
Library-based Image Coding using
Vector Quantization of the Prediction Space

by

Nuno Miguel Borges de Pinho Cruz de Vasconcelos

Licenciatura, Electrical and Computer Engineering
Faculdade de Engenharia da Universidade do Porto, Portugal

(1988)

SUBMITTED TO THE PROGRAM IN
MEDIA ARTS AND SCIENCES

IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1993

@1993 Massachusetts Institute of Technology.
All rights reserved.

rogram in Me gArts an '
Aug st 6, 1993

Certified by:

[pr
Andrew B. Lippman

Associate Director, MIT Media Laboratory
Thesis Supervisor

Accepted by:

Chairperson,
Stephen A. Benton

Departmental Committee on Graduate Students
Program in Media Arts and Sciences

Rotch
MASSACHUSETTS INSTITUTE

OF TFr4N01 fGy

00T 18 1993
IUBRARIES

Author:

Library-based Image Coding using

Vector Quantization of the Prediction Space

by

Nuno Miguel Borges de Pinho Cruz de Vasconcelos

Submitted to the Program in Media Arts and Sciences,
on August 6, 1993 in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Traditional image compression algorithms based on interframe coding rely on a
block-matching algorithm to estimate motion between frames and minimize temporal
correlation. The simplicity of the coding model behind block-matching, which assumes
a world uniquely composed of 2-D planar objects subject to translational motion, leads
to clearly sub-optimal performance when more complex events (such as newly revealed
objects, or objects subject to non-translational motion), very common in real world
scenes, occur. In addition, its complexity limits, in practical applications, the number
of frames used for prediction (prediction space) to one or at most two, further limiting
the coding efficiency.

This thesis presents a library-based encoder, which extends the block-based coding
model into an object-oriented direction that leads to higher efficiency in the handling of
those complex events; and which is capable of exploiting a significantly larger prediction
space without significant increase in complexity.

Under this new approach, during the encoding process, the coder continuously builds
a library containing information relative to all or part of the previously encoded images,
and the prediction for each new input block is obtained from a search of the closest
match in this library. Vector quantization is used to obtain the library that optimally
represents the prediction space, by clustering the blocks of the prediction space which
belong to the same or similar objects and assigning a representative block to each of
the clusters.

Thesis Supervisor: Andrew B. Lippman
Associate Director, MIT Media Laboratory

The work reported herein is supported by a contract from the Movies of the Future consortium, includ-
ing Apple Computer Inc., Bellcore; Eastman Kodak Company; Intel Corporation; Viacom International
Inc., and Warner Brothers Inc.

Library-based Image Coding using

Vector Quantization of the Prediction Space

by

Nuno Miguel Borges de Pinho Cruz de Vasconcelos

Reader:
Edward H. Adelson

Associate Professor of Vision Science
MIT Media Laboratory

Arun N. Netravali
Executive Director, Research, Communications Sciences Division

AT&T Bell Laboratories

Reader:

To my parents,

Assungdo and Manuel.

Contents

1 Introduction

1.1 Motivation .

1.1.1 Problem .

1.1.2 Approach .

2 Image compression fundamentals

2.1 Quantization .

2.1.1 Scalar Quantization

2.1.2 The structure of the scalar quantizer . .

2.1.3 Evaluation of quantization performance .

2.1.4 Optimal quantization

2.1.5 High-rate quantization

2.2 From scalars to vectors: Transform coding . . .

2.2.1 Transform coding

2.2.2 Discrete Cosine Transform

2.2.3 Quantization in the transform domain

2.3 Vector Quantization

2.3.1 The structure of the vector quantizer

2.3.2 Evaluation of quantizer performance

2.3.3 Optimal vector quantization

2.3.4 The efficiency of vector quantization

2.4 From 2 to 3 dimensions: interframe coding

2.4.1 Predictive coding

8

9

10

11

14

15

. 15

. 16

. 17

. 19

. 21

. 24

. 27

. 31

. 34

. 37

. 39

. 39

. 40

. 42

. 46

. 47

2.4.2 Motion estimation and compensation .

2.5 Entropy coding

2.5.1 Scalar entropy coding

2.5.2 Vector entropy coding

2.5.3 Huffman coding

2.5.4 Arithmetic coding

2.5.5 Entropy-coded quantization

3 Recent advances in image coding

3.1 Traditional image coding

3.1.1 The MPEG-2 video coding standard

3.2 Model-based coding

3.2.1 Image analysis

3.2.2 Image synthesis

3.3 Object-oriented image coding

4 Library-based image coding

4.1 Vector quantization of the prediction space

4.2 The LBG algorithm for VQ design

4.3 Implementation of the library-based encoder .

4.3.1 Library design

4.3.2 Library update

4.4 The library-based image encoder

5 Simulation results

5.1 Optimization of encoder parameters

5.1.1 Composition of the prediction space .

5.1.2 Distortion threshold for library update

5.1.3 Number of iterations of library design

5.2 Efficiency of the library predictor

5.3 Global efficiency of the library-based encoder .

. 49

. 51

. 52

. 54

. 55

. 57

. 58

61

. 62

. 62

. 72

. 73

. 75

. 77

100

101

102

104

105

106

114

6 Conclusions and future work 119

6.1 Conclusions . 119

6.2 Directions for future work . 121

Bibliography 122

Acknowledgments 126

Chapter 1

Introduction

A typical sequence of images presents a high degree of correlation between consec-

utive frames and between adjacent regions within each frame. By exploiting that

correlation, an image coder can achieve significant savings of transmission bandwidth

at the cost of none or small distortion in image quality.

Typical image compression algorithms are based on motion-compensated inter-

frame difference coding. However, and due to the vast amount of research spent on

this type of algorithms, the gains to be made from straightforward waveform image

coding are diminishing as they are reaching an asymptote in efficiency. The best way

to make improvements is to employ a better model of the image or the image forma-

tion process, an idea that is becoming known as "object-oriented" or "object-based"

coding. Such a model is, however, very hard to compute for most of the natural

scenes, and this fact restricts the use of model-based or object-oriented encoders to

a very limited range of applications, such as video-telephone or video-conference.

This thesis extends the traditional image coding model used (or proposed) for

television transmission towards an object model, by combining conventional image

coding techniques with an object-based approach. In this way, it is possible to obtain

higher performance while retaining the robustness of the conventional coding tech-

niques, which is very important for applications where high-coding quality of general

scenes (as opposed to restricted images sets such as "head-and-shoulders" conference)

is required.

1.1 Motivation

In the general sense, an interframe coder works by splitting each input frame into

regions (usually square blocks), finding the best match between each of those regions

and a region of predefined size in a previously transmitted frame (block-matching),

and transmitting a coded version of the error between the original region and the

best match. This coding operation is what varies most from implementation to im-

plementation. In general, a decorrelating transformation in the frequency domain

(DCT, subbands, etc.) is used, followed by quantization (scalar or vectorial), and

variable-length coding (Huffman coding, arithmetic coding, etc.).

The MPEG algorithm [18] is probably the best example of state of the art in

interframe coding. Its main characteristics are:

* input image is split into fixed size blocks;

* motion estimation/compensation based on a previous (P-pictures) or on a pre-

vious and a future (B-pictures) frame;

* bypassing of the prediction when the closest match is not good enough (intra

blocks);

* use of the DCT as decorrelating transform, scalar quantization, and Huffman

coding.

The quality of the prediction has a crucial importance in the performance of an

interframe coder since most of the redundancy of the input signal is eliminated when

the prediction is subtracted. This can be verified by the bit allocation necessary to

maintain approximately constant quality among different picture types in an MPEG

coder, which is typically in the ratio of 3:2:1 for I-pictures (all blocks intra), P-pictures,

and B-pictures, respectively.

1.1.1 Problem

Since the prediction quality depends exclusively on the quality of the motion esti-

mation, it is obvious that this is a determinant factor in the quality of the coding

algorithm. A good motion estimator is, however, difficult to implement since accurate

motion estimation would imply some kind of knowledge by the encoder of the 3-D

objects present in the scene. Although some research has been presented in this field

in the last few years, model-based coding is still in its infancy and will not be a viable

answer to the problem of high-quality video coding in the years to come. As a con-

sequence, block-matching is widely accepted as the more efficient motion-estimation

technique.

The main problem with block-matching motion estimation is, however, that it

assumes a very simple model of the world, purely composed of 2-D planar objects

subject to 2-D planar shifts, and cannot account for more complex events, such as

non-translational motion or newly revealed data, that are very common in the real

world. Also, and although conceptually simple, block-matching is computationally

intensive, and this limits, in practice, the search region to one or at most two frames

(as in MPEG), which is insufficient for several types of motion that occur in real

life scenes. Better prediction quality can be achieved by extending the prediction

space (space where the search for the best match is performed) to a higher number

of frames.

This thesis presents a new algorithm to achieve the goals of extending the coding

model and exploiting a larger prediction space without a significant increase in the

complexity of the coding process.

1.1.2 Approach

The main idea is to improve the traditional motion estimation/compensation struc-

ture by incorporating library-based processing in the traditional interframe encoder.

A library is a collection of representative blocks that the encoder builds during

the encoding process. Library-based encoding can be viewed as an extension of block-

matching motion-compensated encoding where, for each block, a search is done on a

library limited to a fixed region of a previous frame. Since adjacent regions of the same

frame are in general highly correlated, a smaller set of blocks of the previous frame

than this fixed region would, in general, be sufficient to obtain equivalent motion-

estimation performance, but with reduced computation. Similarly, maintaining the

number of entries in the library, blocks from other frames could be incorporated,

originating a better prediction and higher coding quality, while maintaining the search

complexity.

Library-based encoding can also be seen as form of object-oriented image coding

since each library entry is representative of a set of blocks with similar characteristics

and, therefore, associated with the same or similar objects. In this way, the coding

model becomes capable of handling complex events, such as objects being revealed

after temporary occlusion, objects subject to cyclic motion, or objects subject to

non-translational motion.

In addition to the potential for improved coding efficiency, a library-based encoder

has the potential to use this improvement to provide new access techniques, and to

exploit the coding as part of the analysis one would wish to do to summarize or

search through a movie. For example, by downloading the library alone, it is possible

to recreate a low-quality version of the movie that allows the user to browse through it

with minimal decoding complexity and transmission rate. In this context, the library

ultimately becomes a sort of "shorthand" or keymap for the movie itself, and the

coding analysis is extended to perform user level tasks.

The fundamental questions that need to be answered in the implementation of a

library-based coder are how to design the library, how to update it, and how to search

it.

A Vector Quantizer (VQ) provides an efficient answer for the first question. A

VQ divides its input space (in this case the prediction space) into a set of clusters,

by grouping together vectors (blocks) with similar characteristics, and assigning a

representative vector (block) to each of these clusters in order to minimize overall

distortion. This representative vector is the centroid of the cluster which, under the

mean-squared error distortion measure, reduces to the vector average of all the vectors

in the cluster. In simpler words, a VQ provides a codebook (vector library) that is

an optimal representation of the prediction space.

The major problem of a VQ-based solution resides in the complexity of codebook

design. As a good probabilistic description of the input is, in general, not available, the

codebook is usually designed by applying a computationally heavy iterative algorithm

to a training sequence. Since, for this particular application, an adaptive codebook

matched to the local characteristics of the input sequence would be preferable to a

unique global codebook, the design complexity becomes a very important factor.

To minimize this design complexity, a frame adaptive codebook, replenished at

the scene level, is proposed in this thesis. With this scheme, the design complexity

is distributed between several frames and the codebook gradually improved, while

maintaining the implementation complexity between reasonable bounds.

An input block is library-encoded by searching the closest match in the library,

and coding the difference between this prediction and the block itself. If a close

match cannot be found, the input block is coded, transmitted, and at the same time

incorporated on the library. In this way, only blocks that convey new information

are added to the library, which can therefore maintain a reasonable size while being

representative of a set of various frames.

To avoid an endless growth of the library, some of the blocks contained in it

must be dropped when new ones are incorporated. A library update scheme, based

on conditional replenishment techniques, is also proposed to reduce the overhead

associated with the transmission of the library refinements.

Whenever the library fails to perform well, the coder switches to traditional

motion-compensated prediction based on the previous frame, assuring that the overall

performance is never worst than the achieved with this type of coding.

The thesis is organized as follows. Chapter 2 presents a review of the fundamental

principles of the traditional image compression techniques relevant to the work devel-

oped in the thesis. Some of the recent advances in the field, in particular model-based

and object-oriented approaches, are discussed in chapter 3. Chapter 4 presents the

new library-based algorithm that combines aspects from both the traditional and the

object-oriented approaches to achieve increased coding efficiency. The performance

of this library-based scheme is analyzed in chapter 5. Finally, chapter 6 presents the

conclusions and suggestions for future work.

Chapter 2

Image compression fundamentals

The objective of an image compression system is to find a representation of the input

data which requires the minimum possible number of bits to achieve a desired coding

fidelity. This chapter reviews of some of the most popular traditional compression

techniques, based on concepts from the fields of digital signal processing and informa-

tion theory. Obviously, this review is not intended to be exhaustive, but to establish

the background necessary for the understanding of the work later presented. More

detailed studies about the techniques here presented and some others can be found

in the references.

Since efficient quantization plays a crucial role in the efficiency of a (lossy) com-

pression system, this topic is covered in some detail in the following sections. Sec-

tion 2.1 presents the principles of scalar quantization, and some theoretical results

about the expected performance of algorithms based on it. Section 2.2 discusses

transform coding, a pre-processing technique that leads to a representation of the

input which increases the efficiency of scalar quantization. Section 2.3 describes the

extension of the concept of quantization to multi-dimensional spaces provided by a

technique known as vector quantization. Section 2.4.1 deals with predictive methods

commonly used for the temporal processing of image sequences. Finally, section 2.5

presents lossless techniques which can be used in conjunction with any of those dis-

cussed in the previous sections.

2.1 Quantization

A quantizer performs the mapping of a large (infinite for analog signals) set of input

amplitude values into a smaller, finite set of reconstruction (or quantized) values. It

can be considered the fundamental stage of any image coding system because it is

the element which provides the most significant degree of compression of the input

signal.

Quantizers can be divided in two major groups: scalar quantizers, which process

a sample at a time, and vector quantizers, which process a group (vector) of samples

simultaneously.

2.1.1 Scalar Quantization

A scalar quantizer maps the amplitude of the input sample into a finite set of recon-

struction levels. The range of input amplitudes is partitioned into a set of N regions

(R) and a reconstruction value (yi) associated with each region. The regions R, are

delimited by decision levels or thresholds (di), and all the input amplitudes in region

Ri (x E [d;- 1, di[) are mapped into the reconstruction value yi.

Mathematically,

R_ C x : di_1 < x < d;}, (2.1)

and

Q(x) = y, if x E Ri, i = 1, ... , N. (2.2)

The distance between two consecutive decision thresholds Ai = di - di_1 is known

as the quantizer step-size in the region i, and can be used to distinguish two major

groups of quantizers. If Ai is constant (Ai = A, V) the quantizer is classified as uni-

form, otherwise it belongs to the class of non-uniform quantizers. Figures 2.1 a) and

b) present the characteristic of a uniform and a non-uniform quantizer, respectively.

Y13 Y13

d1 d12 X d1 d 1 2 x

y1 y 1

a) b)

Figure 2.1: Quantizer transfer function: a) uniform, b) non-uniform.

2.1.2 The structure of the scalar quantizer

A very insightful analysis of the structure of a quantizer is presented by Gersho in [10].

Although oriented to vector quantizers, this analysis is equally useful to understand

scalar quantization and, in particular, the conditions for optimality to be presented

later.

A quantizer can be best understood if decomposed into two major building blocks:

an encoder and a decoder. The encoder analyses the input, i.e. it is responsible for

finding the region to which the input amplitude belongs. The decoder synthesizes the

output, i.e. it is responsible for the generation of the reconstruction value associated

with the region determined by the encoder.

The encoder can be modeled by a group of selector functions Si, each associated

with one of the quantization regions. If the input is in the region R;I, the output of

the selector function i will be one and the outputs of all the other selection functions

will be zero

Si(x) = 1, if x E Ri (2.3)
0, otherwise.

The outputs of all the selector functions are connected to a binary address gen-

erator which encodes the N-tuple S(x) = (S1(x),...,SN(x)) made of one "1" and

N - 1 "O"s, into a binary b-tuple, where

b = log 2(N) (2.4)

is the bit rate of the quantizer. This binary b-tuple is then transmitted to the decoder.

In the decoder, an address decoder recovers the N-tuple S(x) and outputs the

reconstruction value associated with the non-zero position of S(x). Since the recon-

struction values are predetermined, this operation can be expressed as

N

Q(x) = Ey Si(x). (2.5)
i=1

The overall structure of the quantizer can thus be represented as in figure 2.2. It

is interesting to note that the nonlinearity of the quantizer is inherent to the encoder.

The decoder performs a linear operation.

2.1.3 Evaluation of quantization performance

Since it performs a many-to-one type of mapping, the use of a quantizer always implies

the introduction of a certain amount of distortion in the quantized signal. The goal

of a good quantizer design procedure is, therefore, to minimize this distortion. In

order to treat this minimization problem mathematically, two parameters need to be

established: a mathematical model of the input signal, and a function to provide a

measure of the distortion.

A A
D D Y1
D D

S2 R R x
E E
S S Y

_X__s:2+

E D
N E

-SN-1 C x
D D y
E E N-1
R R

NSN

N

Figure 2.2: The structure of a quantizer.

Since the input is typically not known in advance (otherwise there would be no

point in coding it), the input signal is generally modeled according to its statistical

properties, i.e. considering it as a set of samples of a stochastic process with charac-

teristics that resemble those of the real data.

As far as the distortion measure is concerned, an universally acceptable measure

has not yet been found. A good measure of distortion should be simple enough to be

mathematically tractable, and yet provide an objective criteria for evaluation of cod-

ing fidelity well matched to the complex subjective criterion used by humans. These

two requirements turn out to be highly conflicting and, in practice, more emphasis is

given to the aspect of mathematical tractability. Thus, despite its incapacity to take

into account the properties of the Human Visual System (HVS), the Mean Square

Error (MSE)

MSE = ||x - y1| 2, (2.6)

is the most commonly used distortion measure.

Let us, for the moment, stick with a general distortion measure d(x, y). The

average distortion D originated by a scalar quantizer, with input x characterized by

the probability density function p,(x), is

D = J d(x, Q(x)) px(x)dx. (2.7)

For an N-level quantizer, from equations 2.1, 2.2 and 2.7

N di

D =] d(x, y;)px(x)dx, (2.8)

and an optimal quantizer, should minimize D.

2.1.4 Optimal quantization

Due to the highly non-linear nature of quantization, a closed-form solution to the

problem of designing the quantizer that, for a specific bit rate, minimizes the distor-

tion is, in general, not available. It is possible, however, to find a set of conditions

necessary for optimality, that are also sufficient for some of the most common pdfs.

The key to find these conditions consists in dividing the global minimization problem

into two distinct sub-problems, matched to the structure of the quantizer as described

in section 2.1.2:

* Problem 1: Find the optimum encoder for a given decoder.

e Problem 2: Find the optimum decoder for a given encoder.

The optimal encoder for a given decoder

Suppose that the optimum decoder (set of reconstruction levels yj, i = 1,... , N) is

known, and we wish to find the encoder (set of decision thresholds di, i = 0,... , N)

that minimizes the overall distortion as given by equation 2.7.

Obviously, the overall distortion will be minimum if each input sample is quantized

with minimum distortion, i.e. if for a given input amplitude, the closer (in the sense

of the distortion measure) reconstruction level is chosen. Mathematically,

R1 C {x : d(x, y;) < d(x, yj), Vj # i},

Q(x) = yi, if d(x, y) 5 d(x, yj), Vj # i,$

(2.9)

(2.10)

since, in this case,

Q(x) = min [d(x, yi)]

and

Di = d(x, y3)px(x)dx > Jd(x, yi)px(x)dz = Dmin, Vj i.

(2.11)

(2.12)

When the MSE is considered, equation 2.10 determines that, for a particular input

value x, the chosen reconstruction level must be the one which minimizes (x - yi) 2

(or equivalently, |x - y;|). This will happen if and only if the decision threshold is the

midpoint between the successive reconstruction levels, i.e.

dYi- + Yii-
dI1 = 2 N - 1

do= -oo, dN = 00-

(2.13)

The optimal decoder for a given encoder

Suppose now that the optimal encoder is known, and we

decoder for this encoder. From the definition of distortion

want to find the optimal

(equation 2.7),

(2.14)D = E[d(x, Q(x))] = EP E[d(x,yj)|x E Rj].
i=1

Thus, for any non-negative distortion measure, the distortion is minimum when

all the terms in the summation are minimized. The problem of finding the optimal

decoder can, therefore, be reduced to finding the yj such that

Q(x) = min{E[d(x,y-)|x E R;]j. (2.15)

The term on the right-hand side of this equation is usually known as the generalized

centroid of the random variable x, in the region Ri, with respect to the distortion

measure d(x, y), and the equation is generally referred to as the generalized centroid

condition. When the distortion measure is the MSE, the solution consists in the set

of y; that minimizes

D'J= (x - yi) 2 p 1iz (x) dx, (2.16)

and can be easily obtained by solving &D'/aly = 0. In this case, the optimal decoder

is given by

fdi- xpx(x)dx
y;= E[xlx C R]= f (i=1,... ,N. (2.17)

fi_, px(x)dx

This result could also be obtained from the theory of optimal least-square estima-

tion [35].

Equations 2.13 and 2.17 establish a pair of conditions necessary for optimal quan-

tization under the MSE criterion. There are, however, input pdfs for which those

conditions are not sufficient for optimality [27], in which case the distortion is only

locally minimum.

2.1.5 High-rate quantization

It was shown in the previous sections that, due to the non-linear nature of quan-

tization, it is impossible to obtain, in general, a single, closed-form solution to the

problem of optimal quantizer design. There is, however, one situation - high-rate

quantization where such a solution exists, making the problem much simpler. The

assumption is that, for high bit-rate, the decision thresholds are so closely spaced

that the input pdf can be considered constant between any two consecutive decision

thresholds

px(x) = px(yi), di_1 < x < di, (2.18)

and, under the MSE criterion, equation 2.8 becomes

N d

D = (x - yi)2dx, (2.19)
i1Ai di_1

where pi is the probability of x C 1zR

pi = PX(x)dx = px(yj) AZ. (2.20)

Setting aD/ay, = 0, i = 1,.. , N results in

di + di_ 1
y = , (2.21)

i.e., for the high-rate quantizer, the optimal reconstruction levels are the midpoints

between successive decision thresholds. Plugging equation 2.21 into 2.19, it is possible

to obtain a closed-form solution for the minimum distortion as a function of the

quantizer step-size

D=N _t_,A__ (2.22)
12

Uniform quantization

Since for a uniform quantizer Ai = A, Vi, equation 2.22 is, in this case, simplified into

D = A2 /12. Assuming a bounded input of amplitude range equal to the range of

quantizer reconstruction levels R = dN - do and a quantizer with b bits, the step-size

is given by A = R/26.

Defining the Signal to Noise Ratio (SNR) as

2

SNR = 10 log 1 0 (D), (2.23)

where o is the variance of the input signal, it is possible to obtain a direct relation

between the quantizer bit-rate and distortion

2

SNR = 6.02b - 10 loglo(7-)dB, (2.24)
3

where ' = R/2or is the loading factor of the quantizer.

Equation 2.24 provides a useful rule of thumb for quantizer design which says that,

for an uniform quantizer, the SNR improves by approximately 6 dB per quantization

bit. It also seems to suggest that the SNR increases with the decrease of the loading

factor. This is, however, only partially true since decreasing R implies that the input

and output amplitude ranges will no longer be the same, and overload errors, which

may cause significant performance degradation, will appear [20].

Non-uniform quantization

A non-uniform quantizer can be seen as a composition of the three building blocks

represented in figure 2.3: a compressor, a uniform quantizer, and an expander. The

most important parameter of this model is the compressor characteristic c(x), which

defines the non-uniformity of the quantizer. The expander characteristic is just the

inverse of that of the compressor.

The analysis carried out for the uniform quantizer is significantly more complex

in the non-uniform case. However, it can be shown [20] that the optimal high-rate

non-uniform quantizer is characterized by

cR f(x) = (2.25)
2 p(x)dx

originating

Dmin 2 [" p (x)dx]. (2.26)
3N2 0

a) b)

c(x) c(x)

X . Q c(x)]

[Q c(x)]

d) c)

Figure 2.3: The compander model of a non-uniform quantizer: a) compressor, b) uniform quantizer

and c) expander d) equivalent non-uniform quantizer.

Obviously, these equations are not as useful as those obtained for the uniform

quantizer. In any case, equation 2.21 together with equation 2.24 in the uniform

case, and equation 2.26 in the non-uniform one, provide a closed-form solution to the

problem of optimal quantization under the assumptions of high-bit rate, a bounded

input, and the MSE distortion criterion. In practice, these assumptions do not always

hold, and iterative algorithms based on equations 2.13 and 2.17 are necessary (see

chapter 4).

2.2 From scalars to vectors: Transform coding

The previous section presented the necessary conditions to achieve the optimal scalar

quantizer for a given input. However, typical inputs are by nature not scalar, and

so, even when this optimal quantizer can be found, it does not provide (by itself) an

efficient solution to the problem of image coding. In fact, the main limitation of the

scalar quantizer is that, processing a sample at a time, it cannot explore any of the

redundancies that typically exist in the input signal. This can be illustrated with the

following example, originally presented in [28].

Suppose a source which generates two-dimensional random vectors x = [x1 x 2] ,

characterized by the joint pdf px(x) = PXr,X2 (X1, x2) represented in figure 2.4.

a 2 1

242 2,F 242 242

Figure 2.4: Example of a two dimensional pdf, pz1i,x 2 (Xi, X 2), uniform in the shaded area and null

on the outside. The marginal pdfs, pxi(xi) and Px2 (X2), are also represented. From [28].

It is clear from the marginal probability densities also represented that Px1,x 2 (x 1, x 2) -

PX1 (X1)Px2 (x 2), i.e. that x1 and x 2 are not independent. This can be confirmed intu-

itively by noticing that the pdf is oriented in the direction of the line x1 = x 2 , and so

the probability that the two components have similar amplitudes is higher than that

of the components having very distinct values. In other words, the value of x1 will be,

in general, close to that of x 2 , i.e. there is redundancy between the two components.

Figure 2.5 shows the partition of the two-dimensional space when an optimal 8

level scalar quantizer is used separably on each of the components. This partition

is clearly sub-optimal since some of the partitions are in regions of zero input prob-

ability, and lower distortion could be obtained if it were possible to have all the

two-dimensional reconstruction values inside the shaded rectangle.

However, significantly higher coding efficiency can be achieved with a simple ro-

Xl

21G 242 242 24F

Figure 2.5: Partition of the 2-D space with scalar quantization. The dots represent the recon-

struction value associated with each region of the partition.

tation of the coordinate axis. Figure 2.6 shows the same joint pdf of figure 2.4, but

rotated such that the new coordinate axis are u1 = x1 + x2 and u 2 = X2 - x1. Since,

after the rotation, Pu1 iU 2 (ui, u2) = Pu1 (u1)Pu2 (u 2) the random variables become in-

dependent, and it is possible to avoid zero-probability partitions even with scalar

quantization. The distortion is, therefore, smaller than that of figure 2.5 for the same

number of quantization levels.

When, as in this example, the input random variables can be rendered independent

by a simple linear transformation, they are said to have linear dependencies. In

this case, the use of scalar quantization preceded by this linear transformation is a

very efficient coding procedure. In practice, it is generally not possible to make the

variables independent due to the presence of non-linear dependencies in addition to

the linear ones. It is, however, always possible to render the variables uncorrelated,

and still achieve high coding efficiency. This is the principle of the transform coding.

1/a

-a/2 a/2

Figure 2.6: Joint pdf after rotation of the coordinate axis. The marginal densities and the partition

regions associated with separable scalar quantization with 8-levels are also shown. The rotation

makes the random variables independent, and the distortion is minimized. The dashed line is

included for comparison with figures 2.4 and 2.5.

2.2.1 Transform coding

Suppose that the input samples are grouped into vectors of dimension K, processed

by a linear transformation, quantized, and transformed back to the original domain.

This set of operations is commonly known as transform coding.

The linear transformation maps the input vector x = [x1 , . . , XK]T into the vector

U = [u 1 , ... , UK] T according to

u = Tx. (2.27)

The row vectors of T, tiT, are generally known as the basis functions of the

transform, and since

K
ui = tiTu = Etikuk, k = 1, ... ,K, (2.28)

j=1

the components of the transformed vector u (known as the transform coefficients) are

nothing more than the projections of x into these basis functions. It is, therefore, a

necessary condition that the set of basis functions can span the entire K-dimensional

space, i.e. the basis vectors have to be linearly independent. Otherwise, different input

vectors would be mapped into the same output, introducing distortion.

When, in addition to being independent, the basis vectors satisfy

T 01 ifif
ti tj = (2.29)

1, ifi=j,

the transform matrix is orthonormal. Orthonormality is a desirable property because

the energy of the input vectors is not modified by an orthonormal transformation,

and the inverse of an orthonormal transformation is very simple to compute. This

follows directly from 2.29, since

TTT = I, (2.30)

where I is the identity matrix, and thus

T-1 = TT, (2.31)

i.e. the inverse transformation can be obtained with a simple transposition of the

transform matrix. The invariance of signal energy under orthonormal transformation

has the desirable side effect that, under the MSE, the distortion introduced by quan-

tization in the transform domain is not modified by the inverse transformation to the

input data domain

MSE = E[I|x - x|| 2] = E[(T T (u - 6)) (TT(u - 6^))] = E[Ilu - u|12], (2.32)

and the quantizer can be optimized independently of the transform operation.

An efficient transform for image coding must have two properties:

* decorrelate the input samples so that, as seen in the example of figures 2.4

and 2.6, the quantization can be effective;

* compact the energy of the input signal in as few coefficients as possible so that,

by discarding (or quantizing coarsely) low-energy coefficients, it can be possible

to achieve high compression ratios with minimal distortion.

Both of these properties are maximized by the Karhunen-Loeve Transform (KLT).

Karhunen-Loeve Transform

Consider a sequence of random variables Xk, k = 1,...,K grouped into a random

vector x of mean R, and covariance matrix Ax

AX = E[(x - R)(x - R)T] (2.33)

where A, the element in the ith row and jIh column of A., is the covariance between

the random variables xi and xo

Aij = E[(x - zi)(x3 - z)]. (2.34)

Since A = A, the matrix Ax is symmetric and, consequently, has a complete set

of orthonormal eigenvectors vi [40], defined by

Avi = pivi, i = 1,-., K, (2.35)

where p; are the eigenvalues associated with the eigenvectors ui.

Consider the matrix T whose rows are the eigenvectors vi of Ax, and suppose

that this matrix is used to perform the linear transformation of the input vector x,

described by equation 2.27, before quantization. The covariance matrix of the vector

of transform coefficients u thus obtained is, from equations 2.27 and 2.33,

AU = E[T(x - R)(x -)TTT] = TAxTT. (2.36)

Since the rows of T are the eigenvectors of A, and are orthonormal, it is easy to

show from equation 2.35 that 2.36 reduces to

Au = diag(pi,. .. ,pK), (2.37)

i.e. the input vector is transformed into an array of uncorrelated coefficients of variance

Pi.

This transform is commonly known as the Karhunen-Loeve Transform, and is

optimal in the sense that it always originates a set of totally uncorrelated coefficients.

What it does is precisely the rotation to a system of coordinates aligned with the

principal components of the data, exemplified by figures 2.4 and 2.6.

It can be shown [3] that the KLT is also optimal in the sense of energy compaction.

The distortion introduced by the truncation of a number n of transform coefficients

is minimum when the KLT is used, and the K - n coefficients retained are the

projections of the input x onto the eigenvectors of the covariance matrix associated

with the K - n eigenvalues of largest magnitude.

Although optimal, the KLT is generally not used in practice due to its high com-

plexity. As seen above, the basis functions of this transform are the eigenvectors of the

covariance matrix of input data which must be, in a practical application, computed

on the fly if optimality is to be achieved.

The computation of eigenvectors is a difficult task in the general case, but becomes

particularly heavy in the case of the KLT since the matrix itself is not known in

advance and must also be computed. This not only increases the computational

burden, but also introduces delay since several input vectors must be known for the

covariance matrix to be computed. In addition to complexity, the KLT also introduces

overhead since the basis functions must be transmitted to the decoder that has no

access to the covariance matrix of the input.

Obviously, some of these disadvantages (such as delay and transmission overhead)

can be eliminated by using sub-optimal recursive procedures based on previously

transmitted data, at the cost of increased complexity in the decoder. In the extreme

case, the additional complexity of the KLT can be completely eliminated by assuming

a statistical model for the input, pre-computing the basis functions, and downloading

them to the decoder before transmission. This solution is, however, clearly sub-

optimal and, since a probabilistic model suited to the vast range of possible inputs

to a typical encoder has not been found to date [3], turns out to be worst than the

use of other sub-optimal but of much simpler implementation transforms, such as the

Discrete Cosine Transform (DCT).

2.2.2 Discrete Cosine Transform

Several definitions of the DCT have been presented in the literature. In this thesis,

we will use the one given in [20]. According to this definition the 1-D DCT is an

orthonormal transform described by

2N-1
Uk =k E Xi Cos , k= , ...N- N - 1 (2.38)

_ 2N

where N is the dimension of the input vector, and

Ja 1/ v/2, if k=0 (2.39)
1, if k $0.

The 1-D inverse DCT (IDCT) is defined as

2 N-1 (2i+1)kir
x, - 1 akUkcos 2N I = 0,. .. , N - 1. (2.40)

k=t

By writing equation 2.38 in the matrix form of 2.27, it can easily be seen that the

basis functions of the DCT are

2 (2i1 +)kr
tk -- kCO , z= 0 ... ,N - 1.

N 2N

Figure 2.7 presents the basis function of the 1-D DCT for N = 8. From equa-

0.3 - -

0.2- -

0.1 - -

0 --

-0.1 --

-0.2 --

-0.3 --

-0.A
-

-0.102 3 4 5 6 7

0.5 - -- .

0.4 -

0.3 . -

0.2 --

0.1 .-

0

-0.1

-0.2--

-0.3 --

-. 0 1 2 3 4 5 6 7

0.3 -

0.2 -.-

0.1 -

0 -

-0.1 -

-0.2 .-

-0.3 --

-0.4 - -

-0.5 -

0,5

0.4 -

0.3 --

0.2 -

0.1 --

-0.1 - e-

-0.2 -

-0.3 -

-0.4 -

-0 1 2 3 4 5 6 -

OA --

0.3 --

0.2 --

0.1

0

-0.1-

-0.2 -

-0.3 -II
I

-0.-

0 1 2 3 4 5 6 -

0.5 -

0.3 -

0.2 --

01-

-0.-

-0.2 --

-0.3

0 1 2 3 4 5 6 -

0.3 -

0.2,-

-.1 -

0

-O.2-

-0.3 --

-. 0 1 2 3 4 5 6 7

0.5 -

0A.-

0.3-

0.2-

0.1-

Figure 2.7: Basis Functions of the 1-D DCT of dimension 8. Left column, top to bottom: basis

functions to to t 3 . Right column, top to bottom: basis functions t 4 to t 7 .

(2.41)

~0 1 5 6

tion 2.27, and since the DCT is an orthonormal transform,

N

x = T-u = TTu = us ti, (2.42)
i=0

i.e. the transform domain coefficients are the weights with which the basis functions

must be combined to obtain the input vector. From this and the representation of the

DCT basis functions in fig 2.7, it results that this transform performs a decomposition

of the input signal into a sum of cosines of increasing frequency. In particular, the

value of coefficient u0 is the mean or DC value of the input vector and, thus, this

coefficient is commonly known as the DC coefficient. The other coefficients, associated

with basis vectors of zero-mean, are known as AC coefficients.

The extension of the 1-D DCT to the 2-D DCT, commonly used in image coding,

is straightforward. In fact, the 2-D DCT can be obtained by the separable application

of the 1-D DCT to the rows and to the columns of the input data. In this case, the

N basis vectors of figure 2.7 are extended to a set of N 2 "basis pictures" that can be

obtained by performing the outer products between all the 1-D basis vectors [3].

It was mentioned before that the desired properties for an efficient transform are

high-energy compaction and high-signal decorrelation. It was also seen that the KLT

is optimal in respect to these aspects, but very complex. The advantage of the DCT

is that, although being sub-optimal, it can be easily implemented through fast al-

gorithms [37] and still achieve performance close to that of the KLT. In fact, it can

be shown that, for simple statistic models of the input commonly used for the the-

oretical evaluation of transform efficiency such as the first-order Gauss-Markov, the

performance of the DCT is asymptotically close to that of the KLT for highly corre-

lated inputs [20]. It is, therefore, common to trade the slight increase of performance

obtained with the KLT by the much simpler implementation of the DCT.

2.2.3 Quantization in the transform domain

The application of a transform maps the input vector of correlated pixels into a vector

of approximately uncorrelated coefficients. Therefore, unlike the original data, the

coefficients of the transformed vector have distinct properties, which must be taken

into account in the design of an efficient transform domain quantizer. Also, since

distinct coefficients are associated with different frequency components of the input

signal, an efficient coding scheme must be able to explore the sensitivity of the human

eye to distortion at those different frequencies.

The quantization of a vector of transform coefficients with a given average bit rate

is composed by two distinct problems: bit allocation and quantizer design.

Bit allocation

Since the transform coefficients have different statistical properties and perceptual

weights, it would not make sense to divide the available bit rate equally between them.

It was seen in the previous section that one of the objectives of applying a transform

is to compact the energy in as few coefficients as possible. It would, therefore, be

inefficient to code these coefficients with the same step size as those that have no

energy at all. This intuitive argument reflects a property that is characteristic of the

theoretical optimal solution, first presented by Huang and Schulteiss [16]: the bit rate

allocated to each coefficient must be proportional to the ratio of the energy in that

coefficient to the total energy. The theoretically optimal bit allocation is given by

B 1 _

b2 - + -log (2'43)
N 2 [_ 1,o2]1/N

where bi and or are, respectively, the bit rate allocated to and the variance of coeffi-

cient i, B is the overall bit rate, and N the vector dimension.

This equation can easily be extended to accommodate the perceptual relevance

- . - -_-- .." - _111-1- 1:11-1- -- -_-- -. 1'-'---

of each of the bands by substituting all the or's by wio, where wi is the perceptual

weight of each band, and j-7 1 wi = 1. Notice that equal division of the bit rate

between all the coefficients bi = B/N is optimal only if the coefficients have equal

variances, which is clearly not the case in transform coding.

Equation 2.43 provides the theoretically optimal bit allocation, but is not always

usable in practice because it does not satisfy the practical constraints that the in-

dividual bit rates bi must be integer1 and positive. In practice, equation 2.43 can

be used as an initial estimate for the bit allocation, but has to be followed by an

algorithm that, based on this estimate, distributes the available bits by the different

coefficients satisfying the constraints mentioned above.

A possible alternative to equation 2.43 is to use an algorithm to distribute the

available bits between the coefficients from the beginning. The idea is to start from

a point where all coefficients are assigned zero bits, and iteratively assign the next

bit to the quantizer that contributes most to the overall distortion. This procedure

is not optimal since the best decision at each instant may not result in the overall

best distribution of bits, but is guaranteed to provide an integer and non-negative

distribution.

The bit allocation obtained by one of the procedures described above is, in prac-

tice, usually fine-tuned using heuristics and common-sense. For example, if a coeffi-

cient has variance smaller than the desired average MSE, there is no need to spend

any bits at all in this coefficient since, in this case, the distortion will be equal to

the variance. This is the idea behind a very common technique known as threshold

coding [33], where a coefficient is quantized only if its amplitude exceeds a pre-defined

threshold. Another, even simpler, approach is that of zonal sampling [33], where only

a pre-determined set of coefficients of the transformed vector is transmitted. The rea-

1 The constraint of an integer number of bits can be relaxed in some applications. An example

of one such application is the use of a variable word-length, or entropy, coder after quantization.

Another example is when vector quantization is used instead of scalar quantization.

soning behind this approach comes from the energy compaction property of transform

operation mentioned in section 2.2.1. Due to this property, for typical inputs, most of

the energy will be concentrated in a subset of the coefficients (in the case of the DCT,

the low-frequency ones) and, for most of the vectors, the remaining coefficients can

be discarded without significant degradation. Obviously, there are vectors for which

this property does not hold (such as those in active areas of the input) and care must

be taken to avoid significant degradation of those vectors.

Quantizer design

After an efficient bit allocation is achieved, there still remains the problem of the

design of the optimal quantizer for each coefficient. Since distinct coefficients have

different characteristics, it seems natural for each coefficient to require its own quan-

tizer. In practice, it turns out that some of the coefficients have similar charac-

teristics, and simpler solutions can be implemented without significant decrease in

performance. The characteristics of the coefficients are obviously dependent on the

transform used, but the basic ideas of what will be next discussed for the DCT hold

for all the commonly used transforms.

As we have seen in section 2.2.2, the transform coefficients are, in the case of the

DCT 2 , associated with a frequency decomposition of the input vector. In particular,

the first coefficient is just the DC value of this vector. This property makes this DC

coefficient different from the remaining ones.

The first characteristic of the DC coefficient is that it is very important in terms

of subjective coding quality. In fact, the human eye is very sensitive to the artificial

discontinuities on average luminance, "blocking effect", that appear between adja-

cent vectors when this coefficient is coarsely quantized. This is generally taken into

account by the bit allocation algorithm, allocating a relatively high bit-rate to the

2 And, also, in the case of various other transforms such as the DFT, Walsh-Hadamard, etc.

DC coefficient.

The second characteristic is that the pdf for this coefficient is similar to that of the

input. This can be easily understood with the following procedure. Suppose an input

image of size MxM is split into vectors of dimension NxN, a 2-D DCT is applied to

each of these vectors, and all the DC coefficients grouped together to form an image

of size M/NxM/N. This smaller image is just a low-pass downsampled replica of

the larger original, and thus the probability of occurrence of each possible amplitude

value in it will be similar to that of the larger original image. Therefore, the pdf

of the DC coefficient is similar to that of the input samples. Since the input pdf is

typically uniform, the same happens to the DC coefficient, which is normally coded

using a uniform quantizer.

The AC coefficients do not have the crucial subjective importance of the DC, and

turn out to have probability densities which are approximately Gaussian or general-

ized Gaussian3 [3]. This leads to the common assumption that the AC coefficients

are all Gaussian, making it possible to use a unique quantizer optimized for a unit-

variance Gaussian distribution, if each coefficient is divided by its variance prior to

quantization.

2.3 Vector Quantization

In the previous sections, we have seen that a scalar quantizer alone cannot provide

efficient compression, since it fails to exploit the dependencies between consecutive

samples of the input. It was shown that a significant performance increase can be

obtained by the use of a decorrelating transform prior to quantization. However, the

use of a scalar quantizer is always sub-optimal since, for K-dimensional vectors, the

3 Note that, since each coefficient is a weighted sum of the input samples, from the central limit

theorem of probability [5], a Gaussian pdf should be theoretically expected if the input samples were

independent and the vector dimension large enough.

space can only be partitioned into K-dimensional hypercubes. This restriction can

be eliminated through the use of a Vector Quantizer (VQ) [1, 28, 13, 32].

Vector quantization is an extension of scalar quantization for vector spaces, and

a VQ Q is a mapping from a K-dimensional vector space of input samples to a finite

set of reconstruction vectors, usually known as codevectors or codewords. The set of

reconstruction vectors is generally designated by codebook. The N-dimensional input

vector space is partitioned into a set C of N K-dimensional regions Ri, also known

as partitions or cells, and a reconstruction vector yz associated with each region. The

partitions are delimited by K - 1-dimensional hyperplanes, and all the input vectors

in the partition R are mapped into the codeword yi. Mathematically,

Q:Rk ->C, (2.44)

where C = {y1,..., YN}, Yi E R~k, and

RZ = {x E R k Q(x) = y}. (2.45)

For a K-dimensional VQ of size N, the average bit rate per input sample is

b = lg 2 N (2.46)
K

The comparison of this equation with 2.4 reveals one of the advantages of vector over

scalar quantization: unlike scalar quantizers, vector quantizers are not constrained to

integer bit rates, i.e. it is possible with VQ to quantize input samples at a fractional

bit rate. This is useful because of two main reasons. First, and as seen in section 2.2.3,

integer bit-allocations can lead to sub-optimal performance. Second, it is possible to

achieve bit rates below 1 bit per sample (bps), which are impossible to obtain with

scalar quantization alone.

2.3.1 The structure of the vector quantizer

The structure of a VQ is very similar to that presented in section 2.1.2 for the scalar

quantizer. Once again, the quantizer can be split into an encoder-decoder pair. The

encoder finds the partition to which the input vector belongs, and signals it to the

decoder which performs a simple table look-up operation to find the reconstruction

codeword associated with that partition. Notice that the encoder does not necessarily

have to know the reconstruction codebook, although this is the case in common

practical implementations.

The mathematical model presented in section 2.1.2, based on a set of selector

functions, an address encoder/decoder and a summation, and figure 2.2 are still valid

if all the building blocks are extended to perform vector operations. Thus, the output

of the VQ can be seen as
N

Q(x) = Zy Si(x), (2.47)
i=1

where x is the input vector, N the codebook size, y; the reconstruction codewords,

and S;(x) the selector functions

S(= 1, if x E Ri (2.48)
0, otherwise.

2.3.2 Evaluation of quantizer performance

The general expressions for the distortion introduced by a vector quantizer are very

similar to those presented in section 2.1.3. For an input characterized by a K-

dimensional pdf px(x) and a distortion measure d(x, Q(x)), the average distortion

introduced by a VQ with partitions R1 and reconstruction codewords y, is

D = J d(x, Q(x)) px(x)dx, (2.49)

which, for a quantizer of size N can be simplified to

N N N

D = J d(x, y;)px(x)dx= p J d(x, yi)pxRz (x|R;)dx = E p;E[d(x, yj)jx - R].
i=1 7Zi= i=1

(2.50)

A significant difference between the scalar and vector cases is, however, that VQ

allows the use of more general, and still tractable, distortion measures than the MSE.

Among these, two classes are commonly used in practice:

9 The class of i-norm distortion measures, defined by

1 1 K
d(x,k) = |x- |' = (2.51)

2=1

where I is a positive integer. Among this class, the most commonly use distor-

tion metrics are the sum of absolute errors (I = 1), the MSE (I = 2), and the

maxzmum absolute error (1 = oo).

e The weighted MSE defined by

d(x - ^) = (x - X)TW(- X), (2.52)

where W is a positive-definite weighting matrix. Common versions of this

metric include the MSE (W = I), and a component weighted MSE provided

by a diagonal W with distinct elements. This second type can be used to give

distinct perceptual weights to the components of the input vector, which can

be useful for some applications like the VQ of transform coding coefficients.

2.3.3 Optimal vector quantization

As in the case of scalar quantization, the non-linearity inherent to the operation

of quantization makes it impossible to achieve a single, closed-form solution to the

problem of optimal vector quantization. It is however possible to find two necessary

conditions for optimality by using the decomposition of the problem into two smaller

ones: finding the optimal encoder for a given decoder, and the optimal decoder for a

given encoder. The solutions to these two problems are obtained from equation 2.50,

by a straightforward extension of the analysis carried in section 2.1.4.

The optimal partition (encoder) for a fixed codebook (decoder) must satisfy the

nearest-neighbor condition

Rk C {x : d(x, yi) < d(x, yj), Vj # i}, (2.53)

i.e.

Q(x) = yi, if d(x, yi) < d(x, yj), Vj # i; (2.54)

while the optimal codebook for a given partition must satisfy the generalized-centroid

condition

Q(x) = min{E[d(x, yi)Ix E R;]}. (2.55)
yi

When the MSE is used as distortion measure, the optimal partition for a given

codebook becomes

Rj C {x : ||x - yi 2 < jX _ yH 2,Vj $ i}, (2.56)

or

Q(x) = y_, if |x - y|2 <Xy 2 , Vj i; (2.57)

and the optimal codebook for a given partition

y; = Q(x) = {E[xlx E Rj]}. (2.58)

As in the case of scalar quantization, the above conditions are only necessary

for global optimality, i.e. a VQ for which they are satisfied can be locally, instead

of globally, optimal. Notice that a local optimum can sometimes be very poor, as

L L

L/2 L/2

L/4

xl E
L/8 L/2 L L/4 L/2 L

a) b)

Figure 2.8: Example of poor VQ performance due to local optimality.

exemplified by figure 2.8.

This figure presents two possible partitions of the input space, and respective op-

timal codeword assignment, for the quantization of two-dimensional vectors with the

uniform pdf of amplitude 1/L 2 in the shaded area and null outside. Both quantizers

satisfy the necessary conditions of optimality of equations 2.57 and 2.58, and yet the

two solutions are significantly different. Using equation 2.50 and the MSE as distor-

tion measure, it can be shown that for a) the distortion is Da = 65L/192, while for b)

DA = L/12 that is A/Da ~ 25%! Thus, despite satisfying the necessary conditions

for optimality, the quantizer of a) is clearly sub-optimal.4

2.3.4 The efficiency of vector quantization

It was seen in the previous sections that a scalar quantizer is very inefficient, since it

fails to explore the redundancies that generally exist between successive samples of

the input. It was also seen that the use of a linear transformation prior to quantization

can increase significantly the coding efficiency when the input samples are linearly

dependent (correlated).

4 This result makes intuitive sense since in a) all the bits are allocated to the first vector compo-

nent, while in b) the bits are equally distributed among the two components.

However, for most of sources found in practice, the input samples are not only

linearly, but also non-linearly dependent. Since transform coding, being a linear

operation, cannot explore non-linear dependencies, it fails to achieve the optimal

performance that can only be obtained through the use of vector quantization.

In fact, since transform coding performs only a rotation of coordinates, a transform

coder with scalar quantization is just a special case of a vector quantizer, whose cells

are obtained from a rotation of the partition of the space obtained with a scalar

quantizer. This is illustrated by figure 2.9, which presents the partition associated

with a VQ that, for the 2-D input of figure 2.4, achieves the coding performance of

transform coding plus scalar quantization as represented in figure 2.6. Therefore, VQ

has the same capacity to explore linear dependencies between samples as transform

coding plus scalar quantization.

Figure 2.9: Partition of the input space of figure 2.4 associated with a vector quantizer with equal

performance to that of transform coding and scalar quantization as shown in figure 2.6.

The great advantage of VQ over transform coding is that it can also explore non-

linear dependencies between the input samples. This derives from the fact that a

VQ is not constrained to the regular partition of the space imposed by the scalar

quantization of the transform coefficients, as illustrated by the following example.

Suppose a 2-D input random vector with the pdf of figure 2.10. Since E(xlx 2)

E(x1)E(x 2) = 0, there is no linear dependence between the vector components, and

thus no benefits can be gained from the application of a linear transformation prior

to quantization. However, scalar quantization is still very inefficient as can be seen in

1/2L

-L -L/2 L/2 L

Figure 2.10: 2-D input pdf of a vector with linearly independent, but non-linearly dependent

components. From [24].

figure 2.11 a), which shows the partition of the space provided by separable optimal

scalar quantization with an overall rate of 2 bps. Notice that half of the codewords

are in regions of zero input probability, and that exactly the same performance can

be obtained by simply eliminating those codewords as shown in figure 2.11 b). This

structure is, however, impossible to achieve with a scalar quantizer, demonstrating

the advantage of VQ, which achieves the same performance at 3/4 of the bit rate.

In addition to the capacity to explore non-linear dependencies between input sam-

ples, VQ has also the capability to explore the dimensionality of the input vector

space, a property that allows increased performance over the achievable with scalar

quantization even when the input samples are statistically independent. This prop-

erty is due to the freedom with which the shape of each quantizer cell can be chosen in

VQ, as opposed to the strictly cubic shape required for separable scalar quantization

of the vector components. An interesting example of this property, where 2-D VQ

with hexagonal cells is shown to be more efficient than separable scalar quantization,

even when the input vector components are uniform independent and identically dis-

tributed (iid) random variables, can be found in [28]. Another example is given by

I"2 I 2

Figure 2.11: Partition of

scalar quantization at 2 bps

a)

the

and

l Xl

b)

2-D space, and respective codewords, obtainable with a) optimal

b) vector quantization at 1.5 bps.

Figure 2.12: Optimal partition of the space for an iid Gaussian source, achieved with scalar

quantization (left) and vector quantization (right). The picture on the right was taken from [11].

figure 2.12, which shows the optimal partition of the space for an iid Gaussian source

and 2-D vectors, obtained with separable scalar quantization and vector quantiza-

tion. Being restricted to rectangular cells, the scalar quantizer is less efficient than

the optimal vector quantizer.

Due to its capability to explore non-linear dependencies of the input data and

dimensionality, a vector quantizer is the theoretical optimal solution to the problem

of coding sequences of waveform samples. In practice, however, some limitations

prevent VQ from achieving this optimal theoretical performance.

One of this limitations, already mentioned in the previous section, is the inexis-

tence of a set of sufficient conditions for optimal VQ design. As shown above, the

design of a vector quantizer can, in practice, lead to a local maximum of performance

significantly inferior to the best theoretical maximum. In this case, the performance

can be substantially worse than the expected, and inferior to that obtained with other

methods such as transform coding, etc.

Another important limitation is imposed by implementation complexity constraints.

Due to the lack of structure of a typical VQ, the process of encoding consists, in gen-

eral, of measuring the distance from the input vector to all the codewords in the

codebook and picking the closest one. For a bit rate b and k-dimensional vectors,

this process requires the evaluation of N = 2 bk distortion measures by input vector,

i.e. the complexity grows exponentially with vector dimension. On the other hand,

since the number of degrees of freedom in the partition of the space increases with

vector dimension, the greater efficiency of VQ can only be truly achieved with large

vector sizes. A trade-off between efficiency and computational complexity is therefore

needed in practice, which usually limits the gains obtained with VQ.

2.4 From 2 to 3 dimensions: interframe coding

The techniques discussed in the previous sections achieve high-coding efficiency by

processing vectors of input samples, and exploring the redundancy between those sam-

ples. In typical image coding applications, the vectors are formed by two-dimensional

blocks of pixels, enabling the coding algorithms to explore the spatial correlation

existent in both the horizontal and vertical dimensions of the image.

Since image sequences typically present high correlation in the temporal dimension

(in addition to the spatial correlation), it would seem natural to extend the techniques

previously discussed to the temporal domain. Such an extension would require the

use of 3-D cubes processed by 3-D transform coding or 3-D vector quantization and,

consequently, the capacity to store a number of frames equal to the vector size in

the temporal dimension at both the encoder and the decoder. Since, as seen in the

previous sections, the increase in efficiency obtained with transform coding or VQ

is proportional to the vector dimension, an efficient 3-D scheme would require the

storage of several frames.

The need for frame storage has two main practical drawbacks: it imposes hardware

complexity leading to expensive implementation, and it introduces delay which can be

unacceptable for many applications. In practice, these drawbacks limit the maximum

number of frames that is possible to store to one or two, imposing a significant

limitation to the performance of any of the 3-D schemes referred above. Furthermore,

these schemes are not suited to incorporate motion compensation techniques that,

as will be seen in section 2.4.2, provide a very efficient way of reducing temporal

redundancy. Therefore, 3-D transform coding or vector quantization are in general

not used, and most practical implementations of image sequence coding rely, in the

temporal dimension, on a technique that does not require large frame storage and is

well suited to incorporate motion compensation: predictive coding.

2.4.1 Predictive coding

The basic idea behind predictive coding is that if there is redundancy in a sequence

of samples, it is possible to estimate a given sample from those already processed

with reasonable accuracy. By subtracting this prediction to the sample to code, the

redundancy existent in the input signal can be extracted before quantization, resulting

in a prediction error signal which is much easier to compress than the original itself.

If the prediction is based uniquely on samples already transmitted, the decoder in

the receiving end is able to replicate it and, by adding it to the quantized prediction

error signal, reconstruct a replica of the original input.

Figure 2.13 presents the block diagrams of a predictive encoder and decoder. The

introduction of the decoder in the encoder feedback loop guarantees that, being based

in reconstructed samples, the prediction of the decoder is equal to that of the encoder.

In fact, since

ei - i=xi-zi- i - z =x-(2.59)

the reconstruction error is equal to the quantization error, i.e. the quantization error

does not propagate to subsequent samples.

A A
e. e. x.

xx

--- p+P

a) b)

Figure 2.13: Block diagram of a) a predictive encoder and b) decoder. P is the predictor and Q

the quantizer. The encoder portion inside the dashed rectangle is a replica of the decoder.

Due to the feedback loop structure and the non-linearity of quantization, it is diffi-

cult to determine the optimal predictor and quantizer to be used in a predictive coder.

In practice, these components are designed separately, the quantizer using the formu-

las presented in section 2.1.4, and the predictor assuming perfect-reconstruction, i.e.

no quantizer in the loop. The predictor is in general restricted to a linear combination

of previous samples weighted by a set of predictor coefficients ok according to

N

ii wxik, (2.60)
k=1

where N is the predictor order.

If all the samples used for prediction are from the same frame as the sample to

be coded, the predictor is referred to as intraframe predictor, and the coding process

as intraframe coding. Otherwise, the predictor is an interframe predictor, and the

coding process interframe coding.

Unlike transform coding or vector quantization, the efficiency of predictive coding

does not improve significantly with the number of samples considered in the prediction

of the input value. In fact, it has been shown that for typical images the gain achieved

with predictive coding saturates with 3rd order predictors [14]. This can be explained

by the recursive nature of the prediction operation which implies that, independently

of the predictor order, the current prediction is influenced by a large number of

previous samples. Therefore, the only effect of a change in prediction order is a

different weighting of the most recent prediction samples, which does not have a

drastic effect in the overall coding efficiency.

In practice, predictors of order-greater than two or three are rarely found in image

coding applications, and although less efficient than VQ or transform coding with

large vector dimensions (4x4, 8x8 or 16x16), predictive coding is more efficient than

these techniques when the vector dimensions are constrained to small values, as in

the case of temporal processing. Also, unlike the other techniques, predictive coding

can easily incorporate motion compensation, becoming a very powerful technique for

the elimination of the temporal redundancy characteristic of typical image sequences.

2.4.2 Motion estimation and compensation

While spatial redundancy is determined mainly by the detail of each input frame,

temporal redundancy is a function of the motion between successive frames. Since

typical scenes are composed by moving objects, and the movement of each object is

constrained by the physical laws of nature, it is natural to expect temporal redundancy

to be more deterministic than spatial redundancy. In particular, if it were possible to

estimate the motion of each object in the scene, a very accurate prediction of frame

t could be obtained by applying the estimated displacement to each of the objects in

frame t - 1.

Unfortunately, the problem of estimating the motion of the objects in a scene is

very complex, mainly because the problem of decomposing a frame into the set of

objects that compose it (usually designed by segmentation) is itself complex. In fact,

these two problems are highly interrelated since it is difficult to perform an efficient

segmentation without motion information, and it is even harder to estimate motion

without knowing which objects compose the scene (segmentation).

In practice, common motion estimation methods perform an arbitrary segmenta-

tion of the image into blocks (ignoring its content), and try to estimate the motion

relative to each block. Although somewhat ad-hoc, block-based techniques have the

advantage of matching well with the vector-based compression techniques discussed

in the previous sections, and this has gave them wide-spread acceptance by the image

compression community.

Among several techniques presented in the literature, such as frequency domain

(also known as phase correlation) methods [36], methods based on image gradi-

ents [25], and recursive methods [34], block matching [31] has proven to be the most

effective and is generally used for interframe coding.

Block matching consists of breaking the image to code into blocks and, for each

block, find the closest match in a previous frame. In general, only a small area of

pre-specified size of the previous frame, usually referred to as the search window,

is used in the search. The best match is the one which minimizes a pre-specified

distortion measure, typically the MSE or the mean absolute error (MAE). Under the

MSE criteria, block matching finds, for each block, the motion vector (dr, d.) which

minimizes

S [I(x, y, t) - I(x - dx, y - dy, t - 1)]2 , (2.61)

where I(x, y, t) is the intensity of frame t for the pixel with coordinates (x, y), and R is

the search window. Under the MAE criterion, the squaring operation in equation 2.61

is substituted by the absolute value. The two criteria lead to similar performance,

and the choice between them is generally related to implementation constraints.

Block matching is based on three assumptions:

* all the motion in the scene is translational and parallel to the plane of the

camera;

e nearby pixels of the same object have equal motion;

e the size of revealed or occluded areas is small relative to the image size.

Since these assumptions hold, at least approximately, for most of typical input se-

quences (specially if the block size is small when compared with the average size of

the objects in the scene), block matching is a very robust and reasonably efficient

motion estimation technique. Its main drawback is the computational weight of the

search operation which, in practice, limits the prediction to be based on one or at

most two previously transmitted frames.

Once the best estimate of motion is achieved, motion compensation can be per-

formed easily. For each block in frame t the best match in frame t - 1, according 2.61,

is displaced by the corresponding motion vector (dr, dy) and subtracted from it, orig-

inating a low-energy residual that can then be easily coded.

2.5 Entropy coding

Using quantization to achieve compression, all the image coding techniques presented

so far imply degradation of the input signal. For some applications, this distortion is

not allowable, and a different type of compression, generally referred as lossless coding,

has to be applied. Also, lossless coding techniques can be applied after quantization

to remove any redundancy still present in the encoded signal.

Lossless coders perform a one-to-one mapping, where each possible output code-

word is associated with a unique input symbol or word, and achieve compression

by exploring the statistical properties of the input data. The main idea is that, if

smaller codewords are associated with more probable input symbols and larger code-

words with the less probable ones, it is possible to obtain an average rate smaller to

that achievable with a fixed rate code, where all the input symbols are mapped into

codewords of the same length.

2.5.1 Scalar entropy coding

Consider a scalar source which produces symbols from a finite alphabet A = {w1,.. ,WN 5

and a lossless encoder that maps these symbols into codewords of length lj, i =

1,... , N. Given the probabilities of occurrence of the input symbols (pi), the theo-

retically optimal lossless code is the one which minimizes the average rate per symbol

of the encoded output
N

b = (pi li. (2.62)
i=1

In practice, in addition to minimize the average rate, the optimal code has to sat-

isfy the requirement of unique decodability. The importance of this requirement is

illustrated by table 2.5.1, where two 3-symbol codes, C1 and C2 , of equal average rate

are represented. If code C1 is used, when the sequence of bits 110 is transmitted

Table 2.1: Two possible codes for a 3-symbol source. The code on the right is uniquely decodable,

while that on the left is not.

symbol C1 C2

Wi 0 0

W2 11 10

w3 110 110

the decoder has no way to determine if the input sequence of symbols was w2wi or

simply w3 . Thus, code C1 is not uniquely decodable and is, in practice, totally useless.

Code C2 is uniquely decodable, since it satisfies the prefix condition that none of the

codewords is a prefix of any other codeword. It can be shown [11] that for a given

' One example of such a discrete source is the output of a scalar quantizer.

alphabet of size N, a uniquely decodable code must satisfy the Kraft inequality

N

< 2-" < 1 (2.63)
i=O

and, if this inequality can be satisfied, there exists a uniquely decodable code. Thus

the optimal lossless code is the one that minimizes equation 2.62, constrained to the

condition 2.63.

From equation 2.62, with qj = 2-li,

N1

b = pi log2 - (2.64)
i=1 q

and since lnx < x - 1,

N 1 N 1N Y 1 q N

log 2 - - A pl og 2 -- <pn 1n q - (2.65)
1j pi -=1 F2 (=1 p2 '=

Since j=1 pi = 1 and, from the Kraft inequality, E=N qj 1,

b > H(p), (2.66)

where H(p) is the entropy of the source

N1

H(p) = p log 2 -. (2.67)
1pi

Equations 2.66 and 2.67 state one of the fundamental results of the information

theory, first established by Shannon [39]: "the minimum possible rate achievable by

lossless coding the symbols of a give source is the entropy of that source". The optimal

lossless coder is, therefore, the one whose output rate is closer to the entropy of the

source.

Notice that from equations 2.62 and 2.67, the entropy bound of 2.66 can be

achieved with equality only if pi = qi = 2- 1i, i.e. if the symbol probabilities are

powers of two. In the general case, any code with codewords of length given by

2-1' < pi < 2-'+1 (2.68)

will satisfy the Kraft inequality since, in this case, ENi1 2-'i < El pi = 1. Writing

equation 2.68 as

-log 2 li -102 p + 1, (2.69)

multiplying each term by pi and summing for all i,

H(p) < b < H(p) + 1, (2.70)

i.e. a uniquely decodable scalar code of average rate less that one bit higher than the

source entropy can always be found.

2.5.2 Vector entropy coding

Suppose now that, instead of coding each input symbol separately, K symbols are

grouped into a vector which is then lossless coded. In this case, the input alphabet

becomes A' = {w 1,...,wM}, and the average rate per vector is

M

b = Ep;l, (2.71)
i=0

where M is the number of possible input vectors, pi the probability of the ith vector,

and li the length of the associated codeword. The vector entropy of the source is, in

this case, defined by the generalization of equation 2.67

M1
H(p) = pi log 2 - (2.72)

=1 Pi

Since only the length of the codewords assigned to the input symbols, and not the

symbols itselves, are constrained by the Kraft inequality, this inequality is still valid

in the vector case. Thus, the analysis carried out in the previous section can be easily

extended to obtain the vector equivalent of equation 2.70

H(p) < b < H(p) + 1. (2.73)

From this equation, and since the average bit rate and entropy per symbol are, for

an iid source, b/K and H(p)/K

1
H(p) < b < H(p) +K (2.74)

It is thus theoretically possible to achieve average bit rates arbitrarily close to the

entropy of the source by coding blocks of symbols, if the complexity and delay introduced

by block-based processing are allowable.

2.5.3 Huffman coding

It was seen in the previous sections that it is theoretically possible to achieve average

bit rates close to, but not lower than the entropy of the source. In practice several

methods have been proposed to design optimal codes, with performance close to the

established by the entropy bounds of equation 2.74 [17, 22, 4, 42]. Among these, Huff-

man coding [17] has received wide-spread attention and use in the data compression

community.

A Huffman code is a table mapping input messages to variable-length codewords

designed according to the probability distribution of the input and satisfying the

prefix condition, through the following algorithm:

1. List all possible input messages and consider these messages as leaves (termi-

nal nodes) of a binary tree. Associate with each node the probability of the

respective message.

2. Find the nodes in the list associated with the two least probable messages and

create a parent node of probability equal to the sum of the probabilities of these

nodes. Label the branch from the parent node to one of the children with a

binary 1 and the branch to the other child with a binary 0.

3. Replace the two child nodes in the list by their parent and associated probability.

Stop if this probability is one, otherwise go to step 2.

4. Follow the path from the root node to each of the leaves. The sequence of

bits associated with the branches in this path is the codeword of the message

corresponding to the leaf.

It can be shown [17] that this algorithm achieves the theoretically optimal code

satisfying the boundaries of 2.74. However, and since in practice it is impossible

to enumerate all possible source messages and keep track of their probabilities, this

optimality has to be traded with a more easily implementable procedure. Thus, the

algorithm is typically applied to source symbols instead of messages, and since the

codewords are restricted to have integer length this can lead to sub-optimal perfor-

mance, as illustrated by the following example.

Suppose a source with an alphabet B of N + 1 symbols B = {w1,... ,WN+1

with an highly skewed probability distribution p1 = 0.9 and P2 = ... = PN+1 =

1/10N. Since the last N symbols are equi-probable the optimal code for the alphabet

B' = {W2, ... , WN+1} is a fixed length code of log2 N bits. Thus, when applied to

B, the Huffman algorithm will originate a set of codewords with length 11 = 1 and

12 = ... = 'N+1 = 1+10g 2 N, and an average length of b = 1+(log 2 N)/10, significantly

higher that the entropy H(p) = 0.46 + (log 2 N)/10, for reasonable values of N. Notice,

that due to the restriction of integer-length codewords, the first symbol requires one

bit as opposed to the -log20. 9 = 0.15 bit required to achieve the entropy. Since

this symbol is highly probable, this difference is the main reason for the sub-optimal

performance of the code.

In general, it can be shown that the difference between average rate and entropy

is bounded, for an Huffman code, by p + log 2 [2(log 2 e)/e] p + 0.086, where p is the

probability of the most probable symbol in the input alphabet [9]. I.e., the higher the

non-uniformity of the input probability distribution, the more sub-optimal Huffman

coding becomes.

Obviously, the inefficiency imposed by integer-length codewords can be minimized

by coding groups of symbols. However, since the size of the code tables grow expo-

nentially and the encoding delay linearly with the block dimension, this solution turns

out to be impractical for most applications. In such cases, an alternative solution is

provided by arithmetic coding.

2.5.4 Arithmetic coding

Like Huffman coding, arithmetic coding achieves compression by mapping more prob-

able input symbols to shorter codewords and less probable ones to longer codewords.

Since it does not constrain the number of bits used to represent a symbol to be integer,

arithmetic coding can achieve higher efficiency.

The basic algorithm of arithmetic coding is the following:

1. Divide the interval [0,1) on the real line into a set of sub-intervals each of length

equal to the probability of each symbol in the input alphabet. Make this the

main-interval.

2. To code the next input symbol, choose the sub-interval associated with that

symbol. Make this sub-interval the new main-interval and sub-divide it in sub-

intervals according to the input probabilities, as in 1.

3. Indicate to the decoder the boundaries of the current main-interval. If there

are more symbols in the message go to 2, otherwise stop.

Notice, that a sequence of symbols translates into a successively smaller interval,

and from this interval the decoder can uniquely identify the input sequence. In fact,

it is not necessary for the encoder to transmit to the decoder both ends of the current

interval. Any number inside the interval can be used, provided that the end of the

message is signaled by a terminating symbol.

In practice, the implementation of an arithmetic coder is more complex than the

simple algorithm above suggests. The main reason for this is that the arithmetic

precision required to represent the interval grows with the number of symbols coded.

Since real applications are constrained to finite arithmetic precision, the interval must

be periodically renormalized, in a way to prevent underflow or overflow. A detailed

explanation of the intricacies of arithmetic coding as well as a complete implementa-

tion in the C programming language can be found in [2].

2.5.5 Entropy-coded quantization

In section 2.1.4, two necessary conditions for optimal scalar quantization, given a

predefined number of quantization levels, were presented. Ignoring the fact that the

mentioned conditions can lead to local, as opposed to global, optimality, a quantizer

that meets these conditions will achieve the minimum possible distortion obtainable

with a fixed-length code. However, as discussed above, a fixed-length code is optimal

only for equiprobable alphabets, and entropy coding of the quantized samples can

lead to a reduction of the bit rate without any additional degradation. Thus, in

practical implementations, quantization is, in general, followed by an entropy coder.

However, the use of an entropy coding stage introduces a new variable in the

problem of optimal quantization, since a slight increase in average distortion may be

desirable if it leads to a set of codewords with smaller entropy. In fact, the constraint

of a finite number of reconstruction levels becomes unnecessary (from a theoretical

point of view) when entropy coding is used since codewords of zero probability have

null contribution to the average rate. It is, therefore, possible to achieve a finite

average rate with an infinite number of reconstruction levels if quantization is followed

by entropy coding. Since the optimality conditions of section 2.1.4 were obtained with

the assumption of a finite number of reconstruction levels, they do not provide the

optimal solution for the problem of entropy-coded quantization.

Once again, given the non-linear nature of the problem, it is difficult to find a

theoretically optimal solution for it. However, under the high-rate assumption of

section 2.1.5, it is possible to show that, surprisingly, the optimal entropy-constrained

quantizer' is the uniform quantizer [20]! It has also been shown experimentally [7]

that this result is still a very good approximation in the case of low bit rates.

The best performance of the uniform quantizer over the nonuniform when entropy

coding is used can be intuitively explained by the ability of entropy coding to explore

the non-uniformity of the input alphabet to achieve compression. Suppose two quan-

tizers: Q1, satisfying the optimality conditions of section 2.1.4, and Q2 , uniform with

an unlimited number of levels. To minimize the average distortion, the decision levels

of Q1 will be closer in regions of high input probability and further apart in regions of

low probability. Therefore, the area under the pdf between successive decision thresh-

olds will be approximately constant for the quantizer input range, and the quantized

codewords will have approximately equal probability. On the other hand, for Q2 ,

which has equally spaced decision thresholds, codewords associated with high prob-

ability regions will have high probability, while those associated with low probability

regions will have low probability. Therefore, although the distortion may be higher

in the uniform case, the entropy will certainly be lower, and this can lead to more

efficient performance. Furthermore, since Q2 has an unlimited number of reconstruc-

tion levels, it is not affected by the problem of quantization overload, and large input

values (outside the input range of Q1) are quantized with smaller distortion than with

Q1, reducing the increase in distortion inherent to the uniform quantizer. The global

result of these two effects is that Q2 is able to achieve the average distortion of Q1

6 Quantizer that minimizes the average distortion for a fixed codeword entropy.

with smaller codeword entropy, resulting in more efficient coding performance.

The optimality of uniform quantization with entropy coding and its simple imple-

mentation make this the most widely used solution to the problem of scalar quanti-

zation, when variable rates are acceptable.

Chapter 3

Recent advances in image coding

The fundamental techniques discussed in the previous chapter have been a subject of

exhaustive research during the last decade. Thus, their potential to provide substan-

tial gains in coding efficiency has diminished considerably in the last few years. This

chapter presents some recent developments in the field of image coding.

Section 3.1.1 presents the MPEG-2 coding algorithm, the result of a world-wide

research effort for the standardization of high-quality image coding. MPEG-2 can

be considered as the state of the art in terms of traditional compression methods,

and its performance considered to be very close to the theoretical efficiency bounds

achievable with these methods.

The rest of the chapter presents a review of some new approaches to the problem

of image compression that have begun to be explored in the last few years. These

approaches seem to have great potential, but are still in a very early stage of devel-

opment. The scope of the review is, therefore, more oriented to present the general

ideas behind each technique than to discuss the techniques with the detail of chap-

ter 2. Section 3.2 covers model-based coding, an approach based on techniques that

have been used for a while in the field of computer graphics. Section 3.3 discusses

object-oriented coding, an approach which combines model-based coding with the

traditional compression methods.

3.1 Traditional image coding

Traditional image compression algorithms have been based on digital signal processing

(DSP) concepts, like those discussed in chapter 2. The main advantages of these DSP-

based approaches are their robustness and mathematical tractability that have led to

the establishment of theoretical performance bounds, which in turn have guided the

development of practical coding schemes. Although a large number of techniques has

been reported in the literature, the results of recent standardization efforts seem to

point out that, in practice, it is difficult to beat the performance of interframe-DCT

coders. Interframe-DCT encoding is the basis of the MPEG-2 compression algorithm,

which can be presented as an example of the state of the art in DSP-based image

compression.

3.1.1 The MPEG-2 video coding standard

The MPEG-2 standard is intended to cover a wide-range of applications. Since some

of these applications require different algorithmic features, the standard is organized

as a set of profiles. Each profile provides a specific functionality and can have different

levels, which are generally associated with different resolutions of the input material

(SIF, CCIR 601, HDTV, etc). The reasoning behind this organization is to allow

efficient inter-networking between different encoders and decoders. Inter-networking

between different equipment is possible on the profile and level, or profiles and levels,

that they share. Also, higher level decoders must be able to decode lower level

bitstreams and more complex profile decoders must be able to decode simpler profile

bitstreams. This section describes briefly the main level of the main profile, which

can be seen as the core of the standard, and was used in this thesis.

Although MPEG-2 only standardizes a syntax to which all valid bitstreams must

conform, and the elements of the coding algorithm which constrain that syntax (such

as block-size, etc.); the syntactic issues will not be dealt with special concern in here.

Instead, relevance will be given to the coding procedure and its relationship with

what was discussed in chapter 2.

As was already mentioned, both temporal and spatial processing are used by

MPEG-2 to achieve efficient compression. In the temporal domain, the algorithm is

based on motion-compensated predictive coding; while, in the spatial domain, the

DCT is used to remove the redundancy of the input signal.

Input and coding formats

Sequences to be coded according to the MPEG-2 main profile must conform to the

4:2:0 YBR format, and are, in general, derived from the 4:2:2 YBR format defined in

the CCIR 601 Recommendation [19]. CCIR 601 4:2:2 YBR sequences are composed

by a luminance component with 720 pixels/line, 480 lines/frame, and 8 bps; and two

color components with the same number of lines and bps, and half horizontal res-

olution. These components can be obtained from a 24 bps RGB signal by a linear

transformation defined in the 601 Recommendation. The 4:2:0 MPEG format is typ-

ically obtained from the input 4:2:2 format by down-sampling the color components

to half the vertical resolution.

MPEG-2 supports both progressive and interlaced sequences, and several features

of the algorithm are dependent on the type of input. For example, two picture

structures are defined for interlaced sequences: field pictures, where each of the fields

is considered as a separate entity; and frame pictures, obtained by merging the two

fields that compose each frame into a unique entity.

The basic processing element in the MPEG-2 coding algorithm is a 8x8 block.

Both the luminance and chrominance input components are segmented into a set of

8x8 blocks, which are then grouped into macroblocks constituted by four luminance

blocks and one block from each of the color components, as shown in figure 3.1.

Y1 Y2
- -- C -- r Cb

Y3 1Y4

Figure 3.1: Macroblock structure.

Temporal processing

Three types of pictures are defined by MPEG according to three different degrees of

temporal processing used to minimize temporal redundancy:

e I-frames, which do not use temporal processing at all, and for which only in-

traframe coding is allowed;

* P-frames, where a motion-compensated prediction for the current frame is ob-

tained from a previous frame;

e B-frames, where the prediction for the current frame is obtained by motion-

compensated bilinear interpolation of a previous frame and a frame in the future.

Input sequences are typically processed in a Group of Pictures (GOP) structure,

where the image sequence is broken into GOPs that start with an I-frame, followed

by a pre-specified number of P-frames, evenly spaced, and separated by an also pre-

specified number of B-frames. Figure 3.2 presents a common GOP configuration,

composed by 15 frames, with two B-frames between consecutive P-frames or I and

P-frames. The number of pictures in a GOP as well as the spacing between P-frames

are parameters that can be specified according to implementation requirements.

000 000

GOP

I-frame M B-frame U P-frame

Figure 3.2: Example of the GOP structure. In this particular example, each GOP contains 15

frames and there are two B-frames between consecutive P or I and P-frames.

Due to the non-causal character of B-frames, the natural order (commonly referred

as display order) of the frames in the input sequence cannot be used for coding. The

sequence is thus re-shuffled into a coding order, where all the P or I-frames used in the

prediction of a B-frame are coded before that B-frame. The following example shows

this re-shuffling operation for a sequence with a 9-frames GOP, and two B-frames

between consecutive P or I and P-frames. In this case, the display order is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...

I B B P B B P B B I B B P B B P ...

and the coding order is

1 4 2 3 7 5 6 10 8 9 13 11 12 16 14 15 ...

I P B B P B B I B B P B B P B B ...

The re-shuffling implies that the first or the last GOP in the sequence are always

smaller than the others, by the number of B-frames between consecutive P-frames.

For P and B-pictures, motion-compensation vectors with half-pixel resolution are

obtained by block-matching performed on the luminance component of the input

frame macroblocks, for which the best match is searched in a prediction frame through

the procedures described in section 2.4.2. For B-frames, the best match from the past

frame and that from the future frame are individually computed, and the macroblocks

associated with these matches are averaged to obtain the best interpolative prediction,

* 0 * * 0 0

as illustrated in figure 3.3.

Figure 3.3: Bilinearly-interpolated prediction. The best match from the past prediction frame and

the one from the future prediction frame are averaged to obtain the interpolated prediction.

After motion estimation is performed, several macroblock types are possible, de-

pending on the frame type.

" P-frame macroblocks can be predicted from a past frame (forward predicted

macroblocks), or not predicted at all (intraframe macroblocks). Typically, the

energy of the residual prediction error is compared with that of the original

macroblock, and the predictive mode is chosen if the former is smaller that the

latter.

" B-frame macroblocks can be predicted from a past frame (forward prediction),

from a future frame (backward prediction), from an interpolation of both past

and future (interpolative prediction), or not predicted at all (intraframe mode).

Typically, the best match of the three predictive methods is selected, and then

the comparison described above is performed to choose between the best pre-

dictive mode and the intraframe mode.

Several extensions to these basic motion-compensation modes are included in

MPEG to increase the coding efficiency for interlaced inputs. For frame-structured

pictures, two prediction modes are defined:

e frame prediction, where the same motion vector is applied to the lines of both

fields;

* field prediction, where the lines of each field can be predicted from the lines of

any of the fields in the frame used for prediction, using an extra motion vector;

Generally these two modes are combined into a field/frame adaptive mode, where

the best of the two prediction methods is chosen at the macroblock level. The field

mode is more efficient in areas of strong motion, where the two fields can be displaced

by different amounts; while the frame mode is more efficient in less active areas since

only half the number of motion vectors is required.

An additional prediction mode, commonly referred as dual-prime is allowed for

P-frames, trying to combine the efficiency of the field mode with the reduced overhead

required by the frame mode. In the dual-prime mode, although only one motion vector

is transmitted per macroblock, the lines of each field of each macroblock are predicted

from lines of both fields of the prediction frame, using an interpolation process similar

to that described above for B-frames. Starting with a motion vector between fields

of the same parity, a new motion vector is obtained for prediction between opposite

parity fields by scaling appropriately the original motion vector and adding to it a

differential value of small amplitude (restricted to 0 or i1/2), selected to optimize

the prediction. The prediction for the lines of each field is then obtained by averaging

the prediction from the lines of the field with the same parity and the lines from the

field with opposite parity. This is exemplified in figure 3.4, where the lines of the first

field of frame t are predicted from the first field of frame t - 1 with the motion vector

vi, and from the second field with vector v 2 , which is nothing more than a scaled

copy of vi summed to a differential d. In this way, at the cost of transmitting only

one vector and two differentials (one per field), the prediction is actually based on

four different vectors (two for each field).

e e

v1V
e e

* 0

v 2

ed

e e

t-l t

Figure 3.4: Dual-prime prediction.

Spatial processing

The spatial redundancy existent on the input frame (for I-frames) or on the prediction

error (for P and B-frames) is minimized through the application of a 8x8 DCT to each

of the blocks of the input or prediction-error signal. Once again, interlace is accounted

for by the definition of two DCT modes, represented in figure 3.5.

e In the frame-DCT mode, a 8x8 DCT is applied to the luminance and chromi-

nance blocks that compose each macroblock, without any consideration about

the interlaced nature of the input.

* In the field-DCT mode, the lines belonging to the first field of the four mac-

roblock luminance blocks are merged into two blocks, and the lines belonging

to the second field are merged into two other blocks. The chrominance blocks

are processed as in the frame-DCT mode.

The field mode is more effective when there is motion between the fields and sig-

nificant vertical detail. In this case, the vertical edges become "serrated", originating

high vertical-frequencies that are hard to code if the lines from opposite fields are not

separated. The frame mode is more effective when there is no motion or significant

8 8 8

8 8 8 8

818

a) b)

Figure 3.5: DCT modes: a) frame-DCT, b) field-DCT.

vertical detail since, for this mode, the vertical resolution is twice that obtained with

the field mode.

After the DCT, the coefficients of each block are scalar quantized by a two-step

procedure. First, a pre-specified quantization matrix, common to all the blocks in

the frame, is applied to each block coefficients, which are afterwards scalar quantized

according to the local image activity and the available transmission bit-rate.

Typical quantization matrices are slanted, so that higher-frequency coefficients

are quantized with larger step-sizes, and provide a practical way to implement some

of the bit allocation procedures described in section 2.2.3. First, the use of quan-

tization matrices allows an unequal distribution of bits by the different coefficients,

assuring that more bits are allocated to the low-frequency coefficients, which are the

most important both subjectively (the sensibility of the human eye to quantization

noise is smaller at high-frequencies) and objectively (most of the block energy is con-

centrated on the low-frequency coefficients). Second, quantization matrices provide

an easy way to perform threshold coding because any coefficient of amplitude less

that the respective quantization step-size is automatically zeroed. Since the step-size

increases with frequency and high-frequency coefficients have in general small energy,

this results in runs of zeros that can be easily coded.

In general, two different matrices are used for intra and predictive frames, and the

matrix used with I-frames is more slanted. The reason for this is that a prediction-

error image is typically high-pass; and, although the eye is still less sensitive to

quantization in active areas, if the high frequencies were very coarsely quantized,

most of the information would be lost. The value of the step-size as a function of the

coefficient for two typically used matrices [18] is represented in figure 3.6.

q

fh

fV
a) b)

Figure 3.6: Typical quantization matrices for a) I and b) P or B-frames. Fh and f, are the

horizontal and vertical frequencies, and q the quantization step-size.

After matrix quantization, each coefficient is individually quantized with a scalar

quantizer according to the local image activity and the fullness of the transmission

buffer. Since, as will be described shortly, entropy coding is used to increase coding

efficiency, a MPEG-2 coder originates a variable-rate bitstream. However, for most

applications, the coded data must be transmitted over a fixed-rate channel; which

can be accomplished by guaranteeing that the average rate originated by the encoder

is equal to the channel rate, and introducing a transmission buffer to accommodate

instantaneous deviations from the average rate.

The most common procedure used to guarantee that the average rate is equal

to the channel rate consists in introducing feedback from the buffer state to the

quantization step-size. When the buffer starts to fill (empty), the step-size is increased

(decreased), reducing (increasing) the coding rate to a value closer to the channel rate.

In MPEG-2, a different quantizer, known as macroblock quantizer or mquant, can be

computed for each macroblock, and rate control is usually achieved by taking into

account the buffer fullness in the computation of the mquant step-size. In addition to

rate control, the chosen step-size can also take into account the local image activity,

quantizing more coarsely areas of high activity (where the human eye is less sensitive

to distortion) and more accurately smooth areas.

After quantization, the DCT coefficients are entropy-coded. To reduce the over-

head, the macroblocks are analyzed, and only blocks with at least one non-zero co-

efficient are encoded. A coded-block pattern, which indicates these encoded blocks, is

associated with each macroblock. Also, since neighbor blocks typically have similar

means, their DC coefficients are differentially coded by subtracting from the current

DC coefficient the previously transmitted one.

To explore the zero runs originated by quantization, the 2-D array of coefficients

is transformed into a 1-D vector by applying one of the zig-zag scan patterns il-

lustrated in figure 3.7. The pattern a) is used with progressive inputs while the

pattern b) is more suited to interlaced pictures. This vector is then coded by a

run-length/amplitude encoder using the following algorithm.

1. Define a coefficient pointer, pointing to the first vector position, and initialize

a zero counter to zero.

2. While the current coefficient is zero and the coefficient pointer is smaller than

the last vector position, increment the pointer and the coefficient counter.

3. If a non-zero coefficient is found, transmit the contents of the zero counter and

the amplitude of the non-zero coefficient. If the last vector position was not yet

reached, reset the counter and go to 2.

4. Transmit an end-of-block marker.

Before transmission, the run/amplitude pairs and all the overhead information

associated with each macroblock (motion vectors, coded-block pattern, macroblock

type, etc.) is Huffman coded, as discussed in section 2.5.3.

a) b)

Figure 3.7: Zig-zag scan patterns.

3.2 Model-based coding

The facts that the main profile of the MPEG-2 standard is basically equal to the

MPEG-1 algorithm [23] (previously developed for the transmission of lower resolution

video - 360x240 pixels/frame - at bit-rates below 1.5 Mbps) and that MPEG-1 is itself

very similar to the previous H.261 CCIR standard (for the transmission of reduced-

quality video at low bit-rates - multiples of 64 Kbps) support the conclusion that it

is difficult to beat the performance of interframe-DCT coding with algorithms based

uniquely on the traditional compression techniques described on chapter 2.

A totally different approach to the image compression problem, that seems to have

the potential to achieve much larger compression ratios, is model-based coding. Model-

based coders rely on a pre-specified model of all the objects in the scene that can be

described by a small set of parameters and animated by continuously updating those

parameters. A model-based coder can be divided into the two main blocks depicted

in figure 3.8. In the encoder or analyses stage, the input is compared to the model,

and the representative parameters extracted. In the decoder or synthesis stage, these

parameters are used to animate the model, tracking the variations of the input.

Obviously, the efficiency of a model-based scheme is determined by the accuracy

with which the scene can be characterized by the model. Unfortunately, the majority

of typical scenes (in particular those that are natural, non man-made) are very difficult

to model with an acceptable degree of accuracy, and this has limited model-based

Input Image Image Reconstructed

Frame Analysis Synthesis Frame

............. 3-D

Model

Figure 3.8: Block diagram of a model-based encoder.

implementations to a restricted set of applications. In particular, model-based coding

has been applied in the recent years, with a relatively promising degree of success,

to the problem of coding the "head and shoulders" scenes characteristic of video-

conference or video-telephone applications. Figure 3.9 represents a model for these

types of scene, based on a wire-frame of polygons. In this case, the spatial coordinates

of polygon vertices are the parameters that characterize the model; and, by moving

the relative positions of these vertices, it is possible to animate it.

control point P
component1I

t exible
connectr

-40Z

triangtiocomponent 2

lar
face

Figure 3.9: Typical model for an "head and shoulders" scene. From [21]

3.2.1 Image analysis

Image analysis is the most complex task to be performed by a model-based coder.

An effective analysis algorithm should be able to identify object features, even when

faced with adverse conditions, such as noise, camera blur, changes of illumination,

and object occlusion or re-shaping. While some of these adverse conditions, such as

noise or changes of illumination, can be avoided if the scene occurs in a controlled

environment; others cannot, making the analysis task very difficult. In addition, the

model of the objects is, in general, crude, which obviously does not help the analysis

task.

Due to these problems, analysis algorithms tend to be very specific to the particu-

lar type of scenes to be coded, and reasonably complex. The following is an example

of an analysis algorithm for "head and shoulders" scenes, presented by Welsh in [36],

which tries to solve the problem by exploring the symmetries of a human face.

First, an edge detector is applied to the input frame to extract the contours of

all the objects in the face (eyes, nose, and mouth). The resulting image is then

processed to eliminate false contours due to noise and contour discontinuities due to

inefficient performance of the edge detector. A window with the length of the input

frame, but only eight lines high, is then used to scan the contour image from top

to bottom, with an overlap of four lines between successive window positions. For

each vertical position of the scan window, the number of edge points in each of its

columns is summed and stored in an array, which is then searched for two vertical

lines corresponding to the sides of the head. The area in between each candidate

pair is then searched for symmetric features corresponding to the eyes; and, once

the eyes are found, the symmetry axis of the face is determined. Then, another

window is placed below the eyes, and the number of edge points along each of its

rows is summed and stored in an array which is, afterwards, searched for horizontal

activity corresponding to the mouth. Incorrect identifications that may occur along

the this analysis procedure are handled by incorporating a backtracking algorithm

that restarts the process from a different initial guess for the head boundaries if an

identification error is detected. This backtracking mechanism increases significantly

the accuracy of the analysis algorithm at the cost of a greater computational load.

This analysis algorithm is conceptually very simple, and is probably not the best

in terms of efficiency or speed. It can be used, however, to illustrate some of the

difficulties associated with model-based coding. One could ask, for example, what

would happen if part of the components of face were occluded due to a rotation of the

head? In this case, the assumption of symmetry, that is crucial to the performance

of the algorithm, would no longer hold and the result would be an error of large

proportions. It is also assumed that the face has no beard or glasses, which can lead

to a considerable degradation of performance. Finally, no attempt is made to identify

the hair, a task that is obviously very complex.

The problems of how to handled mismatches between the model and the real

footage, and how to extract features that can be used to characterize complex patterns

(such as human hair, or the leaves of a tree moving with the wind) are central to

model-based coding and have not been solved so far.

3.2.2 Image synthesis

Once the analysis stage determines the parameters of the model for the current frame,

the model can be updated according to the new parameters and a coded version of

the input synthesized. The problem of image synthesis has been a subject of research

in the field of computer graphics for a number of years, and some of the computer

graphics techniques can be used with model-based coding. The two basic problems

of the synthesis stage are how to display the 3-D model in a 2-D display, and how

to give the wire-frame representation a realistic appearance, i.e. how to synthesize a

replica of the textures of the objects modeled.

The problem of displaying a 3-D model on a 2-D display is usually known as

rendering, and is commonly handled by a scan-conversion procedure composed of

three steps.

1. Projection of the 3-D wire-frame polygons into the 2-D display plane.

2. Determination of the objects or parts of the objects that are visible.

3. Computation of the intensity or color of each pixel in the synthesized image.

The first step is usually based on the application of simple geometric transforma-

tions to all the vertices of the polygons in the wire-frame.

The second step, hidden surface removal, can be solved by a series of different

techniques, the simplest of whose consists in the use of a depth-buffer with the size of

the final image to be displayed. This buffer is initialized with infinity in all its positions

and, for each pixel in every polygon, the depth value in the buffer is compared with the

depth computed for that pixel. If the pixel's depth is smaller than that in the buffer,

the pixel is considered visible, copied to the display frame store, and its depth value

copied to the depth-buffer. When all the pixels have been processed, only the visible

ones will appear on the synthesized image. This algorithm is very simple, but requires

a considerable amount of memory and cannot handle transparent objects. However,

since the applications of model-based coding are, as mentioned above, restricted to

scenes with few objects and not very large image dimensions, these drawbacks may not

be very significant, and, in this case, it provides an efficient solution. More complex

solutions to the problem of hidden surface removal can be found in the computer

graphics literature [8].

The third step, where the problem of determining textures and surface intensities

is handled, is usually solved in the field of computer graphics by the use of shading

techniques, based on an illumination model. The simplest shading models assume that

the illumination is absorbed by the surface of each object and re-emitted isotropically

in all directions. The main problem of such models is that objects which do not receive

direct illumination are not visible at all. More complex models try to eliminate this

problem by considering the illumination incident in each object as the sum of two

terms, one due to direct illumination and the other due to ambient illumination. In

this way, it is possible to shade each polygon according to the position of the light

sources in the scene.

Shading each polygon separately can lead to luminance discontinuities around

their edges, originating annoying artifacts. A technique known as Gouraud shad-

ing [12] achieves smooth shading by interpolating the shading intensities associated

with adjacent polygons to obtain the shading intensity of the regions near the edge

between those polygons. However, and since it does not guarantee the continuity of

the derivatives of the intensity across polygon boundaries, Gouraud shaded images

still present some visible artifacts in these regions. A more complex interpolation

technique, known as Phong shading [38], based on an improved illumination model is

generally used to reduce this problem.

Shading techniques are very efficient to reproduce objects with smooth and uni-

form surfaces, but fail when this is not true, as is the case for most natural objects.

In these situations, a more efficient solution is to use texture-mapping techniques [8],

in which the original image is first mapped onto the 3-D model surface, and then

projected onto the 2-D display.

3.3 Object-oriented image coding

As mentioned in the previous section, one of the major difficulties associated with

model-based coding is the determination of a 3-D model that can accurately rep-

resent the objects in the scene. Object-oriented algorithms avoid this difficulty by

eliminating the requirement of this explicit 3-D model to represent the objects.

The best example of object-oriented coding is the analysis-synthesis coder (ASC)

developed by Musmann et al. at the University of Hannover [30, 15]. The ASC

describes the objects present in the scene by three parameters: shape, motion and

texture. The core of the algorithm is an iterative procedure to determine both the

shape and the motion of each object, which involves the joint use of analysis and

synthesis techniques. First, a global estimate of the motion between the present (Fk)

and the previous reconstructed frame (Fk-_) is performed. This leads to a set of

motion parameters mainly determined by the global motion of the scene (such as the

originated by a change in the camera position). Then, these motion parameters are

used to synthesize a motion-compensated (Fe) version of Fk, which will be similar

to Fk in the background areas, but a very poor reproduction of Fk in the areas of

objects subject to motion different than the global. These areas are identified (by

the analysis of the difference between Fk and Fk) and a binary mask s, (where i is

the object index) associated with each of them. These masks contain the information

about the shape of each object in the scene.

Once the masks are obtained, the process is repeated to improve the motion

estimates. Starting with Fk and F, the motion analysis is performed separately for

each of the regions covered by an object. This leads to the set of motion parameters

mi associated with each object. A new motion-compensated replica (F,) of Fk is then

synthesized and the reconstruction error computed. If there are no objects moving

in front of each other, the replica will be close to the original. If there are objects

partially occluding each other, the analysis of the reconstruction error leads to a

decomposition of some of the regions s9 into a set of smaller sub-regions, leading to

an improved shape representation si. The process is then repeated the number of

times necessary for the decomposition of the image into the set of all the objects that

compose it. At the end of j iterations, this analysis-synthesis procedure produces,

for each object i, a set of motion parameters mi, a set shape parameters si, and

the object texture, which consists on the pixel values of the region si of Fk. This

information enables the decoder to reconstruct Fk = .

Motion estimation is based on the assumption of planar 2-D objects moving ar-

bitrarily in 3-D space. In this case, the motion of a given object, covering a specific

image area, can be characterized by a set of 8 parameters computed through a pro-

cedure presented in [41]. Once the motion parameters are found, they are used for

image synthesis as described above and then predictively coded for transmission.

The coding of the shape information is based on an algorithm for contour coding

using both polygonal and spline-approximation of the shape [15]. First, the object

silhouette is approximated by a set of polygons characterized by a number of vertices,

which depends on the accuracy desired for contour coding. These vertices are then

used to compute a spline representation of the contour, and the best of the two

approximations is chosen. For transmission, the vertices are differentially coded,

using those of the previous frame as prediction. The performance of the algorithm is

dependent on the number of vertices allowed: the introduction of more vertices leads

to higher accuracy at the cost of increased overhead. Figure 3.10 presents an example

of the performance of this algorithm.

cotmasoner polygon
pman o Ton

Figure 3.10: Example of contour coding. From [15].

Finally, the texture information is coded using traditional motion-compensated

interframe coding, using the synthesized replica of the input frame as prediction.

When the coder finds objects which it is unable to synthesize (due to model inade-

quacies), or which are very small (leading to considerable shape overhead), it switches

to conventional block-based processing.

In addition to the algorithm described so far, a slightly different coding approach

based on a model of moving 3-D objects is also discussed in [30]. Here, a wire-frame

model similar to those described in section 3.2 is progressively built by the encoder

using an iterative procedure similar to the presented above. For each object in the

scene, motion parameters are first computed and, if the changes between successive

frames cannot be accommodated by motion compensation alone, the vertices of the

wire-frame polygons are recomputed, accounting for changes in object shape. This

method seems, however, to be of much more complex implementation than the one

discussed above, and the authors do not present any coding results achieved with it.

Object-oriented coding fills the gap between the traditional DSP-based techniques

and model-based coding. Here, although there is no pre-specified model of the input

scene, the encoder tries to build that model, which becomes a better representation

of the input than the assumption of a "sinusoidal and translational world" as with

the DSP techniques. There are, however, two costs that are inherent to object-

oriented coding and which are particularly important for applications where high

coding quality is required.

The first is the smaller robustness and general purpose character. Although not as

much as with model-based coding, object-oriented coders are still directed to specific

applications, involving reduced complexity scenes. The example of a tree moving in

the wind is still a case where it is hard to image an object-oriented encoder performing

efficiently.

The second is the overhead associated with the transmission of shape parame-

ters, which is not necessary for a DSP-based solution. This overhead is particularly

important when several small objects compose the scene. For example, when the

camera faces a crowd attending a sports event, all the little heads will require shape

information, leading to high overhead. However, the object-oriented segmentation

will not provide a large coding gain over a block-based segmentation (characteristic

of the DSP solutions), which does not require any segmentation overhead at all. In

this example, it is likely that DSP-based coding will lead to higher efficiency.

Chapter 4

Library-based image coding

The previous chapters presented several image coding techniques from both the fields

of conventional (DSP-based) image compression and the more recent model-based or

object-oriented coding approaches. It was already mentioned that the main limita-

tions of conventional image coding techniques are due to the poor model of input

in which they are based. The performance obtainable with this limited model is

further constrained by the computational complexity associated with block-matching

motion estimation, which limits the number of frames usable for prediction. On the

other hand, model-based and object-oriented approaches suffer from high complexity

and lack of robustness to mismatches between the models in which they are based

and the input scenes. These factors have prevented their use for high-quality coding

applications, such as the broadcast of digital television.

The purpose of this thesis is to extend the traditional coding model towards an

object-oriented framework, while maintaining its robustness and appropriateness for

high-quality coding. Since these are conflicting goals, a solution combining aspects

from both classes of coding techniques is necessary to achieve them. A library-based

encoding scheme provides such a solution.

Theoretically, a library of objects is a very powerful tool for image representation

since typical scenes can be characterized as small sets of objects moving with time.

An encoder based on an object library would only need to determine the warp applied

to each object from frame to frame and, for a given frame and a given object, transmit

the object index in the library and its motion parameters.

In practice, the implementation of such an encoder faces some difficult problems.

First, it would require an accurate image analysis stage to identify the objects in the

scene which, as seen in the previous chapter, is a very complex task in itself. Then,

if it were possible to determine the objects accurately, it would require the capacity

to determine a set of parameters which described the motion of each object. This is

a relatively easy task in the case of rigid objects, but turns out to be very complex in

the case of deformable bodies, such as human figures, and many other natural, non

man-made, objects.

As a result of these implementation difficulties, an encoder based solely on a

library of objects, and suitable for the encoding of general purpose scenes, does not

seem feasible, at least in the near future. The concept of library-based encoding can,

however, be merged with the traditional block-based techniques to eliminate some of

their limitations and provide increased coding performance.

4.1 Vector quantization of the prediction space

Vector quantization (VQ) was discussed in section 2.3 from a data compression per-

spective. In addition to its optimal compression performance, a vector quantizer can

also be seen as a clustering technique, a property which makes VQ particularly suited

for the implementation of a library-based encoder.

One of the desirable properties for efficient library encoding is the capability to

extend the coding model beyond the set of sinusoidal basis functions characteristic of

conventional encoders. A vector quantizer splits its input vector space into a set of

vector clusters with common characteristics, and associates to each of these clusters

a representative library entry. If the input vector space is the set of vectors that

compose a number of frames in the prediction space (frames previously transmitted),

vectors with common characteristics will be those belonging to the same or similar

objects; and a VQ applied to the prediction space can be seen as a clustering operator

grouping together blocks belonging to the same objects. In this way, the underlying

coding model is extended into an object-oriented direction.

Clearly, the restriction to block-based processing prevents the existence of a truly

object-oriented coding model. It has, however, the property of compatibility with con-

ventional techniques, which is desirable for applications requiring high-coding quality,

due to the possibility of compensating for prediction errors (originated from model

inaccuracies) by transmitting a block-based prediction error signal. Such a correction

signal may not be easily implementable in the case of a purely object-oriented coder

since in this case the errors are, in general, associated with geometric distortions

which may not be easily recoverable with a block-based correction error signal.

Ideally, the design of a vector quantizer would consist in simply finding the solution

to equations 2.54 and 2.55. In practice, and since an input probability distribution

function is in general not available, the design of the vector quantizer is based on a

training sequence of vectors that are representative of the input vector space. This

makes VQ particularly suited for the implementation of a library-based encoding

scheme since, by incorporating several past frames in the training set, the library

computed for the prediction of a given frame will be representative of an extended

prediction space, incorporating several frames, as opposed to the limited prediction

space of one or two frames characteristic of the conventional interframe encoders.

In addition to providing the capability to explore an extended prediction space

and an enhanced coding model, a vector quantizer of the prediction space has also

some characteristics that can lead to a simple implementation of library-based encod-

ing. First, a VQ-based scheme requires very simple decoding (a trivial table look-up

operation); a desirable property for high-quality encoders which are typically used

in asymmetric applications (where a single encoder encoder feeds several decoders);

where the cost of the decoder is much more relevant than that of the encoder. Second,

since the most popular algorithm known for VQ design - the LBG algorithm [26] is

recursive, it is possible, by using VQ, to achieve a recursive library design procedure,

avoiding the computational burden of an entire library re-computation for each new

frame.

4.2 The LBG algorithm for VQ design

The LBG algorithm for VQ design is an extension of an algorithm for scalar quantizer

design first presented by Lloyd [27]. It consists of an iterative procedure that gradually

improves the performance of an initial non-optimal quantizer, until the necessary

conditions for optimality (equations 2.54 and 2.55) are satisfied. The procedure is

very simple, and follows almost intuitively from the structural characterization of a

quantizer presented in section 2.1.2 for the scalar case, and extended in section 2.3.1

for the case of vector quantization. It consists in, iteratively, finding the best encoder

for the present decoder, and then the best decoder for the new encoder, until a

termination criterion is satisfied.

The basic iteration assumes that a probabilist description of the input is available,

and uses the optimality conditions to obtain an improved quantizer.

1. Given a codebook Cm = Y1i,... , YN, find the cells R; that originate the optimal

partition of the input vector space given Cm, by applying the nearest neighbor

condition of equation 2.54.

2. Using the centroid condition of equation 2.55, find the new optimal codebook

Cm+i for this new partition of the input space.

Due to the nature of the optimality conditions, each iteration must improve the

codebook, or leave it unchanged, and, in this way, the solution converges to an op-

timum. This optimum can be, however, only local since, as seen in chapter 2, the

conditions on which it is based are not sufficient to guarantee global optimality.

In practice, a probabilist description of the input is typically not available and,

even if it were possible to obtain such a description, the analytic computation of

the centroids on step 2 of the iteration would be extremely complex. To avoid these

limitations, practical vector quantizers are designed using a sample distribution based

on a set of empirical observations of the input, usually referred to as the training set

for the quantizer design.

This training set is used to define a random vector whose pmf is obtained by

assigning the probability mass of 1/M to each vector in the set, where M is the

number of vectors that compose it. If the training set is large enough, this pmf

converges to a close approximation of the true probability distribution, leading to

coding performance close to that obtainable using the true probabilistic description.

The use of the training set simplifies, however, the computations associated with the

optimality conditions referred above due to its discrete and finite nature.

The main simplification introduced by the use of a training stage is verified in the

computation of the partition centroids, which under the MSE distortion measure are

given by

Y3 = E[XIX E R3]. (4.1)

Given a training set 7 = t 1 ,..., tM, this expression simplifies into

i t;Sj(ti) (4.2)
=1 Sj(ti)

where the Sj are the selector functions defined in section 2.3.1. I.e. the centroid of

a given cell reduces, when the VQ design is based on a training set, to the vector

average of the training vectors belonging to that cell.

Given a training set T = ti, ... , tM, the task of determining the cell Ri associated

with the codeword yj, for the optimal partition of the input space, is also very simple.

It reduces to finding the vectors in T which satisfy

'Rj = {t E T : ||t - yj|| < ||t - y;||, Vi}. (4.3)

Using equations 4.3 and 4.2, the basic iteration can be applied to the discrete

distribution provided by the training set to obtain an optimum quantizer. This basic

iteration is the core of the LBG algorithm, which consists of the following steps.

1. Define an initial codebook C1.

2. Given Cm, find an improved codebook Cm+1 by applying the basic iteration

described above.

3. Compute the average distortion for Cm+1. Stop if this distortion is small enough,

otherwise goto step 1.

The average distortion is the average distortion of representing each vector in

the training set by the closest codebook entry. Several criterion can be used for the

termination of the algorithm. Ideally, the codebook should be accepted only when the

distribution of the training vectors by the partition cells remained exactly the same

on two consecutive iterations. In practice this would require, for a reasonably sized

training set, a very large number of iterations, and alternative criterion are usually

employed. Among these, the most common consists in terminating the algorithm

whenever the decrease of the average distortion from one iteration to the next is

smaller than a pre-specified threshold.

A flow chart of the LBG algorithm is presented in figure 4.1. Several methods have

been reported in the literature for the determination of the initial codebook [26, 6, 11],

although none seems to be consistently better than the others. A simple and effective

solution for this problem consists in picking up a set of vectors at random from the

training set, and using this set as the initial codebook.

Initial
codebook

Co, m=0

Set
Find the eclgors

4m of Cm+l
Traverage

distinctbut interelated poblems: irarytin adlbay dtn.Terao

Fidcodeeook

4.3 Implementation~ of th ibay-aedeco e

natural butointerelatned alloblem inforaionryeededort design andlbain The gra
a~~~Fgre determinedob characei tic of the algorithm oe for liba design.

Obvies olysar nereatdista the efficiency ofth library updateiolnotbg rblmi t eeps

sible to replicate the library design at the decoder. This can, indeed, seem to be a

natural procedure since all the information needed for the design is, in the general

case (prediction space exclusively composed by previously transmitted frames), avail-

able to the decoder. However, the library design is a computationally heavy task,

in particular when a VQ-based solution is considered, and thus incompatible with

the requirement for simplicity of implementation of typical decoders already men-

tioned. Furthermore, a non-causal prediction space (incorporating frames from both

the past and the present or future) can lead to increased prediction efficiency over

that achievable with the causal one available at the decoder.

Therefore, for a practically implementable and efficient solution, the library design

must be performed entirely by the encoder and the efficiency of library update should

be considered as an important side-effect of the library design algorithm. In this

context, an efficient library design procedure cannot aim uniquely to obtain the best

possible library for every frame in the MSE sense. It must also be able to achieve an

easily encodable library, whose updating requires the transmission of small overhead

information. This requirement for easy encoding can only be satisfied if the library

is temporally smooth, i.e. its entries do not change significantly from frame to frame

unless there is a significant change of the prediction space. A recursive library design

algorithm, in addition to making the implementation simpler (since there is no need

to recompute the library from scratch for every frame), has the potential to satisfy

this smoothness constraint.

4.3.1 Library design

In this work, library design was based on the LBG algorithm for the design of vec-

tor quantizers presented in section 4.2. The LBG algorithm has several properties

desirable for library design:

* it is, by nature, recursive, allowing the use of a previous library as the start-

ing point for the design of the next one and, consequently, progressive library

refinement;

e it provides an, at least locally, optimal solution;

e if the previous library is used as the initial codebook and the input space has not

changed significantly, the next library will be similar to the previous (temporal

smoothness) and will require few additional iterations (reduced complexity);

e it can easily account for an extended prediction space by simply including the

vectors from the desired frames in the training set.

Its main drawback is, however, the associated computational complexity. As dis-

cussed in section 2.3.4, vector quantization is, itself, a computationally heavy opera-

tion and, since each iteration of the LBG algorithm implies the vector quantization

of all the vectors in the training set, its complexity increases proportionally to the

size of this training set and to the number of iterations required to obtain the final

codebook. These parameters have, therefore, to be controlled in a way such that

practical complexity limitations are not exceeded.

A large training set is desirable not only due to the inherently larger prediction

space, but also because the library will tend to change less from frame to frame

and will be, therefore, easier to encode. However, if the training set becomes too

large, the weight of recent frames in the final library becomes very small and the

library will no longer be able to represent local features, leading to poor prediction

efficiency. In practice, the number of frames used for prediction must provide a

trade-off between the capability to represent both the long-term and the short-term

dependencies between the frame to encode and those in the prediction space.

Theoretically, the higher the number of iterations allowed in the library design,

the better the library. In practice, however, the LBG algorithm is characterized by

a significant improvement in codebook performance during the first iterations, and

then an increasingly slower rate of improvement during the remaining ones. If the

initial codebook estimate is relatively close to the final solution, as is the case when

the prediction space does not change significantly from one frame to another and the

previous library is used for this estimate, one or two iterations will be sufficient to

get very near the optimal solution. In this case, further iterations will not produce a

significant increase in the prediction efficiency, but will allow for some change in the

library entries, reducing the efficiency off library update. Since additional iterations

increase the computational complexity, they bring no real benefit and the maximum

number of iterations allowed per frame should be kept small.

The algorithm developed in this work for library design takes these considera-

tions into account in order to maximize the library efficiency, while maintaining the

implementation complexity within reasonable bounds. The core of this algorithm,

represented in the flow chart of figure 4.2, is the basic LBG iteration, described in

section 4.2, which is applied to a training set representative of the prediction space,

according to the following steps.

1. Set f = 0. Read frame 0.

2. If a scene change has occurred in frame f - 1, discard all the vectors in the

previous training set.

3. Split frame f into a set of BxB blocks, and incorporate these blocks into the

training set.

4. Discard, from the training set, the blocks from frame f - T (if this is a valid

frame number, i.e. higher than that of the oldest frame in the training sequence).

5. Apply a maximum of I iterations of the basic LBG iteration, using the library

f - 1 as initial codebook, to obtain the improved library f.

6. Read the next frame, increment f, and go to step 2.

The parameters I (number of iterations per frame) and T (number of frames in

the prediction space) were determined experimentally, as described in chapter 5, to

achieve a compromise between efficiency and implementation complexity. The block

dimensions were set at 8x8. These dimensions allowed the use of a relatively small

Figure 4.2: Flow chart of the library design algorithm.

library and, consequently, the need for reduced transmission overhead to obtain sat-

isfactory library performance. Figure 4.3 illustrates how the prediction space (frames

in the training set) is updated for the encoding of each frame. The inclusion of the

frame to be coded in this prediction space (non-causal predictor) allows improved

prediction efficiency, at the cost of a small encoding delay.

A very simple scene change detector was employed in step 2 by comparing the

number of intra and predictive blocks in the previous frame. Whenever the number

of intra blocks is higher, is is assumed that a scene change has occurred. Despite its

simplicity, this detector proved to be very reliable. Obviously, with this procedure the

scene change can only be detected on the frame following to that in which it really

t t+1 t+2

a)

b) .

c) .

M Frames in training set (T = 4)

Figure 4.3: Updating of the prediction space. Frames in the training set for the encoding of a)

frame i, b) frame t + 1, and c) frame t + 2.

occurs. This drawback is compensated by the reduced sensitivity of the human eye to

distortion in the immediate location of a scene change, the simplicity of implementa-

tion of the procedure, and a smoother transition between the libraries suited for each

of the scenes which leads to reduced overhead.

Notice that due to the limitation of iterations allowed, the codebook obtained

for each frame is not guaranteed to be optimal. This algorithm provides, however,

a solution which is recursively improved from frame to frame and, in general, an

efficient codebook is obtained a small number of frames after a scene change occurs.

4.3.2 Library update

Once the library used in the encoding of a given frame is designed, the new library

entries must be transmitted as side-information that will be used by the decoder. If

a new library had to be transmitted for each frame, the cost of the associated side-

information would be high, reducing the efficiency of the library-based approach. Two

complementary mechanisms were implemented to explore the temporal redundancy

of the library, minimizing the overhead associated with library encoding:

e selective transmission,

e conditional replenishment.

Selective library transmission

Since, during periods of reduced motion, the prediction space does not change sig-

nificantly from frame to frame, successive libraries will be very similar during these

periods. In this case, if the library Lt_1 is used in the encoding of frame t, the

coding performance will be similar to the one achievable with the newly computed

library Lt. However, if Lt_1 is used, no overhead information has to be transmitted.

This property was explored by the introduction of the following selective transmission

mechanism in the library-based encoder.

1. Define a distortion threshold (D), set t = 0, d_ 1 = oo.

2. Read frame t, and find the associated library Lt with the algorithm of sec-

tion 4.3.1. Compute the average distortion dt resulting of the design procedure

(encoding of the vectors in the training set).

3. If jdt - dt-i/dt < D, use Lt_1 for the encoding of frame t. Set dt = dt_1,

t = t + 1, and go to step 2.

4. Use Lt for the encoding of frame t, and transmit Lt to the decoder. Set t = t+ 1,

and go to step 2.

In this way, random fluctuations of the library, due to small variations of the pre-

diction space, are eliminated and the overhead minimized. It can be argued that the

equation in step 3 can lead to incorrect decisions since the distortions involved are

relative to the design of different libraries, based on different training sets. Since the

training sets are different it would be, in theory, possible that two significantly differ-

ent codebooks would lead to similar distortions. In practice, due to the overlapping

of the training sets used for the design of the libraries associated with consecutive

frames (if the number of frames in the prediction space is greater than one) and the

reduced number of iterations allowed for library design, this situation is very unlikely

if the distortion threshold is maintained within reasonable bounds. This problem was

never found in several experiments performed using selective library transmission.

Conditional library replenishment

In typical image sequences, even during periods of significant motion, where new

objects are revealed and some of the old occluded, a reasonable area of the scene

remains relatively unaltered from frame to frame. This will obviously have a similar

effect on the library entries since the entries associated with objects that remain

unaltered between consecutive frames will tend to be relatively stable. Therefore,

even when a library is selected for transmission by the previous mechanism, it is

possible to explore the information provided by previously transmitted libraries to

minimize the transmission overhead. A technique particularly suited for this purpose

is conditional replenishment.

Conditional replenishment [29] was introduced in the early days of video coding

to explore the temporal redundancy existent between successive frames of an image

sequence. It is based on the very simple idea that areas of the scene which do not

change from frame to frame should not be transmitted, and only the areas of motion

should be updated. This idea can be easily adapted to the problem of library update

by transmitting only the entries which change between consecutive libraries. However,

in the context of the present work, this method would not be efficient due to the nature

of the LBG algorithm used for library design.

As discussed in section 4.2, each codebook entry is the average of the training

vectors that fall, during the training stage, in the partition cell associated with it.

Thus, even in the case of moderately sized training sets, the transition of a training

vector from one cell to another can lead to a noticeable change in the codebook entries

associated with the partition of the input space. Since, in the current implementation,

for each frame to encode a new frame is added to training set and one frame removed

from it, it is likely that, even in the absence of significant motion, all the library

entries will suffer from an at least slight disturbance. This disturbance can be due

to factors such as varying illumination, small displacements in the camera position,

noise, etc.

A straightforward implementation of conditional replenishment will, therefore,

not be efficient for library update. It is, however, possible to improve the update

efficiency, with a variation of conditional replenishment, such as the implemented by

the following algorithm.

1. For each entry in the current library, find the best match in the previously

transmitted one.

2. Subtract the current entry from this best match. If the energy of the remaining

residual signal is smaller than that of the entry, transmit the residual and the

index of the best match. Otherwise, transmit the new entry.

In this way, most of the entries will require the transmission of a scalar index and

a low-energy, easy to encode, residual signal, and only the entries that are really dif-

ferent from the ones already existing in the previous library will originate a noticeable

transmission overhead.

4.4 The library-based image encoder

The algorithms discussed in section 4.3 were used for the implementation of the library

based-encoder represented in the block diagram of figure 4.4.

Figure 4.4: Block diagram of the library-based coder.

Each input frame is segmented into a set of 8x8 blocks, which are processed to

minimize both temporal and spatial correlation. Two different prediction structures

are used for temporal processing: the library-based predictor (using vector quantiza-

tion of the prediction space) discussed above, and a conventional motion-compensated

predictor.

The conventional motion-compensated predictor was introduced to improve the

quality of the prediction in areas of purely translational motion and motion of reduced

amplitude. In these areas, motion-compensated prediction based on block-matching

motion estimation has two advantages over library-based prediction.

e First, it leads to approximately constant prediction quality, independently of the

objects contained in the area. This is a consequence of the fact that motion-

compensated prediction simply ignores the scene content. Whenever the as-

sumption of purely translational motion is verified, the prediction error signal

will be very close to zero, independently of the shape or texture of the objects in

the area being motion compensated. This does not happen with library-based

prediction because, in this case, each library entry is intended to represent an

object (or at least a part of it) in the scene. Since quantization is required to

compromise this goal with that of achieving a small (easily implementable and

encodable) representative library, the efficiency of the predictor will depend on

factors such as textures and object shape and will, in general, be inferior to that

obtained with motion-compensation.

* Second, it produces smooth vector fields, which are easier to code than library

indices. Areas covered by large objects under translational motion or where no

motion occurs (such as still backgrounds) lead to vector fields where neighboring

vectors have similar amplitudes, and can therefore be coded very easily with

predictive techniques. This is not guaranteed for the library-based predictor

since, in this case, due to the unstructured nature of vector quantizers, two

similar library entries can have completely different library indexes.

By using the two prediction modes, it is possible to combine the higher efficiency

of motion-compensated prediction in areas of translational or reduced amplitude mo-

tion, with the increased performance of library prediction in areas of non-translation

motion, object occlusion, or where new objects are revealed.

The encoding of the prediction error signal is similar to that used by MPEG-2,

and described in section 3.1.1. The DCT is used for temporal decorrelation, and the

DCT coefficients are scalar quantized and entropy coded. The rate-control algorithm

described in the MPEG-2 Test Model [18] is employed to guarantee a constant bit rate

bitstream. Temporally, the MPEG GOP structure is implemented, but only I and

P-frames are used. Most of the benefits of interpolated prediction, such as increased

prediction efficiency in areas of revealed objects, pans, etc., are also available with

library prediction and a non-causal prediction space; enabling the elimination of B-

frames and, consequently, significant savings in terms of implementation complexity

and encoding delay. In P-frames, those blocks which cannot be efficiently predicted

by any of the two prediction methods discussed above are coded as intrablocks.

For each frame, a new library is computed with the design algorithm of sec-

tion 4.3.1, and updated by the application of the selective transmission and condi-

tional replenishment mechanisms of section 4.3.2. Before transmission, the new li-

brary entries and prediction error residuals resulting from conditional replenishment

are coded as regular image blocks, using the DCT, scalar quantization, and variable-

length coding. Care is taken, however, to assure that the quantizer step-size is, for

this blocks, smaller than that applied to normal blocks, in order to avoid degradation

of the prediction quality.

It was already mentioned that the transmission of the library indexes associated

with the prediction of library encoded blocks is more expensive than that of the

motion vectors associated with the prediction of motion-compensated blocks. The

reasons for this are the unstructured nature of vector quantizers and the smaller size

of the blocks coded in the library mode. While motion compensation can be efficiently

performed at the macroblock (16x16 pixels) level, this is not possible with library-

based prediction since, in this case, a large library, too expensive in terms of both

computational and transmission overhead, would be required.

The requirement for a manageable library, capable of providing acceptable cod-

ing efficiency, limits the dimensions of the blocks used for prediction to 8x8. This

originates an increase of the overhead associated with the transmission of library

indexes as compared with that associated with the transmission of motion vectors.

This increase is reinforced by the unstructured nature of the vector quantizer used

for the implementation of the library, which prevents the use of differential predictive

techniques for the encoding of library indexes.

To minimize the increase in overhead due to the unstructured nature of the VQ,

the library entries are ordered according to their mean after library design. This guar-

antees that neighboring image blocks are predicted by entries with similar indexes,

making it possible to use a predictive technique (where the previous index is used to

predict the current one) to encode more efficiently these indexes. The overhead as-

sociated with the library transmission is also reduced by this new codebook ordering

since it is now possible, for the entries transmitted in the replenishment mode, to ef-

ficiently predict the current library index from that of the best match in the previous

library. The conditional replenishment mode is illustrated by figure 4.5, where Lt and

Lt+1 are the previously transmitted and current libraries.

Lt Lt+I

Transmit

k+1 d k+1
ik+2 k+2

k+4

d=O

-d = 2
- +----

Figure 4.5: Conditional replenishment mode for the transmission of library entries. If the pre-

diction residual has smaller energy than the codeword (ik, ik+2), it is transmitted together with d.

Otherwise (ik+4), the codeword is transmitted.

In this example, the kth library entry remains unaltered between t and t + 1. The

kth entry of Lt is the best match for both the entries k + 1 and k + 2 in Lt+1 . The

replenishment is accomplished by the transmission of either the distance to the best

match (d) and a low-energy prediction error signal or the new library entry itself

(if a good match cannot be found). Due to the codebook ordering, the probability

distribution of d is highly peaked at zero and an additional saving in overhead is

achieved by employing entropy coding.

..........

Chapter 5

Simulation results

This chapter presents the results of the simulations performed to analyze the perfor-

mance of the library-based encoder and the gains introduced by library prediction.

Two sets of experiments were performed: the first, to determine the values of the

encoding parameters, referred in section 4.3, for which the coding efficiency is maxi-

mized; and, the second, to compare the performance of the library encoder with that

of a standard MPEG-2 encoder.

All the experiments were performed on a sequence of 100 frames from the movie

"Sharky's Machine", containing two scenes with significantly different characteristics.

The first scene consists of a political rally with the camera facing the crowd, and has

significantly high temporal and spatial activity. In the second scene, the camera faces

a small number of subjects in front of a smooth background. An hat is waved in front

of the camera leading to the occlusion of significant parts of the image. This second

sequence also has significant temporal activity, but has reduced spatial activity.

The quality of the encoded sequences was measured both subjectively and objec-

tively. The quality measure chosen for objective quality evaluation was the Signal to

100

Noise Ratio (SNR) defined by:

255 2
SNR = 10 * logio() dB, (5.1)

MS E

where MSE is the mean square error (equation 2.6) defined by:

1
MSE - M E (Xij - Xi) (5.2)

where M is the number of pixels in the image, ij the pixel coordinates, 7Z the image

region of support, x the original, and X the reconstructed image.

Section 5.1 presents the results of the simulations performed to determine the

optimal values of the library encoder parameters. Section 5.2 compares the efficiency

of library-based prediction to that of the MPEG motion-compensated prediction.

Finally, section 5.3 analyses the global performance of the library-based encoder, and

compares it with that of the standard MPEG-2 encoder.

5.1 Optimization of encoder parameters

It was mentioned in section 4.3 that the performance of the library-based encoder is

affected by the values of three parameters: the number of frames (T) in the training

set, the maximum number of iterations allowed per frame for library design (I), and

the distortion threshold applied by the mechanism of selective library transmission

(D). It was also mentioned that the causality or non-causality of the prediction space

might affect significantly the coding performance. This section presents the results of

the simulation experiments performed to analyze the influence of each of these factors

in the overall coding efficiency and to determine their optimal values.

101

5.1.1 Composition of the prediction space

Two sets of experiments were performed to determine the optimal composition of the

prediction space. In the first experiment, the prediction space was restricted to be

causal (composed exclusively of previously transmitted frames), and the number of

frames composing it (T) varied from one (the previous frame) to seven. In the second

experiment, the restriction of causality was eliminated by introducing the frame to

be coded in the prediction space. The goal was to increase the prediction efficiency

without increasing the coding delay significantly (as would happen if further frames

from the future were included in the training sequence).

Figure 5.1 presents a comparison between the prediction efficiency achieved with

the two types of prediction space as well as the influence of the parameter T in this

efficiency.

SNR (dB) SNR (dB)x 10-3

28.75 - 0- 0.00 - -

48.00 - -&7

28.55 - - -
28.65 - -44.00 -

32.00 --
28.25 - 30.00 -

28.45 _ 28.00 - --- -- - -

26.00 - ----

28.5 0 - 24.00 - 2--------------- -

22.00 - -

28.30 - -80

26.00 --

28.2 - ...--- 21.00 --

28.20 --

28.15 - /12.00 --

1.00 2.00 3.00 4.00 5.00 6.00 7.00 L. 2.00 3.0L. 4.00 5.0 60 7.00

Figure 5.1: Left: Influence of the causality of the prediction space on the prediction efficiency. SNR

curves for the prediction signal as a function of the number of frames in the training set (T). Right:

Overhead in bits per pixel associated with library prediction as a function T, for the non-causal

predictor.

The performance achieved with the non-causal predictor is consistently better

than the achieved by the causal predictor, leading to a gain of about 0.45 dB. This is

explained by the fact that, by including the frame to predict in the training set, the

non-causal predictor has more information about this frame.

As expected, the dependence of the prediction efficiency on T is different for the

102

two predictors. For a causal predictor, the prediction improves when more frames are

included because this leads to the inclusion, in the prediction space, of more informa-

tion about objects that were temporarily occluded, or which are under periodic types

of motion. On the other hand, for the non-causal predictor, a larger T leads to a

decrease in efficiency. This happens because the inclusion of more frames does not in-

troduce any information useful for prediction other than that already contained in the

frame to predict, and the library becomes representative of a larger number of frames

loosing some of its capability to efficiently reproduce local input characteristics.

Figure 5.1 also presents the dependency of the overhead associated with library en-

coding on the number of frames in the prediction space. Three curves are represented,

all for the case of the non-causal predictor: the overhead associated with the library

transmission (Lib), the overhead associated with the transmission of the library in-

dexes used for prediction of the blocks coded in the library mode (Idx), and the total

of these two types of overhead (Tot). As expected, the overhead of transmitting the

library is significantly reduced for a large T due to the increased temporal smooth-

ness of the library originated by the larger overlap between consecutive training sets.

Similar results were observed for the causal predictor.

SNR (dB)

32.03 I I I non-causal ps

causal ps
32.02..-.

32.01

32.00

31.99

31.98

31.97

31.96

31.95

31.94

31.93 -
--

31.92 -

31.91 -

31.90

31.89 -

31.88 -

31.87 -

31.86 -

31.85 -_ - I I Frms

1.00 2.00 3.00 4.00 5.00 6.00 7.00

Figure 5.2: SNR of the sequences coded with causal and non-causal prediction as a function of T.

103

Figure 5.2 presents a comparison of the overall coding efficiency achieved with

the two predictor types and its dependence on T. As anticipated by figure 5.1, the

non-causal predictor performs consistently better than the causal one. It is, however,

interesting to observe that the overall coding efficiency increases with T in both cases,

demonstrating the importance, for the final coding quality, of the overhead reduction

due to the increase in library smoothness achieved with large values of T. From

the results presented by this curve, and since a large prediction space increases the

complexity of the encoder, it was decided to use the non-causal predictor with T = 3

for the remaining experiments.

5.1.2 Distortion threshold for library update

A set of experiments was performed to analyze the dependency of the coding efficiency

on the distortion threshold (D) of the selective transmission mechanism described in

section 4.3.2.

Figure 5.3 shows the dependence on D of both the prediction efficiency and the

overhead associated with the library. The prediction efficiency remains approximately

the same for values of D below 16%, decreases rapidly for values between 16% and

20%, and then remains approximately unaltered. The library overhead decreases with

the increase of D because, for larger values of D, the library is transmitted a smaller

number of times.

Figure 5.4 illustrates the dependency of the overall coding efficiency on the dis-

tortion threshold. As expected from the curves of figure 5.3, the overall efficiency

tends to increase with D (due to the decrease in overhead) until the point where

the significant decrease in the prediction efficiency leads to degradation of the overall

coding performance. Given the results presented by this figure, the value of D = 12%

was chosen, and used in the remaining experiments.

104

SNR (dB) Bppx 10,3

28.68 ------ 42.00 - 1

226 0.00 -Id.

28.62 -60

28.52 24.00 - --------------------- --

2.58 2.00 - -

28.320.00 - ---

28.462--303.002_2 0 -

28.4 -21.00 -

28 .4 2 -- 24.00 - ---- - -- - ------

28.40 - 22.00 -

28.38 - 20.00 --

28.36 _ - 18.00 --

28.34 - 6M -

2.2-- 5000o 1W00O 150.00 2n00.00 25 0 3 400 -.- __ 50.00 10-00 150.00 200.00 250.00 -300. -3

Figure 5.3: Left: SNR of the prediction signal as a function of the distortion threshold for selective

codebook transmission (D). Right: Overhead associated with library prediction as a function of D.

5.1.3 Number of iterations of library design

A set of experiments was performed to analyze the dependency of the coding efficiency

on the maximum number of iterations (I) allowed for library design described in

section 4.3.2.

It can be seen from figure 5.5 that both the prediction efficiency and the overhead

associated with the library transmission increase with the number of iterations allowed

in the library design. This behavior makes sense since a higher number of iterations

will lead to a better library (closer to the optimal for each frame), but will also

allow for greater variations between successive libraries, originating reduced temporal

smoothness and increased overhead.

Figure 5.6 demonstrates that the gain achieved by the improved prediction ef-

ficiency is not enough to compensate for the loss in encoding quality due to the

increased overhead. It can be concluded from this figure that, in general, the coding

efficiency decreases with the increase of the number of iterations. Thus, the maximum

number of iterations was limited to I = 1 in the implementation of the library-based

encoder. This is a fortunate result since the complexity of the encoder grows propor-

tionally to the number of iterations that it must perform and, due to this result, it

was possible to limit the complexity without any sacrifice in coding quality.

105

SNR (dB)

32.06

32.05

32.05

32.04

32.04

32.03

32.03

32.02

32.02

32.01

32.00

32.00

31.99

31.99 - | D ih- 10-
3

50.00 100.00 150.00 200.00 250.00 300.00

Figure 5.4: SNR of the coded sequence as a function of D.

5.2 Efficiency of the library predictor

According to the results of the experiments described in the previous section, the

values presented in table 5.1 were chosen for the parameters of the library-based

encoder.

To evaluate the efficiency of library prediction, the library-based encoder of fig-

ure 4.4, a standard MPEG-2 encoder, and a library-based encoder without motion

SNR (dB)

28.68

28.66

28.64

28.62

28.60

28.58

28.56

28.54

28.52

28.50

28.48

28.46"

28.442

Bpp . 10-3

42.00

40.00-

38.00

34.M0 -

1.00 2.00 3.00 .. 0 It0 6... 7.00) 8.0 1.00 2.00 5.. 4.0 5 6. 7. .

Figure 5.5: Left: SNR of the prediction signal as a function of the number of iterations allowed

for library design (I). Right: Overhead associated with library prediction as a function of I.

106

...-....-----_------

SNR (dB)

32.04

32.03

32.02

32.02

32.01

32.01

32.00

32.00

31.99

31.99

31.98

31.98

31.97

31.97

31.96

31.96

31.95

31.95

Figure 5.6: SNR of the coded sequence as a

Table 5.1: Optimal

function of I.

values for the parameters of the library-based encoder.

Parameter Value

T 3

D 0.12

I 1

compensation were used to encode the test sequence. Figure 5.7 presents a compar-

ison between the quality of the predictions obtained with the library alone (Lib),

motion compensation alone (MC), and the library-based encoder (Lib+MC) using

both library and motion-compensated prediction.

It is clear from figure 5.7 that the library-based encoder incorporating both predic-

tion structures is considerably more efficient than any of the encoders based uniquely

on one of the predictors. The behavior of the SNR curves, when library and motion-

compensated prediction are used alone, can be explained by the different character-

istics of the two scenes contained in the sequence.

Figure 5.8 presents both the prediction and prediction-error signals for frame 52

107

10 2 3 I I

1.00 2.00 3.00 4.00 5.00 6.00 7.00

I I I I I1

SNR (dB)

38.00 -]Lib

36.00 -

34.00 -

32.00 -

30.00 -

28.00 -

26.00 --

24.00 -

22.00

20.00

18.00

16.00

14.00 - Frm

0.00 20.00 40.00 60.00 80.00

Figure 5.7: Comparison of the prediction efficiency obtained with a library predictor (Lib), a

MPEG motion-compensated predictor (MC), and both (Lib+MC).

of the first scene (frames 0 to 54) obtained with the three prediction structures. As

referred in the beginning of this chapter, this scene contains both high temporal and

high spatial-activity. Given the high spatial-information content, and since the library

is constrained (by implementation and efficiency reasons) to a relatively small size

(256 entries), the prediction obtained with the library alone is very blocky and a lot

of the detail is lost, leading to an overall reduced quality. However, this low quality

is uniform, i.e. all the objects that compose the picture are equally degraded.

On the other hand, the quality of the motion-compensated prediction is very non-

uniform. In the areas where there is no motion, the motion is small (such as the

background) or the motion is translational, the MC predictor works very well and

the prediction has high quality. However, when these assumptions are not verified

(due to newly revealed objects, or complex, non-translational, motion), the prediction

becomes very poor. Notice, for example, the severe block degradation in the top-right

and top-left regions of the crowd, where hats are waved in a non-translational way.

The joint use of library and motion-compensated prediction leads to a much better

quality than that obtained by any of these techniques alone. In this case, motion

108

Figure 5.8: Comparison of the prediction efficiency achieved wilh the three different prediction

structires. Scene with high-spatial activity. Top: Library prediction alone. Middle: Motion-

compensatoed (MC) prediction alone. Bottom: Library and MC prediction. IA-ft: Prediction. Blight:

Prediction error.

109

compensation is, in general, chosen for the prediction of blocks without motion or

under translational motion (like the background), and the library prediction handles

the more complex cases of revealed objects and non-translational motion.

Figure 5.9 presents the prediction and prediction error for frame 188 of the second

scene (frames 55 to 100) obtained with the three prediction structures. In this case,

since the number of objects in the scene is much smaller, the library performs much

better. Notice that since these images are to be used for prediction, the blockyness

is not very important if the prediction has high SNR. This is what happens with the

library predictor, as can be observed from figure 5.7.

Since this scene has a high degree of object occlusions and objects being revealed,

the performance of the motion-compensated predictor becomes much worst than that

achieved in the previous case. Notice the very bad prediction in the area revealed by

the motion of the hat and, in particular, the inability of the predictor to reproduce

the microphone which was occluded in the previous frame. So, when MC is combined

with the library, the prediction performance of the adaptive mode is similar to that

obtained with the library alone (figure 5.7).

The higher efficiency of the MC mode in the first scene and of the library mode in

the second can also be observed from figure 5.10, which displays the percentage of the

total number of blocks predicted using each of the modes when these are combined

into the adaptive mode. While the percentage of motion-compensated blocks is higher

during the first scene than during the second, the percentage of library-predicted

blocks increases in the second scene.

As was already referred in section 4.4, the better performance of the motion-

compensated predictor in the first scene and of the library prediction in the second

scene is due to the difference on the model behind the two approaches. Due to the

great number of objects in the first scene, the limited size of the library prevents it

from providing a good representation for all those objects. On the other hand, the

small number of objects in the second scene can be satisfactorily represented, even

110

Figure 5.9: Comparison of the prediction efficiency achieved with the three different prediction

structures. Scene with low-spatial activity. Top: Library prediction alone. Middle: Motion-

compensated prediction alone. Bottom: Library and MC prediction. Left: Prediction. Right:

Prediction error.

II l

% blks x 10-3

-]Lib

950.00 -

900.00-

850.00 -

800.00 -

750.00 -

700.00 -

650.00

600.00

550.00

500.00

450.00

400.00

350.00

300.00

250.00

200.00

100.00 -

50.00 -

0.00 - Frm

0.00 20.00 40.00 60.00 80.00

Figure 5.10: Comparison of the percentage of blocks library-predicted and the percentage of blocks

motion-compensated, when the adaptive mode is used.

with a small library.

In the case of the motion-compensated predictor, the spatial content of the scene

does not affect the prediction efficiency because the model of the input on which it

is based makes no attempt to consider the objects in the scene. The performance is,

however, significantly affected by the existence of objects being occluded or revealed

or subject to non-translational motion due to the assumptions on which the motion-

compensated predictor is based and the reduced prediction space available.

The peaks in figure 5.10 are due to the scene changes or other portions of the

sequence where there is significant change between successive frames. These peaks

illustrate the complete incapacity of the motion-compensated predictor to handle

such type of events, as opposed to the library predictor for which no degradation in

performance is visible when they occur (figure 5.7). This characteristic of the library

predictor is a consequence of the non-causal prediction space and the scene-change

mechanism incorporated in the library-design algorithm of section 4.3.1.

Figure 5.11 illustrates the effect in the prediction efficiency of the scene change

112

Figure 5.11: Comparison of the prediction efficiency during a scene change. Top-left: Library

prediction alone. 'lop-right: Motion-compensated prediction alone. Bottom-left: Original image.

Bottom-right: Library+MC prediction.

occurring in frame 55. Notice the completely useless prediction provided by the

motion-compensated predictor, as opposed to the acceptable quality of that provided

by the library.

The capacity of the library predictor to adapt rapidly to large variations in the

input sequence (such as when scene changes occur) is demonstrated by figure 5.12,

where successive libraries are presented alongside the respective input images, in the

vicinity of a scene change. Notice that, in this example, the library does not change

significantly before the scene change (temporally smoothness), and only two frames

are required for the library to stabilize after the scene change (fast convergence of the

library design algorithm).

5.3 Global efficiency of the library-based encoder

It was shown, in the previous section, that the joint use of a library predictor and a

motion-compensated predictor leads to a significant increase in prediction efficiency

over that achieved by any of the two techniques alone. However, as seen in section 4.4,

the introduction of library prediction also originates increased overhead, and so, al-

though it results in a considerable improvement of prediction quality, it may not lead

to a significant improvement of the overall coding quality. To evaluate the effect of

the introduction of library prediction in the overall coding quality, the library-based

encoder of figure 4.4, and a standard MPEG-2 encoder were used to encode the test

sequence. Since the library mode is responsible for the largest portion of the overhead

and the prediction obtained with the library alone is worst than that obtained with

the adaptive structure, the encoder without motion-compensation was not considered

in this experiment.

Two experiments were performed to compare the efficiency of the encoders. In the

first experiment, aimed to compare the overall performance improvement due to the

better prediction achieved with library prediction, the intra mode was not allowed in

114

Figure 5.12: Library evolution in the vicinit.y of a scene change. Top to bot.t1on, left. to right.:

siccessive input. fraimes (shown with quarter resolution) and associated libraries.

1115

..LLj i IIA L.1 I I I L.1 LI I L L

i U I

predicted pictures. In the second experiment, this restriction was eliminated to allow

a global comparison between the performance of the standard MPEG-2 encoder and

that of the library-based encoder of figure 4.4.

0.00 20.00 40.00 60.00 80.00

Figure 5.13: Comparison of the coding quality achieved with (MC+Lib) and without (MC) library

prediction, when the intra mode is not allowed in predicted frames.

Figure 5.13 presents the SNRs obtained with (MC+Lib) and without (MC) the

library predictor when the intra mode is not allowed. It can be seen from the figure

that the performance of the library-based coder is always better. Notice in particular

the much faster response to the scene change.

Table 5.2 presents the values of the average and peak gains achieved with the

library-based encoder for the first scene, the second scene, and the scene change. The

overall gain provided by the library-based encoder is of approximately 0.56 dB.

Figure 5.14 presents pictures from both scenes of the test sequence, coded at 4

Mbps with and without the library predictor and no intra-macroblocks allowed in

P-frames. It can be observed from this figure that the use of library prediction also

leads to superior subjective quality.

Figure 5.13 presents the SNRs obtained with (MC+Lib) and without (MC) the

116

SNR (dB)

41.00

40.00

39.00

38.00

37.00

36.00

35.00

34.00

33.00

32.00

31.00

30.00

29.00

28.00

27.00

MC+Lib
M~C.

FrmI I I I I I

100.00

Figure 5.14: Comparison of the coding efficiency when int.ra-iacro)locks are not allowed in

predicted framnes. Left: Encoder without library prediction. Right.: Encoder with library prediction.

'rite pictures in the bott.on occur 4 framnes after the scene change.

117

Table 5.2: SNR gains achieved by the library-based encoder at 4 Mbps.

Scene Average gain Peak gain

1 + 0.27 dB + 0.89 dB

2 + 0.52 dB + 1.32 dB

SC + 3.73 dB + 5.27 dB

library predictor when the intra mode is allowed.

SNR (dB)

41.00

40.00

39.00

38.00

37.00

36.00

35.00

34.00

33.00

32.00

31.00

30.00

29.00

28.00

0.00 20.00 40.00 60.00 80.00 100.00

Lib+MC
MC

Frm

Figure 5.15: Comparison of the coding quality achieved with (MC+Lib) and without (MC) library

prediction, when the intra mode is allowed.

In this case, the gain obtained with the library predictor is much smaller, in

particular during the second scene. This is due to the low spatial-information content

of this scene that allows the encoder using only motion compensation to recover

from the inefficient prediction by introducing several intra-blocks in each predicted

frame. Since the spatial activity is low, the intra mode is efficient in filling the

gap previously existent between the library-based encoder and the purely motion-

compensated encoder. This does not happen for the first scene because the high-

spatial information content of this scene makes the intra macroblocks very expensive.

118

Chapter 6

Conclusions and future work

6.1 Conclusions

The main conclusion taken from the work developed in this thesis is that it is possible

to improve the quality of the prediction achieved with current motion compensation

techniques used for interframe coding. This thesis presents a new framework, library-

based encoding, to achieve this goal.

The main advantages of a library-based scheme are its capability to exploit a more

elaborate model of the input (not simply based on the assumption of 2-D translational

motion) and an extended prediction space (including more than just one or two

frames). These characteristics lead to much higher performance in regions of newly

revealed objects or objects subject to non-translational motion, where the motion

compensated-predictor fails completely.

With the particular implementation of library-based encoding presented in this

work, vector quantization of the prediction space, the coding model is extended into an

object-oriented direction, without loosing the properties of robustness and simplicity

of implementation required by applications involving the high-quality encoding of a

wide variety of video material (such as television broadcast).

119

--

Several characteristics were identified as important to the efficiency of a library-

based coding system:

* the existence of a recursive design algorithm, capable of distributing the com-

plexity of the design by several frames and producing a progressively better

library;

e a design algorithm leading to a temporally sooth library, reducing the overhead

associated with its update;

* an efficient update mechanism, capable of exploring this smoothness to reduce

the cost of library transmission.

All these characteristics were incorporated in the library-based encoder described in

section 4.4.

One additional desirable characteristic would be the capability for the library-

based encoder to produce smooth library index fields, leading to reduced overhead,

comparable to the achieved by the smooth motion vector fields characteristic of

motion-compensated prediction. This characteristic can only be achieved by a struc-

tured library which, unfortunately, cannot be achieved with a raw vector quantizer.

The ordering of the codebook by mean, described in section 4.4, was a step in the

direction of achieving a more structured library and reducing the overhead.

The overhead associated with the transmission of the library indexes remains,

however, the largest limitation on the overall performance of the present implementa-

tion of library-based encoding, preventing an overall gain over the MPEG-2 encoder

so significant as that achieved in terms of the prediction efficiency. More work remains

to be done in this area.

120

6.2 Directions for future work

The work developed in this thesis could evolve in two different directions. In the first,

a set of enhancements could be added to the library-based encoder without changing

its structure significantly. As mentioned above, the more important task here is

to come up with a better solution for the minimization of the overhead associated

with the transmission of the library indexes. This could probably be achieved with

a different codebook structure and more clever encoding of these indexes. It seems

likely, however, that the overhead will always be higher than that associated with

motion-compensated prediction, limiting the performance gain of the library-based

encoder using vector quantization.

A more challenging, and probably also more efficient, direction of evolution con-

sists in the extension of the coding model towards a truly object-oriented model. This

would imply the elimination of block-based processing, and the use of more powerful

image segmentation techniques such as those referred in section 3.3. Once the objects

in the scene were identified and decomposed into a set of representative features (such

as shape and texture), a clustering technique similar to the used in this thesis could

be applied to create a library of these features and achieve the desired compression.

For example, object shape can be approximated by a polygonal representation char-

acterized by a small set of points in the 2-D plane, which can be seen as a vector for

the purpose of library design.

Obviously, the implementation of such an encoder is significantly more complex

than that of one using block-based processing and it is not clear that it can be

simultaneously efficient and suitable for a wide variety of input material (robust).

This because a more accurate model of the scene will be more efficient, but will also

be more specific and less tolerant to different types of input material. However, as

partially shown by this thesis, the use of coding schemes based on improved models

of the image formation process seems to be the only way to achieved a significant

increase in coding efficiency over that of current block-based techniques.

121

Bibliography

[1] H. Abut, editor. Vector Quantization. IEEE Press, 1990.

[2] T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, 1990.

[3] R. Clarke. Transform Coding of Images. Academic Press, 1985.

[4] T. Cover. Enumerative Source Coding. IEEE Trans. on Information Theory,

Vol. IT-17, June 1973.

[5] A. Drake. Fundamentals of Applied Probability Theory. McGraw-Hill, 1987.

[6] W. Equitz. A New Vector Quantization Clustering Algorithm. IEEE Trans. on

Acoustics, Speech and Signal Processing, Vol. 37, October 1989.

[7] N. Farvardin and J. Modestino. Optimum Quantizer Performance for a Class of

Non-Gaussian Memoryless Sources. IEEE Trans. on Information Theory, May

1984.

[8] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles

and Practice. Addison Wesley, 1990.

[9] R. Gallager. Variations on a theme by Huffman. IEEE Trans. on Information

Theory, Vol. IT-24, November 1978.

[10] A. Gersho. On the Structure of Vector Quantizers. IEEE Trans. on Information

Theory, Vol. IT-28, March 1982.

122

[11] A. Gersho and R. Gray. Vector Quantization and Signal Compression. Kluwer

Academic Press, 1992.

[12] H. Gouraud. Continuous Shading of Curved Surfaces. IEEE Trans. on Comput-

ers, Vol. 20, June 1971.

[13] R. Gray. Vector Quantization. IEEE Acoustics, Speech, and Signal Processing

Magazine, Vol. 1, April 1984.

[14] A. Habibi. Comparation of the N-th order DPCM Encoder with Linear Transfor-

mations and Block Quantization Techniques. IEEE Trans. on Communications,

Vol. COM-19, December 1971.

[15] M. Hotter. Object-oriented Analysis-synthesis Coding Based on Moving Two-

dimenional Objects. Signal Processing: Image Communication, Vol. 2, December

1990.

[16] Y. Huang and P. Shultheiss. Block Quantization of Correlated Gaussian Random

Variables. IEEE Trans. on Communication Systems, September 1963.

[17] D. A. Huffman. A Method for the Construction of Minimum Redundancy Codes.

Proceedings of the IRE, Vol. 40, September 1952.

[18] ISO-IEC/JTC1/SC29/WG11. MPEG Test Model, MPEG93/457.

[19] ITU, CCIR. Recomendation 601: Encoding Parameters of Digital Television for

Studios, 1986.

[20] N. Jayant and P. Noll. Digital Coding of Waveforms: Principles and Applications

to Speech and Video. Prentice Hall, 1984.

[21] R. Koch. Automatic Modeling of Natural Scenes for Generating Synthetic

Movies.

[22] G. G. Langdon. An Introduction to Arithmetic Coding. IBM Journal Res.

Devel., Vol. 28, March 1984.

123

[23] D. LeGall. MPEG: a Video Compression Standard for Multimedia Applications.

Communications of the ACM, Vol. 34, April 1991.

[24] J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice Hall, 1992.

[25] J. Limb and H. Murphy. Measuring the Speed of Moving Objects from Television

Signals. IEEE Trans. on Communications, Vol. 23, 1975.

[26] Y. Linde, A. Buzo, and R. Gray. An Algorithm for Vector Quantizer Design.

IEEE Trans. on Communications, Vol. 28, January 1980.

[27] S. Lloyd. Least Squares Quantization in PCM. IEEE Trans. on Information

Theory, Vol. IT-28, March 1982.

[28] J. Makhoul, S. Roucos, and H. Gish. Vector Quantization in Speech Coding.

Proceedings of the IEEE, Vol. 73, November 1985.

[29] F. Mounts. Video Encoding Systems with Conditional Element Replenishment.

Bell Syst. Tech. Journal, Vol. 48, 1969.

[30] H. Musmann, M. Hotter, and J. Ostermann. Object-oriented Coding of Moving

Images. Signal Processing: Image Communication, Vol. 1, October 1989.

[31] H. Musmann, P. Pirsch, and H. Grallert. Advances in Picture Coding. Proceed-

ings of the IEEE, Vol. 57, April 1985.

[32] N. Nasrabadi and R. King. Image Coding Using Vector Quantization: A Review.

IEEE Trans. on Communications, Vol. 36, August 1988.

[33] A. Netravali and B. Haskell. Digital Pictures: Representation and Compression.

Plenum Press, 1988.

[34] A. Netravali and J. Robbins. Motion Compensated Television Coding: Part I.

Bell Syst. Tech. Journal, Vol. 58, March 1979.

[35] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-

Hill, 1991.

124

[36] D. Pearson, editor. Image Processing. McGraw-Hill, 1991.

[37] W. Pennebaker and J. Mitchell. JPEG: Still Image Data Compression Standard.

Van Nostrand Reinhold, 1993.

[38] B. Phong. Illumination for Computer Generated Pictures. Communications of

the ACM, Vol. 18, June 1975.

[39] C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech.

Journal, Vol. 27, Jully 1948.

[40] G. Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich, Inc.,

1985.

[41] R. Tsai and T. Huang. Estimating Three-dimensional Motion Parameters of a

Rigid Planar Patch. IEEE Trans. on Acoust. Speech and Signal Processing, Vol.

29, December 1981.

[42] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression.

IEEE Trans. on Information Theory, Vol. IT-23, 1977.

125

Acknowledgments

I would like to say thanks to some people which, in a way or another, made this work

possible.

First, thanks to Andy Lippman, my advisor, for the good ideas and direction, and

an unique perspective of research and life; to the thesis readers, Ted Adelson and

Arun Netravali, for the patience to read it and the comments they provided; to Mike

Bove for reviewing parts of the thesis; to Henry Holtzman for his suggestions, and

the sense of relief provided by knowing that he keeps a secretary messier than mine;

to everybody else in the garden for making this a fun place to work; and to Gillian,

Linda, Santina, and Jill for the efficiency, and support.

Thanks also to all my old friends with whom I have a great time whenever I go

home. In particular, thanks to Paulo (my colleague in this US adventure) for the long

telephonic chats, and for first challenging me to study abroad.

Special thanks to all my family for the love and support that made my stay away

from home much easier: my mother and father for the constant display of affection,

the "royal" treatment I get when I go home, the cookies and cakes, the handling of

all the problems that needed to be solved in Portugal, and for keeping me updated on

all the news; my brother Pedro for the endless telephone conversations which made

me feel closer to home, the news about the soccer and the "noite", and the letters

and Benfica videotapes; my younger brother Ricardo and sister Verinha for visiting

me, sending me fun letters and postcards, and giving me all their support; and my

126

grandmother for never letting me forget the pleasure of the old style Portuguese food,

when I go home.

Finally a very special thanks to Manuela, the real strength behind the success of

my stay abroad. Thanks for the love, the care, the company, the nice meals, the long

hours of study together, the good ideas, and all the fun. I am glad I was lucky enough

to find you.

127

