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Abstract

Responsive sound surfaces are material surfaces, embedded with proximity sensors, that

react with sound to human movement. They create a dynamic relationship between

movement, space, and sound that engages a participant in a creative endeavor. Responsive

sound surfaces are presented and developed as one possible model in the relatively

unexplored area of participatory interactive systems. This work identified, designed, and

implemented an initial set of software components necessary to realize interactive

experiences within the context of responsive sound surfaces. In addition, a framework for

organizing cooperating software components was designed and various approaches to

structuring non-linear, unfolding interactive experiences were explored. A video submitted

with this thesis demonstrates some of my results.
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1 Introduction

Tools are the most visible fruits of technology and we employ tools in many areas of our

lives. Jean-Louis Gassee expresses our enchantment with tools by saying: "We humans are

in love with our tools because they help us become more than we are, to overcome our

limitations and extend the boundaries of what it is possible to do with our brains and bodies

[Gassee90]. It is significant that he uses the word "love" to characterize our relationship

with our tools. With the advent of the computer, perhaps our most sophisticated tool, we

are entering an age where we will no longer simply utilize, employ, or apply technology,

but will also interact with technology. Whether we embrace the possibilities or are chilled

by the implications, we must recognize that we will increasingly interact with technology in

deeper and more intimate ways.

1.1. Motivation

A colleague and I badly play Mozart piano duets in such a way that only we could possibly

enjoy. Yet, the experience is immensely satisfying. It is a chance to share an activity that

encourages individual expression within a whole that exceeds the separate parts. Listening

to skilled musicians playing music is also satisfying. That we are avid consumers of

musical tapes and discs bears this out. Although one may listen actively, the act of

listening is a passive one. In contrast, by playing music together, albeit at an amateur level,

we enrich our relationship to music and the role of music in our lives. Even at this level,

participating in a creative or artistic endeavor is a fulfilling experience.

Although hardly proficient pianists, my colleague and I have had enough musical training

to make it through the duets without growing unduly frustrated. People who have not

invested the time and money to acquire musical skills are confined to the role of passive

consumers of music. A participatory interactive system blazes one path toward the

inclusion of more people as active and expressive participants within a creative or artistic

endeavor.

In its most glorious form, a participatory interactive system can be part of a kind of sacred

space where people gather together and in which their actions have heightened significance.

A responsive space where the interplay of actions between people and the space



dynamically shapes an experience that expands communal consciousness and perception

while touching each participant in personal and individual ways. Such lofty aspirations are

vital when one considers Brenda Laurel's lament:

At the height of the Anasazi civilization in the great kivas, humans enacted spirits and

gods. Long before these magical presences emerged from the shadows, dancing would

begin on huge foot-drums whose throbbing could be heard a hundred miles away across

the desert. The experience was an altered state that culminated in the performance in

living presence. The great kivas are silent today. Even in our magnificent cathedrals, we

hear only echoes of a magnitude of experience that has faded from our lives. There are no

magical meeting places at the center of our culture, no sacred circles inside of which all

that one does has heightened significance. In those few places where such transformations

can still occur, the shadow of our civilization is fast obliterating the possibility.

[Laurel93]

1.2. Interactive Systems

Interactive systems are characterized by the interplay of actions and responses unfolding in

real-time between people and technology. For the person, there is an increased sense of

immediacy because actions have heightened significance. Designers of interactive systems

must create a relationship between a person engaging the system and the system itself.

Each party must perceive, to a certain extent, what the other is doing. To sense what

people are doing, interactive systems typically employ sensors and video cameras.

Theoretically, any of the human senses could be involved, but interactive systems primarily

rely on visual, audio, and tactile stimuli. A computer usually lies at the heart of an

interactive system and executes a program that defines the behaviors of the system.

In his book Interactive Music Systems, Robert Rowe suggests a classification system for

interactive music systems based on three dimensions that lie on a continuous spectrum

[Rowe93]. In an effort to gain a deeper sense of interactive systems from a designer's

perspective, I adopt Rowe's classification approach to the more general interactive system.

It should be emphasized that the parameters for each dimension lie on a continuum of

possibilities and the parameters used to describe each dimension generally fall on some

extreme. The five dimensions an interactive system designer must address are the

following:



- Goal: compositional - performance - experiential

- Expertise: novice - expert

- Control: instrument - director - collaborator

- Form: linear - multi-threaded

- Participants: individual - group

The first dimension is very broad and attempts to make loose distinctions about the

encounter with the system or the goal of the designer in creating the system. It makes a

distinction between compositional, performance, and experiential systems.

. Compositional systems engage the participant in a creative or design activity. Drum-

Boy [Matsumoto93], an interactive percussion system allowing non-experts to build

drum patterns with high-level tools, is an example. It should be noted that the design

activity need not be so explicitly stated; it could be subtly woven into the entire

experience of discovery and increased awareness of design materials, for instance.

. In performance systems, the person's role is that of a performer and implies a high

degree of proficiency over the system acquired by rehearsal or advanced skill in a

particular domain. Tod Machover's hyperinstruments, which extend the instrumental

resources of virtuosi using sensors on traditional instruments, computers, and

synthesizers, are an example [Machover92].

- Experiential systems focus on creating a particular experience for the person. The

experience could be artistically inspired, entertaining, or educational. Experiential

systems are about action and doing and what it feels like to participate within the

interactive possibilities of the system. One example is Morgenroth's Thinkie, which is

a form of interactive narrative that attempts to convey the experience of what it is like

to think in a certain way [Morgenroth93].

The level of expertise required of a person to fully engage a system draws the distinction

between novice and expert systems.

- Novice systems invite non-experts or people with no particular set of skills or

knowledge to interact with the system.

. Expert systems demand a high level of skill or knowledge. One might have to spend a

lot of time with the system to gain proficiency or have advanced knowledge in a

particular domain, such as music. Video games usually fall within these two extremes.



A game may be simple to learn, but require practice to gain dexterity over the controls

or to discover its secrets.

To qualify as an interactive system, the agents involved, both human and computational,

must somehow act upon each other and change their behavior in response to the actions of

others. The control dimension tries to determine the degree to which this is so and the

nature of the mappings between the actions of the participant and the response of the

system. We delineate this distinction with the instrument, director, and collaborator

models.

- The instrument model invites the participant to play the system as if it were a musical

instrument. In other words, control is at a low and detailed level and there is a clear and

direct connection between action and response. A music system in this vein would

offer precise control over individual notes.

- The director model offers control at a higher level than the instrument model. One

example is the framework Houbart proposes for a "smart" VCR with content knobs

[Houbart93]. To shape a video documentary on the Gulf War, the user would direct the

flow of video material and the point of view using simple graphical controls. Behind

the scenes, the system carries out the low level details of selecting the appropriate video

material and ensuring that transitions are smooth.

- In the collaborator model, the system really flourishes as an interactive partner in its

own right. Here, the actions of people do not necessarily provoke a direct response

from the system, but may only influence the course or nature of subsequent

interactions. The system sheds its subservient character, more appropriate to the other

two models, to emerge as an interactive personality.

The temporal structure or form of the system or the order in which interactions unfold in

time is the dimension that differentiates between linear and multi-threaded structures.

- A linear structure progresses through a system in a fixed order every time the system is

run. In general, linear structures do not leave much room for interaction. However,

there are systems that are structured linearly at a global level, but have interaction

within individual sections. Machover's hyperinstrument pieces are divided into modes

that generally correspond to sections of the piece [Machover92]. Each mode is executed

in a fixed order, but a variety of interactions occur within each mode. Within Rowe's

classification system, hyperinstruments would be score-driven.



- A multi-threaded structure provides each person with a unique path through the system.

It is typically implemented as a branching strategy at various points in the system.

Limousine [Weinbren85], Grahme Weinbren's interactive video system, adopts the

metaphor of a drive in a limousine. The limousine will travel along routes established

by the author, but at any time, the participant may intervene and direct the limousine to

explore a different path. Collaborative systems, which include improvisatory ones, are

multi-threaded.

Finally, the last dimension makes a distinction about the number of participants involved

and provides a broad indicator of the social possibilities.

- Even though a system for an individual can only be used by one person at a time, there

may still be a social context. Two people taking turns at a video game may discuss

strategy and exchange tips as part of the whole process of interacting with the video

game.

- A system for a group of people means that the designer must be aware of the social

context surrounding the system. An important issue is how aware the participant

should be to the actions of others and yet retain a sense of personal contribution.

1.3. Participatory Interactive Systems

Participatory interactive systems directly engage a non-expert in a creative endeavor or

game-like activity. They afford intentional, shaped experiences; a participant must

consciously decide to engage the system with actions that have heightened significance, and

the designer of the system offers a mediated experience that empowers the participant with

opportunities to shape, contribute to, and personalize the experience. The social context is

collaborative in that form and structure emerge because neither the designer or participant

has total control. Following the classifying framework outlined above, the participatory

interactive system is experiential, novice-oriented, multi-threaded, and leans toward the

collaborator model. Generalizations about the number of participants, however, are not

appropriate.

1.4. Responsive Sound Surfaces

As one possible model for a participatory interactive system, the responsive sound surface

is a material surface, embedded with proximity sensors, that reacts with sound to human



movement. It creates a dynamic relationship between movement, space, and sound that

engages a participant in a creative endeavor. To more fully define and explore the

possibilities of this model, I have experimented with a responsive sound surface consisting

of a bare, flat surface that has spatial sensing technology, based upon recent work by

Professor Neil Gershenfeld [Gershenfeld94], hidden beneath its surface. The placement of

four sensors formed a pattern of sound areas on the surface. The surface physically frames

the overall sound texture and the sound areas are resonances within the texture that are

associated with similar timbres or layers of sound. Participants engage the system with

simple hand gestures above the surface in order to become increasingly more sensitive to

the sounds, timbral changes, and layers within the sound textures and how their

movements shape and influence these elements. A bare, flat surface may be disorienting,

but by minimizing the visual element, the aural and kinesthetic ones are emphasized. By

inviting people to touch air and feel space aurally, a special environment for reaching

people with sounds and textures is created.

Toward that end, I have created a software environment that embodies an interactive

approach to designing responsive sound surfaces and a set of examples built within that

environment. Three principal elements define the approach to the software environment:

dynamic languages, distributed system architecture, and software components. In this

document, I discuss how a particular dynamic language, namely Smalltalk, becomes viable

by using a distributed architecture along with carefully coordinated software components.

The software components provide the main functionality of the software environment and

are conceptually organized as layers stacked on top of each other with higher layers

building upon lower ones. At each level, I have identified, designed, and implemented

initial sets of software components and protocols necessary to realize interactive

experiences within the context of responsive sound surfaces. The figure below shows how

they are organized.

Extensible

Gesture

Real-Time

Framework

Starting from the bottom, the layers with their functionality are as follows:



- Framework Layer: This layer enables the designer to hierarchically organize components

by name; archive intrinsic, extrinsic, and symbolic component references: dynamically

connect components compose simple graphical interfaces quickly; implement

interactions on the fly; and structure unfolding interactions.

- Real-Time Layer: Components in this layer provide scheduling, MIDI input and output,

and timing. In addition, a suite of messages ensures the coordination of computers in a

network.

- Gesture Layer: Included here are components that track direct and immediate gestures and

others that follow gestures that build up and decay over time.

- Extensible Layer: To explore how extensible the software environment is, I have

adopted and extended a set of compositional agents and principles from another software

environment called Cypher [Rowe91].

Five example responsive sound surfaces are presented to demonstrate the effectiveness of

the software environment and to illustrate the main concepts of this work.

After a survey of some of the interactive work relevant to the concept of responsive sound

surfaces in section 2, there is a full discussion of the software environment and examples in

sections 3 and 4 respectively. An evaluation of those two parts follows in section 5 and an

outline of future directions in section 6 concludes this document.



2 Background

There are many artists, designers, and researchers exploring participatory interactive

systems. As a result, the range of participatory interactive systems is broad. Video games

have long headed their development and have spiraled into a multi-billion dollar industry.

Science museums have embraced interactive multimedia technology and perhaps the most

technically sophisticated systems that are accessible to the public appear in the award-

winning permanent exhibition Imaging, The Tools Of Science at the Museum of Science

and Industry [Reynolds93] [Bunish94]. Joseph Chung and Jeet Singh, concept designers

of the exhibit, consciously avoid the traditional methods of presentation. There are no

point and click interfaces and linear narratives where people mostly listen and follow along

passively. Instead, they sought to engage people in a dynamic and immediate process that

encouraged exploration. For instance, Face Net acquires the facial images of participants

and sends them through a network to appear on various screens throughout the exhibit.

Under control of the user, MetamorFace distorts, mutates, morphs, and blows up facial

images to give a sense of the range of digital manipulations of images.

The work relevant to responsive sound surfaces focuses on systems that are experiential,

novice-oriented, collaborative, and multi-threaded. In particular, they incorporate non-

contact, spatial sensing or emphasize the role of sound. Here, I briefly survey some of the

work pertinent to responsive sound surfaces. The survey is not comprehensive by any

measure. Rather, it is meant to touch upon some of the pioneering work that influenced the

conception of responsive sound surfaces and to outline a couple of the more intimate

directions people are taking with interactive technology.

2.1. Myron Krueger

Myron Krueger's influential VIDEOPLACE [Krueger9l] pioneered the use of video

technology to superimpose the silhouette of a participant on a screen with computer

graphics. One of the more popular interactions in VIDEOPLACE was CRITTER, an

amusing artificial creature that cavorted with the participant. CRITTER's actions included

floating down onto an open hand, dangling from an outstretched finger, and performing a

celebratory dance on the participant's head.



In his book Artificial Reality II [Krueger91], Krueger proposes a new art form where

response is the medium. In contrast to the passivity of audiences within traditional art

forms, Krueger embraces an active role for the participant and stresses the interplay of

gesture and response.

It is the composition of the relationships between action and response that is important.

The beauty of the visual and aural response is secondary. Response is the medium!

[Krueger9l]

Although often clever, Krueger's interactions are usually direct and simple. I intend to

enrich the interactions with responsive sound surfaces by layering interactions at different

levels. Simple layers would provide clear responses. More subtle interactions would only

influence the system. For example, one might define the presence of a hand in a particular

sound area as a simple switch indicating in or out and use presence to trigger events

immediately when there is a transition between in and out. Another way would allow

presence to slowly build up when a hand is inside the sound area or gradually fade away

when the hand leaves. In this way, presence could gradually fade sounds in and out of a

texture.

2.2. Pattie Maes et. al.

Recent work by Pattie Maes et. al has extended this kind of system to include 3D computer

graphics worlds, artificial creatures with sophisticated behavior selection algorithms

inspired by Ethological models of animal behavior, and hand and body gesture recognition

across time and space [Maes et. al. 94]. Their Artificial Life Interactive Video Environment

(ALIVE) system, immerses a human participant in a graphical world inhabited by

autonomous behaving creatures that have their own goals and dispositions. Using natural

gestures, the participant could act upon the creatures. For instance, a pointing gesture

would send a Puppet away with a pout. What is fascinating about the ALIVE system is

how it illustrates our increasingly more intimate relationship with technology. We are

approaching a time where people will socialize with technology.

2.3. David Rokeby

David Rokeby also employs a video system to track people within a space. However, he

expresses the responses of his system through sound and music. In Very Nervous



System, a hand-build video processor analyzes the output of a video camera to obtain a

gesture history.

Gesture histories are comprised of the shifts in dynamics (roughly equivalent to

movement 'intensity', a combination of velocity and size of the moving object, a sort of

'momentum' perhaps). From this gesture history, more qualitative information is derived,

to balance the purely quantitative character of the initial analysis. Therefore, the gathered

information ranges from gross amount of perceived movement to time-based notions of

consistency, unexpectedness, and rhythm. [Rokeby9l]

Within IntAct, a real-time modifiable pseudo-object-oriented programming language,

Rokeby defines the "interactive behaviors" that map the physical gestures to control

commands that play various synthesizers. Like Krueger, Rokeby also elevates the role of

interaction and discourages the auditioning of his music for its own sake as being beside

the point. One must interact directly with his systems to get a real sense of what Rokeby is

trying to communicate. Although I agree that interaction should be paramount, I'm inclined

to believe that the quality of the system's responses should be very high in addition to the

total interactions.

2.4. Sharon Daniel

Sharon Daniel's Strange Attraction: Non-Logical Phase-Lock over Space-Like Intervals is

an electromechanical video and sound sculpture for two participants and two attendants that

creates a metaphorical experience based on the model of a strange attractor in chaos theory

[Daniel94]. Significantly, she expands the system's perception of its participants to include

involuntary or automatic responses in addition to the intentional ones. Electronic devices

monitor the heartbeat, respiration, or skin resistance of each of the four people involved.

The gathered information triggered banks of samples that continuously changed based on

each participant's response. Not only are we approaching a time where people will

socialize with technology as in the ALIVE system, but interactive systems will also have a

deeper sense of its participants by monitoring their unconscious and automatic reactions.

2.5. Liz Phillips

Liz Phillips is one of the pioneers of interactive sound installations and has profoundly

influenced the conception and direction of this work. Phillips builds open systems that



reverently incorporate natural, organic elements within an adaptive environment. In her

interactive sound sculpture installation Graphite Ground, a wooden walkway, pink Arizona

flagstones serving as stepping stones, and large shards of raw copper are formally

organized on top of raw wool that blankets the floor to create a contemplative site

reminiscent of a Japanese garden [Phillips88]. Capacitance fields that are sensitive to the

presence of people radiate from the copper rocks. Movement in a particular location and

time activates changes in the pitch, timbre, duration, volume, and rhythm of the unfolding

soundscape.

My experience working with Liz impressed upon me the importance of layering interactions

at difference levels of transparency. Simple and direct interactions quickly give a

participant a sense of the system at a basic level and serve as a point of departure for deeper

exploration. Complex interactions enrich the experience and encourage deeper

participation. At the time I was working with her, she was making the transition from an

analog system to a digital system for the mapping of human movement to sonic events.

Her analog system included an extensive collection of modules that could be mixed and

matched with patch cords. We had no such collection of components in the digital domain

and resorted to ad hoc, project-based solutions. Part of the work of this thesis was to

identify, design, and implement an initial set of components that are relevant to interactive

sound systems.

In many ways, responsive sound surfaces are a distillation or condensation of the fertile

work Phillips has done with her sound tables, which includes Mer Sonic Illuminations

[Phillips91]. Although Phillips articulates the responses of her system primarily through

complex sonic events, her work has a very strong and important visual component. In

contrast, the responsive sound surface I have been working with present a bare, flat surface

without visual embellishment. The unadorned surface serves as a physical frame of

reference for gestures made in space and its visual simplicity directs attention to the

physical gestures made within its space and how they relate to sounds and layers within a

texture.



3 Responsive Sound Surface Development Environment

The guiding principle that directed the realization of this work, from the software level to

the nature of a participant's interactions with the system, is that simple elements may be

combined in simple ways to produce complexity and rich interactions. Clearly, simple

elements, especially in isolation, are easier to conceive and develop than complex ones.

However, by combining and layering simple elements, one does not necessarily sacrifice

complexity and richness. At the software level, the system was built up of simple software

components that analyzed sensor data and play synthesizers. Although the individual

interactions between the participant and the system were straightforward, they were layered

on top of each other. Some layers were simple and direct and had a clear connection

between action and response. Others were more subtle, where actions only influence

responses or cause perturbations within the system. The mixture of simple interactions

with subtle ones is an important ingredient of participatory interactive systems that avoid

instruction or coaching. Clear and immediate interactions give the participant something to

grab on to or a place to anchor further explorations into the system. Subtle interactions

reward exploration and enrich the experience.

3.1. An Interactive Approach

I have created a software environment that embodies an interactive approach to designing

responsive sound surfaces. At any time, the designer may modify the environment, along

with a custom system built on top of it, and the changes will take effect immediately. Three

principal elements define the approach to the software environment:

- Dynamic Languages: A dynamic language like Smalltalk incrementally compiles code

on the fly so that programs may be developed while they are running.

- Distributed System: A distributed system functionally divides the work load among a

group of computer within a network allowing systems to scale up incrementally.

- Software Components: The component culture approach emphasizes the building of

reusable objects with explicit protocols. The resulting components may be mixed and

matched to produce custom solutions.



3.1.1. Dynamic Programming Languages

One of the great benefits of dynamic programming languages is the ability to modify a

program while it is running. Although many dynamic languages dynamically compile code

changes, the penalty for such flexibility is performance speed that is slower than traditional,
statically compiled programs. In addition, many dynamic programming languages,
including Smalltalk, Common Lisp, and CLOS, have automatic garbage collecting

facilities. Programmers may consume memory freely without having to worry about

disposing it when no longer needed. When the system runs out of memory, it

automatically reclaims the chunks of memory no longer referenced by the program. This

takes time and perceptible pauses can be catastrophic in real-time computer-music

applications. As a result, the computer-music community has generally shied away from

dynamic languages for real-time work.

Hyperlisp

One notable exception is Hyperlisp [Chung9l], a real-time MIDI programming

environment embedded in Macintosh Common Lisp. Joseph Chung created Hyperlisp at

the MIT Media Lab to develop the hyperinstruments conceived by Tod Machover

[Machover92]. The later stages of hyperinstrument development demand fast, iterative

refinements, often during rehearsals; the ability to change the system while it is running is

not a luxury, but rather a necessity. The primary drawback of Hyperlisp lies within the

implementation of the environment it is embedded. When Macintosh Common Lisp runs

out of memory it typically spends at least two or three seconds collecting garbage. During

a performance this can be a show stopper. Hyperlisp averts disaster by managing its own

memory and requires its users to do the same. Unfortunately, programmers are

notoriously bad at managing memory and the task is compounded by an environment that

expects transparent mechanisms to manage memory automatically.

Smalitalk

Within the context of responsive sound surfaces, I discovered that by taking advantage of

the exponentially increasing performance curve of hardware, it was possible to build real-

time systems with a dynamic programming language and also take advantage of its garbage

collecting facilities. I chose the venerable object-oriented language Smalltalk. I do not

mean to suggest that Smalltalk is the only dynamic programming language suitable or that



the implementation I used, ParcPlace Objectworks\Smalltalk Release 4.1 [ParcPlace92a], is

the only viable one. Rather, it is encouraging to find that it is possible to use a dynamic

language for real-time work and to take advantage of all its features. I chose

Objectworks\Smalltalk because of its mature implementation and its substantial class

library. Hereafter, when I refer to Smalltalk in general, I will usually mean ParcPlace's

implementation in particular.

3.1.2. Distributed Systems

A distributed system functionally divides the work load among a group of computers

within a network. The RSS development environment is built upon a simple distributed

system consisting of three computers: a Hewlett Packard 735 UNIX workstation running

Smalltalk, a Macintosh IIfx with a C program I wrote that transferred MIDI data over the

network, and a DECstation 5000 that was a display server. The computers communicated

with each other using the industry standard TCP/IP protocol suite. The following diagram

illustrates the various physical components of the RSS development environment and the

communication paths.

Hewlett MPackard Macintosh

TCP/IPt MIDI

RSS Development Environment



Although the distributed system is rather simple, it may appear to be unduly complicated

for the work presented here. However, one of the goals of this undertaking is to

demonstrate how to build an interactive system out of a network of computers and to start

paving the path toward interactive systems that scale up to the size of Tod Machover's

Brain Opera [Machover94b].

The Midi Server

The MIDI server transfers MIDI data over the network. It is a C program I wrote that used

a library called GUSI [Neeracher93] to provide a socket interface to TCP/IP. When

Smalltalk connects to the MIDI server, the MIDI server sends clock ticks and sensor data,

encoded as MIDI pitch bend messages, to Smalltalk every centisecond. This information is

sent by way of unreliable, but fast, UDP packets. A lost packet is not catastrophic because

an update follows in the next centisecond.

A distributed architecture helps to strengthen the areas where the dynamic language

Smalltalk is weak. By having a MIDI server running on a Macintosh that transfers MIDI

data over the network, I can guarantee with greater reliability that MIDI messages will be

sent to a synthesizer at specific times. MIDI messages sent by Smalltalk are time stamped

and sent over a reliable TCP connection to the MIDI server. Because the MIDI server has a

scheduler, Smalltalk can stamp MIDI messages with times in the future and the MIDI

server will send them to a synthesizer at the appropriate time. By running slightly ahead of

the MIDI server (i.e., scheduling events in the future), Smalltalk can smooth out any

latencies due to garbage collection. The delta time to schedule events in the future or

scheduler advance is tunable and need not be the same for all the components within

Smalltalk.

It is unlikely that any one language will be suitable for every situation. As much as I prefer

to use a dynamic language, I also realize that a static language such as C is appropriate for

many situations. The MIDI server illustrates this point; it is written in C for performance

efficiency. It is also the only part of the system that is machine dependent because it uses

MIDI routines that are specific to the Macintosh. MIDI libraries are not standardized across

platforms and it is unlikely that they will be soon. One of the advantages of a distributed

architecture is that I can isolate the machine specific MIDI server from the other parts. In

addition to the HP 9000, Series 700 workstations, ParcPlace's implementation of Smalltalk

runs on a number of other platforms including DECstations, Suns, and Macs. Therefore,



the more substantial Smalltalk piece of the RSS development environment may run on

several platforms, some of which do not support MIDI, and I can be sure of MIDI access

to synthesizers via TCP/IP, an industry standard. If it becomes necessary to implement the

MIDI server on another platform, integration is straight-forward because of TCP/IP.

3.1.3. Software Components

In the design of the RSS development environment, I adopted a component culture

approach where the emphasis is on building software components with object-oriented

techniques. In his reflections on this relatively new culture of software development

[Meyer92], Meyer contrasts the component culture with the more traditional project culture.

The following abbreviated table from Meyer summarizes the relevant differences:

Project Culture Component Culture

Outcome Results Tools, libraries,
Goal Program System
Bricks Program elements Software components

Strategy Top-down Bottom-up

Method Functional Object-Oriented

Language C, Pascal, ... Object-Oriented

Within the project culture, the goal is a program that produces results that are just good

enough to fulfill a top-down specification of requirements. Analysis proceeds from the

specification to functional decomposition and data flow. Programs are made up of program

elements, which are essentially modules built for the occasion. One of the classical

languages is used for implementation.

On the other hand, the component culture makes an investment in software components to

build tools and libraries for systems. The approach is bottom-up in that work begins at the

component level and systems are built up from components. Using the fundamental object-

oriented process of abstraction, objects within the application domain are abstracted into

classes. In practice, a new component is initially too specialized and specific to a particular

application and must be generalized upward to become reusable and extensible in different

contexts.



Software components couple reusable, extensible computational entities with explicit

protocols. The main body of this work was to identify, design, and implement an initial set

of components relevant to responsive sound surfaces. This activity occurred at many

different levels. Supporting components at a general level provide a framework for

organizing cooperative software components. At the lower levels were components

necessary for MIDI input and output and for the timing and scheduling of events. Included

within the middle level were components for analyzing sensor data and generating sound

textures. The highest level looked at formal approaches to structuring non-linear,
unfolding interactive experiences and the components necessary to implement such

strategies.

3.2. Prototype System

The figure below shows a prototype system David Waxman, Eric Metois, and I built to

first demonstrate the concept of a responsive sound surface. One Macintosh running Max

[Puckette & Zicarelli90] did all the high-level processing. The music and Max patches

were written by Waxman. Waxman and I designed the interactions together. I wrote the C

program on another Macintosh that transferred MIDI data over ethernet and the gesture

analysis system in Smalltalk on a Hewlett Packard workstation. The predominant gesture

was a beating action made with the same striking motion one uses to tap a table, except that

physical contact with the surface is not necessary. Metois implemented a flexible, real-

time sampling system on the Indigo and together, we built a proximity sensor box based on

a design by Gershenfeld [Gershenfeld94]. Contrary to what the picture suggests,

participants would only wave their hands over the surface. Our initial work had shown us

that a responsive sound surface provides a rich context in which to design and experiment

with interactions.



Prototype Responsive Sound Surface System (Courtesy of Eric Metois)

Waxman has since gone on to compose the music and interactions for a two person gesture

instrument entitled the Gesture Cube [Waxman et. al. 94]. Proximity sensors were

embedded within two faces of a large cube that was tilted on one of its comers. The corner

was cut so the cube would be stationary. Through hand gestures and music, two

participants engaged in an improvisatory dialog between themselves that was mediated by a

computer running Max.



3.3. Software Component Layer Model

I have conceptually organized the various software components and protocols into four

layers stacked on top of each other with higher layers building upon lower ones. The four

layers are the framework layer, the real-time layer, the gesture layer, and the extensible

layer. The figure below shows how they are organized.

Extensible

Gesture

Real-Time

Framework

The functionality of each layer is summarized below.

- Framework Layer: This layer enables the designer to hierarchically organize components

by name; archive intrinsic, extrinsic, and symbolic component references; dynamically

connect components; compose simple graphical interfaces quickly: implement

interactions on the fly; and structure unfolding interactions.

- Real-Time Layer: Components in this layer provide scheduling, MIDI input and output,

and timing. In addition, a suite of protocols ensures the coordination of computers in a

network.

- Gesture Layer: Included here are components that track direct and immediate gestures and

others that follow gestures that build up and decay over time.

- Extensible Layer: To explore how extensible the software environment is, I have

adopted and extended a set of compositional agents and principles from another software

environment called Cypher [Rowe91].

3.3.1. Accommodating Environment and System Designers

The software environment must accommodate two kinds of designers: the environment

designer and the system designer. The first one seeks to extend the environment with a

broader selection of components and resources to include in specific systems while the

other mixes and matches reusable components to build custom interactive systems. Within

the context of responsive sound surfaces, the environment designer works mainly at the

extensible level This is not to say that the lower layers need no refinement or improvement,



but rather to stress that they are functional and one may build upon them in the role of either

designer. The system designer treats the components in all the layers as fundamental

building blocks that must be interconnected and cross-referenced in order for them to do

anything useful. The design process for both is iterative and interactive because both the

environment and a system built in the environment may be modified at any time.

3.4. Framework Layer

Extensible

The framework layer coupled with the real-time layer provide the core Gesture

functionality of a component-based interactive system. The real-time Real-Time

layer focuses on a set of services crucial for interactive system to run in Framework

real-time. The framework, on the other hand, directs its attention to the

more mundane book-keeping issues of organizing components by name, archiving an

entire system, connecting components together, and presenting a graphical user interface.

Additionally, there are mechanisms for implementing interactions on the fly and structuring

unfolding interactions.

The framework presented here is complete and comprehensive enough for a system

designer to immediately build upon it within the context of responsive sound surfaces. In

the grand tradition of Max, an iconic programming language named after computer-music

pioneer Max V. Matthews, the names of most of the framework components begin with the

prefix "Liz" in admiration of Liz Phillips' groundbreaking work on interactive sound
installations.

3.4.1. A Component in the Abstract

At the heart of the framework lies the abstract class LizComponent. It has instance

variables for a name and a properties dictionary, which is a data structure for associating

keys with values. It contains the basic methods that all LizComponents must follow to

work smoothly within the framework and is intended to be specialized or subclassed by the

programmer. In general, when I refer to LizComponents, I mean instances of

LizComponent and its subclasses. A suite of messages handles the life cycle of a

LizComponent and consists of the following:



- setUp: The component has been created or the entire system has been reset. Do

whatever initialization is necessary before the component can be started. When it

receives this message, LizExternalClock will initialize a semaphore and start a process

to service clients who are interested in knowing about clock ticks.

- cleanUp: The component is about to be released or the system is being reset. When it

receives this message, LizExternalClock terminates its client process.

- start: The component should do its thing. This might be a one-shot activity, where a

component might send configuration data to a synthesizer, or a continuous activity,

where a component might continually reschedule itself to send out notes.

- stop: The component should stop doing its thing.

- tidyUp: CleanUp and stop often share some activities. For instance, components that

play continuously after they have been started usually hold onto a task object returned

by a scheduler. It is necessary to cancel that task during clean up and at stop time.

Instead of writing the code twice, it is written once in tidyUp.

- referencesComponent: Return a Boolean indicating whether the receiving component

references a particular component.

3.4.2. Hierarchically Organizing Components by Name

LizComponents are organized with a hierarchical component naming scheme and directory

structure akin to the UNIX file system. LizDirectory holds a collection of LizComponents

with unique names. LizDirectory is a kind of LizComponent so LizDirectory may be

nested. The root directory is always named "/" and the slash character also serves as the

pathname separator for components further down the directory tree. Apart from the

obvious benefits of organizing components hierarchically, the naming scheme allows

symbolic access to any component, which becomes important when archiving

LizComponents.

LizSystem contains the root directory of all the LizComponents in the system. It has

protocol for resetting and archiving the entire system; adding, removing, renaming, and

moving components; and accessing any component by pathname. It is not a descendent of

component LizComponent and therefore exists outside of the component directory tree

structure. RssSystem extends LizSystem by adding an instance variable for node, which

defines the configuration and interactions of a system.



3.4.3. Archiving Intrinsic, Extrinsic, and Symbolic References

After creating and configuring a set of components, the designer needs a way to store the

system for later recall. The protocol for archiving LizComponents to a binary file

simplifies the archiving of new component classes since each class need only concern itself

with storage particular to itself and not worry about how its superclasses archive

themselves.

When two components with references to each other are archived, we expect those

references to be preserved when the components are unarchived. When the entire directory

tree structure is archived, this is straight-forward in Smalltalk because I leverage classes

that provide light-weight object persistence. ParcPlace's Binary Object Streaming Service

(BOSS) can store a complex object, consisting of a root object and the set of objects

reachable from the root, and restore the object with all references intact.

It would be convenient to use the archiving methods to implement cut, copy, and paste

operations, but first a couple of issues must be addressed. If only a subset of a component

directory tree is archived in a cut or copy operation, it is necessary to make a distinction

between intrinsic and extrinsic component references. A LizDirectory holds a collection of

references to other components. These references are intrinsic because they are inherent

properties of the LizDirectory. On the other hand, a LizPortClient has a clock instance

variable that references a clock component. A LizPortClient considers clock to be an

extrinsic reference because it only provides a service and is not an inherent part of

LizPortClient. When only a LizPortClient is cut or copied, the clock component is not

archived with the LizPortClient. When it is pasted in, a LizPortClient would set its clock to

nil.

Other archiving mechanisms, such as the one found in NeXTSTEP [NeXT92], behave in

this manner. I found the practice of setting extrinsic references to nil to be too restrictive

and extended the approach by adding symbolic references. LizAspectPreset associates the

aspects of components with values. When it is started, LizAspectPreset sets the aspect of

its components to the corresponding values. The components are not an inherent property

of LizAspectPreset because it makes little sense to copy out the entire components when

only a LizAspectPreset is archived. However, copying a sole LizAspectPreset is useless

because all the component references would be set to nil when it is pasted in. A symbolic

component reference is the pathname the uniquely identifies a component. When a lone



LizAspectPreset is archived, its components are stored as symbolic references. At the time

it is loaded back in, a LizAspectPreset would resolve each symbolic reference to an actual

component or set it to nil if the object did not exist.

3.4.4. Dynamically Connecting Components

The primary approach for coordinating the activities of LizComponents is delegation and
adherence to explicit protocols; a component has another component perform some actions
on its behalf. When I began working on the components in the gesture layer, I found that

in many cases, delegation with explicit protocols was unnecessary and simple pipelines
would suffice. It was convenient for me to adopt the terminology and approach to
connectivity in Max [Puckette & Zicarelli9O]. A MaxOutlet is connected to a MaxInlet by a
MaxConnection and data flows from MaxOutlet to MaxInlet. The figure below illustrates

how the data flows. MaxOutlets and MaxInlets may have any number of MaxConnections.

LizComponent LizComponent

(MaxOutletction

Components with inlets and outlets have a simple textual interface, like the one below, for

making connections on the fly.

4.... .....................-.--...............
. . . . ..........

The designer may establish or break connections at any time, either through the user
interface or programmatically. When a system resets, all components discard their

connections to revert to a clean state. Therefore, it is necessary to have a way of recalling

connections between components and useful to reconfigure many connections in one step.
MaxConnectionPreset maintains a collection of connections that are connected or



disconnected when it starts. Its interface is illustrated below. It is functional, but

somewhat tedious to use.

3.4.5. Graphical User Interface

Graphical user interfaces (GUI) play an important role at different levels within the RSS
development environment. ParcPlace's Smalltalk [ParcPlace92a] provides a sophisticated
set of integrated development tools for writing classes for components and other auxiliary
objects. These include browsers, inspectors, interactive cross referencing, and a symbolic
debugger. ParcPlace's VisualWorks [ParcPlace92b], built on top of Smalltalk, contains a
graphical interface painter for lying out control components, such as buttons, sliders, and
text fields, in a window. All these graphical tools were leveraged to build the RSS

development environment. An added benefit is that all the graphical tools developed for
the RSS development environment will work transparently on all the platforms supported

by ParcPlace.



RssSystem Application Window

The top-level window for the RSS development environment is the RssSystem application

window. The figure below shows an example. In the menu bar at the top of the window

are commands to browse through the components and save, inspect, and reset the system.

The text field below the menu bar contains the pathname of the current node of the system.

The text pane at the bottom is for comments. In addition, Smalltalk expression may be

executed there. Because the identifier "self' is bound to the system when it is evaluated, an

expression may easily reference the system and, by extension, all the components within

the system. Although I did not find it necessary, this mechanism provides a solid basis for

building a command line interface. The most used commands addressed to the system are

readily accessible by menu. If I needed to manipulate a component directly, it was more

convenient to use a LizPluggableComponent or an inspector on that it.

Component Browsers

The browse command located in the menu bar of the RssSystem application window brings

up a browser window like the one in the figure below. The list box on the left contains the

names of components. The names are indented based on their level within the component

directory tree relative to the top-level component of the browser. The number in the depth
text field on the upper left determines the number of component levels to show in the list

box. A value of 0 will list all the components below the top-level component of the

browser.



The browser was designed to minimize window clutter. Instead of creating extra browser

windows, clicking on a component name in the list box fills the right section of the window

with that component's interface. Of course, more than one browser is often needed.

Additional browsers, whose top-level component is the root component, are obtained via

the browse command in the RssSystem application window. It is often helpful to have a

browser window whose top-level component is one that lies below the root component.

The spawn command creates a browser with the selected component as the top-level

component.



The spawn command, along with other commands appropriate

for selected components, is located in a menu that pops up
when the middle button is depressed while the mouse pointer is

in the list box. The figure on the right shows the choices of -

that menu. Instead of copying the component as an object, the S±

copy pathname command allows the pathname of a component g .E

to be pasted into a text field at a later time. The move I -----e
command prompts for a directory to move the component to

and inspect brings up a standard Smalltalk inspector. Reset

sends a cleanUp message to the selected component followed

by a setUp message. If components are added or removed

programmatically rather than through the graphical interface,

browsers may become out of sync with the components of the .......
system. The update command will make the browser 5Set

consistent with the system.

Forms Filling Component Interface

It has been my experience with interactive systems that if a graphical interface to a

component can't be built quickly, it won't get built at all. Quite often, one creates a class

for a component to be used immediately in a system that is already running. Taking the

time to assemble an elaborate graphical interface to the component would be unduly

disruptive, yet even a simple interface would greatly increase the utility of the new

component class.

Toward that end, the RSS development environment coupled with VisualWorks offer

copious support for building forms filling component interfaces. According to Downton, a

form filling interface is well suited for entering data, largely because many people are

accustomed to filling out forms [Downton91]. A low memory load is sufficient to

manipulate the interface along with some familiarity with the syntax, which usually differs

slightly from system to system and includes rules like display field constraints and

navigation.

The browser manages the depth field, component list box, and the switching in and out of

component interfaces. A new component class need only indicate which application class

should govern its interface and supply an interface specification and a set of bindings



between interface elements and component parameters.

LizApplicableComponentApplication is a suitable application class for a component and
already contains the necessary logic for applying and canceling forms. The GUI building
tools of VisualWorks along with its visual reuse capabilities enables one to create interface
specification visually and swiftly.

LizAspectPreset holds a collection of component settings and has one of the more

sophisticated form filling interfaces, which is pictured below. A setting is composed of a

component, an aspect to change, a value, and the type of the value. The upper half of the

interface lists all the setting in a table while the lower half contains text fields for editing

settings. A LizAspectPreset responds to start by setting the aspects of its components to

their designated values. The update message causes LizAspectPreset to remember the

current values of the component aspects in its settings. It is useful for taking a snapshot of

aspect values after much parameter tweaking. An easy way to create additional snapshots

based on a pre-existing snapshot is to copy and paste in the pre-existing one. Because of

symbolic references, the components of the pasted in preset will be resolved properly. At

that point, simply update it when appropriate.



3.4.6. Implementing Interactions on the Fly

While a system is running, the framework layer permits a system designer to add and

remove components, make and break connections, and set parameter values. This is the

essence of the interactive approach embodied by the software environment. The RSS

development environment, however, goes further. While building a system, a designer

may discover the absence of a class for a necessary component. Although the process for

creating a new component class is streamlined, it does take a bit of time and might be

disruptive for little bits of code. A more serious matter is to alleviate the problem of

polluting Smalltalk with highly specialized classes that are only relevant within a narrow

context and would never be reused. By taking advantage of a dynamic language's ability to

compile blocks of code on the fly, LizPluggableComponents hook into the protocol of

LizComponents with blocks of code provided by the designer at any time. The blocks of

code are saved when LizPluggableComponents are archived.

The figure below shows part of the graphical interface for a pluggable component. The

button labeled "Blocks" pops up a menu to access the various pluggable blocks of code.

The text in the text pane is the code for play block, which will be executed when the

component receives the play message. Although play is not part of the LizComponent

protocol, LizPluggableComponent includes a play block as a convenience for pluggable

components that need to run continuously. One idiom for setting up periodic behavior is

for the start block to perform any initialization and then tell the component to play. The

play block would run through its calculations and then schedule itself to run again after

some delay.



The play block of pluggable component.

For effective instance variables, the designer may employ the property dictionary that is

part of every LizComponent. The graphical interface for accessing the properties of a

LizPluggableComponent is shown in the figure below. The top half contains a table of all

the keys and values in the properties dictionary while the bottom half has several widgets to

set the value and its type for a key.



The properties of a pluggable component.

3.4.7. Structuring Unfolding Interactions

Nodes

LizNode provides a mechanism for structuring multi-threaded interactions. It is an

extension of the mode in Machover's hyperinstruments [Machover92]. Modes define the

configuration and interactions of a system from the time they are started until the time they

are stopped. They generally correspond to a section of a piece and are executed in a fixed

order. The interactions within a mode, however, customarily varied from mode to mode.

LizNode extends the idea of hyperinstrument modes by providing a hierarchical way of

organizing nodes, similar to a directory tree. A LizNode may have a parent node that

references another LizNode. A node without a parent is considered a root node and there

may be more than one root node within a system, creating a forest of node trees. The



hierarchical levels may be arbitrarily deep. The diagram below illustrates a simple node

hierarchy. The root node Root has two children: FamilyA and FamilyB. The two family

nodes each have two children.

Root

FamilyA FamilyB

Al A2 B1 B2

RssSystem, a subclass of LizSystem, keeps track of the current node, which is the node

furthest away from the corresponding root node. RssSystem guarantees that the root and

intervening nodes will be started before the current node is. Given that A in the diagram

above is the current node, RssSystem would ensure that FamilyA and Root had been

started before Al. To switch the current node, RssSystem locates the first common

ancestor for the old and new current nodes. RssSystem then stops the old current node and

its parents up to the common ancestor and starts the new current node and its parents up to

the common ancestor. The common ancestor and its parents leading to the root node,

which have already been started, are left untouched. Continuing with the example, to

switch the current node to B1, RssSystem would identify Root as the first common

ancestor. RssSytem would then stop nodes Al and FamilyA and start FamilyB and B 1.

One immediate benefit hierarchical organization offers is to help minimize the complexity of

initialization and clean up at node start and stop time respectively. Root might set up the

sensor and gesture component networks while FamilyA could start components shared by

Al and A2. When it becomes the current node, Al may be confident that the sensor and

gesture component networks and shared components have been set up and concern itself

with initialization specific to itself. A switch to A2 would not disrupt the sensors and

gesture component networks and shared components, allowing them to run continuously.



It is also invaluable, especially during development, to be able to jump to a particular state

of the system in a clean and well-defined way. The RssSystem application window has a

text field that contains the pathname of the current node. To move to another node, one

may type its pathname within the field or choose a node from the node menu. We make a

distinction between nodes that are abstract and those that are not. Abstract nodes are not

intended to be the current node (i.e., the active node furthest away from the corresponding

root node) of RssSystem and do not show up in the node menu. For instance, FamilyA

might be an abstract node that only sets up components shared by its children.

Abstract nodes offer a structured way to handle interactive elements that must spill over the

rigid boundaries of a node. In general, a node will start some components when it is

started and stop them when it is stopped. If Al and A2 behaved in this way, the transition

from Al to A2 would most likely be very discrete. To have elements bleed over, Al might

start some nodes and attach them to a key in the properties dictionary of FamilyA. A2

would expect to find those components in the properties dictionary of FamilyA and might

manipulate their parameters while it is active and stop them when it is stopped. In other

words, there is a structured way to share or pass components between nodes without

resorting to global data.

The current node of RssSystem provides a mechanism for moving from one node to

another. One of the tasks facing the designer is what policy to use to determine when to

move to another node and which node to move to. Many early interactive video systems

employed hardwired links between material. At branching points, dialog boxes popped up

to ask the user which link to follow next. Clearly, periodic queries interrupt the flow of the

interactions. In Grahme Weinbren's interactive video system Limousine [Weinbren],

branching opportunities are deftly embedded within the video material with targets and the

flow of the system is never disrupted. Targets define an invisible area of the screen. When

a target is active and the participant enters the target, the system branches to the video

material associated with the target. The system has an internal flow meaning that until the

participant hits a target, the system will travel along routes established by the author.

The explicit links approach becomes unwieldy when the number of elements that must be

linked together grows large. Adding a new element might require dozens and dozens of

connections to and from that element, and reorganizing the network might mean tracing

through a spaghetti of links. In his work on multivariant movies [Evans94], Ryan Evans

favors a powerful description-based approach over hardwired links. To help movie makers



create movies that playout differently each time they are presented, he offers two tools:

LogBoy and FilterGirl. LogBoy is used to create and edit descriptions which are attached

to video clips in a database. FilterGirl is a tool for creating and editing filters that define

descriptive playout constraints that guide the selection of video clips from the database.

Filters take a set of video clips as input and return a subset of those clips as outputs. Filters

become powerful when they are layered or combined in different ways, which include

Boolean operators and temporal and contextual constraints.

Node Sentries

Within the computer-music field, work to coordinate the actions of a computer and a human

performer has followed two different paths: score-following [Vercoe84] [Dannenberg89]

and score orientation [Rowe93] [Machover92]. Score-following strives for a tight

synchronization between the computer and human performer by having the computer track

the performer to a score stored in its memory. Score orientation loosely coordinates the

actions of the computer and human performer by having the computer realign itself with the

performer at certain landmarks or cue points within the composition.

Although fixed, linear scores are inappropriate within the context of responsive sound

surfaces, the concept of score orientation is useful in defining a policy for moving from

node to node. LizNodeSentry keeps the spirit of score orientation by watching out for

certain features in a participant's interaction with the system and advancing to its associated

node when those features have been detected. Conceptually, one might think of

LizNodeSentries as hawks that are allowed to hunt at certain times, either singly or in

groups. When set free to hunt, a hawk quietly observes what is going on and will continue

to do so until it is called back in or its prey surfaces, in which case it swoops down and

moves the flow of interactions to another node. Hawks, however, are finicky creatures

and have specific appetites regarding which prey they will pursue.

LizNodeSentry is a descendent of MaxPluggableComponent so any of the gesture

components may be connected to it. Its instance variables include wait time, duration, and

a node to move to when triggered. Wait time is the amount of time after it has been started

to lie dormant before watching for the events it is interested in. When a node starts, it is

often convenient to start a group of LizNodeSentries. Different wait times would stagger

the activation times of the sentries. Duration defines how long a sentry is active from the

time it begins its watch. If duration is nil, a sentry may be active indefinitely. In addition



to the pluggable blocks of code provided by MaxPluggableComponent, LizNodeSentry has

start watching, watch, and trigger blocks. The start watching block is called when the

sentry switches from waiting to watching. The watch block determines how the sentry

observes what is going on. The trigger block is a hook for performing some actions before

the transition to the sentry's node is made.

Recognizing the futility of trying to provide an exhaustive list of different sentries that

would be applicable in all situations, the guiding principal behind LizNodeSentry was to

provide an extensible framework for dynamically implementing specific node transition

policies.

3.5. Real-Time Layer
Extensible

The real-time layer offers a set of services that is crucial for interactive Gesture

systems to run in real-time and coordinates the activities of the Smalltalk

components with the MIDI server. These services include timing, MID! Real-Time

input and output, and scheduling. The important point is that this Framework

functionality is already provided by the environment; the system

designer can focus on crafting the interactions.

3.5.1. Services

The components below supply the services of the real-time layer.

- LizExternalClock: It keeps track of the time by handling the MIDI clock messages from

the MIDI server.

- LizPortClient: It provides MIDI input and output by transferring and receiving MIDI

packets from the MIDI server via LizPort.

- LizContext: It provides a local context for scheduling tasks. Its scheduler advance

determines how far ahead of real time the context will schedule events. Scheduling into

the future helps alleviate latencies due to system load, but increases the system's

reaction time. The ability to have multiple LizContexts increases the programmer's

flexibility in meeting accuracy versus responsiveness requirements.



3.5.2. Coordinating With the MIDI Server

Enforcing the restriction that only one system is loaded into Smalltalk at any given time is

optimal in terms of execution efficiency, but some compelling reasons for loading in two

systems include the ability to cut, copy, and paste between the two and to try out versions

back to back or simultaneously. However, it simplifies the programming of the MIDI

server if we restrict the connections to one port number. To meet these demands, there is

one LizPort object that connects to the MIDI server through one port number and may be

shared by all the loaded systems.

A group of components works together to coordinate activities with the MIDI server to

provide timing, MIDI input and output, and scheduling services. These include the

LizPort, LizPortClient, LizExternalClock, and LizContext coordinate their activities with

the MIDI server to provide the services of the real-time layer. Implementation details are

located in the appendix. The diagram below illustrates the relevant relationships among the

components.



3.6. Gesture Layer

Extensible

The gesture layer contains all the components that analyze the sensor

data for certain hand gestures. The approach to hand gestures in Real-Time

relationship to a surface was to think about simple things to look for that Framework
people could do easily and naturally without instruction or coaching.

Each sensor location determines a sound area on the surface, and movements within a

sound area provoke responses from the system. Conceptually, these sound areas are

resonances within an overall sound texture that participants may influence and shape

through their movements.

3.6.1. Direct and Immediate Gestures

Treating the sensor data as an evolution of measurements corresponding approximately to

how close a participant's hand is to the surface, the obvious features to look for are

position, velocity, and acceleration. Included at this simple level are a determination of

whether a hand is within a sound area, the lowest or highest point of hand movement, and

beats. Beats are made with the same striking motion one uses to tap a table, except that

physical contact with the surface is not necessary.

RssSensor handles the sensor data from the MIDI server by sending through it outlet. To

reduce jitter and minimize the effect of dropped sensor data packets, RssSmoother usually

smoothes the raw sensor data from RssSensor and its output is treated as position values.

The organization of gesture components is an interconnected network where components

pass data to each other via the Max-like connectivity objects. In order to determine beats,

the beat component will need information from the velocity component, which, in turn

requires data from the position component.

The remaining gesture components that look for obvious features are listed below:

- RssVelocity: Performs a linear regression of the last n values and multiplies it by a

factor. The result is constrained to a value between -1 and 1 inclusive. N and factor

are parameters. Generally, an RssSmoother that provides the hand's position is



connected to RssVelocity. Connecting RssVelocity to another RssVelocity results in

acceleration.

- RssWithin: Output 1 if an input value is between minValue and maxValue, otherwise

0. MinValue and maxValue are parameters along with whether the boundaries are

inclusive or exclusive.

- RssPeak: Tracks the highest input values.

- RssTrough: Tracks the lowest input values.

- RssBeat: Looks for beats which are determined by a tunable velocity threshold.

3.6.2. Gestures That Build Up and Decay Over Time

In order to add a more subtle layer to the interaction, there are components that look for

presence, activity, stillness, and flutter. These features are characterized by their ability to

build up and decay over time. The relevant components are described below:

- RssPresence: While detecting whether a hand is inside or outside a sound area behaves

like switch, presence will slowly build up when a hand is inside, or gradually fade

away when the hand leaves.

- RssActivity: To get a sense of how much movement there is within a sound area,

RssActivity averages distance over time.

- RssStillness: Stillness builds up when the position of the hand remains relatively fixed

for a period of time. The medium value around which stillness builds up may be

constant or may drift to the relatively stationary values.

- RssFlutter: Flutter builds up when the participant flutters the hand like butterfly wings.

3.6.3. Increasing the Effective Number of Gestures

As an initial set of gesture components, I feel it offers abundant possibilities, especially

when one takes advantage of the ways to increase the effective number of gestures. For

instance, the analysis does not necessarily have to span the entire height of a sound area,

but could be restricted to a particular range of sensor values and thus form a resonant band

within the sound area. RssSubRange only outputs the incoming values that fall within a

specific subrange. So, RssSubRange could initiate a whole sub network of gesture

components devoted to one part of a sensor's range. By correlating features from different

sound areas, the complexity of the interactions grows significantly.



LizPluggableComponent and MaxPluggableValueObject are helpful in setting up very

specific correlations that would be used only for a particular project.

3.7. Extensible Layer

Extensible
The extensible layer marks the level where most extensions to the

Gesture
environment belong. Most new components and protocols that are

intended for reuse in many custom systems fit here. Highly specialized Real-Time

components that are specific to one system generally take advantage of Framework

the pluggable components provided by the framework layer. To explore

how extensible the RSS development environment is, I have adopted and extended a set of

compositional agents and principles from another software environment called Cypher

[Rowe9l].

3.7.1. Cypher Components

Recognizing that a human participant naturally produces an unpredictable and dynamic

environment for the sensors, we derive the complexity of the system's responses from the

rich behaviors of human participants and keep the sound texture components relatively

simple. Many of the sound texture components are derived from Rowe's compositional

agents in Cypher [Rowe93] because they are particularly well suited for interactive

manipulation, and also to demonstrate how easily some ideas from another body of work

may be adopted and implemented within the RSS development environment.

Cypher is a compositional and performance interactive music system that behaves as a

performer with its own musical personality and is therefore collaborative and multi-

threaded. To use Cypher effectively requires a fair amount of musical knowledge. The

two major components of Cypher are a listener, which analyzes one stream of MIDI music

data, and a player, which articulates the musical responses of the system. These

components are composed of a web of interconnected agents that are hierarchically layered.

Agents have simple competences such as the ability to recognize the speed or density of the

music it is listening to. When the agents are interconnected, the resulting whole exhibits

remarkable behavior that belies the simplicity of its parts.

Rowe outlines three broad classes of machine composition methods that I summarize

below:



- Sequencing: The playback of prestored musical material.

- Algorithmic Generation: Musical material is derived from seed material, which might

be small collections of pitches or rhythmic elements, often using constrained random

operations.

- Transformation: Musical material is systematically changed along some parameter.

Although it incorporates all three methods of composition, Cypher relies heavily on simple,

straightforward modules that transform musical material and it is those modules that I

cannibalize. Cypher accumulates changes in musical material by serially chaining

transformation modules together; each module performs systematic operations on a block

of musical events and then passes the block to the next module for further transformation.

Complexity may be built up from simple elements when long chains are employed. All

Cypher transformation modules uniformly accept three arguments: a message that indicates

which one of two functions to apply, an event block consisting of an array of up to 32

events to be transformed, and an argument whose role depends on the message. The two

acceptable messages are xform and mutate. The xform message indicates that the module

should transform argument number events in event block and return the number of events

in the block after doing so. The mutate message uses the value of argument to modify an

internal parameter.

If the event block is restructured, a serial chain of transformation modules in Cypher maps

naturally onto a pipeline of MaxValueObjects in the RSS development environment.

Instead of separating the number of events in an event block and the actual events in the

block and passing both pieces of information as two arguments, CypherEventBlock

packages the events and the size of the events in one object. The events within a

CypherEventBlock are implemented as an array of 32 CypherEvents where the size of a

CypherEventBlock determines how many of the CypherEvents are relevant. CypherEvent

mirrors most of the elements present in the event structure on which is it based on. It has a

time offset relative to the previous event, a chordsize indicating the number of

CypherNotes the event contains, and a data array holding 12 CypherNotes. CypherNote

contains a pitch, velocity, and duration.

As a result of restructuring the event block, CypherFilter is a subclass of MaxValueObjects

and the single MaxInlet and MaxOutlet provided by MaxValueObject is sufficient to create

Cypher chains. CypherFilter has one parameter, bypass, which indicates whether the

filter's transformation should be applied to event blocks received in its MaxInlet or pass the



event block through untouched. CypherPluggableFilter, a subclass of

MaxPluggableValueObject, also has a bypass, in addition to the ability to accept blocks of

code on the fly. If we adhered solely to Cypher's mutate protocol, we would limit

ourselves to one modifiable parameter per module which, in many cases, would be too

valuable to waste on bypass. By using other means, provided by the framework, to mutate

parameters, we remove this restriction. LizAspectPreset would be convenient for grouping

the settings of a group of filters in one component and restoring those setting in one shot.

In addition, there are many ways to establish references to filters so that a component can

manipulate a filter directly. The graphical interface to LizPluggableComponents provides a

straightforward way to put a reference to a filter in its properties dictionary and to

manipulate that filter with blocks of code submitted on the fly.

Following are brief descriptions of the filters adopted without or minor modification. More

detailed descriptions may be found in [Rowe93]. Words in italic denote parameters

accessible for modification.

. CypherAccelerator. CypherAccelerator shortens the durations between events by

subtracting downshift from each offset in an event block except the first one.

. CypherAccenter. CypherAccenter accents every strong events in an event block.

. CypherArpeggiator. CypherArpeggiator breaks up chords by separating them into

single note events temporally offset by speed.

. CypherChorder. CypherChorder builds a four note chord from every event in the

event block.

- CypherInverter. CypherInverter modifies the pitches of the events in an event block

by moving them about mirror.

* CypherLooper. CypherLooper repeats the events in an event block, taken as a whole,

up to 2 + limit times. The offset between loops is determined by speed.

. CypherPhraser. CypherPhraser sub groups events in an event block by creating

pauses every length events.



* CypherSwinger. CypherSwinger modifies every swing events by multiplying the

offset time by swing.

* CypherThinner. CypherThinner reduces the density of events by removing every thin

events.

. CypherTransposer. CypherTransposer offset the pitch of every note within an event

block by interval. If interval is 0, the offset is a random number between 0 and limit.

I created a number of my own filters, which are described below. The bulk of the them

take advantage of the ability to manipulate more than one filter parameter by applying a

similar transformation, but with different parameters, to offset, pitch, velocity, and

duration.

* CypherDeviator. CypherDeviator can independently deviate the offset, pitch,

velocity, and duration of the events in an event block using separate deviation values that

may be constant or from a MaxTable. The figure below shows the parameters that deviate

the offset. Excluding the toggle for include first event, there are similar parameters for

pitch, velocity, and duration.

.......... .....................

For the moment, we will focus on how the offset parameters contribute in deviating the

offset. CypherDeviator iterates through all the events in an event block to determine an

offset deviation value for each event. If include first event is not set, the first event in the

event block is excluded. To calculate an offset deviation value, CypherDeviator first

checks for a component reference to a table. If there is a table, it is used to find the value,



otherwise the number entered for deviation is used. If a table exists and use quantile is

true, CypherDeviator treats it as a probability table and the next quantile becomes the offset

deviation value. When use quantile is false, CypherDeviator takes the next table value as

the offset deviation value. CypherDeviator will cycle through table values across different

event blocks, if remember count is set to true. Otherwise, it will always start at the

beginning of the table for each event block.

If the offset deviation value is non-zero, CypherDeviator set the offset for the current event

to a random number between the event's original offset plus or minus the offset deviation

value. A similar procedure occurs for pitch, velocity, and duration using corresponding

parameters.

- CypherNoteDensity. CypherNoteDensity reduces the density of events by keeping

only a percentage of them.

* CypherOffsetter. CypherOffsetter offsets the offset, pitch, velocity, and duration of

events in an event block using independent offsets.

. CypherScaleMapper. CypherScaleMapper maps the pitches of events onto a scale.

For the scale, it expects a MaxTable of size 12, where each index corresponds to a semi-

tone. An index with a non-zero value indicates that it is a valid pitch relative to base pitch.

These two parameters are sufficient for CypherScaleMapper to map event pitches, that

extend across the entire MIDI note range, while preserving the original octave. The

mapped pitch is also constrained to low pitch and high pitch.

. CypherScaleMapperWithOffset. CypherScaleMapperWithOffset is provided in an

effort to move away from purely chromatic pitch transpositions. It is a subclass of

CypherScaleMapper and maps event pitches in the same way that CypherScaleMapper

does. After mapping the original pitch, however, CypherScaleMapper adds offset to it by

only counting pitches that belong to the scale.

* CypherScaler. CypherScaler multiplies the offset, pitch, velocity, and duration of

events by independent factors.

. CypherSynth. CypherSynth converts CypherEvents to MIDI packets and sends them

to a device that sends MIDI packets to the MIDI server. CypherSynths are generally at the



end of chains so that the final results are audible. CypherSynths at medial positions allow

intermediate result to be heard.

* CypherTableValues. CypherTableValues uses independent MaxTables to determine

offset, pitch, velocity, and duration values for events in an event block. The figure below

shoes the parameters that apply to offset. Excluding the toggle for include first event, there

are similar parameters for pitch, velocity, and duration.

. .~ ... ..... ..

If there is an offset table, CypherTableValues iterates through all the events in an event

block to determine a new offset for each event. If include first event is not set, the first

event in the event block is excluded. When use quantile is set, CypherTableValues treats

the table as a probability table and the next quantile becomes the offset. Otherwise,

CypherTableValues takes the next table value as the offset. CypherTableValues will cycle

through table values across different event blocks, if remember count is set to true.

Otherwise, it will always start at the beginning of the table for each event block. A similar

procedure occurs for pitch, velocity, and duration values using corresponding parameters.

Robert Rowe has used his Cypher program to analyze MIDI note data generated by a
skilled instrumentalist and to transform that data using chains of transformation modules.

The RSS development environment, on the other hand, expects sensor data corresponding

to hand proximity. In other words, there are no MIDI notes, that come directly from the

sensor data, for the Cypher components to transform. What follows are descriptions of

components that initiate events into a Cypher chain.

. CypherEventBlockComponent. CypherEventBlockComponent has an event block.

The figure below shows the simple textual interface for specifying events in event block.



The entire list of events, individual events, and note specification are each enclosed in

parentheses. In the figure, each line with numbers defines a complete event. The first

number of each line indicates the offset time in centiseconds and up to twelve tuples,

consisting of pitch, velocity, and duration, may follow. The interface is woefully crude and

I consider it to be the bare minimum interface that is still usable. The point, though, is that

I was able to build it very quickly out of classes provided by Smalltalk and move on to

other things. If a more sophisticated interface is deemed necessary, someone can return

later and add more graphical elements.

~~.............. .......

The intent behind CypherEventBlockComponent was to provide a way to send pre-

determined fragments or seed material into a Cypher chain. When it is started, a

CypherEventBlockComponent sends event block through its outlet. CypherFilters,

however, generally destructively modify the event blocks they transform. After the first

time of being sent through a chain, CypherEventBlockComponent's event block would

probably be permanently altered and subsequent passes would further distort it beyond

recognition. This is not necessarily unwanted behavior; it may be desirable to accumulate

changes over time.

Nonetheless, there still must be a mechanism for preserving pre-stored material. To fulfill

this need, CypherEventBlockComponent assimilates the event blocks it receives at its inlet

before passing its event block through its outlet. CypherEventBlockComponent assimilates

an event block by ensuring its event block matches it event for event. It does not modify

the incoming event block or pass it through its outlet. The figure below illustrates how this

would be set up. The CypherEventBlockComponent at the beginning of the Cypher chain

acts as a buffer that may be destructively transformed.
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. CypherPitcher. CypherPitcher generates events based on either constants or tables.

The figure below shows the parameters that apply to pitch. There are similar parameters

for velocity, duration, legato, and density.

To calculate the pitch for a note, CypherPitcher first checks for a pitch table. If there is a

table, it is used to find the pitch, otherwise the number entered for value is used. Upon

finding a table, CypherPitcher treats it as a probability table, if use quantile is set, and the

next quantile becomes the pitch. When use quantile is false, CypherPitcher takes the next

table value as the pitch. A similar procedure occurs for calculating velocity, duration,

legato, and density using corresponding parameters. Minor differences include the

multiplication of the duration by a user specified factor and the division of legato by 100.

When it is started, CypherPitcher sets up a recurring task that generates events. The period

of the task is the duration of the generated event calculated at each invocation. The task

generates one event whose chord size or number of notes is decided by the calculated

density. The calculated duration sets the delay for the next invocation of the task. The

calculated duration multiplied by the calculated legato, however, determines the effective

duration for all the notes in the generated event. A new pitch is calculated for each note,

but only one velocity value is computed for all of them.

Cypher Chain



* CypherSequencer. CypherSequencer cycles through its collection of components at a

rate determined by delta. If loop is set, CypherSequencer cycles endlessly, otherwise it

stops after the first iteration. When send start is set, each component will be started in turn.

The Output events flag indicates whether each component should be passed through

CypherSequencer's outlet. Although CypherSequencer was designed with

CypherEventBlockComponents in mind, any LizComponent may belong to collection

because all LizComponents respond to the message start and may be passed as values

through inlets and outlets.

Following are descriptions of miscellaneous Cypher components.

* CypherDuplicator: CypherDuplicator has two outlets with two corresponding event

blocks. Incoming event blocks are assimilated by each of the two event blocks and the two

event blocks are sent out the corresponding outlet. In general, Cypher chains tend to be

serial with no branches. CypherDuplicator allows one to direct the results of one Cypher

chain to two other independent chains. A pluggable version of this component permits one

to submit a block of code that determines how incoming event blocks are split apart. It

provides a solid framework for implementing a hocketing algorithm where the notes of a

melody line are split up between two voices.

- CypherEventBlockCopier: A CypherEventBlockCopier has source and destination,

which are both CypherEventBlockComponents. When it is started,

CypherEventBlockCopier instructs the destination to assimilate the event block of source

and the assimilated event block of destination is sent through its outlet. Incoming event

blocks are assimilated by destination. The output mode determines whether the incoming

event block or the event block of the destination is sent through the outlet. The intent

behind CypherEventBlockCopier is to allow event blocks to be stored away and recalled at

later points in time.



4 Responsive Sound Surface Examples

Several responsive sound surface examples were built from a single square foot sheet of

Plexiglas and an early prototype of the quad hand sensor box, developed by Professor Neil

Gershenfeld with Joe Paradiso, Tom Zimmerman, and Josh Smith [Gershenfeld94].

Because the sensors are based on the same physical principles fish use to sense their

environment, sensor boxes are affectionately referred to as "Fish." The Fish sensor box

has one transmitter and four receivers. It creates a weak electric field between the

transmitter and each of the four receivers. The shape of the electric field between the

transmitter and one receiver is very roughly approximated by that of a football. By

disturbing the field with a living body and measuring the resulting fluctuations in the field,
one may obtain an approximation of a hand's proximity to a surface. As a rough rule of

thumb, the range of the sensor corresponds to the distance between the transmitter and

receiver.

The geometry of the transmitter and receivers is very important in determining the sensitive

areas of a surface. The layout used for all the examples described here is illustrated in the

figure below. The transmitter was connected to the center electrode, made of a strip of

copper tape underneath the surface. The receivers were connected to the electrodes in the

corners. They were numbered starting from the upper left corner and moving counter-

clockwise. For convenience, an electric fields is referred to as "sensor n", where n is the

number of the corresponding receiver. Using two hands, this simple geometry allows one

to independently disturb any two fields. By placing the forearm over one of the sensors in

the front, a participant can produce a fairly steady value in that sensor while manipulating a

sensor in the back with a hand. The center area around the transmitter is a "sweet spot"

because a single hand may control all four sensors with small gestures.



Although all the examples described in the following sections are not necessarily

connected, they belong to one RssSystem and share many components. Within the root

directory, are the following subdirectories: System, Synths, Sensors, and Nodes. The

components within System include the following:

- Clock: A LizExternalClock.

- Context: A LizContext.

- Port: A LizPortClient.

These three components have references to each other in order to synchronize properly with

the MIDI server. They are also used extensively by the components in the examples to

provide timing, scheduling, and MIDI I/O services.

The Synths directory holds one directory named WS. Within the WS directory are sixteen

RssSynth components corresponding to the sixteen MIDI channels in the MIDI

specification and numbered from 1 to 16. A Korg WavestationSR [Korg92] was the sole

sound source. Its multi-timbral capabilities handle MIDI data on sixteen channels.

The Sensors directory contains four sub directories corresponding to the four sensors and

labeled from 1 to 4. In addition, it has two monitor components that graphically display the

raw sensor values and a simulator. The simulator has four sliders, corresponding to the

four sensors, that can generate sensor values. It was an invaluable development aid when

the Fish sensors were not available.

Inside of each of the four sensor sub directories are the following components:

- Sensor: An RssSensor that fielded MIDI sensor values from the sensor corresponding to

its parent directory.

- Position: An RssSmoother that smoothed the sensor values from Sensor. To reduce

jitter and minimize the effect of dropped sensor packets, components interested in

proximity measurements should take them from Position instead of Sensor.

- Monitor: A LizNumericValuesMonitor showing Sensor and Position values.

The Nodes directory contains sub directories of all the examples. In addition, there is a sub

directory titled Root and another one named Randomness. Included in the Root sub

directory, a LizNode called Node is the parent of all the other nodes in the system and



therefore, will be started before any other node. It starts the sensors and establishes basic

sensor connections so that its child nodes may be confident that the sensors are already

running when they are started.

The Randomness sub directory has a node that starts a component which generates random

MIDI notes. It is used as a basic system test.

4.1. AmpMod

The AmpMod example takes its name from the technique used to modulate the sounds on

the Wavestation, namely amplitude modulation. It is a straightforward demonstration of

how to map the sensors to MIDI control messages and how the right sounds belie the

simplicity of the mappings.

The surface is split down the middle into left and right halves. Although the two halves

control separate sounds, their mappings are mirror images. Here, we describe the left half.

The subdirectory named Left in the AmpMod directory contains the components that are

pertinent to the left half, which include X, Aftertouch, Presence, and Notes. The

connections are diagrammed below.

(/Sensors/1/Position,

(/Sensors/2/Position ~ ~ AFt tertouch

(Presence

X is an RssControlChange component that maps the incoming position values from sensor

one directly to MIDI controller 16 values. The sound on the synthesizer responds to

controller 16 messages by mixing between two timbres, one of which is tied to the left

speaker and the other to the right. The incoming position values from sensor two are

directly mapped to aftertouch values by Aftertouch, an RssAftertouch component.

Aftertouch MIDI messages control the opening and closing of a filter on the synthesizer.

Presence is a MaxPluggableValueObject that builds up presence if a hand is within range of

sensor one or two. RssPresence, a component class that exists already, is inadequate here



because it only looks for presence in one sensor. Instead of creating a subclass of

RssPresence for somewhat special purpose components that looked for presence in two

sensors, a MaxPluggableValueObject is more appropriate; two blocks of code and several

properties are sufficient. The start block simply ensures that it has been stopped, sets its

value to 0, and tells itself to play. The play block builds up or decays value based on

whether a hand is within sensor one or two and sends value through its outlet. It also

instructs context, a property in its properties dictionary, to send it the play message one

centisecond later.

Presence connects to Notes, another MaxPluggableValueObject. When its incoming values

indicate that there is presence, Notes generates three notes by selecting three consecutive

pitches from a pitch array starting at a randomly selected index. The time stamps of the

notes are offset to achieve a rolling chord effect. Notes includes some logic to ensure that

the generated notes last for a minimum duration before it creates new ones. Because the

algorithm for generating notes and the mappings are simple, the effectiveness of this

example relies heavily on the sounds.

4.2. Ancient

In the example named Ancient, different interactions are assigned to the different sensors.

Again, the surface is functionally split through the middle, except this time into upper and

lower halves. The upper half controls various pedals tones and sounds and its components

are located in the Pedal subdirectory of Ancient. When Ancient is started, a

LizPluggableComponent named Notes, in the Pedal subdirectory, will send out pedal notes

on several MIDI channels. These pedal notes will last until Ancient is stopped and are not

immediately heard because their MIDI channel volumes are 0.

The top left sensor controls the pedal note on MIDI channel 1. Its connections are

diagrammed below. LeftPresence feeds into LeftVolume to control the volume of the pedal

tone and LeftFlutter connects to LeftMod to determine the pitch modulation depth.



The top right sensor controls the pedal notes on MIDI channel 2 and 7. Its connections are

diagrammed below. RightVolume controls the volume of MIDI channel 2 which has a

soft, repeating timbre separated by silence. The sound on MIDI channel 7 is a sequence of

metallic and inharmonic timbres and RightFlutterVolume sets its volume.

The top two sensors control the remaining pedal note on MIDI channel 3. The sound is an

intermittent sequence of metallic timbres filled with long gaps of silence. BothPresence is a

MaxPluggableValueObject that builds up presence if a hand is in either of the two sensors.

It connects to BothVolume which determines the MIDI volume on channel 3. The diagram

below illustrates what is happening schematically.

(Bo resenc othVolume

The lower half of the surface plays a synthesizer sound named AncentCelsia on a couple of

MIDI channels. Its components are found in the Celsia subdirectory. When Ancient starts,

a LizPluggableComponent named LeftNotes plays single notes from a table, treated as a



probability table, named PitchTable. LeftNotes generates a new note every ten seconds and

holds each note until it plays another one. The bottom left sensor controls those notes and

its connections are diagrammed below. Presence shapes the volume of the notes and flutter

determines the pitch modulation depth.

(/ensors/2/Position: LeftPresenc 111 11, (LeftVolume)

SLeffeloity (LeftFlutter.' LeftPitchMod)

A LizPluggableComponent named RightNotes also starts when Ancient does. It is identical

to LeftNotes except that it plays notes on a different MIDI channel and its period for

generating new notes, initially forty centiseconds, is much shorter. The bottom right

sensor controls both the volume of the notes and the period for generating them. Its

connections are diagrammed below. Again, presence shapes the volume. Flutter,

however, connects to RightPeriod, a MaxPluggableValueObject. RightPeriod scales the

period of the generated notes by the incoming flutter values; enthusiastic fluttering spins out

a flurry of notes.

(/Sensors/3/Position RightPresence Rihtolme

E ERigt~eociy RghtFflutter RightWeri~od)

4.3. WSeq

As with Ancient, the WSeq example assigns different interactions to different sensors. In

addition, many interactions are layered onto sensor three. Each sensor is associated with

its own sound. In ascending order of the sensors, the sounds are Galax2, Spectra,

ATouch, and Spectrm respectively. There are subdirectories within WSeq with the same



names as the sounds. They contain the components relevant to the corresponding

sensor/sound pair.

The top left sensor controls the Galax2 sound. Its connections are diagrammed below.

When the example starts, two drone notes are held until the example ends. Flutter feeds

into ModWheel to control the pitch modulation depth of the sound. CalcVolume is a

MaxPluggableValueObject that connects to Volume. The dashed line from CalcVolume to

AnyPresence indicates that CalcVolume references AnyPresence, but does not pass any

data to it. AnyPresence, a MaxPluggableValueObject, builds up presence if a hand is

within the range of any of the sensors. At every centisecond, CalcVolume uses the value

of AnyPresence to scale the volume of Galax2 to one fifth of the MIDI volume range.

However, if a hand is within sensor one, it shapes the volume directly. The idea is to have

the drone notes build up to a low volume when a hand is present anywhere on the surface,
but to also allow direct shaping of the amplitude when a hand is in a particular sensor.

(AnyPresence )

The bottom left sensor controls the sound named Spectra, which contains many

inharmonics. When the example starts, Notes, a LizPluggableComponent, plays a note

from a probability table every 500 centiseconds. Position shapes the volume and Presence

builds up pitch modulation depth via ModWheel. Presence also builds up Midil values.

Midil is a RssControlChange component that converts incoming values to MIDI controller

91 messages, a controller designated as MIDI 1 on the Wavestation synthesizer. Spectra

responds to these controller messages by adjusting the depth of random filter modulation.



The top right sensor controls the sound named Spectrm and is similar in simplicity to the

one just described. When the example starts, Notes, a LizPluggableComponent, plays a

note from a probability table every 500 centiseconds. Position shapes Volume, Midi 1, and

Aftertouch. Again, Midi 1 adjusts the depth of random filter modulation. Aftertouch selects

which timbre in a sequence of waves is heard.

Im ('ED.Volume)

e (/Sensors/4/Position Midil 1

s Aftertouch)

The bottom right sensor controls a sound named ATouch. The connections, diagrammed

below, show that many interactions are layered onto the sensor. When the example starts,

Notes, a LizPluggableComponent, plays a note from a probability table every 500

centiseconds. Presence builds up Volume and Smoother heavily smoothes out position

values before Aftertouch maps them to MIDI aftertouch values. As with the previous

sensor, aftertouch selects which timber in a sequence of waves is heard. The Smoother

makes the transitions between timbres more gradual. Flutter, via ModWheel, determines

the amount of pitch modulation and Activity feeds into Midil to control the depth of

random filter modulation.



AmpMod, Ancient, and WSeq are linked together by several node sentries. The figure

below outlines the various transitions. AmpMod has one sentry that triggers a transition to

Ancient. Ancient has two sentries: Sentry and BoredomSentry. Sentry advances the

system to WSeq and BoredomSentry returns to AmpMod. WSeq only has BoredomSentry

which moves the system back to AmpMod.

All the Sentry components behave in the same way. As the figure below reveals, the

output of AnyPresence, a MaxPluggable ValueObject that builds up presence if a hand is

within the range of any of the sensors, is connected to Sentry. After waiting for ten

seconds, Sentry watches the presence values to see if they stay above a threshold for

duration of six seconds at which point it will trigger a transition to its node. Over time the

duration of six seconds is scaled down so that the longer a node is activated, the faster

Sentry will trigger in response to presence values above a certain threshold.

( nesence S entry)

In contrast, the BoredomSentry's are much simpler. As the figure below shows,

AnyPresence also connects to BoredomSentry. Whenever there is no presence for fifteen

seconds, BoredomSentry triggers a transition to its node.

( nesence- BredomS entry)



4.4. Fifths

The Fifths example takes its name from the predominant interval of the seed note material.

It employs a chain of Cypher components, shown in the figure below. Seqi is a

CypherSequencer that has a collection of two CypherEventBlockComponents: la and lb.

When the example starts, Seql continuously cycles through its collection starting a

component every forty centiseconds. InputBlock, a CypherEventBlockComponent,

assimilates incoming event blocks into its own event block and passes its own event block

down the Cypher chain to be destructively modified and played on two MIDI channels.

This arrangement preserves the seed material in 1a and lb.

Only the two bottom sensors are used. As the figure below shows, BothPresence, a

MaxPluggableValueObject that builds up presence if a hand is in either of the two bottom

sensors, feeds into Volume , an RssControlChange component that controls volume on the

MIDI channel corresponding to Synth 1.

~re~ncD->c~lumel

As the figure below reveals, Volume2, which sets the volume of the MIDI channel

corresponding to Synth2, is determined by the Stillness on the third sensor. Every eighty



centiseconds, ScaleOffset, a LizPluggableComponent, maps the position of sensor three to

the offset of ScaleMapperWithOffset to transpose the events blocks by scale intervals.

( /Sensors/3/Position -0 S tilln e s s) olume2 )
(ScaleOffset ).

ScaleMapperWithOffset )

Finally, OffsetOffsetAndPitchDeviation, a LizPluggableComponent, references the position

and flutter of sensor two to calculate an offset offset for Offsetter and pitch deviation for

Deviator. If there is a lot of flutter, OffsetOffsetAndPitchDeviation sets the offset to 18

centiseconds and the pitch deviation to span two octaves. Otherwise, it scales the offset to

the position and assigns a pitch deviation of 0.

(Off setter Dvao

4.5. Pitcher

The Pitcher example exercises the CypherPitcher component in a short Cypher chain.

Again, only the bottom two sensors are used. The connections for the bottom left sensor

are diagrammed below. It is essentially a gesture component network for presence,

stillness, flutter, and activity. The gesture values are accessed by components elsewhere.

An identical gesture network exists for the bottom right sensor.



The Cypher chain with the CypherPitcher component is diagrammed below. Pitcher starts

when the example does. It plays two notes with a velocity of 50 and a legato of 80% every

12 centiseconds. If there is a reference to a pitch table, Pitcher treats it as a probability table

to generate pitches, otherwise MIDI note number 60 is used. Deviator, a CypherDeviator,

initially does not deviate anything. Other components, described later, change its velocity

deviation value.

Synth is actually a CypherPluggableFilter instead of a CypherSynth. A sub directory

named Synths contains three CypherSynths, titled Synthl, Synth2, and Synth3, that play

notes on three different MIDI channel. In addition, there are three component collections,

named AllSynths, ASynths, and BSynths, that reference the synths. The figure below

illustrates the membership of each of the collections. The pluggable filter Synth decides

which synths receive Cypher events based on the amount of flutter in the bottom sensors.

If there is insufficient flutter in both sensors, Synth1 plays all the events. Mutually

exclusive flutter in sensor two or sensor three selects a synth collections, either ASynths or

BSynths respectively. Synth distributes the events to the members of the selected

collection based on a probability table called TableFor2. Enthusiastic fluttering in both

sensors selects the AllSynths collection and Synth distributes the events based on a

probability table named TableFor3.



Synth2 Synth3 AllSynths

ASynths

BSynths

Finally, we turn to the components that map gesture values to parameter changes. These

components are characterized by the way they incorporate corresponding gesture values

from both sensors in their determination of parameter values. The connections are

diagrammed below. Dashed lines indicate references to components.

_ Caic VolVolumel
(3/Presence

Volume3
(2/Activity

-(CalcDeviation)- - -){ Filter/Deviator )
(3/Activity

(2/Stillness Tables/PitchTablel)
(CalcPitchTable C

(_3/Stllnes ) .(Tables/PitchTable2)

CalcVolume, a MaxPluggableValueObject, references the presence components to

determine the greater presence value. That value is converted to MIDI volume messages by

the three volume components, which correspond to the three synths in the Synths

directory. CalcDeviation uses the greater activity value to scale the velocity deviation of

Deviator in the Cypher chain. CalcPitchTable sets the pitch table of Pitcher. If there is

very little presence in both sensors, it sets the pitch table to nil so that a single pitch is used



by Pitcher to generate notes. If there is presence in both sensors, PitchTable 1 becomes the

pitch table. However, if there is a lot of stillness on a low medium value, CalcPitchTable

shifts the harmony by setting the pitch table to PitchTable2.



5 Evaluation

There are two aspects of this work that need to be evaluated: the software environment for

designing responsive sound surfaces and the actual examples themselves. Unfortunately,

there are no absolute metrics for evaluating either aspect. However, one measure of

success for the software environment is how reusable and extensible it is. That issue must

be addressed in light of the fact that at least two kinds of design processes will unfold and

often merge within the environment. The first one is that of building a specific system for a

particular responsive sound surface while the other seeks to extend the environment to

provide a broader selection of components and resources to include in specific systems.

The designer of a specific system is primarily interested in reusable components. The

components that currently exist within the environment are fundamental building blocks

that must be interconnected and cross-referenced in order for them to do anything useful.

The components are at a fundamental level so that the designer may mix and match to build

a custom system that fits a particular context. However, the components are not at such a

low-level that one would need an army of components to determine, say, the amount of

activity on a sensor. Although I decided on an initial set of gesture components and a

protocol specifying how to connect and access them, nothing in their design rigidly

determines how they are to be used. In the responsive sound surface examples, they work

with components that map their values to MIDI controller messages and with other

components that convert their values to Cypher parameters.

The designer, who wants to extend the environment with new components that are intended

to be used in many specific systems, is interested in how extensible the environment is: in

particular, what must be done to create a component class that coordinates its actions with

other components and the framework, archives itself to a file, and offers at least a form

filling graphical interface. A new component that is a subclass of LizComponent or one of

its descendants inherits all the necessary behavior for coordinating with other components

and the framework, although some specialization is often required. It will also inherit

mechanisms for archiving itself to a file that handle intrinsic and symbolic component

references properly and in such a way that it need only be concerned about saving data

specific to its class. Finally, the RSS development environment coupled with VisualWorks



offers abundant support for building forms filling component interfaces swiftly and

visually.

Quite often, the two design processes overlap. While building a certain system, the

designer may discover the need for a component that does not exist. If the missing

component is very specific to the situation, it might not make sense to create a new

component class that clutters up the environment with unreusable classes. Although the

process for creating a new component class is streamlined, it does take a bit of time and

might be disruptive for little bits of code. By taking advantage of a dynamic language's

ability to compile code on the fly, LizPluggableComponent and its descendants fills the

need for quick, one of a kind components.

A small pool of participants interacted with the various responsive sound surface examples.

It was clear from their feedback that simple mappings, especially when layered on a sensor,

could easily produce a complexity that belied the simplicity of its parts. Even the

straightforward mappings of AmpMod, the simplest example, were not easily discerned as

being as simple as they were due to the complexity of the sounds and the dynamics of the

"sweet spot." Indeed, when I explained the mappings of AmpMod and how the sounds

were synthesized to one participant, he jokingly accused me of cheating because the

elements were so simple. Yet, after much previous experimentation, he had been unable to

map out exactly what was going on.

In designing the examples, I was not interested in a detailed, instrument-like level of

control, where the participant would know how to precisely control every aspect of the

system. Indeed, one of the guiding principles was that a participant should have no

particular set of skills or knowledge to interact with the system. As expected, a human

participant naturally produced an unpredictable and dynamic environment, and much of the

complexity of the system's responses could be derived from the rich behaviors of the

participants while keeping the mappings of the system relatively straightforward. I tried to

avoid the more blatant and obvious mappings of, say, position to pitch, but discovered that

even mappings with only slightly more sophistication, especially when layered onto a

sensor, could bring the participant easily to the point of confusion.

Some participants expressed a need to know exactly what was going on so that they could

have instrument-like control over the system. Once the mappings were explained to them,

they grew less interested in the system because the mappings were simple and the need for



exploration was removed. In the Ancient example, one person wanted the elements that

built up and decayed in volume to do so more quickly, so that it would be obvious.

Unfortunately, the obvious effect would have been mechanical and tedious.

Clearly, more work is needed in the area of how to anchor a participant without becoming

annoyingly obvious or heavy. From my observations, a bare surface without

embellishment and no other means of visual feedback is too disorienting. People had great

difficulty finding the entire range of the sensors. As a result, I feel some sort of visual

feedback indicating that a hand is within the range of a sensor is appropriate here,

especially because it would not clog up the audio activity.

As an experiment, I had people try the system while viewing monitor windows that

graphed the sensor values. One person remarked that he found it easier to watch and

control the graphs before associating various gestures with changes in the sounds and

textures. Overall, the monitors garnered too much attention and were too literal as a visual

interface. People often remained transfixed by them even after they had acquired a good

sense of the sensor's range and the various gestures. In the context of my examples, a

better balance would be to have some visual elements that simply indicated whether a hand

was in range and did not attract too much attention, yet were pleasing to the eye.

I feel the gesture components offer a sufficient number and an appropriate collection of

gestures for the context of responsive sound surfaces. The number of effective gestures

grows large when one factors in the partitioning of the sensor range, the layering of

gestures at different time scales on an individual sensor, and the correlation of gestures in

different sensors. The gestures that build up and decay over time really help to move away

from a trigger sensibility where a simple action always has a similar and direct result.

However, a gesture like flutter, which is simple to do once you know of it, might never be

discovered. The intent behind flutter was to add a more subtle layer of interaction that

would slowly be discovered over time as a reward for exploration. However, one might

argue that flutter would probably not be discovered unless the interactions somehow lead a

participant up to its discovery.

Even with straightforward mappings, it is simple to create a system where the participant

would probably not discover most of the mappings. This would be even more so in an

environment with sculptural surfaces and hidden sensors. The issue here is how the

system can encourage participants to become more sophisticated and exercise a significant



number of the gestures at their disposal. Recent work by Maes et. al. on the ALIVE

system [Maes et. al.94] includes coaching agents, which are weaved right into the

interactive flow, that help a participant explore all the interactions of the system. Within the

context of responsive sound surfaces, one possibility is a layer of components that profiles

participants and adapts the parameters of the gesture components to their profiles over time.

For example, if the participant has built up a lot of presence in a sensor the system might,

dampen the more immediate and obvious interactions to highlight the more indirect ones. If

the participant continues to overlook the less obvious interactions, make them more

sensitive by adjusting the parameters of the relevant gesture components. Over time, we

would expect a participant to become more aware of the ways of the system, and, by the

same token, the system would adapt and personalize the experience for the participant.

The ability to customize LizNodeSentry with dynamically created blocks of code makes it a

suitable mechanism for implementing a wide variety of node transition policies. The

sentries in the examples are on the simple side and experience with systems containing

more nodes and many different sentry policies would be needed to more fully evaluate

LizNodeSentry. LizNodeSentrys' explicit links to nodes may become unwieldy in large

systems and extending LizNodeSentry to encompass the more powerful description-based

approach in Evans' work [Evans94] would alleviate that problem.



6 Future Directions

6.1. Implications of More Sophisticated Gesture Analysis

This work analyzed the features of simple gestures made in relationship to a location on a

surface. Addressing the more general problem of analyzing gestures in free floating space

would greatly enrich the vocabulary of physical gestures. It would also be interesting to

include gestures based on the distance between two hands. However, care would be

needed to ensure that all the gestures required no instruction or coaching.

With reliable and accurate x, y, and z hand coordinates, the number and shape of the

sensitive areas on the surface would not be constrained by the geometry and number of

sensors. In addition, the areas need no longer be static, but could dynamically change size

and shape over time.

More sophisticated gesture analysis would certainly place greater demands on the system to

the point where a separate gesture server might be necessary. In that case, the RSS

development environment's distributed architecture and ability to communicate over

TCP/IP would ease the integration of a gesture server.

6.2. Integrating Other Domains

In order to focus on the hand and sound interactions, I only experimented with a surface

that was a bare, flat, and square sheet of Plexiglas. A sculptor might employ textured

surfaces of various shapes and sizes or use the ideas underlying responsive sound surfaces

to animate the space around sculptural elements.

Continuing into the visual domain, obvious extensions to the RSS development

environment include video and graphic components. It is in these areas that the ground

work for laying the RSS development on a distributed system really pays off. By creating

separate video and graphic servers that communicate over TCP/IP, integrating them into the

RSS development environment is straightforward. Video and graphic processing are

generally computationally intense and a distributed architecture would prevent that



demanding processing from interfering with the performance of the rest of the RSS

development environment.

6.3. Interactive Music for Video Games

Video game designers have been at the forefront of interactive systems implementation. A

feat made all the more astonishing when one considers how cheap the hardware must be for

video games. One perceptual trick of the trade is that good quality audio enhances the

quality of mediocre graphics hardware. And so, video games generally have a musical

score and sound effects. As video games begin to explore the nonlinear models of

interactions, signaled by the emergence of many recent CD-ROM games, music that is pre-

stored and therefore static becomes inappropriate and ultimately detrimental to a dynamic,

interactive experience.

Alexander Rigopulos proposes musical "seeds" to generate music in real-time as one

solution to the problem [Rigopulos94]. His seeds are short fragments of fundamental

musical material including rhythmic, harmonic, melodic, and textural information. A group

of idiomatically neutral analyzers extract parameters sets that represent various musical

features of the seeds. Subsequent music, bearing characteristic properties of the original

seed, is generated as a function of the parameter sets. By modifying any combination of

the parameters over time, the unfolding music may elastically respond to external

conditions.

Coupling a responsive sound surface with Rigopulos' seed-generated music system would

be a powerful combination. By employing the gesture components that build up and decay

over time, the parametric controlled music would smoothly adapt itself to an overall sense

of what the participant is doing rather than jumping in fits and starts to every movement a

participant makes.

Going further, it is easy to conceive of the idea of a higher-level musical instrument. One

that would incorporate non-musicians in a musical activity. Many commercial keyboards

with auto-music functions, overwhelm the musical initiate with a plethora of buttons and

switches that are each tied to simple, musical changes. An alternative approach would be to

do away with the buttons and switches in favor of a responsive sound surface where one

could navigate through musical material and transformations spatially. The layering of

interactions on individual sensors would create a rich environment for music making.



6.4. Incorporating Group Interactions

Perhaps the most interesting and challenging future direction for responsive sound surfaces

is how to incorporate them within group interactions. At the technical level, this would

certainly involve fleshing out the distributed system with many more computers. On a

more conceptual level, one of the critical question is how to create a responsive space

where the interplay of actions between people and the space dynamically shapes an

experience that expands consciousness and perception while touching each participant in

personal, individual ways. How does one unify the actions of a group of people with no

particular set of beliefs, skills, and knowledge, and yet retain an individual sense of

relevance and expression?

The Brain Opera [Machover94b] signals the emergence of a new art form, where people

gather to participate in a shared, mediated experience and their actions have heightened

significance. Our modern civilizations have lost the ancient, sacred and magical spaces

where people gathered to commune with spirits and achieve an altered state of

consciousness. It is my conviction that very large participatory interactive systems that are

artistically conceived have the capacity to recapture some of the spirit of those faded

magical experiences. It is also my hope that this work starts to pave the path toward very

large participatory interactive systems that artists may build upon in their pursuit of these

lofty aspirations.



7 Appendix: Implementation Details

7.1. Coordinating With the MIDI Server

A group of components works together to coordinate activities with the MIDI server to

provide timing, MIDI input and output, and scheduling services. These include the

LizPortClient, LizExternalClock, and LizContext. The diagram below illustrates the

relevant relationships among the components.

LizPort is the object that establishes a connection with the MIDI server. It maintains a list

of clients that are interested in MIDI data from the MIDI server. Although LizPortClients

are generally its clients, LizPort does not care who they are as long as they adhere to its

client protocol. LizPort sets up an input process that waits for MIDI packets from the MIDI

server. When it receives MIDI packets, the input process determines whether the packet is

a real-time or channel packet and sends the message

port:didReadSystemRealTimePacket: or port:didReadChannelPacket:

respectively to the clients along with the received packet. LizPort also has a buffer for

MIDI packets that are to be sent to the server. It is important to buffer the output MIDI

packets and then coalesce them into one large packet because sending packets over the

network is expensive.



In the diagram above, LizPort has one client, namely LizPortClient. LizPortClient has

references to LizPort and LizExternalClock and maintains an input queue of MIDI packets

and a set of input handlers that want MIDI packets. When it receives the message

port: didReadChannelPacket: from LizPort, LizPortClient simply sticks the MIDI

packet onto its input queue. We buffer the input packets because the input handlers may

output MIDI packets when they process the input packets. We want to handle the input

packets all together and at a known time so that LizPort's output buffer will be flushed

properly and the MIDI packets actually sent to the MIDI server.

LizExternalClock keeps a list of high priority and low priority clients. In general, high

priority clients would generate MIDI output packets and low priority clients would ensure

that the packets are actually sent to the MIDI server. In the diagram above,
LizExternalClock has LizContext as a high priority client and LizPortClient as a low

priority one. All clients, regardless of priority, must respond to the messages

clock:willTick: and clock:didTick:. If the MIDI packet, sent by LizPort through the

message port: didReadSystemRealTimePacket:, is a MIDI clock message,
LizPortClient sends clock:didTick: with the time stamp of the packet to

LizExtemalClock, who expects to be told when an external clock ticks. LizExternalClock

has a clock process that waits on a semaphore for external clock ticks. When it receives the

clock:didTick:, LizExternalClock signals its semaphore so that its clock process may

continue. The following bit of pseudo code reveals how the clock process proceeds.

send clock:willTick: to the high priority clients

send clock:willTick: to the low priority clients

set time to the real time

send clock:didTick: to the high priority clients

send clock:didTick: to the low priority clients

LizPortClient, which is a low priority client, responds to clock:willTick: by passing on

the MIDI packets in its input queue to the appropriate handlers and responds to

clock:didTick: by flushing LizPort so that any buffered MIDI packets are sent to the

MIDI server.

LizContext references a clock and maintains a local scheduler, which is based on an

implementation by Lee Boynton [Boynton87]. It provides a local context for scheduling

tasks. The scheduler advance of LizContext determines how far ahead of real time the



context will schedule events. Scheduling into the future helps alleviate latencies due to

system load, but increases the system's reaction time. Joe Chung's advice regarding the

value of scheduler advance is particularly apt: "The rule of thumb is to use a scheduler

advance that makes things sound better, but doesn't noticeably decrease responsiveness.

[Chung91]" The ability to have multiple LizContexts increases the programmer's flexibility

in meeting accuracy versus responsiveness requirements.

In the diagram above, LizContext is a high priority client of LizExternalClock. LizContext

ignores the clock:willTick: message from LizExternalClock and responds to

clock:didTick: by executing all the scheduled tasks that are ready.

7.2. Archiving

To archive itself to a binary file, a LizComponent must specialize the method

addlnitMessageTo:forBinaryWriter:. Within that method, a particular class need

only create a message with arguments that will perform initialization specific to the class. It

should also give its superclass an opportunity to do the same by invoking

addlnitMessageTo:forBinaryWriter: on it. This scheme simplifies the archiving of

new LizComponents; each class need only concern itself with initialization particular to

itself and not worry about how its superclasses must initialize themselves.

After a component is read back in, the archiving mechanism sends it the message

awakeFromStorage. At that time, a component tries to resolve each symbolic reference

to an actual component or set it to nil if the object did not exist.

7.3. Max-Like Connectivity

Many objects in Smalltalk adhere to a simple value protocol: The message value sent to an

object returns the object's value and the message value:, with a value for the argument, to

an object sets the object's value. This protocol is carried over to the Max-like connectivity

objects. The following diagram illustrates how the data flows:



LizComponent LizComponent

value: (Max-onnection alue
( MaxOutet)- (MxConnection)Mxne

Value:

MaxInlet has a block of code called valueBlock that handles the value: message. The

LizComponent, who owns the MaxInlet, can either supply the value block or have the

MaxInlet generate a block of code that will notify the LizComponent, using a message

chosen by the LizComponent, when a new value arrives. MaxValueObject comes pre-

packaged with one MaxInlet and one MaxOutlet. To handle received values, the

programmer would only have to specialize the valuelnletValue: method;

MaxValueObject initializes its MaxInlet appropriately. MaxPluggableValueObject, a

descendent of LizPluggableComponent, also comes pre-packaged with one MaxInlet and

one MaxOutlet. In keeping with the spirit of pluggable objects, the designer may, at any

time, submit blocks of code to handle input values.

Components with inlets and outlets have a simple textual interface, like the one below, for

making connections on the fly. Two pieces of information are necessary to establish a

connection in this interface: a component and a message to access the appropriate inlet or

outlet of the component. In the text pane of value inlet below, "/Sensors/3/Position" is a

source component and "value" is the root of the message sent to that source component to

acquire the outlet for the connection. The actual message sent is the root appended with

"Outlet" to produce valueOutlet. A similar procedure occurs for outlet connections

except that the root of the message is appended with "Inlet."



7.4. MaxTable

The MaxTable component provides a way to store and edit an array of numbers. It is

similar to the table object found in Max. In particular, it implements a quantile method

that treats the array as a probability table. The quantile method calculates a y value by

multiplying the sum of the array values by a random number between 0 and 1. Then, it

iterates through the array to return the index of the first value that is greater or equal to the y

value. In effect, each index occupies a portion of the sum of array values that is

proportional to the "weight" or value at each index. Repeatedly invoking quantile returns

each index at a frequency approximately proportional to the corresponding value. By

treating the indices as MIDI note numbers, one may set up a simple pitch probability table

with MaxTable and quantile.

7.5. RssSensor and RssSmoother

RssSensor, a descendent of LizComponent, references a LizExternalClock and a

LizContext and has a value outlet. At set up time, it attaches itself to its LizPortClient as an

input handler on a particular MIDI channel. LizPortClient will pass MIDI packets to

RssSensor by sending the message handleMidiChannelPacket: with the MIDI packet

as the arguments. RssSensor ignores all MIDI packets except for pitch bend, which it

normalizes to values between 0 and 1. At every clock tick of its LizContext, RssSensor

sends the last normalized pitch bend value through its outlet.

To find the position of a sensor, one could simply take RssSensor's value. However,

connecting RssSensor to RssSmoother and treating the value of RssSmoother as the

position will reduce jitter and minimize the effect of dropped sensor data packets.

RssSmoother, like most of the gesture components, is a descendent of MaxValueObject

and so it has a Maxlnlet and a MaxOutlet. Its sole parameter is a smoothing factor that

should be a number between 0 and 1 inclusive. The smoothed value is calculated by the

following formula:

smoothedValue = smoothingFactor * aValue + (1 - smoothingFactor) * previousValue
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