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Abstract

This thesis covers the development of a framework for the application of revenue management,
specifically capacity control, to space logistics for use in the optimization of mission cargo allocations,
which in turn affect duration, infrastructure availability, and forward logistics. Two capacity control
algorithms were developed; the first is based on partitioning of Monte Carlo samples while the second
is based on bid-pricing with high-frequency price adjustments. The algorithms were implemented
in Java as a plugin module to SpaceNet 2.0, an existing integrated modeling and simulation tool
for space logistics. The module was tested on a lunar exploration concept which emphasizes global
exploration of the Moon using mobile infrastructure. Results suggest that revenue management
produces better capacity allocations in shorter duration missions, while producing nominal capacity
allocations (i.e. those in the deterministic case) in the long run.
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Chapter 1

Introduction

1.1 Motivation

Few things capture the imagination as does the exploration of space. However, space exploration is

inherently expensive and complex and thus missions are infrequent. There is a huge opportunity cost

associated with each and every kilogram of mass launched into orbit and it is critical to maximize the

value derived from each and every mission. This paper discusses the extension of the Interplanetary

Supply Chain Management and Logistics Architectures (ISCMLA) framework to include the use of

revenue management (RM), which is the optimization of the revenue or benefit earned from a fixed,
perishable resource [1], in the design, modification, and evaluation of space logistics architectures.

1.2 Space Exploration and Logistics

The next generation of human space exploration will be about true exploration rather than visitation.

The focus is on developing the ability to sustain long-term human human presence while reaching

deeper into space than ever before. Space logistics, or the movement, storage, and tracking of

all crew and equipment necessary to carry out an exploration mission or campaign [2], aims to

tackle the challenge of supporting true exploration. It encompasses nearly every aspect of space

flight operations with the exception of vehicle and infrastructure design. The ultimate goal is to

maximize exploration potential given vehicle performance and infrastructure capabilities, a process

which involves answering two key questions:

1. How best to ship cargo and supplies given an exploration architecture?

2. What cargo and supplies should be shipped for a given mission profile?

1.2.1 Mission Types

Unmanned Cargo

Unmanned cargo missions, as the name suggests, are missions conducted with uncrewed vehicles

for the purpose of transporting necessary cargo from Earth to in-space exploration sites. Usually

unmanned cargo missions are used to deliver large infrastructure items such as habitats and power

equipment; they are also used to resupply logistics in support of crewed missions. Unmanned cargo



flights are particularly important at the beginning of exploration campaigns where their large cargo
capability is critical in quickly establishing a presence at a site, including an initial inventory. The
International Space Station (ISS) relies on unmanned missions carried out by the Russian Progress
vehicle to help meet logistical needs [3].

Sortie

A sortie is a stand-alone mission of a relatively short duration (typically 2 weeks or less) that allows
the exploration of a site without the need to preposition habitats, infrastructure, and consumables.
Sortie missions also allow for exploration of high-interest science sites or scouting of future lunar
outpost locations. In sorties, crew members typically live in the vehicle they travel in, and have
limited mobility around the site. The crew has the capability to perform daily EVAs (extravehicular
activity), typically with all crew members involved to maximize the scientific and operational value of
the mission. All of the Apollo missions and most of the Space Shuttle missions have been sortie-style
missions.

Outpost

Outpost missions are a series of extended flights to the same location. The longer duration (typically
1-6 months per flight) means that outpost missions usually involve significantly more infrastructure
than sorties. The crew usually has a dedicated habitat separate from the transportation vehicle,
which in turn drives the need for more advanced power generation, in-situ resource utilization, and
cargo storage infrastructure. Outpost missions also tend to include more advanced surface mobility
infrastructure to allow for expansive exploration, rather than being limited to the immediate area
around the outpost site. While surface operations during sortie missions are typically dominated by
EVAs, outposts typically feature a more balanced schedule of EVA and IVA (intravehicular activity)
due to limitations from the extreme radiation environment in space, the fatiguing nature of EVA op-
erations, space suit maintenance and repair, and portable life support system logistics [4]. Outposts
are not limited to surface locations, but can also include in space sites. The International Space
Station (ISS) is an outpost in low earth orbit, and outpost missions to ISS are called "expeditions".

Mobile Outpost Concept

The mobile outpost is a hybrid of the sortie and outpost mission types. Mobile outposts combine

some of the best aspects of the sortie and outpost mission types by providing the operational flex-

ibility to explore multiple sites while maintaining more infrastructure in service between missions,

thereby increasing exploration capability at each site. However, mobile outposts depend first and

foremost on efficient, lightweight mobility systems, and also on highly capable power systems inte-

grated into each lander, large habitat shells that can double as pressurized logistics modules (PLMs),
and simplified mating (access, fluids and electronics) of habitat and/or logistics modules. In other

words, mobility adds technological and development complexity to an exploration program. To date,

no space exploration campaign has relied on the mobile outpost concept, however the increasing ca-

pability of mobility platforms like NASA's ATHLETE have brought mobile outposts to the forefront

(see Appendix C).



1.2.2 Logistics Strategies

There are several different logistics methodologies which combine with the various mission types to

form an exploration architecture. The ISCMLA framework defines four different classifications of

logistics methodologies based on the study of terrestrial supply chains:

Pre-positioning This approach focuses on sending cargo and supplies to the exploration site ahead

of the crew, or more generally when the demand materializes [5]. It is typically achieved

through the use of unmanned cargo flights early in a campaign that deliver supplies and

infrastructure in bulk. However, pre-positioning can also be achieved by using excess cargo

capacity on manned flights to build up a gradual stock of supplies.

Carry-along In this approach, all cargo needed for a given mission is brought along on that mission;

in essence each mission is self-contained, and its duration and scope is limited by the cargo-

carrying capability of the vehicles used for that mission.

Resupply In this approach, some cargo is carried along by the crew, but is then supplemented by

scheduled and/or need-based resupply flights. Scheduled resupply flights are pre-determined

cargo deliveries to meet predicted demands (based on historical demand models). In practice,
need-based resupply flights are difficult to achieve due to the long lead time required for launch

preparation.

Depot This approach involves the use of an intermediate distribution center somewhere between

the origin and destination of cargo items. The depot methodology stems from the terrestrial

concept of a multi-echelon supply chain where inventory is held in a depot until it is demanded

by the retailers or customers.

Conceptually, mission types and logistic methodologies are decoupled. However, in practice,
certain logistics methodologies work much better with certain mission types. For example, although

it is possible to have a "super sortie" in which an unmanned cargo flight supports a future crewed

flight, sorties almost always employ a carry along strategy. As exploration architectures become

more advanced, they are supported by increasingly advanced interplanetary supply chains utilizing

more advanced logistics methodologies. In many cases, these methodologies will be hybrids of the

methodologies described above. Figure 1-1 shows a simulated logistics strategy for the Constellation

lunar architecture, which also uses a mix of carry-along and pre-positioning [6].

1.2.3 The ISCMLA Framework

The ISCMLA project aims to study human space exploration from the logistics perspective. As a

result, the modeling framework is quite different from those of traditional space exploration studies.

It focuses primarily on the flow of crew and materials through time and space, with compact para-

metric representations of vehicle form and function. The following terms are commonly referred to

in the Interplanetary Supply Chain Management and Logistics Architectures (ISCMLA) framework,
which includes the following concepts:

Classes of Supply (CoS) capture the main functional categories of cargo that are needed to sup-

port human exploration. Figure 1-2 shows the ten primary classes, which are further divided

into forty-four sub-classes and are used for demand estimation and manifesting of individual

missions. This detailed CoS definition enables fine-grained modeling of material flows that



enables analysts to determine not only if enough supplies are at a given site, but also that
there are the right types of supplies at the right time.

Resources are the basic unit the producer uses to generate exploration value

Networks are graphs of nodes and edges (i.e. locations and transportation links) that define and
connect all points of interest. Networks are also traditionally used in terrestrial transportation
systems to represent physical locations and the transportation links of various modes between
them. For space transportation networks, the concept of a location is abstracted to represent
points of interest, such as orbits or Lagrange points. Note that transportation links in space
are generally time-varying due to astrodynamical motion (see Section 2.1.1).

Processes are the building blocks of scenarios 1. They describe how elements and supplies are
allowed to move through the network over time.

Measure of Effectiveness (MOEs) quantitatively evaluate specific space exploration scenarios
and interplanetary supply chains. Note that MOEs are only proxy metrics for comparative
purposes, not for absolute forecasting.

Technical Performance Measures (TPMs) are feedback metrics that inform the user about
infrastructure performance, resource utilization, and safety margins.

1.3 Revenue Management

Revenue management (RM) deals with the maximization of the revenue or benefit earned from
a fixed, perishable resource in uncertain conditions [1]. While revenue management as a formal
practice has its foundations in the airline industry, it has spread in the last two decades to cargo
services, hotels, car rental companies, and e-commerce. These industries, particularly airlines and
cargo services, have many features that are analogous to those of space exploration. However, at

the time of writing, to the author's best knowledge RM has not been used in space logistics. The
goal of this thesis is to explore the applicability of RM to space logistics, and the following sections
present the space analogy in more detail.

1.3.1 Requirements and Characteristic Features

The basic revenue management problem requires four entities: customers, producers, resources, and
revenue. Customers seek to attain some perishable resource, which are units of capacity managed

by the producer. Each customer has a price they are willing to pay for that resource. The producer

controls the allocation of the resource and therefore "produces" resource bundles that are offered to

customers. The challenge for the producer is to sell the right resource(s) to the right customer at

the right time in order to maximize revenue.

Most transactional business models are candidates for revenue management at some level. How-

ever, only in certain types of these businesses do the costs and complexity of implementing a revenue

management system outweigh the benefits. Muller defines four characteristics that make a particu-

larly good revenue management problem [7]. These are:

'A scenario is the full specification of the logistical aspects the user wishes to model (see Section 2.1 for more
information)
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Figure 1-1: Simulated logistics strategy for nominal Constellation campaign. The strategy shown
uses a combination of pre-positioning and carry-along to maintain mission robustness through safety
stocks (pre-positioning) while allowing for flexibility to adapt mission profiles (carry-along).

Figure 1-2: Functional classes of supply for human space exploration.
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1. Customer Heterogeneity: customers place different values on resource units. The possibil-
ity of segmenting price-sensitive customers is key in implementing revenue management. The
most common mechanism used to segment customers is the time of purchase; that is, the less
price-sensitive customer generally purchases nearer the time of production.

2. Demand Uncertainty: demand is stochastic, difficult to predict, and cannot be satisfied
using existing stocks.

3. Limited operational flexibility: resource units are limited and there is a consistent mis-
match between the supply and demand. Additionally, the means to balance supply and demand
are limited.

4. Standardized Product Range: the nature of resources on offer remains essentially unaltered
over a substantial period of time. This is key to being able to predict future demand.

In other words, A good revenue management candidate industry sells products that are perishable,
faces time-varying demand, and is burdened with large fixed costs while variable costs are small
in the short run. Due to the low marginal cost and high fixed cost condition, increased revenue
essentially translates directly to increased profits.

1.3.2 Industry Examples

The airline industry is the prototypical example of the characteristics defined in Section 1.3.1. First,
airlines certainly experience customer heterogeneity; business travelers, vacation-goers, students, a
host of other groups each have different valuations of the same resource (a seat on the plane). Second,
the airlines cannot satisfy demands using existing stocks. It is impossible to consistently satisfy
demand for a Friday evening flight from Seattle to Boston with seats on Thursday morning flight.
Third, aircraft are large, blocky, and expensive capital investments that have a very finite capacity.
It is prohibitively difficult and expensive for airlines to expand or contract their supply in the short
or even medium term; they cannot simply make more products (seats) to sell to meet demand.
Finally, seats on an aircraft are an extremely standardized product, even across competitors. And
the same product is offered whether demanded 30 days or 30 minutes before production (departure).

The initial success of Revenue Management in the airline industry drove an expansion first into
the hotel and rental car industries, and then further into cargo shipping, restaurants, and a whole
host of other industries. Depending on the needs of the industry, revenue management is used to
increase resource utilization (sell more products), segment customers through packaging resources,
adjust demand profiles, and/or dynamically price resources.

The following provides a brief overview of how revenue management is used in some key industries:

Hotels use RM techniques to provide special rate packages for periods of low occupancy. They also
use overbooking policies (refer to Section 3.2.3) to compensate for cancellations and no-shows.

Restaurants use RM to even out demand over the course of the day. They offer discount coupons or
charge reservation fees and higher meal prices during peak periods in order to move customers
to off-peak periods.

Attractions (e.g. theme parks and carnivals) set different admission charge levels, provide joint-
entry tickets, group discounts, coupons, membership rates.



Rental car companies use RM-based controls to vary prices frequently according to demand, and

to accept or reject booking requests. A big driver in this industry is the balance of weekend

demand from vacationers and weekday demand from business travelers.

Cargo and freight companies use RM to determine the price of a shipment based on space re-

quired, location and comfort. They also use RM to determine the optimal ship size and

capacity for each shipment class (e.g. overnight, 2nd day, and ground).

IT Services use RM to allocate administrator time, computing capacity, storage, and network

capacity among segments of customers and determine an appropriate price for each segment.

Sections 3.1.2- 3.1.5 present an overview of the unique aspects of RM problems in each of the above

industries and related research.

1.4 Space Exploration and Revenue Management

Typically, the logistics strategies are developed in response to mission profiles. Within the logistics

strategy, cargo is delivered to meet pre-defined availability targets. The use of RM in this process

allows this question to be approached from a different perspective. Like in the airline and cargo

examples, in space logistics revenue management can be used to allocate cargo delivery capacity (i.e.

cargo mass and volume) in order to maximize productive exploration given uncertainty in demand.

This in turn defines the availability targets, which helps to define the logistics strategy. Combined

with the existing forward approach, this reverse approach allows a bi-directional approach to the

design of logistics strategies. When paired with the SpaceNet simulation framework, to be discussed

in Chapter 2, revenue management may have the following potential applications:

* Development of design reference missions (DRMs), particularly for exploration architectures

that rely on extended sorties or mobile outposts.

" Refining mission profiles in response to vehicle performance and demand uncertainty.

" Optimal manifesting of spacecraft in the operational phase of missions.

1.4.1 Suitability for Revenue Management

In the airline case, for example, it is fairly straightforward to identify the customers, producers,
resources, and revenue. The customers are passengers, the producers are the airlines, the resources

are the seats, and the revenue is money. The space exploration example is perhaps more subtle than

the airline example, but nonetheless it has both the requirements and characteristic features to be a

strong candidate for the implementation of revenue management. There are essentially there are two

types of customers: 1) the exploration agents 2, and 2) the surface infrastructure at the exploration

site. The producers are the various agencies conducting exploration, e.g. NASA or ESA, which

must manage their resources in order to maximize their utility from exploration. The resource is the

combined mass and volume available for cargo on spacecraft heading to the exploration site; this

can be broken down into a pressurized and unpressurized component. Finally, the revenue is the the

contribution of the item consuming the resource to productive exploration.

Not only does space exploration have the major entities for the implementation of revenue man-

agement, it also shares the characteristic features. These are:
2 Exploration agents can refer to either human crew or robotic systems



" Heterogenous Customers: Exploration agents (generally crew, but sometimes robotic sys-
tems) generate demands for provisions and operational equipment. Surface infrastructure are
those elements needed to support the exploration agents. These include habitats, power units,
and mobility systems and their demand is primarily in terms of spares. These customers
demand different amounts of the resource and "pay" different amounts for the resource.

* Demand uncertainty: Demand for crew provisions is relatively deterministic on average,
particularly for longer missions. In contrast, demand for spares is extremely uncertain due to
limited production quantities for flight hardware, relatively immature designs (compared to
most Earth-bound complex systems), and environmental factors.

" Limited Operational Flexibility: Space flights are infrequent, typically scheduled far in
advance, and face very tight mass margins. There is very limited ability to change supply to
meet demand.

* Standardized Product Range: the contribution of the bundle of manifested resource to
productive exploration. Ultimately exploration agencies are in the business of maximizing
their benefits from exploration.

1.4.2 Challenges

One major challenge in the implementation of RM in space logistics is the definition of revenue.
Ultimately exploration agencies are in the business of maximizing their benefits from exploration,
as complex as those may be to define or quantify. Benefits can be in the form of scientific discovery,
resource discovery, operational knowledge, and/or political gain.

A related challenge is that the revenue is not earned at the time of "sale". Generally speaking,
the revenue earned from a customer is not known when a spacecraft is launched, or even when it
arrives at the exploration site. Rather revenue is generated on the back end when the item is actually
used in the mission. Thus the decision for the producer in this problem is not only one of ensuring
that resources are sold to the most high-revenue customers, but also whether or not each customer
will actually pay for the resource within a given time horizon.

1.5 Thesis Organization

This thesis consists of six chapters, as shown in Figure 1-3. These are:

Chapter 2 gives an introduction to SpaceNet, an integrated modeling and simulation tool. SpaceNet,
co-developed by MIT and JPL, allows the user to explore the various logistics strategies dis-
cussed Chapter 1. In particular this chapter talks about SpaceNet 2.0, the 2nd generation of
the software, which has added flexibility and capability to support more advanced logistical

concepts.

Chapter 3 presents foundational revenue management concepts including price-based and quantity-

based revenue management. It also provides an overview of various formulations and solution

approaches.

Chapter 4 presents the main contribution, the SpaceNet Revenue Management module (SpaceNet
RM), which is capable of optimizing campaign exploration performance under uncertainty.
This chapter also introduces a space logistics-based definition of revenue.



Chapter 5 presents two case studies where revenue management was applied to help evaluate

proposed campaigns.

Chapter 6 outlines several future directions for SpaceNet RM. It concludes with a summary of

contributions.

SpaceNet RM Software

Chapter 5:- Case Studies

Results

FChapter 6: Conclusions &
jauture}VWork- e

Figure 1-3: Thesis roadmap
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Chapter 2

SpaceNet 2.0: Integrated Modeling

and Simulation

The goal of SpaceNet is to allow a user to model and evaluate an exploration mission as an inter-

planetary supply chain with the purpose of answering key logistics questions [8]. These answers

provide insight into the bottlenecks in the transportation architecture, strategies to maximize ex-

ploration capability, and the impact of uncertainty on logistics strategies. SpaceNet models and

simulates processes, element instantiations, and supply item levels, and other logistical aspects of a

campaign in a high fidelity, enabling it to respond to complex issues such as campaign robustness

and contingency analysis while providing an end-to-end analysis capability.

2.1 Scenario Building

A scenario is the full specification of the logistical aspects the user wishes to model. It essentially

defines the who, what, when, where, and how of all material flows while appropriately abstracting
the how of the technologies that enable space exploration. Building a scenario involves 5 basic steps:

1. Defining a network

2. Defining the mission (i.e. the various exploration and transportation processes)

3. Defining resource models

4. Manifesting supply items (i.e. implementing a logistics strategy)

5. Processing simulation feedback

The following sections provide an overview of each of these steps, and upgrades and added features

in SpaceNet 2.0, which is the most recent version of SpaceNet developed at the time of writing. The

upgrades to be discussed are designed to allow more flexible modeling, greater interoperability with

other tools and models, and to support the implementation of revenue management in SpaceNet.

2.1.1 Defining the Network

Unlike most terrestrial networks, space networks have time varying properties; a path that may

be available at one time and may be unavailable at another. SpaceNet addresses these properties



by defining two types of networks. First, there is the static network which represents the set of
physical locations (i.e. nodes) and the possible connections between them (i.e. arcs). Second, there
is the time-expanded network (TEN) which adds the dimension of time to the static network to
enable dynamic behavior, while abstracting the details of orbital mechanics. The time-expanded
network has the ability to capture the time-dependency of interplanetary trajectories, including
launch windows and tradeoffs between fuel consumption and time-of-flight. Appendix A provides
some additional detail about both types of networks and their representation.

Static Network Time-Expanded Network
KSC,1 KSC,2 KSC,3

KSC

LEO,1 LEO,2 EO,3
LEO

LLO

Figure 2-1: Left: Static network including NASA Kennedy Space Center (KSC), Low Earth Orbit
(LEO), and Low Lunar Orbit (LLO). Right: the corresponding time expanded network. In this
network, one can see that moving from KSC to LEO requires one time step. Therefore it is impossible
to move from KSC,1 to LEO,1 while it is possible to move from KSC,1 to LEO,2. It is however,
always possible to stay at a node, and therefore a movement from LEO,2 to LEO,3 is allowed.

To build a network, the user first defines the static network explicitly by adding desired nodes.

As a user adds and removes nodes, arcs are automatically added and removed accordingly to show
the possible paths throughout the static network in real time. The time expanded network is

automatically generated from the user constructed static network based on a chosen time step At.

Of course, time expanded networks can grow to be very large depending on the size of the static

network and/or the length of the scenario. For example, a time expanded network for a 3-year

scenario (about 1000 days) with 10 nodes and a time step of 0.1 days (Earth days) and will have

more than 100,000 nodes. This is an issue both in terms of the users ability to manage all the

information, and from a computational resource management perspective. To address both issues,

the user interacts with the TEN through processes, which identify which parts of the TEN experience

logistical activity. Processes, discussed in Section 2.1.2, enable the generation of a "sparse" time

expanded network, which address both ease of use and resource management.

SpaceNet 2.0 also features a shortest path algorithm that can assist the user in finding the shortest

path between two nodes (if any exists) based on minimizing either cumulativeAV, duration, or

number of orbital transfers (i.e. arcs). The algorithm uses an A* search to look through a database

of stored trajectories and returns a pathway, or series of connected arcs to the user. If the pathway

contains nodes not in the network at the time of search, the software gives the user the option to

add them into the network.
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2.1.2 Defining the Mission

As briefly discussed in the previous section, processes define the movement of elements and cargo
throughout the time expanded network. They define the how and when in the supply chain. The
ISCMLA framework defines five core processes [2]. These are:

Exploration processes model exploration and science activity at a specified node. This is typically
a surface node, however exploration can also happen at in-space nodes (e.g. in the ISS).

Proximity Operation processes model local rendezvous/docking, undocking/separation, and trans-
position of elements.

Transfer processes model the transfer of agents and/or supply items. In orbit, transfers must be
from one element into a different co-located element. On the surface, transfers can also be
between an element and a node, for example a sample return to earth.

Transport processes model the relocation an element to a new physical node along an allowable
arc.

Waiting processes model remaining at the same physical node for some number of time periods.

In a given process, the user can dynamically create instantiations of elements from a collection
of templates, which are derived from elements used in past and future exploration campaigns such
as ISS and Constellation. Alternatively, the user can select from previously instantiated elements
and continue using them throughout a scenario. Previously instantiated elements can include the
propulsive stages and surface systems delivered to an orbit by a launch vehicle. These elements may
be be used in future processes until they reach a surface location. Processes can be grouped into
composite processes, which provide a layer of abstraction to simplify scenario building. Typically a
composite process encompasses the constituent processes of a sortie, unmanned cargo flight, outpost
flight, etc.

LEO ---- - - -- - - - ---------------------------- --------------------.....----

- -- -- -- -- -- - -------

Edas 2-A Launch?2~- ---

NASKO -- --------------------------------------------------------..... 

-------------------

01 A22020

Figure 2-2: Space logistics processes. The horizontal axis represents time, while the vertical axis
represents node location. Blue = Exploration, Orange = Proximity Operation, Green = Transfer,
Red = Transport, Gray = Waiting.
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2.1.3 Defining Resource Models

Generally, demands for habitation and infrastructure (CoS 8) and transportation and carriers (CoS
9) are defined explicitly as part of the scenario building process. Likewise, demand for fuel and
propellants is a result of the definition of demand for CoS 8 and CoS 9 and the process definition.
However, demand for the remaining classes of supply is typically complex and dependent on the
details of the exploration architecture and must therefore be specified by the user. SpaceNet 2.0
captures these demands through 3 resource models: The demand model, the spares model, and the
accommodation model.

Table 2.1: Resource Models and Classes of Supply
Process Demand Spares Accommodation

Definition Model Model Model
CoS 1: Fuel and Propellants X
CoS 2: Crew Provisions X
CoS 3: Crew Operations X
CoS 4: Maintenance and Upkeep X
CoS 5: Stowage and Restraint X
CoS 6: Exploration and Research X
CoS 7: Waste and Disposal X

CoS 8: Habitation and Infrastructure X
CoS 9: Transportation and Carriers X
CoS 10: Miscellaneous X

Demand Model

The SpaceNet 2.0 demand model is a tree-based data structure that allows the user to define arbitrary
demand structures for crew provisions (CoS 2), crew operations (CoS 3), and waste and disposal
(CoS 7). A demand model is an aggregate of demand variables, of which there are two types: rate
variables and reference variables. Rate variables define demand for a particular supply item, a
consumption rate, and a unit of measure. Users may select from a variety of parametric probability
distributions or use a deterministic value for the rate. Reference variables define demand for a
particular supply item in terms of fractions of another supply item. For example, the leakage rate
of oxygen and nitrogen in a habitat can be represented as a reference variable that is referenced to
the habitat volume.

Spares Model

The spares model is used to define the demand for spares and related equipment for infrastructure

(i.e. elements) specified in the scenario building process. The spares model can be specified in two
ways, which are spare-by-mass and spare-to-availability.

The spare-by-mass calculates the mass and volume of pressurized and unpressurized spares for a
given time period for an element as a function of its dry mass. Spare-to-availability calculates spares
demands as a function of element orbital replacement units (ORUs) and shop replacement units
(SRUs). Such demands are application-specific and rely on attributes such as mean-time-between-

failure (MTBF) and duty cycle. Specifically, sparing by availability calculates a "buylist" of spares
needed to meet a desired target availability specified by the user (the default value is 95%). The total
mass and volume of spares required is then obtained by multiplying the quantity of each ORU in the



buylist by its mass or volume respectively. SpaceNet returns a buylist that meets the availability

target even if it violates the resource constraint (i.e. the amount of cargo mass and/or volume

available for delivering spares to the exploration site). In this case, SpaceNet also gives the user the

option to recalculate the spares based on the highest estimated availability that is achievable.

While sparing-to-availability is more accurate than sparing-by-mass, it cannot be used until the

element ORUs and SRUs are well-defined, which makes it difficult to use in immature exploration

architectures where that information is not well known. The spare-by-mass functionality provides a

reasonable approximation for spares demands as a temporary measure while an architecture mature

and reliable data becomes available.

Accommodation Model

The accommodation model captures the demand for stowage and restraint (CoS 5) based on the

results of the demand model. Users have the option of specifying an arbitrary number of accommo-

dation mappings, each of which pairs a supply item type with a particular packing container type,
and sets a packing efficiency for the container type which essentially indicates when to stop mani-

festing a container and start manifesting a new one. There may be multiple mappings per supply

item. For example, food-related supply items might be paired with cargo transfer bags (CTBs) and

spares items with SHOSS boxes; water may be paired with a full-size water tank as well as with

a smaller crew water container (CWC). SpaceNet 2.0 selects the best containers for each demand

based on minimizing the tare fraction and maximizing container capacity utilization. Containers

are manifested based on maintaining a clear separation between supply classes and consumers (i.e.

elements and agents), for example an individual container may be packed with food and related

items for the CEV, but may not be packed with a mix of food and waste disposal equipment for the

CEV and LL-D, respectively. This reflects typical real-life manifesting practice.

2.1.4 Forecasting Demand

The Forecasting Module (FM) is a basic implementation of the full discrete event simulator that

utilizes the demand model to estimate scenario demands based on a target availability. The FM

flattens the demand model, parses demand units, and performs the necessary mathematical opera-

tions are performed to produce a demand in terms of physical units of weight and volume. The FM

has two modes: standard mode and quick estimation mode.

In standard mode the FM receives an event schedule for the simulator corresponding to the

desired forecasting horizon. From this point the FM can proceed either deterministically or stochas-

tically. For deterministic estimation, the FM estimates demand by event according to the nominal

(mean) value of each demand variable. For stochastic estimation, the FM uses inverse transform

sampling, which allows the generation of samples of arbitrary probability distributions [9], to pro-

duce an estimate of the demand value for each event. The SpaceNet 2.0 forecasting module currently

supports uniform, normal, lognormal, triangular, exponential, Weibull, and Poisson distributions.

Once demands are estimated for each event, either deterministically or stochastically, the FM

merges demand by consumer, i.e. the entity that generated the request for resources. If the event

schedule spans multiple process groups, demands for each element are further merged by process

group. Finally, the forecasting module can optionally pack raw demands into containers based on

the accommodation model. Users can also specify a global tare fraction, in which case the FM packs

demands into a generic container with the appropriate specifications.



2.1.5 Manifesting Demand

Calculating the demand determines the nominal amount of cargo required to support the surface
systems and exploration agents in a campaign. To understand if such a campaign is feasible, and to
evaluate what the most effective delivery strategies are, the packed items must be manifested into
cargo carriers. Manifesting the discretized supply items into cargo carriers must satisfy multiple
constraints. The cargo carrier must have the available pressurized or unpressurized mass and volume
capacity for a given supply item. If the cargo carrier, such as a pressurized logistics module (PLM),
is nested in another element such as a descent stage, then the cargo capacity of that parent element
must be satisfied as well. In addition to the supply items created by the cargo demands from the
surface systems and exploration agents, a user can also manifest exploration items such as science
instruments, and reserve supplies such as safety stocks. These reserves would serve to hedge against
uncertainties in demand or flights that are delayed or cancelled. While the manifesting process can
be performed by hand to optimize packing efficiency, it can also be completely automated using a
pair of simple heuristics.

2.2 Simulation

Simulation ties together all other components of the modeling framework, taking the mission scenario
as an input and producing the output information that evaluates both the feasibility and effectiveness
of the scenario.

2.2.1 Discrete Events

SpaceNet is built on discrete event simulation, whose strength lies in the ability to model random
events and to predict the effects of the complex interactions between these events. This flexibility
allows various hypotheticals to be investigated by changing inputs to the model and then comparing

the outcomes. This makes discrete event simulation a strong decision support tool.

In logistics, the important pieces of information for the user are the states of simulation entities
before a given process occurs, the characteristics of the process, and the entity states after the
process is completed. For instance, if an element is placed in LEO and then transported to the lunar

surface, the key pieces of information are the states of the element and node before the transportation

process (mass and crew/cargo of the element, physical node characteristics and time), characteristics

of the transportation process (e.g. the departure node, AV, time of flight, and arrival node), and

information after transportation process (e.g. residual propellant) Thus the space logistics framework

is more suited to an event-driven approach than to a time-driven approach.

SpaceNet 2.0, unlike previous versions, redefines the 5 core processes as composites of events,

which are the new atomic unit of simulation. The following subsections discuss the modeling and

performance advantages of using events as the atomic unit of simulation. At the time of writing the

set of events includes:

" Arrival events model the arrival of an exploration resource to a node.

" Departure events model the departure of an exploration resource from a node.

" Explore events model exploration activity such as EVAs and performing of experiments.

Typically an Explore event represents a single EVA.



" Burn events model the firing of main engines and/or reaction control systems in a single

element.

* Stage events model the staging (i.e. detachment from an active stack for discard) of an

element, usually during a transport process, but occasionally during a wait or proximity op-

erations process.

" Relocate events model the movement of scenario entities from one node to another. This

includes surface relocations as well as orbital relocations. Relocation events are composites of

arrival and departure events, but include a duration for generating rate-based demands.

" Transfer events model the movement of supply items from one container to another container,
where a container is any element or supply item that can hold supply items, and all surface

nodes.

Based on the manner in which events are generated, processes can be simulated in more or less

detail based on simulator performance or user preference. For instance a user may choose to increase

precision for Exploration processes while reducing precision on Transport processes. This enables

the user to make better tradeoffs in terms of speed and precision and change his or her preferences in

different parts of the same simulation. In addition to enabling variable precision simulation, events

also enable custom processes. Exposing some events to the users allows users to design custom

processes by combining events as desired. This is particularly important for surface operations

which require detailed specification to model accurately.

2.2.2 Clock Management

SpaceNet 2.0 introduces a next-event time advance approach, which is the most common approach

used in major simulation packages [9]. In contrast, previous versions of SpaceNet used a time step

approach. With a next-event time advance approach, the simulation clock is advanced to the next

scheduled future event, which is then executed. The system state is then updated and the system

clock moves to the new next scheduled future event as shown in Figure 2-3. Concurrent events are

made sequential by giving execution preference to the event originating from the earliest initiated

process.

The advantage of the next-event time advance approach are reduced simulation time since only

time periods with events are analyzed, and also accuracy since events are always executed on time

and in sequence (rather than as part of a batch). This improvement in speed and accuracy allows

SpaceNet 2.0 to perform simulation runs in the background, providing the user with various pieces

of useful data, while supporting implementation of Monte Carlo simulation.

2.2.3 System State and Histories

During simulation, each agent, supply item, element, and node is tracked and its history recorded.

These histories are used for calculating performance measures, visualization, and user post-processing

of simulation data. The 3 types of history are:

EHistory tracks the elements, giving the location and transportation history of each element. It

also provides the mass (propellant and dry mass) and crew/cargo information for each element.



NHistory tracks the nodes and provides information on which elements are located on each node

at a specific time.

CHistory tracks crew/cargo and shows which element the crew/cargo belongs to at a specific time.

The three histories have built-in redundancy and form different interpretations of the same mission

scenario. Together, the three combine to provide a complete reconstruction of each simulation run.

For instance, NHistory, EHistory, and CHistory combine to provide a complete record of the supply

levels of each supply class at a given node. SpaceNet 2.0 is capable of outputting each history in

Excel and XML formats.

Sta rt

Initialization routine Main program I

1. Set simulation clock to t=0 0. Invoke initialization routine Timing routine

2. Initialize system state and Advance simulation
entity histories 1. Call timing routine clock to next event
3. Generate event list 2. Call event routine

Event routine

1. Update system state
2. Update entity histories

Event list No
empty?

Yes

Report Generator

1. Compute MOEs and TPMs.
2. Export results to UI

Figure 2-3: SpaceNet 2.0 variable time advance clock management
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2.2.4 Performance Measures

An important final step in supply chain design and analysis is the ability to process the simulation

output in such a way that architectures can be evaluated and compared [5]. Several metrics (termed

measures of effectiveness or MOEs), have been developed hand-in-hand with the simulation and

modeling framework to enable the comparative evaluation of logistics architectures [2]. MOEs pro-

vide a quantitative way to evaluate specific space exploration scenarios and interplanetary supply

chains in general. It is important to note that MOEs are proxy metrics for comparative purposes, not

for absolute forecasting. MOEs continue to evolve to better capture new exploration paradigms and

the benefits derived from unmanned activities such as the presence of robots on planetary surfaces

and orbiting spacecraft observation. MOEs fall into three broad categories:

Basic Logistics Performance: Any mission's performance is largely defined by the capability of

the launch vehicles and space craft involved, as well as their utilization. The basic logistics

performance MOEs are designed to quantitatively measure capability and utilization, thereby

providing the user an performance envelope within which to modify and optimize the distri-

bution of mass between supply classes as desired.

Exploration Capability: The true benefit (revenue) of planetary space exploration is not mone-

tary, but comes primarily from healthy and qualified explorers, scientists, and robotic systems

(i.e. agents) being able to spend a certain amount of time at one or more nodes. To first

order, revenue scales linearly with both the number of agents as well as the duration of their

stay. In addition, specific exploration equipment, scientific instruments, and surface infrastruc-

ture items play a large part in facilitating exploration, and act as multipliers for exploration

productivity. The exploration capability MOEs are designed to capture this concept.

Relative Cost and Risk: To first order the cost of a scenario scales with duration (operating

and observation costs) and launched mass (development and recurring costs). The actual

details of both risk and cost however are extremely complex and beyond the scope of the

logistics modeling framework. Thus the the Risk and Cost MoEs relate risk and cost in these

relative terms without attempting to define a precise probability distribution for risk and/or

an absolute monetary value for cost.

Appendix A provides detailed equations of the measures of effectiveness.

2.3 Data Management

In an attempt to improve asset management for human space-flight missions to the Moon and

Mars, a relational database for interplanetary exploration, aptly named the Interplanetary Supply

Chain Management (ISCM) database has been developed. This database incorporates inventory

management capabilities with extensive capabilities for manifesting, spares requirements planning

and mission planning. Information maintained in the integrated database includes astrodynamics

data, element data, commodities data, and spares data. SpaceNet uses an enhanced version of the

ISCM database to store all the information required by the model, as well as to store in-process

data as the user designs a scenario.



2.4 Chapter Summary

This chapter has described an interplanetary logistics modeling and simulation tool, SpaceNet 2.0,
developed by systems engineers at JPL and MIT. The goal of SpaceNet is to allow mission architects,
planners, systems engineers and logisticians to focus on what will be needed to support future crewed
exploration missions, primarily in the Earth-Moon-Mars system. Instead of helping to design the
elements (vehicles) themselves in terms of propulsive and pressurized/unpressurized cargo carrying
capability, SpaceNet evaluates such vehicles in the context of a particular mission architecture and
supply chain strategy. The emphasis is on ensuring the logistical feasibility of a given scenario as
well as a prediction of the resulting logistics measures of effectiveness (MOEs). All this is enabled
by detailed simulation of time-varying flow of elements, crew and supply items through the nodes
and arcs (trajectories) of a supply network in space, taking into account feasibility (AVs, fuel levels)
as well as consumption and supply.



Chapter 3

Revenue Management

3.1 Overview

Revenue Management (RM) is the optimization of the revenue or benefit earned from a fixed,
perishable resource [10]. Extending the concept are flexible products, which are defined as a menu of

two or more alternatives, typically substitute, products (or services) offered by a constrained supplier

using a sales or booking process [11]. Airlines, hotels, and rental cars represent the traditional "big

three" applications of revenue management. Although researchers have applied revenue management

models in a wide variety of industries where suppliers offer flexible products, these three industries

still dominate the conceptual framework of revenue management. The following sections provide

overviews of the RM problem in each of these industries, including the unique features of each.

Section 3.1.5 also provides a brief overview of the extension of revenue management into new areas.

What one can see from these examples is how flexible RM can be in practice.

3.1.1 History

Research on revenue management can be traced back over 40 years to 1966, when American Airlines

implemented the SABRE computer reservations system. However, only after the Airline Deregula-

tion Act of 1978, which relaxed pricing controls, did RM become prevalent in the airline industry [12].

Since then significant innovations have been made. Initially, airline revenue management systems

were only capable of handling single-leg, origin-destination flights. New information technologies

have led to more sophisticated revenue management capabilities, while at the same time theoretical

advancements have allowed RM to spread beyond the airline industry. Today revenue management

systems and related information technologies are heavily used by airlines, hotels, car rentals, e-

commerce, and many other industries. In low margin, high fixed cost businesses like airlines and

hotels, this increased revenue almost directly translates into increased profits, while maintaining the

quality of service to the customer [13].

3.1.2 Airlines

For the airline industry, the RM challenge is essentially identical to the RM challenge stated in

Section 1.3, that is to sell the right resource(s) to the right customer at the right time in order to

maximize revenue. The nature of the airline industry means that this translates into a series of



booking decisions - whether or not to accept a current booking request or wait for possible future
higher revenue requests. Typically the airline is modeled as a risk-neutral entity, which has been
shown to be an accurate model given that booking decisions are made thousands of times per flight
and millions of times per year [10].

As of 1998, it is estimated that revenue management was directly contributing USD 500 million
and 300 million in increased annual revenues and earnings to US Airlines and Delta Airlines, re-
spectively [14]. Since, the market has evolved to be even more conducive to revenue management.
Given that airlines have consistently posted losses over the last decade, one may ask if revenue
management is truly effective. However, it is important to note that airlines suffer these losses due
to the inherent nature of the highly competitive markets they operate in. Within those constraints,
revenue management helps to increase revenues and profits (i.e. minimize losses).

3.1.3 Hotels & Rental Cars

Revenue management of hotels has some differences from the airline case. One of the differences
is that hotels face uncertainty in terms of how much of the resource each customer will consume
[15]. In other words, customers can make multiple day reservations and are relatively free to change
the duration of their stay on short notice. Although multiple day reservations can pose problems,
Ladany suggests that for many hotels they represent only a small portion of total reservations.
Rothstein modeled the multi-day problem as a series of independent, single night reservations by
assuming that the individual dates of a multi-day reservation cancel or show-up independently [16].
Bitran, Gilbert and Leong present empirical evidence which validates this assumption [17]. It is
estimated that revenue management helps Marriott Hotels to gain USD 100 million in additional
revenue each year [18].

The rental car industry, like the hotel industry, also faces a network consumption problem.
However, another unique aspect aspect of the rental car industry is the ability to increase capacity
at a relatively reasonable cost as well as some ability to reorganize the fleet to meet demands.
Rental car companies also feature a much more homogeneous customer population - most renters
are satisfied with a relatively basic mobility option (a fact reflected by fleet compositions) [19].

3.1.4 Cargo

The air cargo industry shares many common characteristics with airlines, although in general its
revenue management framework is significantly less developed than that of the airline industry. Still,
cargo revenue management differs from the airline revenue management problem in several ways.
First, the resource is multi-dimensional; in contrast to a seat on a passenger airline, cargo is defined
in terms of both weight and volume. Secondly, each customer is unique and requires a different
amount of the resource; in other words every customer's shipment is a unique weight and volume.
Thirdly, the amount of the resource for sale is often unknown due to the nature of the cargo industry.
For most carriers, allotments (space reserved for big customers) take up much of the cargo space.
The sum of unused allotment space and unreserved space is a random variable and forms the resource
available for spot sale (i.e. application of revenue management). Finally, cargo shippers typically

have an ample supply of standby cargo available, which essentially guarantees that no resource unit
is left unused. In this case, standby cargo can be modeled as the lowest class of cargo with infinite
demand [20].



Cargo, and in particular air cargo, is one of the main growth areas in revenue management, driven

by increasing demand for (and revenue from) cargo shipments, in large part a result of globalization.

3.1.5 Other Industries

Because of revenue managements success in the "big three" industries, and its growth in the cargo

industry, RM has spread to other industries such as restaurants, casinos, internet services and apart-

ment rentals [12]. Coulter suggests that revenue management is appropriate in any seasonal retailing

industry in which capacity (inventory) is not necessarily perishable but the value of the capacity

may decline significantly after the selling season [21]. He goes on to investigate the use of discount

pricing to maximize the revenue gained from selling a seasonal product. Investigating seasonal prod-

ucts further, Aviv and Pazgal perform a quantitative analysis on how to apply dynamic pricing to

sell fashion-like goods for seasonal retailers [22]. Hatwin, Lippman focus on issues such as pric-

ing strategy, market share preservation, and customer loyalty when applying revenue management

techniques on grocery retail outlets [23] [24].

Revenue management also has application opportunities in subscription services, such as on-

demand information technology service and Internet service. Internet service is, in fact, a special case

of on-demand information technology service. Nair and Bapna find that Internet Service Providers

(ISP) have perishable capacity for users to log on, a fixed number of units, and the possibility of

segmenting price-sensitive customers [25]. One unique feature of the ISP case is that the service is

continuous in state and time, i.e. the request and the service happen simultaneously.

3.2 Revenue Management Disciplines

Within the field of revenue management, there are four main areas of development: forecasting and

estimation, overbooking, pricing, and capacity control.

Forecasting and Estimation is concerned with gathering of information and the formation of

accurate models of demand for each flexible product offering.

Overbooking is concerned with increasing utilization of the resource as much as possible while

maintaining the level of service.

Pricing is concerned with the setting and manipulation of prices.

Capacity control concerns the allocation of the resource between the various products (resource

bundles for sale).

The following sections give a conceptual overview of and a brief summary of key research in each

of the four areas, with a special focus on capacity control, which is the most applicable discipline

to space logistics. In addition each section discusses the potential of the application of various

solution approaches to space logistics RM. These findings constitute the conceptual foundations of

the SpaceNet RM module presented in Chapter 4.

3.2.1 Forecasting and Estimation

Every revenue management system requires some sort of forecast or estimate of demand. More

specifically, forecasting predicts demand from existing data, while estimation seeks to characterize



Figure 3-1: Overview of revenue management practice

observed data and form a model. Typically, revenue management systems use both estimation and
forecasting; estimation is used to calibrate forecast parameters. Depending on the use of pricing,
capacity control, and/or overbooking, forecast requirements can expand to price sensitivity, segment
demand, and/or cancellation probabilities, respectively. Any model is only as good as its data, and
revenue management is no different. Some industry estimates suggest that a 20 percent reduction
in forecast error can lead to an incremental 1% increase in revenue [10]. Given that industries that
use RM are typified by high capital costs and low profit margins, this relatively small increase can
have a significant impact on the bottom line.

Consider a basic airline revenue management problem, where the airline has decided on a two
class fare structure with prices at 100 and 70, respectively (assume the prices are determined using
some offline pricing model). Table 3.1 shows an example of the type of output a basic forecast might
produce. This includes an estimate of mean demand, and a standard deviation based on an assumed
distribution. A more advanced forecast might also include a temporal element that estimates he
arrival profile of each class.

Table 3.1: Basic demand forecast with prices, two-class example
Price Mean Std. Dev. Distribution

Class 1 100 10 5 Normal
Class 2 70 20 5 Normal

3.2.2 Pricing

In price-based revenue management, the producer uses prices to manage demand. For many in-
dustries, varying prices is the most natural mechanism for implementing revenue management, and
indeed dynamic pricing can be considered the oldest form of revenue management, pre dating the
formal practice itself [10]. The key difference in price-based revenue management compared to
quantity-based revenue management (i.e. capacity control) is that demand is as an endogenous
variable.

Pricing controls come in two categories - dynamic pricing and auctions. Dynamic pricing includes
markdowns, sales, coupons, discounts, and personal pricing. Auctions include the various types of
auctions (e.g. open English and open Dutch) as well as requests for proposals. Within the two
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categories, there are a host of deterministic and stochastic solution techniques. Deterministic solu-

tions to the pricing problem can be obtained by using standard optimization techniques, nonlinear

programs, or greedy algorithms. The stochastic solution of a pricing problem can be acquired by

using a variety of approaches including action-space-reduction, Markov decision processes, and the

Hamilton-Jacobi-Bellman (HJB) equation [26].

The applicability of price-based revenue management in space logistics appears to be relatively

limited. In space logistics demand is almost always an exogenous variable. That is the demand for

the resource is independent of the producers pricing control; rather it is driven by the demand models

of the agent. The question is to determine how best to allocate the resources to those demands,

which is closely aligned with the quantity-RM problem.

3.2.3 Overbooking

Overbooking is the oldest tactic in revenue management [12]. While pricing and capacity allocation

are essentially concerned with how to achieve the best mix of demand (from a revenue perspective)

overbooking is concerned with increasing capacity utilization in RM problems with a high possibility

of cancellations or no-shows. American Airlines estimates that 15% of seats on sold-out ights would

be lost if overbooking were not practiced [27]. In 1990, the benet of overbooking at American Airlines

was estimated to exceed USD 225 million [27].

Overbooking models typically take either a cost based approach (i.e. they balance the cost

of overselling with the opportunity cost of empty seats) or a service level based approach (i.e.

they balance the expected number of passengers denied service with the cost of empty seats) [12].

Beckmann provides a static, single period cost-based model, to determine an upper bound on the

number of reservations to accept [28] . Thompson shows a way to determine overselling probabilities

for a static, single-leg problem [29]. In addition, Chatwin, Rothstein, and Subramanian et al. have

addressed dynamic models of overbooking for single-leg ights [30] [31] [32].

While overbooking is a critical part of revenue management for airlines, hotels, and rental cars,

it is not the most applicable RM discipline for space logistics. In space logistics, the danger for

the producer is not empty seats due to no-shows and cancellations, it is a loss of revenue due to

"no-pays", i.e. a supply item that is unable to contribute to the exploration return of the mission.

3.3 Capacity Control

As previously discussed, ultimately the goal of space logistics is to find the best allocation of mass

and volume for the various classes of supply to maximize exploration benefits, minimize risk, etc.

Thus capacity control, and in particular single-resource capacity control (to be discussed later) is

perhaps the most applicable discipline to space logistics. There are several concepts that arise

throughout virtually all of capacity control:

Products are restricted resource bundles that segment the market. The product is constrained by

a maximum quantity, C, that is available for sale.

Booking limits, b set the maximum amount of the resource units that can be sold to a particular

class at a given point in time.

Protection levels, y are the complementary concept to booking limits. They set a minimum

amount of the resource to protect for higher fare demand. The relationship between booking



limits, b, and protection levels, y, is given by:

b3 = C - y 1 -1 (3.1)

where the booking limit for a given class includes the resources available in higher classes.
Consider in the demand scenario shown earlier in Table 3.1, given a capacity of 25. In this
case

b2 = 25 - yi (3.2)

and if Class l's protection level is 15, Class 2's booking limit would be 10.

Partitioning places the resource allotment (defined either in terms of booking limits or protection
levels) for each class in separate, exclusive buckets.

Nesting overlaps booking limits or protection levels in a hierarchical manner, thereby ensuring each
fare class has access to all of the buckets from lower fare classes. Because of the hierarchy,
nesting avoids one of the major pitfalls of partitioning, which is simultaneous unavailability of
resource units for high fare classes and availability of resource units for low fare classes. This
makes it more favored in practice [10].

3.3.1 Levels of Decision Making

There are three levels of decision making in capacity control: strategic, tactical, and booking [33].
Strategic control concerns market segmentation and price differentiation; essentially the goal is to
precisely identify customer segments, or classes, and developing mechanisms to segment the market.
Tactical control concerns dividing resource units among the different market segments. Finally,
booking control concerns the real time decision whether or not to acceptance booking requests. In
this thesis we focus on tactical control. While the implementation of optimal capacity controls can
be complex, including a mix of strategic, tactical, and booking elements, the overriding logic is
simple - capacity should be allocated to a request if and only if its revenue is greater than the value
of the capacity required to satisfy it. Secondly, the value of capacity should be measured by its
expected opportunity cost, as determined by a value function V(x), which measures the optimal
expected revenue as a function of the remaining capacity x [10].

Single-resource capacity control problems were first solved by Littlewoods rule [34]. Following
that breakthrough, the decision tree approach, expected marginal seat revenue (EMSR) heuristics
(EMSR-a, EMSR-b, and modified EMSP heuristics), bid pricing methods, adaptive methods [35],
and Markov-based reinforcement learning [36] have been proposed as solution techniques. Virtual
nesting booking control, network bid pricing method, and dynamic virtual nesting have all been
used to model the network capacity control problems. These problems have been solved by linear-
programming approaches, approximate dynamic programming [37], and scenario tree approaches
[38]. Other approaches use polyhedral graph theory, reinforcement learning, machine learning, hi-
erarchical mathematical optimization, Robust optimization, decision trees, and stochastic knapsack
[12].

The following sections explore a few key controls and solution methods for the single resource
problem. While some of these examples are relatively basic and not necessarily at the cutting-edge
of research, they clearly present the key concepts of capacity control. Thus they form a good basis
for a new application (space logistics).



3.3.2 Littlewood's Rule

One of the earliest models for single-resource capacity control was developed by Littlewood [34] and

is similar to the newsboy problem in inventory management. The model featured two product classes

with prices pi > P2, production capacity C, and the following assumptions:

1. Low revenue customers ask for resource units before high revenue customers

2. Demand from one class is independent from the other

3. The probability distributions of arrivals is continuous

4. There are no cancelations of realized bookings

Littlewood determined that class 2 requests for resource units should be accepted as long as

P2 >Pi 'P, (D1 > x) (3.3)

where Dj is the demand of class j with distribution P (-).

Equation 3.3 is known as Littlewood's Rule, and it suggests that the optimal protection level for

class 1 should be set so that

P2 = pi - P (D1 > y*) = EMSR1

where EMSR1 is the expected marginal seat revenue from the high-fare class.

In the case of the demand forecast in Table 3.1, Littlewoods rule would find that the optimal

protection level of class 1 from class 2 should be set so that

70
P (Di > y*) =

100
y* = 22.6

Littlewood's model, and in particular the EMSR criterion, show that at the heart of capacity

control is the decision to accept or reject a certain request low fare customer or wait for an uncertain

request from a higher fare customer. Bhatia and Parekh [39] later proved that Littlewood's criterion

is in fact the revenue maximizing condition for the two class problem. Richter [40] also verified

Littlewood's rule through the concept of "differential revenue" RD which was defined as:

RD = p 2 - EMSR1

One can see from Equation 3.3 that the capacity allocation only depends on the probability

distribution of the high-fare demand (and of course the ratio of the fares). This is the result of

the assumption that low-fare demand customers book first, and therefore their demand is known

with certainty at the time of decision. However, it has been shown that through simulation that

Littlewood's rule performs well even if the arrival order is only approximately low to high demand

[41]. More specifically, Mayer extended the model to a series of booking periods where in each period

low fare customers book before high fare customers [42]. He found that use of Littlewood's rule lead

to only a slight decrease in revenue compared to more complex optimization methods.



3.3.3 Expected Marginal Seat Revenue

While the two class model provides significant insight into the core concept of capacity control, it
is limited and somewhat unrealistic because markets can often be segmented into many more than
two classes. Belobaba showed that the multi-class problem can be treated as a series of two-class
problems, each using Littlewood's rule [43] [44]. Then we consider two related approaches to nesting,
which are referred to as EMSR-a and EMSR-b.

EMSRa (expected marginal seat revenue-version a) works by aggregating protection levels for a
given class k over all higher fare classes 1..j as shown in Equation 3.5.

i

yj = +1 y(3.4)
k=1

EMSR-a will set protection levels so that

P (Dk > yjk+1_ Pj+1 (3.5)
Pk

for each class k = 1... Because EMSR-a adds the individual protection levels yj+1, it ignores the
statistical averaging effect produced by aggregating demand across classes. As a result, EMSR-a is
sometimes excessively conservative and produces protection levels that are larger than optimal in
certain cases [10].

In contrast, EMSR-b (expected marginal seat revenue-version b)works by creating an artificial
class that is a demand-weighted average of all the classes 1..j - 1 as shown in Equation 3.6. From
there, the problem simplifies to the standard two-class model with the artificial class as the high
fare class.

P Z =1 PkE[Dk1 (3.6)
P3  Z~L E[Dkl

To apply EMSR-a and EMSR-b, we must extend the model and demand forecast in Table 3.1 to
include a third class with a price and demand distribution as shown in Table 3.2.

Table 3.2: Basic demand forecast with prices, three-class example
Price Mean Std. Dev. Distribution

Class 1 100 10 5 Normal
Class 2 70 20 5 Normal
Class 3 42 30 5 Normal

In practice the performance of the two nesting approaches depends on the specifics of the problem
structure. One study showed that EMSR-b is consistently within 0.5% of optimal, while EMSR-a
could be as much as 1.5% below optimal [45]. However, other studies have shown that the approaches
perform similarly and neither is universally superior [45].

3.3.4 Dynamic Controls

Littlewood's Rule and EMSR are examples of controls with static optimality criterion. In con-
trast, requests for capacity are dynamic in nature. One can make static models pseudo-dynamic
by frequently updating demand forecasts and re-optimizing the booking limits and/or protection
levels. However there are a class of dynamic models which explicitly account for the dynamic na-



ture of capacity allocation. These allow for arbitrary arrival patterns including interspersed class

arrivals. However, they are often intractable, unless Markovian demand is assumed [10]. Therefore

dynamic models essentially trade one major assumption (arrival sequence) for another (inter-arrival

probability distribution).
Brumelle and McGill present an approach based on sub-differential optimization within a stochas-

tic dynamic programming framework to determine optimal booking policies for multiple fare classes

for a single flight leg [46]. In a series of articles, Kleywegt and Papastavrou investigate what they

call the dynamic stochastic knapsack problem [47] [48] [49]. They mention its application to cargo

revenue management. However, their models include only one capacity restriction. They choose a

dynamic programming approach to the problem which, although theoretically very interesting, is

computationally very demanding.

3.3.5 Bid Pricing

Bid pricing is a revenue management method where threshold values (bid prices) are set for capacity

on each flight (or hotel room or rental car), and a seat (or room rental or car rental) is sold only if

the offered price is higher than the bid price. However, the bid price is influenced by factors such

as the remaining capacity and time to production, and thus bid-pricing is actually somewhat of

a hybrid between pricing and capacity control. Bid-pricing is appealing on intuitive and practical

grounds - it requires the storage of only one variable (the bid-price) in the control system and is

conceptually simple. At the same time, the theory underlying bid-pricing is not well developed nor

is the extent to which bid-prices are optimal well understood. Talluri and van Ryzin discuss several

different methods for producing bid prices [50].

Bid prices are particularly attractive in network revenue management problems because of their

relative simplicity. For example, in the airline case, bid-prices for each leg of a flight can be aggregated

to form a bid-price for a given O-D fare. Other controls typically rely on nested fare classes which

are capacity allocation problems within a capacity allocation problem and can therefore be quite

complex.

3.4 Implementation

Figure 3.4 shows the elements of RM system for a legacy carrier in the airline industry. It uses

capacity allocation and overbooking, but not dynamic pricing. An RM system, however, can be

much simpler than the one shown. To implement a basic revenue management system, one needs to

do four things:

1. Collect and store relevant historical data including prices, demand forecasts, and causal factors

2. Find the optimal set of controls (allocations, prices, overbooking) to apply to the next re-

optimization

3. Periodically update the optimized control

4. Control the sale of resources using the optimized control (manifesting module)

A large part of the degree to which revenue management is successful in various industries is the

ability to implement the theoretical framework into business operations. For example, forecasting



demand based on historical data is difficult in the restaurant industry, but relatively easy in the

airline industry due to the large amounts of government-required documentation.
The next chapter presents an implementation of revenue management for space logistics that

utilizes the ISCM database for historical data, SpaceNet 2.0 for demand forecasting and estimation,
and a new purpose-built module for optimization and control.

Revenue Data Boi at Actual Bookings No-show Data

Forecasting
Model

Optimization Overbooking
Model Model

Recommended
Booking Limits

Figure 3-2: Typical airline revenue management system

3.5 Chapter Summary

This chapter provided a brief overview of the history of and current practices in revenue management.

Of the four primary disciplines in revenue management, capacity control is most suited to space

logistics because it deals primarily with allocation of a fixed resource to maximize some objective

function. Within capacity control, there are several solution approaches ranging form relatively

simple heuristics to complex non-linear optimization schemes. This chapter focused on heuristic

approaches, namely Littlewood's rule and the Expected Marginal Seat Revenue (EMSR), and bid-
pricing which is a hybrid of capacity control and dynamic pricing. These heuristics show that at the

heart of every revenue management problem is a probabilistic assessment of the value of each unit

of capacity, and whether or not a customer's offer for that unit of capacity exceeds the opportunity

cost of accepting that request.
To implement revenue management, one needs to be able to predict, collect, and store demand

data, implement a control that governs the acceptance (or rejection) of customer requests, and pe-

riodically update that control. As discussed in detail in Chapter 2, SpaceNet 2.0 already features

extensive forecasting capabilities through the various resource models and the forecasting module.

Additionally, it features extensive data collection and management through the integrated database

and detailed entity histories generated through simulation. Thus it provides a strong foundation

upon which to implement a revenue management system. The following chapter details the imple-

mentation of revenue management in SpaceNet.

.... ...... ............



Chapter 4

SpaceNet Revenue Management

4.1 Conceptual Framework

The Exploration Capability (EC) MOE provides a good starting point for the definition of explo-

ration revenue. At a given node, it is essentially the dot product of crew and exploration support

equipment over time:

T

EC = AT Z(1 - ai)Nerew,i(mcos6,i -- moossi) (4.1)
i=1

However, as the name suggests, exploration capability captures the capability of a given scenario,

not its true performance in a stochastic environment. In other words, it captures the potential of the

exploration architecture - exploration support equipment, habitation and infrastructure, and crew

- while assuming a certain level of availability for the remaining classes of supply. If not enough of

any of these supply items is manifested to achieve this availability, the exploration capability metric

remains unchanged. Instead, a resource error is generated and directed to the analyst for resolution

(usually resolution involves small modifications to the mission profile).

4.1.1 Exploration Value

Exploration Value (EV), as shown in Equation 4.2, is a metric derived from EC that translates

resource errors directly into reduced mission performance through a reduction in the availability

of crew, exploration payloads, and/or infrastructure. Blanchard gives a qualitative definition of

availability as "a measure of the degree to which a system is in the operable and committable state

at the start of mission when the mission is called for at an unknown random point in time" [51].

And NASA defines system availability as the ability of the system to operate whenever called upon

to do so [52]. Thus system availability can be thought of as the opposite of downtime and is typically

expressed as a number (or percentage) between 0 and 1 (0%-100%). Exploration Value, is therefore

defined as the dot product of exploration capability and the availability of agents and infrastructure

to exploit that capability over time:

T

EV = AT ( Nerew,i(mCOS6,i + mCoss,i) . ACREWi * AINF,i (4.2)



where A,,i is the availability of a given component of the exploration system s at time i.

Crew Availability

Crew availability is explicitly a function of the number of crew at the exploration site and the
fraction of time each crew member can devote to exploration activities, a [53]. It is also therefore
implicitly a function of availability of the various supply items (including crew provisions, crew
operations equipment, waste management) which are needed to maintain crew health and safety.
Crew availability, ACREWi, at an exploration site at a given time can informally be defined as:

ACREW,i = f(ai, mCOS2,i, mCOS3,i, mCOS5,i)

The amount of time the crew can devote to exploration activity, aj, depends on the detailed ex-
ploration architecture including the nature of micro-logistics and surface operations, and exercise,
health, and environmental concerns. Intuitively, one can also imagine that a shortage in crew pro-
visions will necessitate that the crew operate at reduced capacity and/or reduce the duration of
their mission thereby reducing their availability for exploration activities over the scheduled length

of the mission. To capture this concept we define Vi as the event that there are enough provisions
to maintain the crew at time step i. Crew availability can now formally be defined as:

ACREW,i = 'ai P(Vi) (4.3)

Infrastructure Availability

Infrastructure availability is primarily driven by the spares requirements. A shortage in spare parts
for infrastructure reduces mission performance either because it requires the crew to cancel planned
exploration activity to perform repairs (rather than replacements), or in an extreme case to abandon

the mission. Bachman and Kline [54] developed a hybrid parametric-analytical model for estimating

the required spare parts requirements for exploration of the Moon, Mars, and beyond. In this model,
as showin in Figure 4-1, demand (failures) occur according to a Poisson distribution with arrival

rate. Based on this failure distribution, the number of broken units not yet replaced, or the pipeline,
with mean A can be computed. This then translates to a backorder EBO of spares, which can be

used to determine availability based on the equations below.

Ai = demands/dayi . qj -duratione (4.4)

expA
p(n) = n!-(4.5)

EBOi(s) = (n - s)pi(n) (4.6)
n>s

At any given time, any unit with no failed components is considered available. If failures of item
i in different installed locations are assumed to be independent, the probability that no randomly
selected element of type e is missing an item of type i, and is therefore unavailable is

AINF,i(si) = - E ) (4.7)



Finally, Bachman and Kline's model treats failures of different types of items as independent, and

thus the probability that a randomly selected element of type e with multiple spare types is

AINF,i(S, s1, ... , Sm) = ( - (4.8)

The above model estimates availability for complex systems with an arbitrary number of spare

types and elements. On average, an exploration system will have tens if not hundreds of different

types of spares, each of which has a characteristic MTBF, mass, volume, and criticality. Typically,
this large number of spares are grouped into orbital replacement units (ORUs) and/or shop replace-

able units (SRU) in the element. For the purposes of revenue management, the ORUs and SRUs

are further abstracted into two key types which are 1) pressurized units and 2) unpressurized units.

Within these types, an artificial "typical ORU" with mass, volume, and failure rate characteristics
is defined using a demand weighted average of the specifications of the various ORUs and SRUs
needed to complete a repair.

Figure 4-2 availability-versus-resources curve for a typical ORU. Every point on the curve repre-
sents the minimum spares resources required to achieve the corresponding system availability. From

the curve it is evident that the marginal contribution to availability provided by an incremental spare
changes as the length of the pipeline changes. This in turn suggests that the marginal contribution
to exploration value changes in a similar manner. And this variation is what revenue management

can exploit to improve logistical performance.

4.1.2 Marginal Exploration Value

Given the EV formulation, Marginal Exploration Value (MEV) metric can also be defined for a given
class of supply as follows:

M EVtt EV - EVa
MEVk = * *(49

0mCOSk mbCOS - moS(

where mcosk is the mass of COSk.

MEV can be equated to the "price" the exploration agent is willing to pay for a given unit of
resource. In practice, MEV is found using a forward differencing approach; it compares the simulated
exploration values of a baseline a- scenario (without resources included) and an enhanced b-scenario
(with resources included) and dividing by the mass of the resource.

Figure 4-1: System availability estimation process

........... ............
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Figure 4-2: Availability-versus-resource curve for a nominal ORU in a simulated exploration system
[54].

4.1.3 Relative Exploration Value

Finally, we define the Relative Exploration Value (REV) of a given basket of goods b compared to
another basket a:

REV,a= *EV **EVtat (4.10)

cOSj

where

2 w (4.11)

given the following definitions:

EVeto = exploration value of a given basket
mCosj = total mass of class j contained in a given basket
og = mass fraction of CoS j in a given basket

REV is a divisia index, or a commonly computed linked index, which is designed to measure

changes in productivity due to technology [55), and thus allows for consistent comparison of different

baskets of resources in terms of exploration value. In the context of this thesis, REV is key in
comparing the exploration value of different manifests.

4.1.4 Defining the Available Resource

The total cargo capacity mass (volume) of a parent element is represented by the large square. The

rectangles to the right of the dark gray box represent the total mass of a nested element. The

components include the dry mass of the nested element, the attach fittings/adapter mass required

to nest the element on the parent, the accommodation mass (racks/lockers) required to hold cargo,

..... ......................... . ........... ................. uzuw .. .......



the cargo in the nested element, and the stowage and restraint (packaging) mass used to pack the

cargo. The parent element can also hold cargo itself, represented by the two rectangular boxes on

top of the nested elements. Subtracting all of these components from the total cargo capacity yields

the available cargo resource, to which revenue management may be applied.

MassNolume available for RM

Stowage and Restraint

Mandatory Cargo

Cargo

Stowage and Restraint

Accommodation Mass

Attach Fittings/Adapters

Dry Mass

Figure 4-3: Available cargo resource for application of revenue management

4.2 EMEV Algorithm

The resource pricing module (RPM) estimates the MEV of a given supply item (or basket of supply

items). Protection levels are found using Algorithm 1, which is based on an algorithm provided

by Talluri and van Ryzin [10]. The idea is to simulate a large number, K, of demand vectors

from the forecast demand distributions of each class over a given time horizon1 . The next step

is to progressively sort these values and partition the simulated demands in order to satisfy the
above equation. The algorithm can be executed in O(nK log n) time, where K is the number of
simulated vectors (reflecting the variance of the demand model). SpaceNet's existing high-speed

simulation capability in conjunction with the good algorithmic performance of this approach make
it an attractive option.

Once again recall the demand forecast in Table 3.1 in Section 3.2.1. The following sections will

use this example to demonstrate how the EMEV algorithm works.

4.2.1 Estimating Prices

Recall from Section 4.1.2 that marginal exploration value (MEV) is defined as the marginal contri-

bution of a given supply item to exploration value. However, in space logistics, the MEV of a given

'Typically this time horizon will capture a single sortie or flight. However, multi-flight horizons may be used.
In either case, the time horizon should represent the upper bound of the duration of the mission since the EMEV
algorithm presented will try to maximize performance within the bound.

......... ....



Algorithm 1 EMEV Algorithm
Require: n demand classes, ordered by descending fare price
Require: K the number of experiments required to achieve a desired confidence interval

Generate and store K random demand vectors dk = (d ,...,dk), each containing simulated de-
mands for demand category 1..n

2: for each k E [1, K] do
Generate and store a vector of partial sums Sk =(S,...,S)
where each component S = dz.

4: end for
repeat

6: Set l*= [=PJ±1r,1 Set yj = (Si + S-i- )
Set K -> {k E s: > y3 }, andj -j -+1

8: until j = n - 1, OR resource production capacity C is reached

supply item is dependent on its position in the pipeline or sequence of supply items in its class that
have already been manifested. This is because the value of a supply item is partially determined by
the probability it will be used in the given time horizon, which is of course dependent on how many
similar items have been manifested already. In terms of the airline analogy, it would be equivalent
to the second passenger in a given booking class being charged a different amount than the first
customer in that booking class.

To account for this in the pricing of each supply class, we consider the deterministic demand
case, which will require T supply item units to fully meet the demand for class j over the user
specified time horizon. The nominal price of a given class is approximated by taking the expected
value of the MEVs over all T supply item units as shown in in Equation 4.12. Once a price has
determined for each class, prices are normalized so that the lowest fare class pn is equal to 1.0. Note
that this does not change the output of the Algorithm 1, because it only depends only on the ratio
of prices and not absolute prices (see Step 4). Normalization allows for more consistent comparison
across scenarios and enables the user to more easily analyze pricing results.

1T
pj = E[MEV] = T EMEVj,t (4.12)

t=1

where T is the number of supply items in class j required in the deterministic case.

4.2.2 Generating Demands and Partial Sums

Each element Sk of the demand vector Sk is the estimated aggregate demand of each variable over
the entire period. The number of demand vectors needed, i.e. the size of K, is selected to ensure a
95% confidence interval for each variable.

Kj=- (1 + erf (4.13)
2 ov2

where y and a are the mean and the standard deviation, respectively, of the demand generated by
the nth variable over the time horizon. To be conservative, K is set equal to the largest Kj.

SpaceNet analytically calculates the means and standard deviations for a sum of exponential,
normal, and uniform distributions. For other distributions, the mean and standard deviation of a
sum of a series random variables can be approximated using Lyapunov's Central Limit Theorem



(LCLT). The LCLT which states that the sum of a large number of independent random variables

will be approximately normally distributed if the random variables have a finite variance. The

LCLT varies from the standard central limit theorem (CLT) in that it does not require a large

number of identical random variables, but can rather handle a mix of variables. This enables more

scalability and allows for interleaving processes as well as arbitrary event generation schemes. And

indeed empirical evidence shows that most distributions converge to the normal distribution with

a relatively small number of variables [56]. The implication of the LCLT is that for large number

of different variables of arbitrary distribution, we can estimate the distribution of their sum as a

normal distribution with pt and o.2 as follows:

N

1: /Zin
n=1

N

0.2 Z 2
n=1

Once the number of experiments needed to meet a specific confidence interval, K, has been deter-

mined, the corresponding number of experiments is generated by cloning the prototype experiment

provided by the user and running a series of independent stochastic simulations. From these exper-

iments, the set of demand vectors is formed as shown in Figure 4-4. For each demand vector dk, a

corresponding partial sum vector is formed. The partial sum vector is simply a running aggregate

of the demands from the lowest class to the highest according to Equation 4.14. Figure 4-4 and

Figure 4-5 for the general case and the quantitate three-class example, respectively.

3
S L di (4.14)

i= 1

4.2.3 Finding Optimal Protection Levels

Talluri and van Ryzin prove that given continuous demand, a necessary and sufficient condition for

y* to be an optimal vector of protection levels is that it satisfy the n - 1 equations:

P(Bj (y*,7 D)) = 'j+, j = 1, 2, ... , n - 1 (4.15)Pi
P1

where Bj (y*, D) is the event that the demand to come in future stages exceeds the corresponding

protection levels and D = D 1 ,..., Dn is a vector of demands for each class

The above says that the probability that the jth demand will be realized is equal the ratio of

class (j + 1) revenue to class 1 revenue; this essentially reduces to Littlewood's rule in the n = 2

case. Though this method is suited to continuous demand, it provides a good approximation for

discrete demand as well. Building on Equation (4.15), it follows that the protection levels between

sequential classes should reflect the ratio of their prices:

P(Bj (y*, D)) = P(D1 + ... + Dj > yj|Bp 1(y, D))P(B - 1(y*, D))
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Figure 4-4: Demand vector (dk) and partial sum vector (Sk) generation - general case

d S1

Forcatng

dk Sk

Figure 4-5: Demand vector (dk) and partial sum vector (Sk) generation - quantitative example based
on Table 3.2

which implies that the optimal y* must satisfy:

P(D1 + ... + Dj > y4|Bj _1(y, D)) = D P1
P (B4 (y* D)) pi

P(Sj > y4|B4 _1(y, D)) = Pj+1 2
P4

where Si = Di +... + Dj = 1 Di.

Iterating through sequential classes in a high fare to low fare order establishes a series of protec-

tion levels for each class. The last class (i.e. the lowest fare class) is allocated any capacity above

the penultimate class' allocation.

Consider our favorite 3 three class example. From Table 3.2, the price ratios between the classes

are found to be P2/P1 = 70/100 = 0.7 and p3/p2 = 42/70 = 0.6. The first iteration of the above

algorithm finds a protection level for the first class, y1, such that 70% of the points have Si values

above y1 (since P2/P1 = 0.7). In the next iteration, the points to the right of the first partition

are sorted by the S2 values. The class 2 protection level, Y2, is chosen such that 60% of the points

lie above it (since P3/P2 = 0.6). Thus the protection levels y* and y* have been found, with any

remaining capacity above y* being allocated to class 3.

.............................. -...................................................................... .
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Figure 4-6: Plot of the partial sums S1, S2 and the resulting Monte Carlo estimates of optimal
protection levels for 25 simulated data points

4.3 Greedy Bid-Price Algorithm

The second algorithm for determining protection levels is based on self-adjusting bid-prices. Self-

adjusting bid-prices differ from the conventional bid-prices by because they are recomputed for each

resource request. The benefit of self-adjusting bid prices are that they avoid using outdated infor-

mation to make capacity decisions. However, because of the frequency with which they recalculate

the opportunity cost function, they must generally use relatively simple parametric value functions

that are computationally inexpensive. In this specific case, the value function is MEV.

Algorithm 2 extends the greedy algorithm that Rinnooy-Kan, et al. present for the multi-

dimensional knapsack problem [57], and modifies it for this application. First, the marginal explo-

ration value for each fare class is calculated according to Equation 4.9 (Line 3). Next the bid-price
equal to the maximum MEV value (Line 5). Finally an additional unit of any class that exceeds

the bid-price is manifested. Since the bid-price is set to the highest MEV value, essentially this

algorithm is greedily selecting and manifesting the most profitable class in each iteration. This cycle

repeats until the production capacity of the resource is reached, and the final manifest provides the

protection level for each class.

4.4 SpaceNet RM Implemenation

The integrated modeling and simulation capability provided by SpaceNet is a solid foundation upon

which to implement a revenue management system for space exploration. However, it was still

necessary to develop a suitable definition and metric for revenue and to design and implement

1 1 - .........................................................



Algorithm 2 Bid-Price Algorithm
Require: n demand classes, ordered by descending fare price

repeat
2: for each j E [1, n] do

Calculate the marginal exploration value MEVj
4: end for

Set the bid price 6 = maxjE[l,n] MEV
6: Manifest a supply item from any class j for which MEV ;> 6

until Resource production capacity C is reached

several new features. These were bundled into SpaceNet RM, a new plugin module available for
SpaceNet 2.1 and beyond.

Figure 4-7 shows the components of the SpaceNet RM plugin, its relationship to the core
SpaceNet modules, its required inputs, and finally its outputs. SpaceNet RM uses SpaceNet 2.0's
Forecasting Module to estimate demand and the appropriate level of supply to meet a target avail-
ability. This information is fed into the Pricing Module which estimates the expected revenue of
each supply item using MEV. The Manifesting Module uses the Greedy Bid-Price heuristic and
the prices generated by the Pricing Module, to "optimally" manifest resources in simulation. The
Capacity Allocation Module uses the EMEV heuristic and the prices from the Pricing Module to
provide "optimal" capacity allocations for a given exploration architecture.

4.5 Chapter Summary

This chapter presented the conceptual framework of SpaceNet revenue management, and the im-
plementation of two control algorithms, EMEV and Greedy Bid-Price, that can be used to provide
capacity allocation estimates for SpaceNet scenarios. The primary contribution of the conceptual
framework was to introduce marginal exploration value (MEV) as a proxy for monetary revenue.
Marginal exploration value is essentially a probabilistic extension of exploration capability (EC);
it reflects the exploration capability and the probability that that capability will be realized. The
EMEV algorithm is a Monte Carlo integration based approach that utilizes the expected marginal
exploration value of each class to segment available capacity by class. The bid-price algorithm is a
greedy algorithm that assigns capacity based on choosing the consumer that provides the maximum
EMEV at any given time.

Chapter 5 details some analysis performed on campaigns of lunar missions using SpaceNet.



Figure 4-7: Spacenet RM implementation structure
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Chapter 5

Results and Conclusions

5.1 Overview

The Constellation program has a stated goal of global exploration of the Moon while achieving a

continuous presence. To the end of global exploration, the 2006 ESAS report identified ten candidate

lunar sites for exploration on the basis of operational, scientific, resource potential, and program-

matic considerations [4]. These were the Lunar South Pole, SPA Basin Floor, Orientale Basin Floor,

Oceanus Procellarum, Mare Tranquillitatis, Smythii Basin Floor, Central Far Side Highlands, North

Pole, Aristarchus Plateau, and Rima Bode. In general, these sites are preferred because they offer

many different features that cumulatively satisfy a wide variety of technical and scientific inter-

ests. They offer geological diversity for science as well as high-grade ore bodies to maximize ISRU

production while minimizing the investment of time and energy.

The mobile outpost mission type provides an interesting option for providing both the depth and

the breadth of exploration that Constellation requires. In addition, of the mission types discussed

in Section 1.2.1, the mobile outpost provides an ideal test for the application of revenue manage-

ment because it features both demand heterogeneity due to the various infrastructure elements and

the crew, and limited operational flexibility due to the relatively minimal storage and transfer of

consumables between sites. The following sections focus on the application of the SpaceNet RM

framework to the high-level evaluation of the mobile outpost logistics strategy.

5.2 Winnebagos and Jeeps

One emergent mobile base concept is the "Winnebagos and Jeeps" concept described by Wilcox

[58]. In this concept, mobile habitats and laboratories are used as "Winnebagos" for long-range

exploration, storing supplies and consumables while providing the power and life support functions

that enable long-term, extended-range exploration. Supporting the Winnebagos are long-range

pressurized rovers, or "Jeeps", that allow astronauts to quickly and easily reach sites of scientific

interest, putting human reasoning and intelligence at the forefront of sample-gathering activities.

Jeeps also support the transportation of crew, and their provisions from site to site. According to

Wilcox, one winnebago and jeep pair could potentially explore thousands of kilometers, and two

pairs would likely be enough to provide global-scale exploration [58].

To demonstrate the strategy, Wilcox developed an exploration plan to visit eight of the ten lunar



Table 5.1: Winnebagos and Jeeps mobile outpost exploration detailed plan
Distance from Travel time from Lander

ESAS Site previous site (km) previous site (months) capability (mT)
1. South Pole 0 0.0 6.0
2. SPA Basin Floor 1400 2.3 4.0
3. Orientale Basin Floor 2600 4.3 5.0
4. Oceanus Procellarum 1800 3.0 4.0
5. Mare Tranquillitatis 2000 3.3 4.0
6. Smythii Basin Floor 2400 4.0 4.0
7. Central Far Side Highlands 3000 5.0 5.0
8. North Pole 2500 4.2 6.0

sites identified in the ESAS report, as summarized in Table 5.1 and Figure 5-1. In this scenario,
a dedicated cargo flight would deliver large infrastructure items and the first scientific payload to
the first site (South Pole) ahead of any crewed missions. The site would be robotically scouted and
various mission systems checked out remotely. Following this, the tour of the eight target exploration
sites would begin, with the following sequence of events occurring at each site:

1. Crew lands near to pre-positioned mobile infrastructure.

2. Crew unloads any consumables and exploration equipment, and performs any necessary as-
sembly tasks.

3. Using Jeeps, the crew begins high-intensity exploration of the extended exploration site area.

4. The crew uses a pre-positioned ascent stage to return home.

5. Mobile infrastructure departs for the next site using a combination of autonomous control and
teleoperation.

Designed correctly, mobile habitats can avoid the duplication of structure, thermal control, power,
communications, and navigation equipment required for two separate vehicles, thereby offsetting
the cost of transporting their additional mass around the lunar surface. Additionally, the flexibility
provided by the rovers allows new exploration paradigms that are more capable of global exploration,
while providing a depth of exploration similar to that of an outpost. For instance, the crew may
use the winnebago as a stationary camper, utilizing the rover to travel up to 200 km away from the
mobile habitat and only returning periodically to resupply and explore new directions. Alternatively,
the mobile habitats may be used as a true winnebago, moving in tow behind the jeep and allowing
the crew ultimate freedom to explore for an extended period of time, only limited by the amount of
cargo that can be carried along. From the above description, one can imagine that this architecture
uses a mixture of carry along, pre-positioning, and resupply flights.

5.3 Experimental Setup

As a case study, consider a two winnebago plus two jeep scenario based on the Constellation lunar
architecture. Constellation nominally requires 4 crew members per mission, as well as anytime
return through a dedicated ascent stage. Thus, the following items, or customers, are on the surface
for each mission:
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Figure 5-1: Winnebagos and Jeeps mobile outpost exploration concept

e Agents: Four human explorers

E Mobile Lab: The first winnebago; storage center for operational supplies and storing con-
suerables from site to site. Also includes power generation, drilling, and excavation equipment.

i Sortie Hab: The second winnebego. Contains living quarters of the crew, and includes

ECLSS system and communications terminal.

F Pressurized Rover (x2): The jeeps in this scenario. The pressurized rovers feature a 200km

range, enabling the astronauts to travel up to 100km away from the central site.

Note that the above model does not account for the descent or ascent modules (i.e. the transportation

elements) in the demand model.

Each customer produces demands based on the demand model in Table 5.2. Using the fact that
a series of exponential inter-arrivals times can be modeled as a Poisson process, and a sum of series

of Poisson processes is itself a Poisson process with a rate equal to the sum of the rates of the

individual processes, we can simplify the spares demand significantly. Note that nominal rates are

based off LAT data and Larson & Pranke (59].

For simplicity, the detailed and complex accommodation, attach fittings and adapters, and pres-

surized carrier nesting structure has been abstracted to a simple tare factor, which represents the

amount of mass associated with those items for each unit of mass of actual supply item manifested.

..........

Near Side



Table 5.2: Demand model for Winnebagos and Jeeps mobile outpost scenario
Variable Distribution Mean (units) Standard Dev. Tare Factor
Crew Provisions Normal 2.75 (kg/crew/day) 1.07 120%
Crew Operations Normal 1.0 (kg/crew/day) 0.3 100%
Pressurized Spares Poisson 0.06 (failures/day) 0.06 80%
Unpressurized Spares Poisson 0.03 (failures/day) 0.03 100%

5.4 Experimental Results

The following sections investigate the effect of various parameters on EMEV, and subsequently
capacity allocations between the demand classes. Section 5.4.1 and Section 5.4.2 provide some
intuition about the effect of delivery capability, mission duration, and spares demands, respectively.
Section 5.4.3 discusses the capacity allocations for the entire mobile outpost scenario based on
simulation.

5.4.1 Mission Duration

Just as delivery capability has an effect on the capacity allocation, the nominal duration of a mission
also has an effect on capacity allocation.

Figure 5-2 and Figure 5-3 show the evolution of the MEV of each supply class in Table 5.2 with
respect to mission duration (i.e. the length of the time horizon provided by the user) using the
EMEV and Greedy Bid-Price algorithms, respectively. From the figures, it is evident that while
the MEVs of the operations and crew provisions classes are relatively constant over with respect
to mission duration, the spares MEV shows much more dynamic behavior. For very short mission
lengths, the MEV of spares is low, reflecting the fact that any breakdown is unlikely in a short
mission. As the mission duration increases, the spares MEV increases to reflect the increasing need
for spares. The spares MEV reaches a peak at about 30 days, after which it falls gradually and almost
monotonically (the stochastic nature of the algorithm leads to small deviations from monotonicity),
eventually settling down to a constant value by about 180 days. This constant value represents the
deterministic contribution of a spare that is frequently used in spare-by-mass models. The peaking
behavior is due to the underlying summation of several Poisson random variables with different
interval values that is used to estimate MEV (see Equation 4.12).

The results show that using deterministic models to set capacity allocations may be sufficient
for longer missions, but those models significantly underprice the value of spares (and therefore its
capacity allocation) in shorter missions. Thus it is important to recalculated the capacity alloca-
tions for each class of supply as mission durations change significantly (typically caused by reduced
vehicle performance or modified demand models), rather than simply scaling down the long duration
allocations.

5.4.2 Spares Uncertainty

Not surprisingly, spares uncertainty plays a large part in logistical performance. While systems
are thoroughly tested on Earth, in-space environmental and operational factors lead subsystems to
experience different (usually lower) levels of performance in actual use. This results in a changed
spares demand rate, a different valuation of spares, and subsequently a different optimal capacity
allocation. To capture this effect, we define the K-factor as a failure rate multiplier that integrates
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Figure 5-4: Evolution of MEV versus K-factor as a fraction of the deterministic case estimate

environmental factors and operational factors. The K-factor multiplies the nominal mean time
between failure, MBTF, to produce an adjusted operational value, MBTF'.

Figure 5-4 shows the effect of K-factor on the marginal exploration values for unpressurized
spares using the EMEV algorithm. As K-factor grows, the demand for spares grows, resulting in
two primary effects. First, an increased K-factor reduces the nominal MEV of a unit of spares
relative to the other demand classes, and second it shifts the peak MEV of the spares class to an
earlier date. Recalling that in Figure 5-2, in which the K-factor was 1.0, the peak MEV of spares
was at about a 30 days. At a K-factor of 2 the peak shifts to about 10 days and at a K-factor of
0.5, the peak shifts to about 40 days. In other words, the less frequent spares demands become, the
more rapidly the MEV converges to its long term nominal value.

Recall from the experimental setup that a composite spare that represents the weighted average
of all the many types of spares in a typical exploration system was derived to simplify the demand
model. However, a real system may feature tens if not hundreds of types of spares, each with a
different K-factor. The results here suggest that in additional to improving high level capacity

allocation decisions, revenue management can also be used at a more detailed level to divide the

global spares allocations optimally between the various types of spares, and adjust these allocations

based on K-factor as more operational data becomes available.

5.4.3 Mobile Outpost Protection Levels

Recall once again the Winnebegos and Jeeps scenario described in Section 5.2. A series of experi-

ments were run to determine what the evolution of protection levels would be at the mobile outpost

given the travel plan shown in Table 5.1. The objective was to investigate how capacity allocations

vary over the course of the campaign as different amounts of cargo are transferred between different

. ......................... ......................



sites, with each mission given a nominal duration of 30 days. For the transfer of cargo, it was

assumed that the demand from the previous mission was exactly the mean value, meaning that the

residual cargo was also the mean value.

Figure 5-5 and Figure 5-6 show the results of the first variation using the EMEV and bid-price

algorithms, respectively. What the results show is that both algorithms initially give extremely

generous allocations to unpressurized spares, the highest MEV class based on the demand model

specified, before tapering off to the nominal values as the campaign progresses. While unpressurized

spares dominate the early manifesting, pressurized spares are given preferential allocations through

the mid-latitudes (Missions 4 through 7). Crew operations and crew provisions on the other hand

are manifested at a fairly stead rate throughout the campaign, reflecting the relatively deterministic

nature of their demand.

Intuitively, one can imagine that the capability of the lander effects the maximum duration of a

mission, which in turn affects capacity allocations for the various demand classes. From Table 5.1,
one can see that each site has a different nominal landing capacity. This is a result of the different

orbits required to enable the lander to reach the site, and the correspondingly different amounts of

AV (i.e. fuel) required to enter those orbits after translunar injection (TLI). These differences in

lander capability, combined with the limited cargo storage capacity of a mobile outpost as compared

to a stationary outpost, make exploring the mid-latitudes to the same degree as the poles especially

difficult. The algorithms compensate for this phenomenon by ensuring availability in the most mass-

efficient way possible, which in this case means ensuring infrastructure availability through a buildup

of both types of spares.

5.5 Algorithm Comparison

The results of the various experiments in Section 5.4 show that the EMEV and Greedy Bid- Price

algorithms produce very similar manifests. This is not surprising since they use the same marginal

exploration value (MEV) control. However, since EMEV is a continuous approximation of a discrete

phenomenon, it tends to produce smoother output than Greedy Bid-Price. The tradeoff for the

increased precision is computational time; EMEV is a Monte Carlo method that can require a large

number of samples, particularly as one models spares demands in more detail.
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Chapter 6

Conclusions

This chapter presents the important conclusions that can be drawn from the work summarized in

this thesis as well as potential areas of future work.

6.1 Findings and Contributions

Revenue management has significantly altered the travel and hospitality industry, and is now be-

ginning to exert influence on a host of other businesses. At the core, revenue management uses

detailed market knowledge and sophisticated controls to help capture additional incremental rev-

enues from an existing capacity constrained resource. This makes space logistics, which is the design

and analysis of cargo flow in space missions, an ideal candidate for revenue management.

The main contribution of this thesis is the application of revenue management to space logistics,

including the development of a theoretical framework and the formulation and implementation of

control algorithms. Specifically, the following contributions have been made:

* The categorization of space logistics as a capacity control problem with an exploration-based

value function.

* The development of a value function, Marginal Exploration Value (MEV), as a proxy for the

revenue of an exploration campaign

" The implementation of two heuristic controls - EMEV and Greedy Bid-Price - as part of the

revenue management add-on module for SpaceNet 2.0 (SpaceNet RM).

Each of these findings will be contributions further in the following sections.

Capacity Control

The first important contribution is the identification of space logistics as fundamentally a capac-

ity control problem. The goal of space logistics is to determine how best to allocate the resources

to support exploration, which is closely aligned with the quantity-RM problem. Recall from Sec-

tion 3.2.2 that dynamic pricing is not applicable because it requires demand to be endogenous to the

producer's price control; in space logistics demand is exogenous to the price control. Overbooking

is not particularly applicable because for all intents and purposes, capacity is fully utilized in space

logistics (i.e. all the customers show); the question is how to ensure that each supply item in the



manifest makes a nonzero contribution to exploration (i.e. the customer pays). Finally, estimation
and forecasting are already handled in large part through the ISCMLA framework through demand
models driven by the 10 major classes of supply.

Marginal Exploration Value

The second important contribution is the definition of marginal exploration value (MEV) as a proxy
for revenue. Space logistics features many qualitative and quantitative components of revenue, few of
which have anything to do with monetary amounts. In addition, exploration campaigns can develop
safety stocks, which threatens one of the four basic conditions for the implementation of revenue
management (see Section 1.3.1). MEV solves the first issue by defining marginal revenue as the
marginal contribution to the ability to conduct exploration, thereby abstracting the complex web of
interests that drive real exploration programs. Additionally, MEV prices new supply items based on
the existing stockpile of supply items at the exploration site. By defining marginal exploration value
(MEV), and using it as a proxy for revenue, much of the extensive body of revenue management
control and optimization algorithms can potentially be used (see Chapter 3).

Given the logistics and exploration focus of this thesis, marginal exploration value was a logical
value function to use. However, the framework developed is flexible enough to allow for the definition
of arbitrary revenue proxies as long as they can be defined through processes, and fit within the 10
canonical classes of supply. One can imagine the implementation of other exploration-based value
functions, or even functions that focus on risk management, basic logistic performance, etc.

SpaceNet RM

The third important contribution is the implementation of SpaceNet RM, which builds on SpaceNet's
existing scenario definition, demand modeling, and simulation capabilities to implement the EMEV
and bid-price algorithms developed in thesis.

6.2 Recommendations

The two variations of the Winnebegos and Jeeps discussed in Section highlight how optimal capacity
allocation may significantly differ from the nominal in shorter missions, particularly if spares demand
is a significant portion of overall demand. As an exploration architecture matures, the trend is for
vehicle performance to fall short of expectations while demand exceeds expectations. The result of
this is usually reduced exploration capability, often in the form of reduced mission durations. Another
key factor in adjusting the optimal capacity allocation is the spares K-factor, which determines how
quickly spares demands reach their long term nominal value (i.e. the deterministic case mean value).
In these cases, it is important to recalculate capacity allocations to account for the changed demand
profiles, rather than just scaling the deterministic (long duration) case.

As more dynamic mission types such as the Winnebegos and Jeeps concept become a reality, it
is important to integrate probabilistic demand into the logistical design process as early as possible.
These mission types tend to have reduced warehousing capacity and may have no true "steady
state". Integrating revenue management into integrated modeling and simulation is one way to
provide insight into the effect of various mission parameters at the early stages of mission concept
development, allowing these insights to be fed back into the process.



6.3 Future Work

Several areas of future work are being proposed as follow-on work to this research. These ar-

eas broadly fall into two categories: extension of the conceptual framework and improvements to

SpaceNet. The key improvements to the conceptual framework should be made in the future:

* Capacity allocation for habitats and exploration items. As discussed in Chapter 4, the

RM implementation in this thesis requires the user to specify the habitation and infrastructure

items (CoS 8), as well as to provide exploration goals (CoS 6). With this information, SpaceNet

RM can then determine the demand of crew consumables (CoS 2 and 3), spares, and other

classes of supply, and then allocate capacity accordingly. However, the framework would

be even more powerful if it could make an integrated capacity allocation including spares,

habitation, and exploration items.

" The ability to handle stationary surface outpost missions. These missions are difficult

because the ability to store large amounts of safety stocks and pre-position large amounts of

cargo makes pricing the different supply classes very difficult. In the current framework, the

warehousing of large amounts of supplies drowns out the stochasticity in the demand model

and essentially turns a scenario into the deterministic case. To some extent this mirrors real

life, but future versions of SpaceNet RM should attempt to handle large warehousing. One

potential solution is to discount supply items beyond a certain threshold, much like a net

present value calculation discounts earnings in the far future more than earnings in the near

future.

" Robotic agents. In order to account for this, exploration capability (EC) must be updated to

include contributions from robotic agents. Since MEV is essentially a probabilistic derivative

of EC, it would automatically be updated as well.

In addition to the conceptual framework updates, the following software architecture upgrades

would be required:

" User-defined value functions. As discussed above, the framework developed here is flexible

enough to allow for the definition of arbitrary revenue proxies as long as they can be defined

by processes, and fit within the 10 canonical classes of supply. Enabling the user to input

custom value functions would greatly broaden the relevance and value of SpaceNet RM in

mission design and evaluation. A simple implementation might involve allowing the user to

give weights to exploration value, risk, exploration mass delivered, etc.

" Detailed stowage and restraint. One of the limitations of the SpaceNet RM implemen-

tation is the ability to handle complex nested stowage and restraint models. In the examples

shown in Chapter 5, a per-class tare factor was used as an estimate of the mass associated

with containers, attachment fittings, and logistics modules required to transport cargo in space.

However, a more precise stowage and accommodation model would allow for better modeling

fidelity, and better align the SpaceNet RM model with the ISCMLA model.
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Appendix A

Network Representation

A.1 The Static Network

The static network's nodes represent various physical locations in space. Three types of nodes have

been identified:

1. Surface nodes: nodes on the surface of a terrestial body. Examples include NASA Kennedy

Space Center on Earth and Mare Tranquilitatis on the Moon.

2. Orbit nodes: nodes in the orbit of a body. Examples include Low Earth Orbit (LEO) or Low

Lunar Orbit (LLO).

3. Lagrange: point locations in an orbital configuration where a small object affected only by

gravity can theoretically be stationary. Examples include the five Earth Moon Lagrange Points.

The arcs represent the physical connections between two nodes, that is, the family of trajectories

that can be traversed between two physical locations. Within arcs are trajectories which represent

the actual paths between the two nodes in the time-space continuum.

A.2 Time Expanded Network

The TEN can be thought of as a sequence of "snapshots" of the static network. In each snapshot,

the set of arcs and the feasible trajectories, i.e. the set of orbital paths, within the arcs are updated

based on orbital dynamics. For an arc to exist in the TEN, it must:

" Exist in the static network

" Create a connection that moves forward in time (i.e. no time travel)

" Represent a feasible transfer

In practice, the set of arcs never changes from snapshot to snapshot in the TEN; rather the set of

trajectories within the arcs changes to reflect the changes in energy required to traverse the arc.

By representing the space network in this time expanded form, the network definition is decoupled

from the celestial mechanics that govern space travel, since the existence of the arc in the time

expanded network assures that a feasible transfer between two nodes exists. In addition, the time

expanded network allows for a series of decisions about space logistics to be made in a holistic

framework.
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Figure A-1: An Earth-Moon time expanded network
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Appendix B

Measures of Effectiveness

B.1 Basic Logistics Performance

B.1.1 Crew Surface Days (CSD) [crew-days]

CSD is the total cumulative number of crew surface days spent over over all S nodes explored in a

given scenario. It is specifically defined as:

T S

CSDt0 t = ATE Z Ncrewij (B.1)
i=1 j=1

AT = Earth days per SpaceNet time period

T = total number of SpaceNet time periods in a scenario

S = number of planetary exploration nodes visited in a scenario

Ncrew,ij = number of crew present at exploration node j during time period i

B.1.2 Exploration Mass Delivered (EMD) [kg]

EMD is the total amount of exploration mass delivered to all surface nodes over the course of a

campaign (scenario). Exploration mass contains all items that are characterized as CoS 6 and CoS

8.
T S

EMDtet = AT Z[Amcos6,i,j + Amcoss,i,j] (B.2)
i=1 j=1

AT = Earth days per SpaceNet time period

T total number of SpaceNet time periods in a scenario

S number of planetary exploration nodes visited in a scenario

Amcos 6 ,i,j = mass of exploration items delivered during time period i to node j

Amcoss,jj = mass of infrastructure items delivered during time period i to node j



B.1.3 Total Launch Mass (TLM) [kg]

The total launch mass (including crew, elements, and all other CoS) lifted off from the surface of
the Earth to accomplish a particular exploration scenario. SpaceNet calculates this metric as:

Nf E Nf E

TLM = E mempty,eNe,v + mCos,k - E E mCrewNerew,eNe,, (B.3)
v=1 e=1 k=0,8,9 v=1 e=1

where

Nf = total number of launches in a scenario
E = number of element types in a scenario
mempty,e = empty mass (= dry (tare) mass + accommodation mass) of element type e
Ne,v = number of type e elements on launch v

moos,k = total mass launched for class of supply k including CoS 1 (propellant), but excluding CoS
0, 8, and 9
Ncrew,e = number of crew present on type e elements
m = nominal mass of a crew member (usually taken to be 220 lbs = 100 kg)

TLM is integral to the calculation of other MOEs, particularly Relative Exploration Capability
(REC). The total launch mass for Apollo 17 was approximately 2,930 metric tons, about 3 million
kilograms.

B.1.4 Up-mass Capacity Utilization (UCU) [0,1]

A key metric to understand exploration logistics efficiency is that of cargo capacity utilization.
Each propulsive and non-propulsive element (CoS 9) has a cargo capacity (in terms of mass and
volume) associated with it. In some cases for propulsive elements such as the Earth Departure Stage
(EDS), this capacity is zero, but for non-propulsive elements, the cargo capacity is usually non-zero.
SpaceNet quantifies the fraction of available up-mass (launched from Earth) cargo capacity that is
actually used for all classes-of-supply other than infrastructure (CoS 8), transportation and carriers
(CoS 9), propellant (CoS 1), and crew (CoS 0). The upmass capacity utilization in a scenario is the
ratio of the mass of tracked supply classes launched over all elements, divided by the total usable
cargo mass capacity (= maximum cargo up-mass capacity less accommodation mass):

UCU = 1 Zk=2-7,1o mos,k (B.4)
e=l1 (mcap,e - maccom,e)

where

EI = number of instantiated elements in a scenario

mCoS,k,e = total mass of class of supply k carried in instantiated element e at time or reentry

mcap,e = up-mass cargo capacity of instantiated element e

maccom,e = accommodation mass of instantiated element e

A completely efficient transportation system has a capacity utilization of unity, while a UCU of
zero means that all elements are being launched empty. Various factors can result in capacity uti-
lization below unity. These include volume-constrained payloads, packing inefficiencies, and parent
element constraints (where the launch vehicle capability is the binding constraint, not the carriers
cargo capacity).



B.1.5 Return-mass Capacity Utilization (RCU) [0,1]

Another important metric to quantify is the fraction of available non-destructive return-mass (re-

turned to Earth) cargo capacity that is actually used for all classes of supply other than infras-

tructure (CoS 8), transportation and carriers (CoS 9), propellant (CoS 1), and crew (CoS 0). The

non-destructive return-mass capacity utilization in a scenario is the ratio of the mass of tracked

supply classes returned to Earth over all elements, divided by the total usable cargo return-mass

capacity (= maximum cargo return-mass capacity less accommodation mass):

RCU = e 1 Zk=2-7,10 mCos,k (B.5)
Ee=i(mnreturncap,e - maccorn,e)(B5

where

EI = number of instantiated elements in a scenario

mCoS,k,e = total mass of class of supply k carried in instantiated element e at Earth launch

mreturncap,e = non-destructive return-mass cargo capacity of instantiated element e

maccome = accommodation mass of instantiated element e

Similarly to UCU, an RCU of zero means that all elements launch from and returning to the

Earth are empty upon return, while a RCU of 1.0 indicates that the non-destructive return-mass

cargo capacity of the system is being fully utilized. RCU reflects the benefits obtained by being able

to return samples (CoS 603) or failed equipment back (CoS 703) for inspection on Earth.

B.2 Exploration Capability

B.2.1 Exploration Capability [crew-day-kg]

To first order, the exploration capability is the amount of time the crew gets to spend doing explo-

ration and research at a surface node, multiplied by the amount of total exploration mass they have

to do the job at each node visited during the scenario. The amount of time the crew can spend doing

exploration and research while at a surface node is limited by a number of factors. These sources of

crew non-availability include: housekeeping activities, maintenance and repair, in-situ crew activ-

ity planning/scheduling, medical, EVA preparation, and physiological (exercise, sleep/rest, eating).

Exploration capability (EC) is defined as:

T
EC = AT (1 - ai)Ncrew,i(mCoS6,i -+ mcossi) (B.6)

i=1

In order to provide exploration capability, crew and exploration equipment have to be co-located

at the same node concurrently. Crew at a surface node without exploration equipment does not

produce benefit, and conversely exploration equipment at a node without crew to operate that

equipment does not provide any benefit either. Note that generally the exploration capability is not

the same as simply the product of total exploration mass delivered and total crew surface days in

the entire scenario. However, when both crew and exploration mass always travel together,

as during the Apollo missions, then EC can be simplified to:

EC = EMD x EC (B.7)



B.2.2 Relative Exploration Capability

The relative exploration capability is a normalized measure of exploration logistics efficiency. It is
based on the well-established theory of linked index numbers, which are used to measure changes
in economic productivity due to technology improvements. The exploration capability metric, Eq.
(10), is explicitly a function of the number of crew and the exploration mass present at each node. It
is also implicitly a function of all classes of supply since crew provisions, crew operations equipment,
propellants, carriers, spares etc. are needed to produce crew at the surface node. A relative explo-
ration capability metric needs to account for the necessary use and consumption of these resources
as well in establishing overall logistics efficiency. REC is defined as

ECb EI
REC,a - to tot (B.8)

iik iCOSkIO

where
,a + Wb

k =k k (B.9)

given the following definitions:

ECtot = exploration capability of a given scenario

mcosk = total mass of COSk

Wk = mass fraction of COSk

SpaceNet uses Apollo 17 as the basis for normalization (i.e., REC =1 for Apollo 17), thus an
interplanetary supply chain with an REC > 1 would indicate a more efficient supply chain technology
than Apollo 17 because more exploration capability is being provided for each unit of mass launched
from Earth. Conversely an REC < 1 would indicate a less efficient supply chain technology than
Apollo 17.



Appendix C

ATHLETE

The revolutionary ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer) mobility plat-
form, developed by JPL with support from Johnson and Ames Centers, Stanford University, and
Boeing, is based on six wheels at the ends of six multi-degree-of-freedom limbs. Because each limb
has enough degrees of freedom for use as a general-purpose leg, the wheels can be locked and used as
feet to walk out of excessively soft or other extreme terrain. This allows wheels and actuators to be
sized for nominal terrain, resulting in substantial mass savings. In addition, each limb has sufficient
degrees-of-freedom to use as a general-purpose manipulator. As such, ATHLETE is capable of either
autonomously performing or assisting in the loading, transportation, manipulation, and depositing
payloads to essentially any desired sites of interest.

Figure C-1: All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE) robotic vehicle

.......... ............................... ............................ ......... ............. .... . . .......... .............
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