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Abstract

Quality control is an important part of protein biogenesis. Aberrant proteins must
be destroyed before they aggregate and cause deleterious effects. Failure to do so can
result in cell death or malfunction and, ultimately, disease. Quality control involves the
recognition of misfolded proteins and their degradation. For secretory and membrane
proteins, folding occurs in the endoplasmic reticulum (ER), but degradation is performed
by the cytosolic proteasome. Thus, quality control in the secretory system includes the
dislocation of misfolded proteins from the ER to the cytoplasm. ER proteins that fail to
fold correctly are identified and directed to the membrane-associated ER quality control
machinery. They are then moved across the ER membrane, tagged with ubiquitin, and
extracted from the membrane and complex. Finally, the dislocation substrate is taken to
the proteasome where it is degraded.

Many proteins constituting the mammalian quality control machinery have been
identified. Several different dislocation complexes work in parallel to clear misfolded
proteins from the ER and they are distinguished by their E3 ubiquitin ligase. This thesis
describes the identification and characterization of several previously unknown members
of the HRD1-associated ER quality control complex. The newly-identified proteins are
osteosarcoma amplified-9 (OS9), UBX domain containing-8 (UBXD8), Ubiquitin-
conjugating enzyme-6e (UBC6e), and ancient ubiquitous protein-i (AUP1).

Each of these proteins participates in different steps of ER quality control. OS9
directs misfolded soluble glycoproteins to the dislocation complex. The mannose-6-
phosphate homology domain of OS9 is involved in the recognition of glycans on the
misfolded protein. UBXD8 recruits p97, the AAA+ ATPase responsible for membrane
extraction of dislocated proteins, to the ER using its UBX domain. UBC6e is a
membrane-anchored E2 ubiquitin conjugating enzyme. AUP1 recruits a second E2,
soluble UBE2G2. Additionally, AUPI regulates substrate mono- and poly-ubiquitylation.

AUPI is also necessary for lipid droplet formation. Lipid droplets are cytoplasmic
organelles that store neutral lipids. Based on the data that AUPI depletion affects both
ER quality control and lipid droplet formation and that pharmacological inhibition of
lipid droplet formation perturbs dislocation, we propose that lipid droplet formation may
also play a role in ER protein quality control.
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Chapter 1: Introduction

QUALITY CONTROL IN THE ENDOPLASMIC RETICULUM

Cells have evolved mechanisms to complete their tasks efficiently. Sometimes

this involves giving up accuracy to gain speed. Therefore, a system must be in place to

correct or remove mistakes. Such is the case for secretory protein synthesis. Aberrant

secretory proteins that cannot fold may arise from genomic errors, as in certain inherited

diseases, or from errors in transcription (estimated at 1 x 10-4 per codon in prokaryotes)

or translation (estimated between 1 x 10-3 and 1 x 10-4 in prokaryotes)1 . Protein folding

also presents an error-prone process, especially in the crowded conditions of the

endoplasmic reticulum (ER) lumen, where protein concentration reaches approximately

300mg/mL2. Protein folding times range from 50ms for simple proteins to hours for

complex proteins 2 and the protein folding pathway may include several different

intermediate conformations. Fortunately, the cell has an effective system to help

secretory proteins fold as well as an ER quality control (ERQC) system in place to

remove those proteins that are unable to achieve their correct three-dimensional structure.

However, if the amount of misfolded protein exceeds the capacity of the ERQC system,

the unfolded protein response (UPR) and, in some cases, autophagy are activated. If the

cell is still not able to return to homeostasis, apoptosis is triggered. The numerous back-

up systems underscore the importance of destroying misfolded proteins before they cause

damage to the cell in the form of toxic aggregates.

History

Degradation of ER proteins was first observed for the human T-cell Receptor

subunit u (TCRc)3~4. Experiments showed that the protein is degraded before trafficking



to the Golgi and its degradation is independent of the lysosome. The working hypothesis

was that they are degraded in an unknown compartment or by an unidentified ER resident

protease. Data later emerged that disruption of an E2 ubiquitin conjugating enzyme in

yeast, Ubc6p, prevents the removal of a mutant version of an ER protein, Sec6lp, and

pharmacological inhibition of the proteasome stabilizes many ERQC substrates in both

yeast and human cells5-6. At this point, it was understood that ER proteins are removed

(dislocated) from the ER and degraded in the cytoplasm.

Dislocation substrates

What types of proteins are subjected to dislocation? As mentioned above,

misfolded proteins are degraded for quality control reasons. Correctly folded proteins can

also be removed from the ER as part of regulatory schemes. The common theme for all

dislocated proteins is that they are transported from the ER to the cytoplasm, where they

are degraded by the proteasome. The specific route that each substrate takes may vary

slightly, but all follow the same general path.

What causes proteins to misfold? Several inherited diseases are marked by the

absence of a specific secretory protein. These proteins are made, but due to a mutation

are unable to fold and are degraded. For example, several disease-causing mutations in

the secreted elastase inhibitor alpha-i anti-trypsin (AAT) have been identified; the Null

Hong Kong (NHK) variant has a premature stop codon 7 and the Z-variant has an amino

acid substitution (E342K). Both mutations prevent proper folding and result in

degradation. Mutations in the Cystic fibrosis transmembrane conductance regulator

(CFTR) protein result in disease. The most common mutation is a single amino acid

deletion, AF508. Although this mutant is actually a functional chloride channel, it is



recognized as misfolded by the cellular quality control machinery and never reaches the

cell surface8, causing disease pathology. An engineered truncated form of Ribophorin I

(RI 332), consisting of the first 332 amino acids of the protein, is also subject to

degradation9 . Thus genomic mutations, including point mutations, frame-shifts and

premature stop codons, often result in misfolding followed by dislocation.

Do wildtype cells also produce misfolded ER proteins? By comparing total

nascent ER protein levels in control cells to cells treated with a proteasome inhibitor, it

was estimated that up to 30% of proteins that enter the ER are degradedl . Very large or

complex proteins show an even higher percentage of degradation, probably because they

are more prone to be trapped in non-native folding intermediates. This information

indicates that the reason ER proteins fail to fold is also due to errors in transcription,

translation or folding.

Components of multi-subunit complexes are often dislocated if the partner

subunit(s) are not present in a stoichiometric ratio. Examples of dislocated subunits

include immunoglobulin chains, NMDA receptor subunits, and the T-cell Receptor

(TCR) subunits TCRa and CD36 4. This shows that even properly-folded proteins can

be subject to dislocation if they are part of a complex and unable to associate with their

binding partners.

Several proteins involved in lipid biosynthesis are dislocated based on

intracellular lipid levels. When cholesterol or lipid levels are low, ApoB is dislocated

instead of being incorporated into Very-Low Density Lipoprotein particles"5 . When

intracellular sterol levels are high, 3-hydroxy-3-methyl-glutaryl-CoA reductase

(HMGCoA reductase), the rate-limiting enzyme of cholesterol biosynthesis, is



degraded16 . The calcium channel opening Inositol triphosphate (IP 3) receptor17 is also

regulated by dislocation. Thus the cell uses dislocation to remove folded ER proteins in

order to regulate their activity.

Viral immune evasion using dislocation

During virus infections, the host cell normally loads virus-derived peptide

antigens onto major histocompatibility complex (MHC) class I complexes in the ER. The

MHC class I-antigen complexes traffic to the cell surface where they are recognized by

cytotoxic T-cell lymphocytes that stimulate killing of the virus-infected cell. It was

observed that Human Cytomegalovirus (HCMV)-infected cells do not have MHC class I

molecules on the cell surface, and thus the host's immune system is unable to effectively

fight the infection (Fig. 1.1). It was found that several viral genes in the Unique Short

(US) region of the HCMV genome are responsible for the surface down-regulation of

MHC class 118 and that MHC class I heavy chain (HG) is rapidly degraded during HCMV

infection'9 , but the question remained of what was responsible for this degradation. It was

found that if the proteasome is pharmacologically inhibited in cells expressing the

immunoevasin US 11, MHC class I HC is not degraded and found in the cytoplasm 6.

Later, US 11 was found to interact with known components of the ERQC complex 2 0. it

was concluded that US 11 is co-opting the host's ERQC machinery in order to dislocate

MHC class I. Two other HCMV proteins, US2 and US10, were also found to hi-jack the

dislocation machinery, but they have different MHC class I allele specificity, use
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different host complexes, and carry out dislocation at different rates. US2 and US 11 both

mediate the rapid dislocation (half-life of 2-5 minutes) of MHC class 16, but use different

host ERQC complexes. US2 uses a complex that includes Signal Peptide Peptidase and

TRC8 21-22. US 11 uses the better-understood HRDI/SEliL complexxx2. US10

specifically targets HLA-G MHC class I alleles for degradation, but with significantly

slower kinetics24 . These HCMV proteins have proved to be valuable tools for probing the

mechanism of dislocation.

Protein insertion into the ER

Proteins destined for secretion or residence in the plasma membrane, Golgi

apparatus, lysosomes, or ER are first translocated into the ER. The ER is a membrane-

bound compartment contiguous with the nuclear envelope. How do secretory proteins

enter the ER? Translocation of most polypeptides into the ER lumen occurs co-

translationally through the Sec61 protein channel2'. Targeting of soluble ER proteins and

Type I membrane proteins is achieved by an N-terminal signal sequence 26-27. This

hydrophobic stretch of amino acids is recognized by the Signal Recognition Particle

(SRP) and ferried to the Sec6l translocon where it is inserted into the ER and the signal

sequence is cleaved by Signal Peptidase28 . Membrane proteins may also be targeted to the

membrane independent of a signal sequence or post-translationally, as with tail-anchored

proteins that are inserted into the membrane by the GET-pathway 29.

Folding: Chaperones

The observation that polypeptides enter the ER lumen co-translationally in an

extended conformation and must fold in the luminal environment raised the following

question: how are nascent ER proteins with exposed hydrophobic residues kept from



aggregating? Immunoglobulin (Ig) heavy chains, a protein expressed in high amounts by

pre-B cells, were found to associate with binding immunoglobulin protein (BiP)". BiP

binds the Ig heavy chains in the absence of Ig light chain, and it was found that BiP acts

as a chaperone to Ig heavy chains and all ER proteins. How does BiP act as a chaperone?

BiP is a member of the Hsp70 family of proteins and the major ER lumenal chaperone.

Like cytoplasmic chaperones, BiP maintains the polypeptides in a folding-competent

conformation and prevents their aggregation. How does BiP bind its substrates? Using

affinity panning of a peptide library, it was found that BiP preferentially binds amino acid

sequences with alternating aromatic and hydrophobic residues. Because this type of

sequence is common in proteins, BiP can serve as a chaperone to most proteins and

virtually coat the entire length of the polypeptide. Structural data showed that BiP

engages polypeptides with its C-terminal substrate binding domain and the affinity of BiP

for the polypeptide is determined by a conformational change resulting from nucleotide

binding at the N-terminal domain. ERdj3, an Hsp40-family co-factor promotes ATP

hydrolysis and peptide binding32 -3 , and GrpE-like proteins promote nucleotide exchange

and peptide release 34'31. BiP is one of the first proteins that meets nascent polypeptides

entering the ER along with other chaperones that are pre-assembled into a complex that is

poised to interact with the incoming polypeptide36 (Fig 1.2). The processive binding of

BiP ensures uni-directional movement of polypeptides into the ER by preventing the

nascent chain from slipping backward into the cytoplasm37 .

Folding: Glycosylation

Proteins containing the N-linked glycosylation consensus sequence (asparagine-

X-serine/ threonine, where X is any amino acid except proline), are recognized by the
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Oligosaccharide Transferase (OST) complex as the polypeptide exits the translocon on

the luminal side. If the glycosylation site occurs at the very N-terminus of the nascent

chain, glycosylation will precede BiP binding38. Glycosylation increases the protein's

solubility, aids in folding, and increases the stability of the folded protein, and may be

involved in protein-protein interactions 39. The OST complex is made up of Ribophorin I

and II, OST48, OST4, DADI, IAP/N33, and the catalytic subunits STT3A or STT3B40 .

The OST complex catalyzes the transfer of pre-assembled Glc 3Man9GlcNAc 2 (Glucose 3,

Mannose9 , N-acetylglucosamine2) from Dolichyl pyroshosphate lipids onto the

asparagine residue of the glycan acceptor site of the polypeptide 4 1. This process largely

occurs co-translationally, however, in some instances, it appears to happen post-

translationally on poorly folded polypeptides by the STT3B isoform of the catalytic

subunit42.

Folding: Calnexin/ Calreticulin Cycle

Almost immediately after glycans are covalently attached to polypeptides, the two

outermost glucose residues are removed by Glucosidase I and II43-44. This produces a

Glc I Man9 GlcNAc 2 glycan structure which is preferentially bound by the lectin

chaperones calnexin and calreticulin4 5(Fig. 1.3). Calnexin and calreticulin recruit ERp57,

an enzyme that catalyzes one of the rate-limiting steps of protein folding, disulfide bond

formation 4 6. The binding of calnexin and calreticulin to polypeptide chains also provides

time for the polypeptide to fold and serves as an ER-retention mechanism47.

When calnexin releases the glycan, glucosidase II removes the third and final

glucose moiety. If the glycoprotein is correctly folded by this time, it is allowed to

continue its progression through the secretory pathway. If, however, the polypeptide has
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failed to fold correctly, it will be either given another chance to attempt folding or will be

marked for removal from the ER 48. Re-entry into the calnexin/calreticulin cycle is

achieved by re-glucosylation of the glycan by UDP-glucose:glycoprotein

glucosyltransferase (UGGT) 49.

Selecting misfolded ER proteins for dislocation

It is important that proteins are given ample chance to fold, but removed if they

are terminally misfolded. Infinite cycling through the calnexin/calreticulin cycle would

cause a deleterious back-log in the system. It was found that terminally misfolded

proteins had glycans with Man 8GlcNAc 2 structures, lacking the mannose where UGGT

re-attaches the glucose. ER c-mannosidase I, EDEM1, EDEM2, and EDEM3 are likely

the mannosidases responsible for mannose trimming in mammalian cels 5 0-52 . Trimming

mannoses off of the glycans before UGGT can replace the glucose precludes the

possibility of the protein returning to the calnexin/calreticulin folding cycle. Thus the

removal of the terminal mannose serves as the signal that consigns proteins to removal

from the ER and degradation.

How does the cell distinguish on-pathway folding intermediates from hopelessly

misfolded species and subject only the latter to mannose trimming? ER aX-mannosidase I

is active in vitro only under non-physiological concentrations 3 . If ER a-mannosidase I is

concentrated at specialized subdomains of the ER, it may reach levels required for

activity54. EDEM1 has also been observed in small vesicles called EDEMosomes that are

cleared upon delivery to endo/lysosomes55-56. EDEM is also highly upregulated during

the UPR in response to XBP-1 splicing50,57- 58. Thus physical separation of the actively

folding proteins from the mannosidases or adjustment of mannosidase levels may allow



the cell to tune the stringency of ER protein selection for degradation5 9. This hypothesis

is termed ER tuning.

Directing misfolded ER proteins to the dislocation machinery

After mannose trimming, how are the misfolded glycoproteins directed to the

dislocation machinery 60 ~61? OS9, XTP3-B and SELIL are required for the dislocation of

soluble ER luminal glycoproteins62-63, but not for membrane-bound proteins with

misfolded luminal lesions13 . Both XTP3-B and OS9 contain mannose-6-phosphate

receptor homology domains that are important for their role in dislocation and act as

glycan-binding sites. XTP3-B and OS9 may bind glycans on the misfolded proteins, but

are also known to bind to glycans of downstream ER quality control factors, including

SELIL 63-64. It was concluded that OS9, XTP3-B, and SELlL act as adaptor proteins to

direct soluble proteins to the site of dislocation (Fig. 1.4). Lateral diffusion of membrane-

anchored dislocation substrates may be sufficient to target them to the dislocation

machinery.

After multiple folding attempts, the dislocation substrate is no longer an extended

polypeptide- it may contain disulfide bonds and glycans as well as partially-folded

domains and regions with exposed hydrophobic residues. Does the protein unfold again

before being dislocated? Mannose trimming is thought to serve to reduce physical

bulkiness as well as signal for removal. Some disulfide bonds are also observed to be

reduced prior to dislocation and three proteins are implicated in this process: ERdj56 ,

BiP, and EDEM. In contrast, it has been shown that tightly folded domains (green

fluorescent protein or dihydrofolate reductase) fused to dislocation substrates are not



Figure 1.4
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unfolded, but rather get dislocated in their native state66. Therefore the exact 3-

dimensional requirements for the dislocated protein are not yet understood.

Dislocation

How do terminally misfolded proteins traverse the hydrophobic lipid bilayer? The

dominant theory is that they exit through a proteinaceous channel, yet the identity of the

protein(s) that serve as the channel is highly debated. The first candidate was the Sec6l

translocon6 7 , which implied that proteins exited the ER through the same pore through

which they entered. This was supported by data showing Sec6l physically associates

with dislocation substrates. Crystal structures of archeal SecY show that the interior

cyclinder is only wide enough to accommodate polypeptides in their extended

conformation 68, and thus might not be consistent with data showing fusion proteins being

dislocated while still partially folded. A second protein that might serve as a

proteinaceous channel is Derlin 120,69. Derlinl has four transmembrane segments and self-

oligomerizes, typical structural features of membrane channels. Recently, Hrdlp, a yeast

E3 ubiquitin ligase involved in ubiquitylating misfolded ER proteins, was also suggested

to be the dislocon 0 . Dislocation substrates were cross-linked to Hrdlp mid-dislocation.

Hrdlp encodes five to six transmembrane segments. An alternative model is that proteins

instead exit in association with lipid droplets emerging from the ER7 1 . This model

eliminates size limitations imposed by proteinaceous channels and would account for

how proteins can exit in a partially folded state and why a dislocation substrate has been

found associated with cytoplasmic lipid droplets. This model will be discussed in more

detail in a later section.



Ubiquitylation overview

Targeting to the proteasome is executed by the attachment of poly-ubiquitin tags.

Ubiquitylation involves three enzymes, an El ubiquitin-activating enzyme, an E2

ubiquitin ligase, and an E3 ubiquitin conjugating enzyme (Fig. 1.5). In an ATP-dependent

reaction, a single ubiquitin is attached to the El active site cysteine by a thioester bond.

The ubiquitin is then transferred to an E2 enzyme. E3s provide the substrate specificity

by recognizing the target to be ubiquitylated. The ubiquitin is usually attached to a lysine

residue on the ERQC substrate, but has also been shown to be attached to the N-terminus

and to serines and threonines14 ,72 . E3s come in two flavors: HECT (Homologous to the

E6-AP Carboxyl Terminus) or RING (Really Interesting New Gene) domain-containing.

In the case of HECT domain E3s, the ubiquitin is transferred from the E2 to the E3 to the

substrate. For RING domain E3s, the ubiquitin is transferred from the E2 directly to the

substrate with the help of the E3. Mammalian cells encode two different El S73,

approximately 40 E2s, and over 600 E3s74. Of those, four E2s and eleven E3s have been

implicated in ubiquitylation of misfolded ER proteins in mammalian systems. All of the

currently known ER quality control E3s contain RING domains.

E2 ubiquitin conjugating enzymes involved in ER protein quality control

The four E2s known to play a role in the ubiquitylation of dislocation substrates

are UBE2G2 (UBC7), UBE2J1 (UBC6e), UBE2J2 (UBC6) and UBCH5. UBC6e and

UBC6 are homologues of yeast Ubc6p7 1. UBC6e and UBC6 are both tail-anchored

proteins with hydrophobic C-terminal membrane-anchor domains that are inserted post-

translationally. UBE2G2 is a soluble cytoplasmic protein. It is recruited to the



Figure 1.5
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membrane by ancient ubiquitous protein-1 (AUPi) via its G2 binding region. UBE2G2

assembles K48-linked poly-ubiquitin chains which are transferred to the substrate by an

E3 en bloc76 ~77. UBE2G2 binds the distal ubiquitin (with the free K48 residue) with

higher affinity than the rest of the ubiquitin chain7 8 . A fifth protein, E2-25K can serve as

an E2 to dislocated MHC class I HC in a permeabilized cell system, but its relevance in

79
intact cells remains to be shown' .

E3 ubiquitin ligases involved in ER protein quality control

In yeast there is a clear distinction between which of the two ERQC E3s are used

for substrate ubiquitylation, based on the location of the misfolded lesion. DoalO

specializes in the ubiquitylation of substrates with aberrant cytoplasmic regions and

Hrdlp processes substrates with lesions in the membrane or ER luminal region081. For

mammalian cells the distinction is not as clear, although there still appear to be

differences in the substrate specificity of each E3. HRD1 specializes in the disposal of

soluble ER luminal proteins 3 . Membrane-anchored dislocation substrates with misfolded

luminal domains are less dependent on HRDl. Thus for mammalian ER quality control, it

is not only the location of the misfolded lesion, but also the membrane association of the

dislocation substrate that determines which E3 is involved. Certain substrates have been

shown to be processed by multiple E3s. Some substrates show promiscuity for E3s,

including TCRa, CD36, and INSIG-1, while other substrates have only been shown to

use one E3. Thus it may be that some substrates can be ubiquitylated by one of several

different E3s, while other substrates must be processed by one specific E3. There is also

evidence that in some cases, one substrate requires two different E3s acting in concert or

sequentially. Such is the case with CFTRAF508 which is ubiquitylated co-translationally



by RMAl, post-translationally by cytosolic CHIP, and the ubiquitin chain is extended by

gp7882-8 . A list of many of the known substrates and E2s of each E3 involved in ER

protein quality control is given in Table 1.1.

The two best-characterized mammalian E3s are gp78 and HRD1. Both ligases are

orthologs of yeast Hrdlp with five transmembrane domains and a cytosolic RING finger

domain. Gp78 differs from HRD1 in its cytosolic region. Gp78 (but not HRD1) encodes

cytosolic CUE, G2 binding region (G2BR), and p97-interacting domains in addition to

the RING domain. The p97-interacting domain can be deleted without affecting gp78's

activity. In contrast, the G2BR is functionally necessary to recruit UBE2G2 84. The G2BR

enhances the affinity of UBE2G2 for RING-finger domains which in turn increases

ubiquitylation activity of the complex8". The CUE domain binds ubiquitin and may be

involved in mediating chain elongation of ubiquitylated proteins in an E4-like fashion. It

has also been suggested that the CUE domain is involved in the assembly of ubiquitin

chains that have been observed on UBE2G2. Gp78 is responsible for the sterol-regulated

degradation of Insig-1 and HMGCoA Reductase. Gp78 is itself targeted for

ubiquitylation by HRD 186-87. In this way, reduced expression of HRD 1 leads to increased

gp78 levels and thus more rapid turnover of gp78 substrates. This regulatory arrangement

may be important for the adjustment of the different dislocation complexes.

HRD1, also known as Synoviolin, is another major RING finger E3 associated

with ER protein quality control. While HRD1 lacks the CUE domain and G2BR of gp78,

it associates with AUPI which contains both of these missing domains. AUPI may

provide the functional activities with regards to UBE2G2 and ubiquitin in trans. HRD1 is

able to catalyze the transfer of ubiquitin from at least two different E2s: UBE2G2 and



Table 1.1 Mammalian E3s: their cognate E2(s) and substrates

E3 E2 Substrates Reference
HRD1 UBE2G2 TCRca 89

UBC6e CD36 89

Pael-R
SGK1 88,96

p53 175

NHK 13

gp78 86-87

NS1 K LC
Bile salt export pump AGly 176

gp78 UBE2G2 HMGCoA reductase 177

Insig-1 178

CD36 179

ApoB-100 180

z variant a-1 anti-trypsin 181

SOD1 182

ataxin-3 182

CFTRAF508 (acting as E4 with RMA1) 83

CYP3A4 97

TEB4
(MARCH VI) UBE2G2 TEB4 90,183

type 2 iodothyronine deiodinase 184

Bile salt export pump G238V 176

TRC8 ? Insig-1 91

MHC class I HC (US2) 22

RMA1 UBC6e CFTRAF508 (co-translationally) 82-83

UBC13 Bile salt export pump G238V 176

TCRa
Kf-1 ? ? 93

RFP2 UBCH5 CD36 92

RFP2 92

L-type channels 185

Parkin UBE2G2 Pael-R
CHIP UBCH5 CFTRAF508 (post-translationally) 82

UBC13 NMDA Receptor 12

SGK1 96

CYP3A4
FBX2 ? pre-integrinB1 98

SHPS-1 186

NMDA Receptor 12

FBS-2 ? TCRa 99



UBC68-8. Although HRD1 is named for yeast Hrdlp (which is itself named for

HMGCoA Reductase Degradation), HRD1 mediates basal, but not sterol-mediated,

ubiquitylation of HMGCoA Reductase 9 .

Several other ER resident E3s are beginning to emerge as part of the ER quality

control system. TEB4 (MARCH VI) is the mammalian homologue of yeast Doal0p. It

has thirteen transmembrane domains and it is able to ubiquitylate itself9 0. TRC8 encodes

a sterol-sensing domain which is relevant for its role in the ubiquitylation of INSIG-1, a

protein involved in regulating cholesterol biosysthesis 91. TRC8 is also implicated in the

US2-mediated removal of MHC class I HC from the ER2 2 . Little else is known about the

complex co-opted by US2 except that it includes Signal Peptide Peptidase . Other ER

membrane E3s include RMA1 that coordinates the ubiquitylation of CFTRAF508 as it is

being translated82, RFP2 92, and Kf-1 that may be related to anxiety disorders 3 94.

Three cytosolic RING-finger containing E3s are also involved in the

ubiquitylation of ER quality control substrates. Ubiquitylation of Parkin-associated

endothelin receptor-like receptor (Pael-R) is mediated by cytosolic E3 Parkin as well as

membrane-anchored HRD1 9'. CHIP, an Hsc70- and Hsp90-interacting E3 also

ubiquitylates dislocated substrates, but usually in conjunction with an ER-bound E3:

CFTRAF508 with RMA1 82, SGK1 with HRD196, and CYP3A4 with gp78 . Two Skpl-

Cullini -F-box protein E3s, FBX2 and FBS2, recognize glycans on their substrates12 98 -99

Membrane Extraction

How are misfolded ER proteins extracted from the membrane prior to

proteasomal degradation? It was found that p97, an AAA+ ATPase with several diverse

cellular functions, is important for this step of dislocation. p97 has long been identified as



a segregase, separating ubiquitylated proteins from other binding partners, as well as

being involved in spindle disassembly and membrane fusion. p97 associates with several

different co-factors that determines its function. Association with the co-factors Ufdl and

Npl4 directs p97 to ERQC activities 100. p97 is recruited to the site of dislocation by the

proteins VIMP, UBXD8, and Erasin (UBXD2) 62,69,101-i 2 . UBXD8 and Erasin interact

with p97 via their UBX domains which structurally resemble ubiquitin. The E3s HRD1

and gp78 also have p97-interacting domains, but their importance has not been

103-104established'- - . p97 facilitates the degradation of substrates from many of the E3

complexes and, as such, is thought to be the point of convergence in the various

dislocation pathways. The contribution of p97 can vary from substrate to substrate, and

the dependence is thought to correspond to the stability of the membrane segment 05:

more hydrophobic transmembrane domains are more reliant on p97 for dislocation.

Deubiquitylating enzymes in extraction

How does p97 extract proteins from the ER? Studies in permeabilized cells

showed that an ATP-dependent step is required for the dislocation of misfolded

106polypeptides' . p97 is composed of two consecutive ATPase domains and assembles into

a homohexamer. The subunits are arranged in a ring formation with a hollow center. ATP

107-108
hydrolysis rotates the outer ring, producing mechanical energy~ . Thus the

conformational change may be the ATP-dependent step required for extraction to

proceed. The same study hypothesized that the poly-ubiquitin chains on the dislocation

substrate serve as handles for p97 to pull it out of the membrane 06. A recent paper

reports that the YOD1 deubiquitylating enzyme is important for membrane extraction 09.

The authors hypothesize that some of the ubiquitin chains must be removed from the



polypeptides emerging from the ER in order to allow it to pass through the axial channel

of the p97 ring. Introduction of a hyperactive deubiquitylating enzyme derived from

Epstein-Barr virus results in the accumulation of cytosolic dislocated protein that is not

degraded by the proteasome 10 . Taken together, this implies that there are two rounds of

ubiquitylation involved in dislocation: once prior to extraction which is removed by

YOD1 and then again after p97-mediated extraction for targeting to the proteasome (Fig.

1.6).

Shuttling to the proteasome

Another DUB involved in dislocation is Ataxin-3. Ataxin-3 competes with Ufdl

for binding to p9711 1. In contrast to YOD 1, Ataxin-3 is thought to shorten the ubiquitin

chains after p97 has extracted the substrate 1 2. Ataxin-3 also binds the yeast Rad23p

ortholog (HHR23A/B), a protein that binds and shuttles substrates to the proteasome. The

thought is that the substrate is transferred from Ataxin-3 to HHR23A/B with shortened

ubiquitin chains that are still long enough to be recognized by the proteasome

machinery 12. HHR23A/B also forms a complex with another p97 co-factor, peptide: N-

glycanase (PNGase)" 3 . PNGase removes the bulky glycans from the substrate after

dislocation, prior to insertion into the proteasome' 4, although glycan removal is not

necessary for degradation and may occur downstream of the proteasome"1 .

A protein called HERP may be involved in shuttling non-glycosylated dislocation

substrates from the dislocon to the proteasome. This hypothesis is based on the fact that

HERP associates with HRD1, Derlin-1, and the proteasome 1 6 . HERP interacts with

several non-glycosylated substrates, but not with any of the glycosylated substrates that



Figure 1.6
Model of Membrane Extraction
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were tested116. How non-glycosylated misfolded ER proteins are initially directed to the

dislocation machinery is unclear since they bypass the calnexin/ calreticulin cycle, but

117
BiP is important for their degradation.

Proteasomal Degradation

The final step of ER quality control is proteasomal degradation. The proteasome

is composed of a 19S regulatory cap and 20S core particle" 8. Several proteins in the

regulatory cap prepare the substrate to be threaded into the core particle. RPN10 and

RPN13 act as ubiquitin receptors to recognize the substrates' 19-120. A set of DUBs remove

the ubiquitin chains in order to salvage the proteins for reuse. Several ATPases unfold the

substrate. In the interior of the core particle, the proteolytic subunits degrade the

polypeptide into short peptides that are released into the cytoplasm.

The unfolded protein response

When the amount of misfolded proteins exceeds the folding capacity of the ER,

the Unfolded Protein Response (UPR) is triggered. The mammalian UPR is comprised of

three branches that each possess a sensor protein that recognizes ER stress conditions and

initiates a signaling pathway to alleviate the problem. The three sensor proteins are

inositol-requiring enzyme-1 (IRE1), protein kinase RNA-like endoplasmic reticulum

kinase (PERK), and activating transcription factor 6 (ATF6). The UPR exerts

transcriptional and translational changes on the cell with the final result of increasing the

folding capacity of the ER, decreasing the folding demands on the ER, clearing misfolded

proteins from the ER, and expanding the volume of the ERm-m 122. Genes that are up-

regulated during the UPR include those encoding ER chaperones, proteins involved in

ER quality control machinery, and phospholipid biosynthetic enzymes. The expression of



secretory proteins is down-regulated, protein translation is inhibited and a specific subset

of mRNAs localized to the ER is degraded.

How do each of the UPR branches contribute to these effects? Activation of

IREl 's RNase domain results in splicing of mRNA encoding the X-box binding protein-I

(XBP1) transcription factor. Splicing of mammalian XBP1 results in a frameshift that

produces the mRNA encoding the functionally active transcription factor 2 3 . IRE1

activation also lessens the influx of proteins into the ER by cleaving a subset of mRNAs

located near the ER 2 1-2 . Activation of PERK results in the phosphorylation of

eukaryotic translation initiation factor 2a (eIF2a). Phosphorylated eIF2a is unable to

efficiently form the ribosomal pre-initiation complex, thus leading to a general decrease

in translation. Some transcripts are able to circumvent this block in translation, including

the mRNA encoding ATF4, a UPR transcription factor126. Activation of ATF6 results in

the release of the cytoplasmic transcription factor domain of ATF6 which travels to the

nucleus and upregulates genes with ER stress response elements1 27

LIPID DROPLETS

There is accumulating evidence that ER protein quality control and lipid droplets

(LDs) may be functionally connected. Lipid droplets (LDs) are a cytoplasmic organelle

found in all cells from bacteria to plants to mammals. Although LDs can vary in size and

composition based on the organism and tissue type, the fact that they are ubiquitous in

living cells indicates their importance as lipid storage organelles. Despite initial

microscopic observations over a century ago, LDs were largely unstudied until the past

few decades.



Lipid droplet structure

The interior core of the LD is hydrophobic due to the abundance of neutral lipids

(Fig. 1.7). The major core components in most mammalian LDs are triacylglycerols

(TAGs) and cholesterol esters. Some cells also contain up to 20% of ether lipid

monoalk(en)yl diacylglycerol. The ratio of TAG to sterol esters varies according to cell

type128 . Recent advances in mass spectrometry techniques have permitted the analysis of

single plant-derived LDs by direct organelle mass spectrometry and reveal that the types

of neutral lipids may vary on an individual LD basis 29 . Immunogold EM has also

suggested that several different proteins and membranous structures are present in the

interior of the LD 30-"2, perhaps as ER membrane fragments. How this occurs is not

known and will be discussed later.

In contrast to all other known organelles which are delimited by lipid bilayers,

LDs are bounded by a phospholipid monolayer. The monolayer was observed by

cryoelectron microscopy where it appears as a single electron-dense line' 33 , as opposed to

liposomes or microsomes that are surrounded by double lines indicative of a bilayer. The

phospholipid components of isolated LDs have been determined by mass spectrometry.

The major polar lipids found in LDs are phosphatidylcholine (PC) and

phosphatidylethanolamine (PE)128,133, as is the case for the ER. In contrast to ER-derived

rough microsomes, LDs have a greater abundance of PC with two mono-unsaturated acyl

chains 33 . LDs also have an increased amount of lysophospholipids and contain less

sphingomyelin and phosphatidylserine compared to total membranes128. Since LDs are

thought to be derived from the ER, the different lipid mixtures may indicate that the types



Figure 1.7
Lipid droplet structure (cross-section)

Phospholipid monolayer

TIP 47

Lipid droplets are cytoplasmic organelles specialized for neutral lipid storage and involved in several other
cellular functions. The exterior of the lipid droplet is composed of a phospholipid monolayer. Proteins can be
found on the surface of the lipid droplet. These proteins have special membrane domains that dip or insert into
the monolayer. The interior core of lipid droplets conatin mainly sterol esters and triacylglycerols. ER mem-
branes and some proteins have also been observed inside lipid droplets.
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of lipids incorporated into LDs are regulated or that LDs bud off at specialized

microdomains of the ER such as lipid rafts.

Lipid droplet protein components

Many proteins have been identified that are embedded in the lipid monolayer of

LDs. The canonical LD proteins belong to the PAT family (named for the founding

members of the family: Perilipin, Adipophilin/ADRP, and TIP47) and share structural

similarity13 4. These proteins are thought to be structurally important and involved in

shielding the LD from lipolysis. Perilipin is only found in adipocytes, whereas ADRP and

TIP47 are found in a wider range of cell types' 3 . There is some evidence that these

proteins are interchangeable. ADRP and Perilipin are found exclusively on the LD. TIP47

is cytosolic until recruited to LDs, at which time its four-helix bundle changes

conformation to insert into the phospholipid monolayer 136 7 .

Several groups have recently performed proteomic studies on LDs from different

cells types 138-143. LDs were typically isolated by centrifugation through a sucrose

gradient. The results included many expected proteins, as well as many unexpected

proteins that have proved helpful in understanding the many roles and activities of LDs.

144
The results have been carefully summarized by Hodges and Wu . The proteins

identified include the PAT family proteins, enzymes involved in lipid metabolism, ER

proteins, chaperones, mitochondrial proteins, and Rab proteins.

Models of lipid droplet formation

Where do LDs come from? LDs are often found very close to the ER, often in an

egg-in-eggcup conformation observed by freeze-fracture EM145. The enzymes that

catalyze the final steps of neutral lipid synthesis are found in the ER. This includes the



enzyme responsible for transferring the third acyl chain onto diacylglycerol to form TAG,

acyl CoA:Diacylglycerol acyltransferase (DGAT), which is found in high abundance in

ER regions proximal to LDs146. Given these observations, it is thought that LDs originate

in the ER.

Intramembrane bulges in the ER bilayer have been detected by lH-NMR in

vitro 4 7 . Computer modeling simulations support the spontaneous formation of stable

"blisters" containing neutral lipids that are mobile and disordered 148. These "blisters" of

neutral lipids accumulating between the leaflets of the ER membrane may represent the

first step of lipid droplet formation.

There are three current models for LD formation (Fig. 1.8). The first model to be

proposed is the budding model. In this model, the accumulation of neutral lipids between

the ER bilayer continues until it reaches the maximum amount the bilayer can tolerate. At

that time, the cytoplasmic leaflet of the ER is expanded as additional neutral lipids are

added so that the distension continues asymmetrically, with the resulting bulge protruding

out into the cytoplasm. This continues until an LD is formed with a neutral lipid core and

a phospholipid monolayer derived from the cytoplasmic layer of the ER membrane 1.

The LD completely detaches from the ER as the connecting lipid stem is resolved.

A second model also begins with the accumulation of neutral lipid between the

ER bilayer. As the bulge grows, both leaflets expand such that the nascent LD extends

halfway into the ER and halfway into the cytoplasm. For the LD to detach from the ER in

this model, bicelle formation is favored at the highly curved sites surrounding the bulge

and the LD pops out of the ER71. This model would produce an LD whose phospholipid

monolayer is derived from equal parts of the luminal and cytoplasmic ER bilayer leaflets.



Figure 1.8
Models of lipid droplet formation and growth
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Lipid droplets emerge from the ER. In the budding model of lipid droplet formation, neutral lipids accumulate
between the leaflets of the ER phospholipid bilayer until a droplet buds off of the cytoplasmic face, surrounded
by a phospholipid monolayer derived of the cytoplasmic leaflet of the ER bilayer. The lipid droplets may grow
from aquisition of lipids or from repeated fusion with other lipid droplets. Lipid droplet fusion would result in an
excess of phospholipids because of the decrease in surface-to-volume ratio. The extra phospholipids could form
"wrinkles"or"tabs"on the exterior of the lipid droplet.
In the escape hatch model, neutral lipids accumulate between the bilayer and the droplet pops out of the ER
membrane. A transient hole is formed in the ER membrane and the phospholipid monolayer is derived from
both the luminal and cytoplasmic leaflets of the ER membrane. Wrinkles on the curface of the lipid droplet could
accomodate membrane-anchored proteins.
In the vesicular budding model, a vesicle is formed and then neutral lipids accumulate between the bilayer of the
vesicle. The outer phospholipid leaflet of the vesicle expands and the inner leaflet remains small and on the
interior of the lipid droplet.
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The surface could retain wrinkles of bilayers that would accommodate proteins with

transmembrane domains. A transient hole is formed in the ER in the process, but

estimates regarding the disruption of the Ca2 ion gradient predict no significant harmful

effects. How the LD is directed into the cytoplasm and not the ER lumen in this model is

unknown. This model is called the 'escape hatch' model because it could facilitate the

simultaneous exit of two other items from the ER: misfolded proteins and the fully-

formed virus particles. The search for a protein-channel based system that can

accommodate both misfolded proteins and large virus particles has not been conclusive.

The third model begins with the formation of a vesicle instead of a neutral lipid

blister. The vesicle remains associated with the ER via an unidentified protein (perhaps

DGAT) that transfers neutral lipids in between the lipid bilayer leaflets of the vesicle.

More phospholipids are added to the outer leaflet of the vesicle and the original inner

leaflet remains small and in the interior of the LD. The resulting LD has a phospholipid

monolayer derived from the outer vesicular leaflet (originally the cytoplasmic leaflet of

the ER membrane) and a small portion of the cytoplasm 5 0 . This is called the 'vesicular

budding' model and provides a mechanical explanation for the observation of soluble

proteins in the LD core by EM.

Models of lipid droplet growth

Although mature LDs are readily characterized by EM, none of the nascent LD

formations predicted by these models have been observed. This may be due to the fact

that they are below the size detection limit of EM. Fujimoto and colleagues suggest that

very small LDs could be made in the ER according to one of the above models and then

149
these small droplets fuse to form the full-sized droplets observed by microscopy



Fusion of LDs has been observed". This model would result in an extremely large

excess of phospholipids as the surface-to-volume ratio decreases in the large droplets.

The question is what happens to the surplus phospholipids. Options include destruction

by Phospholipase D, rearrangement of the surface into bicellar wrinkles (similar to those

predicted by the "escape hatch" model), or internalization of the phospholipids into the

core (which localization is known to exist).

Lipid droplets are lipid storage organelles

The most obvious function of LDs pertains to lipid storage. Adipocytes, the

mammalian cell type specialized to store large amounts of lipids, are marked by the

presence of LDs. This may take the form of a single extremely large (100plm diameter)

LD or many smaller droplets. LDs provide a safe storage location for lipids at high

cellular concentrations that would otherwise cause lipotoxicity. The cell is able to retrieve

the lipid stores as required for cellular energy or for lipid molecules during membrane

expansion and cell division. Lipolysis in adipocytes is highly regulated: activated protein

kinase A (PKA) phosphorylates perilipin and hormone sensitive lipase (HSL)m1 2 . This in

turn causes perilipin to release CGI-58 and allow Adipocyte Triglyceride Lipase (ATGL)

and HSL to bind to the surface of the LD 53~154. Somehow ATGL and then HSL access

the TAGs in the interior of the LD. The acyl chains of TAG are removed one by one; first

by ATGL, then HSL, and finally monoacylglycerol lipase, producing three acyl chains

and glycerol1 . These molecules can then be used as substrates for f-oxidation.

Alternatively, the TAG could only be partially catabolized into diacylglycerol which

could be used as a building block for making phospholipids.



The lipids found in LDs can be transferred to and from other organelles. LDs have

been shown to interact with peroxisomes 56, the organelle in which p-oxidation occurs,

presumably to transfer fatty-acids from LDs for f-oxidation. In support of this

hypothesis, mutant C. elegans defective in p-oxidation exhibit enlarged LDs 157 . LDs are

also closely associated with early endosomes 158-159 and mitochondria' 60 and thus may also

exchange lipids with these organelles. Plasma membrane caveolae and caveolins localize

to the LDs and are thought to contribute TAGs16 1 and phospholipids1 62 to growing LDs.

LDs have recently been shown to associate with autophagosomes during starvation

conditions and autophagosomes may be involved in harvesting of lipids for energy from

163
LDs during nutrient deprivation

Lipid droplets are protein repositories

LDs are now recognized to be involved in several other functions not connected

to their lipid storing capacity. LDs appear to act as a storage depot to prevent the

164
aggregation of over-abundant proteins in the cytoplasm . In this model, proteins are

directed to LDs in order to regulate their activity and to prevent the formation of toxic

aggregates. The proteins that find themselves on the LDs are called "refugee proteins",

reflecting the fact that they are normally found in other locations of the cell. A number of

proteins have been shown to localize to LDs when expressed at elevated levels. Such is

the case for histones during Drosophila embryogenesis wherein large amounts of certain

histones are stockpiled in the oocyte to sustain subsequent rapid cell divisions 165. The

cell's answer to the problem of how to store such high levels of a protein was apparently

to target them to the LD. The histones later leave the LD as needed during the cell cycle

and enter the nucleus where they are incorporated into chromatin. Keeping histones on



LDs prevents their aggregation in the cytoplasm while retaining them in a functionally

competent conformation. Other proteins that find themselves on LDs when they are

artificially overexpressed include stomatin, a-synuclein, and the Hepatitis C core

protein 142,166-168

ENDOPLASMIC RETICULUM QUALITY CONTROL AND LIPID DROPLETS

ER quality control machinery is found on LDs

The first piece of evidence to support the connection between LDs and the

process of dislocation is the physical localization of many of the proteins involved in ER

protein quality control on LDs144. BiP, the major ER Hsp70 chaperone, is found with

LDs, as are both lectin chaperones (calnexin and calreticulin). Several subunits of the

oligosaccharyl transferase complex (OST48, Ribophorin I, Ribophorin II, and

Asparagine-linked glycosylation protein 5/ Alg5) are found on LDs. LDs also contain

protein disulfide isomerases (PDIA4/ERp72, PDIA6, P4HB) and peptidyl-prolyl cis-trans

isomerase B, enzymes responsible for forming, rearranging, and isomerizing disulfide

bonds. An E2 ubiquitin conjugating enzyme known to be involved in ER protein quality

control (UBE2G2), the protein responsible for its recruitment and regulation (AUP 1), and

one of its cognate E3 ubiquitin ligases (gp78) are also found associated with LDs. LDs

also harbor UBXD8, a UBX domain-containing protein, and the protein it recruits to the

site of dislocation, p97. Components of the proteasome (a6 and GC3ax) are also found on

LDs.



Increases in misfolded proteins results in increase in LDs

Several studies have shown that genetic and pharmacological perturbations of ER

quality control and homeostasis result in increased LD formation. Cells treated in vitro

with the proteasome inhibitor MG-132 contain many more LDs than untreated cells' 6 .

Under these conditions, the cell would contain high levels of polyubiquitylated protein

tagged for degradation, including cytoplasmic proteins and dislocated, terminally

misfolded ER proteins. This may be a direct effect of stabilization of some of the PAT

proteins that are normally degraded by the proteasome. Studies in yeast and CHO-Ki

cells showed a slight increase of LDs upon tunicamycin treatment69-170. Tunicamycin

inhibits glycosylation and thus causes massive misfolding of proteins in the ER. Yeast

strains deficient in glycosylation and ER protein quality control also show a modest

increase in LDs169

The effect on LD formation of increasing the misfolded ER protein load is

exacerbated in cells with an impaired Unfolded Protein Response (UPR). Two separate

groups showed that increasing the amount of misfolded ER proteins in mice that have

impaired UPR leads to lethal accumulation of LDs in the liver 171-172. They performed in

vivo experiments in mice deficient in ATF6a, the protein that triggers one of the three

mammalian UPR signaling pathways. Mice deficient in ATF6a grow normally, but are

not able to survive intraperitoneal injections of tunicamycin, unlike their wildtype

counterparts. Taken together, lipid droplet formation may be another one of the cell's

mechanisms to deal with accumulation of misfolded ER proteins along with the UPR and

ER associated degradation. When the UPR or proteasome is defective, the cell keeps

making more lipid droplets.



Dislocated proteins are found on lipid droplets

LDs have been shown to harbor proteins that are removed from the ER by the

dislocation machinery. When cellular sterol levels are high, HMG CoA reductase, a

transmembrane protein found in the ER that catalyzes the rate-limiting step of sterol

synthesis, is targeted to the ER dislocation complex and ultimately degraded by the

proteasome in the cytosol. Hartman and colleagues fractionated cell lysates and found

that HMG CoA reductase associates with buoyant LD fraction when the proteasome is

inhibited under conditions that promote degradation173. Furthermore, pharmacological

inhibition of LD formation stabilized HMGCoA reductase under high sterol conditions.

Another study presented data that supports the idea that localization of proteins destined

for proteasomal destruction to LDs is a general phenomenon. Upon proteasome inhibitor

treatment, ubiquitylated proteins were present in the LD fraction174 . These ubiquitylated

proteins could likely include dislocated ER proteins.

This thesis presents data identifying components of the HRD1/SELlL dislocation

complex. The roles of these newly-identified proteins were characterized and ranged

from directing glycoproteins to the dislocation complex, to recruitment of p97, to

regulation of ubiquitylation. We also expanded the known connections between LD

formation and ER protein quality control by identifying a protein that is important for

both processes and showing that pharmacological inhibition of LD formation stabilizes a

wide range of dislocation substrates.
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Abstract

Membrane and secretory proteins that fail to pass quality control in the endoplasmic

reticulum (ER) are discharged into the cytosol and degraded by the proteasome. Many of

the mammalian components involved in this process remain to be identified. We

performed a biochemical search for proteins that interact with SEL1L, a protein that is

part of the mammalian HRD1 ligase complex and involved in substrate recognition.

SEL1L is crucial for dislocation of Class I Major Histocompatibility Complex heavy

chains by the human cytomegalovirus US11 protein. We identified AUP1, UBXD8,

UBC6e, and OS9 as functionally important components of this degradation complex in

mammalian cells, as confirmed by mutagenesis and dominant negative versions of these

proteins.



Introduction

Terminally misfolded membrane or secretory proteins that have entered the

endoplasmic reticulum (ER) are typically transported back across the ER membrane into

the cytosol, a process referred to as dislocation or retrotranslocation. Once in the cytosol,

the proteasome degrades these misfolded proteins in a ubiquitin-dependent manner 1.

Although some components show some sequence similarities to yeast proteins,

their contribution to dislocation is not always clear. The presence of several mammalian

orthologues for each yeast component of the dislocation machinery precludes a functional

identification of the relevant mammalian components by homology.

Analysis of two viral proteins encoded by human cytomegalovirus (HCMV), US2

and US 11, has helped define the composition of the protein complexes involved in

dislocation 2 and emphasizes the complexity of mammalian dislocation compared to

simpler eukaryotes. Both US2 and US 11 facilitate dislocation of newly synthesized Class

I MHC heavy chains (HCs), presumably to evade recognition by cytotoxic T cells at the

appropriate stages of the virus' lifecycle 3. US2 and US 11 are ER-resident type I

transmembrane proteins that interact with Class I MHC HC in the ER lumen and from

there initiate their destruction '. US2 and US 11 achieve this by recruiting different sets

of proteins: US2 uses signal peptide peptidase (SPP) 6 and other proteins that remain to

be identified, whereas US 11 engages a pathway that includes Derlin-1 7. Derlin-1 itself

associates with the ubiquitin ligase HRD1 and gp78, both of which share sequence

similarities with yeast Hrdlp 8' 9. Whether HRDI and gp78 are involved in the

ubiquitination of Class I MHC HC is an open question 10, although the human homologue

of yeast Hrd3p, SELl L, is involved in Class I MHC HC dislocation ". Derlin- 1, HRD 1



and the transmembrane protein VIMP form a complex with p97 and its cofactors

UFD1/NPL4, and might be involved in their recruitment to the ER 7 9 , 12

How a luminal protein can cross the lipid bilayer is not known, and the existence

of a proteinacous pore, consisting of Hrdlp and/or Derip has been suggested 7-9, 12-14, but

alternative modes of extraction might exist 1. US II hijacks a pathway that contributes to

the degradation of aberrantly folded proteins independently of viral accessories, as shown

by examination of the mammalian dislocation substrates al-antitrypsin null Hong Kong

(NHK), truncated ribophorin RI 332 and misfolded cystic fibrosis transmembrane

conductance regulator (CFTR) AF508 11, 16' 17. Here we identified new components of the

mammalian dislocation machinery that are essential for degradation, including the E2

ligase that cooperates with HRD1/SEL1L, and two ER transmembrane proteins that act

downstream of the substrate selection process, and verified a recently reported SEllL-

interacting ER luminal protein important for substrate recognition, OS9 18.



Results

Isolation and identification of proteins that interact with SEL1L.

We conducted a large-scale immunopurification of SELIL using HA-TEV-tagged

SELIL transduced into HeLa cells (Fig. 2.1). The HA-TEV tag was fused to the N-

terminus of SEL1L, for which we replaced its signal sequence with that of the murine

Class I MHC molecule H2-Kb. HA-TEV-SEL1L was isolated by immunoprecipitation

with anti-HA antibody-coated beads from digitonin extracts. Materials eluted with TEV

protease were subjected to SDS-PAGE, and SEL1L-interacting polypeptides were

identified by tandem mass-spectrometry (LC/MS/MS, Fig. 2.1). We recovered several

proteins already known to be SEL 1 L interactors: HRD 1, a ubiquitin E3-ligase involved in

ER dislocation 9' 0, Derlin-2, a multispanning transmembrane protein required for exit of

polyomavirus from the ER 19, the ATPase p97 and several other proteins involved in

protein folding, such as PDI, BiP, and calnexin (Fig. 2.1B). The latter bind to many

different proteins in the ER, and their contribution, if any, to dislocation is not always

clear.

We identified two additional proteins not previously known to be part of the

mammalian dislocation machinery: ancient ubiquitous protein 1 (AUP1) and UBXD8

(Fig. 2.1). In addition, we identified UBC6e, an enzyme that serves as a ubiquitin

conjugating enzyme (E2), 20, and OS9, a protein involved in the degradation of mutant

alpha-1 antitrypsin '8. Because of its physical association, we propose that UBC6e is the

E2-type activity that acts in concert with the ubiquitin ligase HRDL.

OS9 was identified as a protein amplified in osteosarcoma. OS9 is ubiquitously

expressed and has alternative splice versions 2. The C-terminus of OS9 interacts with



HIF 1 a, a subunit of the protein hypoxia inducible factor (HIF) 1. HIF 1 a is ubiquitinated

and degraded, depending on oxygen levels in the cell. OS9 regulates HIFlC levels by

increasing the rate of prolyl hydroxylation in HIF 1 x, thereby initiating ubiquitination 2

The presence of an N-terminal signal sequence suggests that OS9 is targeted to

the ER lumen. OS9 has a glucosidase type II (Mannose-6 phosphate receptor homology,

MRH) domain involved in binding to misfolded proteins. OS9, an ER-resident

glycosylated protein, is part of the mammalian dislocation machinery through its

interactions with SELIL [Fig. 2.1B, and 18]. OS9 has been previously located to the

cytosol 22, 23. It remains unclear whether there is a pool of OS-9 that is active in the

cytosol or whether OS9 could regulate HIFlc indirectly from within the ER. The yeast

homolog Yos9p is a luminal ER protein that binds to the luminal domain of Hrd3p, the

homolog of SELIL. Yeast Yos9p targets terminally misfolded ER proteins to the

dislocation machinery, which includes Hrd3p and Derlp 13'24,25

AUPI is proposed to interact with integrins 26, but its function is obscure. AUPi

has a CUE domain, involved in ubiquitin binding or in recruitment of ubiquitin

conjugating enzymes to the site of dislocation 27. AUP1 has a transmembrane anchor at

its N-terminus, with the bulk of the protein predicted to be in the cytosol 26. AUPI has

not previously been implicated in any aspect of (glyco) protein quality control, and is

without an obvious homolog in yeast.

UBXD8 (ETEA) was initially identified among proteins highly upregulated in T-

cells obtained from patients with atopic dermatitis 28. UBXD8 has a UBX domain, a UBA

domain, a UAS domain, and a transmembrane domain according to prediction programs

(Fig. 2.1B). The UBA domain is found in many proteins of otherwise divergent structure



and function, and mediates binding to ubiquitin. The UBX domain is structurally similar

to ubiquitin despite the lack of a high degree of sequence homology. UBX domains may

serve as adaptors for the multi-functional AAA ATPase p97 29. The UAS domain is a

domain of >100 amino acids of unknown function, which assumes a thioredoxin-type

fold (InterPro database). The closest relative of UBXD8 in yeast cannot immediately be

inferred, because of the limited extent of overall sequence identity and lack of functional

data.

UBC6e (UBE2JI) is an ortholog of yeast Ubc6p, a transmembrane ER-bound

ubiquitin conjugating enzyme (E2). In yeast, Ubc6p can function together with the

ubiquitin ligase DoalOp and the cytosolic E2 Ubc7p . There are two Ubc6p orthologs

in mammalian cells, UBE2J1 and UBE2J2 20. UBE2J1 was termed UBC6e, and UBE2J2

is called UBC6 20. For simplicity we shall refer to UBE2J1 as UBC6e. UBC6e and UBC6

are both involved in the degradation of TCRa and CFTRAF508 16, 21. UBC6e forms a

complex with Derlin-1 for CFTRAF508 disposal 16 UBC6e displays less sequence

identity (25%) to the yeast protein than does UBC6 (40%, 20. Unlike yeast Ubc6p, human

UBC6e is a stable protein3 2 .



Figure 2.1
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Isolation of SEL1 L associated proteins.
A. Immunoprecipitation of HA-TEV-tagged SEL1 L. HeLa cells (ctrl) and HA-TEV-SEL1 L expressing HeLa cells were
lysed in 2% digitonin, and the lysate was subjected to immunoprecipitation with anti-HA antibody beads. Bound
material was eluted from the beads with TEV protease and separated on SDS PAGE (10% acrylamide). Polypep-
tides were visualized by Coomassie Blue staining.
B. Proteins that interact with SEL1 L, the peptides identified by LC/MS/Ms are shown in grey together with the
sequence coverage (in %, number on the right).
C. Proposed domain structure of the isolated SEL1 L-interacting partners. CHO = N-linked glycan, ss = signal
sequence, TM = transmembrane domain, UBA = ubiquitin associated, UAS = thioredoxin fold, UBX = ubiquitin
fold, PIsC = phosphate acyltransferase domain, UBC = ubiquitin conjugating domain. CUE = domain involved in
ubiquitin binding. Numbers on the right represent length in amino acids.
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ER localization of the SEL1L-interacting proteins.

We performed immunofluorescence microscopy with affinity purified anti-AUP 1

and anti-UBXD8 antibodies in HeLa cells. Immunofluorescence shows the diagnostic

reticular ER staining pattern for AUPi and UBXD8 and co-localization with the ER

marker PDI (Fig. 2.2A). Endogenous AUPI and UBXD8 proteins thus reside in the ER,

where dislocation occurs. UBXD8, AUPI, and UBC6e all readily cosediment with the

microsomes in the absence of detergent and are largely resistant to extraction with

alkaline sodium carbonate and urea (Fig. 2.2B). OS9, consistent with its predicted

characterization as a soluble ER luminal protein, is readily extracted from the

microsomes by alkaline sodium carbonate. For OS9, we observe the presence of two

splice variants 21, both of which are sensitive to digestion with endoglycosidase H

(EndoH, Fig. 2.2C), consistent with ER residency and the presence of the single predicted

N-linked glycan. We verified the interaction of endogenous OS9, UBC6e, and AUPI

with SELIL by immunoprecipitation followed by immunoblotting (data not shown).
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A) HeLa cells were fixed and
incubated with anti-PDI antibody and
affinity-purified antibodies against
AUP1 (upper panels) or UBXD8 (lower
panels) for immunofluorescence
analysis. Right panels show the
merged images. Scale bars= 1 opm.
B) Microsomes from U373 cells were
incubated with homogenization
buffer, 3M Urea, sodium carbonate

7\UBC6e pH 11.6, or 1% SDS, pelleted and
immunoblotted as indicated. T=total,
P=pellet, S=supernatant. Proteins
were separated by 10% (UBC6e and
OS9) or 15% (PDI, Calnexin, AUP1, and
UBXD8) SDS-PAGE. #= cross-reactive
bands.
C) US1 1 cells were pulse-labeled for
1 0min with 35S and chased for
indicated time points. The cells were
lysed in 1% SDS and the lysate was
subjected to immunoprecipitation
with anti-OS9-antibodies. The bound
material was eluted and incubated
with or without EndoH for 1 hour at
37C. The eluates were separated on
SDS-PAGE (8% acrylamide) and
visualized on film.
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OS9 overexpression perturbs dislocation of RI332 but not of Class I MHC via US11

To examine a possible role for OS9 in dislocation, we designed an N-terminal

GFP-tagged version and two mutant versions (R188A; E212D) of OS9. These point

mutations are predicted to disrupt the MRH (glucosidase II) domain implicated in OS9

substrate interaction 33, 34. Mutant or tagged versions of OS9 in USi 1-expressing cells

only marginally disrupt Class I MHC HC dislocation (Fig. 2.4 and Fig. 2.6A, lanes 10-

12), especially when compared to the effect seen with overexpression of UBC6e, AUPI-

GFP or UBXD8-GFP (Fig. 2.5 and 2.6). To explain the comparative dispensability of

OS9 in USl1-expressing cells, US11 might be directly responsible for substrate

recognition instead of OS9 and target Class I MHC HC directly to the dislocation

machinery.

Does OS9 play a role in dislocation independent of viral proteins? We generated

HeLa cells that stably overexpress wild-type OS9, GFP-OS9, or the mutant versions OS9

R188A, and OS9 E212D. We then transiently transfected these cell lines with a truncated

version of ribophorin, RI33 2 35, a protein dislocated in a SELIL-dependent manner ". For

all constructs examined, we observe a delay in RI332 degradation (Figure 2.3).

Endogenous Ribophorin I is stable and electrophoretically distinct, and it serves as a

control for recovery. We conclude that OS9 is involved in the dislocation of the soluble

glycoprotein RI33 2 . Overexpression of wild-type OS9 inhibits dislocation of RI332,

presumably because OS9 overexpression interferes with the stoichiometry of the

dislocation complex. We sought to verify our results with knockdown constructs against

OS9, but none of the constructs yielded a level of reduction adequate to achieve

inhibition of dislocation.



Figure 2.3
A.

pLHCX OS9 WT OS9 R188A OS9 E212D GFP-OS9
0 90 180 0 90 180' 0 90 180 0 90 180 0 90 180 chase (min)

- Ribophorin I

- R1332

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

90 180
chase (minutes)

pLHCX
os9 WT
OS9 R 188A

oS9 E212D

GFP-OS9

OS9 is crucial for dislocation of the terminally misfolded glycoprotein, R1332

A) HeLa cells were transduced with either empty vector (pLHCX), wild type 059, OS9 Ri 88A, OS9 E212D, or
GFP-OS9, using the same virus preparation as in Fig. 2.4. The five cell lines were then transfected with a construct
that specifies truncated Ribophorin I, R1332, pulse-labeled 36 hrs post transfection for 15min with 35s, chased for
indicated time points, then lysed in 1% SDS and immunoprecipitated with antibody raised against the luminal
portion of ribophorin. The eluates were separated on 10% SDS-PAGE and visualized by autoradiography. The #
indicates non-glycosylated R1332.
B) Quantitation of the amount of R1332 remaining at the indicated time points.
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Figure 2.4
A.
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OS9 is not involved in USI 1-mediated dislocation
A) US 1-expressing cells were transduced with the following virus preparations: empty vector (pLHCX), wild
type OS9, OS9 R1 88A, OS9 E212D, or GFP-OS9. The cell lines were treated with ZL3VS and pulse-labeled for
1 0min with 355 and chased for indicated time points. The cells were then lysed in 1% SDS and immunoprecipi-
tated with anti-HC antibody. The eluates were separated on SDS-PAGE (12% acrylamide) and visualized on film.
B) Quantitation of the amount of glycosylated Class I MHC HC to total HC counts.
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Verification of involvement in dislocation for the SEL1L-interacting proteins

UBXD8, AUP1 and UBC6e.

Because US 11 and US2 both target Class I MHC molecules, but apparently do so

by initially recruiting different proteins, we used US2-mediated dislocation as a control

for proper ER function 6, 7, n. Manipulations that perturb ER function non-specifically

should affect dislocation via both the US2 and the US 11 pathways. Our criterion is thus

to score as specific those manipulations that interfere with US 11-mediated dislocation

only.

Among the set of SEL IL-interacting proteins, UBC6e was the only protein known

to act as an enzyme and whose catalytic center could be ascertained 2. We thus destroyed

the catalytic activity of UBC6e by replacement of cysteine 91 with serine 3.

We installed a GFP tag onto the C-terminus of AUP 1 and UBXD8 and onto the

N-terminus of OS9. We reasoned that the GFP domain may interfere with, but not

completely abolish, the function or recruitment capabilities of flanking domains and thus

yield inhibitory effects for the corresponding GFP fusion proteins 7. Because UBXD8 has

a UBX domain that might recruit p97 to the site of dislocation, the attachment of a

globular GFP-sized domain in close proximity to the C-terminal UBX domain might

interfere with this interaction. Similarly, the GFP-tagged version of Derlin-1 inhibits

Class I MHC HC degradation in US 11-dependent fashion '.

We observe strong inhibition of class I MHC HC degradation in US 11 cells that

overexpress UBC6e C91S, AUP1-GFP, and UBXD8-GFP, (Figs. 2.5 and 2.6). In pLHCX

vector control cells, most Class I MHC HCs have lost their N-linked glycan at the 30 min

chase point, due to the activity of the cytoplasmically disposed PNGase 36. In the



presence of proteasome inhibitor (ZL 3VS), the diagnostic deglycosylated dislocation

intermediate accumulates and is recognized by its distinct mobility on SDS PAGE 4. The

overexpression of catalytically inactive UBC6e (C91S) or wild-type UBC6e strongly

delays in the degradation of Class I MHC HC: >75% of HC remains in the ER (Fig.

2.5A- 1, lanes 4-9). All three cell types express comparable levels of US 11, and displays

the typical delayed cleavage of its signal peptide 31 (Fig. 2.5A-3, lanes 1-9).

In US2 cells transduced with the same constructs, degradation continues

unperturbed: Class I MHC HCs are dislocated at rates similar to those observed in control

cells (pLHCX), compared to cells that overexpress UBC6e or UBC6e C91S (Fig. 2.5C-1,

lanes 1-9). All three cell lines express similar levels of US2, with its usual mobility on

SDS-PAGE: in addition to ER-membrane inserted glycosylated US2, we detect a faster

migrating US2 lacking its N-linked glycan, as US2 is inefficiently translocated into the

ER '8. Both the US2 and the US 11 cell lines were obtained by viral transduction of

UBC6e C91S and WT UBC6e and show equivalent levels of expression of UBC6e (Fig.

2.5A-2, lanes 4-9 and Fig. 2.5C-2, lanes 4-9). The ubiquitin-activating enzyme UBC6e is

thus involved in Class I MHC HC dislocation in US 11 cells, but not in US2 cells.

Because US2 cells remain capable of proper dislocation, ER function as such is not

compromised.

We then examined the fate of Class I MHC HC when expressing the GFP-tagged

versions of the three identified proteins AUP1, UBXD8 and OS9 (Fig. 2.6). Cells that

express AUP1-GFP showed inhibition of dislocation: 50% of Class I MHC HC remains

in the ER after 30min of chase (Fig. 2.6A, lanes 4-6, and Fig. 2.6B). The effect is even

more pronounced when using cells that express UBXD8-GFP: more than 75% of HCs



fail to reach the cytosol (Fig. 2.6A, lanes 7-9, and Fig. 2.6B). As mentioned above, GFP-

OS9 did not significantly inhibit dislocation of Class I MHC HC. Again, US2 cells served

as a control. US2-dependent dislocation proceeded unperturbed in AUP 1 -GFP, UBXD8-

GFP, and OS9-GFP cells (Figure 2.6C and D). Equal amounts of the GFP-tagged

constructs were expressing in the US2- and US 1-expressing cells (Fig. 2.6E).

We compared the ability of UBXD8 and UBXD8-GFP to recruit p97 into the

dislocation complex. To this end, we overexpressed UBXD8 and UBXD8-GFP to the

same levels in 293T cells and performed an immunoprecipitation with anti-UBXD8

antibodies from digitonin lysates. The recovered material was then analyzed by

immunoblotting with anti-p97 antibodies (Fig. 2.6F). The amount of p97 recovered in

immunoprecipitates from cells expressing UBXD8-GFP is much reduced compared to

cells expressing wild-type UBXD8. We conclude that the GFP tag hinders recruitment of

p97 to the ER membrane, and therefore impedes dislocation. The residual p97 recovered

is attributable to the endogenous UBXD8 present in the cells.



Figure 2.5
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The three cell lines were treated with ZL3VS, pulse-labeled for 1 0min with 355, chased for indicated time points,
and then lysed in 1% SDS and the lysate was immunoprecipitated with anti-HC [1], anti-UBC6e [2], and anti-USi 1
[3] antibodies sequentially. The eluates were separated on 12% SDS-PAGE and visualized on film. The asterix
represents a slower migrating band that occurs upon overexpression of UBC6e and is likely a phosphorylated
version of UBC6e (Oh et al., 2006).
B) Quantitation of the amount of glycosylated HC to total HC counts.
C) US2-expressing cells were transduced with the same virus preparation used in (a). The experiment was
performed as in (a).
D) Quantitation of the amount of glycosylated Class I MHC HC to total HC counts.
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Figure 2.6
A. US 1-expressing cells
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The experiment was performed as in Figure 2.5.
B) Quantitation of the amount of glycosylated Class I MHC HC to total HC counts.
C) US2-expressing cells were transduced with the same virus preparation used in (A) and a pulse-chase experi-
ment was performed as for (A).
D) Quantitation of the amount of glycosylated Class I MHC HC to total HC counts.
E) The cell lines used in (A) and (B) were lysed in 1% SDS, separated by SDS-PAGE, and transferred to a PVDF
membrane. The membrane was immunoblotted for GFP, calnexin (cnx, loading control), US1 1, and US2.
F)The GFP-tag on UBXD8 hinders recruitment of p97. UBXD8 WT and UBXD8-GFP were expressed in 293T cells
and immunoprecipitated with anti-UBXD8 antibodies from digitonin extracts. The eluates were separated on a
10% SDS-PAGE and immunoblotted with anti-p97 antibodies.
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The dominant negative constructs of UBC6e, AUPI and UBXD8 retain Class I

MHC HC in the ER

We used the monoclonal antibody W6/32, which recognizes only correctly

assembled Class I MHC molecules in their fully native conformation 39, to explore

whether inhibition of dislocation is accompanied by an increase in the amount of

correctly folded Class I MHC molecules. We indeed found this to be the case (Fig. 2.7,

cell lines used were those from Figure 2.5 and 2.6) and conclude that the intermediates

that accumulate when dislocation is inhibited retain their typical orientation within the

ER. In pulse chase experiments, the W6/32-reactive Class I MHC molecules do not

undergo conversion of their high mannose to the complex type glycans, as inferred by a

lack of a shift in mobility assessed by SDS-PAGE. This observation is consistent with the

ability of US11 to retain Class I MHC molecules in the ER, also when dislocation is

blocked, as observed for the single point mutant in the transmembrane segment of US 11

4. This experiment also demonstrates that UBC6e C91S, UBC6e WT, AUP1-GFP, and

UBXD8-GFP do not disrupt dislocation merely by preventing the association of US11

with Class I MHC HC: as with the empty vector control, US 11 co-immunoprecipitates

with W6/32-reactive Class I MHC HC in all of the cell lines constructed (Fig. 2.7).



Figure 2.7
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pLHCX UBC6e UBC6e C91S

0 15 30 0 15 30 0 15 30 chase (min)

-HC

-US11

1 2 3 4 5 6 7 8 9

pLHCX

0 15 30

AUP1-GFP

0 15 30

UBXD8-GFP GFP-OS9

0 15 30 0 15 30 chase (min)

HC

US11

1 2 3 4 5 6 7 8 9 10 11 12

Dominant negative versions of UBC6e, AUP1, and UBXD8 retain Class I MHC HC in the ER
A) Cell lines from Figure 2.5A were pulse labeled for 10 minutes with 35S and chased for the indicated time points.
The cells were then lysed in 0.5% NP-40 and properly folded Class I MHC HC was immunoprecipitated with the
W6/32 antibody. Eluates were separated on SDS-PAGE (12%) and visualized on film.
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Discussion

We have identified three new components of the mammalian dislocation

machinery. We used as the point of departure the isolation of SELIL-interacting partners.

We reasoned that via SELIL, we should recover additional proteins involved in ER

dislocation: both ER luminal components that may be involved in substrate recognition,

and, through its binding partner HRD1, additional cytosolic components that act

downstream.

We chose a cell line that did not express US 11 to isolate the SEL 1 L complex to

avoid possible bias that might derive from remodeling of the dislocation machinery by

US11 itself. The significance of the isolated proteins was verified by returning to our

model dislocation cell lines, those expressing US 11 or US2. US 11 uses a pathway that is

superficially similar to the Hrdlp/Hrd3p pathway in yeast 7' 9' 1.

From our analysis of the US 11 pathway, the role of OS9 in dislocation is not

immediately apparent. We thus turned to an examination of the fate of the ribophorin

fragment RI332 to assess a possible contribution of OS9 to dislocation, because RI332 is

removed from the ER and destroyed in a SEL1L-dependent manner. When interpreting

these results, it is imperative to keep in mind the timescale of dislocation of each of the

substrates. Since US 11-mediated dislocation proceeds at a rapid pace (Class I MHC HC

half-life is only 2-5 minutes), it may well be more sensitive to minor perturbations than

the dislocation of other, longer-lived, substrates such as RI 332 . This sensitivity is valuable

for identification of members of the dislocation complex, but requires a more stringent

threshold when discussing significance. Thus the same magnitude of stabilization of

RI 332 may well be more significant than for Class I MHC HC. Since the effect of the OS9



mutants and GFP-OS9 on US 1-mediated dislocation is much lower than AUP1-GFP and

UBXD8-GFP, we consider the role of OS9 to be comparatively minor (Fig. 2.6). In

contradistinction, the moderate effect of manipulating OS9 level on RI332 degradation is

sufficient to implicate OS9 in the quality control mechanism of RI 332 , as is the case in

SEL 1 L-dependent degradation ".

Since overexpression of wild-type OS9 inhibits dislocation of RI 332 , excess OS9

likely disrupts the architecture of the complex by titrating away components and

rendering the dislocon incapable of efficiently processing substrates. Interestingly, we do

not see such a difference in US 11 cells that overexpress OS9 to similar levels. Why does

a disruptive level of OS9 not affect the performance of the dislocon in US 11-expressing

cells? We attribute this discrepancy to the fact that US 11 itself may stabilize the complex

in a way that is insensitive to excess OS9 levels. Perhaps the rapidity of US 11-mediated

dislocation in itself also points to a stabilized dislocon and more efficient recognition,

inherent in the unique and specific interaction of US 11 with its substrate.

Combined, these results are consistent with a model in which US 11 serves the

specific function of delivering Class I MHC HC to the HRD1/SEL1L complex and

accelerates their removal from the ER and degradation (Fig. 2.8). In HeLa cells, OS9 is

an integral part of this complex, and contributes to substrate recognition. For neither

mammalian OS9 nor for its yeast homolog, Yos9, is it clear what (sets of) endogenous

substrates each of them recognize. The example of US 11 shows that other proteins can

assume a substrate recognition function in the context of the larger HRD1/SEL1L

complex and deliver substrates to the ligase complex. OS9 is in fact essential for the

degradation of mutant ax- 1 antitrypsin 1.



We show that UBC6e is involved in the degradation of Class I MHC HCs in

US11 cells. The identification of the ubiquitin-conjugating enzyme (E2) that mediates

this process has been an important goal, and one possible E2, the E2-25K protein, was

uncovered using a permeabilized cell system 41 to assay for its activity. However, this

assay does not allow exchange or removal of membrane-bound molecules, and so it is not

surprising that UBC6e, an E2-type enzyme equipped with a C-terminal membrane

anchor, escaped detection. From the in vivo data in intact cells presented here, we believe

that UBC6e is the primary E2 enzyme that catalyzes the ubiquitination of Class I MHC

HCs in US 11 cells. Other E2s, especially if present in excess, might nonetheless be

capable of performing the same reaction.

We also identified two UBX domain-containing proteins, UBXD2 and UBXD8,

both of which associate with SELIL. UBXD2 (Erasin), the first mammalian UBX-

containing protein linked to dislocation, participates in the degradation of CD36 42, but

does so through unknown mechanisms. Could UBXD8 be the possible homolog of

Ubx2p, a protein that spans the ER membrane twice and is involved in recruiting p97 to

the ER membrane 43 44? We see strong inhibition of US 11-mediated HC dislocation when

overexpressing UBXD8-GFP. However, UBXD8 shares only 17% sequence identity with

Ubx2p. Curiously, UBXD8 shares the same level of homology with Ubx3p (another

cdc48p cofactor of unknown function). Ubx3p was not reported to be part of the

dislocation complex in yeast 24, 2. UBXD8 and Ubx3p share similar organization,

reflected by the order of the distinct domains that are present: both are predicted to have a

UAS and a UBX domain C-terminal to a single transmembrane domain. In contrast,

Ubx2p has two transmembrane domains and lacks the UAS domain, but does have a



UBA domain at its N-terminus. If UBXD8 were to be inserted as a type I or type II ER

transmembrane protein, either the UBA or the UBX domain would reside within the ER

lumen. Domains that specify involvement in the ubiquitination pathway are not usually

found inside the ER. We see clear ER-localization of UBXD8 in immunofluorescence

and by sedimentation analysis of microsomes (Fig. 2.1), so we propose a similar

mechanism of ER insertion as has been shown for Erasin or UBXD2. UBXD8 might be

inserted in the ER membrane by dipping into the outer leaflet of the lipid bilayer (Figure

2.8) with both tails exposed to the cytosol 42. UBXD8 and UBXD2 might both be

involved in recruitment of p97 to the site of dislocation, together or separately, depending

on the topology of the substrate. The GFP tag installed on UBXD8 hinders recruitment of

p97 which might account for the slowed dislocation (Figure 2.6F). We do not know how

AUP1 acts as a dominant negative, but it is plausible that the GFP tag here also hinders

the recruitment of a downstream, possibly unknown, component of the dislocation

machinery.

It is now clear that UBC6e, AUP1, and UBXD8 are required for the exit of a type

I ER-membrane protein from the ER (Figs. 2.5 and 2.6). UBC6e and AUPI each have

one transmembrane segment and UBXD8 may dip into the cytosolic face of the ER

membrane, all of which may contribute to the formation of a proteinaceous channel. Each

of these three proteins also contain conserved functional domains with cytoplasmic

exposure. A schematic representation of the putative organization and composition of this

complex is shown in figure 2.6. The initial step of the dislocation pathway involves

recognition of the substrate. In the case of Class I MHC HC, this is primarily done by

US 11, but for RI332 , a glycosylated misfolded protein, OS9 is involved in the process.



The other three proteins described here, AUP1, UBXD8 and UBC6e, also act prior to

cytoplasmic disposition of the dislocation substrate (Figs. 2.3 and 2.7). UBC6e acts as an

E2 ubiquitin ligase and UBXD8 appears to play a role in the recruitment of the AAA+

ATPase p97. The role of AUPI remains elusive, but its CUE domain may be involved in

recruitment of another ubiquitin conjugating enzyme. The identification of additional

proteins that participate in these reactions, as reported here, is an important step towards a

better understanding of the essential cellular process of dislocation.



Figure 2.8
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Methods

Antibodies, cell lines, constructs

Antibodies:

The cytosolic parts of the three proteins AUP1 (aa 62-411), UBC6e (aa 1-232), and

UBXD8 (aa 361-445) were expressed as N-terminal His-tagged fusions in E. coli BL21

(DE3) Rosetta cells and purified. The recombinant His-tagged fusion proteins were sent

to Covance Research Products to generate rabbit polyclonal antibodies. Antibodies

against AUP 1, UBC6e, and UBXD8 were affinity purified as described '. Antibodies to

Class I MHC HC, US2, US 11 have been described 38, 40. The anti-GFP, anti-PDI, and

anti-OS9 antibodies were purchased from Abcam. Alexa 488-conjugated goat anti-mouse

and alexa 568-conjugated goat anti-rabbit were from Molecular Probes. Anti-Ribophorin

antibody and the RI3 32 cDNA were a generous gift from N. Erwin Ivessa.

Cell lines:

U373, US2, US 11 cell lines have been described ". HeLa and 293T cells were purchased

from ATCC. Cells transduced with pLHCX based vectors were selected and maintained

in 125ug/ml hygromycin B (Roche).

Protein Constructs:

The murine H2-Kb signal sequence was fused to the N-terminal HA-TEV tag of SELIL

to ensure proper ER localization. SELIL was cloned from cDNA using standard

methods. The SELIL sequence is unstable in bacteria and several mutations occured that

were removed by single point mutagenesis (Strategene). cDNA clones for UBXD8, OS9,

UBC6e, and AUPI were obtained from Open Biosystems and the open reading frame

was cloned into pcDNA3.1(+), pLHCX (clontech), and pEGFP-N1 (clontech). GFP-OS9



was cloned with the OS9 signal sequence replaced by the murine H2-Kb signal sequence

followed by GFP.

Anti-HA-affinity purification and MS/MS analysis

5*108 HeLa cells were lysed for 30 min in 24 ml of ice-cold lysis buffer (2% digitonin,

25mM Tris-HCl pH 7.4, 150mM NaCl, 5mM MgCl 2, complete protease inhibitor tablets

(Roche), 2.5mM N-ethylmaleimide). The nuclei and cell debris were pelleted at 16000g

for 15min, and the cleared lysate was incubated with 250ul anti-HA-agarose beads (clone

3F 10, Roche) for 3hours at 4C with gentle agitation. The beads were washed with 50ml

wash buffer (0.1%digitonin, 25mM Tris-HCl pH 7.4, 150mM NaCl, 5mM MgCl 2) and

eluted with 100 units of tobacco etch virus (TEV) protease (Invitrogen, AcTEV) in 250ul

wash buffer at 4C overnight. The eluted material was collected, and the beads were

washed with 500 ul wash buffer. The washes and eluted materials were pooled and

exchanged into 20 mM NH 4 CO 3 pH 8.0, 0.1% SDS by using MicroSpin G-25 Columns

(Amersham Biosciences). The eluate was concentrated in a speed-vac and separated by

SDS-PAGE (10% acrylamide). Polypeptides were revealed by Coomassie Blue staining,

excised, and trypsinized as described (Lilley and Ploegh, 2004). Peptides were sequenced

by LC/MS/MS.

Pulse-chase experiments, immunoblotting, SDS-PAGE

Methods for pulse-labeling, cell lysis, immunoprecipitation, pulse-chase regarding Class I

MHC HCs in US 11 and US2 cells, viral transduction of cells, transfection of cells with

RI 332 , SDS-PAGE, and fluorography have been described " All quantitation was

performed on a phosphoimager.



Immunofluorescence and microsomal preparation

Cells were seeded onto glass coverslips and allowed to attach overnight. Fixation was

achieved with 4% paraformaldehyde for 20 minutes at room temperature. Cells were

permeabilized with 0.1% Triton X- 100 for 10 minutes at room temperature and incubated

with the affinity purified antibody as described 7. Imaging was performed on a spinning

disk confocal microscope at 100x magnification. Microsomes were prepared from U373

cells as previously described . Microsomes were incubated in the indicated buffer

conditions for 30 minutes and centrifuged at 20,000xg for 20 minutes. The pellet was

resuspended directly in reducing sample buffer and the supernatant was first TCA

precipitated.
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Chapter 3

The dual role of AUP1 in lipid droplet formation and ER protein quality control



Abstract

Quality control of endoplasmic reticulum proteins involves the identification and

engagement of misfolded proteins, dislocation of the misfolded protein across the ER membrane,

and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1

(AUPi) physically associates with the mammalian HRD1/SEl1L complex and AUPI-depletion

impairs degradation of misfolded ER proteins. One of the functions of AUPi in ER quality

control is to recruit the soluble E2-ubiquitin conjugating enzyme UBE2G2. We further show that

the CUE domain of AUPI regulates poly-ubiquitylation and determines AUP1 's interaction with

the HRDl complex and dislocation substrates. AUPI localizes both to the ER and to lipid

droplets. AUPI expression is necessary for the efficient formation of lipid droplets and as such

represents the first protein with lipid droplet regulatory activity to be linked to ER quality

control. These findings indicate a possible connection between ER protein quality control and

lipid droplets.



Introduction

Eukaryotic cells possess an efficient system to detect and remove misfolded proteins

from the endoplasmic reticulum (ER)'. The HRD1 complex specializes in the removal of ER

proteins with defects in their lumenal domains2 4 . Once a lumenal ER protein has exhausted its

folding options, it is directed to the quality control machinery by a set of proteins that includes

OS9, XTP3-B, and SELIL 57. The misfolded protein is then dislocated from the ER.

Transportation across the ER lipid bilayer is generally believed to proceed through a

proteinaceous channel, such as the complexes nucleated by Sec61 8, Derlin1'' 10 or the E3 ligase

Hrdlp". Energy for this movement is provided by the cytoplasmic AAA-ATPase p9712 , a

protein involved in many different cellular functions. The dislocated protein is ubiquitylated and

deglycosylated prior to its degradation by the proteasome in the cytoplasm. Ubiquitylation is a

three step process. El activates ubiquitin in an ATP-dependent reaction, followed by formation

of a thio-ester linked ubiquitin-E2 complex. An E3 ubiquitin ligase then catalyzes transfer of

ubiquitin onto the intended substrate. In the case of the HRD1/SEL1L complex, UBE2G2 (also

known as UBC7) serves as the E2 and HRD 1 as the E34. UBE2G2 also acts as the E2

conjugating enzyme for gp78, another E3 ubiquitin ligase that specializes in the ubiquitylation of

dislocated ER proteins 4. We have also identified Ubc6e as an E2 conjugating enzyme of the

HRD1/SELlL complex", suggesting the possibility that protein complexes of overlapping yet

distinct composition are involved in ER quality control.

We previously identified ancient ubiquitous protein 1 (AUP1) as a component of the

HRD1/SELlL ER quality control complex and showed that AUP1 is necessary for US11-

mediated dislocation of Class I MHC heavy chains' 5 . US 11 is a protein encoded by Human

Cytomegalovirus (HCMV) that targets Class I MHC heavy chains for destruction as part of its



immunoevasive strategy16 . AUPI has also been proposed to be involved in integrin signaling 1'

18. AUPI contains a hydrophobic region close to the N-terminus that inserts into the membrane

such that both termini are found in the cytoplasm' 9. AUPI contains two conserved cytoplasmic

domains according to the Ensembl database: an acyltransferase domain and a CUE domain.

Acyltransferase domains transfer fatty acids onto phospholipids using a conserved active site

histidine and aspartic acid, separated by four amino acids (HX4D)20 . Acyltransferase domains

differ in the fatty acid and acceptor lipids they use. CUE domains are UBA-like domains, which

bind ubiquitin. Residues on the first and third alpha-helices of the CUE domain bind to a

hydrophobic surface patch of ubiquitin2 1 22. We here identify a third region of AUPI not

previously annotated in the domain bioinformatics databases that is necessary for recruitment of

UBE2G2. This UBE2G2 binding domain (G2BR) was originally found on the E3 gp78 3 .

During the preparation of the manuscript, this G2BR was also identified by another group19.

At first glance, it is reasonable to hypothesize that in mammalian cells AUPI merely

serves a role similar to that of Cuelp, a component of the yeast Hrdl/Der3p ER protein quality

control complex. Both AUP1 and yeast Cuelp are membrane-anchored, contain a CUE domain

and a region that binds its cognate E2 ubiquitin ligase. The CUE domain of yeast Cuelp is

dispensable for ER quality control. Yeast Cuelp recruits24 and enhances2 5 the activity of Ubc7p,

the yeast UBE2G2 homolog, via a U7 binding region at its C-terminus2 6 . Aside from these

similarities, AUPI and Cuelp are not homologs, and there is no ortholog of AUPI in yeast.

AUP1's architecture of a membrane anchor, followed by an acyltransferase domain and then a

CUE domain, is conserved in organisms with bilateral symmetry. Unlike AUP1, however, yeast

Cuelp does not encode a putative acyltransferase domain. Given this difference, AUP1 may

perform additional functions beyond those of yeast Cue Ip.



We show that AUP1 is found in both the ER and in lipid droplets. Lipid droplets are

cytoplasmic organelles that serve as storage depots for cholesteryl esters and triacylglycerols, to

be released for membrane biogenesis or as a source of cellular energy via beta-oxidation of fatty

acids. Lipid droplets are derived from the ER and are composed of a phospholipid monolayer

that surrounds the neutral lipid core27 28. The role of lipid droplets also includes a variety of less

obvious functions, such as sequestration of histones in embryogenesis 29, involvement in

Hepatitis C30 and Chlamydia31 infection, and proteasomal degradation3 2' 33 .

Here we examine the role of AUP1 in ER protein quality control and in lipid droplet

formation. We expand the role of AUPI to include general ER quality control of soluble

misfolded ER proteins. We find that AUPI binds UBE2G2 at its C-terminus. AUP 1-interacting

proteins, identified by mass spectrometry, fall into three main categories: ER protein quality

control proteins, lipid-modifying enzymes, and subunits of the oligosaccharide transferase

complex, further underscoring the connections with the ER. The interaction of AUP1 with the

ER protein quality control complex, terminally misfolded proteins, and ubiquitylated proteins is

mediated by its CUE domain. The CUE domain and G2BR regulate ubiquitylation and

polyubiquitylation. Finally, we show that AUP1 localizes to lipid droplets and contributes to

their formation. These unexpected results suggest that lipid droplets might be important for ER

protein quality control. This hypothesis is supported by the observation that dislocation

substrates are stabilized in the presence of an inhibitor of lipid-modifying enzymes required for

lipid droplet formation.



Results

AUP1 is necessary for dislocation of misfolded proteins from the ER

AUP1 has been implicated in the US11-mediated disposal of Class I Major

Histocompatibility Complex heavy chains (HC) based on the observation that GFP-tagged

versions of AUP 1 act in dominant-interfering fashion and impair the US 11 mediated disposal

pathway' 5 . We confirmed this result using shRNA-mediated reduction of AUPI levels. US1 1-

expressing cells were transduced with a control shRNA specific for luciferase or one of two

different shRNAs that target AUPI. These cells were then subjected to pulse chase analysis and

immunoprecipitation of Class I heavy chains. The addition of the proteasome inhibitor ZL 3VS

allowed recovery of both glycosylated (HC+CHO) and deglycosylated, cytoplasmically

disposed, heavy chains (HC-CHO). Cells with decreased levels of AUPI (as determined by

western blot), exhibited slower kinetics of heavy chain removal from the ER (Fig. 3.1A).

Two soluble misfolded proteins, Ribophorin I fragment (RI33 2 ) and the Null Hong Kong

variant of alpha-i anti-trypsin (NHK), are known to also use the HRD1 complex for their

removal from the ER. NHK and RIm-2 are ER lumenal proteins harboring mutations that prevent

them from folding correctly and thus serve as dislocation substrates34 . Both R1332-HA and NHK

are stabilized in AUPI depleted cells, showing that AUP1 contributes to their dislocation. The

magnitude of the effect on dislocation is comparable to those observed for other interventions in

ER quality control, such as depletion of members of the Derlin family3 lOS91 and AUP1-GFP

dominant negatives. The two AUPi shRNAs have different efficiencies in HeLa cells- construct

A shows -50% reduction of AUPI levels and construct B shows -90% reduction. Furthermore,

the level of impairment of dislocation negatively correlated with the level of AUPl: greater

reduction of AUPI levels leads to slower dislocation rates (Fig. 3.1B and 3.1C).



Figure 3.1
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AUP1 is necessary for ER quality control. A) US 1-expressing astrocytoma cells were transduced with shRNA
specific against luciferase (shLUC), as a control, or one of two different constructs targeting AUP1 (A or B). Four
days post-transduction, cells were treated with ZL3VS proteasome inhibitor and pulse-labeled with 3 S-labelled
cysteine and methionine. Samples were taken at the indicated chase times and Class I MHC heavy chain was
recovered from the lysates. Immunoprecipitates were separated by SDS-PAGE and imaged by autoradiography.
Amount of recovered protein was quantified by phophorimagery and is shown as a percentage of glycosylated
heavy chain compared to total heavy chain. Error bars represent standard deviation of three individual experi-
ments. The level of AUP1 depletion was determined by immunoblotting with p97 as a loading control. The same
experiment as described for (A) was performed using shRNA-transduced HeLa cells transfected with NHK (B) or
R1332-HA (C) without the addition of ZL3VS. NHK was immunoprecipitated using an anti-al anti-trypsin antibody.
R1332-HA was immunoprecipitated using an anti-Ribophorin I antibody that recovers both the full-length and the
misfolded fragment of Ribophorin I. Quantification in (B) and (C) shows the percentage of protein remaining
compared to the amount recovered at the zero minutes chase time.
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AUP1 binds proteins involved in ER protein quality control, lipid modification, and

glycosylation

We identified proteins that interact with AUP 1 by mass spectrometry. HA-tagged

AUP 1 was transfected into HeLa cells and recovered from digitonin lysates with anti-HA

antibody and resolved by SDS-PAGE (Fig. 3.2). We identified the co-precipitating

proteins by LC/MS-MS (Table 3.1). Many of the known components of the HRD1

dislocation complex were recovered: HRD1, SELIL, OS9, UBXD8, p97, and UBE2G2.

We also recovered several components of the oligosaccharyl transferase complex:

Ribophorin I and II (OSTI and OST2), and OST48. In addition, we identified several

proteins involved in lipid modification: Long-chain fatty acyl-CoA ligase 3 (ACSL3),

serine palmitoyltransferase subunit 1, and lysophosphatidylcholine acyltransferase 1

(LPCAT1). In those cases where the necessary antibodies were available, we could

confirm by immunoprecipitation and immunoblot the interactions established by mass

spectrometry (Fig. 3.4A).
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Protein Molecular
Accession Number Weight (Da)

Unique Sequence
Peptides | Coverage (%)

ER Quality Control
AUP1 gil31712030 45,758 13 45

p97 gij6005942 89,266 13 20

UBE2G2 gil33359701 15,603 5 59

SEL1L gil19923669 88,699 10 19

OS9 gil63252870 73,775 6 13

UBXD8 gil24797106 52,591 6 20

HRD1 gil27436927 67,641 3 5

Oligosaccharide Transferase Complex
Ribophorin I gil4506675 68,527 16 33

Ribophorin 11 giJ209413738 67,682 10 27

Oligosaccharide Transferase 48 gil20070197 50,670 5 13

Lipid Metabolism
Acyl-CoA Synthetase 3 gil42794754 80,368 5 9

Serine palmitoyltransferase subunit 1 gil5454084 52,711 4 8

Lysophosphatidylcholine acyltransferase 1 gil33946291 59,114 3 8

AUP1 -interacting proteins. A partial list of proteins recovered from the HA-AUPI immoprecipitates and

identified by LC/MS-MS is given. Unique peptides indicates the total number of different peptides recovered
from the immunoprecipitate. GenBank GI numbers and calculated molecular weight (Da) are also given. Data

analysis was performed by MSRAT.

Table 3.1



AUPI binds the E2 Ubiquitin ligase UBE2G2 via a C-terminal G2 binding region

A striking AUP1-interacting protein that we recovered is UBE2G2. This

association was also identified in a large scale protein-protein interaction study36. Five

peptides of this 15.6 kDa protein were identified by mass spectrometry, accounting for

59% of its sequence (Table 3.1). UBE2G2 is a cytosolic E2 ubiquitin ligase, the

mammalian homolog of yeast Ubc7p. The mammalian E3 ubiquitin ligase gp78 binds

UBE2G2 via a stretch of 27 amino acids found at its C-terminus (termed the G2 Binding

Region, G2BR)23. An amino acid sequence alignment between the gp78 G2BR and

AUPi identifies a region of high similarity at the C-terminus of AUPI (Fig. 3.3A). We

made constructs of AUP1 lacking its putative G2BR-containing C-terminus as well as

constructs with mutations in the other two domains of AUP1 described above (Fig. 3.3B).

Full-length AUPi and AUPI with mutations in the acyltransferase or CUE domains

interact with UBE2G2, whereas AUP1AG2BR does not, as determined by

immunoprecipitation for myc-UBE2G2, followed by immunoblotting for HA-AUIP1 (Fig.

3.3C). We thus conclude that AUPI binds UBE2G2, and that this interaction is

dependent on the C-terminus of AUP 1 that constitutes a G2BR domain.
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The CUE domain of AUPI mediates its binding to ER quality control machinery

and dislocation substrates

CUE domains possess conserved sequences on their first and third alpha-helices

that bind to hydrophobic patches on the surface of ubiquitin. For AUP1, these areas

21
correspond to a valine-leucine-proline and di-leucine sequence . We mutated these

regions to compromise the binding of AUPI to ubiquitin. These mutations affected the

association of AUP1 with many components of the ER quality control machinery. HeLa

cells were transfected with HA-AUP1 constructs (wildtype, mutant acyltransferase

domain, mutant CUE domain, or G2BR deletion) or empty vector plasmid as a negative

control and HA-AUPI was recovered by immunoprecipitation from digitonin lysates. We

then immunoblotted for several of the AUP1-interacting proteins identified by mass

spectrometry (Table 3.1). AUPI with the mutant CUE domain (AUPlmCUE) was less

efficient at interacting with most of the proteins involved in dislocation (p97, SELIL,

UBXD8, OS9, UBC6e and HRD1). Components of the oligosaccharide transferase

complex (Ribophorin I, OST48 and STT3B) were recruited equally well for all forms of

HA-AUP1 (Fig. 3.4A).

Given the role of AUP1 and the ER quality control complex in processing of

misfolded ER proteins, we examined whether AUP1 associates with dislocation

substrates. HeLa cells were transfected with AUP1 constructs and one of two terminally

misfolded proteins, NHK or R1332-HA. NHK or R1332-HA immunoprecipitates were

analyzed for AUP1 content by immunoblotting. AUP1 with CUE domain mutations

associated less well with both of the dislocation substrates than did wildtype AUPI (Fig.

3.4B and 3.4C).



Figure 3.4
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The CUE domain of AUP1 mediates interaction with ER quality control proteins and terminally misfolded proteins.
A) HeLa cells were transfected with empty vector or one of the HA-AUP1 WT or mutant constructs. HA-AUP1 was
recovered with 3F1 0 (anti-HA) antibody from digitonin lysates. Immunoblotting with antibodies for the indicated
proteins showed the presence of endogenous proteins in the total cell lysates and immunoprecipitates. *
indicates cross-reactive proteins and ** indicates degradation product of UBC6e. B) HeLa cells were transfected
with NHK variant of alpha-1 anti-trypsin and one of the AUP1 WT or mutant constructs as indicated. These cells
were incubated with 5 pM ZL3VS overnight. NHK was recovered from NP-40 lysates and the content of AUP1 in
total cell lysates and immunoprecipitates was determined by immunoblotting with an anti-AUP1 antibody. Both
endogenous and transiently-introduced AUP1 is present in the immunoblots. C) The same experiment as in (B)
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AUPI is modified by ubiquitin and binds ubiquitylated proteins

AUP1 is itself modified by ubiquitin. Cells transfected with HA-ubiquitin and

GFP-AUP1 were solubilized in mild detergent (digitonin). HA-Ub and HA-Ub-modified

proteins were immunoprecipitated from the lysates, followed by immunoblotting for

AUPl. Anti-AUP 1-reactive material was detected at ~8kDa and ~16kDa above the

expected molecular weight of GFP-AUP 1, consistent with mono- and di-ubiquitylation of

AUP1 (Fig. 3.5A). A polypeptide corresponding to the size of unmodified GFP-AUP1 is

also detected, suggesting that GFP-AUP1 self-oligomerizes with both ubiquitylated and

nonubiquitylated GFP-AUP1 in a digitonin-resistant manner. Very little GFP-

AUP1mCUE was recovered, indicating that the CUE domain is essential for interaction

with HA-Ub, and GFP-AUP1mCUE is minimally ubiquitylated in vivo. Endogenous

AUPi is also present in the immunoprecipitates, but less is recovered in the presence of

GFP-AUP1 constructs containing the G2BR, suggesting that the G2BR, and perhaps the

associated UBE2G2, competes with endogenous AUPI for binding with HA-Ub.

The same experiment was also performed in reverse order: GFP-AUP1 was

natively immunoprecipitated from the lysates followed by immunoblotting for HA-Ub.

The amount of HA-reactive material recovered by GFP-AUP 1 mCUE in digitonin lysates

was less than for GFP-AUP1 wildtype (Fig. 3.5B), most likely because the CUE domain

of AUP1 mediates the interaction between AUP1 and ubiquitylated proteins. We

recovered relatively more HA-reactive material from GFP-AUP1AG2BR digitonin

lysates than for GFP-AUP1 wildtype, consistent with the possiblility that the G2BR

domain of AUP1 acts as a negative regulator of ubiquitylation or disrupts AUPI's

association with ubiquitylated proteins.



Given that AUP1 recruits both E2 and E3 enzymes, UBE2G2 and HRD1,

respectively, we wondered if the material recovered by immunoprecipitation of HA-

AUPi is sufficient to sustain ubiquitylation in vitro. El ubiquitin ligase and FLAG-

ubiquitin were added to the HA-AUP1 immunoprecipitates. All HA-AUPI constructs

could be poly-ubiquitylated in vitro, producing the typical ubiquitin "ladder" in anti-

FLAG immunoblots (Fig. 3.6). There is very little mono-ubiquitylated HA-AUPImCUE

compared to the other constructs, indicating that the CUE domain of AUPI may

negatively regulate poly-ubiquitylation.
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AUP1 is both ubiquitylated and binds ubiquitin-modified proteins A) HeLa cells were transfected with
HA-Ubiquitin and empty vector or one of the GFP-AUP1 contructs (WT or mutants, as indicated). HA-Ub was
recovered with 3F10 (HA-specific) antibody from digitonin lysates supplemented with 2.5mM N-ethylmaleimide
(NEM). GFP-AUP1 content in total cell lysates and immunoprecipitates was determined by immunoblotting with
an anti-AUP1 antibody. B) GFP-AUP1 was recovered with anti-GFP antibody from lysates described in (A). HA-Ub
content in total cell lysates and immunoprecipitates was determined by immunoblotting with an anti-HA
antibody.
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Figure 3.6
immunoprecipitates
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anti-AUP1 immunoprecipitates are able to perform ubiquitin transfer in vitro. HeLa cells were tranfected with
empty vector or one of the HA-AUP1 constructs (WT or mutant, as indicated). HA-AUP1 was immunoprecipitated
from digitonin lysates. El (100 nM), FLAG-Ubiquitin (60 pM), and an ATP-regenerating buffer was added to the
immunoprecipitates and kept at 370 C for 60 minutes. Separate samples containing only FLAG-Ubiquitin and
buffer or El, FLAG-Ubiquitin and buffer served as controls. Samples were run on an 8% tris-tricine SDS-PAGE gel,
and were immunoblotted with a FLAG-specific antibody.
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AUP1 localizes to the ER and lipid droplets and is involved in the formation of lipid

droplets

Recent proteomic studies have identified AUP1 as a component of lipid

droplets37-39. We confirmed this result for endogenous AUPI in HeLa cells by

microscopy. We performed anti-AUPI immunofluorescence microscopy of HeLa cells

fed oleic acid to induce lipid droplet formation. Lipid droplets were stained with the

lipophilic dye BODIPY 493/503. AUP1 clearly localizes to the periphery of lipid droplets

as well as to the ER (Fig. 3.7). Similar results were found in A431, Huh7, MDCK and

COS7 cells'9.

To see if AUP 1 plays a role in lipid droplet formation, we looked at the ability of

AUPI knockdown cells to form lipid droplets. HeLa cells were transduced with the

AUP 1-targeting shRNA constructs and then either incubated with oleic acid for 16 hours

or left untreated. Lipid droplets were stained with BODIPY 493/503 and fluorescence

intensity levels were determined by flow cytometry. The AUP1-depleted cells

accumulated only -60% as much lipid droplet staining upon oleic acid treatment as did

control cells (Fig. 3.8A). This effect matches those observed for TIP47-depleted cells 40, a

lipid droplet component. Thus AUP 1 contributes directly or indirectly to the formation of

lipid droplets.

Overexpression of several other known protein components of lipid droplets, such

as ADRP, induces the formation of lipid droplets' . Similarly, cells stably expressing

AUP1-GFP under the strong CMV promoter exhibit increased numbers of lipid

droplets 42 . This is readily apparent in bright field images (Fig. 3.8B) as well as confocal

microscopy with BODIPY 493/503 co-stain for lipid droplets (Fig. 3.8D). Electron
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microscopy of these cells produced images of dark electron-dense filled structures

characteristic of lipid droplets (Fig. 3.8C).
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Figure 3.7

AUP1

AUPI localizes to lipid droplets. HeLa cells were incubated with 250 M oleic acid for 16 hours. AUP1 was stained
with purified anti-AUP1 antibody and lipid droplets were stained with BODIPY 493/503. Cells were visualized by
spinning disk confocal microscopy. Scale bar= 1 Opm.

105

... ....... . .... .. .... ...............

BODIPY



Figure 3.8
A.

1800
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D.

AUP1 is involved in the formation of lipid droplets. A) HeLa cells were transduced with the shRNA constructs used
in Figure 3.1. Three days post-transduction, cells were left untreated or incubated with 0.4mM oleic acid for 16
hours. Lipid droplets were stained with BODIPY 493/503 and the amount of cellular fluorescence was determined
by flow cytometry. Error bars represent standard deviation from three independent experiments. B) HeLa cells
were stably transduced with empty vector or AUP1-GFP as indicated and imaged by Nomarski imaging.
Scale bar= 10pm. C) US 1-expressing astrocytoma cells transduced with AUP1 -GFP were imaged by electron
microscopy. Scale bar= 1 pm. D) HeLa cells stably transduced with AUP1 -GFP were visualized by spinning disk
confocal microscopy. Lipid droplets were stained with Nile Red dye. Scale bar= 10pm.
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Pharmacological inhibition of lipid droplets formation perturbs dislocation

Upon finding that AUP1 plays a role in both lipid droplet formation and ER

protein quality control, we wondered whether the two processes were functionally

related. Inhibition of a subset of Long-chain Acyl-CoA Synthetases (ACSL 1, 3, and 4) by

Triacsin C impairs lipid droplet formation4 % 44. In cells treated with this inhibitor,

dislocation of MHC class I heavy chain in US 11-expressing cells was slowed, as was the

degradation of two soluble dislocation substrates, NHK and R1332-HA (Fig. 3.9A-C).

Triacsin C treatment does not disrupt the folding capacity of the ER since XBP-1

splicing, a read-out of Unfolded Protein Response (UPR) activation, was only slightly

triggered after longer incubation times (Fig. 3.9D). The minor induction of the UPR may

be a result of impaired dislocation. As a comparison, tunicamycin, an inhibitor of N-

linked glycosylation, causes significant XBP-1 splicing at much earlier time-points.
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Figure 3.9
A. US 1-expressing U373 astrocytoma cells, lP: Heavy Chain

C trol Triacin C 100 A

chase (min)

HC+CHO
HC-CHO

0 15 30 0 15 30
50

0

0.

B. HeLa cells, IP: Null Hong Kong al anti-trypsin
Control Triacsin C
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C. HeLa cells, IP: Ribophorin I
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-- - - - 4hr 16hr 24hr Tunicamycin (2mg/ml)- XBP-1 unsplicedXBP-1 spliced

Pharmacological inhibition of lipid droplet formation affects dislocation
A) US 1-expressing astrocytoma cells were treated with 5mM Triacsin C for 24 hours. Cells were pulse-labeled with
3sS-Iabelled cysteine and methionine. Samples were taken at the indicated chase times and Class I MHC heavy chain

was recovered from the lysates. Immunoprecipitates were separated by SDS-PAGE and imaged by autoradiography.
Amount of recovered protein was quantified by phophorimagery and is shown as a percentage of glycosylated heavy

chain compared to total heavy chain. Error bars represent standard deviation of three individual experiments. B) HeLa

cells were transfected with NHK and the same experiment as in (A) was performed, using anti-al anti-trypsin

antibody for immunoprecipitation. C) HeLa cells were transfected with R1332-HA and the same experiment as in (A) was

performed, using anti-Ribophorin I antibody for immunoprecipitation. Quantification in (B) and (C) shows the

percentage of protein remaining compared to the amount recovered at the zero minutes chase time. D) HeLa cells

were treated with 5pM Triacsin or 2pg/mLTunicamycin for the indicated times. RNA was purified and reverse
transcribed. XBP-1 cDNA was amplified by PCR, run on a 2% agarose gel, and visualized by UV.
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Discussion

AUPI contributes to the degradation of misfolded ER proteins and plays a key

role in lipid droplet formation. AUPI localizes to both the ER and to the surface of lipid

droplets. Reduced levels of AUPI impair the cell's ability to efficiently degrade the

soluble terminally misfolded proteins RIm-HA and NHK. Cells that lack AUPi form

fewer lipid droplets, and overexpression of AUP1-GFP induces the formation of lipid

droplets. AUP1 associates with most of the components of the HRD1 dislocation

complex, as well as lipid modifying proteins and the oligosaccharide transferase

complex. The role of AUPI in ER protein quality control appears to be conceptually

similar to that of the yeast protein Cuelp, because both have a CUE domain and a

domain for recruitment of an E2 ubiquitin ligase, although there are important differences

between the two proteins.

Lipid droplet connection

A key difference between AUPI and yeast Cuelp is the contribution of AUPI to

lipid droplet formation, while no such role is apparent for Cuelp, which is not known to

localize to lipid droplets. Furthermore, AUP1 interacts with lipid-modifying proteins and

encodes a putative acyltransferase domain, which is absent from Cuelp. This putative

acyltransferase activity of AUP1 may be directly involved in lipid droplet formation, or

AUP1 may contribute to lipid droplet formation by recruiting other lipid modifying

proteins -such as those we identified by mass spectrometry- to the site of lipid droplet

formation. The dual roles of AUP 1 may indicate a deeper connection between ER protein

quality control and lipid droplet formation. This idea is supported by the fact

pharmacological inhibition of lipid droplet formation affects dislocation. AUP1 may
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serve as the fulcrum responsible for linking and coordinating these two processes. This

connection may be specific for mammalian cells and absent from yeast, as manifest by

the differences between AUP 1 and Cue 1 p with regards to lipid droplets.

How could lipid droplets be involved in ER protein quality control? In one model,

the lipid rearrangements required to form lipid droplets may facilitate the movement of

misfolded proteins from the ER to the cytoplasm45. Alternatively, AUPI may shuttle the

cytoplasmic dislocated proteins from the ER membrane to lipid droplets en route to their

proteasomal destruction. The lipid droplet could then serve as an appropriate reservoir for

aggregation-prone misfolded proteins with exposed hydrophobic residues. Similarly,

previous studies have shown that lipid droplets can store highly charged histones during

Drosophila embryogenesis. These authors hypothesize that proteins could be stored on

the droplet in a partially-unfolded state, with their unfolding and refolding aided by

chaperones that are present on the lipid droplets29. By analogy, misfolded ER proteins

could temporarily be parked on lipid droplets when the load of dislocated proteins

exceeds the capacity or local availability of proteasomes. In times of low misfolded

protein load, substrates would go directly to the proteasome.

Several connections between lipid droplets and ER protein quality control have

been suggested in other studies. Components of the proteasome have been identified in

lipid droplet preparations by mass spectrometry. The proteasome is responsible for the

degradation of two major protein components of lipid droplets, ADRP46, 47 and

perilipin 48. Cells treated with proteasome inhibitor resulted in the accumulation of

ubiquitylated proteins in the lipid droplet-containing fraction3 2 . These lipid droplet-

localized ubiquitylated proteins could include dislocated ER proteins. Such is the case for
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a mammalian ER quality control substrate, HMGCoA reductase, that is also found

associated with lipid droplets post-dislocation 49. These data are consistent with the idea

that proteins destined for proteasomal degradation may be stored on lipid droplets.

CUE domain

The CUE domain of AUP1 facilitates several important protein-protein

interactions. This is in contrast with yeast Cuelp, whose CUE domain appears to be

dispensable in ER protein quality control. The CUE domain of AUP 1 is necessary for the

assembly of AUP1 with the dislocation complex, for the interaction of AUP1 with

dislocation substrates, for the ubiquitylation of AUP 1, for the interaction of AUP 1 with

ubiquitylated proteins, and as a possible negative regulator of poly-ubiquitylation:

mutation of this domain in the context of AUP 1 yields ubiquitin adducts of greater

average size than those seen for wild type AUPl. The lack of association between

AUPlmCUE and terminally misfolded ER proteins may be due to the fact that

AUP 1 mCUE is not efficiently incorporated into the HRD 1 complex. Alternatively, AUP 1

may interact directly with the dislocation substrates, possibly via the ubiquitin

modifications that are attached during dislocation, which would account for the effect of

the CUE domain mutations on AUP I's interaction with R1332-HA and NHK. CUE

domain mutations show reduced levels of mono-ubiquitylated AUP1 and an increase in

more extensively ubiquitylated AUPI in vitro, possibly because the CUE domain

restricts access to the Lysine-48 of ubiquitin, the residue on which poly-ubiquitylation

occurs5. The CUE domain of yeast CUE2 CUE domain bound to ubiquitin, as solved by

NMR, shows that the K48 of ubiquitin is largely blocked22 , although CUE domain

binding of poly-ubiquitin is possible and has been observed in vitro5 1 . Thus AUPI CUE
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domain-mediated binding of ubiquitin may also serve a regulatory function to control

poly-ubiquitin chain formation on the dislocated ER protein.

G2BR domain

The G2BR domain we identify in AUPi is similar to the U7 domain of Cuelp,

and both are essential for recruitment of their cognate E2 (UBE2G2 for AUPI and Ubc7p

for Cuelp). The U7 domain of Cuelp enhances the activity of Ubc7p in vitro. Our

analysis of the G2BR and in vitro ubiquitylation experiments indicate that AUP 1 binding

of E2 may actually negatively regulate the ubiquitylation of AUP1 and dislocated

substrates, because ubiquitylation proceeds more efficiently when the G2BR is deleted.

Model

A working model for the role of AUPI places it in the HRD1/SEL1L complex (Fig.

3.10). AUP1 may need to either bind ubiquitylated proteins or be ubiquitylated itself

before it can be incorporated into the dislocation complex. Both of these functions are

dependent on an intact CUE domain. Once the entire complex is assembled, it can

proceed to process misfolded ER proteins. Ubiquitin is transferred from El to UBE2G2,

an E2. UBE2G2 is recruited to the site of dislocation by the G2BR of AUP 1. HRD 1, an

E3, then catalyzes the transfer of ubiquitin from UBE2G2 to misfolded ER proteins. The

G2BR limits the transfer of ubiquitin and thus the interaction of AUP 1 with ubiquitylated

proteins. This negative regulation may serve as a feedback mechanism to exert control

over degradation rates or to serve as an additional checkpoint in quality control. AUP1

then binds the dislocated ER proteins via interactions between its CUE domain and the

ubiquitin moiety covalently attached to dislocated ER proteins. This CUE domain-

ubiquitin interaction also regulates poly-ubiquitin chain extension. Finally, the dislocated
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substrates are delivered to the proteasome where they are degraded, but may first be

stored on lipid droplets under certain conditions. Thus AUPI is involved in several steps

of ER protein quality control that include ubiquitylation and processing.
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Figure 3.10

ER lumen
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E 2 Ub

Ub Ub
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Dropet

A possible model for the role of AUP1 in processing of misfolded ER proteins .AUP1 recruits UBE2G2, the E2 that
works with HRD1 to ubiquitylate dislocated ER proteins. AUP1 binds the misfolded ER protein and regulates the
ubiquitylation and poly-ubiquitylation of dislocation substrates via its G2BR and CUE domain, respectively. AUP1
is also involved in the formation of lipid droplets, a cytoplasmic organelle that may serve as a temporary storage
location for misfolded ER proteins. Further explanation can be found in the discussion.
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Materials and Methods

Antibodies

The following antibodies have been described: anti-AUPI, anti-UBXD8, and anti-

Ubc6e 5 ; anti-SEL1L 52 ; anti-Class I MHC HC (HC-70)9 . Other antibodies were

purchased: anti-GFP, anti-PDI, anti-GAPDH, and anti-Calnexin (Abcam); anti-FLAG

and anti-HA-HRP 3F10 (Sigma); immobilized anti-HA 3F10 (Roche); anti-OS9 and anti-

acl anti-trypsin (Novus); anti-HRDI1 (Abgent); anti-p97 (Fitzgerald Industries

International); and anti-myc M2 (Cell Signaling). Anti-Ribophorin I antibody was a

generous gift of N. Erwin Ivessa (Vienna Biocenter, Vienna, Austria). Anti-STT3B and

anti-OST48 antibodies were a generous gift of Reid Gilmore (University of

Massachusetts Medical School, Worcester, Massachusetts).

Cell culture, oleic acid treatment, Triacsin C, trans/ection

HeLa cells (ATCC) were cultured in DMEM. For lipid droplet loading, cells were

incubated with oleic acid adsorbed to BSA53 , for the concentrations and times indicated.

Triacsin C was purchased from Biomol. FuGene6 (Roche) was used for transfections.

shRNA

shRNA constructs targeting AUP1 were obtained from The RNAi Consortium. shLUC

corresponds to clone SHCO07, mature sense sequence

CGCTGAGTACTTCGAAATGTC, shAUP 1-construct A corresponds to clone

TRCN0000004269, mature sense sequence TCAGCCAACAGCCCTAACATT and

shAUP1-B corresponds to clone TRCN0000004272, mature sense sequence

ACACCTTTCGACCACAACATA. Lentivirus was made and HeLa cells were infected
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as described . Cells were grown in DMEM supplemented with 1p g/ml Puromycin and

experiments were performed 4 days post-infection.

DNA constructs

mAT and mCUE mutations were made to AUP1 using site-directed mutagenesis with the

following primers (forward primers are given); for mAT (H96A):

GGTCCTCATTTCCAACgcTGTGACACCTTTCGACC; for mCUE (E306K, V307A,

L308A) : GCTCAGAGAGTCAAGaaggcagcaCCCCATGTGCCATTG, and (A333-334):

CTTGACTATCACTAATGAGGGGGCCGTAGCTTTC. For the AG2BR construct, the

following reverse primer was used in PCR: CGTGAATTCTCA

CTTGGCAAATGTTAGGGCTG. Constructs were cloned into pcDNA3.1+ (Clontech)

(untagged and N-terminal HA) or pEGFP-CI/N1 (Clontech). GFP-AUP1 constructs also

contain silent mutations rendering them resistant to shAUP 1-B. UBE2G2 was obtained

from open biosystems and cloned into pcDNA3. 1+ with an N-teminal myc epitope tag.

HA-Ubiquitin was also cloned into pcDNA3.1+.

Imnunoprecipitation and immunoblotting

Cells were lysed on ice in buffer containing 25mM Tris pH7.4, 5mM MgCl 2 , 150mM

NaCl, and the detergent indicated: 0.5% Nonidet-P40 or 1% digitonin. Protein

concentration of the cytoplasmic fraction was determined and equalized across the

samples. Samples were incubated for 3 hours at 4*C with the antibody and Protein A

agarose beads or immobilized anti-HA as indicated. The immunoprecipitates were

washed, boiled in reducing sample buffer, and run on SDS-PAGE. Proteins were

transferred to PVDF membrane, membranes were blocked in PBS-Tween-milk,
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incubated with primary and secondary antibodies, washed, and developed with Western

Lighting Chemiluminescence Reagent Plus (PerkinElmer Life Sciences).

Pulse chase metabolic labeling

HeLa cells were starved for 45 minutes in DMEM lacking cysteine and methionine.

250pCi 35S-labeled cysteine and methionine (PerkinElmer) was added to each sample

during the pulse (10min for US 11 and 15min for RI 332 and NHK). Media containing cold

cysteine and methionine was added and equal numbers of cells were removed at the

indicated chase times. Cells were lysed by agitation in a small volume of 1% SDS in PBS

and then diluted in NP-40 lysis buffer. Incoproration of radioactivity was measured by

TCA precipiation and liquid scintillation spectrometry to equalize, for each sample, the

amount of input radioactivity to that at the zero chase timepoint. 35S labeled proteins were

visualized on X-ray film and quantified by phosphorimaging.

Mass Spectrometry

Approximately 90 million HeLa cells were transfected with HA-AUPI or empty vector

(pcDNA3.1+) plasmid and 3F10 beads were used for immunoprecipitation. Proteins

were visualized in the SDS-PAGE gel by silver staining. The entire lane was excised

from the gel in 4 x 10 mm strips and each individual gelslice was subjected to

trypsinolysis. Disulfide bonds were reduced and alkylated prior to trypsinolysis.

Recovered peptides were analyzed by reversed-phase liquid chromatography electrospray

ionization mass spectrometry using a Waters NanoAcquity pump coupled to a

ThermoFisher LTQ linear in nano flow configuration. The mass spectrometer was

operated in a dependant data acquisition mode where the five most abundant peptides

detected in full scan mode were subjected to daughter ion fragmentation. Peptides were
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identified from the MS data using SEQUEST algorithms that searched a human specific

database generated from the NCBI database. SEQUEST filters used for indication of

positive peptide identification were: XCorr vs Charge State = 1.5, 2.00, 2.50; Sp -

Preliminary Score = 500. Data interpretation from all bands was aided by the MSRAT

program (Protein Forest).

In vitro ubiquitylation

Following digitonin lysis and immunoprecipitation, 1 OOnM El (Boston Biochem), and

60pM FLAG-Ubiquitin (Boston Biochem), was added in an ATP-regenerating buffer

(50mM Tris pH7.6, 5mM MgCl 2 , 5mM ATP, 10mM creatine phosphate, 3.5U/mL

creatine kinase) and kept at 370 C for one hour with gentle shaking.

Immunofluorescence

Cells were grown on glass coverslips, fixed in 4% paraformaldehyde, and permeabilized

in 0.1% Triton X-100. Permeabilized cells were incubated with primary and secondary

(Alexa Fluor 568 labeled) antibodies and washed with PBS before being mounted on a

slide with Fluoromount-G (southern Biotech). Imaging was performed at 370C on an

inverted spinning disk confocal microscope (Nikon TE2000-U) using a Nikon x100

magnification, 1.4 numerical aperture, differential interference contrast oil lens and

54
Hamamatsu ORCA camera using Metamorph Imaging software as described

Electron microscopy

Cells were fixed in 2.5% glutaraldehyde, 3% paraformaldehyde, with 5% sucrose in 0.1

M sodium cacodylate buffer (pH 7.4). Cells were then postfixed in 1% Os04 in veronal-

acetate buffer. The cells were stained in block overnight with 0.5% uranyl acetate in

veronal-acetate buffer (pH 6.0), dehydrated, and embedded in Spurr's resin. Sections
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were cut on a Reichert Ultracut E microtome with a Diatome diamond knife at a thickness

setting of 50 nm, and stained with 2% uranyl acetate, followed by 0.1% lead citrate.

Samples were examined using an FEI Tecnai Spirit TEM at 80 KV and imaged with an

AMT camera.

Flow cytometry

HeLa cells were transduced with shRNA. Three days post-infection, O.4mM oleic acid

was added to half of the samples for 16 hours. Lipid droplets were stained with 10 pLg/mL

BODIPY 493/503 for 2 hours as described. Median BODIPY 493/503 intensity was

measured on a FACSCalibur (Becton, Dickinson) using forward scatter measurements to

exclude dead cells. Data was analysed using FlowJo software.

XBP-1 splicing assay

Total cellular RNA was isolated from cells using the Qiagen RNeasy kit. cDNA was

made using the Superscript II reverse transcriptase from Invitrogen. XBP- 1 was amplified

using the following primers: TCCTTCTGGGTAGACCTCTGGGAG (forward) and

CAAGGGGAATGAAGTGAGGCCAG (reverse) which flank the splice site.

119



References

1. Hebert, D.N., Bernasconi, R. & Molinari, M. ERAD substrates: which way out?
Seminars in cell & developmental biology 21, 526-532.

2. Carvalho, P., Goder, V. & Rapoport, T.A. Distinct ubiquitin-ligase complexes
define convergent pathways for the degradation of ER proteins. Cell 126, 361-373
(2006).

3. Denic, V., Quan, E.M. & Weissman, J.S. A luminal surveillance complex that
selects misfolded glycoproteins for ER-associated degradation. Cell 126, 349-359
(2006).

4. Bernasconi, R., Galli, C., Calanca, V., Nakajima, T. & Molinari, M. Stringent
requirement for HRD1, SELIL, and OS-9/XTP3-B for disposal of ERAD-LS
substrates. The Journal of cell biology 188, 223-235.

5. Christianson, J.C., Shaler, T.A., Tyler, R.E. & Kopito, R.R. OS-9 and GRP94
deliver mutant alphal-antitrypsin to the Hrdl-SEL1L ubiquitin ligase complex for
ERAD. Nature cell biology 10, 272-282 (2008).

6. Mueller, B., Lilley, B.N. & Ploegh, H.L. SELIL, the homologue of yeast Hrd3p,
is involved in protein dislocation from the mammalian ER. The Journal of cell
biology 175, 261-270 (2006).

7. Bernasconi, R., Pertel, T., Luban, J. & Molinari, M. A dual task for the Xbpl-
responsive OS-9 variants in the mammalian endoplasmic reticulum: inhibiting
secretion of misfolded protein conformers and enhancing their disposal. The
Journal of biological chemistry 283, 16446-16454 (2008).

8. Scott, D.C. & Schekman, R. Role of Sec6lp in the ER-associated degradation of
short-lived transmembrane proteins. The Journal of cell biology 181, 1095-1105
(2008).

9. Lilley, B.N. & Ploegh, H.L. A membrane protein required for dislocation of
misfolded proteins from the ER. Nature 429, 834-840 (2004).

10. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T.A. A membrane protein
complex mediates retro-translocation from the ER lumen into the cytosol. Nature
429, 841-847 (2004).

11. Carvalho, P., Stanley, A.M. & Rapoport, T.A. Retrotranslocation of a Misfolded
Luminal ER Protein by the Ubiquitin-Ligase Hrdlp. Cell 143, 579-591.

12. Rabinovich, E., Kerem, A., Frohlich, K.U., Diamant, N. & Bar-Nun, S. AAA-
ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-
associated protein degradation. Molecular and cellular biology 22, 626-634
(2002).

13. Kikkert, M. et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation
of proteins from the endoplasmic reticulum. The Journal of biological chemistry

279, 3525-3534 (2004).
14. Fang, S. et al. The tumor autocrine motility factor receptor, gp78, is a ubiquitin

protein ligase implicated in degradation from the endoplasmic reticulum.
Proceedings of the National Academy of Sciences of the United States of America

98, 14422-14427 (2001).
15. Mueller, B., Klemm, E.J., Spooner, E., Claessen, J.H. & Ploegh, H.L. SEL1L

nucleates a protein complex required for dislocation of misfolded glycoproteins.

120



Proceedings of the National Academy of Sciences of the United States of America

105, 12325-12330 (2008).
16. Wiertz, E.J. et al. The human cytomegalovirus US 11 gene product dislocates

MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84,
769-779 (1996).

17. Kato, A. & Oshimi, K. Ancient ubiquitous protein 1 and Syk link cytoplasmic
tails of the integrin alpha(IIb)beta(3). Platelets 20, 105-110 (2009).

18. Kato, A. et al. Ancient ubiquitous protein 1 binds to the conserved membrane-
proximal sequence of the cytoplasmic tail of the integrin alpha subunits that plays
a crucial role in the inside-out signaling of alpha lbbeta 3. The Journal of
biological chemistry 277, 28934-28941 (2002).

19. Spandl, J., Lohmann, D., Kuerschner, L., Moessinger, C. & Thiele, C. Ancient
ubiquitous protein 1 (AUPI) localizes to lipid droplets and binds the E2 ubiquitin
conjugase G2 (UBE2G2) via its G2 binding region. The Journal of biological
chemistry.

20. Heath, R.J. & Rock, C.O. A conserved histidine is essential for glycerolipid
acyltransferase catalysis. Journal of bacteriology 180, 1425-1430 (1998).

21. Prag, G. et al. Mechanism of ubiquitin recognition by the CUE domain of Vps9p.
Cell 113, 609-620 (2003).

22. Kang, R.S. et al. Solution structure of a CUE-ubiquitin complex reveals a
conserved mode of ubiquitin binding. Cell 113, 621-630 (2003).

23. Chen, B. et al. The activity of a human endoplasmic reticulum-associated
degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding
site. Proceedings of the National Academy of Sciences of the United States of

America 103, 341-346 (2006).
24. Biederer, T., Volkwein, C. & Sommer, T. Role of Cuelp in ubiquitination and

degradation at the ER surface. Science (New York, N. Y 278, 1806-1809 (1997).
25. Bazirgan, O.A. & Hampton, R.Y. Cuelp is an activator of Ubc7p E2 activity in

vitro and in vivo. The Journal of biological chemistry 283, 12797-12810 (2008).
26. Kostova, Z., Mariano, J., Scholz, S., Koenig, C. & Weissman, A.M. A Ubc7p-

binding domain in Cuelp activates ER-associated protein degradation. Journal of
cell science 122, 1374-1381 (2009).

27. Farese, R.V., Jr. & Walther, T.C. Lipid droplets finally get a little R-E-S-P-E-C-
T. Cell 139, 855-860 (2009).

28. Martin, S. & Parton, R.G. Lipid droplets: a unified view of a dynamic organelle.
Nat Rev Mol Cell Biol 7, 373-378 (2006).

29. Cermelli, S., Guo, Y., Gross, S.P. & Welte, M.A. The lipid-droplet proteome
reveals that droplets are a protein-storage depot. Curr Biol 16, 1783-1795 (2006).

30. Miyanari, Y. et al. The lipid droplet is an important organelle for hepatitis C virus
production. Nature cell biology 9, 1089-1097 (2007).

31. Cocchiaro, J.L., Kumar, Y., Fischer, E.R., Hackstadt, T. & Valdivia, R.H.
Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia
trachomatis parasitophorous vacuole. Proceedings of the National Academy of
Sciences of the United States ofAmerica 105, 9379-9384 (2008).

121



32. Ohsaki, Y., Cheng, J., Fujita, A., Tokumoto, T. & Fujimoto, T. Cytoplasmic lipid
droplets are sites of convergence of proteasomal and autophagic degradation of
apolipoprotein B. Molecular biology of the cell 17, 2674-2683 (2006).

33. Guo, Y. et al. Functional genomic screen reveals genes involved in lipid-droplet
formation and utilization. Nature 453, 657-661 (2008).

34. Tsao, Y.S., Ivessa, N.E., Adesnik, M., Sabatini, D.D. & Kreibich, G. Carboxy
terminally truncated forms of ribophorin I are degraded in pre-Golgi
compartments by a calcium-dependent process. The Journal of cell biology 116,
57-67 (1992).

35. Oda, Y. et al. Derlin-2 and Derlin-3 are regulated by the mammalian unfolded
protein response and are required for ER-associated degradation. The Journal of
cell biology 172, 383-393 (2006).

36. Ewing, R.M. et al. Large-scale mapping of human protein-protein interactions by
mass spectrometry. Molecular systems biology 3, 89 (2007).

37. Sato, S. et al. Proteomic profiling of lipid droplet proteins in hepatoma cell lines
expressing hepatitis C virus core protein. Journal of biochemistry 139, 921-930
(2006).

38. Wan, H.C., Melo, R.C., Jin, Z., Dvorak, A.M. & Weller, P.F. Roles and origins of
leukocyte lipid bodies: proteomic and ultrastructural studies. Faseb J 21, 167-178
(2007).

39. Brasaemle, D.L., Dolios, G., Shapiro, L. & Wang, R. Proteomic analysis of
proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-
Li adipocytes. The Journal of biological chemistry 279, 46835-46842 (2004).

40. Bulankina, A.V. et al. TIP47 functions in the biogenesis of lipid droplets. The
Journal of cell biology 185, 641-655 (2009).

41. Imamura, M. et al. ADRP stimulates lipid accumulation and lipid droplet
formation in murine fibroblasts. American journal of physiology 283, E775-783
(2002).

42. Spandl, J., White, D.J., Peychl, J. & Thiele, C. Live cell multicolor imaging of
lipid droplets with a new dye, LD540. Traffic (Copenhagen, Denmark) 10, 1579-
1584 (2009).

43. Fujimoto, Y. et al. Involvement of ACSL in local synthesis of neutral lipids in
cytoplasmic lipid droplets in human hepatocyte HuH7. Journal of lipid research
48, 1280-1292 (2007).

44. Igal, R.A., Wang, P. & Coleman, R.A. Triacsin C blocks de novo synthesis of
glycerolipids and cholesterol esters but not recycling of fatty acid into
phospholipid: evidence for functionally separate pools of acyl-CoA. The
Biochemicaljournal 324 ( Pt 2), 529-534 (1997).

45. Ploegh, H.L. A lipid-based model for the creation of an escape hatch from the
endoplasmic reticulum. Nature 448, 435-438 (2007).

46. Masuda, Y. et al. ADRP/adipophilin is degraded through the proteasome-
dependent pathway during regression of lipid-storing cells. Journal of lipid
research 47, 87-98 (2006).

47. Xu, G. et al. Post-translational regulation of adipose differentiation-related protein
by the ubiquitin/proteasome pathway. The Journal of biological chemistry 280,
42841-42847 (2005).

122



48. Xu, G., Sztalryd, C. & Londos, C. Degradation of perilipin is mediated through
ubiquitination-proteasome pathway. Biochimica et biophysica acta 1761, 83-90
(2006).

49. Hartman, I.Z. et al. Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl
coenzyme A reductase from endoplasmic reticulum membranes into the cytosol
through a subcellular compartment resembling lipid droplets. The Journal of
biological chemistry 285, 19288-19298.

50. Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422-
429 (2009).

51. Shih, S.C. et al. A ubiquitin-binding motif required for intramolecular
monoubiquitylation, the CUE domain. The EMBOjournal 22, 1273-1281 (2003).

52. Lilley, B.N. & Ploegh, H.L. Multiprotein complexes that link dislocation,
ubiquitination, and extraction of misfolded proteins from the endoplasmic
reticulum membrane. Proceedings of the National Academy Qf Sciences of the

United States ofAmerica 102, 14296-14301 (2005).
53. Brasaemle, D.L. & Wolins, N.E. Isolation of lipid droplets from cells by density

gradient centrifugation. Current protocols in cell biology / editorial board, Juan

S. Bonifticino ... [et al Chapter 3, Unit 3 15 (2006).
54. Vyas, J.M. et al. Tubulation of class II MHC compartments is microtubule

dependent and involves multiple endolysosomal membrane proteins in primary
dendritic cells. JImmunol 178, 7199-7210 (2007).

123



Chapter 4

Summary and Future Directions

ER quality control in mammalian cells is an important process that prevents the

harmful accumulation of misfolded proteins. The HCMV US 11 immunovasin co-opts

this process and has been used as a tool to study dislocation. A general picture of the

US11-associated complex has been reconstructed using serial immunopurification

experiments. For each experiment, a component of the US 11 complex was used as bait

and the associated proteins were identified using mass spectrometry. US11 was

immunoprecipitated from cells and Derlin1 was identified as a member of the complex.

2Immunoprecipitation of DerlinI identified SELIL and HRDI . Using SELIL as the bait

yielded AUPI, UBXD8, OS9 and UBC6e (Figure 2.1)3. AUPI-associated proteins

include components of the oligosaccharide transferase complex and lipid modifying

enzymes (Figure 3.2 and Table 3.1).

We verified the role of each of the newly-identified proteins in ER quality control.

GFP-tagged versions of UBXD8 and AUPI and catalytically dead UBC6e act in

dominant negative fashion to disrupt US 11-mediated dislocation of MHC class I heavy

chain. UBXD8 serves to recruit p97, the protein responsible for membrane extraction of

dislocation substrates. Installation of the GFP at the C-terminus of UBXD8 prevents p97

recruitment. OS9 does not perturb US11-mediated dislocation, but does delay the

degradation of a soluble misfolded protein, RI332. The explanation for the differential

involvement of OS9 in dislocation is that OS9 specializes in directing soluble dislocation
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substrates to the ER quality control machinery4 . MHC class I is a type I membrane

protein that is directed to the dislocon by US 11, not OS9.

AUP1 is important for the dislocation of both soluble membrane proteins with

misfolded luminal domains as well as membrane proteins (Fig. 3.1). AUPI plays a role in

the ubiquitylation of dislocation substrates. The soluble cytoplasmic E2 UBE2G2 is

recruited to the dislocation machinery by AUPI (Fig. 3.1C). AUPI is ubiquitylated and

binds ubiquitylated proteins, including misfolded ER proteins (Figs. 3.5 and 3.4B). AUPI

also negatively regulates mono- and poly-ubiquitylation (Figs. 3.5 and 3.6).

Unexpectedly, we also found that AUP1 is involved in lipid droplet formation. AUP1

localizes to lipid droplets and overexpression results in the accumulation of lipid droplets

(Fig. 3.7). Depletion of AUPI impairs lipid droplet formation (Fig. 3.8). Lipid droplets

have never been shown to be mechanistically involved in ER protein quality control, but

several studies have reported a link between the two processes (discussed in Chapter 1).

We found that inhibition of lipid droplet formation (by AUP1 depletion and

pharmacological inhibition of lipid biosynthetic enzymes) stabilized dislocation

substrates (Figs. 3.1 and 3.9). This data prompt many further questions about how AUPI

contributes to ER quality control, lipid droplet formation and other cellular processes and

how these processes are co-regulated.

In order to better understand the role of AUP 1 in dislocation, several open

questions should be answered. First, how does AUP 1-mediated ubiquitylation regulation

impact dislocation? This question could be addressed by comparing the dislocation

efficiency of cells expressing AUP1 with mutant CUE or G2BR domains compared to

cells expressing wildtype AUP1. This experiment would have to be performed on cells
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that have been transduced with the AUP1-specific shRNA to eliminate endogenous

AUP 1 activity. It is possible that mutation of AUP 1's G2BR could slow dislocation since

UBE2G2 would not be recruited. The fact that mutation of AUP1 's CUE domain results

in increased substrate poly-ubiquitylation may mean that the degradation of dislocated

proteins could proceed more quickly in cells expressing AUPI with mutant CUE domain

compared to wildtype. Second, we would like to identify the ubiquitylated proteins that

associate with AUPl. Presumably they are misfolded ER proteins, but do these proteins

share common characteristics? Immunoprecipitation of AUP1 followed by the

subsequent re-immunoprecipitation of ubiquitin will isolate the AUP1-associated

ubiquitylated proteins that can then be identified by mass spectrometry. This experiment

can be done either at steady-state in cells transfected with epitope-tagged AUP1 and

ubiquitin or in an in vitro ubiquitylation assay. For the latter case, cells would be

permeabilized using the pore-forming toxin PFO. PFO creates large pores in the plasma

membrane through which the cytoplasm is removed during centrifugation and replaced

by a mixture of biotin-labeled ubiquitin, purified El and ATP. After incubation and lysis,

AUP1 would be immunoprecipitated, the associated material would be dissociated with

SDS, the biotin-ubiquitin would be captured with streptavidin beads and then released.

Known dislocation substrates including RI332 and NHK can be used as positive controls.

Finally, from the AUP1 immunoprecipitation experiment, we know that the AUP1

complex includes two E2 ubiquitin conjugating enzymes: UBC6e and UBE2G2. Are

multiple E2s involved in the ubiquitylation of the same substrate? Or if only one E2 is

used for each substrate, does it matter which one is used? If UBC6e and UBE2G2 act

interchangeably, you would expect depletion of both UBC6e and UBE2G2 to severely
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block HRD 1-mediated ubiquitylation. But if they are not interchangeable or a substrate

requires both E2s, then depletion of just one of the E2s will be as problematic as the

double depletion. This could be tested by in vitro ubiquitylation assays.

The functional role of lipid droplets in ER protein quality control remains unclear,

but we hypothesize that AUP 1 provides the link between the two systems. It is not known

whether all of the dislocation machinery localizes to lipid droplets along with AUP 1 or if

AUP1 interacts with different proteins in the different cellular locations. Are any of the

other components of the dislocation machinery found on lipid droplets? UBXD8 is a

second protein that localizes to both the ER and lipid droplets and plays a role in

dislocation3 5 . Initial experiments indicate that overexpression of GFP-OS9 may also

induce lipid droplet formation (data not shown). In contrast to AUPI and UBXD8, the

GFP fluorescence is found at the core of lipid-droplet like structures. This may be

because OS9 is a soluble ER protein, whereas both AUPI and UBXD8 have membrane-

anchor domains that dip into the outer leaflet of the bilayer. It would be interesting to

determine whether these GFP-OS9-containing structures are in fact lipid droplets in as

much as they contain lipids. This could be determined by thin layer chromatography of

the isolated structures. If the ER quality control machinery is present on lipid droplets,

does ubiquitylation occur there? Isolated lipid droplets could be used in in vitro

ubiquitylation assays to see if exogenous epitope-tagged ubiquitin is attached to proteins

on the lipid droplet.

One possible model for the involvement of lipid droplet formation in dislocation

is that LDs form according to the "escape hatch" model and dislocation substrates "piggy

back" on the LD to exit the ER. In this model, dislocated proteins would be associated
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with lipids. For single-pass transmembrane proteins, this could be just enough lipids to

form a coat to shield the hydrophobic membrane anchor. In US 11-expressing cells, lipids

associated with the cytoplasmic MHC class I could be detected by thin layer

chromatography.

An alternative model is that misfolded proteins exit through a proteinaceous

channel, but then are harbored on the LD surface in order to prevent their aggregation.

This idea is an extension of the "refugee model"- 7 . One way to distinguish between these

two models would be to see whether dislocation proceeds normally under lipolytically

stimulating conditions. Lipolytically stimulating conditions are triggered by treatment

with the phosphodiesterase inhibitor IBMX and the p-adrenergic receptor agonist

isoproterenol 8-9. If the "escape hatch" model is true, disruption of already-formed lipid

droplets will not affect dislocation. If the "refugee model" is true, these treatments will

perturb the degradation of misfolded proteins by decreasing the storage sites for

dislocated proteins.

Misfolded ER proteins may move from the ER to lipid droplets before they are

degraded by the proteasome. Are dislocated proteins found on lipid droplets? HMGCoA

reductase, a lipid regulatory dislocation substrate, has been observed associated with lipid

droplets'0 . Is this a general observation for all dislocation substrates or only for those

involved in the regulation of lipid biosynthesis? It remains to be seen whether other

dislocation substrates that are not related to lipid biosynthesis, including R1332 and NHK,

are found in the buoyant lipid droplet layer after fractionation. If they are, is AUP 1

required for these dislocation substrates to localize to lipid droplets? To answer these

questions, wildtype and AUP 1-depleted cells could be fractionated and immunoblotted
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for the dislocation substrate. If misfolded ER proteins localize to the lipid droplets and

AUP 1 acts as a shuttle to deposit them onto the lipid droplet, then we would expect to see

the dislocation substrate in the lipid droplet fraction of wildtype, but not AUP1-depleted

cells.

What are the possible ways that AUP 1 could link ER protein quality control with

lipid droplets? As mentioned above, AUP1 could act as a shuttle to transport misfolded

proteins from the ER to the lipid droplet. AUP1 may also regulate the amount of lipid

droplet formation in response to the burden of unfolded proteins on ER protein quality

control. Current data suggests two possible ways that AUPi may contribute to lipid

droplet formation: directly via its putative acyltransferase domain or indirectly through

the recruitment of lipid modifying enzymes including. Is AUP1 with a point mutation in

the active site of the acyltransferase domain able to induce lipid droplet formation? The

size and number or lipid droplets in AUPImAT cells can be assessed by microscopy and

flow cytometry. If AUP1 is an active acyltransferase, the AUP1-depleted cells may not

be able to make certain types of lipids, which could account for the observation that these

cells are less able to form lipid droplets upon oleic acid treatment. The lipid profiles of

wildtype and AUP 1-depleted cells can be determined by mass spectrometry. Differences

in the abundance of specific lipids might indicate the lipid substrate specificity of

AUP I's acyltransferase domain which could then be confirmed in vitro.

AUPI in found in association with several enzymes involved in lipid droplets

formation. It could be that these lipid-modifying enzymes play a role in dislocation. We

know that pharmacological inhibition of ACSL3 and other long-chain acyl coA
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synthetases affects dislocation. Does shRNA-mediated depletion of ACSL3 and the other

lipid biosynthetic enzymes likewise stabilize dislocation substrates?

Do increases in lipid droplets enable cells to better tolerate ER stress? If lipid

droplets do serve as storage depots for misfolded proteins, increasing their numbers

would allow the cell to survive higher concentrations of misfolded proteins. ER stress can

be induced with tunicamycin or dithiothreitol, and these treatments will result in

apoptotic cell death over time. Cells with more lipid droplets due to AUP1

overexpression or oleic acid treatment may be able to survive the ER stress for extended

periods of time.

Because AUPI is important for lipid droplet formation, it may also be required for

the several pathogens that use lipid droplets for replication. If this were the case, AUP1-

GFP and AUPI depleted cells would be good tools for studying the lifecycles and

localization of these pathogens. Pathogens that use lipid droplets include Hepatitis C

Virus, rotaviruses, Dengue, and Chlamydia. AUPI may interact with proteins of the

different pathogens and these associations could be identified by immunoprecipitation of

AUPI followed mass spectrometry.

AUPi reportedly interacts with the autophagy-associated ubiquitin-like modifier,

APG 12". This interaction was found in a mass spectrometry study using ATG12L as the

bait. Although ATG12 was not found when AUPI was used as the bait (Fig. 3.2), this

may be because ATG12 was probably expressed at low levels in these cells since they

were not engaged in autophagy. Autophagy and lipid droplets have been previously

linked' 2 , as have autophagy'and ER turn-over". AUP 1 may be involved in all three of

these processes. A first step to test whether AUPi is involved in autophagy would be to
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confirm the interaction between AUP1 and ATG12 with epitope-tagged proteins as well

as in autophagic cells. Could AUIP1 be necessary for autophagy? Experiments in AUPI-

depleted cells under autophagy-inducing conditions would answer this question.

Fluorescent microscopy experiments would show whether AUP1 localizes to

autophagosomes.

The initial identification of AUP1 as a SEL1L-interacting led to a better

understanding of how HRD1-mediated ubiquitylation proceeds and also brought about

the exciting hypothesis that ER quality control is related to lipid droplets. This connection

must be further validated and understood. As the questions mentioned above are

answered, we will move toward a better understanding of how and why lipid droplets

contribute to ER protein quality control. There are also indications that AUP1 may be

involved in other cellular processes which may also present interesting future directions.
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Murine CMV (MCM'), a 13-herpesvirus, infects dendritic cells (DC) and impairs their function. The underlying events are poorly

described. In this study, we identify MCMV m138 as the viral gene responsible for promoting the rapid disappearance of the

costimulatory molecule B7-1 (CD80) from the cell surface of DC. This was unexpected, as n138 was previously identified asfer-1,

a putative virus-encoded FcR. m138 impaired the ability of DC to activate CD8* T cells. Biochemical analysis and immunocy-

tochemistry showed that m138 targets B7-1 in the secretory pathway and reroutes it to lysosomal associated membrane glyco-

protein-1 compartments. These results show a novel function for m138 in MCMV infection and identify the first viral protein

to target B7-1. The Journal of linnunology, 2006, 177: 8422-8431.

erpesviruses are large DNA viruses that establish latent
infection in the host by actively limiting the immune

response (reviewed in Ref. I). To disable host cell im-

mune strategies, murine CMV (MCMV possesses a dsDNA ge-

nome of 230 kb that potentially encodes 170 predicted genes (2).

The central core of the genone is conserved among all /-herpes-

viruses and contains genes essential for virus assembly and repli-

cation (3). In contrast, the genome termini contain >100 predicted

genes that are dispensable for viral replication in vitro (4). but are

considered critical for infection and immune modulation in vivo

(5). Although for a small number of these genes, imtune tmodu-

latory activities have been described, the tnajority possess un-

known potential for novel immune evasion strategies.

CD8- CTLs serve as the major immune effectors that control

CMV infection in both humans (6, 7) and mice (8, 9). CMV-

infected cells are targeted by TCR recognition of host cell MHC

class I molecules displaying virus-derived peptide(s). Given the

critical nature of the TCR:MHC class I-peptide interaction, it is

attacked by CMV at Multiple levels. Immune Cvasion proteins im-

pair the MH IC class I Molecule by promoting its retention (10, I1)
or degradation ( 12 -14), by blocking the peptide-loading complex

(15). or by preventing TCR recognition at the cell surface (16).
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Disruption of MHC class I Ag presentation has mostly been stud-

ied in non-APC, thereby mimicking the effector stage of recogni-

tion. in which an infected cell in the tissue must avoid an already

primed host cell immune response. For the virus. it is equally im-

portant to target the initiation of events. This occurs in the sec-

ondary lyimphoid organs in which circulatina naive T cells are

primed by dendritic cells (DC) CxprCssing virus-derivcd peptide in

the context of NilHC class I. in addition to MHIC class 1-peptide
complexes, DC display multiple costimulatory molecules that en-

hance TCR-mediated signaling and enable optimal T cell activa-

tion (17). Costimulatory molecule-delcient mice display impaired

viral clearance in a number of viral infection models, illustrating

the critical role for costimulation in eliciting antiviral immunity

(reviewed in Ref. 18).
The B7 family of costimulatory molecules is the best described

to date (reviewed in Ref. 19) and currently includes seven known

members: B7-1 (CD80), B7-2 (CD86). inducible costimulatory

molecule ligand (JCOSI). programmed death ligand (PD-L) I, PD-

L2. 137H3. and B7H4, all of which are expressed by APC. Through

interactions with their receptors on T cells, the B7 family members

modulate TCR signaling. Impaired expression of B7 costimulatory

molecules occurs upon infection with numerous viruses. including

Kaposi's sarcoma-associated herpesvirus (KSHV) (20), ly'mpho-

cytic choriomeningitis virus (21), varicella-zoster virus (22), vac-

cinia (23). and HIV type 1 (HIV- 1) (24). In most cases, neither the

viral genes responsible, nor the mechanism of modulation. are

known. Two exceptions are the targeting of B7-2 by K5, an F3

ubiquitin ligase expressed by KSHV (20), and modB7-2 encoded

by MCMV (25). Consequently. the removal of specific costimu-

latory molecules from the DC surface affords a particularly potent

strategy of viral-mediated immune evasion. In this study, we in-

vestigated the ability of MCMV to mrodutlate B7 costimulatory

molecule expression in DC. We have identified the first virus pro-

tein to target B7-1 and have identified a novel function for the

prevxiously described MCMV fcr-1 gene, m138.

Materials and Methods
Cells

The DC line D2SC/l (provided by P. Ricciardi-Castagnoli (University of
Milano-Bicocca, Italy) and referred to as DC2 throuhout this work) (26),
DC2.4 (27. 28), M210B4 (29), Chinese hamster ovary (CHO) cells
(American Type Culture Collection), CHO-B7-1 (provided by A. Sharpe,
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Harvard University. Boston, MA) (30), NIH) 3T3 (American Type Culture
Collection). BZ (provided by N. Shastri, University of California. Berke-
ley, CA) (31). and BALB/c murine embryonic fibroblasts were grown, as
previously described. Primary bone marrow-derived DC (BMDC) were
generated from bone marrow harvested from C57BL/6 mice (The Jackson
ILaboratory). Mice were maintained at the Whitehead Institute for Biomed-
ical Research Animal Facility, according to institutional guidelines. Bone

marrow was Cultured in the presence of 200 1g4/mIl GM-CSF (PeproTech)
and 20 zg/ml IL-4 (PeproTech) for 4-5 days.

DNA constructs

The N-terminal hemagglutinin (HA) construct (provided by B. Lilley, Har-
vard University. Boston. MA) contained the H-2K 5 signal sequence. fol-
lowed by the HA tag in the pcDNA 3.1 expression vector (Invitrogen Life
Technologies). Tihe m]38 gene was introduced into tle EcoRI/Noll site
using the following primer sequences: 5'-CGCAA'TGCATCAATTAC
CTGCGTGC-3' and 5'-AAGAAGCGGCCCICTTAGGCGTAGTCGGG
GAC-3'. GFP-tagged B7-1 was generated using B7-1 cDNA (provided by
G. Freeman). The B7-/ gene was cloned into the Xol/Sall site of the
pEGF P-NI expression vector (BD Clontech) by PCR. Tfhe primer se-
tluences used weret as follows: 5'-CCGCTCGAGAC'ACCATEGGCTTC
CAATTGTCAG-3' and 5'-CGCGTCGACGCAAGGAA(GACGGTCT
GTiTC-3'. il38 truncation proteins were generated by the following
primer combinations: uilm]38 , 5'-ACGGCC"T CCGCGCI'GACGCG-3':
C)41'aim/h38, 5'-( CAATGGCCCTGATTGTGCTG-3' and 5' CTG
G(GGCCGCTCAAATGGGGCTACATGTC-3'. The human CD4 trans-
membrane and tail domain (aa 396-458) wv as generated by PCR using the
primers 5 '-CCAATGGCCCTGA TTiGT'GCIG-3' and 5'-C'GGCGGC
CGCTACAAATGGGGCTACATGIC-3'. Cells were transientlv transfected
using Fugene-6 (Roche).

Viruses

MCMV were propagated in M210B4 cells. MCMV infections were per-
formed by centrifugation at 2000 rpm for 30 min at 25 C. Supernatant was

harvested frota DC2 infected with vild-type MCMV 16 h postinfection
and filtered throuch a 0.45-pin syringe filter (Corning Glass). The pM IG
retrov irus, contaminm an internal ribosonal entry site followed by GFP,
was used to generate stable cell lines. The n/38 gene was cloned into the
Bg/I/EcoRt site by PCR using the primer sequences 5'-GAGGATCCAC
CACCATICGCCTTCGACGCTG-3' and 5'-CCCGCAATTGTTACGT
G(TG.ACGTACGC-3'

Mullt(enesis of MCMV geitome

Mutagenesis ws as perfornied by homiologous recombination between a lin-
ear DNA PCR fragment and the MCMV-BAC pSM3fr in Escherichia coli,
as previouisly described (4). To delete MCMV genes, linear DNA frag-
tments cintainigne the kanamycin resitance gene flanked by regions of
homology to the MCMV I\genone were generated. The specific primers
used to generate AmI3ME8MCMV were as follows: 5'-GGGTCAG''CATT
AG fAAGTGTTIAG'T AGTCGAT GAC t"T'GAGCG T CG T'GGAAT'GCC'1'
CGAATTC-3' and 5'-CTCAAGTCGCCATC'ATCTCT'CGGTCGGCA
GAC('('GAGGCGACAAGGACACGACCGACAAGTAAG-3'. The loss
of 138'S was confirmed by restriction enzyme pattern analysis of the
rMtCMV gensome with Hlindill and by inmnnoblotting for ml 38 protein in
infected cell lysates.

Flow cy17tometry

Cells were harvested and stained with the following Abs: anti-B7-1 PE

(16-10AI: BD Biosciences), anti-B7-2 PE (GLI; BD Biosciences), anti-
tCOSL PE (HK5.3; eBioscience), anti-PD-L I (MIH5: elfioscience), anti-
PD-L2 (TY25: eBioscience). anti-CDllc (HL3; 11BD Biosciences). and
anti-maouse ILG2,K-PE (BD Biosciences). When DC were analyzed, cells
were incubated With purified anti-ittouse CD16/CD32 (BD Pharmingen)
before cell surface staining. To detect MCMV infection, cells were fixed
with 0.5% paraformaldehyde (EM grade: Electron Microscopy Sciences)
and pertmeabilized with 0.5% saponin (Sigia-Aldrich). Cells were stained
with nouse anti-pp89 (provided by S. Jonjic. University of Rijeka,
Croatia), followed by goat anti-imouse tgG (H + L)-Alexa 660 (Molecular
Probes). Detection of Ig binding at the cell surface was undertaken by
incubation of virus-infected cells with miouse IgG (Sigma-Aldrich) for 30
inir, followed by staining with anti-nouse lgG2,K-PE (BD Biosciences).

Flow cytometry analysis was performed using a FACSCalibur flow cytom-
eter (BD Biosciences) and analyzed with CellQuest software (BD
Biosciences).

Imnutoblotting

Cells were harvested and lysed in I i SDS. Protein quantity was deter-

mined by a bicinchonic acid protein assay (Pierce). Immunoblotting was
performed by standard techniques. Anti-it 38 rabbit polyclonal serum was
generated by immunization with a Mixture of three peptides (amino acid

residues 115 -127. 213-225. and 499-513) (Cocalico). Proteins were de-
tected using rabbit anti-137-1 (Abcatn), mouse anti-[3-actin (Sigma-
Aldrich), anti-mouse IgG-HRP (Southern Biotechnology Associates), and
anti-rabbit iG-HRP (Southern Biotechnology Associates).

Radio or biotin labeling and imnmunoprcipiTation

For radiolabeling, cells were starved in complete medium lacking cysteine

and iethionine, supplemented with 0.5 PtCi/ml [55S jmethionine/cysteine.
Chase periods were performed with medium containing 2.5 mM methio-

ne and 0.5 nM cysteine. For surface biotin labeling. cells were washed

with PBS and labeled with 0.2 mg/ml sulfo-NHS' LC-biotin (Pierce) itt
PBS. Following labeling. cells were washed with PBS/10 mM glycine.
Labeled cells were lysed in 1% detergent (Nonidet P-40 or digitonin).

Proteins were immunoprecipitated with specific Abs and protein A-agarose

(RepliGen '). 1iiunoprecipitations were performed from equivalent
amounts of radioactive protein following the pulse label and preclearing of
cell Issates. Radioactive counts were determined by trichloroacetic acid

precipitation of 10 d of total lysate. Endoglycosidase H (Endo H: New
England Biolabs) digestion was performed by incubation at 37 C for 1 ft.

Anti-GFP rabbit polyclonal serum (Abcam), anti-HlA rabbit polyclonal se-
rum (12CA5), and mouse Ig (Sigma-Aldrich) were used for immunopre-

cipitation. Radioactive polypeptides were Visualized by fluorography and

exposure to Kodak X-OMAT films.

IiIunosIaining it and fliorescent confoical microscopy

Cells ssere grnssst on coverslips ind fixed with 4% patraformaldehyde (EM

grade: Electron Microscopy Sciences) in PBS. Cells were perneabilized

with I% Triton X-100. The following Abs were used: anti-HA (3F10:

Roche), anti-B7- I (16-10AI; BD Biosciences), anti-lysosomsal-associated

membrane glycoprotein-1 (LAMP-I) (Abcams), anti-early endosiomal Ag-1

(EEA- ) (Abcamt), anti-protein disulfide isornerase (PD; Abcam), anti-

hamister ligG-Cy3 (.Jackson InmunoResearch Laboratories), and anti-rabbit

Ig-Alexa 488. 647 (Molecular Probes). To label transferrin (Tfn)-contain-

ing compartments. cells were serum starved and incubated with Tfn -Alexa

594 (Molecular Probesi. Cells were imaged with a spinning disk confocal

microscope.

RT-PCR

RNA extraction was performed (Qiagen) and cDNA generated (Invitrogen

Life Technologies). RT-PCR was performed usitng 137-1 ptimsers (32).

Ag presentation assay

DC2.4 were pulsed with 1.1 m-diamter latex beads (Sigmia-Aldrich) or

0.89-n diameter flash red fluorescent beads (Bangs Laboratories) previ-

ousls adsorbed vith OVA (10 ng/ml) for 6 h. Cells were fixed with 0.5%

paraforialdehyde (EM grade: Electron Microscopy Sciences) and washed

with PBS. Indicated cultures were incubated with 25 szg/il anti-B7-l (BD

Pharmingen). A total of I X 10" 13ZT cells was added to each culture and

harvested 24 I later. B3Z T cells are CD8- OVA-specific T cells that

express the lacZ gene under the transcriptional control of NF-AT (31).
Expression of lacZ was assessed by the chromogenic P-galactosidase en-

zyme assay (Protiega).

Results
MCMX V modulates cell surfce expression of' B7 costimilatory

molecules

To study MCMV infection of DC, we used D2SC/I (DC2) (26), a

DC line that can readily be infected with MCMV. The impact of

MCMV infection on the cell surface expression of B7 costimula-

tory molecules was examined by flow cytotmetry (Fig. IA). Unin-

fected DC2 expressed high levels of B7-1 and B7-2 and low levels

of PD-LI, PD-L2, and ICOSL (data not shown). The extent of

MCMV infection of DC2 was determined by intracellular staining

for pp89, an immediate early MCMV protein. In all cases. MCMV

infection at a multiplicity of infection (MOI) = 10 resulted in

>50% of DC2 expressing the pp89 protein (data not shown). Upon

MCMV infection, the expression of both PD-L1 and PD-L2 was
135



FIGURE 1. MCMV modulates cell surface expres-
sion of B7 costimulatory molecules. A, DC2 were in-
fected with MCMV (MOI = 10) or left uninfected and
examined 16 h postinfection. The graph displays the
mean percentage of the mean fluorescence intensity
(MFI) of infected (pp89*) cells relative to uninfected
cells SEM. B, DC2 were infected with MCMV
(MO = 10). The graph displays the mean percentage
MI of B7 -1 expressed by pp89' MCMV-infected cells
or uninfected cells relative to that at 0 h postinfection.
Background fluorescence in the absence of Ab (dashed
line). C. DC2 were infected with wild-type MCMV
(MOI = 10), UV-inactivated MCMV. or left uninfected
and examined 16 h postinfection. For wild-type
MCMV-infected cells, the histograms are gated on
pp89' DC2. D, DC2 were infected with wild-type
MCMV (MOI = 10), treated with supernatant harvested
from MCMV-infected DC2. or left uninfected and ex-
amined 16 h postinfection. For wild-type MCMV-
infected cells, the histograms are gated on pp89' DC2.
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up-regulated in MCMV-infected DC2, most notably PD-LI. which
was expressed at 2-fold higher levels compared with uninfected
cells. The low expression of ICOSL remained unaltered in
MCMV-infected DC2. The most striking effect of MCMV infec-
tion was the specific targeting of the B7-1 and B7-2 molecules,
which could no longer be detected at the cell surface 16 h follow-
ing infection. We focused on MCMV interference with B7-I,
given that there are no known viral proteins that interfere with its
expression. Examination of uninfected cells and MCMV-infected
DC2 at various time points following infection showed that cell
surface expression of B7-1 is rapidly lost. B7-1 was completely
absent from the cell surface as early as 6 h following infection
(Fig. IB).

Because viral infection can alter the cell surface expression of
proteins via secondary effects., we determined whether a specific
MCMV gene was responsible for B7-1 down-modulation. DC?
were exposed to either UV-inactivated MCMV or supernatant har-
vested from live MCMV-infected DC2. In both cases. the exclu-
sion of active virus was confirmed by the complete absence of
pp89-expressing cells (data not shown). Although up-regulation of
PD-L I was promoted by exposure to both UV-inactivated MCMV
and MCMV-infected DC2 supernatant, the loss of B7-1 from the
cell surface required direct infection with live MCMV (Fig. 1, C
and D). Therefore. the up-regulation of PD-LI promoted by
MCMV does not require live virus and might be attributable to
cytokines produced by DC2 in response to MCMV exposure. In
contrast, active virus-mediated mechanisms are responsible for
down-modulation of B7-1.

MCMV nm138 is responsible ftr down-modulation of B7-1

To determine the identity of the MCMV gene responsible for
modulation of 87-1, we used six MCMV deletion mutants
(AmOl-22MCMV, Am32-36MCMV, An37-43MCMV. Am 128-
/33MCMV, Am128-139MCMV, and AmO -7 + m144-158 +
m59-I70MCMV) that target regions that are nonessential for vi-
ral replication in vitro (4). In total. a combined 73 individual
MCMV genes were examined for their ability to manipulate B7-1
expression (data not shown). Using MCMV deletion mutants span-
ning progressively smaller genomic regions (Am134-36MCMV.
Am137-139MCMV, Am/i37MCIV, An138MCMV, Am/39MCMV)
and by overexpression of the individual genes (data not shown),
the open reading frame responsible for B7-1 modulation was
identified as n138 orfcr-1, a previously characterized MCMV-
encoded FcR (33). Introduction of the full-length m138 gene
into DC2. in the absence of any other MCMV gene, caused the
down-modulation of 87-1 from the cell surface, but not that of
87-2 (Fig. 2A). Expression of n138 promoted loss of B7-I from
the cell surface in all cell lines examined. To demonstrate that
m138 specifically down-regulated B7-1 during MCMV infec-
tion. a Am138 MCMV deletion mutant virus was generated.
Immunoblotting with m138 antiserum confirmed the absence of
the m138 protein in Am/38 MCMV-infected cell lysates (Fig.
2B). Infection of DC2 with Am138 MCMV at MOI = 10 gen-
erated an equivalent number of pp89-expressing cells, as did
wild-type MCMV (data not shown). In contrast to wild-type
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FIGURE 2. MCMV m138 is responsible for down-imodulation of B7-1.
A. DC2 were transduced with empty vector-pMIG retrovirus or pMlG ret-

rovirus-expressing m /38 and stained with anti-B7-1. anti-137-2. or an iso-

type control (IgG2, K) Ab. The histograms are gated for GFP* cells rep-

resenting cells transduced with the pMlG retrovirus. The data are
representative of five independent experiments. B, 3T3 fibroblasts were
infected with wild-type MCMV (MOt = 1). Am138 MCMV (MOI = 1),
or left uninfected. A total of 10 sqrg of 1% SDS lysates was examined by
immunoblotting for m138 or 0-actin protein using anti-nl38 or 1-actin
antiseruni. C, DC2 were infected with wild-type MCMV (MOI = 10) or
Am/38 MCMV (MOI = 10) or left unintected. Sixteen hours postinfec-
tion, B7-1 or B7-2 cell surface expression was examined by flow cytom-
etry. The histograms are gated on pp897 MCMV-infected DC2. The data
are representative of three independent experiments. D, Primary BMDC
(day 4) were infected with wild-type MCMV (MOl = 10) or Am/38
MCMV (MOI = 10) or left uninfected and examined 16 h postinfection.
The histogram is gated on CD1 Ic' cells ifor uninfected cells) or pp89 ,
MCMV-infected CD lc cells (for wild-type and Am138 MCMV-infected
cells). The graph summarizes the percentage of mean fluorescence intensity
(MFt) of B7-1 expression relative to uninfected BMDC (mean t SEM).
The data are representative of three individual experiments.

virus. Am138 MCMV was incapable of down-regulating B7- 1
from the cell surface. whereas B7-2 expression was abrogated
similar to infection with wild-type virus (Fig. 2C).

A m138overexpression
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To examine the impact of m138 on the expression of B7-1 in

primary DC, BMDC were infected with wild-type MCMV

(MOI = 10) or Am138 MCMV (MOI = 10) (Fig. 2D). MCMV

infection of BMDC at day 4 did not alter the number of CDI lc*

cells generated, and equivalent levels of infection. as assessed by
staining for pp89, were observed with both viruses (data not

shown). Infection with wild-type MCMV caused down-regulation

of B7-1 in CDI Ic-, pp89 cells to an extent similar to that ob-

served for the cell lines examined. Infection with Am138 MCMV
did not attenuate B7-1 expression, confirming that m138 is the

MCMV gene responsible for B7-1 modulation. Am138 MCMV

promoted the generation of a B7-l0 g population, as the BMDC

were activated in response to virus exposure. Therefore, m138 was
identified as the MCMV gene that specifically and independently
interferes with the cell surface expression of 137-1 and does so in
primary BMDC.

ACMV! n138 irnpairs the ability of DC to activate T cells

The costimulatory signal provided by 137-1 engagement of CD28
is required for optimal T cell responses (34). Therefore, the impact

of nm138 expression on the ability of DC to stimulate T cell re-

sponses was examined. To do so, an assay was designed in which

m138 could be examined in the absence of the numerous immune

evasion genes present in the MCMV genome. This excluded the
direct infection of DC with virus. Instead, m138 was introduced
into the DC line DC2.4 (H-2") using the pMIG retrovirus. Stable
cell lines expressing either empty vector or m138 were pulsed with
OVA-coated beads. and their ability to promote stimulation of
OVA-specific B3Z CD8 T cells was examined. This is an in vitro
assay of cross-presentation and was determined to be dose depen-
dent, Ag specific, and proteasome dependent (data not shown).
Cells loaded with a high dose of the OVA-derived class I peptide,
SIINFEKL. served as positive controls for B3Z T cell activation.
The expression of m138 by DC2.4 did not alter the H-2Kh levels
at the cell surface (Fig. 3A), the phagocytosis of OVA beads (Fig.
3B), or the loading of H-2K" with the SIINFEKL peptide, as de-
termined by staining with the anti-H-2Kb-SIINFEKL Ab 25D1.16
(Fig. 3C). In the presence of n138, the response to SIINFEKL-
loaded DC2.4 was not altered due to the strong signal provided by
high (lose of peptide that overcomes any requirement for B7-1-
mediated costimulation. In contrast. mn138 significantly impaired
the ability of DC2.4 to promote the activation of B3Z T cells in
response to OVA beads (Fig. 3D). This response was greater than
the suppression observed when the assay was performed in the
presence of anti-B7-l blocking Ab. In this case. B3Z T cell acti-
vation was 62 3% (mean ± SEM) of activation observed in the
absence of Ab. Therefore, the expression of m138 and the conse-
quent loss of B7-I from the cell surface impact the ability of DC
to promote optimal T cell activation.

Characterization of MCM V m138 protein

m138 encodes a 569-aa type I glycoprotein (2). To investigate the
expression kinetics of m 138 protein during MCMV infection, DC2
were infected with wild-type MCMV (MOI = 10) and harvested at
various time points. m138. detected by immunoblotting as an 80-
kDa polypeptide, was observed as early as 2 h postinfection and
persisted throughout the infectious cycle (Fig. 4A). To characterize
the biosynthesis of m138. an N-terminal HA-tagged m138 protein

was generated for pulse-chase analysis of transiently transfected
cells. HA-in 138 was capable of B7-1 down-modulation similar to
untagged and C-terminal HA-tagged m138 protein (data not
shown). m138 was i mmunoprecipitated from radiolabeled CHO
lysates and digested with Endo H to determine the maturation of its
associated glycans. The m138 protein was expressed as a 75- to
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FIGURE 3. MCMV m138 impairs the ability of DC to activate T cells.
DC2.4 transduced with empty vector pMlG (DC2.4) or pMlG-m138
(DC2.4 + m138) were examined for the following: A. cell surface levels of
B7-l or H-2Kb; B, uptake of OVA-fluorescent beads: or C. cell surface
levels of H 2K5-SUINFEKL in response to loading with 1 pM SIINFEKL,
pulsing with OVA beads, or in the absence of Ag. D, B3Z activation by
Ag-expressing DC2.4 was assessed upon expression of in38 or in the
presence of an anti-B7-1 Ab. Activation was assessed using a chromogenic
assay for lacZ expression. The data are presented as the percentage of B3Z
activation observed in response to Ag presented by DC2.4 transduced with
empty vector (mean I SEM). The graphs summarize four independent
experiments.

80-kDa polypeptide that matured to a slower migrating polypep-
tile of -85 kDa (Fig. 4B). The maturation pattern was consistent
with in 138 possessing N-linked glycans that remained Endo H sen-
sitive. Even following up to 4 h of chase, in 138 remained Endo H
sensitive (data not shown). The increase in m.w., together with the
observed heterogeneity, is consistent with 0-linked glycosylation,
predicted to occur in the proline-glutanate-serine-threonine do-
main of in138.

m 138 was previously identified in a screen for MNICMV proteins
that bind Ig (33). We also examined this function for m138. HA-
n 138 was recovered from radiolabeled CHO lysates either by anti-
HA or mouse Ig immunoprecipitation. Consistent with previous
findings, we also observed i 138 binding to mouse Ig (Fig. 4C).

Given this, we examined the putative FeR function of ml 38, by
assessing expression of in 138 at the cell surface. In the absence of
an anti-in 138 Ab for flow cytometry, we investigated this by cell
surface biotinylation of transiently transfected CHO cells express-
ing n138 alone, or cells expressing B7-1 or B7-1 plus m138 (serv-
ing as positive and negative controls for cell surface access). The
m138 or B7-1 proteins were recovered by immunoprecipitation,
and the presence of the biotin tag. acquired only upon cell surface
display, was detected by streptavidin blotting. Surface biotinvla-
tion was equivalent in all cases, as observed by immunoblotting of
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CHO + HA-m138

1 2

- r-138

1 anti-HA
immunoprecipitation
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D surface biotinylation
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FIGURE 4. Characterization of the MCMV m138 protein. A, DC2 were
infected with MCMV (MOT = 10), and the expression of m138 in 60 ptg
of 1% SDS lysates was examined by immunoblotting with anti-mi 138 an-
tiserum. Detection of P-actin served as a loading control. B, CHO-express-
inc HA-m 138 were radiolabeled for 15 min and chased for 45 and 90 min.
m138 was recovered from 1% Nonidet P-40 lysates by immunoprecipita-
tion (anti-HA) and digested with Endo H, where indicated. ml138-associ-
ated glycans are designated Endo H sensitive (S) or 0 linked (o). C. CHO-
expressing HA-n]38 were radiolabeled for 15 min and subject to 1%;
Noniclet P-40 lysis. il 138 was recovered by anti-HA immunoprecipitation
or using 10 /ig of mouse Ig. D, CHO-expressing B7-1-GFP, B7-1-GFP,
plus HA-m138 or HA-m138 were surface biotinylated for 30 min. B7-1
and inl38 were recovered from 1% Nonidet P-40 lysates by immunopre-
cipitation with anti-GFP and anti-HA Abs, respectively. Biotinylated pro-
teins were detected by blotting with streptavidin-HRP. The menibrane was
stripped and reblotted using anti-m138 antiserum. E, DC2 cells were not
infected or infected with wild-type MCMV (MOI = 10) or Am138 MCMV
(MOI = 10) and incubated with mouse 1g. Binding of Ig at the cell surface
was detected by anti-mouse Ig Ab. The histograms are gated on pp89'
cells. The data are representative of two independent experiments.

total unfractionated lysate (data not shown). As expected, in the
absence of m138, B7-1 readily accessed the cell surface, as in-
ferred by the detection of biotinylated B7-1. This was not the case
in the presence of m 138, consistent with the flow cytometry data.
m 138 (lid not gain access to the cell surface at detectable levels
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FIGURE 5. The fate of B7-1 in the presence of MCMV m138. A, RT-

PCR analysis of B7-1 or (-actin transcription in CHO, CHO-B7-1, DC2,
and MCMV-infected DC2. B, CHO-expressing B7-1-GFP in the presence
or absence of m138 were radiolabeled for 15 min and chased for 45 and 90
min. B7-1-GFP was recovered from 1% Nonidet P-40 lysates by immu-
noprecipitation (anti-GFP) and digested with Endo H, where indicated. The
B7-1-associated glycans are designated Endo H sensitive (S) or Endo H
resistant (R). C, CHO-B7-1 or CHO-B7-1-m138 were subject to 1% SDS
lysis, and 10 sg of lysate was examined for the expression of B7-1 or

#-actin by immunoblotting.

(Fig. 4D). Its expression and recovery were verified by immuno-

blotting with anti-m138 antiserum. Finally, we assessed the impact
of m138 expression upon the binding of Ig at the cell surface of

A

B

FIGURE 6. MCMV m138 promotes mislocalization
of B7-1 to LAMP-i* compartments. Confocal micros-
copy analysis of CHO expressing: A, B7-1-GFP, in the

presence or absence of m138; B, B7-1-GFP and HA-
m138, stained with anti-EEA-1, LAMP-1 Abs, or
pulsed with Tfn-Alexa 594 for 30 min; C, HA-m138, C
stained with anti-HA Ab; D, HA-m138, stained with
anti-HA and anti-PDI Ab; E, B7-1 and HA-m138,
stained with anti-HA Ab; F, B7-1-GFP and HA-m138,
stained with anti-HA and LAMP-1 Ab.

F

MCMV-infected cells. The capacity of MCMV-infected cells to
bind cell surface Ig was not impaired upon infection with Am138
MCMV (Fig. 4E).

Fate of B7-1 in the presence of MCMV m138

The fate of B7-1 upon MCMV infection, and specifically the con-
tribution of m13 8 to the behavior of B7-1, was investigated. First,
we examined whether the failure to detect B7-1 at the cell surface
was due to MCMV-mediated inhibition of B7-1 transcription. DC2
were infected with MCMV-GFP, and GFP-positive cells were iso-
lated by flow cytometry. RT-PCR of RNA extracted from CHO,
CHO-B7-1, uninfected DC2, or MCMV-infected DC2 showed the
presence of a B7-1-specific product amplified from CHO-B7-1,
DC2, and MCMV-infected DC2 (Fig. 5A). Therefore, MCMV in-
fection does not shut off B7-1 gene transcription.

To assess where in the course of its biosynthetic maturation
m138 targets B7-1, pulse-chase analysis, in conjunction with Endo
H digestion, was performed. GFP-tagged B7-1 was used to facil-
itate immunoprecipitation of B7-1 with anti-GFP serum. The GFP
tag did not interfere with m138 down-modulation of B7-1 expres-
sion (data not shown). CHO cells were used, rather than DC2,
given that the level of B7-1 expression by DC2 was insufficient for
the methodology undertaken. Analysis was performed using tran-
siently transfected cells. In the absence of m138, B7-1 acquired
Endo H-resistant complex oligosaccharides as the protein matured
(Fig. 5B, top panel). A shift in molecular mass of -24 kDa was
observed, consistent with B7-1 containing eight potential N-linked
glycans. In contrast, in the presence of m138, B7-1 glycan matu-
ration was not observed (Fig. 5B, bottom panel). This suggests that
m138 targets B7-1 early in the secretory pathway, before complex
oligosaccharide acquisition that occurs in the trans-Golgi.

The ultimate fate of the B7-1 protein in the presence of m138
was examined by generating a CHO stable cell line that expressed
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MCMV m138 (FcR-1) DOWN-REGULATES EXPRESSION OF B7-1
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FIGURE 7. m138 and B7-1 interact. CHO expressing B7-1-GFP (1),
HA-m138 (2), or B7-1-GFP plus HA-m138 (3) were radiolabeled for 60
min. HA-m138 was immunoprecipitated (IP) from 1% digitonin lysates
using anti-HA Ab. Both the recovered immunoprecipitate (pellet) and the
supernatant (S/N) were subjected to B7-1 immunoprecipitation (re-IP) us-
ing anti-GFP Ab.

both B7-1 and m138. Immunoblotting of cell lysates for B7-1 ex-
pression showed significantly reduced detection of B7-1 in the
presence of m138 (Fig. 5C).

MCMV m138 promotes mislocalization of B7-1 to LAMP-i-
compartments

Confocal microscopy analysis was performed to examine the cel-
lular localization of m138, and B7-1 in the presence of m138. In
the absence of m138, B7-1 is localized at the cell surface, as ex-
pected. In contrast, m138 promoted B7-1 mislocalization to intra-
cellular vesicles (Fig. 6A). To identify the specific cellular com-
partment to which B7-1 was mislocalized, costaining with markers
of the endosomal or lysosomal pathway was performed. The
m138-mediated accumulation of B7-1 occurred in organelles that
were EEA-1 negative (Fig. 6B, left panel). In addition, the com-
partments lacked fluorescently labeled Tfn that was added to intact
cells to allow visualization of TfnR-positive early endosomes (Fig.
6B, middle panel). Therefore, B7-1 is not mislocalized in early,
recycling endosomes. In contrast, vesicles containing B7-1
costained with LAMP-I (Fig. 6B, right panel).

The cellular localization of m138 was also examined by confo-
cal microscopy. Analysis of the distribution of m138 by immuno-
fluorescence showed its localization in large punctate vesicles (Fig.
6C), similar to the images presented by Thale et al. (33). m138 was
detected in intracellular compartments together with markers of
the ER: PDI (Fig. 6D) and calnexin (data not shown), in addition
to the lysosomal marker LAMP-1 (Fig. 6F). Given the similar
localization pattern of m138, and B7-1 in the presence of m138,
we examined a possible colocalization of the two proteins by im-
munofluorescence microscopy. Colocalization of m138 and B7-1
was indeed observed (Fig. 6E). Colocalization of m138, B7-1, and
LAMP-1 was also detected (Fig. 6F).

m138 and B7-1 interact

A potential interaction between the m138 and B7-1 proteins was
further investigated. Radiolabeled CHO cells transiently trans-
fected with either B7-1, m138, or B7-1 plus m138 were lysed in 1%
digitonin. The mild lysis conditions should favor the preservation
of protein coassociation. The m138 protein was recovered by im-
munoprecipitation (Fig. 7, left panel). The supernatant of the m138
immunoprecipitate (proteins not associated with m138), in addi-
tion to the pelleted material (m138 and its associated proteins), was
subjected to anti-GFP immunoprecipitation to recover B7-1. In the
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HA 55 CD4 TMMa1l m138

B m138

Atailm138
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-i 87-1
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plus m138. 87-1
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FIGURE 8. The cytoplasmic tail and transmembrane (TM) domain of
m138 are not required for modulation of B7-1 expression. A, Diagram of
m138 truncation mutants. B, CHO-B7-1 were cotransfected with full-
length m138, Atailm138, or ACD4TMtailm138 and GFP. Forty-eight hours
following transfection, the cells were stained with anti-B7-1 or an isotype
control Ab, and assessed by flow cytometry. The histograms display GFP*
cotransfected cells and represent three independent experiments. C, Con-
focal microscopy analysis of CHO expressing B7-1-GFP, in the presence
or absence of full-length m138 or Atailm138.

supernatant, B7-1 was recovered, showing the protein to be present
upon expression in the absence of m138 (Fig. 7, middle panel). In
the presence of m138, some B7-1 is recovered from the supema-
tant, demonstrating the presence of a fraction of B7-1 that does not
associate with m138. m138 is also detected in the B7-1 immuno-
precipitation due to its capacity to bind Ig (in this case, the anti-
GFP Ab used to immunoprecipitate B7-1). For the pelleted mate-
rial, we recovered a protein of the same m.w. as immature B7-1,
but only when ml 38 was present (Fig. 7, right panel). The data
therefore indicate that the mechanism of m138-mediated down-
modulation of B7-1 occurs via an interaction between the m138
and B7-1 proteins.

The cytoplasmic tail and transmembrane domain of MCMV
m138 are not required for modulation of B7-1 expression

Many proteins involved in lysosomal trafficking pathways possess
consensus-sorting motifs in their cytoplasmic tails (35). Inspection
of the amino acid composition of m138 did not reveal any obvious
sorting motifs. Therefore, to examine the role of the cytoplasmic
tail (aa 555-569) and/or the transmembrane domain (aa 534-554)
of m138, we generated N-terminal HA-tagged m138 truncation
mutant proteins (Fig. 8A): 1) Atailm138, lacking the 15 most C-
terminal amino acids, and 2) ACD4TMtailml38, in which the
m138 transmembrane region and tail were replaced with human
CD4 transmembrane and tail. Expression of the proteins was con-
firmed by immunoblotting for HA (data not shown). Atailm138 or
ACD4TMtailml38 (Fig. 8B) promoted the loss of B7-1 from the
cell surface of CHO-B7-1 cells, equivalent to full-length m138.
The down-modulation was not as extensive as that observed for
DC2, presumably due to the high levels of B7-1 protein expressed
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by CHO-B7-1. Regardless, the mutant m138 proteins behaved

similarly to full-length m138. To further eliminate a role for the

cytoplasmic tail in this response, we examined the mislocalization

of 137-1 in the presence of Atailm 138 by confocal microscopy. The

cytoplasmic tail of m 138 was not required to mislocalize B7-1 to

intracellular punctate compartments (Fig. 8C). Therefore, neither

the cytoplasmic tail or the transmembrane domain of m 138 was

required for modulation of B7-1 expression.

Discussion
CMV actively suppresses the expression of costimulatory mole-

cules in DC. This is an effective immune evasion strategy. given

that infection correlates with an inability of CMV-infected DC to

promote T cell activation (36-39). At the cellular level, CMV

promotes the loss of cell surface expression of CD40. CD54,

CD83, 137-1. and 137-2 in various DC subsets (25. 36-40). Con-

sistent with these studies. we also observed the abrocation of both

137-1 and B7-2 expression upon MCMV infection. In all cases of

CMV-mediated immune suppression of DC function, the specific

viral gene(s) responsible has not been identified. A possible ex-

ception is MCMV m147.5. which encodes a 23-kDa protein re-

ferred to as mod 137-2. Mod 137-2 is responsible for 137-2 loss from

the cell surface of RAW 264.7 macrophages (25). Its role in DC,

its mechanism of action, or the fate of B7-2 in its presence is

unknown. In this study. ve describe the specific interference of

137-1 cell surface expression by the \ICMV protein m138 iii both

cell lines and primary DC. To our knowledge, this is the first

demonstration of the impact of a viral immune evasion gene In

primary DC.
Although MCMV modulates both 137-1 and 137-2 from the cell

surface, m138 and m147.5 specifically interfere only with 137-1 or

137-2, respectively, and do so independently of each other. Given

that B7-1 and B7-2 both bind the same T cell coreceptors, CD28

and CTLA4, this specificity is. at first glance, unexpected. Both

B7-1 and B7-2 are type I transmembrane glycoproteins that pos-

sess a V-type and C-type Ig superfamily domain (41 ). Despite their

functional overlap, however, they are only 25% identical in amino

acid sequence, and consequently possess rather divergent struc-

tures (42-45). Although 137-1 forms a homodimer at the cell sur-

face (42, 43), B7-2 does so only upon receptor-induced clustering

(45). In addition 137-2 contains a longer cytoplasmic tail. Thus, the

structural features that distinguish 137-1 and 137-2 most likely ex-

plain the presence of individual and specific Modulators in the

MCMV genome.
The MCMV gene responsible for 137-1 down-modulation was

identified as m138. m138 was previously reported as the fcr-I

MCMV gene. encoding a putative FcR. It was postulated that

FcR-1 (m138) expression at the MCMV-infected cell surface

would prevent the recognition of MCNIV-infected cells by circu-

lating anti-MCMV Ab (33). This role was questioned, however,

when the attenuated growth observed in vivo for Am138 MCMV

was not restored in B cell-deticient mice (46). Hence., the absence

of Ab did not alter the course of infection with Am138 MCMV.

This prompted a re-evaluation of a role for ml38 as an FcR that

has remained elusive until now. Our experiments are also incon-

sistent with FcR function, given that m138 was not definitively

shown to be expressed at the cell surface and its absence did not

promote loss of Ig binding at the infected cell surface. Therefore,

despite its putative role as an FcR, the clear consequences of m138

expression for the cell surface display of 137-I suggest an attractive

alternative for the major role of ml 38 in the immune evasion ac-

tivities in MCMV infection. There is emerging evidence to support

the notion that a single viral protein can exert several distinct im-

mine evasion functions (47. 48). potentially in a cell type-specific

manner. Of interest, while this manuscript was in preparation, a

role for ml38 in the down-modulation of NKG2D ligands

MULT- I and H60 was described (49). Consequently, the complex

immune evasion strategies used by MCMV may explain the di-

vergent functions of m138.

B7-1 is a critical costimulatory signal required for T cell im-

munity. 137- 1-deficient APC display a significant reduction in their

ability to promote T cell activation (34). Indeed, the loss of 137-1

at the cell surface, upon m138 expression, inhibited the ability

of DC2.4 to promote optimal CD8 T cell responses in vitro.

We would therefore expect m138, in concert with other

MCMV-encoded modulators of costimulatory and MHC class I

molecule expression, to act together to effectively suppress an-

tiviral CD8' T cell immunity in vivo. Unexpectedly, attenuation

of Am138MCMV growth in vivo was not restored upon T cell (or

NK cell) depletion (46). A direct examination of m1 38 function in

vivo is complicated by its potential role in cell to cell spreading of

the virus similar to that of its functional FcR homologues encoded

by HSV (50, 51) and pseudorabies virus (52). m138 may also

participate in other 137-1-mediated functions. In addition to a role

in T cell responses. 137-1 can evoke, independently of CD28 en-

gagerment, signaling events in the APC itself (53, 54). For exam-

ple, triggering of B7-1 blocks B cell proliferation and Ab produc-

tion (55). Other examples include the induction of 137-I in kidney

podocytes, resulting in an increase in glomerular filtration and

transient proteinuria (56) and the induction of B7-I expression on

keratinocytes by inflammatory stimuli (57). Therefore, the func-

tion of costimulatory molecules extends beyond their traditional

role in T cell signaling and may explain the broader expression

pattern of these molecules on cell types other than APC (reviewed

in Ref. 19). m138 may consequently interfere with B'7-1 function

both in the context of an immune response and in potentially un-

discovered roles that the virus must manipulate for successful

propagation in vivo.

Host proteins suffer different fates in the presence of viral im-

mune evasion proteins. Expression can be suppressed at the level

of transcription, or the protein itself can be targeted via retention,

inhibition of function, or enhanced degradation. In the case of

B7-1, MCMV m138 does not shut off its transcription, but hijacks

newly synthesized protein early during biosynthesis. This may oc-

cur in the ER given that ml 38 is localized both in the ER and in

a lysosomal compartment. Unlike KSHV K5, which targets B7-2

already present at the cell surface (20). ni138 recruits B7-1 early in

the secretory pathway. The rnechanism most likely requires an

association between m 138 and B7- 1. and presumably involves the

recruitment of other proteins. The involvement of accessory pro-

teins such as the adaptor protein complexes or mannose 6-phos-

phate receptor remains to be investigated. nil 38 redirects B7-I to

a LAMP-1 compartment. Of interest is that neither the m138 or

137-1 proteins acquire complex glycan modifications. despite

their lysosomal localization. This is also the case for TLR9,

ws hich is recruited from the ER to an endosornal compartment

without concomitant conversion of TLR9-associated glycans to

Endo H resistance (58).

Mislocalization of host proteins to lysosomes is also promoted

by other viral proteins, including MCMV m6/gp 4 8 (14), HIV Nef

(59), and HHV-7 U21 (60). For both m6/gp48 (14) and Nef (61,

62), lysosomal mislocalization is mediated by consensus-sorting

signals in their cytoplasmic domains. These motifs recruit adaptor

protein complexes that form part of the endocytic sorting machin-

ery. In contrast, the mechanism of m138 function did not require

the presence of its predicted transmembrane or cytoplasmic domains.

Therefore., ml 38-mediated B7-1 mislocalization is reminiscent of the
141



action of HHV-7 U21, in which its lutmenal domain is suifficient for

targeting of MHC class I to a lysosomal cornpartient (63).

In surimarv. we have identified the first viral protein that targets

and disables the function of B7-1, a critical costimulatory iole-

cule. MCMV mrl38, although possessing Ig-binding capacity, is

the protein responsible for modulation of the cell surface expres-

sion of B7-1. Therefore, through the manipulation of B7-1. rather

than acting as an FcR. m 138 participates in the complex mecha-

nisms of immune evasion activitv that is ultimately responsible for

the establishment of persistent herpesvirus infection. An under-

standing of the interference of B7-1 by a viral protein also provides

insight into targeting and turning off B7-l expression in contexts

other than viral immunity.
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XBP-1-Deficient Plasmablasts Show Normal Protein Folding
but Altered Glycosylation and Lipid Synthesis'

Annette M. McGehee,* Stephanie K. Dougan,* Elizabeth J. Klemm,* Guanghou Shui,7
Boyoun Park,* You-Me Kim,* Nicki Watson,* Markus R. Wenk,t" Hidde L. Ploegh,2*
and Chih-Chi Andrew Hu 2*

The accumulation of misfolded secreted IgM in the endoplasmic reticulum (ER) of X-box binding protein 1 (XBP-1)-deficient B
cells has been held responsible for the inability of such cells to yield plasma cells, through the failure to mount a proper unfolded
protein response. LPS-stimulated B cells incapable of secreting IgM still activate the XBP-1 axis normally, as follows: XBP-1 is
turned on by cues that trigger differentiation and not in response to accumulation of unfolded IgM, but the impact of XBP-1
deficiency on glycoprotein folding and assembly has not been explored. The lack of XBP-1 compromised neither the formation of
functional hen egg lysozyme-specific IgM nor the secretion of free K-chains. Although XBP-1 deficiency affects the synthesis of
some ER chaperones, including protein disulfide isomerase, their steady state levels do not drop below the threshold required for
proper assembly and maturation of the Iga/Ig# heterodimer and NHC molecules. Intracellular transport and surface display of
integral membrane proteins are unaffected by XBP-1 deficiency. Given the fact that we failed to observe any defects in folding of
a variety of glycoproteins, we looked for other means to explain the requirement for XBP-1 in plasma cell development. We
observed significantly reduced levels of phosphatidylcholine, sphingomyelin, and phosphatidylinositol in total membranes of
XBP-1-deficient B cells, and reduced ER content. Terminal N-linked glycosylation of IgM and class I MHC was altered in these
cells. XBP-l hence has important roles beyond folding proteins in the ER. The Journal of Immunology, 2009, 183: 3690-3699.

lasma cells produce large amounts of secreted Igs, which
is their primary task in the adaptive immune response. In
contrast, naive B cells express the membrane form of IgM

(mIgM),' but do not secrete IgM until they are activated. B cell
differentiation to plasma cells begins when a B cell is activated by
an encounter with its cognate A2 or in conjunction with ligands for
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I'LRs. This leads to the expansion of the B cell's endoplasnic

reticulum (ER) in preparation for the increase in synthesis of the

secreted form of IgNI (slgM) (1). Evetutally, such B cells fully

ditferetiate into Ig-secreting plasma cells (2), a process proposed

to depend critically on the unfolded protein response (UPR) (3. 4).
X-box binding protein I (XBP-l) is a transcription factor that

drives this UPR. Its expression is ultinmately controlled by the trans-
membrane kinase/endori bonuclease inositol-requiring enzymoe I
(IRE-1) (3, 5), the activation of which occurs in response to pharma-

cologically induced ER stress. IRE-1 modulates XBP-1 activity by
catalyzing an unusual reaction that generates spliced XBP- 1 mRNA,
encoding a 54-kDa "spliced" XBP- I protein (XBP- Is) with transcrip-

tional activity. XBP-Is translocates to the nucleus and reoulates the
synthesis of chaperones and other proteins believed to contribute to

the proper function of the secretory pathway (4. 6, 7).
XBP-1 plays an important role in B cell differentiation, as fol-

lows: when XBP- I is absent from B cells, the number of plasma

cells is dramatically reduced (8). It has been argued that the action
of XBP-1 in B cell ditcrentiation ensures expression of proteins
equipped to deal with an excess of unfolded sIgM; this excess is
thought to be an unavoidable byproduct of the increased synthesis
of sIgM (3, 4). In this model, the increase in synthesis of sIgM

subsequent to B cell activation exceeds the folding capacity of the

ER and causes an accumulation of excess unfolded proteins that

activate IRE-1, which in turn triggers XBP-1 activation. Activation

of XBP-I by IRE-I serves to increase the size of the ER and

enhances its folding capacity to handle the increased levels of

sigM. This model predicts that, in the absence of XBP-1, differ-

entiating B cells are unable to deal with the increased load of sIgN

in the ER, and thus, misfolded sIgM will accumulate in the ER,

rather than be secreted. As a correlate, other proteins destined for

surface display or secretion may be misfolded, and operation of the

secretory pathway in its entirety could be compromised (9). This

model would further predict that B cells that do not manlfacture
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sIeM should fail to activate XBP-1 if misfolded sIgM is the ex-

clusive driver of the JPR.

In earlier experiments, we have produced evidence that activa-

tion of XBP-1 occurs even in B cells that do not synthesize mas-

sive quantities of sIgM (10). In this study, we set out to examine

whether the presence or absence of XBP-I. through its impact on

ER homeostasis, affects glycoprotein folding in B cells. To that

end, we generated mice in which XBP- I is conditionally deleted in

B cells by crossing the XBP-Y"lA"""'C[ mouse line (XBP-1"i where

WT represents wild type) (11) to mice in which expression of Cre

recombinase is under the control of the B cell-specific CD19 pro-

moter (12), henceforth referred to as XBP-lI" (where KO repre-

sents knockout) mice. In addition to the XBP-lKO ic. we used
mice unable to synthesize sIgM (XBP-1'o/jxS ) (13). and thus

expressing only mlgM. Finally, we used transgenic ID4 mice

(XBP-I wT/MD4 and XBP-1 "l/MD4) in which both the H and I.
chains of IgM specifically recognize hen egg lysozyme (IIEL)

14); this mouse model allowed us to investigate the Au reactivity
of IgM produced in the absence of XBP-1, a rigorous test of suc-

cessful glycoprotein synthesis, folding, and assembly.
Lipids are not template encoded and cannot be manipulated by

genetic mutation as readily as proteins, but they are important in

physiology. Enforced expression of XBP-Is in NIH3T3 fibroblasts

established the role of XBP-1 in controlling synthesis of phos-

phatidylcholine (PC) and phosphatidy lethanolamine ( 15, 16). Al-
though a liver-specific KO of XBP- I leads to hypocholesterolemia

and hypotriglyceridemia. a lipomics analysis shows that lipid com-

position in hepatocytes is not affected by XBP-1 deficiency (17).
These results suggested that XBP- I can regulate expression of a
tissue-specific lipid profile in individual organs. The changes in

lipid composition have not been systenatically examined in the

context of B cells with a deficienes in XBP-1. A change in lipid
synthesis can alter lipid environments (such as lipid rafts), making

B cells respond differently to stimulation with Ag.
In this study, we show that XBP-1-deficient B cells are fully

capable of correctly folding both sIgM and mINgM. Our investiga-

tion of the biocenesis of a number of essential membrane proteins

in XBP-1-deficient B cells revealed no defects in their synthesis.

folding, assembly. or intracellular transport. XBP-1-deficient B

cells also secrete free K-chains at rates comparable to those seen in

XBP- I-proficient cells. Examination of the lipid contents in total

membranes of XBP- I -deficient B cells shows decreased levels of

a select group of lipids. XBP- I -deficient B cells expand their ER
in response to LPS stimulation. but do so to a lesser extent than

WT B cells. A subtly altered pattern of terminal N-linked glyco-
sylation was observed for IgM as well as class I MHC products.
We conclude that the operation of the secretory pathway shows no
obvious abnormalities in XBP-1-deficient B cells, and that XBP-1
is required in differentiating B cells for processes other than the

up-regulation of ER-folding capacity.

Materials and Methods
Alice

XBP-1 """I" mice have been described (11). 'To obtain B cell-specific de-
letion. XBP- I "" mice were crossed with CDt 9-Cre mice (12) obtained
from Y. Shi (Harvard Medical School, Boston, MA). Mice with a B cel-
specific XBP- t deletion were additionally crossed to secreted s knockout
(iS ) mice (13) or to MD4 mice (14). which harbor a transgene for
HEL-specific IgM.

Abs and reagents

Polyclonal Abs against Iga, 1g, and protein disulfide isomerase (PDI)
were generated in rabbits. Class I MHC was detected using p8 anti-
serum directed against the cytoplasmic tail, and class 11 MHC was de-
tected using JV1 antiserum directed against the class 11 a chain. Re-

agents purchased from commercial sources include Abs to actin
(Sigma-Aldrich). p97 (Fitzgerald), XBP-t (Santa Cruz Biotechnology),
S(Southern Biotechnology Associates), aid K (Southern Biotechnol-

ogy Associates). FACS Abs were purchased from BD Pharmingen, and
the following clones were used: CD40 (3/23). CD80 (16-10AI), and
CDI d H B 1). Ligands to TLRs were procured from commercial sources,
as follows: Pamn3CSK 4 frorn Alexis Biochemicals; poly(t:C) arid LPS
(Escherichia coli 026:1B6) from Sigma-Aldrich; imiquimod from
InvivoGen; and CpG DNA from TIB-MOLBIOL.

Cell culture

B lymphocytes were purified from mouse spleens by negative selection
using anti-CD43 magnetic beads (Miltenyi Biotec). .B cells were cultured
in the RPMI 1640 medium (Life Technologies) supplemented with 10%
heat-inactivated FBS, 2 mM i.-glutamine. 100 U/mIl penicillin G sodium,
100 sg/mt streptomycin sulfate, I mM sodium pyruvate, 0.1 mM nones-
sential amino acids, and 0. 1 mnM 2-ME. For differentiation of B cells into
plasmablasts, LPS (20 gg/ml) was added to the culture medium. The NKT
cell hybridoma 24 .7 (18) was a gift of S. Behar (Brigham and Women's
Hospital, Boston, MA). IL-2 and TL-6 concentrations were measured by
ELISA (BD Pharmingen).

Protein isolation anI i7mmuntohlotting

Cells were lysed in Nonidet P-40 lysis buffer (50 mM Tris (pH 7.4). 0.5%
Nonidet P-40, 5 rmN MgC, and 150 mM NaCI) or radioiut1noprecipi-
tation assay buffer (10 imI Tris-HCI (pH 7,4), 150 i mM NaCl, 1K Nonidet
P-40, 0.5% sodium deoxycholate, 0.1%K SDS. and I mM EDTA) supple-
mented with protease inhibitor mixture (Roche). The protein concentra-
tions of the supernatants were determined by bicinchoninic acid assay
(Pierce). Samples were boiled in SDS-PAGE sample buffer (62.5 nM Tris-
HCl (pH 6.8), 2% SDS, 10%I glycerol, and 0.1%K bromrphenol blue) with
2-ME (or N-ethylmialeimide (NEM) where indicated) and separated by
SDS-PAGE. Proteinis xvere transferred to nitrocellulose or polyvinylidene
difluoride membranes, blocked in 5K (w/) millk, and immunoblotted with
the indicated Abs and appropriate HRP-conjugated secondary Abs. Fol-
tossing three washes in PBS-Tween 20 (0. 11) the blots were developed
using Western Lighting Chemiluirinescence Reagent (Perkin Elmer).

Pulse-chase labeling

Pulse-chase experiments were performed, as described (19). Briefly, plas-
mablasts were starved in methionine- and cysteine-free medium, then pulse
labeled with [ Sjmethionine/cysteine (Perkinlmeir) After labeling. cells
were incubated in chase mediurn containing unlabeled methionine (2.5
mM) and cysteine (0.5 mM). At the end of each chase interval, cells were
lysed in radioimmunoprecipitation assay buffer containing protease inhib-
itors. Lysates were then analyzed by immunoprecipitation, SDS-PAGE,
antd fluorography. Band intensity was determined using a phosphor inager
(Fujifilm BAS 2500), and qcuantitation was done using the MultiGauge
softs are (Fujifilni).

FACS analysis

Live plasimablasts were stained with the indicated Abs and analyzed by a
FACSCalibur low cytoneter (BD Biosciences). Data were analyzed using
CellQuest (BD Biosciences).

Triton X- 114 p/hase separation

Triton X- 114 phase separation was performed. as described (20). Briefly.
cells were lysed in Triton X 114 lysis buffer (10 mM Tris-HCl (pH 7.4),
150 mM NaCl. and 1% Triton X 114) containing protease inhibitors. Ly-
sates were placed onto a sucrose cushion (6% sucrose, 10I mM Tris-HCI
(pH 7.4), 150 mM NaCl, and 0.06% Triton X- 114), and incubated at 300C
until the lysates turned cloudy. The detergent phase was recovered by
centrifugation for 5 mini at ' 00 X q. The aqueous supernatant was removed
and re-extracted wxith 0.5K Triton X-1 14. and overlaid onto the original
sucrose cushion. After a subsequent round of separation, both the detergent
(sediment) and the soluble (supernatant fractions were brought to the same
buffer and detergent concentrations for further analysis.

Biotinylated HEL affinity purification of HEL-specific Igs

Cells were metabolically labeled and subjected to Triton X-I 14 phase sep-
aration, as described above. Samples were incubated with either anti-sr,
biotinvlated HEL. or unconjugated biotin. Proteins were then recovered
with either protein G-agarose beads or anti-biotin beads (Sigma-Aldrich),
washed, eluted with SDS-PAGE sample buffer. and analyzed by SDS-
PAGE. For serial depletions Using biotinylated HEL, supernatants from the
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FIGURE 1. A and B, Naive B cells
from XBP-lwT/k -/- and XBP-lKO/
sS-'- mice were cultured in vitro in
the presence of LPS for the indicated
times. Cell lysates were prepared and
analyzed by SDS-PAGE and immu-
noblotting for the indicated proteins.
Immunoblots shown in both A and B
were performed using the same set of
lysates.

initial purification were subjected to five sequential rounds of retrieval by
biotinylated HEL, and a final round of immunoprecipitation using the
anti-/, Ab.

Enzymatic deglycosylation

Total lysates or inmmunoprecipitates from lysates were denatured in gly-
coprotein denaturing buffer (0.5% SDS, 1% 2-ME) at 95'C for 5 min,
followed by addition of sodium citrate (pH 5.5) to a final concentration of
50 mM, and incubated with endoglycosidase H (Endo H) (New England Bio-
labs) at 370C for 2 h. Alternatively, sodium phosphate (pH 7.5) and Nonidet
P-40 were added to the denatured cell lysates to a final concentration of 50 mM
and 1%, respectively, and the mixture was incubated with peptide: N-glyco-
sidase F (PNGase F) (New England Biolabs) at 37C for 2 h.

Liquid chromatography-mass spectrometry analysis of lipids

Lipid extract was prepared using a modified version of Bligh and Dyer
method (21), with two sequential extraction steps to maximize yield. A
total of 0.9 ml of a chloroform:methanol (1:2) mix was added to 10 million
cells (in 0.1 ml of PBS), and the mixture was vortexed vigorously for 3 X
1 min with a 5-min interval in between. Next, 0.3 ml of chloroform and 0.3
ml of 1 M KCl were added to the tube, and the mixture was again vortexed.
The mixture was then centrifuged for 2 min at 9000 rpm to separate the
phases. The lower organic layer was transferred to a clean microfuge tube.
Residual aqueous phase and cell remnants were re-extracted with 0.5 ml of
chloroform, as described above, and the organic phase was combined with
extract 1. The combined extract was dried in a Speedvac. Before analysis,
lipids were dissolved in chloroform/methanol (1:1, v/v).

An Agilent HPLC system coupled with an Applied Biosystems Triple
Quadrupole/Ion Trap mass spectrometer (4000Qtrap) was used for quan-
tification of individual polar lipids. Based on product ion and precursor ion
analyses of head groups, two comprehensive sets of multiple reaction mon-
itoring transitions were set up for quantitative analysis of various lipids,
including PC, phosphatidylethanolamine, phosphatidylserine (PS), phos-
phatidylinositol (PI), phosphatidylglycerol (PG), sphingomyelin (SM), and
ceramide (Cer) (22, 23). The signal intensity obtained for each lipid species
was calculated by comparing to corresponding internal standards, including
dil4:0-PC, dil4:0-phosphatidylethanolamine, dil4:0-PS, dil4:0-PG, di8:
0-PI, Cer d18:1/17:0, and SM18/14:0.

Electron microscopy

B cells were fixed for electron microscopy either immediately after isola-
tion, or after 3 days in culture in the presence of LPS. The cells were fixed
in 2.5% glutaraldehyde, 3% paraformaldehyde, with 5% sucrose in 0.1 M
sodium cacodylate buffer (pH 7.4). Cells were then postfixed in 1% OS04
in veronal-acetate buffer. The cells were stained in block overnight with

0.5% uranyl acetate in veronal-acetate buffer (pH 6.0), dehydrated, and
embedded in Spurr's resin. Sections were cut on a Reichert Ultracut E
microtome with a Diatome diamond knife at a thickness setting of 50 nm,
and stained with 2% uranyl acetate, followed by 0.1% lead citrate. Samples
were examined using an FEI Tecnai Spirit TEM at 80 KV and imaged with
an AMT camera.

Results
XBP-1 activation occurs in the absence of sIgM

We set out to test the connection between XBP-1 and glycoprotein
quality control during B cell differentiation. B cells were analyzed
over the course of a 4-day in vitro differentiation scheme in which
naive splenic B cells were cultured in the presence of LPS, to
induce differentiation into Ig-secreting plasmablasts (24).

We assessed the expression of XBP-Is in B cells from yS-/-
mice over 4 days of in vitro LPS-stimulated differentiation.
XBP- Is was induced as early as day 1, and its expression persisted
for the remainder of the time in culture (Fig. 1A) (10). This ex-
pression pattern is similar to what is observed in WT mice (10, 25).
XBP-lwT/yS-'-, but not XBP-1KOpS -/- B cells showed up-
regulation of PDI following LPS stimulation (Fig. 1A), indicating
that up-regulation of PDI requires both LPS and XBP-1s.

Because yS~-/ B cells do not express sIgM, but are readily in-
duced by LPS to express XBP-1, activation of XBP-1 in these B cells
cannot be due to an accumulation of unfolded sIgM. We therefore
investigated the expression of membrane y. (yLM), K, Iga, and class I
and II MHC molecules in LS-'- B cells to determine whether there
was an aberration in the expression of proteins other than IgM that
could result in an accumulation of unfolded proteins and activation of
XBP-1. The yM was only modestly up-regulated over the 4-day time
course of differentiation in both control and XBP-1-deficient B cells
(Fig. 1B). This increase is insignificant when compared with the in-
crease of slgM upon LPS stimulation in normal B cells; in XBP-1-
proficient cells, sIgM levels increase by at least 15-fold (25). In both
XBP-1-deficient and -proficient B cells, expression of K-chain in-
creased over the course of LPS stimulation and was increased in XBP-
1-deficient B cells (Fig. 1B). However, free K-chains are unlikely to be
the trigger for XBP-1 activation, because pulse-chase experiments
showed that these K-chains are secreted normally see below).
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Anti-IgM Biotin Biotinylated-HEL

MD4 MD4 MD4

WT WT KO WT WT KO WT WT KO

Immunoprecipitation

FIGURE 2. A, Naive B cells from
XBP-lwT, XBP-lwr/MD4, and XBP-
1 KO/MD4 mice were cultured in the
presence of LPS for 4 days and then
labeled with [3 S]methionine/cysteine
for 4 h. Triton X- 114 lysis and sepa-
ration were performed. Both the pellet
and soluble fractions were precipi-
tated with an Ab against p4, or with
biotin or biotinylated HEL. The pellet
fraction containing MM is shown. B
and C, Cell lysates were prepared as
in A. Lysates were split into two frac-
tions, one of which was immunopre-
cipitated with an anti-p Ab, and the
other of which was subjected to five
sequential rounds of precipitation
with biotinylated HEL, followed by a
subsequent immunoprecipitation us-
ing the anti-p Ab. For each cell type
(XBP-1wT/MD4 and XBP-lKO/
MD4), the amount of p recovered
from the first fraction by inimunopre-
cipitation using the anti-p Ab was
designated as the total s. By compar-
ing with the total y, the percentage of
M recovered from the second fraction
was designated for each of the five se-
quential biotinylated HEL recovery
steps and for the final recovery with
the anti-s Ab. The quantitation of MS
(B) was performed on fractions taken
from the Triton X-1 14 supernatant,
and the MM quantitation (C) was per-
formed on the Triton X-114 pellet
fractions. The results shown are an
average of two separate experiments.
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Expression of Iga remained constant over the 4-day course of LPS
stimulation, and MHC molecules were slightly up-regulated after LPS
stimulation (Fig. 1B).

The absence of XBP-1 does not alter the efficiency of IgM
folding

The defect attributable to the absence of XBP-1 is expected to
yield systemic folding defects in glycoproteins due to dysregula-
tion of chaperone synthesis. Such a defect could manifest itself in
several ways, as follows: an increase in misfolded proteins, a de-
fect in protein assembly, or a decrease in trafficking from the ER
to the targeted locations.

We performed a stringent test for the presence of misfolded
IgM, using MD4 transgenic mice that express IgM specific for
HEL. Ag binding represents a robust test of correct folding and

assembly of IgM, because Ag-Ab interaction requires both correct
folding and assembly of the H and L chains. To isolate correctly
folded IgM from MD4 B cells, the Ag HEL was conjugated to
biotin, which was then used to recover IgM capable of recognizing
HEL by adsorption to anti-biotin agarose beads. We performed
these experiments following separation of mIgM and sIgM using
the Triton X-114 phase separation method (20). By retrieval of
IgM using biotinylated HEL, we found that the majority of IgM
recovered from MD4 B cells is indeed specific for HEL, because
immobilized biotinylated HEL led to retrieval of IgM only from
MD4, but not from WT B cells (Fig. 2A). There was no obvious
difference in the percentage of HEL-reactive IgM recovered from
XBP-lwr/MD4 and XBP-lKO/MD4 B cells (Fig. 2, B and C).
After five rounds of sequential retrieval with immobilized biotin-
ylated HEL, we recovered the remaining unfolded IgM by

147

] pM (+) CHO*

3]pM (+) CHO

.... ............ ................. .. .... ......... ...... ........... ........ .............. ....... ... .



FIGURE 3. Naive B cells or 3-day
LPS-stimulated plasmablasts from in-
dicated mice were labeled with
[35S]methionine/cysteine for 4 h. Cell
lysates were immunoprecipitated us-
ing Abs to Iga (A) and Igo (B). The
immunoprecipitates were treated with
either Endo H (H) or PNGase F (F)
before analyses by SDS-PAGE and
fluorography. CHO, CHO*, and NAG
represent high mannose-type glycans,
complex-type glycans, and N-acetyl-
glucosamines, respectively. Note that
the sIgM was precipitated from the
3-day LPS-stimulated XBP-1wT B
cell lysates via nonspecific binding of
sIgM to protein G-conjugated agarose
beads.
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immunoprecipitation using an anti-y Ab. Had the ability of IgM to
fold properly been compromised by the XBP-1 deficiency, we
should have detected a surplus of free, unbound A-chains in XBP-
1-deficient MD4 B cells, but this was not the case. We observed no
significant differences in the percentage of misfolded IgM between
XBP-1wT/MD4 and XBP-lKO/MD4 B cells, suggesting a similar
ability to correctly fold both sIgM and mIgM (Fig. 2, B and C).

Iga/Ig# heterodimer formation proceeds normally
in XBP-1-deficient B cells

Iga must assemble with Igo before the heterodimer can leave the ER.
To assess the association of Iga with Ig#, we radiolabeled both naive
and 3-day LPS-stimulated B cells, and performed immunoprecipita-
tions using Abs against Iga or Ig3, either of which should allow
recovery of both Iga and Igo due to the fact that these proteins remain
disulfide linked under nonreducing conditions. In both naive and
3-day LPS-stimulated B cells, there was no detectable difference in
the association/stoichiometry of Iga and Igo as a result of XBP-1
deficiency (Fig. 3). The synthesis of Iga and Igo was apparently not
affected by the absence of XBP-1 because we detected similar
amounts of Iga and Igo in XBP-wr and XBP-lKO B cells (Fig. 3).
Because both Iga and Ig# acquire complex-type glycans in the Golgi
apparatus, the exit of Iga and Ig3 from the ER is normal in the ab-
sence of XBP-1 (Fig. 3). Similar results were found in either XBP-
1 KO or XBP-lKO/AS-S B cells (Fig. 3).

Disulfide formation proceeds normally in the absence of XBP-J

XBP-1-deficient B cells did not up-regulate PDI in response to
LPS stimulation (Fig. 1A), consistent with the known mechanism
of transcriptional control of the PDI gene by XBP-1 (6, 7). Several

components of the BCR associate through disulfide bonds: Iga and
Igo form a heterodimer held together by a disulfide bond, as do Ig
H (A) and L (K) chains to yield IgM. Lysates from XBP-lwT/
AS-'- and XBP-1KO/. -/- B cells cultured in the presence of
LPS for 2 or 4 days were treated with N-ethylmaleimide (NEM) to
preserve disulfide bond arrangements and to prevent de novo for-
mation of disulfide bonds. We found no difference in the levels of
nonreduced Iga/Ig heterodimers in XBP-1KOIS -'- B cells
(Fig. 4A), suggesting that the disulfide bond between them formed
normally. Similarly, p- and K-chains assembled correctly into
higher-order dimers (y + K) and tetramers (p 2K2 ) (Fig. 4B). Thus,
the prevailingly low levels of PDI in XBP-1-deficient B cells are
sufficient to sustain normal disulfide bond formation.

Normal kinetics of synthesis and ER exit are observed for
proteins that enter the secretory pathway in XBP-1-deficient B
cells

We investigated protein synthesis and trafficking in XBP-1-defi-
cient B cells by pulse-chase analyses on IgM, K-chains, class I
MHC, Iga/lgp, and class II MHC molecules. We detected no de-
fects in the trafficking of mIgM to the cell surface, because levels
of the complex oligosaccharide-bearing y-chain (indicated by
pM(+)CHO*) were not altered in XBP-1-deficient B cells after
120 min of chase (Fig. 5). Although XBP-1-deficient B cells syn-
thesized more K-chains (Fig. 1) than their WT counterparts, all of
the excess K-chains were effectively secreted (Fig. 5B).

We observed a barely detectable delay in the exit of class I
MHC from the ER in XBP-1-deficient B cells as compared with
XBP-1-proficient B cells, regardless of whether this was measured
for XBP-lKO/AS-'- or XBP-1Ko/MD4 mice (Fig. 6, A and B). At
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FIGURE 4. A, XBP-l"wTAS- /- and XBP-lKO/pS -' B cells were cul-
tured in the presence of LPS for 2 or 4 days and lysed in Nonidet P-40, and
lysates were treated with either NEM to retain disulfide bonds or DTT to
reduce disulfide bonds. Cell lysates were then analyzed by SDS-PAGE and
immunoblotting for Iga. B, Four-day LPS-stimulated XBP-lwkrI,--/-~ and
XBP-1KOS -/- B cells were lysed in Nonidet P-40, and lysates were
treated with either NEM or DTT. Lysates were then immunoblotted using
Abs to p or K.

later time points, all class I MHC molecules exit the ER. There was
no detectable difference in the synthesis or trafficking of Iga and
Igf when comparing XBP-lwT/AS~-/ and XBP-1KO/S -- B
cells (Fig. 6C). We also did not detect any difference in the rate of
trafficking of class II MHC molecules as a result of XBP-1 defi-
ciency (Fig. 6D).

XBP-1 deficiency does not alter cell surface display of
glycoproteins or compromise their functions

No differences were found in the cell surface levels of CD1d,
CD80, or CD40 (Fig. 7, A-C) as measured by cytofluorimetry.
Signaling through various TLRs by distinct TLR ligands was in-
distinguishable for XBP-lwr/MD4 and XBP-1KO/MD4 B cells, as
measured by the secretion of IL-6 in response to stimulation (Fig.
7D). Consistently, B cells were found irresponsive to poly(I:C)
(26). The ability of CDld to present lipid Ags to NKT hybridoma
cells was also tested, and no apparent defect was detected in XBP-

Immunoprecipitation: anti-K Immunoprecipitation: ant-p

pM(+)CHO*

-pM(+)CHO

PS

- K chain

XBP-1"T/pS+ XBP-1 /pS/ XBP-1"T/pS-/ X8P-1 /p-
0 3060120240030 60120240030 60120 240 0 30 60 120 240 Chae time (min)

pM(+)cHO*

- pM(+)CHO

-ic chain

Immunoprecipitation:anti-K
FIGURE 5. A, Naive XBP-lwT/MD4 and XBP-lKO/MD4 B cells were
cultured in the presence of LPS for 3 days. Cells were then labeled with
[35S]methionine/cysteine for 10 min and chased for the indicated times.
Immunoprecipitations were performed using Abs against K or 1, and were
analyzed by SDS-PAGE and fluorography. B, Three-day LPS-stimulated
XBP-lwrj--' and XBP-lKO/pS-/- B cells were radiolabeled for 10
min and chased for the indicated times. Immunoprecipitations were per-
formed on both cell lysates and the culture medium using an Ab against K.

1-deficient B cells (Fig. 7E). Thus, all proteins examined function
normally in XBP-1-deficient B cells, implying that they do not
obviously suffer from a folding or transport defect.

XBP-1-deficient B cells synthesize significantly less PC,
SM, and PI

We examined changes in lipid composition of total membranes
extracted from both naive and LPS-stimulated XBP-1-deficient B
cells using liquid chromatography-mass spectrometry. Data from
four independent experiments suggest that the lipid composition in
total membranes of the naive XBP-1-deficient B cells is similar to
that of the naive XBP-1-proficient B cells. However, significantly
lower levels of PC, SM, and PI were found in the membranes of
4-day LPS-stimulated XBP-1-deficient B cells (Fig. 8 and supple-
mental Fig. S1),4 suggesting that the presence of XBP-1 is required
for production of these lipids in LPS-stimulated plasmablasts.

XBP-1-deficient B cells show a reduced expansion of the ER

We investigated expansion of the ER in XBP-1-deficient B cells in
response to LPS stimulation. Naive B cells contained relatively
little ER, and no differences between the XBP-1 -deficient B cells
and their WT counterparts were detectable by electron microscopy
(Fig. 9). In both XBP-1-proficient and XBP-1-deficient B cells,

4 The online version of this article contains supplemental material.
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FIGURE 6. Naive B cells from in-
dicated mouse lines were cultured in
the presence of LPS for 3 days. Cells
were labeled with [3 5S]methionine/
cysteine for 10 min and chased for the
indicated times. Immunoprecipita-
tions were performed using Abs to
class I MHC H chain (A and B), Iga
(C), or class II MHC a-chain (D), and
were analyzed by SDS-PAGE and
fluorography. Additionally, in B, ly-
sates from the 90- and 120-min chase
points were combined, immunopre-
cipitated with the Ab to class I MHC
H chain, and subsequently treated
with either Endo H (H) or PNGaseF
(F) before SDS-PAGE analysis.
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similar percentages of the cell population respond to LPS stimu-
lation by increasing ER content. The expansion was more pro-
nounced in XBP-1-proficient B cells (Fig. 9).

XBP-1-deficient B cells have subtly altered patterns of terminal
glycosylation

We noticed subtle differences in the patterns of glycosylation of
IgM and class I MHC when comparing LPS-stimulated XBP-1-
proficient and XBP-1-deficient B cells. XBP-lwr/MD4 B cells
contained more of the ER form of both mIgM and s1gM than
XBP-1Ko/MD4 B cells (Fig. 10A). By carefully investigating the
glycosylation status of mIgM, we observed a difference in the mo-

COld CD80

M WT/MD4 450

KO/MD4 400,
350-

E 250

200

300
150

Pam3 Poly (K:C) LPS Imiquimod CpG

bility of the Endo H-resistant fraction of mIgM between XBP-
lwT/iS~'- and XBP-1KO -/-- B cells (Fig. 10B), and an in-
creased heterogeneity in the acquisition of Endo H-resistant
complex-type glycans in XBP-lKO/yS '- B cells (Fig. 10B, in-
dicated by <). Because each t-chain has five potential N-linked
glycosylation sites, heterogeneity can arise from any of these sites
due to differences in terminal glycosylation. Similar defects in gly-
cosylation also occurred to class I MHC molecules (Fig. 6, A and
B). The XBP-1-proficient B cells synthesized a population of class
I MHC with Endo H-resistant glycan modifications that migrated
more slowly in SDS-PAGE, which was absent from XBP-1-defi-
cient B cells (Fig. 6, A and B).

CD40
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KO/MD4

25 50 100
* B cells (x 1,000)

FIGURE 7. A-C, XBP-1wT/MD4
and XBP-lKO/MD4 B cells that had
been cultured with LPS for 3 days
were analyzed for the cell surface dis-
play of indicated markers by FACS.
The black lines are from XBP-1wr/
MD4 cells, and the gray lines are from
XBP-lKO/MD4 cells. D, XBP-lw/
MD4 and XBP-1Ko/MD4 B cells
were cultured with Pam3CSK 4 (100

0 10' ng/ml), poly(I:C) (100 g/ml), LPS
(20 yg/ml), imiquimod (25 sM), and
CpG DNA (1 pM) for 3 days. Culture
supernatants were analyzed for the
presence of IL-6 by ELISA. E, XBP-
lwT/MD4 and XBP-1Ko/MD4 B cells
were cultured in the presence of LPS
for 4 days. Varying numbers of these
LPS-stimulated B cells were then in-
cubated with a CD1d-responsive
NKT cell line (NKT 24.7) overnight,
and the NKT cell activation was as-
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FIGURE 8. XBP-1-deficient plasmablasts synthesize significantly less
PC, SM, and P1. Naive B cells purified from the spleens of either XBP- wT
or XBP- 1KO mice were cultured with LPS for 4 days. Lipids were extracted
from at least 100 million cells. Quantitation of each lipid was conducted
using liquid chromatography/mass spectrometry. Lipid abundance was cal-
culated by comparing with internal standards. Experiments were repeated
four times using B cells pooled from nine mice of each genotype. Data are
presented as mean - SD. Lipids analyzed include PC, Cer, SM, phosphati-
dylethanolamide (PE), PI, PS, and PG.

Discussion
The UPR is commonly viewed as a stereotypic set of changes in
gene expression, triggered by the accumulation of misfolded pro-
teins. Its regulation involves the activation of IRE-1, which exe-
cutes a splicing reaction to yield XBP-1s mRNA, the translation of
which starts a transcriptional program that targets a variety of
genes encoding chaperones and enzymes involved in protein fold-
ing and lipid synthesis. The literature frequently equates the acti-
vation of XBP-1 with the activation of the UPR, a response com-
monly evoked experimentally through the application of toxic
drugs such as tunicamycin, thapsigargin, or DTT. The extent to
which the UPR functions in a more physiological manner is not
immediately obvious, and none of the above treatments used to
induce the UPR can be considered subtle. Tunicamycin treatment
interferes with glycoprotein folding through inhibition of glyco-
sylation, but the extent of folding damage inflicted is difficult to

XBP-lwT

Day0

Day 3

X8P-1KO

FIGURE 9. Naive (day 0) or 3-day LPS-stimulated XBP-lwT and
XBP-lKo B cells were fixed and prepared for analysis by electron mi-
croscopy. Approximately one-third of the purified B cells respond to
LPS with increased ER content and show the represented morphology.
Scale bar = 500 nm.
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FIGURE 10. A, Four-day LPS-stimulated XBP-l""T/MD4 and XBP-
IKo/MD4 B cells were lysed in Triton X- 114, and s1gM and mIgM were
separated, as described. Lysates were then immunoblotted using the anti-tk
Ab. B, Naive and 3-day LPS-stimulated XBP-lwT/S-'~ and XBP-lKO/
p.S-/- B cells were labeled with [3 5S]methionine/cysteine for 4 h. Immu-
noprecipitations were performed using an Ab to st. Immunoprecipitates
were subsequently treated with either Endo H (H) or PNGaseF (F), and
analyzed by SDS-PAGE and fluorography. The arrowhead (<) indicates
the partially Endo H-resistant IgM.

gauge. At the same time, tunicamycin treatment also leads to ac-
cumulation of the dolichol precursor and presumably affects the
lipid environment in which ER membrane proteins function. Thap-
sigargin depletes the ER of its calcium stores, compromises the
function of calcium-dependent ER-resident chaperones such as
calnexin and calreticulin, and is therefore expected to increase the
failure rate of protein folding in the ER. Imposition of stress by
generating a strongly reducing environment using DTI is also a
common method to unleash the UPR. All of these triggers activate
XBP-1 (3). More rarely the UPR can be induced by overexpression
of genetically engineered misfolded proteins (27, 28), but it is
interesting to note that these two examples concern a polytopic
(multispanning) ER membrane protein and a surfactant-binding
protein, respectively, both of which might act not only through
their misfolded state per se, but also through sequestration of lipids
and their metabolites at inappropriate locations. Experiments in
yeast suggest that massive quantities of a misfolded type I mem-
brane protein are far less effective at induction of the UPR than
even mild tunicamycin treatment (29).

Development of B cells into plasma cells is an example of a
physiological process that triggers the UPR, as defined by activa-
tion of XBP-1. Although misfolded sIgM has been speculated to
provide the impetus for XBP-1 activation in differentiating plasma
cells (3, 4), our data provide no support for this suggestion, be-
cause XBP-1 activation occurs also in B cells that cannot make
sIgM, with kinetics that mimic those in normal B cells (Fig. 1)
(10). Because an excess of unfolded sIgM cannot be the cause of
XBP-I activation in these cells, we conclude that there must be an
as yet unidentified (differentiation-dependent) trigger that leads to
XBP-1 activation through IRE-1. IRE-1 is usually activated by the
presence of unfolded proteins in the lumen of the ER, either
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through a direct interaction with unfolded proteins (30), or through
its dissociation from Ig H chain binding protein (BiP) as a result of
competition for unfolded proteins (31, 32). Unfolded ER proteins
alone may not be sufficient for full IRE-i activation. Protein-ty-
rosine phosphatase lB (PTP-1B) has been implicated in assisting
complete function of IRE-1, because cells that lack PTP-1B are
less efficient in turning on downstream effectors of IRE-i in re-
sponse to UPR triggers (33), thus linking PTP-1B to IRE-1. Full
activation of the IRE-1 pathway can thus be controlled by multiple
inputs, and not merely by the presence of unfolded proteins.

LPS-induced differentiation activates XBP-1 (4, 34), leading to
up-regulation of chaperones like PDI (Fig. 1A). Assuming that the
failure to increase PDI levels in XBP-1-deficient plasmablasts
would cause misassembly and/or misfolding of proteins, we in-
vestigated the fate of IgM H and L chains, as well as the ability of
IgM to bind HEL in the absence of XBP-I (Fig. 2). We saw no
difference between XBP-iwT/MD4 and XBP-IKO/MD4 plasma-
blasts in terms of their ability to correctly assemble sIgM and
mIgM capable of HEL binding. Free K-chains were synthesized at
increased levels and were readily secreted by XBP-1-deficient B
cells (Figs. lB and 5). XBP-1 deficiency also did not affect syn-
thesis, assembly, and trafficking of Iga and Igo, or class I and class
II MHC molecules (Figs. 3, 4A, and 6), with the possible exception
of a barely perceptible delay in the exit of class I MHC molecules
from the ER in XBP-1-deficient B cells (Fig. 6, A and B). XBP-
1-deficient B cells obtained from chimeric XBP-1-/-/RAG2--
mice showed no obvious delay in class I MHC trafficking, a dif-
ference we attribute to the slight difference in the pulse-chase pro-
tocols used (25). We hence suggest that glycoproteins fold and
function normally in XBP-1-deficient B cells. This conclusion is
inconsistent with the proposal that an XBP-1-deficient B cell pro-
duces an ER that is defective in protein folding.

CD40, CD80, and CDld were all present at the cell surface of
XBP-1-deficient B cells in normal amounts (Fig. 7, A-C), and
CDld was fully functional in the presentation of lipid Ags to NKT
cells (Fig. 7E). Production of IL-6 triggered by various TLR li-
gands was not significantly different for XBP-1-proficient and
XBP-1-deficient plasmablasts (Fig. 7D), suggesting that the exam-
ined TLRs function properly in their distinct cellular compart-
ments. Taken together, these results show that the ER of XBP-1-
deficient plasmablasts sustains folding and assembly of all proteins
we have examined to date. The activation of stress responses trig-
gered by prion replication was not influenced by XBP-1 deficiency
(11), further supporting the notion that XBP-1 is not required to
handle misfolded proteins, in the form of cytotoxic aggregates.

It is possible that we do not detect a defect in protein folding in
XBP-1-deficient B cells due to a compensatory up-regulation of
other branches of the UPR. In addition to the responses initiated by
the IRE-i/XBP-1 axis, RNA-dependent protein kinase (PKR)-like
ER kinase (PERK) and activating transcription factor (ATF)6 con-
tribute as well. The presence of unfolded proteins in the ER stim-
ulates phosphorylation by PERK of eukaryotic initiation factor 2a
(eIF2a). This attenuates translation initiation, thus reducing the
number of proteins that enter the ER (31). However, there is no
indication that initiation of translation is somehow compromised
through engagement of the PERK axis in XBP-1-deficient B cells.
ATF6 is a membrane-bound transcription factor. In response to ER
stress, ATF6 traffics to the Golgi apparatus, where its transmem-
brane segment is cleaved to release its transcription factor domain,
which then translocates to the nucleus to initiate the transcription
of ER chaperones that can aid in protein folding (35, 36). The
PERK branch of the UPR is not required for B cell differentiation
(37), and XBP-1 deficiency does not lead to the up-regulation of
eIF2a and phospho-eIF2a, important indictors for PERK activa-

tion (10) (data not shown). The ATF6 pathway is induced during
plasma cell differentiation (38), but whether it is essential for
plasma cell differentiation remains to be established. Finally,
XBP-1 deficiency alone is sufficient to cause a block in plasma cell
differentiation, with no obvious compensation by either PERK or
ATF6 activation.

The exact role of XBP-1 in plasma cell differentiation remains
to be defined. PC, SM, and PI decrease in response to XBP-1
deficiency in total membranes of LPS-stimulated plasmablasts
cells, but not unstimulated naive B cells (Fig. 8 and supplemental
Fig. Sl), suggesting that XBP-1 is required for lipid synthesis in
support of plasma cell differentiation. PC is most drastically af-
fected by XBP-1 deficiency in plasmablasts because it is the pri-
mary phospholipid of the ER membranes. Although no lipid was
found altered in hepatocytes lacking XBP-1 (17), PC and phos-
phatidylethanolamine increase significantly in NIH3T3 fibroblasts
overexpressing XBP-1s (15, 16). Unlike in fibroblasts, we do not
find phosphatidylethanolamine affected by XBP-1 deficiency in B
cells; however, SM and PI decrease significantly in XBP-1-defi-
cient plasmablasts, although the levels of these two lipids are lower
than that of PC. To find reduced levels of SM and PI in plasma-
blasts is interesting, because both lipids play important roles in
signal transduction. SM is a crucial lipid in rafts, and PI is an
essential intermediate in the PI-3-phosphate signaling pathway.
These lipid defects may compromise the recruitment of IgM,
Iga/Ig, and other B cell coreceptors (CD19, CD20, CD21, and
CD81) into lipid rafts, and contribute to the observed defective
signal transduction in XBP-deficient B cells (10).

Activated XBP-1-deficient plasmablasts had decreased ER con-
tent compared with XBP-1-proficient plasmablasts, as visualized
by transmission electron microscopy (Fig. 9), whereas unstimu-
lated controls showed no such difference. Although XBP-I is not
required for B cells to increase their ER content in response to
differentiation, the extent of the ER expansion does depend on
XBP-1. This is consistent with XBP-l's role in setting the levels of
PC (Fig. 8 and supplemental Fig. S1A). Thus, it appears that ex-
pansion of the ER, but not necessarily the ER-folding capacity per
se, is under the control of XBP-1.

We observed minor differences in the pattern of terminal gly-
cosylation of both IgM and class I MHC in XBP-1-deficient cells
(Figs. 6, A and B, and 10). Although these changes are slight and
require a more detailed analysis by glycan sequencing, such dif-
ferences could certainly contribute to the defect in plasma cell
differentiation in XBP-1-deficient mice. Whether alterations in
glycosyltransferase levels, nucleotide sugars, and their transporters
or the environment in which these enzymes function are respon-
sible for the observed glycosylation defects is not known at
present. Proper glycosylation is most likely critical to B cell dif-
ferentiation, given that the blockade of high mannose to complex-
type N-linked glycans imposed by the ER mannosidase inhibitor
1-deoxymannojirimycin can completely block the formation of Ig-
secreting B cell blasts from human peripheral blood B cells (39),
although mannosidase inhibition does not inhibit B cell prolifera-
tion or Ig secretion per se. Some factors required for B cell dif-
ferentiation may well be sensitive to changes in terminal glycan
modifications.

XBP-iwT/MD4 and XBP-l'O/MD4 B cells differ in signaling
through the BCR, and regulation of the transcription factors IFN
regulatory factor 4 and Blimp-I (10). In addition, XBP-1-deficient
B cells after Ag stimulation fail to migrate to the bone marrow
(10). These, together with altered lipid synthesis and glycosylation
in XBP-1-deficient B cells, could account for failure of B cells to

fully differentiate into plasma cells, but accumulation of misfolded
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proteins does not appear to be a key contributing factor. Alto-
gether, our results suggest that XBP-1 activation in B cells is a
differentiation-dependent event unlinked to accumulation of mis-
folded IgM. Furthermore, protein folding occurs normally in XBP-
1-deficient B cells, indicating an essential role for XBP-1 beyond
the UPR.
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Supplemental Figure Legend

Figure SI. The levels of the different classes of lipids presented in Fig. 8 are the

summation of specific lipid species analyzed by mass spectrometry. The abundance of

the specific lipids analyzed is presented here according to class: (A) phosphatidylcholine,

(B) ceramide, (C) sphingomyelin, (D) phosphatidylethanolamide, (E)

phosphatidylinositol, (F) phosphatidylserine and (G) phosphatidylglycerol. Data were

acquired as described for Fig. 8 and are presented as mean±SD.
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Figure S1
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