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Abstract

We explore the use of Large Amplitude Oscillatory Shear (LAOS) deformation to

probe the dynamics of shear-banding in soft entangled materials, primarily worm-

like micellar solutions which are prone to breakage and disentanglement under strong

deformations. The state of stress in these complex fluids is described by a class of vis-

coelastic constitutive models which capture the key linear and nonlinear rheological

features of wormlike micellar solutions, including the breakage and reforming of an

entangled network. At a frequency-dependent critical strain, the imposed deforma-

tion field localizes to form a shear band, with a phase response that depends on the

frequency and amplitude of the forcing. The different material responses are com-
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pactly represented in the form of Lissajous (phase plane) orbits and a corresponding

strain-rate and frequency-dependent Pipkin diagram. Comparisons between the full

network model predictions and those of a simpler, limiting case are presented.
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1 Introduction

It is well-known that many classes of complex fluids including micellar solu-

tions, entangled melts and densely-packed colloidal suspensions develop spatial

inhomogeneities or ‘shear bands’ when undergoing strong shearing deforma-

tions [1, 2]. Recently there have been numerous experimental investigations

that have documented the details of these banding transitions in simple steady

shearing flow [3, 4, 5, 6]. Kinematic measurements in a rheometric device such

as a cone-plate rheometer or cylindrical Couette device show that the ho-

mogeneous viscometric flow observed at low deformation rates spontaneously

develops a banded profile beyond a critical deformation rate, typically with

a region of high shear rate located close to the (inner) moving surface and

a region of much lower shear rate near the stationary surface. As the shear

rate increases, the extent of the high shear rate band broadens until it encom-

passes the entire gap [5, 7, 8]. Careful experimental observations in entangled

micellar solutions [9] as well as recent calculations [10] show that the dynam-

ical response of these bands can be very complex with the shear-banded fluid

region exhibiting traveling internal waves or even chaotic fluctuations in the
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measured stress. Simultaneous measurements of the macroscopic ‘flow curve’

(steady shear stress versus imposed shear rate) typically show a stress plateau

in this regime. This banding can be thought of generically as a phase-transition

between two different microscopic configurations that can coexist at the same

stress [11, 12, 13]. A number of excellent reviews on shear banding in wormlike

micelles and other complex fluids have recently been presented [1, 2, 14].

This steady state banding behavior can be emulated by a number of differ-

ent rheological equations of state (EoS) which incorporate non-local effects

arising from the coupling between the macroscopic stress and the local con-

formation of the microstructural elements [12, 13, 15, 16, 17]. A key feature

of the majority of these constitutive models (but not [17]) is the presence of

a nonmonotonic relationship between the imposed deformation rate and the

resulting macroscopic stress, if the flow is assumed a priori to be homoge-

neous. In the shear-banded region this homogeneous solution is unstable under

appropriate boundary conditions on the velocity, and the local velocity field

across the sample gap bifurcates into two separate kinematic ‘phases’.

Although non-monotonicity in the constitutive relation between stress and

shear rate is important for describing the onset of shear-banding in the local

kinematics and the appearance of a plateau in the measured macroscopic ‘flow

curve’, it is an insufficient criterion for differentiating between the responses

of different constitutive models. Some candidate EoS, the Johnson-Segalman

model for example, exhibit nonphysical responses in rapidly-varying deforma-

tions [18]; other models do not exhibit proper linear viscoelastic behavior in

the limit of small deformations. The VCM class of models [16] do predict ap-

propriate behavior in shear, step strain and also in extensional flows [19][20].

In this paper we examine the response of the VCM constitutive model in Large
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Amplitude Oscillatory Shear (LAOS) [21] and compare with a limiting case

of the model, the PEC model. Very recently, Adams and Olmsted [17] have

considered LAOS flows for the ‘Rolie-Poly’ model of monodisperse entangled

polymeric melts and solutions. They show that transient inhomogeneous re-

sponses similar to steady state shear-banding can develop in simulations under

large imposed deformations.

We consider LAOS deformations in a cylindrical Couette cell with an im-

posed (inner cylinder) displacement of the form d/h = γ0 sin(ωt), where h

is the rheometer gap width. The principal utility of LAOS is that the defor-

mation amplitude γ0 and time scale ω−1 can be varied independently. For

small amplitude oscillations (SAOS) the shear stress response is a phase-

shifted sinusoid σ = σ0 sin(ωt + δ) in which the amplitude and phase of

the response depend on the frequency. However in LAOS, when nonlinear-

ities are important, the temporal response is more complex; consisting of

multiple harmonic components with both the phase and the amplitude de-

pending nonlinearly on the driving frequency and the imposed strain. If the

system shear-bands then these coefficients will also vary with the spatial

position. Fourier series expansions of the response have been used to de-

compose the elastic and viscous responses [21, 22]. A recent framework pro-

posed by Ewoldt et al. [23] uses instead a more natural Chebyshev decompo-

sition. The material response at the moving cylindrical wall is decomposed as

σ′(t;ω, γ0) = γ0Σk(ek(ω, γ0)Tk(sin(ωt)) +ωνk(ω, γ0)Tk(cos(ωt))) where Tk are

the Chebyshev polynomials of order k (and only the odd coefficients in this

expansion are nonzero [23]). The number of non-zero coefficients ek, ηk = ωνk,

and their relative magnitudes, may provide a fingerprint of the nonlinear vis-

coelastic material response.
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In this paper we examine the LAOS response of a prototypical class of models

(the VCM model) for shear-banding fluids in order to better understand how

these models describe the shear-banding events observed experimentally under

oscillatory forcing and to understand how the banded structures described

by these models evolve progressively in a well-controlled unsteady shearing

deformation as the strain amplitude and driving frequency increase.

2 The Model Formulation

To explore the dynamics of shear-banding in LAOS we consider a family of

constitutive models developed to describe wormlike micellar solutions. These

models are self-consistently derived from kinetic network theory and accu-

rately capture the coupling between the local microstructural conformation

and the resulting macroscopic stress response [16, 19]. This family of models,

referred to as VCM for brevity, captures individual contributions to the total

viscoelastic stress arising from long entangled chains (species ‘A’) and from

a shorter, unentangled ‘B’ species. The local number densities nA, nB respec-

tively of the longer and shorter chains evolve due to dynamic breaking and

reforming events.

The dimensionless governing equations for the VCM model are [19]:

for the number densities;

µ
DnA
Dt

= 2δA∇2nA − δA∇∇ : A +
cB
2
n2
B − cAnA (1a)

µ
DnB
Dt

= 2δB∇2nB − 2δB ∇∇ : B− cBn2
B + 2cAnA (1b)

and for the stress contributions;
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µA(1) + A− nA I− δA∇2A = cBnBB− cAA (2a)

εµB(1) + B− 1

2
nB I− εδB∇2B = ε(−2 cBnBB + 2 cAA) (2b)

where (·)(1) indicates the upper convected derivative defined as

(·)(1) =
∂(·)
∂t

+ v · ∇(·)− ((∇v)t · (·) + (·) · ∇v). (3)

Here the reforming rate cB is assumed to be a constant (cB = cBeq), and

the breakage rate cA = cAeq + ξ
3
(γ̇ : A

nA
) where cAeq is a constant. In this

system, time has been nondimensionalized by the effective relaxation time

λeff = λA
1+c′AeqλA

where λA is the reptative time of species A. It is clear from

this expression that the relaxation time of the entangled micellar network is

reduced from the reptation time due to breakage, which represents another

relaxation mechanism of the system. The other characteristic scales for the

system are as follows: the velocity is scaled by λeff/h where h is the gap

width, the stresses are scaled by the plateau modulus and the number den-

sities are scaled by the equilibrium number density of species A. The model

parameters are the non-dimensional diffusion constants δA = DAλA/h
2 and

δB = DBλA/h
2, the Deborah number De which measures the relaxation time

of the fluid to the time of the motion of the fluid (and which with this scal-

ing appears in the boundary conditions), the ratio of the relaxation time of

species B to that of species A, ε = λB/λA, the ratio of the relaxation time

of species A in the absence of scission and reforming (reptation time) to the

effective relaxation time of the solution when scission and reforming dynamics

are included, µ = λA/λeff . Additional parameters are the scaled equilibrium

breaking and reforming rates, cAeq, cBeq and the single nonlinear parameter ξ

controlling the dynamic breakage rate. The effect of varying the magnitude of

these parameter values on the model predictions is explored in [16].
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With this nondimensionalization the total micellar stress is,

σ = A + 2B. (4)

and the total stress is given by

Π = pI + (nA + nB)I−A− 2B− βγ̇ (5)

in which γ̇ = ∇v + (∇v)t. Here β = ηs/(ηs + ηp) where ηp is the contribution

of the entangled micelles to the total zero shear rate viscosity of the micellar

mixture and ηs is the solvent viscosity. For almost all micellar preparations

this parameter is small (order of 10−5) since the solvent is water or another

low viscosity fluid. These constitutive equations for the state of stress must

be coupled to the equations of conservation of mass:

∇ · v = 0 (6)

and that of (inertialess) conservation of momentum:

∇ ·Π = 0. (7)

We guarantee conservation of mass in our geometry by the assumption of a

unidirectional shearing flow vθ(r, t).

If equilibrium breaking and reforming events are disallowed (cAeq = cBeq = 0),

and there is only the ‘A’ species in the model (nA ≡ 1 and nB ≡ 0), then the

model still describes shear-banding transitions (when momentum is included),

plus a corresponding plateau in the steady shear flow-curve, as a result of non-

affine deformation of the elastic network and disentanglement of the longer ‘A’

chains. In this non-breaking limit the model involves fewer material constants

and evolution equations. If additionally the short chains comprising the ‘B’

species have vanishingly small relaxation time, λB → 0, then their rheological
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response is essentially Newtonian; in this limit the constitutive equation re-

duces to a nonlocal generalization of the partially-extending convected (PEC)

equation proposed by Larson [24] as a differential analog of the Doi-Edwards

reptation model for entangled melts. For this limit the evolution equation for

the extra stress that arises from the entangled microstructure plus the mo-

mentum equation are,

A(1) + A + δ∇A− I = −1

3
ξ(γ̇ : A)A (8)

∇ · (P I− βPECγ̇ − (A− I)) = 0. (9)

For this limiting (single species) model, the total shear stress is written σrθ =

−Arθ−βPEC γ̇, where the ratio of the viscosity contribution from the inelastic

‘B’ species (ηB) to the total zero-shear-rate viscosity of the system is de-

noted βPEC = ηB/(ηA + ηB). The value of βPEC controls the extent of the

shear-banding domain (which is controlled by the number density of (short) B

species in the VCM model) and varies with the type of entangled fluid being

considered. For example Tapadia & Wang [7] consider LAOS deformation for

an entangled solution of high molecular weight polybutadiene in a viscous low

molecular weight (and unentangled) oligomeric oil. In such a system the long

chains cannot break (in contrast to an entangled wormlike micellar system)

although they can still disentangled leading to formation of transient shear

bands with complex dynamics [6, 17].

In the present study we seek to compare and contrast the LAOS response of

the PEC and VCM models in order to understand which features of these

transient shear banding dynamics are common to the two systems and which

are connected to rupture events in the entangled network. We use the following

values in our PEC computations; βPEC = 5× 10−3, ξ = 0.7. The parameters
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we use for the VCM model calculation are shown in the caption to Fig.1.

The value of ξ is chosen to be the same as that of the PEC model, and the

parameters µ and ε are adjusted to match the value of the plateaus predicted

by the two models. The geometric curvature parameter p = h
Ri

(where h is

the gap width and Ri is the inner cylinder radius) is taken as p = 0.1 for

both the PEC and the VCM model calculations. Fig. 1 shows the steady state

flow curves for the VCM and the PEC model in Taylor-Couette flow with

our parameter choices. In this computation we have added a small amount of

diffusion (δA = δB = 0.001 for the VCM model and δ = 0.001 for the PEC

model) in order to obtain a unique plateau [19]. For these parameters the

steady state shear stresses and shear stress plateau agree well and the flow

curves are in good agreement for applied shear rates De = λAγ̇ ≤ 102.

The VCM model equations (and the corresponding PEC model equations) are

solved numerically using a spectral method with Chebyshev polynomials as

the base functions. Convergent results are obtained for N ≥ 20. Increasing

N yields more accurate local solutions; we pick N = 201, so that the band-

ing region is well resolved. The spatiotemporal dynamics of the shear-banding

transition arise through the coupling of the momentum equation with the

constitutive equation [19]. In these transient computations, the history de-

pendence of the solution is incorporated, thus the numerical solutions are

uniquely determined without the necessity of incorporating diffusive terms,

which serve primarily to smooth the interface between the two different ‘kine-

matic phases’. Addition of diffusive terms results in a transition region of size

δ
1/2
A [16, 19].

The oscillatory deformation history is applied at the inner rigid cylinder, and

the outer cylinder is held stationary. With the present scalings, the material
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Fig. 1. Steady state flow curves for the VCM (solid curve) and the PEC (dashed

curve) models in cylindrical Couette flow. Parameter choices for each model are

as follows: the PEC model, ξ = 0.7, βPEC = 0.005; the VCM model, ξ = 0.7,

β = 6.78 × 10−5, ε = 4.5 × 10−4, n0
B = exp(1/8), µ = 5.7, cAeq = µ − 1 = 4.7,

cBeq = 2cAeq/(n0
B)2 = 7.3.

response is a function of the dimensionless frequency or Deborah number De =

λAω and the imposed strain amplitude γ0. The dimensionless (apparent) shear

rate or Weissenberg number Wi ≡ Deγ0 = λAωγ0 is also useful in representing

the material response.

3 Results and Discussion

The fully-developed material response to the sinusoidal deformation history is

shown for the VCM model for several representative frequency and shear rate
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Fig. 2. Normalized VCM (v/vw) velocity profiles across the normalized gap 0 ≤ y ≤ 1

of the circular Couette cell showing shear banding, the progressive growth of the

shear-band across the gap, and the phase response of the fluid velocity for various

values of De, Wi. The profiles shown are at the instant when the wall velocity

(v/vw = cosωt) is maximum (red), minimum (green), zero and increasing (dashed,

blue), and zero and decreasing (solid,black), after all initial transients have decayed.

Responses shown are at frequencies De = 0.2π, 2π, 10π each for strain rates of

Wi = 20, 40, 80. The model parameters for the VCM model are given in Fig. 1. The

letter inscribed in each plot locates the response on the Pipkin diagram (Fig. 7).

pairs (De,Wi) in Fig.2. The velocity profiles shown are the fully-developed

periodic responses at the maximum/minimum wall speeds t = 0, π
De
, 2π
De
... and

at the maximum wall deflections t = π
2De

, 3π
2De

....

For small apparent strains (e.g. Fig.2:G γ0 = Wi/De = 20/(10π) ≈ 0.6) the
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Fig. 3. Velocity profile snapshots for the VCM (upper row) and PEC (lower row)

model simulations at selected times in the cycle as shown. These responses are at

low frequencies (De = 0.2π)and shear rates ofWi = 10, 20 within the shear banding

region.

‘linear’ viscoelastic limit is recovered, and the velocity field in the fluid varies

linearly (to within curvature effects p = h
Ri
) across the gap, in phase with

the boundary velocity, so that v(y, t)/vw ≈ (1 − y) cos(De t) + O(p), where

y = (r − ri)/h and vw = Wi is the maximum velocity at the inner wall of the

rheometer.

The material response is more interesting under stronger forcing (larger strain).

For a fixed frequency De, the velocity response develops shear bands as the

dimensionless strain rate Wi increases, with a high shear rate band forming

near the inner cylinder and the fraction of the gap containing the high shear

rate band increasing proportionally with Wi (e.g. Fig.2: A, B, C) until even-
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Fig. 4. The scaled (imposed) LAOS wall velocity, cos(De t) (dash dot line) and the

scaled velocity of the kink between the two shear bands (solid line) are shown as

functions of time over a cycle in the fully developed response. The results are shown

at a slow (De = 0.2π) and a faster (De = 2π) forcing frequency at a shear rate of

Wi = 20.

tually the high shear rate band spans the entire gap (e.g. for De = 0.2π,

this happens at Wi = 94, which is not shown). For a fixed shear rate Wi,

as the oscillatory frequency De increases, the profiles vary nonmonotonically

and elastic recoil events become more and more prominent. The elastic recoil

is evidenced in Fig. 2: D and H. Similar recoil events have been described in

experimental measurements of transient shear banding [25].

The dynamics of these shear banding regions are shown more clearly in Figs. 3,
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Fig. 5. Snapshots of the velocity profile for the VCM (upper row) and PEC (lower

row) model simulations at selected times in the cycle as shown. These responses are

at high frequencies (De = 10π) and shear rates of Wi = 40, 60 (corresponding to

strains of 4/π, 6/π) within the shear banding region of the VCM model.

4, 5 where the spatial and temporal evolution of the velocity profiles are shown

at several frequencies and shear rates for both the VCM and PEC models. In

Figs. 3, 5 velocities are shown at eight selected times throughout a cycle. In

Fig. 3 the frequency is selected to be slow enough that the response is quasi-

steady (De = 0.2π) and the shear rates are Wi = 10, 20. As noted previously,

the constitutive parameters of the two models are chosen so that the steady

state flow curves agree closely (see Fig. 1), and we see that at low frequencies
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the dynamics of the shear banding are similar for both models except in mid

cycle, De t = 2π/3, 5π/3 (red) at the higher shear rate, Wi = 20. At this

specific time within the shearing cycle the velocity profile of the VCM model

is more sharply kinked at the location of the shear band, whereas the velocity

profile in the PEC model is not as sharp. This is a consequence of the higher

value of βPEC and the larger viscous (diffusive) stresses in the PEC model.

In Fig. 4 the cyclic variation of the imposed wall velocity and the instantaneous

velocity of the kink between the shear bands are shown over one cycle for the

VCM and PEC models for both a slow (De = 0.2π) and a faster (De = 2π)

oscillatory deformation at a shear rate of Wi = 20. Because the Weissenberg

number is the same in each case, our expectations based on steady shearing

(Fig. 1) would be that the response of two models should be identical. At

the slower forcing frequency the kink velocity is small and in phase with the

imposed wall motion with the exception of a small excursion and then recoil

near t = 2π/(3De), 5π/(3De). When the wall stops moving and changes

direction, during this short period of relaxation there is a stored elastic stress

in the fluid which leads to a brief local flow reversal of the shear band. A similar

viscoelastic recoil in the local fluid velocity is observed in both experiments

and simulations of the start-up of steady shear flow [19]. Both models exhibit

a range of times over which the kink velocity is out of phase with the wall

forcing, but the range is more confined, and the effect is sharper and more

pronounced in the VCM model than in the PEC model. This out of phase

response represents the elastic recoil of the system. At the higher frequency

(De = 2π) these differences become further highlighted. In both models the

wall velocity and the kink velocity are out of phase with each other for large

portions of each cycle; however the amplitude of the recoil and overshoot events
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(at t ≈ 0.4) are larger and more rapidly damped in the VCM model. Flow

reversal at the kink occurs for the VCM model at Det = 0, π for De = 2π;

this is evidenced in Fig. 2D as well as in Fig. 4. In contrast at these particular

times the kink motion for the PEC model is still in phase with the wall forcing.

In Fig. 5 we increase the driving frequency still further, to De = 10π, and

concomitantly the shear rates have also been increased to Wi = 40, 60 in

order to stay within the shear banding regime. The VCM and PEC models

behave quite differently at this frequency. The response of both models is slow

compared to the forcing time scale, so there is insufficient time for the material

to recover and approach a quasi-steady state response at any point during the

cycle. The larger viscous contribution to the stress in the PEC model results

in a velocity profile which becomes increasingly diffusive in character and the

location of any kink becomes difficult to discern (at Wi = 40 the kink in the

PEC model is very close to the left boundary, that is shear banding is just

initiating at this Wi). The banding of the VCM model is still distinct and

sharp due to the additional localization associated with rupture of the ‘A’

chains and the lower background solvent viscosity.

The effective relaxation time for the VCM model in LAOS is λeff/λA = 1/(1+

cAeq + 2ξWiArθ
3nA

), whereas for the PEC model, λeff/λA = 1/(1 + 2ξWiArθ
3

) (here

Arθ is the appropriate time and space evolved shear stress for the respective

model). Due to the appearance of a nonzero cAeq in the denominator and

the additional contribution from the decrease in the number density of ‘A’

chains in strong deformation, this dynamic effective relaxation time for the

VCM model is smaller than for the PEC model in the high shear rate region.

For low frequencies both dynamic relaxation times are smaller than the time

scale of the imposed motion λeff/λA << 1
De

, but as the frequency increases
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the balance shifts to (λeff/λA)V CM < 1
De

< (λeff/λA)PEC . This explains the

difference in response of the two models at De = 0.2π and 2π as seen in

Fig. 3, 4. At the lower frequency the two velocity profiles are very similar

and the flow is effectively quasi-steady except at the localized recoil events.

In both cases the time scale of the imposed motion is long compared to the

dynamic breakage time. However for the higher frequency as the shear rate is

increased it is evident that the PEC model has not had time to fully relax to

a quasi-steady profile at any point during the cycle.

The shear stress profiles for the (long) ‘A’ species for the VCM model, and the

entangled polymer contribution to the stress for the PEC model are shown in

Fig. 6, along with the corresponding local number density of the (long) ‘A’

species for the VCM model at De = 2π,Wi = 20. The snapshots are shown

at the same times as the velocity profiles in Fig. 3. As anticipated, in the high

shear rate band (near the inner wall) the ‘A’ chains have broken, the local

number density nA is small and the resultant shear stress from the A species

is small. The shear stress for the PEC model varies qualitatively in the same

way as observed for the VCM model (with small differences in the phase at

intermediate times) for this selection of frequency and imposed shear rate;

however, the magnitude of the stress in high shear rate band for the PEC

model is larger than the contribution to the stress from the long ‘A’ species

for the VCM model as anticipated due to the breakage in the VCM model.

It is clear from Figs. 2-5 that the dynamics of the shear-banding transition in

LAOS are a function of both the time-scale of deformation and the imposed

deformation rate (or strain amplitude). These interdependencies can be better

understood physically if the computational results are assembled into a Pipkin

diagram [21, 26], as shown in Fig. 7(a) and 7(b). For each value of De we plot

17



0 0.5 1
1

0.5

0

0.5

1

Normalized Gap, [ ]

A r
, [

]

VCM, De=2 , Wi=20

0 0.5 1
1

0.5

0

0.5

1

Normalized Gap, [ ]

A r
, [

]

PEC, De=2 , Wi=20

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalized Gap, [ ]

n A, [
]

VCM, De=2 , Wi=20

De t=0
De t= /3
De t= /2
De t=2 /3
De t=
De t=4 /3
De t=3 /2
De t=5 /3

Fig. 6. Profiles of the shear stress contribution from the entangled long chains for the

VCM model (upper left) and the PEC model (lower row). The profiles are plotted

at the same points within the cycle as shown in Figs. 3, 5, and the same frequency

and shear rate as shown in Fig. 4 right. On the upper right is the corresponding

instantaneous number density profile of the VCM long chains at the same times and

parameter values.

the critical dimensionless strain rate Wic1 for onset of shear banding and a

second critical strain rate Wic2 at which a banded velocity profile can no

longer be discerned because the high rate band fills the entire gap. Results are

shown for both the VCM and the PEC model. The (De,Wi) coordinates of

the individual velocity profiles of the VCM model shown in Fig. 2 are indicated

in Fig. 7(a) by the labeled points. Within the region delineated by the dashed
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Fig. 7. Pipkin diagram showing the LAOS response of entangled fluids described by

the VCM model, and a comparison with the predictions of the PEC model (with

parameters as given in Fig. 1). Labeled points A-I as in Fig. 2. Open circles in

(a) bound the shear banding region in strain rate/ frequency (De,Wi) space for

the VCM model, starred symbols bound the region for the PEC model. The open

circles in (b) enclose the same region in strain/frequency (De, γ0) space for the VCM

model, starred symbols for the PEC model. At the left of (a) we show the steady

state profile of the shear stress for the VCM model. The solid line corresponds to

the solution with small diffusion (δ = 0.001), the other two curves correspond to

the result with no diffusion with a ramp start up (v|wall = vw tanh at) which is slow

(a = 0.1; green, + symbols) and fast (a = 10; purple closed symbols).
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lines, the velocity field in the entangled fluid exhibits inhomogeneities with

varying degrees of shear banding; below and above this region there is no

shear banding. The precise spatial location of the shear band can be observed

visually in most cases, or it can be monitored numerically by seeking the

extremum of ∂γ̇
∂r
. Computations at A, B of Fig. 2, for example, show ∂γ̇

∂r
∼

104, representing the extent to which the numerical method can resolve the

discontinuous change in γ̇(r) at the location of the shear band.

For small Weissenberg numbers (Wi < 1.5) there is no shear banding for

any value of De, the fluid response to the oscillatory forcing at the wall is a

purely homogeneous shear flow. At very high oscillatory frequencies within the
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inhomogeneous region the ‘banding’ event for the PEC model has insufficient

time in each cycle to develop. It is thus increasingly difficult in this regime

to accurately discern the boundaries demarcating the presence or absence of

shear-banding. The VCM model, on the other hand, has a sharp banding

response even in these regions.

At the higher oscillatory frequencies, the rapid temporal variations in the

wall velocity shifts the lower boundary for onset of shear-banding to higher

critical Weissenberg numbers. This behavior can be more clearly understood

with reference to Fig. 7(b) in which the critical strain amplitudes for banding,

γ0,c = Wic/De, are shown as a function of De. At low frequencies, the defor-

mation is slow compared to the relaxation time of the entangled microstructure

(1/ω � λA) and fluid elements continually relax during each period of oscil-

latory straining. Thus very large strains can be accumulated in the entangled

material before shear-banding occurs. By contrast, at larger Deborah num-

bers, molecular relaxation is insignificant and the response is dominated by

the nonlinear elastic response: banding occurs when a constant critical strain

γ0,c1 ≈ 1.1 is exceeded. The smooth transition between these two asymptotic

regimes can be described quite accurately (for 0 < De ≤ 20) by the expression

Wic1 = 1.1De + 1.5e−De/2. At very high frequencies (De > 20) the bottom

boundary slowly curves up due to the additional stabilizing contributions of

viscous stresses.

The upper boundary for the shear-banding transition remains relatively flat

at Wic2 ≈ 90 for the PEC model. Above this critical value of the Weissenberg

number, the additional stress carried by the purely viscous ‘B’ species exceeds

the contribution from the longer ‘A’ species, which is increasingly disentangled

by the high shear rate in the fluid. A detailed consideration of the momentum
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Eqn. (9) in this limit shows that the velocity field can vary smoothly across

the gap and still satisfy the required radial variation in the total shear stress

σrθ(r) across the gap. For the VCM model we see that at a frequency of about

De = 1.5 the upper boundary of the shear banding region first decreases

slightly, then at De = 10 it begins to rise; eventually rising above that of the

PEC model. This frequency dependence in the upper boundary at high De

is expected due to the additional stress contributions of the (viscoelastic) ‘B’

species. This can be understood more clearly in figure 7(b) where the upper

boundary of the shear banding region for the VCM model in the strain versus

frequency diagram is seen to decrease faster than that of the PEC model,

before leveling off.

An alternative representation of these results is shown in Fig. 8 where the

LAOS analogue of the steady shear “flow curve” of Fig. 1 is shown for the

VCM model. For each apparent shear rate (Wi) across the gap, the maximum

value of the shear stress at the wall within a cycle is plotted. Note that as

the frequency is increased the plateau region shrinks from the low shear rate

boundary, and the plateau level for these selected values rises to the height of

the overshoot observed in the steady state shear-stress plateau. Well before

they approach this plateau, these curves are each linear and parallel on this

log-log plot. In this linear viscoelastic regime (Wi . 1) the stress growth in a

transient shear flow is of the form σ′ ≈ Gγ(t). Furthermore, in a periodic flow

such as oscillatory shear flow, the maximum strain is reached at a time t′max ≈
π
2ω

and the strain accumulated in this time is γmax ≈ γ0ωt
′
max. Combining

these approximate expressions gives, to the lowest order, σ′max ≈ Gγ0ω
π
2ω
, or

in dimensionless form σmax ≈ π
2
Wi
De

.

The graph on the left of Fig. 7(a) shows the steady state flow curve prediction
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of dimensionless shear stress σrθ predicted by the VCM model as a function

of dimensionless shear rate Wi = λAγ̇. Note that for the VCM model, as

reported in [19] for the PEC model, the shape of the flow curve in the absence

of diffusion depends on the initial conditions. Similar trends are observed in

other nonlocal models [12, 13]. Three curves are shown: the solid line is the

VCM model prediction with a small (δ = 0.001) diffusion, the plus symbols

are the result with no diffusion but with a slow initial ramp up to the final wall

velocity (tanh(0.1t)), and the solid symbols are the result with no diffusion

but a faster ramp up to the final wall velocity (tanh(10t)). In the case of

slow start-up, the steady state plateau stress is larger than the value obtained

with a fast start up ramp, and higher than the unique plateau obtained with

diffusion. In the case of slow start-up the plateau also ends at a higher shear

rate than for the faster start up. Similar trends hold in the PEC model, but are

far less pronounced and are not shown here. These observations are relevant

to the upper boundary of the Pipkin diagram shown in Fig. 7(a). For the

PEC model the upper boundary of the shear-banding transition in Fig. 7(a)

remains relatively flat at Wic2 ≈ 90. For the VCM model the upper boundary

is flat for small frequencies with a critical value which is consistent with the

steady state flow curve obtained using a slow ramped start-up. This boundary

then decreases to a lower value at De ≈ 6 corresponding to a shear rate value

consistent with the termination of the steady flow plateau for the faster ramp.

After this local dip the curve then rises again for De & 10 due to viscous

stresses. This behavior is mirrored in the critical strain/frequency diagram

shown in Fig. 7(b): the upper boundary of the shear banding region for the

VCM model appears to asymptote to a critical strain of γ0,c ≈ 2 at high

frequencies. At these shear rates the PEC model behavior has become too

diffusive for one to readily observe banding behavior.
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4 Phase Plane (Lissajous) Curves

In addition to probing the kinematics of shear banding in LAOS, our model

computations also provide insight into the evolution of the shear stress σ(t;De,Wi)

acting on the oscillating wall of the Couette device. The total oscillatory shear

stress can be conveniently portrayed by a phase plane representation in the

form of a Lissajous figure with stress being plotted against the instantaneous

strain γ(t) as shown in Fig.9 or, equivalently, against the strain rate γ̇(t) as

shown in Fig.10. At small strain amplitudes, below the critical boundary γ0,c1

shown in Fig. 7(b), the VCM model predicts a linear viscoelastic response at

all frequencies and the Lissajous trajectories are simple ellipses. A representa-

tive example is shown at De = 10π,Wi = 20. The purely elastic contribution

to the total viscoelastic stress is shown in Fig. 9 by the red (dashed) lines [27].

The VCM model predicts a linear elastic contribution at small γ0 but this

becomes increasingly nonlinear at larger imposed strains. Beyond the critical

strain corresponding to the onset of shear banding (Wi > 1.7 at De = 0.2π

or Wi > 6.5 at De = 2π) the trajectories become increasingly nonlinear with

local overshoots in the instantaneous shear stress. As the oscillatory frequency

increases, the system response becomes progressively more in phase with the

applied strain and the magnitude of the viscous response (corresponding to

the difference between the total stress (solid line) and the elastic stress (bro-

ken line)) decreases. At intermediate Deborah numbers De ≈ 2π intracycle

strain softening, then hardening is observed. In the Lissajous curves, when

plotted in a viscous representation (i.e. against shear rate γ̇(t)), secondary

loops appear. These secondary loops further represent the strong elastic non-

linearity as discussed in [28]. Harmonic analysis of the stress signal in this
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regime shows a rapid growth in the magnitude of the third and fifth Cheby-

shev coefficients (which becomes a factor of two larger than the first order

coefficient) further indicating the strong nonlinear elastic response (see Ap-

pendix Fig. 1). This behavior is in direct contrast to that for the non-shear

banding Giesekus model [28], in which the fifth order elastic coefficient stays

smaller than the third order which stays smaller than the first order coeffi-

cients. A detailed comparison of the magnitude of the coefficients in the PEC

model shows that, like the Giesekus model, the fifth order harmonic contribu-

tions remain smaller than the third order, which are themselves smaller than

the leading order coefficients.
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Fig. 9. Lissajous figures of the oscillatory stress responses for the VCM model as a

function of the (apparent or nominal) imposed strain γ(t) = γ0 sinDe t. The plots

are at the same frequencies and strains as those shown in Fig. 2, and are identified

by the corresponding letters in the Pipkin diagram (Fig. 7).
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5 Conclusion

In this paper we have demonstrated how a relatively-simple class of rheolog-

ical equations of state−derived from a self-consistent kinetic network theory

treatment of microstructural deformation and its coupling to the total state

of stress in the system [16, 19]−can describe the dynamics of shear-banding

transitions in a broad class of time-varying shearing flows. Large amplitude

oscillatory shear (LAOS) provides a means to independently control both the

amplitude and time scale of the imposed deformation, and the resulting ‘state

space’ of the shear-banded structures can be conveniently represented in terms
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of a Pipkin diagram. The key features of the shear-banding predicted in LAOS

by the PEC model are in good qualitative agreement with experimental mea-

surements using monodisperse entangled polymer solutions [7]. The LAOS test

protocol also provides a way to distinguish between different limiting cases of

the VCM family of models (VCM vs PEC) and should be of interest in ex-

perimental probes of the nonlinear rheology of entangled systems; as well as

enabling a more discriminating test of the predictions of putative rheological

equations of state for nonlinear viscoelastic fluids[29]. The increased nonlin-

earity of the two species VCM model over that of the PEC model leads to

spatially well-defined versus diffusive banding profiles at higher frequencies;

as well as changes in the upper boundary of the Pipkin diagram.
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A Chebyshev Coefficients

In the Chebyshev decomposition (σ′(t;ω, γ0) = γ0Σk(ek(ω, γ0)Tk(sin(ωt)) +

ωνk(ω, γ0)Tk(cos(ωt)))) of the LAOS responses any coefficients that are higher

than the first order indicate the nonlinearity in the system. Fig. A.1(a), (b)

shows the computed ratio of the third and fifth order elastic and viscous

coefficients, respectively, to the first order coefficients for one frequency choice,

De = 2π. The first order elastic and viscous coefficients are plotted in Fig.
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A.1(c). Also shown by the broken line is the critical strain γ0,c corresponding

to onset of shear-banding at this Deborah number. It is clear from the ratio

ν3/ν1 that a viscous intra-cycle nonlinear shear-thickening rheological response

(albeit small) can be observed before the onset of shear banding. A magnitude

smaller (O(10−2), not visible in the scale of the figure) elastic softening occurs

at the same strain. Following the onset of shear-banding, the nonlinearity of

the Lissajous phase portraits increases dramatically with very large values of

e3/e1 and e5/e1 that arise from the phase-shifted oscillations of the shear-bands

shown in Fig. 3, 5.
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