of an individual model

parameter, ranging from 1.5 orders of magnitude below to 1.5 orders of magnitude

above its nominal value. Parameters shown are (A) a,, (B) Pz, (C) 6p, (D) yo, (E)

ao, (F) Oo, (G) Ko, (H) oy and (I) Ky.
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Appendix B

Supporting materials and methods

for Chapter 3

B.1 Computational model of the integrated cell

cycle and DNA damage network

Model construction

The integrated model is comprised of sub-models for the cell cycle and the DNA

damage response. The DNA damage signaling model consists of 72 state variables

and 135 nonzero parameters, while the cell cycle model and its mechanisms of arrest

consists of 31 state variables and 85 nonzero parameters. Both are ordinary differen-

tial equation models that describe rates of change of concentrations of proteins and

other species resulting from chemical reaction processes.

The cell cycle model is based on a recently published model by Tyson and col-

leagues (1). In the original model, it was assumed that a variety of molecular species

react quickly and are at quasi-steady state. Such species are represented by algebraic

rather than differential equations. In order to incorporate interactions between these

species and the DNA damage model, we expanded the algebraic relations into dy-

namical equations. In addition, we added protein synthesis and degradation reactions
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for each species in the model to simulate the decrease in protein synthesis caused by

cycloheximide treatment, an experiment that helped define the restriction point in

mammalian cells (2). These changes affect the equations governing the dynamics of

the model species Weel, Cdc25C, TFE (E2F1), TFB (Mcm), and APC (model species

are named according to the Tyson model). We ensured that the model's freely cy-

cling dynamics were unchanged by incorporating synthesis and degradation of each

cell cycle protein, and by treating variables dynamically rather than at steady state.

These changes were essential for simulating arrest, as this process requires dynamical

interaction with cell cycle proteins, and can connect to the cell cycle by reducing

protein synthesis rates.

The Tyson model links cell cycle progression to cell size by setting cyclin synthesis

rates proportional to an exponentially increasing cell mass (1). While size dependent

progression through the cell cycle has been shown in yeast, the existence of such a

mechanism in mammalian cells is not well understood (3). In addition, the regula-

tion of cell growth during arrest is poorly understood, and initial simulations of cell

cycle arrest without incorporating such regulation resulted in growth to unphysical

cell sizes (data not shown). We therefore define a mitogen parameter, M, represent-

ing the intracellular signal resulting from extracellular growth factors present in the

medium. We model this mitogen parameter's effect as increasing the synthesis rates

of CycD and CycE transcripts, replacing their dependence on cell size. For cell cycle

simulations we set M = 1.8 unless otherwise indicated, a value that leads to cyclin

synthesis rates comparable to those attained with the original model.

The topology of the DNA damage model was derived from the model of Batchelor

et al., in which oscillations are driven by a combination of two negative feedback

loops: the core p53-Mdm2 loop and a loop in which the upstream checkpoint kinases

are inhibited by a p53-inducible gene product, the phosphatase Wip1 [11]. To provide

an extensible framework for future modeling of the DNA damage network, we incor-

porate additional feedback loops involving p53 [14] in our model (FigureB-1A shows a

detailed network diagram). With the current parameterization, however, these loops

do not significantly affect the network's dynamics.
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Modeling cyclin knockouts and the restriction point

To test the model's ability to match known experimental results for mammalian

cells, we simulated serum starvation and cycloheximide treatment. To do the for-

mer, we modeled an immediate, step-like decrease in M from 1.8 to 1 at different

times during a normal cell cycle (FigureB-1B,B'). These simulations recapitulate the

existence of a restriction point: if M is decreased within 3 hours of cell division,

cells arrest immediately in G1, while for later serum removal times, a full cell cycle

is completed before the cell arrests. Cycloheximide treatment is simulated by a de-

crease in all protein synthesis rates by 20% at various times, leading to similar results

(FigureB-1C,C'). For cyclin D and E knockout simulations, the synthesis rates and

initial conditions of these species were set to zero. For M = 2, the cyclin E-/- model

still cycles, albeit more slowly (FigureB-1D). At this mitogen level, however, the cy-

clin D-/ model undergoes GI arrest. The cyclin D-/- model only cycles for values

of M , 10, consistent with the qualitative observation that cyclin D-/- cells have an

increased mitogen requirement for proliferation (FigureB-1E).

Modeling cell cycle arrest

In addition to the cell cycle arrest mechanisms described in detail in the main

text, other interactions leading to arrest have been described, for example (4, 5). To

ensure that the interactions we consider are representative of the space of possible

GI and G2 arrest mechanisms, we systematically applied arrest by stoichiometric

inhibition, enzymatic inactivation or transcriptional repression to all species of the

cell cycle model.

Modeling arrest mechanism biochemistry

We modeled cell cycle arrest using three distinct biochemical interactions: protein

inactivation by inhibitor binding, protein inactivation by enzymatic phosphorylation,

and a decrease in protein level by repression. In the first of these, species x is

inhibited by the inhibitor I through reactions modeling inhibitor binding formation
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of the complex c, as well as the degradation of each constituent species (Equation

B.1). Any additional species-specific terms governing the dynamics of are kept, and

the protein's specific degradation term, denoted by VD,i, is assumed to act on both the

bound and unbound species. We assume the inhibitor is upregulated in proportion

to the level of tetrameric nuclear p53.

Xi = (other terms) - kfxiI + kc - VD,ixi + kdI

I ksp53 4np (t) - kdI + VD,ixi (B.1)

c kfxiI - kc - VD,ic - kdI

We model enzymatic phosphorylation by a Michaelis-Menten rate law in which species

x is modified to an inactive phosphorylated form xf by phospho-Chk2 (Equation

B.2). The phosphorylated form is assumed to degrade at the same rate as the un-

modified form.

- = (other terms) - kcatChk2p (t) - VD,iXi (B.2)

ip = kcatChk2p (t)M X - VD,iX(

Finally, protein synthesis inhibition was modeled through a repressive saturation term

dependent on tetrameric nuclear p53 (Equation 3). This term modulates the protein's

usual production rate, denoted by k82.

KD
D = k P4n (t + (other terms) (B.3)

KD + p534np (t )

To vary arrest strength as shown in Figs. 2 and S3, we varied the values of k5,

kcat, and KD in the equations for the three interactions. The initial value of each was

set at the limit required for cell cycle arrest, and varied to two orders of magnitude

in the direction of stronger arrest.
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Analysis of individual arrest mechanisms

To obtain a comprehensive picture of how cell cycle arrest could be achieved

by different biochemical implementations and cell cycle targets, we inhibited each

cell cycle protein individually by each binding, phosphorylation and transcriptional

repression. The results of this analysis are shown in FigureB-2. We find that cyclin

profiles can be grouped into different types of arrest: mechanism I-like GI arrest with

high GI cyclins and low G2 cylins; mechanism II-like G2 arrest with high G2 cyclins

and low GI cyclins; mechanism III-like G2 arrest with low G2 cyclins and high G1

cyclins; M-phase arrest characterized by high cyclin B but low cyclins A and E (6);

and finally S-phase arrest characterized by high cyclin A but low cyclins E and B.

All of the resulting arrests fall into the three classes of GI and G2 arrest described in

the main text, with the exception of interactions leading to arrest in M- or S-phase,

which are less prominent in response to DSBs. Inhibiting some species by any of

the three mechanisms did not lead to arrest; these species are not pictured. We find

that different choices of biochemical implementation frequently lead to qualitatively

similar arrest phenotypes, and that inhibiting proteins at similar points in the cell

cycle (e.g. cyclins D and E; cyclin A and TFE; APC and Cdc20) also leads to similar

arrests profiles. Thus, the cell cycle arrest mechanisms discussed in the main text,

implemented via canonical targets and biochemical interactions, are representative of

larger subsets of targets and interactions that lead to similar arrest states (e.g. (4,

5)).

Model simulation details

Computing cell cycle transitions

For all freely cycling simulations (Fig. 1B and during each optimization run), the

G1/S, S/G2, and M/G1 transitions were identified as the first peak times of cyclin E

(CycE), phosphorylated cyclin B (pB) and APCCdc20A (Cdc20A). However, during

cell cycle arrest simulations, cyclin trajectories might not peak, or peaks might be

significantly lower than during the corresponding free cycling simulation. For arrest
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simulations, the G1/S transition was defined as the time at which CycE reached 90%

of its maximal free cycling value. Similarly M/G1 transitions were defined as times at

which Cdc20A reached 80% of its maximal value. For arrest simulations, we assume

that S phase is of fixed duration, equal to the duration in freely cycling cells.

Simulating DNA damage and measuring arrest steady states

We modeled the induction of DNA damage as the presence of an input S, repre-

senting DSBs as well as accessory proteins such as the MRN complex assembled at

the site of damage. This input was modeled as capable of binding inactive ATM2

dimers and catalyzing their phosphorylation and disassociation. At the time of dam-

age tD, S was set to a value of 1, while at the time of recovery from arrest tR, S

was returned to a value of 0. The dynamics of p53, Wip1, and Chk2 cause cyclin

levels to oscillate with low amplitude during arrest (Fig. iC-F). In generating Fig.

2, we computed an approximate steady state by averaging cyclin levels from 180-200

h after constant application of the damage stimulus that causes p53 oscillations. We

confirmed that the averages were unchanged compared to the preceding interval from

160-180 h, indicating that steady state has been reached.

Simulating populations of cells (Fig. 4, S4 and S5)

The distribution of cell ages in a free cycling population is expected to follow the

distribution given by Equation B.8. Thus, for Figs. 4C,D 5A and S8D, 500 cells

were simulated with initial ages (and corresponding initial conditions) sampled from

this distribution. Damage was induced by applying the damage stimulus to all cells

at t = 0. To account for damage repair, we implemented a simple model of the

stochastic repair of DNA damage (7), parameterized using values found in literature,

and measured the distribution of repair times (FigureB-6A). We modeled the initial

damage distribution in each cell to be Poisson distributed with a mean of 25 DSBs per

Gy (8) and a distribution of 80% easy and 20% difficult breaks. Simple breaks were

repaired with a half-life of 15 min, while difficult breaks were repaired with a half-life
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of 10 h (9, 10). We assumed cell cycle reentry occurs when fewer than three breaks

remain (7). FigureB-6B shows the distribution of repair times from 500 simulations

of this stochastic process as computed by independent runs of the Gillespie algorithm

(11), compared to a Gaussian distribution with mean 35 h and standard deviation

10 h. Despite presumed completion of DNA repair, p53+/* cells remain arrested for

the duration of our experiments. We model this process as sustained activation of

p53-dependent arrest mechanisms.

B.2 Analyzing experimental data for fitting

Quantifying the fold-change in cyclin levels during arrest

Two types of flow cytometry measurements were used to train the model to HCT

p53+/+ and p53-/- data: (i) the fraction of cells in G1, S, and G2, and (ii) the

distribution of cyclin B and E levels during G2 arrest. To extract typical cyclin E

and B levels reached during arrest, we fit log-normal distributions to the data of Fig.

3 at each time point (FigureB-5). A single log-normal distribution was fit to the

unimodal G2 cyclin E levels at each time point. GI cyclin E levels were bimodal,

possibly indicating that early-Gi and late-Gi subpopulations vary in cyclin E levels;

for these data, a sum of two log-normal distributions was used. The G2 cyclin BI

data was fit by a sum of three log-normal distributions.

We measured the fold change of cyclin E levels after G2 arrest by computing

the ratio of the mean of the log-normal cyclin E distribution in arrested G2 cells to

the mean of the high cyclin E distribution in freely cycling G1 cells. Similarly, we

computed the fold change in cyclin BI levels from the means of the most populated

G2 cyclin BI peak during arrest to the mean of the highest peak in freely cycling

G2 cells. In each case, the mean intensity of the appropriate isotype control was

subtracted from each measurement to remove background fluorescence. To capture

the levels attained during each cell line's arrest, we performed this analysis at the 48

h time point for HCT p53+/+ cells, and the 24 h time point for HCT p53-/- cells (as
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many p53-/- cells have re-entered the cell cycle at later times).

Quantifying the time spent by HCT cells in G1, S, and G2/M

To measure the amount of time spent by HCT p53+/+ and p53-/- cells in G1, S,

and G2/M, we assumed that unirradiated cell populations at 0 h are completely asyn-

chronous, and that they maintain a stationary distribution across cell cycle phases.

However, because cells undergoing mitosis divide into two daughter cells, the observed

distribution does not directly reflect the amount of time spent by an individual cell

in each cell cycle phase. Instead, young cells will be over-represented relative to older

cells. To properly account for this bias towards observing young cells during prolif-

eration, we derived an analytical distribution of cell age in a stationary population

(similar derivations can be found in (12)).

We considered a model in which cells progress through N states before dividing,

and all transitions between states occur at the rate a. We represented this process as

the linear system of ordinary differential equations (ODEs) shown in Equation B.4,

where the factor of 2 arises from a parent cell dividing into two daughters.

X1 = 2 aXN - aX 1

= aX_1 - aXi (B.4)

XN = aXN-1 ~aXN

While the total number of cells in such a model diverge, the fractions of cells in each
N

phase, computed by normalizing to the total population XT = X, approach a

steady state. We denoted these fractions as state variables xi = Xi/XT. Taking
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derivatives of x terms, we defined a new system of nonlinear ODEs (Equation B.5).

xi = 2 axN - ax1 - ax1XN

xi = axi_1 - axi - axiXN (B.5)

XN (XN-1 -aN ~- aX2

This system was analytically solved at steady state to obtain expressions for each

species xi, and resulted in an exponential distribution (Equation B.6).

= x, 2-N 1  
(B.6)

X1 = 2 )1 - 2-

For the linear transitions in the model of Equation B.4, the mean time spent in each

state Xi is given by ri =-, and the total mean cell cycle period is T = N. Froma7 a

these results we defined the probability distribution PN [t] of mean cell age in terms

of the cell population xi.

PN[t= (B.7)

PN It] = Po - 2 N

In the limit of large N, the distributions of ages in each stage become arbitrarily

narrow around each state's mean lifetime, representing a deterministic cell spending

a fixed amount of time in each stage. In this limit, the distribution of cell ages becomes

continuous in time. We non-dimensionalized this distribution by normalizing the age

variable to the total period (i.e. defining -r = t), so that the probability distribution

of cell ages in the free cycling population can be written as shown in Equation B.8.

pO (T) = 2log2 -2-' (B.8)

r E [0, 1]

From this distribution and the relationships of Equation B.8, we solved for the time

spent in GI, S and G2/M by an individual cell given any observed distribution of
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cells in these phases.

%cG1I= fo" p (r) dr = 2 (1 - 2 -T,)(B9

%G2/M = f1T2 p (T) dr = 2T2 - 1

We obtained the fraction of cells in each cell cycle phase from the measured DNA

profiles by fitting distributions to a modified Dean-Jett model (13) (see Methods),

and computing the number of cells in each fit population. The measured population

data, and its conversion to the time spent in each phase, is reproduced in Figure S3C.

B.3 Fitting the model to data

Mathematical notation for fitting and sensitivities

Our model takes the form of a system of coupled ODEs that depends on initial

conditions x0 , the time t, the current value of all state variables x, parameters p, and

inputs u.

x = f (t,xpU) (B. 1)

x (0) = XO

We define a model output of interest y (i.e., the sum of all cyclin E or B species, active

cyclin E or B, or Cdc20A) as some linear combination of state variables, formed by

multiplication of the row vector cT with the state vector x. These outputs consist

of total Cyclin E (CycE + TriE + TriE21) to compare to flow cytometry data; total

Cyclin B (CycB + pB + BCKI + pBCKI) to compare to flow cytometry data; active

Cyclin E (CycE) to identify the G1/S transition; phosphorylated Cyclin B (pB) to

identify the S/G2 transition; and APC(Cdc20A) (Cdc20A) to identify mitosis.

y =T x (B.11)
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Fitting procedure details

We performed a local optimization procedure on the cell cycle arrest model. The

aim of this procedure was to find a set of parameters that would allow our fitted

model to simultaneously match: (i) the percentage of time spent in each cell cycle

phase by undamaged, freely cycling HCT p53+/+ and p53-/- cells, (ii) the ratio of

steady state cyclin E and cyclin BI arrest levels to their maximal freely cycling lev-

els, (iii) the requirement for cyclin E-/- and cyclin D-/- cells to still cycle (14, 15),

and (iv) the existence of a restriction point after serum starvation and cycloheximide

treatment (2). In our fitting procedure, all parameters in the cell cycle model and

arrest mechanisms I-III were allowed to vary.

For fitting, we treated p53 and Chk2 as constant-level inputs to the cell cycle

model. p53+/+ cells were assumed to arrest with a combination of arrest mechanisms

I, Ila, Ila, and IlIb, while p53-/- cells were assumed to arrest by mechanism Ila alone.

For the cell cycle model to account for differences in the length of cell cycle phases

between cell lines, we assumed that a basal level of p53 activation is responsible for

some p21 activation in unirradiated p53+/+ cells. This might be due to low levels of

damage incurred during the normal cell cycle, or to p53's involvement in cell cycle

checkpoints in undamaged, freely cycling cells. All other parameters were shared by

both cell lines. Because the total time scale of all simulations was left unconstrained

by data, this degree of freedom in parameter space was removed by assuming a total

cell cycle period of 30 h for wild-type (p53+/+) cells. This constraint was applied by

scaling all parameters that include units of time, and otherwise left all trajectories

unchanged.

At each parameterization during optimization, we ran eight independent simula-

tions: 3 divisions cycles of the p53-/- model; a 200 h simulation of cell cycle arrest in

the p53-/- model; 3 division cycles of the wild-type model; a 200 h simulation of arrest

in the wild-type model; three division cycles of the cyclin D-/- model; three division

cycles of the cyclin E-/- model; 200 h of arrest after cycloheximide treatment at 3 h

after the first division; and 200 h of arrest after cycloheximide treatment at 20 h after
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the first division. These simulations allow comparison to restriction point and cyclin

knockout results, as well as the free cycling and steady state data collected for HCT

p53+/+ and p53-/- cells. We computed various quantities from these simulations. rW

and r2 represent the fraction of the cell cycle spent in GI (2N DNA content) and

G2/M (4N DNA content). Because a normal cell cycle is split only between GI, S,

and G2/M, the fraction of time spent in S is completely specified by these two times.

The r terms represent the ratios of model outputs during arrest to those attained

during normal cell cycling, and is computed as shown in Equation B.12.

C( T - X( (tF)
r M .=(J (B.12)

" Y (t*)

T) is the total cell cycle period, and is computed by measuring the time between

mitoses. Finally, the degree to which steady state is achieved by the final simulation

time is measured by the norm of the time derivative at this time, ||iB) (tF) 2. To

measure the deviation of these quantities from their experimental values, we evaluated

an objective function. shown in Equation B.13. Each line of the objective function

represents terms that are computed after the corresponding simulation.

O (p) =100 (2 - r 2) + (T 1 - )2)

(r2,1E -(2,1) \2 / (2,1) ~ (2,1) 2+ 1315212

+ (r2 - rCycET) + (rCycBT - fcBT + 1 2

loo.(( () -() +± (3) -3)

+ 100 7 - + ) (IG) - (3)2)

+ ( r 4 ,3 - 4 ,3) ) 2 + ( r T - 4 ,3 ) + 1 0 3 1 ( 4 ) 1 2 ( B . 1 3 )

+ 5 0 (T(5 ) T(1))

+ 5 0 (T(6) T(1))

+ (,3 + 10311_7 2

+0 (0.5, r0 +5)(r 0.5) + 6 0.9, rde2OA + 103 2
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This objective takes the form of a weighted sum of squared errors, where individual

terms are scaled so that their contributions are of comparable magnitude. Terms

containing the function 0(a, b), defined in Equation B. 14, only penalize for deviation

in one direction.
Oa < b

0 (a, b) = (B.14)
(a-- b)2 a ;> b

For instance, the term 5 - 0 (T(5 ), T)) only contributes to the objective function

if the period of the cyclin D-/- simulation is longer than that of the normal cell

cycle. If computing this objective function was impossible at any parameter set

during optimization (for example, if arrested cells failed to arrest at all), the objective

function value was set to an arbitrary high number. After fitting, model parameters

had changed from the initial parameterization by no more than roughly an order

of magnitude above and below between the initial model parameterization, with no

parameters reaching upper or lower bounds (FigureB-8A).

Efficient timing sensitivities for optimization

An adjoint method was used to compute the objective function's parameter sen-

sitivities in a computationally efficient manner (16). For this method to be applied,

the partial derivatives " (t) and L(t) must be computed. Because many terms of the

objective function involve the times at which the sum of certain species is maximal,

we solved for the sensitivities to parameters of these times. We define the times of

maxima, t*, as times at which the slope of output y is zero, and its second derivative

is negative. Mathematically, this is written by the two conditions of Equation B.15.

c - f (t*, Ix, P) = 0Y x ) 0 (B.15)
c - VXf (t*, x, p) - cY < 0

Differentiating Equation B.15 and using the chain rule, we derived an expression for

the sensitivity of the timing of the ith species extremum (Equation B.16; a similar
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result is found in Equation B.18 of Rand et al. (17)).

dt* Vxf (t*, x, p) Ox c -vpf (t*, x, p)
dp (c - Vxf (t*, x, p)) - f (t*,x,p) Op (c . Vxf (t*, x, p)) - f (t* x,p)

(B.16)

Notably, terms in this equation can be grouped into the form of Equation B.17. This

form permits the application of the adjoint sensitivity method without ever computing

ax at* t
T, by providing the partial derivatives i and a.

dt* at* Ox at(*- Y -- + "(B. 17)
dp Ox Op 9p

B.4 Fitted model validation

We varied individual parameters in our fitted model to identify parameters that,

when varied individually, remained poorly constrained by our data and optimization

procedure. We also investigated the fitted model's ability to predict experimental

results, including the population-averaged levels of cell cycle species after irradia-

tion and the results of various knockout experiments in freely cycling and arrested

scenarios.

Sensitivity analysis of fitted model

To address whether or not the fitting procedure described above is able to con-

strain the value of individual parameters, we computed the second derivatives of the

objective function with respect to each parameter by taking finite differences of the

adjoint sensitivity (described above) and used these values to estimate the curvature

of the local minimum obtained by optimization. This procedure does not account

for any additional parameter identification provided by constraints satisfied at the

fit (e.g. the requirement of cyclin knockout cells to cycle). To map these entries

to actual changes in parameters, we used the curvature to estimate the change in

each parameter required to increase the objective function by a value of 0.1 from the
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minimum (Equation B.18).

1 d20 2
O (p)~~O (p*)+ 2 log8

2 d(log p)2  ( p

P 2 (0. 1) d1) (B.18)
P * (d (log p)2)

The results of this analysis are shown in FigureB-8B. We find that many parame-

ters, when varied individually, strongly affect the objective function value. Eleven

parameters are sufficiently unconstrained that they have to vary at least twofold to

achieve a change in objective function value of 0.1 (Table B.1). Many of these pa-

rameters are association rates between cyclins and either p21 or p27; binding of these

species might be sufficiently tight such that the precise value of this association rate

is unconstrained. In addition to the parameters pictured in FigureB-8B, this anal-

ysis correctly identified five parameters (kif i-p, kif ib-pp, Jaf i, kaf i, Jif i) that

are infinitely unconstrained. These are all parameters affecting TFI, a species that

is disconnected from the rest of the cell cycle network in Tyson's mammalian cell

parameterization.

Western blot predictions

To further validate the model fitted to the cell cycle timing and steady state arrest

data, we simulated populations of p53+/+ and p53-/- models initially distributed as

a freely cycling population (see previous section) and computationally predicted the

levels of different cell cycle proteins at times after the application of damage (FigureB-

8C). These results were compared with Western blots of total protein levels from HCT

p53+/+ and p53-/- cell lines (FigureB-6C). We find similar qualitative trends between

prediction and experiment, although some changes in protein levels are predicted to

occur earlier than seen experimentally (e.g. Cyclin A and B dynamics in HCT p53--

cells; Cdc20 dynamics in HCT p53+/+ cells).

133



Knockout cell line predictions

We also validated the model by predicting the results of experiments in which

various cell cycle proteins might be targeted for silencing or knockout. As described

earlier, the ability for cyclin D and E knockout cell lines to continue cycling was

considered in Tyson's original model and used as part of the fitting process. To test

the consequences of other deletion experiments, we computationally eliminated each

cell cycle protein individually for low (M = 2) and high (M = 16) mitogen levels,

and compared the simulation results to published experimental results obtained in

mammalian systems. The results are shown in Table B.2. We find that the model

accurately reproduces most known phenotypes, with only two notable exceptions.

Cyclin A-/- cells are predicted to cycle at both low and high mitogen levels, but

experimentally cyclin A is found to be essential. This might be due to unmodeled

functions of cyclin A in DNA replication, such as a basic requirement for initiating

replication. The model predicts that Weel-/- cells can still undergo cycling, although

Weel deletion is embryonic lethal. However, this lethality is due to premature mitosis

and subsequent cell death, indicating that cells lacking Weel continue cycling, albeit

too rapidly. We also tested whether the model predicts normal arrest for knockout

cell lines that are still able to cycle. All knockout cell lines are predicted to maintain

normal arrest regulation except for the Cdh1-/- model, which arrests transiently by

mechanism II but resumes cycling after repair, even in the continued presence of

mechanisms I and III. This prediction is consistent with evidence that Cdhl-/- cells

are able to cycle in the absence of damage, and are defective in maintaining cell cycle

arrest after IR (18).
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kass21e p21-cyclin E association > 1010

kasse p27-cyclin E association > 1010

kass2ed p21-cyclin D association > 1010
kassa p27-cyclin A association > 1010

kiwee-pp cyclin B-mediated Weel inactivation 9.93 x 102

kdie-p cyclin E-mediated p27 degradation 4.49 x 102

kdisse p21-cyclin E dissociation 4.53
kdib-pp cyclin B-mediated p27 degradation 3.02
kdia-pp cyclin A-mediated p27 degradation 2.92
Kp53a p53 repression of cyclin A 2.80

J20 Cyclin B-mediated Cdc20 phosphorylation 2.06

Table B-9: Model parameters expected to vary more than twofold for an objective
function change of 0.1 (using Equation B.18). The parameter name, its biochemical
role, and the parameter variation calculated to change the objective function by 0.1
are shown.

Condition Cycles (predicted) j Cycles (experiment) Arrests

CycD-/- Yes Yes [106] Arrests normally
CycE-/- Yes Yes [33] Arrests normally
CycA-/- Yes No [111] Arrests normally
CycB-/~ No No [112]
CKI-/- Yes Yes [113] Arrests normally

Cdc20~/- No No [38]
Cdh1-/- Yes Yes [109] Continues cycling [109]
Weel-/~ Yes No* [39] Arrests normally
Cdc25-/- No No [34]
TFE~/- No No [35]
TFB-/- No
APC-/- No No [36]

Table B-9: The predicted effect of knocking out any modeled cell cycle proteins, as
well as the predicted effect under arresting conditions for those knockouts expected
to cycle. For knockouts with a reported literature phenotype, the experimental result
and reference are provided. Dashed entries indicate that non-cycling mutants cannot
be further tested under arresting conditions.
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Figure B-1: (A) Diagram of the cell cycle and DNA damage models. Arrest mech-
anisms are labeled in gray. Mechanism I indicates the p53-dependent GI arrest in-
duced by p21. Mechanism II indicates Cdc25 phosphorylation and inactivation by
Chk2 and its subsequent inhibition by 14-3-3 proteins. Mechanism III models the p53-
dependent transcriptional repression of cyclin B and cyclin A. Additional feedback
loops involving p53 are shown, but do not significantly affect the network's dynamics
in their current parameterization. (B-E) Matching experiments form the literature.
Trajectories from the initial model are plotted for all simulations, showing levels of
total cyclins B, A, and E and phosphorylated anaphase promoting complex (APCp)
over 100 h. (B) Serum starvation applied 3 h (dotted line) after cell division leads
to immediate G1 arrest. (B') Serum starvation applied 10 h (dotted line) after cell
division leads to a G1 arrest after the completion of one full cell division. (C,C') Cy-
cloheximide treatment applied 3 and 10 h after cell division have phenotypes similar
to those achieved by serum starvation. (D) The cyclin E~/- model, simulated with a
mitogen level M = 2, is able to cycle. (E) Similarly, the cyclin D~/- model cycles with
M = 10.
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arrest

Cdc20

S-phase
arrest

CycA

CycB

Figure B-2: Each group of three boxes is colored as described for Figure 3-2. In-
hibition of each cell cycle protein is applied by binding, enzymatic modification, or
transcriptional repression by an inhibitor. The resulting arrest states are grouped
into similar mechanisms. (i) Mechanism I-like arrests result in a G1 DNA content
state with high levels of G1 cyclins and low levels of G2 cyclins. (ii) Mechanism II-like
G2 arrests lead to a high G2 cyclin and low G1 cyclin state. (iii) Mechanism III-like
G2 arrests result in a high G1 cyclin and low G2 cyclin state. (iv) The model can
also arrest in a mitotic arrest state by inhibition of APC or Cdc20, in which high
active cyclin B levels maintain a mitotic state. (v) An S-phase arrest state consisting
of high cyclin A levels but low cyclin B levels can arise from cyclin B repression or
cyclin A inhibition.
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Figure B-3: (A) Time courses of DNA content after treatment with 10 Gy IR. HCT
p53+/+ and HCT p53-/- cells were irradiated at 0 h, and the fractions of cells with
G1, S, and G2 DNA contents were measured by FACS at the indicated time points.
(B) Timecourse of p53 levels after DNA damage. HCT p53+/+ cells were irradiated
with 10 Gy at 0 h. Samples were taken every hour and analyzed by western blot.
Densitometric quantification of the western blot, normalized to the maximum p53
level, is shown in the graph below. p53 begins to accumulate after 2 h, and shows
two peaks (6 h and 10 h) in a 12 h period. Similar results were obtained in (19)
(C) Protein levels of cell cycle regulators during the arrest. HCT p53+/+ cells were
irradiated with 10 Gy and samples were taken at the indicated time points. Protein
levels were analyzed by western blot, with tubulin as a loading control. Cyclin A,
Cyclin BI, and Cdk1 are downregulated within the first 24 h of arrest. Concomitantly,
p53 and p21 levels increase and stay high until at least 96 h.
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Figure B-4: (A) Flow cytometry histograms of DNA content and cyclin levels in
untransformed RPE-hTERT cells after IR (10 Gy). Cells were irradiated at 0 h and
stained for DNA content and cyclin levels for 72 h post-irradiation. Histograms of
cyclin levels are gated from the 4N population only. Cyclin B downregulation was
similar to that observed in HCT116 G2 arrested cells. Cyclin E was upregulated by
2- to 3-fold in G2 cells between 0 h and 72 h, a range similar to the 2-fold increase in
cyclin E levels observed in freely cycling G1 RPE-hTERT cells (data not shown). (B)
Quantification of the fractions of RPE-hTERT cells with GI (2N), S (2N-4N), and
G2 (4N) DNA contents as measured by FACS. These cells showed slower cell cycle
and arrest dynamics and a changed ratio of G1 versus G2 arrested cells compared to
HCT116. (C) Fraction of apoptotic subG1 cells in HCT wt, p53-/- and p21-/- cell lines
(mean SE) over time after irradiation with 10 Gy (see Fig. 3, 4 and 5). For HCT
wt and p2l-/-, the fraction of apoptotic cells in the presence of the Cdk1 inhibitor
RO-3306 is shown as well (+Inh., see Fig. 5). (D) Immunofluorescent staining of
-yH2AX in HCT116 wt cells after 10 Gy 7-irradiation. The intensity of -yH2AX and
the number of foci representing individual DSBs is maximal 30min post damage. At
later time points, DNA repair is evident by a reduction in the number of foci, but
cells retain a significant amount of damage throughout the 16h time course.
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Supplementary Figure S3
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Figure B-5: (A) Distribution of cyclin B and E levels in HCT p53+/+ cells. Cyclin
B levels in cells with 4N DNA content showed three peaks, probably representing
G2 cells (intermediate), mitotic cells (high) and cells after metaphase, but before
cytokinesis (low). The sum of three Gaussian distributions (green) was fitted to the
measured data (blue). Cyclin E levels in cells with 4N DNA content were unimodal.
In cells with 2N DNA content, they were bimodal, probably representing early (low)
and late G1 cells (high). The measured distributions were fitted with single Gaus-
sian and the sum of two Gaussian distributions, respectively. The distribution of the
respective isotype controls were fitted with single Gaussian distributions. (B) Distri-
butions of cyclin B and cyclin E levels in HCT p53-/- cells. The measured data was
fitted as described above.
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Figure B-6: (A) Diagram of the stochastic DNA double-stranded break (DSB)
repair model. See Suppl. Text for details. (B) Distribution of repair times from the
model (blue curve), compared to a normal distribution with mean 35 h and standard
deviation 10 h (green curve). Two types of DSBs - easy and difficult to repair -
were modeled, with an initial distribution of 80% and 20% of the total damage,
respectively. Easy breaks were repaired with a half-life of 15 min, while difficult breaks
were repaired with a half-life of 10 h. The initial number of breaks was distributed
according to a Poisson distribution with a mean of 25 DSBs/Gy IR, and repair was
assumed to occur when fewer than three breaks remained. (C) The difference between
the fraction of cells in GI, S, and G2, and the mean time spent by each cell in these
phases. Results for both wild-type and p53-/- cells are shown. The columns labeled
gl, s, and g2 indicate the fractions of cells in each cell cycle phase as determined
by flow cytometry analysis. The columns labeled TG1, TS, and TG2 indicate the mean
time spent in each cell cycle phase, as computed from Equation 9.
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Figure B-7: (A-B) Cyclin distributions from fitted models. The same ensemble of
models used to generate the population data of Figs. 4C,D was queried for cyclin
levels during arrest. (A) Histograms of total cyclin B and E levels are shown at
0, 8, 24, and 48 h after IR for the p53+/+ model. The log species concentration is
plotted as the independent variable. Cyclin B levels decrease quickly, while cyclin
E levels rise gradually by 48 h. (B) Corresponding histograms of total cyclin B and
E levels in the p53-/ model. Levels of both species are largely maintained during
arrest, with an increase in variability as cells re-enter the cell cycle. (C) Time courses
of DNA content after treatment with 10 Gy IR. RPE-hTERT cells were irradiated
at 0 h, and the fractions of cells with G1, S, and G2 DNA contents were measured
by FACS. The same graph is shown in Suppl. FigureB-4B. (D) Model-generated
cell cycle distribution time courses. The model was adjusted to fit the different cell
cycle times of RPE-hTERT cells. 5x10 2 individual model trajectories were simulated
from initial conditions distributed through the cell cycle (see Suppl. Text). In each
simulation, p53 was induced 4 h after damage was applied. The DNA repair time
was selected from the distribution described in Suppl. FigureB-6B (see Supp. Text).
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Figure B-8: (A) Influence of optimization on parameters. The indexed number
of each fitted parameter in the cell cycle arrest model is plotted against the fold-
change in that parameter between the initial and final parameterization. To compute
this change in parameterization, both initial and final parameter sets were scaled
such that the period of the p53+/+ model was 30 h. (B) Parameters constrained
by optimization to the objective function. The plot indicates the fold change in
parameter value required to increase the objective function value by 0.1 for each
parameter considered in optimizing the cell cycle arrest model. Bars corresponding
to parameters that vary more than tenfold are cut off at this value. The horizontal
dotted line indicates a twofold parameter change. Parameters that are unconstrained
to more than a twofold change are listed in Table B.1. (C) Predicted protein levels
in fitted p53+/+ and p53-/- models. Total concentrations of cyclins A, E, and B, p27,
APC, Cdc20, and p21 were measured from a simulated population of 500 cells after
induction of damage. Intensity varies linearly with the concentration of each species,
and both cell lines are plotted on the same scale. The same species' total protein
levels were measured in HCT p53+/+ and p53-/- cells by western blot.
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Figure B-9: (A) Cell cycle simulation from the fitted model showing cyclins E, A,
and B, and phosphorylated anaphase promoting complex (APCp). In the absence
of DNA damage, the fitted model shows qualitatively similar behavior as the initial
model, with consecutive peaks of cyclin E, cyclin A, cyclin B, and APCp. When
DNA damage is applied during G2 phase (13 h), the model arrests with low levels
of cyclins A and B and high levels of total Cyclin E. The level of active Cyclin E is
low, as it is bound by p21 (and to a lesser extent by p27). (B) Cell cycle simulation
in the absence of p21. Without damage, the p21-/- model behaves similarly to the
full model. When DNA damage is applied during G2 phase (13 h), the model arrests
with low cyclin B levels, but intermediate cyclin A levels. Cyclin E levels are higher
then in freely cycling cells, but lower than during arrest in the full model. In contrast
to the full model, cyclin E is active and reaches levels higher than during the normal
G1/S peak, as inhibition by p27 alone is insufficient. Therefore, cells are predicted
to enter S phase without going through mitosis (which would be indicated by a pulse
of APCp), leading to endoreduplication.
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Appendix C

Supporting materials and methods

for Chapter 5

C.1 Mass action model derivation

In this work, we employed a mass action model representing the interaction be-

tween KaiC, KaiA and KaiB, and the phosphoconversion of KaiC. To ensure that

this model recapitulates the findings of the abstracted model of Rust et al., we set

out to ensure that in the quasi-steady state limit, simulations of the mass action

model are identical to those of the original model. The original model represents the

concentration of free KaiA as

A = max {O, S - 2AT} (C.1)

where AT is the total concentration of KaiA, and S is the concentration of S-KaiC.

This suggests a mass action mechanism in which each molecule of S-KaiC tightly and

quickly binds two molecules of KaiA. We implemented this mechanism in our mass

action model, with a KD for S-KaiC-KaiA binding of 10 nM.

The phosphoconversion rate of each KaiC phosphoform is increased by the con-

centration of available KaiA, such that the total phosphoconversion rate from any
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phosphoform C to C', rc-cl, is given by

K 1/2  A
Tc-c, kc-c' A + K 11 2 + kc-c A + K 1/ 2  (C.2)

where kc-c, is the rate for KaiC conversion in the absence of KaiA, and k*-c, is

the conversion rate in the presence of KaiA. The most straightforward mass action

implementation of this rate law, where KaiA binds each KaiC phosphoform with a

KD= K11 2 is unable to match the oscillation and partial reaction dynamics from

the original model or experimental data (unpublished data). This discrepancy arises

because the concentration of KaiA (1.3 pM) is not much larger than the concentration

of KaiC (3.4 pM), which is required for Equation C.2 to be valid under this model.

Instead, we propose a model in which KaiA binds KaiC transiently, and catalyzes

a conformational change or post-translation modification of KaiC that persists after

KaiA dissociation. This modification is subsequently lost through a first order process.

These reactions can be written as

= -kfC.Au+kC:A+kdC* (C.3)

C:A = kfC.A,-kC:A-keC:A (C.4)

= kcC: A - kC* (C.5)

where kf, k, and kc are the forward, reverse and catalytic rates for KaiA's reaction

with KaiC, kd is the rate constant for the first-order regeneration of unmodified KaiC,

and A, = A - C: A is the concentration of unbound KaiA. This model can be solved

at quasi steady state to obtain the concentration of C* in terms of the Michaelis

Menten constant KM = (kc+kr) and the ratio of catalysis to de-modification # =

to obtain

$(1 + &)C*2 - (4CT + Km$ + (1 + $)A)C* + CT * A = 0. (C.6)
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While this quadratic expression is always valid, we find that in the limit of low #

(such that # < 1 and A > #C*) it simplifies to the relation

C* A
(C.7)

CT A + K#

Thus, under the assumption that the modified KaiC species C* reacts with the rate

constant kc-c,, and that both C and C : A react with rate kc-c,, the fraction

of C* given by Equation C.7 exactly recovers the rate law of Equation C.2, where

K112 = #KM. To verify that our fitted model parameters were in this regime, we

computed the concentration of activated KaiC from the original model (using the

expression A+Ki/ 2), and using Equation C.6; the two approaches are in excellent

agreement (see Figure C-5).
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kfsAi 1 x 104  N/A S-KaiC/KaiA association

kfsAi2 1 X 107 N/A S-KaiC/KaiA 2 association
krAi 1 x 103 N/A S-KaiC/KaiA dissociation
kfSB 1 x 105 N/A S-KaiC/KaiB binding association
krCB 1 X 10 3  N/A S-KaiC/KaiB binding dissociation
knsU 0.110 0.110 S-KaiC -+ U-KaiC reaction
ktuT 0.210 0.209 T-KaiC -+ U-KaiC reaction
kdsD 0.310 0.311 D-KaiC -> S-KaiC reaction

k* 0.0532 0.0534 U-KaiC*->- S-KaiC*reaction
k* 0.479 0.481 U-KaiC*--+ T-KaiC*reaction

k*s 0.506 0.504 S-KaiC*->- D-KaiC*reaction

k,* 0.213 0.213 T-KaiC*-+-- D-KaiC*reaction

k* 0.290 0.292 T-KaiC*--> U-KaiC*reaction

kD 0.173 0.173 D-KaiC*- T-KaiC*reaction

kfCA 120 122 KaiC-KaiA association
krCA 640 640 KaiC-KaiA dissociation
kccA 2 x 104 2 x 104  KaiC -+ KaiC*catalytic
kdc 50 49.7 KaiC*--+ KaiC reaction
Ki/ 2  4.30 4.20 Half-maximal KaiC activation

Table C-0: The initial and fitted values of all parameters in the mass action model
are shown. Parameters that were not used in the fit are indicated with a N/A entry

in the 'Fitted value' column. The final parameter K1 /2 is not set independently but

computed as K1/2 = kd (kc+kr) and shown for comparison to the original model.

148

Parameter name IInitial value Fitted value Description



D-KaiC S-KaiC

CD

T-KaiC U-KaiC

Figure C-1: The relative sensitivities to (a) D-KaiC, (b) S-KaiC, (c) T-KaiC, and
(d) U-KaiC amplitudes are shown, where amplitudes are computed as the difference
between maximum and minimum concentration for each species. Arrow thicknesses
and colors are as described for Figure 5-2B.
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U-KaiC - D-KaiC -KaiC - T-KaiC

I. *0

E F

S-KaiC - U-KaiC U-KaiC - T-KaiC

Figure C-2: The relative angular sensitivities are shown for the fraction of the period
between all total KaiC phosphoform maxima. Each pair of phosphoforms is listed in
the corresponding figure panel, where the first species is taken to be the earlier of the
two peaks. Arrow thicknesses and colors are as described for Figure 5-2C.
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A B
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0 T 2T T 2T
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Time relative to osc. period Time relative to osc. period

Figure C-3: (a-b) The two minimal oscillating subnetworks identified from the set
of subnetworks in which KaiC +-+ KaiC*arrows are simultaneously. (c-d) Total KaiC
phosphoform trajectories shown over two oscillation periods corresponding to the
subnetworks of (a) and (b), respectively. The concentrations of D-, S-, T- and
U-KaiC are plotted over time relative to the period of oscillation.
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Figure C-4: (a) Simulation of the full model from which all fluxes are computed.
The concentrations of total D-, S-, T- and U-KaiC are plotted over time. (b-d)
Integrated flux as a function of time between (b) all unmodified KaiC phosphoforms,
(c) all modified (i.e. KaiC*) phosphoforms and (d) between corresponding KaiC
and KaiC*phosphoforms. For each panel, the x axis shows time elapsed since the
beginning of Regime 1.
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Figure C-5: The steady state concentration of KaiC*is plotted against variation
in KaiA concentration across four orders of magnitude, and is computed using the
Ierted fA and Equation C.6 for the abstracted and mass action models, re-

expessonA±K112
spectively. The total KaiC concentration is 3.4 pM.
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