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Topological Evolution of Networks: Case Studies in the US Airlines and
Language Wikipedias

by
Gergana Assenova Bounova

Submitted to the Department of Aeronautics and Astronautics
on February 27, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis examines the topology of engineering systems and how that topology changes over
time. Topology refers to the relative arrangement and connectivity of the elements of a system.
We review network theory relevant to topological evolution and use graph-theoretical methods to
analyze real systems, represented as networks. Using existing graph generative models, we develop
a profile of canonical graphs and tools to compare a real network to that profile. The developed
metrics are used to track topology changes over the history of real networks.

This theoretical work is applied to two case studies. The first discusses the US airline industry
in terms of routes. We study various airlines and segments of the industry statistically and find
commonly occurring patterns. We show that there are topology transitions in the history of air-
lines in the period 1990-2007. Most airline networks have similar topology and historical patterns,
with the exception of Southwest Airlines. We show mathematically that Southwest’s topology is
different. We propose two heuristic growth models, one featuring hub-seeding derived from the
underlying patterns of evolution of JetBlue Airways and one featuring local interconnectedness,
derived from the patterns of growth of Southwest. The two models match the topologies of these
airlines better than canonical models over time. Results suggest that Southwest is becoming more
centralized, closer to the hub-spoke topologies of other airlines.

Our second case study discusses the growth of language Wikipedia networks, where nodes are
articles and hyperlinks are the connections between them. These knowledge networks are subject
to different constraints than air transportation systems. The topology of these networks and their
growth principles are completely different. Most Wikipedias studied grow by coalescence, with
multiple disconnected thematic clusters of pages growing separately and over time, converging to a
giant connected component via weak links. These topologies start out as simple trees, and coalesce
into sparse hierarchical structures with random interlinking. One striking exception is the history of
the Chinese Wikipedia, which grows fully connected from its inception. We discuss these patterns
of growth comparatively across Wikipedias, and in general, compared to airline networks.

Our work suggests that complex engineering systems are hybrids of pure canonical forms and
that they undergo distinct phase transitions during their evolution. We find commonality among
systems and uncover important differences by learning from the exceptions.

Thesis Supervisor: Prof. Olivier L. de Weck
Title: Associate Professor of Aeronautics and Astronautics and Engineering Systems
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Chapter 0

Introduction

0.1 Complex Systems Change

0.1.1 Growth and Complexity

In August 2007, there were 850000 commercial and civil aircraft departures in the US [1]. More
than 800000 of these flights offered more than 100 seats and about 700000 were jet-powered air-
craft. These figures describe a massive flow of people across and beyond the continental US in only
a single month. Despite recessions in this decade, projections are for steadily growing air traffic
which will require an increased capacity and create infrastructural pressure on the US national
airspace system. Though the imminent challenges such as airport congestion and air traffic con-
trol capacity-related problems are well-understood, the emergent problems associated with system
growth cannot be foreseen. Are there ultimate physical limits to air transportation growth and
is the system growing slowly enough, that with time we will be able to handle this technological
challenge? How does technology infusion affect the system interactivity and performance over time?
Neither technological advances, nor the economy can be forecasted very well - but growth can also
be studied historically.

Apart from air transportation, the same challenges of growth and complexity affect many tech-
nological systems. With the explosion of Internet users in developing countries like China, and
especially of mobile Internet users, it is unclear whether the communication protocols and designed-
to-bandwidth routers will handle the massive flow of information robustly. Backbone cable failures
(ex: Yellow Sea and Mediterranean) have already caused massive outages in entire countries. The
challenge is in handling both growing information flow and increasing interactivity (more connec-
tions per node). The same can be argued for projects with long life-cycles which have to handle
innovation and upgrades continuously. How changes propagate through the system can determine
its future design and whether it can meet performance targets [13].

This thesis studies the larger patterns of growth in the evolution of technical systems, and
especially non-dimensional patterns, to find out whether these patterns exist independent of system
size. We combine metrics from the literature and develop new tools to analyze airline networks,
which are networks of airports connected by flights. While the models and tools are informed and
shaped by airline industry data, they are not exclusively applicable to airline networks growth. To
argue generalizability, we also briefly look at growth of several language Wikipedias.
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0.1.2 Visualization of Complex Data

In mathematics, a problem is said to be half-way solved if it is stated and represented in mathe-
matical terms properly. For an engineer, visualizing a problem or a piece of data in a certain way
can often be enough to diagnose a problem and propose a solution. In representing large systems
as networks, the challenges are staggering, because it is very hard to put all aspects of the data
on one chart. For example, the goal of Figure 0-1 is to show the top routes in the US by number
of departures. Chicago-New York and BOS-NY-DC are the most frequented routes. This figure
fails to show the type of aircraft flying on these routes, the number of passengers being hauled
across and it does not tell what airline flies where. Other than the airspace operations, there are
other layers of information not represented here, such as ground operations, crew rotations, airport
infrastructure, flight corridors, and airspace restrictions. All of these will need to be considered to
fully understand the limits of growth properly.

Understanding how the entire industry changes over time requires a multi-faceted approach.
While this thesis uses graphics heavily to represent results, the need for unified, possibly interactive
visualization tools is clearly recognized.

Figure 0-1: US airline flights in August 2007. High-frequency departure routes are highlighted.
Alaska, Hawaii and Puerto Rico / US Virgin Islands are not shown.

0.2 Complex Systems and Topology

Network representation is one way to visualize systems of different size and type. The essence of a
network is its elements and how they are connected. Network topology is the term that describes the
layout and organization of the network. Conceptually, a topology is non-dimensional. For example,
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star formations are star formations regardless of the number of spokes - there are many spokes
and one hub. Topology is studied because it puts seemingly different networks under the same
umbrella of ”physical” laws and tools for analysis. Early research associated topologies with degree
distributions (distributions of connections per node) [14]. More recent papers discuss frequently
occurring patterns [7], network modularity [15] and node roles/classification [16]. In this thesis
we review the topology models in the literature and analyze real systems against the spectrum of
existing models, as well as against a set of non-dimensional metrics. We create a comprehensive
view of network topology, in a novel and useful way.

This idea of comprehensive view of topology was deemed important because there are cases
in the literature where single metrics were shown to be insufficient in understanding the structure
of the system [4] compared to in-depth study and mapping of the nodes and connections. In our
topology profile, we combine metrics capturing different aspects of the topology: reachability, degree
correlations, clustering, density and scale-freeness. This is shown to be useful in distinguishing
between different airline topologies.

0.3 Complex Systems and Topology Evolution

Human-made systems evolve, with and without human intervention, under physical, environmental
and market forces. Any system humans build and operate is limited in growth by the resources of
our planet, and our ability to create and sustain wealth, using these resources. The airline system
is a great example of a growing technological system pushing against environmental and physical
(capacity, financial) constraints. Understand the growth patterns in order to manage the systems
we operate better is crucial for our ability to sustain and improve our standard of living.

The value in studying topology evolution across different systems is in the potential of finding
universal principles and in developing multi-disciplinary tools, such as machine learning in biol-
ogy and network theory in communications. In this thesis we apply network theory algorithms to
study the route evolution of airlines, with the goal to study patterns more comprehensively than
previous studies. From an airline expert’s point of view, this approach is unusual. It is the applied
mathematician’s search for patterns in the real world. It is interesting to correlate the two sets of
knowledge and use the mathematical description to assess the performance of a given airline. We
devise two growth algorithms derived from findings of topology patterns over time, and show that
they match airline topology better than canonical topologies from the literature. We claim that
these two models capture mechanisms of growth for JetBlue Airlines and Southwest Airlines.

An empirical question about topology is whether it changes over time, or whether it stays
constant with size. In other words, are there phases of growth a system goes through, with clear
topology transitions, or not? Also, are these phenomena system-dependent, or are they detectable
across systems? In this thesis we attack this question by studying empirically the topology over
time of various airline networks and some Wikipedia networks. We find examples of both topology
transitions and constant topology histories, and also examples of similar topology histories for
different networks. We use the similarity in patterns over time to devise topology-derived growth
models. However, the issue of identifying specific domain-dependent drivers of network growth and
evolution and triggers of phase transitions is left for future work.
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0.4 Airline Networks

There is a wealth of literature on airline networks - studying topology of airline routes and struc-
ture of operations from many angles. In Chapter 3 we review the most relevant work, divided in
three areas: i/ studies on airlines using pure network theory only (without domain knowledge),
ii/ studies in air transportation management that use network theory tools and iii/ econometric
work on airline structure, based on profit and cost-maximizing models. This thesis falls in the first
category of studies.

Research on airline networks using network theory only is popular due to the availability of
data, and the easy representation of airport systems as networks. Guimera et al [17] study the
global airport structure from the point of view of node centrality, and community structure. The
authors consider the world-wide airport network, taking one year worth’s data (OAG) and represent
it as an almost symmetrical graph (adjacency matrix). They find that the path lengths are small
for the size of the graph, so it is a small-world. They use centrality measures to classify airports
according to their ”role” in the network - global hubs, connectors, regional hubs, peripheral air-
ports and ultra-peripheral airports. These ideas are further developed by the same authors in [16]
where the premise is that within-module properties of systems represented as networks are different
from global properties. Using a simulated annealing algorithm, they identify modules in various
networks in biology, air transportation and communications (the Internet). Then they define node
roles based on nodal connectivity within the modules and across modules. Finally they look at the
connectivity profile for a network between different nodes of roles classes (hubs to hubs, peripheral
to ultraperipheral etc) estimated against a random background.

In air transportation management, there are two interesting pieces of relevant work relevant,
by Bonnefoy and Wojahn.

Bonnefoy [12] studies scaling mechanisms by which the airline industry has met growing demand
in the past and is expected to do so in the future. He shows that the National Airspace System is not
scale-free from the point of view of network theory, due to capacity constraints at major airports.
He shows that the system has evolved to grow via multi-airport systems in metropolitan areas and
if those are modeled as aggregated nodes, the entire systems does become scale-free (measured by
the degree distribution). He performs in-depth case studies of various multi-airport systems and
studies how they develop to provide recommendations for future airport infrastructure management.

Wojahn [18] studies the airline industry as a whole, discussing carrier statistics around the world.
He uses ”measures of network structure” to describe transformations in the industry, and finds that
more and more, airlines adopt a hub-spoke model. The author analyzes the hub-spoke model versus
the point-to-point model using cost and profit equations as a function of influence of travel time,
flight frequency. He finds that the hub-spoke model is optimal if the passengers’ valuation on flight
frequency is high and of travel time is low. The number of hubs is also considered - where the result
is that if congestion and slot restriction are in place, a multi-hub network is more profitable for he
airline, compared to a single-hub network or a point-to-point network. Finally, Wojahn creates an
asymmetric demand model, to reflect the fact that cities have different characteristics and different
demand for travel. With the assumption in the model that spokes are connected to a single-hub
and that hubs are fully connected, he finds that the cost-maximizing structure is a mixture of a
point-to-point and single-hub networks.
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0.5 Research Goals. Hypotheses

The focus of this thesis falls in three general areas:

i (network theory) understanding network topology and topology evolution;
ii (airline networks) applying topology ideas to analyze US airline routes in the period 1990-2007;
iii (general tools) applying the network topology evolution tools to other growing networks, such

as language Wikipedias to detect potential patterns of interest.

0.5.1 Network Topology and Topology Evolution

Hypotheses

• Non-dimensional graph theoretical metrics can uncover significant structure of real systems
independent of size.

• There are clearly defined phases of evolution. And our proposed metrics will be able to
detect these stages of evolution such as hub growth, new hub seeding, increased cross-linking,
system capacitation (increasing capacity of selected ”high profit” existing nodes and edges
without significantly changing topology), as well as the impact of major external events such
as bankruptcies and mergers.

Research Approach
Topology: combine existing metrics non-dimensionally into a vector profile, assess comparison mea-
sures; review and order ”canonical networks” based on generative models in the literature; create
topology profile based on ”canonical networks”; search for frequently recurring motifs.

Topology evolution: use the topology metrics to plot time-varying comparisons for real data topolo-
gies; propose better-fitting models using the underlying motif structure, detect phase transitions in
system evolution.

Rationale
Network topology describes how the elements of a network are arranged and connected. We aim
to find out whether it can be quantified using simple non-dimensional metrics. The advantage of
non-dimensional metrics is that they can characterize network topologies independent of network
size, i.e. the number of nodes and edges, and can therefore be a basis for comparative studies of
the same network at different times of its life or for comparison between different networks at the
same time. This involves studying canonical topologies from the literature, such as simple ideal-
ized topologies (stars, trees) to constructed and optimized examples (hierarchies with randomized
components) to topologies corresponding to growth models such as preferential attachment and
random graphs, filling the spectrum between ”hub-spoke” and ”point-to-point”. Then a network
is said to exhibit a certain topology if it has similarities to a certain canonical topology or class of
topologies. This will aid in describing different complex systems using similar tools.

With the concept of topology clarified, and a set of validated topology comparison metrics, we
plan to study how topology changes over time. This means that for every time-tagged snapshot of
real data (for example, a monthly instance of an airline route network), we will compare the point to
all canonical topologies and track that comparison over time. The goal is to find whether topology
goes through major phase transitions as a function of growth, and whether there are phases or stages
of growth, general or specific to real systems (ex: the airline routes). It is likely that if patterns
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of growth are discovered they will be different for the airlines, which are transportation systems
and Wikipedia, which is a knowledge network. These differences can then be further explained
by the presence of certain flow constraints that may only exist in physical systems that transport
matter, energy and information, but that are irrelevant in knowledge networks where it is possi-
ble to instantly jump from one node to another in the network without violating any laws of physics.

To summarize, the goals for this research question is to i) distill a set of valid non-dimensional
topology metrics, and assess metrics from the literature; ii) create a set of canonical topologies
from simple and regular to random with as much continuity as possible between topology classes
(ex: trees and hierarchies, random graphs with various properties); iii) plot the topology spectrum
of system examples and study topology evolution looking for transitions, or stages of growth or
decline.

0.5.2 Airline Networks

Hypotheses

• There are distinct stages in airline growth and evolution.
• Simple custom models based on underlying network motifs, combined with modest domain

knowledge can perform better than canonical graph models in comparing network topology
evolution.

• Southwest is topologically distinct from other airlines; this anomaly may be directly linked
to its profitability but linking network evolution explicitly to competitive pressures and eco-
nomics is beyond the scope of this thesis.

• Simple metrics are not enough to explain the network structure of Southwest.
• Southwest is likely to evolve into a more ”conventional” network over time.
• The legacy carriers and the so-called ”low cost” airlines can clearly be distinguished in terms

of their network characteristics.
• Most airlines exhibit a dominant topology that takes advantage of efficiencies gained by hub

operations - Southwest airlines is likely to be an exception.

Research Approach

• Split airline dataset into aircraft type, short and long haul networks. Extract single airlines as
well, in particular, the top eight carriers (American, Continental, Delta, Northwest, United,
US Airways, America West and Alaska Airlines), and a set of low-cost carriers such as JetBlue,
Southwest, Frontier, Spirit, ATA, and Airtran. Analyze these datasets statistically, with both
graph-theoretical and industry metrics, and plot their metrics altogether.

• Study recurrent patterns in a smaller set of data slices, including JetBlue and Southwest.
• Analyze the topologies over time (1990-2007) for the same small set of data slices and extract

patterns of growth.
• Devise custom models from the underlying patterns and test them, using only the system’s ini-

tial conditions and assumed internal growth parameters/probabilities to guide system growth
and evolution. Test whether such models perform better than classical nodal degree based
models such as preferential attachment.

Rationale
Airline networks in this study are modeled with airports as nodes and existing flights as links.

The entire set of routes in the United States flown by US airlines is difficult to analyze as a
whole. Other than size and complexity, it is challenging to claim that the industry is evolving under
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common economic or other principles. This is why the first step is to split the industry into network
slices that make sense economically and technologically, i.e. by separate airline or by aircraft type,
by distance flown, or by flight frequency. We are interested in comparing these slices statistically
and concentrating on a few representative networks, such as JetBlue Airways, Southwest Airlines
and Continental airlines. A natural question is whether legacy airlines and low-cost airlines have
different topologies, and different recurrent patterns over time. Also, we discuss the relevance of
network tools in the airline industry - and where the limitations of these tools are in explaining
airline behavior.

Finally, we plan to tackle the question of Southwest Airlines as an outlier by all statistical
measures. We discuss a custom growth model for Southwest.

0.5.3 Wikipedia

Hypotheses

• It is expected that Wikipedia network growth shows different patterns than the airline set
because its growth is not subject to the same flow constraints and certainly does not have
the same purpose - transportation.

• With a statistically large number of users (authors) differences in local structure between
different languages will emerge.

• Also, while small and new Wikipedia networks initially look very different in terms of topology
(since their growth is driven by only a few individuals with special interests and knowledge),
over time as the number of nodes grows into the hundreds and the thousands these networks
start to look more similar.

• Growth happens by coalescence: many smaller modules organized by topic grow separately
and eventually connect. This is a similar pattern as has previously been observed in change
propagation networks which can also be interpreted as a form of knowledge network.

Research Approach

• Wikipedia data is downloaded from data dumps regularly performed by Wikimedia, which
contain the histories of all changes, edits, insertions, deletions. Only the first year is considered
for analysis because these networks quickly grow too large to be handled computationally with
the tools available.

• Each history is broken down into daily snapshots, which represent the network of the Wikipedia
for that day. Given that different Wikipedias grow at different rates, for every language a
suitable number of days is taken for analysis depending on the number of nodes and edges
up to that day.

• The Wikipedias downselected for analysis are the Interlingua, the Esperanto, the Simple
English, the Russia, Spanish, French, Italian and Chinese Wikipedias.

Rationale
It is our goal to develop general tools and concepts for network evolution analysis. The purpose
of the Wikipedia analysis is to (i) demonstrate that the non-dimensional network topology metrics
and methods are broadly applicable and (ii) to examine whether physical (transportation) networks
and (virtual) knowledge networks behave differently. Suitable growing networks for benchmarking
are different language Wikipedia datasets. These are not technological (transportation) networks,
but rather ”knowledge networks”. They are governed by cognitive, rather than physical limits and
may have different growth patterns. These are networks with articles as nodes and hyperlinks as
edges. Hyperlinks are considered only as part of the text of the articles, so they are real cognitive
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references between two topics. There are various auxiliary links associated with Wikipedia pages,
which are not considered here. We plan is to compare a few language Wikipedias to each other
and discuss the how fast they grow and what the patterns are. The same set of analysis tools will
be used as for the airlines example.

0.6 Thesis Roadmap

This thesis is organized in 7 chapters. This Chapter, 0, presents the introduction. Chapter 1 reviews
network theory relevant to the study of topology and its evolution. Chapter 2 uses the ideas from
the literature review to develop tools to study network topology statistically. Chapter 3 applies the
tools from Chapter 1 to our first case study - US airline networks. Chapter 4 discusses evolution of
networks, tracking changes in topology and growth models using the first case study - the airlines.
Chapter 5 aims to generalize the ideas and tools from previous chapters, by applying them to
study the evolution of language Wikipedias. Chapter 6 contains the conclusion with contributions,
limitations and ideas for future work.
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Chapter 1

Network Theory Review

This chapter contains a review of network theory literature relevant to the study of network topology
and its evolution. We discuss basic representation of systems using graphs, statistics on graphs,
modularity, motif search and coarse graining. We use the algorithms and ideas developed in the
literature to develop the discussion on how to analyze topology in Chapter 2. The most complete
sources on this material are by Wasserman [19] and Newman [2].

The second half of this chapter presents models of network growth from the literature, including
random graph models, node-degree based models, edge-centric models, as well as node-copying and
module growth models inspired from biology and other disciplines. The most complete source on
network evolution is by Dorogovtsev and Mendes [20].

1.1 Network Theory Basics

1.1.1 Introduction

Network theory is a modern branch of graph theory, concerned with statistics on practical instances
of mathematical graphs. Graph theory itself started with Euler who solved a bridges crossing puzzle
by clever representation [21]. This clever representation is essentially what a graph is - a collection
of points in arbitrary (does not have to be metric) space and a set of links between them. Two
of the most compact ways of representing graphs are an adjacency list (a list of nodes with their
neighbors) and an edge list (a list of all links represented as pairs of nodes with their edge weights).
Simplest to the eye is a visual representation which is suitable for smaller graphs and gets more
challenging as their size grows. Figure 1-1 shows example representations of a six-node bowtie
graph. Figure 1-2 shows a larger graph - the route network of all US airlines during 1990. 704
airports worldwide are plotted geographically, with 6935 flight legs between them. While some
geographic patterns are distinguishable, such as flight patterns to Alaska, Hawaii, Europe and
Asia, it is hard to learn much about this graph from the plot. Large graph visualization is the
subject of research in many areas [22].
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Figure 1-1: Bowtie graph with four example representations: visual, adjacency matrix (n × n,
Aij = 1 if i and j are linked), adjacency list (list of all neighbors of every node) and edge list
(list of pairs of nodes with their link weights). More details on graph representations are given in
Table 1.1.2.

Figure 1-2: Routes of all US airlines during 1990 (BTS [1]), domestic and international. Continental
US, Europe, South America, Alaska, Hawaii and Guam and Japan are easily distinguishable.

Statistics on networks first became interesting to social scientists who have used such approaches
for more than 50 years to understand the dynamics of behavior in interconnected groups of people
[19]. They often ask simple ”centrality” questions to find out who is most influential, or what is the
degree and profile of connectivity between the people in a group. They also study group structure
and decomposition but usually in fairly small networks. More recently, the legacy of social science
methods has been adopted by physicists who focus on statistical properties of very large graphs.
This is driven by the recent availability of large datasets and the ability to collect, store and repre-
sent massive amounts of information. Typical networks of study can have hundreds and thousands
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of nodes (ex: organizational network or protein interactions [23]) to a trillion nodes (www-graph
2008 [24]). Earlier work concentrated on similar centrality, robustness and sensitivity questions:
How would the removal of a node affect the connectivity or flows in the entire network? What are
the critical nodes to keep? Given the statistical implications of a million nodes, centrality is hard
to pin down. There can be collections or clusters of important nodes. Statistics on nodes is only a
step towards answering the questions about decomposition, structure, and function.

Recent research on structure and function includes work on community finding, modularity
[25], biological applications of motifs [26], which are frequently occurring statistically significant
subgraphs, and coarse-graining [27]. Modularity is of special interest in identifying communities in
social networks and uncovering functional modules in technical networks. Using the network theory
approach to modularity can be challenging in many engineering systems, where modularity is not
exhibited in the connectivity in terms of cohesiveness, but with complexity built into the interfaces
and not in the number of links.

The next question in this line of research is how certain network structure / topology came
about - what are some generating principles reflecting function, purpose and the external envi-
ronment. So far generative models have focused on linking node centrality metrics to the ability
to receive new links, and some simple geometric models which optimize new link arrival based on
Euclidean geometry.

Inevitably, this brings us to the Holy Grail of network theory - is it possible to understand, visu-
alize, analyze and mathematically model the structure and dynamics of any graph? How to classify
graphs according to structure and sub-graphs? And how is structure related to function? [2]

Understanding structure is challenging because the systems people plan, build, and deal with
become more complex every day - either more intricately connected, more highly integrated in
larger systems, and inside or just vastly larger, and with multiple scales of operations. Tools for
systems engineering exist but not to deal with levels of complexity and emergence due to inter-
connectedness. Another problem is visualizing such complex and vast structures. Today, it is
inconceivable to plot the network of hyperlinks of the World Wide Web or even of the Internet at
the router level, which currently spans only about 30000 nodes [28], in a way that the structure is
revealed. This is why complex systems research today is focusing on statistical, reductionist and
bottom-up approaches to understand the topology and evolution of large systems.

This thesis shines some light into evolution of structure1 of certain graphs describing engineering
systems and knowledge networks.

1.1.2 Types of simple graph representations

A graph is an abstraction of a set of objects and their relations. The simplest graph representation
of a network is a set of node2 pairs. This description says nothing about how the nodes and links
may be different in size, nature, color, name, location, capacity, nor does it specify the links as
virtual, physical, temporal, constant, weighted, wireless, friendly or hostile. In real systems, nodes
and links can be distinct; they can have different weights / sizes and be directional. This is shown

1Structure and topology are used interchangeably here, though topology is the more precise definition mathemati-
cally. See Chapter 2

2The words node/vertex, and edge/link are used interchangeably.
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in Figure 1-3. Various graph representation techniques are listed in Table 1.1.2. Most common is
the adjacency matrix representation, which is a NxN matrix of 1s and 0s, with Aij=1 if i and j are
connected. In this work, the preferred representation is the edge list, a list of node pairs with their
weights, because it allows a natural extension of node and link attributes in the data structure. An
augmented edge list has rows with more entries than 3 that add relevant information about the
nodes or the links. For example, [BOS LAX 31 A320] is an augmented edge which means that the
flight from Boston to Los Angeles has 31 departures monthly, all with an A320 aircraft.

Figure 1-3: Examples of network types: undirected graph with a single type of nodes and links
(upper left); undirected graph with discrete nodes and links (upper right), undirected graph with
weighted nodes and links (lower left) and directed graph (lower right). Reproduced from [2].

Table 1.1: Simple graph representation data structures (N-number of nodes, M-number of edges)
and the corresponding examples for the bowtie graph.

Data structure Description Bowtie example

Adjacency matrix Matrix A (N ×N) where A(i, j) = 1 if vertices i and
j are adjacent, 0 otherwise.

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

Incidence matrix Matrix I (N × M) where I(i, j) = 1 if vertex i is
adjacent to edge j, 0 otherwise.

1 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 1 1 0 0 0
0 0 0 1 1 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1

Adjacency list List of adjacent nodes for every node: {vi :
[vj if A(vi, vj) = 1]}

{1 : [2, 3], 2 : [1, 3], 3 :
[1, 2, 4], 4 : [3, 5, 6], 5 : [4, 6], 6 :
[4, 5]}

One-line list Compact representation of AdjList with neighbor list
separated by 0s sequentially ordered by node index

2301301240356046056

Edge list List of node pairs, usually including the strength of
the relation, ex [i, j, wij ]

[[1,2,1],[2,3,1],[1,3,1],
[3,4,1],[4,5,1],[4,6,1], [5,6,1]] +
symmetry

Graphic Pictorial representation of nodes, links and their at-
tributes.

Figure 1-1

The simplest graph representation is the most abstract and not always the most useful. De-
pending on the critical factors for a particular system, the graph description has to be augmented
accordingly. Figure 1-4 shows two alternative representations of the JetBlue route network from
August 2007. The left plot depicts airports at their respective latitude and longitude, which gives
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a sense of the geographic presence of JetBlue Airways. The right plot shows the same graph, but
node locations determined by a spring energy algorithm [3]. This representation shows the network
connectivity patterns better, with the two major hubs, New York and Boston, and other interesting
substructures. In this thesis, we use the spring energy plots primarily for visualization.

Figure 1-4: Two representations of the JetBlue August 2007 network. Nodes are airports, edges
are existing routes. (left) Airports are plotted at their latitude and longitude; (right) The same
graph is plotted but with node locations determined by a spring energy algorithm by Kamada and
Kawai [3].

1.2 Statistics on Graphs

1.2.1 Size and density - nodes, edges, average degree

The first growth statistic to compute on any system is size. Size for networks is measured in terms
of number of nodes and number of edges. Derived measures are the average degree, computed as
the ratio of number of edges to the number of nodes, and the density, which is the number of edges,
divided by the total possible number of edges (n(n−1)

2 ). Density is a useful indicator for topology,
because it shows how relatively busy or interconnected the network is. The least dense (minimally-
connected) graph is a tree with n − 1 edges, so the minimum possible density is (n−1)

n(n−1)/2 = 2/n.
Every dense network can be seen as built on top of a tree (a spanning tree). Most distribution
networks where connection cost and distance are optimized are less dense with tree-like topologies.
Figure 1-5 shows that Southwest Airlines is denser than Continental Airlines, i.e. has many more
flights per origin-destination pairs.

Density is used in Chapter 2 in combination with other metric for comparing the network
topology of graphs.
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Figure 1-5: Matrix dot plots of the adjacency matrices of Southwest Airlines and Continental
Airlines for 8/2007. The Southwest network has 74 airports and 809 one-way flight segments;
Continental has 90 airports and 207 one-way flight segments. Every point is filled if there is
a connection between cells i and j. Rows and columns are ordered by increasing nodal degree
(increasing left and up). Clearly, the Southwest network is denser, and the Continental network
features very few high-degree nodes.

1.2.2 Node centrality measures

The degree of a node equals the number of its links. If the graph is directed, then degree is the
sum of the in-degree and the out-degree, which are the number of incoming and outgoing links.
Derived from social science, the degree has been associated with the ”importance” of the node, or
its centrality with respect to other nodes in the network. High-degree nodes can be popular people,
destinations or important multi-functional proteins. Degree is one of various centrality measures.
Table 1.2.2 contains a summary of some node-centrality metrics.

Table 1.2: Node centrality measures and examples for the bowtie graph (see Figure 1-1).
Centrality
Measure

Description bowtie example

Degree cen-
trality

number of links 1: 2, 2: 2, 3: 3, 4: 3, 5: 2, 6: 2

Closeness
centrality

the average distance of a node to all other
nodes (average shortest path)

1:2, 2:2, 3:1.4, 4:1.4, 5:2, 6: 2

Eigenvector
centrality

xi = 1
λ

∑
j∈M(i) xj = 1

λ

∑N
j=1 Ai,jxj , A - adj

matrix, N - number of nodes, M(i) - set of
neighbor nodes of i, λ - largest eigenvalue. In
vector notation: Ax = λx ⇒ eigenvector en-
tries

Largest eigenvalue: λ=2.4142
Corresponding eigenvector:
[0.3536, 0.3536, 0.5, 0.5 ,0.3536
,0.3536]

Betweenness
centrality

The number of shortest paths that go through
i, weighted - CB(ν) =

∑
s 6=ν 6=tinS,s 6=t

σst(ν)
σst

, σst

is the number of shortest paths from s to t and
σst(ν) is the number of shortest paths through
ν

1:0, 2:0, 3:12, 4:12, 5:0, 6:0

In the example of the bowtie graph as seen in Table 1.2.2, nodes 3 and 4 (connected by the
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middle edge) have the highest degree, eigenvector and betweenness centralities and the lowest
closeness centrality, all of which imply that they are most central to the bowtie. This is not always
the case. Various centrality measures do not always have the same message. An example is shown
in Figure 1-6.

Figure 1-6: Node sizes represent degree on the left, betweenness on the right. Nodes 2 and 8 become
more central if measured by betweenness.

Betweenness is a centrality measure that can be defined on both nodes and edges. It is the
weighted number of shortest paths that go through a node or an edge (see description in Table 1.2.2).
The same definition can be used for an edge, instead of a vertex, though edge betweenness is more
complicated to calculate. Edge betweenness is used for graph partitioning in community finding
[29]. An example of a high betweenness edge for the bowtie graph is shown in Figure 1-7.

Figure 1-7: Example of a high betweenness edge for the bowtie graph.

Invariably high-betweenness nodes are not also of the highest degree since degree and between-
ness are measures of different centrality. This is indicated by Guimera et al [17] who analyze world
airports for centrality. They classify them as non-hubs: ultraperipheral nodes, peripheral nodes,
nonhub connector nodes, nonhub kinless nodes, and hubs: provincial hubs, connector hubs, and
kinless hubs, based on their connectivity within and outside their geographic region. It turns out
that global connector hubs which are the most recognized airports in the world (such as NYC,
Chicago, LAX, Frankfurt, London, Paris, Tokyo, Beijing) have the highest degrees, but not always
the highest betweenness. For example, Anchorage, AK is one of the highest betweenness airports
in the world. Obviously, Anchorage is a local hub, and due to the local landscape, weather and the
remoteness of the region, flying with small airplanes is a common way to travel anywhere, based
out of Anchorage. This explains the high number of shortest paths through Anchorage and its high
betweenness.

1.2.3 Degree distributions

The degree distribution P(k) is the frequency of nodes with degree k. The cumulative degree
distribution C(k) is the frequency of nodes with degree higher than degree k. While degree is node-
centric, compiling the distribution of nodal degrees is used in network-wide analysis. Figure 1-8
shows the histogram, probability degree distribution and cumulative degree distribution for the
1990 airline network plotted in Figure 1-2. The x axis shows the degree, and the y axis the
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frequency. This is an example of a fat-tail distribution with few high-degree nodes and many more
low degree nodes. The fat tail results in an exponential for the cumulative distribution with a
power-law drop off. The drop off signifies that beyond a certain degree there is no more growth.
This is expected for airlines because airports do not have infinite landing capacity. The effective
degree of an airport, in terms of number of landings per unit of time can be estimate by counting
the number of runways and their capacity, and estimating what type of aircraft land there (because
they have different landing distance and time separation requirements). This estimate does not say
much about number of distinct connections to airports, but it can provide bounds for the cut-off
of the weighted degree distribution.

Figure 1-8: Histogram, probability degree distribution (pdf) and cumulative degree distribution
(cdf) computed for the network of all airlines routes in 1990 visualized in Figure 1-2. Nodes are
airports, links are existing routes, node degree is the number of incoming airport connections. This
is clearly an exponential degree distribution, but it can be interpreted as having a power-law cutoff.

A lot of research has been done in linking degree distributions to network structure and more
generally topology. For example, original papers [14] claimed that power-law degree distributions
correspond to scale-free network topologies. First, that assumes a probability model behind the
degree distribution of the degree sequence, i.e. P [X = x] = f(x). Second, the power-law frequency-
size distributions (P [X > x] = cx−α), which appear as a straight line on a log-log plot, were either
measured or interpreted incorrectly. For example, all power laws were assumed to have been
generated by preferential attachment [14]. Power laws are often mis-diagnosed because of missing
or uncertain data, and wrong representation. Li et al [4] prove the ambiguities of distributions by
showing that a single degree distribution can correspond to various types of network structures, i.e.
there is a one-to-many mapping between degree distribution and topology.
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Figure 1-9: Figure 6 from Li et al [4]. Five networks having the same node degree distribution
concerning Internet route structure. (a) Common node degree distribution (degree versus rank on
log-log scale); (b) Network resulting from preferential attachment; (c) Random graph built with
the same degree sequence; (d) Heuristically optimal topology; (e) Abilene-inspired topology; (f)
Sub-optimally designed topology.

Figure 1-9 is from Li et al [4] and illustrates various network topologies corresponding to the
same degree distribution. Only (b) is generated by preferential attachment. The most optimal
network for the routing internet traffic is actually closer to the real topology-inspired design (e).
It turns out that the topology in 1-9 (e) also corresponds to 1930 design of AT&T’s long distance
system [30].

In [31], there is an extensive discussion on representing data points stochastically and non-
stochastically and how that leads to misconceptions in detecting power laws. The authors suggest
using rank to determine whether a sequence has a scaling distribution. Their definition follows:

Definition: A finite sequence y = (y1, y2, . . . , yn) of real numbers, assumed without loss of
generality always to be ordered such that y1 ≥ y2 ≥ yn, is said to follow a power law or scaling re-
lationship if k = cy−α

k , where k (by definition) is the rank, c is a constant and α is the scaling index.

The conclusion here is that degree distributions cannot tell the whole story about structure, and
should be analyzed with caution. For example, detecting power law degree distributions or scaling
distributions in the airline networks cannot imply necessarily that they are scale-free or grow by
preferential attachment.

1.2.4 Clustering coefficient

Clustering coefficient as a graph measure comes from the social science literature [19]. The intent
to answer the question: in what percentage of cases, a node’s neighbors (friends) are also neighbors
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(friends)? So the clustering coefficient, C, measures the local clustering in the graph. This can be
computing by going through the neighbors of all nodes and checking whether they are connected as
well. Another way to think about it is in terms of triangles in the graph. What is the percentage of
triangles among all triples of nodes. A closed form way to compute that is shown in equation 1.1.

C =
# triangles

# triples
=

trace(adj3)/6(n
3

) =
trace(adj3)/6

n(n− 1)(n− 2)/6
=

trace(adj3)
n(n− 1)(n− 2)

(1.1)

Clustering coefficient is one of the statistics used in combination with other measures to compare
graph topologies in Chapter 2.

1.2.5 Degree correlation / Assortativity

Degree correlation is a measure of assortative mixing as defined in [15]. Are high-degree nodes
connected mostly to other similar-degree nodes (assortative) or mostly to different-degree nodes
(disassortative)? Networks with both characteristics exist and apparently assortativity implies
certain structural characteristics. Studies have tried to relate degree distributions to degree corre-
lation, but it turns out that with rewiring while keeping the degrees constant a wide band of degree
correlations can be achieved, negative or positive [32].

The Pearson coefficient or degree correlation is defined [32] as

r =
∑

i,j(di − d̄i)(dj − d̄j)√∑
i,j(di − d̄i)2

∑
i,j(dj − d̄j)2

(1.2)

where if m is the number of links in the network, the summation (i, j) is over all links, and

d̄i =
1
m

∑
i,j

di =
1

2m

∑
k

d2
k =

∑
k d2

k∑
k dk

=
n−1∑

k d2
k

n−1
∑

k dk
=
〈d2〉
〈d〉

(1.3)

is the average degree of a node seen at the end of a randomly selected edge. Notice that d̄i = d̄j

by symmetry so the index can be dropped d̄i = d̄j = d̄. It is essentially the covariance of the
two distributions divided by the standard deviations. Positive degree correlation indicates uniform
cores of connected nodes, “like prefers like”, whereas negative degree correlation indicates skewed
topologies with high-degree nodes connecting to many low-degree nodes. The Pearson coefficient
for the bowtie graph is -1/6.

The assortativity discussion is important in introducing the s-metric in the following section,
which is widely used in our analysis. Related to the notion of how low and high-degree nodes
connect, it measures how close a graph is, from its most scale-free counterpart, assuming the same
degree distribution. Stars are scale-free graphs, and those commonly appear in the early stages of
airline growth.

Degree correlation is another measure used in Chapter 2 to compare graph topologies.

1.2.6 The S-metric; scale free graphs

Given the studies using stochastic measures to claim many systems are ”scale-free”, Li et al [31]
attempt to demystify the ”scale-free” term by showing the ambiguities of previous metrics and
suggesting a new metric to quantify better what a scale-free graph is. The S-metric used together
with a scalable degree distribution purportedly is a step towards a theory of scale-free graphs.
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The S-metric measures the extent to which a graph g has a hub-like score and is maximized when
high-degree nodes are connected to high-degree nodes.

s(g) =
∑

(i,j)∈E

didj (1.4)

where E is the edge set, so the S-metric is the sum of products of node degrees across every edge.
There is a deterministic routine to construct a graph with maximum S given a degree sequence
{di}i=1...n.The algorithm roughly works by connecting the edges with higher didj products first.
The main claim of Li et al [31] is that a graph is scale-free if its degree sequence is scalable, and
s(g) is maximal or close to the maximum value. According to the authors, high s-metric graphs
with scalable degree sequences (as defined in 1.2.3) exhibit the scale-free properties discussed in the
literature with previous metrics (m/n, r, C, l, d). They also argue that real systems (especially the
router level of the Internet) are not scale-free, but scale-rich and that this is shown by the s-metric
on a spectrum comparison with other random and scale-free graphs. Moreover, in the Internet case
study, the low s-metric topology correlates with higher performance, different scales at different
resolutions (scale-rich), compared to low-performance high s-metric scale-free (self-similar, strongly-
invariant to scale) graphs, with the same degree distribution.

The bowtie graph is its own corresponding s-max graph, so the S-metric is 1.

The relation between r and s is studied by Whitney [32] who showed that if a graph is rewired
to have max s then it will have max r as well, and similarly if it is rewired to have min s then it will
have min r. The graph generated by rewiring for max r and the unique s-max graph do not have
to be the same, but the max r and max s values are at their extremes. There is no algorithm for
generating the min s other than rewiring [32]. Also, the normalized s = (s−smin)/(smax−smin) =
(r−rmin)/(rmax−rmin). So knowing r and its max and min allows one to calculate the normalized
s, and vice versa.

1.2.7 Distances - average path length, diameter

Diameter is the longest shortest path between any two nodes in a network. In the pure graph
sense, where edges have no associated weight, and there is no underlying Euclidean distance, it is
the highest number of hops to be traveled between any two nodes. The diameter of the bowtie
graph is 3. Diameter and path lengths are interesting to study because most real networks have
surprisingly small diameters. Diameter or path length are studied together to classify networks as
“small-worlds”. The idea comes from Stanley Milgram’s experiment in 1969 [33], who found that
the average distance letters have to travel in a social network (which was not visible a priori) was
6, hence the phrase “six degrees of separation”.

The small-world phenomenon is discussed in one of the earliest papers in network theory by
Watts and Strogatz in 1998 [34] who rewire randomly k-regular graphs and show that random
interlinking makes the distances very small.

Transportation and communication networks are distribution networks so their function is to
carry cargo, traffic, people, data across their structure where the nodes act as origin, destination
and routing points. These networks are obviously set in metric spaces where computing and opti-
mizing distance matters. Individual routing requires computing shortest paths defined in various
ways (with or without attributes, edge-wise or Euclidean distances). Interestingly, by the definition
of diameter above, the airlines are small-world (high clustering is also part of the definition). While
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the networks have 50-200 nodes/airports typically, their diameter is between 3-6 on average. In
another example, our computations show that the set of Internet routers in late December 2008
had 30584 nodes and a diameter of 13. For transportation networks that carry passengers small
diameter is almost imperative - no one is like to book a flight of even twice the diameter of current
airlines. Overall, technical networks tend to be centralized because there are many benefits in
designing them that way.

In Chapter 2 diameter is combined with other metrics to compare real graph topology to
canonical networks.

1.3 Modularity, Motifs, Coarse-graining

This section introduces tools to study graph structure from a more reductionist, bottom-up point
of view, compared to the statistical measures presented in previous sections. Modularity is related
to finding cohesive communities in the network, while motifs are frequently recurrent patterns that
can interpreted as building blocks. We use the modularization algorithms to understand the sub-
structures of graphs visually, especially in the case of Wikipedia networks. Also, modularity is
used in constructing random modular graphs with the same number of modules (see Chapter 2,
Section 2.1.1). Motif finding is used to study common patterns in airline networks in Chapter 3,
and to understand the underlying dynamics of these systems (Chapter 4).

1.3.1 Modularity

Clustering is a classical problem in graph theory and data analysis in general. Clustering algorithms
can be hierarchical or partitional. Hierarchical clustering algorithms divide the network into two
parts at every step creating a binary tree of subgraphs. Partitional clustering algorithms determine
all clusters at once. In this thesis, we will introduce and use mostly partitional clustering because
it is more suitable to understanding functional and structural modularity. Hierarchical clustering is
better employed at analyzing social organizations or hierarchical structures in general, where there
is a clear top-down or bottom-up organization of nodes with clear levels or roles.

Finding a set of communities based on connectivity only is not a trivial problem. The main
issue is that if no number of prescribed modules is given, dividing into two, three, four or 10 ways
has little meaning. Communities here are defined as groups of nodes more tightly connected within
and with sparser connections to the outside. These can be sets of articles on a similar topic in
Wikipedia, or a regional network for an airline, or a social unit formed by interest or else. This
definition comes from social science [35].

In this section, we present three ways to address the classical problem of partitioning: i/ spectral
partitioning, ii/betweenness-based (the highest betweenness edge is the cut), and iii/ an eigenvector
approach.

Spectral partitioning[15]

Spectral partitioning is a classical way to divide a graph or a problem in two. It was first introduced
by Fiedler [36]. The bisection is presented by vector vi of ±s, in which the sign of each entry
indicates the membership of the node. If the edge weight is wij , then the bisection problem
can be formulated as: min

∑
ij(vi − vj)2, subject to the constraints

∑
i vi = 0 and

∑
i v

2
i = 1.

The first condition ensures that the two partitions are of equal size (for even number of nodes).
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The minimization will tend to assign equal signs to edges with large weights and different signs to
“weaker” edges. The second constraint prevents the trivial solutions v = 1, v = 0. The minimization
formulation can be recast as:

min

∑
ij wij(vi − vj)2∑

i v
2
i

, such that
∑

i

vi = 0 (1.5)

The numerator can be expanded and rewritten as
∑

ij wij(vi − vj)2 = 2
∑N

i=1(
∑N

j=1 wij)v2
i −

2
∑N

i=1

∑N
j=1 wijvivj = 2vT LGv, where LG is the Laplacian matrix, defined in equation 1.6

LG(i, j) =

{ ∑
j,j 6=i wij , i = j

−wij , i 6= j
(1.6)

where wij is the weight of the edge between i and j. Using vector notation, one can obtain that
the minimization in equation 1.5 is 2vT LGv

vT v
= 2λ2 where λ2 is the second smallest eigenvalue and

the solution to the bisection is the second eigenvector, associated with λ2. Half of the entries of
the second eigenvector are negative, the other half positive which defines the partition. This is
necessary because vT

1 v2 = 0.

The main disadvantage of spectral partitioning is that it is good for bisecting graphs, not so
much for finding an arbitrary number of communities or identifying the most optimal number of
communities. In general, knowing the number of communities is necessary.

Newman-Girvan algorithm [29]

Newman developed a set of community finding algorithms based entirely on connectivity but set to
find meaningful communities while addressing the problem of what the right number of communi-
ties is. He applies the algorithms to various datasets from social to knowledge to biological networks.

The Newman-Girvan algorithm [29] was the first popular Newman algorithm and is based on
betweenness. Betweenness is the node/edge centrality measure which reflects the number of shortest
paths going through that node/edge. The outline of the algorithm is the following:

i Calculate the betweenness for all edges in the network.
ii Remove the edge with the highest betweenness.
iii Recalculate betweennesses for all edges affected by the removal.
iv Repeat from step 2 until no edges remain.
v Quantify the strength of the communities found.

The metric used to measure the strength of communities, called Q, is computed as follows. Let
k × k be a symmetric matrix e, whose element eij is the fraction of all edges in the network that
link communities i and j. A row or a column in this matrix is ai =

∑
j eij , which is the fraction

of nodes connecting to community i. If every node is its own community then, eij = aij , (where A
is the adjacency matrix). The modularity measure is defined as Q =

∑
i(eii − a2

i ) = Tr(e)− ||e2||,
where ||x|| is the sum of the elements of the matrix x. If the number of within community edges
is no better than random, then Q tends to 0. If Q is close to the maximum, this indicated strong
community structure. Improvements on this metric have been made by Hsieh [37].
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The most computationally intensive part of the algorithm is re-calculating betweenness. The
intuition behind this algorithm is to split the network at the highest-flow lowest connectivity cuts.
This isn’t always the same solution as the max-flow min-cut. In addition, the minimum cut solution
merely counts edges, whereas a good division considers cuts with fewer edges than expected on
average.

For the case of the bowtie graph, as seen in Figure 1-7, the highest betweenness edge is the middle
edge. Once that edge is removed, the network remains disconnected into two equivalent components
- triangles. Those cannot be partitioned further because all edges have equal betweenness by
symmetry. So the partition is into the two 3-node triangles.

Newman eigenvector method [25]

Modularity semantic definition: The modularity is, up to a multiplicative constant, the number of
edges falling within groups minus the expected number in an equivalent network with edges placed
at random.

si =

{
1 i ∈ group1

−1 i ∈ group2
(1.7)

m = 1
2

∑
i ki is the number of edges, where ki is the degree of the ith node, Aij is the (i, j) entry of

the adjacency matrix, kikj

2m is the expected number of edges between i and j if placed at random.

The mathematical definition of modularity, using the expected degree at random is:

Q =
1

4m

∑
ij

(Aij −
kikj

2m
)sisj =

1
4m

sT Bs (1.8)

where s is the vector with ±elements, B is the modularity matrix with entries Bij = Aij − kikj

2m
and is real symmetric. Notice that the columns and rows of B sum up to zero, which means that
[1 1 . . . 1] is an eigenvector. Let ui be the normalized eigenvectors of B. Write s as a linear combi-
nation of ui. So s =

∑n
i=1 aiui, where ai = uT

i .s. Then Q =
∑

i aiu
T
i B

∑
j ajuj =

∑n
i=1(u

T
i .s)2βi,

where βi is the eigenvalue of B corresponding to ui
3.

Let the eigenvalues of B be β1 ≥ β2 ≥ . . . βn.
So if the definition of a module as having less number of links to the outside than expected

is the norm, the modularity Q has to be maximized (for si and sj having different signs we want
Aij − kikj/2m to be very negative). This means choosing s so that the weight of the sum falls on
the largest (most positive) eigenvalues. If s was unconstrained, it would be straightforward to set
it to be proportional to u1 (that would maximize the dot product at the largest eigenvalue). Un-
fortunately, that is not always possible, because s was chosen as a vector of ±1s. A simple effective
solution (as in spectral partitioning) is to maximize only the term involving the largest eigenvalue
while completely ignoring the others. In this case, since it is not possible to make s parallel to
u1 anyway, maximizing the largest term suffices. The greatest value of the coefficient (u2

1.s)
2 is

achieved when the elements of s have the same signs as the elements of u1. So this is the gist
of the algorithm: compute the eigenvector of the largest eigenvalue of the modularity matrix and
divide all vertices in two parts according to the signs on the ”largest” eigenvector. Interestingly,
the magnitude of the eigenvector entries also matter - showing the strength of the belonging of a

3Note: 1/4m is an arbitrary factor.
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node to its ”sign” group. Entries close to zero show weak belonging to a particular group.

The adjacency matrix of the bowtie graph is given in Table 1.1.2, the degree sequence is [2 2
3 3 2 2] and the number of edges m is 7, so the modularity matrix can easily be computed. The
largest eigenvalue is 1.7321 with corresponding eigenvector [-0.4440 -0.4440 -0.3251 0.3251 0.4440
0.4440], which splits the nodes in two groups (1,2,3) and (4,5,6) by sign, just as expected.

The Newman-Girvan and the Newman eigenvector algorithms give the same result for the
bowtie graph, because this is a simple example, but they don’t have to. The two algorithms
reflect similar patterns but are based on different measurements in the graph. The Newman-
Girvan counts shortest paths, so identifies communities by cohesiveness and remoteness, while the
Newman eigenvector method identifies modules by whether they have more links inside the module
than expected on average. The Newman-Girvan algorithm gives more precise results, but because
of the expensive computation of edge betweenness is less practical for large graphs.

In Chapters 2, 3 and 5 we apply the Newman algorithms to study modularity in airline
networks and Wikipedia.

1.3.2 Subgraphs. Motifs

Community finding is a reductionist, top-down approach to uncovering graph structure. A bottom-
up view would be to look for the building blocks as they occur across the network and understand
how they connect. Finding all instances of a given subgraph in a graph is a classical combinatorial
problem, but unfortunately computationally hard to solve (NP). Most solutions involve exhaustive
combinatorial search across the entire graph with some post-processing for symmetry elimination.
As the size of the graph and the subgraph grow, this approach becomes impractical. A general
question about what are all the significant subgraphs in any graph is particularly hard to solve.

One of the first detailed studies on motifs is by Milo et al [26], who study the frequency of
simple 3- and 4-node directed motifs in biological networks and electronic circuits. They set the
discussion of motifs as building blocks, core units behind important mechanisms and having a
role in evolution. They discover frequent patterns such as the bi-fan and the feed-forward loop,
especially important in biological systems. Their next study extends this concept to explore profiles
of statistically significant 3-node and 4-nodes motifs for various systems. They use these profiles
to compare across systems. Figure 1-15 shows an example. The motif profile is further developed
by Kashtan et al [6] to introduce generalizable motifs. Generalizable motifs are a huge step in
discovering internal structure patterns and classifying topology, compared to counting frequently
repeating patterns. Later in this section, we discuss how we use the ideas from Kashtan et al [6]
to do a more complete motif search, with larger motifs compared to Milo et al [26].

First we address the question of effective search for a single motif of any size. Grochow [5]
gets closer to answering this question by ordering the search and doing symmetry breaking prior
to exploring the entire graph. The inputs for the algorithm are a given subgraph and an original
graph. The output is the set of instances of the subgraph in the entire graph.

Searching for any set of subgraphs is a general problem compared to searching for known
structures, or motifs known to have a particular internal structure. Here we present how we
address the general problem. Later on, in Chapters 2, 3 and 5, we perform motif search on some
airline and Wikipedia datasets to study their topology.
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Single motif finding

For clarification, motifs are (connected) frequently occurring subgraphs, which is where the name
comes from - a recurrent pattern. A subgraph can be any set of connected node pairs that are a
subset of the node pairs in the original graph. Figure 1-10 clarifies the definition of a motif.

Figure 1-10: Illustrating the definition of motif: all S1,S2, and S3 are valid motifs (connected
subgraphs) of G.

Grochow’s single-motif-instances finding algorithm is presented below with one key modifica-
tion4 which is related to our slightly different definition of a motif. In summary, the algorithm
breaks down the motif-finding problem by first searching for a single given motif across the original
graph, then using clever alignment of the nodal degrees at every matching and finally using labeling
to eliminate additional search of symmetries to already queried subgraphs. The pseudocode is given
in Figure 1-13.

Finding the set of isomorphisms of a given subgraph in a graph, is known to be NP-complete,
though certain tricks can help computationally.

i The first trick of Grochow’s algorithm is mapping of the query network onto the graph, rather
than enumerating all subgraphs of equal size and then testing for isomorphism.

ii Symmetry breaking (not required for correctness)
iii Isomorphism testing by aligning nodal degrees to ensure maximum mapping degrees of freedom.

The main algorithm routine is described in Figure 1-11. Let the original graph be G and the
subgraph query be H. First the node sequence of G is ordered by degree and then nodes with equal
degrees are ordered by increasing neighbor degrees. Once the degrees are ordered a partial map is
created of a node h in H to a node g in G, such that there is no conflict between the degrees of
h and g or the degrees of their neighbors (this property is termed ”g in G supports h in H). The
partial map f(h) = g is then extended in IsomorphicExtensions(f,H, G) (see Figure 1-12) which
finds all full maps of H → G that involve h. IsomorphicExtensions works by recursively checking
each neighbor of a newly added node to the map for conflicts. A conflict is present if node h in D(f)
(domain of f) has a neighbor hn such that hn is also in D, i.e. f(hn) = gm, where gm is not a neigh-
bor of g = f(h). The second conflict condition in Figure 1-12 is incorrect for our definition of motif.

Symmetry enters the algorithm independently, only to speed up the search. Symmetry condi-
tions ensure that in subgraphs where there are more than one isomorphism (different permutations
of the nodes result in essentially the same graph), the algorithm maps and queries those only once.
This is done by first finding all isomorphisms of the subgraph using IsomorphicExtensions(H,H),

4This condition does not present a conflict. It is perfectly fine for a neighbor node of f(D) to not be a neighbor
in D. In fact, keeping this condition restricts the algorithm from finding all valid subgraph instances, to finding all
strict subgraphs (all edges of the subgraph nodes in the large graph, have to be in the motif also). It comes down to
the definition of motif.
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and then extracting equivalence classes of nodes (He) under the entire set of symmetries: groups
of nodes that map inside the group under an isomorphism. The goal of SymmetryConditions is
based on all isomorphisms and equivalence classes to compute a set of labeling conditions which
define a unique node mapping order for each query subgraph.

FindSubgraphInstances(H,G):

Finds all instances of query graph H in network G

Start with an empty set of instances.

Order the nodes of G by increasing degree and

then by increasing neighbor degree sequence.

For each node g of G

For each node h of H such that g can support h

Let f be the partial map associating f(h) = g.

Find all isomorphic extensions of f

i.e. call IsomorphicExtensions(f,H,G).

Add the images of these maps to the set of all instances.

Remove g from G.

Return the set of all instances.

Figure 1-11: Pseudocode for FindSubgraphInstances(H,G) from Grochow et al [5]

IsomorphicExtensions(f,H,G):

Finds all isomorphic extensions of partial map f : H → G
Start with an empty list of isomorphisms.

Let D be the domain of f.
If D = H, return a list consisting solely of f. (Or write to disk.)

Let m be the most constrained neighbor of any d in D

(constrained by degree, neighbors mapped, etc.)

For each neighbor n of f(D)

If there is a neighbor d in D of m such that n is not neighbors with f(d),

or if there is a non-neighbor d in D of m such that n is neighbors with f(d)

then continue with the next n.

Otherwise, let f0 = f on D, and f0(m) = n.

Find all isomorphic extensions of f0.

Append these maps to the list of isomorphisms.

Return the list of isomorphisms.

Figure 1-12: Pseudocode for IsomorphicExtensions(f,H,G) from Grochow et al [5]

SymmetryConditions:

Finds symmetry-breaking conditions for H given He,Aut(H)

Let M be an empty map from equivalence representatives to sets of conditions.

For each n in He

Let C be an empty set of conditions.

n’ ← n, and A ← Aut(H).

Do until |A| = 1:

Add "label(n′) < min{label(m)|m ∼A n′ and m 6= n′}" to C.

A ← {f in A|f(n’) = n’}.
Find the largest A-equivalence class E.

Pick n’ in E arbitrarily.

Let M(n) = C.

Return M.

Figure 1-13: Pseudocode for SymmetryConditions from Grochow et al [5]
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Topologically Generalized Motifs

In biology and engineering there are examples where ”the same” motifs do not have the same
structure node-for-node. Function can be preserved under topologically similar structures. For
example multiple-output motifs can have any number of ”output” nodes. In general, motifs can be
generalized by copying nodes that have the same ”roles” and their links. This process is described
in Kashtan et al [6]. The roles they refer to correspond to the equivalence classes described in [5].

Figure 1-14: Example of three generalizations of a feed-forward (XYZ) loop (source: Figure 2c
from Kashtan et al [6]).

Topological generalizations are found by first detecting all original single-role (roughly one node
per equivalence class) motifs and then searching for instances of their extensions. These instances
are compared to averaged occurrences in random graphs. Examples where generalizations are rele-
vant in engineering are MIMO systems (Multiple-Input-Multiple-Output) systems which are in the
same functional group and should be identified as such.

The tools described, finding all instances of a subgraph and finding all topological generaliza-
tions, are the base of the problem of motif finding. The last bit is to ensure that the occurrences
found are not random. To claim that a motif is a significant pattern of the graph structure, it
has to be tested against a null model: a random graph, with the same number of nodes and the
same incoming and outgoing degree sequences. Statistically, one such random graph is not enough
for a significance test. Usually, motif occurrences are tested against averages in an ensemble of
random graphs. In Milo et al [7], a Z-score function is used as a significance test indicator which is
computed as:

Zi =
Nreali− < Nrandi >

std(Nrandi)
(1.9)

where Nreali is the number of instances of motif i in the real network, < Nrandi > is the ensemble
average of motif occurrences and std(Nrandi) is the standard deviation.

We implement both ideas of single motif search and topologically generalized motifs and find
extensions of single motifs (i.e. motif families) in airline network. Further description is included
in Chapter 2.
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Figure 1-15: Z-score of the 3-node motifs (triads) shown in various real networks (Figure 1 from [7]).
The four profiles on the figure correspond to transcription networks (biology), signal transduction
(biology), social networks and language (word occurrences in sentences). The profiles show that
different networks can be distinguished based on respective motif significance.

1.3.3 Coarse-graining

Coarse-graining is a natural continuation of motif analysis[27]. If the building blocks of the network
are identified, the remaining question is how they fit together and how they comprise the network.
For example, it is evident that triangles are the motifs of a triangular lattice and that they are
stacked to form the entire structure. In the case of the lattice, a motif can be constructed of two,
three or more adjacent triangles since those are also repeating patterns. We will define building
blocks to be the smallest indivisible cohesive units of the network. More simply, motifs will be the
smallest possible statistically significant repeating patterns. A coarse-grained view of a system is
by definition a model where the fine detail is smoothed over or averaged out. A more precise way to
define coarse-graining for this application is to replace a fine resolution view with a lower-resolution
model. In the network sense, this means collapsing motifs to single nodes while keeping the links
and considering the structure of the resulting supergraph.
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Figure 1-16: Example from Itzkovitz et al 2005 - coarse-graining of an electronic circuit. Four
levels of representation of the 8-bit counter electronic circuit. In the transistor level network,
nodes represent transistor junctions. In the gate level, nodes are CGUs made of transistors, each
representing a logic gate. Shown is the CGU that corresponds to a NAND gate. In the flip-flop
level, nodes are either gates or a CGU made of gates that corresponds to a D-type flip-flop with an
additional logic gate at its input. In the counter level, each node is a gate or a CGU of gates/flip-
flops that corresponds to a counter subunit. Numbers of nodes P and edges E at each level are
shown.

In this thesis, we implement an algorithm developed by Itzkovitz et al [27]. In their work, the
coarse-graining units (CGUs) are required to be 1/ as small as possible, 2/ as simple as possible
and 3/ make the coarse-grained network as small as possible. The authors term these three prop-
erties, conciseness, simplicity and coverage. Each subgraph is treated like a black box with ports:
incoming, outgoing and mixed (with both links to the outside and inside) and internal nodes. The
number of ports (H=I+O+2M, I-incoming, O-outgoing, M-mixed) is calculated and added to the
estimate of complexity. The lower H is, the more simple the CGU. Then for a given set of CGUs
a scoring function is computed that reflects how good the coarse-graining is:

S = Ecovered + α∆P − βN − γ
N∑

i=1

Ti (1.10)

where Ecovered is the number of edges covered by all CGUs, N is the number of CGUs, Ti is the
number of internal nodes in the ith CGU, ∆P is the difference between the number of nodes in the
original network and the covered network (∆P = Pcovered −

∑N
i=1 niHi, Pcovered is the number of

nodes covered by all CGUs, ni is the occurrence of CGU i, and Hi is the number of ports of CGU
i). So equation 1.10 becomes:

S = [Ecovered + αPcovered]− [α
N∑

i=1

niHi + βN + γ
N∑

i=1

Ti] (1.11)

The first part of this function reflects coverage (edges and nodes), and the second part is related to
conciseness and simplicity, in particular, minimizing the number of ports, the number of different
CGUs (simplicity). The last term prevents the trivial solution of one complex CGU.
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The function is optimized and the best set of CGUs is found with simulated annealing [38].
First all possible CGUs of sized 3-6 are detected. Their nodes are classified into internal (T),
incoming (I), outgoing (O) and mixed (M). A candidate CGU is characterized by its adjacency
matrix (or edgelist) and profile vector - (I,I,O,M,T). For the simulated annealing design vector,
each CGU is assigned a spin ±1 or 0/1 which signifies whether it’s active or inactive in the current
coarse-graining solution. Spins are perturbed randomly at every step, while the energy (S-scoring
function) is annealed at a proper temperature cooling schedule.

One of the major challenges in implementing coarse-graining is to deal with motif overlaps. In
a candidate set for coarse-graining, even among motifs of the same class (same pattern or topolog-
ical class) there can be overlaps of edge and/or nodes which means that some motifs have to be
eliminated from a feasible set. The rule adopted by Itzkovitz [27] is to duplicate an overlapping
node in the coarse-grained network, only if this node receives only one input from neighboring
coarse-graining units (CGUs). This ensures that the dynamic of individual CGUs is well-captured.
Solution CGU sets that do not satisfy the single-input into overlapping node criterion are discarded
and new solutions are sought. Overlapping edges are not allowed at all.

The algorithm can be repeated a few times to uncover several levels of structure. Though
simple, coarse-graining does not always provide satisfactory results. The presumption is that a
network is composed of relatively small (max 6-8 nodes) frequently recurring motifs, which is not
the case for many systems. First, the recurring patterns could be of much bigger scale, or they could
be expressed in some central plan (backbone) or in the mechanism of regulating different parts of
the network. This is one of the reasons for which analyzing the static structure of a network is
not sufficient to understand the significant patterns or mechanisms of its structure. That said,
what the network does or represents is crucial for the interpretation of coarse-graining results. In a
metabolic network, the low-level recurrent reaction mechanisms might be interesting, while in the
case of airline routes, large-scale hub-feeding dynamics is where the story is.

In Chapter 2 we show the implementation of the coarse graining algorithm for JetBlue Airways
and later on, in Chapter 4 use the underlying patterns to propose a growth model for hub-seeding
type airline growth.

1.4 Evolution of Networks

The second cornerstone of this thesis is the study of growth or how network structure changes over
time. The previous sections reviewed techniques related to structure. Here we review models related
to growth, in particular random, node-degree centric, edge-centric, spatial distribution models,
heuristically optimized topologies, and node- and module- copying, or non-incremental growth.
One of the most complete references on network evolution is by Dorogovtsev and Mendes [20].
Chapter 3 contains references on network growth specific to the airlines.

1.4.1 Random graph models

Random graph models are the first ”modern graph theory” developed by Paul Erdös and A. Rényi,
to explain real-world networks [39]. The beauty of random graph mathematics comes from all
the derivations possible due to averaging, such as mean degree, clustering coefficient and degree
distribution closed form probability laws. The simplest ER (Erdös-Rényi) model says that for a
set of nodes, edges arrive with probability 0.5 between any pair of nodes. Another simple version
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of the model sets the maximum number of edges. The pseudo code below shows a typical random
graph construction routine with a maximum number of edges m and a probability of attachment
p.
While |E|<m:

Pick random node n1

Pick random node n2 6= n1

If rand<p:
Connect n1 and n2

Note that this routine is different from the classic Erdös-Rényi routine which goes though all
possible edges and creates them with probability p. This results in pn(n − 1)/2 mean number of
edges, where n is the number of edges.

Some easy derivations are the mean degree for the network: z = np, the clustering coefficient,
C = 0, and the degree correlation r = 0.

1.4.2 Node-degree centric models

In these models, links arrive at the nodes with probability which is some function of the nodal
degree.

Exponential model (Dorogovtsev [20])

Start with two nodes connected to each other twice n(t = 2) = 2, m(t = 2) = 2. At every step,
add one new node and connect it randomly to any other existing node in the network. Thus, at
every time step t, there are n(t) = t nodes and m(t) = t edges. The probability of an existing node
receiving a new connection is 1/t, because all nodes are equal in this model. The probability of a
node s having degree k at time t is

p(k, s, t) =
1
t
p(k − 1, s, t− 1) + (1− 1

t
)p(k, s, t− 1) (1.12)

The initial and boundary conditions based on the attachment model are p(k, s = 1, 2, t = 2) =
δk,2, p(k, s = t, t > 2) = δk,1.This equation exhibits a common way to capture growth in the
literature - by expressing the probability of a vertex (or a number of vertices) having certain degree
at a certain time. This is probably due to the fact that changes in the degree distribution are
most natural to track with adding and removing nodes, and also due to the strong focus on degree
distributions [39][14]. Equation 1.12 can be used to derive the probability of a vertex having a
certain degree at a certain time, using limits at infinity and approximations or assumptions. Define
P (k, t) = 1

t

∑t
s=1 p(k, s, t) and apply

∑t
s=1 to 1.12. In the limit of t → ∞, the stationary form of

this equation becomes 2P (k)−P (k−1) = δk,1. solution is the exponential form P (k) = 2−k, which
is why this growth model is called exponential. It is clear that this model generates trees, since
nodes with degree bigger than k are never receive new links, as evident in Figure 1-175.

5This figure and all subsequent figures of graph are created with Netdraw, which is a visualization program by
Analytic Technologies.
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Figure 1-17: Exponential network snapshots example, t=100,500,1000. The plots are created with
NetDraw using the Kamada-Kawai spring energy minimization algorithm [3].

The preferential attachment model (Price [40], Barabasi [14])

Preferential attachment was first introduced by Price in 1965 who studied networks of scientific
papers. The model has been re-introduced and become more popular since 1999 by Barabasi
et al [14]. The cumulative advantage6 model has the same form of probabilistic equation as the
exponential, except that the probability of attaching a new node to an existing node is proportional
to the degree of the existing node. The initial and boundary conditions here are considered to be
the same: p(k, s = 1, 2, t = 2) = δk,2, p(k, s = t, t > 2) = δk,1.

p(k, s, t + 1) =
k − 1

2t
p(k − 1, s, t) + (1− k

2t
)p(k, s, t) (1.13)

Equation 1.13 reflects the fact that the probability of a node having degree k, at time step t + 1
is dependent on a node with degree k − 1 receiving a link at time t, with probability k−1

2t or node
with degree k at time t not receiving any links. The probability of receiving links, based on existing
degree, reflects exactly the preferential attachment principle. The total number of nodes after t
steps is t, and the total number of links is t, based on the Barabasi-Albert (BA) model. Then
2t is the sum of all degrees in the network7, and k−1

2t is simply the fraction of (undirected) edges
connected to a node of degree k − 1.

Applying
∑t

s=1 to 1.13 to get the general distribution gives P (k)− 1
2((k−1)P (k−1)−kP (k))−

δk,1 = 0 in the limit t → ∞. The solution of this equation (can be verified by substitution) is
P (k) = 4

k(k+1)(k+2) , which means that P (k) ∼ k−3. A simulation of the BA model for the same
graph at t=100, 500 and 1000 is shown in Figure 1-18.

6”Cumulative advantage” here is used interchangeably with ”preferential attachment”
72#edges =

∑
i
di is an almost intuitive fact. Since every edge has two node ends, the sum of all degrees counts

every edge twice.
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Figure 1-18: BA graph snapshots at N=100, 500 and 1000 nodes (t=N). The graph are plotted
using the Kamada-Kawai spring energy minimization algorithm [3].

Master equation [20]

To generalize the previous two ideas, take a single arriving node at each time step (without loss of
generality) and m new directed links simultaneously from unspecified origin (even from outside of
the network). The target ends are distributed among vertices with probability proportional to the
incoming degree of a node offset by a constant. Let q(s) be the incoming degree of node s. Then
node s receives new links proportionally to q(s) + A, where, A = ma, and a is a constant. Then
the normalized probability of attachment is

q(s, t) + A

mt + At
=

q(s, t) + ma

mt + mat
=

q(s, t) + ma

(1 + a)mt
(1.14)

The probability that a vertex receives k new edges at a given point in time t is

Pmk
s =

(
m

k

)[
q(s, t) + am

(1 + a)mt

]k [
1− q(s, t) + am

(1 + a)mt

]m−k

(1.15)

Then the equivalent of equations 1.12 and 1.13 for the exponential and BA models is the following
master equation:

p(q, s, t + 1) =
m∑

k=0

(
m

k

)[
q(s, t) + am

(1 + a)mt

]k [
1− q(s, t) + am

(1 + a)mt

]m−k

p(q − k, s, t) (1.16)

The solution of this equation is q̄(s, t) + A = A(s/t)−β , where β = 1/(1 + a).

Figure 1-19: Master equation method with a=2, m=1. Graphs plotted using a spring energy
minimization algorithm.
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Figure 1-20: Master equation method with a=2, m=2. Graphs plotted using a spring energy
minimization algorithm.

Figures 1-19 and 1-20 show that the master equation method is a generalized preferential at-
tachment method. For a = 1, it should reproduce the BA model. For varying number of vertices
m attached at each step, the existence of a global connected component is affected, as well as its
degree distribution.

1.4.3 Spatial distribution algorithms

These models concentrate on positioning the nodes and then wiring them to optimize some objec-
tive.

Fabrikant model [41]

This is a tree building algorithm in which every new node arrives and attaches to one of the previous
nodes, chosen with a certain objective function. Let hj be some measure of centrality for node j,
and α be some constant. The goal is to connect a new node i to an existing node j as close (in
Euclidean sense) as possible, but which is also fairly central. Therefore, the metric is a weighted
sum of closeness and centrality:

minj<iαdij + hj (1.17)

Figure 1-21: Fabrikant model with N=100, and α=1, 1.5 and 20 respectively.

Figure 1-21 shows that for small α the closeness criterion is overpowered by centrality and every
new node connects to the center. For higher values of α, local connectivity becomes more important.
These kinds of considerations are relevant in energy, water and other distribution systems, where
there is a source (and/or a sink), but there are also local distribution stations which are cheaper
or easier to connect to logistically.
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Newman-Gastner model [42]

This study, similarly to the Fabrikant work, concentrates on balancing traveling along the network
versus Euclidean distance to the root. It is assumed that there is a source/sink type node in the
system. The key definition is the route factor, expressed as: q = 1

n

∑n
i=1

li0
di0

, where li0 is the distance
from node i to the root along the edges of the network and di0 is the Euclidean distance from i to
0. So for example a route factor of 2 means that the shortest path from a vertex to the root of the
network is simply twice the Euclidean distance.

The authors examine a few subway and pipeline networks and find route factors often very close
to 1, indicating that distance to the root is an important factor is their design. They propose an
objective function for connecting new nodes similar to the Fabrikant model [41], but the results are
different because the node locations are set prior to the design process. In this model, all nodes
are given, (by some real problem setting) and connected starting at the root, one by one. A new
node i is connected to node j which minimizes wij = dij + βlj0, where lj0 as before is the distance
from j to 0 along the network, and dij is the Euclidean distance between i and j. For β = 0, the
new node always connects to the closest node (essentially a minimal spanning tree), while for large
beta, the distance to the root matters more, so the new node will connect closer to the root, as
shown on Figure 1-22.

Figure 1-22: Newman-Gastner model for β = 0.1, β = 0.9, and β = 1.1000 nodes.

Heuristically-optimized configurations

In the models reviewed so far strictly graph statistics have been discussed for applications in
biology, sociology, communications and engineering to ”explain” the structure of systems without
considering domain knowledge. As Li et al [31] argue, this is equivalent to simple (often inaccurate)
curve matching and is far from the reality of the underlying architecture of the studied systems.
Figure 6 from [4] (Figure 1-9) illustrates this point for the case of the Internet network at the
router level. The degree distribution of the router-level network does not fix its structure, because
there are many graphs with the same distribution, and the suggested mechanisms for generating
scalable degree distributions suggest system architectures quite opposite from the real Internet
architecture. The purely stochastic approach misses the cost, infrastructural constraints and the
objectives/performance requirements of the system which drive the real architecture. Doyle et al
argue that for the case of the Internet in [4].

Highly optimized tolerance is a concept termed by Doyle and his group at Caltech. In [4] Li et
al show that the Internet, as an instance of an engineering system, grows as a heuristically optimal
system, which means that its structure respects real design considerations, such as aggregating
traffic (through high connectivity) and constraints, such as router bandwidth. They show that
optimizing the topology for performance metrics and respecting constraints results in a topology a
lot closer to the real one, compared to general graph growth methods.
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Another example of a heuristically optimized engineering system for growth and robustness is
our study on large telescope arrays [43][8]. Multiple antenna radio astronomy, also known as inter-
ferometry, uses many spread-out linked antennas to create an aperture equivalent to the aperture
of a telescope with the diameter of the multi-antenna array. Usually, these arrays are spread-out
along hundreds of kilometers and linked with expensive fiber. The design problem has naturally
opposing objectives: to spread out the array which will benefit the uv distribution and to keep
the distances between stations short to keep the length of expensive cable shorter hence cut cost.
The Euclidean distance cost is a similar measure to the one used in (Gastner 2004). One of the
main conclusions of this study is that different array topologies correspond to different balances of
objectives. Optimizing for cable length produces Y-shaped arrays, while optimizing for coverage
produces circular arrays. The algorithm is an adapted genetic algorithm with seeding geometries,
so these geometries are not provable to the absolute answers to the optimization problem. Due
to the non-linearity of the performance objective function, slightly non-regular geometries, with
protruding branches are favored.

Figure 1-23: Optimizing telescope array configurations for cable length (cost) and uv density (per-
formance). Left to right: 27, 60 and 99 nodes. Three configurations show minimum cable, nadir
point and minimum uv metric designs from top to bottom (Bounova [8]).

1.4.4 Node-copying and function preservation

Node-copying is inspired by gene duplication and whole-genome duplication computational studies
of various genomes (Vazquez [44]). Whole genome duplication has been proved to have occurred in
various species. Duplication of a given area of the genome means that a nucleotide sequence repeats
(is inserted twice) which could influence the proteome, i.e. producing copies of the same protein.
The main idea is that a new copy of a protein will interact with the same proteins as the original,
and eventually will lose/gain interactions based on mutations or selective pressure. This simple
principle has been proposed as a network growth algorithm with fitting the probabilities of deleting
and adding interactions. This is called a (DD) duplication-divergence model. The purpose of these
models was to explore robustness of protein networks created by node-copying or duplication and
to match the theory to concurrent studies in complex networks [34][14].

The divergence-duplication model can be summarized as follows:

i Duplication: A node is a protein. A node i is selected at random. A new node i′ is created and
all neighbors of i are linked to i′ as well. With some probability p, a link between i and i′ is
established as well, for self-interacting proteins.

ii Divergence: For every node j linked to i and i′ pick one the links at random and remove it with
probability q.
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The algorithm starts with two nodes connected to each other and continues with one step
duplication and then one step divergence. On evolutionary scale, this is a fair assumption, because
divergence is presumed to happen almost right after duplication, so naturally, it can be decoupled
with the next duplication step.

Figure 1-24: Figure 2 from (Sole 2002) Growing network by duplication of nodes. First (a) du-
plication occurs after randomly selecting a node (arrow). The links from the newly created node
(white) now can experience deletion (b) and new links can be created (c); these events occur with
probabilities δ and α, respectively.

The duplication-divergence model is similar to the node-degree centric models - pertinent to
making asymptotic approximations. In particular, the authors of this model (Vazquez [44]) inves-
tigate the asymptotics of the average nodal degree, which they call the average connectivity.

By the algorithm, the change in average degree can be calculated as:

〈k〉N+1 =
(N)〈k〉N + 2p + (1− 2q)〈k〉N

N + 1
(1.18)

which in the limit of large N has a stationary value for k :→ k∞ = 2p
1−2q + O(N1−2q). The average

degree is finite for q > 1/2 and grows exponentially with N , for q < 1/2 (as N1−2q). Such conclu-
sions can be derived for higher moments of the degree distribution. A similar model is presented
by Sole et al [45].

The copying of links by functional association is a powerful idea. It is the same principle as of
the equivalence classes for topological generalization. Interestingly, we adopt a similar approach of
copying links of geographically similar nodes (airports) to create local structure in Chapter 4 in a
growth model for Southwest airlines. Similarly, the other model we look at, derived from JetBlue’s
patterns of growth, features dual service to the same cities from two distinct hubs.

1.4.5 Module-copying and growth by accretion

A natural generalization to copying a node is to copy a larger subgraph, perhaps a ”module”,
or a set of connected nodes with a particular uniting function. Then the links of this module
would be preserved in the first step (copies of links of corresponding copied nodes) and then lost
probabilistically over time. While this model may find its analogies in gene duplication, where
the entire regulatory network is duplicated and its function diverges over time, it is valuable from
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a completely different point of view. Growth node-by-node or edge-by-edge is a good first-order
model. However, it is quite frequent to see disconnected networks become a larger connected whole,
over time, starting with largely isolated nodes or clusters. This idea is presented in Watts’s ”Six
Degrees” [46], describing the forming of social links between geographically separated communities
over time. We recently found evidence of that type of growth in the evolution of change requests
of a radar system [13], as well as in studying the evolution of Wikipedia in this thesis.

Giffin [13] studied changes proposed for the engineering design of a radar system, documented
and tracked over time. Every time a new change request is made (a new node in the network) it is
linked to prior changes as a child of a node (resulting from), a sibling of a node (related to, and on
the same level). This resulted in 41000-node graph over 9 years, whose evolution was mapped day-
by-day. The analysis showed many disconnected small components forming at the beginning and
coalescing into larger components over time, in ways that could not be foreseen at the beginning.
The incremental growth models discussed so far would predict that the network grows out of a
single original change request. The data points to the contrary, large clusters in this system, form
from smaller clusters, originating from completely unrelated original nodes. Figure 1-25 shows two
snapshots of a connected component in year 7 and year 9 of the development of the program.

Figure 1-25: Different components of the change request network coalescing together over the course
of nine years. (Left) Year 7; (right) Year 9.

As pointed out, this mode of growth is discussed later in the thesis, in the context of Wikipedia.
We also discuss the implications of systems growing disconnected versus connected from the start
and analyze examples from both technical (airlines) and social systems.

1.4.6 Edge-centric models

A consideration completely ignored so far is the pure propensity for a new edge forming, given a
backbone network. This assumes that all nodes are already present in the network, because an edge
forms due to a demand between two nodes to be connected. Simplistically, an airline will offer a new
flight A-B if there is large population in A that wants to travel to B. There can be many reasons
for an edge to form - demand at the nodes, demand and capacity at neighboring nodes, distance,
etc. Note that the underlying network is already connected. This is still considered growth and
arrives at a particular structure that can be analyzed at its end point. Airlines also connect directly
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airports that they already serve, other than expanding to new airports.

Other than growth, edge-centric models based on rewiring were first introduced by Watts [34],
who rewired k-regular graphs to create small worlds (networks with short diameter and high clus-
tering) as cited in Section 1.2.7.

The Dodds-Watts-Sabel [9] model presents an edge-based growth model for hierarchies. The
algorithm starts with building a pure tree with branching ratio b and depth L. Then extra edges
are attached depending on the standing of corresponding nodes in the hierarchy. The probability of
two nodes being connected (on top of the hierarchy backbone) is based on the depth level of their
lowest common ancestor aij (Dij) and their own depth below aij (di and dj). To set aside cases
where nodes are connected by default, it is required that di + dj ≥ 2. The organizational distance
between two nodes is xij = (d2

i + d2
j − 2)1/2. The assumption is that the larger the organizational

distance, the less likely is that two nodes will associate with each other. Also, the probability of
two nodes associating decreases with increasing depth level of their lowest common ancestor, which
reflects the tendency of only higher rank nodes to associate. Figure 1-26 illustrates the model.

Figure 1-26: Figure 1 from Dodds et al [9]. Illustrating the distances in a hierarchy - to the lowest
common ancestor from each node (di and dj) and from the lowest common ancestor to the top
(Dij).

In the model, P (i, j) ∝ e−Dij/λe−xij/ξ is the probability that i and j will connect.
The authors claim that varying the parameters λ and ξ gives rise to different network architectures.
When (λ, ξ) → (∞,∞), P (i, j) is nearly 1 and any pair of nodes can be connected, the network
becomes random-like. When (λ, ξ)→ (∞, 0), the probability depends exclusively on the organiza-
tional distance between the two nodes, hence local teams are favored. When (λ, ξ) → (0,∞), the
probability depends on the depth of the lowest common ancestor, hence nodes associated with the
top node in the hierarchy form a team and other divisions below them remain randomly connected.
The authors call this configuration random interdivisional. Finally, when (λ, ξ) → (0, 0), both
factors play a role - and links are exclusively added among the subordinates of the top node. This
pattern can be seen in Figure 1-27 reproduced from [9].
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Figure 1-27: Hierarchy patterns. Figure 2 from Dodds-Watts-Sabel [9].

Interestingly, in the middle of the (λ, ξ) space, they identify ”multiscale” networks where both
the local teams and the global random ties are present.

We will use this model to create a range of “random hierarchies” as a family of topologies in
Chapter 2. It turns out that many real networks resemble the Dodds-Watts-Sabel graphs statisti-
cally.

1.5 Conclusion

In this chapter, we reviewed network theory relevant to the i/ analysis of network topology and ii/
study of evolution of topology, or growth models for systems represented as graphs. With these
ideas from the literature, we will develop the tools to analyze network topology in Chapter 2, and
extend them to study growth in Chapter 4.

Five of the statistical metrics described in this chapter, density, clustering coefficient, degree
correlation, the S-metric and diameter are combined and non-dimensionalized in a topology vector
used to compare topologies in Chapter 2. The motif finding algorithm is used to uncover recurrent
patterns in airline networks in Chapter 3. Degree distributions are computed for the airlines and
discussed in Chapter 2 and Chapter 3. Most of the techniques described in this chapter appear
implicitly, either in the computation or the visual representation of networks throughout this thesis.
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Chapter 2

Network Topology

Topology is a field of mathematics which deals with properties of spaces that are preserved under
continuous deformations. Intuitively, if an object is stretched, twisted, translated or deformed (not
transformed) in some continuous way, topologically speaking, it is still the same object with the
same properties. Topology studies properties of the space the objects are described in, what its
rules are, such as connectivity. This definition of topology is not the one used in the title of this
chapter, but should help to understand the intuition behind the narrower term network topology.
Network topology describes how the elements of a network are arranged and connected. The defi-
nition implies that there are ways to arrange connected objects that can be described in some way.
The common network topology classes, that come from electrical engineering (communications) are
rings, meshes, stars, lines, buses, trees, regular (every node has the same number of connections)
and complete graphs (fully connected, (n− 1)-regular). These are very pure descriptions, and they
don’t tend to occur in reality, except for in relatively small simple designed systems. Later on in
this chapter, these are described and analyzed as canonical topologies. Most systems represented as
networks are messy, sometimes canonical-like, and sometimes random-looking, sometimes hybrids
of canonical systems. This chapter describes tools for analyzing real topologies, statistically and in
relation to canonical topologies.

The challenge in qualifying a topology or assigning it to a class of topologies, is in choosing the
right metric. There isn’t one perfect measure though there have been candidates - degree distribu-
tions among some of the more popular. One difficulty lies in the fact that the popular statistical
measures such as diameter, clustering coefficient, edge to node ratio are very one-dimensional. One
way to overcome that is to combine the non-dimensional metrics into a topology vector that can be
compared across graphs and used to create a topology profile. This idea is presented in the chapter
and discussed in the context of the route network of JetBlue 8/07. Obviously, the problem there is
continuity - what is a topology class between two canonical topologies and what does this vector
space look like?

A completely different approach is the reductionist way - looking at topology as composition
of simple, well-defined elements. We discuss and compare the Newman modularization algorithms,
followed by motif search. Looking for underlying patterns in the network, and extracting how they
connect, is a more detailed magnifying glass approach to identify the backbone of the structure.
Motif finding is presented in this chapter with our implementation of two ideas from the literature.

All of the above techniques are exemplified with the route network of JetBlue Airways of August
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2007.

Aside from this graph theoretical discussion of topology, for a real system, there are many more
factors that describe it. For the applications we are concerned with, the topological description
has to be augmented by geometry, demand, energy considerations, legacy, and strategy. These are
necessary to understand the annotated topology of a real system, though outside the scope of this
thesis. We discuss airports geographically, and some airline strategy, but do not incorporate these
factors in our models.

2.1 Statistical Indicators for Topology

First we discuss network topology in view of network density, clustering, assortativity and reachabil-
ity. The statistical measures reflecting these characteristics are introduced in detail in Section 1.2.
We concentrate on the following: edge-to-node ratio (m/n), clustering coefficient (C), degree cor-
relation (r) average path length, (l), and network diameter (d). First, we present and discuss
the statistics of various canonical networks, as waypoints for general networks, which are far from
canonical, but might be interpreted as or generated from hybridized canonical topologies. Then
we show how to use these statistics to compare a real topology to a spectrum of canonical topologies.

Degree distributions were reviewed in Section 1.2.3. Here, we discuss how they can be used in
conjunction with other metrics to shed light on network topology. First, we discuss degree versus
betweenness centrality, a topic first explored in the context of airlines by Guimera et al [17]. Then,
for the example of JetBlue, we show the implications of the betweenness-degree relationship and
discuss degree distributions and degree correlation elasticity, a topic explored by Whitney [32].

Throughout the section, the ideas are illustrated with the example of the route network of
JetBlue Airways of August, 2007.

2.1.1 Canonical topologies

The term canonical here is used in the sense of ”the simplest and most significant form possible
without loss of generality”1, that is - a simple generalization for a family of forms that is regular
(non-random) and easy to comprehend. The number of canonical network types is arbitrary,
so here we discuss only a limited set of simple regular forms: stars, loops, lattices and trees;
and random-regular forms such as: random graphs, preferential attachment graphs, and random-
modular graphs. All types are defined in Table 2.1.1.

1By Webster’s Online, third adjective interpretation.
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Table 2.1: Canonical network definitions
Simple graphs

→ Line graph A linearly connected set of n nodes with n− 1 links between them.

→ Circle (or loop) A graph, with n nodes and n links, connected in one cycle, every node
with degree 2. The smallest circle graph has 3 nodes.

→ Star A graph with n nodes, one central node connected radially to all n − 1
others. The central node has degree n − 1, all other nodes have degree
1.

Trees Canonical trees in this thesis are trees with branching ratio b and depth
(number of levels) L. Trees have no clustering (clustering coefficient of
zero), n− 1 edges for n nodes, and a maximum diameter of n− 1.

Scale-free/Scale-rich Graphs designed to particular scale, either in degree distribution or sub-
structure patterns.

→ Preferential attachment graph Graph in which the probability of adding links to a node is proportional
to the nodal degree (number of neighbors), hence the name ”preferen-
tial”, which reflects preference to attach to higher degree nodes.

→ S-max graph A unique graph for which
∑

(i,j)∈E
didj is maximized for a given degree

sequence {d1, d2, . . . dn}.
(Random) Hierarchies In this thesis, hierarchies refer to balanced trees with horizontal cross-

linking along the same level and random interlinking across levels.

→ Hierarchical binary / tertiary
trees

Balanced trees with horizontal cross links at all levels except the leaves.

→ DWS graphs (core-periphery,
local team, random-interdivisional,
and random)

Hierarchical binary / tertiary trees with random interlinking with several
varieties dependent on distance between the two nodes and their common
distance from the top of the tree 1.4.6.

Lattices Lattices in this thesis are defined as geometric point arrangements in
2D, which can be formed using only one basis of vectors, by taking all
linear combinations of the vectors with integer coefficients. Obviously,
there are infinitely many lattices, so we only pick the set of three types
that satisfy the following rotation symmetries: the symmetry moves a
lattice point to a succession of other lattice points, generating a regular
polygon in the same plane2. This is the formal way of saying that the
lattices considered here are triangular, rectangular and hexagonal.

Random graphs Random graphs are also canonical structures in the sense that pure ran-
domness allows analytical (via statistics) solutions, i.e. many properties
are solvable in the limit of large graph size.

→ Random with the same degree
distribution

Random graph in which every node has preset number of links (according
to a given degree sequence) but the edges are distributed randomly. Self-
loops and double edges sometimes occur in these random graphs.

→ Random modular In this type of graph, the nodes are separated in modules and edges are
assigned with greater probability inside the module, and lower probabil-
ity across modules.

→ Erdös-Rényi Graphs, which are constructed by flipping a coin with probability p to
decide whether there is an edge between any two nodes.

Figure 2-1 shows the families of topologies presented above in order of “topological continuity”.
Though one cannot claim that these topologies continuously transform from one to another (un-
der some invariance principle), the order of topology families in Figure 2-1 reflects a direction of
increasing density and some form of notional complexity. On the far left are simple graphs, from
the simplest trees, to balanced trees, evolving into trees with particular scalar structure. Mid-
way are the Newman-Gastner type topologies, preferential-attachment graphs, the s-max graph, or
heuristically optimized topologies. These are still very sparse, often still trees, or with few loops

2This is the Crystallographic Restriction Theorem.
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and generally low clustering. The next notional jump is from pure hierarchies (balanced trees) to
hierarchies with horizonal cross links, or random cross links, as in the Dodds-Watts-Sabel models
[9]. These topologies are denser than trees, they have many loops and have an underlying lattice.
That’s why next on the line are lattices and one can add lattices with random cross links, or ran-
domly rewired (as studied by Watts et al [34]). Finally, we have the random graphs of all varieties,
random with the same degree distribution, with an imposed modular structure, and Erdös-Rényi
random graphs with various densities. What is not shown on the far right is the densest possible
graph - the complete graph. The complete graph is just a (n-1)-regular graph, with a diameter of
1, average path length of 1 (l = d addressed below), clustering coefficient of 1 and infinite degree
correlation (same as any k-regular graph). Figure 2-2 shows the corresponding densities for the
canonical topologies, marking most real systems with edge-to-node ratios between 2 and 10, which
correspond to random hierarchies on this scale.

Figure 2-1: Topology families in order of increasing graph density (m/(n(n− 1)/2)): lines, circles,
stars, balanced trees, BA/s-max, hierarchical trees with interlinking, lattices and random graphs.

Figure 2-2: Edge-to-node ratio for the topologies in Figure 2-1. As n increases the y-axis scale
increases as O(n), as random graphs and complete graphs grow in edges with O(n2). Most real
networks (certainly airlines and Wikipedias studied here) have edge-to-node ratio between 2 and
10 (marked by circle on the plot).

Table 2.1.1 shows a summary of statistical values for edge-to-node ratio, m/n, clustering coef-
ficient, C, degree correlation, r, average path length, l, and diameter, d for the canonical networks
defined above. Most values are derived analytically (star, circle and lattices), though there are
some values that are computed as ensemble averages. The degree correlation for binary tree and
the degree correlation and clustering coefficient for hierarchical trees (balanced trees with horizontal
cross links) are cited from [32] and [47].
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Table 2.2: Statistics for some canonical graphs - m/n, r, C, l and d.
Graph m/n r C l d

Star 1-1/n -1 0 2(1-1/n) 2

Circle 1 0/0 0 (n>3) (n+1)/4 if n-
odd; n2/4(n-1) if
n-even

bn/2c

tree(b,L) 1-1/n -1/3 (binary tree) 0 O(log(n))? ≤n-1

BA O(const) likely <0 low, ∼0 α > 3, l = ln(n),
α = 3, l =
log(n)/ loglog(n),
2 < α < 3,
l=1/2+2/(3-α)

O(log(n)) for
sparse graphs,
log(n)/ loglog(n)
asymptotically

Tree w/
horizon-
tal cross
linking

2.5 (at ∞) -1/5 (at ∞) 11/28 probably O(n) 2L-1, L - number
of levels

triangular
lattice

3 1/2 1 2(n+1)(2n+1)
n−1

for
n→∞

2(
√

n − 1) for a
square lattice

square lat-
tice

2 2/3 0 2(n+1)(2n+1)
3(n−1)

for
n→∞

2(
√

n − 1) for a
square lattice

hexagonal
lattice

1.5 0 (at ∞) 0 3(n+1)(2n+1)
n−1

for
n→∞

n/2-3 for a square
lattice

ER p(n-1)/2 =O(n) 0 0 log(n)/ log(m/n) unknown, possi-
bly O(log(n))3

To discuss the statistics, first we will show that if two metrics are close to each other, or asymp-
totically equal, that does not mean the two corresponding graphs are. Consider the following
Lemma.

Lemma: If l = d, where d is the diameter of a network with n nodes and l is the
average path-length, then the network is a complete graph.

Proof: By definition, l is the average path length, so l =
∑

i<j
pij

n(n−1)/2 , where p is the length of the
shortest path between nodes i and j, and the sum is over all ordered pairs of nodes (i, j), assuming
the graph is undirected. Since the diameter is the longest shortest path, pij ≤ d for every (i, j).
Then
l =

∑
i<j

pij

n(n−1)/2 ≤ l =
∑

i<j
d

n(n−1)/2 = dl =
∑

i<j
1

n(n−1)/2 = dl = n(n−1)/2
n(n−1)/2 = d, where equality is reached only if

pij = d for every i and every j. Therefore, if the average path length is equal to the diameter, then
for this graph, all path lengths are equal, to each other and hence to the diameter. The question
is what type of graph has all the same path lengths. An obvious answer is a complete graph. All
paths in a complete graph equal 1, and the diameter is 1. It is easy to see that it is not possible for
a graph to have equal path lengths of size greater than 1. Suppose there is such a graph and the
path between i and j consists of k > 1 edges. Then along that path, there are nodes which have
path lengths of size 1 from i and j, and all path lengths are not equal.

Given this Lemma, it appears that while some metrics can be very close in comparison, the net-
works they represent do not have to be. Though one might argue that infinite is tricky to consider,
an infinite star satisfies the condition for a complete graph (l = d). Then consider a very large
finite star for which l ≈ d. The proximity of these metrics means nothing as shown by the Lemma.
A star is a tree graph with the minimum possible density that ensures connectivity (m = n − 1),
while a complete graph is maximally dense with m = n(n− 1)/2.
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All degree correlations, path-lengths, and diameters are computed analytically for the circle
graph, and all lattices. The first thing to notice about Table 2.1.1 is that the measures can either
be a function of n, and grow with n, (sub)linearly (log(n)) or superlinearly or be fairly constant
and insensitive to the number of nodes. Discovering such networks was the beginning of the small-
world hypothesis which identifies cases in which the average path-length or the diameter of the
network remains small (log(n)) regardless of the size of the network and despite significant cluster-
ing [34]. Lattices are on the opposite side of the spectrum as they spread out with size and their
path lengths are longer. The small-world graphs (in Figure 2-1) are the stars and the variations of
random graphs: Erdös-Rényi, random modular, and the preferential attachment graph.

Another point of comparison is the number of edges. The random networks are a lot denser
than the trees and the lattices, which have O(n) edges. More edges means more opportunities for
clustering and short-circuiting which explains the lower diameters. The other interesting measure
is the degree correlation which varies a lot across different networks and which has to be combined
with the degree distribution to be interpreted properly. The degree correlation exhibits elasticity
(changes under degree-preserving random rewiring) which is dependent upon the variation on the
degree sequence. A highly peaked degree sequence results in a negative degree correlation with
low elasticity (since there are few nodes with high degrees, and few possibilities for rewiring). A
more uniform degree sequence, results in a positive degree correlation and higher elasticity. These
phenomena are explored in detail with examples of real systems in [32].

Given the statistical measures of canonical networks we can look at the same measures for real
networks and based on their statistical profile, derive possible similarities in network topology to
canonical networks, their combinations or derivatives. First we present an approach to combine
the topologies above and their metrics into a profile against which a real network can be measured.
Then, to shed light on these ideas, we discuss the routes structure of JetBlue 8/07.

2.1.2 Topology spectrum

As demonstrated in the discussion of statistical measures, one metric is not enough to make a
conclusion about the topology of a network. One straightforward but effective way to compare
topologies using only the statistics is to match vectors of multiple metrics. A sum of squares dis-
tance between two ”topology vectors”, for example, can be used to tell how far two topologies are
from each other. For this to work, the vector entries have to be non-dimensional, properly scaled
and reflect widely different properties of the graph. We propose the following derivatives of m/n,
C, r, d, and s/smax some of which were discussed above.

Density: Substitute edge to node ratio (m/n) with density m
n(n−1)/2 = 2m

n(n−1) which
is non-dimensional.

Clustering
coefficient:

C is non-dimensional already, so is used as is.

Degree cor-
relation:

r is a measure between -1 and 1, so it is scaled to fit between 0 and 1:
r → 0.5r + 0.5.

Scale-free
index:

s/smax is already between 0 and 1, so is used as is.

Diameter: d is scaled by dividing it by the maximum possible diameter, n − 1: d →
d/(n− 1).
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The five-dimensional topology vector becomes v = [ 2m
n(n−1) , C, r+1

2 , s
smax , d

n−1 ]. This vector
can be used for relative comparison across networks. If two graphs G1 and G2 have vectors v1 and
v2, then the distance between them is |v1 − v2|2 =

√∑
k(v1k − v2k)2. We call this distance the

“topological similarity”. Zero distance means highest possible match, though it is not clear that
also means the two graphs are isomorphic. This measure allows relative comparison along the line
of canonical topologies, which we call the topology profile. Next follow some examples of how this
idea can be used to analyze network topologies. We start by validating the topology similarity
measure using canonical topologies to match graphs with already known topology.

Comparison to a canonical network would have greater value if that canonical network is de-
signed to match the graph, in size, and other metrics if needed. The first requirement is to have
the same number of nodes and edges (if the generation algorithm accounts for edges). In the case
of a random graph, this could mean the same density, translated to a probability of attachment
(p = 2m/n(n− 1)). In the case of trees, the only thing fixed is the number of nodes. To create the
s-max graph, the same number of nodes and the same degree distribution is needed. The generation
algorithms for all of these graphs are reviewed in Chapter 1, Section 1.4. For the topology profile
developed here, the list of canonical graphs is: line, circle, star, binary tree, tertiary tree, Newman-
Gastner graphs with three α parameters (0.1,0.5 and 0.9), hierarchical trees (same as trees, but
with cross-cutting links at every level), Dodds-Watts-Sabel graphs with four parameter conditions
for λ and ξ, lattices, BA graph, random graph the same degree distribution, s-max graph and an
Erdös-Rényi graph.

The arrangement of these graphs is according to increasing density and “complexity”, as dis-
cussed in the previous section. The vector distance, or topological similarity of an ER random
graph (p=0.5) to the line of canonical topologies (from Figure 2-1) is shown in Figure 2-3.

Figure 2-3: Topology profile for an Erdös-Rényi random graph. The graphs compared to are: line,
ring, star, binary tree, tertiary tree, Newman-Gastner graphs with alpha=0.1, 0.5, 0.9, preferential
attachment graph, s-max graph, hierarchical binary tree, hierarchical tertiary tree, Dodds-Watts-
Sabel graphs with varying parameters, lattices (triangular, square and hexagonal), random graph
with the same degree distribution, a random modular graph and an Erdös-Rényi graph with the
same density.
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For the ER graphs, the best matches are other ER graphs (same number of nodes, same den-
sity) and the set of DWS graphs, or hierarchies with random interlinking. For very dense random
graphs (for example p=0.5) there are many more edges on top of the hierarchical trees for the DWS
graphs, so they look random, despite the underlying regular backbone. This explains their high
similarity. From the other topologies, only the random graphs reflect density as well, so there are
no other good matches.

The topology profile for a BA graph (preferential attachment) is shown in Figure 2-4. The
best matches here are BA graphs, and trees, tertiary and then binary. The DWS hierarchies are a
close match as well, because in this setting, they have very low density, so they are close to their
underlying hierarchical trees. The BA graph is not very similar to its most scale-free corresponding
graph (s-max). This finding has been discussed by Li et al [4] in the context of the Internet topology.

Figure 2-4: Topology profile for a BA graph. The graphs compared to are: line, ring, star, binary
tree, tertiary tree, Newman-Gastner graphs with alpha=0.1,0.5,0.9, preferential attachment graph,
s-max graph, hierarchical binary tree, hierarchical tertiary tree, Dodds-Watts-Sabel graphs with
varying parameters, lattices (triangular, square and hexagonal), random graph with the same degree
distribution, a random modular graph and an Erdös-Rényi graph with the same density.

As the examples of topology profiles show, the purpose of the topology vector is to place a
graph relatively on a scale of known topologies. Since equivalence to a topology or a graph is not
pursued here, this is not a classification approach, but a reference scale measure. This profile,
based on canonical topologies and topology vector distance, can spot interesting structures and
substructures to study further, and also differentiate at a high-level between networks that fall in
different regions of the profile. Results for airlines, using the topology profile will be discussed in
Chapter 3. Chapter 4 uses the profile to compare real networks to canonical topologies over time -
and thus give a relative sense of transitions and stable patterns in topology evolution.

Table 2.1.2 summarizes the difficulty of computing all the components in the topology vector.
The hardest to compute are the s-max measure and the diameter. For dense graphs, the clustering
coefficient and the degree correlation can be challenging too because they are quadratic functions
of the number of edges. The clustering coefficient can also be seen as a function of the average
degree (for a random graph, k = m/n). In practice, s−max and d require most resources.
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Table 2.3: Algorithm complexity for the components of the topology vector: density, clustering
coefficient, degree correlation, s/s-max and diameter. The number of nodes is n, the number of
edges m and the average nodal degree is k.

Component Expression Complexity
Density 2m

n(n−1) O(m)

Clustering coefficient C, equation 1.1 O(n (m−1)(m−2)
2 )

Degree correlation r, equation 1.2 O(m2)
S-max s

smax
O(kn2)

Diameter d O(n2logn)

2.1.3 Statistics for JetBlue Airways, August 2007

The example network is this chapter is the route network of JetBlue Airways for August 2007,
as reported to the BTS [1]. In August 2007, JetBlue flew to 51 airports, with 100 point-to-point
destination city pairs. All statistics for the network are shown in Table 2.1.3. The results for the
unweighted and weighted route nets are different because the actual network is a directed and not
a connected graph (following directional links, not all i− j paths are possible). The one-way flights
turn out to be the islands and Cape flights to Boston - Provincetown, Hyannis and Nantucket to
BOS. This is probably because JetBlue outsources these flights to Cape Air. The weights are the
number of departures monthly on a given leg.

Table 2.4: JetBlue 8/2007 statistics for weighted (by number of departures monthly) and un-
weighted route versions. Note that the original directed network is not connected.

JetBlue 7/2008 stats undirected, unweighted directed, weighted
m/n 1.96 273.2
r -0.574 -0.542
C 0.373 0.294
l 2.0369 ∞
d 3 ∞

With a low edge-to-node ratio of about 2, JetBlue does not have a dense network. The mid-
range negative degree correlation of -0.542 shows the tendency of nodes linking to nodes of different
degree, so potentially high-degree to low-degree, i.e. hub-to-spoke type links. This is not a definite
statement because a single degree correlation can correspond to many topologies. The skewness
of the degree distribution affects the degree correlation elasticity. Coupled with the low network
diameter and average path-length, it is evident that the network is star-like. These observations
are confirmed by the topology profile shown in Figure 3-23. JetBlue is closest to a BA graph
and trees, in the spectrum of topologies. In summary, the statistics and the topology profile
comparison suggest a topology with many stars (short diameter), few hubs and many spoke flights.
For reference, the actual route network of JetBlue 8/07 is plotted in Figure 2-6. The graphs with 51
nodes is small enough that the structure can be seen by eye. Figure 2-6 shows the JetBlue 8/2007
network with JFK (New York) as biggest hub, BOS (Boston) as secondary and Florida (MCO,
PBI, FLL) forming a local pattern. Surprisingly, LGB (Long Beach) is small hub and LAX (Los
Angeles) does not appear yet (service from JFK and BOS to LAX started May 21, 2008).
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Figure 2-5: Topology profile for the JetBlue 8/07 network. The closest match is to a preferential
attachment (BA) graph.

Figure 2-6: JetBlue 8/2007 routes: geographic representation by airport latitude/longitude, and
representation of node locations by minimizing spring energy. JFK and BOS are the two largest
hubs.

2.1.4 Degree-Betweennness Relationship

The relationship between nodal degree and nodal betweenness reveals more information about the
graph compared to the degree distribution alone. With a simple mental exercise, one can prove
that the two distributions are different yet proportional. Consider k-regular graphs. These are
graphs for which every node has the same degree k. For example, a circle is 2-regular. An infinite
square lattice is 4-regular. And a complete graph is (n−1)-regular where n is the number of nodes.
Since a k-regular graph is symmetric with respect to all nodes, every node has the same degree,
and the same betweenness measure, because all paths going through are symmetric.
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The next level of regular graph is the ”perfectly random” Erdös-Rényi graph. It is regular in
expectation because all nodal degrees have the same expectation which is the mean degree. The
betweenness-degree relationship of a random graph shows the null model relationship - that is all
things equal, what is the connection between these two statistics. Intuitively, if a node has more
links, then potentially more paths go through it, and hence a higher number of shortest paths.
Though it is not always true that if a node has higher degree, it has higher betweenness, it cer-
tainly seems intuitive. This is exactly what the random graph results indicate. In Figure 2-7, the
left-most plot shows the betweenness measure plotted versus the degree for all nodes of a random
graph with 200 nodes and average degree of 39 (p = 0.2). The plot confirms that on average,
higher degree implies higher betweenness. This signature-trend plot can be used as a null model to
distinguish graphs from random (ER). Figure 2-7 also shows the relationship for modular random
graph with 4 modules (in the middle) and a preferential attachment graph (right-most). In the
case of the modular graph, the modules themselves are ER random graphs, connected with some
probability. We expect that the nodes that connect modules will have higher betweenness since
more cross-paths will be going through them. This is why the linear relationship is not as pro-
nounced, which means that modularity affects the proportional betweenness-degree relationship.
Finally, in the case of the hub-and-spoke graph, all the spokes of degree 1 will have 0 betweenness
and all branch nodes of all degree will have low betweenness - so we expect to see a clustering of
nodes around 0 (in the lower left corner of the plot). High-degree nodes are expected to have very
high betweenness and really stand out together with a few peripheral hubs. The left-most plot in
Figure 2-7 which shows this relationship for random preferential graph with 200 nodes, confirms
that.

In conclusion, for highly skewed degree distributions of graphs with strong hubs and many
spokes, the betweenness versus degree relationship is expected to show this strong separation of
nodes into hubs and spokes.

Figure 2-7: Betweenness versus degree for all nodes of three types of graphs: (left) Erdös-Rényi
graph with 200 nodes and p=0.2; (middle) random modular graph, with 200 nodes, 4 clusters, and
p=0.2 general density; (right) BA graphs with 200 nodes.
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2.1.5 JetBlue August 2007 and degree distributions

The goal of this subsection is to show the degree distribution of JetBlue’s route network, and dis-
cuss it alone, with betweenness and with degree correlation to find out what can be learned about
JetBlue’s topology.

The weights of edges for JetBlue are the number of monthly departures for every pair of airports.
For example, if there is a daily flight between A and B, then the link weight will be 31 (31 departures
in a 31-day month). So the weighted degree of a node is the sum of the weights of all links adjacent
to that node. Counting the departures or another metric, gives a sense of ”multiple edges” in the
degree distribution and is a more accurate description of node centrality with respect to what the
network actually does. What defines the operations of an airline over time is the number of flights
the airline chooses to perform for any given city pair, as well as the seat capacity it offers. A hub
in this sense is really defined by the total number of departures, rather than the total number of
absolute links, and that results in different weighted and unweighted degree distributions [10][48].
This argument can be made for other transportation or resource distribution systems.

Mathematically, the resulting degree distribution exponent (if it exists, the distribution may
not be a power-law) will be different, and will affect growth, depending on the model (ex: pref-
erential attachment). If however, the flight frequency is proportional to the link connectivity, the
degree (frequency) distributions will look the same. We find that in the case of JetBlue, the two
distributions are different, but not drastically.

Figure 2-8 shows both the unweighted and weighted cumulative degree distributions for JetBlue.
The overall weighted distribution is best matched by a slow exponential, with exponent -0.005. Only
the tail fits a power law. The power law exponent is the slope of the tail plotted on a log-log scale.
If the power law is defined as P (k) ∼ k−γ , then logP (k) ∼ −γlogk, therefore −γ is the slope of
logP (k) versus logk. If γ is the exponent of the probability density, γ − 1 is the exponent of the
cumulative distribution, by integration. In Figure 2-8, the tail has a slope of -1.046, which means
that γ = 2.046.

As for exponential fits, the unweighted distribution has a much faster decaying exponential (an
exponent of -0.6 compared to -0.008) than the weighted distribution. That means that fewer air-
ports have proportionally higher number of connections, and relatively more airports have a higher
number of departures overall. The tail also matches a power law, with a similar but lower exponent
of -1.072, which means that γ = 2.072, and that distribution does fall off faster. In other words,
in airline terms, there are airports with low connectivity (number of connecting destinations), but
still high traffic share (in total number of departures monthly).

As seen for the both the weighted and unweighted distributions, the tail follows the same power
law with γ ≈ 2. A ”regular” preferential attachment process results in a power law with exponent
3 (see Chapter 1, Section 1.4.2). Typical real networks have exponents between 2 and 3 [2].
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Figure 2-8: Unweighted and weighted cumulative degree distribution for JetBlue 8/07. Both slopes
close to -1, which means that γ ≈ −2 for the frequency degree distribution.

Since a given degree distribution together with a degree correlation can correspond to many
graph instances, of varying topologies, one way to explore the realm of topologies is to rewire the
network, while preserving the degree distribution, and find the maximum possible span of degree
correlations. Some networks can be rewired to have a wide band of correlations, from negative to
positive, while others can be fairly inelastic [32]. Figure 2-9 shows the spring-energy plots of the
rewired JetBlue networks for maximum correlation of -0.5423 and minimum correlation of -0.6674

(the actual r is -0.574). The minimum correlation found also corresponds to the s-maximum graph
for the JetBlue 8/07 network.

Figure 2-9: Rewiring JetBlue 8/2007 from minimum r=-0.667 (left) to maximum r=-0.542 (right).

Rewiring with preserving degree distribution and minimizing/maximizing the degree corre-
3This is the absolute maximum, corresponding to the s-max graph.
4This is a heuristic result, since there is no known algorithm for minimum r.
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lation shows that the JetBlue route network can be rewired only within a very narrow band
(rmin = −0.667 < ractual = −0.574 < rmax = −0.542), hence has a fairly inelastic negative
degree correlation.

Figure 2-10 shows the betweenness versus nodal degree for JetBlue Airways 8/2007. Every point
is an airport, with coordinates its betweenness and degree in the network. Two airports stand out
- JFK (New York) and BOS (Boston). As seen in Figure 2-6 these are the two major hubs, routing
traffic to many spokes and other secondary hubs. So their high-betweenness is no surprise. In the
cluster of low-degree, low-betweenness airports (relatively) Orlando stands out (MCO) as one of the
bigger secondary hubs in JetBlue’s Florida operations. The disparity between JFK, BOS and the
rest matches the betweenness-degree relationship seen in the case of the BA graph in Figure 2-7.
This, together with JetBlue’s topology profile showing highest match to the BA graph, confirms
the emerging hypothesis that JetBlue operates a hub-spoke, highly centralized network.

Figure 2-10: Betweenness versus degree for all JetBlue airports of August 2007. JFK and BOS
stand out as both high-degree and high-betweenness. Orlando (MCO) emerges as a third important
hub. This profile is most similar to the BA profile on Figure 2-7, confirming the similarity to BA
graphs from the topology profile (Figure 3-23).

In this section, we showed the graph-theoretic statistics discussed in Chapter 1 can be used
to extract information about a network. We developed the concept of a topology profile, and
explicitly ordered a set of canonical topologies as a base of comparison for a real network. We
combined non-dimensional metrics, such as density, clustering coefficient, scaled degree correlation,
and normalized diameter to create a five-dimensional topology vector that can be used for general
comparison between graphs. These ideas were applied to the route network of JetBlue airlines of
August 2007.
In the final subsection we discussed the use of degree distributions combined with other measures
to study topology. Using the same example, we found that JetBlue has a highly-skewed power-law
degree distribution, with fairly inelastic degree correlation. This coupled with the betweenness
versus degree results of outstanding hubs, confirms that JetBlue’s routes have a BA-like topology,
with strong hubs and many spokes. Note that all of these conclusions were made without “looking”
at the network, so its size is irrelevant.
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The next section presents extensions on the graph similarity measure by Blondel et al [49] that
can be used to detect changes in topology.

2.2 Graph Similarity (Hubs/Authorities Comparison to Canoni-
cal Networks)

2.2.1 Graph similarity basics

So far we have discussed canonical topologies as reference topologies, but not actively compared
them to a real-world graph topology. Blondel et al [49] developed an algorithm based on Kleinberg’s
hubs and authorities method [50] which finds a set of good hubs and a set of good authorities
on a given web query. For example, if the query is ”university”, pages like MIT and Harvard’s
homepages are good authorities on the query, and pages that point to them are good hubs. In
general, good hubs point to good authorities, and good authorities are those that point to good
hubs. This separation is meaningful in annotated graphs (with associated node semantics) with
explicit directionality. Kleinberg proposes an iterative method that assigns hub scores and authority
scores using flow equations: {

hj ←
∑

i:(j,i)∈E ai

aj ←
∑

i:(i,j)∈E hi
(2.1)

Equation 2.1 can be written iteratively as

[
h
a

]
k+1

=

[
0 B

BT 0

] [
h
a

]
k

, k = 0, 1, . . ., where B

is the adjacency matrix of the graph. In compact form, this can be written as xk+1 = Mxk. The
matrix M is symmetric and non-negative. For hub and authority scoring only the relative scores
are interesting, therefore they are computed as the normalized vector sequence: z0 = x0 > 0,
zk+1 = Mzk

||Mzk||2 , k = 0, 1, . . .. This sequence does not always converge depending on the matrix
M and the initial vector, z0, the first of which is given and the second not obvious to pick. In
fact, usually the sequence oscillates between two limits. Blondel et al show that it is sufficient to
pick z0 = 1, which converges to the even limit at infinity, and is among all limits the one with the
largest 1-norm. This limit is the formal definition of the similarity matrix between two graphs. The
normalized vector equation above can be re-written in matrix form, as Xk+1 = BXkA

T + BT XkA,
,where A is the adjacency matrix of one graph, and B the adjacency matrix of the other. The
resulting similarity matrix X has a score at every entry (i, j) showing relatively how similar, nodes
i and j are, compared to other pairs of nodes.

2.2.2 Graph similarity measure assessment

While this metric was developed to aid search in a large hyperlink graph, we will discuss its relevance
to comparing topologies, with the hope that it can track almost continuously discrete changes in
topology and be able to place a real network topology in a neighborhood of canonical topologies.

First, imagine that the same network is monitored over time, i.e. nodes are compared to
themselves, but at different times. There may be addition of new nodes or new edges. We would
like a single number metric which:

• Is maximum when the graph is compared to itself.
• Changes little when small changes occur in the graph.

First, if we are comparing an instance of the same network, to track how it changes we are
interested in checking how the similarity of nodes to themselves changes over time, even if i does
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not remain most similar to i and so on. This is a different question from the one which nodes
are similar to which in two instances of the network or in two different networks. Note that the
similarity matrix only indicates how nodes in one graph match the nodes in the other, relatively,
but not how well they match. Given that higher entry value X(i, j) means better match relatively,
here we use this fact to assess 4-5 metrics derived from the similarity matrix.

i Sum of all entries: s =
∑

i,j X(i, j), i = 1 . . . n, j = 1 . . .m, where n is the number of nodes
in the first graph and m in the number of nodes in the second graph, and X is the similarity
matrix.

ii Maximum entry: max(max(X)) which is the maximum across rows and columns of the matrix
X.

iii Sum of the X entries corresponding to the best matching sequence of nodes from the
two graphs. This is not always the diagonal of the matrix, since nodes are not always ordered
by best matching sequence. The best matching sequence is found by consecutively identifying
the maximum (left) entry and matching the i→ j, for the given maximum value X(i, j).

iv Numerical experiments with these metrics showed that among the entries along the best diago-
nal, what gets preserved more than the total magnitude, is the profile of the sequence of entry
values. This is why we also suggest taking the sum of squares of differences of two con-
secutive diagonal profiles. Notice that this measure is useful only in tracking the topology
changes across multiple stages, rather than point comparison of two graphs.

To test the continuity and overall behavior of all these metrics, we experiment with two canonical
graphs: a preferential attachment graph and an Erdös-Rényi graph with initial size 100 nodes and
for the ER graph, p=0.2 (chosen because it results in a connected fairly sparse random graph,
which alleviates flow computations). A random edge is removed from the graph at every step and
the resulting graph is compared to the preceding instance until all edges are removed.

Figure 2-11 shows the results for the BA graph. In each case, each snapshot is compared to
the previous instance and to the original. The four metrics consistently show the same behavior -
stability until the topology breaks, and then noisy behavior. The sum of all entries (sum(X)) falls
consistently with every lost edge, while the sum of entries along the best ”diagonal” falls off only
when compared to the original graph.

The consecutive graph instances show stable diagonal sums, which is an indication of minute
changes in topology given small changes in the graph. The max entry metric increases as the
graph disintegrates, which does not make sense, because we expect high entry score to mean high
similarity. This indicates that the maximum entry is not a good metric to use. Out of the four
metrics, the sum of diagonals satisfies the two desired conditions above the best, because it reflects
small changes with small deviations and does show differences in topology in a continuous way.
Obviously, these are experimental conclusions, rather than rigorous, but will be useful in tracking
changes in topology in Chapter 4.
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Figure 2-11: BA graph, random edge removal at every step. The four metrics from this section, sum
of all entries of the similarity matrix (X), maximum entry, sum of the best diagonal (best matching
node sequence), and the Euclidean distance between the diagonals compared. Each metric is used
to compare consecutive graph snapshots as well as comparing every new graph to the original.
Direction of high similarity is shown by the arrows.

The figures above and the discussion show that the graph similarity ideas by Blondel et al [49]
can be used to track changes in topology. However, these metrics are not reliable in comparing
one topology to another. For example, a star and a circle (closed loop) are equivalent according
the similarity matrix and any of the four measures, and a square lattice is more similar to a tri-
angular lattice of the same size, rather than itself, though in the same order of magnitude. The
results show that the similarity measure really is about matching the flow conditions of different
nodes. For example, all lattices are very similar to each other and to random graphs, because
all nodes, either precisely, or on average, get equal flow through, so they are ”equal” in a sense.
The BA graph and the star/circle graphs stand out as not too similar to any of the other topologies.

Table 2.2.2 shows the numbers behind this discussion. The conclusion is that graph similarity,
as defined here, cannot be used to compare topologies, or determining the topology of a given graph,
singly, but can be used more effectively to track changes in topology over time, and potentially
major transitions.

79



Table 2.5: Comparing canonical topologies using the ”best-matching-sequence” diagonal sum mea-
sure of the similarity matrix. All graphs have 100 nodes. The graphs compared are star, binary
tree, tertiary tree, triangular, square, hexagonal lattice, BA graph, random modular graph and an
Erdös-Rényi graph.

star/cir bin tree ter tree tri lattice sq lattice hex lattice BA mod ER

star/cir 1
bin tree 0.7598 0.9964
ter tree 0.7525 0.9712 0.9438
tri lattice 0.9212 0.9055 0.8753 0.9997
sq lattice 0.9275 0.9031 0.8719 0.9994 0.9991
hex lattice 0.8066 0.9611 0.9166 0.9609 0.9578 1
BA 0.7851 0.849994 0.7948 0.9147 0.8816 0.9406 0.9848
mod 0.9885 0.8395 0.8258 0.9659 0.96996 0.8830 0.8512 1
ER 0.9784 0.8662 0.8508 0.9776 0.9805 0.9065 0.8671 0.9982 1

2.2.3 JetBlue 8/2007 graph similarity

Comparing the JetBlue 8/07 topology to canonical topologies does not give too much information,
as discussed in the previous section, because graph similarity does not give an absolute measure
of topology. Figure 2-12 shows a comparison of the same topologies, as in Table 2.2.2, with the
addition of JetBlue 8/07, a random graph with the same degree distribution as JB 8/07 and the
s-max graph with the JetBlue degree distribution. Overall, the JetBlue-related graphs are similar
to each other and more so the trees, than to lattices. Notice that these random graphs are derived
from the same degree distribution, which means that the degree distribution for the case of JetBlue
is such that it strongly determines flows in the network - and it is easy to identify similar nodes
based on their degree (hence the high similarity to degree-derived graphs).

Figure 2-12: Graph similarity score of JetBlue 8/2007 and the following canonical networks:
star/circle (0.7948), binary tree (0.9539), tertiary tree (0.9625), itself (0.9986), random graph with
the same degree distribution (0.9607), the s-max graph based on JetBlue’s degree sequence (0.9949),
triangular lattice (0.9024), square lattice (0.90199), hexagonal lattice (0.9196), BA graph (0.8827),
random modular graph (0.9526), and an Erdös-Rényi graph (0.9261), all generate with the same
characteristics (51 nodes, same density/degree sequence if relevant)

This conclusion has already been supported by our results showing an i/ inelastic degree corre-
lation, and ii/ betweenness-degree relationship with outstanding hubs.
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2.3 Modularity and Topology (JetBlue 8/07)

Modularizing a graph in this thesis means detecting or identifying subgraphs that can be classified as
modules or components. A module is a subgraph which is more cohesive internally than connected
to other modules, or in a probabilistic sense, has more links inside the modules than expected on
average [15]. Being modular is a quality that not all graphs have. Some cannot be divided into
well-defined components (ex: star). Studying modularity is a higher level of analysis than studying
graph statistics.

We will compare two algorithms in for the JetBlue 8/2007 route network - the Newman-Girvan
algorithm based on betweenness and the Newman eigenvector method, based on eigenvector com-
putation. There are improvements on the Newman-Girvan algorithms by Hsieh [37], but they are
not reviewed here.

2.3.1 Newman-Girvan: modularity using betweenness

Figure 2-13 shows the JetBlue network modularized by cutting high-betweenness edges, with 21
components (a lot of these are single nodes), because it turns out that at 21 the algorithm has the
highest Q metric (see Chapter 1). The first substructure the algorithm finds is the bi-partite-like
subgraph of connections between Florida and the Caribbean (marked with blue circles on the plot).
As it can be seen in Figure 2-13, the connectors are FLL (Fort Lauderdale), PBI (West Palm Beach)
and MCO (Orlando). The three airports connected directly to JFK and to the bi-partite component
are San Juan (SJU), Ponce (PSE) and Aguadilla (BQN), all in Puerto Rico. The secondary hub
component around BOS is well-formed, with fork airports, connected with both BOS and JFK and
with pure-BOS spokes, such as Hyannis and Martha’s Vineyard. The ”pure stars” around JFK
and BOS, i.e. the spokes that have no other connections but BOS or JFK, are split into single-
node components, which shows that the Newman-Girvan algorithm does not see stars as indivisible
components. This is because the algorithm splits the network along the highest-betweenness edges,
and all the spoke edges around the same hub have the same zero betweenness.
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Figure 2-13: Modularizing JetBlue 8/2007 using the Newman-Girvan algorithm: up to 21 compo-
nents, reflecting maximum Q value. The node locations are plotted using a spring energy algorithm.

The conclusion from the Newman-Girvan method is that the route network is composed of two
stars, (JFK and BOS-based), one tight-knit, bi-partite Florida-Caribbean module and an internal
well-cross connected module. The JFK-based star is not identified the algorithm, but we will
designate it as a component anyway. The internal module is labeled with squares on Figure 2-13,
and it involves Oakland (OAK), Long Beach (LGB), Salt Lake City (SLC), Las Vegas (LAS), San
Francisco (SFO), Dulles (IAD), San Diego (SAN) , Chicago (ORD) and Sacramento, CA (SMF).
The Florida-Caribbean module is based out of Orlando (MCO), Fort Lauderdale (FLL), West
Palm Beach (PBI), and is connected to New York state and Connecticut on one side (La Guardia,
Newburgh, CT (SWF) and Westchester County, NY (HPN)) and through Orlando to San Juan,
Puerto Rico (SJU), Aguadilla, PR (BQN), Ponce, PR (PSE).

2.3.2 The Newman eigenvector method

Results from the eigenvector method are similar to those of the Newman-Girvan algorithm, however
there are no problems with identifying the stars (Figure 2-14). The spokes around JFK are all
grouped into one component, so are most BOS-spokes. The Florida-Caribbean module is present,
though with some minor differences. FLL is outside of the Florida-Caribbean group. To explain
that better, one would have to look at the strength of the partitions, in particular the magnitude
of the corresponding eigenvalues. In the case of JetBlue 8/07 there are no weak splits, in any of
the five modularization steps. A weak split means that the entries of the eigenvector used to split
the network, are close to zero, not very negative or positive. The strong split is an indication of
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strong modularity, which could be quantified using the magnitudes of the eigenvector entries.

Figure 2-14: Newman eigenvector method modularization of JetBlue 8/2007.

For the JetBlue example, the Newman eigenvector method performs better because it identifies
the stars around hubs as components, while the Newman-Girvan algorithm does not. This is
natural, because spoke edges have zero betweenness.

2.4 Motifs - The Building Blocks

The motif search in this thesis applies only to unweighted connected graphs. Underlying patterns
where edge weights are part of the recurrent motifs can be very useful, but very computationally
intensive to find. Finding all possible motifs, as discussed in Chapter 1, is already combinatorially
very hard. In Chapter 1 we reviewed two pieces of work on motif finding - searching for a single
motif [5] and finding topologically generalized motifs [6]. In this work, we combine the above ap-
proaches with heuristics to find ”most” frequent subgraphs.

The motif finding routine begins with n (number of nodes) breadth first searches starting at
every node. Not every possibility is explored, but the BFS is performed with some degree of
randomness. Then a special search is performed for stars, loops and cliques. Finally, the subgraphs
found are tested for extensibility, i.e. used in search for topologically similar motifs, by copying
nodes in the same equivalence class (see Chapter 1). The steps in the motif search are summarized
below:

i Set a maximum motif size n (number of nodes).
ii Perform n Breadth-First-Searches starting from every node of the graph, with depth equal to

the maximum motif size.
iii Search for stars, loops and cliques of size 3 up to the maximum motif size.
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iv Search for generalizable motif structures based on the motifs so far, using the ideas from Kashtan
et al [6].

At every step the search is capped by a pre-defined motif size, for example for motifs only of
size 4,5 or 6 etc. Also, only motifs of size higher than or equal to 3 are considered, with the only
3-node (connected, undirected) motif being the triangle. A line of size three (a 3-node linear motif)
is not interesting because it is present by nature of connectivity in every connected graph (except
for a star). In terms of motif size, we found that the memory becomes insufficient above 9 nodes
(10+) on an Intel processor, Pentium 4CPU, 3.60 GHz machine with 2GB of RAM, so all analysis is
done with up to 9-node motifs (the maximum was mostly set to 6, and 7 for some smaller datasets).

Theoretically, motif size is important, and depending on the network size and growth patterns,
larger motifs would be very interesting to analyze. The most obvious example is the one of large
stars for hub-spoke topologies. There are star patterns in airline networks that have more than 9
nodes, and of course those should be identified as single patterns rather than a set of smaller stars,
that share the hub. It would be interesting to combine the motif idea with the idea of modularity.
If a system can arguably be modular, then recurring patterns should be sought within modules,
not across them. If that is true, that would limit the motif size, and alleviate the computation.
Reducing the problem to searching within modules has its caveats, for example, one might miss
out on key loop motifs that connect all or some modules in the entire network.

The set of motifs found has many copies and symmetries by virtue of the search procedure itself.
Graph copies and graph symmetries are eliminated to present a set of distilled unique motifs. Also,
due to the randomness in the BFS, the motif finding routine is repeated until no new motifs (by
symmetry) are found. The resulting motifs are still not necessarily significant, but simply occurring
in this particular graph. Occurrence or absence is a feature - for example, a tree will have no loops,
and that should be evident5. To probe significance, we test the occurrence of the set of unique
present motifs in an ensemble of random graphs built with the same number of nodes and same
degree sequence. Such an ensemble is often used as a null model to test statistical significance of
various metrics in random or real/constructed graphs. The larger the ensemble the statistically
better is the null model. The frequency of motif occurrence is compared in the real case to the null
model by computing a Z score as explained in Chapter 1.

Zi =
Nreali− < Nrandi >

std(Nrandi)
(2.2)

where Nreali is the number of instances of motif i in the real network, < Nrandi > is the ensemble
average of motif occurrences and std(Nrandi) is the standard deviation. If Z is very large, then the
number of occurrences in the actual network is much higher than the average in the ensemble of
random graphs and this means that the given motif is significant in occurrence (absence corresponds
to highly negative Z-score). Usually, a significance is declared if a Z score stands out in the
background of all Z scores. Most insignificant scores are < 0.1 as seen in Table 2.4. All the motifs
found for the JetBlue 8/07 route network are statistically more frequently occurring in the real
network than in random graphs with the same degree distribution.

5We do not perform analysis on missing motifs, but only on statistically less or more present than average.

84



Table 2.6: List of motifs with positive Z-score for the JetBlue 8/07 route network.
# Motif Z score Count Mean Std

1 0.104 15377 1807 391

2 0.292 139030 3886 1384

3 0.0914 231429 11619 7202

4 0.142 100927 2623 2079

5 0.119 320438 12060 7761

6 0.182 503677 14372 8037

7 0.0557 43551 4929 2076

8 0.199 7489 106 111

9 0.831 1029151 6923 3684

10 0.105 1307345 86675 34813

11 0.0842 347213 23520 11513

12 0.0500 396423 55689 20399

13 0.0711 900099 71097 34945

14 0.117 102660 3981 2524

15 0.176 7548 148 126

16 0.0693 236556 20146 9359
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Figure 2-15: Motif significance profile for JetBlue 8/07. There are 16 motifs with Z score > 0.05
(shown in Table 2.4). Our motif finding algorithm identified 105 occurring motifs. This figure
shows the statistical significance (Z-score - equation 2.2) of these motifs compared to a 100-random
graph ensemble with the same degree distribution. The highest significance motifs are labeled,
some with corresponding indices from Table 2.4.

Figure 2-15 and Table 2.4 show that the significant motifs fall into 2 classes: stars and bi-partite
subgraphs. Other motifs are equally present in random graphs with the same degree sequence.
Looking back at the route network of JetBlue 8/2007 on Figure 2-6, this is not a surprising result.
The prevalent features of the network are the two stars (spoke formations) around JFK and BOS,
and the bi-partite formation with the Florida equivalence class, FLL, MCO and PBI on one side
and the Puerto Rico, and New York state destinations as the other equivalence class. The analysis
in this chapter may not capture all the bi-partite subgraphs as motifs, because the motif size is
capped at 6 nodes. However the pattern is obvious.

2.5 Coarse-graining the JetBlue 8/2007 network

The coarse-graining algorithm applied here was reviewed in Section 1.3.3. In this section, we discuss
the process of coarse graining the JetBlue network and the lessons learned.

Since the star subgraph formations here are present with sizes much bigger than 6 nodes, we’ll
do a trick to coarse-grain the whole graph. At a rough approximation, if stars are considered a
statistically significant subgraph (in an extended topology, they represent the same subgraph), they
can all be ”collapsed”. This means that every star subgraph can be replaced with its hub node only.
This is a special trick that only works with types of subgraphs that by virtue do not overlap with
any other subgraph. Since their edges cannot also take part in other motifs, there is no optimization
involved in selecting a ”good” subset of motifs for coarse-graining. Figure 2-16 shows the resulting
JetBlue network after collapsing all star motifs. Now the emerging patterns are even clearer. BOS
and JFK are the equivalence class of a large bi-partite network, with BUF, PIT, SFO, ORD, SEA,
SJC, DEN etc in the other equivalence class. This giant bi-partite graph is connected to the 6-node
bi-partite graph of the Florida-Puerto Rico pattern. The two bi-partite subgraphs are connected
with a few intermediate airports: EWR, TPA, RSW, PSE, SYR and BQN. There are a few shared
nodes, such as IAD and LGB, with Long Beach probably starting off as a major hub like BOS and
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JFK but becoming eventually more peripheral, as the network gets more weight on the East Coast.

Figure 2-16: Collapsing all stars from the JetBlue 8/2007 topology emphasizes the bi-partite sub-
graphs. Major bi-partite subgraphs are circled.

The active motifs fed into the coarse-graining algorithm for the JetBlue example are the two
classes found in Section 2.4, stars and bi-partite graphs. The solution contains a set of bi-partite
and star graphs that cover part of the network. We already know what the solution should be, in
view of Figure 2-16. The coarse-grained network should look like 2 or 3 large (6-20)-node bipartite
graphs connected to each other in a circle with overlaid stars at the hubs. While this solution is
easy to picture, it is hard to represent with a coarse-grained network and much harder to deduce
just by looking at the result. For the sake of clarity, we show the motifs as found by the coarse
graining algorithm without collapsing them (i.e. one level of coarse-graining only).

The coarse-graining of JetBlue 8/2007 was performed in two steps. Instead of searching solutions
among all motif classes together, first all stars were collapsed (see Figure 2-16) and then the coarse-
graining was done with bi-partite graphs only, in the star-free network. The ”ideal” motif-finding
and coarse-graining would include all motif classes together but also would be able to search motifs
of any size, i.e. the 20-node stars around JFK and BOS would be easily identified. Actually, the two
approaches give different solutions, depending on how the simulated annealing energy is computed.
If number of CGU is maximized, the simulated annealing finds only stars and collapses them into
few nodes, such as JFK and BOS. If motif size is an objective (i.e. more edges in the bi-partite
subgraphs), then results are similar to what is shown in Figure 2-17.

By coarse-graining with all motifs, with motif size restricted at 5-6, we find that the solutions
include many small motifs that should be combined into one. Collapsing all stars and then searching
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for bi-partite graphs is a trick employed to help with this problem, but obviously may not be
generalizable.

Figure 2-17 shows the coarse-grained JetBlue 8/2007 network. In summary, the JetBlue network
is a connected core of bi-partite graphs with overlaid stars or spoke flights out of 3 or so hubs (a
hub here is loosely defined as evidently having many connections, such as JFK, BOS.

Figure 2-17: The coarse-grained JetBlue graph, showing motifs 4 (once), 6 (twice) and 8 (twice)
from Table 2.4, and the star motif around JFK

Overall, the coarse-graining analysis complements well the motif search. In the case of JetBlue
8/07, the motifs are easy to visualize, as they connect to form the bigger network. The hub and
spoke phenomenon is present with heavy hubs such as JFK and BOS, and lighter (peripheral) hubs,
such as FLL, IAD and MCO. However there are other patterns as well, such as the dual servicing
of airports, based at two major hubs, or what we called a bipartite motif. The example is the
JFK-BOS based dual servicing of PSE, SYR, BQN and SJU (motif 8).

In cases where the network is not easy to visualize either due to size or complexity, it is possible
that the coarse-graining will contribute more to uncovering the network topology and quantifying
the stability of the backbone topology over time. Something interesting to notice is that motifs
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found span the country geographically, and are not necessarily correlated with geographical dis-
tance. This is partly due to the fact that JetBlue has been flying regional jets only in the past two
years and has had a A320-fleet from inception. If we separate the network by aircraft type we find
that both the A320 and the Embraer 190 networks are based off of JFK and BOS and both feature
the basic star and bi-partite graph motifs (see Figure 2-18). So they are built on top of each other,
rather than composed separately. In fact, there are legs on which JetBlue flies both aircraft at the
same time. Thus aircraft type is not an apparent factor affecting network topology.

Figure 2-18: JetBlue 8/07 A320 network (left) and Embraer 190 network (right).

2.6 Conclusion and Discussion

In this chapter we discussed what network topology means and presented various ways to ana-
lyze it, using the JetBlue 8/07 route network as an example. Starting with statistical measures,
comparison to canonical networks, and degree distributions, we showed that JetBlue 8/07 can be
viewed as a hub and spoke network mathematically, from different angles. This was confirmed by
its skewed power-law degree distribution, inelastic degree correlation, and topological similarity to
a preferential attachment graph . In the later sections of the chapter, we looked into the topology
in finer detail, by searching for significant motifs and how they connect to form the backbone of the
route system. We found that the building blocks are more than hubs and spokes, but also bi-partite
subgraphs, or dual service patterns from major hubs, which maybe be considered redundant in a
pure hub-spoke (star) topology.

In summary, we showed that unraveling the structure of a complex network needs a multifaceted
point of view. There are some measures that give a very good sense of the global picture, such as the
s/smax metric and the topology profile, but ultimately, the motifs finding, coupled with modularity
and coarse-graining provide a more complete picture. What is missing from this discussion is how
the uncovered structures evolved. In Chapter 4 we plan to use the techniques described here to
analyze the topology of the airline dataset over time. Before that though, we look at the static
picture in Chapter 3 - what can the measures used in this chapter tell us about the topology of
major US airlines and slices of the industry in 2007.
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Chapter 3

Airline Networks

This chapter presents the first case study - US airline networks. The chapter discusses what can
be learned from graph-theoretic techniques about the topology of the airline routes. Trends in the
industry are reviewed as well as previous literature on using network theory in airline research.
We describe the data, and how to separate it into various sub-networks, by industry segment and
by airline. Our analysis section includes general statistics, discussion of graph-theoretical versus
industry metrics, then topological profiles of airlines, degree distributions and finally motif search
in down-selected networks. Results show that all single airlines analyzed have common statistics
and significant motifs, while the structure of Southwest Airlines is mathematically different.

3.1 Introduction

3.1.1 Trends in the airline industry

Studies of airline economics, route optimization or strategy, usually mention the Airline Deregula-
tion Act of 1978, after which airlines could decide their own routes, pricing and seating capacity
offered on destinations (Wojahn [18]).

Furthermore, studies (Wojahn [18], Hendricks [51]) claim that deregulation caused airlines to
transition to a hub-spoke structure, which translates to concentrating flight path structure and
seat capacity both in space (geographically) and in time (schedule-wise) at a few airports, called
hubs. Deregulation also brought on more competition, so fares also fell and quality of service for
the passenger greatly improved.

The “opposite” of the hub-spoke model is the point-to-point route structure, in which an airline
flies from all its origins to all its destinations directly. The canonical versions of these models are
a star and a complete graph. A point-to-point model is extreme and does not occur often, except
in some special cases, ex: Go!, a Hawaiian airline operated an almost complete (except for one leg)
graph route structure between the Hawaiian islands.

Though the hub-spoke model is claimed to be economically intuitive (Wojahn [18]) and math-
ematically sound (Hendricks [51]), hub-spoke airlines have not been largely profitable. And while
the route structure is probably not the sole reason (competition is a key factor), it is interesting
to note that the only profitable US airline (first quarter loss in 9/08) is Southwest, which operates
a notably non-hub-spoke route system. Results in this chapter show that Southwest’s structure is
not hub-spoke using various statistical measures. History shows that the airline industry operates
in an unstable sinusoidal-like profit-loss regime, as seen in Figure 3-1. It is evident that the cyclical
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Figure 3-1: US Airline Net profit since 1947, yearly. Plot from Hansman [10]. Additional study by
Sgouridis [11]

Figure 3-2: Passenger traffic and GDP in the US over time. Plot from Hansman [10].

nature of the industry was present before deregulation. Something else that history has proven is
that passenger traffic is positively correlated with GDP (Figure 3-2).

Speculation about what causes the cycle centers on the lag between aircraft orders and supply.
Airlines place orders for aircraft when they are profitable, but because of backlogs only receive the
planes 2-4 years later, after their upturn, which creates overcapacity and reinforces a downturn.
Also making predictions in terms of growing segments, both in the OD market and the passenger
types, can be extremely hard. A few concepts such as the Boeing Sonic Cruiser did not see
light. The toughest challenge by far nowadays has to do with congestion. The world is seeing a
combination of increasing traffic, growing market-active population, especially in Asia, and also
growing restrictions in terms of emissions and noise, environmental concerns, and finally increasing
fuel cost. All of these require active remodeling of the industry from lighter, greener aircraft, to
maybe novel route structures. Obviously, there are other operational and business concerns related
to crew management, maintenance, gate operations, and labor union relations. There are attempts
to develop a new system, or a new way to manage airline traffic over the United States - the
Next Generation Air Transportation System [52]. Given the current ”increasingly inefficient and
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Figure 3-3: Increasing traffic world-wide 1970-2008 (Hansman [10]).

operationally obsolete” [53] approach to management, several agencies are working on NextGen,
which is envisioned as a major redesign of the NAS management, with precision satellite navigation,
digital networked communications, integrated aviation weather system and more.

As mentioned one of the reasons for a re-design is the increasing traffic (Figure 3-3), causing
congestion and complexity in airport and runway operations.

Often problems in one airport propagate to the entire system and cause delays, stranded pas-
sengers and sky-rocketing costs for airlines holding aircraft on the ground or in the air accumulating
delays. The JetBlue snowstorm havoc at JFK on February 18, 2007 propagated through the entire
system, as crews could not get to their next rotation and resulted in the cancelation of hundreds of
flights. Airlines have tried to deal with these issues by trying to match supply (seats, aircraft and
scheduling) better to the market demand. This has resulted in smaller-size, more centralized net-
works, carrying more passengers in recent years. There has been a trend towards smaller aircraft,
which keep delays, prices and also demand high. Authorities have tried to deal with congestion by
imposing slot restrictions at airports to constrain the scheduling behavior of airlines by capping the
total number of operations that can be performed at the airport. Finally, a system-wide effect of
congestion and increasing traffic has been the emergence of secondary airports (Figure 3-4)[48][12].

The issues that the industry has to solve to operate in solvency are interesting to this research,
because as traffic increases, the network grows, but it also restructures to deal with congestion and
capacity constraints.

3.1.2 The hub-spoke phenomenon

After the deregulation act of 1978 it is assumed that the airline industry has transitioned from
a point-to-point model to a hub-spoke model [18]. A pure point-to-point network corresponds to
a complete graph, i.e. there is a direct flight between any two points in the network. A pure
hub-spoke model is essentially a star, where every route has two hops, going through only one
intermediate airport, the only one that is one connection away from everywhere else. Surprisingly
both pure structures have occurred. There are point-to-point airline route structures in Hawaii
for example, where distances between islands are small enough and there is enough demand that
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Figure 3-4: Emergence of secondary airports (Bonnefoy [12]).

a point to point network makes sense, for a small number of destinations (order of 5 airports, ex:
Mesa Airlines in 2006). Star networks are more common, and often mark the beginnings of an
airline (ex: JetBlue).

The explanation for the shift to hub-spoke operations is savings due to economies of density
and economies of scale. Economies of scale come from the fact that offering more seats per route
(with higher capacity aircraft) drops the cost per seat, hence is cheaper to operate overall, given
steady demand. If the passenger demand stays high because of the frequency of service, despite
the inconvenience of flying non-direct - that is the reason for economies of density and makes the
hub-spoke model worth it. For the airline, if flight frequencies are high, the cost of flight is lower,
and the demand is still high. Economies of scale also figure in expansion. Presence in certain not
so profitable markets can be beneficial because of the network effect of connecting these regions to
more profitable OD markets where most of the revenue is made. Presence is often one of the key
factors stimulating the market. Overall, hub and spoke configuration allows you to reach many
more markets with the same number of seats.

With these considerations justifying the shift to hub-spoke structures, it increasingly important
to understand why they are not solely enough to make airlines profitable, why the few airlines
making profit (aka Southwest) are not hub-spoke, and how this model can perform under rising
traffic and increasing congestion, as people fly more and more. Even though, recent fuel price rise
indicated that the higher cost of travel may put a natural damping on this problem, the actual
statistics show that air traffic is growing world-wide (Figure 3-3).

3.1.3 Literature on airline networks

There is a wealth of literature on airline networks, route structure and its evolution, and from all
different angle of the problem. We review a set of papers that discuss network theory techniques,
air transportation management ideas and econometrics.
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“Pure network theory” studies

Guimera et al [17] study the global airport structure from the point of view of node centrality,
and community structure. The authors consider the world-wide airport network, taking one year
worth’s data (OAG) and represent it as an almost symmetrical graph (adjacency matrix). They
find that the path lengths are small for the size of the graph, so it is a small-world. The degree dis-
tributions and betweenness distributions are power-law. Also, they plot degree versus betweenness
and find that connected (by degree) airports are not necessarily the most central (by betweenness)
airports. The prevalent example is Anchorage, which is a local hub in Alaska, but not a global hub.
As an almost single port of entry to Alaska, ANC is the connection to all Alaskan airports, and as
such, has high betweenness. The authors also use a simulated annealing routine to find network
modules (subgraphs that are more connected within than to other modules), and discover that the
network modules found coincide with geopolitical regions. This finding, as well as the distinction
between highly connected and highly central nodes, inspires them to classify airports according to
their ”role” in the network - global hubs, connectors, regional hubs, peripheral airports and ultra-
peripheral airports. These ideas are the ground work for their Nature Physics paper in Jan 2007 [16].

In Guimera et al [16] the premise of the authors is that within-module properties of systems rep-
resented as networks are different from global properties. Using a simulated annealing algorithm,
they identify modules in various networks in biology, air transportation and communications (the
Internet). They define node roles based on nodal connectivity within the modules and across mod-
ules. For example, nodes that are well-connected across the board, are global hubs; nodes that
are connected only well within their neighborhood are provincial hubs. Finally they look at the
connectivity profile for a network between different nodes of roles classes (hubs to hubs, peripheral
to ultraperipheral etc) estimated against a random background. The random background is usually
an ensemble of random graphs created with the same global properties. So if certain connection
types stand out, that is a signature of that particular network. The authors single out two classes
of networks based on this connectivity profile, and based on their examples from air transportation,
the Internet, metabolic and protein interaction networks. Air transportation and metabolism net-
works tend to form ”hub oligarchies”, which means dense interconnectedness between large hubs
(across and within modules) and lack or poor connectivity among hubs of lower rank, and among
nodes of lower degree overall (these tend to connect to their closest local hub). The other type of
networks look more like connected strings of stars, in which the hub-to-hub connectivity is lower,
except for inter-module connectors. The former type of hub oligarchy has also been found in an-
other study of Chinese airline networks [54].

Another “pure network theory” study is by [55]. The idea in this paper is the ”hidden” inher-
ent metric space behind a network. They assume that every network has a hidden connectivity
or closeness, not apparent in the observable connectivity, which nodes are ”aware of” when they
route information or energy. The efficient routing of information is termed ”navigability” and is
measured in number of hops. The authors claim that these hidden metric spaces are an underlying
link between function and structure of networks. They analyze navigability for a special class of
networks they construct against degree distribution exponent and clustering. The degree distribu-
tion exponent is used to measure the number of large hubs in the network, whereas the clustering
is tied to the hidden closeness of nodes. The special class of constructed networks is ”small-world,
scale-free, and with strong clustering” and is created using a modified preferential attachment rou-
tine, in which the preference depends both on nodal degree and on ”hidden” distance. The authors
claim that for airport networks the underlying metric space is Euclidean distance or geographic
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closeness. This claim can be challenged, because it is not likely that small or large airports that
are very close geographically will be connected. Flying in extremely small distances is not efficient,
and is replaced by alternative transportation modes (car, train etc). On the other hand hubs do
tend to connect to each other which justifies the other part of the idea. But again, when hubs are
geographically very close, they will not be connected, ex: NYC airports. The final point of the
paper is that routing happens in a zoom-out/zoom-in fashion as a route starting at small airport
connects to progressively bigger hubs, and when in close proximity starts to zoom-in to smaller air-
ports to reach another small destination. This is extended to Internet routing for example, without
examination of the network, and without discussion of the BGP protocol.

Air transportation management studies

Lee and Kornfeld [56] examine the optimality of the hub-spoke network from the point of view
of cost, demand and supply in terms of aircraft types. Using CPLEX they analyze a very small
number of airports (7 cities) for a FEDEX cargo delivery example and find that the optimal net-
work type varies from point-to-point to hub-spoke depending on aircraft types, distances between
airports, and cargo demand. In some cases, a point-to-point network will be preferable. This result
may not be scalable with increasing number of airports, as direct flights on the order of n2 for large
n are impractical.

Bonnefoy [12] studies scaling mechanisms by which the airline industry has met growing de-
mand in the past and is expected to do so in the future. He shows that the National Airspace
System is not scale-free from the point of view of network theory, due to capacity constraints at
major airports. The system has evolved to grow via multi-airport systems in metropolitan areas
and if those are modeled as aggregated nodes, the entire systems does become scale-free (by mea-
sure of degree distribution). He performs in-depth case studies of various multi-airport systems and
studies how they develop to provide recommendations for future airport infrastructure management.

Wojahn [18] studies the airline industry as a whole, discussing carrier statistics around the world.
He uses ”measures of network structure” to describe transformations in the industry, and finds that
more and more, airlines adopt a hub-spoke model. The author analyzes the hub-spoke model versus
the point-to-point model using cost and profit equations as a function of influence of travel time,
flight frequency. He finds that the hub-spoke model is optimal if the passengers’ valuation on flight
frequency is high and of travel time is low. The number of hubs is also considered - where the result
is that if congestion and slot restrictions are in place, a multi-hub network is more profitable for he
airline, compared to a single-hub network or a point-to-point network. Finally, Wojahn creates an
asymmetric demand model, to reflect the fact that cities have different characteristics and different
demand for travel. With the assumption in the model that spokes are connected to a single-hub
and that hubs are fully connected, he finds that the cost-maximizing structure is a mixture of a
point-to-point and single-hub networks.

Econometric models

Burghouwt’s work [57] focuses on applying the Gini index to study airline configurations. The
authors claim that the effect of deregulation will be different in Europe than the one observed in
the United States and propose to use the Gini index to investigate how “centralized” an airline is,
where n is the number of airports and yi is the seats offered at airport i. They use the Network
Concentration (NC) index which is the normalized Gini index divided by the maximum possible
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Gini index (NC = G/Gmax), which is Gmax = 1 − 2/n, and corresponds to a single-hub network
in which traffic is concentrated along one hub-spoke route only. The authors use the NC to ana-
lyze European airlines in the period 1990-1999, with discussion on European airspace regulation,
and airline division into national carriers, regional airlines and low-cost airlines and the differences
between them. Given the results, they separate airlines into four loose categories depending on
whether they grow or decline in size and whether they increase their concentration or not. The
categories are concentrated network builders (increasing concentration and size), deconcentrated
network builders (decreasing concentration and increasing size), concentrated network rationalizers
and deconcentrated network rationalizers (both size and concentration decreasing). The classifica-
tion shows great diversity among airlines, and that low-cost carriers tend to decentralize more over
time, because with lower fixed cost of a single flight, they can afford to fly more direct routes.

Real-world engineering systems are inevitably tied to economics because they operate under
cost and schedule constraints and are built to deliver some function. Bhadra et al [58] present an
example of an economic model of network growth in attempt to analyze the evolving US air traffic.
They concentrate on modeling original-destination pairs (OD pairs) of airports and the demand for
travel along those segments based on 10% of itineraries released data. They find that passengers,
weighted average fare, average distance and types of air carriers empirically determine the itinerary
choices. Notice that this is a different angle on growth - from the demand side, rather than from
the airlines supply side.

The dependent factors listed above are chosen initially with the assumption that a binary choice
of one itinerary over another will be linearly dependent on each factor (or a vector of such variables)
- Zi = α+βXi. A probability distribution function is described as: Pi = F (α+βXi) = P (Zi). They
use a logistic distribution probability composed of these parameters to the describe the probability
of binary choice. They use the data to estimate parameters in a regression by maximizing the
likelihood of certain itinerary choices and find that all initial factors considered have an effect in
itinerary choices.

3.1.4 Dynamics drivers in the airline industry

As for any real system operating in an uncertain environment, it is hard to enumerate all the fac-
tors influencing the airline industry. Following is a list of the major ones, in view of the analysis
performed later in the following sections.

Size of origin-destination market (number of stations/airports): Size is a critical factor in
complexity of operations for an airline or any networked system. While topology has to be assessed
independent of size, due to the physical limitations imposed by size, in the airline industry, the
topology is influenced by size, as constraints or economies of scale take effect. Size in the airline
industry can be measured in terms of OD pairs served, total number of seats offered, total number
of passengers carried or total number of departures.

Historical background of the carrier and its network (strategic airline management):
History, strategy, character and company philosophy are part of any business. For the airlines the
company character not only plays in with the operations, but also the labor relations and passenger
market attraction pool. For example, entertainment and leg room are JetBlue’s selling points, and
go along with the marketing line of ”jetting” versus ”flying”.

Intercontinental/continental orientation: Not all US carriers fly internationally. In the
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US international markets are carefully sliced. Continental has more of South America, United has
the Japanese market, American more presence in Europe. We will not analyze route structure
outside of the US, so this is outside of the scope of this thesis.

Fleet composition: The fleet plays a huge role in operations, stage lengths, expansion strat-
egy, maintenance scheduling, pilot and crew training. Low-cost carriers tend to carry few types
of aircraft to simplify their operations (ex: Southwest still flies only 737s, which are great for its
overall mid-range flight legs). Choosing aircraft size can be traded with increasing flight frequency,
which has an effect on networks. For example, using smaller aircraft more often on a popular route
makes the load factor appear higher given the same demand. This is compared to using bigger
aircraft less frequently (fewer flights per day). Figure 3-5 shows the trends of decreasing aircraft
size since 1990. Also, consistent use of similar aircraft can decrease training costs and improve pilot
flexibility. These effects in turn may limit the impact of disruptions due to congestion and weather
delays.

Figure 3-5: Trends in aircraft size, average number of seats per departure, 1990-2007. Figure from
Hansman [10].

Hub capacity: Hubs are strategic in how an airline positions itself across the country. In the
US, with the coast-to-coast travel demand, the ideal airline hub is a city like Chicago, which is
closer to the middle, has its own high demand travel market and can be used to stage flights in
waves. The wave model means that hub are fed from one coast at a certain hour, so within 1 hour,
or 1.5 hours, the connections for the other coast can leave and arrive by evening/afternoon.

Average stage length: Stage length plays a role in network structure because it is tied with
aircraft type (range) and can be dependent on a completely different market segment. Range is
only a factor when it comes to regional jets and turboprops, because in the US the distances are
small enough that a narrow-body jet will fly the same stage length as a wide-body jet. That said,
it is unlikely that a 777 will be used for a BOS-JFK flight, and the demand economics will still be
different. The JFK-LAX passenger pool is very different from the pool on a local flight in Florida
or a flight from Salt Lake City to Seattle, for example. Airlines are well aware of this, which is why
the route structure looks very different at different stage lengths (for example, all flights under 500
mi versus all flights above 1000 mi). This is also related to fleet composition (See Figure 3-6).
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Figure 3-6: The airline networks by aircraft type from Bonnefoy [12].

3.2 Airline Data

3.2.1 Data source and slicing

The airline dataset in this thesis is publicly available by the US Bureau of Transportation Statistics
[1], which collects statistical data for all transportation systems in the United States. US airlines
are required to report monthly flight data, including origin-destination, seats offered, number of
passengers, cargo in pounds, minutes in the air and leg distance in miles. They also report costs,
broken into operational, labor and capital. A tenth of passenger fare/itinerary is also reported,
which gives sense of market demand. The BTS statistics site contains various databases starting
around 1990. A sample of the data is included in the Appendix, in Table A.3. In this thesis, we
focus on the supply side, and analyze what the airlines put out in the market, in terms of flight
frequency, OD (origin-destination) information, and seat capacity.

Given the different drivers in the airline industry and the richness of this dataset, understanding
the topology of the entire industry, as opposed to of an individual airline, requires slicing the data
carefully. As discussed earlier, major drivers in the industry are the size of the OD market, the
historical background of the carrier, the size of its current operations, its fleet composition, inter-
continental/continental orientation, the hub capacity which constrains its operations, the average
stage length and of course, the strategic management of the airline. All of these factors account for
different dynamics on different scales. And these would not necessarily be obvious in an aggregate
analysis.

We address these questions by splitting the dataset and analyzing it separately, in 4 slices. We
use the sliced networks as separate networks in our analysis. In particular, we will analyze some
individual airlines, as well as aggregate networks, such as the wide-body jet network, and the airline
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network of top 50% most frequent flights, by departures and by seat capacity.

Here we present four ways to split the industry by drivers, aircraft types, stage length, top
percentage of flights in departure frequency and in seat capacity.

i Slice by aircraft type. In these networks the routes appear as edges only if they are flown
by a certain type of aircraft, nodes are airports. For example, the right-most plot in Figure 3-7
shows only wide-body jet routes in the continental US. Other types plotted are regional jets
and turbo-prop (left) and narrow body jets (middle).

Figure 3-7: US airline data slices by aircraft type: regional jets and turboprops (left), narrow-body
aircraft (middle) and wide-body aircraft (right).

ii Split by distance flown. The left plot in Figure 3-8 shows only flights under 500 miles,
and right, flights longer than 1000 miles, nodes are airports. The left-most plot shows two
disconnected components, because Alaska appears split from the continental US.

Figure 3-8: US airlines dataset sliced by distance: (left) all flights under 500 miles, and (right) all
flights above 1000 miles.

iii Split by flight frequency in terms of number of departures. A leg/edge appears if its fre-
quency is within x% of the most frequent leg, where x is 80%, 60%, 40% and 20%. So the
right-bottom plot in Figure 3-9 shows only the top 20% of flights in the US, by number of
departures.
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Figure 3-9: Slicing data (all US airlines) by departure frequency - top x flights for the entire period
1/1990-8/2007: top 80, top 60, top 40 and top 20 most frequent flights.

iv Split by seat capacity. This is the same as above, but the number of departures is replaced
by seat capacity.
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Figure 3-10: Slices by seat capacity offered (all US airlines): top 80, top 60, top 40 and top 20. A
flight leg is in top x% if is has at least x/100 fraction of the seat capacity of the busiest flight in
the network.

Aircraft type classification, referenced from US BTS data [1], is presented in Table 3.2.1. Using
this classification, all jets are classes 6,7 and 8, for example. Types 0, 1, 2, and 3 are not considered
at all in this analysis.

Table 3.1: Aircraft Types according to BTS [1] classification.
0: Piston, 1-Engine/Combined Single Engine (Piston/Turbine)
1: Piston, 2-Engine
2: Piston, 3-Engine/4-Engine
3: Helicopter/Stol
4: Turbo-Prop, 1-Engine/2-Engine
5: Turbo-Prop, 4-Engine
6: Jet, 2-Engine
7: Jet, 3-Engine
8: Jet, 4-Engine/6-Engine
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3.2.2 Down-selection of the data slices

The entire airline dataset is difficult to analyze not only because of its size (817 airports in 8/2007
and 5703 legs served) but also because of complexity in terms of factors driving its dynamics. The
slicing in the previous section separates the data into segments by ”industry driver”, such as fleet
composition and market demand for seats on certain destination pairs. Of these slices we pick the
top 50 flight frequency and top 50 seat capacity routes, composed over time. This means that a
flight leg is in the top 50 if its share is within 50% of the month’s maximum during at least one
month between 1990 and 2007. We also pick the wide body jet network, i.e. routes flown only
by wide-body jets - because these present a separate ”long-distance” passenger slice of the system.
These three slices are chosen for in-depth analysis such as motif search and topology evolution.
However, we will still draw examples from the entire industry or other slices if they are useful in
our analysis.

All data slices that appear in tables and plots in Section 3.3.1 are shown in Table A.5.

Of the airlines, we will use the analysis of JetBlue Airways, done as example in Chapter 2,
Southwest Airlines, as an outlier in the industry and Continental Airlines, as legacy carrier repre-
sentative. Continental was chosen among the large carriers because its bankruptcy happened early
in the dataset history (early 90s) and it has had steady network operations over the years com-
pared to the other legacy carriers. The other major carriers (American, Delta, United, Northwest,
US Airways, Alaska, America West) and some low-cost carriers (ATA, Spirit, Frontier, USA3000)
appear in our overall discussion of statistics in the industry, in Section 3.3.1.

For the purposes of statistical analysis, all data slices and single airlines are shown, while the
down-selected group is used for in-depth analysis, i.e. degree distribution plots and motif search.

3.3 Topology Measures

In this section, we begin with statistical measures for topology and discuss size/traffic industry
measures such as number of departures and passengers carried, then industry-related hub measures
and finally the graph theoretical measures such as diameter and degree correlation. These are
calculated and discussed across the entire airline industry. We then move on to more in-depth
analysis of the slices and airlines selected in the previous section. These networks (JetBlue, South-
west, Continental, the wide body jets, the top 50 seats capacity and departure frequency flights)
are analyzed in terns of their topology profile, degree distributions and significant motifs.

3.3.1 Statistical indicators for topology

Traffic-related, industry-related size metrics

Number of departing flights

Figure 3-11 shows total number of departures against number of airports for a slice of the airline
dataset. Individual airlines are in the down left corner, flying to less than 200 destinations and with
less than 10000 departures. A linear mid-trend appears, with linear growth in departures as airport
destinations grow. There are two outlier groups: the top 20, 40 and 50 routes which exclusively
serve very few airports, but with extremely high frequency, hence they are in the upper left corner;
and small aircraft networks, with under 100 seats, these flights occur between many small to many
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other small airports across the country, but they don’t carry many passengers and are infrequent,
hence they are in the lower-center and lower-right part of the plot. These slices of the airline
network are likely to have longer path lengths, and positive or zero degree correlation, because
they are more spread out both geographically and in terms of nodal degree. An interesting point
are the regional jets, low-center, right on the red line, with just above 200 airports and fewer than
expected departures. Also, the entire airline industry (ALL 1/90,8/07) has doubled in destinations
and grown almost 50% in departures.

Figure 3-11: Total number of departures plotted against number of airports for all data slices of
the entire airline dataset. Statistics are for January 1990 and August 2007 for almost all slices.
Full nomenclature of data slices is given in Table A.5.

If we zoom into the individual airlines from the previous plot, we have Figure 3-14. Three
groups emerge among the airlines - the ”low-cost” carriers, Alaska, America West, Southwest 1/90
and JetBlue (and US Airways 8/07 severely downsized), the legacy carriers in 1990, and the legacy
carriers in 2007 (United, Delta, American, Northwest and Continental). Southwest 8/07 is the
outlier - with more departures than any other airline, and flying to a mid-range number of des-
tinations. This means a higher-density network than any of the others. If Southwest packs more
departures into its schedule monthly, that means that there are many more flights daily. A denser
network with a higher number of OD pairs is one explanation - confirmed by the results in Fig-
ure 3-16 which plots edge to node ratio for all airlines. But another factor driving the departures is
performing many departures of a single aircraft on many short-haul (1.5-2 hours) trip per day. The
Southwest timetable gives some evidence of that. The frequent short haul flights indicate strong
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local connectivity - a fact that we will use to suggest a model for Southwest’s expansion since 1990.

Figure 3-12: Total number of departures versus number of airports, for individual airlines only.
Three groups of data points emerge: low-cost carriers, legacy carriers in 1990, in 2007, and South-
west Airlines is an outlier.

Total number of seats and seat-miles offered

Total number of seats offered is related to the number of departures, but not linearly since
a departure can be performed by many different types of aircraft. In the case of Southwest for
example, this is the same measure, just scaled, since the airline only flies 737s. Figure 3-15 shows
the total number of seats and largely resembles the departures plot. It is interesting that the top 40
and top 50 flights by seat capacity (for all 1990-2007) by far outweigh the entire industry in 8/07.
Also, wide body jets are barely present in this plot, and regional jets are dwarfed by narrow-body
jet flights. Wide-body jets in US airline fleets are mostly used for international flights, and some
coast-to-coast flights (757, 777). Narrow-body jets dominate the airspace, especially with airlines
such as Southwest flying only 737s and dominating the industry by capacity.

Zooming on the airlines seats offered only, the same picture as with the departures emerges.
Southwest Airlines is the major supplier in the industry and the fastest growing airline. Alaska
Airlines also sees growth, but on much smaller scale. US Airways downsizes the most of all, and
a month after the 8/07 data point it actually merges with America West. These events are not
considered as they occur after the dates analyzed. The seat-mile picture is the same as the total
seats and total departures, except that American Airlines outflies Southwest in mileage (Figure 3-
13).
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Figure 3-13: Total seat-miles for single airlines only.

The story of departures, seats and seat-miles is almost the same - for all airlines, expect for
Southwest and Alaska, the number of departures per month, number of seats offered and seat-miles
per month has decreased (in some cases drastically). Only Southwest and Alaska have grown from
1/90 to 8/07. Alaska (as well as America West) is somewhat special and while in the top 10, they
differ from the top 6 network carriers. Alaska is thought to have lower costs than most network
carriers and has a niche advantage with its strong position in the Pacific Northwest and West Coast
market.

Regarding size from an industry perspective then, the industry has definitely downsized, for the
sake of efficiency, profitability or dealing with bankruptcy.

Passenger enplanements
Passenger enplanements are the total number of passengers boarded a given airline/flight or fleet
for a given time period. In this case, these are the total number of passengers flown for the data
slices we analyze, for 1/1990 and 8/2007.

According to the numbers on Figure 3-14, most passengers travel on jets and fly more than 500
miles. Despite the downsizing seen in large carriers, even short haul (< 500 miles) flight passengers
in 2007 are more than the long haul passengers in 1990. More people are flying, and the airlines
seem to be getting more efficient at carrying the higher load factor. The zoomed plot of airlines
only is shown in Figure 3-15. The same patterns as with the number of departures and seats offered
are seen, except that the legacy carriers in 2007 are carrying more passengers, even though they
are flying less.
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Figure 3-14: Total number of passengers carried versus number of airports. 1/1990 and 8/2007, all
data slices.

Figure 3-15: Passengers carried on US airlines - in 1990 and in 2007.

Graph-theoretic statistical metrics

Size and density
The metrics discussed here are number of nodes (airports), number of edges, edge to node ratio,
average path length, diameter, and s-max metric.
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There is almost a linear-like relationship between number of nodes and number of edges (see
Figure 3-16). A node here is an airport, and an edge connects a pair of airports, if there is a flight
between them. Figure 3-16 shows that there is linear-like growth in density in airline networks.
For the entire dataset, we measured an edge to node ratio of 6.6 while for the single airlines only
the edge to node ratio is 3.8 (zoomed plot on Figure 3-17). If we look at the airlines only, we see
the same separation in low-cost, and legacy airlines in 1990 and 2007, with Southwest Airlines, as
the inevitable outlier.

Figure 3-16: Number of edges (OD pairs served) versus number of nodes for all data slices. Text
on figure is omitted for clarity. Zoomed plot shows single airline data points only.

Southwest is most dense network by far, which is the first hint that Southwest is different in
topology. Even though those are not marked on Figure 3-16, the jet and long haul slices are most
dense among the industry. Most airlines have m/n < 5 which is quite sparse.
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Figure 3-17: Edge to node ratio for all major airlines including JetBlue and Southwest as low-cost
representatives.

S-max metric
As a reminder, the s-max metric is the s-metric of the graph, divided by the s-metric of the
corresponding s-max graph. The s-metric is the sum of products of degrees across all edges of the
graph (see equation 1.4). Plotting the s-max metric (degree of ”scale-freeness”) for the airlines
only shows the same pattern of low-cost, and 1990/2007 legacy separation, as seen before. It is
interesting that the legacy airlines, with downsizing are carrying more passengers and becoming
more scale-free. That means that more hubs are connected to hubs, rather than solely to spokes.
Also, US Airways and America West in 8/07 lead in the s-max scale, right before merging officially
a month later.
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Figure 3-18: S-max for single airlines only.

Also, surprisingly, Southwest does not stand out here. It is not the most decentralized, but
hanging mid-way. Alaska, as well as most airlines in 1/90 tend to have less scale-free networks. In
terms of the scale of ”scale-freeness”, the s-metric tends to vary between 0.5,0.6-0.9 overall. In this
range, anything above 0.8, and especially 0.9 can be considered ”close” to its s-max configuration.
A purely random graph (ER, p=0.5) will have s/smax of about 0.5, so for airlines, which are very
centralized and sparse networks, 0.8 should be average, and above that - scale-free. All the legacy
carriers in 2007 with s-max above 0.9 can be considered ”scale-free”.

Diameter and average path length
Since the diameter is a very discrete measure, and tends to be small across all airlines and data
slices, we also plotted the average path length, which is the average shortest path (in number of
hops) across all shortest paths between all destinations in the network1. The average shortest path,
called the average path length, is a more continuous measure of the span of the network. Figure
3-23 shows the average path length plotted versus network size. Most data points lie on a log-like
curve except for short haul and small aircraft slices. Because of their short physical range, these
networks are bound to have long path lengths and diameters. Above the curve are also top 20, 40
and 50 data slices. These are extremely small in number of airports, and very tree-like as graphs.
This is what explains their relative longer path lengths. The log(n) curve is not too surprising as
it has been shown that preferential attachment graphs (which are sparse) have a diameter which
scales as log(n)/log(log(n)) [59], and for types of general random graphs this has been shown in the
1980s [60].

1Note that shortest path in the graph-theoretical sense does not coincide with an itinerary an airline / agent will
put together based on the route network. However, given the few hubs and the sparsity of these networks, these will
often also be the same.
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Figure 3-19: Average path length versus number of nodes - all data slices. The average path length
versus size seems to follow a log-like curve. The high path length slices are all short-distance or
small-aircraft networks, so naturally, they do not have longer cross cutting flights which shorten
the path lengths. Examples are flights with less than 100 seats, or under 500 miles.

Figure 3-20: Airline diameters versus number of airports. All airlines have diameters between 3
and 5 - which is very small, and mostly unexpected for Southwest which does from a diameter of
4 to 3 from 1/1990 to 8/2007.

In terms of diameter, there are three values among single airlines - 3, 4 and 5. Diameter of
3 have JetBlue, America West 8/07, Southwest 8/07, Continental 8/07 and United Airlines 8/07.

111



The only two airlines with diameter of 5 are Northwest 8/07 and Continental 1/90. The conclusion
here is that as far as span goes, these networks do not vary much.

For all data slices diameter varies more - with really high values for the short-haul and small
aircraft networks. As explained earlier, due to the small local reach and lack of large network-wide
hubs, these will naturally have large span overall. The diameter across the entire airline dataset
for 1/90 is 6 and for 8/07 is 7.

So far we have found that size and traffic-related airline statistics and graph theoretical statistics
agree on separating airlines into three groups: low-cost carriers, legacy carriers of 1990 and legacy
carriers of 2007. Also most of them single out Southwest Airlines, which means that we expect
there to be general topology similarities among all airlines, closer similarities among low-cost carriers
versus legacy and, finally, Southwest is bound to be very different.

Industry-related hub metrics [18]

The ”hub” metrics presented here are concentration measures. They present various ways to com-
pute how centralized or concentrated the network is in space and in time. Wojahn [18] presents
some strict definitions of what properties concentration measures should have, such as anonymity
principle (invariance to relabeling) and scale independence. Here we will review briefly each con-
centration measure and show some correlations between measures and one interesting plot.

Hubbing indices are based on traffic share at an airport: si, is the share of traffic at airport i,
during a specified period of time, such that

∑
i si = 1 (the sum of all shares is one).

i m-airport concentration ratio Cm: the sum of traffic shares at the m biggest airports:
∑m

i si.
The number m is arbitrary, Wojahn [18] uses m=3. For example, for m=2, the top 2 JetBlue
airports by traffic share would be JFK and Boston.

ii McShan-Windle index M measures the percentage of traffic concentrated at the largest 3%
of airports: M(s) =

∑bmc
i=1 si + (m − bmc)sbmc+1, where m = 0.03n, and bmc is the largest

integer not greater than m. The added fraction ensures continuity in taking the top 3 percent.
iii Herfindahl index: The sum of squares of all traffic shares - H(s) =

∑n
i s2

i . This measure
does capture connectivity despite the sum over all nodes, because smaller fractions squared will
contribute less to the total sum, while big airports can dominate.

iv Generalized Entropy (more sensitive to variations in the lower tail distribution), for α=1 or
2. GE(s, α) = 1

α2−α
[ 1
n

∑n
i=1(nsi)α− 1]. This is another type of sum of fractions. Depending on

the alpha parameter, the sum can be made more or less sensitive to the difference scale fractions
in the distribution of traffic in the network.

v Gini index: G(s) = 1
2n

∑n
i=1

∑n
j=1 |si − sj |. The Gini index is normalized, as network concen-

tration (size factored out) by Burghouwt [57] by dividing by the maximum Gini index possibly
for a given number of airports Gmax(n) = 1 − 2/n. The Gini index is used in economics to
measure equality in income distribution. If all (traffic) shares are equal (imagine a pure point-
to-point network) then the Gini index is 0 and there is perfect equality. On the contrary, the
more skewed the distribution is, the higher the sum of all absolute differences will be, hence G
will be higher, signifying inequality, i.e. a more concentrated network.

vi Ratio between connecting passengers and total enplanements.

The last is probably the best practical measure of ”hubbyness”, but harder to calculate than the
rest. Only 10% of itineraries are published, so those can still be used to calculate the percentage
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of passengers flying direct versus non-direct.

The point of all the industry-related indices is to find out how centralized, spatially and in
time, the network is - how much operation does it concentrate in the hubs. It is interesting to see
whether the industry metrics correlate well with the s-metric, for example, and how well. Table 3.3.1
shows correlations between graph-theoretic measures (degree correlation, r, diameter, d, and smax

measure, s/smax) and the five concentration measures (NC is normalized from the Gini index).
The correlations are computed for measure vectors across the entire industry, single airlines and
data slices. The only stronger relationships to note are between smax and Cm and the Herfindahl
indices. Table 3.3.1 shows the same correlations but using only single airlines as data points. The
pattern is completely different, which signifies that these metrics measure different (though related)
aspects of the topology and cannot be analyzed in combination with each other.

Table 3.2: Correlation table of graph-theoretic ”hub” metrics and the industry-developed. All
airlines and data slices used for correlations.

Cm McShan-Windle Herfindahl Gen Entropy Gini NC
r -0.3628 0.0555 -0.3841 0.0763 -0.0316 -0.0616
d -0.4154 -0.0073 -0.3618 0.0764 -0.1310 -0.1496
s/smax 0.4249 -0.0778 0.4206 -0.0522 0.0309 0.0565

Table 3.3: Correlation table of graph-theoretic ”hub” metrics and the industry-developed. Only
single airline data points used for correlations.

Cm McShan-Windle Herfindahl Gen Entropy Gini NC
r -0.0865 -0.2289 -0.0324 -0.1912 -0.2145 -0.2068
d -0.0697 0.2580 -0.1340 0.0028 0.0471 0.0393
s/smax 0.0683 -0.0174 0.0350 0.1157 0.1526 0.1502

Figure 3-21 shows the C3 measure - traffic share in top 3 airports - plotted versus size (in number
of airports). There is an unmistakable trend of decreasing load on top airports with network size.
Of course, this is because the fractions are an inverse function of size. But it is clear that the larger
a network is, the less centralized it is. And this is the meaning of the plot - as an airline grows,
by the Cm measure, it becomes less centralized in its original largest traffic share (per day/month)
airports. This is due to airport capacity, but also network logistics becoming more fragile and
complex with single large hubs. These are also the reasons for secondary hub emergence.
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Figure 3-21: C3 (traffic share in top 3 airports) index versus number of airports. All data slices.

Figure 3-22 shows the same plot zoomed on the airlines only. Again, we see the 1990 and
2007 separation. As airlines downsized they concentrate traffic better. The low-cost carriers are
most concentrated, with the exception of Southwest - which at a low number of destinations still
distributes traffic more equally. On top is Alaska in 1/90, followed by JetBlue in 8/07.

Figure 3-22: Traffic share in top 3 airports versus number of airports for single airlines only.
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There are two main takeaways from the discussion of statistics in the airline industry, be it
traffic-related, graph-theoretical or industry concentration-indices. First, the legacy carrier part of
the industry does evolve together in all these measures. The separation of 1990 and 2007 of legacy
carriers is present on all plots. It is usually related to downsizing overall for the legacy carriers,
but also to carrying more passengers (on average) and becoming more concentrated (higher smax

and C3). This means that the legacy carriers are making efforts to restructure after bankruptcy,
by cutting routes and adding more flights to profitable destinations.

The other main point is the uniqueness of Southwest Airlines. With its explosive growth in
passengers carried since 1990 and its unusually decentralized network, Southwest is interesting to
watch and a must to analyze in more detail.

3.3.2 Topology profiles

The topology profile concept was described in Chapter 2, Section 2.1.2. The idea is to compare a
topology to a spectrum of canonical topologies by the Euclidean distance of their topology vectors.
The topology vector is composed of five non-dimensional metrics that describe different aspects
of the network topology: density, clustering coefficient, degree correlations, s-max metric and di-
ameter. In mathematical notation, v = [ 2m

n(n−1) , C, r+1
2 , s/smax, d

n−1 ], where n is the number of
nodes, m is the number of edges, C is the clustering coefficient, r is the degree correlation, smax

is the s metric of the smax graph, and d is the diameter. The comparison is done, as shown in
Chapter 2, Section 2.1.2, by calculating the Euclidean distance between the two topology vectors
corresponding to the two different graphs. A smaller value (closer to 0) means greater similarity.

The canonical networks (described in detail in Chapter 2, Section 2.1.1 are plotted on Figure 2-1
in the following order: line graph, circle graph, star, binary tree, tertiary tree, Newman-Gastner
graphs with α=0.1, 0.5, 0.9, preferential attachment graph (BA), s-max graph, hierarchical bi-
nary tree, hierarchical tertiary tree, Dodds-Watts-Sabel graph with varying parameters λ and ξ
((ε, ε), (∞, ε), (ε,∞), (∞,∞)), triangular, square and hexagonal lattices, a random graph with the
same degree distribution, a random graph with the same number of modules (as found by the New-
man eigenvector method) and an Erdös-Rényi graph. As explained in Chapter 2, each canonical
network is created with the same characteristics, density, degree distribution, etc.

Figures 3-23 through 3-28 show that all of these example airline networks differ largely from the
simplest graphs, lines, circles and pure stars, as well as from their most scale-free corresponding
graph. The profile analysis points to a few other patterns:

• JetBlue is closest to a preferential attachment type topology, next to pure and hierarchical
trees.

• The Southwest topology is closest to a hierarchical tertiary tree, to hierarchies with inter-
linking (all the Dodds-Watts-Sabel varieties) and to its corresponding random graphs. These
are very interesting results, that will tie with the motif analysis later. They indicate an overall
uniformity in the network (either regular or random) rather than a concentrated network or
a hub-spoke topology.

• Continental Airlines is closest to trees, binary and tertiary, both pure and hierarchical, as
well as to preferential attachment graphs. This is the perceived notion of a legacy carrier.

• Among the data slices, the story is the same for the wide body jets and the top 50 flights
by seat capacity. As in the case of Continental and JetBlue, these topologies are close to
preferential attachment graphs and trees, both binary and hierarchical. In the case of top
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seat capacity flights this is especially true because the network is very sparse, so very tree
like, and probably the preferential attachment mechanism is related to market demand at
large-population destinations.

• The case of top 50 flights by departures is different, because the graph is practically a
tree (with 3 extra edges that create loops), so this explains the profile similarity to a binary
tree and to hierarchies (because in the DWS graphs, there are not that many extra edges to
be added for interlinking).

Figure 3-23: JetBlue 8/07 topology profile, best match is a BA graph.

Figure 3-24: Southwest 8/07 topology profile, best match is a hierarchical tertiary tree graph.
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Figure 3-25: Continental 8/07 topology profile, best match is a hierarchical tertiary tree graph,
next BA graph.

Figure 3-26: Wide-body jets 8/07 topology profile, best match is a hierarchical tertiary tree graph.

Figure 3-27: Top 50 flights by departure topology profile, best match is a binary tree.
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Figure 3-28: Top 50 flights by seat capacity topology profile, best match is a BA graph.

To verify the observations from Figures 3-23 through 3-28, we correlated the profile vectors of
each pair of networks. The results are presented in Table 3.3.2. Clearly, the highest correlations
are between JetBlue 8/07, Continental 8/07, the wide body jets 8/07 and the top 50 flights by seat
capacity. Southwest 8/07 and the top 50 flights by departures stand out.

Table 3.4: Table of relative topology profile correlations. JetBlue, Continental, the wide body jets
and the top 50 flights by seat capacity tend to be the most similar.

JB 8/07 SW 8/07 CO 8/07 wide 8/07 dep top 50 seats top 50
JB 8/07 1 0.9572 0.9932 0.9876 0.9669 0.9847
SW 8/07 1 0.9746 0.9662 0.9621 0.9717
CO 8/07 1 0.9949 0.9769 0.9906
wide 8/07 1 0.9748 0.9897
dep top 50 1 0.9740
seats top 50 1

3.3.3 Degree distributions

Degree distributions are the distributions of nodal degree (total number of connections at a node).
They give a visual and mathematical (via slopes) sense of how concentrated, or uniform the network
is, based on the distribution. Higher degree for the airlines example means more connections at
an airport. Figure 3-29 shows the weighted cumulative degree distribution of all US airlines in
8/07. ”Weighted” means that instead of counting one leg (towards the degree of a node), all the
departures along that leg are counted. The figure shows that there are three regimes of airports.
Huge hubs, with the steepest slope (-2.7), mid-range large airports (with slope -0.7) and small
airports, with really slow growth in departures (slope -0.15). The large airports corresponding to
these points are: JFK New York, Atlanta, Chicago, Philadelphia, Denver, Charlotte, Los Angeles,
San Francisco, Boston, Orlando, Salt Lake City, Seattle, Las Vegas, Phoenix, La Guardia, Detroit,
Houston, Dallas, Minneapolis, and Covington, KY.
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Figure 3-29: All airlines 8/07 weighted degree distribution. The weights are number of departures
from a node. Top airports (steepest slope) are JFK New York, Atlanta, Chicago, Philadelphia,
Denver, Charlotte, Los Angeles, San Francisco, Boston, Orlando, Salt Lake City, Seattle, Las
Vegas, Phoenix, La Guardia, Detroit, Houston, Dallas, Minneapolis, and Covington, KY.

Figure 3-30: Unweighted (simple graph) degree distribution of the entire US airline system. Plots
from left to right are: frequency distribution (or probability density plot), cumulative degree dis-
tribution (cumulative density plot) and rank plot (k ∼ logdk).

The unweighted degree distribution, reflecting the simple graph behind the airline network, is
clearly exponential (see Figure 3-30). This is confirmed both by the cdf and by the rank plot. The
frequency distribution shows a very fat tail of the distribution, signifying few airports with high
degree, but with great variation in degree. This means that US-wide, there are not 2-3 leading
airports, but a set of 15-20 that dominate the scene, with large variation among them. A similar
division in three regimes, as with the weighted distribution is seen here, especially in the rank plot.
This means that the airports rank similarly in connectivity and in number of departures, overall.

This variation is seen in the plots of betweenness versus unweighted degree. Depending on the
data slice, entire dataset (Figure 3-31) or long haul (Figure 3-32), different airports dominate. For
long haul flight, Las Vegas (LAS) outshines Atlanta (ATL), both by number of connections, as
well as in betweenness. This is interesting given that Las Vegas is never talked about as a mega-
hub. When you add all routes, Atlanta becomes the (expected) winner in number of connections,
but by far beaten by Anchorage (ANC) in betweenness. Anchorage has been found to be a top
betweenness airport in previous studies [17]. Even more interesting, another Alaskan airport makes
the cut - Fairbanks (FAI), and mid-west airport - Minneapolis St Paul (MSP). Clearly, Alaska is in
the picture here, because of the many local regional, turbo-prop flights, as well as long haul flights
from the mainland US to Anchorage. The NYC airports and Boston do not appear in this picture,
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because they serve (domestically) coastal end-point markets, so their betweenness will be high in
the international network, but not in the domestic.

Figure 3-31: Betweenness versus number of connections (degree) for all flights, US airlines 8/07.
Atlanta is the most connected airport, but Anchorage has the highest betweenness. The linear-like
betweenness-degree relationship is broken here, which means that the network is more modular and
balanced rather than centralized with 1 or 2 dominating hubs.

Figure 3-32: Betweenness versus number of connections (degree) for all long haul flights (> 500
mi), 8/07. In long-haul flights, the centralized pattern is more present. Las Vegas is the most
connected and most “intermediate” airport. Anchorage still has high betweenness but not that
many long-haul flights.
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Plotting degree distributions for single airlines, confirms some of the topology profile obser-
vations from the previous section. JetBlue 8/07 (Figure 2-8) and the top 50 flights by seats
(Figure 3-36) have a power-law like degree distribution - inline with their similarity to BA graphs.
Every other network shows exponential degree distributions, with strange regime transitions for
Southwest and Continental midway (Figure 3-33 and Figure 3-34). Just as seen in the entire airline
dataset, smaller airports seem to operate in a different regime than larger airports. The wide body
jets slice has a weak exponential distribution, close to a power-law, but not quite one.

Figure 3-33: Southwest log-log plot of cumulative degree distribution and rank plot. Exponential
with a steep power-law-like cutoff.

Figure 3-34: Continental log-log plot of cumulative degree distribution and rank plot. The three
airports that stand out in the distribution are Newark, Houston and Cleveland. The kink in the
distribution means that there are more flights out of these hubs than predicted by an exponential
cut-off.
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Figure 3-35: Wide-body jets log-log plot of cumulative degree distribution and rank plot. A clear
exponential distribution.

Figure 3-36: Top 50 seats flights log-log plot of cumulative degree distribution and rank plot. Power
law distribution.

The degree distributions do not say much about topology. They do show that JetBlue, the
wide-body jets and the top 50 flights by seat capacity have similarly skewed distributions, which
agrees with the topology profile results from Figure 3-28. The motif analysis in the next section
further supports this evidence.

3.3.4 Motif analysis

In this section we show motif analysis for the down-selected airline networks: Southwest Airlines,
Continental Airlines (Table 3.3.4), the wide-body jet flights (Table 3.3.4), and top 50 flights by
departures and by seat capacity (Figure 3-40 and Table 3.3.4). JetBlue Airlines was analyzed as an
example in Chapter 2. The motif analysis reveals some expected patterns from previous discussion
in this chapter, but also contains some surprises.

First of all, the similarities between JetBlue 8/07, Continental 8/07, the wide body jets 8/07
and the top 50 flights by seat capacity are confirmed by the underlying motifs. The patterns found
in all these networks are mostly the same. For simplicity and to match terminology used in the
airline industry, we’ll term these topologies hub-spoke. This comes with the disclaimer, that they
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are not scale-free, or necessarily preferential attachment graphs, but we’ll define them by their
predominant motifs. Figure 3-37 below shows the predominant motifs in all of these hub-spoke
topologies.

Figure 3-37: Predominant motifs in most airline (hub-spoke) topologies: stars, base-triangles, and
bi-partite graphs.

These ubiquitous motifs are stars, of all variations, even with few nodes along an arm; base-
triangle graphs, which have spokes off of a triangle from one or two nodes, and bi-partite graphs.
Stars are natural occurring in airline networks because of the hub organization that the airlines im-
pose on their routes. Base-triangles form from stars, after two spokes become popular enough that
a direct route between them is worth it. If one of those new popular spoke does grow, it becomes a
candidate for a new hub. We’ll discuss this dynamic in more detail, as part of a growth model, in
Chapter 4. Finally, bi-partite graphs are formations in which the airline services airports in paral-
lel from two hubs. These are more advanced formations that occur after the initial stages of growth.

The following sections present the motif search results for Continental Airlines, the wide-body
jets slice, the top 50 flights by seat capacity and Southwest Airlines. The JetBlue Airways results
were presented in Chapter 2. Overall, the patterns expected from previous analysis in this chapter
emerge: the motifs found in all data slices and “hub-spoke” airlines are the same, stars, base-
triangles and bi-partite graphs and Southwest Airlines is an exception.
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Continental Airlines

Figure 3-38: Continental Airlines Z-score profile. About 125 motifs are found, of which 6-7 have a
Z-score that stands out. They fall in the families described in Figure 3-37.

Table 3.5: Continental Airlines (8/07) significant motifs statistics.
# Motif Z score Count Mean Std

8 0.123611 9682228 296301.1 85092.75

9 0.101599 37563320 2341945 388499.4

21 0.257895 1839986 54270.74 7759.622

24 0.228926 16616937 345254.4 79654.4

33 0.142373 3043638 62587.88 23464.61

42 0.215049 244103 2595.12 1258.537

44 0.835139 24415026 153189.7 32556.43

89 0.162713 244734 4774.64 1652.669
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Wide-body jets

Figure 3-39: Wide-body jets data slice Z-score profile. From about 85 motifs found, 12 have a
positive Z-score. All of them also fall in the families found in Figure 3-37.

Table 3.6: Wide-body jets (8/07) significant motifs statistics.
# Motif Z score Count Mean Std

48 0.12465596915095475 27112 20072 2207

60 0.11195313854135773 6017987 3803141 773009

68 0.20359337758136667 1799805 765291 198541

85 0.33847698098345691 197876 78120 13825

101 0.62246943048245051 1282658 251340 64737
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Top 50 Seats Motif Analysis

Figure 3-40: Z-scores for all motifs found in the top 50 by seat capacity flights networks. Most Z
scores are below and close to zero. The only significant motifs correspond to stars.

Table 3.7: Top 50 by seat capacity significant motifs.

16 0.152974 21218 6677.08 2994.711

28 0.211938 48191 9236.28 5790.711

The surprises in the motif analysis are that both the top 50 flights by departures and the
Southwest 8/97 network do not show any significant motifs. In the case of top 50 this is easier to
explain. As discussed before, this is a really small network, almost a tree. This means that random
graphs with the same distribution are highly constrained by the low-density and also end up being
close to trees (to be connected) - hence the lack of difference in motifs found in the real network
versus the random background. The bottom line here is that the top 50 flights by departure form
a close-to-pure tree, and that is the topology.

Southwest Airlines
Southwest brings a surprise in motif finding. There are no significant motifs, compared to random
graphs, though we tested a few snapshots of the airline’s history (1/1990, 8/1997, 8/2007). Figure 3-
41 shows the low positive Z-score scatter for all motifs found in the 8/07 network. Mathematically,
this says that Southwest is no different from a random network. While the topology profiles also
confirm that Southwest is close to its random-graph equivalents, it is hard to claim that an airline
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operates at random. The logical conclusion here is that the topology analysis performed so far,
that uncovers quite well patterns for other airlines, does not provide enough insight for Southwest.

Figure 3-41: Southwest motifs z-score profile. No significant (high Z-score) motifs.

Other things need to be considered than simple where the airline flies. A simple extension is
to look at departure frequencies. For Southwest departures equals scaled seats because there is
only one type of aircraft. Consider an augmented graph for which an edge exists only if in the real
data, that edge has weight above some threshold. For example, for Southwest in 8/07, the highest
number of departures on any given leg is 361 (roughly 10 a day). In analogy of the top 50 slices, we
extract the top 60 Southwest network, which consists of all legs that have weight within 60% of the
top weight (>0.4 x maximum). This can be thought of as ”filtering out the noise”. If indeed the
airline tries and leaves many temporary destinations somewhat randomly, this extraction filters out
the flights that are being counted on for revenue. It turns out that this network has 2 significant
motifs, a star and a bi-partite graph, shown below (Figure 3-42).

Figure 3-42: Southwest top 60 significant motifs.

These are the same motifs found in JetBlue, the wide-body jets or the more conventional
topologies. We will use this idea in the evolution chapter to show that the hub-spoke motifs are
only a recent phenomenon in Southwest. Maybe the airline is getting more centralized to deal with
the common challenges of the rest of the industry. The weights of top departure flights in 8/07 are
shown in Figure 3-43.
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Figure 3-43: Southwest concentrates capacity in 8/2007. Line thickness is proportional to the
number of seats offered on that leg.

3.4 Conclusion

In this chapter we reviewed the US airline industry from various points of view. First, we summa-
rized current trends in traffic growth and aircraft patterns. Then we described the data and our
approach for analyzing by slices. And most importantly, we presented an extensive analysis from
statistical and graph-theoretical point of view of few carefully selected airline networks. We found
that statistical, especially domain-specific, measures do not always correlate with graph-theoretical
measures, but that most agree on splitting the airline networks in three general groups: low-cost,
legacy airlines in 1990 and legacy in 2007. Southwest Airlines consistently showed to be an outlier.
The in-depth analysis included JetBlue Airlines 8/07, Southwest Airlines 8/07, Continental Airlines
8/07, the wide-body jet flights 8/07, and the top 50 flights by departures and seat capacity over
the entire 1990-2007 period.

We found that JetBlue, Continental, the wide-body jets and the top 50 seats flights have a
hub-spoke topology and showed the underlying motifs that unite all of these networks. Using these
patterns we discussed a growth model that will be investigated in Chapter 4.

Southwest Airlines appears to be a random network using the same network tools. With adding
one layer of information, such as departure frequency, we discovered that there is more under the
surface - some of the same motifs are present in the backbone of the network of its top frequency
flights. This information will be used to analyze both the raw and the filtered Southwest network
for its evolution in Chapter 4.
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Chapter 4

Evolution of US Airline Route
Networks

In this chapter we study how networks evolve over time. We begin examining the time-dependence
of graph-theoretical statistics for the major US airlines, as well as interesting low-cost carriers
which gives an overview of the industry over time. This is followed by a section of analysis of
topology changes over time where the subject is the network itself. We compare snapshots of the
graph topology in consecutive months, as well as to the final month, using the topology vector.
Then, using the same representation, we compare the monthly snapshots of a network to canonical
networks built with the same statistics and correlate the changes with topology with associated
patterns. Using these findings, we propose two simple growth models, tailored to hub-spoke airlines
(such as JetBlue) and a specific model for Southwest Airlines. We discuss the performance of these
models on the background of canonical topologies, and conclude with remarks about topology
evolution as a function of growth in the context of the airline industry.

4.1 Graph-theoretical statistics over time

In terms of number of destinations, all low-cost carriers experience steady growth since their start
date except for ATA (launches before 1/1990 and sees decline in the 2000s) and USA3000, which
is a young airline with unsteady presence. JetBlue, Southwest, Frontier and Airtran see steady,
linear-like growth in number of destinations, with more oscillations in recent years for Southwest
and Frontier. This is plotted in Figure 4-1. JetBlue is the fastest growing airline, followed by
Airtran, Frontier and Southwest, though the average growth rate of Airtran is the highest (see
Table 4.1). Table 4.1 also shows that ATA is declining and that Spirit Airlines has very slow
growth. Of all low-cost carriers, Southwest flies to the most number of destinations by the end of
2007, and grows by 50% in the 1990-2007 period.
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Figure 4-1: Low-cost airlines growth in number of airports, over the period 1/1990-8/2007. Airlines
plotted are JetBlue (starts 2/2000), Southwest, Airtran (starts 10/1994), ATA, Frontier (starts
7/1994), Spirit (starts 7/1992) and USA3000 (starts 12/2001)

Table 4.1: Low-cost carriers average growth rate, in terms of number of new destinations per month,
1990-2007.

Airline Average Growth Rate
JetBlue 0.2417
Southwest 0.2038
Airtran 0.2607
ATA -0.1517
Frontier 0.2322
Spirit 0.0948
USA3000 0.0758

Figure 4-2 shows the same plot, but also including the big 8 legacy carriers: American Airlines,
United, Northwest, Delta, Continental, US Airways and Alaska and America West. Legacy carriers
in the past 17 years have not seen much growth in destinations, on the contrary they have steadily
downsized, especially US Airways. Continental Airlines is the only one with a general upward trend
(up until Aug 07). The plot shows a clear delineation between legacy and low-cost, with the first
operating roughly above 100 airports, and the second roughly below 80. By that rule, Alaska and
America West fall in the low-cost category. Interestingly, these are the only two carriers among
the legacy, that have a positive average growth rate, as seen in Table 4.2. Southwest’s steady
growth in number of destinations is most similar to America West’s. Also, the low-cost carriers
have more steady operations from month to month in number of destinations. The legacy carriers
show a higher seasonal and overall variation. Growth and variation are two factors that may affect
topology. Later on, we discuss their effect on topology transitions, and show whether topology can
also oscillate seasonally, and whether it goes through major phases as a function of growth.
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Figure 4-2: Top eight airlines (by passengers carried) and low-cost airlines growth in number of
airports, over the period 1/1990-8/2007. Airlines plotted are JetBlue, Southwest, Airtran, ATA,
Frontier, Spirit, USA3000, Alaska, America West, American Airlines, United, Northwest, Delta,
US Airways and Continental Airlines.

Table 4.2: Legacy carriers average growth rate, in terms of number of new destinations per month,
1990-2007.

Airline Average Growth Rate
Alaska 0.0758
America West 0.0142
American -0.2701
United -0.1848
Northwest -0.1137
Delta -0.0948
US Airways -0.3460
Continental -0.2133

The figures in number of seats offered by the airlines are closer to the economic outlook of the
industry. As a result, September 2001 shows up as a prominent spike on Figure 4-3, and marks
a faster downturn for legacy carriers, which are already on a downsizing curve prior to the event.
Low-cost carriers (Figure 4-4) see a smaller spike, and recover their previous growth rate. Southwest
Airlines is off the low-cost scale in terms of seats, and unprecedentedly sweeps the industry, to start
out at the level of Alaska and America West in 1990 and offer more seats than anyone in 8/2007.
So this is an airline that flies to as few destinations as a low-cost carrier but offers as many seats
as legacy carrier. This is possible if the following is true: Southwest flies more frequently on any
single destination than the average, and it flies a denser network. The higher density and departures
frequency is already an indicator that Southwest Airlines will have a different topology, and will be
an exception in the industry.

131



Figure 4-3: Top eight airlines and low-cost airlines growth in total number of seats offered monthly,
over the period 1/1990-8/2007.

Notable events in low-cost carrier seat capacities are the Airtran merger with Valuate in 1998,
which shows as a jump, followed by steady growth. JetBlue grows proportionally in capacity to
growth in destinations, still fastest among low-cost carriers. ATA sees great decline starting in
2004, which is when the airline files its first bankruptcy (Oct 26, 2004). The second bankruptcy in
April 2008 and end of operations of the airline, is beyond the timeline of this dataset. However,
this is an interesting example of the demise of an airline, rather than its birth. A plot of the ATA
topology evolution is included in the Appendix, Figure A-5.

Figure 4-4: Low-cost airlines growth in total number of seats offered monthly, over the period
1/1990-8/2007. Notable events are the September 2001 spike and Airtran’s merger with Valuate,
beginning operations in September 1998.

The data of passengers carried monthly is a proof that this is a cyclical industry. The 12-month
patterns are visible in both the legacy (Figure 4-5) as well as the low-cost (Figure 4-6) carrier plots.
One cycle is marked on Figure 4-5 as an example. Collapsing the cycles by plotting only one month
yearly, for example August, does smoothen the trends, but shows the same overall patterns. A
plot of ”smooth” number of passengers carried yearly (for 18 years) is available in the appendix
(Figure A-4). In terms of size, Southwest becomes the largest carrier of passengers in 8/2007 and
Airtran becomes the largest among the low-cost carriers, followed closely by JetBlue.
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Figure 4-5: Top eight airlines growth in total number of passengers offered monthly, over the period
1/1990-8/2007.

Figure 4-6: Low-cost airlines growth in total number of passengers offered monthly, over the period
1/1990-8/2007.

The minutes spent in the air are proportional to the number of departures and the distances
flown. The history for all airlines plotted in Figure 4-7 shows the same patterns as other statistics,
except for two observations concerning Southwest Airlines. First, they catch up in air time much
later to the legacy carriers, than they do in number of passengers and seat capacity. That is
very surprising, because they are supposed to fly more frequently, and have more efficient aircraft
utilization. Two possible reasons for this are immediately obvious: they might be flying with higher
load factors, and second, most of their flights are short haul. If American flies mostly long haul, and
with lower load factors per flight, then they would be spending more time in the air but carrying
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less passengers. All of this points to the short haul model as the distinguishing for Southwest.
It is harder to claim that this model is the reason for their profitability - other factors such as
fast turn-around time have to be considered. In terms of topology, we expect Southwest to have
a lot of short and local connections, rather than cross-country flights. This description fits with
the expectation of higher network density. Despite these considerations, it is still surprising that
Southwest has less air time overall.

Figure 4-7: Top eight airlines growth in total number of minutes flown monthly, over the period
1/1990-8/2007.

The average path length for the entire industry is included in the Appendix in Figure A-3. All
legacy carriers, almost without exception, fall in a bandwidth between 2 and 2.5 hops, as the average
shortest number of legs (connections+1) to fly between any two airports. Here we plot the low-cost
carriers only, in order to highlight some differences. Figure 4-8 shows America West, exactly at 2
for the entire period 1990-2007 and Alaska at 2.5. All carriers founded in that time period (JetBlue,
Airtran, Frontier, Spirit), start out with average path lengths below 2, probably because of strictly
single-hub initial operations, and quickly level out to 2. Two things are interesting to notice in
this plot. Southwest does not stand out among carriers, for the first time. Despite the multiple
local connections we expect to find out, and its allegedly point-to-point structure, clearly the airline
must have cross-cutting routes (not local, intrastate), enabling easier travel. The other interesting
observation that is ATA is the only airline in the industry flying with a number of average hops
higher than 2.5. The reason could be that ATA also performed military and commercial charter
flights across the world. Whether the business model is tied to the network structure and the
reasons for bankruptcy and demise is not the point of this study, but interesting nevertheless.
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Figure 4-8: Average path length over time for all low-cost carriers: JetBlue, Southwest, Airtran,
ATA, Frontier, Spirit, USA3000, Alaska, America West

In this section we reviewed the airline industry statistically for the period 1/1990-8/2007. We
found that US carriers have largely downsized their networks, with faster decline since September
2001. Also, among the low-cost carriers JetBlue is the fastest growing, while Southwest grows the
most, in size, and across all other scales. The statistics reflects well major events, including mergers
and bankruptcies. In terms of structure, we expect Southwest to be different from all others, with
many local connections, short flights and some cross-over long-haul flights. Its network is likely
to be a lot denser, and expand in a different manner. The legacy carriers are like to have steady
topologies over time, without many transitions, while for the low-cost airlines there are likely to be
changes associated with growth.

4.2 Detecting changes in topology

The first cornerstone of this thesis was to describe and define the term network topology, and to
analyze it in the context of airline routes. We used a set of combined metrics to compare real
networks to canonical topologies and to each other in order to understand underlying structural
mechanisms. This same idea can be used to track the changes in a single topology over time. For
example if a star network adds cross-links which break the star topology, the next snapshot will no
longer have a zero clustering coefficient. Other metrics will differ too.

In Chapter 2, Section 2.2.2 we discussed the validity of the graph similarity score and found
that it is useful in mapping continuous changes in the same topology. The graph similarity measure
is computed using a graph similarity matrix which is the converged solution to the hub scores and
authorities flow equations (see Section 2.2). The entries in the matrix Mi,j show how similar nodes
i and j are, where i and j are nodes in two distinct matrices. In this case, the two matrices
compared are representative of two consecutive snapshots of the same network. Finally, from the
graph similarity matrix M , the best matching sequence of nodes is extracted and the corresponding
sequence of matching scores is taken as a sum of squares to compose the graph similarity measure.

The alternative measure for graph similarity, described in Section 2.1.2, is the Euclidean distance
of topology vectors. This measure was used to calculate the topology profile of a graph. The two
measures are compared in Figure 4-9 which shows the similarity of consecutive snapshots of a
random graph. These snapshots are taken at every step of adding a new link in the process of
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building an Erdös-Rényi graph. Over time, the snapshots become more similar to each other,
which means that the topology ’stabilizes’. Early on, with very few nodes, it oscillates a lot, and
eventually reaches a final state. The two measures operate on vastly different scales. Even the
early oscillations are on the order of 0.001 for the graph similarity measure. As explained in its
assessment (Section 2.2.2), this metric does not perform well on an absolute scale, but it shows
changes relatively quite well. With that in mind, the two measures are positively correlated (0.6)
and show similar patterns, which is a validation for both because their principle of measurement
is different. The graph similarity measure uses flow based on the adjacency matrix, while the
topology vector combines statistical metrics of different properties of the graph, such as clustering,
reachability and degree correlation.

The conclusion about the random graph from Figure 4-9 is that the topology reaches a relative
equilibrium. The first actual data example we chose is ATA Airlines (Figure 4-10), because as the
history shows, this airline is in process of decline throughout the studied period, especially in the
last three years. The topology consecutive snapshot comparison shows the reverse process than the
case of the random graph. With higher number of oscillations because the graph is sparser, the
oscillations increase with time as the network declines.

Figure 4-9: Example of tracking a random graph topology with the two similarity measures. The
zoomed plot shows the graph similarity variation at a magnified scale.
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Figure 4-10: ATA topology changes month to month, from 1/1990 to 8/2007. Graph similarity and
topology vector similarity measures.

JetBlue’s network stabilizes as the airline grows, especially after month 22 (Figure 4-11). There
is a spike in that month, because the topology goes through a major transition from a pure star to
a denser network with a second hub. The topology vector metric reflects that a lot better than the
graph similarity measure.

Figure 4-11: Plotting the two similarity measures, graph similarity (black) and topology vector
(red) over time (JetBlue monthly index from 1 to 91).

Southwest is also growing in size in the period 1/1990-8/2007, even though it starts to operate
in the 70s. It grows from 31 airports to 74 in 17 years, more than double, and super-linearly in
number of routes. As seen in the statistical comparison with legacy carriers earlier, it grows from a
low-cost rank airline to carrying more passengers than any network airline. Figure 4-12 shows that
in this time the topology has been changing, with oscillations damping as the network gets bigger.
With the same observations for ATA (in reverse) and JetBlue, it is clear that size is a factor in these
metrics, but it is not the single reason for topology changes. The pure star transition for JetBlue’s
22nd month confirms that, as well as the steady topology patterns observed in the cases of the
legacy carrier, Continental and the wide-body jet network. These topology changes are plotted in
Figures 4-13 and 4-14 respectively.
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Figure 4-12: Southwest topology changes over 212 months from 1/1990 to 8/2007.

Continental Airlines shows the same oscillatory behavior except that the oscillations do not
grow or decrease in size. A lot of the peaks are 12 months apart, signifying seasonal behavior.
We know from Section 4.1 that Continental, as all legacy carriers, downsizes its network, so this
is an example of topology being relatively constant with size. While the airline downsizes and
concentrates, it keeps roughly the same operations.

Figure 4-13: Continental topology changes over 212 months from 1/1990 to 8/2007.

The story is similar for the wide-body jet network - constant almost seasonal oscillations, but
no major changes from month to month overall (Figure 4-14).

The above examples show that network topology varies with time cyclically for airlines, probably
related to seasonal traffic patterns, such as summer and holiday peaks. For the large network
carriers and the data slices (wide-body jets) these cycles are also cyclical and noisy without much
significant variation over time. This means that topology transitions do happen when systems
grow, not only in the early stages (ex: JetBlue), but also in later stages of growth (ex: Southwest),
and when they experience major decline (ex: ATA).
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Figure 4-14: Wide-body jet network topology changes over 212 months from 1/1990 to 8/2007.

4.3 Comparing topology to canonical networks over time

This section tracks the topologies of the down-selected airline networks in terms of their similarity to
canonical topologies. The canonical networks are the same set, reviewed in Chapter 3 (Section 3.3.2)
for the topology profile discussion. For every time snapshot of the airline network (an instance of a
graph), the corresponding set of canonical networks is created, with the same specifications (number
of nodes, edges, or density, or degree distribution, or number of modules) depending on how the
canonical network is generated. Then the real snapshot is compared to the canonical snapshot via
a Euclidean distance of their topology vectors. So the comparison is point-wise for every month of
the history of the airline. Since some of the generative algorithms are random, the topology history
plots show stochastic averages of the resulting comparison, not single runs of these algorithms.

Figure 4-15 shows the topology comparison for JetBlue airlines for 91 months from 2/2000 to
8/2007. The plot shows two major topology transitions for JetBlue - one in the vicinity of month
22 (22-27) and one around month 70. The early transition is from a pure star network to a non-star
(s-max jumps from 0 to 1). The second transition is away from a BA graph and towards hierarchies,
which means that the topology has more interlinking or links between spokes, rather than pure
hub-spoke edges. Figure 4-16 shows the network plotted geographically for months 23, 70 and 91.
The snapshots show the transitions clearly: month 23 has just added a flight to Washington Dulles
out of Fort Lauderdale, to break the pure star around JFK. In month 70, Boston Logan, Long Beach
(LA) and Fort Lauderdale (FLL) have emerged as secondary hubs. The third ’phase’ shows the
topology moving away from hierarchical trees with no better match. This means that the change is
not modeled well by any of the canonical networks. The snapshots plot shows (Figure 4-16) month
91 to be more interlinked than month 70, with all hubs experiencing growth, but unevenly. In
particular, BOS has grown faster than Fort Lauderdale (FLL) and Long Beach (LGB). Also, the
bi-partite pattern discussed in Chapter 2 has emerged.
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Figure 4-15: JetBlue topological vector distance to canonical networks. Time period of 91 months
from 2/2000 to 8/2007. Two transitions around months 22 and 70.

Figure 4-16: JetBlue months 23, 70 and 91

The patterns observed in the history of JetBlue airlines suggest a natural simple growth model
for hub-spoke networks. There are three stages. The airline starts out as a star and remains so
for awhile, then two (or more) spokes connect, probably in reality depending on market demand
or airline strategy. The spoke connectivity strength can grow and single out one of the spokes as a
potential new hub. If that happens this new hub starts to add connections at a higher rate than
the average spoke1, and these are connections of two types: to existing spokes of the older hub and
to new (its own) spokes. The new-spoke formations become the star subgraphs, while the old-spoke
connections are the reasons for the ubiquitous bipartite graphs in the network. We will call this
model the ”hub seeding growth model”.

The case of Southwest is different. No major topology transitions can be seen, even though, as
seen in the previous section, the airline is growing in number of total departures and seats offered.

1The term spoke here is used more generally than a single-degree node to mean a non-hub.
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Perhaps major transitions can be detected in the early 70s when the airline was founded. Southwest
also carries more passengers by orders of magnitude since 1990. This is contrary to the observation
that topology changes with growing size, and it will be interesting to find out whether one topology
can handle growing traffic indefinitely, or what the limits are. The legacy carrier data suggests that
the topology will stabilize, but the answer could be different for a network that can grow much
larger than 200 nodes, and which does not have the constraints of transportation systems.

As far as closeness to canonical networks, Southwest is most similar to hierarchical binary trees,
DWS graphs and all the variations of random graphs. The top matches are Dodds-Watts-Sabel type
graphs or hierarchies with interlinking - among those random interdivisional interlinking (RID),
core periphery (CP) and hierarchical tertiary tree. Figure 4-17 shows a scaled plot of only the
best matches for the sake of clarity. Despite the lack of strong signatures, two weak transitions
can be detected by looking at the similarity to hierarchical binary trees, which is weaker originally,
stronger mid-way (late 90s) and then weak again in recent past. In the first phase, months 1-45
roughly, random graphs dominate the similarity; in the second phase, months 45-150, the network
is closest to hierarchies with interlinking and then goes back to random graphs, but more weakly
so. These patterns only suggest the inadequacy of the simple canonical topologies in comparison.
Figure 4-18 shows the network plots of graphs in the three periods of time. Though they look
random to the eye, the strong structure of local interlinking can be discerned, as the graph appears
to get denser over time. It is clear that Southwest has a completely different growth dynamic than
the patterns observed in the history of JetBlue.

In order to look at earlier Southwest history and test this statement, we added 5 data points of
single months from the 1980s, found in visual format online: 7/1980, 2/1982, 2/1983, 1/1984 and
4/1988. Figure 4-17 and Figure 4-26 show these as the first 5 points in the timeline. The topology
comparison indicates that these earlier stages of the airline do not look much different, i.e. there
are no topology transitions. To further justify this statement, data from the 1970s is necessary.

Figure 4-17: Southwest topological comparison to canonical network over the period 1/1990-8/2007.
Weak topological transitions at month 45 and 150. 217 months including the 5 1980s snapshots:
7/1980, 2/1982, 2/1983, 1/1984 and 4/1988.
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Figure 4-18: Southwest months 24, 96 and 212

The history of the wide-body jet network is quite steady. Across the studied time period, this is
a preferential attachment-like (BA) network (Figure 4-19). The next best match is a tertiary tree.
Even though the network does vary in size, its topology seems to remain constant over time. This
finding confirms the conclusions from Section 4.2 where comparisons of consecutive snapshots of
the graphs showed constant topology. The wide-body comparison plots are shown on Figure 4-19.
The Continental story is almost identical, closest to preferential attachment graph and tertiary
tree, consistently over time (Figure 4-24), with the exception of a hierarchical tertiary tree-like
topology around month 60. This confirms earlier indications of similarity between Continental and
the wide-body jets. While JetBlue was seen to have the same motif patterns and power-law-like
degree distribution, its history looks rich in topology oscillations, compared to the consistency of
Continental, the wide-body jets network and even Southwest. This could be related to topology
transitions related to growth, which a legacy carrier will not experience in later stages of its history.

Figure 4-19: Wide-body jets topological vector similarity to canonical network. 212 months; (top)
all matches, (bottom) closest matches only - BA graph (BA), tertiary tree (ttree), binary tree
(btree), Newman-Gastner graph (ng5), hierarchy with random interlinking (DWS R).
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Figure 4-20: Continental Airlines topological vector similarity to canonical network. 212 months;
(top) all matches, (bottom) closest matches only - tertiary tree (ttree), BA graph (BA), binary tree
(btree), random modular graph (mod), Newman-Gastner graph (ng5).

4.4 Topology-derived growth models

In Chapter 1 we reviewed generative network models from the network theory literature. They
fall into several categories: random graphs models (Erdös-Rényi [39]), node-degree based (BA
etc [14]), edge-centric models (hierarchies, Dodds-Watts-Sabel [9]), spatial distribution algorithms
(Newman-Gastner [42]), node and module copying (gene duplication and change propagation [13])
and econometric models (MITRE [58]). The growth algorithms proposed in these models were
used to create a spectrum of canonical topologies with certain characteristics, such as preset num-
ber of nodes, edges, number of modules or degree sequence. The previous section showed how
well these topologies match the airline networks studied over time, using the topology vector as a
point of reference. The emerging patterns over time are used to devise two simple growth models,
corresponding to the two distinct phenomena in the airline industry: the ”hub seeding” and the
Southwest phenomenon. One of the key findings was that there are three families of predominant
motifs in airline networks - stars, base-triangles and bi-partite graphs. Section 3.3.4 discussed how
these motifs suggest a hub-seeding dynamics. The Southwest model is derived from the lack of “hub
seeding” motifs, i.e. higher randomness, and the finding that topologically, the airline is closest to
a randomized hierarchy, with strong local linking.

In this section, we review these two topology-derived models and show that they outperform
the canonical topology models. In many ways, this is expected, because these topology-derived
models were tailored to the patterns found using canonical networks and motifs. What is exciting
is that the two models, are simple, probabilistic, and despite the fairly rough probability estimates,
outperform the other models consistently over time. So while they may not be ”generative” (i.e.
actually generating the real-world topologies), they match the evolutionary patterns and have ex-
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planatory power. An explanation here means understanding the dynamics confirmed by various
statistical measures, topology measures and underlying motifs. To fully understand an airline, one
would have to look into strategy, market conditions, fleet and so on. This is beyond the scope of
this thesis.

The hub seeding growth model

This model is intuitively derived from the patterns observed in the topology evolution of JetBlue
Airlines, though it is likely to perform well for other “hub-spoke” airlines. It consists of three stages,
of which the last two can be iterative. First, the network starts out with a pure star topology (one
hub and many spokes). In the second stage two spokes connect to each other, and depending on
popular demand one of these spokes has the potential to develop into a new hub. Notice that, a
spoke here does not mean simply a single-degree node, but more generally, a non-hub. A spoke
becomes a hub after it receives a certain threshold of links, which can be different for different
networks. The third stage models the growth of the new hub - getting its own new spokes or
connecting to spokes of the old hub. This is the entire model in summary, with the potential to
continue hub development indefinitely as the network grows. The unknowns in this model are the
probabilities (or frequencies) of addition of new spokes, p1, the probability of two spokes connecting
to each other, p2, and the chance of a spoke to become a hub, p3, and the probability of a new
hub of connecting to old spokes, p4. Overall, this accounts for four probability variables. Table 4.4
shows the outline of the model.

Table 4.3: Outline of the hub seeding growth model.
phase events

(stage 1) pure star topology; spokes added with probability p1

(stage 2) two (or more) spokes connect with probability p2

(stage 3) one of the (highly) connected spokes becomes a new hub with probability p3

(stage 4) new hub connects to old hub’s spokes with probability p4

Deciding what the four probabilities in the model are can be done in various ways. Initially, we
experimented with some common sense estimates such as p1=0.5, p2=0.4, p3=0.4, p4=0.4, which
means roughly 40% of any event happening. A more informed way is to count the events occurring
in the history of the airline, using some simple assumptions, and then computing the frequencies
of 1/new links arriving, 2/two random spokes connecting, 3/ a potential hub developing into a
new hub and 4/new hubs connecting to old spokes. A node becomes a hub after it receives a
threshold number of links. For JetBlue, for the example, the threshold was set at 5, based on
knowledge of the network in 8/2007. Obviously, a hub with five connections is a small secondary
hub. In Southwest’s case, most nodes have more than 5 links, so a higher threshold makes sense.
Table 4.4 shows the probabilities found by counting events in JetBlue, Airtran, Spirit, Southwest
and Continental. As far as the frequencies found, the higher the threshold, the more likely the
potential hub will develop into a new hub. Also new hubs connect to old spokes roughly half of
the time. Random spokes connect with higher probability for larger carriers, because they can
probably afford to jump into smaller markets and pull out more often. While these observations
are interesting, the frequencies counted in Table 4.4 are averages over 212 months of (in some cases)
different periods and environments of growth, so they are not ultimate indicators of airline strategy.
That said, this type of estimating the probabilities and feeding them into the model, is common
supervised learning approach and a good start at calibrating the hub seeding model.
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Table 4.4: Counting frequencies of events according to the hub seeding model in various airlines.
Airline hub threshold p1 p2 p3 p4

JetBlue 5 0.473 0.138 0.554 0.462
Airtran 5 0.484 0.217 0.570 0.484
Spirit 5 0.328 0.125 0.352 0.323

Southwest 15 0.544 0.426 0.929 0.544
Continental 10 0.495 0.505 0.99 0.495

Figure 4-21 shows the pseudocode of the hub seeding model. This model was used to generate
snapshots of graphs with the same number of nodes, as the months in airlines history and compared
over time to the other canonical topologies.

initialize graph, hubs, spokes, probabilities
while total number of nodes < n

• add new spoke with probability p1 preferentially to larger hubs, i.e.
probability p1

h , where h is the hub order by decreasing size; add node to
spokes

• select two spokes at random; connect with probability p2

• find all nodes with threshold degree that are labeled as a spoke; of those
select a random node and promote it to hub with probability p3; add new node
to hubs, and remove from spokes

• if there are no new hubs, continue; else: select random spoke (not of new
hub); connect to new hub with probability p4

return graph

Figure 4-21: Pseudocode for the hub seeding model.

Figure 4-15 shows the result for JetBlue. Canonical topologies are compared to the real topology
via the topology vector, as in Figure 4-15 including the hub seeding model snapshots. As mentioned
before, the comparisons on this plot are statistical averages of running the comparison multiple times
(in this case 50). The top of the plot shows the trends overall, as discussed before. The bottom
plot concentrates on the best matches only - hub seeding, BA, tertiary trees pure and hierarchical,
followed by hierarchies, (DWS graphs). The hub seeding model performs really well over time. The
pure-star beginnings of JetBlue are a fact, and the probabilities are not adjusted to reflect that
(since they are averages over the whole period), so the model does not do well (neither does the
BA) in the first 22 months. It is encouraging that over time the match stays consistently better
than other topologies, which means that the hub seeding mechanism with star and bi-partite graph
formation may really be the right idea. Experimenting with other sets of probabilities (not strictly
from the history of JetBlue) also shows better performance than the other topologies, signifying
that the principle of growth is stronger than fitting the model precisely to the data.
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Figure 4-22: Topology over time comparison: JetBlue topology comparisons with the new hub
seeding model (red circles). The hub seeding model outperforms the rest of the canonical topologies
for most data points, and consistently for last 15 months. The top plot shows the topology vector
distance to the real graph; the bottom plot shows the topology rank based on that distance.

Given that this model was derived from the patterns found in JetBlue’s structure, it is debatable
whether it is universal. We use the probabilities shown in Table 4.4 to also apply it to Airtran’s and
Continental’s histories. Airtran was chosen as another low-cost airline with known hub operations.
Continental is chosen as a representative of the legacy carriers and one of the downselected airline
networks for further study.

Airtran shows similar history to JetBlue’s - early transitions from pure-star-like topology and
s-max graph with closest match to the hub seeding model after month 66 (Figure 4-23). Here we
do not concentrate on the fine details of the topology of Airtran but just use the general trends in
Figure 4-23 to show the performance of the hub seeding model.
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Figure 4-23: Topology over time comparison: Airtran topology comparisons with the new hub
seeding model (red circles). The top plot shows the topology vector distance to the real graph; the
bottom plot shows the topology rank based on that distance.

The hub seeding graph snapshots are the top match across the entire history of Continental.
Figure 4-24 shows the overall pattern with the new model a notch better than other canonical
topologies. The conclusion is that this model fits some real data, and certainly while not all air-
lines grow by this mechanism, it matches well patterns and statistics in the history of ”hub-spoke”
airlines such as JetBlue, Airtran and Continental.
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Figure 4-24: Topology over time comparison: Continental’s topology best matches over time in-
cluding the new hub seeding model (red circles).

The Southwest expansion model
(Growth hierarchical trees with strong local and weak random interlinking)

This growth model is called the Southwest model because it is unprecedented in airline growth,
and because it is devised by observing the growth of the Southwest Airlines network. It is not as
intuitive as the hub seeding model. In fact, it is hard to imagine why an airline would decide to
operate as Southwest does, looking at pure topology only. Before we discuss the airline strategy, we
will show that the model fits the topology evolution very well. In summary, the network expands
as a tertiary hierarchical tree locally. As soon as a new ”leaf” (airport) is added, this airport
is connected to all airports within some threshold proximity (2-3 hops away, for example). This
creates a natural duplication of patterns, similar to the ideas in the duplication-divergence model
explained in Section 1.4.4. On top of that, at every step, random interlinks are added from various
airports, with slight bias towards high-degree nodes (profitable markets). Table 4.4 shows an outline
of the main steps.
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Table 4.5: Outline of the Southwest expansion model.
phase events

(stage 1) create a hierarchical tree backbone structure with the desired number of nodes
(stage 2) add multiple local connections from all spokes (or leaf nodes), connect the same

way as “geographically similar nodes”, (for example connect directly to all
nodes within 2-3 hops away (or the hops/distance can be a percentage of the
number of airports) to reflect growth

(stage 3) add random interlinks with bias towards high-degree nodes
(..........) iterate the local expansion, with new local connections and random interlinks

Figure 4-25 presents the pseudocode for the Southwest model routine. There are two proba-
bilities and one parameter associated with the model. In stage 2, nodes are linked locally within
a certain distance threshold. We chose 0.05n because as the network grows, the notion of “local”
should also change, but slowly. Five percent of 50 nodes is 2.5, so a small starting threshold. This
is still a parameter, and can be varied in more detailed studies. The only real probability is the
probability that the two local nodes will receive a direct flight. We chose that to be 0.6, higher
than average yet not as high as certain, because otherwise, that would create an almost complete
graph. The last probability is associated with random interlinking across the network. A random
link between nodes i and j is added with probability degi+degj

2degmax
which puts weight on popular routes.

initialize graph by building a hierarchical tertiary tree, n nodes
while total number of edges < m

• calculate all paths in the graph (with a Dijkstra routine)
• for all nodes with a distance between them ≤ 0.05n (5% of network size,
since n − 1 is the largest possible diameter) connect the two with some high
probability (>0.5)

• compute the degrees of all nodes; select two random nodes
• connect the two nodes with probability proportional to their combined

degree, i.e.
degi+degj

2degmax

• if number of edges is ≥ m, return graph

return graph

Figure 4-25: Pseudocode for the Southwest expansion model.

Figure 4-26 shows that this model outperforms the other canonical topologies during the period
1/1990-8/2007 for Southwest. This makes sense because it combines hierarchy with randomness
and matches the most recent concentrated traffic patterns at hubs like Chicago. The last point
was illustrated in Chapter 3, Figure 3-43 where we plotted the density of high-seat capacity flights
and showed that Southwest does concentrate capacity in hub-like operations, not unlike the other
carriers.

The strategy behind this model is not obvious and not entirely based on topology. Part of the
local linking has to do with the way Southwest schedules aircraft rotations. On many occasions
a single aircraft performs a string of 3-6 flights in a chain-like pattern, between cities that are on
average 1.5-2 hours away. Those may be numbered as the same flight, or as different flights. The
local pattern has to do with the single aircraft Southwest operates - the 737 which does really well
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short-haul. But that cannot be the only driving factor that determines that network structure.

Figure 4-26: Topology over time comparison for Southwest Airlines. Comparing the ”Southwest
model” to canonical networks. The bottom plot shows the best topologies only. Includes the 5
months from the 1980s. No major topology transitions are seen between the 1980s and 1990s
growth.

The logic behind this model is not obvious, because the topology we see is only a signature of
more complex considerations. Part of the local linking has to do with the way Southwest schedules
aircraft rotations.

The closest match to the Southwest topology are hierarchies with random interlinking. So there
is an underlying grid, some random operations, with some general guidelines, and more recently
heavier traffic on profitable routes. But that recent strategy has not been consistent. Since 1990
traffic share has been fairly randomly distributed across the network. One possible explantation is
that the airline curbs cost and captures a great passenger segment so well, that it can afford to try
and keep or leave different routes in a dynamic random-like way. The history certainly shows that
this is how the airline operates. The slow tree-like geographic expansion is also a fact. The fact
that the airline flies to secondary airports mostly (not exclusively) cannot be correlated with the
random-like flight pattern, but most likely is a huge contributor to cost. In some cases, the airports
are far enough (to be easily connected by public transportation) that they capture different market
segments than the main airport itself (ex: Logan and Manchester), so that Southwest does not
compete directly with major airlines.

Figure 4-27 shows the topological history plot, but for the Southwest top 80 flights every month.
Top 80 means that a leg is in the network if it offers a seat capacity within 80% of the top seat
capacity flight in the network. The bottom of the plot shows the best match topology only. As
expected, the top 80 percent of the network looks a lot more centralized. For the last 50 months,
the hub seeding topology dominates the history.
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Figure 4-27: Southwest top 80 topology evolution: 1/1990-8/2007. Hub seeding model clearly
outperforms the rest as expected, in the last 60 months. The bottom plot shows topology rank
(rather than vector distance) - which canonical graph (or model) is number 1, 2,... 24.

This result is an indication that Southwest is getting more centralized, possibly due to dealing
with cost and operations getting complex as they grow. The random-like flight patterns on top of
this centralized network are possibly ways for the already profitable airline to probe new markets.
Those are either maintained or abandoned depending on profitability. There are other cases, where
the airport may not attract business or get permission for expansion (ex: Detroit).

4.5 Conclusion

In this chapter we closed the arguments of the thesis and addressed all the research goals. The
major findings related to topology in general and airline networks are summarized below.

Topology transitions do happen. These are usually seen in early stages of growth, ex: stars to
non-star formations, but not exclusively. They are often associated with major changes in network
size, up or down. Steady topology over time is also observed, but not usually in the beginning of
an airline. This means that the legacy carriers exhibit stable topologies. This is true also for large
data slices of the airlines dataset, such as the wide-body jets. Topology also transitions at major
events (ex Sep 2001), and cyclically with seasonal traffic patterns. But it is also seen to remain sta-
ble after major market fluctuations. For example, Continental sees stable topological history, but
overall decline in the last 7-8 years with major downsizing. This means that there are other sub-
sets of the system, other than its structure that can be a buffer for financial trouble or other changes.

Simple topology-derived probabilistic growth models outperform ”canonical” models. Looking
at the recurrent patterns in airline networks, we devised two simple models for growth, the hub
seeding growth model and the “Southwest expansion model”. With both being probabilistic, we
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used statistics to learn the probabilities of event occurrence for the first model, and used estimates
for the second. Though derived from JetBlue’s history only, the hub seeding model is seen to perform
well for Airtran and Continental Airlines, which are two examples chosen for benchmarking. The
Southwest model is unique, as in, not applicable to any other airline, but it does capture the
patterns in Southwest’s history better than the other canonical models studied.

Southwest is an outlier by far, but simple in-depth analysis shows that the airline is similar in
some way when the ”noise” is filtered out. While operating various random ”volatile” flights, its
highest frequency flights resemble the hub-spoke operations of a traditional airline. Especially in
later years. It could be that the airline is experiencing some of the cost-related pressure of other
airlines and trying to concentrate logistics as well.

Graph-theoretical models can explain patterns in some airlines but not others (ex: Southwest)
where more information is needed. For example, JetBlue Airways, Continental Airlines and Airtran
have hub-spoke topology - which means that they have similar underlying patterns, (stars and bi-
partite formations) and favor the hub seeding model in their topological history. Southwest operates
with a hierarchical backbone, a denser network overall, with many local links and random cross
links that connect major markets.

152



Chapter 5

Evolution of Language Wikipedias

One of the goals of this thesis is to show that the techniques for analyzing systems represented as
networks and their evolution are generalizable. This chapter addresses this goal by applying the
same tools used to analyze airline networks in Chapter 3 and Chapter 4 to language Wikipedias.
The Wikipedia is a web-based encyclopedia which is administered by a small number of people, and
can be edited by anybody. The content is peer-reviewed. The Wikipedia project started in 2002
and has been very successful since, with Wikipedia becoming one of the prime sources of online
information. A Wikipedia grows by the addition on new articles, i.e. pages with a unique title.
Pages have content that is relevant to the title, and which contains references to other relevant
articles. We consider the network of articles and references, in the form of hyperlinks, between
them. Other than the representation, there is no similarity between this dataset and the airline
networks. The goal is to show that using the same tools and some understanding of the content of
Wikipedia pages, one can gain insight into the structure of Wikipedias and how they grow.

A language Wikipedia is a Wikipedia in only one language, Russian, Spanish, or English.
Of course, different Wikipedias are connected to each other, but what makes them interesting
separately is that they are developed by unique communities (overlap is possible) and develop
slightly differently, as they cater to different cultures and ways of representing knowledge. Splitting
Wikipedia by languages also allows the analysis of manageable datasets [61]. As of November 30th,
2008, the English Wikipedia is cited to have 2 640 206 articles and 7 times more individual pages,
with more than 8 million registered users (you have to be registered to make edits). With the
computational resources available, we could not consider the English Wikipedia, but managed to
download histories and analyze some of the largest Wikipedias, such as French and Spanish, but
for only approximately the first year of their history. Table 5 is summarized from [62] and lists
the Wikipedias considered in this work, with some major statistics, such as number of articles and
number of registered users.
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Table 5.1: Table of Language Wikipedias analyzed in this thesis. The rank is by size among all
Wikipedias. The code is used for the web address of the Wikipedia. The depth column is a rough
indicator of how frequently the Wikipedia is updated.

rank language code articles users depth1

3 French fr 744954 517059 115
6 Italian it 526002 337229 57
9 Spanish es 429139 917533 93
10 Russian ru 342956 204233 74
12 Chinese zh 216431 560308 71
22 Esperanto eo 108216 11830 13
39 Simple English simple 44467 39270 21
106 Interlingua ia 4381 2319 21

A Wikipedia, represented as a network, is a set of articles, which are connected to each other via
hyperlinks. There are many more pages than articles in Wikipedia, so this difference was carefully
accounted for. Other pages are about changes, summaries, stubs, authors’ forums, profiles, history
and admin pages. For the purposes of clarity and the desire to analyze these as ”knowledge net-
works” we only consider article pages (they have a topic/name and address: xx.wikipedia.org/Topic,
where xx is the language code). The data dumps for each Wikipedia were downloaded directly
from [61]. The data mining code and parsed networks are courtesy of Dimitar Bounov [63].

5.1 The Language Wikipedias: Early Growth

Growth rate was a key factor in selecting Wikipedias for analysis. The early growth of these
networks can be extremely slow, or highly discontinuous. The sudden addition of an entire topic
by simply creating header pages (to be filled) can increase the size suddenly and also create a
dominant connected component. There are examples of Wikipedias staying ”dormant” for a year
before many pages get written, as in the case of the Italian Wikipedia. This means that for many
months there are very few articles (order of 10) and they stand alone, disconnected. Figure 5-1
shows the growth of the Wikipedias selected for analysis.

1The depth is calculated as (Edits/Articles)×(Non-Articles/Articles)×(Stub-ratio) [62].
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Figure 5-1: Number of articles versus days: first year growth in number of articles of the French, Ital-
ian, Spanish, Russian, Chinese, Esperanto and Interlingua Wikipedias. The Esperanto Wikipedia
grows the fastest, though is currently outgrown by all the active language Wikipedias. All other
Wikipedias see very slow growth in the first 200 days. The Spanish Wikipedia actually gets its first
edge on day 285, and has few disconnected pages prior to that, but was plotted from 285 to 650
days to show comparative growth.

Most of the Wikipedias on Figure 5-1 have slow initial growth and then they take off, with the
exception of the Chinese and the Esperanto Wikipedias. The Esperanto grows fastest, with almost
no plateaus, but this growth must slow down, since the Wikipedia remains 22nd, behind the rest
(except for Interlingua). All other networks grow continuously, with some jump growth for the
Spanish and the Interlingua wikis, which will be discussed in more detail in this chapter.

Link growth is shown in Figure 5-2 by plotting the average number of links per article (edge to
node ratio). By that measure, all networks remain fairly sparse, with a maximum edge-to-node ratio
for the Italian Wikipedia of 9. For the early stages of slow growth, the average links per node is very
low, which means most Wikipedias start out as trees, or forests (collections of disconnected trees).
The edge-to-node ratio below indicates many single nodes, i.e. articles without any connections.
More unusual are the leaps of links per node, especially in the case of the Italian Wikipedia, but
also the French. This occurs when a set of nodes arrives with a dense local structure, such as a
clique, or a set of nodes, that are fully related, hence introduce a dense new cluster (or subgraph
of the network, ex: months of the year). This statement is supported by the fact that the density
decreases with time, as more nodes arrive, because their arrival with fewer links outweighs the local
density. Yet, it is interesting to understand why some Wikipedias grow a lot denser than others.
Given that many users are allowed to contribute, the cognitive limit of 7±2 may not be a constraint
in the number of associations.
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Figure 5-2: Average number of hyperlinks per article for the first year of the French, Italian,
Spanish, Russian, Chinese, Esperanto and Interlingua Wikipedias. All Wikipedias are normalized
to the same date (as if we they started to grow together). For example, the Spanish Wikipedia
does not see growth until day 285, so its timeline on this figure is day 285 to day 650.

To summarize, in this chapter, we study in detail the topologies and their histories of a set of
large language Wikipedias, by concentrating on the first year of their active growth. In particular,
these are the Interlingua, Esperanto, Spanish, Russian, and Chinese Wikipedias. Main takeaways
for the Simple English, French and Italian are moved to the Appendix A.2 for conciseness.

The goal of this chapter is to test the tools developed for network analysis with a different
example. The hope is to learn what the structure of Wikipedia networks is, and whether it is com-
mon among Wikipedias and different from airlines. More fundamentally, we expect that Wikipedia
networks evolve differently than transportation systems. Studying growth of a cognitive network
versus a technical (physical) network can potentially uncover novel principles that distinguish be-
tween these two types of systems.

5.2 The Interlingua Wikipedia

Interlingua is an international auxiliary language developed in 1930s-1950s and is probably the third
most widely used international auxiliary language. The most popular such language, Esperanto,
is analyzed in section 5.3. Interlingua is based on both Romance and Germanic languages, and
is immediately understandable for at least the Romance language speakers. The Wikipedia’s first
pages appear in January 2003 and is claimed to have over 4000 articles as of December 2008. It
is ranked 106th in the list of Wikipedias by number of pages [62], Table 5. Figure 5-3 shows the
growth in terms of number of articles and number of hyperlinks daily for the first year of the
Wikipedia’s existence.
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Figure 5-3: The first year of the Interlingua Wikipedia: total number of articles and hyperlinks
and number of articles and hyperlinks in the giant connected component.

The data on Figure 5-3 shows that the Wikipedia is disconnected through the entire first year,
but the size of the giant connected component is not far off the size of the entire network. There
are two major transitions in growth, the first around day 75 and the second between days 200 and
210. Growth in the stages in-between is fairly steady. The first transition from day 65 to roughly
75-80 happens because of names of countries around the world are added (in addition to other
”steady-growth” pages). The second transition (days 190-215) is related to the introduction of
religion-related themes, from terms in Christianity (apostles, famous dates in the Bible) to articles
about major creeds, affiliations (ex: asceticism, polytheism, esotericism). The theology-related
wave is interspersed with medicine-related terms, actually all scientific terms with Greek roots.

From the yearly history, day 75 is chosen for analysis because it is of manageable size (255 arti-
cles, 179 in the giant component) and it marks a transition period in the history of the Interlingua
Wikipedia. Figure 5-4 shows the actual network with all disconnected components. Two of the
larger disconnected clusters are on topics Space/Astronomy with articles such as ”sun”, ”satellite”,
”solar system” and Science, introducing what major sciences study. The numerous star formation
in the giant cluster is centered around the word ”language” and features major languages.
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Figure 5-4: (left) Day 75 of the Interlingua Wikipedia. The star cluster is centered around the topic
”languages”. The two smaller components in the middle contain articles about space/astronomy
and sciences. (right) Network modules of the giant component of day 75 (of the network on the
left).

Interestingly, this Wikipedia is easily modularized, meaning that the Newman-Girvan algorithm,
for example, gives high scoring (Q-metric) to the modules found. Even more interesting is that
different modules make sense thematically. Figure 5-4 (right) shows a four-module split of the
giant component for day 75. As point out earlier, the star cluster is centered around the word
”language” and features different world languages. The middle component is about web, internet
and informatics-related articles. The articles related to countries, and geographical regions (added
in the first major transition) appear as a connector between informatics and languages. Another
connector is a module about the arts, and games/sports. This picture supports the conjecture that
topics develop in separate clusters and eventually form weak links to become a larger connected
component. It is also interesting that ”informatics” is at ”the center of the world” in day 75.

The topology profile of day 75 confirms these conclusions (Figure 5-5) - the network is fairly
sparse, close to binary trees and sparse hierarchies (with low interlinking). With this density, this
class of topology is also close to preferential attachment graphs. Every topic cluster is centered
around a few key terms, and then loosely connected to the rest of the clusters. The star around
”language” reinforces this pattern.

Figure 5-5: Topology profile for day 75 of the Interlingua Wikipedia.
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There are only four significant motifs (with Z-score above zero) for day 75. These are the same
popular motifs found in traditional airlines, stars and a base triangle. The 5-star has a very high
Z-score of 0.9 (Note that stars with multiple spokes will be very significant for this graph due to
the dominant star cluster). The motifs are shown in Figure 5-6.

Figure 5-6: Significant motifs for day 75 of the Interlingua Wikipedia: stars and base-triangle.

The topology evolution shows four major phases which correlate well with the growth of the
network. Figure 5-7 shows the nodes/edges growth in the first 75 days as well as the topology
matching to canonical topologies and growth models. The first phase up until day 24 has very few
nodes and edges and a large disconnected network of small ”tree” components. In fact, in day 22
the Wikipedia is a simple three-spoke star (Figure 5-8). In the second phase, there is one large
star (centered around ”languages”) and many other smaller disconnected components. Around day
33, the other components are outweighing the star, and the giant component is most similar to
a tertiary tree with sparse cross-linking. Eventually the giant tree-like components and the star
join (day 75) into one component, which is still sparse and tree-like, and most similar to random
interdivisional hierarchies (DWS RID).
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Figure 5-7: Topology evolution of the Interlingua Wikipedia. Days 2 to 75. Three major transitions

Figure 5-8 shows the network snapshots of days 20, 30, 45, and 75, each representing a ”topology
phase”.

Figure 5-8: Days 20, 30, 45 and 75 of the Interlingua Wikipedia

To summarize, the Interlingua Wikipedia grows by accretion. Various topics emerge separately
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and eventually coalesce via weak connector words. This is supported by the observed phases of
growth, as well as by the module themes in Figure 5-4. This is a fundamentally different type of
growth than the one observed in airline networks, as the two types of networks perform different
functions and are subject to different constraints and operating environments. Further analysis
(Figure A-6) showed that the Interlingua is a scale-free network, but not a small world. Path
lengths increase over time, while the network stays close to its corresponding s-max graph. In fact,
it is no surprise that the network is scale-free, since different topic-related modules grow similarly
and then connect weakly which is a natural mechanism for repeating patterns at different scales. A
repetitive mechanism for growth is a common feature with airlines, where airports get connected in
a consistent manner, and probably common with other systems too - but the weak links are unique
to Wikipedia. A similar phenomenon was seen in change propagation networks [13].

5.3 The Esperanto Wikipedia

The Esperanto language is the most widely spoken constructed international auxiliary language,
first described in 1887. The vocabulary of the language also comes from Romance and Germanic
languages. The language has been actively used for over more than a century and has 200-2000
native speakers, but it is not adopted officially in any country. The Esperanto Wikipedia has over
100000 articles and is ranked in the top 30, at 22 among all language Wikipedias.
The first 200 days of the Esperanto Wikipedia show very steady growth as seen in Figure 5-9.
Originally the giant connected component contains a small portion of all nodes in the network
(<50%) and eventually grows up to 80-90%. This is an indication of the network growing out
originally as many disconnected clusters that eventually coalesce in a mostly connected graph.

Figure 5-9: The 200 days of the Esperanto Wikipedia: total number of articles and hyperlinks and
number of articles and hyperlinks in the giant connected component. The giant component is small
compared to the overall size in the first 100 days and then catches up and becomes 80-90% of all
nodes.

Day 100 of the Wikipedia is plotted on Figure 5-10 with the giant component only on the
right. The other disconnected components other than the giant cluster around topics such as
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geographic regions (including many Chinese provinces), Internet terminology, and Beijing parks,
cultural centers and places of interest. The main component is more eclectic in themes and is
centered around the work ”encyclopedia”. It is interesting the see the Chinese influence in these
early days, probably due to participation of a larger portion of Chinese users. Esperanto was
brought in China by Russian merchants in the late 1800s, and strongly supported by the government
in early 1900s, with the community of speakers centered in Shanghai.

Figure 5-10: Day 100 of the Esperanto Wikipedia: largely disconnected, with the main component
centered around the word ”encyclopedia” and featuring various topics. Other connected compo-
nents include topics such as ”Internet terminology” (ex: server, unicode), ”Beijing places of interest
and culture”, names of geographic regions, lots of Chinese provinces. (right) Day 100 modules by
the Newman eigenvector method.

The right plot on Figure 5-10 shows network modules of the day 100 network found by the
Newman eigenvector method. The modules found connect in an unusual pattern compared to the
usual loosely connected compact modules. Instead modules are connected centrally (to the word
”encyclopedia”) and develop thematically in depth growing out of the center. This is different from
the chain-like arrangement of modules in the case of the Interlingua Wikipedia.

It is no surprise then that the topological profile shows the Esperanto Wikipedia to be closest
to a hierarchy with local interlinking (DWS LT). The local links are the interlinks that define the
modules streaming out of the central node. Other close topologies are other hierarchies, hierarchical
tertiary tree and a pure random graph (ER) with the same density.

Figure 5-11: Topology profile for day 100 of the Esperanto Wikipedia.
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The significant motifs are in the same family, stars and base-triangles, also bi-partite graphs with
weaker significance, but present. This is similar to the hub-seeding phenomenon in airlines, though
the same growth principles are absent here. Hubbing is natural because knowledge is organized in
categories, and sub-categories, but while the emergence of a second super-category (second hub) is
entirely possible, it does not have to be a general phenomenon. For example, “biology”, “physics”
and “chemistry” can all be filed under “science”, and also “field” or “study” and “discipline”, but
the latter are more general than “science”, so the underlying hierarchy will still be there. This is
supported by the low Z-score of the bi-partite motif.

Figure 5-12: Significant motifs for day 100 of the Esperanto Wikipedia: stars and base-triangle,
with Z-scores 0.121, 0.102, 0.195, 0.447, 0.01, 0.817 respectively

The topology of the Esperanto Wikipedia does not go through major transitions. There are three
visible stages in the evolution plot (Figure 5-13), but they are not drastic. The giant component
which eventually becomes the majority of the network grows steadily into a hierarchy with local
interlinking and away from pure topologies such as pure trees, stars and lattices. This is also
evident in Figure 5-14 showing three snapshots of the network in days 40, 70 and 100 respectively.

Figure 5-13: Topology evolution of the Esperanto Wikipedia. Days 21 to 115. Three transitions.

The same phenomenon of many separate clusters growing into a whole is evident here, how-
ever they emerge into a centralized backbone, rather than a linear series as with the Interlingua
Wikipedia.
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Figure 5-14: Days 40, 70, and 100 of the Esperanto Wikipedia

In summary, the Esperanto Wikipedia grows without major topology transitions, steadily in
both size and structure. The same accretion growth has been found, as with the Interlingua
network, but the emergent backbone is different. Instead of the scale-free linear backbone, the
Esperanto Wikipedia is closest to a centralized hierarchy with local interlinking, at least up until
the hundredth day.

5.4 The Spanish Wikipedia

Though Spanish is the second or third most spoken language in the world, it trails behind in its
Wikipedia size, compared to languages with much smaller speaking population such as Japanese,
Portuguese, Polish and Dutch. Probably other geo-political factors such as country GDP and
population income level affect the representation of these people online. Transliteration has been
cited as a problem, since web addresses are exclusively written in English, this hinders development
in other languages, for difficulties such as spelling with accents in web addresses, or other characters.
Interestingly, languages with much greater challenges in that respect, such as Chinese and Japanese,
are more present.

Figure 5-15 shows the slow growth of the Spanish Wikipedia in its first 200 days, with a steep
stage of growth between 240 and 270 days and then another steady period till the end of the first
year. As with the other Wikipedias analyzed so far, the giant connected component catches up in
size to the rest of the network, which starts out very disconnected originally.

164



Figure 5-15: The first year of the Spanish Wikipedia: total number of articles and hyperlinks and
number of articles and hyperlinks in the giant connected component. The giant component is small
compared to the overall size in the first 200 days and then catches up and becomes 80-90% of all
nodes. This transition happens during days 250-260.

Day 235 was chosen for further analysis as representative of the transition period. Different
disconnected components are centered around topics such as software, electro-technics, continents,
and Earth/planetary systems. The giant component in day 235 is a growing tree with low interlink-
ing. This explains why the topological profile shows lower similarity to trees, and higher similarity
to core-periphery hierarchies (Figure 5-17). As a reminder, the CP hierarchy has higher level of
interlinking closer to the core, rather than deeper in the leaves. The similarity to a random graph
is also interesting. Due to the low density and the high-level interlinking, no nodes stand out, and
the degree distribution is closer to uniform, both in the core of the hierarchy, as well as in the
periphery. There are no significant motifs in the network of day 235.

165



Figure 5-16: (left) Day 235 of the Spanish Wikipedia. Different components include topics such
as electro-technics, software, continents and Earth/planetary terms; (right) Modularization of the
giant component of day 235 of the Spanish Wikipedia.

Figure 5-17: Topology profile of day 235 of the Spanish Wikipedia

As with the other Wikipedias, the Spanish topology transitions are related to jumps in growth
(Figure 5-18). The network goes through being a collection of small disconnected stars, to bigger
stars, that grow in collections of trees. This is still the case up until the 200th day as seen in
Figure 5-19. On the topology similarity plot, it is evident that in the first 200 days the network is
closest to its s-max graph equivalent, evidently because of the trees. The third phase on Figure 5-18
is only different because the linear trees become more dominant than the stars, so the similarity
to BA graphs and the hub-seeding model disappear, and the similarity to lines, and Newman-
Gastner type trees re-appears. The fourth phase becomes fundamentally different because the
smaller connected clusters start to connect. They are still very tree-like, hence the similarity to
hub-seeded graphs. Notice that though this model shows good match here, the mechanism behind
the growth of the Wikipedia graph is very different. Hubs (or highly connected article pages) did
not gradually become popular and gained links. They developed topically in separate clusters and
joined through weak links later [46].

166



Figure 5-18: Topology evolution of the Spanish Wikipedia, days 104:250

Finally, the last stage contains all the thematic clusters, stars, trees and fully grown hierarchies
into a weakly connected whole. The best example of this can be seen in day 250 of the Spanish
Wikipedia, plotted in Figure 5-19. This history is almost exactly like the history of the Interlingua
- slow growth of disconnected BA-like components into a weakly connected decentralized hierarchy.
The Esperanto Wikipedia, in contrast, grew mostly out of one core component, without major phase
transitions, and turned into a centralized hierarchy - still very modular in topics (and graph-wise),
but based out of a single page (the word ”encyclopedia”).

Figure 5-19: Days 124, 164, 204 and 250 of the Spanish Wikipedia

To summarize, the Spanish Wikipedia shows distinct phases of growth, definitely exhibiting
growth by accretion. Over the course of 200 days the network grows from small disconnected linear
trees and stars, into a weakly connected sparse hierarchy.
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5.5 The Russian Wikipedia

Figure 5-20: The first year of the Russian Wikipedia (days 8 to 356): total number of articles and
hyperlinks and number of articles and hyperlinks in the giant connected component. The giant
component becomes the majority of the network around day 275. About four major jumps in
growth can be detected.

Figure 5-21: Day 180 of the Russian Wikipedia and its giant component modularized; The topics
of separate components are 1/compounds, amino-acids and other molecules (this is the component
that will outgrow the giant component on day 190) and 2/around the main page sciences and
disciplines of study, such as chemistry, history, and ecology. It is interesting that the wiki main
page is not in the giant component at that time. The most central article in the giant component
is ”Russia”.
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The topological profile of day 180 of the Russian Wikipedia (more precisely of its giant component)
holds no surprises - just like other Wikipedias, and more so, the best match is to a random graph
and to hierarchies. There are no significant motifs. Though in the case of this network, the single
snapshot tells little of the whole story. Day 180’s topology is quickly replaced as another component
becomes the giant component - a star.

Figure 5-22: Topology profile of day 180 of the Russian Wikipedia. Best match are hierarchies,
core-periphery and random-interdivisional and random graphs.

Figure 5-23 shows a distilled version of the topology matches, only concentrating on the closest
canonical curves. Up until day 190 (140 on the figure), the network evolves as a hierarchy with
local interlinking (best matches are DWS, ER, and SW model graphs). Then on day 190, the star
centered around chemical compounds and molecules outgrows the giant component, and prevails the
geometry until about day 210 (160 on the figure). The topology goes through two more transitions
- outward branching of the giant star and then weak connection to the other large components in
the network (including the original giant component). This history is evident on Figure 5-24, which
shows snapshots of days 180, 200, 220 and 250 respectively.
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Figure 5-23: Topology evolution of the Russian Wikipedia, days 51 to 253. The first 50 days were
too small to analyze (essentially two edges). A single component dominates the network, until day
190, when a star component centered around the topic ”compounds/molecules” takes over.

Figure 5-24: Snapshots of the Russian Wikipedia history: days 180, 200, 220 and 250

Again, the principle of growth here is growth by accretion. Modules arise separately, though
some are core throughout the history of the network. Then spontaneous growth occurs, as some
topics get more attention or more users, until different topics connect weakly into a whole.

5.6 The Chinese Wikipedia

The Chinese Wikipedia was started in October 2002, and has over 200000 articles as of today,
ranked 12th by size among all Wikipedias. Given the size of the potential user pool, this Wikipedia
will outgrow many of the other (especially Eastern European and Japanese) language Wikipedias.
The Wikipedia site has been blocked by the Chinese government several times in mainland China,
in addition to content filtering. Access to the English Wikipedia was restored prior to the Olympic
Games and access to the Chinese Wikipedia was restored soon thereafter. These regulations prob-
ably affected the growth of the Wikipedia, as its largest potential user pool did not have access to
it, for most of its lifetime.
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The growth of the Chinese Wikipedia during its first year is plotted in Figure 5-25. The plot
shows very steady growth, without jumps in size, high density, i.e. many links per node, and
surprisingly, high connectivity. For the entire first year, most of the network is connected: as the
figure shows, the giant component contains close to 99% of all nodes. This is unusual compared
to other Wikipedias, and suggests that this network may be growing as a whole from the start,
without the coalescence of various disconnected topics. This could be due to central management
or a philosophy of contribution by extending the knowledge that is already there.

Figure 5-25: The first year of the Chinese Wikipedia (days 5 to 325): total number of articles and
hyperlinks and number of articles and hyperlinks in the giant connected component. Unlike all
other Wikipedias, this one stays largely connected: the giant component contains almost all nodes.
Another novelty is the large density, i.e. many more links per node on average.

Day 100 of the Chinese Wikipedia does not look unconventional compared to other Wikipedias
- several modules (possibly separate thematically) connect weakly to form the network. The signif-
icant motifs are only stars (Figure 5-27), likely due to the large star subgraphs seen in Figure 5-26.
The larger stars are more statistically significant, as expected - the 5-node star has a twice as high
Z-score than the 4-node star.
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Figure 5-26: Day 100 of the Chinese Wikipedia (giant component), modularized using the Newman-
Girvan algorithm.

Figure 5-27: Significant motifs for day 100 of the Chinese Wikipedia: stars with Z-scores 0.166 and
0.338 respectively.

The topology evolution of the Chinese Wikipedia is shown in Figure 5-28. As with the growth,
the topology is very steady over time, without major transitions. There is only one transition, from
day 21 to day 22, the topology goes from a pure star to a multiple star with three hubs connected
to all spokes (Figure 5-29 shows snapshots of these two days). This transition is really unusual,
and seems to be related to connecting all pages to an older version of a main page. Except for
that anomaly, the rest of the history holds no surprises. The network is consistently favoring the
hub-seeding airline model. Other close matches are hierarchical tertiary trees, binary trees and
BA graphs. The fact that the Wikipedia grows as whole, connected and that it is close to the
hub-seeding model, is probably not a coincidence. The alternative growth by accretion cannot
produce this pattern because smaller components with local hierarchies join weakly to form other
hierarchies, with no adherence to few hubs. It is likely that authors do not spend time to link their
material to everything it is relevant to, or even to the highest (most general) page in the same
field. So in a way, the organization emerges, rather than being dictated from the top. That said,
there is top-level organization in Wikipedia, because one can search major categories and their
subcategories, but maybe that organization was not the driver in the case of other Wikipedias.
Probably due to the nature of the Chinese Wikipedia, access restriction, and connected whole
growth, central hierarchy played the key role in driving the growth, which resulted in the network
looking more like a hub-spoke-like airline, rather than a randomized hierarchy.

The question of why the Chinese Wikipedia grows connected, unlike other Wikipedias, is difficult
to answer. The content was only open to mainland China just before the Olympics of 2008, and prior
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to that the user and author population came from outside of China. There is no apparent reason
why the early growth would not be disconnected, because there is no known external regulation on
the Wikipedia growth.

Figure 5-28: Topology evolution of the Chinese Wikipedia, days 5:158. One major transition from
a pure-star to a multiple-star topology, at day 22.

Figure 5-29: Days 21, 22, 25 and 150 and 200 of the Chinese Wikipedia.

5.7 Topology Comparison of Language Wikipedias. Conclusion

In this chapter, we presented detailed analysis of the evolution of topology in the early history of
some prominent language Wikipedias, in particular the Interlingua, Esperanto, Spanish, Russian
and Chinese Wikipedias. Overall, all networks proved to be very modular, with the modularity in
a network theory sense (ex: Newman algorithms) corresponding to modularity in topics/themes.
For example, often pages related to geography, names of countries, continents and provinces appear
clustered together. This has been shown for all Wikipedias, except the Chinese, due to the language
barrier. Other than modularity, Wikipedias exhibit a strong tendency for hierarchical organization.
This arises from two directions: from the top, as often articles are organized in categories, and sub-
categories and those are linked one or two levels up and down, and from the bottom, as pages in
one categories naturally arise disconnected and eventually get connected hierarchically. The third
prevalent characteristic of Wikipedias is growth by accretion. Since connectivity of flow is not a
requirement, as in the case of airlines, Wikipedias do not have to be connected. This is enforced by
the virtue of searchability. An article can be found without being connected to a giant component
or the whole Wikipedia thematically. All articles are connected to the main Wikipedia page to
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be searchable (as explained earlier, that connectivity does not appear in our model). This means
that connectivity does not affect the visibility of information. With airline routes, if an airport is
disconnected, that means it cannot be reached, hence that airport’s market is not being served. As
a result, Wikipedias grow as disconnected thematic clusters, which connect weakly by expansion,
and eventually coalesce into a giant component which dominates the network. In combination
with the hierarchical organization, they become weakly connected hierarchies, with varying levels
of interlinking. This is the same growth principle seen in change propagation networks [13].

There is one exception to the above patterns - the Chinese Wikipedia. Here we summarize the
findings about topology and growth of all studied Wikipedias.

The Interlingua and the Spanish Wikipedias have very similar topologies. Both grow by the
weak connection of disconnected thematic clusters, with many topology transitions as different
components dominate the network. In our analysis only the topology of the giant component is
considered in the network history. This signifies a diverse beginning for both Wikipedias. Both
exhibit a topology closest to a hierarchy with random interlinking, except that the Interlingua
has more linking across levels (DWS RID), and the Spanish Wikipedia is more sparse, with more
interlinking at the core of the hierarchy (DWS CP).

The Esperanto Wikipedia shows the same growth patterns, except that rather than many com-
ponents oscillating to dominate the network, one prevails throughout the history. This is why
the hierarchy looks more centrally based (centered around the word encyclopedia). Because of
the single-component dominance, there are no major topology transitions, and the topology is a
centralized hierarchy with local interlinking.

The Russian Wikipedia is the one closest to a random graph. With the same growth model,
many topology transitions and diverse giant components, every component is more uniform in this
network. The hierarchies tend to be sparse and not very centralized which makes the graph look
random.

And finally, the outlier in the Wikipedias studied in this thesis is the Chinese Wikipedia.
Throughout its first year, this network grows steadily, without jumps and major transitions and
surprisingly, grows in a connected manner. The same giant component contains 99% of all nodes
throughout the history of the Wikipedia, which starts out as a growing star. At day 22, multiple
hubs appear which connect to the old spokes, much like in the second step of the hub-seeding
algorithm. For the rest of the history of 150 days, the Wikipedia shows consistent closeness to the
hub-seeding model. As discussed earlier, this difference from other Wikipedias and similarity to
the airline growth model has a lot to do with connectivity and hierarchy as a driver in growth. The
Chinese Wikipedia is strongly driven by hierarchy, i.e. mapping relevant topics that already exist
in the giant component. This is the model of a top-managed system, in which the hubs naturally
emerge as the super-categories. The growth by accretion cannot produce these patterns because
organization there emerges rather than drives the growth.

In this chapter we have learned that there are underlying mechanisms in the early growth of
web-based free encyclopedias, and that connectivity and management of hierarchy and driving
factors in the evolution of topology.
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Chapter 6

Conclusion

The subject of this thesis is the analysis of network topology of engineering systems and its evolu-
tion, with examples in US airline routes and language Wikipedias. We developed concepts and tools
for network analysis, and especially for tracking topology patterns over time. Though challenged
by the immensity of the data, we extracted interesting slices for analysis. The airlines analysis
included the wide-body jet routes, the top 50 percentile flights in number of departures and seat
capacity, and among individual airlines, JetBlue, Southwest and Continental Airlines, represented
as networks. We learned that the underlying motifs of hub-spoke topologies fall in three families
(stars, base-triangles and bi-partite subgraphs), and proposed growth models that fit their forma-
tion. Southwest was analyzed as an outlier in the industry and was found to be too complex to
study with simple network metrics. There were no significant motifs found in the simple graph
representation of Southwest. We proposed a probabilistic growth model for Southwest and a way
to reduce “noise” in the data. This eventually showed that over time Southwest is becoming more
centralized, quite like other more traditional airlines.

Finally, we applied the tools developed in the thesis to study the early growth of language
Wikipedias and found that their underlying patterns are very similar to each other. Their growth
dynamics is very different from the airlines - they grow by coalescence, i.e. growing separate con-
nected modules eventually merge into a giant component, rather than centralized growth from a
single initial node.

In summary, we have identified two trends in patterns of evolution in complex systems. Physical
systems grow mainly through aggregation, adding nodes and links, by some design principle. Such
principles are preferential attachment, hub seeding and hierarchy interlinking. These systems are
governed by conservation laws (mass, energy) and are subject to constraints and performance
objectives, such as efficiency. Social and knowledge systems tend to grow by coalescence, in which
disconnected clusters gradually form giant components via weak links. These systems are governed
by human behavior and cognitive limits. An example of a physical system (Lufthansa Airlines
world routes) and a cognitive system (the Interlingua Wikipedia) are shown in Figure 6-1.
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Figure 6-1: (Left) Lufthansa Airlines world routes 2006, modularized using the Newman-Girvan
algorithm and (right) giant component of day 75 of the Interlingua Wikipedia, modularized using
the Newman eigenvector algorithm.

Next we expand on these results, organized in the three areas we set out to address: network
topology and its evolution, airline networks and tool and concept generalizability.

6.1 Contributions

6.1.1 Analyzing network topology

We combined graph theoretical metrics from the literature in a novel way to analyze network topol-
ogy comprehensively. First, we surveyed a comprehensive list of ”canonical” networks to create a
”profile” of topologies aligned by increasing density and complexity. We used two measures to com-
pare real systems relatively to this topology profile. We developed a best matching node sequence
algorithm and validated a graph similarity measure based on the graph similarity ideas by Blondel
et al [49]. We discussed the relationship between degree and betweenness as a distinguishing factor
in network topology. In terms of pattern finding, we adapted a state of the art algorithm for single-
motif search [5] with the idea of topologically generalized motifs by Kashtan et al [6] to create a
comprehensive heuristic motif search uncapped by motif size, limited only by computer memory.

In summary, the contributions in network topology analysis are as follows:

• Best matching node sequence based on graph similarity; Euclidean distance of best similarity
matrix diagonals as a measure of similarity.

• Developed the topology profile and the non-dimensional topology vector concepts.
• Adapted and augmented algorithms for unlimited size pattern finding in real networks. Com-

bined a state of the art algorithm for single-motif search with the idea of topologically gener-
alized motifs, to create a comprehensive heuristic motif finding algorithm for any size motif
and graph.
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6.1.2 Studying statistically system topology over time

To examine system topology evolution, we studied data series for various large networks, from 212
months of airline data, of single airlines and industry segments, to 365 days of early Wikipedia
history. We detected clear topology transitions in the early history of these systems and identi-
fied the underlying topology patterns. We found similarities among the majority of airlines, and
majority of Wikipedia networks. Most interesting were the exceptions: we showed mathematically
that Southwest’s topology grows in a completely different manner than the rest of airlines, and
similarly, that the Chinese Wikipedia grows differently than the rest of Wikipedias. We proposed
two probabilistic growth models for hub-spoke airlines, with hub-seeding and for Southwest, with
strong local interlinking.

• Detected ”topology transitions” and modes of growth, across systems in the same domain
(Southwest vs JetBlue), as well as across domains (airlines vs Wikipedia).

• Proposed two models for airline network growth: the hub-spoke growth model and ”the
Southwest model” and showed that they match the topology history better than canonical
topologies.

In summary, our contributions in the tools for analyzing network topology and its evolution
culminate in a process for studying system structure over time. The pattern synthesis part of
this process can be used to devise system-specific growth models. The network analysis process is
described in Figure 6-2. The process starts with collecting snapshots of data (or system history)
that can be represented as graphs. The data is then manipulated into format conducive to network
analysis. The actual analysis contains three major steps. First is the statistical part, which involves
studying the data historically using graph-theoretical and domain-specific metrics. The second part
is the non-dimensional topology analysis summarized in Chapter 2, Section 2.1.2 and Section 6.1.1.
The topology analysis contains topology profile analysis, motif finding and coarse-graining if nec-
essary. The last analysis step involves synthesizing the patterns found and devising custom growth
models based on the results. In the last stage, the custom models are matched to the real data and
revised if necessary. The goal of this process is to gain an understanding of how system topology
evolves and lay the ground work for domain analysis of factors driving its evolution.
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Figure 6-2: Network Evolution Analysis Process

6.1.3 Airline Networks

We analyzed airline routes comprehensively from a network theory point of view, by plotting
statistics for various slices of the industry and individual airlines. We compared graph-theoretic
with industry hubbing indices and found no strong correlations with small exceptions. Among
airlines and data slices, we found that JetBlue, Continental and the route network of wide-body
jets, as well as the top 50 slices by seat capacity have similar topologies - close to trees and BA
graphs. We showed that Southwest is distinctly different, and that graph-theoretic metrics are not
enough to understand the underlying patterns in the airline’s structure. We also showed that over
time it is likely that Southwest will become more centralized (more hubs, less point-to-point). The
following is a summary of the above points:

• Compared graph-theoretical topology analysis with industry-relevant metrics to understand
the state of the industry from a high-level

• Compared topologies of different airlines based on topology profile plots and underlying mo-
tifs.

• Found that JetBlue, Continental and all industry slices have similar topologies, as opposed
to Southwest.

• Detect patterns of growth in airline networks: hub seeding, geographic expansion, and local
interlinking.

The major takeaway from the airline analysis is that most airlines have a prevalent “hub-spoke”
topology that can be matched with a hub-seeding generation model. The second major takeaway
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is that Southwest Airlines was proved to have a different structure, using various size-related and
non-dimensional statistics, as well as underlying motifs.

6.1.4 Wikipedia

We found that Wikipedia networks grow very differently from transportation systems. Local sub-
structure can strongly influence the early days of a language Wikipedias. Also we found that most
Wikipedias converge to a random hierarchical structure, strongly modular with weak links. And
this happens by coalescence. Small clusters of knowledge first grow separately, in small local hierar-
chies (often simple trees) and eventually connect via weak thematic links. This model is pervasive,
except in the case of the Chinese Wikipedia, which grows 99% connected from its first day, and
exhibits a more centralized structure. The summary of Wikipedia-related contributions is below:

• First comprehensive analysis of the network topology evolution of articles in Wikipedia.
• Quantified patterns of evolution in knowledge networks: verified growth by coalescence.
• Proposed general static topology for language Wikipedias - random hierarchy of weakly-linked

modules.
• Understood the early stages of growth of various Wikipedias, including the Esperanto, Span-

ish, Russian, Chinese, Interlingua, French and Italian Wikipedias. Similar patterns of growth
by coalescence were observed in change propagation networks [13].

6.1.5 Computational contributions

Computation has been a challenge in this research because graph algorithms are not easily paralleliz-
able, and the datasets of interest have 100s and 1000s of nodes. We have discussed computational
complexity where relevant in the thesis. For example, the complexity of the components of the
topology vector is included in Table 2.1.2. More on computational challenges is discussed in the
following section 6.2.

• Created an extensive Python toolbox for modeling and analyzing data that can be represented
as a network.

• Adapted single-motif finding and topologically generalized motifs to create a comprehensive
motif finding algorithm with complexity O(k!+

(n
k

)
), where n is the graph size and k is the

motif size (Chapter 2, Section 2.4.).
• Proposed two simple probabilistic growth algorithms for airlines, and showed that stochas-

tically they perform better than canonical growth models from the literature (Chapter 4,
Section 4.4).

6.2 Limitations

6.2.1 Data/Computation

A major challenge in this research was computation time. Both the airline and the Wikipedia data
in their entirety were too large to analyze as a full set. That is why slices of the airline data were
carefully selected and only the first 100 or 365 days of Wikipedias in general were analyzed. The
most intensive part of the computation, by far, is the motif finding. Full factorial motif finding is
exponentially hard to do, but even probabilistically, with growing network or motif size the problem
becomes very challenging. We found that for motif sizes above 9, the memory, not the time is the
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limit.

All computation was performed across various platforms, which also presented some software
version challenges. The machines used are:

• 3.6 GHz/2 GB RAM Dell desktop computer
• 2 GHz/0.99 GB RAM Dell laptop
• Dedicated Linux node (courtesy of the Aero/Astro department)
• Athena (Linux) station IBM dual processor
• Massachusetts General Hospital supercluster (courtesy of Dr. Anna Custo)

As mentioned, graph algorithms are not naturally parallelizable, which makes computing on
various platforms, not only difficult due to Python versions and library differences, but also in
putting together the results. Given better computational resources, the datasets we studied can
be analyzed for longer parts of their history (since they mostly grow in size). This could answer
questions related to whether topology transitions are only typical in the early stages of growth. And
whether the beginnings of different airlines are mostly the same, and they diverge (ex: Southwest)
or whether they have different histories from the start. Another advantage of better computational
resources would be the ability to search for larger motif patterns. This should confirm some of the
findings related to topologically-generalized motifs, by finding larger motifs in the same families,
but it may also uncover new structures.

The potential for analyzing larger datasets such as the network of Internet routers, some bio-
logical datasets, power grids would be possible with better computational resources.

6.2.2 Approach limitations

Probabilistic motif finding (NP problem)
The full factorial motif finding was hard to implement given the computational resources described
above, the size of the data and the limitations of the Python language. As described in Chapter 2,
the motif finding is based on a randomly-seeded breadth-first-search across the graph. The rest
of the motif search is deterministic. We have not compared our algorithm to other motif-finding
software, neither in approach, nor in computational time. Such assessment might augment the
results or speed up the search.

Topology vector/profile
The topology vector is an intuitive idea, but obviously cannot claim to be a comprehensive descrip-
tion of topology. It proved to be a fairly good relative measure, but cannot be used universally to
classify topologies. The topology profile idea validates well when tested with canonical topologies,
however the question of a topology continuum or topology space is still open. It could be that
graph topology space is not metrizable, in the way we have approached the problem, so the vector
distance is a notional, but not a real metric. Our research adds a small step in the direction of
understanding topology space and whether it is metrizable.

Canonical topology comparison
The canonical topology comparison is done point-by-point rather than continuously. This means
that at each step a new canonical graph is created for comparison with the real network, not grown
alongside it. This is a forced comparison since every snapshot of real data is based on the previous
one. The reason why the canonical networks were not grown along is that with the ”wrong” initial
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conditions, some of the random versions can stray too far from the real graph, while on average
they might not be that different.

Southwest growth model probabilities not refined (Section 4.4)
The hub seeding and Southwest growth models are probabilistic, based on frequency of certain
events in the real data. These frequencies / probabilities were not studied from the real datasets,
for the Southwest growth model, but adjusted to match the topology vector better. The difficulty
in calculating probabilities is that in the case of Southwest, hubs are harder to define, based on
connectivity because airports are very well connected, and local connectivity is hard to define,
because it is based on geography, and not necessarily path lengths. Certainly these probabilities
could be studied further from the data.

6.2.3 Airline analysis

The airline analysis leaves many open trails. Aircraft rotations were not taken as a crucial compo-
nent of route structure, which they certainly are. Neither was competition or congestion at airports
considered. Southwest’s flying a parallel network (same geographical area, but secondary airports)
was not discussed, while it has huge implications for the ability of the airline to fly with such high
density and yet perform so well. Also, in general we did not tie performance and cost with any
of the metrics we discussed. The drivers behind topology transitions and airline history were not
discussed explicitly. There are angles of analysis that we did not address, for example, node-role
based approaches [16]. We also did not discuss the meaning of the patterns of evolution we found
for airline operations and management.

6.3 Future Work

There is a lot of potential for further work, as this research has only touched the surface on the
topics of network topology, topology evolution and pattern finding in real systems. The following
list discusses various directions of future research, both in the theoretical direction, as well as the
applications side.

Topology Analysis

• Develop further the idea of the topology vector:
The topology vector we developed features 5 metrics that easily non-dimensionalized and tend
to scale well between 0 and 1. The question of scaling and dominance of the various metrics
could still be explored further. For example, the s-max measure for all real systems tends to
fall roughly between 0.5 and 0.9 (for airlines). It is an open question what the true range is,
though 1 is clearly achievable by the s-max graph. If such scaling behavior is fine-tuned, the
sensitivity of the vector distance could improve. Another open question is what the measures
in that vector should be. We chose 5 metrics that measure very different properties of the
graph, but they are certainly not the only cited in the literature. Some additional metrics
are the rich club metric, average path length (vs diameter), minimum and maximum degree
correlations with the same degree distributions, degree distribution exponents (depending
on the distribution fit). These are some possible additions to the topology vector. Further
work can analyze these together and search the literature for others, to understand whether
adding metrics is actually beneficial. Preliminary analysis shows that reducing the size of
the topology vector results in non-uniqueness, i.e. different graphs appearing to the have
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the same topologies. To sum up, the question of which metrics and how many is open, and
it is only on the surface of the question of topological space continuity and metrizability.
A true distance may not be definable in the space of graph topologies. Verifying that this
distance is a measure because it is hard to verify even the first condition: uniqueness. Simply,
if the distance between two topology vectors is 0, does that mean that the two graphs are
isomorphic?

• Weighted and directed graphs:
The non-dimensional topology analysis developed in this thesis is concerned only with undi-
rected, unweighted graphs, though we have discussed implications of edge weights. In reality,
airlines networks, for example, are neither undirected, not unweighted. Developing the mod-
eling to address this issue would help look into questions such the effect on network structure
of aircraft rotations (if data is available) or the effect of concentrating capacity in parts of
the network, and how that affects growth.

• Tensor analysis or multi-dimensional graphs:
The engineering systems analyzed in this thesis are not simple graphs, but exist at the interface
of many layers of technical, social, informational and other networks. These can be modeled
separately, as we have done, or combined. This would involve looking multi-graph type of
analysis and understand how the various layers interact. In the example of Wikipedia, it
may be possible to map the network of users/authors to the articles they write and look for
common patterns or communities. Understanding the socio-technical layers of an engineering
system using network modeling would certify the usefulness and applicability of such methods.

• Similarity visualization:
Representing similarity, or how close two graphs are to a set of canonical topologies is chal-
lenging because the inherent distance between canonical graphs and how they should be
arranged with respect to each other is an open problem too. The topology profile we present
in Chapter 2 orders canonical topologies roughly by increasing density. With increasing
density, “complexity” or interconnectedness also increases, though this is not a linear scale
either. For example, the most dense graph, a complete graph is straightforward to under-
stand. Experimenting with other visualization techniques than a linear scale can be helpful in
interpreting the results better. An example is Multidimensional Scaling (MDS) which can be
used to detect meaningful underlying dimensions between studies objects (various topologies).
Preliminary experiments show that this method might indeed provide useful generalizations,
though some fine-tuning and scaling is needed.

• Motif Search:
The motif search was an integral part of studying system topology. Motif size is related to
the question of building block size and the what are the largest detectable patterns, if there
are such. One could argue that it is not interesting to search for motifs larger than half of the
size of the graph, but then a loop of any size might be interesting to find, depending on what
the graph represents. One possible research direction is to improve computation (resources
and algorithms) to do larger motif search. Another direction is to look for novel techniques
to do combinatorial search or better sampling of the graph, than breadth-first-search from
every node.

Airline Networks
Further work in airline networks can be done in both improving the models and in working beyond
the scope of this thesis. In terms of models,

• The two proposed growth models, hub-seeding and the Southwest model are probabilistic and
only the hub-seeding model probabilities were learned from data. This can be done for the
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Southwest model to test whether the model matches the data better stochastically.
• Another extension to the modeling work would be to seed the models with discrete events,

such as mergers or major disruptions (cancelations of departures) and simulate various “prob-
ability” scenarios based on these events. This work could be beginning of simulation and
prediction of actual evolution scenarios.

• Given better computational facilities, we also like to study statistically the entire airline
dataset as an evolving network. This might give significant insights into the evolution of the
air transportation system as a whole.

In terms of domain research in airline routes evolution, there are a number of factors that can
be incorporate in models or investigated as drivers. An important question is whether there is
a correlation between airline performance and route structure. Southwest is the most (and often
only) profitable airline in the US in the past 10 years or so - and its route structure is clearly
an outlier. Would other airlines be profitable if they had the topology of Southwest, or are other
economic factors prevalent? A summary of ideas for further exploration is below:

• Look for correlation between airline performance and route structure.
• Account for airline aircraft rotation schedules - see how these correlate with hub structure,

and with the Southwest local highly-interlinked substructures.
• Match the airports where different airlines fly; account for Southwest’s ”parallel” network.

Wikipedia Networks

• In this research, we have explored the early growth of 5 Wikipedia datasets. Studying other
languages could add knowledge to the base of similarities and differences among Wikipedias.
Such an exploration would also reveal a wider set of interesting local structures.

• Part of the challenge of analyzing larger datasets would be to attempt to download the early
history of the English Wikipedia and see if the largest and most popular Wikipedia has similar
growth patterns.

• A question of cognitive interest is whether there is a limit to the number of links an article
can have. Since these articles are not written or edited by one person, the answer can be
unexpected. This could be found by computing the edge-to-node ratio (or average degree)
of Wikipedia articles for longer part of their history (4-5 years). If the edge-to-node ratio
converges or is similar for various Wikipedias, then there is some cognitive limit in how people
form associations in knowledge.

• As discussed above, in terms of analyzing all layers of context of a system, future work can
be done to understand the network of authors/editors of Wikipedia articles, in relation to
the network of articles. It is likely to find that some of the thematic clusters correspond to
clusters of authors with domain expertise in the same areas. General knowledge content will
probably correspond to more diverse communities of authors.

Predictive models
An important consequence of this research can be prediction of the evolution of systems. We
synthesized growth algorithms based on underlying patterns, but did not look at overall factors
and testing these algorithms under different scenarios and applying them to different systems. A
number of steps that can be taken in this direction are summarized below:

• Implement and test alternative growth models. These can be a range of the same models with
different variations on probability or details. There can also be completely different models
that can be derived from the underlying patterns. They can be tested on all of the airlines
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in the data, or the entire industry as a whole to extract insights. The same models can also
be tested with different initial conditions. Some research on social networks indicates that
the early beginnings of many trends and popular products are randomly-seeded, but after the
take-off the system dynamics is more predictable. Various scenarios, for example with seeding
different hubs for growth can be played out to see if the system will evolve in a similar way.

• Look at the phenomenon of decay and shrinking versus growth in systems. There are many
examples of systems that are down-sizing and ceasing operations. In our data, ATA is one
of the airlines that go bankrupt and stop operations 6 months after the dataset ends, and
though that was not studied, the decay in the last months could be detected from the topology
patterns. Other systems that could be studied in this context are rail networks in the US
in the 1950s, other airlines that ceased operations, and any networked systems that went
obsolete.

• Algorithmic prediction is achieved by training algorithms on real data. The only aspect of
this we have addressed is some supervised learning in extracting the probabilities for the hub
seeding algorithm from the airline data. Since, for some of our examples, such as Wikipedia,
there are many data snapshots (up to 1500 in days for example), the algorithms can be
trained on various parts of the timeline and used to predict the immediate future. One can
also insert noise in the data to account for unforeseen events, and further train the algorithms
in a unsupervised way.

With these suggestions for future directions, we conclude with the hope that this thesis has
added some knowledge and insight on topics of topology and evolution in the context of real
systems.
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Appendix A

Additional Materials

A.1 Airlines

Figure A-1: Number of airports and number of OD pairs monthly for all US airlines
reporting to the BTS [1]. In August 2001, the DOT proposes the addition of mil-
itary, cargo and charter flights to the reports, hence the jump in the data (source:
http://www.bts.gov/publications/federal register/2001/html/bts 20010828.html)

185



Figure A-2: Total number of seats offered versus number of destinations. All data slices. 1990 and
2007.

Figure A-3: Average path lengths for the eight major airlines and all low-cost airlines discussed in
Chapter 4, 1/1990-8/2007

186



Figure A-4: Passengers carried for the eight major airlines and all low-cost airlines discussed in
Chapter 4, plotted for the month of August only, yearly from 8/1990 to 8/2007.

Figure A-5: ATA Airlines topological similarity to canonical topologies over time, 212 months,
1/1990-8/2007
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A.2 Language Wikipedias

A.2.1 Interlingua Wikipedia

Figure A-6: Graph-theoretical metrics for the Interlingua Wikipedia: degree correlation, average
path length, diameter and s-max measure.

A.2.2 The Simple English Wikipedia

The Simple English Wikipedia is a Wikipedia which only uses simple vocabulary and grammar.
Users are encouraged to use simple and short sentences, useful and concise pages, so that the
Wikipedia is accessible to children and people learning English. With currently more than 44000
articles, the Simple English Wikipedia is ranked 39 by size.

Due to the slow growth of the Simple English Wikipedia we analyze the period between 17 and
24 months or roughly 550 and 730 days. While much slower in growth, this Wikipedia is different
from the others also in topology. Figure A-7 shows the article and hyperlink growth for that period.

Figure A-7: Nodes and edges in the history of the Simple English Wikipedia from day 550 to day
730.
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Figure A-8: Day 730 of the Simple English Wikipedia. The fully connected cluster in the middle
consists of the months of the year (i.e. the pages for January, February, etc.).

The topology profile for day 730 shows an unusual similarity to lattice, triangular and square,
more than any other canonical topologies (Figure A-9).

Figure A-9: Topology profile for day 730 of the Simple English Wikipedia.

The fully connected subgraphs (cliques) are very unusual in these sparse networks, so it is no
surprise that the significant motifs for day 730 are fully connected 5 and 6-motifs and variations
on the theme (Figure A-10).

Figure A-10: Simple English Wikipedia significant motifs for day 730 (2 years)

The canonical topologies matching (Figure A-11) confirms the tendency to look like a lattice
over time. Given the size of the wiki this is probably large due to the fully connected subgraph of
months of the year. This case of a clique is clearly an exception and it would be interesting if later
in the history of this Wikipedia there are more cliques.
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Figure A-11: Canonical networks comparison for the Simple English Wikipedia, days 550 - 730

A.2.3 French and Italian Wikipedias

Figure A-12: Growth of the French and the Italian Wikipedias
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Figure A-13: Days 250 and 365 of the French Wikipedia

Figure A-14: Days 470 and 500 of the Italian Wikipedia
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A.3 Airlines Data Sample

Table A.1: One line from the US BTS [1] data. A JetBlue (B6) flight from Boston to Austin in
Jan 2007, 30 departures.

DEPARTURES SCHEDULED 30
DEPARTURES PERFORMED 30
PAYLOAD 786000
SEATS 3000
PASSENGERS 1426
FREIGHT 0
MAIL 29
DISTANCE 1698
RAMP TO RAMP 8643
AIRTIME 7890
UNIQUE CARRIER B6
ORIGIN BOS
DEST AUS
AIRCRAFT TYPE 678
YEAR 2007
MONTH 1

A.4 JetBlue Airways 8/2007 airport codes

ORD - Chicago, IL
IAD - Washington Dulles, DC
DEN - Denver, CO
CLT - Charlotte, NC
SFO - San Francisco, CA
AUS - Austin, TX
PDX - Portland, OR
PWM - Portland, ME
ACK - Nantucket, MA
BOS - Boston, MA
HYA - Hyannis, MA
MVY - Martha’s Vineyard, MA
PVC - Provincetown, MA
BUF - Buffalo, NY
BTV - Burlington, VT
CMH - Columbus, OH
FLL - Fort Lauderdale, FL
RSW - Fort Myers, FL
TPA - Tampa, FL
ROC - Rochester, NY
PBI - West Palm Beach, FL
MCO - Orlando, FL
SYR - Syracuse, NY
LGB - Long Beach, CA
SLC - Salt Lake City, UT
OAK - Oakland, CA
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SEA - Seattle, WA
SMF - Sacramento, CA
SJC - San Jose, CA
BUR - Burbank, CA
SAN - San Diego, CA
LAS - Las Vegas, CA
TUS - Tucson, AZ
PHX - Phoenix, AZ
MSY - New Orleans, LA
PSE - Ponce, Puerto Rico
BQN - Aguadilla, Puerto Rico
SJU - San Juan, Puerto Rico
EWR - Newark, NJ
SWF - Newburgh, CT
SRQ - Sarasota, FL
JAX - Jacksonville, FL
RDU - Raleigh/Durham, NC
BNA - Nashville, TN
RIC - Richmond, VA
PIT - Pittsburgh, PA
ONT - Ontario, CA
HOU - Houston, TX
LGA - New York, NY
HPN - Westchester County, NY
JFK - New York, NY
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A.5 Airline industry data slices

Table A.2: All data slices of the US airlines dataset.
SW 1/90 Southwest Airlines, January 1990
SW 8/07 Southwest Airlines, August 2007
B6 8/07 JetBlue Airways, August 2007
AS 1/90 Alaska Airlines, January 1990
AS 8/07 Alaska Airlines, August 2007
HP 1/90 America West Airlines, January 1990
HP 8/07 America West Airlines, August 2007
AA 1/90 American Airlines, January 1990
AA 8/07 American Airlines, August 2007
UA 1/90 United Airlines, January 1990
UA 8/07 United Airlines, August 2007
DL 1/90 Delta Airlines, January 1990
DL 8/07 Delta Airlines, August 1990
NW 1/90 Northwest Airlines, January 1990
NW 8/07 Northwest Airlines, August 2007
CO 1/90 Continental Airlines, January 1990
CO 8/07 Continental Airlines, August 2007
US 1/90 US Airways, January 1990
US 8/07 US Airways, August 2007
20<seats<100 1/90 all US flights offering between 20 and 100 seats, January 1990
20<seats<100 8/07 all US flights offering between 20 and 100 seats, August 2007
seats>100 1/90 all US flights offering more than 100 seats, January 1990
seats>100 8/07 all US flights offering more than 100 seats, August 2007
seats top 50 top 50% flights by seat capacity over the period 1/1990-8/2007
seats top 40 top 40% flights by seat capacity over the period 1/1990-8/2007
seats top 20 top 20% flights by seat capacity over the period 1/1990-8/2007
jets only 1/90 all US flights served by jet-powered aircraft, January 1990
jets only 8/07 all US flights served by jet-powered aircraft, August 2007
RJ jets 1/90 all US flights served by regional jets, January 1990
RJ jets 8/07 all US flights served by regional jets, August 2007
RJ+turboprop 8/07 all US flights served by regional jet and turboprop aircraft, August 2007
narrow 8/07 all US flights served by narrow-body jets, August 2007
wide 8/07 all US flights served by wide-body jets, August 2007
<500 mi 1/90 all US flights under 500 miles, January 1990
<500 mi 8/07 all US flights under 500 miles, August 2007
>500 mi 1/90 all US flights longer than 500 miles, January 1990
>500 mi 8/07 all US flights longer than 500 miles, August 2007
dep top 50 top 50% flights by number of departures over the period 1/1990-8/2007
dep top 40 top 40% flights by number of departures over the period 1/1990-8/2007
dep top 20 top 20% flights by number of departures over the period 1/1990-8/2007
ALL 1/90 all US flights, January 1990
ALL 8/07 all US flights, August 2007
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