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Abstract 
 
Collagenolysis (collagen degradation) is a physiological process involved in normal tissue 
maintenance, but excessive collagenolysis has been associated with the progression of cancer 
metastasis, atherosclerosis, and other diseases.  Despite considerable efforts to understand the 
steps involved, the exact mechanism of collagenolysis remains unknown.  One proposed 
mechanism suggests that the enzymes that degrade collagen, collagenases, physically unwind the 
triple-helical structure of collagen to gain access to the peptide bond that is cleaved.  This 
unwinding mechanism would in principle have large energetic requirements, but neither ATP nor 
other energy-rich molecules are necessary for collagenolysis.  An alternative mechanism is that 
collagen exists in multiple states, some featuring structures that are unfolded in the vicinity of the 
collagenase cleavage site, and that collagenases preferentially bind to and stabilize these partially 
unfolded structures before degradation occurs. 
 
The focus of this work is to investigate this alternative mechanism, particularly as it pertains to 
the conformational ensemble of collagen, using both experimental and computational methods.  
In particular, this work concentrates on: (1) devising a reaction scheme for this mechanism and 
verifying that it can explain existing experimental observations; (2) generating a structural model 
of the type I collagen collagenase cleavage site using molecular dynamics simulations; (3) 
validating this structural model by performing degradation experiments and analyzing them in 
light of the reaction scheme described in (1); and (4) validating a similar structural model for 
type III collagen by designing and characterizing a self-assembling collagen-like model peptide 
that includes the sequence of the collagenase cleavage site.  Together, these data present a 
detailed and comprehensive analysis of the conformational ensemble of collagen near the 
collagenase cleavage site and its role in the molecular mechanism of collagen degradation. 
 
Thesis Supervisor: Collin M. Stultz 
Title: Associate Professor of Electrical Engineering and Computer Science 
          and Health Sciences and Technology 
 
Co-supervisor: Leonid A. Mirny 
Title: Associate Professor of Health Sciences and Technology and Physics 
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Chapter 1 

 

Introduction  
 
 
 
The most abundant proteins in the human body are members of the collagen family (Gelse et al. 

2003, Brinckmann 2005).  Collagens are the primary constituents of the extracellular matrix 

(ECM), which confers mechanical and biochemical properties to nearly every type of tissue 

(Gelse et al. 2003).  Collagens are synthesized within specific cells and then exported to the 

extracellular space where they link together with other collagen molecules to form the basis of 

interstitial matrix or basement membrane (Gelse et al. 2003, Shoulders and Raines 2009).  (In 

basement membrane, it has been shown that collagen can also link with other molecules; e.g. 

laminin (Kalluri 2003).)  As the degradation of the ECM, and more specifically collagen, plays a 

central role in regular tissue maintenance, as well as the progression of several diseases, such as 

atherosclerosis, cancer, and arthritis, developing a detailed understanding of the molecular 

mechanism of collagenolysis is of particular interest (Celentano and Frishman 1997, Barnes and 

Farndale 1999, Bode et al. 1999, McDonnell et al. 1999, Gelse et al. 2003, Nerenberg et al. 2007, 

Libby 2008). 

 

1.1 Collagen 

At present, there are 29 known distinct types of collagen (Shoulders and Raines 2009).  While 

the sequences and domain organizations of these proteins vary widely, they share the common 

feature of containing at least one region in which three polypeptide chains, each in a left-handed 

polyproline II-like helix conformation, supercoil around one another to form a right-handed 

triple helix linked by interchain hydrogen bonds (Figure 1-1) (Gelse et al. 2003, Brodsky and 

Persikov 2005, Engel and Bächinger 2005, Shoulders and Raines 2009).  In addition, each of the 

chains is staggered by one residue within the triple helix and all of the peptide bonds are in the 

trans conformation (Brodsky and Persikov 2005, Engel and Bächinger 2005, Shoulders and 

Raines 2009).  Remarkably, the basic structure of collagen was proposed over 50 years ago on 
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the basis of relatively low resolution X-ray fiber diffraction data (Ramachandran and Kartha 

1954, Ramachandran and Kartha 1955, Rich and Crick 1955, Rich and Crick 1961).   

For the remainder of this work, we will focus on the fibrillar collagens (types I, II, III, V, XI, 

XXIV, and XXVII), and in particular on collagen types I and III.  Both of these collagens feature 

chains of approximately 1000 residues in length and have greater than 95% of their sequences 

located within a single long triple-helical region (Gelse et al. 2003).  Type I collagen is a 

heterotrimer consisting of two α1(I) chains and one α2(I) chain, while type III collagen is a 

homotrimer consisting of three α1(III) chains (Gelse et al. 2003, Brinckmann 2005). 

 

 

 
Figure 1-1: Characteristic structure of the collagen triple helix. Views of the backbone atoms of 
the triple helix along the (A) axial and (B) longitudinal directions.  Each polypeptide chain is 
indicated with a different color.  Coordinates taken from PDB entry 1BKV. 
 

 

1.1.1 The relationship between the sequence and the structure of the collagen triple helix 

The collagen triple helix is enabled by a repeating tripeptide sequence motif, Gly-X1-X2, where 

Gly is glycine and X1 and X2 can be any amino acid (Gelse et al. 2003, Brodsky and Persikov 

2005, Engel and Bächinger 2005).  This sequence is necessary because the sidechain position of 

glycine is directed toward the center of the triple helix and any larger sidechain (beyond the 

proton of glycine) would interfere with the packing of the three chains (Brodsky and Persikov 

2005, Engel and Bächinger 2005, Shoulders and Raines 2009).  Indeed, one well known class of 

genetic disorders, osteogenesis imperfecta, typically involves a glycine substitution that leads to 

a disruption of the triple helix (Myllyharju and Kivirikko 2001).  As the sidechains of the X1 and 

X2 residues are directed outward, this means that the majority of collagen’s sidechains are 

solvent-exposed, regardless of their hydrophobicity (Figure 1-2) (Brodsky and Persikov 2005, 

Engel and Bächinger 2005, Shoulders and Raines 2009).  A sequence analysis of the triple-



15 
 

helical regions of twelve types of collagen found that proline (Pro or P) occurs in the X1 position 

28% of the time and hydroxyproline (Hyp or O), a post-translational modification of proline (see 

Section 1.1.2), occurs in the X2 position 38% of the time (Ramshaw et al. 1998).  In addition, the 

most common triplet sequence is GPO, which occurs just over 10% of the time (Ramshaw et al. 

1998).  Nonetheless, the sequences of the collagens are quite diverse, and there are many short 

stretches in the sequence with little or no imino acid (i.e., proline or hydroxyproline) content 

(Figure 1-3).  In section 1.1.3, we will return to these imino-poor regions and how they pertain to 

the molecular mechanism of collagenolysis. 

 

 

 
Figure 1-2: Structure of a triple-helical collagen-like model peptide demonstrating that the 
sidechains of the X1 and X2 position residues are directed outward from the triple helix and into 
solvent.  Coordinates taken from PDB entry 1BKV. 
 

 

As collagens have a minimum sequence length of several hundred residues and are relatively 

insoluble, it is worth noting that much of the work done to elucidate the basic biophysical 

properties of collagen, including the structure and thermodynamics of the triple helix, has been 

performed using synthetic collagen-like model peptides (Fields and Prockop 1996).  In 

particular, the first high resolution structure of the triple helix was obtained just over 15 years 

ago with a homotrimeric collagen-like model peptide (Bella et al. 1994).  It was through this 

structure that the interchain hydrogen bonding pattern of the triple helix, in which the amide 

proton of Gly acts as a donor and the amide oxygen of a residue in the X1 position of a 

neighboring chain acts as an acceptor, could finally be confirmed (Figure 1-4) (Bella et al. 1994).  

While collagen-like model peptides have been an invaluable tool in investigating the structure of 

collagen at the molecular level, one of the still unanswered and important questions in the field is 

how accurately these relatively short model peptides can represent the larger collagen molecule. 
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Type I collagen α1 chain sequence (UniProtKB-SwissProt accession no. P02452) 
 
QLSYGYDEKSTGGISVPGPMGPSGPRGLPGPPGAPGPQGFQGPPGEPGEPGASGPMGPRGPPGPPGKN 
GDDGEAGKPGRPGERGPPGPQGARGLPGTAGLPGMKGHRGFSGLDGAKGDAGPAGPKGEPGSPGENGAP 
GQMGPRGLPGERGRPGAPGPAGARGNDGATGAAGPPGPTGPAGPPGFPGAVGAKGEAGPQGPRGSEGPQ 
GVRGEPGPPGPAGAAGPAGNPGADGQPGAKGANGAPGIAGAPGFPGARGPSGPQGPGGPPGPKGNSGEP 
GAPGSKGDTGAKGEPGPVGVQGPPGPAGEEGKRGARGEPGPTGLPGPPGERGGPGSRGFPGADGVAGPK 
GPAGERGSPGPAGPKGSPGEAGRPGEAGLPGAKGLTGSPGSPGPDGKTGPPGPAGQDGRPGPPGPPGAR 
GQAGVMGFPGPKGAAGEPGKAGERGVPGPPGAVGPAGKDGEAGAQGPPGPAGPAGERGEQGPAGSPGFQ 
GLPGPAGPPGEAGKPGEQGVPGDLGAPGPSGARGERGFPGERGVQGPPGPAGPRGANGAPGNDGAKGDA 
GAPGAPGSQGAPGLQGMPGERGAAGLPGPKGDRGDAGPKGADGSPGKDGVRGLTGPIGPPGPAGAPGDK 
GESGPSGPAGPTGARGAPGDRGEPGPPGPAGFAGPPGADGQPGAKGEPGDAGAKGDAGPPGPAGPAGPP 
GPIGNVGAPGAKGARGSAGPPGATGFPGAAGRVGPPGPSGNAGPPGPPGPAGKEGGKGPRGETGPAGRP 
GEVGPPGPPGPAGEKGSPGADGPAGAPGTPGPQGIAGQRGVVGLPGQRGERGFPGLPGPSGEPGKQGPS 
GASGERGPPGPMGPPGLAGPPGESGREGAPGAEGSPGRDGSPGAKGDRGETGPAGPPGAPGAPGAPGPV 
GPAGKSGDRGETGPAGPAGPVGPVGARGPAGPQGPRGDKGETGEQGDRGIKGHRGFSGLQGPPGPPGSP 
GEQGPSGASGPAGPRGPPGSAGAPGKDGLNGLPGPIGPPGPRGRTGDAGPVGPPGPPGPPGPPGPPSAG 
FDFSFLPQPPQEKAHDGGRYYRA 
 
 
Type I collagen α2 chain sequence (UniProtKB-SwissProt accession no. P08123) 
 
QYDGKGVGLGPGPMGLMGPRGPPGAAGAPGPQGFQGPAGEPGEPGQTGPAGARGPAGPPGKAGEDGHP 
GKPGRPGERGVVGPQGARGFPGTPGLPGFKGIRGHNGLDGLKGQPGAPGVKGEPGAPGENGTPGQTGAR 
GLPGERGRVGAPGPAGARGSDGSVGPVGPAGPIGSAGPPGFPGAPGPKGEIGAVGNAGPAGPAGPRGEV 
GLPGLSGPVGPPGNPGANGLTGAKGAAGLPGVAGAPGLPGPRGIPGPVGAAGATGARGLVGEPGPAGSK 
GESGNKGEPGSAGPQGPPGPSGEEGKRGPNGEAGSAGPPGPPGLRGSPGSRGLPGADGRAGVMGPPGSR 
GASGPAGVRGPNGDAGRPGEPGLMGPRGLPGSPGNIGPAGKEGPVGLPGIDGRPGPIGPAGARGEPGNI 
GFPGPKGPTGDPGKNGDKGHAGLAGARGAPGPDGNNGAQGPPGPQGVQGGKGEQGPAGPPGFQGLPGPS 
GPAGEVGKPGERGLHGEFGLPGPAGPRGERGPPGESGAAGPTGPIGSRGPSGPPGPDGNKGEPGVVGAV 
GTAGPSGPSGLPGERGAAGIPGGKGEKGEPGLRGEIGNPGRDGARGAPGAVGAPGPAGATGDRGEAGAA 
GPAGPAGPRGSPGERGEVGPAGPNGFAGPAGAAGQPGAKGERGAKGPKGENGVVGPTGPVGAAGPAGPN 
GPPGPAGSRGDGGPPGMTGFPGAAGRTGPPGPSGISGPPGPPGPAGKEGLRGPRGDQGPVGRTGEVGAV 
GPPGFAGEKGPSGEAGTAGPPGTPGPQGLLGAPGILGLPGSRGERGLPGVAGAVGEPGPLGIAGPPGAR 
GPPGAVGSPGVNGAPGEAGRDGNPGNDGPPGRDGQPGHKGERGYPGNIGPVGAAGAPGPHGPVGPAGKH 
GNRGETGPSGPVGPAGAVGPRGPSGPQGIRGDKGEPGEKGPRGLPGLKGHNGLQGLPGIAGHHGDQGAP 
GSVGPAGPRGPAGPSGPAGKDGRTGHPGTVGPAGIRGPQGHQGPAGPPGPPGPPGPPG 
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Type II collagen sequence (UniProtKB-SwissProt accession no. P02458) 
 
QMAGGFDEKAGGAQLGVMQGPMGPMGPRGPPGPAGAPGPQGFQGNPGEPGEPGVSGPMGPRGPPGPP 
GKPGDDGEAGKPGKAGERGPPGPQGARGFPGTPGLPGVKGHRGYPGLDGAKGEAGAPGVKGESGSPGEN 
GSPGPMGPRGLPGERGRTGPAGAAGARGNDGQPGPAGPPGPVGPAGGPGFPGAPGAKGEAGPTGARGPE 
GAQGPRGEPGTPGSPGPAGASGNPGTDGIPGAKGSAGAPGIAGAPGFPGPRGPPGPQGATGPLGPKGQT 
GEPGIAGFKGEQGPKGEPGPAGPQGAPGPAGEEGKRGARGEPGGVGPIGPPGERGAPGNRGFPGQDGLA 
GPKGAPGERGPSGLAGPKGANGDPGRPGEPGLPGARGLTGRPGDAGPQGKVGPSGAPGEDGRPGPPGPQ 
GARGQPGVMGFPGPKGANGEPGKAGEKGLPGAPGLRGLPGKDGETGAAGPPGPAGPAGERGEQGAPGPS 
GFQGLPGPPGPPGEGGKPGDQGVPGEAGAPGLVGPRGERGFPGERGSPGAQGLQGPRGLPGTPGTDGPK 
GASGPAGPPGAQGPPGLQGMPGERGAAGIAGPKGDRGDVGEKGPEGAPGKDGGRGLTGPIGPPGPAGAN 
GEKGEVGPPGPAGSAGARGAPGERGETGPPGPAGFAGPPGADGQPGAKGEQGEAGQKGDAGAPGPQGPS 
GAPGPQGPTGVTGPKGARGAQGPPGATGFPGAAGRVGPPGSNGNPGPPGPPGPSGKDGPKGARGDSGPP 
GRAGEPGLQGPAGPPGEKGEPGDDGPSGAEGPPGPQGLAGQRGIVGLPGQRGERGFPGLPGPSGEPGKQ 
GAPGASGDRGPPGPVGPPGLTGPAGEPGREGSPGADGPPGRDGAAGVKGDRGETGAVGAPGAPGPPGSP 
GPAGPTGKQGDRGEAGAQGPMGPSGPAGARGIQGPQGPRGDKGEAGEPGERGLKGHRGFTGLQGLPGPP 
GPSGDQGASGPAGPSGPRGPPGPVGPSGKDGANGIPGPIGPPGPRGRSGETGPAGPPGNPGPPGPPGPP 
GPGIDMSAFAGLGPREKGPDPLQYMRA 
 
 
Type III collagen sequence (UniProtKB-SwissProt accession no. P02461) 
 
QYDSYDVKSGVAVGGLAGYPGPAGPPGPPGPPGTSGHPGSPGSPGYQGPPGEPGQAGPSGPPGPPGAI 
GPSGPAGKDGESGRPGRPGERGLPGPPGIKGPAGIPGFPGMKGHRGFDGRNGEKGETGAPGLKGENGLP 
GENGAPGPMGPRGAPGERGRPGLPGAAGARGNDGARGSDGQPGPPGPPGTAGFPGSPGAKGEVGPAGSP 
GSNGAPGQRGEPGPQGHAGAQGPPGPPGINGSPGGKGEMGPAGIPGAPGLMGARGPPGPAGANGAPGLR 
GGAGEPGKNGAKGEPGPRGERGEAGIPGVPGAKGEDGKDGSPGEPGANGLPGAAGERGAPGFRGPAGPN 
GIPGEKGPAGERGAPGPAGPRGAAGEPGRDGVPGGPGMRGMPGSPGGPGSDGKPGPPGSQGESGRPGPP 
GPSGPRGQPGVMGFPGPKGNDGAPGKNGERGGPGGPGPQGPPGKNGETGPQGPPGPTGPGGDKGDTGPP 
GPQGLQGLPGTGGPPGENGKPGEPGPKGDAGAPGAPGGKGDAGAPGERGPPGLAGAPGLRGGAGPPGPE 
GGKGAAGPPGPPGAAGTPGLQGMPGERGGLGSPGPKGDKGEPGGPGADGVPGKDGPRGPTGPIGPPGPA 
GQPGDKGEGGAPGLPGIAGPRGSPGERGETGPPGPAGFPGAPGQNGEPGGKGERGAPGEKGEGGPPGVA 
GPPGGSGPAGPPGPQGVKGERGSPGGPGAAGFPGARGLPGPPGSNGNPGPPGPSGSPGKDGPPGPAGNT 
GAPGSPGVSGPKGDAGQPGEKGSPGAQGPPGAPGPLGIAGITGARGLAGPPGMPGPRGSPGPQGVKGES 
GKPGANGLSGERGPPGPQGLPGLAGTAGEPGRDGNPGSDGLPGRDGSPGGKGDRGENGSPGAPGAPGHP 
GPPGPVGPAGKSGDRGESGPAGPAGAPGPAGSRGAPGPQGPRGDKGETGERGAAGIKGHRGFPGNPGAP 
GSPGPAGQQGAIGSPGPAGPRGPVGPSGPPGKDGTSGHPGPIGPPGPRGNRGERGSEGSPGHPGQPGPP 
GPPGAPGPCCGGVGAAAIAGIGGEKAGGFAPYYG 
 
 
Figure 1-3: Amino acid sequences of the fibrillar collagens.  The sequences for the α1 and α2 
chains of type I collagen (a heterotrimer containing two α1 chains and one α2 chain) are shown 
on the previous page.  The sequences for types II and III collagen (both homotrimers) are shown 
on this page.  The collagenase cleavage site is highlighted in red, while other potential cleavage 
sites (pseudo-cleavage sites) are highlighted in cyan.  Potential interchain salt bridge pairs are 
underlined.  Because these sequences were obtained from genomic data and hydroxylation of 
proline residues occurs post-translationally, all hydroxyproline residues are shown as prolines. 
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Figure 1-4: Interchain hydrogen bonding pattern of the collagen triple helix.  The amide proton 
of a Gly residue on one chain serves as a donor, while the amide oxygen of an X1 residue on a 
neighboring chain serves as an acceptor.  Backbone atoms (including those participating in the 
interchain hydrogen bonds) are shown in a CPK representation, while each of the polypeptide 
chains is traced in a different color.  The leading strand is shown in orange, the middle strand in 
green, and the lagging strand in magenta.  Interatomic distances are given in Ångstroms. 
 

1.1.2 Determinants of triple-helical stability 

In the previous section, we discussed the various sequence and structural characteristics that 

uniquely distinguish the collagen triple helix.  While these basic aspects of collagen structure are 

fairly well understood, many of the physical determinants of triple-helical stability have only 

been made clear in recent years, while others have yet to be explained. 

 Given that one of main characteristics of the collagen triple helix is its interchain hydrogen 

bonding pattern and the fact that in fibrillar collagen there are approximately 1000 interchain 

hydrogen bonds, it has been suggested that these bonds are the primary source of stability for the 

collagen triple helix (Privalov 1982, Brodsky and Persikov 2005, Engel and Bächinger 2005, 

Shoulders and Raines 2009).  Testing this hypothesis directly, however, is difficult, as methods 

that alter the hydrogen bonding pattern of collagen may also perturb other properties of the 

protein.  Nonetheless, several recent studies using collagen-like model peptides with either ester 

or alkane isosteres of amino acids to eliminate either the donors or acceptors of the interchain 
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hydrogen bonds suggest that these hydrogen bonds contribute substantially to stability (Jenkins 

et al. 2005, Dai and Etzkorn 2009).   This work has yielded estimates for the free energy of 

interchain hydrogen bond formation of approximately -2.0 kcal/mol in a model peptide context 

(Jenkins et al. 2005).  While such estimates are high relative to estimates for hydrogen bond 

strength in globular proteins, it is worth noting that the interchain hydrogen bonds of collagen are 

in many ways distinct from the intrachain hydrogen bonds of the α-helix or the β-sheet and 

perhaps have more in common with base pair hydrogen bonds of double-stranded nucleic acids.  

Because of the chemical modifications made to these residues to disrupt the interchain hydrogen 

bonds, one cannot exclude the possibility that secondary effects are responsible for the observed 

destabilization of the protein.  Nevertheless, these data represent the most straightforward probe 

to date of the contribution of interchain hydrogen bonds to triple-helical stability.   

 While it involves the amide proton of every third glycine residue, the interchain hydrogen 

bonding pattern of collagen does not constrain the possible amino acids that occupy the X1 

position.  From the aforementioned sequence data, however, it is clear that this position is often 

occupied by proline (Ramshaw et al. 1998).  The abundance of prolines is likely to help 

individual collagen chains assume a polyproline II-type conformation, which in turn would 

reduce the entropic loss upon folding of the triple helix (Shoulders and Raines 2009).  

Conversely, due to their secondary amino group, prolines are more likely than other amino acids 

to sample cis peptide bond conformations, which are unfavorable for triple helix formation 

(Engel and Bächinger 2005, Shoulders and Raines 2009).  Interestingly, model peptides in which 

the Gly-Pro peptide bond has been locked into a trans conformation have been shown to be less 

stable than the corresponding “regular” model peptides (i.e., ones in which the Gly-Pro peptide 

bond is unaltered and can fluctuate between cis and trans conformations), further complicating 

the issue (Dai et al. 2008).  Host-guest studies, however, have suggested that proline is the amino 

acid with the highest triple-helical propensity when placed in the X1 position (Persikov et al. 

2000).  

 After synthesis from the ribosome, collagen chains undergo extensive post-translational 

modification (Myllyharju 2005).  The most prevalent of these modifications is the hydroxylation 

of proline residues in the X2 position by the enzyme prolyl 4-hydroxylase to yield 

hydroxyproline (Gelse et al. 2003, Myllyharju 2005).  Nearly three decades ago it was observed 

that the thermal stability of various collagens depends strongly on their hydroxyproline content 
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(Burjanadze 1979, Privalov 1982).  In the time since then, numerous studies with collagen-like 

model peptides have further confirmed this finding (Brodsky and Persikov 2005, Engel and 

Bächinger 2005, Shoulders and Raines 2009).  Given these data and its relative prevalence in the 

X2 position, developing an understanding of the mechanism by which hydroxyproline stabilizes 

the collagen triple helix has been the focus of considerable research over the years. 

 One hypothesis was that Hyp formed hydrogen bonding networks through water, and 

analyses of the first crystal structure of a collagen-like model peptide suggested that water-

mediated hydrogen bonds do in fact exist between Hyp residues and backbone atoms (Bella et al. 

1994, Bella et al. 1995).  However, similar hydrogen bonding networks were also seen in crystal 

structures of peptides lacking Hyp (Brodsky and Persikov 2005).  A novel approach to further 

probe the mechanism of Hyp stabilization was the incorporation of fluoroproline (Flp) into the 

X2 position of model peptides (Holmgren et al. 1998, Holmgren et al. 1999).  Flp is not capable 

of forming strong hydrogen bonds with water, but maintains the electronegative character of the 

hydroxyl group (Dunitz and Taylor 1997).  The model peptides containing Flp were then shown 

to be hyperstable (i.e., more stable than those containing Hyp) (Holmgren et al. 1999).  These 

data suggested that the origin of Hyp’s stabilizing effect was not through water-bridged 

hydrogen bonds, but instead through a stereoelectronic effect (Holmgren et al. 1999, Bretscher et 

al. 2001).  More specifically, it was suggested that the electron-withdrawing ability of Hyp (and 

Flp) stabilizes the pyrrolidine ring in a specific conformation (or pucker) which in turn pre-

organizes the φ/ψ angles of that residue to be in a range appropriate for formation of a triple 

helix (Bretscher et al. 2001).  In addition, it was found that the Cγ-exo ring pucker of Hyp also 

stabilizes the trans conformation of the peptide bond through an *n π→ interaction between the 

backbone oxygens of the Hyp residue and the preceding X1 residue (Bretscher et al. 2001).  

Thus, Hyp is thought to stabilize the collagen triple helix in two ways: by stabilizing both the 

appropriate φ/ψ conformation and the appropriate peptide bond conformation of residues in the 

X2 position. 

 Beyond the imino acids, proline and hydroxyproline, host-guest studies using model peptides 

have identified other amino acids and combinations of amino acids that yield similar thermal 

stabilities to the GPO triplet sequence (Persikov et al. 2000, Persikov et al. 2002).  When placed 

in the X2 position, arginine is able to match the stabilizing ability of hydroxyproline (Yang et al. 

1997).  Moreover, X2 position arginines are prevalent in types I, II, and III collagen, existing in 
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12-13% of the triplets – more than all other amino acids except for hydroxyproline and lysine 

(see below) (Ramshaw et al. 1998).  The exact mechanism of this stabilization is not known, but 

both a crystallographic structure and a molecular dynamics simulation of a collagen-like model 

peptide that contains X2 position arginines suggest that the arginine sidechain is able to fold 

“across” the triple helix and hydrogen bond with the backbone amide oxygen of a neighboring 

chain (Kramer et al. 1999, Kramer et al. 2001, Stultz 2002). 

 A more complex stabilizing interaction was found for pairs of lysine (Lys or K) and 

glutamate (Glu or E) or lysine and aspartate (Asp or D) residues.  When added by themselves in 

either the X1 or the X2 position, these residues destabilize the triple helix relative to Pro or Hyp, 

respectively (Persikov et al. 2000).  However, it was found that when Lys is in the X2 position 

and either Glu or Asp is in the X1 position of the next triplet (e.g., GPKGEO or GPKGDO) that 

these sequences were just as stable as an all-GPO sequence (Persikov et al. 2002, Persikov et al. 

2005).  In addition, a sequence analysis of fibrillar collagens revealed a higher occurence of 

GxKGEx and GxKGDx motifs than would be expected by chance alone (Persikov et al. 2005). 

Melting experiments performed with model peptides at a low pH in which the acidic 

sidechains of Glu/Asp would be protonated (and therefore electrically neutral) demonstrated 

significantly lower thermal stabilities for the GPKGEO and GPKGDO sequences (Persikov et al. 

2005).  Therefore, it was suggested that the physical basis for the increased stability of the Lys-

Glu and Lys-Asp pairs was the formation of interchain salt bridges between the sidechains 

(Persikov et al. 2005).  Recent molecular dynamics simulations with these sequences supports 

these conclusions and have also shed light on the free energy differences for interchain salt 

bridge formation due to the one residue stagger of the triple helix (see Appendix A).  Such 

interchain salt bridges are also likely to play a key role in the stabilization of bacterial and viral 

collagen-like proteins, as these organisms lack prolyl 4-hydroxylase and therefore their proteins 

contain no hydroxyproline (Xu et al. 2002, Rasmussen et al. 2003, Persikov et al. 2005). 

 

1.1.3 Sequence characteristics of the collagenase cleavage site 

The fibrillar collagens are degraded by enzymes known as collagenases (see Section 1.2) at a 

single site characterized by the tripeptide sequence G-[I/L]-[A/L] that is located approximately 

three-fourths from the N-terminus of the protein.  One might naively guess that there are many 

such triplets within each collagen molecule, and indeed, there are three potential cleavage sites in 
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the α1 chain of type I collagen, five in the α2 chain of type I collagen, six in type II collagen, and 

five in type III collagen (Figure 1-3).  One of the principle aims in investigating the molecular 

mechanism of collagenolysis has been to understand the specificity of the collagenase cleavage 

site, or in other words, why only one site is cleaved in native collagen when there are many 

potential cleavage sites. 

One possible explanation for the specificity of the collagenase cleavage site is that the 

conformational ensemble of this site and its surrounding sequence differs substantially from the 

sequences surrounding the other potential cleavage sites (pseudo-cleavage sites).  To this end, 

Fields extensively cataloged the sequence characteristics of both the real and pseudo-cleavage 

sites in types I, II, and III collagen (Fields 1991).  According to this analysis, the collagenase 

cleavage sites are distinguished by having relatively imino-rich sequences up to four triplets N-

terminal from the scissile bond, while the four triplets C-terminal of the scissile bond were 

imino-poor (0-2 proline/hydroxyproline residues in this stretch) and contained only a single X2 

position arginine (Fields 1991).  Moreover, a re-examination of these same eight triplet sub-

sequences also reveals that there are no interchain salt bridge pairs in the vicinity of the 

collagenase cleavage site (Figure 1-3).  Given a lack of sequence elements that are known to 

provide triple-helical stability, these data support the notion that the sequence of the collagenase 

cleavage site is less thermally stable than the pseudo-cleavage sites and therefore may sample a 

unique conformational ensemble that includes non-triple-helical conformations (Fields 1991, 

Stultz 2002). 

 

1.2 Collagenases 

The fibrillar collagens are degraded in vivo by a subfamily of Zn2+- and Ca2+-containing enzymes 

known as collagenases, which belong to the larger matrix metalloproteinase (MMP) family 

(Fields 1991, Borkakoti 1998, Lauer-Fields et al. 2002, Overall 2002).  At present, there are 23 

known members of the MMP family (Tallant et al. 2009).  These enzymes share a common 

catalytic domain structure, as well as a consensus active site sequence (HExxHxxGxxH) in 

which the catalytic Zn2+ ion is coordinated by three histidines and a glutamate serves as the 

catalytic residue for peptide bond hydrolysis (Borkakoti 1998, Tallant et al. 2009).  In addition, 

most members of the MMP family contain additional non-catalytic domains.  For instance, the 
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collagenases (MMP-1, MMP-8, and MMP-13), stromelysins (MMP-3 and MMP-10), and 

metalloelastase (MMP-12) all contain a hemopexin-like domain that is C-terminal to the catalytic 

domain (Lauer-Fields et al. 2002).  Other non-catalytic domains include the fibronectin type II 

modules of the gelatinases (MMP-2 and MMP-9) and the trans-membrane and cytoplasmic 

domains of the membrane-type MMPs (MMP-14 through MMP-17) (Lauer-Fields et al. 2002). 

 

 

 
Figure 1-5: X-ray crystal structure of the collagenase MMP-1 shown in cartoon representation.  
The catalytic domain is on the left, while the hemopexin-like domain is on the right.  The active 
site histidine and glutamate residues, as well as the catalytic zinc ion, are shown in CPK 
representation.  Coordinates are taken from PDB entry 2CLT. 
 

 

 The MMP catalytic domain contains five major β-strands and three α-helices (Figure 1-5) 

(Borkakoti 1998, Bode et al. 1999, Tallant et al. 2009).  Two of the active site histidines and the 

catalytic glutamate are contained in the second α-helix, while the third active site histidine is 

located in an adjacent loop region (Borkakoti 1998, Bode et al. 1999, Tallant et al. 2009).  The 

conserved glycine between the second and third histidines of the active site enables a sharp turn 

in the polypeptide chain, as it is in a φ/ψ conformation that would be unfavorable for any other 

amino acid (Tallant et al. 2009).  The mechanism of catalysis has been the subject of several 
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studies.  It is generally thought that hydrolysis of the scissile bond occurs via a nucleophilic 

attack by a bound water molecule that is polarized by the catalytic glutamate and Zn2+ ion 

(Pelmenschikov and Siegbahn 2002, Gomis-Rüth 2008, Tallant et al. 2009).  

 The second major domain of collagenases is the C-terminal hemopexin-like domain.  This 

domain is characterized by a four-bladed β-propeller structure in which each of the “blades” 

consists of four β-strands (Figure 1-5) (Borkakoti 1998, Bode et al. 1999).  Each blade is 

connected to the next via a short connecting strand at the outer rim of the domain, and the C-

terminus of the fourth blade is linked to the first strand with a disulfide bond, which is thought to 

stabilize the entire domain (Borkakoti 1998, Bode et al. 1999).  Degradation experiments carried 

out with collagenase deletion mutants lacking the hemopexin-like domain, as well as various 

binding assays, suggest that the hemopexin-like domain contains important binding sites for 

collagen (Murphy et al. 1992, Chung et al. 2004, Tam et al. 2004, Lauer-Fields et al. 2009).  The 

exact binding site(s) of the hemopexin-like domain are unknown, but modeling studies based on 

an x-ray fiber diffraction model of type I collagen and binding studies conducted with 

heterotrimeric model peptides containing the collagenase cleavage site suggest that this binding 

site is at least three triplets C-terminal to the cleavage site (Ottl et al. 2000, Perumal et al. 2008).  

In collagenases, the catalytic domain is linked to the C-terminal hemopexin-like domain via a 

short linker region (~15 residues).  Interestingly, chimeric enzymes in which the linker region 

from a non-collagenase MMP (e.g., MMP-3) is substituted into a collagenase (e.g., MMP-8) 

show substantially reduced ability to degrade type I collagen (Hirose et al. 1993).  In addition, 

alanine scanning experiments focusing on the linker region of MMP-8 also revealed changes in 

enzyme activity (Knäuper et al. 1997).  Together, these data suggest that the linker may play an 

important role in the overall function of the enzyme. 

Despite the high sequence homology of the collagenases (51-60% sequence identity, 67-75% 

sequence similarity), each one displays a distinct preference for the various fibrillar collagens.  

MMP-1 degrades type III collagen most efficiently, while MMP-8 and MMP-13 prefer to 

degrade types I and II collagen, respectively (Overall 2002).  These differences in degradation 

efficiency may arise from subtle differences in the binding contacts made by the catalytic and 

hemopexin-like domains (see Chapter 4), as well as differences in the rate of catalysis due to 

sequence differences near the active site. 
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1.3 The paradoxical mechanism of collagenolysis 

While the collagenolytic ability of MMPs, and specifically the collagenases, has been well 

documented for several decades, the availability of X-ray crystal structures of collagenases and 

collagen-like model peptides in the last 15 years has raised a number of questions regarding the 

molecular mechanism of collagenolysis. 

 The most obvious discrepancy gleaned from these structures is the fact that the active site 

cleft of collagenases is only 5-8 Å wide, while the collagen triple helix is 15 Å in diameter 

(Lauer-Fields et al. 2002, Overall 2002, Chung et al. 2004).  Therefore, barring any major 

conformational change of the active site, it appears impossible that the folded triple helix can fit 

into the collagenase active site.  Even if the active site was able to undergo a major 

conformational change, however, crystallographic studies of model peptides have revealed that 

the scissile bond would be hidden within the folded triple helix and would therefore remain 

inaccessible to the active site of the enzyme (Figure 1-6) (Kramer et al. 1999, Stultz 2002). 

 

 
Figure 1-6: Limited solvent accessibility of the scissile bond within the collagen triple helix.  The 
solvent-exposed surface of the collagen molecule (including backbone and sidechains) is shown 
in gray, while the atoms of the scissile bond are shown as colored van der Waals spheres. 
 

 

 As a result of the above observations, it has been thought that the collagen triple helix must 

in some way become unfolded such that individual chains would be able to fit into the 
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collagenase active site and the scissile bond would be solvent-exposed (Lauer-Fields et al. 2002, 

Overall 2002, Stultz 2002).  There have been two hypothetical molecular mechanisms for 

collagenolysis put forward to explain how this unfolding occurs.  One hypothesis is that collagen 

exists in a well-folded triple-helical state and that collagenases unwind the triple helix upon 

binding through the coordinated action of the catalytic and hemopexin-like domains.  This active 

unwinding of the triple helix would not only separate the three chains, but also expose and 

subsequently enable the cleavage of the scissile bond.  Broadly speaking, the active unwinding 

hypothesis corresponds to an induced fit mechanism in that the degradation-prone conformations 

of collagen exist only in the presence of the enzyme.   

While active unwinding of helices has prior precedent in biology (e.g., DNA helicases), such 

processes typically require energy input in the form of ATP or other energy-rich molecules 

(Caruthers and McKay 2002).  Collagenolysis, however, does not require energy input (Overall 

2002, Chung et al. 2004).  Therefore, an alternative hypothesis is that the conformational 

ensemble of collagen in the vicinity of the collagenase cleavage site includes relatively low 

energy structures that are partially unfolded with solvent-exposed scissile bonds even in the 

absence of collagenases (Stultz 2002).  When collagenases are present, however, they could then 

bind and cleave these partially unfolded conformers.  This hypothesis corresponds to a 

conformational selection mechanism in that the degradation-prone conformations of collagen 

exist regardless of whether the enzyme is present and that the enzyme “selects” the appropriate 

conformers for degradation. 

Throughout this work, we investigate the molecular mechanism of collagenolysis from the 

standpoint of this alternative hypothesis. Specifically, this work aims to improve our 

understanding of the conformational ensemble of collagen at the collagenase cleavage site, using 

both computational (Chapters 2, 3, and 4) and experimental methods (Chapters 4 and 5).  

Ultimately these data suggest that collagenolysis occurs via a conformational selection 

mechanism in which collagenases bind and cleave partially unfolded conformers.   
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Chapter 2 

 

A Conformational Selection Mechanism for Collagenolysis 
 

 

This chapter is adapted from: Nerenberg PS, Salsas-Escat R, and Stultz CM. Do collagenase 
unwind triple-helical collagen before peptide bond hydrolysis? Reinterpreting experimental 
observations with mathematical models. Proteins 2008; 70:1154-1161. 
 
 
Collagenolysis is an enigmatic process.  Collagen-specific proteases have catalytic sites that are 

too narrow to accommodate the triple-helical structure of collagen, and the scissile bonds within 

the triple helix are not solvent accessible (Fields 1991, Overall 2002, Stultz 2002).  

Consequently, the precise mechanism of collagenolysis is unclear.  It has been suggested that 

collagenases gain access to their cleavage sites by actively unwinding triple-helical collagen 

prior to peptide bond cleavage (Overall 2002, Chung et al. 2004).  According to this theory, 

collagenases not only hydrolyze scissile bonds in collagen, but they also function as triple-

helicases – enzymes that locally unwind collagen’s triple-helical structure.   

Matrix metalloproteases (MMPs) are zinc-dependent proteases that cleave extracellular 

matrix components at specific sites (Fields 1991, Overall 2002).   MMP-1, in particular, contains 

a catalytic domain and a hemopexin-like domain that are connected through a short linker region 

(Murphy and Knäuper 1997).  While the catalytic domain alone can cleave denatured collagen, it 

cannot degrade collagen in its triple-helical form (Clark and Cawston 1989, Murphy and 

Knäuper 1997, Overall 2002).  When type I collagen is incubated with an excess of MMP-1’s 

catalytic domain, no significant collagen degradation products are formed – an observation 

which has been viewed as inconsistent with the notion that spontaneous unwinding of collagen 

occurs in the vicinity of the collagenase-cleavage site (Chung et al. 2004).  In addition, while the 

catalytically inactive form of MMP-1 (E200A) cannot hydrolyze collagen, it can facilitate 

collagenolysis by enzymes that only cleave denatured collagen (Chung et al. 2004).  These 

observations lend credence to the conjecture that collagenases locally unwind triple-helical 

collagen prior to collagenolysis.  
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Although the aforementioned experimental studies imply that partially unfolded states of 

collagen do not occur spontanesously, other studies suggest that collagen is conformationally 

labile in the vicinity of the collagenase cleavage site (Fan et al. 1993, Fiori et al. 2002, Leikina et 

al. 2002, Sacca et al. 2002, Stultz 2002, Stultz and Edelman 2003).  Accordingly, one alternate 

theory is that collagen exists as an equilibrium distribution of conformational states, where some 

states are partially unfolded in the vicinity of the collagenase cleavage site.  Collagenolysis then 

occurs when collagenases bind to, stabilize, and cleave these partially unfolded conformers. 

Dynamical simulations of collagen-like model peptides suggest that collagen can adopt two 

distinct conformational states near its scissile bond (Stultz 2002).  One state corresponds to the 

native triple-helical structure (N), and the other corresponds to a partially unfolded conformation 

that contains a relatively exposed scissile bond.  We refer to this latter conformation as 

vulnerable (V) because collagen structures that adopt this conformation are relatively vulnerable 

to collagenolysis (Stultz 2002, Stultz and Edelman 2003).    

 

2.1 Estimating the free energy barrier for active unwinding 

Most theories that support a triple-helicase function for MMPs require: (i) collagen to at least 

bind both the catalytic and hemopexin-like domains; and (ii) coordinated domain motions that 

produce lateral tension, axial compression, or bending of the collagen triple helix (Overall 2002).  

These domain motions would, in principle, have large energetic requirements, however 

collagenolysis does not require energy input (Fields 1991, Murphy and Knäuper 1997, Overall 

2002, Chung et al. 2004).  Using a standard kinetic scheme coupled with transition state theory, 

we can estimate the energetic barrier associated with this enzyme-mediated reaction. 

In this scenario, the MMP first binds to collagen, then unwinds it, and finally cleaves it.  We 

assume that unwinding is a slow, but irreversible reaction.  The reaction scheme is given by: 

 on

off

k
NEk

N E C⎯⎯→+ ←⎯⎯    (2.1) 

 unwindk
NE VEC C⎯⎯⎯→  (2.2) 

 
VE
catk

VEC P E⎯⎯→ +  (2.3) 
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where onk  and offk  are the on and off rates for the enzyme binding native collagen, respectively; 

unwindk  is the rate constant for unwinding a native conformation to a vulnerable conformation, 

and VE
catk  is the rate constant for degradation of the now-accessible scissile bond. 

To estimate the rate constant for unwinding, unwindk , we first note that degradation 

experiments are typically fit with a simple Michaelis-Menten kinetics model to yield the 

parameters exp
mK  and exp

catk .  Using the parameters from the unwinding reaction scheme, the 

experimentally measured Michaelis-Menten parameters are then given by (Kuby 1990): 

 
VE

unwind offexp cat
m VE

unwind cat on

k kkK
k k k

+
=

+
 (2.4) 

 
VE

exp unwind cat
cat VE

unwind cat

k kk
k k

=
+

 (2.5) 

If we assume that unwinding is the rate-limiting step (i.e., VE
unwind catk k ), we find: 

 
VE

exp unwind cat
cat unwindVE

cat

k kk k
k

≈ =  (2.6) 

Thus with equation (2.6) we can estimate unwindk  as being equal to the experimentally measured 

catalytic rate exp
catk .  We can then use transition state theory to calculate the free energy barrier for 

unwinding as follows (Voet and Voet 2004): 

 
† †

exp expB
unwind

k T G Gk
h RT RT

υ
⎛ ⎞ ⎛ ⎞−Δ −Δ

≈ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.7) 

 ( )† 1log unwindG RT kυ−Δ = −  (2.8) 

At 298 K, υ is 6.25 ps-1, and with exp
catk ≈ 0.015 s-1, we find †GΔ ≈ 20 kcal/mol.  It is important to 

note that this barrier corresponds to the reaction when the enzyme is present.  Moreover, barriers 

of this magnitude are characteristic of processes that typically do not occur on biological time 

scales (Dugave and Demange 2003, Hollowell et al. 2007).  
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2.2 A two state model of collagen degradation 

Given that collagenolysis does not require energy input, we explored a reaction scheme that does 

not rely on enzyme-mediated unwinding (Figure 2-1).  We begin by assuming that collagen 

exists as an equilibrium distribution of states as previously outlined.  That is, N corresponds to 

the native triple-helical state and V corresponds to a partially unfolded conformation (Stultz 

2002, Stultz and Edelman 2003), with the equilibrium determined by the constant eqK .   

It is important to note that in this formalism the vulnerable state is quite distinct from the 

denatured state. We define a denatured conformation as a completely unfolded structure lacking 

triple-helical structure.  By contrast, vulnerable conformers have considerable native-like 

structure in that the native state and the vulnerable state differ only in the local region about the 

scissile bond.  Data from dynamical simulations and NMR experiments on collagen-like model 

peptides are consistent with the notion that such locally unfolded states of collagen exist (Fan et 

al. 1993, Fiori et al. 2002, Sacca et al. 2002, Stultz 2002).   

 

 
Figure 2-1: Reaction scheme used for numerical simulations.  N denotes the native state of 
collagen (i.e., its triple-helical structure); E denotes full length MMP-1; CNE is the enzyme-
substrate complex; CVE denotes the complex formed between the enzyme, E, and the partially 
unfolded state, V; and P denotes the products of collagenolysis. 
 

In this formalism, collagenases can bind either the native state (with binding constant NE
bindK ) 

to form the NEC  complex or the vulnerable state (with binding constant VE
bindK ) to form the VEC  

complex.  The enzyme then cleaves the VEC  complex in which the scissile bonds are accessible 

with a catalytic rate VE
catk ; the enzyme is unable to cleave the NEC  complex in which collagen is in 

its native triple-helical conformation.  In addition, we explicitly exclude a step describing direct 

unfolding in the presence of the enzyme, NE VEC C⎯⎯→←⎯⎯ , because we wish to determine whether 
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previous experimental observations can be explained without appealing to a mechanism that 

invokes collagen unfolding while bound to the enzyme (e.g., enzyme-mediated unwinding). 

Under steady state conditions, the experimentally observed rate of collagenolysis, exp
catk , may 

be a function of the various constants associated with our model ( eqK , NE
bindK , VE

bindK , and VE
catk ).  To 

understand this relationship, we again refer to the simple Michaelis-Menten model used for 

fitting these experiments (Kuby 1990).  This model is described by the following reaction 

scheme: 

 on

off

k
NEk

N E C⎯⎯→+ ←⎯⎯  (2.9) 

 
exp
catk

NEC P E⎯⎯→ +  (2.10) 

We can relate the rate of cleavage of the vulnerable state of collagen (or catalytic rate) in our 

proposed reaction scheme to the catalytic rate of this simple enzymatic scheme by noting that the 

rate of product creation [ ]d P
dt

⎛ ⎞
⎜ ⎟
⎝ ⎠

 must be the same for both: 

 [ ][ ] [ ]
[ ]

VE exp VE exp NE t
cat VE t cat NE t cat cat

VE t

Ck C k C k k
C

= → =  (2.11) 

We can again gain insight by examining the steady state approximation for the intermediate 

vulnerable state-enzyme complex: 

[ ]

[ ] [ ]
( )[ ]

0

[ ][ ]

[ ][ ]

VE

V V VE
on off VE cat VE

V V VE
on off cat VE

d C
dt

k V E k C k C

k V E k k C

=

= − −

= − +

 

Recombining the above equation to solve for [ ]VEC yields: 

 [ ] ( )
[ ][ ]V

on
VE V VE

off cat

k V EC
k k

=
+

 (2.12) 

If we assume that the binding of native state collagen is similar between both schemes, we can 

apply the steady state approximation to the intermediate native state-enzyme complex: 
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[ ]

[ ]

0

[ ][ ]

NE

N N
on off NE

d C
dt

k N E k C

=

= −
 

Recombining the above equation to solve for [ ]NEC yields: 

 [ ] [ ][ ]N
on

NE N
off

k N EC
k

=  (2.13) 

We now can calculate the ratio [ ] [ ]/NE VEC C and thus relate VE
catk and exp

catk : 

( )

( )

( )

( ) ( )1

[ ]
[ ]

[ ][ ]
[ ][ ]

[ ]
[ ]

[ ]
[ ]

VE exp NE t
cat cat

VE t

V VEN
off catVE exp on

cat cat N V
off on

V VEN
off catexp on

cat N V
off on

N V VE
on off catexp

cat NE V
off on

V VE
off catexp NE

cat eq bind V
on

Ck k
C

k kk N Ek k
k k V E

k kk Nk
k k V

k k kNk
V k k

k k
k K K

k
−

=

+
=

+
=

+
=

⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 

If we assume that V VE
off catk k>>  (i.e., the rapid equilibrium hypothesis (Voet and Voet 2004)), we 

find: 

( ) ( )

( ) ( )

( ) ( )( )

1

1

11

V VE
off catVE exp NE

cat cat eq bind V
on

V
offexp NE

cat eq bind V
on

exp NE VE
cat eq bind bind

k k
k k K K

k

k
k K K

k

k K K K

−

−

−−

⎛ ⎞+
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

≈ ⎜ ⎟⎜ ⎟
⎝ ⎠

=

 

Rearranging to obtain exp
catk , we find: 

 
VE

exp VE bind
cat cat eq NE

bind

Kk k K
K

⎛ ⎞
≈ ⎜ ⎟

⎝ ⎠
 (2.14) 

Thus, when eqK  is low, the native state is preferred and consequently collagen degradation will 

occur slowly.  Likewise, mutations in either the enzyme or collagen that reduce the enzyme’s 
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affinity for vulnerable states will significantly lower VE
bindK , and subsequently the rate at which 

collagen is degraded.  This steady state relationship demonstrates that small values for exp
catk  can 

be explained without invoking a mechanism that involves collagenase-mediated unwinding.  

To explore whether this reaction scheme is consistent with prior experiments, we numerically 

solved the ordinary differential equations (ODEs) arising from the reaction scheme shown in 

Figure 2-1 to obtain estimates of the extent of collagenolysis as a function of eqK , VE
bindK , and NE

bindK .  

Unlike the derivation presented above, these calculations do not assume steady state conditions 

and therefore represent exact solutions to the chemical kinetics.  Furthermore, to be consistent 

with prior experiments, we report the total fraction of collagen degraded after incubating 1μM 

collagen with enzyme for 48 h (Chung et al. 2004). 

 
2.3 Computational Methods 

The reaction scheme of Figure 2-1 leads to a set of ordinary differential equations (ODEs) as 

listed below:       

 [ ]1 2
[ ] [ ] [ ] [ ][ ]N N

on off NE
d N k N k V k N E k C

dt
= − + − +  (2.15) 

 [ ]2 1
[ ] [ ] [ ] [ ][ ]V V

on off VE
d V k V k N k V E k C

dt
= − + − +  (2.16) 

 [ ] [ ] [ ][ ]NE N N
off NE on

d C
k C k N E

dt
= − +  (2.17) 

 [ ] [ ] [ ][ ][ ]VE V V VE
off VE on cat VE

d C
k C k V E k C

dt
= − + −  (2.18) 

 [ ][ ] VE
cat VE

d P k C
dt

=  (2.19) 

 [ ] [ ] [ ][ ] [ ][ ] [ ][ ]N N V V VE
on off NE on off VE cat VE

d E k N E k C k V E k C k C
dt

= − + − + +  (2.20) 

To numerically solve these ODEs we require estimates for each rate constant. As VE
catk  

corresponds to the turnover number when the scissile bond is exposed and readily accessible, we 
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assume that an upper bound for VE
catk  can be approximated by the catalytic rate constant of MMP-

1 on denatured collagen chains (Welgus et al. 1982).  Type I collagen contains two α1(I) chains 

and one α2(I) chain.  The rate constant for denatured α1(I) chains is approximately 230 h-1 and 

the rate constant for denatured α2(I) chains is approximately 750 h-1.  Therefore to estimate the 

catalytic rate constant for type I collagen we use VE
catk  = (1/3) * (2*230 h-1 + 750 h-1) ≈ 400 h-1.  

The true value for the catalytic rate constant on VE
catk  is likely significantly lower, given that 

vulnerable states are not fully unfolded, and therefore scissile bonds in vulnerable conformations 

may not be as exposed as scissile bonds in denatured states.  Using an upper bound for VE
catk  in the 

numerical simulations provides a relatively stringent test of the model as we demonstrate that 

little-to-no collagenolysis occurs over 48 h after exposure of the catalytic domain to collagen 

using this value.  Moreover, conducting numerical simulations with lower values of VE
catk  

produces the same result.  Lastly we note that estimates for the remaining rate constants are 

determined by scaling the rate constants from predetermined initial values to values that match 

the desired the equilibrium constants 1 2eqK k k= , VE V V
bind on offK k k= , and NE N N

bind on offK k k= .  In 

particular, the forward (or on) rates are held constant, while the off rates are scaled accordingly. 

The amount of collagen degraded over short time intervals is strongly dependent on the 

precise values of these rate constants.  However, as we are interested in the fraction of collagen 

degraded after an extended period of time (48 h), it is the equilibrium constants rather than the 

rate constants that determine the final amount of degradation.  For example, 1k  determines the 

rate at which native states transition to vulnerable states – a process driven by thermal 

fluctuations.  If one is interested in collagen degradation after a long period of time, then it is the 

ratio of the forward rate 1k  to the backward rate 2k  that is most important.  Simulations 

conducted using a wide range (over 10 orders of magnitude) of values for each rate constant 

verify that the precise values do not influence the results so long as the equilibrium constants are 

fixed.   

For each set of numerical simulations, NE
bindK  is held at a fixed value, while VE

bindK  is allowed to 

vary from 10-8 to 1012 M-1, ensuring that a wide range of equilibrium binding constants is 

simulated.  Similarly, eqK , the equilibrium constant for native and vulnerable states of collagen, 

is also allowed to vary from 10-10 to 1010.  While we have not made any assumptions in our 
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model as to whether collagen is in a soluble or fibrillar form, the range of equilibrium constants 

simulated likely includes regimes corresponding to both forms of collagen.  That is, it is likely 

that the cleavage site is not as accessible in fibrillar collagen relative to its state in collagen 

monomers.  This effect, however, can be captured in eqK , the equilibrium constant describing the 

relative amounts of native and vulnerable states.  If the accessibility of the collagenase cleavage 

site is reduced in the fibrillar state, then this is effectively modeled by a low eqK .  As we 

consider many different values for eqK  in our simulations, the current set of simulations likely 

covers both scenarios; i.e., cleavage of isolated collagen monomers and fibrillar collagen.  

Numerical simulations were performed in MATLAB (© Mathworks) using the ODE solver 

ode15s with the total collagen concentration set to 1 μM. 

 

2.4 Predictions of the conformational selection model of collagenolysis 

2.4.1 Results of the model at low enzyme concentrations 

We first consider the case where the enzyme concentration is significantly lower than the total 

collagen concentration, as is typically done in collagen degradation experiments that employ full 

length enzyme.  In the present study, the precise choice of enzyme concentration was made to be 

consistent with prior experiments (Chung et al. 2004).  Figure 2-2 depicts the fraction of collagen 

degraded as a function of eqK , VE
bindK , and NE

bindK .  The collagen degradation profiles are quite 

similar over a large range of NE
bindK  values.  In particular, for each value of NE

bindK  three distinct 

regimes are readily identified:   

I. When binding to the vulnerable state is weak or disfavored ( VE
bindK < 103 M-1), little or no 

collagen degradation occurs regardless of the value of eqK ;  

II. When binding is relatively strong ( VE
bindK  > 103 M-1) and vulnerable conformations are 

sampled infrequently, eqK < 10-1, little to no collagen degradation occurs even after a 48 

h incubation;  

III. When VE
bindK  > 103 M-1 and eqK  > 10-1 (or ~101 for NE

bindK  = 108 M-1) significant collagen 

degradation occurs. 
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Figure 2-2: Fraction of collagen degraded at 298 K after 48 h with 2[ ]
[Total Collagen] 10E −=  and (A) NE

bindK  
= 102 M-1, (B) NE

bindK  = 104 M-1, (C) NE
bindK  = 106 M-1, or (D) NE

bindK  = 108 M-1.  
 

   



37 
 

These data demonstrate that collagenolysis requires vulnerable states to be sampled relatively 

frequently and relatively strong binding of collagenases to vulnerable conformers.  Interestingly, 

unfolding simulations on a collagen-like peptide that models a region adjacent to the true 

collagenase cleavage site suggest that eqK  ≈ 100 at 298 K thereby demonstrating that the first 

criterion is met at room temperature (Stultz 2002).  The fact that prior experiments have 

observed significant degradation when collagen is incubated with low enzyme concentrations at 

298 K, suggests that VE
bindK  > 103 M-1 at 298 K for full length enzyme (Chung et al. 2004).  In 

addition, if NE
bindK  ≥ 108 M-1 then little collagen degradation will be observed after 48 h, assuming 

eqK  ≈ 100.  Hence the fact that significant collagenolysis does occur at room temperature 

suggests that NE
bindK  < 108 M-1.  We note that accurate estimates for NE

bindK  at 298 K are difficult to 

obtain experimentally as our data suggests that a significant percentage of collagen molecules 

adopt a vulnerable conformation at this temperature.  Nevertheless, binding constants for 

collagenase binding to fibrillar collagen at 298 K are near 106 M-1 – and therefore well below 

this upper bound (Welgus et al. 1980). 

 

2.4.2 Results of the model at high enzyme concentrations 

While full length enzyme can cleave collagen at relatively low enzyme concentrations, 

experiments that employ mutant forms of enzyme may require much larger enzyme 

concentrations to observe degradation.  Consequently, we studied how eqK , VE
bindK , and NE

bindK  

affect the rate of collagen-degradation when a high enzyme concentration is present (Figure 2-3).   

In Figure 2-3 we have explicitly labeled the region corresponding to incubating wild-type 

enzyme with collagen (i.e., VE
bindK  > 103  M-1 and eqK  > 10-1).  One thing is apparent from these 

data.  High enzyme concentrations do not necessarily guarantee that extensive collagenolysis 

will occur, even when collagen is incubated with an equimolar concentration of enzyme.  

Collagenolysis is abrogated when the mutant of interest has reduced affinity for vulnerable 

states.   

Prior experiments which incubated collagen with high concentrations of MMP-1 mutants 

lacking a hemopexin-like domain did not observe any collagenolysis after 48 h (Chung et al. 

2004).  While these results have been interpreted to mean that partially unfolded states do not 

occur spontaneously, they can also be explained by the notion that removal of the hemopexin-
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like domain reduces the affinity of MMP-1 for collagen.  This is especially poignant given that 

MMP-1 hemopexin-like domains likely contain sites that bind collagen (Clark and Cawston 

1989, Windsor et al. 1991, Murphy et al. 1992, Bigg et al. 1997).  Figure 2-3 demonstrates that a 

substantial reduction in the binding affinity for the native state ( NE
bindK ), which is expected for 

mutant enzymes lacking the hemopexin-like domain, does not noticeably affect the collagen 

degradation profile.  Instead, as in the case of low enzyme concentrations, collagenolysis 

depends almost entirely on eqK  and VE
bindK . 

 

 
Figure 2-3: Fraction of collagen degraded at 298 K after 48 h with [ ]

[TotalCollagen] 1E =  and (A) NE
bindK  = 

102 M-1 or (B) NE
bindK  = 106 M-1. 
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2.4.3 Calculation of the Destabilization Energy 

In general, mutations that destabilize the complex formed by enzyme and vulnerable 

conformations, such as the removal of collagen binding sites on the enzyme, will slow the rate of 

collagenolysis.  If the destabilization is significant, then little collagen degradation will be 

observed after a 48 h incubation time.  To quantify the amount of destabilization needed to 

reduce the fraction of collagen degraded to negligible values, we computed the destabilization 

energy as follows.  Let E denote wild-type MMP-1, and Em denote a mutant form of MMP-1 that 

binds vulnerable states with reduced affinity such that incubating Em with collagen for 48 h 

results in degradation of less than 1% of the total collagen present.  The two binding reactions 

are given by:   

 ( )ln VE
bindG RT KE V EVΔ =−

+ ⎯⎯⎯⎯⎯⎯→  (2.21) 

 ( )minln VE
m

m mG RT K
E V E V

Δ =−
+ ⎯⎯⎯⎯⎯⎯→  (2.22) 

When min
VE VE
bindK K>  the destabilization energy is given by: 

 
min

ln
VE
bind

m VE

KG G G RT
K

⎛ ⎞
ΔΔ = Δ − Δ = ⎜ ⎟

⎝ ⎠
 (2.23) 

where min
VEK  is the reduced binding constant associated with Em.  When VE

bindK  falls below min
VEK , 

less than 1% of the total collagen will be degraded after 48 h.  We note that min
VEK  is a function of 

eqK  and therefore that the destabilization energy is a function of both VE
bindK  and eqK .  

The main point here is that if MMP-1 binds the vulnerable state with a binding constant of
VE
bindK , then destabilizing the bound state by GΔΔ  kcal/mol will reduce collagenolysis such that 

less than 1% of the total collagen present will be degraded.  When the enzyme binds vulnerable 

and native states with dissociation constants in the micromolar range ( 610NE
bindK ≈  M-1 and 

610VE
bindK ≈  M-1) the destabilization energy is less than 7.5 kcal/mol.  Moreover, when VE

bindK  > 103 

M-1 and eqK  > 10-1 (ranges suggested by low enzyme concentration simulations), the 

destabilization energy ranges from 2.5 to 12.5 kcal/mol (Figure 2-4).  Therefore modest changes 

in the binding affinity – as expected with forms of MMP-1 that lack collagen binding sites in the 

hemopexin-like domain – will have important consequences on the extent of collagenolysis. 
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Figure 2-4: Destabilization energies at 298 K with [E] = 1 μM and NE
bindK  = 106 M-1.  Energies 

plotted for eqK = 10-1, 100, and >101.  Because min
VEK  does not vary for eqK  > 101 (Figure 2-3B), 

the destabilization energy curve is the same for all eqK  > 101.  Given that the lower bound for 
degradation is eqK  = 10-1, we observe that for a given VE

bindK , the destabilization energy does not 
differ significantly over the range of eqK  suggested by our simulations. 
 

 

2.5 Discussion 

Since the first crystallographic structures of MMPs were published, the apparent mismatch 

between the width of the MMP active site pocket (~8 Å) and the width of the collagen triple 

helix (15 Å) has presented a formidable challenge in explaining the mechanism of collagen 

degradation (Fields 1991, Overall 2002, Stultz 2002).  Previous explanations have focused on a 

hypothesis that relies on the active unwinding of the collagen triple-helix by MMPs; i.e., that the 

simultaneous binding of MMP domains and the coordinated motions of these domains could 

exert the necessary mechanical force to unravel the helix.  Accordingly, a number of 

experimental observations have been interpreted within this paradigm.  Our results, however, 

suggest that these experiments can be understood without appealing to a mechanism that requires 

MMPs to act as triple-helicases.  In this regard, we note the following: 
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1. Previous experiments suggest that the catalytic domain of MMP-1 alone, MMP-1(ΔC), 

cannot cleave collagen (Clark and Cawston 1989, Chung et al. 2004) – a finding 

consistent with the notion that preformed partially unwound states of collagen do not 

occur spontaneously.  However, our data demonstrates that the lack of collagen 

degradation by MMP-1(ΔC) is explained by the observation that removal of the 

hemopexin-like domain reduces the enzyme’s affinity for (and thus stabilization of) the 

vulnerable state relative to full length enzyme.  As the hemopexin-like domain of MMP-1 

contains sites that bind collagen (Clark and Cawston 1989, Windsor et al. 1991, Murphy 

et al. 1992, Bigg et al. 1997), it is likely that MMP-1(ΔC) and full-length enzyme have 

different affinities for both native and vulnerable states.  However, as is evident from 

Figures 2.2 and 2.3, the extent of collagenolysis is more dependent on the enzyme’s 

affinity for vulnerable conformers.  Moreover, the critical role of the hemopexin-like 

domain in stabilizing vulnerable states is further supported by the observation that human 

leukocyte elastase (HLE) – an enzyme that normally does not cleave triple-helical 

collagen – can hydrolyze collagen when it is combined with solutions containing the 

MMP-1 hemopexin-like domain (Chung et al. 2004). 

2. The binding of linker and hemopexin-like domains obtained from MT1-MMP has been 

shown to significantly perturb the triple-helical structure of type I collagen as measured 

by CD spectroscopy (Tam et al. 2004).  As this perturbation is similar to the observed 

change in CD spectra when collagen is thermally denatured, this observation has been 

interpreted to mean that the linker and hemopexin-like domain alone are functioning as 

triple-helicases.  If, however, collagen exists as an equilibrium distribution of different 

conformational states, and binding to the vulnerable state by the enzyme stabilizes this 

conformation, then the principle of mass action dictates that the overall structure of 

collagen in solution will be shifted to vulnerable conformations, yielding a change in 

observed the CD spectrum. 

3. It has been noted that collagen can be cleaved when incubated with the catalytic domain 

of MMP-1(ΔC) and severed MMP-1 hemopexin-like domains (HpxMMP-1) (Chung et al. 

2004).  The lack of a linker connecting MMP-1(ΔC) and HpxMMP-1 makes active triple-

helical unwinding unlikely, as a helicase function would require coordinated domain 

movements.  If we consider, however, that binding of the hemopexin-like domain 
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stabilizes the vulnerable state, then these experimental results can be understood in the 

context of preformed native and vulnerable states. 

4. Collagenolysis occurs when collagen is placed in solutions containing catalytically 

inactive enzyme (E200A), and other enzymes that normally do not degrade tripe-helical 

collagen; e.g., full length MMP-3, catalytic domain of MMP-3 alone, and HLE (Chung et 

al. 2004).  While these data have been interpreted to mean that E200A unwinds triple-

helical collagen, they are explained by the notion that pre-existing vulnerable states of 

collagen are stabilized by E200A (as noted in point 2).  

The observed lack of collagen degradation in the case where collagen is incubated with 

MMP-1(ΔC) may be further understood by considering how connected catalytic and hemopexin-

like domains affect the collagenolytic ability of MMP-1.  Without a connected hemopexin-like 

domain to (i) bind to the correct region of collagen, near the scissile bond; (ii) stabilize the 

vulnerable state; and (iii) ensure that the connected catalytic domain is in the vicinity of the 

scissile bond, the local concentration of catalytic domain near the collagenase cleavage site 

would be significantly smaller in experiments involving MMP-1(ΔC) as opposed to full-length 

enzyme.   

Our results demonstrate that a straightforward reaction mechanism, which assumes that 

collagen is flexible in the vicinity of the collagenase cleavage site, can explain collagenolysis 

without implying that collagenases perform the energetically costly task of actively unwinding 

triple-helical collagen.  Collagen, like all other biological heteropolymers, undergoes thermal 

fluctuations that cause it to sample distinct structures in the neighborhood of the native state, 

some of which feature an “unwound” or vulnerable portion of the triple helix near the 

collagenase cleavage site.  Collagenolysis occurs when collagenases stabilize the appropriate 

vulnerable state and, by virtue of having connected catalytic and hemopexin-like domains, 

greatly increase the concentration of catalytic domains in the immediate vicinity of the cleavage 

site. 
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Chapter 3 

 

A Structural Model for the Type I Collagen  

Collagenase Cleavage Site 
 

 

This chapter is adapted from: Nerenberg PS and Stultz CM. Differential Unfolding of α1 and α2 
Chains in Type I Collagen and Collagenolysis. Journal of Molecular Biology 2008; 382:246-256. 
 

 

In Chapter 2, we demonstrated that a conformational selection mechanism in which partially 

unfolded conformers of collagen can be bound and cleaved by MMPs can explain a wide variety 

of prior experimental observations that had previously been interpreted in the framework of an 

active unwinding (induced fit) mechanism for collagenolysis.  In this work, we wish to generate 

a structural model for the collagenase cleavage site of type I collagen to determine if low energy 

partially unfolded states in fact exist, and if they do, we would like to characterize their 

conformation(s) and dynamics. 

Approximately 90% of collagen found in the body is fibril-forming collagen – types I, II, III, 

V and XI – that crosslink to form fibrillar structures (Gelse et al. 2003).  Of the fibril-forming (or 

fibrillar) collagens, type I collagen is the most common.  Type I collagen is a major structural 

constituent of bone, tendon, skin, and a myriad of other tissues (Gelse et al. 2003).  Therefore 

understanding the mechanism of degradation for the fibrillar collagens, specifically type I 

collagen, may lead to the design of novel therapies that slow the progression of many human 

diseases that involve abnormal collagen catabolism. 

Fibrillar collagens are degraded by a family of Zn2+-dependent proteases known as matrix 

metalloproteinases (MMPs); e.g., primarily the collagenases MMP-1, MMP-8, and MMP-13 

(Bode et al. 1999, Jones et al. 2003).  MMPs are multi-domain proteins that generally contain a 

catalytic domain connected via a linker region to a hemopexin-like domain (Bode et al. 1999).  

Some MMPs contain additional domains, e.g. the fibronectin type II-like collagen binding 

domains of the gelatinases, MMP-2 and MMP-9, or the cytoplasmic domains of the membrane-
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type MMPs (Overall 2002).  Despite these differences in the structure of various MMPs, a 

common paradox arises from analyses of different MMPs structures and the structure of 

collagen.  Crystallographic studies of collagen-like model peptides suggest that the scissile bond 

that is cleaved by collagenases is not solvent accessible and that the triple-helical collagen 

structure cannot fit into the MMP active site (Fields et al. 1987, Kramer et al. 2001, Overall 

2002).  Consequently peptide bond hydrolysis of scissile bonds in collagen must involve some 

form of collagen unfolding that leads to the formation of a solvent-exposed scissile bond that can 

fit into the MMP active site (Overall 2002, Chung et al. 2004, Tam et al. 2004).  Prior 

experimental studies have been interpreted to mean that collagen does not spontaneously unfold 

in solution and that unwinding of the triple helix is due to the simultaneous binding and 

subsequent coordinated motion of collagenase domains in a process referred to as molecular 

tectonics (Overall 2002).  However, a growing body of experimental and theoretical results 

suggests that the collagen triple helix may be more flexible than originally thought, and that 

thermal fluctuations in the structure of collagen may lead to partial unfolding in the region of the 

cleavage site (Fan et al. 1993, Fiori et al. 2002, Leikina et al. 2002, Stultz 2002, Makareeva et al. 

2008, Nerenberg et al. 2008).  In particular, theoretical calculations on collagen-like model 

peptides suggest that regions near the collagenase cleavage site can adopt both well-folded 

(native) and partially unfolded (vulnerable) states (Stultz 2002).  In this formalism, 

collagenolysis occurs when collagenases bind to and subsequently cleave pre-formed vulnerable 

states of collagen (Nerenberg et al. 2008).  

A number of experimental and computational works have focused on models of type III 

collagen, a homotrimeric fibrillar collagen, in large part due to the ease of synthesizing self-

assembling homotrimeric model peptides (Fields and Prockop 1996, Brodsky and Persikov 

2005).  For example, the model peptide T3-785, which contains a portion of the type III collagen 

sequence immediately C-terminal to the collagenase cleavage site, has been studied using x-ray 

crystallography, NMR, and detailed molecular dynamics simulations (Fan et al. 1993, Kramer et 

al. 2001, Stultz 2002, Stultz and Edelman 2003).  Type I collagen, conversely, is a heterotrimer 

composed of two identical α1(I) chains and one α2(I) chain (Gelse et al. 2003).  Synthesis of 

heterotrimeric model peptides is therefore more difficult and often requires the construction of 

covalent linkages to join chains with distinct sequences (Fields et al. 1996, Fields and Prockop 

1996, Ottl et al. 1996, Fiori et al. 2002).   
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Experiments with full length type I collagen have been performed that provide some insight 

into the mechanism of collagen degradation.  In particular, it has been argued that MMP-1 

cleaves α1 and α2 chains in type I collagen with different efficiencies (Chung et al. 2004).  

Previous experiments incubated type I collagen with catalytically inactive MMP-1 at 25 °C 

followed by the introduction of other active proteases (e.g., catalytic domains of various MMPs 

and human leukocyte elastase).  The result was that α1 chains were cleaved more rapidly than the 

α2 chain (Chung et al. 2004).  From these data it has been argued that inactive MMP-1 

preferentially bound to the α2 chain, leaving the corresponding sites on α1 chains amenable to 

cleavage by noncollagenolytic proteases.  That is, since inactive MMP-1 was unable to cleave 

the scissile bond on α2 chains, it likely remained bound to the α2 chain for a relatively long 

period of time, thereby protecting the scissile bond from being cleaved by other proteases.  

Therefore, to explore the physical basis underlying any potential preference for MMP-1 

association with either the α1 or α2 chains of type I collagen, we conducted unfolding 

simulations of each chain in type I collagen.   

 

3.1 Computational Methods 

3.1.1 The sequence of type I collagen inferred from sequence homologs 

Sequences for human α1 and α2 chains were obtained from the UniProtKB/Swiss-Prot sequence 

database (accession numbers P02452 and P08123, respectively) (The UniProt Consortium 2008).  

Since these amino acid sequences are deduced from nucleotide sequences, and hydroxylation is a 

post-translational modification, it is impossible to determine which prolines are hydroxylated 

from these data alone.  Fortunately, the entire amino acid sequence of the homologous bovine 

type I collagen and a large fraction of the amino acid sequence of the homologous chicken type I 

collagen have been determined using Edman degradation (Bornstein and Traub 1979, Dixit et al. 

1979).  As expected, when an imino acid appears in the X2 position of G-X1-X2 collagen triplets 

in these sequences, it is most often a hydroxyproline (Bornstein and Traub 1979, Gelse et al. 

2003, Brodsky and Persikov 2005).  In fact, in the entire sequence of both bovine and chicken α1 

chains there are only four locations where hydroxylation at the X2 position does not occur 

(Highberger et al. 1982, Glanville et al. 1983).  The most notable exception is a triplet that is N-

terminal to the triplet containing the scissile bond (yellow residues in Figure 3-1).  Given the 
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significant sequence homology between bovine/chicken and human type I collagen, particularly 

in the α1 chain, we modeled a proline in this triplet of human type I collagen instead of a 

hydroxyproline (Figure 3-1). 

 

 

 

Figure 3-1: Alignments of sequences of type I collagen from bovine and chicken collagen in the 
region of the collagenase cleavage site.  The sequence of human collagen is also shown where 
the hydroxylation pattern is deduced from the sequence alignment.  The triplets containing the 
scissile bonds are colored in magenta.  Residues that vary across species are underlined.  The 
GTP triplet of the α1 chain and GTO triplet of the α2 chain are indicated in yellow 
(respectively). 
 

 

3.1.2 Construction of the initial model 

The sequences of the α1 and α2 chains of type I collagen used in the potential of mean force 

calculations included 45 residues in total – the triplet containing the scissile bond and the 7 

triplets adjacent to that triplet in both the N and C terminal directions.  The initial structure, 

which contained only heavy atoms, was first generated using the Triple Helix Builder (Rainey 

and Goh 2004).  A polar hydrogen model of collagen was then constructed with CHARMM 

version 33b2 (Brooks et al. 2009) using the CHARMM19 extended-atom force field and 

parameters (Neria et al. 1996).  To briefly describe it, the CHARMM19 force field has a 

potential energy function of the following form: 
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 (3.1) 

The first three energy terms in equation 3.1 are the familiar bond stretching, bending (angle), and 

torsion (dihedral) terms for atoms connected by bonds.  The fourth term is the Urey-Bradley term 

to constrain distances between atoms separated by two bonds, and the fifth term is the improper 

dihedral term for enforcing the planarity of a group of four bonded atoms.  The last two terms are 

the energy terms for non-bonded atom pairs: the first of these is the van der Waals energy and 

the second is the electrostatic energy.  Parameters for hydroxyproline were obtained from 

previous computational studies (Stultz 2002, Stultz and Edelman 2003).   

This structure was then minimized with 100 steps of steepest descent (SD) minimization in 

vacuo to relieve bad contacts.  Different models of collagen were constructed, each having a 

different arrangement of chain stagger (e.g., the α2 chain can be either chain A, B, or C in the 

triple helix).  Initial simulations were run with each model, but only the model having α2 chain 

as chain C led to stable trajectories having a well-folded structure for all three chains.   

 

3.1.3 Solvation and equilibration of model structure 

The minimized structure was overlaid with a 30 Å sphere of equilibrated TIP3P water molecules 

(about the center of the protein) (Jorgensen et al. 1983).  Water molecules overlapping with the 

protein structure were deleted; the remaining waters were then subjected to 5 ps of molecular 

dynamics at 300 K, with all atoms of the protein remaining fixed.  This solvent overlay 

procedure was repeated two more times (always deleting any overlapping waters) to ensure 

adequate solvation and yielded a total of 3403 TIP3P water molecules in the solvent sphere.  

Taking into account the volume excluded by the collagen triple helix, this number of water 

molecules is consistent with a density of ~1000 kg m-3. 
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The solvated system was then minimized using 200 steps of SD, followed by 200 steps of 

conjugate gradient minimization.  The minimized system was heated linearly over 20 ps to 300 K 

and equilibrated for an additional 80 ps at 300 K with a Nosé-Hoover thermostat (Hoover 1985).  

To allow for side chain relaxation during minimization, heating, and equilibration without 

significant distortion of the triple helix, the backbone atoms of the protein were harmonically 

restrained with a force constant of 100 kcal mol-1 Å-2.  Using atom-based cutoffs, electrostatic 

interactions were switched to zero between 8 and 12 Å, and van der Waals interactions were 

shifted to zero at 12 Å.  The nonbonded list was truncated at 13 Å.  Bond lengths involving 

hydrogen atoms were fixed with SHAKE/Roll and RATTLE/Roll, and a time step of 1 fs was 

used with a velocity Verlet integrator (Lamoureux and Roux 2003). 

 

3.1.4 Umbrella sampling and pmf calculations 

The basic principle behind umbrella sampling is to run a simulation with a relatively strong 

biasing potential, ( )bias
iU ξ , which is some known function of the reaction coordinate of interest, 

ξ, that forces the system to extensively sample small regions of that reaction coordinate (Torrie 

and Valleau 1974).  By conducting many such biased simulations, the full range of the reaction 

coordinate can thus be sampled in detail.  Ultimately, however, we wish to obtain the unbiased 

probability distribution, ( )p ξ , from these biased simulations so that we can construct a potential 

of mean force:  

 
  
W (ξ) = − 1

β
log p(ξ)( )+C  (3.2) 

where C is typically set such that the minimum value of W(ξ) is zero (i.e., 

( )1 log max( ( ))C p ξ
β

= ) (Roux 1995).  The unbiased probability distribution, ( )ip ξ , is related to 

the biased probability distribution from a simulation run with a biasing potential ( )bias
iU ξ  as 

follows: 

 

  

pi (ξ) = pi
*(ξ)eβUi

bias (ξ ) e−βUi
bias (ξ )

ξ

= pi
*(ξ)eβUi

bias (ξ )e−βFi

  (3.3) 
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where *( )ip ξ  is the biased probability distribution (Roux 1995).  A typical form for ( )bias
iU ξ  

(and the form used in this work) is a harmonic potential: 

 ( )21( )
2

bias cen
i i iU kξ ξ ξ= −  (3.4) 

where ki is the force constant and ξi
cen  is the “center” value of the reaction coordinate for biased 

simulation window i.  From equation 3.3 (specifically, the first two terms ( )*( )
bias
iU

ip eβ ξξ ), we can 

see that if a biased simulation frequently samples some value of the reaction coordinate ξ that is 

relatively far from ξi
cen , then this suggests that the unbiased probability is quite large at ξ.   

The primary difficulty of umbrella sampling is in correctly combining the unbiased 

probability distributions obtained by the different simulations.  This requires first solving for the 

Fi (see equation 3.3) and then appropriately weighting the contributions of the various 

probability distributions.  In particular, solving for the Fi is difficult because to calculate it 

exactly requires knowledge of the unbiased probability distribution over the entire range of ξ – 

the very thing we are trying to obtain.  The exact manner in which this is done is described later 

in this section.   

The potential of mean force for each chain was thus constructed using umbrella sampling 

with the average interchain nitrogen-to-oxygen (NO) distance within the (solvated) reaction 

region serving as the reaction coordinate.  This reaction region encompassed the seven central 

triplets of the sequence surrounded by the solvent sphere, with the scissile bond being contained 

in the middle triplet. Simulations for a given chain constrained NO distances between that chain 

and the other two, e.g. a simulation for chain A would constrain the distances between chains A 

and B as well as chains A and C, hence modeling a chain separating from its two partners.  

Simulation windows were centered on 1.79-6.64 Å in 0.14 Å intervals using a harmonic 

biasing potential with a force constant of 196 kcal mol-1 Å-2.  In practice, total NO distance (the 

number of NO pairs multiplied by average NO distance) is used for the simulations, which yields 

an integer, rather than fractional, increment between windows. Before beginning the umbrella 

sampling protocol, the system underwent an additional 100 ps of equilibration at 300 K with the 

H-bond lengths constrained to the starting structure.  The starting window for all three chains 

was 2.93 Å, as this was the average interchain NO distance after side chain equilibration.  Each 
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window was simulated for 100 ps, including 40 ps of equilibration.  The value of the reaction 

coordinate was saved every 50 fs, yielding 1200 data points per window.  In some windows the 

equilibration time was observed to be longer, thus necessitating longer simulations.  In these 

cases the simulation length was 200 ps, with 80 ps of equilibration, yielding 2400 data points per 

window.  Parameters for these molecular dynamics simulations were the same as those described 

in the previous section. 

An unbiased probability distribution (and thus potential of mean force) for each chain was 

constructed from the biased probability distribution of each window using the weighted 

histogram analysis method (WHAM) (Kumar et al. 1992, Souaille and Roux 2001).  The 

WHAM equations are as follows: 

 
( )

*

( )1

1

( )( )
W

W bias
j j

N
i i

N
U Fi

j
j

n pp
n e β ξ

ξξ
− −=

=

=∑
∑

 (3.5) 

 ( ) ( )
bias

i iF Ue d e pβ β ξξ ξ− −= ∫  (3.6) 

where NW is the total number of biased simulations and ni is the number of data points for biased 

simulation i.  By making an initial guess for the Fi in equation 3.5, one can then iteratively solve 

equations 3.5 and 3.6 until reaching some arbitrary convergence criterion.  In this work, we 

iterated until the root-mean-square difference between successive sets of Fi was less than 10-6.  

The resulting pmfs were then smoothed in MATLAB using a robust linear fit method with a data 

span of 5%. 

 

3.1.5 Calculation of average NO distances and Cα RMS fluctuations 

Average NO distances were obtained using the simulation window centered closest to the energy 

minimum of interest.  Relevant NO distances were recorded every 50 fs using CHARMM, 

summed, and then divided by the number of data points in that window (a simple average).  Cα 

root-mean-square (RMS) fluctuations were obtained using the same simulation windows.  An 

average structure for each window and RMS fluctuations from that average were calculated 

using CHARMM. 
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3.2 Conformational thermodynamics and flexibility near the cleavage site 

Non-hydroxylation of proline residues in the X2 position of G-X1-X2 triplets is curious not only 

because of its relative rarity, but also because the stability of collagen-like sequences is a 

function of their hydroxyproline content (Jenkins and Raines 2002, Brodsky and Persikov 2005, 

Engel and Bächinger 2005).  Therefore, we postulated that non-hydroxylation of prolines in the 

vicinity of the collagenase cleavage site would affect the conformational thermodynamics of 

collagen in this region.   

We computed conformational free energy profiles for unfolding all three chains (two α1 and 

one α2) in type I collagen using the sequence shown in Figure 3-1.  As we were interested in the 

conformational thermodynamics of the region immediately surrounding the cleavage site, a 

stochastic boundary method similar to the one outlined in previous work was used (Stultz 2002).  

Simulations were conducted at 300K, a temperature comparable to previous degradation 

experiments that were conducted at 298 K (25 °C) (Chung et al. 2004).  

Folded triple-helical collagen conformations (Figure 3-2A) have interchain hydrogen bonds 

(H-bonds) between the inward-facing amide hydrogen of glycine residues and the carbonyl 

oxygen of X1 residues in G-X1-X2 triplets (Figure 3-2B).  As nitrogen (of Gly) and oxygen (of 

X1) are the heavy atoms involved in these H-bonds, unfolding simulations were conducted using 

a reaction coordinate corresponding to the average interchain backbone nitrogen-to-oxygen (NO) 

distance.  NO distances below 3.6 Å are consistent with the formation of a hydrogen bond 

between the amide hydrogen and carbonyl oxygen; i.e., bonds present in the folded state.  

Consequently, this reaction coordinate enabled us to more fully explore differences in H-bond 

patterns between different conformers.  A free energy profile (also known as potential of mean 

force or pmf) for unfolding each of the three chains in type I collagen was obtained by varying 

the average NO distance between one chain and the other two, thereby allowing us to directly 

monitor the separation of one chain from the other two. 
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Figure 3-2: (A) The prototypical triple-helical structure of type I collagen in the region of the 
collagenase cleavage site (generated with the Triple Helix Builder (Rainey and Goh 2004)).  
Chain A is colored blue, Chain B is colored green, and Chain C is colored red. (B) Hydrogen 
bonding pattern in the triple helical conformation.  The triplets containing the scissile bonds are 
colored in magenta.  Arrows point from hydrogen bond donors to hydrogen bond acceptors. 
 

 

3.2.1 Potentials of mean force for unfolding 

Despite the fact that each α1 chain is in a distinct chemical environment (Figure 3-2), the pmfs 

for both α1 chains are very similar (Figures 3-3A and 3-3B).  Both pmfs have a single deep 

energy minimum at an average NO distance of 3.1 Å and 3.2 Å for chains A and B, respectively 

(Figures 3-3A and 3-3B).  Hence, on average the interchain H-bonds are preserved in structures 

corresponding to these minima.  By contrast, the pmf for unfolding the α2 chain has two distinct 

local energy minima.  In addition to the global energy minimum at an average NO distance of 3 

Å, there is another minimum at 3.8 Å that has an energy within 1 kcal/mol of the lowest energy 

state (Figure 3-3C).  As the average NO distance of the second minimum is slightly greater than 

3.6 Å, this suggests that on average, interchain hydrogen bonds in structures corresponding to the 

second minimum are broken.  Taken together, these data suggest that unfolding either α1 chain is 

energetically unfavorable, while α2 chain unfolding occurs more readily and leads to the 

formation of a state that has, on average, disrupted interchain hydrogen bonds. 
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Figure 3-3: Potential of mean force for (A) chain A (α1), (B) chain B (α1), and (C) chain C (α2) 
of type I collagen. 
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3.2.2 Representative structures of the native and vulnerable states 

Representative structures from the α2 chain global energy minimum (the “native” state), 

which occurs at an average NO distance of 3 Å, resemble the familiar triple-helical structure of 

collagen (Figure 3-4A).  Although two NO distances in the vicinity of the triplet that contains the 

scissile bond are slightly above 3.6 Å, most hydrogen bonds in the vicinity of the scissile bond 

have NO distances below 3.3 Å (Figure 3-4B).  Overall, these data argue that the triple-helical 

structure is preserved about the collagenase cleavage site.   

 

 

 
Figure 3-4: (A) Representative structure from the native state of type I collagen. The α2 chain is 
colored in red.  (B) Interchain NO distances of the native state of type I collagen.  The triplets 
containing the scissile bonds are colored in magenta. (C) Representative structure of the 
vulnerable state of type I collagen.  (D) Interchain NO distances of the vulnerable state of type I 
collagen.  NO distances greater than 4 Å are highlighted in orange. 
 

 

Representative structures corresponding to the energy minimum at 3.8 Å, however, are partially 

unfolded in the region N-terminal to the collagenase cleavage site (Figure 3-4C).  Moreover, the 

relatively large NO distances involving the scissile bond and triplets N-terminal to the cleavage 

site, suggest that H-bonds are broken in this region (Figure 3-4D).  In particular, the GPQ triplet 

of the α2 chain that is immediately N-terminal to the central scissile bond-containing triplet 
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(GLL) neither donates nor accepts hydrogen bonds from other chains (Figure 3-4D).  In addition, 

the GLL triplet, which contains the scissile bond, no longer donates a hydrogen bond to an α1 

chain (Figure 3-4D).  We therefore refer to structures corresponding to this minimum as 

belonging to the vulnerable state (Figure 3-3C).  This classification is based on our previous 

formalism that defined vulnerable conformations as states have partially unfolded structures in 

the vicinity of the collagenase scissile bond (Stultz 2002, Stultz and Edelman 2003).  

 

 

 
Figure 3-5: The RMS fluctuations of the α2 chain (chain C) backbone Cα atoms in the native and 
vulnerable states of type I collagen. The triplet containing the scissile bond is colored in 
magenta.  In the vulnerable state, the triplet boxed in orange does not hydrogen bond to any 
residues in the adjacent α1 chains.  Black dashed lines indicate the range of fluctuations within 
two standard deviations of mean fluctuation in the native state.   
 

 

3.2.3 Dynamics of the native and vulnerable states  

To characterize the effect that disruption in hydrogen bonding pattern has on the dynamics of the 

structure in the vicinity of the collagenase cleavage site, we calculated the root-mean-square 

(rms) fluctuations of backbone Cα atoms in both the native and the vulnerable states for the α2 

chain (Figure 3-5).  In the native state, the GPQ triplet, immediately N-terminal to the scissile 

bond triplet, has mildly elevated fluctuations – a finding consistent with the observation that one 

of the NO distances of this triplet is elevated (Figure 3-4B).  However, rms fluctuations are 
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increased in the vulnerable state, relative to fluctuations in the native state.  In the vulnerable 

state, the NO distances of the GPQ triplet are significantly elevated and consequently, the 

associated rms fluctuations are significantly larger (Figure 3-5).  As the GPQ triplet does not 

hydrogen bond to any residues in adjacent α1 chains, it has the largest rms fluctuations and the 

greatest flexibility.   

 

3.3 The effect of hydroxylation near the cleavage site 

Our data suggest that unfolding of the α2 chain in the vicinity of the collagenase cleavage site is 

energetically favorable relative to unfolding of α1 chains in type I collagen.  This is somewhat 

surprising given that the α2 chain contains more hydroxyproline residues than the α1 chain near 

the scissile bond triplet.  In particular, we model the X2 position of a G-X1-X2 triplet, which is 

N-terminal to the scissile bond in α1 chains, as containing a proline instead of a hydroxyproline 

while the corresponding position in the α2 chain contains a hydroxyproline (yellow residues in 

Figure 3-1).  Since collagen stability typically increases as the hydroxyproline content increases, 

this finding is at first counterintuitive (Jenkins and Raines 2002, Brodsky and Persikov 2005, 

Engel and Bächinger 2005).  Therefore, to further explore the role that hydroxylation at this site 

has on the conformational thermodynamics of collagen, we conducted additional unfolding 

simulations with this proline in the α1 chain replaced with a hydroxyproline.  We henceforth 

refer to this mutant sequence as the GTO mutant. 

 

3.3.1 Potentials of mean force for unfolding 

The resulting pmfs of all three chains in the GTO mutant have global energy minima with an 

average NO distance less than 3.6 Å (Figure 3-6).  In particular, the vulnerable state that was 

previously observed in unfolding simulations of the α2 chain, no longer corresponds to a stable 

state in the α2 unfolding simulations with the GTO mutant (Figure 3-6C).  Hence, α2 chain 

unfolding does not occur in the mutant structure.  This is an interesting finding in light of the fact 

that the GTO mutation only occurs on α1 chains and not on α2 chains.   
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Figure 3-6: Potential of mean force for (a) chain A (α1), (b) chain B (α1), and (c) chain C (α2) of 
GTO mutant type I collagen. 
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While the pmf for α2 chain unfolding now has one distinct minimum, the pmf for the α1 

chains, each have two minima.  One α1 chain has a shelf-like broad minimum in the range of 

3.4-4 Å (Figure 3-6B), which occurs at a relative free energy of 4.2 kcal/mol; i.e., approximately 

7 RT at 300 K.  Consequently, it is unlikely that this state is significantly sampled at room 

temperature.  The other α1 chain has minima at 3.7 Å and 4.6 Å (Figure 3-6A).  The minimum at 

4.6 Å has a relative free energy of 4.0 kcal/mol, which again suggest that this state is rarely 

sampled at room temperature.  The minimum at 3.7 Å has a relative free energy of 1.3 kcal/mol 

(~2 RT), suggesting that this metastable state may correspond to an accessible state at room 

temperature (Figure 3-6A).  Therefore to explore the structure and dynamical properties of these 

states we analyzed representative structures from these minima.  

 

 

 
Figure 3-7: Interchain NO distances of the (A) native and (B) metastable states of GTO mutant 
type I collagen.  The triplets containing the scissile bonds are colored in magenta. Broken 
hydrogen bonds (NO distances greater than 4 Å) are shown in orange.  In both states, no triplets 
have broken donor and acceptor bonds, and the scissile bond triplet remains hydrogen bonded to 
both neighboring chains. 
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3.3.2 Representative structures of the native and metastable state  

Structures corresponding to the lowest energy state with an average NO distance of 3.3 Å adopt a 

triple helical structure with mostly preserved interchain hydrogen bonds (Figure 3-7A).  H-bonds 

are preserved near the scissile bond triplet, and triplets N-terminal to the scissile bond triplet all 

have NO distances below 3.1 Å (Figure 3-7A).  One H-bond, which is C-terminal to the scissile 

bond triplet is broken in this structure, having an NO distance of ~5 Å (Figure 3-7A).  

Representative structures of the metastable state contain broken hydrogen bonds both N-terminal 

and C-terminal to the scissile bond (Figure 3-7B).  In both the native and metastable states, the 

central triplet that contains the scissile bond maintains both hydrogen bonds.  Additionally, 

although the metastable state has more broken hydrogen bonds relative to the native state, no 

triplet is dissociated from both of its neighboring chains.  In contrast to the vulnerable state, 

associated with α2 chain unfolding (Figure 3-4D), none of the triplets in the α1 metastable state 

have both H-bonds broken (Figure 3-7B).  

 

 

 
 
Figure 3-8: RMS fluctuations of the α1 chain (chain A) backbone Cα atoms in the native and 
metastable states of GTO mutant type I collagen.  The hydroxyproline that has been substituted 
for proline is denoted O*.  The triplet containing the scissile bond is colored in magenta.  Black 
dashed lines indicate the range of fluctuations within two standard deviations of the native state 
mean fluctuation. 
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3.3.3 Dynamics of the native and metastable states  

To examine the effect of this hydrogen bonding pattern on the dynamics of the chain, we 

computed rms fluctuations of the α1 chain backbone Cα atoms for the native and metastable 

states of the GTO mutant (Figure 3-6A).  Both the native and metastable states have a similar 

range of rms fluctuations (Figure 8).  In the native state, the rms fluctuations of the GVV triplet, 

which is near the C-terminus, has slightly increased fluctuations (Figure 3-8) – an expected 

finding given that a hydrogen bond is broken near the C-terminus (Figure 3-7B).  This triplet, 

however, has reduced rms fluctuations in the metastable state (Figure 3-8) – a finding which is 

likely due to the fact that it has a smaller hydrogen bond distance with neighboring chain B.  In 

the metastable state, most of the rms fluctuations are elevated in the N-terminal region.  This is 

consistent with the observation that two H-bonds are broken N-terminal to the central scissile 

bond in the metastable state.   

 

3.4 Discussion 

The molecular mechanism of collagenolysis is an enigma.  Studies aimed at deciphering the 

structural changes needed to hydrolyze scissile bonds in collagen help to elucidate the complex 

series of events that must occur to enable collagen degradation.  To deduce structural changes in 

type I collagen that may facilitate collagenase recognition and cleavage of scissile bonds in 

collagen, we explored the conformational free energy landscape of collagen-like peptides that 

model regions near scissile bonds in collagen.   

Although the DNA sequences of human α1 and α2 collagen chains are known, it is difficult 

to deduce the precise amino-acid sequence of collagen chains from these data because collagen 

undergoes extensive post-translational modifications (Gelse et al. 2003).  Most notably, a sine 

qua non of collagen post-processing is the hydroxylation of a significant number of proline 

residues in the X2 position of G-X1-X2 triplets.  Since deciphering the precise hydroxylation 

pattern is not possible from the DNA sequence alone, the exact amino-acid sequences of human 

α1 and α2 chains have yet to be experimentally determined.  However, as the hydroxylation 

pattern of proline residues in bovine and chick collagen are known, we used the significant DNA 

sequence homology between bovine and chick sequences to deduce the hydroxylation pattern of 

the corresponding human sequences (Bornstein and Traub 1979, Dixit et al. 1979, Highberger et 

al. 1982, Glanville et al. 1983).   
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Interestingly, the alignment of sequences from the bovine and chick sequences suggest that a 

proline residue located in the X2 position of an upstream triplet in the α1 chain is not 

hydroxylated.  Collagen unfolding simulations using an amino-acid sequence having a proline in 

this position suggest that unfolding of the α2 chain near the collagenase cleavage site is 

energetically favored relative to unfolding α1 chains.  More precisely, we find that α2 chains can 

adopt a partially unfolded state having an energy similar to that of the native triple-helical 

conformation.   

This partially unfolded, vulnerable, state has a number of interesting structural properties.  As 

a rule, every G-X1-X2 triplet in the α2 chain of native type I collagen donates a hydrogen bond 

to one α1 chain and accepts a hydrogen bond from the other α1 chain (Brodsky and Persikov 

2005, Engel and Bächinger 2005).  However, in the vulnerable state, the α2 triplet that contains 

the scissile bond does not donate a hydrogen bond to a neighboring α1 chain and consequently 

only forms one hydrogen bond with another α1 chain.  In addition, the triplet which is 

immediately N-terminal to the scissile bond does not form any hydrogen bonds with neighboring 

α1 chains; i.e., this triplet dissociates from the other two chains.  The loss of both hydrogen 

bonds is associated with increased chain flexibility, as demonstrated by an increase in the rms 

fluctuations of Cα atoms in residues belonging to this triplet.  An increase in backbone 

fluctuations suggests that the formation of interchain hydrogen bonds helps to restrict the motion 

of collagen chains, and therefore local disruption of the interchain hydrogen bonding may 

constitute a mechanism for imparting increased structurally lability to localized regions of the 

collagen structure.  Overall, our data support the hypothesis that hydrogen bonding between 

adjacent chains has a direct effect on chain flexibility. 

 

3.4.1 A critical non-hydroxylation near the cleavage site 

Our results were obtained using an amino acid sequence where a proline residue in the X2 

position of a triplet upstream from the cleavage site is not hydroxylated.  To explore the effect 

that this assumption has on our results, we conducted additional unfolding simulations where this 

proline residue is replaced with a hydroxyproline.  Interestingly, we find that the hydroxylation 

of this proline residue, which is found in α1 chains, leads to a dramatic change in the 

conformational free energy profile of the α2 chain.  The vulnerable state of the α2 chain 

disappears when the prolines on the α1 chains are hydroxylated.  These data therefore suggest 
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that hydroxylation of residues on the α1 chains can affect the conformational thermodynamics on 

the α2 chain, and more specifically, that the hydroxyproline residues can have stabilizing effects 

on adjacent chains.   

It has been demonstrated that the stabilizing effect of hydroxyproline on collagen is mainly 

stereoelectronic in nature (Holmgren et al. 1999, Bretscher et al. 2001).  Specifically, the 

hydroxyl group of hydroxyproline stabilizes the pyrrolidine ring in the Cγ-exo pucker, which in 

turn stabilizes both the ϕ/ψ and ω (peptide bond) angles in a conformation that is compatible 

with the triple-helical structure (Jenkins and Raines 2002, Brodsky and Persikov 2005, Engel and 

Bächinger 2005).  Given this, hydroxyproline mediated stabilization of α1 chains allows other 

chains to form stabilizing contacts and hydrogen bonds to these restricted α1 chains.  In fact, 

while our GTO mutant is able to adopt a metastable state, all of the triplets in this state form at 

least one H-bond to a neighboring chain.  Additionally, it has been argued that hydroxyproline 

residues can form stabilizing dipole-dipole interactions with other hydroxyproline residues on 

adjacent chains (Improta et al. 2008).  Hence hydroxyproline residues may directly interact with 

other chains, in a manner that does not involve the formation of hydrogen bonds, to increase the 

stability of adjacent chains.  Overall, our data are consistent with these notions and suggest that 

non-hydroxylation of a proline residue may play a crucial role in determining the conformational 

flexibility and dynamics in the vicinity of the collagenase cleavage site. 

 

3.4.2 Interpreting prior experimental results in light of the α2 chain vulnerable state 

Incubating type I collagen with inactive MMPs protects the α2 chain from peptide bond 

hydrolysis by other proteases that hydrolyze the MMP-specific scissile bond, thereby suggesting 

that MMPs bind to α2 chains in the vicinity of the collagenase cleavage site (Chung et al. 2004).  

Localized unfolding and increased flexibility of the triplet upstream from the collagenase 

cleavage site may provide a mechanism that enables MMPs to recognize regions near the 

cleavage site.  As such, our data helps to explain and clarify these experimental observations.   

A more recent study utilized x-ray fiber diffraction of collagen fibrils at room temperature to 

deduce structural properties of type I collagen in situ (Orgel et al. 2006, Perumal et al. 2008).  

Using the electron density obtained from experiments on fibrillar collagen, a relaxed, energy-

minimized, model of collagen was constructed and compared to an idealized triple-helical 

structure (Perumal et al. 2008).  An analysis of these structures suggests that the structure of 
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fibrillar collagen significantly differs from the idealized triple-helical structure in a region of the 

α2 chain that is in the vicinity of the collagenase-scissile bond; i.e., the α2 chain is more 

dissociated from the center of the triple-helix relative to the other α1 chains (Perumal et al. 

2008).  Additionally, residues immediately upstream from the scissile bond in the α2 chain are 

more dissociated from the center of the triple-helix than residues immediately downstream from 

the scissile bond.  These data are consistent with our results that were not obtained with a 

fibrillar model of collagen.  As a result, our findings are consistent with the notion that 

preferential unfolding of the α2 chain in the vicinity of the collagenase cleavage site is an 

inherent property of the local sequence of collagen near the cleavage site and not a function of 

additional contacts that may be present in the collagen fibril.   

Recent experiments performed at 37 °C using type I collagen and MMP-8 suggest similar 

catalytic rates for the α1 and α2 chains, implying that collagenases do not strongly prefer one 

sequence over the other (Gioia et al. 2007).  However, as type I collagen is known to be 

thermally unstable at 37 °C and particularly flexible in the region of the cleavage site (Leikina et 

al. 2002, Makareeva et al. 2008), it is likely that all three chains exist in a partially unfolded state 

with disrupted hydrogen bonds at this higher temperature.  Although CD measurements indicate 

that some fraction of triple-helical structure exists in type I collagen at 37 °C (Gioia et al. 2007), 

CD spectroscopy can rarely distinguish small localized changes in structure.  Furthermore, data 

from NMR experiments and computational simulations of collagen-like model peptides suggest 

that regions near the collagenase cleavage site are relatively unstable and may be the first to 

unfold (Fan et al. 1993, Fiori et al. 2002, Stultz 2002, Stultz and Edelman 2003).  If all three 

chains are equally unfolded at 37 °C, then the inability of MMP-8 to distinguish between the 

different chains in type I collagen is expected. 

Similar experiments with type I collagen and MMP-2, again at 37 °C, imply that gelatinases 

may prefer binding to the α1 chains, therefore cleaving the scissile bond of the α2 chain with a 

higher catalytic rate (Gioia et al. 2007).  When evaluating the results of experiments utilizing 

MMP-2, however, it is worth noting that MMP-2 contains a fibronectin type II-like collagen 

binding domain (CBD) in addition to the catalytic and hemopexin-like domains found in the 

fibrillar collagenases (Overall 2002).  In addition, there are data experimental data which imply 

that the CBD, and not the hemopexin-like domain, is primarily responsible for MMP-2 binding 

to collagen (Tam et al. 2004).  Hence the preference of MMP-2 for particular exposed collagen 
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chains will be dictated by inherent preferences that this domain may have for a given collagen 

chain. 

Overall our data are consistent with the notion that incubating type I collagen with 

catalytically inactive MMP-1 leads to binding near the collagenase cleavage site.  Prior work 

suggests that collagenases bind to partially unfolded states and stabilize vulnerable conformers in 

a manner that can facilitate collagenolysis (Nerenberg et al. 2008).  Similarly, inactive MMP-1 

may bind to the α2 chain and stabilize partially unfolded states having disrupted interchain 

hydrogen bonds, in turn promoting peptide bond hydrolysis of scissile bonds in the α1 chains by 

other proteases.  Our data offer a detailed picture into the mechanism of collagen degradation 

and highlight the importance of subtle sequence variations in the vicinity of the collagenase 

cleavage site. 
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Chapter 4 

 

Conformational Selection in Type I Collagen Degradation 
 

 

This chapter is adapted from: Nerenberg PS*, Salsas-Escat R*, and Stultz CM. Cleavage site 
specificity and conformational selection in type I collagen degradation.  Submitted.  (*Both 
authors contributed equally to this work.) 
 
 
In Chapter 3 we generated a structural model for the collagenase cleavage site of type I collagen 

using MD simulations.  These data suggest that type I collagen exists in two distinct 

conformations: a well-folded triple-helical (native) state and a partially unfolded (vulnerable) 

state.  To validate this structural model, we wish to conduct degradation experiments using 

deletion mutants of collagenases that contain only the catalytic domain, as these enzymes are 

thought to be a probe for unfolded states (see Chapter 2).  In addition, we wish to test how well 

the resulting degradation time courses can be fit using the conformational selection model 

described in Chapter 2.  Thus, degradation experiments provide any avenue not only to validate 

our structural model of type I collagen, but also to test the applicability of our conformational 

selection model. 

Data obtained from circular dichroism and differential scanning calorimetry experiments 

suggest that there is considerable heterogeneity in the stability of the triple helix along the 

collagen chain (Makareeva et al. 2008).  Moreover, NMR studies involving collagen-like model 

peptides in solution and molecular dynamics (MD) simulations suggest that at low temperatures 

(i.e., temperatures below collagen’s melting point) regions of type I collagen near the 

collagenase cleavage site can adopt conformations that have relatively solvent-exposed scissile 

bonds (Fan et al. 1993, Fiori et al. 2002, Nerenberg and Stultz 2008).   

A number of experiments have explored whether collagen can adopt conformations at low 

temperatures that could, in principle, be recognized and cleaved by proteases.  General proteases 

like pepsin, chymotrypsin and trypsin have been used in assays for partially unfolded states of 

collagen (Bruckner and Prockop 1981).  Early experiments incubated type I collagen with trypsin 
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and no collagen degradation was observed (Miller et al. 1976).  More recent experiments 

incubated type I collagen with high concentrations of the catalytic domain of MMP-8 (CMMP-8) 

at room temperature and, again, no degradation was found (Schnierer et al. 1993).  Similar 

results have been reported with the catalytic domain of MMP-1 (CMMP-1) (Chung et al. 2004).  

If the region near the collagenase cleavage site is able to spontaneously adopt partially unfolded 

states in solution that can bind the collagenase cleavage site, then one would expect incubation of 

the catalytic domain of MMPs with collagen to result in collagenolysis.  Since this is not the 

case, it is difficult to reconcile these latter experimental observations with the aforementioned 

studies that suggest that type I collagen adopts partially unfolded states in the vicinity of the 

cleavage site in solution. These latter degradation experiments support a theory that dictates that 

the collagenase cleavage site does not spontaneously adopt partially unfolded states in solution 

(at temperatures below collagen’s melting temperature), and that collagenolysis involves active 

unfolding of the collagen triple helix by MMPs.  In this formalism the coordinated action of both 

the catalytic and hemopexin-like MMP domains lead to active unwinding of the triple-helical 

structure (Overall 2002, Chung et al. 2004, Tam et al. 2004, Gioia et al. 2007).  In addition, 

recent data argues that the hemopexin-like domain may also play a role in determining cleavage 

site specificity by binding to specific secondary sites located near the unique collagenase 

cleavage site (Perumal et al. 2008).  Hence it has been argued that the hemopexin-like domain 

plays an essential role in both exposing the scissile bond and in ensuring that only the unique 

cleavage site is recognized by the collagenase.   

 In this work we demonstrate for the first time that the degradation of type I collagen at 

temperatures well below type I collagen’s melting temperature does not require the presence of 

the MMP hemopexin-like domain.  Moreover, peptide bond hydrolysis with MMP mutants that 

only contain the catalytic domain occurs at the unique collagenase cleavage and not at other 

potential cleavage sites.  Thus both peptide bond hydrolysis and enzyme specificity is achieved 

with the catalytic domain alone.  As full length enzyme is thought to be necessary for 

collagenase-mediated unwinding, our data unambiguously demonstrate that enzyme-mediated 

unwinding is not required for collagenolysis in vitro.  We therefore analyze our data in light of a 

conformational selection where thermal fluctuations at the cleavage site cause collagen to adopt 

unfolded conformations that are complementary to the collagenase catalytic site.  Overall, our 
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findings suggest that type I collagen can adopt locally unfolded states at room temperature and 

that collagenolysis occurs when collagenases cleave these locally unfolded states. 

 
4.1 Experimental and computational methods 

Acknowledgement: The degradation experiments and gel densitometry described in sections 
4.1.1 and 4.1.2 were performed by my labmate Ramon Salsas-Escat. 
 

4.1.1 Degradation experiments 

All degradation reactions were performed at room temperature.  The temperature was 

verified using a calibrated thermometer.  All recorded temperatures were 24 °C and no variation 

in the temperature was observed.  All experiments were carried out in TNC buffer, containing 

100 mM Tris HCl (VWR International), 10 mM CaCl2 (Sigma-Aldrich Co), pH 7.6. Bovine type 

I collagen, (BD Biosciences), was obtained at 3 mg/ml in 0.012 M HCl. MMP mutants that only 

contain the catalytic domain (CMMP-1 and CMMP-8) were purchased from Enzo Life Sciences.  

Full length MMP-1 (FMMP-1) was purchased from Anaspec and was provided in a preserving 

solution containing 1 mg/ml of BSA. 

As purification of type I collagen often results in protein that is contaminated with type III 

collagen, purchased collagen samples were repurified using differential salt precipitation 

(Epstein 1974, Trelstad et al. 1976, Miller and Rhodes 1982).  First type I collagen was diluted to 

a concentration of 0.5 mg/ml in 0.5 M AcOH.  The solution was then dialyzed against low salt 

buffer (0.1 M NaCl, 50 mM Tris, pH 7.5, at 4 °C) followed by dialysis against a high salt buffer 

(1.8M NaCl, 50 mM Tris, pH 7.5, at 4 °C), in which type III collagen preferentially precipitates 

(Trelstad et al. 1976).  At this point, the sample was centrifuged at 4 °C for 30 min at 16000g and 

the supernatant, containing purified type I collagen, was then dialyzed into TNC buffer.  Purity 

of the final type I solution was confirmed by running degradation experiments with full length 

MMP-1 and no type III collagen degradation products were observed.  

Degradation experiments employed purified type I collagen at a concentration of 150 µg/ml.  

All enzymes were incubated with 4-aminophenyl mercuric acetate (APMA, Sigma-Aldrich Co.) 

as previously described (Clark 2001) and mixed with type I collagen to a final concentration of 

25 µg/ml for CMMP-8 and 40 µg/ml CMMP-1.  Reactions were stopped by the addition of SDS-

Laemmli buffer (BioRad Laboratories) with β-Mercaptho Ethanol (Sigma-Aldrich Co.) and 
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boiled for 10 minutes. The degradation products were run in 4-12% gradient gels and stained 

with Coomassie colloidal blue.  Gelatin was generated by boiling type I collagen in TNC buffer 

for 10 minutes.  Gelatin at 150 µg/ml was then incubated with 13.8 µg/ml CMMP-8 and 16.6 

µg/ml CMMP-1.  

An unstained CMMP-8 gel was transferred to a PVDF membrane, which was stained with 

Coomassie blue.  The ¼ α1 and ¼ α2 bands were cut from the gels corresponding to the CMMP-

8 experiments and sent for sequencing to the Tufts University Core Facility, using an ABI 494 

Protein Sequencer.  The ¼ α1 and α2 bands from the CMMP-1 reaction could not be sequenced 

due to the low amount of collagen that is degraded by CMMP-1.   

 

4.1.2 Densitometry analysis 

Densitometry was performed with a Kodak Gel Logic 100 Imaging System.  Bands were imaged 

using an automatic lane and band fitting method (Kodak Molecular Imaging Software v4.0.0).  

The percentage of type I collagen degradation by CMMP-8 or CMMP-1 was measured by 

dividing the sum of the net intensities of the γdeg, βdeg, ¼ and ¾ bands by the sum of the total net 

intensity of all the bands corresponding to total collagen in a given lane (γ, γdeg, β, βdeg, α1, α2, 

and the ¼ and ¾ bands).  γ and β bands correspond to N-terminally crosslinked collagen 

molecules (Veis and Anesey 1965, French et al. 1987, Shigemura et al. 2004, Morimoto et al. 

2009).  The γ bands correspond to a trimer of chains (Shigemura et al. 2004, Morimoto et al. 

2009).  The β bands correspond to a dimer with two α1 chains (β11) or one α1 and one α2 

chains (β12), with only one crosslink (French et al. 1987, Shigemura et al. 2004, Morimoto et al. 

2009).  These cannot be resolved using the 4-12% gradient gels and are imaged together.  Data 

are presented as the mean and standard deviation over three independent gels per experiment.   

 

4.1.3 Numerical simulations using conformational selection model 

As in Chapter 2, the reaction scheme shown in Figure 4-1 was converted into a set of ordinary 

differential equations (ODEs), with the equilibrium and binding constants expressed in terms of 

various rate constants: 1

2
eq

kK
k

= , 
NC

NC on
bind NC

off

kK
k

= , and 
VC

VC on
bind VC

off

kK
k

= .   

We then constructed a set of ODEs that describe the time evolution of each species: 
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d C
k N C k N C k V C k V C k V C

dt
= − + ⋅ − + ⋅ + ⋅  (4.6) 

 

 

 

 
Figure 4-1: A conformational selection mechanism for collagenolysis with the MMP catalytic 
domains.  Collagen exists in an equilibrium between native (N) and vulnerable (V) states with the 
equilibrium determined by eqK .  The catalytic domain of MMPs (C) interacts in a non-specific 

manner with the native state with binding constant NC
bindK , yielding the N·C complex.  C binds to 

the vulnerable state, V, state with binding constant VC
bindK , forming the V·C complex.  The V·C 

complex is then degraded with catalytic rate kcat. 
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We estimated the native state binding rate constants, NC
onk  and NC

offk  (and therefore NC
bindK ), 

using previously determined constants for MMP-1 binding to a heterotrimeric collagen-like 

peptide that contains the type I collagen collagenase cleavage site (Trimer D) at a temperature 

substantially less than its melting temperature; i.e., we expect this peptide to be in a well-folded 

triple-helical conformation at this temperature to estimate (Ottl et al. 2000).  Previous studies 

with a related reaction scheme, however, demonstrated that the model is not sensitive to the 

choice of NC
bindK  (Nerenberg et al. 2008).     

The catalytic rate constant of the vulnerable state, kcat, for CMMP-1 was estimated from the 

experimentally measured catalytic rates of MMP-1 degrading gelatin (Welgus et al. 1982, 

Nerenberg et al. 2008).  Because similar data does not exist for CMMP-8, we set lower and 

upper bounds for the catalytic rate based on previously published data.  The lower bound of catk  

for CMMP-8 was set equal to that of CMMP-1, as it is known that MMP-8 has a greater catalytic 

rate than MMP-1 for the same substrate and at the same temperature (Welgus et al. 1982, Gioia 

et al. 2002).  Upper bounds for the catalytic rate of CMMP-8 were obtained from experimentally 

measured rate constants of FMMP-8 degrading linear collagen-like peptides (Netzel-Arnett et al. 

1991).  This approach yielded a range of catk  for CMMP-8 spanning 0.11-11.1 s-1. 

To convert a given eqK  into the appropriate conformational transition rate constants, 1k  and 

2k , we used initial rate constant values, 1
initk  and 2

initk , equal to 106 s-1 (i.e., we assumed 

microsecond conformational transitions) and then multiplied them by a scale factor α according 

to: 

1/2
1 1 1 1

1/2
2 22 2

init init

eq initinit

k k k kK
k kk k

α
α

α −

⎫= ⎪ = =⎬
= ⎪⎭

 

In this way, the appropriate rate constants could be determined for any given value of eqK .  We 

used a similar approach to determine the vulnerable state binding rate constants, VC
onk  and VC

offk , 

from a given VC
bindK .  The initial rate constants for binding the vulnerable state, ,VC init

onk  and ,VC init
offk  

were set equal to experimentally measured on and off rates for MMP-1 binding to a collagen-like 

model peptide that is largely unfolded at room temperature (Ottl et al. 2000).  
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Solutions to the model yield the concentration of collagen degradation products as a function 

of time, model ( )P t , while the degradation experiments yield the fraction of peptide/collagen 

degraded as a function of time, exp ( )F t .  To relate the calculated concentrations to the measured 

degraded fractions, we normalize the concentration of degradation products to the initial 

substrate concentration: model model( ) ( ) / initF t P t S= , where Sinit is the initial substrate concentration.  

We then calculate the root mean square error (RMSE) between experimental and model time 

courses according to:  

 ( )21
model exp

1
RMSE ( ) ( )

n

t
n F t F t−

=

= −∑  (4.7) 

where n is the number of experimental time points. 

 

4.2 Results of degradation experiments 

In a prior work we introduced a conformational selection model in which collagen is able to 

adopt either a well-folded native triple-helical state or a vulnerable state where the region near 

the collagenase cleavage site is unfolded and solvent exposed  (Nerenberg et al. 2008).  MMPs 

can bind to either state, but collagenolysis occurs only when MMPs bind to vulnerable states.  

The model is based on the premise that collagens adopt different conformations in solution and 

that collagenolysis occurs when the appropriate conformers are selected by the enzyme.  A re-

examination of collagen degradation experiments suggests that the failure to observe 

collagenolysis with MMP deletion mutants, which contain only the catalytic domain, is due to 

the fact that these mutant enzymes bind partially unfolded states of collagen with reduced 

affinity relative to the full length enzyme.  A corollary of this result is that collagenolysis could 

occur if collagen is exposed to relatively high concentrations of mutant enzymes and relatively 

long incubation times are used (Nerenberg et al. 2008).  To test this, we exposed type I collagen 

to both the catalytic domains of MMP-8 and MMP-1 (denoted as CMMP-8 and CMMP-1, 

respectively).   

Bovine type I collagen was incubated with high concentrations of CMMP-8 at room 

temperature – a temperature well below the melting temperature of type I collagen (Privalov 

1982, Leikina et al. 2002).  After 48 h, type I collagen degradation was observed in solutions 
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containing CMMP-8 (Figure 4-2A, lanes 1-7).  Degradation bands exhibit the familiar the ¾ and 

¼ fragments that are associated with cleavage at the unique collagenase cleavage site by the wild 

type collagenase MMP-1 (FMMP-1, Figure 4-2A, lane 9).  To demonstrate that our results are 

not specific to MMP-8, we exposed type I collagen to a deletion mutant containing only the 

catalytic domain of MMP-1 (Figure 4-2B, lanes 1-5).  The resulting cleavage pattern is the same 

as that observed with CMMP-8, suggesting that CMMP-1 recognizes and cleaves the same site, 

albeit higher concentrations of enzyme and longer incubation times were required to observe 

degradation with CMMP-1.  N-terminal amino acid sequencing of the ¼ α1 and ¼ α2 bands 

confirms that the CMMP-8 deletion mutant cleaves at the unique cleavage site recognized by 

wild-type enzyme.  The ¼ α1 and α2 bands from the CMMP-1 reaction could not be sequenced 

due to the low amount of collagen that is degraded by CMMP-1.  The cleavage pattern by 

CMMP-1, as in the case of CMMP-8, corresponds to the same ¼ and ¾ fragments resulting from 

incubation with FMMP-1 (Figure 4-2B, lane 7).  In bovine type I collagen, the closest potential 

cleavage sites of sequence G-[I/L]-[A/L] are 48 and 30 residues away from the true cleavage site 

in the α1 and α2 chains respectively (Bornstein and Traub 1979). If these potential sites were 

cleaved, the pattern of fragments observed would be significantly different from the FMMP-1 

control. For this reason, we believe that CMMP-1 mediated cleavage, as is the case with CMMP-

8, is also occurring at the true collagenase cleavage site. 

To demonstrate that our results are not explained by contamination of the original collagen 

sample with low concentrations of full length MMPs, we incubated solutions of type I collagen 

containing 4-aminophenyl mercuric acetate (APMA), to activate any latent enzyme, but without 

any added enzyme.  SDS-PAGE of the solutions after 6 days of incubation did not exhibit any 

degradation bands (data not shown).  In addition, to confirm that our findings are not due to 

contamination of our collagen samples with unfolded type I collagen chains (gelatin), we 

incubated CMMP-8 and CMMP-1 with gelatin.  Both CMMP-8 and CMMP-1 cleave gelatin at 

several sites yielding multiple degradation bands on SDS-PAGE (Figure 1A lane 8 and Figure 

1B lane 6) (Welgus et al. 1982, Chung et al. 2004).  Since these bands are not seen when 

CMMP-8 and CMMP-1 are incubated with collagen, contamination of our collagen sample with 

unfolded collagen chains does not explain our results.   
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Figure 4-2: Degradation profiles of type I collagen at room temperature with CMMP-8 and 
CMMP-1.  Intact type I collagen (CI) bands include monomeric α1(I) and α2(I) bands, dimeric β 
bands and trimeric γ bands.  The β and γ aggregates correspond to N-terminally crosslinked 
collagen molecules (Veis and Anesey 1965, French et al. 1987, Shigemura et al. 2004, Morimoto 
et al. 2009). CI degradation bands include α1(I) and α2(I) ¾ and ¼ fragments, and degradation 
of crosslinked chains, βdeg and γdeg.  (A) Lane 1: CI (150 µg/ml). Lanes 2 to 7: CI (150 µg/ml) 
incubated with the catalytic domain of MMP-8 (CMMP-8) (25 µg/ml) for 8, 16, 24, 32, 40 and 
48 h, respectively. Lane 8: Type I collagen gelatin (GI) (150 µg/ml) incubated with CMMP-8 
(13.8 µg/ml) for 4 h. Lane 9: Type I collagen (150 µg/ml) incubated with full length MMP-1 
(FMMP-1) (1.3 µg/ml) for 24 h. This lane contains a bovine serum albumin (BSA) band since 
FMMP-1 is supplied in a buffer containing 1 mg/ml BSA. (B) CI incubated with CMMP-1 Lane 
1: CI (150 µg/ml); Lanes 2 to 5: CI (150 µg/ml) incubated with the catalytic domain of MMP-1 
(CMMP-1) (40 µg/ml) for 24, 48, 96 and 144 h, respectively.  Lane 6: Type I collagen gelatin 
(GI) (150 µg/ml) incubated with CMMP-1 (16.6μg/ml) for 4 h.  Lane 7: Type I collagen (150 
µg/ml) incubated with full length MMP-1 (FMMP-1) (1.3 µg/ml) for 24 h. This lane contains a 
BSA band since FMMP-1 is supplied in a buffer containing 1 mg/ml BSA. 
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4.3 Interpreting type I collagen degradation experiments using the 

conformational selection model 

 
Our data demonstrate that peptide bond hydrolysis at the unique collagenase cleavage site can 

occur in vitro with only the catalytic domain of MMPs.  Since CMMP-8 and CMMP-1 cleave 

unfolded collagen at multiple sites but triple-helical collagen at only one site, we interpret our 

findings in light of a model where local unfolding of collagen at the unique cleavage site enables 

collagenases to gain access to their corresponding scissile bonds (Nerenberg et al. 2008).  In this 

model, collagen can exist in both native triple-helical (N) and vulnerable states (V), and 

collagenolysis occurs only when the enzyme (consisting of only the catalytic domain, C) binds 

and cleaves the vulnerable state.  The associated reaction scheme is shown in Figure 4-1.  We 

use N·C and V·C to denote complexes of the native and vulnerable states, respectively, with the 

mutant enzyme that only contains the catalytic domain, and P denotes the degradation products 

released by the enzyme after cleavage.   

This reaction scheme naturally leads to a set of ODEs that can be solved numerically, 

yielding the concentration of each species as a function of time.  Numerical solutions of the 

ODEs are exact in that they do not make any assumptions about steady state behavior and they 

specifically account for the different rate constants associated with each of the different species 

in the reaction.  Generating solutions for the model therefore requires inputs in the form of rate 

and equilibrium constants associated with each of the various steps in the mechanism.  In 

practice, however, if one is interested in the behavior of the system on long time scales, the 

model depends only on three equilibrium/binding constants ( eqK , NC
bindK , and VC

bindK ) and one 

catalytic rate constant ( catk ) (Nerenberg et al. 2008).  In the present case we estimate NC
bindK  using  

previously determined collagenase binding constants, which were obtained under conditions 

when the triple-helical state is expected to be most stable (Ottl et al. 2000).  (We note again, 

however, that the model is not sensitive to the choice of equilibrium constant for binding to the 

native state, NC
bindK  (Nerenberg et al. 2008).)  The catalytic rate constant, catk , corresponds to the 

rate of peptide bond hydrolysis after the enzyme has bound the unfolded region containing the 

cleavage site.  Bounds for catk  are therefore obtained from experimentally measured rate 

constants from MMP-mediated degradation of gelatin and unfolded collagen-like peptides (see 
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Methods) (Welgus et al. 1982, Netzel-Arnett et al. 1991).  This leaves two undetermined 

parameters for the model: eqK  (the equilibrium constant describing the relative concentration of 

vulnerable and native conformers) and VC
bindK  (the binding constant of the catalytic domain for 

vulnerable states).  To determine estimates for the missing parameters, we fit the ODEs arising 

from the model shown in Figure 4-1 to experimental degradation data.   

 

 

 

 
 
Figure 4-3: Sequence of the type I collagen-like model peptide Trimer A from Ottl et al. used in 
prior degradation experiments with CMMP-8 (Ottl et al. 2000).  The type I collagen sequence 
surrounding the collagenase cleavage site is shown in green, while the triplets containing the 
scissile bonds are indicated in red.  The disulfide linkages of the C-terminus cystine knot region 
are indicated with the black vertical lines.   
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4.3.1 Test of the conformational selection model on model peptide degradation data 

We begin by focusing our analysis on previous degradation experiments that incubated CMMP-8 

at room temperature with a heterotrimeric type I collagen-like model peptide that contains the 

collagenase cleavage site and its surrounding residues (Figure 4-3)  (Ottl et al. 2000).  The 

melting temperature of this peptide is 9 °C, and experiments were performed at 25 °C; hence, the 

peptide is largely unfolded at this temperature.  In our model eqK  represents the equilibrium 

constant between native and vulnerable states, where the vulnerable ensemble includes all states 

that have the collagenase cleavage site in an unfolded and solvent-exposed conformation.  

Consequently, for this system we expect 1eqK >  and therefore fitting these data to the model 

shown in Figure 4-1 provides a test of the method.  

Using the reaction scheme outlined in equations (4.1.1-4.1.4), we computed the amount of 

peptide that would be degraded as function as time for a range of eqK , ( )
8

VC
bind CMMP

K
−

, and catk  

values and compared these degradation profiles to the corresponding experimental data.  For 

each triplet, ( )( )8
, ,VC

eq bind catCMMP
K K k

−
, we computed the root-mean-square error (RMSE) between 

the degradation time course obtained with the model and the experimental data.  While a 

relatively wide range of values for eqK  and ( )
8

VC
bind CMMP

K
−

 were tried (10-6 ≤ eqK  ≤ 106, 100 M-1 ≤ 

( )
8

VC
bind CMMP

K
−  ≤ 1012 M-1), the best fits are obtained when 30eqK >  and ( )

8

VC
bind CMMP

K
−

 = 0.7-1.1 x 

106 M-1, regardless of the value of catk  that we used (0.11 s-1 ≤ catk  ≤ 11.1 s-1)  (Figures 4-4A to 

4-4C).  Moreover, varying catk  by two orders of magnitude caused the minimum RMSE to vary 

by only 2%.  As the best fits have Keq > 30, these results suggest that the vulnerable state of the 

peptide dominates at room temperature – a finding in agreement with the experimental 

conditions, as discussed above.  Moreover, the predicted results from the model using these 

values show excellent agreement with experiment (Figure 4-4D).   
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Figure 4-4: Conformational selection and degradation of Trimer A by CMMP-8.  (A)-(C) Root 
mean square error (RMSE) of two state degradation model for Trimer A model peptide 
degradation time course.  For each pair of values ( ), VC

eq bindK K , the fraction of model peptide 
degraded by CMMP-8 was computed at 1, 3.5, 6, 7.5, and 20 h.  The root mean square difference 
was then calculated using these fractions and the experimentally measured amount of 
degradation at the same time points.  The lowest RMSEs (shown in dark blue) indicate 
( ), VC

eq bindK K  pairs that provide good fits to the experimental degradation data.  Model fitting was 
done for three values of kcat spanning two orders of magnitude: (A) 0.11 s-1, (B) 1.1 s-1, and (C) 
11 s-1.  Over this range of kcat, the best fit values of ( )

8

VC
bind CMMP

K
−

 range from 0.7-1.1 x 106 M-1.  

(D) Comparison of model and experimental degradation time courses over 20 h for best fit 
values eqK  =  60, ( )

8

VC
bind CMMP

K
−

 = 0.7 x 106 M-1, and catk  = 1.1 s-1.  Experimental data is 

indicated by the black circles; the model time course is indicated by the blue line.  
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4.3.2 Determining eqK  for type I collagen at room temperature 

To obtain an estimate for eqK  at room temperature we quantified the extent of collagen 

degradation over time using the data shown in Figure 4-2A.  We then fit the reaction scheme 

shown in equations (4.1.1-4.1.4) to these data to obtain an estimate for eqK .  We note that the 

previously discussed studies on a heterotrimeric type I collagen-like peptide, which contains the 

collagenase scissile bond, found that ( )
8

VC
bind CMMP

K
−

 = 0.7-1.1 x 106 M-1.  As this peptide is a 

model for the collagenase cleavage site, we used this range of ( )
8

VC
bind CMMP

K
−

 in our numerical 

calculations of the model for type I collagen.   

We again computed the RMSE between the degradation time courses obtained with the 

model using many different values of eqK  and compared these results to the experimentally 

determined degradation time course.  Varying kcat of CMMP-8 over two orders of magnitude, as 

we did for the aforementioned model peptide data, did not change the best fit values for Keq and 

caused the minimum RMSE to again vary by only 2% (Figure 4-5).  The best fits between the 

model and experiment are achieved when eqK  = 1.7-2.1 x 10-3 (Figure 4-5), and the 

corresponding degradation plot obtained from the model agrees well with experiment (Figure 4-

6).  The value for Keq at room temperature suggests that the folded triple-helical native state is 

more favorable at room temperature.   

 

4.3.3 Determining VC
bindK  for CMMP-1 

We applied the same methodology to understand the basis for CMMP-1’s markedly lower 

degradation efficiency as compared to CMMP-8 (Figure 4-2).  Given that Keq is an inherent 

property for type I collagen and the temperature of the experiments, and both CMMP-1 and 

CMMP-8 type I collagen degradation experiments were performed at room temperature, Keq is 

the same for both reactions.  Thus, we used our degradation model to determine the range of 

( )
1

VC
bind CMMP

K
−

, estimating kcat for CMMP-1 to be a weighted average of experimentally measured 

catalytic rates of MMP-1 degrading gelatin (Welgus et al. 1982, Nerenberg et al. 2008).  With  

eqK  = 1.7-2.1 x 10-3, the best fits are found for ( )
1

VC
bind CMMP

K
−

 = 0.9-1.3 x 104 M-1 (Figure 4-7).  

These data suggest that CMMP-1’s binding constant for the vulnerable state of collagen is nearly 
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two orders of magnitude lower than that of CMMP-8.  Expressed as a difference of binding free 

energies, ( ) ( )1 8bind bind bindCMMP CMMP
G G G

− −
ΔΔ = Δ − Δ , the binding of CMMP-1 to type I collagen is 

approximately 2.5 kcal/mol less favorable than the binding of CMMP-8 to type I collagen.   

 

 

 
 
Figure 4-5: Root mean square error (RMSE) of two state degradation model for type I collagen 
degradation time course.  For each value of Keq, the fraction of type I collagen degraded by 
CMMP-8 was computed 8, 16, 24, 32, 40, and 48 h.  The root mean square difference was then 
calculated using these fractions and the experimentally measured amount of degradation at the 
same time points.  The lowest RMSEs indicate Keq values that provide good fits to the 
experimental degradation data.  Model fitting was done for three values of kcat spanning two 
orders of magnitude (0.11 - 11 s-1) and for (A) the lower bound (0.7 x 106 M-1) and (B) the upper 
bound (1.1 x 106 M-1) of ( )

8

VC
bind CMMP

K
−

.  As the RMSE curves for each value of kcat reach a 

minimum at the same value of Keq, this demonstrates that varying kcat does not affect the best fit 
values for Keq. 
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Figure 4-6: A comparison of model and experimental degradation time courses over 48 h for best 
fit values eqK  =  2.1 x 10-3, ( )

8

VC
bind CMMP

K  = 0.7 x 106 M-1, and catk  = 1.1 s-1.  Experimental data is 

indicated by the black circles with error bars; the model time course is indicated by the blue line.  
 
 

 
 
Figure 4-7: Conformational selection and degradation of type I collagen by CMMP-1.  (A) 
RMSE of the conformational selection model over the time course for degradation experiments 
utilizing type I collagen and CMMP-1.  For each value of ( )

1

VC
bind CMMP

K
−

, the fraction of degraded 

type I collagen was computed at 24, 48, 96, and 144 h.  The root mean square difference was 
then calculated using these fractions and the experimentally measured fraction of degraded 
collagen.  RMSE curves are computed using the lower and upper bounds of Keq.  (B) A 
comparison of model and experimental degradation time courses over 48 h for best fit values 

eqK  =  2.1 x 10-3, ( )
1

VC
bind CMMP

K
−

 = 0.9 x 104 M-1, and kcat = 0.11 s-1.  Experimental data is 

indicated by the black circles with error bars; the model time course is indicated by the blue line. 
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4.4 Discussion 

Our results unambiguously demonstrate that collagenolysis can occur with MMP deletion 

mutants that contain only the catalytic domain and therefore indicate that the hemopexin-like 

domain is not required for peptide bond hydrolysis and enzyme specificity at room temperature.  

Moreover, while both CMMP-1 and CMMP-8 cleave completely unfolded type I collagen chains 

at multiple sites, both enzymes cleave type I collagen in vitro at only one site that corresponds to 

the unique cleavage site recognized by full length collagenases.  We therefore interpret these 

findings using a conformational selection model where thermal fluctuations at the unique 

cleavage site cause the protein to sample partially unfolded vulnerable states that can then be 

recognized and cleaved by collagenases (Nerenberg et al. 2008).   

This formalism allows us to estimate the relative amounts of native and vulnerable states at 

room temperature from an analysis of type I collagen degradation data.  Estimates of Keq for a 

small heterotrimeric peptide modeling the collagenase cleavage site in type I collagen suggest 

that the vulnerable state dominates at room temperature for this peptide – a finding in agreement 

with the measured melting temperature of this peptide (Ottl et al. 2000).  For type I collagen at 

room temperature the calculated eqK  of 1.7-2.1 x 10-3 corresponds to a free energy difference of 

~3.5 kcal/mol between the two states, where the folded triple-helical state is the most stable.  

This free energy difference corresponds to breaking 2-4 favorable hydrogen bonds, a finding in 

agreement with a previously proposed structure of the type I collagen vulnerable state 

(Nerenberg and Stultz 2008).  Interestingly, this estimate for the relative amounts of vulnerable 

states for both the scissile bond-containing heterotrimeric peptide and type I collagen in solution 

were obtained from an analysis of the degradation data alone.  That is, although the model itself 

does not explicitly contain information about the temperature at which the experiments were 

performed, it correctly predicts that the degradation experiments were performed at a relatively 

high temperature for the heterotrimeric peptide and a relatively low temperature for collagen. 

Our results offer an explanation for the different type I collagen efficiencies of CMMP-1 and 

CMMP-8.  While the catalytic rates for the two enzymes are likely different, our data suggest 

that variations in kcat are insufficient to explain the differences in the degradation experiments.  

However, we find that the binding of CMMP-1 to type I collagen is 2.5 kcal/mol less favorable 

than the binding of CMMP-8.  This free energy difference corresponds to relatively small 
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differences in the bound structures themselves; e.g., breaking 1-2 favorable hydrogen bonds 

could easily explain a difference of this magnitude.  These observations suggest that subtle 

changes in binding between similar homologous enzymes can lead to significant differences in 

the overall reaction kinetics. 

Although several potential cleavage sites exist in collagen, only one unique site is cleaved by 

MMPs (Kuivaniemi et al. 1988, Tromp et al. 1988, Fields 1991).  Recent observations suggest 

that cleavage site specificity is mediated by interactions of non-catalytic domains with distinct 

sites on collagen and that these interactions may play an important role in enzyme specificity in 

the fibrillar state (Perumal et al. 2008, Erat et al. 2009).  Since we find that cleavage at the 

unique collagenase cleavage site is achieved in the absence of non-catalytic domains, the non-

catalytic domains are not required for cleavage site specificity in vitro at room temperature.  The 

relatively low local stability of the imino-poor cleavage site ensures that it unfolds at low 

temperatures and is preferentially recognized by MMP catalytic domains (Fields et al. 1987, 

Stultz 2002, Nerenberg and Stultz 2008, Salsas-Escat and Stultz 2009).  As the temperature 

increases, more regions of the molecule unfold and additional sites may be recognized by MMP 

deletion mutants (Gioia et al. 2002, Taddese et al. 2009).  At body temperature it is likely that 

there are a number of locally unfolded regions in the collagen chain, and in this scenario 

localization of the enzyme via non-catalytic domains will help to ensure that the correct cleavage 

site is recognized.  In addition, the binding of the hemopexin-like domain at sites near the unique 

cleavage site in collagen effectively increases the local concentration of the enzyme in the 

vicinity of the cleavage site, thereby making enzyme-mediated degradation more efficient. 

Overall, our data are consistent with the notion that, at room temperature, the conformational 

ensemble of type I collagen includes locally unfolded conformations that have relatively exposed 

scissile bonds.  These locally unfolded conformations encode cleavage site specificity and are the 

basis of a conformational selection mechanism in which collagenases recognize and cleave these 

pre-existing locally unfolded states.  This degradation mechanism presents a framework both for 

understanding the basic interaction of collagen with collagenases and for therapeutic strategies to 

modulate excessive collagenolysis associated with many diseases. 

 

  



 

83 
 

Chapter 5 

 

Conformational Selection in Type III Collagen Degradation 
 

 

This chapter is adapted from: Nerenberg PS, Salsas-Escat R, and Stultz CM. Collagenase 
cleavage site specificity in type III collagen. In preparation. 
 
 
In Chapter 4, we validated the vulnerable state structural model of type I collagen by performing 

degradation experiments using deletion mutants of collagenases that contained only the catalytic 

domain.  The fact that degradation occurred at the same location as with full length enzyme 

confirmed the existence of partially unfolded states in the vicinity of the collagenase cleavage 

site, but also suggested that the specificity of the cleavage site was encoded in its conformational 

ensemble, rather than through interactions with the hemopexin-like domains of collagenases.  

We wish to further investigate both the vulnerable state model and the issue of collagenase 

cleavage site specificity in the context of another fibrillar collagen, type III collagen.  If type III 

collagen were shown to sample partially unfolded states that encode for the specificity of the 

collganase cleavage site, this would further support the hypothesis that collagenolysis occurs 

when collagenases recognize, bind, and cleave partially unfolded conformers of collagen.   

It has long been known that native triple-helical collagen is cleaved at only one site by 

collagenases, whereas in denatured collagen (gelatin), collagenases are able to cleave at several 

sites (Welgus et al. 1982, Fields 1991).  Human type III collagen  contains four pseudo-cleavage 

sites in addition to the true, unique collagenase cleavage site (Fields 1991).  These same 

sequence data indicate that there are significant differences in the compositions of the amino acid 

sequences surrounding the collagenase cleavage site and the pseudo-cleavage sites (Fields 1991), 

but on their own offer relatively little insight into any differences in the physical characteristics 

of these sites.  Determining the physical basis for why collagenases cleave only a single site in 

native collagen, but multiple sites in denatured collagen, is an important step towards developing 

a more complete understanding of the molecular mechanism of collagen degradation. 
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Matrix metalloproteinases (MMPs) are Zn2+-dependent enzymes that hydrolyze the peptide 

bond linking glycine and isoleucine or glycine and leucine residues within G-[I/L]-[A/L] triplets 

in collagen (Fields 1991, Lauer-Fields et al. 2002).  The collagenases, a subset of the MMP 

family (MMP-1, -8, and -13), are characterized structurally by having two domains – a catalytic 

domain connected via a linker region to a (non-catalytic) hemopexin-like domain (Murphy and 

Knauper 1997, Borkakoti 1998, Lauer-Fields et al. 2002).  Other MMPs have additional non-

catalytic domains.  The gelatinases (MMP-2 and -9), for example, contain a fibronectin type II 

domain.  Although, as mentioned previously, there are several G-[I/L]-[A/L] triplets within the 

collagen molecule, the collagenases cleave native collagen at one unique site.   

Many factors may contribute to the specificity of the collagenase cleavage site.  One such 

factor may be the interactions between native collagen and collagenases, and specifically the 

binding contacts thought to be made by the non-catalytic domains with the triple helix (Murphy 

et al. 1992, Borkakoti 1998, Lauer-Fields et al. 2002, Nerenberg et al. 2008, Perumal et al. 2008, 

Erat et al. 2009, Lauer-Fields et al. 2009).  Recent modeling studies, for instance, have suggested 

that non-catalytic domains of collagenases and gelatinases recognize and bind to an RGER motif 

in the α1 chains of type I collagen (Perumal et al. 2008, Erat et al. 2009).  These data, along with 

theoretical studies and degradation experiments performed with deletion mutants of collagenases 

(i.e., mutant enzymes that lack non-catalytic domains) (Murphy et al. 1992, Chung et al. 2004, 

Nerenberg et al. 2008), suggest that there are important interactions between native collagen and 

the non-catalytic domains of collagenases, some of which may explain the specificity of the 

collagenase cleavage site. 

Another factor that may contribute to the specificity of the cleavage site is the conformational 

ensemble of native collagen near the collagenase cleavage site.  In particular, it has been 

suggested that the collagenase cleavage site in native collagen is less thermally stable than the 

pseudo-cleavage sites (Miller et al. 1976, Highberger et al. 1979, Ryhänen et al. 1983, Birkedal-

Hansen et al. 1985, Fields 1991).  Cleavage of native type III collagen in the immediate vicinity 

of the collagenase cleavage site at temperatures below its melting temperature has been observed 

in prior degradation experiments utilizing several different proteases (e.g., trypsin or elastase) 

(Miller et al. 1976, Wang et al. 1978, Mainardi et al. 1980, Birkedal-Hansen et al. 1985).  These 

data have been interpreted to indicate that the region surrounding the collagenase cleavage site 

lacks normal triple helicity and therefore that non-collagenolytic proteases can freely access 
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peptide bonds in that region.  A recent molecular dynamics study further probed this hypothesis 

by characterizing the conformational ensembles of the regions surrounding both the collagenase 

cleavage site and the pseudo-cleavage sites in type III collagen (Salsas-Escat and Stultz 2009).  

The results of this study suggested that the scissile bonds of the collagenase cleavage site are 

more solvent-exposed (and therefore vulnerable to enzymatic cleavage) than those of the pseudo-

cleavage sites (Salsas-Escat and Stultz 2009).  Moreover, the states sampled by the collagenase 

cleavage site were found to be more complementary to the collagenase active site than those 

sampled by the pseudo-cleavage sites (Salsas-Escat and Stultz 2009).  Together with the previous 

observations that degradation of native type III collagen occurs with non-collagenolytic 

proteases near the collagenase cleavage site, these data suggest that the specificity of the 

collagenase cleavage site may be encoded in a local conformational ensemble that uniquely 

differs from the conformational ensembles of the pseudo-cleavage sites. 

In this chapter we explore the physical basis of collagenase cleavage site specificity using a 

combination of biochemical experiments and modeling approaches.  To probe whether binding 

contacts on the hemopexin-like domains of collagenases are responsible for the specificity of the 

collagenase cleavage site, we incubated native type III collagen with deletion mutants of 

collagenases that lack the hemopexin-like domains.  To examine the thermal stability and 

conformational ensembles of these sequences, we designed a set of homotrimeric model peptides 

(C3S1-C3S5) containing the sequences surrounding the collagenase cleavage site and pseudo-

cleavage sites of type III collagen.  We then performed melting experiments to assess the global 

thermal stability of these sequences and heteronuclear 2D (HSQC) NMR experiments, fit with 

simple conformational models, to characterize the conformational distributions of both the 

collagenase cleavage site and the pseudo-cleavage site peptides. 

 

5.1 Experimental methods 

Acknowledgement: The degradation experiments described in section 5.1.1 were performed by 
my labmate Ramon Salsas-Escat.  I would like to thank Dr. Christopher Turner of the 
MIT/Harvard Center for Magnetic Resonance for teaching me how to run the NMR experiments 
described in section 5.1.4. 
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5.1.1 Type III collagen degradation experiments 

Recombinant human type III collagen expressed in the yeast Pichia pastoris (AB73160,  Abcam 

Inc.) is received at 3.3 mg/ml in 0.01 M HCl.  Full length MMP-1 (FMMP-1, product no. SE-

361) and deletion mutants that contain only the catalytic domains (CMMP-1 and CMMP-8, 

product no. SE-180 and SE-255) were purchased from Biomol International LP.  Nu-Page 4-12% 

gradient gels (NP0335BOX) and Colloidal Blue Staining kit (SKLC6025) were obtained from 

Invitrogen.   

Type III collagen was diluted in the final reaction vessel to a concentration of 200 µg/ml, 

while enzyme concentrations ranged from 17-33 µg/ml, as described in Figure 5-2.  Both full 

length and the catalytic domains of MMP-1 and MMP-8 were activated using APMA (Sigma-

Aldrich Co.) as previously described (Clark 2001).  All degradation reactions were performed 

using a compact thermomixer (Eppendorf AG) at 25 °C, which can control the temperature from 

4 °C to 99 °C, with an accuracy of ±1 °C. All reactions were carried out in TNC buffer, 

containing 100 mM Tris HCl (VWR International), 10 mM CaCl2 (Sigma-Aldrich Co.), pH 7.6.  

Reactions were stopped by the addition of SDS-Laemmli buffer (BioRad Laboratories) with β-

Mercaptho Ethanol (Sigma-Aldrich Co.) and boiled for 10 minutes.  The degradation products 

were run in 4-12% gradient gels and stained with Coomassie colloidal blue. 

Unstained CMMP-1 and CMMP-8 gels were transferred to PVDF membranes, which were 

stained with Coomassie blue.  The ¼α1 bands were cut and sent for sequencing to the Tufts 

University Core Facility, where they were sequenced with an ABI 494 Protein Sequencer. 

 

5.1.2 Collagen-like model peptide synthesis 

Self-assembling homotrimeric collagen-like model peptides were designed to contain six triplets 

of type III collagen sequence surrounding and including either the collagenase cleavage site or 

one of four pseudo-cleavage sites (Figure 1).  The type III collagen sequence triplets were 

flanked by GPO triplets in both the N- and C-terminal directions (Figure 1B) to facilitate peptide 

folding and provide thermal stability (Sakakibara et al. 1973, Fields and Prockop 1996, Persikov 

et al. 2000, Engel and Bächinger 2005).  The model peptides (C3S1-C3S5) were synthesized by 

the Tufts University Core Facility using an ABI 431 peptide synthesizer using Fmoc chemistry 

based on a 0.1 mmol scale.  Each sequence was synthesized as two variants to optimize NMR 

assignments – one variant with 15N-labels located at Gly7 and Ala18 and the other with 15N-
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labels located at Ala18 and Gly34.  All peptides were purified using reversed-phase high 

pressure liquid chromatography on a C18 column, and their identities were confirmed using an 

ABI Voyager-DE Pro MALDI-TOF mass spectrometer. 

 

 
Figure 5-1: (A) The amino acid sequences of the collagenase cleavage site (S1) and four pseudo-
cleavage sites (S2-S5) in human type III collagen, based on UniProtKB/Swiss-Prot accession 
number P02461.  The scissile bond triplets are indicated in red.  The S2 pseudo-cleavage site, 
which is present in the S1 sequence, and the S1 collagenase cleavage site, which is present in the 
S2 sequence, are shown in violet for sequences S1 and S2, respectively.  (B) The amino acid 
sequences of homotrimeric collagen-like model peptides (C3S1-C3S5), which contain a portion 
of the amino acid sequences in (A).  GPO repeats are indicated in blue, real type III collagen 
sequences are indicated in green, and the scissile bond triplets are indicated in red. 
 

 

5.1.3 Determination of peptide melting temperatures 

Peptide samples were dissolved in 50 mM sodium phosphate buffer, pH 6.4.  They were then 

allowed to equilibrate for 72 hours at 4 °C to allow sufficient time for folding to reach 

equilibrium.  Samples were then diluted 50x to a concentration of 0.08 mM (80 µM), appropriate 

for CD spectroscopy, and then equilibrated at 4 °C for an additional 24 hours. 

CD spectra were recorded for all peptides at 4 °C on a Jasco J810 spectropolarimeter.  

Cuvettes of 1 mm path length were used, and the temperature of the cells was controlled using a 
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Jasco PTC-423S Peltier temperature controller.  Wavelength scans from 190-240 nm were 

performed at a scan rate of 10 nm/min in 0.1 nm steps with an 8 s averaging time.  Scans were 

repeated five times and averaged.  For the melting temperature experiments, we monitored the 

ellipticity at 224 nm.  The temperature was increased from 4 °C to 88 °C at a rate of 0.1 °C/min 

(6 °C/h).  Although this heating rate did not allow for equilibrium to be reached, the goal of these 

experiments was to obtain relative, rather than absolute melting temperatures.  Assuming a 

model in which there is a two state equilibrium between folded and monomer states, the folded 

fraction, F(T), was calculated according to: 

  ( ) ( )( )
( ) ( )

M

TH M

T TF T
T T

θ θ
θ θ

−
=

−
 (5.1) 

where θ(T) is the measured ellipticity and θTH(T) and θM(T) are the ellipticities of the triple-

helical and monomer states, respectively, at a temperature T (Persikov et al. 2000, Persikov et al. 

2004, Hyde et al. 2006).  Both θTH(T) and θM(T) were approximated by using linear fits to the 

measured ellipticity in the appropriate temperature ranges.  The melting temperature, Tm, for 

each peptide was calculated by finding the temperature at which the folded fraction of the 

peptide was 0.5 (i.e., F(Tm) = 0.5). 

 

5.1.4 NMR spectroscopy of model peptides 

Peptide samples were dissolved in 50 mM sodium phosphate buffer, pH 6.4, with 10% D2O at a 

concentration of 4.0 mM.  They were then allowed to equilibrate for 72 hours at 4 °C to allow 

sufficient time for folding to reach equilibrium.   

NMR experiments were performed on a custom-built 591 MHz spectrometer with a Nalorac 

5 mm indirect detection triple resonance probe at the Francis Bitter Magnet Laboratory.  1H-15N 

HSQC experiments were carried out at 10 °C and data were acquired with a spectral width of 

8000 Hz in the 1H dimension and 3000 Hz in the 15N dimension (2048 x 512 complex points) in 

16 scans.  All data were phased and processed using NMRPipe (Delaglio et al. 1995).  Peak 

assignments were made as described in section 5.2.  Peak volumes were determined by fitting the 

peaks with Lorentzian line shapes, subtracting the baseline, and integrating the resulting volumes 

using Sparky (Goddard and Kneller). 
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5.2 Degradation of type III collagen by collagenase deletion mutants 

Human type III collagen was incubated with CMMP-1 at 25 °C – a temperature well below the 

melting temperature of type III collagen (Birkedal-Hansen et al. 1985).  After 3.5 h, type III 

collagen degradation was observed in solutions containing CMMP-1, and nearly complete 

degradation was seen after 48 h (Figure 5-2A).  Degradation bands exhibit the familiar ¾ and ¼ 

fragments that are associated with cleavage at the unique collagenase cleavage site and can also 

be observed when type III collagen is degraded by FMMP-1 (Figure 5-2A).  Amino acid 

sequencing of the ¼ bands confirms that the CMMP-1 deletion mutant cleaves at the same site as 

the corresponding wild-type full length enzymes.   

To demonstrate that our results are not specific to MMP-1, we exposed type III collagen to a 

deletion mutant containing only the catalytic domain of MMP-8 (Figure 5-2B).  The resulting 

cleavage pattern is the same as that observed with FMMP-1 (Figure 5-2A), and amino acid 

sequencing of the ¼ bands again demonstrates that CMMP-8 recognizes and cleaves the same 

site as FMMP-1. Although cleavage of type III collagen with the catalytic domain alone occurs 

at the same site that is recognized by full length enzyme, cleavage with FMMP-1 is more 

efficient than with the catalytic domain alone, as almost all collagen is degraded with FMMP-1 

after 24 h (Figure 5-2A). Lastly we note that our data is not explained by contamination of the 

original collagen sample with full length MMPs, as solutions of type III collagen incubated 

without any added MMPs do not exhibit any degradation after incubation for 48 h (data not 

shown). 

 

5.3 Thermal stability of collagen-like model peptides 

We obtained collagen-like model peptides that contain regions corresponding to the true 

collagenase cleavage site and pseudo-cleavage sites (Figure 5-1).  All five model peptides have 

CD spectra at 4 °C that contain a minimum near 196-198 nm and a peak at 224 nm; i.e., spectra 

that are characteristic of a folded triple-helical structure (Figure 5-3A).  Interestingly, model 

peptide C3S1, which contains the collagenase cleavage site sequence, appears to have a lower 

overall triple helicity than model peptides C3S2-C3S5, which contain the pseudo-cleavage site 

sequences and have similar helicities (Figure 5-3A). 
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Figure 5-2: Degradation profiles of type III collagen (CIII) at 25 °C with MMP-1 and MMP-8 
using both the full length enzymes and only the catalytic domains.  (A) Lane 1: CIII (200 µg/ml).  
Lanes 2 to 9: CIII (200 µg/ml) incubated with the catalytic domain of MMP-1 (CMMP-1) (33 
µg/ml) for 3.5, 7.25, 9.5, 11.8, 19, 27, 35, and 48 h, respectively. Lane 10: CIII (200 µg/ml) 
incubated with and full length MMP-1 (FMMP-1) (17 µg/ml) for 24 h.  (B) Lane 1: CIII (200 
µg/ml).  Lanes 2 to 9: CIII (200 µg/ml) incubated with the catalytic domain of MMP-8 (CMMP-
8) (33 µg/ml) for 3, 6, 10, 20, 26, 33, 44, and 48 h, respectively. 
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Figure 5-3: Circular dichroism for homotrimeric model peptides C3S1-C3S5.  (A) The spectra of 
all five peptides at 4 °C display the canonical features of collagen triple helices – a peak at 224 
nm and minimum at 196-198 nm.  (B) Melting temperature experiments reveal that the 
characteristic peak at 224 nm is eliminated in a cooperative transition, indicative of the presence 
of a triple helix.  (C) Determination of melting temperature, as described in section 5.1.3.  The 
melting temperatures for all five peptides, in order from C3S1 to C3S5 are: 34.0 °C, 51.4 °C, 
37.9 °C, 53.8 °C, and 42.6 °C.  Notably, C3S1 is the peptide that contains the collagenase 
cleavage site sequence. 
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Although each peptide adopts a triple-helical structure at 4 °C, they each have very different 

thermal stabilities (Figures 5-3B and 5-3C).  In particular, model peptide C3S1 has the lowest Tm 

(34.2 °C) (Figure 5-3C).  The type III collagen sequence contained in this model peptide also has 

the lowest imino acid content – one proline and one hydroxyproline – of any of the model 

peptide sequences and only a single X2-position arginine (Figure 5-1B).  By comparison, model 

peptide C3S4 has the highest melting temperature (53.6 °C) of all the model peptides (Figure 5-

3C) and contains the most imino acids and two X2-position arginines of all five peptides (Figure 

5-1B).  Overall, the relative ordering of melting temperatures for the model peptides correlates 

well with the imino acid and X2-position arginine content of those sequences, as has been 

suggested in prior studies of triple-helical propensities (Persikov et al. 2000).  

 

5.4 HSQC spectra of collagen-like peptides 

While melting temperature experiments measure the global thermal stability of the model 

peptides, we also wished to quantify the local triple helicities of these peptides both near and far 

from the scissile bond.  NMR spectroscopy offers the ability to monitor the local chemical 

environment around specific residues, thus providing a measure of how often that site samples 

either folded triple-helical or unfolded conformations.  Given that model peptides C3S2-C3S5 

have similar CD spectra at 4 °C, we elected to perform NMR experiments using the most 

thermally stable of these peptides, C3S4, along with the real collagenase cleavage site peptide, 

C3S1.  To this end, model peptides C3S1 and C3S4 were synthesized in two variants – one with 
15N-labeled residues at Gly7 and Ala18 (the alanine residue immediately C-terminal of the 

scissile bond) and one with 15N-labeled residues at Ala18 and Gly34 (Figures 5-4A and 5-5A).  

Heteronuclear 2D (HSQC) experiments were performed at 10 °C, well below the melting 

temperature of either C3S1 or C3S4.  Additionally, these experiments were performed at pH 6.4 

to ensure that the side chains of acidic residues in the model peptides would remain 

unprotonated.  Prior studies have shown that these residues that may contribute to thermal 

stability via electrostatic interactions (Venugopal et al. 1994, Persikov et al. 2000, Persikov et al. 

2002). 

Well resolved HSQC spectra containing both folded (triple-helical) and unfolded peaks were 

obtained for peptides C3S1 and C3S4 (Figures 5-4B/C and 5-5B/C).  Due to each peptide variant 

having only one 15N-labeled glycine and one 15N-labeled alanine, peaks were well separated into  
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Figure 5-4: (A) Interchain hydrogen bonding pattern of model peptide C3S1, which contains the 
collagenase cleavage site, in the folded triple-helical state.  This pattern shows the various 
hydrogen bonding partners to the 15N-labeled Gly7 (red and purple), Ala18 (blue, green, and 
orange), and Gly34 (pink) sites.  Different colors indicate different chemical environments.  1H-
15N HSQC spectra obtained at 10 °C of (B) the C3S1 variant with 15N labels at Gly7 and Ala18 
and (C) the C3S1 variant with 15N labels at Ala18 and Gly34.  Peaks corresponding to folded 
triple-helical conformers are indicated with a subscript f, while peaks corresponding to unfolded 
conformers are indicated with a subscript u.   
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Figure 5-5: (A) Interchain hydrogen bonding pattern of model peptide C3S4, which contains the 
collagenase cleavage site, in the folded triple-helical state.  This pattern shows the various 
hydrogen bonding partners to the 15N-labeled Gly7 (red and purple), Ala18 (blue, green, and 
orange), and Gly34 (pink) sites.  Different colors indicate different chemical environments.  1H-
15N HSQC spectra obtained at 10 °C of (B) the C3S4 variant with 15N labels at Gly7 and Ala18 
and (C) the C3S4 variant with 15N labels at Ala18 and Gly34.  Peaks corresponding to folded 
triple-helical conformers are indicated with a subscript f, while peaks corresponding to unfolded 
conformers are indicated with a subscript u.   
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the characteristic chemical shift regions for those residues (Ulrich et al. 2008).  Specific 

assignment of the peaks to folded and unfolded conformers was aided by previously published 

model peptide studies (Li et al. 1993, Buevich et al. 2000, Li et al. 2005, Li et al. 2007).  In 

addition, we found that the number of folded peaks for each residue was consistent with the 

different triplet sequences that are interchain hydrogen bond partners with the triplets containing 

the 15N-labeled residues (Figures 5-4A and 5-5A).  For instance, the Gly7 label in both C3S1 and 

C3S4 yields two peaks – a doublet peak and a singlet peak that are close together in chemical 

shift space (Figures 5-4B and 5-5B).  This observation makes sense in light of the fact that two 

of the labeled sites have one GPO triplet and one GAO triplet as hydrogen bonding partners, 

while one of the labeled sites has two GPO triplets as its partners (Figures 5-4A and 5-5A).  

Similar analyses can explain the appearance of three folded peaks for Ala18 and a single large 

folded peak for Gly34 (Figures 5-4B/C and 5-5B/C). 

For peptides C3S1 and C3S4, the folded and unfolded peaks were fit with Lorentzians and 

their volumes integrated using Sparky (Goddard and Kneller).  By comparing the folded and 

unfolded peak volumes, the fraction of folded conformers (or fractional triple helicity) at each 

labeled site can be calculated according to: 

 f
f

f u

vol
S

vol vol
=

+
 (5.2) 

where S is the labeled residue, and volf  and volu are the volumes of the folded and unfolded 

peaks for that residue, respectively.  For model peptide C3S1, which contains the collagenase 

cleavage site, the fractional triple helicities were as follows: G7f = 0.34, A18f = 0.12, and G34f = 

0.95.  These data suggest that the Gly34 site, embedded in the C-terminal (GPO)6 region,  is 

almost entirely folded.  The Gly7 site, located in the N-terminal (GPO)3 region, has a 

substantially lower triple helicity.  Finally, the Ala18 site, located one residue C-terminal to the 

scissile bond, is the least folded of all three sites.  For model peptide C3S4, which contains the 

pseudo-cleavage site, the fractional triple helicities were: G7f = 0.75, A18f = 0.67, and G34f = 

0.92.  These triple helicities suggest that the C-terminus regions of both peptides are similarly 

folded, but that the scissile bond and N-terminus regions of the collagenase cleavage site peptide 

(C3S1) are substantially less folded than the analogous regions in the more thermally stable 

pseudo-cleavage site peptide (C3S4). 
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5.5 Conformational models of collagen-like peptides 

We wish to characterize the types of structures that are present in solution for both C3S1 and 

C3S4 under steady state conditions.  Previous model peptide studies using residue-specific NMR 

diffusion measurements suggest that partially disordered folding intermediates may also be 

present in steady state conditions (Li et al. 2005).  While these folding intermediates are kinetic 

intermediates and not equilibrium states, the lifetimes of these intermediates may be long relative 

to the NMR timescale, and therefore they may contribute to the measured folded and unfolded 

peaks (Buevich et al. 2000, Li et al. 2005).  The types of structural states that may contribute to 

the HSQC peaks are shown in Figure 5-6.  The fully unfolded state (X1) and the fully folded state 

(X4) represent the beginning and endpoints of the folding reaction.  In addition, previous NMR 

studies on collagen-like model peptides demonstrate that folding typically proceeds from an 

imino-rich C-terminus to the N-terminus, hence a C-terminal intermediate is included (state X2) 

(Liu et al. 1996, Buevich et al. 2000, Li et al. 2005).  Recent experiments with model peptides 

have shown that folding can also proceed in the N-to-C direction, especially when the N-terminal 

region is relatively imino-rich, therefore we include an N-terminal folding intermediate (state X3)  

(Frank et al. 2003).     

Each of these states makes different contributions to the folded and unfolded peaks in the 

HSQC spectra.  State X1 contributes unfolded peaks at every labeled site, while state X2 

contributes folded peaks for the Gly34 label and unfolded peaks for the Gly7 and Ala18 labels.  

Similarly, state X3 conformers would contribute folded peaks for the Gly7 label and unfolded 

peaks for the Ala18 and Gly34 labels, and state X4 contributes to folded peaks for all labeled 

residues. 

 

5.5.1 Four state model 

We first explore a model containing all four of the aforementioned states X1-X4.  In addition to 

the equations that relate the probabilities of the states (γ1, γ2, γ3, γ4) to the fractional triple 

helicities (G7f, A18f, G34f), we also require that the probabilities of the states sum to one: 

 1 2G7 G71u f γ γ= − +=  (5.3) 

 3 4G7 f γ γ= +  (5.4) 
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Figure 5-6: Four possible conformational states of collagen-like model peptides that may 
contribute to the folded and unfolded peaks observed in HSQC spectra.  State X1 is an unfolded 
monomer that yields unfolded peaks for all three labeled sites (Gly7, Ala18, and Gly34).  State 
X2 is a C-terminal folding intermediate with a triple-helical C-terminal GPO repeat region that 
yields folded peaks for Gly34, while the rest of the peptide is disordered and yields unfolded 
peaks for Gly7 and Gly34.  State X3 is an N-terminal folding intermediate with a triple-helical N-
terminal GPO repeat region that yields folded peaks for Gly7, while the rest of the peptide is 
disordered and yields unfolded peaks for Ala18 and Gly34.  State X4 is a folded triple helix that 
yields folded peaks for all three labeled sites.   
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 31 21A18 A18 fu γ γ γ+== +−  (5.5) 

 4A18 f γ=  (5.6) 

 1 3G34 G341u f γ γ= − +=  (5.7) 

 2 4G34 f γ γ= +  (5.8) 

 31 2 4 1γ γ γ γ+ + =+  (5.9) 

The solution for the probabilities of states in this model is: 

 21 3 4G7 A18 G34 G34 A1 18 ,  G7 A, 18 , A18f f f f f f f fγ γ γ γ= − + − = − =−=  (5.10) 

In this solution, it is apparent that there is no requirement for the triple helicities of any of the 

labeled sites to be equal to each other, which is consistent with our experimental data.  Plugging 

in the fractional triple helicities for C3S1 to this solution, however, we find:  

21 3 4,  0.17, 0.83 0.22 0.1, 2 γ γ γ γ= − = = =  

Because the probability of state X1 (γ1) is less than zero, this solution is unphysical.  When using 

the data for C3S4, we find that:  

21 3 4,  0.00, 0.25 0.08 0., 67γ γ γ γ= = ==  

While this solution is physical in the sense that no probabilities are less than zero, it is unlikely 

that the probability of state X1, the unfolded monomer, is exactly zero.  This would imply that 

the free energy of folding for this peptide was negative infinity and that no monomeric species 

exists in solution.  Given that we have obtained an unphysical solution for C3S1 and an 

implausible solution for C3S4, we therefore exclude the four state model.  The states listed in 

Figure 5-6 are clearly insufficient to explain the HSQC data.   

 

5.5.2 Five state model 

Several studies suggest that collagen and collagen-like peptides can adopt partially unfolded 

states in solution at temperatures that are well below the melting temperature of these systems 

(Ryhänen et al. 1983, Birkedal-Hansen et al. 1985, Fields 1991, Fiori et al. 2002, Stultz 2002, 

Nerenberg and Stultz 2008, Ravikumar and Hwang 2008, Salsas-Escat and Stultz 2009).  

Consequently, we included a state X5 that features a partially unfolded triple helix in which the 
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imino-rich N- and C-termini are folded and the imino-poor central region is unfolded (Figure 5-

7A).  Such a state would contribute folded peaks for the Gly7 and Gly34 labels and an unfolded 

peak for the Ala18 label. 

We then consider a five state model containing the states X1-X5:   

 1 2G7u γ γ= +  (5.11) 

 3 4 5G7 f γ γ γ= + +  (5.12) 

 1 52 3A18u γ γ γ γ++ +=  (5.13) 

 4A18 f γ=  (5.14) 

 1 3G34u γ γ+=  (5.15) 

 2 4 5G34 f γ γ γ= + +  (5.16) 

 41 52 3 1γ γ γ γ γ+ + + =+  (5.17) 

The solution for this model is: 

 1 1 12 3 4

5 1

1 G7 ,  1 G34 , A18

G7 A18 G34

, ,

1
f f f

f f f

freeγ γ γ γ γ γ

γ γ

= − −

= + − +

= − − =

−

=
 (5.18) 

For the five state model there are more variables (five) than constraints (three triple helicities 

plus the constraint on the sum of the probabilities).  Therefore, one of the probabilities, γ1, is a 

free parameter and there can be a range of physical solutions in which all constraints are satisfied 

and none of the probabilities is less than zero (Figures 5-7B and 5-7C).  Interestingly, in all of 

the physical solutions to the five state model for C3S1, the collagenase cleavage site peptide, the 

partially unfolded state is preferred to the folded state (Figure 5-7B).  Conversely, in all of the 

physical solutions to the five state model for C3S4, the pseudo-cleavage site peptide, the folded 

state is substantially preferred to the partially unfolded state (Figure 5-7C). 
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Figure 5-7: (A) Partially unfolded conformational state (X5) of collagen-like model peptides that 
yields folded peaks for Gly7 and Gly34, but an unfolded peak for Ala18.  Assuming a five state 
conformational ensemble, we calculate probabilities of the conformational states X2-X5 as a 
function of the probability of the unfolded monomer state X1 for (B) the collagenase cleavage 
site peptide C3S1 and (C) the pseudo-cleavage site peptide C3S4.  Because there are more 
variables than constraints in the model for a five state ensemble, the probability of state X1 is a 
free variable.  The conformational ensembles shown on the plots are consistent with the triple 
helicities at each labeled site, as determined by integrating the peaks from the HSQC spectra.  
For all physical solutions to the five state model, C3S1 prefers the partially unfolded state to the 
folded state, while C3S4 prefers the folded state to the partially unfolded state. 
 

 

5.6 Discussion 

Because of its importance in understanding the molecular mechanism of collagen degradation, 

the physical basis of collagenase cleavage site specificity has been the subject of considerable 

study during the past three decades.  Prior experimental and theoretical studies have suggested 

that interactions between native collagen and the hemopexin-like domain of collagenases may be 

one factor that contributes to cleavage site specificity (Murphy et al. 1992, Borkakoti 1998, 

Lauer-Fields et al. 2002, Chung et al. 2004, Nerenberg et al. 2008, Perumal et al. 2008, Erat et al. 

2009, Lauer-Fields et al. 2009).  Other studies have postulated that the conformational ensemble 

of the collagenase cleavage site may play an important role in determining this specificity (Miller 

et al. 1976, Highberger et al. 1979, Ryhänen et al. 1983, Birkedal-Hansen et al. 1985, Fields 

1991, Salsas-Escat and Stultz 2009).  The goal of the present study was to investigate which, if 

any, of these factors might explain collagenase cleavage site specificity. 

To understand the influence of binding contacts between native collagen and the non-

catalytic hemopexin-like domains of collagenases, we conducted degradation experiments in 
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which we incubated native type III collagen with collagenase deletion mutants that lack 

hemopexin-like domains.  These deletion mutants cleave type III collagen at the same location as 

full length collagenases, albeit with lower efficiencies (Figure 5-2).  These results categorically 

demonstrate that enzyme specificity can be achieved with the catalytic domain alone, but suggest 

that the hemopexin-like domain still plays an important role in the degradation process (e.g., by 

localizing the catalytic domain to the cleavage site and increasing the overall efficiency of 

collagenolysis). 

To assess the thermal stabilities and local triple helicities of the collagenase cleavage site and 

pseudo-cleavage site sequences in type III collagen, we designed and synthesized a set of 

homotrimeric collagen-like model peptides containing each potential cleavage site.  We 

performed melting temperature experiments, monitoring the global triple helicities of the 

peptides with circular dichroism spectroscopy.  We observed that the model peptide C3S1, which 

contains the collagenase cleavage site sequence, had the lowest overall triple helicity and lowest 

melting temperature of all five peptides (Figure 5-3).  These data suggest that the collagenase 

cleavage site has markedly lower thermal stability than any of the pseudo-cleavage sites and may 

sample non-triple-helical conformations even at temperatures well below Tm. 

Thermal stability, however, is a global measure of protein folding stability and does not 

directly assess the local folding characteristics of a sequence.  To probe the local triple helicities 

of the model peptides at temperatures below Tm, we conducted 1H-15N HSQC NMR experiments 

at 10 °C, utilizing 15N-labeled residues at Gly7, Ala18, and Gly34, and integrated the folded and 

unfolded peaks for these residues to obtain the fractional triple helicity for each site.  For both 

C3S1 and C3S4, the lowest triple helicity is observed at Ala18, which is one residue C-terminal 

to the scissile bond.  Additionally, comparing the data for both peptides, we find that the 

collagenase cleavage site peptide C3S1 is substantially less folded near the scissile bond than the 

pseudo-cleavage site peptide C3S4.   

To better understand the conformational distributions of these peptides on the NMR 

timescale, we fit the NMR data to both four and five state conformational models.  We found, 

however, that only the five state model was able to yield physical solutions to the NMR data.  

Notably, this model includes a partially unfolded state in which the Ala18 site was locally 

unfolded and solvent-exposed.  The solutions to the five state model suggest that both model 

peptides may sample partially unfolded states in the immediate vicinity of the scissile bond at 
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temperatures well below the melting temperature of the triple helix.  Moreover, these solutions 

suggest that the collagenase cleavage site peptide C3S1 preferentially samples these partially 

unfolded states, while the pseudo-cleavage site peptide C3S4 only rarely samples partially 

unfolded states.  In addition, the solutions for both C3S1 and C3S4 suggest that these peptides 

sample more C-to-N folding intermediates than N-to-C intermediates; i.e., that these peptides 

fold predominantly along the C-to-N direction.  These findings make sense in light of the fact 

that the peptides feature a longer imino-rich GPO repeat region (6 GPO triplets) at the C-

terminus than at the N-terminus (3 GPO triplets) and are therefore more likely to nucleate and 

fold from the C-terminus. 

Taken together, the melting temperature experiments, fractional triple helicities obtained 

from NMR experiments, and conformational models of these model peptides all support the 

notion that the collagenase cleavage site in type III collagen is thermally unstable and frequently 

samples partially unfolded states at body temperature.  These data also suggest that the pseudo-

cleavage sites are substantially more stable and correspondingly sample partially unfolded states 

less frequently.  Together with recent computational studies, which suggest that the collagenase 

cleavage site samples partially unfolded states that more readily bind in the collagenase active 

site than partially unfolded states sampled by the pseudo-cleavage sites (Salsas-Escat and Stultz 

2009), these data suggest that local unfolding in the vicinity of the scissile bond is the primary 

determinant of collagenase cleavage site specificity in type III collagen.  Developing an 

understanding of the physical basis for collagenase cleavage site specificity represents a 

significant advancement in the understanding of the molecular mechanism of collagen 

degradation and may help direct future efforts to control collagenase activity/collagen 

degradation as it applies to both normal and disease-associated physiological processes. 
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Chapter 6 

 

Conclusions and Future Directions 
 

 

At the beginning of this work, we introduced the notion that collagen must adopt non-triple-

helical conformations at the collagenase cleavage site in order to explain two paradoxical aspects 

of collagenolysis – that the collagenase active site cleft is too narrow and that the scissile bonds 

of the collagenase cleavage site are hidden within the collagen triple helix (Overall 2002, Stultz 

2002, Chung et al. 2004).  In principle these non-triple-helical conformations could be achieved 

in one of two ways: (1) an active unwinding of the triple helix by collagenases or (2) regular 

thermal fluctuations that result in collagen sampling non-triple-helical conformations even in the 

absence of enzyme.  Given the fact that collagenolysis does not require energy input (Overall 

2002, Chung et al. 2004) and that the estimated energetic requirements for active unwinding are 

large (see Chapter 2), we pursued the idea that conformational ensemble of collagen may include 

non-triple-helical conformations in which the scissile bonds are exposed and vulnerable to 

degradation (Fields 1991, Stultz 2002).  Thus, the overall aim of this work has been to develop a 

detailed understanding of the conformational ensemble of collagen at the collagenase cleavage 

site and how it plays a role in the molecular mechanism of collagenolysis. 

In Chapter 2, we demonstrated that a degradation mechanism in which collagen exists in two 

distinct conformational states, a well-folded triple-helical state (native) and a partially unfolded 

state (vulnerable), near the collagenase cleavage site can explain prior experimental 

observations.  In this formalism, collagen is degraded when collagenases bind and cleave 

vulnerable conformers.  To develop a structural model of collagen near the collagenase cleavage 

site, we conducted molecular dynamics (MD) simulations of type I collagen in Chapter 3.  These 

simulations revealed that there were two distinct low energy conformations: a well-folded native 

state and a partially unfolded vulnerable state in which interchain hydrogen bonds to the triplet 

containing the cleavage site were broken.  To validate this structural model for type I collagen, in 

Chapter 4 we conducted degradation experiments where we incubated type I collagen with 

deletion mutants of collagenases that contained only the catalytic domains at a temperature well 
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below its melting temperature.  These experiments not only verified the existence of a partially 

unfolded vulnerable state, but also demonstrated that the specificity for the collagenase cleavage 

site does not require the presence of the hemopexin-like domain.  Moreover, we were able to fit 

the resulting degradation time courses from these experiments using a slightly modified version 

of the conformational selection model for degradation introduced in Chapter 2.  Finally, in 

Chapter 5 we validated the vulnerable state structural model for type III collagen using a 

combination of experimental and modeling techniques.  We again carried out degradation 

experiments using collagenase catalytic domains and supplemented these experiments with 

circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy experiments on 

collagen-like model peptides.  The latter experiments demonstrated that the collagenase cleavage 

site sequence is the least stable of any potential cleavage site sequences in type III collagen, and 

simple conformational models fit to the NMR data suggest that partially unfolded states are 

prevalent at temperatures below the melting temperature of the triple helix.  

Taken together, these observations provide compelling evidence that the conformational 

ensembles of types I and III collagen include partially unfolded states in which the collagenase 

cleavage site is solvent-exposed and accessible to the active site of collagenases, even at 

temperatures that are low relative to the melting temperatures of these collagens.  In addition, our 

degradation experiments demonstrate that the specificity of the collagenase cleavage site is 

maintained even in the absence of the hemopexin-like domain and consequently suggest that 

specificity is likely encoded in the unique conformational ensemble of the sequence surrounding 

and including the collagenase cleavage site.   

 

6.1 The mechanism of collagenolysis with full length enzyme 

In light of these observations we expand our previous reaction scheme for the catalytic domain 

alone to consider the effects of the hemopexin-like domain on collagenolysis (Figure 6-1).  In 

this reaction scheme, collagen exists in an equilibrium between native (N) and vulnerable (V) 

states, and either state can be bound by collagenases via the hemopexin-like domain, which 

contains binding sites for collagen (Murphy et al. 1992, Overall 2002, Tam et al. 2004, Perumal 

et al. 2008, Lauer-Fields et al. 2009).  When the native state is bound, an N·H complex is formed 

that cannot be cleaved since the scissile bond in this structure is not accessible to the MMP 

active site.  Since the catalytic domain of the enzyme is not bound to the scissile bond in the N·H 
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complex, and the putative binding site for the hemopexin-like domain in type I collagen is 

removed from the cleavage site (Perumal et al. 2008, Erat et al. 2009), the N·H complex can 

transition to a vulnerable state (V·H complex) via a conformational change similar to the one 

experienced by unbound collagen.  Once the V·H complex is formed, the catalytic domain can 

then bind the accessible scissile bond, yielding the V·F complex, which then goes on to form 

degraded protein. 

 

 
Figure 6-1: Conformational selection mechanism for collagenolysis with full length 
collagenases.  Collagen exists in an equilibrium between native (N) and vulnerable (V) states 
determined by the equilibrium constant eqK .  Full length MMP (F) can bind to the native state of 

collagen via the hemopexin-like domain (H) with binding constant NH
bindK , forming the N·H 

complex.  The N·H complex can transition to the V·H complex via the equilibrium between 
native and vulnerable states defined by '

eqK .  The full length enzyme, F, can bind directly to the 
vulnerable state, V, via the hemopexin domain (H) forming the V·H complex, determined by the 
binding constant VH

bindK .  Once a V·H complex is formed, the catalytic domain of the full length 
MMP can bind to the vulnerable state with a binding constant HV C

bindK , forming the V·F complex.  
The V·F complex is then degraded with catalytic rate kcat. 
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6.1.1 The change in effective concentration of vulnerable states in the presence of enzyme 

To develop a quantitative understanding of how the presence of enzyme might affect the 

relative concentration of vulnerable states, we consider an equilibrium in which the enzyme is 

catalytically inactive (i.e., the degradation step does not occur) and solve for the effective ratio of  

all vulnerable states to all native states, [ ] [ ] [ ]( )
[ ] [ ]( )

V V H V Feff
eq N N HK + ⋅ + ⋅

+ ⋅= .  To simplify the calculation, 

we first assume that the hemopexin-like domain binds the native and vulnerable states with the 

same affinity ( NH VH H
bind bind bindK K K= ≡ ).  It should be noted that if the hemopexin-like domain does 

in fact preferentially bind and consequently stabilize the vulnerable state (i.e, VH VH
bind bindK K> , as 

suggested in Chapter 2) then the preceding assumption will lead us to underestimate eff
eqK .  In this 

scenario, there is a closed form solution for eff
eqK  (see Appendix B): 

 [ ]
[ ]

1
1

H

H
bind V Ceff

eq eq bindH
bind

K E
K K K

K E
⎛ ⎞⎛ ⎞

= +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
 (6.1) 

where [E] is the concentration of free enzyme, which itself is a function of the enzyme-to-

substrate ratio, and the binding constants H
bindK  and HV C

bindK .  We can better understand the 

behavior of eff
eqK  by evaluating it at two limiting conditions.  In the first, no enzyme is present 

([E] = [E]tot = 0) and/or the enzyme does not bind collagen ( 0H
bindK = ); in either case eff

eq eqK K=  .  

The second limiting condition is when the concentration of enzyme is in relative excess and 
H
bindK  is non-zero; in this case HV Ceff

eq eq bindK K K≈ .  Given that the catalytic domain is restricted to 

reside in the vicinity of the cleavage site when the hemopexin-like domain is bound, the entropic 

loss upon binding of the catalytic domain is relatively small when the enzyme is anchored to the 

protein by the hemopexin-like domain.  Consequently, we expect that 1HV C
bindK  and therefore 

that HV C
eq eq bindK K K .  Accordingly, this suggests that as long as there is a non-zero total 

concentration of enzyme, we will have HV Ceff
eq eq eq bindK K K K< < , as demonstrated in Figure 6-2.  In 

other words, the ratio of vulnerable states to native states, eff
eqK , will always be greater than eqK

when enzyme is present simply due to the principle of mass action.  In this way the presence of 
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enzyme leads to an effective increase in the concentration of vulnerable “unwound” conformers 

without requiring energy input or active enzyme-mediated unwinding. 

 

 

 
Figure 6-2: Change in the effective conformational equilibrium of collagen in the presence of full 
length collagenase.  Computed values for the effective equilibrium constant, eff

eqK , as a function 
of total enzyme-to-collagen ratio for three possible values of the hemopexin-like domain binding 
constant, H

bindK , ranging from sub-millimolar to micromolar affinity.  For these calculations, 
[collagen]tot = 10-6 M, eqK  = 10-3, and HV C

bindK  = 106.  At low enzyme-to-collagen ratios, eff
eqK  is 

approximately equal to eqK , whereas at high enzyme-to-collagen ratios, eff
eqK  approaches 

HV C
eq bindK K .     

 

 

6.1.2 Novel approaches to the inhibition of collagenolysis  

Methods designed to prevent excessive collagen degradation in disorders of collagen metabolism 

have mainly focused on designing small molecule inhibitors of the MMP active site that would 

prevent binding and hydrolysis of the scissile bond (Folgueras et al. 2004, Georgiadis and 

Yiotakis 2008).  This corresponds to disrupting the reaction step involving the transition between 

the V·H and V·F complexes in Figure 6-1.  Although great effort has been directed towards the 

design of such inhibitors, selectivity issues and secondary side effects in clinical trials have been 

encountered and therefore only few inhibitors have been made available commercially 
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(Abbenante and Fairlie 2005, Ganea et al. 2007, Georgiadis and Yiotakis 2008, Tallant et al. 

2009).  The reaction scheme in Figure 6-1 highlights additional and potentially fruitful avenues 

for abrogating disease-associated collagenolysis.  As others have noted, disruption of 

hemopexin-like domain binding to secondary sites on collagen (e.g., decreasing NH
bindK  and VH

bindK ) 

may prove to be an effective mechanism to modulate collagenolysis (Folgueras et al. 2004, 

Nerenberg et al. 2007, Lauer-Fields et al. 2009).  Our data suggest that mechanisms that lead to 

stabilization of the native state relative to the vulnerable state (i.e., decreasing eqK ) may have a 

similar desirable effect.  By utilizing these additional steps in the reaction mechanism, collagen 

degradation could potentially be inhibited in a specific and efficient manner. 

 

 

6.2 The conformational ensemble of collagen in vivo 

Throughout this work, we have conducted both experimental and computational studies with 

collagen (or collagen-like model peptides) in solution.  In the body, however, types I and III 

collagen are generally not found free in solution, but rather are incorporated into various fibrillar 

structures as part of the extracellular matrix (Gelse et al. 2003).  Thus, an implicit assumption in 

the conclusions of our work has been that the conformational ensemble of collagen in a fibrillar 

context does not differ substantially from the conformational ensemble of collagen in solution. 

 Previous experimental data suggest that both types I and III collagen are thermally stabilized 

in the fibrillar context relative to being in solution (Birkedal-Hansen et al. 1985).  This in turn 

may result in a stabilization of the native state relative to the vulnerable state (i.e, a reduction in 

eqK ).  In addition, modeling studies based on x-ray fiber diffraction data suggest that access to 

the collagenase cleavage site in type I collagen is limited by the telopeptides of neighboring 

collagen molecules in the fibril (Perumal et al. 2008), which may necessitate a modification of 

the basic mechanism presented in Figure 6-1.  Interestingly, however, these same studies suggest 

that at the collagenase cleavage site the α2 chain is the most dissociated of the three polypeptide 

chains from the central axis of the triple helix (Perumal et al. 2008).  This implies that the 

conformational ensemble of type I collagen in a fibrillar context may be similar to the solution 

state ensemble (and in particular to the conformational ensemble described in Chapter 3).  In 

other words, the conformational ensemble of collagen at the collagenase cleavage site may be 



109 
 

unaffected by the additional intermolecular contacts of the fibril.  Nonetheless, additional study 

is needed before we can be totally confident that data derived from solution state studies of 

collagen and collagenolysis is applicable to the in vivo degradation of fibrillar collagen.   

One of the main tools of this work has been the use of MD simulations to elucidate the 

conformational ensemble of collagen at an atomistic level of detail.  Currently MD simulations 

of fibrillar collagen have been limited to more coarse-grained methods (e.g., one “bead” per 

several residues (Buehler 2008)) than the ones used in Chapter 3, but the continuously increasing 

power of computing clusters suggests that MD studies of the conformational ensemble of 

collagen molecules contained in a microfibril conducted at an atomistic level of detail will 

become practical in the very near future.  The collagen fibril presents a challenge for detailed 

biophysical experiments due to its sheer size and the current impossibility of being synthesized 

(which excludes, for example, the radiolabeling of specific residues for NMR experiments), but 

one possible avenue for improvement in the near future may be higher resolution structures 

obtained from x-ray fiber diffraction studies.  The resolution of these fiber diffraction structures, 

however, will likely be limited to ~4 Å in the axial direction and ~10 Å in the equatorial 

direction (Joseph Orgel, personal communication) – a resolution that is significantly less than 

that typically obtained with x-ray crystallography of other peptides/proteins and insufficient to 

accurately model sidechain atoms (Wlodawer et al. 2008).  Moreover, such structures would still 

present only a static picture of collagen in the fibrillar context, whereas our work suggests that 

collagen, like many other biopolymers, is inherently dynamic. 

 

6.3 Other outstanding issues in collagen structure and thermodynamics 

Beyond understanding the conformational ensemble of collagen, many of the basic biophysical 

questions regarding the structure and thermodynamics of the collagen triple helix remain 

unanswered and ripe for investigation using computational and experimental methods.   

One such question is the mechanism by which X2 position arginines stabilize the triple helix.  

As mentioned in Chapter 1, arginine is quite prevalent in this position, occurring in 12-13% of all 

triplets in types I, II, and III collagen (Ramshaw et al. 1998).  X-ray crystal structures and MD 

simulations of model peptides suggest that the arginine sidechain hydrogen bonding with the 

backbone amide oxygen of a neighboring chain may be the source of this stabilization (Kramer 

et al. 1999, Kramer et al. 2001, Stultz 2002).  Prior experimental studies with model peptides 
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show, however, that this stabilization requires adequate separation of arginine residues – if the 

arginines occur in adjacent triplets in the amino acid sequence, they destabilize the triple helix 

(Yang et al. 1997).  Thus, it is thought that unfavorable electrostatic interactions between these 

sidechains can lead to destabilization of the triple helix.  These observations and hypotheses 

could be validated using MD simulation studies similar to those described in Appendix A, as 

well as other computational techniques (e.g., Poisson-Boltzmann calculations). 

 Another question relates to one of the common post-translational modifications in collagen – 

the hydroxylation of lysine residues.  Like the hydroxylation of proline residues, lysine 

hydroxylation occurs before the folding of the triple helix (Gelse et al. 2003, Myllyharju 2005).  

Unlike proline hydroxylation, however, lysine hydroxylation occurs at relatively small number 

of sites (i.e., most lysines in the fibrillar collagens are not hydroxylated) (Myllyharju 2005).  

Additionally, these residues are typically involved in the intermolecular crosslinks that are 

formed when collagen molecules are assimilated into a fibril (Gelse et al. 2003, Myllyharju 

2005).  As such, there is a paucity of data on the effect of hydroxylysine on triple-helical 

stability.  Intriguingly, increased hydroxylysine content has been correlated with osteogensis 

imperfecta, a class of genetic diseases in which glycine substitution mutations destabilize the 

triple helix and slow its folding (Tenni et al. 1993, Lehmann et al. 1995, Myllyharju and 

Kivirikko 2001).  It is unknown whether this is simply a consequence of the collagen chains 

remaining in an unfolded state for a longer time (and therefore being overmodified) or if this is 

an alternative biological strategy for triple helix stabilization (noting that lysine by itself 

destabilizes the triple helix relative to many residues).  A combined computational and 

experimental (host-guest) approach using model peptides could ascertain what, if any, effect 

hydroxylysine has on triple-helical stability. 

 In addition, hydroxylysine residues also serve as an attachment point for carbohydrates, in a 

process known as glycosylation (Gelse et al. 2003, Myllyharju 2005).  In globular proteins, 

glycosylation is a ubiquitous form of post-translational modification that is thought to modify 

both folding stability and conformational preferences (Sola et al. 2007, Shental-Bechor and Levy 

2009).  While glycosylation is known to impact the packing of collagen fibrils, its effect on the 

triple-helical stability and the conformational preferences of collagen is unknown (Brinckmann 

et al. 1999, Notbohm et al. 1999, Myllyharju 2005).  Here again, a combination of experiments 
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and molecular simulations may elucidate the molecular-level consequences of a post-

translational modification. 

 Finally, for the sake of completeness, it would be worthwhile to conduct a comprehensive 

analyses of the conformational ensembles of all the potential cleavage sites of types I and II 

collagen, as has been done for type III collagen (Salsas-Escat and Stultz 2009).  The data 

presented in this work support the notion that the collagenase cleavage sites in all three of these 

major fibrillar collagens readily sample partially unfolded states that are uniquely vulnerable to 

enzymatic cleavage.  To test this hypothesis at the atomistic level of detail and unambiguously 

exclude other potential hypotheses, however, these data should be combined with comprehensive 

analyses of the conformational ensembles of all the potential cleavage sites (as in Salsas-Escat 

and Stultz 2009), as well as degradation experiments with type II collagen similar to those 

presented in Chapters 4 and 5.  In addition, while this work has focused on the fibrillar collagens, 

it would be likewise interesting to explore the conformational ensembles of other collagens (e.g., 

type IV collagen, the primary constituent of the basement membrane) to see if partially unfolded 

states exist and may be responsible for the degradation of these proteins.  Nature often has a way 

of recycling biological mechanisms that are robust and can work in many different contexts – it 

would no doubt be satisfying to be able to unify the degradation of the various collagens in the 

framework of a single molecular mechanism. 
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Appendix A 

 

The Contribution of Interchain Salt Bridges to Triple Helical 

Stability in Collagen 
 
 
This appendix is adapted from: Gurry T, Nerenberg PS, and Stultz CM. The Contribution of 
Interchain Salt Bridges to Triple Helical Stability in Collagen. Submitted. 
 
 
Introduction 
The collagens form a family of extracellular matrix proteins that play important roles in 

maintaining the structural integrity of a number of tissues including blood vessels, bone, 

ligaments and tendons (Vogel 1974, Myllyharju and Kivirikko 2004).  Given the prevalence of 

collagen in a relatively large number of tissues, it is not surprising that collagen itself has been 

implicated in several common human diseases (Vogel 1974, Byers and Steiner 1992, Myllyharju 

and Kivirikko 2001, Myllyharju and Kivirikko 2004).  Consequently, studies aimed at 

understanding the structure and metabolism of collagen are of particular importance. 

Collagen’s structure is characterized by three distinct amino acid chains that fold together to 

form a triple helix.  This helical structure contains interchain backbone hydrogen bonds between 

the glycine amide protons and the carbonyl oxygens of residues in the X position of the 

corresponding GXY triplet on the adjacent chain (Brodsky and Persikov 2005).  A high 

abundance of prolines in the X position and hydroxyprolines in the Y position has been noted in 

sequenced collagen peptides, accounting for roughly 20% of residues in these positions 

(Persikov et al. 2000).  Proline residues induce a polyproline II-like helical conformation in 

individual strands, greatly reducing their entropy in the unfolded state and thereby the resulting 

loss of entropy upon triple helix formation (Bella et al. 1994, Shoulders and Raines 2009).  The 

mechanism behind hydroxyproline-induced triple helical stabilization may be more complex.  It 

was initially thought that the hydroxyl groups helped coordinate both intra- and intermolecular 

hydration networks, but other models suggest that the stereoelectronic effect of the hydroxyl 

group stabilizes a pucker of the pyrrolidine ring and backbone dihedral angles that are conducive 
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to the formation of triple-helical structure (Bella et al. 1994, Bretscher et al. 2001). 

Biochemical experiments in which single residue mutants were created in homotrimeric 

model collagen peptides containing the sequence (GPO)3GXY(GPO)4, where either the X or the 

Y residue was mutated from proline or hydroxyproline, reveal insights into the contribution of 

different residues to triple-helical stability (Persikov et al. 2000).  Compared to the highly stable 

control sequence of (GPO)3GPO(GPO)4, which had a melting temperature of 47.3˚C, a lysine in 

position Y lowered the melting point to a Tm of 41.5˚C, as did glutamate and aspartate residues in 

position X, which had Tm values of 42.9˚C and 40.1˚C, respectively (Persikov et al. 2000).  

However, when these mutations were combined in a model peptide with the sequence 

(GPO)3GXYGX'Y'(GPO)3, where the X' and Y residues were mutated simultaneously, striking 

stabilization of the triple helix was observed, with Tm values of 47.8˚C and 47.1˚C in the 

(GPO)3GPKGEO(GPO)3 and (GPO)3GPKGDO(GPO)3 mutants, respectively; i.e., stabilities 

comparable to a (GPO)8 peptide (Persikov et al. 2005).  Clearly, interactions which are not 

accounted for by the additive effect of individual residue stabilization were promoting triple 

helical stability in these peptides.   

Additional studies suggest that interchain electrostatic interactions between lysine residues in 

the Y position and acidic residues in the X' position underlie this unexpected increase in stability 

(Persikov et al. 2005).  In particular, experiments performed at a pH below the pKa of the 

glutamate side chain significantly reduces the melting temperature of the 

(GPO)3GPKGEO(GPO)3 peptide (Persikov et al. 2005).  Moreover, energy minimization of 

triple-helical structures in vacuo, and with limited water molecules, suggest that intra-chain salt 

bridges are energetically favorable as long as the oppositely charged residues are separated by at 

most 2 residues (Katz and David 1990).   Furthermore, χ2 tests on the frequency of KGE and 

KGD residue pairs in fibrillar collagen sequences suggest that these residues occur more 

frequently together than would be expected by their individual frequencies in collagen alone, 

suggesting that these regions may play additional roles in modulating collagen stability (Persikov 

et al. 2005).  Despite these results, the precise energetic contribution of interchain salt bridges to 

triple-helical stability has not been fully explored. 

To clarify the energetic contribution that interchain salt bridges have on triple-helical 

stability, we calculated the relative contribution of salt bridge interactions to the folding free 

energy of the triple-helical structure.  As each amino acid chain in collagen has a precise chain 
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stagger, three distinct salt bridge configurations are possible – all of which are examined in this 

work.  In this manner, we present a comprehensive assessment of the relationship between salt 

bridge formation and triple-helix stability.   

 

Methods 

Construction of the initial models 

Peptides with capped ends (acetylated on the N-terminal residues and amidated on the C-

terminal residues) were built using the Triple-Helical Collagen Building Script (THe BuScr) 1.06  

and CHARMM 35b2  with the CHARMM22/CMAP all-atom parameters (Mackerell et al. 2004, 

Rainey and Goh 2004, Brooks et al. 2009).  The peptides were then solvated with 4946 (for the 

(GPO)3GPKGEO(GPO)3 peptide) or 4952 (for the (GPO)3GPKGDO(GPO)3 peptide) TIP3P 

water molecules using the MMTSB tool set (Feig et al. 2004).  Water molecules were subjected 

to a cylindrical stochastic boundary potential of radius 22.5Å and length 100Å using the 

Miscellaneous Mean Field Potential (MMFP) with one cylindrical and two planar constraints.  

Prior to solvation, the model triple helices were brought to salt bridge configurations by 

restraining the distance between the lysine Nζ and the glutamate Cδ or aspartate Cγ, initially with 

a force constant of 20 kcal mol-1Å-2 for 500 steps of steepest decent and 1000 steps of ABNR 

minimization, followed by 1000 more of ABNR with a force constant of 2 kcal mol-1Å-2.  

 

Molecular dynamics simulations 

Each system was equilibrated for 250ps followed by 10ns of production molecular dynamics 

simulations using CHARMM 35b2 (Brooks et al. 2009).  The system was linearly heated to a 

temperature of 298.15K over 50ps during equilibration and then coupled to a Nosé-Hoover set at 

the same temperature (Evans and Holian 1985).  Coordinates were saved every 0.1ps.  Initial 

simulations suggested that protein would adopt slightly bent conformations where the ends of the 

molecule would wander outside of the simulation cylinder.  Similar observations have been made 

in other simulations of triple-helical peptides (Ravikumar and Hwang 2008).  To ensure that 

physiologically relevant (i.e., triple-helical) states were sampled and that the peptides remained 

within the solvent region for the duration of the simulations, all simulations employed a 

harmonic constraints on the first and last three residue backbone atoms with a force constant of 2 

kcal mol-1Å-2.   
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Umbrella sampling 

We calculated the free energy of intra-chain salt bridge formation using umbrella sampling 

(Torrie and Valleau 1974, Roux 1995).  The approach outlined here is similar to what was 

described in our previous work (Nerenberg and Stultz 2008).  The reaction coordinate was 

defined as the inter-atomic distances between the lysine Nζ and the glutamate Cδ (in the case of 

(GPO)3GPKGEO(GPO)3), or between the lysine Nζ and the aspartate Cγ (in the case of 

(GPO)3GPKGDO(GPO)3).  The carboxyl carbons were chosen as opposed to the carboxyl 

oxygens because measuring inter-atomic distances to the carbon atoms circumvents ambiguities 

that arise from rotations in the Cγ-Cδ bond in the glutamate or the Cβ-Cγ bond in aspartate (e.g., 

each carbonyl oxygen can accept a hydrogen bond from the lysine side chain). Simulations of the 

triple-helical peptide suggested that an inter-atomic distances of 3.6Å and 3.4Å correspond to a 

salt bridges in the (GPO)3GPKGEO(GPO)3 and (GPO)3GPKGDO(GPO)3 peptides, respectively.   

Values of the reaction coordinate, ξ, were sampled starting from 2.4Å and up to 13.0Å in 

0.2Å increments.  In practice, the starting value for these runs was 3.4Å and sampling was done 

from 3.4→13.0Å and 3.4Å→2.4Å.  A harmonic biasing potential (with a force constant of 80 

kcal mol-1Å-2) was introduced at each window to bias the system towards a particular value of ξ.   

Each window was run for 250ps.  Trajectories were saved every 0.1ps, resulting in 2500 frames 

per window. For each window, we plotted the running average of the system's internal energy 

and fit an exponential distribution to determine the relaxation time constant, τ.  The equilibration 

period was then defined as 3τ.  The production portion of the trajectory began at the end of this 

equilibration period. Data from the production runs was combined to form the unbiased 

probability distribution using the WHAM algorithm (Kumar et al. 1992, Souaille and Roux 

2001).  Similar to what was described above, umbrella sampling simulations employed 

additional restraints on the first and last three terminal residues (force constant of 2 kcal mol-1Å-2 

as noted in the previous section) to ensure that we simulated states in the vicinity of the triple-

helical state, and that the peptides remained within the solvated stochastic boundary sphere for 

the duration of the simulations.  To ensure that the precise choice of the harmonic restraint did 

not unduly influence our results, we computed the energy associated with these terminal residue 

harmonic constraints for all umbrella sampling windows.  Windows where the contribution from 

these harmonic restraints was significant (>1.0 kcal mol-1) were excluded from the pmf 

calculation.  With this convention only windows centered about values of ξ greater than 12.0Å 



129 
 

for the C-A interaction in (GPO)3GPKGEO(GPO)3 were excluded. 

Throughout this work, we adopt the notation ξAB to denote the inter-atomic distance between 

the lysine on chain A and acidic residue on chain B.  Similar definitions apply for ξBC, and ξCA. 

 

Results 
In tropocollagen the different collagen chains are staggered with respect to each other resulting 

in asymmetric interactions between chains.  Consequently, interchain salt bridges between the A-

B, B-C and C-A pairs have distinct orientations (Figure 1).  In light of this, we examined the 

effect of each type of salt bridge on triple-helical stability.  

 

Dynamical Trajectories of Salt-Bridge Containing Peptides 

We begin with an analysis of thermal fluctuations in interchain salt bridge containing structures.  

Ten nanosecond simulations of the equilibrated (GPO)3GPKGEO(GPO)3 (henceforth referred to 

as the GPKGEO peptide)  and (GPO)3GPKGDO(GPO)3 (henceforth referred to as the GPKGDO 

peptide) systems were performed to observe the behavior of the interaction partners.  To 

characterize the behavior of the salt bridge pair, we use the inter-atomic distance between the Nζ 

of lysine and the Cδ glutamate (in the case of the GPKGEO peptide), and the distance between 

the Nζ of lysine and the Cγ of aspartate (in the case of GPKGDO peptide).      

Simulations of the GPKGEO triple-helical peptide highlight the difference between the 

interchain interactions (Figure 2).  The inter-residue distance between the side chains of Lys and 

Glu in the A-B interaction mainly fluctuates between two states in GPKGEO – the first has an 

average distance of 3.6Å (which corresponds to a salt bridge between the two residues), and the 

second has an average distance of 5.9Å (where the salt bridge is broken).  Overall, during the 

10ns simulation the A-B salt bridge is formed approximately 42% of the time (Figure 2).  The B-

C salt bridge is stable about a mean value of 3.6Å for 74% of the 10ns.  The C-A salt bridge 

forms a salt bridge 45% of the time with a mean distance of 3.6Å and what appears to be a 

secondary state at 5.2Å (Figure 2). 

  By contrast, in simulations of the GPKGDO peptide, the A-B salt bridge is stable during the 

10ns (formed 96% of the time) about a mean value of 3.4Å.  The B-C salt bridge is slightly less 

so (86% of the time), also about a mean value of 3.4Å, and the system appears to sample a 

secondary state with average distance 5.8Å, along with another state at higher values of ξBC.    
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The C-A salt bridge appears to be the least stable of the three, being formed 44% of the time. 

When not in a salt bridge, the system samples a secondary state with mean value 6.0Å (Figure 3). 

 

The Effect of Salt Bridge Formation on Triple-helical Stability 

To quantitatively assess the effect of interchain salt bridge formation on triple-helical stability, 

we use the thermodynamic cycle shown in Figure 4.  In path 1, the three collagen chains fold to a 

state that contains a salt bridge ( on
foldGΔ is the associated free energy change), and in path 2 folding 

leads to a triple helical structure where the salt bridge is broken ( off
foldGΔ is the associated free 

energy change).  The contribution of the salt bridge to triple-helical stability is given by the 

difference on off
fold foldG G GΔΔ = Δ −Δ .  In principle, one could perform simulations to directly 

compute on
foldGΔ  and off

foldGΔ , however the direct calculation of the free energy associated with 

such folding reactions is computationally demanding.  This is especially true for this system 

because simulating the unfolded state would require sampling all possible configurations of three 

dissociated chains.  However, as the thermodynamic path shown in Figure 4 demonstrates, the 

effect of salt bridge formation on protein stability is equivalent to the free energy associated with 

salt bridge formation in the folded state; i.e., GΔΔ  can be calculated from an analysis of the 

folded state alone. 

The free energy difference associated with salt bridge formation, GΔΔ , could be computed 

using a number of methods – each of which makes a different set of assumptions.  For example, 

one could slowly turn off the electrostatic interactions between the two side chains that form the 

salt bridge and use thermodynamic integration to compute the resulting free energy change 

(Hendsch and Tidor 1993, Du et al. 2000).  Strictly speaking, this method constitutes one way to 

calculate the electrostatic contribution to GΔΔ , however, the overall electrostatic contribution is 

somewhat distinct from the contribution of a “salt bridge”.  In particular, two oppositely charged 

side chains that are far apart are not said to be in a salt bridge.  Since electrostatic interactions 

are, in general, long range in character, these well separated side chains will still make some 

electrostatic contribution to the overall energy of the system.  Hence the “broken salt-bridge” 

state does not correspond to a state where all electrostatic interactions between the side chains 

are turned off.   

Here we use umbrella sampling to compute the contribution of the salt bridge to protein 
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stability.  In this approach, the beginning and end states of the reaction are defined solely by the 

distance between the two side chains in question and long range electrostatic interactions are 

considered in both the state where the salt bridge is formed and the state where it is broken.  

Central to this method is a clear definition of the states corresponding to the conformation where 

the salt bridge is formed and the state corresponding to the salt bridge being broken.  To identify 

these end states we use the dynamical trajectories shown in Figures 1 and 2 as a guide.  In each 

trajectory, the system fluctuates between two distinct regions of conformational space, where the 

first region corresponds to a relatively low value of the reaction coordinate having representative 

structures that place the oppositely charged side chains within hydrogen bonding distance of one 

another.  The second state corresponds to a larger value of the reaction coordinate where 

representative structures have side chains that are too far apart to allow direct hydrogen bonding 

to happen.  We therefore begin our analysis with an investigation of the pmf for each interchain 

salt bridge in the folded state and interpret these findings in light of the dynamical trajectories 

discussed above.  Insights from this analysis are then used to compute quantitative estimates for 

GΔΔ .   

 

Potentials of mean force for salt bridges in GPKGEO 

The pmf for the A-B interchain interaction contains two well defined minima (Figure 5).  The 

global energy minimum is located at ξAB=3.3Å, and corresponds to the state where an interchain 

salt bridge is formed between the lysine and glutamate side chains, consistent with the state with 

mean value 3.6Å in the dynamical trajectory in Figure 2.  The second minimum is located at 

ξAB=5.5Å, a value similar to 5.9Å, the mean value of the secondary state in Figure 2.  The 

relative free energy difference between the two states is quite modest – only 0.6 kcal/mol.  This 

observation is in qualitative agreement with the data shown in Figure 2.  In particular, 

unrestrained simulations that begin with the AB salt bridge, frequently sample states where the 

salt bridge is broken.   

The pmf for the B-C interaction also contains two energy minima, where the global energy 

minimum corresponds to an interchain salt bridge at ξBC=3.7Å (Figure 6).  The second minimum 

is more shallow and is located at ξBC=5.7Å and has a free energy that is 2.4 kcal/mol (~ 4kBT at 

room temperature) higher than the ground state.  Indeed, unrestrained simulations suggest that B-

C salt-bridges are considerably more stable (Figure 2).   
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The pmf for the C-A interaction contains two energy minima (Figure 7).  The global energy 

minimum is found at ξCA=3.7Å and corresponds to an interchain salt bridge.  Again, the second 

minimum is shallow and is located at ξCA=4.7Å.   The first of these two values is consistent with 

the mean values extracted from the trajectories in Figure 2 (3.6Å).  The second state has a value 

ξCA that is somewhat lower than the average value in Figure 2, but representative structures in 

both cases correspond to states where the side chains are well beyond hydrogen bond distance.  

The second state has free energy 1.2 kcal/mol relative to the ground state.   

Analysis of solvent molecules within hydrogen-bonding distance of the lysine and glutamate 

side chains suggests that in each case, the secondary local energy minimum forms when the side 

chains separate enough to allow water molecules to enter the space between the side chains.  For 

example, for the A-B interaction, at a separation of 5.5Å a single water molecule can hydrogen 

bond to both side chains.  An analysis of the window that is restrained to sample around 

ξAB=5.5Å, suggests that different water molecules take turns hydrogen bonding to both side 

chains.  Overall, an intermediate water molecule is present 94% of the time in this state.  

Similarly, for metastable states in the  B-C and C-A interactions, water molecules hydrogen bond 

to both side chains 77%, and 69% of the time, respectively. 

 

Potentials of mean force for salt bridges in GPKGDO 

The pmf for the A-B interaction in GPKGDO contains a prominent energy minimum located at 

ξAB=3.3Å (Figure 8), consistent with the value of 3.4Å observed in the dynamical trajectory in 

Figure 3.  This state corresponds to a conformation where an interchain salt bridge is formed 

between the lysine and the aspartate residues.  Trajectories of the triple-helical conformation 

infrequently sample a state having ξAB~5Å that corresponds to a state where the salt bridge is 

broken (Figure 3).  This state corresponds to a shallow “shelf” on the conformational free energy 

surface which has a free energy that is 3.6 kcal/mol higher than the ground state (Figure 8). 

The pmf for the B-C interaction in GPKGDO contains two energy minima (Figure 9).  The 

global energy minimum is found at  ξBC=3.3Å (also similar to the value of 3.4Å in Figure 3), and 

corresponds to an interchain salt bridge.  The second energy minimum is found at ξBC=5.0Å, that 

has a free energy which is 2.9 kcal/mol relative to the ground state (approximately 5kBT at room 

temperature).  Consequently, this state is infrequently sampled in dynamical trajectories that 

begin with the B-C salt bridge formed (Figure 3). 
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Both metastable states for the A-B and B-C interaction occur at interatomic distances that 

allow individual water molecules to hydrogen bond to both states, in a manner similar to what 

was described for the GPKGEO trajectories above.  For the shallow metastable state for the A-B 

interaction, approximately 92% of the time different water molecules again take turns hydrogen 

bonding to the two side chains.  For the B-C metastable state, this occurs approximately 89% of 

the time. 

The pmf for the C-A interaction in GPKGDO has two energy minima (Figure 10).  The 

global minimum is located at ξCA =3.7Å, which corresponds to an interchain salt bridge.  In 

addition, a secondary minimum can be found at ξCA =5.4Å with a relative free energy of 1.1 

kcal/mol.  Despite distances similar to the secondary states in previously described interaction 

pairs indicative of an intermediate water molecule, we only find individual water molecules 32% 

of the time.  The secondary minimum also has the characteristic of spanning a greater range than 

that in other interaction pairs; values of ξCA between 4.5Å and 6.8Å are all below 2 kcal/mol.  

Such larger distances are therefore likely to correspond to states where several water molecules 

intervene, bridging the two side chains in a more complicated array. This is consistent with the 

dynamical timeseries in Figure 3, which appears to sample states in this vicinity when not in a 

salt bridge (defined as having values of ξCA >4.2Å). 

 

Calculation of ΔΔG values 

We use the different pmfs to calculate ΔΔG – the contribution of each salt bridge to triple-helical 

stability – as outlined in Figure 4.  ΔΔG is then calculated as the difference in energy between the 

salt bridge state and the local energy minima (or the relatively flat region of the conformational 

free energy surface a la A-B interaction in the GPKGDO peptide) corresponding to 

conformations where the salt bridges are broken.  These values are shown in Table 1.  In all 

cases, salt bridge formation stabilizes the triple-helical structure.  However, for the GPKDEO 

peptide, B-C salt bridges are the most stabilizing and in the GPKGDO peptide, A-B salt bridge 

pairs are the most favorable.   

 

Discussion 

The effect of salt bridges on protein stability has long been a subject of great interest (Horovitz et 

al. 1990, Hendsch and Tidor 1993, Sindelar et al. 1998, Makhatadze et al. 2003).  It has been 
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demonstrated that for globular proteins that the contribution of salt bridges to protein stability 

can vary greatly depending on the system studied.  Hyperthermophilic proteins, for example, 

generally contain more salt bridges than their normophilic counterparts and it is believed that 

these salt bridges contribute, on average, to the increased thermal stability of these systems 

(Kumar and Nussinov 2001).  The effects of salt bridges on normophilic globular proteins are 

still somewhat controversial.  There are data to suggest that salt bridge formation in these 

systems is often not stabilizing and when it is, it likely only marginally contributes to overall 

stability (Horovitz et al. 1990, Hendsch and Tidor 1993, Sindelar et al. 1998).   

The effect of salt bridge formation on fibrillar proteins, like collagen, has yet to be fully 

explored.  Previous work has demonstrated that the introduction of single acidic or basic residues 

into (GPO)3GXY(GPO)4 host-guest peptides leads to a significant decrease in the peptide 

melting temperature (Persikov et al. 2000).  However, double mutants (GPO)3GXYGX'Y'(GPO)3 

that contain pairs of oppositely charged residues led to an unexpected increase in protein 

stability, suggesting that interchain salt bridges may be an important regulator of triple-helical 

stability (Persikov et al. 2005). 

In the present study we explored the energetic contribution of salt bridges to the 

thermodynamics of triple-helix folding.  First, we demonstrate that an analysis of the relative 

effect of salt-bridge formation on triple-helical folding can be determined from an analysis of the 

folded state alone.  Calculated conformational free energy landscapes for the folded triple-helical 

structure were computed using a reaction coordinate that varied the distance between the side 

chains of the oppositely charged residues, thereby sampling states where the salt bridge is formed 

and states where it is broken.  All of the resulting free energy profiles contain a prominent global 

energy minimum corresponding to the conformation that contains a salt bridge and a second 

metastable state that corresponds to a conformation where the side chains are too far apart.  In 

each case, the global energy minimum and the metastable state correspond to states sampled in 

unrestrained dynamical trajectories of the salt bridge pairs.   

Interestingly, we found that salt bridges can exhibit a range of energetic contributions to 

triple-helical stability.  Some salt bridges have only a marginal effect on stability (A-B pair in 

GPKGEO), while others significantly stabilize the folded state (B-C in GPKGEO and A-B in 

GPKGDO).  Overall, we found that salt bridges can stabilize collagen by 0.6-3.6 kcal/mol, which 

is similar to the folding stability (1-5 kcal/mol) contributed by both buried and surface salt 
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bridges in globular proteins (Anderson et al. 1990, Tissot et al. 1996, Strop and Mayo 2000, 

Makhatadze et al. 2003). The asymmetry between interchain interactions is a critical property of 

interchain electrostatic interactions in collagen.  Both an unrestrained simulation (Figure 3) and 

the GΔΔ  value calculated from the potential of mean force (Figure 8) suggest that the A-B salt 

bridge is the most stabilizing of the three possible salt bridge interactions in GPKGDO, 

presumably due to the favorable geometries of the lysine and aspartate residues in question for 

adopting this conformation.  In contrast, the C-A salt bridge of the same peptide offers a mere 1.1 

kcal/mol of stability compared to the metastable state.  In this latter interaction pair, the two 

residues’ Cα atoms are brought into close proximity.  The length of the lysine side chain as 

compared to that of aspartate requires unfavourable stereochemical contortions to adopt a salt 

bridge conformation.  This stereochemistry is relaxed at higher distances, and is likely to be 

responsible for the relative stability of the secondary state rather than intermediate water 

molecules. 

Recently obtained experimental data in which a heterotrimeric model peptide comprised of 

(POG)10, (PKG)10 and (DOG)10 chains was observed to form in a single triple-helical register in 

solution (Fallas et al. 2009).  In these experiments, (POG)10, (PKG)10 and (DOG)10 peptides 

chains were combined in a 1:1:1 ratio, heated to 85°C, then cooled to 25°C and incubated 

overnight at room temperature (Gauba and Hartgerink 2007).  In principle, this mixture could 

yield three different homotrimers and six different heterotrimers (not including different possible 

chain registers).  However, a single heterotrimer – one that included one copy of each peptide 

sequence (deemed the KDO peptide) – was the dominant product (Fallas et al. 2009).  Moreover, 

this heterotrimer was found to exist in only one of six possible chain registers; multi-dimensional 

NMR experiments unambiguously identified chain A as the (PKG)10
 chain, chain B as the 

(DOG)10 chain, and chain C as the (POG)10 chain, as well as demonstrated the formation of 

interchain salt bridges, involving lysine and aspartate residues, between chains A and B (Fallas et 

al. 2009).  Thus, the observed chain register for the heterotrimeric DKO peptide is consistent 

with our observation that the lysine-aspartate salt bridge formed between chains A and B is the 

most energetically favorable.     

Our results shed light on the structural basis for the triple helical stabilization that results in 

peptides containing these residue pairs.  Interchain electrostatic interactions may play an 

important role in local stabilization of vertebrate triple helical collagen in regions requiring 



136 
 

added stability.  Furthermore, it has been noted that a high natural abundance of these residue 

pairs occurs in viral and bacterial collagen-like peptides (Xu. et al. 2002, Rasmussen et al. 2003).  

Prokaryotes lack the prolyl hydroxylase enzyme responsible for hydroxylation of the proline 

residues in the Y position (Mohs et al. 2007), and may therefore call on other mechanisms to 

stabilize the triple helical structure of such proteins.  Also, viruses infecting hosts which lack this 

enzyme may require similar alternatives to enhance the stability of collagen-like genes.  It may 

be possible to adopt similar approaches in the construction of synthetic collagens by introducing 

salt bridges in strategic locations. 

Experimental melting temperatures have confirmed the ability of these residue pairs to 

recover the stability of a pure GPO-containing peptide (Persikov et al. 2005, Fallas et al. 2009).  

Stability of the triple helix in regions lacking hydroxyproline may rely strongly on the presence 

of these salt bridges, and their disruption could lead to abnormalities in the structure and 

metabolism of collagen.  A detailed biophysical understanding of the contribution of salt bridges 

to triple helical stability could therefore form the basis of detailed sequence comparisons 

between diseased and healthy individuals in an up-and-coming age of high-throughput genomic 

sequencing. 
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 GPKGEO  

ΔΔG (kcal/mol) 
GPKGDO  

 ΔΔG (kcal/mol) 
A-B -0.6 -3.6 
B-C -2.4 -2.9 
C-A -1.3 -1.1 

 
Table 1: The free energy contribution of each salt bridge in the GPKGEO and GPKGDO 
peptides to triple-helical stability. 
 
 
 

 
 
Figure 1: Backbone hydrogen bonding pattern of the a collagen-like sequence (above) and the 
three interchain interactions we consider – A-B, B-C and C-A (below). 
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Figure 2: Dynamical timeseries data for the GPKGEO peptide.  Snapshots from the various 
states are shown below the timeseries for each interchain interaction. 
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Figure 3: Dynamical timeseries data for the GPKGDO peptide.  Snapshots from the various 
states are shown below the timeseries for each interchain interaction. 
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Figure 4: Thermodynamic cycle of collagen triple-helix formation involving the electrostatic 
interactions under study. 
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Figure 5: Potential of mean force constructed using the ξAB reaction coordinate for GPKGEO.  
Also shown are snapshots inside umbrella sampling simulation windows centered on ξAB=3.4Å 
and ξAB =5.6Å, respectively, corresponding to the two energy minima of the pmf.   
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Figure 6: Potential of mean force constructed using the ξBC reaction coordinate for GPKGEO.  
Also shown are snapshots inside umbrella sampling simulation windows centered on ξBC=3.8Å 
and ξBC =5.8Å, respectively, corresponding to the two energy minima of the pmf.   
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Figure 7 - Potential of mean force constructed using the ξCA reaction coordinate for GPKGEO.  
Also shown are snapshots inside umbrella sampling simulation windows centered on ξCA=3.8Å 
and ξCA =4.8Å, respectively, corresponding to the two energy minima of the pmf. 
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Figure 8: Potential of mean force constructed using the ξAB reaction coordinate for GPKGDO.  
Also shown are snapshots inside umbrella sampling simulation windows centered on ξAB=3.4Å 
and ξAB =5.0Å, respectively, corresponding to the two energy minima of the pmf. 
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Figure 9: Potential of mean force constructed using the ξBC reaction coordinate for GPKGDO.  
Also shown are snapshots inside umbrella sampling simulation windows centered on ξBC=3.4Å 
and ξBC =5.0Å, respectively, corresponding to the two energy minima of the pmf. 
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Figure 10: Potential of mean force constructed using the ξCA reaction coordinate for GPKGDO.  
Also shown are snapshots inside umbrella sampling simulation windows centered on ξCA=3.8Å 
and ξCA =5.4Å, respectively, corresponding to the two energy minima of the pmf.  
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Appendix B 
 

Derivation of the effective equilibrium constant in the 

presence of full length enzyme 
 

 

We first assume that the full length enzyme in Figure 6-1 is catalytically inactive (i.e., 

degradation does not occur from the V·F complex).  In this case, the system will reach an 

equilibrium defined by: 

 [ ] [ ] [ ] [ ] [ ] [ ] 0
d N d V d N H d V H d V F d E

dt dt dt dt dt dt
⋅ ⋅ ⋅

= = = = = =  (1)  

where [E] is the free enzyme concentration and the remaining variables are the species 

enumerated in Figure 6-1.  We wish to then calculate the equilibrium ratio of all vulnerable states 

to all native states:  

 [ ] [ ] [ ]
[ ] [ ]
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+ ⋅ + ⋅
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 (2) 

As an intermediate step to obtaining eff
eqK , we first note that: 
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Proof: 
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Using the fact that [ ]
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Using equation (3) and the fact that [ ]
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, we can 

calculate eff
eqK  from equation (2) as follows: 
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1
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1+ Kbind
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