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Abstract

From residual and Jacobian assembly to the linear solve, the components of a high-order,
Discontinuous Galerkin Finite Element Method (DGFEM) for the Navier-Stokes equations
in 3D are presented. Emphasis is given to residual and Jacobian assembly, since these are
rarely discussed in the literature; in particular, this thesis focuses on code optimization.
Performance properties of DG methods are identified, including key memory bottlenecks. A
detailed overview of the memory hierarchy on modern CPUs is given along with discussion
on optimization suggestions for utilizing the hierarchy efficiently. Other programming sug-
gestions are also given, including the process for rewriting residual and Jacobian assembly
using matrix-matrix products. Finally, a validation of the performance of the 3D, viscous
DG solver is presented through a series of canonical test cases.
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Chapter 1

Introduction

The classic approach to analyzing the performance of a numerical algorithm is to count the

number of arithmetic operations required. For example, it is well known that the inner

product xT y for x, y ∈ Rn requires n floating-point multiplies and n − 1 floating-point

additions; or that the matrix product AB for A ∈ Rm×k and B ∈ Rk×n requires mnk

multiplies and mn(k−1) additions. For dense inputs, exactly these amounts of computation

must occur. The basic matrix-matrix product algorithm is a mere 10 lines of code. But the

most advanced BLAS implementations involve thousands of lines of hand-crafted assembly.

Clearly, a simple count of arithmetic operations is insufficient. For starters, the multi-

plication operations are about 5 times as expensive as the additions. Additionally, in order

to multiply two array elements, the computer must resolve their memory addresses. This

amounts to additional integer multiply and add operations. However, the CPU also needs

to access those addresses: memory access is the dominant cost by far.1 Memory accesses

are around 50 times more costly than arithmetic operations for these types of algorithms.

Table 1.1 contains the cycle-latencies of a few common CPU instructions (data movement,

integer arithmetic, floating point arithmetic) along with the latency incurred by reading from

main memory.

If the CPU always waited 200 cycles (memory access) to do 5 cycles (floating point

multiplication) of work, the CPU would end up spending most of its time waiting. As

1For sufficiently large problems; i.e., problems that do not fit in cache.
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Description x86 ASM Latency Throughput
Move from r to r MOV 1 3
Move from r to m MOV 2 1
Move from m to r MOV 3 1
Logic (AND, OR, XOR) AND, OR, XOR 1 3
int add ADD 1 3
32-bit, signed int mult IMUL 3 1
64-bit, signed int mult IMUL 5 2

3

32-bit, signed int div IDIV 14-23 -
64-bit, signed int div IDIV 34-88 -
x87 double load/store FLD/FST 1-3 1

3
-1

x87 double add FADD 3 1
x87 double mult FMUL 5 0.5
x87 double div FDIV 6-21 0.05-0.2
Packed int move MOVDQA 2 1
Packed int add PADDQ 1 2
Packed int mult PMULDQ 3 1
Packed, aligned double move MOVAPD 1-3 1-3
Packed double add ADDPD 3 1
Packed double mult MULPD 5 1
Packed double div DIVPD 6-21 0.05-0.2
register miss - 3-5 -
L1 cache miss - 10-20 -
L2 cache miss - ≈ 200 -

Table 1.1: Instruction latencies (in CPU cycles) for the Intel Core2 (45nm)
processor[26]. The letters r,m,xmm indicate a general register, a
memory address, and an XMM (SSE) register, respectively. All
x87 instructions assume full precision (80 bits); note that double-
precision SSE instructions are 64-bit. Latency indicates the time
taken by the appropriate execution unit to complete the speci-
fied operation. Unless otherwise specified, all times assume that
operands are already in registers and no exceptions (e.g., NAN)
occured. Throughput is the maximum number of independent in-
structions of a type simultaneously in flight; a value of say 0.25
indicates that this instruction can be executed at most once every
4 cycles.
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a result, modern CPUs have several levels of cache. Cache provides much faster access to

data; for example, the L1 cache on an Intel Core 2 has a 3 cycle latency and the L2 cache has

a 15 cycle latency. Unfortunately, due to expense, caches are very small compared to main

memory; the latency and size of cache, memory, etc. scale inversely. In modern computers,

the system of fast caches, main memory, and data storage in general is often called the

memory hierarchy. Figure 1-1 provides a pictorial overview of the memory hierarchy of

modern CPUs, showing some rough estimates for latencies and costs of various cache levels.

The memory hierarchy is discussed at length in Chapter 4.

Figure 1-1: A rendition of the cache hierarchy in modern computers[4].

Over the last few years, the Project X group in the MIT Aerospace Computational Design

Laboratory has been developing an hp-adaptive, Discontinuous Galerkin Finite Element

Method (DGFEM). Thus far, research and development have focused on the underlying

numerical algorithms. However, as problems of interest become increasingly complex (e.g.,

viscous flows in 3D), improving computational performance has come into the spotlight. In

this thesis, we will survey the aspects of modern computer architecture that are most relevant

to DGFEM methods, giving emphasis to the memory hierarchy. Finally, the correctness of

17



the DGFEM method in Project X will be demonstrated through a series of canonical test

cases.

The goals of this thesis are as follows:

• Analyze the performance characteristics of a higher-order, DGFEM code (ProjectX)

on model problems that emphasize relevant modes of operation. Apply the analysis

to guide optimization of the residual and Jacobian assembly processes as well as the

linear solve.

• Validate the steady-state, viscous, 3D discretization of ProjectX by performing grid-

convergence studies on various test cases.

• Produce this document as a guide and starting point for other researchers and engineers

interested in writing high-performance scientific codes. Many examples will be drawn

from a DGFEM implementation, but the ideas discussed are relevant to a much broader

class of programs.

While the present thesis concentrates on optimization of a serial implementation, most

applications will require a parallel implementation. However, for the residual and Jacobian

assembly, improvements to the serial performance reflect similarly in the parallel perfor-

mance. Differences in relative improvements in the serial versus parallel performance would

be attributable to the communication overhead, which is small for DG methods. For the

linear solver, the same statement may be true, depending on how the parallel system is

preconditioned. Thus, while parallel cases are not specifically discussed in this thesis, the

serial optimization techniques remain relevant.

This thesis is organized as follows. The remainder of the introduction includes a review

of relevant literature and an overview of software tools used in the optimization process.

Chapter 2 covers the DG discretization of the Navier-Stokes equations, along with the com-

putational costs of the DG method (residual and Jacobian assembly, nonlinear solver, linear

solver). Example cases are provided, and major performance limitations in DG solvers are

identified. Chapter 4 covers the memory hierarchy used in modern computers, including

discussion of how to utilize it efficiently. Chapter 5 covers particular components of a DG

18



implementation that should be targeted for optimization. Chapter 6 presents the validation

of a DGFEM solver for the Navier-Stokes equations in 3D. The appendices cover the im-

plementation of viscous fluxes for the Navier-Stokes equations (Appendix A), the operation

and performance of modern DDR memory modules (Appendix B), the operation of modern

CPUs (Appendix C), two stopping-criterion choices for iterative linear solvers (Appendix D),

and a collection of helpful, performance-enhancing coding practices (Appendix E).

1.1 Literature Review

While the theory of DG methods is well-developed, the literature contains relatively little on

the optimization of DG implementations. However, regardless of the application, the need

for efficient, high-performance codes is well recognized. This survey covers some relevant

developments in CG methods, sparse iterative solvers, and dense linear algebra on traditional

CPUs; references for implementing and optimizing DG methods and Krylov methods are also

presented. Unfortunately, few works cited here discuss methods that are directly applicable

to this thesis. For example, most sparse matrix-vector optimizations are designed for general

sparse matrices.2 But the principles used to guide these optimizations are relevant. The

most common theme in the cited works is the importance of properly utilizing the memory

hierarchy of the target architecture to improve performance.

As discussed in Chapter 4, modern CPUs (and GPUs) have very deep memory hierar-

chies. As a result, using algorithms that often access the slowest memory levels is generally

sub-optimal. This fact is well-recognized by computer scientists, engineers, etc; thus fast al-

gorithms must find ways to minimize communication between fast cache(s) and slow memory

(or even slower hard disks).

The BeBOP group at the University of California, Berkeley is responsible for a great deal

of work on communication-minimizing implementations of common linear algebra kernels

[10, 34, 53]. [34, 53] discuss a class of communication-avoiding Krylov methods.3 These

2The Jacobian matrix arising from DG discretizations is special in that it possesses natural block structure.
Jacobians from other discretizations (e.g., finite difference or finite volume) do not have this structure. Note
that the DG block structure is not helpful when the blocks are tiny; i.e., the polynomial order and/or the
number of states is low.

3In parallel, communication refers to node-to-node data transfer. In serial, communication refers to
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methods perform the same (asymptotically) amount of work as a s-step Krylov method, but

involve only as much communication as a single step. The methods are divided into several

kernels. For example, GMRES involves communication-avoiding matrix powers (computing

b, Ab,A2b, . . . , Asb), block Gram-Schmidt, QR factorization of a “tall and skinny” matrix,

and other relatively minor dense matrix operations. [34] also provides substantial discussion

on the numerical stability of these methods. Unfortunately, these methods are currently

limited to relatively weak preconditioners (e.g., Jacobi).

One particularly common technique for communication reduction is called blocking or

tiling; blocking is important for both sparse and dense linear algebra, though the particu-

lars of its implementation differ. For a (dense) matrix-matrix product, its optimality was

proven by Hong for dense problems implemented sequentially (proof later strengthened to

the parallel case by Irony). [10] extends previous analysis to include communication lower

bounds for other direct linear algebra kernels (e.g., Cholesky, LU, QR, eigen/singular val-

ues, etc.) for both dense and sparse matrices, in both sequential and parallel environments.

Implementation is not the focus of their work; indeed not all of the analyzed kernels have

matching, optimal implementations.

[45] provides a detailed description and analysis of the blocking technique for dense

matrix-matrix products. Optimized implementations of the BLAS4 3 function dgemm take

heavy advantage of this optimization; BLAS 2 functions (e.g., dgemv) also utilize blocking,

but the benefit is less substantial. Since optimized BLAS implementations are commonplace,

many researchers attempt to improve memory performance by restructuring their code to

utilize these routines [6, 21, 43, 44]. Outside of blocking for matrix-matrix products, [10] pro-

vides references for a number of other algorithms for direct linear algebra achieving optimal

communication bounds.

For sparse linear algebra, the concept of minimizing memory transfers remains impor-

tant, but the exact meaning of blocking is different. [35] provides a thorough discussion

memory reads and writes.
4The Basic Linear Algebra Subroutines are a set of functions for solving problems that are fundamental

in dense linear algebra. The functions are divided into 3 levels: BLAS 1, BLAS 2, and BLAS 3. BLAS 1
performs Θ(m) work on Θ(m) data; e.g., operations (scaling, dot product) on vectors. BLAS 2 performs
Θ(m2) work on Θ(m2) data; e.g., matrix-vector operations and outerproducts. BLAS 3 performs Θ(m3)
work on Θ(m2) data; e.g., matrix-matrix operations.

20



(implementation, analysis, experiment) of the two most common techniques, (sparse) cache-

blocking and (sparse) register-blocking. [55] provides an important insight: the effectiveness

of (sparse) cache-blocking is primarily governed by TLB misses;5 [19] also notes the impor-

tance of TLB misses on sparse matrix operations (in the context of multigrid). One major

issue with these optimizations is that the performance is strongly dependent on the sparsity

pattern, in addition to block-size and computer architecture. The issue is often approached

with auto-tuning, wherein a software package estimates performance for a given matrix type

and generates specialized code accordingly. By comparison, static, architecture-targeted

code (e.g., MKL, GOTO) can be generated for dense linear algebra; these routines often

outperform auto-tuned code (e.g., ATLAS).

Baker’s LGMRES and BLGMRES methods improved iterative solver performance by

heuristically augmenting the Krylov subspace used in GMRES [8, 7]. LGMRES adds ad-

ditional Krylov vectors based on previous restarts; BLGMRES adds additional right-hand

sides. The Ax kernel of a BLGMRES solver with 4 right-hand sides could be expected to be

4 times as costly as Ax in standard GMRES, since there are 4 times as many Ax products

and 4 times as many Krylov vectors. BLGMRES almost never cuts the number of GMRES

iterations by a factor of the number of right-hand sides. The performance of BLGMRES de-

pends on handling all right-hand sides simultaneously (by interleaving the vectors) instead

of sequentially. This prevents loading A from memory repeatedly, an operation which is

memory bandwidth-limited.

There has also been work implementing GMRES on GPUs for general sparse matrices[46,

70]. The focuses of these works is preconditioning and the sparse matrix-vector product

kernel in GMRES, the latter of which is also discussed in [15]. These researchers implemented

code on essentially the same hardware, but often saw very different performance gains. The

differences are likely due to a combination of differing implementations and differing input

matrices. Improving sparse matrix vector products on GPUs centers around selecting the

best sparse storage format; while CSR (or CSC)6 is usually adequate on CPUs. On the

5TLB stands for Translation Lookaside Buffer; it is used to cache memory address translations from
virtual to physical. See Section 4.3.1 for details.

6Compressed Sparse Row or Column.
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preconditioning side, the most common choice for GPUs was subdomain-wise block Jacobi

with inexact local solves via ILU. Unfortunately this preconditioner does not exhibit weak

scaling,7 so its performance is lacking for higher order DG discretizations of the Navier-Stokes

equations [18].

Residual and Jacobian assembly are far less analyzed than linear solvers. [54] summarizes

the importance of this component of finite element methods:

Besides the solution of the set of linear equations, the element evaluation and
assembly for stabilized, highly complex elements on unstructured grids is often
a main time consuming part of the calculation. Whereas a lot of research is
done in the area of solvers and their efficient implementation, there is hardly any
literature on efficient implementation of advanced finite element formulations.
Still a large amount of computing time can be saved by an expert implementation
of the element routines.

They consider CGFEM on a vector machine (SX-6), which lives between modern CPUs

and GPUs. The operation reordering they suggest substantially improves performance on

a vector machine. However it is not the best choice for CPUs. Their ordering is not what

[44] use, but it may have applications on GPUs as well. Also [54] provides examples that

demonstrate the effectiveness of the restrict keyword; see Appendix E for details.

[44] considers the evaluation of the DG residual on GPUs, for Maxwell’s Equations, which

form a linear, hyperbolic system. They were interested in time-dependent problems; RK4

provided an explicit temporal discretization. Implicit-time solvers and elliptic operators

were not considered; Jacobian assembly (especially with viscous terms) adds considerable

complexity. Their work was also limited to linear representations of boundaries. The op-

timizations considered center around stating the residual assembly process using BLAS 3

functions.8 Due to substantial restrictions on data layout imposed by current GPU BLAS

implementations, [44] designs new algorithms and orderings to achieve better performance.

Their work focused around how to divide the work of residual assembly across hundreds

of GPU threads; how to store solution data and intermediate results to optimize memory

7An algorithm scales weakly when increasing the problem size and number of processors such that the
degrees of freedom per processor remains constant does not affect the run-time.

8The technique of [44] is different than what will be suggested in Section 5.1 because [44] uses optimizations
specific to DG discretizations of linear, hyperbolic equations using linear elements.
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performance; and how and when to fetch data from memory so that numerous threads could

be served in minimal time.

1.2 Optimization Basics

Avoiding premature optimization is always critical. Before proceeding with any code modi-

fication, a good first step is to evaluate which parts of the code are consuming the greatest

amount of time (“hot spots”) and which parts of the code are easiest to improve. Such eval-

uations are typically case dependent; for example, with flow solvers, steady solutions spend

substantially more time in the linear solve than their unsteady counterparts. If a program

component only consumes 1% of the runtime, then even if it could be removed completely,

the speedup is only 1%.9 If that 1% gain costs months of development time, it may not be

worthwhile. At the same time, if it takes a few hours of work, every little bit helps. For

better or for worse, many complex programs do not spend the majority of their time in a

single leaf routine; thus performance gains often come through a combination of many small

gains, rather than through one large step.

Additionally, improving “wall-clock” performance needs to be weighed against decreases

in “performance” measured in terms of code clarity, maintainability, and extensibility. For

example, there are very few (if any) instances in finite element methods where developers

should be coding in assembly language, even though carefully tuned assembly can provide

the best performance as with some optimized BLAS libraries. The time required to develop

and maintain code is also a resource, and the balance between performance measures like

development and execution time will depend on the objectives of a code project.

A number of tools exist to aid in the profiling process. A few popular examples include

OProfile[42], GNU gprof[22, 30], and Intel’s VTune[37]. Profiling falls into two main cate-

gories: event-based and time-based. Time-based profiling attempts to measure how much

time a program spends in each of its member functions.

Time-based profiling can be as simple as inserting system clock (or other timing mecha-

9This analysis style follows Amdahl’s Law, a well-known formula for computing the maximum possible
speedup obtainable through parallelizing routines.
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nism) calls around subroutines of interest; e.g., to test the amount of time taken in residual

and Jacobian evaluation. Such methods are usually low-resolution, but provide easy access

to the “big-picture.” GNU gprof provides high resolution timing of every function call across

the duration of a program run. It performs the measurement by inserting timing code at the

beginning and end of every function. As a result, gprof (and tools like it) incur additional

overhead from all the extra timing code; the effect of this overhead depends on both the

number of function calls and the size of called functions. Fog[28] details how to obtain high

resolution timing more precisely, inserting timing code only where the programmer desires.

Intel’s VTune package provides another alternative; it obtains timing results by randomly

querying the program state and estimating the time distribution across different functions.

This method involves much less overhead, but it also leads to inaccuracies.

Timing-based profiling provides information on what program components are the most

expensive. But it provides little information on why. Event-based profiling fills this gap.

Modern CPUs have a number of performance counters (also called event counters) on the

chip. These counters are incremented whenever certain events occur; e.g., cache misses,

instructions retired, branch misprediction, overloading performance-enhancing (hardware)

buffers, etc. During the discussion on the memory hierarchy and the inner workings of the

CPU, notes will be provided on relevant event counters.10 These counters can be accessed

directly in code[28], but the process is not straightforward. OProfile and VTune both provide

the ability to accumulate CPU events across entire program runs. For efficiency, both pack-

ages sample randomly. The random sampling does not hinder accuracy in a meaningful way

because only functions incurring large numbers of events will be interesting. Programmers

wishing for more direct control will need to access the performance counters individually, in

code.

10Event counter names change from CPU to CPU; the counters discussed here will be taken from the Intel
Core 2 only.
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Chapter 2

The Discontinuous Galerkin Finite

Element Method

In this work, governing equations that take the general form:

∂

∂t
u + ∇ · Finv(u) −∇ · Fvis(u,∇u) = 0,

such as Euler and Navier-Stokes, will be considered. In the above, u denotes the conservative

state vector (of size Nsr); e.g., u = [ρ, ρvi, ρE]T ∈ RNsr , which is [ρ, ρv0, ρv1, ρE]T in 2D.

Here, vi denotes the components of velocity and E denotes the total specific internal energy.

The inviscid and viscous fluxes are denoted by Finv,Fvis ∈ RNdim×Nsr , respectively. In the

following, only viscous fluxes of the form Fvis = A(u)∇u will be considered. Note that A(u)

is a rank-4 tensor and ∇u is rank-2. The form of A is given in Section A.3. For clarity, the

governing equations written with indicial notation are given below:

∂tuk + ∂xi
Fi,k − ∂xi

(Ai,j,k,l∂xj
ul) = 0

where k, l range over the state rank (Nsr) and i, j range over the spatial dimension (Ndim).

Fi,k denotes the Nsr components of Finv in each coordinate direction. F vis
i,k = Ai,j,k,l∂xj

ul

denotes the components of Fvis. See Appendix A for a complete specification of the (con-

tinuous) inviscid and viscous fluxes for the Navier-Stokes equations.
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2.1 DG Spatial Discretization

The following discussion will only outline the DG spatial discretization. Since this work is

concerned with implementation issues and not theoretical developments, results are stated

generally without proof. Further discussion of the DG spatial discretization used here can

be found in [24, 23, 49, 57].

Begin by triangulating the domain Ω ⊂ RNdim into non-overlapping elements κ. Let

T h ≡ {κe} and Nelem = |T h|. The DG method seeks a discontinuous approximation uh (to

the exact solution u) such that uh|κe
belongs to the function space Vh,p(κe). The solution

and test space is given by:

Vh,p ≡ {vk ∈ [L2(Ω)]Nsr |vk|κ ◦ fκ ∈ [P p(κref )]
Nsr , ∀κ ∈ T h},

where P p denotes polynomials with degree at most p, and fκ denotes the mapping from the

reference element (κref ) to physical space for the element κ.

Multiplying by the vector of test functions, vh
k , and integrating, the semidiscrete,1 weak

form of the governing equations follows:

∑

κ∈T h

∫

κ

vh
k

∂uh
k

∂t
+ Rh,inv(uh,vh) + Rh,vis(uh,vh) = 0, ∀vh

k ∈ Vh,p, (2.1)

where Rh,inv, Rh,vis denote the inviscid and viscous residuals, respectively; and uh,vh indicate

vector-valued arguments, uh
k, v

h
k . If source terms are present, then Rh,sou will also be present

in Equation 2.1. Note that if the (strong) source terms contain first or higher derivatives,

care is required to maintain the dual consistency of the discretization [57].

1The time discretization will be handled later.
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2.1.1 Inviscid Component

The inviscid discretization arises from multiplying ∂xi
Fi,k by the test functions vk and inte-

grating by parts to obtain the weak form:

Rh,inv
κ (u,v) ≡ −

∫

κ

∂xi
v+

k Fi,k(u) +

∫

∂κ

vkF̂k(u
+,u−,n+), (2.2)

where the +,− superscripts refer to element κ and its appropriate neighbor, respectively;

note that vk always refers to test functions for κ evaluated over κ. The h superscripts

(uh
k, v

h
k ) have been dropped for brevity. The full inviscid residual is formed by summing over

the elements: Rh,inv =
∑

κ∈T h Rh,inv
κ . F̂k is a numerical flux function (e.g., the Roe Flux). If

some faces of ∂κ lie on ∂Ω, then F̂k is modified to enforce boundary conditions weakly.2

2.1.2 Viscous Component

The viscous discretization is derived similarly. Here, the viscious, numerical fluxes are from

the second method of Bassi and Rebay (BR2) [13, 14, 12]. In this method, the strong form

of the governing equations is split into a system of first order equations:

∂tuk + ∂xi
F inv

i,k − ∂xi
(Ai,j,k,lzj,l) = 0 (2.3)

zi,k − ∂xi
uk = 0. (2.4)

Obtain the weak forms by integrating by parts after multiplying the first equation by vk ∈
Vh,p and the second by wi,k ∈ Vh,p:

Rh,inv
κ +

∫

κ

∂xi
vkAi,j,k,lzj,l −

∫

∂κ

v+
k

̂Ai,j,k,lzj,ln
+
i = 0 (2.5)

∫

κ

wi,kzi,k +

∫

κ

uk∂xi
wi,k −

∫

∂κ

w+
i,kûkn

+
i = 0, (2.6)

2A boundary state, ub
k, is established based on outgoing characteristics and boundary data; the boundary

flux is determined from these quantities.
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where ẑ, û are viscous numerical fluxes (i.e., traces). Setting wj,l = ∂xi
vkAi,j,k,l, substituting

for
∫

κ
∂xi

vkAi,j,k,lzj,l, and integrating by parts again3 yields the viscous residual contribution,

Rh,vis
κ ≡

∫

κ

∂xi
vkAi,j,k,l∂xj

ul −
∫

∂κ

∂xi
vkAi,j,k,l

(

u+
k − {uk}

)

n+
j −

∫

∂κ

v+
k

̂Ai,j,k,lzj,ln
+
i (2.7)

Let {u} = 1
2
(u+ + u−) denote the average operator, and let JuK = (u+ − u−) de-

note the jump operator.4 The BR2 method involves setting ̂Ai,j,k,lzj,l = {Ai,j,k,l∂xj
ul} −

η{Ai,j,k,lri,k(JuKn+)} and ûk = {uk}. The parameter η > 3 is required for stability on sim-

plicial elements [24]; in this work, a more conservative η = 6 is used, as in [56]. Boundary

conditions are set by modifying these traces appropriately [24, 23, 49]. The lifting operator

ri,k ∈ Vh,p is given by:

∫

κ+

τ+
i,kr

f,+
i,k +

∫

κ−

τ−
i,kr

f,−
i,k =

∫

σf

{τi,k}JukKn
+
i

∫

κ

τi,kr
f,B
i,k =

∫

σB
f

τ+
i,k

(

u+
k − uB

k

)

n+
i

for interior and boundary faces, respectively. The B superscript denotes a quantity over a

face that lies on ∂Ω; τi,k ∈ Vh,p.

2.2 Temporal Discretization

As in the method of lines, Equation 2.1 transforms to system of ODEs. First, a basis {vm}
for Vh,p is needed. Now ∀u ∈ Vh,p, ∃Um ∈ RNbf such that u = Umvm. Considering all

elements and states simultaneously, the ODE for Equation 2.1 is:

M
dU

dt
+ R(U) = 0, (2.8)

where U ∈ RNelemNsrNbf is the vector of unknowns over all elements; Rm(U) = Rh,inv(u,vm)+

Rh,vis(u,vm) involves evaluating the previous Rh,inv, Rh,vis expressions for all Nbf basis

functions; and Mm,n =
∫

Ω
vmvn is the elemental mass matrix. The matrix M is of size

3Integrating
∫

κ
∂xi

wi,kuk =
∫

∂κ
wi,ku+

k ni−
∫

κ
wi,k∂xi

uk completes the terms required for dual consistency.
4The average and jump are taken component-wise if u is a vector.
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NelemNsrNbf ×NelemNsrNbf , composed of all Nelem elemental matrices Mm,n. Note that the

mass matrix is block diagonal with at worst Nelem blocks of size NsrNbf ×NsrNbf . With the

optimal ordering of unknowns, Re,k,n (see Section 3.1.1), it improves to NelemNsr blocks of

size Nbf × Nbf ; furthermore, the same polynomial basis is usually taken for every state.

From here, any standard ODE solver can be applied. For unsteady problems, this work

uses an IRK4 variant [69]. For steady problems, time-accuracy is not important. An implicit

method is important to allow for very large time steps; Backwards Euler suffices:

1

∆t
M

(

Um+1 − Um
)

+ R(Um+1) = 0. (2.9)

The time step is controlled by calculating ∆t = mine ∆te where ∆te = CFLm he

λe
. he, λe

are per-element measures of grid size and maximum characteristic speed, respectively. The

initial value of CFL is set low for robustness (i.e., so that non-physical transients arising

from poor initial conditions do not derail the solver). After each successful iteration, CFL

is increased by a constant factor to accelerate convergence.

Each time-step requires the solution of a nonlinear problem; this is handled with Newton’s

Method. Each Newton iteration requires the solution of a linear system. Here, a block-ILU

preconditioned, restarted GMRES method with block MDF reordering was chosen as the

linear solver.5 The GMRES implementation used in this work follows the original algorithm

[61, 62].

For unsteady problems, Newton iteration continues until the norm of the temporal resid-

ual is sufficiently reduced. Since time-accuracy is not important for steady problems, only

one Newton step is taken by each nonlinear solve. The following update scheme results after

linearizing about Um:

Um+1 = Um −
(

1

∆t
M +

∂R

∂U

∣

∣

∣

∣

Um

)−1

R(Um). (2.10)

Note that this scheme reduces to Newton’s Method as ∆t → ∞. The nonlinear solver halts

when ‖R(Um)‖ ≤ TOL.

5ILU and MDF stand for Incomplete-LU (factorization) and Minimum Discarded Fill, respectively. See
[18, 60] for details.
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Chapter 3

Computational Costs of the DG

Method

3.1 Residual and Jacobian Evaluation

The discussion here will be limited to interior faces. Boundary conditions generally make

up a negligible portion of the overall residual and Jacobian assembly time, since they are

applied on a set of measure 1 less than the problem domain.

In the following discussion, φ refers to the basis functions for the polynomial interpolation

space. In this thesis, a Lagrange basis (on uniformly distributed points) was used. For p-th

order polynomial interpolant on a simplex, Nbf = p + 1 in 1D, Nbf = (p + 1)(p + 2)/2 in 2D,

and Nbf = (p + 1)(p + 2)(p + 3)/6 in 3D.

3.1.1 Inviscid Discretization

Galerkin Residual

The basic kernel for the residual over elements due to an inviscid operator involves numer-

ically integrating
∫

K
Fi,k(u)∂xi

φ. At a single quadrature point (in reference coordinates),

computing the residual involves evaluating:

Rg,k,n = wg∂xi
φg,nFi,k(Unφg,n), (3.1)
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where n ranges over the basis functions, and g ranges over the number of quadrature points,

Nquad. Note that the boldfaced terms indicate vectors of size Nsr. An index is avoided since

the flux function requires the full solution (state) vectors as arguments. In particular, at a

single quad point, Unφn is a Nsr-vector, the product of a Nsr ×Nbf matrix and a Nbf vector.

The weights wg include the (reference) quadrature weights as well as a factor arising from

the determinant of the geometric Jacobian, |J |, due to the change from physical to reference

coordinates. Then the complete residual is computed by Rk,n =
∑

g Rg,k,n. The physical

gradient of φn uses the inverse (geometric) Jacobian, J−1
i,j : ∂xi

φn = J−1
i,j ∂jφn, where ∂jφn are

the derivatives of φn in reference coordinates.

At a quad point, the total cost is N3
dim + 4N2

dimNbf + 2NsrNbf + 2NdimNsrNbf + C(F ).

Note that these costs assume that the basis functions are precalculated. For now, the cost

analysis will focus on the number of floating point operations, which also serve as an upper

bound for memory costs. Memory access costs, which are generally more important, will be

considered in Section 5.1, after covering the memory hierarchy (Chapter 4) and the CPU

(Chapter C). The cost components of Equation 3.1 are:

• (Geometric) Jacobian: 2N2
dimNbf to compute Ji,j = Xi,n∂jφn, where Xi,n are the global

coordinates of the element’s nodes; N3
dim to compute J−1 and det(J).

• ∂xi
φn: 2N2

dimNbf .

• uk = Uk,nφn: 2NsrNbf .

• C(F ): cost of computing the (continuous) convective flux; little can be done to improve

the efficiency of such evaluations, so we will consider them as a “black box.” In general,

C(F ) should only “scale” with physical dimension (linearly) and state rank (at most

quadratically).

• Combining into Rk,n: 2NdimNsrNbf .

The previous expressions would be valid for isoparametric geometry representations; in other

cases, Nbf should be replaced by Nbf−geom. Additionally, the convention used is that y =

y + Ax, with A ∈ Rm×n, costs 2mn and z = z + xyT , with x ∈ Rm×1 and y ∈ Rn×1, also

costs 2mn.
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Asymptotic notation was avoided in this analysis. For many problems of interest, many

of the cost-components of Equation 3.1 are important. First, the limit of large spatial

dimension is not interesting: Ndim is 1, 2, or 3. Additionally, the limit of large Nsr may be

interesting (e.g., for multi-species simulations), but for a given problem, it is a fixed quantity.

The limit of large Nbf is more interesting, but many simulations are not run with P5 or P10.

At lower polynomial orders (e.g., P0 or P1), the relative weights of the residual costs changes

substantially. Thus, Ndim, Nsr, and other numeric factors are given to provide intuition for

the relative importance of various factors in the residual computation.

Although the element residual Rk,n is commonly thought of as a vector, its components

are indexed over two indexes, the state rank and the number of basis functions. It is then

convenient to think of Rk,n as a matrix of size Nsr ×Nbf . Additionally, Rk,n should be stored

in (k, n) order; i.e., so that the index over basis functions is the faster-changing index. In

this way, elemental mass matrices will be block-diagonal (Nsr blocks of size Nbf ×Nbf each),

instead of a “scattered” (NsrNbf)× (NsrNbf) matrix with no useful structure. Inverting the

block-diagonal mass matrix is a factor of N2
sr cheaper.

In general, the index ordering in Equation 3.1 (and in the following discussion) is mean-

ingful. It is suggested that DG implementations store residuals, temporary quantities, etc.

in the layout implied by the left-to-right ordering of the indexes. So Ai,j,k could be declared

A[N i][N j][N k] in C.1 In the current discussion, we are summing Rg,k,n over g, so we can

simply accumulate the added results in a single location.

Jump Residual

The basic kernel for faces (i.e., jump terms) involves numerically integrating
∫

∂K
F̂k(u)φ:

RL
g,k,n = wgF̂g,k

(

nL
g ,UL

nφ
L
g,n,U

R
nφR

g,n

)

φL
g,n (3.2)

The superscripts L and R denote the element on the left and right of a face, respectively.

The “sidedness” of an element is dependent on the convention for normal vectors. In the

following discussion, nL
i denotes the normal from the left to the right element; nR

i = −nL
i

1The use of multidimensional arrays in C is only recommended if the arrays are statically sized.
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denotes the opposite, right to left normal.

A matching term to Equation 3.2, RR
g,k,n is present for the contribution to the right-side

elemental residual. F̂k refers to the numerical flux (e.g., the Roe Flux) in the face-normal

direction.

At a quad point, the total cost of Equation 3.2 is 2N2
dimNbfL +3N2

dim +4NsrNbfL +C(F̂ ).

NbfL denotes the number of basis functions interpolating the left element; recall that an

isoparametric geometry representation is assumed. For the right face, the cost expression

is identical unless the right element’s interpolation order is different; i.e., replace NbfL by

NbfR. Here, evaluating the numerical fluxes, F̂ , will be more expensive than the continuous

fluxes. At least for the Roe Flux, the cost “scaling” is linear in spatial dimension and at

most quadratic in state rank, as with the continuous flux. But the constants involved are

much larger. Lastly, the first two terms of the cost expression arise from computing the

normal vector. Technically only the basis functions in dimension Ndim−1 are needed for the

normals; i.e., the face-normals of a 2D element can be found using 1D basis functions.

Galerkin Jacobian

The basic kernel for the Jacobian of Equation (3.1) at a single quadrature point is:

∂Ua,m
Rg,k,n = −wg∂xi

φn∂ua
Fi,k(Unφg,n)φg,m (3.3)

Note that ∂Ua,m
Rg,k,n should be interpreted as Ag,a,m,k,n.

The cost per quadrature point is 2NdimN2
srNbf +2NdimN2

srN
2
bf +C(∂uF ). Here, costs that

are redundant (e.g., J , ∂xi
φn, etc.) with the residual evaluation have been skipped. The new

terms arise from:

• ∂ua
Fi,kφm: 2NdimN2

srNbf .

• Combining into ∂Ua,m
Rk,n: 2NdimN2

srN
2
bf .

• C(∂uF ): the cost of computing the state derivatives of the continuous flux.

Unsurprisingly, the Jacobian computation is substantially more expensive, with the (gener-

ally) dominant term NdimN2
srN

2
bf being a factor of NsrNbf larger than the largest residual
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term, NdimNsrNbf .

Jump Jacobian

The basic kernel for the Jacobian of Equation (3.2) at a single quadrature point, with respect

to the left states, is:

∂UL
a,m

RL
g,k,n = wgφ

L
n∂uL

a
F̂k

(

nL
g ,UL

nφ
L
g,n,U

R
nφ

R
g,n

)

(3.4)

Differentiating with respect to the right states:

∂UR
a,m

RL
g,k,n = wgφ

L
n∂uR

a
F̂k

(

nL
g ,UL

nφ
L
g,n,U

R
nφR

g,n

)

(3.5)

Again, analogous expressions exist for the derivatives of RR
g,k,n.

At a single quadrature point, the cost of Equation 3.4 is 2N2
srNbfL+2N2

srN
2
bfL+C(∂uLF̂ );

and the cost of Equation 3.5 is 2N2
srNbfR+2N2

srNbfLNbfR+C(∂uRF̂ ). The costs of computing

the left and right derivatives of RR
g,k,n are analogous, but not simply doubled, since some

terms are shared between the four Jacobians being computed. C(∂uF̂ ) denotes the cost of

computing the state derivatives of the upwinding operator (e.g., the Roe Flux). Again, the

Jacobian cost is a factor of NsrNbf more expensive than the corresponding jump residual

terms; not to mention that there are twice times as many Jacobian terms.

3.1.2 Viscous Discretization

The analysis and derivation of the viscous discretization is more complex. The implemen-

tation is also more involved than that of the inviscid terms, and the computational cost is

greater. But the process still boils down to a combination of tensor products and tensor

contractions.

In the following discussion, only the BR2 viscous discretization is considered; furthermore,

it is implemented in a dual consistent fashion. More specifically, the following discussion

assumes that quantities computed over an element κ do not influence its neighbors.2 The

2Galerkin terms with such “non-local” influence arise when viscous or source terms (involving derivatives)
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computation of the BR2 lifting operator is described first, followed by its use in the viscous

jump residual and Jacobian terms.

The BR2 Lifting Operator

On any particular left face σf,L, finding the lifting operator involves solving the following

equation for rf,L and rf,R:

∫

κL

τL
i rf,L

i +

∫

κR

τR
i rf,R

i =

∫

σf

{τi}JuKnL
i

where τL ∈ Vp
h(κL) and τR ∈ Vp

h(κR). The f superscripts are now dropped since the

discussion only considers one face at a time. Due to the choice of basis, τL
i rL

i has support

only in κL. Now consider the lift-corrected gradient of the conservative state vector, ∂xi
uk.

Choosing τL = φL
m and τR = φR

m (pick the same φ for all spatial dimensions i), and expanding

rk,i = Di,k,nφn in the polynomial basis,

∫

κL

DL
i,k,nφ

L
nφL

m =

∫

σf

1

2
φL

mJukKn
L
j (3.6)

∫

κR

DR
i,k,nφ

R
n φR

m =

∫

σf

1

2
φR

mJukKn
L
j (3.7)

These are evaluated using numerical quadrature. Since DL and DR are constant, the

left-hand sides of the equations above can be rewritten in terms of the mass matrix Mmn =
∫

κ
φnφm:

ML
m,nD

L
i,k,n =

1

2
wgφ

L
g,m

(

uL
g,k − uR

g,k

)

nL
g,i (3.8)

MR
m,nD

R
i,k,n =

1

2
wgφ

R
g,m

(

uL
g,k − uR

g,k

)

nL
g,k (3.9)

where uL
g,k = UL

k,oφ
L
g,o (similarly for uR), as before. These equations are easily solved for DL

and DR by inverting the mass matrix.

When calculating the Jacobian, finding the derivatives of DL and DR (e.g., ∂UL
a,m

DL
i,k,n),

are discretized in an asymptotically dual consistent manner.
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is straightforward (and requires little additional calculation) since the equations defining the

lifting operator are linear. The derivatives of rL
i,k are then ∂UL

a,m
rL
i,k = ∂UL

a,m
DL

i,k,nφn. Note

additionally that the derivatives of DL and DR are independent of state; e.g., ∂UL
a,m

DL
i,k,n =

M−1,L
m,n

(

1
2
wgφ

L
g,mφL

g,nn
L
g,i

)

≡ δLDL
i,m,n and ∂UR

a,m
DL

i,k,n = −M−1,L
m,n

(

1
2
wgφ

L
g,mφR

g,nn
L
g,i

)

≡ δRDL
i,m,n

only need indices i,m, n.

When the derivatives are not needed, evaluating the auxiliary variable coefficients DL

costs 2NdimNsrNbfLNquad+2NdimNsrN
2
bfL. If derivatives are needed, δLDL costs 2N2

bfLNquad+

2NdimN2
bfLNquad and δRDL costs an additional 2NdimNbfLNbfRNquad. With the derivatives

computed, DL can be computed as before or as DLi, k, n = δLDL
i,m,nU

L
k,m − δRDL

i,m,nU
R
k,m

at a cost of 4NdimNsrNbfL(NbfL + NbfR). Note that geometry costs were not counted since

these are duplicate with computations that are already necessary for the jump residual or

Jacobian. Additionally, it is assumed that the PLU-factorizations of the mass matrices have

been precomputed.

Residual Terms

The Galerkin residual term (Equation 3.10) for viscous operators is standard for finite el-

ement methods. However the jump contributions from the left and right faces have their

numerical traces determined by the BR2 method. The left face term is given below (Equa-

tion 3.11); the right-face term is symmetric.

Rg,k,n = wg∂xi
φnAi,j,k,l∂xj

ul (3.10)

RL
g,k,n = −wg∂xi

φL
nAL

i,j,k,lJulKn
L
j (3.11)

−wgφ
L
n

(

AL
i,j,k,lz

u,L
j,l + AR

i,j,k,lz
u,R
j,l

)

nL
i

where ∂xj
ul = Uk,n∂xi

φn is the spatial derivative of the states ul in physical coordinates, and

zu,L
j,l = ∂xj

uL
l − ηrL

j,l denotes the lift-corrected state derivative.

For the Galerkin residual terms, the additional cost per quad point (over the inviscid

residual) is 2NdimNsrNbf +2N2
dimN2

sr+C(A). C(A) denotes the cost of computing the viscous

A matrix, which is generally substantially more expensive than computing the inviscid flux.

Note that an additional cost of 2NdimNsrNbf was not incurred because the viscous flux can
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be added to the inviscid flux directly.

For the jump residual terms on the left face, the additional cost per quad point is

2N3
dim + 2N2

dim(NbfL + NbfR + 2N2
dim(NbfL + NbfR) + 6NdimNsr(NbfL + NbfR) + 4N2

dimN2
sr +

4NdimN2
sr + C(DL, DR) + C(AL,AR), where C(DL, DR) denotes the cost of evaluating the

lifting coefficients and C(AL,AR) denotes the cost of computing A on the left and right

faces. As before, the right face costs are similar, but not necessarily double due to some

quantities being shared.

Jacobian Terms

Again, handling the derivative ∂ua
Ai,j,k,l is nontrivial. The dominant cost components (i.e.,

N2
srN

2
bf) grow in the same way as the inviscid Jacobian terms, which should be clear from

the expressions. For completeness, the Galerkin component, ∂Ua,m
Rg,k,n, and the (+ face)

jump components, ∂UL
a,m

RL
g,k,n and ∂UR

a,m
RL

g,k,n, are given below:

∂Ua,m
Rg,k,n = wg∂xi

φn (∂ua
Ai,j,k,l∂julφm + Ai,j,k,a∂jφm) (3.12)

∂UL
a,m

RL
g,k,n = −wg∂xi

φn

(

∂uL
a
AL

i,j,k,lJulKn
L
j φm + AL

i,j,k,an
L
j φL

m

)

(3.13)

+wgφn

(

AL
i,j,k,az

φ,L
j,m + ∂uL

a
AL

i,j,k,lz
u,L
j,l φL

m − ηAR
i,j,k,a∂UL

m
rR
j

)

nL
i

∂UR
a,m

RL
g,k,n = wg∂xi

φL
nAL

i,j,k,an
L
j φR

m (3.14)

−wgφ
L
n

(

AR
i,j,k,az

φ,R
j,m + ∂uR

a
AR

i,j,k,lz
u,R
j,l φR

m − ηAL
i,j,k,a∂UR

m
rL
j

)

nL
i

where zφ,L
j,m = ∂xj

φm − η∂UL
m
rL
j is the lifted basis derivative.

The additional cost per quad point for the Galerkin Jacobian terms is 2N2
dimN3

sr +

NdimN2
sr + 2N2

dimN2
srNbf + C(∂uA), where C(∂uA) denotes the cost of evaluating the state

derivatives of A.

For ∂UL
a,m

RL
g,k,n, the additional cost per quad point is 4N2

dimN3
sr+2NdimN2

sr+2NdimN2
srNbfL+

2N2
srN

2
bfL + 2NdimNbfL(NbfL + NbfR) + 4NdimN2

srNbfL + C(δLDL, δLDR) + C(∂uAL, ∂uAR).

Evaluating ∂UR
a,m

RL
g,k,n incurs an additional 2N2

dimN3
sr + 2NdimN2

srNbfL + 2N2
srNbfLNbfR +

2NdimNbfL(NbfL + NbfR) + NdimN2
sr + 4NdimN2

srNbfR + C(δRDL, δRDR).
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3.1.3 Quadrature

So far, costs have only been given per quadrature point. Here, the number of quadrature

points needed is discussed. The desired quadrature accuracy depends on the polynomial in-

terpolation order for the solution (psol) and for the geometry (pgeom). A particular quadrature

formula is characterized by the highest polynomial order that it can integrate exactly. In this

thesis, the requested order is 2(psol+1)+pgeom−1 for elements; for faces, 2(psol+2)+pgeom−1

is used.

In 1D, Gaussian Quadrature is common; it requires (p+1)/2 points to integrate a polyno-

mial of order p exactly. Extensive listings of 2D and 3D quadrature rules have been published

[65, 67]. For simplexes, the number of quadrature points scales as O((p+1
2

)Ndim) to integrate

a polynomial of order p exactly. Exact counts are usually less than the previous, simple

formula, which is an upper bound based on tensor product rules (of Gaussian Quadrature)

for rectangular elements. The exponentiation by Ndim is important here. The number of

quadrature points needed for element interiors is much larger than the number of quadrature

points needed for element faces, since faces are one dimension “smaller” than interiors. This

is especially true for high polynomial orders. However, the expense per quadrature point

on faces is higher due to the need to calculate contributions from and to the left and right

elements. Additionally, there are more faces than elements.

3.2 Nonlinear Solve

Each nonlinear (Newton) iteration is composed of two principal parts:

• Assembly of the residual and Jacobian

• Solution of a linear system

The cost of the nonlinear solve is dominated by these two components. Outside of the

assembly and the linear solve, the nonlinear iteration only requires O(NelemNsrNbf) flops

through a series of BLAS-1 operations. Further estimation of the nonlinear solver cost is

not really possible, since the number of nonlinear iterations is strongly dependent on the
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degree of nonlinearity in the problem, mesh resolution, etc. Improving the efficiency of the

nonlinear solver is a balance between improving robustness and accelerating convergence.

For example, using a very conservative line search algorithm, increasing CFL slowly, using

highly-accurate linear solves, etc. will lead to more robustness but the number of nonlinear

iterations could increase greatly. However, the heuristics used to control the nonlinear solve

are not the focus of this thesis; see [59, 63] for overviews of popular globalization techniques

and further references.

3.3 Linear Solve via ILU Preconditioned, Restarted

GMRES

In most problems using implicit time-stepping, the linear solve will compose a major portion

of the total compute time. In steady problems, the linear solve can make up more than

90% of the total cost. This section will focus on the cost of ILU preconditioned, restarted

GMRES. However, the discussion here holds for most iterative linear solvers (especially other

Krylov methods), since these methods are composed of a combination of sparse matrix-vector

products and dense vector-vector products. In the following discussion, Nb = NsrNbf denotes

the block-size. DG methods have the advantage of sparsity patterns that are naturally block-

sparse, whereas many other discretizations (e.g., CG) often resort to reorderings to create

block structure.

As with the residual and Jacobian assembly, the cost per “inner” GMRES iteration (i.e.,

building the Krylov basis) can be calculated exactly. However, as with the nonlinear solve,

estimating the exact linear solver cost is difficult, since it is almost impossible to know the

number of inner iterations a priori. If GMRES is restarted, it is similarly impossible to

know the number of restarts (i.e., “outer” iterations) exactly. For (restarted) GMRES, the

difficulty of the linear problem is dependent on the conditioning (more accurately, eigenvalue

distribution) of the preconditioned Jacobian matrix.

ILU preconditioning is implemented in-place [18]. In-place ILU overwrites the Jacobian

matrix with its ILU factorization; more commonly, the ILU factorization is stored separately,
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doubling the memory requirement. The penalty is greater computational cost,3 since Ax

cannot be computed directly; instead L̃Ũx must be computed.

The dominant costs of the MDF reordering are: 1) computing Ci,j = ‖A−1
i,p,i,qAi,p,j,q‖F ,

where i, j range over Nelem and p, q range over Nb; and 2) searching over the list of unordered

elements for the maximum weight element and updating the weights of that element’s un-

ordered neighbors. The former costs 2
3
N3

b + 2(Nf + 1)N3
b flops per element; note that lower

order terms (O(N2
b )) have been dropped. Nf denotes the number of faces of an element; i.e.,

the number of neighbors. For searching and updating weights, an asymptotically optimal

O(Nelem log Nelem) comparisons is obtainable with an elementary min-heap data structure;4

see [16] for example. Methods exist for reducing the big-O constant within the binary heap;

alternative heap designs with better weight-update performance also exist.

[18] gives flop count estimates for AM−1x kernel in “bare” ILU-GMRES without re-

ordering and ILU-GMRES with MDF reordering. AM−1x is computed once in each inner

iteration. Again, note that the ILU factorization is computed in-place. Here, M denotes the

preconditioning matrix, leading to the decomposition A = M + N . It is more efficient to

compute AM−1x = x+NM−1x. The asymptotic cost of computing the ILU factorization is

similar to that of the MDF reordering: 2
3
N3

b + 2(Nf + 1)N3
b flops per element. In practice,

MDF is slightly more expensive due to the O(Nelem log Nelem) term. Computing M−1x costs

2(Nf +1)N2
b flops per element. Lastly, [18] estimates 2

3
(Nf +4)(Nf −1)N2

b flops per element

for computing Nx when no reordering is used.5 Experimentally, this estimate is too high.

With MDF reordering,6 the estimate is reduced to 2
3
(Nf +4)(Nf −2)N2

b , which is reasonably

accurate in practice[18].

The last major cost-component of GMRES is the Arnoldi iteration, excluding the cost

of AM−1x. This cost is difficult to predict unless the number of inner iterations is fixed.

Let Ninner be the number of inner iterations and denote a restarted GMRES method by

3More flops are required, but the amount of memory accessed is roughly equal. Thus in practice, the
in-place method is often faster than its full-storage counterpart.

4Brute force searches can require O(N2
elem) comparisons or worse, which can be a substantial cost with

as few as 104 elements.
5Only an estimate is possible here, since the cost of Nx depends on the number of nonzero blocks in N ,

which is case-dependent.
6[18] produces an argument for “Line” reordering which reorders elements along lines of strong convective

coupling. But for convection-dominated flows, MDF produces similar results.
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GMRES(Ninner). [61] recommends the Modified Gram-Schmidt (MGS) process for orthog-

onalizing the Krylov basis, which will be discussed here. Alternatives are covered in Sec-

tion 5.2. The i-th step of MGS costs 4NbNelem(i + 1) flops. With Ninner steps, the total

cost amounts to 4NbNelem

(

Ninner(Ninner+1)
2

+ Ninner

)

flops. Lastly, the amortized cost of

solving the least-squares problem arising in GMRES is very minor if the Hessenberg matrix

generated by the Arnoldi process is QR-factored incrementally [62].

The previous estimate for Arnoldi can be somewhat misleading. First, after each inner

iteration, GMRES produces the current residual norm should an update were taken imme-

diately. Thus, the last outer iteration may not have Ninner inner iterations; particularly if

only 1 outer iteration occurs, the previous MGS estimate could be very high. Additionally,

there are many reasons not to have a constant Ninner. If a problem could be solved with

10 (outer) iterations of GMRES(100) or 1 iteration of GMRES(1000), the former would be

preferred since the cost of its Arnoldi process is cheaper by a factor of 100. However, cases

arise where GMRES(100) stagnates and potentially fails to converge. [9] proposes a simple,

effective strategy for varying Ninner in a user-specified range.

Restarted GMRES implementations also need to deal with stagnation. When GMRES(Ninner)

stagnates, convergence can slow substantially or even become impossible. A number of

heuristics exist to detect stagnation and recover from it. Recovery entails increasing Ninner

to enrich the Krylov space. [31] discusses a method for dealing with stagnation in restarted

GMRES.

Finally, as demonstrated in Section 3.5, optimized BLAS implementations are often poor

choices for computing the block-wise matrix-vector products required by GMRES. For many

relevant block sizes, compiler optimized versions of a basic matrix-vector product routine

outperform the BLAS. Benchmarking is required to determine when BLAS is a better choice

for performance.

3.4 Example Problems

This section exhibits one unsteady and three steady example problems. In all cases, the

nonlinear solver terminated when the nonlinear residual norm fell below 10−12. Except where
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noted, the GMRES solver used at most 200 Krylov vectors per restart. The GMRES stopping

criterion is the “fixed” criterion described in Appendix D, with K = 10−3. This choice is

discussed later in this section. All cases used ILU preconditioning with MDF reordering. In

steady cases, the nonlinear solver starts with CFL = 1 and increases by a factor of 5 with

each successful iteration. Note that all steady cases were initialized to converged solutions

with interpolation order one less than the reported order; i.e., a P3 solution starts from a

converged P2 solution. The component-costs are summarized in Tables 3.5, 3.6, and 3.7.

• Case 1: steady, inviscid flow over a Gaussian bump in 2D. The mesh is isotropic and

structured, composed of triangular elements generated from a conformal mapping of a

rectangle.

Geometry Guassian Bump
Mach Number 0.20
Angle of Attack 0.0
Spatial Dimension 2
Equation Euler
Solution Interpolation Order 3
Geometry Interpolation Order 5
Block Size 40
nElement 20480
DOF 819200
Jacobian Size 0.73GB

Table 3.1: Case 1 description

• Case 2: steady, viscous flow over a flat plate in 3D. The mesh is extruded from a 2D,

anisotropic, structured mesh with boundary layer packing and element packing toward

the leading edge singularity. The 2D mesh has 936 elements. The extruded mesh has

3 layers of elements in the z direction, with each extruded prism being divided into 3

tetrahedrons.

• Case 3: steady, viscous (Reynolds-Averaged) flow over an RAE 2822 airfoil. The

RANS Equations are closed with the Spalart-Allmaras turbulence model. The mesh is

generated from repeated iterations of a drag adjoint-based mesh adaptation strategy;
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Geometry Flat Plate
Reynolds Number 106

Mach Number 0.25
Angle of Attack 0.0
Spatial Dimension 3
Equation Navier-Stokes
Solution Interpolation Order 2
Geometry Interpolation Order 1
Block Size 50
nElement 8424
DOF 421200
Jacobian Size 0.63GB

Table 3.2: Case 2 description

anisotropy was detected via the local Mach number. The mesh is anisotropic and

unstructured. The RANS source terms were evaluated in a dual consistent fashion,

following [57].

Geometry RAE 2822
Reynolds Number 6.5 × 106

Mach Number 0.3
Angle of Attack 2.31
Spatial Dimension 2
Equation RANS-SA
Solution Interpolation Order 3
Geometry Interpolation Order 3
Block Size 50
nElement 12889
DOF 644450
Jacobian Size 0.72GB

Table 3.3: Case 3 description

• Case 4a, 4b: unsteady, viscous flow over a NACA 0012 airfoil. As with Case 3, the

mesh was generated form repeated iterations of a drag adjoint-based mesh adaptation

scheme; the adaptation was isotropic in this case. The unsteady solution is periodic,

orbiting toward a limit cycle. The adaptation occurred about the stationary point
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of the solution. In the unsteady solve, the initial condition was a snapshot of the

limit cycle. Problem sizes for these unsteady cases were smaller to compensate for the

need for comparatively large numbers of time steps. In order to run simulations with

thousands (or more) of time steps, the cost per time-step must be kept low. One small

(4a) and one large (4b) unsteady problem are shown.

Geometry NACA 0012
∆t 0.1
Reynolds Number 1500
Mach Number 0.5
Angle of Attack 9.0
Spatial Dimension 2
Equation Navier-Stokes
Solution Interpolation Order 3
Geometry Interpolation Order 3
Block Size 50
Case 4a
nElement 2158
DOF 86320
Jacobian Size 0.08GB
Case 4b
nElement 8632
DOF 345280
Jacobian Size 0.31GB

Table 3.4: Case 4 description

Case Res Galer Res IFace Res BFace Jac Galer Jac IFace Jac BFace
1 0.44 0.29 0.00 1.57 1.91 0.01
2 0.22 1.17 0.13 1.29 6.87 1.29
3 0.71 1.27 0.02 2.91 5.89 0.16
4a 0.02 0.07 0.01 0.11 0.47 0.02
4b 0.09 0.32 0.01 0.43 1.91 0.05

Table 3.5: Per-evaluation costs (seconds) of the residual (Res) and Jacobian
(Jac) assembly for the Galerkin (Galer), Interior Face (IFace), and
Boundary Face (BFace) terms.
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Case Ninner Nouter MDF ILU Ax MGS
1 603 7 17.93 13.79 165.05 212.56
2 1754 18 32.67 18.05 330.73 275.51
3 603 11 34.51 24.78 147.68 132.90
4a 304 21 5.92 4.22 8.06 0.49
4b 800 23 26.22 18.65 89.90 23.39

Table 3.6: Summary of the total linear solver costs: number of Arnoldi itera-
tions and GMRES restarts, along with the time (seconds) spent in
MDF reordering, ILU precalculations, x + NM−1x kernel (called
Ax), and Modified Gram-Schmidt orthogonalization. Results for
4a and 4b are given for one full time-step; i.e., 4 IRK4 stages.
Steady cases report the aggregate for a full solve.

Case Nnonlin Res/Jac GMRES %-GMRES
1 7 28.04 460.84 95.26%
2 13 132.39 820.62 86.10%
3 11 129.89 353.07 73.10%
4a 20 16.06 12.79 44.33%
4b 20 68.65 159.94 69.97%

Table 3.7: Comparison of total residual/Jacobian and GMRES times.
Nnonlin indicates the number of nonlinear solver iterations re-
quired. Again, the unsteady results are only for one time-step.
%-GMRES is calculated by tGMRES/(tres + tGMRES). This com-
parison ignores other costs such as mesh (and other) I/O, wall-
distance calculation (where needed), solution updates, etc.
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Table 3.5 shows the costs of residual and Jacobian evaluation, broken down into contri-

butions from element interiors, interior element faces, and boundary element faces. Case 2

has an abnormally high percentage of residual and Jacobian time spent on boundary faces.

Due to memory limitations, the number of elements in the extruded (z) direction is relatively

small, producing a larger number of boundary elements. That is, adding even one more layer

of elements in the z direction requires substantially fewer elements in the initial 2D mesh,

and the 936 element 2D mesh is already very coarse. As a result, the ratio of interior faces

to boundary faces is 6.5:1 for Case 2; this ratio is more than 20:1. However, in this case the

costs per interior face and per boundary face are similar. Assuming all boundary faces cost

the same as interior faces, the total residual and Jacobian time for Case 2 would decrease

by 0.2 seconds.

In general, the residual and Jacobian evaluation on faces proved to be the dominant por-

tion of the residual evaluation process, despite the fact that faces have far fewer quadrature

points than elements. However, these cases were primarily p = 3 solutions. The additional

work per quadrature point on faces compared to elements and the ratio of faces to elements

contribute at most a constant factor to the overall assembly cost on faces. But Nquad scales

strongly with p, so at sufficiently high polynomial orders, the elemental Galerkin terms will

dominate. In the inviscid case, which does not involve the viscous flux or the lifting operator,

the Galerkin and face assembly costs are already close.

The MGS costs in Table 3.6 are substantial for the steady cases (1-3), and using 200

Krylov vectors is admittedly high. However, for many cases, using fewer (20, 50, 100) Krylov

vectors resulted in greatly increased cost due to the need for more overall GMRES iterations.

Case 3 often failed to converge with a substantially fewer than 200 Krylov vectors. These

cases could get away with fewer Krylov vectors if the accuracy request for the nonlinear

solver were not as stringent. Additionally, investigating the trade-off between Ax multiplies

and MGS orthogonalization was not a focus in this thesis; roughly equalizing the two costs

implies the cost is at worst within a factor of 2 of the optimum. That said, algorithms that

avoid the long recurrences of GMRES (e.g., QMR or BiCG-Stabilized) may be preferable.

In trade, QMR and BiCG-Stabilized require the Ax and AT x kernels or two Ax kernels in

each iteration.
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Table 3.7 compares the relative run-times of the residual and Jacobian assembly process

to the linear solve via GMRES. The number of nonlinear iterations is included as point of

reference, since the residual and Jacobian are evaluated once per nonlinear iteration, and

the resulting linear system is solved once per nonlinear iteration. GMRES was usually the

dominant component of the overall DG solver cost. This is particularly true for inviscid

problems, where the residual assembly is simple compared to the viscous case. Unsurpris-

ingly, the RANS-SA case has the greatest residual component amongst the steady problems,

since its assembly process involves viscous terms as well as source terms from the SA model.

Additionally, for much smaller cases (e.g., 4a), the residual cost was dominant. Observe that

when scaling up the number of unknowns (e.g., compare 4a to 4b), the linear solver cost

grows faster than the residual and Jacobian assembly costs.

In current CFD practice, small cases like Case 4a only arise when solving unsteady

problems.7 Certainly for these cases, considerable efficiency could be gained from improving

the residual and Jacobian assembly process. And particularly for the viscous steady cases,

residual and Jacobian assembly still play a substantial role in the overall cost. However, these

timing results are reliant on having reasonable choices for GMRES parameters–particularly

the stopping criterion, as discussed in the next section.

GMRES Convergence Criterion

Table 3.8 shows some timing results for the fixed and adaptive GMRES stopping criterion

described in Appendix D with varying KA, KF values. The timings shown were taken from

runs of Case 3 (from Section 3.4), with all parameters except the stopping criterion remain-

ing as previously described. Also shown is a fixed criterion run with KF = 10−14, which

represents asking GMRES to solve down to machine-precision. Briefly, the adaptive crite-

rion asks GMRES to reduce the initial linear residual norm by an amount that is sufficient

to obtain quadratic convergence in the Newton solver; K is a multiplicative safety factor.

The fixed criterion asks GMRES to reduce the initial linear residual norm by a factor of K.

Appendix D mentions a trade-off between nonlinear iterations and GMRES costs, which

7Not mentioned here are explicit-time schemes, where residual assembly is clearly the dominant cost.
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is clearly represented in Table 3.8. At KA = 0.5 × 10−3, the adaptive method is converging

in as few nonlinear iterations as possible and at a fraction of the cost of always converging

to machine precision. However, the cost is still greater than most of the KF options with

the fixed criterion.

The low KF fixed criterion solves generally performed very poorly; insufficient linear

solves resulted in increased nonlinear iterations. For this case, KF = 0.5 × 10−3 with the

fixed criterion performs the best, but for other cases K = 1.0 × 10−3 (fixed) is preferable.

Moreover the more accurate choice is more robust.

Type K Nnonlin Ax MGS Res/Jac
Total

GMRES
Total

A 1.0 × 10−1 12 149.00 181.89 216.24 403.46
A 5.0 × 10−2 12 155.71 189.73 216.81 421.94
A 1.0 × 10−2 13 206.08 249.48 258.55 556.59
A 5.0 × 10−3 10 236.65 282.32 177.66 633.90
A 1.0 × 10−3 10 247.13 296.53 177.85 662.14
A 1.0 × 10−4 10 305.40 400.87 177.42 852.14
F 1.0 × 10−1 18 153.43 98.25 325.28 328.45
F 5.0 × 10−2 25 868.41 1253.94 470.33 2537.19
F 1.0 × 10−2 15 155.41 127.50 292.04 360.12
F 5.0 × 10−3 11 114.50 89.23 193.67 260.51
F 1.0 × 10−3 11 146.99 132.15 193.71 350.79
F 1.0 × 10−4 10 154.54 145.19 177.60 374.51
F 1.0 × 10−14 10 1210.06 1885.93 177.74 3672.95

Table 3.8: Comparison of the costs (seconds) of the fixed (F) and adaptive
(A) GMRES stopping criterion, with various K choices. All data
were gathered from Case 3. These criterion are described fully in
Appendix D. “GMRES Total” includes Ax and MGS costs as
well as MDF and ILU precomputation costs.

3.5 Performance Limitations

From the example problems, it is clear that the steady-state solver spends the majority of its

CPU time using GMRES to solve linear systems. Unfortunately, the programmer’s ability

to improve the performance of the linear solver is fairly limited. In Section 5.2, some specific
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techniques will be discussed for improving performance. However, the dominant GMRES

costs (Arnoldi and Ax) are strongly memory bound, since the Jacobian matrix can span

several GB. Then most optimization techniques have little effect, especially on Ax. On the

other hand, the data for residual and Jacobian evaluation can be made to fit entirely in the

largest cache level, meaning that there is much greater potential for improvement over basic

implementations. Additionally, the residual evaluation process is a large component cost

in viscous, unsteady problems with implicit time-stepping, and it is the only major cost in

explicit-time solvers. For these reasons, the optimization discussion in this thesis are is most

applicable to the residual and Jacobian assembly.

Figure 3-1 provides evidence for the memory boundedness of the Ax kernel in GMRES.

The plot shows the performance results from computing a sequence of different matrix-vector

products, y(i) = y(i) + A(i)x(i), with x(i), y(i) ∈ Rm and A(i) ∈ Rm×m, for various values of

m. Regardless of matrix size, the working set was 1GB; i.e., all vectors x(i), y(i) and matrices

A(i) fit tightly in 1GB of memory. The A(i) correspond to the m×m blocks of the Jacobian

matrix. Suppose there are N such triplets of y(i), x(i), A(i). The testing code creates a random

permutation (over 0 . . . N − 1 taken uniformly at random with removal). Then it computes

numerous matrix-vector products by iterating over the N blocks using the permutation;

each set N products covers the full 1GB of memory. This process simulates multiplying the

Jacobian matrix by a vector. The random permutation is taken to simulate the effect of

using a reordering such as MDF.8 This Ax “simulation” procedure and the AM−1x kernel

in GMRES are memory bound because the entire 1GB of RAM is accessed before starting

over. Since typical CPU caches are less than 10MB (see Section 4.1), nothing can be saved

in the fast CPU caches. As shown in the introduction, floating point computation is much

faster than memory access, thus the performance of the Ax kernel is (to first order) bound

by how quickly 1GB of RAM can be read.

“Basic” refers to the most direct (column-major) matrix-vector product implementation:

t = 0.0, ixn=0;

for(i=0; i<m; i++){ //m columns

8Randomness is not important here; rather, the simulation needed to emulate the fact that the Ax kernel
in GMRES will almost never access A sequentially if reordering and/or preconditioning are present.
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basic, y(i) += A(i)x(i)

Intel BLAS, y(i) += A(i)x(i)

basic, AM−1x

Intel BLAS, AM−1x

Figure 3-1: The maximum floating point throughput for the AM−1x (from ProjectX) and
simulated Ax kernel in GMRES is limited for a wide range of block sizes. The optimized
BLAS (MKL) only pulls ahead for very large blocks. The lines indicate results of the y(i) =
y(i) + A(i)x(i) program described previously. The individual markers indicate floating point
performance measured by the ProjectX implementation of the AM−1x kernel in GMRES.
These cases were run on a 3.0GHZ Intel Core 2 processor, on which the maximum floating
point throughput for matrix-vector products is around 6 GFLOPS (see Figure 3-2).
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t = u[i];

for(j=0; j<n; j++) //n rows

y[j] += A[ixn+k]*t;

ixn += n;

}

Note that the “basic” code is compiler-optimized; performance would be much worse if the

same simple routine were implemented without optimizations. “BLAS” refers to calls to the

BLAS-2 function dgemv as implemented in the Intel MKL. The testing code was compiled

with icc, except where noted. Further results with different BLAS implementations and

compilers are shown further in this section. ProjectX was also compiled using icc. The

specific governing equations (controlling Nsr), polynomial order (controlling Nbf), and spatial

dimension (controlling the number of nonzero blocks per row and Nbf) are not important.

Results did not vary with these quantities, as long as the final block size, (NsrNbf)
2, and the

total Jacobian size (in GB) remained constant.9

For reference, the block sizes arising from common problems are shown in Table 3.9.

The first two rows show Nbf for Lagrange basis functions over a simplex. The first column

indicates Nsr for the given equation, with and without PDE-based shock capturing[11].

Observe that only problems with many states and high p even approach the regime where

the Intel BLAS is faster than the compiler-optimized, basic implementation; see Figure 3-1.

However, in multi-species flows (e.g., chemically reacting flows), the number of states can be

quite large. For example, the multi-species, 3D Navier-Stokes equations with 30 states and

p = 3 has a block size of 600.

First, note that the simple simulation code accurately predicts the performance of the

MN−1x operation (called AM−1x for simplicity) in ProjectX. Both the simulation and Pro-

jectX have the same memory-limited behavior. From Figure 3-1, it is clear that the basic

routine quickly hits a performance ceiling of around 1.5 GFLOPS. The Intel MKL surpasses

1.5 GFLOPS, but only for very large block sizes. In understanding why the complex and

9The total Jacobian size matters to the extent that large portions of it cannot fit in cache simultaneously;
e.g., a problem with a 6MB Jacobian will have a flop count that is several times larger than a problem with
a 600MB Jacobian.
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Equations p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
2D Interpolant 1 3 6 10 15 21
3D Interpolant 1 4 10 20 35 56
2D Euler 4/5 12/15 24/30 40/50 60/75 84/105
3D Euler 5/6 20/24 50/60 100/120 175/210 280/336
2D NS 4/5 12/15 24/30 40/50 60/75 84/105
3D NS 5/6 20/24 50/60 100/120 175/210 280/336
2D RANS-SA 5/6 15/18 30/36 50/60 75/90 105/126
3D RANS-SA 6/7 24/28 60/70 120/140 210/245 336/392

Table 3.9: Block sizes for the 2D and 3D Euler, Navier-Stokes (NS) and
RANS-SA equations. The notation in cells beyond the first two
rows is A/B, where A is the block-size without shock-capturing,
and B is the block-size with PDE-based shock-capturing[11]. The
first two rows show Nbf for 2D and 3D Lagrange basis functions
over simplexes. Since Nbf = 1 in the first column, this also indi-
cates Nsr for the given equation.

heavily optimized MKL code falls behind the compiler-optimized basic routine, the first step

is to examine the peak performance of the matrix-vector multiply routine in an environment

that is not memory bound.

As a comparison, Figure 3-2 plots the performance results for computing a sequence

of “isolated” matrix-vector products, y = y + Ax (note the lack of superscripts), with

x, y ∈ Rm and A ∈ Rm×m. Here, the working set is m2 + 2m. All problems fit entirely

within L2 cache; i.e., the workloads are not memory-bound. The maximum performance

is around 6 GFLOPS using an optimized BLAS implementation; this is near the maximum

possible performance for the processor used. The icc optimized “basic” routine performance

peaks around 3 GFLOPS. The basic routine lacks optimizations that improve memory access

patterns between cache levels and between cache and registers. Also absent are techniques

such as loop unrolling, prefetching, and simple offset array access, which are discussed in this

thesis. While sparse linear solvers do not operate in this regime, the residual and Jacobian

assembly processes do. Unfortunately, not all components of residual evaluation can be

written in terms of calls to optimized BLAS functions; but there is substantial room for

improvement over basic implementations.
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Figure 3-2: The maximum floating point throughput for “isolated” matrix-vector products.
The optimized BLAS (MKL) is faster than the basic implementation beyond m ≈ 10. This
case was run on a 3.0GHZ Intel Core 2 processor. The figure indicates that the best possible
floating point throughput for matrix-vector products is around 6 GFLOPS for this processor.
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In the isolated case, the MKL performance was about a factor of 2 better than the basic

routine, unlike in the memory-bound case shown in Figure 3-1. Compared to the isolated

case, the peak performance of the basic routine is about a factor of 2 worse than the memory

bound case; for the MKL implementation, the difference is more than a factor of 4. Even

without prior knowledge of how optimized BLAS implementations work, it should be clear

that the optimized BLAS code for a matrix-vector product performs much better when

the working set is not memory-bound. Unfortunately BLAS performance is potentially

lacking in memory-bound workloads, until the problem size becomes large enough. The

following discussion gives some insight into why Figure 3-1 appears as it does. However, the

discussion will remain at a high level, since the memory hierarchy (Chapter 4) and the CPU

(Appendix C) have not been discussed yet.

In addition to more common techniques like vectorization (Appendix E), loop unrolling

(Section C.2), software prefetching (Section 4.1), and several other optimizations), optimized

BLAS routines usually employ the blocking technique described in Section 4.1. For now,

know that the blocking technique reduces accesses to the vectors y(i) and x(i).10 However,

any matrix-vector algorithm must read all entries of A(i) from memory. Unfortunately the

blocking technique can do little to reduce this primary cost. On memory-bound workloads,

the BLAS optimizations which are helpful in Figure 3-2 are instead harmful to performance.

Many of these techniques incur execution overhead and increase the overall code size, leading

to slow-downs. As the problem size increases, the optimized BLAS performance grows. For

example, on larger problems, the absolute cost of re-reading y(i) and x(i) is larger. The

amount of computation grows like the square of problem-size, offsetting overhead (from

optimizations) that scale linearly.

For BLAS 1 and BLAS 2 (shown here) functions, optimized BLAS implementations

like the Intel MKL contain a great deal of heavily tuned code that give them unmatched

performance when the workload is not memory-bound. In such cases, the BLAS performance

degrades substantially due to the extra overhead in running optimizations that are doing little

to help. The basic routine is much simpler, and although its performance ceiling is lower,

the basic routine reaches that ceiling on much smaller problems.

10The basic routine given above reads all of y(i) m times and x(i) once.
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The story changes for BLAS 3 operations. Section 4.1 shows that when compared to

basic code, blocking asymptotically reduces the amount of communication between levels

of the memory hierarchy for a matrix-matrix product. Blocking on BLAS 1 and BLAS 2

routines will at best reduce communication by a constant factor. Thus, when comparing

BLAS to basic on computing C(i) = C(i) + A(i)B(i), expect the BLAS to outperform the

basic routine even for small matrices.

Note that the compiler (and BLAS implementation) is important. For example, the gcc

compiled version of the basic routine was generally at least 10% slower than icc’s result for

the same code. The ATLAS BLAS was often more than 40% slower than the MKL. Figure 3-3

displays the performance difference between different compilers (gcc and icc) and different

optimized-BLAS implementations (ATLAS and MKL), along with the importance of SSE

(vectorized) instructions.

Finally, as mentioned in the figure captions, these results were run on a (45nm) Core

2 Duo at 3.0GHZ, with 4GB of RAM. They were mostly compiled with icc version 11.1

and gcc version 4.4.3 where gcc was used. The results shown here are subject to change

on other CPUs and with other compiler versions. However, the point remains that there is

often overhead associated with using optimized BLAS libraries, and the regimes where BLAS

performance is not the best may be quite large. Testing (or auto-tuning) will be required to

determine the best settings for each hardware and compiler combination.
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Figure 3-3: The floating point throughput for the simulated Ax kernel in GMRES under
various compilers and optimizations. The code running is the y(i) = y(i)+A(i)x(i) computation
described at the beginning of this section.
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Chapter 4

The Memory Hierarchy

Currently, commodity computers typically possess a central processing unit (CPU) clocked

in the range of a few GHZ, a few gigabytes of random access memory (RAM), and a few

terabytes of hard disk (HD) space. The notion of a CPU that executes instructions and

RAM that stores both data and instructions is called the “Von Neumann Architecture”; it

revolutionized digital computer design in the 1940s.

More than twenty years ago, when the x86 family of architectures was created with the

Intel 8086, CPU and main memory speeds were roughly equal. In this case, the latency of

various arithmetic operations were roughly equal to those of memory accesses. At that time,

it was reasonable to account arithmetic operations and memory operations equally as one

unit. However, on modern CPUs, arithmetic and memory operations have similar cost only

when the data being manipulated is extremely small. Otherwise, that assumption is no longer

valid; in particular, memory operations far outweigh the cost of arithmetic computations–

especially in scientific computing applications. Reading and writing from RAM takes around

30 times longer than the time needed to multiply two double values.

In particular, as computer technology has developed, the rate of growth in CPU perfor-

mance has far outstripped the rate of growth in RAM performance.1 Specifically, since the

mid-1990s, CPU complexity has been growing at about 60% per year, compared to about

1More specifically, SRAM (Static RAM) has kept pace with CPU speeds, whereas DRAM (Dynamic
RAM) has not. SRAM is more or less what makes up CPU caches and DRAM makes up the main system
memory. However the latter is thousands of times cheaper to produce and power; hence its commonality.
Note that the common abbreviation SDRAM indicates Synchronous DRAM, not static.
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10% for DRAM[4]. As CPU speeds began to outstrip memory latency, designers realized a

need for faster methods to bridge the gap between the two, and CPU caches were born.

Originally, main memory served as a way of bypassing disk accesses. The most often used

data would be loaded from disk to memory once, and execution could continue without the

hindrance of communicating with the HD. As memory became too slow for constant access,

caches served to bridge the new gap. In fact, modern CPUs have as many as 3 levels of

cache. The smallest and fastest is enumerated L1 (highest), and the largest and slowest is

called L3 (lowest).2

In 1988, Aggarwal et al.[2] developed the External Memory Model, which attempts to

formalize the notion of a cache. The model only considers a two-level cache hierarchy; e.g., a

relatively small and fast cache linking the CPU to a chunk of relatively large and slow main

memory as shown in Figure 4-1. It only considers the cost of memory transfers and provides

a useful lower bound on performance scaling. Saving the details for later, know that the

External Memory Model can be applied between any adjacent cache levels (e.g., L1 and L2),

not just cache and main memory.

Figure 4-1: A simple 2 level cache hierarchy[20].

Still, many high-level details remain about how caches work and how programs interact

with them.

4.1 CPU Caches

Tables 4.1 to 4.3 list some important cache features of the latest processors. Note that the

latencies are empirically determined and vary by situation. This is particularly true of the

2In a sense, RAM could be considered to be L4 and the HD to be L5 cache.
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memory latencies, which vary widely with the type and speed of memory used along with the

current memory state.3 Memory manufacturers advertise their products with information

about latencies and bandwdith; see Appendix B for details.

Cache Type Size Line Size Set Asso-
ciativity

Latency
(CPU
cycles)

L1 Instruction inclusive,
per core

32KB 64B 8-way 3

L1 Data inclusive,
per core

32KB 64B 8-way 3

L2 inclusive,
per 2 cores

6MB 64B 24-way 15

RAM 64B ≈ 200

Table 4.1: Core 2 (Penryn) cache characteristics. Note that 2MB/4MB, 16-
way L2 caches also exist.

Cache Type Size Line Size Set Asso-
ciativity

Latency
(CPU
cycles)

L1 Instruction Non-
exclusive,
per core

32KB 64B 8-way 4

L1 Data inclusive,
per core

32KB 64B 8-way 4

L2 inclusive,
per core

256KB 64B 8-way 11

L3 inclusive,
per 4 cores

8MB 64B 16-way 38

RAM 64B ≈ 100

Table 4.2: Core i7 (Nehalem) cache characteristics.

The CPU has some number of registers4 that hold operands for use by the various execu-

tion units; e.g., add the integer in register rdx to the integer in rcx. If the operands are not

3Roughly speaking, a best-case of around 30ns and a worst-case of around 90ns is reasonable.
4The x86 standard specifies 8 integer registers (x86-64 expands that to 16), but modern CPUs have at

least a hundred, accessed indirectly through “register renaming”; see Section C.4
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Cache Type Size Line Size Set Asso-
ciativity

Latency
(CPU
cycles)

L1 Instruction exclusive,
per core

64KB 64B 2-way 3

L1 Data exclusive,
per core

64KB 64B 2-way 3

L2 exclusive,
per core

512KB 64B 16-way 12

L3 exclusive,
per 2, 4, or
6 cores

2-6MB 64B 32-way 40

RAM 64B ≈ 100

Table 4.3: AMD Phenom (K10) cache characteristics.

Figure 4-2: Conceptual diagram of the cache layout in Core i7 and AMD K10 processors[20].
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in registers, then the CPU must retrieve them from the memory hierarchy and the processor

may become stalled. That is, the execution must wait until the necessary data is retrieved.

To quantify the benefits of cache on execution time, consider computing the matrix-

vector product y = Ax 100 times, where A ∈ R100×100. Suppose that it takes about 200

cycles to read data from main memory and about 10 cycles to read data from L2 cache.

Without caching and ignoring accesses to y and x, about 2 × 109 cycles would be spent on

memory operations. But if A were sitting in L2 cache, that figure decreases to only about

1× 108 cycles: a 95% improvement. Considering that x87 or SSE2 floating point operations

take at most 5 cycles, it is clear that BLAS-1 and BLAS-2 operations are memory limited.

Justifying a 200 cycle wait period requires a fairly tremendous amount of computation (per

element loaded from memory), much more work than typically arises in scientific computing

applications.

In short, caches are meant to keep “certain data” in a place that is quickly accessible by

the CPU. Since interacting with cache and memory stalls CPU cycles, these reads and stores

should be performed as infrequently as possible or in parallel with arithmetic computations

so that time is not wasted waiting. A cache hit occurs when the CPU desires data already

in cache; oppositely if the data is not in cache (and must be loaded from RAM), it is called

a cache miss. In an ideal sense, “certain data” means that the cache should always have the

data that the CPU requires. Since the cache size is very small compared to the RAM size,

data will have to be loaded and evicted to keep the most relevant elements in cache.

Minimizing cache misses across all memory operations spanning the duration of the pro-

gram is a nearly impossible task. Solving the problem requires the CPU to possess some

oracle that knows all future program states without ever evaluating them; such an oracle

would know which data to load and which data to evict to minimize cache misses. Instead,

modern caches on x86 CPUs5 use a paging scheme called “Least Recently Used” (LRU) in

which the least recently used data are evicted to make space as new data are loaded into

cache. Unfortunately, in the worst case, LRU (and in fact, any online replacement scheme)

incurs a factor of k more misses than the magical oracle[64], where k is the number of cache

lines fitting in cache. However, LRU performs as well as possible without magic, and it

5e.g., ARM processors use pseudo-random replacement.
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works quite well in practice. Through a combination of aggressive prefetching by the CPU

and programmer awareness, it is possible (and always desirable) to avoid situations where

LRU is defeated by the oracle.

Data vs Instruction Cache

In Tables 4.1 to 4.3, two types of L1 caches are listed: L1d (L1 data) and L1i (L1 in-

struction).6 Data are the operands passed to arithmetic operations, function calls, etc.

Instructions are the operators; e.g., jump, load, store, add, multiply, xor, etc. The compiler

converts the C code to assembly, which has a one-to-one correspondence with binary machine

language. The binary language is loaded into RAM and executed by the CPU. Just as with

manipulating bytes of data in RAM, instructions being executed by the CPU also have to

be loaded into cache.

The L2 (and L3) caches contain both data and instructions. Modern CPUs separate them

at the L1 level because relatively small amounts of code can step through large amounts of

data (e.g., matrix-matrix product). Separating instructions and data avoids the immense

slow-downs that would occur if every instruction had to be fetched from RAM or even lower

cache levels.

In addition, some upcoming processors (e.g., Intel’s “Sandy Bridge” architecture) have

an additional cache(s) for instructions. Sandy Bridge uses a “L0” cache (sitting between the

L1i and the CPU) that caches recently executed µops.

Exclusivity and Shared-ness

The shared-ness of a cache indicates how many processing cores have direct access to all of

its contents. A non-shared cache can only be manipulated by a single core.7 But a shared

cache can be manipulated by several cores simultaneously. On modern CPUs, usually only

the lowest (i.e., L2 or L3) cache level is shared.

6Although the discussion of caching concerned only data thus far, nothing has been specifically tied to
the L1d; data simply meant any collection of bytes.

7In multicore environments, other cores can “see” non-shared caches, but they do not load or store
directly; see Section 4.2.
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Exclusivity concerns whether the various cache levels contain duplicate data. In an

exclusive cache system (used by AMD), each cache level duplicates no data in the other

cache levels. In an inclusive cache (used by Intel), all data in L1 is also in L2 and all data

in L2 is also in L3. (In all cases, cached bytes duplicate those in RAM.) Exclusive caches

increase the amount of cache available, but their implementation is more complex. The extra

complexity incurs additional costs in the form of increased latency, decreased associativity,

greater circuit complexity (costs more to manufacture and consumes more power), etc.

So for AMD processors, Figure 4-2 would be somewhat different. Specifically, the connec-

tions between L1d/L2, L1i/L2, and L2/L3 would be directed, only moving up the hierarchy;

and there would be an additional directed (read-only) edge between memory and the L1

caches.

Cache Lines

Caches are further sub-divided into cache lines. As shown above, most current CPUs use

a line size of 64 bytes. But this can range from 8B to 1024B. A cache line is the unit of

memory that the cache manipulates. Consider an array double A[1000], and then read

A[0]. If it is not already present, the L1 cache will load A[0] through A[7], supposing that

A[0] sits at the beginning of a cache line. Similarly, stores happen one line at a time. Again,

the atomic unit for all load and store operations between various cache levels and between

cache and RAM is the cache line.

The existence of cache-lines is a practical consideration. Although RAM is byte-addressable,

allowing cache to also be byte-addressable would increase the complexity (and thus cost) of

the circuitry in the CPU used to determine what addresses are currently in cache. As a

compromise, caches can only address blocks of memory at a time. Additionally, modern

RAM does not treat all accesses equally (see Appendix B); specifically, sequential accesses

are much faster. Having a cache line as the atomic memory unit encourages more sequential

operations.

Cache-lines have an important impact on algorithm design. In particular, since requesting

one double also loads the other 56B on that cache line, all of that data should be used
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as much as possible before loading another cache line. Using the previous example, A[0]

through A[7] should be processed before touching any other parts of the array A. Stepping

through data in a regular pattern is called strided access. Stride refers to the step size taken

between accesses; using a unit stride is also called sequential access. Within a cache-lines,

elements 0 through 7 may be processed in any order.

Without knowledge of lines, a programmer might always compute the matrix-vector

product y = Ax as a sequence of inner products between the rows of A and the vector x.

But if A is ordered column-major, the dot product version of Ax would require 8 times more

loads from RAM. The situation only worsens if A is not an array of doubles.

Drepper[20] has additional examples that demonstrate the substantial impacts of the

cache-line system on a Pentium 4 machine, which were obtained experimentally. In partic-

ular, suppose that the per-element cost of processing an array in stride is T . Processing an

element involved dereferencing a pointer with the address of the next element; in particular,

the processing cost is minute compared to the memory cost. Reading only one element per

cache-line costs as much as 5T ; skipping two lines at a time costs as much as 15T ; and

skipping four lines at a time costs as much as 32T . Here, at least accesses were still moving

forward in RAM; e.g., skipping two lines at a time means processing every 16th element

(in an array of double). The situation worsens significantly if elements are accessed at

(pseudo-)random: such an access pattern costs as much as 45T in Drepper’s experiment.

The worst cases occur when the working set exceeds the largest cache. When the working

set fits entirely in L1, the differences are comparatively small (factors of 2 or 3), but strided

access remains optimal. Again, given the design of cache-lines, reading and storing data in

stride is absolutely critical.8

Note that in an earlier example comparing working with cached and uncached data, the

line size was ignored. But it would give the same constant factor reduction to both cases, so

the conclusion remains unchanged.

8In addition to cache concerns, jumping over large chunks of address space can lead to additional problems;
see Section 4.3.1.
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Set Associativity

Ideally, any piece of data could go anywhere in cache. The problem then is that another,

equally large cache-like space would be required just to figure out whether the contents of

some memory address are in cache and a fast way of searching that table. This is impractical.

The solution used in modern CPUs involves limiting the number of cache positions that a

given line from RAM could possibly occupy.

As shown in Table 4.1 and Table 4.2, the L1D cache in a Core 2 or Core i7 processor is

organized into 512 lines, each of size 64 bytes. This cache is 8-way associative, so each 64

byte line in RAM can only be assigned to one of eight locations. Thus there are 512/8 = 64

unique sets in this L1D cache. Recall that on a 64-bit CPU running a 64-bit operating

system, memory addresses are 64-bits long. The first 6 bits (26 = 64) identify each of the

64 bytes in a cache line. The next 6 bits identify which L1D set a particular line falls into.

Thus cache lines that are integer multiples of 212 = 4096 bytes apart map into the same sets.

4096B is called the critical stride for an 8-way associative, 32KB cache. There are clearly an

enormous number (252) of 64-byte memory blocks that map into the same L1D cache line,

but there is space for only 8 of those 252. Finally, note that a 1-way associative cache is also

called direct-mapped; and a cache able to store any address at any cache location is called

ideal or fully-associative.

Since multiple sets of 64B in RAM map into the same cache lines, it is possible for a

8-way associative cache to incur many more misses than its fully-associative counterpart. In

the previous example, suppose 9 ints are accessed repeatedly, and they are each located

4096B apart from their nearest neighbors in RAM. Then every load will incur a cache miss.

In the ideal case, only the first 9 loads incur misses; then all 9 int are in cache. Misses

due to associativity are called conflict misses. Conflict misses greatly reduce the effective

cache size and must be avoided. They can be avoided by reordering data in memory and/or

working with data dimensions that are not high powers of 2; i.e., if the problem size is a

high power of 2, pad the data with extra zeros.

Agner[28] carefully examines a common example of conflict misses: computing AT in

place, where A ∈ Rm×m has type double. Table 4.4 states his timing results for various
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matrix sizes. Agner ran these experiments on a Pentium 4 processor.9 Note the timing

spikes occurring for matrices that are large powers of 2; these inefficiencies arise purely due

to conflict misses, dramatically demonstrating their danger. The slowdowns at m = 64 and

m = 128 are due to conflict misses in the L1d cache, whereas the slowdown at m = 512

is due to conflict misses in the L2 cache. Slowdown from conflict misses in the L1d cache

are less dramatic than L2 contentions due to hardware prefetching and the ability of out of

order execution to mask L1 misses.

Matrix Size Total Space (KB) Time per Element
(sec)

63×63 31 11.6
64×64 32 16.4
65×65 33 11.8
127×127 126 12.2
128×128 128 17.4
129×129 130 14.4
511×511 2040 38.7
512×512 2048 230.7
513×513 2056 38.1

Table 4.4: Time to transpose a m × m matrix for various values of m on
a Pentium 4[28]. This test demonstrates the impact of conflict
misses for problem sizes that are high powers of 2.

Processing Writes and Reads

The discussion of the previous sections covered the layout and characteristics of modern

CPU caches. The following describes the events that transpire when the CPU receives

instructions to write or read data (or instructions). The discussion will focus on inclusive

caches (currently found on Intel CPUs) in a single-core environment (see Section 4.2 for an

overview of the additional complexities involved).

The very first time the contents of a memory address are accessed, they must be loaded

into cache. This is called a cold or compulsory miss. Prefetching may be able to help (e.g.,

9The Pentium 4 has an 8KB, 4-way associative L1d cache and 512KB, 8-way associative L2 cache. The
critical stride for the L1d is 2KB and it is 64KB for the L2 cache.

68



if the data is being read in a regular pattern and the bus is not saturated), but in general

this cost is unavoidable. When the CPU loads X (more accurately, the entire cache line in

which X lives), if X is already in a register (or very recently stored), then nothing needs

to be done. Otherwise, the CPU will ask the L1d cache whether it has X. With a 16-way

associative L1d, the cache logic checks (in parallel) 16 locations for X. If X is present (a

cache hit), then the data is forwarded to the appropriate register, and the cache logic notes

that X has been recently used. If X misses in cache, then the query passes on to the L2

cache. Regardless of whether X misses or hits in the L1d, the L1d (for say a Core i7) takes 4

cycles to respond. The L2 performs the same check: if X hits, then the L2 passes X back to

the L1d (since the caches are inclusive); if X misses, then the query proceeds to L3 or main

memory. Once X passes back to the L1d, the L1d must find space (in one of 16 possible

slots) for X; thus some older data will be evicted.10 Loads of instructions work the same

way, except the highest cache level is the L1i. Note that misses in the instruction cache are

generally more expensive, since the CPU will have no work to do. Misses in the data cache

are potentially cheaper, since the CPU can execute instructions that do not depend on the

missed data (at least in the out-of-order model).

At a high level, stores are similar to loads, but a few important details remain. First,

before a store of X can occur, X must already be in cache.11 So a store operation can trigger

a load. On the surface, it may seem like a write miss is more expensive than a read miss.

However modern CPUs have a store buffer associated with the CPU’s execution units that

buffers all outgoing stores. Store buffers exist between registers and the first cache level, and

they can be conceptualized as a queue. It serves to increase efficiency in several ways. For

one, stores to the same address can be coalesced as long as they occur close to each other in

time. Additionally, load requests for data in the store buffer can be returned immediately,

bypassing interaction with the memory hierarchy. The store buffer also greatly aids the

performance of the out of order engine, since many memory operations are not reordered.

10Evict takes a different meaning for exclusive and inclusive caches. In the former case, eviction causes
the cache line to be sent down to the next cache level. With inclusive caches, the data moves nowhere since
it must already exist in lower cache levels, unless the cache line was modified in a write-back environment;
see next paragraph.

11With SSE instructions, there is an exception to this rule; see below.
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The cache line at the head of the store buffer will be written out when the cache is ready.

How the data is handled once it leaves the store buffer depends on the cache properties. The

two major options here are a write-through (WT) cache and a write-back (WB) cache. In a

WT cache, the write is reflected in the cache and immediately forwarded to the next-lowest

cache level. In a WB cache, the write is only reflected in that cache. The altered cache line

will only be reflected in the lower memory levels once the altered line is evicted. WB caches

are much faster, but they give rise to complex consistency issues. The latest Intel (Core 2,

Core i7) and AMD (K10) processors employ WB caches at all levels. Earlier processors (e.g.,

pre-Core 2 for Intel) employed WT L1 caches.

A large number of event counters exist for various cache events. For example, L1D REPL,

L1I MISSES, and L2 LINES IN are among the most commonly examined events on the Core 2.

Examine documentation carefully when using these counters. For example, L1D REPL counts

the number of cache lines loaded into the L1d, while MEM LOAD RETIRED.L1D LINE MISS

counts the number of misses to the L1d cache. Accesses to the same cache line in rapid

succession each count separately in the first event,while filling the missed cache line counts

only once in the second event.12 Additionally, the cache performance counters are not a

sufficient measurement on their own, particularly in the L1 cache. If cache misses are not

causing a significant delay, then removing them should not be a high priority. On the

Core 2, there are additional RESOURCE STALLS.* events for this purpose that measure the

number of stalled cycles due to various causes; the most important ones are RAT STALLS,

RESOURCE STALLS.ROB FULL, RESOURCE STALLS.RS FULL, and RESOURCE STALLS.LD ST. The

first three have to do with out of order execution (see Section C.4), and the last event

measures stalls resulting from the filling the load buffers, store buffers, or both. The last

event will also be discussed further in Section C.4, since these buffers exist largely to enable

out of order execution. Stalled cycles due to these three events, coupled with large numbers

of cache misses, indicate a memory-bound workload.

12Suppose that a program wants to read values from the same cache line 16 times in rapid succession; e.g.,
reading all 16 (32-bit) integers on a cache line. If the desired line is in memory, then potentially all 16 reads
will miss, since loading a line from memory has high latency. Then MEM LOAD RETIRED.L1D LINE MISS is
incremented by 16, whereas L1D REPL is only incremented by 1 when the desired line is loaded into memory.
Alternatively, if the desired line is in L2 cache and only 4 read attempts occur before that line is loaded,
then the first event increments by 4 while the latter still increments by 1.
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It also is worth noting that non-cached writes (MOVNTI, MOVNTQ, MOVNTPS, MOVNTPD,

MOVNTDQ, which write various sizes of data directly to RAM without invoking the cache)

exist via SSE instructions.13 As a rule of thumb, non-cached writes should only be used

when the data exceeds roughly 1
2

of the largest cache level[68, 29]. Cache-limited reads

(PREFETCHNTA, PREFETCH Non-Temporal Access, meaning that data prefetched with this

method will be given the highest priority for eviction by the LRU scheme) are also available

through the SSE instruction set.

Prefetching

Prefetching is broken into two categories: hardware and software. Hardware prefetching

is handled automatically by the CPU, which can and will prefetch both instructions and

data. Software prefetching comes in the form of specific assembly instructions issued by the

compiler or the programmer, requesting14 that the CPU prefetch data; programmers and

compilers have no way of prefetching instructions. The following discussion focuses only on

data prefetching; hardware instruction prefetch is handled later in Section C.3.

Hardware prefetching is triggered by specific events. When cache misses occur and the

CPU thinks it can predict upcoming misses, prefetching is initiated. Usually, 2 or more cache

misses following a recognized pattern will start prefetching[20]. Hardware prefetching tech-

nology remained mostly the same between the Core 2 and Core i7 processors and represent

the current industry best practices, so details are only provided for the prefetch mechanism

in those two CPUs. Substantial changes are upcoming in Intel’s Sandy Bridge and AMD’s

Bulldozer architectures, but details are not yet available.

Prefetchers are able to automatically prefetch several data streams with different strides

for all cache levels[20, 27]. The lower cache levels generally have more advanced prefetching

mechanisms, since misses are more costly. Strides can involve both stepping forward and

backward through memory. Strides can also be non-unit as long as they are constant; e.g.,

13The non-cached write instructions do not interact with the previously discussed store buffer. Instead,
some CPUs have a write-combining buffer to coalesce uncacheable writes; the existence and function of these
buffers is highly CPU dependent[39, 5].

14The CPU may ignore software prefetch commands.
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reading every 19th byte.15 Streams correspond to memory accesses due to reading or writing

from different regions of RAM; e.g., in computing y = Ax, three streams are involved.

Hardware prefetch also has a few potential disadvantages[36]. A few cache misses are

needed before prefetching starts, reducing efficiency; this is more problematic for very short

data. Prefetching will also continue past the end array boundaries, causing superfluous loads

that unnecessarily burden the cache system. Lastly, another potentially substantial weakness

of hardware prefetching is that it cannot cross page boundaries.16

Table 4.5 lists and describes currently available prefetch commands.

Name Purpose Amount of Data
Moved

MOV Move data into a register (which
forces the data into cache as well).

1 cache line

PREFETCHT0,
PREFETCHT1,
PREFETCHT2

Architecture dependent; usually
prefetches data into the largest
cache

1-2 cache lines

PREFETCHNTA Prefetch data into L2 cache with
no intent to reuse it

1-2 cache lines

PREFETCHW (AMD
only)

Prefetch data into L2 cache with
intent to modify it

1-2 cache lines

Table 4.5: The various prefetch assembly commands available on current x86
CPUs. Note that MOV is the assembly command for loading and
storing data; it is not explicitly a prefetch command. Unlike the
other PREFETCH* commands, MOV cannot be ignored by the CPU.

As a rule of thumb, prefetch data that will be used in computations about 200 cycles17

in the future[29]. AMD suggests an alternate rule: prefetching 6 to 8 cache lines ahead[68].

Additionally, be careful not to prefetch multiple data that would be loaded onto the same

cache line, which would cause superfluous conflict misses. However, these are only general

guidelines,18 and any kind of manual software prefetching will require extensive testing to

15While the prefetch mechanism can recognize non-unit strides, efficiency is lost by not utilizing all data
on a cache line.

16Page boundaries, the TLB, and the virtual memory system are described in Section 4.3.1.
17More specifically, approximately the latency of a cache miss in the lowest cache level.
18Predicting exactly how and when the CPU will require certain data is virtually impossible due to out of

order execution; see Section C.4.
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maximize performance. Additionally, code with software prefetching optimized for a certain

architecture is unlikely to be successful on a different architecture.

Note that the improper use of prefetch commands will likely hurt performance. Prefetch-

ing data too late (i.e., prefetching data already in cache) wastes instructions performing null

operations. Prefetching data too early could evict presently useful data from cache, leading

to extra capacity or conflict misses. In general, automatic hardware prefeteching coupled

with compiler-issued software prefetches are generally sufficiently strong for programmers to

simply rely on them; i.e., manually issuing prefetch commands is usually unnecessary. But

when the program’s memory access pattern is irregular (either temporally or spatially), soft-

ware prefetch can lead to performance improvements. Irregular spatial patterns occur when

accessing array elements with non-constant stride; e.g., navigating an array-backed heap.

Irregular temporal access occurs (for example) when indirect addressing and/or additional

array accesses are required to find the position and size of a matrix block before performing

a matrix product. While the CPU is computing these quantities, the hardware prefetcher

will not realize that the block matrix entries are needed for the upcoming matrix product.

Thus, prefetching the first several columns of the matrix (for smaller block sizes) will prevent

processor stalls when the matrix product is initiated and the data is unavailable.19 Lastly,

unlike hardware prefetch, software prefetch can cross page boundaries; but neither type may

cause a page fault.

CPU event counters are additionally useful for evaluating the performance of software and

hardware prefetching. For example, SSE PRE EXEC.NTA and SSE PRE MISS.NTA describe the

number of PREFETCHNTA commands executed and the number of commands fetching useful

lines, respectively; LOAD HIT PRE describes the number of useless PREFETCHNTA commands–

they fetched already-cached data. A large number of unneeded prefetch commands corre-

sponds to either hardware prefetching misinterpreting access patterns or improper use of

software prefetches. In the former case, access patterns should be changed to prevent mis-

prediction; in the latter case, the use of software prefetch should be re-examined.

19The effect is reduced for larger block sizes, since the potential stall at the start of matrix operations
(which is avoided by prefetching) becomes a negligible portion of the overall execution time.
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Cache Performance: Locality

Revisiting cache-lines, code that loads a cache-line, processes all the data in that line, and

never revisits it again is said to have good temporal locality and spatial locality. Unfortu-

nately, it is not always possible to produce both of these properties. Temporal locality is

the notion that some data (or instructions) are (re-)used for several operations that are very

close in time. Spatial locality is the corresponding idea in address space; e.g., A[0] and A[1]

are processed together (as opposed to A[0] and A[1000]).

Locality is extremely important in maintaining good cache performance. In particular,

having good temporal and spatial locality means that the cache will nearly always have the

data required for computation available. The performance of the LRU replacement scheme

will be nearly optimal. Since data (and instructions) are readily available in cache, very

little time will be wasted waiting for loads or stores to complete.

It is easy to see that Drepper’s non-unit strided and random array access examples lack

both spatial and temporal locality; hence their relative inefficiency. Additionally, linked lists,

trees, and other pointer-based data structures typically have relatively poor locality.20 Code

with poor spatial and temporal locality will have numerous capacity misses. Capacity misses

occur when an element that is needed now was evicted earlier because too much additional

data has passed through the cache since the initial load. The program has effectively bitten

off more than it can chew, and if possible, code should be re-organized to operate on a

smaller set of data so that misses do not occur. Oftentimes, having redundant computation

is a worthwhile trade-off for reducing the working set size; profiling should be used to evaluate

the trade.

Matrix-matrix multiply is another classic example of the benefits of spatial and temporal

locality[28]. Consider the problem of computing C = AB + C, where A,B,C ∈ Rm×m.

Assuming that row-major ordering is used, a basic implementation follows:

for(i=0; i<m; i++){

for(j=0; j<m; j++){

20Except when the heap is managed manually, i.e., all nodes are allocated in a contiguous chunk. This is
particularly helpful for linked lists or breadth-first type tree operations.
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for(k=0; k<m; k++){

C[i*m + j] += A[i*m + k]*B[k*m + j];

}

}

}

Accesses to the output C have good temporal and spatial locality. The spatial aspect for C

is not that significant, especially when m is large: then the cost of accessing m elements of

A and B for the inner product heavily outweigh the cost of accessing one element of C. But

the temporal locality is helpful: in the inner-most loop, only one element of C is accessed.

A is also accessed in stride. In the inner-most loop, adjacent entries of A are used one after

the other, giving it good spatial locality.21 However, B has no locality.

Giving B the same locality as A is achieved by transposing B before executing the mul-

tiply. This leads to about a 4x speedup on a 3.0GHZ Core 2 on a matrix of 1024×1024

double. But there is still plenty of room for improvement, even when only taking cache

considerations into account. Currently, for each row of A, every element of B is accessed.

If the matrices are very large, the act of accessing B causes capacity misses in all memory

operations, nullifying the benefit of caching. To restore locality, a technique called block-

ing is applicable. Blocking to improve cache efficiency is a well-known and well-analyzed

technique in the scientific computing community; for example, see [45]. Proceeding, divide

the matrices into submatrices such that roughly three such blocks (one from each of A,B,C)

fit in cache simultaneously. Determination of the exact block size requires experimentation.

Then perform the block-matrix product.22 Now, cache misses only occur when a new block

is fetched. Blocking leads to another factor of 3-4x improvement, and it is one of the most

important features of the BLAS.

The code below gives a sample implementation of the blocked matrix multiply algorithm

when working with square matrices of size m. Note that this code is only meant to illustrate

21For smaller values of m, A also has some temporal locality since the entire matrix B is navigated before
a new row of A is read.

22For the purposes of cache analysis, any matrix product algorithm will suffice for computing the product
of blocksḢowever, for performance, additional techniques such as loop unrolling, vectorization via SSE
instructions, and register-blocking are needed.
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ideas; it is neither general nor optimal, and it should not be applied directly. The idea of

the algorithm is to divide m × m matrices into Nb × Nb blocks, each of size b × b. Then

carry out the basic matrix-matrix product routine, multiplying one block-row of A by one

block-column of B at a time.

for (j = 0; j < m; j += BLOCK){

for (k = 0; k < m; k += BLOCK){

for (i = 0; i < m; i+=BLOCK){

for (ii = i; ii < i+BLOCK; ii++){

for (jj = j; jj < j+BLOCK; jj++){

for (kk = k; kk < k+BLOCK; kk++){

C[ii*m+jj] += A[ii*m+kk]*B[jj*m+kk];

}

}

}

}

}

}

Here, A is taken in row-major order and B in column-major; if this is not the case, then

transpose B, as mentioned above. Note that it is assumed that m is a multiple of BLOCK.

While this assumption may be valid if the code runs on very specifically sized matrices, m is

generally not a multiple of BLOCK. When this happens, the division of matrices into blocks

leaves several “fringes” that are of size p × q, where p, q <BLOCK. Special care is required to

handle the fringes efficiently.23 Additionally, BLOCK is left unspecified. The choice of BLOCK

depends on what level of cache the blocks should fit in, which depends on typical problem

sizes and performance bottlenecks of particular cases. In general, matrices can be blocked

for registers, L1, L2, or any level of the memory hierarchy. Fast matrix-matrix product

implementations (e.g., BLAS) use nested blocking, covering all levels of the hierarchy.

23For example, one common optimization is to identify common fringe sizes and write specialized code to
handle them quickly. See open source, optimized BLAS implementations like the Goto BLAS for state-of-
the-art examples.
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The external memory model provides a nice framework for analyzing the amount of

memory transfers required for these three matrix-matrix product methods. The results are

summarized below:

• Basic: Θ(m(m(m/sL + m))) = Θ(m3

sL
+ m3)

• Transposing B: Θ(m(2m2/sL)) = Θ(2m3

sL
)

• Blocked: Θ( 2m3

sL
√

sC
)

Here, sC is the cache size and sL is the cache line size. The amount of memory communication

for the first two routines is straightforward; the argument for the blocked routine follows.

In the blocked routine, each block of A and each block of B is read N3
b times; recall that

Nb = m
b
.24 A and B are accessed in stride, so these blocks cost b2

sL
each. The overall cost is

then 2N3
b

b2

sL
= 2m3

bsL
. The block size, b, is chosen so that b2 = Θ(sC), giving Θ( 2m3

sCsL
) overall.

Note that all three algorithms incur an additional O(2m2

sL
) for reading and writing the output

matrix, C.

Note that by a theorem of Hong and Kung[41] (later strengthened by Irony et al.v[40]),

the blocked matrix product is optimal in the sense than any data reordering cannot obtain

better than an O(
√

sC) speedup over the basic routine.25 These results only apply to matrix

multiply methods requiring Θ(m3) flops; they do not apply to o(m3) methods like Strassen’s

or Coppersmith and Winograd. The extension to o(m3) flops methods is an open problem.

Lastly, note that cache-oblivious matrix multiply algorithms26 exist, but their performance

is worse than optimized BLAS routines primarily due to an inability to effectively prefetch.

24If b does not divide m, then ⌈m
b
⌉ captures (but overestimates) the work required for the fringes.

25Here, “basic routine” refers to any algorithm that computes Ci,j as a sum of products Ai,kBk,j .
26A cache-oblivious algorithm is one that takes advantage of the memory hierarchy without knowing any of

its characteristics. Cache-oblivious algorithms are effectively self-tuning, and the same code would perform
reasonably on many architectures. Contrast this with BLAS routines, which involve heavy optimization based
on the exact size and latency of the cache system. These characteristics must be determined beforehand,
requiring different BLAS implementations for each target architecture.
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4.2 A Note about Multicore CPUs

In multicore (or more generally, multithreaded), shared memory environments, the issue of

cache efficiency becomes even more muddied. In multicore, shared memory environments,

many processing cores can read and write from the same block of memory concurrently. The

matter is complicated further by the fact that modern CPUs reorder memory reads and

writes (see Section C.4). Cache coherency becomes a significant issue; e.g., if core 0 writes

to address X and core 1 reads from X immediately after, what value will core 1 read? A

formal definition can be found in[33]; in short, coherency refers to the notion that as soon

as a write is issued, all copies of that data immediately reflect the update. When core 0

writes to X (in cache), it makes that cache line dirty ; the cache line remains dirty until it is

written back to memory.

Cache coherency is an issue on modern CPUs for two main reasons: 1) the use of WB

caches; and 2) the existence of load and store buffers between registers and the first cache

level. In both cases, buffering is the issue: a dirty cache line is not written out to the

next level of the memory hierarchy until it is evicted (either from cache or from a buffer).

Thus cores can easily lose coherency from being unable to see the latest memory state.

Disabling these performance-enhancing features is one possibility, but an undesirable one

in most situations. Instead, processor manufacturers have chosen to weaken consistency

models and add assembly instructions that locally strengthen consistency at the request of

the programmer.

Handling cache concurrency issues is a topic of active research, but all current x86 imple-

mentations follow the MESI (Modified, Exclusive, Shared, Invalid) protocol[39, 5]). However,

as previously discussed, some parts of the load and store process exist outside of the cache

hiearchy–load and store buffers in particular. Thus MESI (and other cache coherency pro-

tocols) only guarantee the coherency of data once that data has entered cache. Before this

point, processor consistency defines the correct behavior. Below, the discussion proceeds to

MESI first and then introduces processor consistency. Following the MESI protocol allows

us to solve the first issue; the hardware implementation allows cores to snoop other cores’
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caches for data of interest.27

As shown in Figure 4-3, the MESI protocol defines four possible states for a line of

cache[20, 39] in each core:

• Modified: The line is dirty; it only exists in the local core’s cache.

• Exclusive: The line is clean; it only exists in the local core’s cache.

• Shared: This line is clean; it may exist in other cores.

• Invalid: This line cannot be read, since its value is invalid; i.e., the value does not

match the most recent update by another core.

Figure 4-3 also denotes the possible state transitions.28 Local read and write transitions

denote when the local core reads or writes X; remote reads and writes denote when some

other core reads or writes X. The cores maintain the correct states by snooping other cores’

cache activities. Snooping involves directly monitoring other cores’ accesses to cache lines

held by the local core.

Figure 4-3: The states of the MESI Protocol[20].

Under the MESI protocol, it is possible to generate many more cache misses (called

sharing misses) than an equivalent sequential program would incur. That is, some state

transitions trigger cache fills, which may unnecessarily load the memory system. For exam-

ple, if core 0 has cache line X in the modified state and core 1 attempts to read X (not

27In caches that write-through to main memory, MESI is not necessary.
28One transition is omitted. If a modified line is written out to RAM (e.g., due to eviction), then that line

becomes exclusive.
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in core 1’s cache), then core 0 must send X to core 1 (X is also written to memory). In

particular, core 1’s actions put extra load on core 0. If core 0 has line X in the shared state

and modifies X, then all other cores currently caching X must invalidate their versions; and

core 0’s version becomes modified. Thus if one such core wants to access X, even though

X is already in cache, a long wait will occur wherein X must be transferred from core 0 to

the local core. As with single core cache misses, CPUs also have performance counters for

sharing misses, e.g., L1D CACHE LOCK.MESI and CMP SNOOP on the Core 2.

Multicore x86 CPUs follow the (weak) processor consistency model. This model is much

weaker than strict or sequential consistency (detailed below), which are more intuitive. Strict

consistency occurs when reading address X fetches the result of the most recent write to

X[1]. Strict consistency is a very strong requirement. But the value in X after a write occurs

is irrelevant until the next read of X. Sequential consistency captures this notion by slightly

weakening strict consistency: it allows reads and writes to occur in any order, as long as

(serialized) operations occur in program order [1]. Program order is the order implied by the

code–it is the ordering of instructions resulting from executing code sequentially, one line at

a time. Returning to processor consistency, under that model, a sequence writes done by

core 0 are received by all other cores in that same order, but different cores may see writes

from other cores in different orders. Specifically, if core 0 writes out A,B,C, then no other

core will receive that data in a different order (e.g., C,A,B); all cores will receive the data

in the order A,B,C. However if core 0 writes A,B,C and core 1 writes D,E,F, then core 2

may see D,A,B,E,C,F while core 3 sees A,B,D,E,F,C. This is often drastically different from

sequential consistency.

Programmers often desire sequential consistency, which they can achieve with additional

tools, at the cost of performance. Specifically, the assembly commands LFENCE, SFENCE, and

MFENCE are available in the x86 instruction set; they force the serialization of code, giving

programmers more control over the sequence in which memory loads and stores occur.29 In

particular, the fence commands force all load and store buffers to flush, bring out of order

operations back into program order, and generally serialize execution. So after fencing on all

threads, every process will see the same memory state. As a result, these commands should

29For readers familiar with MPI, these operations are analogous to barriers.
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be issued sparingly as they hinder processor performance. Another possibility under various

multithreading models (e.g., POSIX) is the use of locks, which only allow one thread to have

write access for the duration of the lock. Locks also lead to performance losses and add the

additional danger of race conditions. A better approach is to side-step (when possible) the

consistency issue by disallowing cores from manipulating the same blocks of memory in a

temporally close manner.

The example in Table 4.6 provides a somewhat unsatisfying answer to the question posed

in the beginning of this section. That is, if two cores are reading and writing from the same

location in memory, what behavior results?

Proc 0 Proc 1
Store X <- 1 Store Y <- 2
Load Y Load X
Y: 0 or 2 X: 0 or 1

Table 4.6: Assuming X and Y are 0 initially, the processor consistency model
used in x86 multicore, shared memory environments leaves the
value of Y on Proc 0 and the value of X on Proc 1 indeterminate.

4.3 Paging and Virtual Memory

So far, our discussion has focused on how data (and instructions) pass into and out of the

memory system when the CPU makes various requests. The working model has revolved

around accessing a specific, physical memory address X (and its associated cache line).

However, at least in modern commodity computers (i.e., Intel or AMD machines running

Microsoft Windows or Linux/Unix variants), there is another layer of abstraction above

physical memory addresses: the virtual address space. Allocating memory to processes in

physical space is restrictive; it would be difficult for modern computers to run so many pro-

cesses simultaneously, because every process would require its own unique block of memory.

The advantages of a virtual memory system are not particularly relevant, but its presence

adds another layer of complexity to the cache model explained thus far.

81



Virtual memory allows programs to be designed as if they have sole access to a single,

contiguous block of memory. Additionally, “memory” is some abstract hardware device–

it may involve several components or only one, but the program should remain unaware.

At least for functionality, programs need not worry about whether its assigned block is

in memory or somewhere (paged out) on the hard disk, or on some other storage device

entirely.30 As a result, the OS does not allocate physical memory space to the processes

running on it.31 Instead, the OS works with a virtual address space.32

For example, the function malloc works with virtual memory. At initialization, it asks

the OS for some pages of (virtual) memory (e.g., via the sbrk or morecore system calls)

that span enough space to fill the initial request. It then keeps a pool of various unused

memory chunk sizes so that future requests can be placed into as small a space as possible

(in a greedy attempt to minimize fragmentation), as quickly as possible. If no pooled space

is large enough for the current request, the OS is prompted to grow the segment allotted to

the current process.

The implementation of virtual memory is something of a cooperative effort between hard-

ware (CPU) and software (operating system). In particular, on the hardware side, modern

CPUs have a memory management unit whose sole purpose is to deal with virtual memory;

i.e., virtual to physical address translation, cache control, memory protection, etc. As a

matter of practicality and performance, almost all current virtual memory implementations

divide the virtual address space into pages. Pages are the atomic unit of memory for the OS.

Programs requesting memory space can only receive in page-sized chunks; even if only 10

bytes are needed, the OS allocates an entire page. In the x86-64 architecture, standard pages

span a 4KB address space. 2MB pages are also available on all x86-64 processors; AMD’s

latest CPU (K10) additionally supports 1GB pages; see Table 4.7.33 The OS maintains a

30Of course for performance, the location of the current working set in the memory hierarchy is important.
31Some segments of memory are allocated directly in physical space; these are usually low level processes

fundamental to the operation of the OS. For example, page tables, certain data buffers, certain drivers,
interrupt handlers, etc. cannot be paged out.

32The size of the virtual space is usually the size of the available DRAM combined with any additional
page-file space allowed on hard disks or other storage media. This additional space is referred to as the page
file.

33Some more specialized processors and operating systems, like those found in certain supercomputers,
support page sizes in the range of 16GB or larger.
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set of page tables that provide the mapping from virtual to physical addresses, if the virtual

address corresponds to data that is currently in RAM. If not, then the page table contains a

flag indicating that this virtual page is paged out of RAM; e.g., it is currently on stored on

the hard disk.

Virtual addresses can be conceptualized into two parts: 1) page table information; 2)

physical address offset. When the CPU decodes an instruction requiring it to manipulate

some data in memory, the MMU uses the page table information along with the page tables

to identify which memory page owns a particular virtual address along with the base physical

address of that page. The offset is then added to the base page address to find the physical

address of a virtual address. The structure of the page tables is quite complex, but the

details are not important here. Drepper[20] provides a more complete description.

The process is different if the desired virtual page is not currently in physical RAM. In

this scenario, a page-fault exception occurs; these are costly events that completely interrupt

current execution and then prompt the OS to locate the desired virtual page in the page file

and load it into main memory. Usually, bringing a faulted page into memory will page out

another page of memory to the page file.34

The page tables are always held in a known location in physical RAM. The CPU has a

special register (set by the OS) that stores the base address of the page tables. Given all the

effort made to cache memory values for faster access, it would make little sense if translating

a virtual address always required accessing the page tables in main memory. The problem

is worsened because page tables are typically several levels deep, requiring multiple memory

accesses to complete the translation. Additionally, a nontrivial amount of computation is

required to perform the address translation, even if the entire page table were in fast cache.

The solution to this issue is the Translation Lookaside Buffer (TLB).

4.3.1 The Translation Lookaside Buffer

The TLB is a special cache that holds a small subset of precomputed virtual to physical

address translations relevant to the latest memory operations. As with CPU caches, TLBs are

34The memory-bound workloads found in most scientific computing applications must avoid page faults
at all costs.
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often divided into instruction and data buffers: ITLB and DTLB. The TLB is implemented

as content-addressable memory (CAM). Given an address, RAM will quickly return the data

located there. Given a word of data, CAM will quickly return the address(es) where the data

were found; additional values associated with the search key may also be returned. CAM

is even more expensive to implement and use than CPU caches, so TLB space on modern

CPUs is very limited. Table 4.7 summarizes TLB sizes for the latest Intel and AMD CPUs.

The layout of the TLB differs from processor to processor; modern CPUs often have different

TLBs for instructions and data, just as in the memory hierarchy. Generally, TLB misses

on commodity CPUs incur latencies that are somewhat worse than those associated with

L2 cache misses. When a TLB miss occurs, the CPU accesses all page table levels in main

memory and computes the address translation. The newly computed translation is cached

in the TLB, evicting some older translation. Due to this expense, L1 caches are usually

physically addressed; i.e., they work directly with physical memory addresses. Larger caches

tend to be virtually addressed as a practical measure.

Cache Entries
(4KB/2MB)

Set Asso-
ciativity

Core 2
L1 Data TLB35 16/16 4-way
L2 Data TLB 256/32 4-way
Inst. TLB 128/8 4-way
Core i7
L1 Data TLB 64/32 4-way
L1 Inst. TLB 64/7 full
L2 Unified TLB 512/0 4-way
AMD K10
L1 Data TLB 48/48 full
L1 Inst. TLB 32/16 full
L2 Data TLB 512/128 4-way
L2 Inst. TLB 512/0 4-way

Table 4.7: TLB characteristics for the Intel Core 2 and Core i7 and the AMD
K10 architectures. Note that the number of entries are listed as
A/B, where A is the number of entries using 4KB pages and B is
the number of entries with 2MB pages. AMD K10 also supports
1GB pages, which are not listed here.
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Table 4.7 lists several different page sizes: 4KB and 2MB.36 Currently, 4KB pages are

the default in commodity operating systems. The 2MB alternative are often referred to as

“huge pages.” However, here the default choice is not always the best choice. Consider the

Core 2 DTLB: it has 256 entries in 4KB mode and 32 in 2MB mode. In standard mode, the

DTLB spans 1MB of data; in huge mode, it spans 64MB of data. 1MB is smaller than the

L2 cache on Core 2 processors. Thus, even if the working set is 4MB (so it fits entirely in

L2 cache), DTLB misses will occur. For example, if a program steps sequentially over all

4MB of data, 0 L2 cache misses occur, but 1024 TLB misses occur. If the data spans several

GB (as would the Jacobian matrix on large simulations), the situation only worsens. Using

2MB pages, the number of TLB misses decreases by a factor of 64.

Why are 2MB pages so uncommon? First, making all pages 2MB in size is not practical.

Many processes do not require more than a few KB of RAM; allocating 2MB to each of these

would be wasteful. For scientific computing applications, this is a non-issue: wasting an extra

2MB is hardly a concern when the working set is measured with GB. Additionally, the 4KB

size is a long-standing standard. As a result, both CPU and OS support for 2MB pages is

currently sub-optimal; but both are improving. On the CPU side, TLB sizes are increasing,

especially in huge mode. On the OS side (at least in Linux), recent conferences have been

discussing operation with multiple page sizes simultaneously; the OS would automatically

determine which page size is appropriate depending on the size of memory requested[47].

Unfortunately, currently huge pages are somewhat awkward to use in Linux. They must

be allocated beforehand through kernel commands. Once allocated, only programs written

to use huge pages can access those regions of memory. Resources do exist on huge page

interfaces and administration in Linux environments; see [32] for a recent guide. Even with

these tools, finding several hundred MB or a few GB of contiguous physical memory is difficult

once memory has become fragmented, requiring that large sets of huge pages be allocated

immediately after boot. Furthermore, memory allocated with huge pages is unavailable for

use by the rest of the system.37 On the implementation side, huge pages are not allocated

36These are relevant to x86-64 environments. In 32 bit mode, the page size options are 4KB and 4MB.
37This should not be an issue for users running large simulations, since nominally the simulation is the

only major program running.
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through familiar calls to malloc. Instead they are accessed with either mmap or shmget,

depending on the huge page interface chosen. In short, using huge pages may not be as easy

as using 4KB pages. But the performance benefits are often worthwhile in environments

accessing large amounts of data, particularly if those accesses are not in stride.

Some libraries exist to simplify the use of huge pages. The library libhugetlbfs [48] in

particular can make huge pages much more user-friendly. This library includes functions that

allow programmers to allocate data on pages of varying size (depending on hardware and

OS support) without having to interact with functions like mmap directly. The library can

also make malloc use huge pages by overriding the morecore (also known as sbrk) function

via the LD PRELOAD environment variable. That is, all dynamically allocated memory will be

allocated through huge pages; statically allocated memory can also be allocated through huge

pages by linking against other libhugetlbfs components. Finally, libhugetlbfs includes

system tools that simplify the setup and administration of huge pages.

Milfeld[52] provides data on the improvement of 2MB pages (over 4KB) in a simple test

environment (strided array access). No misses with 2MB pages are seen over a wider range

(due to the larger span), and once TLB misses occur, the maximum latency is 15% to 30%

less (depending on the architecture). Gorman[32] provides some benchmark data on the

IBM PowerPC architecture, showing the superiority of 2MB pages over a set of benchmarks

(mostly some variation on strided array access) for various working sets. Several authors

have also examined TLB performance on more real-world applications. McCurdy[51] studies

the effect of page size on various scientific computing oriented benchmarks as well as some

real-world applications of interest to them. Their results are older, run on the AMD K8

architecture,38 but still show 2MB pages outperforming 4KB pages by as much as 60%

in overall runtime (in the worst case, 2MB and 4KB pages performed equally). Oppe[58]

examined 4KB versus 2MB pages on supercomputing applications (run on a Cray XT5,

which uses the AMD K10). Results varied by compiler, but across 256 to 1280 processor

runs, 2MB pages were 10% faster on average.

There is a fair amount of data supporting the use of 2MB pages for many scientific

computing applications. Figure 4-4 estimates the effect on the linear solver aspect of DG

38The AMD K8 had only an 8 entry DTLB for 2MB pages; this is very small.
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codes. The figure uses the same test code as Figure 3-1 in Section 3.5, except that now

the 1GB block of memory is allocated using 2MB pages. The huge pages produced more

than a 15% flops improvement in the best case. Figure 4-5 shows the relative performance

improvement from using huge pages on smaller block sizes.

2MB pages are the most effective when matrix blocks occupy much less than 4KB of space,

as shown in Figure 4-5. 4KB corresponds to a block size of about 22. A TLB miss occurs at

least once for every unique 4KB of data read from memory. TLB misses are minimized if the

data is read sequentially. Thus, when accesses are random (as in Figure 4-4), it often occurs

that one access is separated from the next access by more than 4KB. For small blocks, less

than 4KB of data is read, thereby increasing the relative impact of TLB misses.

Finally, note that the page size choice also affects the effectiveness of hardware prefetch-

ing. As mentioned in the discussion about prefetching, hardware prefetchers cannot cross

page boundaries.39 It is required that a cold miss occur in the new page region before hard-

ware prefetching may continue, even if the CPU would have otherwise known to prefetch

data. As a result, using huge pages has an added benefit in that hardware prefetching will

become more effective. In future processor designs, the limitations on prefetching across

page boundaries may be lifted; this is currently a topic of research[3]. Lastly, if huge pages

become more prevalent, a corresponding improvement in hardware prefetching will occur.

Currently, hardware prefetching is somewhat limited in complexity because it designed to

perform best in small, less than 4KB environments[20].

39The reason has to do with the design of virtual memory systems, but it is unimportant here. See [20]
for details.
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Figure 4-4: A demonstration of the potential gains possible when using huge pages (2MB)
on a sequence of matrix-vector multiplies, where the data spans 1GB. The cases shown are
running the same setup as in Figure 3-1. The 4KB data are the same as the data plotted in
Figure 3-1; the 2MB data are new, demonstrating the benefits of huge pages. For very small
blocks, huge pages show more than a 70% improvement (see Figure 4-5). For larger blocks,
5% is more reasonable for the Intel BLAS and 2% for the basic implementation. Note that
on newer Intel and AMD processors (designed with larger data sets in mind, e.g., in server
environments) supporting larger TLBs in huge page mode, the performance difference may
be even more substantial.
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Figure 4-5: The relative performance difference between 4KB and 2MB pages. The data is
taken from the “simulated” Ax results shown in Figure 4-4. Only block sizes up to 150 are
shown to emphasize the improvements for smaller blocks. For larger blocks (not shown), the
Intel BLAS performs around 3% to 6% better with huge pages. The basic implementation
performs 0% to 2% better for the larger block sizes, except at size 512 where the large
performance loss can be seen in Figure 4-4. Thus the Intel BLAS sees a greater performance
improvement due to 2MB pages.
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Chapter 5

Optimizing a DG Implementation

This chapter will focus on the application of the computer architecture concepts and op-

timization techniques discussed previously to the two main parts of a DG flow solver: the

residual and Jacobian evaluation and the linear solver.

5.1 Residual and Jacobian Evaluation

• In the initial description of the DG discretization given in Chapter 3, the residual (and

Jacobian) evaluation process described evaluating the contribution at each quadrature

point (e.g., Rg,k,n) and summing into the residual vector. In the end, the residual vector,

Rk,n contained the sum,
∑Nquad

g=1 Rg,k,n. The inviscid Galerkin term (Equation 3.1) is

reproduced here:

Rg,k,n = wg∂xi
φg,nFi,k(Unφg,n).

More simply, ∂xi
φnFi,k can be interpreted as the sum of Ndim outerproducts each of

the form pnHk; these outerproducts occur at each quadrature point. The viscous

contribution also has the same form. Each of the resulting matrices is then summed

into Rk,n. In effect, Ndim separate matrix-matrix products have been computed. That

is, Rk,n = Φi,g,nGi,g,k, where Φi,g,n indicates a matrix of size NDimNquad × Nbf storing

every basis function derivative at every quadrature point; and Gi,g,k is a matrix storing

the flux (in each spatial direction) for every state at every quadrature point (all scaled
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by wg). Emphasizing the point further, Φi,g,n contains ∂x0
φg,n ordered first, then the

x1 derivatives, etc; similarly the matrix of fluxes, Gi,g,k orders all x0-components first,

then x1, then x2. For residuals (e.g., jump terms) that do not involve summation over

spatial directions, then only Φg,n and Gg,k are needed.

The outerproduct approach reads Nquad(Nbf + Nsr) double from cache and writes

NquadNsrNbf double to cache. As appropriate, these operations are once per spatial

dimension. The basic matrix-matrix product involves the same number of reads but

only NsrNbf writes. As described in Section 4.1, a blocked algorithm (e.g., as found

in the optimized BLAS) will perform even better.1 By reorganizing the outerproducts

into a matrix-matrix product, the performance can be improved by more than a factor

of 2.2

However, the matrix-matrix version has a disadvantage over the outerproduct version.

In both cases, Φ should be precomputed. In the outerproduct case, Fi,k can be over-

written at each subsequent quadrature point. However, the matrix-matrix version will

require the storage of Gi,g,k, which spans NquadNdimNsr double. The situation is worse

with Jacobian assembly, when the extra storage is NquadNdimN2
srNbf . Nonetheless, the

extra storage requirement is easily offset by the efficiency improvement when these

pieces all fit in cache. However, danger arises when the combination of these matrices

does not fit in cache, as discussed below.

Jacobian assembly can be reorganized in a similar fashion. For example, one of the

face residual terms can be written:

∂UL
a,m

Rk,n+ = φmBk,i,a∂xi
φn.

Here, it is possible to compute Cq = φmBk,i,a∂xi
or Dq = Bk,i,a∂xi

φn first; q ranges

over N2
srNbf . As pointed out below, the latter choice (using D) is preferable. To

motivate reorganizing the Jacobian assembly into a matrix-matrix product, note that

1If the matrix dimensions are so small that blocking is ineffective, then the optimized BLAS may be
outperformed by the basic routine. This may also occur if the input matrices are too “tall and skinny.”

2As observed on a 3GHZ, Intel Core2 CPU.
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the tensor on the right hand side of the definition of D has been “collapsed” into a

vector, Dq. Similarly, let Sm,q = ∂UL
a,m

Rk,n also refer to the Jacobian matrix. Then

Sm,r = Φg,mDg,q. Organizing the data layout in Dg,q and/or ∂UL
a,m

Rk,n requires care,

since the collapsed indices a, k, n must align properly with the data ordering implied

by the single index q.

Depending how the data is ordered in the Jacobian matrix and the temporary D ma-

trix, it may also be necessary to handle the matrix-matrix products corresponding to

summation over Nquad one state at a time. By comparison, the previous discussion

involved handling all states simultaneously. This corresponds to whether the origi-

nal assembly process is expressed in terms of OPH or OPV (see below) calls. Using

more than Nsr separate matrix-matrix products is not recommended. Generally, a

single matrix-matrix product is preferable. Unfortunately, this is not always possible.

But as described in the next paragraph, generating an intermediate matrix with the

wrong data ordering and reordering via a single transpose-like operation is a reasonable

alternative.

Additionally, observe that with this optimization, the previously recommended Jaco-

bian matrix layout ∂UL
a,m

Rk,n is not possible. In particular, the index m must be first or

last, since the matrix-matrix product only allows Sm,q or Sq,m, regardless of how a, k, n

are organized within q. Thus, an appropriate intermediate ordering could sequence the

indices k, n, a,m. Transposing that intermediate result as a square matrix of dimen-

sion NsrNbf recovers the suggested ∂UL
a,m

Rk,n order. With other intermediate orderings

such as m,n, k, a, a more complex “transpose” is required. Nonetheless, experiments

in ProjectX have shown the matrix-matrix optimization remains worthwhile.

The worsened locality mentioned above requires further discussion. Generally, the extra

storage requirement is worthwhile to increase the use of BLAS-3 operations. However,

if the size of the temporary matrices exceed the largest level of cache,3 performance

will suffer greatly. To compensate, the quadrature points should be partitioned into

3The last cache on some CPUs is very large and relatively slow. In such cases, it may be desirable for
the problem to fit entirely in a smaller cache.
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(contiguous) chunks sized so that all data for each fits entirely in cache. This requires

little programming effort, but the residual and Jacobian evaluation will have to be

explicitly cache-aware, and thus processor-aware, since cache performance varies from

CPU to CPU.

Lastly, note that the performance of optimized BLAS libraries will depend on the data

layout and argument ordering. For example, depending on whether Rk,n, Φg,n, and

Gg,k are ordered row-major or column-major, R = ΦG or R = GΦ = (ΦG)T may be

appropriate. The optimized BLAS may perform ΦG so much faster than GΦ that it

is worth manually transposing R if the resulting ordering on R is not correct.

• Precomputing: precomputation is a way of trading time for space. Precomputation also

avoids redundant operation, since there is no need to precompute quantities that are

only needed once. Precomputed quantities only need to be computed once and usually

have very little effect on the overall run-time. However, extra space is required to store

the results. Generally, it is almost always worthwhile to precompute quantities that are

shared across elements such as basis functions and mass matrices (and their inverses).

Quantities that vary from element to element, such as geometry-related quantities,

may not be worth precomputing in steady-state solvers since the savings are relatively

small. But these too should be precomputed in an unsteady solver or if their cost is

deemed prohibitive. When evaluating element or face residuals and Jacobians, elements

and faces that share precomputed quantities should be handled together temporally.

This improves the temporal locality of accesses to the precomputed quantities. The

efficiency gains from precomputation will be lost if those quantities must be repeatedly

loaded from main memory, incurring unnecessary conflict misses.

The precomputation steps may be implemented lazily, but it is more efficient to identify

exactly which quantities are needed, compute them, and never have to check whether

some quantity has already been computed before using it. Lookup tables are ideal

for tracking precomputed quantities; the tables should be indexed on a minimal set of

distinguishing features. For example, basis functions could be indexed over element
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shape,4 quadrature rule, and interpolation order. Indexes should range over small sets

of integers starting at 0. If indexes must range over large sets of integers, multilevel

hashing would be more appropriate.

• Evaluate tensor contractions as early as possible. Delaying contractions results in

carrying around more data and performing unnecessary calculations. For example,

there are 3 ways to compute

∂UL
a,m

Rk,n+ = φmBk,i,a∂xi
φn, (5.1)

but φm(Bk,i,a∂xi
φn) is the most efficient, involving 2NdimN2

srNbfL+2N2
srN

2
bf flops. Eval-

uating (φmBk,i,a)∂xi
φn costs 2Ndim(N2

srNbfL +N2
srN

2
bfL) flops. The first order similarly

has a substantially reduced number of memory operations.

• Outside of flux and A evaluation, the residual and Jacobian evaluation process is

primarily composed of tensor contractions (inner, matrix-vector, and matrix-matrix

products) and tensor products (outer products). The contraction operations should be

familiar, but the tensor products fall into two categories that may not be immediately

obvious. In ProjectX, they are called the “horizontal” and “vertical” (block) outer

products (OPH and OPV). Note that the following discussion considers row-major

matrix storage.

OPH takes as input vk ∈ Rn and Bi,j ∈ Rb1×b2 and produces Hi,k,j = Bi,jvk, where

Hi,k,j ∈ Rb1×b2n. Alternatively, H may be written, H = [Bv0, Bv1, . . . , Bvn]. A simple

implementation follows:

double * pB = B, * pH = H;

double t;

for(i=0; i<b1; i++){

for(j=0; j<n; j++){

t = v[j];

4If multiple shapes (e.g., simplex, quadrilateral) are used.
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for(k=0; k<b2; k++){

pH[k] += pB[k]*t;

}

pH += b2;

}

pB += b2;

}

The inputs of OPV are the same as those of OPH, but OPV produces Gk,i,j = Bi,jvk,

where Gk,i,j ∈ Rb1n×b2 . OPV can be rephrased as the outer product Gi,j = bivj, where

Gi,j ∈ Rb1n×b2 , bi ∈ Rb1b2 , and vj ∈ Rn.

double * pV = V;

double t;

for(j=0; j<n; j++){

t = v[j];

for(k0; k<b1*b2; k++){

pV[k] += B[k]*t;

}

pV += b1*b2;

}

Many tensor products (i.e., OPV and OPH) and tensor contractions range over small

quantities like Nsr. Code implementing these operations should involve fully unrolled

loops for common, small parameter values. Unroll factors of 2 to 4 are more appropriate

for loops over quantities like Nbf that could range over a much wider range of values.

• The flux cost quantities denoted C(F ), C(F̂ ), C(A), etc. (and their state derivatives)

can easily dominate the overall residual and Jacobian evaluation times if these functions

are not implemented carefully. Specifically, unless Ndim and Nsr are known at compile-

time, writing these functions with loops over Ndim and Nsr leads to substantially worse
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performance. Flux evaluation may be slowed by as much as a factor of 5-10. If the

loop variables’ ranges are known at compile-time, the compiler may automatically

unroll these loops; the programmer should check to ensure this is happening correctly.

• Merge tensors with the same dimensions as early as possible. For example, Ai,j,k,luk,l +

Bi,j,k,luk,l should be generally computed as (Ai,j,k,l + Bi,j,k,l)uk,l. Here, one set of N2
dim

matrix products is avoided.

• Taking advantage of sparsity in A and/or ∂uA. A has many zeros, as shown in Ap-

pendix A. As a result, its state derivative tensor will have at least Nsr times as many

zeros. The full rank-5 tensor ∂ua
Ai,j,k,l is never needed in its entirety. Rather, Jacobian

evaluation only requires the result of contractions like ∂ua
Ai,j,k,l∂xj

ul. Thus, only the

smaller rank-3 product should be stored; furthermore, computing this result should

take advantage of the sparsity in ∂uA.

• Matrix inversion, matrix determinants, and eigenvalues over small problems (specif-

ically, Ndim × Ndim matrices) should be coded explicitly. Relatively simple, analytic

formulas exist for all of these operations when the problem size is sufficiently small.

Direct implementations like these can be more than 10 times faster than calling BLAS

or LAPACK routines. However, be aware that solving small eigenvalue problems with

analytic root-finding formulas may be ill-conditioned; LAPACK (or other safe routines)

should be used if a loss of accuracy is detected.

5.2 GMRES

• The GMRES algorithm uses Arnoldi Iteration to form an orthogonal basis for the

Krylov space. As suggested by [61], Arnoldi is implemented with the Modified Gram-

Schmidt (MGS) process. MGS only uses BLAS-1 operations and is inherently sequen-

tial. The cost of the Arnoldi process varies widely with the number of inner GMRES

iterations used, but in ProjectX (which specifies a maximum of 200), Arnoldi com-

poses (at worst) about 1
3

to 1
2

of the total GMRES cost. If the required Krylov space
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could be formed and then orthogonalized, the process could utilize LAPACK’s QR

factorization routines (which are written with BLAS-2 and BLAS-3 calls) instead of

the all BLAS-1 MGS version. Problematically, the monomial basis b, Ab,A2b, . . . is

extremely ill-conditioned. By using a (Newton) polynomial basis, [6] were able to form

the full Krylov space and orthogonalize it afterward[6] using the QR functionality of

LAPACK. LAPACK’s QR routine predominantly uses BLAS 2 operations, making it

more efficient than the BLAS 1 MGS orthogonalization.

• If a reordering is used, linear algebra operations (a = xT y and x = αx in particular)

often do not need to be aware of the reordering. For multiplication by a scalar, the

ordering never matters. For an inner product, as long as x and y are stored with the

same ordering, the product should be computed as if no reordering were present–with

one loop sweeping over the elements. If x and y are stored with different orderings,

then clearly the inner product must match elements that refer to the same physical

quantity. Such operations should be avoided whenever possible. They have very little

memory locality and are much more expensive (by as much as 2-3x) as a result.

• Using huge pages (see Section 4.3.1) will also improve GMRES performance. This

modification is relatively simple since the underlying GMRES implementation does

not need to change. At worst, the memory allocation process must be altered to utilize

huge pages, since the malloc implementation in standard C libraries can only access

4KB pages. At best, a library like libhugetlbfs can provide an alternative malloc

implementation that uses huge pages. As shown in Section 4.3.1, the benefit of huge

pages is most significant for small block sizes, but huge pages remain beneficial even

for very large blocks.

• Prefetching can be effective when Jacobian blocks are very small; e.g., Nsr ≤ 8 and

Nbf ≤ 4 (P0 or P1). For small blocks, the overhead of “random” access is very notice-

able. Accessing the Jacobian sequentially is difficult or impossible unless very simple

preconditioners are used. Thus with more powerful tools like ILU, the speed-up in the

Au kernel can be around a factor of 2 if upcoming blocks are prefetched appropriately.
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For larger block sizes, prefetching can be detrimental since undue load is placed on the

cache and memory system, and the penalty of non-sequential access is mostly masked

by the large individual problem sizes.
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Chapter 6

Validation

The validation problems were chosen to test the 3D, viscous discretization of ProjectX; the

Navier-Stokes Equations were of particular interest. The test scheme involved performing

grid-convergence studies to check that optimal convergence rates were obtained. The prob-

lems scaled up in complexity, first isolating the residual evaluation process using the diffusion

and convection-diffusion equations. Then tests were conducted on Navier-Stokes problems.

Cases also included flows with boundary layer-like features, since high Reynolds Number

flows are of interest. In all cases, source terms were used so that an analytic solution would

be available. As such, boundary conditions were set using the known exact solution for

diffusive operators; for convective operators, the exact solution was enforced weakly via an

upwinding scheme. The metric for correctness was the L2 norm and H1 norm (or seminorm)

of the solution error. The DG method obtains an L2-error convergence rate of O(hp+1/2)

for purely convective problems, but for problems of interest, O(hp+1) is observed. Using

the BR2 viscous discretization, the DG method recovers the optimal O(hp+1) rate seen in

continuous Galerkin Finite Element methods. The H1-error convergence rate is expected to

be 1 order lower than L2: O(hp).

The test cases were solved on a sequence of uniformly refined meshes.1 If applicable (i.e.,

Case 2 and Case 4), the initial meshes were graded to match the underlying flow features.

1Cases 2 and 4 use unstructured meshes generated by specifying an underlying metric. Here, uniform
refinement refers to uniformly “refining” the metric field, which is not the same as uniformly refining the
starting mesh by subdividing elements.
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Additionally, the nonlinear residual norm was driven to at most 1.0×10−14 whenever possible;

exceptions are noted in the case discussions.

6.1 Case 1: Diffusion

Case 1 involved solving the steady diffusion equation in 3D:

• −∇ · (µ∇u) = G(u) with µ = 0.1.

• G(u) was chosen so that u(x, y, z) = QuarticPoly(x, y, z) was the exact solution.

QuarticPoly was a quartic polynomial containing all terms xaybzc such that a+b+c = 4

with a, b, c ≥ 0.

• Grids: 162, 1296, 10368, 82944, 663552 uniform tetrahedra covering the cube [−2, 2]×
[−2, 2] × [−2, 2].

Convergence results are shown in Figure 6-1 (L2 error) and Figure 6-2 (H1 (semi) error).

Rates are given in Table 6.1. Note that p = 4 and p = 5 results are not shown because the

solution is an element of the approximation space in these cases. Thus, setting p > 3 obtains

the exact solution, which was confirmed experimentally. Optimal rates were obtained for this

problem, except at p = 0. Setting a constant η = 6.0 leads to an inconsistent discretization

at p = 0, explaining the observed rates of 0.00.

Error Type p = 0 p = 1 p = 2 p = 3
L2 0.00 1.96 2.99 4.00
H1semi 0.00 0.97 1.99 3.00

Table 6.1: Rate of convergence for Case 1. The table displays the exponent
k where the order of convergence is O(hk).

6.2 Case 2: (Steady) Convection-Diffusion

Case 2 involved solving the steady convection-diffusion equation in 3D. The exact solution

is meant to simulate a boundary layer, testing the solver with highly graded, unstructured
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Figure 6-1: L2-norm error convergence for Case 1.
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Figure 6-2: H1-seminorm error convergence for Case 1.
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meshes.

• −∇ · (µ∇u) + a · ∇u = G(u) with µ = 1 × 10−6 and a =< 1, 0, 0 >.

• G(u) was chosen so that u(x, y) = e(−y/
√

xµ) was the exact solution.

• Grids: 794, 6416, 51261, and 409591 tetrahedra stretched exponentially in the y direc-

tion so that the anisotropy is appropriate for the boundary layer. These meshes are

unstructured. The domain was [0.1, 1.1] × [0, 1] × [0, 1]; the x-component was shifted

to avoid the singularity at x = 0.

Convergence results are shown in Figure 6-3 (L2 error) and Figure 6-4 (H1 (semi) error).

Rates are given in Table 6.2. Optimal rates were obtained for this problem.

Error Type p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
L2 0.50 2.10 3.07 4.09 5.08 6.09
H1semi 0.00 1.04 2.05 3.04 4.03 5.02

Table 6.2: Rate of convergence for Case 2. The table displays the exponent
k where the order of convergence is O(hk).

6.3 Case 3: Poiseuille Flow

Case 3 involved solving the 3D Compressible Navier-Stokes Equations with Poiseuille flow

serving as the exact solution.

• Compressible Navier-Stokes Equations with µ = 1.0 × 10−3 and γ = 1.4.

• G(u) was chosen so that the exact x-velocity distribution was quadratic (i.e., arising

from a channel flow with a linear pressure gradient) with ρ = const. The exact solution

is effectively 1D, with no variation in the x and z directions.

• Grids: 162, 1296, 10368, 82944 uniform tetrahedra covering the cube [0, 1]×[0, 1]×[0, 1].
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Figure 6-3: L2-norm error convergence for Case 2.
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Figure 6-4: H1-seminorm error convergence for Case 2.
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Convergence results are shown in Figure 6-5 (L2 error). Rates are given in Table 6.3.

Note that p = 4 and p = 5 results are not shown because the solution is an element of the

approximation space in these cases. Thus, setting p > 3 obtains the exact solution, which

was confirmed experimentally. Optimal rates were obtained for this problem.

Error Type p = 0 p = 1 p = 2 p = 3
L2 0.95 2.05 3.03 3.98

Table 6.3: Rate of convergence for Case 3. The table displays the exponent
k where the order of convergence is O(hk).
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Figure 6-5: L2-norm error convergence for Case 3.

6.4 Case 4: (Steady) Navier-Stokes

Case 4 is another 3D Compressible Navier-Stokes problem. This time, the exact solution has

the same velocity profile as Case 2. Again, the exact solution simulates a boundary layer
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while avoiding the leading edge singularity seen in the more common problem of flow over a

flat plate.

• Compressible Navier-Stokes Equations with µ = 1 × 10−6 and γ = 1.4.

• G(u) chosen so that u(x, y) = e(−y/
√

xµ) is the exact velocity profile and the flow has

constant density and pressure: ρ = 1.0 and p = 8
7
.

• Grids: 1587, 12792, 40030, 102733 tetrahedra stretched exponentially in the y direc-

tion so that the anisotropy is appropriate for the boundary layer. These meshes are

unstructured. The domain was [0.1, 1.1] × [0, 1] × [0, 1]; the x-component was shifted

to avoid the singularity at x = 0.2

Convergence results are shown in Figure 6-6 (L2 error) and Figure 6-7 (H1 error). Rates are

given in Table 6.4. Optimal rates were obtained for p ≤ 3 only.

Some results (e.g., for p ≥ 4) are influenced by linear solver limitations and ill-conditioning.

The residual norms on the finer meshes dropped no further than 10−12, whereas the coarse

mesh and low p residual norms are all at most 10−14. Further progress does not occur be-

cause GMRES stalled and it was unable to produce linear residuals lower than around 10−12.

Using a greater number of Arnoldi vectors may alleviate this problem, but memory limita-

tions prevented verification. In Case 2, it was found that using data from solutions with

nonlinear residual norms of around 10−12 lead to absolute errors of about 0.2 in the observed

convergence rates. This result leads to the conclusion that the code is performing properly,

but limitations in the parallel linear solve are preventing the obtainment of optimal rates.

Additionally, the p = 5 results are less reliable since there are only three data points.

2The 40030 element mesh is not a uniform refinement, but it is shown so that the p = 5 line has a
relatively fine result plotted.
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Error Type p = 0 p = 1 p = 2 p = 3 p = 4 p = 5
L2 0.30 2.17 3.17 3.90 4.60 6.29
H1semi 0.00 1.07 1.97 2.79 3.54 5.23

Table 6.4: Rate of convergence for Case 4. The table displays the exponent
k where the order of convergence is O(hk).
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Figure 6-6: L2-norm error convergence for Case 4.
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Figure 6-7: H1-norm error convergence for Case 4.
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Chapter 7

Conclusion

This thesis has discussed many of the major features of a fluid dynamical solver based on

the Discontinuous Galerkin Finite Element Method. The residual and Jacobian assembly

processes were detailed fully, since this topic was often skimmed previously. Major features

of iterative linear solvers (GMRES in particular) were also covered, with references provided

for the remaining details.

The discussion moved toward features of modern computers relevant to achieving high

performance in a DG code. Due to the large working sets often associated with fluid solvers,

memory accesses can often be a bottleneck. Even in working sets that fit in CPU cache,

communication between cache levels is often several times slower than floating point compu-

tation. Thus, a thorough description of the memory hierarchy followed, including discussion

of common techniques for utilizing it as efficiently as possible. Also included was an overview

of the inner-workings of modern CPUs, which is useful for reasoning about what code opti-

mizations will be helpful in various scenarios.

In the process, simple code was developed that accurately predicts the performance of the

Ax kernel in GMRES for block-sparse matrices. The simple “simulated” Ax code identified

important features of the actual Ax kernel while removing the unnecessary complexity of

a full fluid solver framework. Specifically, working sets much larger than CPU caches were

considered with varying block-size. A surprising result arose–optimized BLAS libraries did

not outperform basic matrix-vector implementations for a wide spread of problem sizes.

111



Optimized libraries are often the best way to solve problems quickly and simultaneously

avoid re-inventing the wheel. The recommended residual and Jacobian assembly process

somewhat non-intuitively reorders summation over quadrature points into a matrix-matrix

product in order to take advantage of the optimized BLAS. However, before diving in,

programmers should certify that optimized libraries of interest are the best option, perhaps

through numerical experiment or otherwise.

Finally, this thesis validated of a 3D fluid solver implementing the DG method (ProjectX)

through numerical experiment. In particular, the BR2 lifting operator, viscous residual and

Jacobian implementation, and viscous A-matrix evaluation were tested. Test cases were built

up, starting from simple diffusion problems with polynomial solutions and ranging to the full

Navier-Stokes Equations in 3D. Solver performance was validated by checking convergence

rates (across a series of uniform mesh refinements) against theoretical bounds.

7.0.1 Future Work

Residual (and Jacobian) assembly in finite element methods is an embarrassingly parallel

problem. This is particularly true of DG methods due to minimal amounts of inter-element

communication. With so many instances of executing the essentially same code on different

data, the problem is ideal for GPUs. [44] has shown that substantial speedups are possible

with GPU implementations of the residual evaluation process. However, their work only

covered inviscid, linear problems with explicit-time stepping. Implementing the DG residual

and Jacobian evaluation on a GPU would be a natural and nontrivial extension of their work.

With current GPU technology, speedups as impressive those achieved by [44] are unlikely,

due to greatly increased temporary storage requirements for Jacobian evaluation.

Additionally, current GPU implementations of GMRES have not obtained speed-ups as

substantial as those seen in other applications. Preconditioning has been a common limiting

factor with some groups [46] using weaker preconditioners like subdomain-wise block Jacobi

with inexact local solves via ILU, which has been shown to possess poor parallel scaling

[17]. Stronger, minimally-coupled parallel preconditioners could help alleviate this issue

while maintaining GPU scalability. GPU implementations of matrix-vector multiplication
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on block-sparse matrices (such as the DG Jacobian) have also not yet been considered.

One of the issues identified in this thesis is the memory-boundedness of the linear solve

in DG problems. Focusing on GMRES, some new techniques are promising but not fully

mature yet, as discussed in Section 1.1.

Fundamentally, the performance of GMRES (and other iterative linear solvers) can only

be improved by increasing the amount of computational work done for each memory access.

Currently, in one m×m block of a block-sparse matrix vector multiply, m2 double are loaded,

2m2 work is done, and the data tossed aside until the next iteration. The efficiency would

increase if fewer sparse matrix vector products could be used to solve the same problem.

Alternatively, doing more work before tossing aside each Jacobian block would be effective;

i.e., making the current BLAS 2 operations closer BLAS 3. So far, the CA-GMRES method

[34, 53] addresses the first approach, and the LGMRES and BLGMRES methods [8, 7]

addresses the latter. Both were introduced in Section 1.1.

Unfortunately, neither method is a silver bullet, yet. With BLGMRES (and other blocked

GMRES methods), results indicated little improvement in some examples from fluid dynam-

ics, including one CG FEM discretization [7]. The technique appears to be hit-or-miss,

with its a priori performance remaining difficult to predict, since it is based on a heuristic

argument for augmenting the Krylov space.

Additionally, LGMRES and BLGMRES have high start-up costs. The Krylov-augmenting

vectors chosen in each method depend on the GMRES solution estimate after a full restart

cycle. Thus there is no speed up in the first restart cycle. For guaranteed numerical stability,

CA-GMRES has a similarly high start-up cost.

CA-GMRES can form the Krylov basis using a monomial, b, Ab,A2b, . . ., which resem-

bles the numerically unstable Power Method. Preliminary results indicate that equilibration

reduces the penalty for many practical problems [34]. However, the monomial basis is guaran-

teed to fail for extremely poorly conditioned A. Polynomial bases exist (Newton, Chebyshev)

that avoid the conditioning problem altogether, but they require estimates of the eigenvalues

of A. These values are readily available through the Ritz values that are almost naturally

generated by GMRES. However, as with BLGMRES, generating these values could cost as
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much as a full restart cycle of computation.1

Additionally, CA-GMRES currently does not work with most complex preconditioners

due to strong rank restrictions on all off-diagonal submatrices. However, the focus of existing

work has not been on preconditioning[34]. Furthermore, these methods have not been applied

to the block-sparse Jacobians arising from DG discretizations.

Finally, it may be the case that GMRES is not the best solver choice; other Krylov solvers

were not investigated in this thesis but they should be analyzed in the future. The other

common Krylov solvers for nonsymmetric matrices could be split into two categories: those

requiring an Ax and AT x kernel per iteration, and those requiring the Ax kernel twice per

iteration. Examples of the former include QMR and BiCG; examples of the latter include

TFQMR, BiCG-stab, and CGS. In all cases, these alternatives avoid the long recurrences

seen in GMRES, thereby eliminating the Arnoldi iteration entirely. Instead, these methods

tend too use the Lanczos iteration.

For methods requiring Ax and AT x, the two results may be computable simultaneously

by interleaving the data. This would make the additional cost of AT x small compared to

the initial cost of Ax, but its usefulness depends on how the preconditioner is stored. On

the other hand, the multiplies in methods requiring two Ax products cannot be interleaved,

since they are related: y = Ax, z = f(y), w = Az. Lastly, the work of [34] could be relevant

to these other Krylov solvers; he has developed a communication-avoiding BiCG method as

well. Other communication avoiding Krylov kernels do not exist now, but may be upcoming.

1Or more, as [34] points out that with the Newton basis, if s inner iterations are required, then sometimes
2s Ritz values are needed for convergence.
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Appendix A

Inviscid and Viscous Fluxes for the

Navier-Stokes Equations

The Navier-Stokes equations can be written:

∂tuk + ∂xi
F inv

i,k (u) − ∂xi
F vis

i,k (u,∇u) = 0.

Following [23], the upcoming sections specify F inv and F vis as well as the decomposition

F vis
i,k = Ai,j,k,l(u)∂xj

ul.

A.1 Inviscid Flux

Component Name Indices F inv
i,k

Cons. of Mass k = 0 ρvi

Cons. of Momentum k = 1 . . . Ndim ρvk−1vi + δi,k−1p
Cons. of Energy k = Ndim + 1 ρviH

Table A.1: Inviscid (Euler) flux components.
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The pressure (p), total specific enthalpy (H), and static temperature (T ) are given by:

p = (γ − 1)

(

ρE − 1

2
ρvivi

)

H = E +
p

ρ

T =
p

ρR

where γ is the ratio of specific heats and R is the gas constant. Lastly, δi,j is the Kronecker

delta function, which takes value 1 if i = j and 0 otherwise.

A.2 Viscous Flux

Component Name Indices F vis
i,k

Cons. of Mass k = 0 0
Cons. of Momentum k = 1 . . . Ndim τi,k−1

Cons. of Energy k = Ndim + 1 κ∂xi
T + vjτi,j

Table A.2: Viscous flux components.

τi,j = µ
(

∂xi
vj + ∂xj

vi

)

+ λδi,j∂xm
vm denotes the stresses (shear and normal) for a New-

tonian fluid. κ = cP µ
Pr

= γµR
(γ−1)Pr

is the thermal conductivity. The bulk viscosity is λ = −2
3
µ.

The dynamic viscosity is given by Sutherland’s Law, µ = µref

(

T
Tref

)1.5 (

Tref+Ts

T+Ts

)

, with

Tref = 288.15K and Ts = 110K.

A.3 Deriving the A Matrix

Observe that F vis
i,k depends on the state gradients ∂xj

ul linearly. In particular, F vis
i,k =

Ai,j,k,l(u)∂xj
ul; utilizing this fact simplifies the implementation. All that remains is to de-

rive A. For simplicity, the following example will be in 2D. First consider the F vis
0,k term
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(x-direction viscous flux) in the Navier-Stokes equations:

F vis
0,k =

















0

2
3
µ

(

2∂v0

∂x
− ∂v1

∂y

)

µ
(

∂v0

∂y
+ ∂v1

∂x

)

2
3
µ

(

2∂v0

∂x
− ∂v1

∂y

)

v0 + µ
(

∂v0

∂y
+ ∂v1

∂x

)

v1 + κ∂T
∂x

















(A.1)

where vi denote the spatial components of velocity.

Since F vis
0,k = A0,0,k,l∂x0

ul+A0,1,k,l∂x1
ul, it is clear that A0,0,k,l∂x0

ul only involves ∂·
∂x

terms.

Similarly, A0,1,k,l∂x1
ul only involves ∂·

∂y
terms. Additionally, Equation A.1 is written in prim-

itive form. Converting to conservative variables requires rewriting the spatial derivatives; for

example, ∂u
∂y

= 1
ρ2

(

ρ∂u1

∂y
− u1

∂ρ
∂y

)

, where u1 = ρu refers to the second entry of the conservative

state vector, u. Then the matrices A0,0,k,l and A0,1,k,l follow:

A0,0,k,l =
µ

ρ

















0 0 0 0

−4
3
v0

4
3

0 0

−v1 0 1 0
(

γ
Pr

− 4
3

)

v2
0 +

(

γ
Pr

− 1
)

v2
1 − γE

Pr

(

4
3
− γ

Pr

)

v0

(

1 − γ
Pr

)

v1
γ

Pr

















A0,1,k,l =
µ

ρ

















0 0 0

2
3
v1 0 −2

3
0

−v0 1 0 0

−1
3
v0v1 v0v1 −2

3
v0 0

















where κT has been expanded to γµ
Pr

(

E − 1
2
vivi

)

for convenience. A similar process pro-

duces A1,0,k,l and A1,1,k,l:

A1,0,k,l =
µ

ρ

















0 0 0

−v1 0 1 0

2
3
v0 −2

3
0 0

−1
3
v0v1 −2

3
v1 v0 0
















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A1,1,k,l =
µ

ρ

















0 0 0 0

−v0 1 0 0

−4
3
v1 0 4

3
0

(

γ
Pr

− 1
)

v2
0 +

(

γ
Pr

− 4
3

)

v2
1 − γE

Pr

(

1 − γ
Pr

)

v0

(

4
3
− γ

Pr

)

v1
γ

Pr
















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Appendix B

Double Data Rate Random Access

Memory

As of this writing, modern commodity DRAM modules are some type of DDR (Double Data

Rate) memory. The original DDR is essentially obsolete. Many existing computers use

DDR2 RAM, but newer platforms have transitioned to DDR3. DDR4 is expected to arrive

in 2012. Other DRAM types (e.g., RDRAM, XDRAM) exist but are not as common. When

purchasing DDR memory, it is common to see the following:

DDRxyPCxwa − b − c − d.

The x marks the type of DDR (DDR, DDR2, DDR3, etc.); it may be absent after the

PC symbol. The y indicates the effective memory frequency (usually in MHz).1 The w

indicates the maximum theoretical bandwidth (in MB/s) of a single module of this memory.

The sequence a − b − c − d indicate the RAM timings, which contribute to its latency (see

below). For example, DDR3 1600 PC 12800 5-5-5-16 is a stick of DDR3 memory, clocked at

1600MHz, with 12.8GB/s of bandwidth, and 5-5-5-16 timings.

RAM is composed of a large number of microscopic capacitors gated by transistors.

If a capacitor holds sufficient charge, its value is 1; otherwise its value is 0. Due their

1The RAM is clocked “independently” of the CPU. Specifically, the RAM frequency is derived from the
memory controller (described below) frequency.
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small size and capacitance, the capacitors leak electrons and must be periodically refreshed.

On modern DDR components, the refresh period is 64ms [20]. Note that this quantity is

sometimes reported as 64ms divided by the number of capacitor rows (see below), resulting

in values like 40 or 50ns.

To read a bit, the capacitor storing that bit is discharged. That is, the transistor com-

pletes a RC circuit with a “sense amplifier.” The discharge time must be long enough for

the sensing circuit to ascertain the difference between a 0 and a 1. The result is passed back

to the memory controller. The amplified signal is also fed back into discharged capacitor,

since a value of 1 must remain 1. Writing a bit involves discharging or charging a capacitor,

depending on its initial state. Modeled as an RC circuit, charging require time. The rela-

tive slowness of these operations is the primary limitation in the speed of modern DRAM

modules.

With one capacitor for every bit of data capacity, organizing the capacitors into a linear

array is impractical [20]. Instead, the capacitors are organized into rows and columns and

read in row-major order, like a two-dimensional C array. If there are N bits of memory, the

row and column addresses only range over
√

N . When a read or write request arrives, it

arrives with the row and column address of its data bits. To access a given capacitor, the

appropriate row must first be opened, incurring a delay; only 1 row can be open at a time.

This is analogous to dereferencing the first pointer in a 2D array. Then the appropriate

column can be read or written, much like dereferencing the second pointer. Unlike array

accesses, multiple columns can be read simultaneously. When a new row is desired, the

currently open row (if there is one) must be closed; this process is called precharging, wherein

the sense amplifiers are charged back to their idle, charged state. Precharging also incurs a

delay. Memory operations are pipelined (not to be confused with CPU pipelining) so that

different rows and columns can be accessed in subsequent cycles and to hide latency. This

covers the time needed to read and write data, as the results are not immediately available.

Each set of rows and columns composes one DRAM chip; each DRAM module has several

chips. DRAM communicates with the memory controller over the memory bus, which is

usually 64 bits wide. Current DDR modules are organized into one or two ranks of 8 chips
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each, with each chip owning 8 bits of the 64 bit bus width.2 To saturate the bus, as many

column accesses as possible must happen per row access. All of the time taken for charging

and discharging capacitors, opening rows, accessing columns, etc. contribute to the observed

memory latency, which is described below. Note that the previous discussion is substantially

simplified, but it captures all of the major features of DRAM operation.

B.1 Bandwidth and Latency

From a performance standpoint, all RAM types have two primary properties: bandwidth (in

bytes per second) and latency (in memory clock cycles). The time required to communicate

with memory follows t = ax + b, where x is the amount of data, a is the inverse bandwidth,

and b is the latency. The inverse-bandwidth is typically much smaller than the latency, but

this depends on the access pattern, as described below.

B.1.1 Bandwidth

The maximum theoretical bandwidth can be calculated from several fixed quantities com-

bined with the effective memory frequency. The maximum theoretical bandwidth is reported

by the manufacturer. Note that the maximum theoretical bandwidth is rarely attained in

practice. Some synthetic benchmarking tools come very close but the access patterns used

are contrived.

Bandwidth is the product of the memory frequency, the bus width (in bits), and the

number of transmissions per cycle. First note that the effective memory frequency is double

the actual frequency. So DDR3 1600 RAM is physically clocked at 800MHz. The effective

frequency of 1600MHz arises from the ability of the various types of DDR to transmit data

twice per memory clock cycle. As mentioned previously, the bus width is 64 bits (8 bytes).

Thus the bandwidth of DDR3 1600 is 2 × 800 × 8 = 12800 MB/s. The frequency of DDR

modules varies, with higher frequency units being more expensive.

2Physically, single rank DRAM modules only have chips on one side, while double rank modules have
memory chips on both sides. The memory controller can only access one rank of chips per cycle.
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Modern RAM technology incorporates another performance-enhancing feature: multi-

channel communication. Currently, dual and triple-channel technologies are available. Using

RAM in multi-channel mode accesses several RAM modules simultaneously by interleaving

the data (in the same fashion as RAID0 arrays). This technique doubles the theoretical

bandwidth, although the practical performance improvement is nowhere near a factor of 2.

It is important to use matched memory modules when running in multi-channel mode to

avoid hardware incompatibility. Manufacturers sell memory meant for multi-channel use in

matched sets.

B.1.2 Latency

Memory latency is usually broken down into four “timings”: TCL, TRCD, TRP , and TRAS

(described below). For a given memory operation, the relevant timings depend on the

current state of the RAM module(s). These timings are controlled by the memory con-

troller. Manufacturers report recommended timings, which are automatically detected by

the memory controller.3 The timings are reported as a sequence of four numbers, written as

TCL − TRCD − TRP − TRAS. Their descriptions follow:.

• CAS latency, TCL: Assuming the appropriate row is already open, this is the time

between the RAM module receiving an access request and the request being fulfilled;

e.g., the first bit of data being transmitted back.

• Row-Address to Column-Address Delay, TRCD: The time required to open a new row

of capacitors. If no rows are currently open, the time until the first bit of data is

transmitted is TRCD + TCL.

• Row Precharge Time, TRP : The time to precharge (close) a row. If the desired memory

address requires changing rows, the time until the first bit of data is transmitted is

TRP + TRCD + TCL.

• Row Active Time, TRAS: The number of cycles required to refresh a row. TRAS is

3On some motherboards, the timings are user-selectable. Decreasing the timings too far can lead to
system instability and data corruption.
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usually equal to the sum of the previous three values plus a small integer. This form of

latency affects performance if the controller wants to read from the row being refreshed.

The manufacturer recommended settings for these timings also varies by product. Lower

latency modules are more expensive.

Each new generation of DDR memory has roughly doubled the previous generation’s

bandwidth. Latency is also doubled, but memory frequency doubles as well, meaning that

the absolute latency (in seconds) has remained nearly constant from DDR to DDR2 to

DDR3.

B.2 Memory Performance

As noted previously in Section 4.1, sequential memory access is much faster than random

memory access. Assuming the row is already open, the first bit arrives TCL memory cy-

cles after the request. Sequential-read performance is then in large part governed by the

bandwidth, assuming that the memory controller knows to sustain reading beyond the ini-

tial cache-line. Sustained reading hides the latency through pipelining. If not (e.g., access

with stride larger than a cache-line), subsequent, sequential line-reads usually have latency

TCL. Infrequently, TRP + TRCD + TCL is also triggered by changing rows. When accessing

randomly, the latency is always TRP + TRCD + TCL in the worst case and almost no speedup

from bandwidth is possible.

Memory performance can vary widely even within the same class of RAM. These latency

and frequency variations affect the latency (in CPU cycles) observed by the CPU. These

variations partially explain why only approximate values could be reported in Tables 4.1

to 4.3; the other half of the issue lies with the memory controller.

The RAM latency is not the only factor in measuring the average latency from a miss

in the largest cache level. When the CPU cache realizes that it does not have the desired

data, it sends the request to the memory controller, a “chip” which interacts directly with

the RAM. The memory controller may be part of a separate chip (called the Northbridge)

sitting off-die, on the motherboard; however most new CPU designs integrate the memory
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controller directly onto the CPU die. Integrated memory controllers reduce memory latency

for two reasons. First, the physical distance traveled by electrical signals decreases. Second,

integrated memory controllers are clocked at (or near) the CPU frequency. Off-chip con-

trollers are clocked at the same frequency as the Front-Side Bus (FSB).4 Thus the integrated

controller responds more quickly (and can also handle more operations).

AMD processors starting with the Athlon64 and Intel processors starting with the Ne-

halem (Core i7) use integrated memory controllers. The CPUs in Tables 4.1 to 4.3 all use the

same RAM. Comparing the Core 2 (Table 4.1) to the K10 and Core i7 (Tables 4.3 and 4.2),

one can see that the average latency difference between the off-chip memory controller (Core

2) and the integrated memory controller (K10, Core i7) is around 100 (CPU) cycles. Note

that some part of this variation comes from the difference in CPU clock speeds, but these

three CPUs are clocked similarly.

4On modern computers that still use an FSB, the FSB frequency is around 5-10 times slower than the
CPU frequency.
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Appendix C

The CPU

Modern CPUs have several performance enhancing features. Current CPUs are capable of

Out Of [program] Order (OoO) execution, and execution is both superscalar and pipelined.

Additionally, substantial effort has gone into the development of techniques such as branch

prediction and prefetching to make the previously listed features more efficient. Briefly,

a superscalar CPU is one capable of executing more than one instruction per clock cycle;

this is handled by having multiple, redundant copies of certain circuits (e.g., floating point

multiplier). Pipelining is often related to a factory assembly line: the CPU can be working

on many instructions at the same time, using the same resources. OoO execution is the

ability to reorder instructions on the fly when appropriate; i.e., programs need not be exe-

cuted sequentially. We will now take a brief, high-level glimpse at how the CPU executes

instructions.

C.1 Basic Data Flow

For a CPU executing instructions in-order, a few steps must occur for each instruction.

Again, the instructions that the CPU is able to execute have a one-to-one mapping with

the compiler’s assembly output. The CPU has a special register called the program counter

(PC) indicating the next instruction up for execution. The execution steps are then:

1. Fetch the next instruction from the L1i cache. Increment the PC by 1 instruction.
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2. Decode the instruction.1

3. The instruction will have one or more operands. If these are available, then execute the

instruction. Otherwise stall until the operands finish loading from cache into registers.

4. If the instruction was a load or store (to RAM), interact with cache, RAM, etc.2

Otherwise, continue.

5. Write the result of the instruction to a register if needed.

These steps are diagrammed by a single row of Figure C-1.

Already a few points of inefficiency might stand out. First, each step in this process

requires some amount of time. So while the execution step is doing say, a costly division

operation, the instruction fetch, decode, etc. components are idle. Pipelining allows the

potential for every component to be in use simultaneously. Secondly, in the execution phase,

if the operands are not in registers, then our model CPU stalls. During the stalled time,

the CPU is effectively doing nothing. OoO execution solves this problem by using several

buffers to store stalled instructions, thereby allowing the CPU execution units to work on

other code. This is incredibly beneficial, given how slow cache or even worse, RAM is.

C.2 The CPU Pipeline

The main idea behind the CPU pipeline is straightforward, as described previously: we

want as many CPU components as possible to be constantly busy.3 As diagrammed in

Figure C-1, when the program starts, instruction A is fetched on the first clock tick and the

PC is incremented. At the next clock tick, A is decoded and the fetcher gets instruction

B.4 Each step of the pipeline (fetch, decode, etc.) is called a stage. Modern CPU pipelines

1Assembly commands are broken down internally by the CPU into µops (micro-ops); µops are the atomic
instruction unit used by the CPU. For example, an instruction for adding the contents of a register to the
contents of a memory address is broken into two µops: load memory into a temporary register; then add
two registers. Micro-ops improve the performance of the out of order engine (discussed below); they would
not always be used in the simple model discussed here.

2In the execution step, load and store instructions calculate the memory address of the desired data.
3Long CPU pipelines are also necessary for higher clock speeds.
4B is the instruction immediately after A in the assembly code, since the fetcher only fetches an instruction

and increments the PC.
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Figure C-1: A simple superscalar CPU pipeline with five stages that can execute at most
two instructions per clock cycle. IF = Inst. Fetch, ID = Inst. Decode, EX = Execute, MEM
= Memory access, WB = (register) Write Back. The horizontal axis shows physical time
(clock cycles), and the vertical axis shows instruction count. Note that the block widths can
vary widely from phase to phase. Figure credit: Wikipedia! ¡–How bad is this??

involve around 10 to 20 stages, so Figure C-1 is only a conceptual drawing. Many additional

pipeline stages are related to out of order execution; see Section C.4. Exact values are not

published by the manufacturers, but can be inferred through experiment; Fog[27] estimates

12 stages for the K8 and K10, 15 for the Core 2, and 17 for the Core i7.

Pipelining does not change the amount of time required for a given instruction, just as

a factory assembly line does not decrease the build time for a single car. Rather, pipelining

allows more instructions to be in flight simultaneously, potentially increasing the instruction

throughput. In the worst case, pipelining allows no benefit and most stages remain empty.

While potentially beneficial, pipelining introduces several new challenges, including:

branch misprediction, dependency chains, and data consistency5 are among the major play-

ers. Of these, branch prediction is perhaps the most important. Further details are given

in the next section; for now it is sufficient to know that a misprediction forces the entire

pipeline to empty, stalling the CPU for a number or cycles equal to the length of the pipeline.

5Data consistency will not be discussed in detail. Consistency issues arise because assembly code is written
(either by programmers or compilers) under the assumption that instruction Ij and all of its side-effects are
complete before Ij+1 starts. In a pipelined CPU, this is not always the case, since the goal of pipelining is to
start executing Ij+1 the cycle after Ij starts. CPU designers must guarantee that “nothing bad” happens.
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Suppose we have a long dependency chain: instruction In depends on the output of In−1,

which in turn depends on In−2, etc. Then the execution of In will always stall until In−1 is

ready. In such scenarios, we gain nothing from pipelining. It is up to the compiler and the

programmer to minimize dependency chains. Note that while some dependency chains are

logically necessary, others are not and arise solely from assumptions made by the compiler.

In evaluating (a+b)/c-d, a+b must be computed first; that result is then divided by

c; and finally d can be subtracted from the intermediate (a+b)/c. Alternatively, in order

to complete the store A[i+j+k]=(a+b)/c-d, both the RHS and the memory address must

be computed before a store can occur. Here, dependencies are necessary: the CPU cannot

divide by c until (a+b) is computed; it cannot store the result until the address is computed;

and so forth.

However, some dependency chains arise due to compiler assumptions. Under current

compilers, the obvious implementation of a floating-point dot product between vectors of

length N leads to a dependency chain of length N . A basic implementation follows:

double c = 0.0;

for(i = 0; i < N; i++)

c += x[i]*y[i];

In this dependency chain of length N , iteration i + 1 cannot start until iteration i is done,

because c must be updated after each iteration. Performance can be increased if the CPU

is allowed to execute multiple iterations simultaneously. This is accomplished by unrolling

the loop. An implementation of a inner product unrolled four times (assuming Nmod4 ≡ 0)

follows:

double c, c0 = 0.0, c1 = 0.0, c2 = 0.0, c3 = 0.0;

for(i = 0; i < N; i+=4){

c0 += x[i]*y[i];

c1 += x[i+1]*y[i+1];

c2 += x[i+2]*y[i+2];

c3 += x[i+3]*y[i+3];

}
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c = (c0 + c1) + (c2 + c3);

The reason that the compiler will not perform this automatically is that floating-point arith-

metic is not associative. In this situation, the compiler is unwilling to make the transforma-

tion because it could change the answer.6 Note that writing c = (c0 + c1) + (c2 + c3)

is not the same as c = c0 + c1 + c2 + c3. C arithmetic is evaluated from left to right, so

the latter expression is equivalent to c = (((c0 + c1) + c2) + c3), which introduces an

unnecessary dependency chain.

In general, loop unrolling can get rid of dependency chains, which is arguably its most

important purpose. Regardless of whether dependency chains are present, unrolling can

improve parallelism and may allow the compiler to produce better optimizations (e.g., im-

proved instruction scheduling to avoid stalls, although modern CPU out of order engines

make this less important). Unrolling also decreases the loop overhead, since fewer iterations

are needed.7 This overhead comes from evaluating the test condition, incrementing loop vari-

able(s), and performing any other iteration-dependent arithmetic.8 There are also downsides

to unrolling. The loop size may be variable; in the previous example, if Nmod4 > 0, then

extra code is necessary to handle the additional 1, 2 or 3 iterations, which increases the code

size. Unrolling also increases the code size since an unrolled loop now has many copies of

essentially the same operation(s). A larger code body may decrease the effectiveness of the

i-cache, since the working set (in instructions) is larger. Unrolling a loop by an exceedingly

large factor is potentially wasteful (in that the code becomes larger but with no performance

gain), since there will not be enough registers to handle all operations in parallel. Be aware

that explicit loop unrolling is often unnecessary, since most compilers have automatic loop

unrolling mechanisms when setting at least -O2 or specifying -funroll-loops. However, the

compiler may make poor decisions (e.g., not unrolling or choosing an inappropriate factor)

in places where it does not have as much information as the programmer. For example, the

6Note that loop unrolling to break the dependency chain may not the best choice with a vectorizing
compiler. Current compilers will not compile the unrolled loop with SSE2 instructions (or more directly
with SSE4’s dot product instruction), but they can vectorize the vanilla code. It is likely that simple,
common operations like inner products are recognized as such and replaced with more optimal code.

7For very short loops, unrolling can remove the loop construct entirely.
8Consider an inner product kernel: c += (*x++)*(*y++);. Unrolling decreases the amount of pointer

arithmetic (incrementing x and y) involved.
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state rank (Nsr) is constant for a given problem, but unless Nsr is specified at compile-time,

the compiler must assume that it could lie anywhere in the range [0, 232 − 1].

Lastly, some instructions take much less time in execution than others; see Table 1.1.

The CPU must guarantee that all results are written out in program order. Naively, the

CPU could stall the output of instruction In until In−1 is completed (and so on). As it turns

out, the machinery necessary for out of order execution (see Section C.4) solves this issue.

C.3 Branch Prediction

A branch arises any time the JMPQ (jump) command9 is issued in assembly, which causes the

CPU to jump from the current instruction address to some other location.10 Any branch

is either conditional and unconditional and either direct or indirect. The following C con-

trol statements are examples of jumps: function calls, if-statements, switch blocks, control

loops, and goto, break, continue, and return statements. Note that many control struc-

tures require at least two JMPQ commands. For example, one JMPQ is required to enter a

branch of an if-statement, and another may be required to return to the code following that

branch.11

Conditional branches include if and switch statements, where some expression must be

evaluated and tested before the state of the jump is known. Unconditional branches include

function-calls, where it is always known that the jump will occur.12 An indirect branch is a

jump whose target is not known at compile-time. With a direct jump, examining the jump

(or call) assembly command will reveal a literal target address. With an indirect jump, the

argument following jmpq could be the contents of a register, memory address, etc. In all

cases, the target must be computed at run-time; generally, the target could differ each time

the jump is executed. In C/C++, indirect jumps arise from switch statements, function

9JMPQ is the 64 bit version; the 32 bit version, JMP, may be more familiar.
10The JMPQ command accepts a known address (i.e., integer value) or the contents of a register as an

argument. In x86 assembly, several other commands correspond to jumps; e.g., JE (jump if equal), JNE

(jump if not equal), CALL (function-call), RET (return), etc.
11This is generally the case if an else is present; otherwise the exiting jump is not necessary.
12JMPQ and CALL are examples of unconditional jumps, whereas JE and JNE are conditional.
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calls via function pointers,13 and virtual function calls (polymorphism).

When a branch instruction is encountered in execution, the CPU nominally must know

whether the branch is taken before proceeding. Additionally, if the branch is indirect, the

CPU must also know its target. Given the frequency with which control statements, function

calls, etc. appear, having the CPU wait to resolve every branch fully would incur a substantial

performance hit. The solution is branch prediction, a phrase which refers to two different

concepts: branch prediction and branch target prediction. The former refers to predicting

whether a branch is taken or not taken. The latter refers to predicting the target (i.e.,

destination address) of a taken branch.

When a branch is mispredicted, the CPU will pipeline and/or fully execute14 instructions

that were never intended to pass to retirement. The damage must be undone before execution

can continue, since the offending code may be trying to overwrite registers, memory, or

otherwise change the program state. Recovery from the misprediction involves the CPU

flushing the entire pipeline, since all currently in-flight instructions were executed as a result

of the misprediction. As a result, branch misprediction latency is equal to the number of

stages in the pipeline. Note that correctly predicted branches are not free. These branches

are still decoded and their test conditions must be evaluated to determine correctness. They

incur a 2 cycle latency, which is small compared to the misprediction penalty, but purely

overhead nonetheless.

Branch mispredictions are murder for the performance of pipelined CPUs. The Pentium

4’s extremely long (31 stages in some variants) pipeline lead to poor performance in applica-

tions with many branches, despite a very strong branch prediction mechanism. The Core i7

also features strengthened predictors (compared to the Core 2) to compensate for its pipeline

which is “only” two stages longer than that of the Core 2.

For the pipeline to run efficiently, instructions are fetched in chunks (e.g., currently,

16 bytes) and decoded in the first few pipeline stages. To keep the pipeline full, these

instructions should be executed sequentially. In all likelihood the branch target is not part

13This definition includes calls to members of dynamically linked libraries. However in this case, the target
is always the same within a single run of the program, but it may vary from run to run depending on where
the dynamic library is loaded in memory.

14Full execution only occurs in out of order processors; see next section.
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of the most recently fetched code chunk.15 A variety of programming practices can help

reduce the number of branches along with their impact. For example, so-called “inner-

loops” should avoid function-calls and if-statements whenever reasonable. Oftentimes, it

is preferable to have mostly-redundant copies of inner-loop code. Each loop version lives

in a separate branch instead of having branches within a single loop. Additionally, such

inner-loops may also be unrolled so that several logical iterations are handled per executed

iteration.16 Additionally, loop unrolling is extremely effective when iterates are handled

differently in a known pattern; e.g., all odd iterates take one path and even iterates take

another. Here, unrolling can entirely eliminate branching in the loop body. Nested if-

statements that branch on integers are also inefficient, unless a small number of possibilities

are heavily favored and these possibilities appear early in the nesting. Otherwise, switch

blocks are better.17 Further, a look-up table is vastly preferable if the switch is only mapping

integers to other numbers, since this avoids branching entirely. Decreased branching is also

an argument for static linking over dynamic linking.

However in many cases, branching is unavoidable. CPU designers have worked hard to

decrease the frequency of mispredictions. The most naive branch prediction approach is to

always assume the next line of code will be taken, as described above with the incrementing

of the PC. Luckily, CPU branch prediction algorithms are much more sophisticated. Efficient

prediction is an area of much active research, but one algorithm is currently very popular[27]:

the two-level adaptive predictor [71].

The two-level adaptive predictor is composed of several 2 bit saturating counters. A

2 bit saturating counter has four states: strongly not taken (00), weakly not taken (01),

weakly taken (10), and strongly taken (11). Nominally each branch could be tracked by a

single saturating counter. The branch starts in some state; each time it is taken, the counter

increments, and each time it is not taken, the counter decrements. The counter cannot

15This is true of most branches. Only direct, conditional branches could continue execution in the current
code chunk, depending on how the taken and untaken code is ordered by the compiler.

16The benefit from unrolling the dot product may be two-fold: it shortens the dependency chain and
could decrease the loop overhead. Note that the loop overhead is only relevant when the dot-product is not
memory-bound.

17In the worst case, switch statements are implemented with nested if statements to binary search over
the cases.
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decrement past 00 nor increment past 11. The CPU predicts not taken for 00 and 01 and

taken for 10 and 11. Saturating counters perform well for branches that are mostly taken or

not taken; branches that switch often will be mispredicted. Depending on the initial state,

it can take up to two iterations for the counter to transition from not taken to taken or vice

versa.

The two-level adaptive predictor solves this problem by storing the history of the last n

occurrences of each branch, and applying a 2 bit saturating counter to each of 2n history

possibilities. The idea is best illustrated through an example; in the following, n = 2.

Consider a branch that alternates between being not taken twice and then taken twice:

0011,0011,0011,. . .. After seeing the pattern at most 3 times,18 the saturating counter for 00

will reach weakly/strongly taken, since 00 is always followed by 1. The counter for 01 will

read 1, 10 reads 0, and 11 reads 0. After this steady state is reached, no further mispredictions

occur. However, consider the pattern 0001,0001,0001,. . .. 00 may be followed by a 0 or a 1,

meaning that the saturating counter for 00 has no steady state value. Generally, the behavior

of the two-level method applied to a branch pattern with period p can be summarized as

follows[27]:

• For p ≤ n + 1, prediction is perfect after a transient of no more than 3p.

• For n+1 < p ≤ 2n, prediction is perfect if all consecutive subsequences of length p are

different.

• Otherwise prediction is inaccurate.

In practice, remembering each branch separately is too expensive, since the data storage

requirement is exponential in n. Instead, CPU designers use a global history table that

is shared across multiple branches. The result is similar to what set associativity does to

caching: different branches can be identified as the same, causing extra mispredictions if

their patterns are different. Note that branches are assigned entries in the global history

table based on their instruction address. Thus although all instances of if(Dim == 2) in a

code segment may be taken, each individual if statement gets its own entry in the history

18The transient is due to the warm-up time required by the saturating counters.
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table. Coalescing identical conditions can only be handled changing the code; e.g., by the

programmer or the compiler.

Using the two-level adaptive predictor with global history, the K8 sets n = 8, the K10

sets n = 12, the Core 2 sets n = 8, and the Core i7 sets n = 18. The AMD K8 and

K10 processors have 16 ∗ 1024 entries[5], but the size of Intel tables is not known through

Intel or by experiment. But it does appear that the Core i7 has a two-level history table;

the additional level (presumably) only includes branches that are determined to be more

important (e.g., executed more frequently).

The two-level predictor generally performs quite well, obtaining average accuracy rates

in the range of 95%[5, 36]. However, this method does not perform well with branches that

are taken randomly. Fog[27] reports miss rates for various distributions of not taken/taken;

e.g., branches that are randomly taken 40% of the time generate about a 46% miss rate.

Randomly taken branches that vary infrequently (e.g., only not taken 1% of the time) are

well predicted. The problem is that the two-level method attempts to assign patterns to

inputs that have no pattern.

The latest Intel processors (Pentium M, Core 2, Core i7) use the two-level adaptive pre-

dictor for all branches except loops. This is somewhat wasteful since unconditional branches

require no history to determine whether they are taken. AMD introduced a mechanism in

its K8 processor that allows the CPU to discern between: 1) never jump, 2) always jump, 3)

use two-level predictor, and 4) use return stack buffer (discussed below). As a result, some

branches never enter the history tables. The mechanism is complex and full details are given

in [27, 5]. The primary drawback is that only three branches per 16B (assembly) instruction

block (aligned to quarters of a 64B cache line) can be predicted accurately. Having more

than three branches will cause predictor contention, resulting in at least two mispredictions

in that code section[27].

A few additional points remain, concerning special cases that do not fall under the predic-

tion framework previously discussed: function returns, loops, and branch target prediction.

Function returns are correctly predicted. During the call sequence, the return address (i.e.,

the instruction following the call) is pushed onto a stack called the return stack buffer; when

the CPU encounters the return command, it simply pops the stack. Modern CPUs use a
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return stack with around 16 entries[27].

Loops are handled by an alternative mechanism in Intel processors starting with the

Pentium M[36, 27]. These processors have separate loop counters for jumps determined to

be a part of looping logic. The counters do not share storage with the two-level predictor’s

global history table. They can accurately predict loop counts of up to 64; for loops with more

than 64 iterations, a misprediction is expected up to once every 64 iterations.19 A meta-

predictor mechanism decides when to apply the two-level predictor or the loop counter.

Nested loops in particular are handled well by Intel’s loop counter method; nesting remains

an issue for other processors. Additionally, note that loops containing many branches tend

to be mispredicted.

Having covered branch prediction, branch target prediction still remains as part of the

CPU’s overall prediction mechanism. A history of branch targets are stored in a special cache

called the Branch Target Buffer (BTB). The BTB is usually set-associative, so aliasing issues

(as with the global history tables) are possible. The BTB provides the CPU with information

it can use to predict the branch target. A CPU with 100% accurate branch prediction would

still have to stall and wait on indirect jumps, since knowing whether the branch is taken

provides no information about what instruction to execute next.

The BTB is implemented as a hash table that hashes (jump) instruction addresses to

branch targets. The BTB is generally not fully associative,20 so conflicts can occur if jump

instructions lie on certain size boundaries. Without a BTB, branch targets would have to

be computed each time a branch arises (regardless of prediction accuracy), incurring extra

latency for almost all branch instructions. Modern CPUs have at least two BTBs; one for

indirect jumps and one for other jumps. BTB details[27, 5] are listed in Table C.1:

The Core i7 is not listed in Table C.1 because the data is unavailable[27]. As with its

history table, the Core i7 also uses a two-level BTB[72].

Older processors generally predicted indirect jumps with non-constant targets inaccu-

rately. Early BTBs only allowed one entry per jump instruction, so new a target for a branch

19By contrast, the AMD K8 and K10 processors will perfectly predict loops with 9 and 13 iterations,
respectively.

20Associativity is not a published statistic. Fog experimentally estimates that the latest AMD and Intel
processors use 4-way BTBs[27].
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BTB Type Entries Set Associativity
Pentium M and Core 2
Indirect Jumps 8192 4-way
Loops 128 2-way
Other Jumps 2048 4-way
AMD K8 and K10
Indirect Jumps (K10 only) 512 ?
Other Jumps 2048 4-way

Table C.1: BTB characteristics for various processors. For Pentium M and
Core 2, “other” indicates non-looping branches and unconditional
branches; for AMD, “other” indicates direct jumps.

was always predicted as its most recent target. Intel processors starting with the Pentium M

and AMD processors starting with the K10 are able to predict non-constant indirect targets

when there is a regular pattern. These designs employ a separate BTB for indirect jump

targets. Indirect branches use the same history table, but the data organization is changed

to use some bits to distinguish between different targets.

Lastly, the event counter RESOURCE STALLS.BR MISS CLEAR measures the number of cy-

cles stalled due to branch mispredictions. This includes the branch predictor making the

wrong choice about a conditional jump as well as the BTB containing the wrong target data.

When using unit tests to evaluate or simulate performance, take care to simulate all branches

at all function-call levels associated with the inner-most loop. Since history table and BTB

space are limited, it is not sufficient to emulate a loop with one function call as a loop with

one unconditional branch; i.e., the branching behavior of that function call could adversely

affect prediction performance elsewhere. This idea is similar to the fallacy of measuring

performance by unit testing code that operates on large data sets with only small data sets.

In summary, branch misprediction is an expensive event which stalls the CPU for a num-

ber of cycles equal to its pipeline length. Branch (and target) prediction methods exist and

generally perform very well. But these methods require warm-up time to “learn” expected

branch behaviors. Additionally, branch predictors have limited space for storing histories

and are subject to the same set-associativity issues seen with caches. Performance critical,

inner-most loops should not involve branches whenever possible; i.e., avoid if statements,
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function calls, etc.21 Inlining and macros can help maintain code readability and maintain-

ability while abiding by this rule of thumb. Similarly, “core” parts of the program should

also avoid large amounts of branching. For example, executing a large number of different

branches infrequently will pollute the two-level adaptive predictor’s history tables (the effect

is worse since the tables are global) and the BTB. Thus improving branch prediction is not

necessarily a local optimization; e.g., consider the following code:

for(i=0; i<n; i++){

Foo(...);

BAR:

//other branching code

}

If the function Foo contains (say) many nested if statements, especially with loops (or if

there are many function calls), pollution of branch prediction resources could cause mis-

predictions in the code labeled BAR, even if BAR appears as if it should be well-predicted

(i.e., follows the rules for the two-level adaptive predictor). The idea is similar the notion

of maintaining small working sets for optimum cache effectiveness discussed in Section 4.1.

In such inner-loops or core program components, consider removing branches by making

known quantities compiler arguments and using pragmas such as #if or #ifdef or by lifting

branches out of inner loops and having different (potentially largely redundant) code chunks

for each branch option.22

C.4 Out of Order Execution

In the in-order, pipelined CPU model, if an instruction stalls (e.g., waiting to load data

from the memory system), then the entire pipeline has to halt and wait. This limits the

21Possible exceptions to this rule of thumb include branches that detect special conditions where substantial
computation can be saved.

22This practice has the advantage of making some loops static in size, allowing the compiler to optimize
better; e.g., with unrolling.
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effectiveness of pipelining and superscalar execution, since frequent stalls will result in most

compute resources remaining at rest. By allowing Out of Order (OoO) execution, the CPU

can work on another instruction during some resource stalls. In many cases, even new in-

structions dependent on the stalled instruction will go through the set up phase, so that they

are ready to execute as soon as the stall ends. Additionally, the CPU can execute unrelated

code blocks in parallel if enough instruction bandwidth is available. OoO execution improves

the potential effectiveness of pipelining by trying to mask stalls that would otherwise shut

down the entire pipeline. For example, OoO execution coupled with data prefetching usually

masks the cost of L1 cache misses. OoO allows the CPU to perform unrelated operations

during the wait period, and prefetching (from the L2 cache) attempts to prevent such misses

from ever occurring. However, OoO execution introduces substantial levels of complexity

not seen in processors with in-order execution.

The table below lists the major components of the pipeline in OoO CPUs. Recall that

CPUs typically have 10-20 pipeline stages, so this list is only conceptual. In longer pipelines,

the stages below would be divided into multiple smaller pieces.

1. Fetch the next cache line of instructions.23 Branch prediction occurs at this early step.

2. Decode the instructions into µops.24

3. Assign µop operands to (renamed) registers, storing the assignments in the Register

Alias Table (RAT). Stall if the table is full. Modern CPUs have more than 100 registers,

even though the x86-64 ABI specifies far fewer; the RAT tracks the allocation of these

registers to µops.

4. Create an entry in the Reordering Buffer (ROB) for the µop. Stall if the buffer is

full. µops are decoded in program order; the ROB ensures that the results are also

committed in program order.

5. Buffer µop in one of the Reservation Stations (RS). Stall if the stations are all full. RS

23Some CPUs place these instructions in a buffer in case the decode unit becomes stalled.
24 only the case where copies of the operands move with the µops. This occurs on all current CPUs, but

Intel’s upcoming Sandy Bridge architecture diverges.
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buffer µops so that if a particular µop cannot execute (applicable execution units are

busy, operands unavailable, etc.), that µop can wait without stalling the entire CPU.

6. For each execution unit, execute a µop from the RS that has all of its operands available.

If no such µops exist, stall.

7. If the instruction was a load or store (to memory), buffer it in the load or store buffer,

respectively. (Recall that these buffers read and write out when bandwidth is available.)

Stall the current load/store execution unit if the needed buffer is full.

8. Instruction retirement using the ROB; i.e., outputs are written out to registers in

program order.

The new buffers and µop ports designed to support OoO execution are intended to reduce

or eliminate the presence of bubbles in the pipeline. A bubble arises when pipeline stage si

stalls. In the next cycle, si+1 receives nothing from si, creating a bubble. Bubbles also

arise when stages have different latencies, but these occurrences are rare. With the buffers

in place, even if part of the pipeline wants to stall, hopefully the relevant buffer can hold

the waiting instruction without delaying other work. In the assembly line analogy, buffering

µops in the RS is akin to temporarily pulling a car frame off the line because some custom

component is unavailable.

Register Renaming and the Register Alias Table (RAT) The x86-64 standard spec-

ifies only 16 64 bit integer registers,25 16 128 bit SSE registers,26 and 8 80 bit x87 registers.27.

There are also a number of special purpose registers (e.g., control, debug, test) that are not

a part of typical program execution. Any program can only have direct access to these

registers–generally speaking, 16 integer and 16 SSE. However, modern CPUs have upwards

of 100 registers available. To promote pipelining and out of order execution, the CPU dy-

namically renames the registers used by the program to any one of the registers currently free

25RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, RFLAGS, RIP, and R8 through R15. Replacing R with E accesses
only the bottom 32 bits.

26XMM0 through XMM15. Upcoming AVX registers (256 bit) will be named YMM0, YMM1, etc.
27ST(0) through ST(7); note that these registers are special in that they are implemented as a stack.

These registers alias with the MMX registers, which are currently rarely used
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in a process called register renaming. So accessing RAX in assembly could result in manip-

ulating any one of the CPU’s registers; this process is entirely transparent to the program.

Register renaming confers several advantages. For one, independent code blocks can be exe-

cuted simultaneously. Nominally these blocks use the same registers, but through renaming,

they do not. Even within a single block of code, register renaming can mask instruction

latencies[27]:

mov eax, [R8]

mov ebx, [R9]

add ebx, eax

imul eax, 6

mov [R10], eax

Here, [X] denotes the contents of the memory address contained in X. Suppose that [R8] is

in cache but [R9] is not. Then the second mov command will stall. Notice that if multiple

copies of eax were available, then that register could be saved off for the add command, while

the imul and subsequent mov could proceed. The register renaming scheme automatically

handles this operation by copying the contents of eax into a temporary register, thus per-

forming additional work even while the load from [R9] stalls. The RAT tracks the renaming

process and ensures that register values (as seen by the program) are changed in program

order, despite actually executing out of order. The RAT has enough entries to track all

rename-able registers (i.e., registers usable for computation). As mentioned, modern CPUs

have more than 100 such registers.

ReOrder Buffer (ROB) The ROB maintains an ordered list of the instructions currently

in flight. After instructions are executed, the ROB reorders the instructions so that they

are retired in program order, i.e., in the order in which they were dispatched. When an

instruction is decoded, it receives an entry in the ROB; that entry is cleared when the

instruction is retired. Conceptually, imagine a linked list of instructions: newly decoded

instructions are appended to the tail and instructions are retired by popping from the head.

The ROB allows many instructions to be in flight simultaneously and out of program order.
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For example, it is possible that every instruction in the ROB except the one at the head

has been completed. Then when the head instruction completes, all current ROB entries

will retire very quickly. Note that dependency chains do not directly interfere with the ROB

in that every new entry added to the ROB could depend on its (temporal) predecessor.

Indirectly, dependency chains decrease the efficacy of the ROB since it will never be true

that instructions behind the head finish before the head. Note that the ROB may contain

speculative results; these instructions are only retired if the speculation proves correct. There

are 96 ROB entries in the Core 2, 128 in the Core i7, and 168 in Sandy Bridge.

Notice that the ROB provides a built-in mechanism for guaranteeing that branch mis-

predictions can be fixed relatively easily. The ROB guarantees that instructions retire in

program order, so speculatively executed code cannot reach the head of the ROB until the

jump condition and/or jump target have been computed and checked with the initial guess.

In the case of a misprediction, the easiest solution would be to purge the pipeline and all

of the buffers after retiring the branch instruction(s). Then restart execution at the correct

location.

Reservation Stations (RS) Reservation stations (also called a unified or resource sched-

uler) buffer µops along with their operands.28 Reservation stations communicate directly

with the execution units. Instructions whose operands are not yet ready (e.g., instructions

in a dependency chain) have RS entries as well, but with empty operand(s). These instruc-

tions cannot be sent off for execution until their operands are filled; instead, they wait in a

station. Note that as long as stations are available, instructions can continued to be decoded

and dispatched. One advantage of this system is that only very long dependency chains

will stall the processor; shorter chains are not an issue since otherwise stalled instructions

are buffered in a RS, allowing other instructions to continue executing. The RS contains 32

entries for the Core 2, 36 entries for the Core i7, and 54 entries for Sandy Bridge.

28Buffering operands is expensive in terms of power consumption and circuit-space due to the need to
transfer wide operands around inside the CPU; e.g., on Core 2 and Core i7, the widest operands are 128 bits
while the upcoming Sandy Bridge employs 256 bit operands. As a result, the Sandy Bridge stations will no
longer hold entire operands; instead they will carry a pointer to a common cache of data called the Physical
Register File.
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Micro-ops and Execution Micro-ops are intended to give additional opportunities for

out of order execution, since it is the µops that are reordered, not the instructions. Assembly

commands have a one-to-one mapping with binary machine language, the instructions that

are fetched by the CPU. These instructions can encode complex tasks. For example, the

assembly command to multiply the contents of address X and Y , and then store the result

in X is: IMUL [X] [Y]. This instruction is broken into four µops: 1) load X into a register,

2) load Y into a register, 3) multiply and store the result in a register, and 4) update X

with the result. Consider the code:

IMUL [X] [Y]

IMUL [Z] [X]

Suppose that Y and Z must be loaded from cache, while X is in a register. Without breaking

into µops, the first instruction stalls waiting for Y and there is nothing more to do. With

µops, the loads for Y and Z can proceed simultaneously.

Execution units receive µops on different ports. Only one instruction can be issued to a

given port per clock cycle; similarly, each port can only complete one µop per clock cycle.

The latest Intel CPUs have 5 ports. Ports 2, 3, and 4 handle memory operations almost

exclusively. The other ports handle a mix of computation operations. A full listing of

assembly instructions with their associated port(s) and latencies is given in [26]; a partial

listing is given in Table 1.1. Micro-ops are assigned to ports in a way that groups µops with

the same latencies onto the same port. Micro-ops that for which there are multiple execution

units (i.e., superscalar) can be received on multiple ports; e.g., adds, bit-wise operations, and

moves (between registers) on integers are issuable on ports 0, 1 or 5.

Out of Order Restrictions Modern CPUs are not truly out of order, in particular with

respect to reordering memory accesses. CPUs that are fully out of order with respect to loads

and stores experience hazards such as Read After Write (RAW).29 Alternatively, the CPU

is free to reorder writes and reads to different addresses. Intel and AMD provide exhaustive

29RAW hazards occur when a program specifies a read to address X and then a write to address X, but
OoO execution caused the write to retire first. The read will load the wrong value, and all instructions
depending on that read must be invalidated.
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lists describing when the reordering of memory operations is disallowed[39, 5]. As a result

of the limit on memory reordering, modern CPUs have load and store buffers (discussed

in Section 4.1) to enable the queuing of load and store operations, thereby masking (to

some extent) the effect of resource limitations in the memory hierarchy. Since all read and

write operations are buffered, these buffers can fill (causing RESOURCE STALLS.LD ST events)

even if all memory accesses hit in cache. This happens when a large number of read and

write instructions occur near each other (particularly if accessing entries different cache lines

so that coalescing does not occur), preventing the CPU from reordering them with other

operations and/or each other. Thus, the RESOURCE STALLS.LD ST counter is not a sufficient

descriptor of memory-limited workloads on its own.

The last OoO pipeline stage requires some additional attention. CPUs are often allowed

to execute instructions speculatively. A speculative CPU may execute code later determined

to be unnecessary (e.g., prefetching) or incorrect (e.g., branch misprediction). Unnecessary

µops simply pollute the various OoO resources with meaningless code. Incorrect code pol-

lutes these resources with µops which must be purged once the misprediction is identified.

So there is a distinct difference between executed instructions and retired instructions. Re-

tired instructions are instructions where the output was saved: only retired instructions did

any useful work. The ROB guarantees that instructions are retired in program order, de-

spite completing execution in nearly arbitrary order. In general, the number of instructions

decoded and executed by the CPU will be larger than the number of instructions retired,

due to techniques like speculative execution. The INST RETIRED event counter indicates how

many instructions were retired. Again, retired instructions only count “useful” work, not

speculatively executed code that proved unnecessary. MACRO INSTS counts the number of

instructions that were decoded into µops, including speculative operations.

Lastly, there are event counters for every major OoO pipeline component: RAT STALLS,

RESOURCE STALLS.ROB FULL, RESOURCE STALLS.LD ST, and RESOURCE STALLS.RS FULL. In

compute-bound workloads (i.e., all memory accesses hit in L1 cache), ROB and RS resources

do not usually run out. This may happen if most memory operations work with data already

in registers. In memory-bound workloads, these resources are likely to fill up. Consider a

situation where every newly decoded instruction requires some data that is currently not in
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registers, so that data must be retrieved from somewhere in the memory hierarchy. Sup-

pose also that most upcoming instructions depend on the stalled instruction, directly or

indirectly. The CPU runs out of reservation stations because the RS fill with instructions

whose operands are not yet available, preventing any further instructions from passing to

the execution units. The ROB becomes full because each new instruction is added (at its

tail), but no instructions can be retired (from the head). The RAT fills because all scratch

registers are already assigned to instructions waiting on the stalled instruction. Considering

that modern CPUs can decode around 4 µops per cycle and last-level cache misses incur

latencies of 100-200 cycles, it is easy to see why such misses are so damaging. Generally,

stalls due to resources filling earlier in the pipeline are worse, since larger amounts of the

pipeline will sit idle. For example, if the RAT fills, no µops will pass beyond it. However, if

the reservation stations are full, no further µops can leave the ROB, but the fetch, decode,

etc. machinery remains active unless the ROB is also full. Measuring the severity of mem-

ory bounded-ness is not merely a function of the number of cache misses (compared to total

instructions retired). The actual performance impact of these misses is better quantified by

stalls due to the RAT, ROB, RS, and LD and ST buffers.
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Appendix D

GMRES Stopping Criterion

When seeking a steady-state solution to a complex flow problem, it is common practice to

start with a small “time-step” to improve the robustness of the nonlinear solve (i.e., Newton’s

Method). Across most nonlinear iterations where the residual-norm is large, the accuracy

of the linear solve has virtually no effect on the performance of the solver. That is, if the

current nonlinear residual norm is 10−1, then obtaining a residual of 10−16 on the linear

problem is wasteful. However, an accurate linear solve is required as the nonlinear solver

nears the stationary point; errors here would prevent quadratic convergence. This argument

is based on a mathematical heuristic[18].

On the other hand, there is no guarantee that quadratic convergence is always desirable.

In particular, the high-accuracy linear solves required in the final stages of the nonlinear

solver are the most expensive. If the residual assembly cost is substantially less than the cost

of these high-accuracy linear solves, then one possibility is to sacrifice quadratic convergence

entirely. By using less accurate solutions, the nonlinear solver will require more overall

iterations but the total cost could nonetheless decrease. In the following, a heuristic, adaptive

stopping criterion [18] is described, and a simple “fixed” alternative is given.

GMRES should only solve the linear system accurately enough for the nonlinear solver to

obtain Newton convergence. Let em
h = Uh−Um

h be the solution error at nonlinear iteration m.

Newton methods exhibit quadratic convergence for sufficiently small error; i.e., ‖em+1
h ‖ =
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C1‖em
h ‖2. Assuming the same behavior in the nonlinear residual,1 Rh, the residual could

decrease by at most:

‖Rh(U
m+1
h )‖

‖Rh(Um
h )‖ ∼

( ‖Rh(U
m
h )‖

‖Rh(U
m−1
h )‖

)2

= (dm)2

So if (dm)2 is large, the linear solve need not be very accurate. After the linear residual (on

the k-th iteration), rk
h = bh − Ahx

k
h, has decreased by:

‖rn
h‖

‖r0
h‖

≤ KA min(1, (dm)2)

GMRES should halt. Far from convergence, there is no guarantee that the nonlinear residual

norm decreases monotonically; hence the presence of min. KA is a safety factor; we find

that a value of 10−3 is appropriate. When min(1, (dm)2) ≈ 1, setting KA too large (e.g.,

KA = 1) results in insufficient accuracy, providing garbage output to the nonlinear solver

and preventing convergence. Finally, if (dm)2 is extremely small, the following modification

ensures that GMRES does not attempt an impossible task:

‖rn
h‖

‖r0
h‖

≤ KA max

(

min(1, (dm)2), K2
‖Rdesired

h ‖
‖Rm

h ‖

)

,

where ‖Rdesired
h ‖ is the desired nonlinear residual and K2 is another safety factor set at 10−1.

We have found that this method requires the same number of nonlinear iterations as always

solving the linear system to machine precision. But the cost of all but the last few linear

solves (near convergence) is decreased greatly.

In practice, we have found that using the non-adaptive (fixed) stopping criterion,

‖rn
h‖

‖r0
h‖

≤ KF ,

is faster. We set KF = 10−3. The F subscript differentiates the fixed scheme from the adap-

tive scheme, which has parameter KA. This criterion incurs additional nonlinear iterations

1The assumption that the residual predicts the behavior of the error is heuristic, based on the fact that
the two differ by at most a factor of cond(A) when the problem is linear.
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near convergence, since the inaccurate solves prevent quadratic convergence. However, each

iteration is cheaper. The KA, KF factors are often called the forcing term; see [63] for some

further discussion and references.

Finally, regardless of the GMRES termination criterion, the importance of right precon-

ditioning is worth emphasizing. Testing convergence with the (linear) residual norm under

left-preconditioning leads to specious conclusions; only right preconditioning yields mean-

ingful residual norm values.2 Left-preconditioned GMRES naturally produces the value

‖M−1 (Axm − b) ‖2 after the m-th iteration. This quantity includes a factor of M−1, whose

properties are often unclear. right preconditioned GMRES naturally produces ‖Aym − b‖2,

where ym = M−1xm. Tracking changes in ‖Aym − b‖2 is a more accurate representation of

the progress made by GMRES.

2Calculating ‖Ax − b‖2 explicitly in every GMRES iteration also yields meaningful results, but the cost
is prohibitive.
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Appendix E

Code Development Practices for

Performance

The following section lists out some programming tips for performance enhancement. Some

techniques (e.g., cache-blocking, loop unrolling, branch elimination) were already discussed

elsewhere in this thesis and will not be repeated here. The list is loosely organized into

categories of related techniques. Some techniques are specific to C and C++, but most are

general.

• Compiler and Language:

– C modifiers: Two of the most useful modifiers for scientific codes are described

below. The description for the first modifier also includes a review of how to

interpret C modifiers.

∗ Use of the const keyword: This keyword is part of the original C standard.

const is short for constant ; its purpose is to declare the modified variable

immutable. const is useful for adding code clarity, particularly to function

argument lists with pointers, where it is often unclear which referenced data

will be modified. const variables must have their values assigned at declara-

tion.

As a warning, using the const keyword forms a contract with the compiler:

the programmer promises not to modify the constant variable. If the compiler
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detects a violation, warnings or errors will be produced. However, through

pointer manipulation, it is not hard to modify const variables without the

compiler’s knowledge. Thus, most compilers will not optimize based on the

const keyword.

Recall that C modifiers are read from right to left. For example, consider:

double myArray[10] = {0}; //initialize myArray to 0

int const x = 10; //x, a constant integer with value 10.

double * const A; //A, a constant pointer to double.

//The value of A (e.g., A=NULL)

//can never be set.

double const * B; //B, a pointer to constant double

//Thus B = myArray; is valid, but

//B[3] = 5.3; is not!

double * const * C; //C, a pointer to const pointer to double

//The value of C and C[i][j] can be

//changed, but C[i] (for any i)

//refers to constant pointers

double const * const * D;

//D, a pointer to const pointer to const double

//D may be modified, but D[i] and D[i][j] cannot be modified.

Note that the assignment C=E is only valid if E is has the same declaration as

C; this is similarly true of assignments to D.

Note that adding describing pass-by-value arguments as const is redundant

and unnecessary. For example, in:

int foo(int const n, double const * A, double * const x);

only the second argument should have the const modifier, if the array values

are indeed inputs only.

∗ Use of the restrict keyword: This keyword was added in the C99 standard.

In gcc, it can be enabled with the options -std=c99 or -std=gnu99; in icc,
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it is enabled with -restrict. The restrict keyword applies only to pointers:

double * restrict x;

x = malloc(...); //say x has 100 entries

//code to initialize x

The restrict keyword promises the compiler that no other pointers will

write-alias x and x will write-alias no other pointers. That is, x will not write

to and read from regions of memory that other pointers will also write to and

read from. For example, consider:

memset(x,0,100*sizeof(double));

double * restrict y = x+50;

for(i=0; i<50; i++){

x[i] = 1.0;

y[i] = 2.0;

}

as compared to:

memset(x,0,100*sizeof(double));

double * restrict y = x;

for(i=0; i<50; i++){

x[i] = 1.0;

y[i] = 2.0;

}

In the first loop, x and y do not write-alias each other. x only works with the

first 50 numbers; y only works with the last 50. In the second example, x and

y do write-alias each other, and the initialization of y breaks the restrict

contract.

As with const, restrict is only a promise to compilers that the restricted

pointer will not write-alias any other pointers and that it will not be write-

aliased by any other pointers. Breaking the contract purposefully or inadver-

tently will lead to undefined behavior. In the second code block above, the

151



first 50 values of x will be an unpredictable mix of 1.0 and 2.0, since the con-

tract was broken. Note that the compiler has almost no chance of detecting

broken restrict contracts, so warnings will be given rarely.

Consider another example:

void someprod(double * x, double * y, int n){

int i;

for(i=0; i<n; i++)

x[i] = y[i]*y[i];

return temp;

}

On the surface, it seems like the n iterations of this loop could occur in

parallel. However, this is not the case. Consider:

double y[10] = {...};

double * x = y + 1;

someprod(x,y,9);

Here, the code effectively being executed is y[1] = y[0]*y[0] followed by

y[2] = y[1]*y[1], etc. since x[0] == y[1] and so forth. Thus each itera-

tion is dependent on the previous iterations. Most programmers would never

intend for someprod to be used like this, but the compiler cannot make that

assumption on its own. The n iterations of the loop in someprod are only

independent if x,y are restricted. A better declaration follows:

void someprod(double * restrict x,

double const * restrict y, int n);

Functions like matrix-matrix and matrix-vector products also benefit from

the use of the restrict keyword. Without it, a product like y+ = Ax could

have x, y sitting somewhere inside of A. This introduces many dependency

chains that are, in most situations, unintended.

Finally, [54] noted speedups of 10% to 20% overall in their finite element

code after adding the restrict keyword. Comparable gains in ProjectX
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components have also been observed.

– Use builtin functions: For the most part, this is automatic. For example, when

calling many standard math functions such as sin or fabs, the compiler automat-

ically replaces calls to reference libc implementations with optimized versions.

For example, modern CPUs have a specific assembly instruction for fabs. In

some cases, this may not be automatic. The three main memory manipulation

functions in C, memset, memmove, and memcpy, are one such example. In these

situations, the optimized implementations will use SSE instructions and switch

to non-temporal moves as needed (for large data). In fact, current compilers will

recognize

for(i=0; i<n; i++) A[i] = 0;

and replace it with a (possibly inlined) call to memset. This mechanism fails with

more complex loops, such as:

for(i=0; i<n; i++){

A[i] = 0;

B[i] = 0;

}

since the loop technically specifies that the i-th value of B be set immediately

after the i-th value of A. Finally, note that calls to these three memory functions

are undesirable for very small amounts of data (less than 100 bytes).

– Compiler options: Table E.1 contains a list of compiler options useful with both

gcc and icc. Table E.2 contains a list of options unique to icc, and Table E.3

contains options unique to gcc. Outside of the commonplace -O2 or -O3 options,

these compilers have a number of additional, performance-boosting options that

may not be as well-known. Finding an appropriate set of compiler options can

substantially improve performance, whereas setting the wrong options can worsen

performance.

• Write and execute code in a 64 bit environment: Unless legacy compatibility is of
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Option Name Compiler Comments
-On both n = 0, 1, 2, 3, higher for more optimiza-

tions. Enables automatic optimizations
for both compilers. -O2 is common.

-falign-functions=16 both Align functions on 16-byte boundaries.
Improves i-cache performance.

-falign-jumps=16 both Align jumps on 16-byte boundaries.
Improve i-cache performance.

-finline both Inlines functions declared with the
inline keyword.

-finline-functions both Inlines functions as the compiler sees
fit.

-fomit-frame-pointer both Free up frame pointer register for gen-
eral use. Adds a scratch register.

-fpack-struct both Pack structs to occupy as little space
as possible; see below.

-fshort-enums both Uses minimal amount of space for enum
types, thus reducing memory use and
improving cache performance.

-freg-struct-return both Return structs in registers when pos-
sible.

-march=? both Specify target architecture; e.g., re-
place ? by core2. Implies -mtune=?

Table E.1: Useful compiler options for icc and gcc. Consult the compiler
manuals or references for further details on these options.
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Option Name Compiler Comments
-alias-const icc Compiler assumes pointers to const

cannot alias pointers to non-const.
-align icc Compiler modifies alignment for vari-

ables and arrays to improve perfor-
mance.

-falign-
stack=maintain-
16-byte

icc Maintain 16-byte stack boundaries.

-fast-transcendentals icc Use fast transcendental functions that
at worst lose precision in the last deci-
mal place.

-fma icc Fused Multiply Adds: floating point
multiplies followed by addition (or sub-
traction) are combined into one opera-
tion.

-ftz icc Flush denormalized numbers to 0.
Avoids penalty of working with denor-
malized numbers.

-no-prec-div icc Allows expensive divisions can be re-
placed by cheaper multiplication by re-
ciprocal operations.

-no-prec-sqrt icc Use a fast sqrt function that at worst
loses precision in the last decimal place.

-opt-multi-version-
aggressive

icc Compiler checks for pointer aliasing
and scalar replacement.

-opt-subscript-in-
range

icc Assume array indexes never overflow.

-vec icc Compiler vectorizes loops and code
blocks when it sees fit. Needs “-fp-
model fast=1” for maximum efficacy.

-vec-guard-write icc Performs conditionals inside vectorized
loops, avoiding additional stores.

Table E.2: Useful compiler options for icc. Consult the compiler manuals
or references for further details on these options.
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Option Name Compiler Comments
-fassociative-math gcc gcc assumes that floating point math is

associative. Requires -fno-signed-zeros
and -fno-trapping-math

-ffinite-math-only gcc Assumes nan and inf will never arise.
-fno-math-errno gcc Floating point exceptions do not set the

errno flag.
-fno-signaling-nans gcc Signaling nans disallowed.
-fno-signed-zeros gcc Positive and negative 0 are the same.
-fno-trapping-math gcc Disallows overflow, underflow, division

by 0, and other floating point excep-
tions. Increases speed if these never
occur but generates invalid results oth-
erwise. Requires -fno-signaling-nans.

-freciprocal-math gcc Allows expensive divisions can be re-
placed by cheaper multiplication by re-
ciprocal operations.

-ftree-vectorize gcc Enables automatic vectorization. Re-
quires -fassociative-math to vectorize
floating point arithmetic.

-mfpmath=sse gcc Use SSE floating point instructions (in-
stead of x87).

-mpreferred-stack-
boundary=4

gcc Sets 24 = 16-byte stack boundaries.

Table E.3: Useful compiler options for gcc. Consult the compiler manuals or
references for further details on these options. Note that the last
several floating point math optimizations (names starting with -f)
for gcc are contained within the options -ffast-math and -funsafe-
math-optimizations, the former of which includes the latter and
some options not listed in this table.
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utmost importance, 32 bit operating systems and CPUs offer no advantages over their

64 bit brethren. Oft-cited examples include: 1) 32 bit environments can only address

4GB of RAM in a single process; 2) 32 bit environments allow only half as many

registers (8 compared to 16 for 64 bit); 3) the 32 bit (function) calling convention has

far fewer registers available for passing arguments, resulting in relatively slow stack

references; and 4) SSE instructions (and in particular, the important floating point

SSE2 ones) are not available in 32 bit mode.

• Vectorization/Use of SSE instructions: As mentioned above, current compilers can

automatically vectorize code if the proper options are specified (-vec for icc and -

ftree-vectorize for gcc). Vectorization via SSE instructions is extremely important for

performance, particularly with floating point operations. Vectorized code can conduct

multiple floating point operations with a single instruction, effectively doubling (for

double data) or quadrupling (for float data) throughput. With the AVX extensions

available on Intel’s newest (Sandy Bridge) processors, these performance factors are

again doubled.

However, some loops or code blocks are sufficiently complex so as to defeat the com-

piler’s vectorization algorithms. Alternatively, some loops may not be vectorizable

without specific assumptions that the compiler does not know. The latter issue can be

handled with #pragma compiler hints. In highly performance-critical code regions, the

former issue is only addressable by the programmer manually vectorizing code. Fortu-

nately, this does not require writing assembly. Libraries such as mmintrin.h provide

hooks into SSE assembly instructions. These libraries allow programmers to access

SSE instructions directly in the familiar C/C++ environment, with no overhead.

• Improving branch prediction:

– if vs. switch statements: Generally, switch statements are preferable when se-

lecting over more than 2 integer options. First, a description of how the compiler

implements switch statements is in order. switch statements have a set of target

cases ranging from a to b. Not every integer between a and b needs to be speci-
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fied. The assembly code for switch statements takes one of two forms. First, if

more than about 10% of the integers between a and b have specified cases, the

compiler forms a jump table. This is an array of memory addresses (containing

instructions); depending on what argument switch receives, execution jumps to

the appropriate memory address by effectively doing an array lookup. The un-

specified integers may be automatically inserted by the compiler into the jump

table (with jump instructions pointing to the default condition or to skip past

the switch statement) or handled with one or more if statements. When too

few targets between a and b are specified, the compiler builds a set of nested if

statements that perform a binary search for the desired target.

Nested if-statements must evaluate every conditional to reach the deepest level.

As described above, switch statements evaluate at worst a number of conditionals

logarithmic in the size of the range of options (i.e., b − a). At best, the switch

statement involves simply an array-lookup. Thus, switch statements usually

outperform if statements when their use is possible.

Note that neither if nor switch statements are appropriate for mapping an in-

teger to another number. In this case, the programmer should create a (static)

lookup table. This avoids the branching altogether.

If a small number of cases are much more common than the others, it is ad-

vantageous to “lift” these cases out of the switch statement and test them with

one or more if-statements. These common targets should be ordered from most

to least common in set of ifs. builtin expect (discussed below) can handle

this automatically if only one switch target is commonplace. switch statements

incur more overhead than if statements if the if statement is guaranteed to only

need one or two comparisons.

– The builtin expect hint: In the following code example, the resulting compiled

code will have Code A followed by Code B followed by Code C, all adjacent to

each other. In execution, if the branch is taken, the conditional jump results

in continued execution of already-fetched code. However, if the conditional is
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very unlikely, then a jump into block C is always necessary, wasting bandwidth

in loading B. Thus placing Code B outside the main code body achieves better

performance through improved locality.

...Code A...

if(conditional){ //unlikely conditional

...Code B...

}

... Code C...

Many modern compilers accept hints to indicate that a conditional is likely or

unlikely. Given the hint, the compiler will move code around accordingly to

improve instruction cache performance. For icc and gcc, the “function call”

builtin expect is used to provide these hints[38, 66]. These compilers also

accept builtin expect in the switch clause, where it indicates which case is

the most likely.

• Data Type Limitations and Data/Code Alignment:

– Avoid floating point special cases: Avoid floating point (either x87 or SSE) un-

derflow and overflow exceptions; e.g., denormalized numbers, inf, and nan.1 The

execution units responsible for floating point arithmetic cannot directly handle

these special cases; the resulting execution interruption carries a latency of around

100 cycles. Thus, using inf or nan as flag values is unwise. Additionally, a float-

ing point system supporting denormalized numbers is not necessary for proving

commonly considered numerical properties like backward-stability. In most cases,

algorithms that are strongly dependent on denormalized numbers should be res-

designed.

– Typecasting: [28] provides a complete listing of the various kinds of type casts.

A brief summary is given here. In short, not all type casts are free and some

are quite expensive, so care is needed when casting. First, casting from any type

1Integer overflow and underflow do not cause slowdowns by themselves.
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(e.g., signed, unsigned) or size (e.g., short, long) of int to any other type of

int is free. The cost of casting from integer to float (or vice versa) depends on

whether x87 or SSE2 floating point instructions are being used. Lastly, float to

double (or vice versa) is not free, since a 32-bit float is not simply the lower

half of a 64-bit double, as with 32 and 64-bit integers.

– Use the smallest type for the job: Choose char and short (available signed and

unsigned) when the data range is sufficiently small.

– Data alignment: The Table (E.4) below lists the alignment boundaries for common

data types. These boundaries are important when laying out structs. Note that

the given boundaries are OS and hardware dependent; the following table specifies

alignments used in 64 bit Linux.

Type Size (bytes) Alignment (byte-boundary)
char 1 1
short 2 2
int 4 4
float 4 4
double 8 8
long int 8 8
Any pointer 8 8
long double 16 16

Table E.4: Alignment of Primitives in Linux64

Finally, as mentioned in Table E.1, stack alignment can be specified through

compiler options. For best performance of SSE instructions, 16-byte boundaries

should be used. Current implementations of malloc usually default to 16-byte

boundaries for heap-allocated data. Specialized malloc implementations (e.g.,

mm malloc) that allow programmers to specify data alignment also exist.

– Pack structs: The compiler orders data in structs in the order defined in code,

unless -fpack-struct is given. With -fpack-struct, the compiler automatically

orders struct members to occupy as little space as possible. To see how this

works, consider: struct:
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struct mystruct{

char charA;

double doubleB;

};

Looking at Table E.4, there are only 9 bytes of data here. But double must be

8-byte aligned, meaning that in memory, 7 bytes of padding will be inserted after

the char. Thus sizeof(mystruct) is 16 bytes. If the positions were flipped:

struct mystruct2{

double doubleB;

char charA;

};

then sizeof(mystruct) is 9 bytes. This problem is compounded if the program-

mer were to form an array of mystruct types.

However, it is sometimes preferable to waste some space in very large structs. If

some struct members are accessed more commonly than others, the most com-

monly accessed members should be grouped together and placed at the beginning

of the struct. This reordering improves cache locality. Similarly, if a programmer

were using an array of mystruct2, but the char is accessed more often than the

double, cache performance would be improved by breaking mystruct2 apart.

– Code alignment: It is often preferable for jump targets (e.g., function bodies,

loops, etc.) to be aligned in memory. This is related to how the CPU fetches

instructions; fetches of unaligned instructions will grab irrelevant code, wasting

bandwidth. Compiler options, in the form of -falign-*, exist to accomplish

this automatically; see Table E.1. Compilers align code by inserting instructions

that do nothing (no-ops). The potential disadvantages of code alignment include

growth in code size and wasted CPU cycles from executing no-ops. Generally,

-falign-functions and -falign-loops are suggested. There are two other options,

-falign-loops and -falign-blocks; these usually do more harm than good.
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• Keep function argument lists short in oft-called functions: In 32 bit mode, all function

arguments are pushed onto the stack (pre-call) and popped off again before the first

line of the function executes. In 64-bit mode,2 8 float, double3, or SSE data types

(e.g., m128) in addition to 6 int or pointer arguments are passed via registers. Any

additional arguments are passed on the stack. Stack manipulations are expensive rela-

tive to register manipulations, since they involve at least the L1 cache if not more. So

frequently used (and especially short) functions should avoid this overhead. Structures

are “broken” into their component types, and each component is treated as a separate

argument; e.g., a struct with 4 int and 10 double would see all 4 integers passed

in registers, the first 8 members passed in registers, and the last two on the stack.

However, it is generally preferable to pass a pointer to a struct instead of passing the

entire struct by value. The full specification of the calling convention is given in[50];

[25, 38] give additional discussion.

• Avoid excessive malloc,free calls: When possible, memory should be preallocated.

Dynamic allocation can be slow, particularly when multiple small blocks are allocated

and then released in a different order. This creates many small holes in the memory,

fragmenting it just as a hard drive can become fragmented. The small holes reduce

malloc performance. If memory is allocated in some order and then released in the

reverse order (i.e., the heap operates like the stack), then the overhead is minimal.

Nonetheless, the overhead unnecessary if preallocation is possible.

• Polymorphism: C++ virtual functions (polymorphism) are among the most expensive

parts of object-oriented programming. These calls incur extra run-time costs due ex-

tra branching used to look up which member function to call, based on the data types

involved. When the type is obvious, the compiler may bypass the extra overhead, but

this mechanism is unreliable[28]. Avoiding making frequently called functions virtual

allows the benefits of object-oriented programming without most of the expense. Out-

side of polymorphism, most C++ code will run as quickly as equivalent C code. The

2The following discussion follows the convention defined by the x86-64 ABI[50], which is used in Linux.
64 bit Windows has its own, different rules.

3These are passed in XMM0 through XMM7; in particular, the long double type is passed on the stack.
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object-oriented framework is readily applicable to finite element projects; e.g., consider

classes for element types, governing equations (fluxes), basis types, etc.

• Optimal array indexing: Consider a block of code that does some processing on a m×n

matrix A; a sample implementation follows:

double * restrict A = malloc(...);

//initialize A

for(i=0; i<n; i++){

for(j=0; j<m; j++){

temp = A[i*m + j]; //or temp = *(A + i*m + j);

//do computations

}

}

Note that when setting temp, the compiler will generate code that looks more like: temp

= *(A + i*m + j);. In assembly, this corresponds to moving the data at address

A+(i*m+j)*sizeof(double) to the register holding temp. More specifically, the CPU

will have to allocate registers and spend time performing the arithmetic operations

to resolve the address first. Then the register holding the resulting address and the

register holding temp are used with MOV to physically copy the data. So if the loop

variable is j, accessing x=A[j+p] involves (integer) arithmetic operations followed by

a MOV. The integer arithmetic operations have to calculate j + p and multiply it by

sizeof(*A) to compute the offset. Simple integer operations break into one µop (See

Section C.4) and MOV breaks into one µop.

There is also another assembly command, LEA (short for Load Effective Address), that

can resolve the destination address using only one instruction (and one µop). In trade

for its efficiency, LEA has some limitations. In particular, the most complex expression

it can compute is: A+ i∗size+const, where A is a pointer (a memory address), i is an

integer, size is 2,4, or 8 (i.e., sizeof(*A)) and known at compile-time, and const is an

integer known at compile-time. So x=A[j] only requires LEA to calculate the address,
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and then MOV to copy data, as before. However, A[j+p] cannot be resolved with LEA.

The previous code snippet can be rewritten to utilize LEA:

double * A = malloc(...);

//initialize A

double * restrict Aptr = A; //valid as long as A is not used

for(i=0; i<n; i++){

for(j=0; j<m; j++){

temp = Aptr[j];

//do computations

}

Aptr += m;

}

As a result, the amount of overhead from address calculation has decreased significantly.

Rewriting the matrix-vector product example in Section 3.5 to use LEA improves per-

formance by as much as 20%.

The rewritten loop above has several other advantages. The counter i is not used and

j is only used for simple addressing, so these can be register-allocated. Additionally,

modern CPUs execute very short loops (less than 64bits of instructions) quickly, so

removing the instruction overhead from address calculations helps the size low. Lastly,

loops involving simple statements like temp = Aptr[j]; are easier for the compiler

to “understand,” leading to better chances for automatic vectorization, unrolling, re-

ordering, etc.
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