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Abstract

In microfluidics, the formation of bubbles within devices obstructs flow and can damage
the microfluidic chip or the samples contained therein. This thesis works toward a better
understand of bubble wetting on surfaces, so that future microfluidics devices can be designed to
be more robust and free of bubbles. Current wetting theory as applied to bubbles is examined,
and two key areas for improvement are identified: disjoining pressure effects and
gravitationaleffects. Wetting of textured surfaces is also analyzed for bubble application, leading
to a prediction that a model based on a Cassie-Baxter analysis with knowledge of bubble wetting
on a flat surface would be most accurate compared to other models. Dynamic and sessile bubble
contact angles and droplet contact angles were measured on smooth acrylic, fluorosilanized
silicon, glass, nylon, and silicon. These results were compared to the existing model, and the
resulting error showed a strong correlation with a Pearson's correlation coefficient of 0.863 to
the magnitude of the bubble contact angle hysteresis. Because contact angle hysteresis can be
related to the disjoining pressure, these results were a good indicator that disjoining pressure
should be considered in developing improved bubble wetting models. Dynamic and sessile
bubble contact angles and droplet contact angles were also measured on four silicon samples
with different surface textures. These results were compared to three existing wetting models as
applied to bubble wetting, and it was found that the Cassie-Baxter model based on the bubble
contact angle on a smooth silicon surface was most accurate, with an average percentage error of
0.8%. Finally, recommendations for further research to support developing models of bubble
wetting are made.

Thesis Supervisor: Kripa K. Varanasi
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Chapter 1

Introduction

1.1 Applications

The study of microfluidics devices has become increasingly popular over the past twenty

years for a variety of applications (Whitesides 368). These applications range from possible

cooling chips for computers to DNA sequencing chips to laboratory testing of fluid mechanics

(370-372). However, there exists a problem that any engineer working with microfluidics

devices will encounter in her career: bubbles. Whether from evaporation within a channel, or

from faulty sealing, a bubble lodged within a microfluidics chip can produce hours of frustration

and can possibly damage samples. Methods to clear a microfluidics device of bubble include

increasing inlet pressure and physically disturbing the chip near the area of the bubble.

Especially as microfluidic devices become more complicated, for example as in Figure

1.1.1, this problem only becomes more prevalent. Reliability is a fundamental criterion for good

design, especially considering that for applications like analyzing forensic DNA evidence, there

is only a limited sample available and contamination means complete failure. Thus, a better

understanding of how and why bubbles wet themselves onto surfaces could help microfluidics

engineers design better chips that prevented bubbles adhesion and increased the reliability of

their devices.



Figure 1.1.1 A microfluidics chip used for DNA analysis (Mathies Lab).

1.2 Objectives

This thesis will attempt to further develop methods for predicting the wetting of a bubble

on both flat and textured surfaces. The current droplet and trapped bubble wetting theory that

drives current knowledge about bubble wetting, including current limitations of understanding, is

explained in Chapter 2.

The current theories for predicting bubble wetting are analyzed in Chapter 3. It is

predicted that disjoining pressure effects and gravitational effects will cause significant

. ......... -- -----



differences between experimentally determined bubble wetting and the bubble wetting predicted

using the current method based on droplet wetting. For textured surfaces, Cassie-Baxter and

Wenzel regimes are discussed and used to further an analysis of the best method to predict the

wetting of a bubble. This paper predicts that the most accurate method is based on the bubble

wetting of a flat surface of the same material.

Wetting experiments are then performed to test these hypotheses in Chapter 4. Bubbles

are adhered to five different flat surfaces: acrylic, fluorosilanized silicon, glass, nylon and silicon

dioxide and the static and dynamic contact angles were measured with a goniometer. The same

experiments were then performed on four samples of textured silicon with different critical

aspect ratios. Static contact angle measurements were also performed on all aforementioned

surfaces. The experimental results are then compared to predictions from Chapter 3. Finally,

conclusions and recommendations are made in Chapter 5.



Chapter 2

Wetting Theory

2.1 Wetting and the Contact Angle

In the study of wetting phenomena, an important and useful parameter used to quantify

the extent of wetting is the contact angle. Considering the case of a sessile water droplet on a

surface in ambient air, it is clear that it is a three phase system with a solid surface, a fluid and a

vapor. The line along the solid surface where all three phases meet is the contact line. The

contact angle, therefore, is defined as the apparent angle between the solid-liquid interface and

the liquid-vapor interface at the contact line, as shown in Figure 2.1.1.

0

Figure 2.1.1 An illustration of the contact angle of a droplet on a surface (Radke et.al. 3).

Furthermore, for each of these pairs of phases there is a separate interface at the boundary

between the two phases, creating three interfacial surfaces in the system. At each of the

interfacial surfaces, there exists an interfacial tension y, sometimes referred to as a surface

tension. This interfacial tension occurs because, as illustrated in Figure 2.1.2, molecules at the

surface have fewer bonds with neighboring molecules (de Gennes et.al. 2-3). Because of course



the A molecules do not bond as well with the neighboring B molecules as they do with their own

bulk materials (otherwise mixing would be the rule and the boundary would no longer exist), the

surface molecules have fewer total bonds than the molecules in the bulk region. This relative

lack of bonding means that the molecules at the surface have excess internal energy, U (Miller

and Neogi 11-13). Thus, the interfacial tension is defined as the change in internal energy

required to sustain an additional unit area dA of interfacial surface for a constant number of

moles of each species in the interfacial region:

(dU'
y= ~d~ufae(2.1.1)Y": d A )surf ace

Thus, a larger area requires more energy to sustain, and the existence of an interfacial tension

generally drives the system to minimize interfacial surface area.

In the case of case of liquid-vapor interfaces, it can be deduced that the optimal shape for

a droplet or bubble in the absence of gravity would be a sphere. For a more general case of a

curved interfacial surface, the Laplace equation shows that the mean curvature on the surface, H

is constant for any point on the surface:

AP = YLVH (2.1.2)

where H is defined by the two principle radii of the interfacial surface R, and R2 as

H = 1+ , (2.1.3)

AP is defined as the pressure difference between the liquid and the vapor, and yLVis the

interfacial tension between the liquid and the vapor (9-10). The Laplace equation also shows that

the pressure inside a bubble or droplet is necessarily larger than the pressure outside because the

curvature relative to the inside is positive and that this pressure difference decreases when the

size of the droplet or bubble increases.



VAPOR

LIQUID-VAPOR INTERFACE

LIQUID

Figure2.1.2 An illustration adapted from de Gennes et.al. that shows how the molecule on the left, which
is at the surface of the liquid, experiences less attractive interactions that the molecule on the right, which

is within the bulk of the fluid (2).

When a liquid wets a surface, the process simultaneously replaces an equal area of liquid-

vapor interface and solid-vapor interface with the newly created solid-liquid interface. This is

expressed in the Dupre equation (Miller and Neogi 65), which defies the work of cohesion

between the liquid and solid interface, WSL as follows

WSL = YSV + YLV - YSL- (2.1.4)



VAPOR

LIQUID

Ysy

SOLID

Figure 2.1.3 A close-up view of the three phase interface adapted from Bhushan and Nosonovsky (74).

Another important relation in wetting is Young's equation, which relates the three

interfacial tensions to the contact angle:

Ysv = YSL + YLV COS 0 (2.1.5)

where ysv, ySL, and yLV are the interfacial tensions between the solid and vapor, the solid and

liquid, and the liquid and vapor respectively; and 0 is the contact angle (Miller and Neogi 61). It

should also be noted that combining Equations 2.1.4 and 2.1.5 results in the Young- Dupr6

equation:

WSL = YLV(1 + cos 9). (2.1.6)

Although Young's equation can also be proven in a more rigorous fashion than will be attempted

in this paper, it is apparent from Figure 2.1.2 that a simple force balance will lead to the same

relation assuming that gravity effects are negligible (61-63). From this equation, it is clear that

there are three important regimes, first where cos(0) is less than -1, second where cos(6) is

greater than 1 and third where cos(9) is between -1 and 1. In the first case, the liquid and surface

do not adhere at all, and in the second case the liquid achieves complete adsorption with the

surface. The last case is the most interesting case, where the liquid is neither completely rejected



nor completely absorbed by the surface. In general, a contact angle for a water droplet greater

than 90 degrees is referred to as hydrophobic and a contact angle less than 90 degrees is

hydrophilic. The categories of superhydrophobic and superhydrophilic are reserved for surfaces

that achieve a contact angle of greater than 150 degrees and less than 10 degrees, respectively

(Bhushan and Nosonovsky 81-82).

The magnitude of the interfacial tensions is driven by molecular bonding, such as Van

der Waals effects, between the different phases and within each bulk phase, and in depth

explanations are outside the scope of this paper. However, it has been shown that interfacial

tensions are temperature dependent, as can be seen in Table 2.1.1. Cini et.al. performed

experiments to determine the interfacial tension of water and air at different temperatures using

the equilibrium ring method, which related the force required to pull a platinum ring out of a

water bath to the interfacial tension of water and air.

Table 2.1.1 Results from Cini et.al. show the temperature dependence of the surface tension of water. The
left column gives the measured temperature and the right column shows the measured surface tension of
water at each temperature, yT, normalized by the surface tension of water at 20*C, y20 (291).

T (*C) YT/Y20

5.15 1.02950

9.67 1.02076

15.04 1.01008

20.07 0.99986

25.00 0.98970

30.20 0.97866

35.24 0.96799



2.2 Dynamic Contact Angle

In addition to measuring the contact angle of a static contact line, it is also possible to

observe the contact angle of moving contact lines. With droplets, it is increasingly common to

measure the advancing and receding contact angles in addition to the sessile contact angle. The

advancing contact angle, 0ad, is measured when the volume of the droplet is increasing and in

the process of wetting more surface whereas the receding contact angle, 0ree, is measured when

the volume of the droplet is decreasing and in the process of dewetting the surface. It is well

known that there exists what is known as the contact angle hysteresis between the receding and

advancing contact angles, which reflects the thermodynamic irreversibility inherent in wetting

and dewetting (Radke et.al. 90-91). Accordingly, the more "friction" inherent to a surface,

whether that be surface contaminants or surface roughness, the higher the resulting contact angle

hysteresis tends to be. However, even with atomically smoothed surfaces, the smallest contact

angle hysteresis that has been observed was non-zero, though less than 1 degree (91).

The presence of surface imperfections also causes a local tilt to the surfaces, which will

change the observed contact angle of a droplet or surface. Many studies have shown that because

of this, there is in fact no one contact angle for a given surface (91). Furthermore, it is nearly

impossible to remove all dynamic effects when measuring a sessile drop because in addition to

vibratory disturbances, evaporation can produce dynamic effects on this size scale, so the history

of the droplet can affect the contact angle (297-299 Bhushan and Nosonovsky). Thus, because

there is always microscopic motion at the contact line, the static contact angle is not truly static,



and so the observed contact angle should stabilize between the advancing and receding contact

angle and this hypothesis has been borne out in the literature (297).

1

4

Figure 2.2.1 An illustration of the boundary layer at the three phase interface (Radke et.al. 13).

It is also important to explain that at the microscopic level, on the scale of 0.1 pm to be

exact, there exists a boundary layer at the contact line of a droplet on a surface, as illustrated in

Figure 2.2.1 (Radke et.al. 13). This boundary layer exists at the contact line and extends radially

outward in a very thin layer of water, and is the result of surface forces. The amount of surface

force per unit area is known as the disjoining pressure, although it can act as either a repellant or

attractive pressure between two surfaces (de Gennes et.al. 88-90). The three main surface forces

that create the disjoining pressure are Van der Waals forces, electrokinetic forces, and structural

forces (especially for molecules that are electric dipoles, like water) (Radke et.al.13-16). Radke

et.al. showed that the disjoining pressure is related to the contact angle hysteresis in the

following equation

Cos 6 - Cos a = 1 1 (Pshs - Paha + fha (h)dh] (2.2.1)
Y LV f s

where Ps is the pressure difference between the liquid and the vapor for a sessile droplet, Pa is the

pressure difference between the liquid and the vapor for the advancing droplet, h, is the height of



the film, ha is the height of the film, and n(h) is the disjoining pressure as a function of h. The

same derivation can be carried out to prove a corollary equation

Cos Or - Cos 6a = 1 jjPrhr - Paha +fa I(h)dh] (2.2.2)
Y LV r

where Pr is the pressure difference between the liquid and the vapor for the receding droplet and

hr is the height of the film (305).

2.3 Effects of Roughness and Surface Texture on Wetting

In addition to affecting contact angle hysteresis above in Section 2.2, roughness has

further fundamental effects on wettability that will be explained in this section. For a given flat

projected area AF, roughness increases total surface area A. This is the basis of the Wenzel model

cos 6 = Rf cos 60 (2.3.1)

where 6 is the contact angle of the rough surface, 0 is the contact angle of the idealized smooth

surface and Rf is the ratio of the total surface area to the total surface area the flat projected area

Rf = , (2.3.2)

which is defined as the dimensionless surface roughness factor (Bhushan and Nosonovksy 86).

Because Rf is by definition greater than or equal to 1, it is clear from Equation 2.3.1 that

roughness will decrease the contact angle of a hydrophilic surface and will increase the contact

angle of a hydrophobic contact angle, so roughness can be said to enhance the wetting or non-

wetting properties inherent to a surface.

A similar analysis can give the results for a heterogeneous surface composed of two

separate materials. Given a surface with a fractional areaf of a material with contact angle 61,

and a fractional area 1-f of a material with contact angle 62, it is possible to derive the Cassie

equation:



cos9 =fcos01 + (1-f) cos0 2  (2.3.3)

where 6 is the contact angle of the heterogeneous surface (86-87). The Cassie-Baxter equation

gives the special result of the Cassie equation where the heterogeneous surface is comprised of a

solid component with a fractional areafsL and a vapor component with a fractional area 1 -fsL, as

with a solid with air pockets:

cos 0 = fst COS 0SL + (1 - fst) COS 8LV (2.3.4)

Considering that the contact angle where the liquid does not wet a surface is entirely non-wetting,

we can take the contact angle of the liquid-vapor interface to be 180 degrees, which simplifies

the equation to

cos 6 = fstcossL - 1 + SL (2.3.5)

and then combining the above equation with the Wenzel equation gives the true Cassie-Baxter

equation:

cos 0 = Rffs Lcos OSL -1 +f SL- (2.3.6)

These equations also lead to the popular categorizations of the Wenzel and Cassie-Baxter

regimes with describe two separate possible states of wetting for rough surfaces. In the Wenzel

regime, the cavities in a rough surface are wetted and in the Cassie-Baxter regime the cavities in

a rough surface are not wetted but are instead filled with vapor. The differences between these

two wetting regimes are shown in Figure 2.3.1.



Vapor
Liquid.

Solid

-Liquid ' Vapor

Solid Vapor pockets

Figure 2.3.1 The top illustration shows the Wenzel wetting regime where liquid penetrates the cavities.
The lower illustration depicts the Cassie-Baxter regime where the cavities are instead filled with vapor

and the liquid rests on top of the surface formed by the solid and the vapor pockets (83).

2.4 Limits of Wetting Theory

The contact angle commonly observed by the naked eye or goniometers in experiments is

sometimes referred to as the apparent contact angle because it is a relatively macro-scale

parameter compared to the contact angle observed at the micro- or nano-scale. This phenomenon

was documented by Salmeron and Xu in their Scanning Polarization Force Microscopy (SPFM)

experiments imaging nano-droplets and measuring the contact angle. They found that for as the

droplet height approached zero, so did the contact angle (7212-7214). As the droplet height

increased, the contact angle quickly approached the macro contact angle, as shown in Figure

2.4.1. Current theory suggests that this phenomenon is related to the disjoining pressure effects

(Radke et.al. 74). Figure 2.4.2 shows an illustration of how this precursor film also has its own

contact angle, which is much smaller than the apparent contact angle.



0 20 40 60 80 100 120 140 160
droplet height (nm)

Figure 2.4.1 In this plot of contact angle over droplet height adapted from Salmeron and Xu, the results
from SPFM measurements of the contact angle of nano-droplets of glycerol condensated onto mica

compared to the droplet height (7213).

VAPOR .

LIQUID

SOLID

Figure 2.4.2 An illustration adapted from Radke et.al. which shows the difference between the apparent or
macro contact angle, here labeled 00, and the micro-/nano-scale precursor contact angle, which is labeled

On (75).



Figure 2.4.3 Adapted from Feng et.al., the droplet on the left shows a water droplet adhered to a sample of
rose petal. From this image, it is clear that the contact angle is within the superhydrophobic range of >1 50
degrees. The droplet on the right is a water droplet on the same sample of rose petal now inverted to show

that the droplet does not roll off the rose petal even when upside-down (4115).

Furthermore, it has been shown that a large contact angle and high adhesion can between

a water droplet and a surface can indeed coexist. Feng et.al. tested the wetting properties of rose

petals and show in Figure 2.4.3 that although the contact angle was larger than 150 degrees, the

droplet remained attached to the surface even when the system was upside down and in fact

never rolled off. As with the lotus leaf, these amazing properties were greatly attributed to the

hierarchical structure on the surface of the rose petal, though of course to different effect. The

authors explained that whereas the lotus leaf induces a Cassie state where water can neither

impregnate the larger grooves nor the smaller grooves on the surface, the rose petal induces a

Cassie impregnating wetting state where water could impregnates the larger grooves on the

surface but not the smaller, as shown in Figure 2.4.4 (4115-4117).



Figure 2.4.4 This illustration from Feng et.al. shows the theoretical wetting regimes of the rose petal on
the left and the lotus leaf on the right. Water on the rose petal is in an impregnating wetting state where
the larger cavities are filled with water but not the smaller cavities. Water on the lotus leaf is in a true
Cassie-Baxter state where both large and small cavities are filled with air while the water rests on top

(4117).

i 0 1



Chapter 3

Predicting the Bubble Wettability of a Surface

3.1 Smooth Surface Analysis

Given a bubble attached to a solid surface submerged in water, it is possible to perform a

three phase system analysis with Equation 2.1.4 that is directly analogous to the droplet analysis

performed in Section 2.1. Whereas before analysis focused on the work of cohesion between the

solid and the liquid, WSL, now it will focus on the work of cohesion between the solid and the

vapor, Wsv. Just as before the liquid-solid interface replaced a liquid-vapor and solid-vapor

interface of the same area, now a solid-vapor interface replaces liquid-solid and liquid-vapor

interface such that

Wsv YSL + YLV - Ysv (311)

where ySL, yLV, and ysv are the interfacial tensions at the liquid-solid interface, the liquid-vapor

interface and the solid-vapor interface, respectively.

Continuing with Equation 2.1.5, a force balance analysis of the bubble system in Figure

3.1.1 reveals the Young equation for a bubble:

YSL - YSv + YLv COS Obubble (3.1.2)

where 0 bubble is the contact angle of the bubble and the effects of gravity are ignored. Thus, it follows that

the Young-Dupr6 equation for the bubble is

Wsv = YLv (1 + COS Obubble). (3.1.4)
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Figure 3.1.1 A close-up view of the three phase interface adapted from Bhushan and Nosonovsky (74).
The same image as Figure 2.1.3 with the vapor and liquid reversed.

To relate the contact angle of the bubble system to the contact angle of the droplet system

with the same vapor, liquid solid and therefore the same interfacial tensions, Equation 2.1.5 and

Equation 3.1.2 are recombined to show

YSL YSL + YLV CoS + YLV COS Obubble (3.1.5a)

YLV COS 0 = -YLV COS Obubble (3.1.5b)

6 = 180 - Obubble (3.1.5c)

where 6 is the contact angle of the droplet and both contact angles are measured in degrees.

The relation between the work of adhesion between the two systems can also be determined, by

combining Equation 3.1.4 with Equation 3.1.5c.

Ws YL(1 - COS O) (3.1.6)

then substituting in Equation 2.1.6 shows

W = WSL - 2 yLvCoS 0. (3.1.7)



Thus, for a hydrophilic surface, the value of cos6 will be positive, and so the work of

adhesion between the solid-vapor interface will be smaller than that of the solid-liquid interface

and the opposite will be the case for a hydrophobic surface.

3.2 Rough and Textured Surface Analysis

Reintroducing the roughness factor Rf and Equation 2.3.1 from Section 2.3, Equation

3.1.5b becomes

YLV Rffcos 6 = -YLv Rfcos 9bubble (3.2.1)

so Equation 3.1.5c still holds and roughness should have no effect on the relation between the trapped

bubble contact angle as compared the droplet contact angle. However, this analysis assumes that the

droplet and bubble are both in the Wenzel regime, that both the bubble and the droplet have completely

wetted the surface.

In the Cassie regime, Equation 2.3.6 becomes

COS 0 bubble = Rf ftop COS 0sv - 1 + ftop (3 .2.2a)

substituting in a rearranged Equation 2.3.6 as shown below

cos 6 - Rf ftop COS 6 SL = -1 + ftop (3.2.2b)

results in

COS Obubble =ftop COS Sy + COS 0 - ftop CoS OSL (3.2.2c)

COS 6 bubble = Rf ftop (cos Osv - COS OSL) + cos 6 (3.2.2d)

Equation 3.2.2d gives a relation between the bubble contact angle and the droplet contact

angle assuming that both systems were in a Cassie state on the same surface. However, it is clear

from 3.1.5c that a surface that resulted in a water droplet that achieved a completely wetting

Wenzel state would likely result in a bubble that achieved the non-wetting Cassie state instead of



the Wenzel state. Thus, a more accurate prediction of bubble contact angle on a textured surface

would probably be determined from the bubble contact angle on a flat surface as opposed to

using either model for predicting the bubble contact angle based on the droplet contact angle.

--------------------- I

b

L --- - - - - - - - - - - - -

Figure 3.2.1 An illustration showing the critical dimensions a, b, and h for a textured surface made of
raised squares. The left shows a top-down view of the surface and the right shows an image of the surface

from the side.

A microtextured surface presents an easily quantifiable method of establishing roughness and

heterogeneity parameters. It is possible to calculate Rf for a surface textured with raised squares

with dimensions given in Figure 3.2.1 [forthcoming]. A formula for unit total area is given below

A = (a + b) 2 + 4ha (3.2.4)

and a unit of projected area is

A = (a + b) 2  (3.2.5)

so it follows from Equation 2.3.2 that the roughness factor Rf is

R = (a+b)2 +4ha (3.2.6)
Rf (a+b)2

Futhermore, the quantityf is determined by calculating the percentage of the projected area that

constitutes the top surface

f = a .2  (3.2.7)(a+b)2'



3.3 Disjoining Pressure Effects

Of course, so far all analysis has assumed that a trapped bubble can be treated essentially

the same as a droplet, which is not truly the case. A major difference in wetting mechanisms for

a droplet and a bubble is connected to the disjoining pressure. In a droplet, disjoining pressure

effects result in a precursory water film that protrudes radially from the droplet in on the surface.

This section will predict how disjoining pressure effects will affect bubble wetting. As

mentioned in Section 2.2, the magnitude of the disjoining pressure is related to Van der Waals

forces, electrokinetic forces, and structural forces caused by the build-up polar molecules. On all

three measures, water, which is denser, a better conductor and composed of polar molecules,

clearly outstrips air. Thus, just as even in a droplet system with a hydrophobic surface there

exists a precursory water film, this analysis predicts that in the bubble system there will be a thin

water film at the edge of the bubble between the air and the surface that will interfere with

bubble wetting.

The extent to which it affects bubble wetting can be predicted using Equation 2.2.2.

Assuming droplets and bubbles of equal sizes, Pr and Pa should be the same, and of course

assuming a water-air-surface system, YLV will be the same for all cases. Assuming that with the

same contact line velocity, the critical heights h, and ha are constant, Equation 2.2.2 simplifies to

cos 0r - cos 0a = C1 + C2 K (3.3.1)

where C, and C2 are both constants related to the aforementioned system constants and K is a

measure of the magnitude of the disjoining pressure effects. This simplified relation more clearly

shows that there is a relationship between the magnitudes of the hysteresis of the system and the

disjoining pressure effects.



3.4 Gravitational Effects

Although the shape of a trapped bubble is usually assumed to be the mirror image of a

droplet on a surface, this section will examine this assumption in further detail. Working from

that assumption, this section will examine a droplet and a trapped bubble of equal size and shape.

Because of gravitational effects, in both the fluid and the vapor, the density of the material

changes with the position along the z axis. Thus, there is more mass in the bottom of the droplet

and bubble, which shifts the centers of mass such that the center of mass of the bubble will be

farther from the surface and the center of mass of the droplet is closer to the surface. A curved

surface analysis is dependent on the location of center of mass, so because that variable changes,

so too must the shape of the droplet. This difference could also have an effect on the relationship

between the contact angles of a trapped bubble and a droplet on the same surface.

3.5 Chapter Summary

In this chapter, current wetting theory was explored to find relations that could help to

predict bubble wetting. Young's equation, the Wenzel equation and the Cassie-Baxter equation

were all developed to explore the relationship between bubble and droplet contact angle in

multiple wetting regimes. It was determined that near the Cassie and Wenzel states on textured

surface, a prediction of bubble contact angle would be less accurate if based on the droplet

contact angle instead of the bubble contact angle on a flat surface. Roughness and heterogeneity

equations were put forth for surfaces textured with raised squares. Disjoining pressure and

gravity effects were introduced as possible sources of need for a correction factor. Equation 3.3.1



was derived to show the relation between disjoining pressure effects and the magnitude of

contact angle hysteresis.



Chapter 4

Testing Bubble and Droplet Wetting

4.1 Experimental Set-up

The goniometer system in Figure 4.1.1 was used to measure the contact angles of the

droplets and bubbles in all experiments. A camera was used to take images of the sample, and

these images were then semi-automatically processed using DropImage software. After the

substrate surface line and inner bounds of the droplet or bubble had been selected, as shown in

Figure 4.1.2, DropImage software then computed and recorded the contact angle for each side of

the droplet or bubble.

Figure 4.1.1 An illustrated schematic of the goniometer system used to make contact angle measurements.



Figure 4.1.2 A still image from DropImage software, showing how the GUI works. The user places the
vertical green line to the right of the left contact angle and the yellow vertical line to the left of the right

contact angle. The user also places the surface line, the green horizontal line. The software then
determines the surface curvatures, shown in red, and the contact angles, shown with blue lines.

Figure 4.1.3 An illustration of the water chamber that shows the three components: the sample holder, the
main water chamber, and the sample attachments. The main water chamber has two windows on opposite
sides that allow for light from the fiber optic lamp to backlight the sample so that it can be imaged by the
camera on the other side. The top of the main water chamber is open so that it when it is covered with the
top of the sample holder, the bottom of the sample holder is in the water chamber. The sample is attached

to the bottom of the sample holder with the sample attachments so that a bubble can be trapped
underneath and on the sample surface.

- - --- -- "- - - - - "" -- -R .. ......................



The sample fixture was simultaneously lit with ambient overhead lighting and backlit

with a brightness-adjustable fiber optic light in the same plane as the camera. The camera had a

fixed aperture and shutter speed and therefore the focus could only be adjusted by moving the

camera. This also allowed the software to automatically calculate the width of the bubbles and

droplets at the surface.

A separate water chamber was attached to the sample stage for the bubble experiments,

and is shown in Figure 4.1.3. This water chamber consisted of three components: the main

chamber, the sample holder, and the sample attachments. The substrates were attached upside-

down to the sample holder with the sample attachments and then the subsystem was placed into

the main chamber. The water chamber was filled with deionized water so that the substrate was

completely submerged.

Bubbles and droplets were deposited onto the substrate with an automatic dispensing

system. Dispens software was used to control both the dispensing rate and dispensed volume

deposited with the dispenser. The same method was used when reintaking fluid and gas in

addition to dispensing fluid and gas. When dispensing water droplets, a clean plastic pipet tip

was used to dispense deionized water from a reservoir. When dispensing air bubbles, a clean

metal j-needle was used to dispense ambient air into the water chamber. This j-needle was placed

so that the end of the j needle was underneath the substrate, such that escaping air was trapped

onto the substrate surface, creating bubbles on the surface that were then measured.

There were two separate measuring techniques: one for measuring the static contact angle

and another for measuring the advancing and receding contact angles. The former method is

fairly straightforward: a droplet or bubble of finite volume was deposited onto the substrate and

then the contact angle measurement was determined using the DropImage software method. For



the latter measurement, a droplet or bubble of finite volume was deposited onto the surface. Then,

keeping the needle in contact with the droplet or bubble, a small, finite percentage of the volume

was subtracted, and then a larger, finite volume was added and then subtracted again from the

droplet or bubble. The first subtraction gave a precursory receding contact angle, then the

subsequent addition gave the advancing contact angle and the final subtraction gave the true

receding contact angle. Throughout this process, images were captured at a rate of 4

images/second and were then analyzed through the DropImage software.

The surfaces tested included a variety of substrate materials with smooth finishes. These

materials were a single crystal silicon substrate with a smooth silicon dioxide surface, an acrylic

sample with a mirror-finish surface, a nylon sample with a smooth surface, a silicon substrate

with a smooth fluorosilanized surface, and a glass sample with a mirror-finish surface. As for the

microtextured surfaces experiments, four samples with different critical dimensions but all with

the same silicon substrate and silicon dioxide surfaces were tested. The surface texture for each

surface was etched with a photolithography process. As shown in Figure 4.1.4, the critical

dimensions were determined to be the height of the posts h, the width of the square posts a and

the distance between posts b. The four samples tested are shown along with the calculated Rf and

f for each sample in Table 4.1.1.

Table 4.1.1 This table shows the aspect ratios a, b, and h, the roughness coefficient R, and the fractional
top surface area of the total projected surface areaf

a b h Rf f

3 3.2 1.5 1.47 0.234

3 3.2 30 10.4 0.234

10 10 100 11.0 0.250

10 10 3.3 1.33 0.250



4.2 Bubble Wetting of Flat Surfaces

For this set of experiments, a volume of 5 pL of deionized water was deposited onto each

surface to measure sessile droplet contact angle. The same volume of air was deposited onto each

surface when submerged in the water chamber to measure sessile bubble contact angle. All

sessile droplet and bubble contact angle measurements were repeated ten times on ten different

locations on each surface for a total of one hundred measurements. To measure bubble contact

angle hysteresis, a volume of 6 gL of air was deposited onto the surface. The needle was kept in

contact with the bubble and 1 ptL of air was then drawn back into the needle at a constant volume

flow rate of 0.210 pL/second. This step provides a baseline for comparison when determining the

advancing contact angle. With the needle still in contact with the bubble, 10 IL of air was added

to the bubble at the same constant volume flow rate and then subtracted again.

The important data acquired from each hysteresis experiment image includes the time at

which each image was recorded, the width of the droplet at the surface, and the contact angle.

These first two variables can be manipulated to find the contact line velocity, vez

dw
Vc :- 2dt

where dw is the change in width between each image capture and dt is the time between each

image capture. The factor of two in the denominator is included to reflect that the width is the

diameter of the bubble at the surface and ve, is a measure of the change in radius.

A sample of a resulting hysteresis experiment plot is shown in Figure 4.2.1. The

advancing contact angle was taken as the average value of the contact angle at the plateau of its

upper range and the receding contact angle was taken as the minimum value of the contact angle.

Unfortunately, the contact line velocity was similarly noisy in each sample. A total of six hyst

eresis experiments were performed on each substrate.

40
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Figure 4.2.1 This plot shows the results for a contact angle hysteresis experiment on nylon. The contact
angle hysteresis itself is shown in blue while the contact angle line velocity is shown in red. It is very

clear that the contact angle line velocity measurements suffered from noise. The range where the
advancing contact angle was averaged is indicated, as well as the minimum that was determined as the

receding contact angle.

The complete results from all the flat surface experiments are given in Table 4.2.1 and

Figure 4.2.2. To compare the results to the model described in Section 3.3, first the bubble

contact angle hysteresis range for each substrate was calculated by subtracting the receding

contact angle from the advancing contact angle. The theoretical value of the sessile bubble

contact angle using Young's equation was calculated by subtracting the experimentally



determined sessile droplet contact angle from 180 degrees. The difference between the

experimental value and the theoretical value of the sessile bubble contact angle was calculated by

subtracting the latter from the former. The only substrate that had a negative difference (where

the bubble wetted the surface more than Young's equation predicted) was the silicon sample,

which exhibited little or no hysteresis. All these results are given in Table 4.2.2 and Figures

4.2.3-4.

Table 4.2.1 Results from contact angle experiments on the five flat materials, where all measurements are
in degrees. The values of the uncertainties were calculated using the t-student distribution, which assumes

that as the number of measurements approaches infinity, the distribution approaches a Gaussian
distribution.

Material Odroplet 0 0 advancing Oreceding

Acrylic 70.6±0.7 113.9±1.9 113.9±4.1 93.3±9.1

Fluorosilanized 97.3±1.7 114.7±5.3 129.0±3.4 83.2±5.8
Silicon

Glass 62.1±0.9 148.1±9.8 150.5±3.8 111.1±7.9

Nylon 86.2 1.2 139.0±5.8 150.1±3.9 105.1+5.4

Silicon 17.3±0.8 159.9±1.4 162.2±0.7 159.4±0.7



.20t

90 {I
-00

U

0

60

Acrylic Fluorosilanized Glass Nylon Silicon
Silicon

Figure 4.2.2 A comparative plot of the results for the bubble contact angle and droplet contact
experiments on flat surfaces. The experimental results for bubble contact angle are represented as open
circles. The filled circles show the experimentally determined droplet contact angle. The upper error bar
value is the advancing bubble contact angle and the lower error bar value is the receding bubble contact

angle.
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Figure 4.2.3 A comparative plot of the flat surface results for the bubble contact angle experiments and
the expected bubble contact angle values based on the droplet contact angle experiments. The

experimental results for bubble contact angle are represented as open circles. The X's show the expected
bubble contact angle based on the experimentally determined droplet contact angle for each surface. The
upper error bar value is the advancing bubble contact angle and the lower error bar value is the receding

bubble contact angle.
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Figure 4.2.4 This plot shows the error between the expected value of the bubble contact angle based on
the droplet contact angle on the same surface and the experimentally determined bubble contact angle

over the contact angle hysteresis magnitude for each substrate.

To determine whether or not there exists a correction factor that is dependent on the

magnitude of the contact angle hysteresis, the error between the expected result from Young's

equation and the measured result was tabulated along with the magnitude of the contact angle

hysteresis. These results are given in Table 4.2.3. The error was then plotted against the contact

angle hysteresis magnitude for each sample. The Pearson's correlation coefficient between the

two variables was calculated to be 0.863, a good indicator that the two variables are indeed

correlated.

4.3 Bubble Wetting of Textured Surfaces

As for the experiments in Section 4.2, volumes of 5 piL of deionized water and air were

deposited onto each surface to measure sessile droplet contact angle and sessile bubble contact

............. ...............................................



angle, respectively. Again, all sessile droplet and bubble contact angle measurements were

repeated ten times on ten different locations on each surface for a total of one hundred

measurements. However, the method of measuring bubble contact angle hysteresis changed

somewhat. Because the bubbles did not wet the surface well, and because the hysteresis was

small for each measurement, a smaller volume was added and subtracted. The first steps are the

same: a volume of 6 iL of air was deposited onto the surface and then 1 pAL of air was then

drawn back into the needle at a constant volume flow rate of 0.210 pL/second while keeping the

needle in contact with the bubble. Now instead of 10 pL of air, 3 pL of air was was added to the

bubble at the same constant volume flow rate and then subtracted again to make the bubble

contact angle hysteresis measurements.

Table 4.3.1 Results from contact angle experiments on the four textured silicon surfaces, where all
measurements are in degrees. The values of the uncertainties were calculated using the t-student

distribution, which assumes that as the number of measurements approaches infinity, the distribution
approaches a Gaussian distribution.

a b h Odroplet 0 0
advancing Oreceding

3 3.2 1.5 4.2±1.3 169.9±1.2 174.2±2.8 171.6±2.5
3 3.2 30 7.4±0.6 172.0±1.2 174.8L3.2 171.5±2.1
10 10 100 5.7±0.9 173.0±0.6 173.9±2.9 169.0±0.5
10 10 3.3 6.1±1.1 170.5±1.1 175.4±2.1 169.9±1.3
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Figure 4.3.1 A comparative plot of the results for the bubble contact angle and the predicted bubble
contact angles on the textured surfaces. The experimental results for bubble contact angle are represented

as open circles. The X's represent the bubble contact angle prediction from the bubble-based Cassie-
Baxter model. The open diamonds represent the bubble contact angle prediction from the droplet-based
Wenzel model. The upper error bar value is the advancing bubble contact angle and the lower error bar

value is the receding bubble contact angle.
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Figure 4.3.2 A comparative plot of the results for the bubble contact angle and the predicted bubble
contact angles on the textured surfaces. The experimental results for bubble contact angle are represented

as open circles. The X's represent the bubble contact angle prediction from the bubble-based Cassie-
Baxter model. The open squaress represent the bubble contact angle prediction from the droplet-based

Cassie-Baxter model. The upper error bar value is the advancing bubble contact angle and the lower error
bar value is the receding bubble contact angle.



The same data as in Section 4.2 was extracted from each image and used to calculate vq,

and the contact angle in time and plotted and analyzed as before. The results are given in Table

4.3.1 and Figures 4.3.1-2 along with the expected values from the different models given in

Equations 2.3.6, 3.2.1, and 3.2.2d. The average error percentage for each model is given in Table

4.3.2. As predicted, the model based on a comparison between a Cassie state bubble on a

textured surface and a bubble on a flat surface was most accurate. Second most accurate

prediction was from the model based on comparing the bubble contact angle with the measured

droplet value on the same surface assuming that both were in the Wenzel state. Least accurate by

far was the model based on assuming that both the bubble and droplet were in a Cassie state on

the surface.

Table 4.3.2 A comparative table of the average error between the predicted value and the experimentally
determined value of the bubble contact angle for each of the discussed prediction methods.

Model Flat Bubble Wenzel Droplet Cassie Droplet

Average Error 0.8 1.7 66.2
Percentage

The wide gap in accuracy between the Wenzel droplet method and the Cassie droplet

method could be in that the measured droplet contact angles that each model used in its

calculations was indeed in the Wenzel state. Furthermore, because the bubble contact angle was

already very large, an incorrect roughness factor is more forgiving, though it does result in the

overestimation that can be seen in Figure 4.3.1.



4.4 Chapter Summary

Sessile droplet contact angle and trapped bubble contact angle and bubble contact angle

hysteresis measurements were taken for smooth acrylic, fluorosilanized silicon, glass, nylon and

silicon and for four silicon samples with different surface textures. For the smooth surfaces, a

correlation with Pearson's coefficient of 0.863 was determined to exist for the magnitude of the

contact angle hysteresis and the error between the expected value of the contact angle based on

Young's equation and the experimentally determined value. For the textured surfaces, the

experiments bore out the prediction that the best model for predicting the contact angle of a

trapped bubble on a textured surface is based on the contact angle of a trapped bubble on the

smooth surface.



Chapter 5

Conclusion

This thesis studies bubble wetting on surfaces and current methods for predicting bubble

wetting. Although most current methods assume that a trapped bubble can be analyzed exactly as

if it were a droplet, the analysis performed in this paper indicated that two factors could prove to

affect bubbles differently than droplets: gravitational effects and disjoining pressure effects.

Current methods for analyzing droplets on textured surfaces were also explored, and it was

predicted that the best method for predicting the contact angle of a bubble on a textured surface

would be based on the contact angle of a bubble on a flat surface of the same material.

Contact angle measurements of bubbles and droplets on five different flat surfaces and

four different textured silicon samples were performed. Using the flat surface data, a strong

correlation with a Pearson's correlation coefficient of 0.863 was observed between the contact

angle hysteresis and the error for the contact angle value predicted using current methods.

Because contact angle hysteresis is related to disjoining pressure, these results are a good

indicator that disjoining pressure affects bubbles differently than droplets and in a significant

way. For the textured silicon samples, little hysteresis was observed, so no disjoining pressure

analysis was made. Instead, results were compared to values expected from the Cassie-Baxter

model based on droplet results for the same textured surface, values expected from the Wenzel

model based on droplet results for the same textured surface, and values expected from the



Cassie-Baxter model based on bubble results on the flat surface of the same material. As

expected, the Cassie-Baxter model based on bubble results on the flat silicon dioxide surface was

most accurate, with the Wenzel model being the next most accurate and the droplet Cassie-

Baxter model being by far the least accurate. These secondary results reflect that the droplet was

much more in a Wenzel state than in a Cassie-Baxter state.

Because of limited time and resources, a study of gravitational effects was not entirely

possible. The volume of air dispensed by the dispenser could not be fully trusted to be as

accurate as the volume of water dispersed by the dispenser because of the pressure differential

inherent in creating bubbles. In order to have truly accurate volume measurements, special

software would have been necessary. Further experiments could focus on gravitational effects,

and could even test bubbles and droplets of different volumes.

Additional experiments could also include performing these same experiments on

textured surfaces on materials with higher hysteresis to test whether or not the disjoining

pressure effects are significantly affected with surface texture. Another possible addition would

be to also test the contact angle hysteresis of the droplets and see how these results compare to

the bubble contact angle hysteresis.
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