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Abstract

Structural biological materials such as bone, nacre, insect cuticle, and sea sponge
exoskeleton showcase the use of inferior building blocks like proteins and minerals to
create structures that afford load-bearing and armor capabilities. Many of these are
composite structures that possess the best of the properties of their base constituents.
This is in contrast to many engineering materials, such as metals, alloys, ceramics
and their composites which show improvement in one mechanical property (e.g. stiff-
ness) at the cost of another disparate one (e.g. toughness). These excellent design
examples from biology raise questions about whether similar design., and improve-
ment in disparate properties, can be achieved using common engineering materials.
The identification of broad design principles that can be transferred from biological
materials to structural design, and the analysis of the utility of these principles have
been missing in literature. In this thesis, we have firstly identified certain universal
features of design of biological structures for mimicking with engineering materials:
a) presence of geometric design at the nanoscale, b) the use of mechanically infe-
rior building blocks, and c) the use of structural hierarchies from the nanoscale to
the macroscale. We firstly design. in silico, metal-matrix nanocomposites, mimick-
ing the geometric design found at the nianoscale in bone. We show this leads to
improvements in flow strength of the material. A key finding is that liniting val-
ues of certain of these parameters shuts down dislocation-mediated plasticity leading
to peak in flow strength of the structure. Metals are however, costly constituents,
and we next confront the issue of whether it is possible to use a single mechanically
inferior and commonly available constituent, such as silica, to create superior bio-
inspired structures. We turn to diatom exoskeletons, protective armor structures for
algae made almost entirely of silica, and create nanoporous silica structures inspired
from their geometry. We show large improvements in ductility of silica through this
design, facilitated by a key size-dependent brittle-to-ductile deformation transition in
these structures. Nanostructuring, while improving ductility, affects the stiffness of
these structures, softening them by up to 90% of bulk silica. Hierarchical assembly
of silica structures is then used to regain the stiffness lost due to nanostructuring



while not losing their improvement in toughness. Finally, improvement in toughness
with several levels of hierarchy is studied, to showcase a defect-tolerant behavior that
arises with the addition of hierarchies, i.e., tolerance of the fracture strength to a
wide range of sizes of cracks present in the structure. The importance of R-curve
behavior, i.e., toughness change with the advance of a crack in the structure. to the
defect-tolerance length scale is also established. These findings showcase the valid-
ity of using design principles obtained from biological materials for improvement in
mechanical properties of engineering materials.

Thesis Supervisor: Markus J. Buchler
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Background

1.1 Optimizing mechanical properties: learning from

nature

There exist several natural materials with exceptional mechanical properties. Silk has

a strength per unit weight larger than steel; bone. nacre and sea shell have excellent

toughness properties given their weak and brittle constituents (hydroxyapatite, silica,

protein). Several of these structural biological materials are composites. with very

good deformation-resisting and load-carrying capacitics. The composite constituents

are usually different proteins, such as collagen or chitin. and mincrals such as calcite.

aragonite and hydroxyapatite. These composites are typically lightweight, but possess

an unusual stiffness, strength, toughness and fatigue resistance for their composition

and weight. Very importantly, the final material properties are seen to be a combi-

nation of the best properties of the base constituents and cannot be approximated a

rule-of-mixtures calculations of their base material properties [1]. Most engineering

analogs. on the other hand, show the characteristic 'banana-curve' type behavior.

that is, they do not enable the combination of high levels of strength. stiffness and

toughness (Figure 1-1).

There is nothing remarkable about the mechanical properties of the individual

constituents of these natural materials. Hydroxyapatite or silica possess fracture
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toughness much like imian-made ceramics, proteins have stiffness close to synthetic

polymers. It is thus to be reasoned that it is the structure and geometry of these

materials that give rise to excellent properties. A key common feature of these com-

posite biological materials seen is the presence of remarkable designs with building

blocks, often hierarchically arranged from the nanometer to the macroscopic length

scales [5, 6, 7) that give rise to excellent properties. Every structural level (hierarchy)

is postulated to contribute to the mechanical stability and properties of the resulting

design. This endows them with a far greater level of structural complexity and or-

ganization than synthetic composites. However, the extent to which the presence of

hierarchies quantitatively affects structural properties is not clearly understood, and

a broad framework for studying structural hierarchies is missing in prior literature.

Hierarchical organizations have already been studied in numerous fields far removed

from structural materials, e.g. ecology. transportation. and engineering control sys-

tems [8, 9., 10], and recent attempts to draw parallels from these fields to the study

of hierarchies in biological structures point to exciting, uncharted territories in the

study of structure of biological materials [11. 12, 13].

An application of this emerging science would be in the design of synthetic hierar-

chical materials [14]. The materials used can be based on metals, ceramics, polymers

and proteins [15, 16, 17. 18]. The broad vision would be to design these materials us-

ing a )ottom-up approach, starting at the nanoscale, and building in structure, as the

length scale is increased. The design at the lowest length scales (nano- to micro-) is

particularly suited for computational nanoscale experiments. as carried out through

molecular dynamics (MD) and mesoscale simulations. Atomic scale molecular dy-

namics simulations have been used previously to probe size-scale and temperature

scale effects in the deformation of nanomaterials. often providing design templates

[19. 20, 21].

Many of these biological materials are seen to possess the following design features:

a) use of inferior base constituent materials, (b) composite sub-structure starting at

nanoscale dimensions; and (c) hierarchical arrangement of structure from namoscale

to macroscale. We describe what hierarchies are in the next section and provide a



few examples.

1.2 Structural hierarchies in nature

Structural hierarchies in natural biological materials are defined as the quality of

certain iaterials possessing structure and organization at several levels of length

scale [22., 23]. A natural definition of hierarchical systems arises from the field of

systems theory [24, 25], where they are defined as composition of stable, observ-

able sub-elements that are unified by a super-ordinate relation [8]. The stability of

sub-elements at different levels makes them building blocks for the next higher level.

Averaging or coarse-graining of properties over one hierarchy level to derive informa-

tion for the next higher level is usually not feasible, owing to linking of behavior across

several levels, unless there is a large separation of length scales across successive levels

[221.

A key feature of hierarchical biological systems, structural or otherwise, is their

,robIus/ness. Robustness has been studied by systems scientists for biological systems

and classified in the following ways: (a) adaptation - the ability to cope with external

can ges, (b) parameter insensitivity. and (c) graceful degradation- slow degradation

of a system's function after damage, rather than catastrophic failure [25]. Hierarchical

systems in biology, studied from a system-theoretic point of view show optimality of

several properties and robustness, at the same time [11]. Hierarchical systems also

show improved behavior (optimality) over a large number of mechanical properties

simultaneously. as compared to their base elements at the lowest level of hierarchy.

Whether individual properties are improved by design elements at individual levels

of hierarch., or arise from a combination of properties at different, scales is debatable

(e.g. see Section 1.3, "Effect of hierarchies on failure across length scales"').

Here. we provide two examples of hierarchical structural geometries. Human corti-

cal bone [26] is seen to be composed of 7 structural levels of hierarchical arrangement

and possesses excellent strength and toughness properties while being lightweight.

This is thus an ideal material to mimic for high toughness applications, while probing



effect of hierarchies on mechanical properties. Bone is a composite of organic and

inorganic constituents: 30% bone. by weight, is organic: of which 90-95% is collagen,

rest is non-collagenous proteins. At the nanoscale. bundles of collagen molecules are

arranged in fibrils, which are twisted in a coil (fiber). 70% of bone is made lip of the

inorganic mineral hydroxyapatite, which includes calcium phosphate, calcium car-

bonate. calcium fluoride, calcium hydroxide and citrate. This inorganic component

(([Ca 3 (PO) 4 )2] 3 * Ca(OH) 2 )) is predominantly crystalline. The crystals are platelets

or rods, about 8 to 15 A thick, 20 to 40 A wide and 200 to 400 A long and arranged

in a regular array at the nanoscale (see Figure 1-2). The mineralized collagen fibers

form planar arrangements called lamellae (3-7 pm wide). These sheets (lanellae) of

mineralized collagen fibers wrap in concentric layers around a central canal to form

osteons. Osteons appear like cylinders r200-250 pm in diameter running parallel to

the long axis of the bone. Figure 1-2 shows all these levels of hierarchy in bone from

the nanoscale up to the macroscale.

Diatom exoskeletons are a composite of 97% silica and remaining 3% protein mate-

rial such as silicateins. The structure consists of 4 levels of hierarchy. At the nanoscale

is the basic constituent, biosilica, made of fused silica nanospheres connected via an

organic matrix. This biosilica is designed into a porous nanostructure, the cribellun.

at the smallest assembly scale. in a regular lattice arrangement of pores with pore

diameters %45 nm and distances ~68 nmi. The second layer, the cribrumn possesses

a hexagonal porous structure with larger pore sizes of %200 nm. The largest porous

layer, the areola has a pore size of %1.1 im [27].

The importance of hierarchical design to improving divergent mechanical prop-

erties in biological applications has been proposed by many authors. For example,

the structural hierarchy seen in skeleton of sea sponge [28, 29, 30] is supposed to

be responsible for its high strength and crack resistance despite being made almost

completely of brittle silica. Hierarchical arrangements in protein structures from

amino acids up to secondary structures, have been proposed as an arrangement for

improving robustness of the structures [13]. Hierarchical assembly thus might hold

the key to scaling up excellent mnechanical properties seen in many synthetic nanoma-
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Figure 1-2: Structural hierarchies in two different biological materials, (a) bone, showing
from left to right cortical and cancellous bone (different types of bone); osteons; lamellae;
collagen fiber assemblies of collagen fibrils; bone mineral crystals, collagen molecules, and
non-collagenous proteins (Figure reproduced from [1]); and (b), marine diatom species
(Concinodicus sp.), a silica-based exoskeleton (called frustule) made up of porous parts
arranged in a hierarchical fashion, showing, from left to right, the whole frustule member

(external surface of the diatom); areola pores, the internal surface of the diatom; the 2nd
central porous layer, the cribrum; the cribellumI. the external porous layer. The three layers
are arranged on top of each other (Figure reproduced from [27]).



terials up to macroscale engineering structures. Carbon nanotubes. graphene, metal

nanowires have excellent strength but cannot, be presently used in engineering struc-

tures because the procedure for connecting disparate length scales while maintaining

nanoscale properties remains unknown [31].

1.3 Effect of hierarchies on failure across length

scales

Loading and fracture experiments on structural biological materials have revealed

a complex set of mechanisms across wide length scales. The question of which are

the dominant mechanisms in the failure of a particular material, and, are hierarchies

and the multiple scale mechanisms they engender, essential for the improved frac-

ture properties. are still hotly debated. Experimentally, this is difficult to observe

because of the difficulty of testing substructures of a material at different length

scales. and the problem with separating the contribution of different mechanisms to

the overall toughness. Here, we briefly review the experimental evidence of effect

of hierarchies on failure in two biological systems with different basal components.

bone (hydlroxyapatite-based) and diatoms (silica-based). These materials are chosen

as two representative systems which we will use as design templates using engineering

materials in later sections of the thesis.

A major property of bone is its fracture resistance and toughness. This has been

attributed to distinct mechanisms on different length scales by various authors. On

the micron length scale, where the bone structure consists of osteons. this has been

attributed to two mechanisms (a) crack bridging and (b) microcracking [32]. On

the nanometer length scale, this has been attributed to flaw tolerance of size of

mineral platelets [331. The modular domain nature of the organic matrix at different

scales. and its stepwise unfolding has been proposed as a mechanism for the intrinsic

toughness of the protein matrix [34). Below we provide brief descriptions of both

mechanisms.
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Figure 1-3: Toughening mechanisms exist at different levels of hierarchy in bone. These
are molecular uncoiling and sliding at the protein domain level, and flaw-tolerance at the
individual hydroxyapatite crystal level, microcracking, crack-bridging, and crack deflection
at the larger scales. Figure reproduced from [35].



From critical stress intensity factor (Kc) studies of bending loading of notched

bone specimen to failure, formation of microcracks are seen, which are of the order

of osteons in length. It is hypothesized that microcracks tend to originate around

osteons due to debonding at osteon-inatrix interface or ostcon pull-out. The presence

of inicrocracks in the wake of a crack have been shown to result in the residual opening

of the crack tip, and a redistribution of stresses in the crack tip region, which reduces

the crack extension force and increases the toughness of the material. Crack bridging

in the wake of a crack has also been proposed as a crack tip shielding mechanism.

Crack bridging involves formation of unbroken regions that span the crack in the

wake of the crack tip and act to resist crack opening. Such bridging can results from

uncracked ligaments and intact collagen fibrils. Both these mechanisms thus reduce

crack propagation. and the dominant mechanism is still under debate [32].

Another research direction has been considering the characteristic nanostructure

of bone, a geometric motif that is common to other hard structural biomnaterials such

as nacre and dentin. The nanostructure of bone is seen in Figure 1-2, consisting of

mineral platelets arranged in a staggered pattern in a collagen matrix. The coni-

monality of this structural motif across structural materials suggests some intrinsic

properties in the design that improve mechanical properties. A mechanism has been

proposed by Gao., Fratzl et a/. [36] whereby under tensile loading, staggered mineral

platelets carry tensile load and the protein matrix transfers the load between mineral

crystals via shear. The fracture toughness of the composite depends on the tensile

strength of the mineral platelets. It has been showed that the nanoscale width of

the mineral platelets embedded in the collagen matrix is such that the material be-

comes insensitive to crack like flaws at this length scale (approximately 30 in) and

fails under tension at the theoretical strength for a perfect crystal [33]. When the

mineral size exceeds a length scale of order of 30 nmn, fracture strength is sensitive to

structural size. This concept is called the flaw tolerance of size of mineral platelets.

The theory claims that the size of mineral platelets in bone is optimized at this

flaw tolerant size. The optimum aspect ratio (height/width) of these platelets can

be obtained by assuming that protein and mineral fail at the same time. However,



major shortcomings of this simplified model are that it fails to take into account the

complex non-stoichiometric chemistry at mineral-protein interfaces [37, 38] and size

limitations of mineral owing to the same.

Diatom algae form a very different kind of protective exoskeleton. This protective

covering is porous and made of up to 97% silica. Several studies reported in the

recent literature have revealed the mechanical properties of diatom shells. Hamimn et

al. [39] used a glass needle to load and break diatom frustules in order to probe their

mechanical response at failure, and found high strength (between 1 and 7 MPa

compressive stress for fracture) and reversible elastic strains (e.g. 2.5% reversible

strain in a frustule section). A three-dimensional finite-element model of the frustule

in the same work showed that the highest stresses within the frustule before failure was

=540 MPa. The geometric design of the frustule led to the applied external pressures

creating homogeneous stress distributions within the structure. Other researchers

[40. 41] have used AFM nanoindentation to study the nanoscale material properties

of the porous frustule layers of diatoms, identifying pore sizes on the order of several

tens of nanometers at the smallest levels in the hierarchy, with ultra-thin silica walls

on the order of several nanometers. They observed that the variation of mechanical

properties between the hierarchical frustule layers could be influenced by the pore

size, pore distance. porosity. and under different biomineralization processes.

This brief review of the physics of toughness and fracture strength of bone and

diatoms show the importance of hierarchical levels in optimizing mechanical proper-

ties. Structures at very different length-scales have been seen to play a prominent

role in their stiffness, strength and toughness [32, 33, 41].

1.4 Aim of study: hypotheses

The aim of this thesis is the investigation of the effect of minmicking certain universal

features found in biological structural materials, and to assess their potential for use

in the design of engineering materials. The key hypotheses are that these universal

features that can be transferred to the design of engineering materials are:



(a) geometric design at the ultimate scale (nanostructure) of biological structure.

with the underlying effects on deforimation mechanisms at the nanoscale.

(b) the use of mechanically inferior constituent materials,

(c) attempting bottom-up design with hierarchical molecular-scale (nm) assemblies

up to macroscale (mm/cm) dimensions.

The particular individual materials used in the design is not the important con-

cept. rather it is differentiating the requirement of nanostructuring and hierarchical

assembly in the improvement of mechanical properties. Addressing these issues by

laying out a computational and theoretical framework is the fundamental goal of this

thesis.

1.5 Approach

The scope of our study lends itself to the use of bottom-up computational simulations

as a design and analysis tool. Figure 1-4 shows computational methods across size

and time scales that are available in the computational mechanics literature.

In this thesis, we study the mechanical properties at the nanoscale using atomistic

simulations, and at the sub-micron and micro-scale using mesoscale modeling. These

methods are outlined in greater detail in Chapter 2.

1.6 Outline

The content of this thesis is arranged as follows: Chapter 2 outlines all of the corn-

putational methods used in this thesis, fromr the atomistic to mrultiscale modeling

approaches. It also provides some background on the analysis techniques, and visu-

alization methods used. In chapter 3, we take inspiration froim the design of bone

nanostructure and describe the design and mechanical properties of a metal-imatrix

nanocomposite based on it. Metals. however, are costly materials to use as con-

stituents. Is it possible to use cheaper and more readily available materials as build-
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Figure 1-4: Overview of computational methods across scales, scanning from quantum

calculations at the Angstrom scale to continuum models at the meter scale. Multiscale
coupling of methods can be used to traverse through a wide range of time- and length
scales. Figure adapted from [42].

ing blocks, such as silica, abundantly found in sand? Bulk silica, however, is a 'weak'

material for structural purposes, due to low toughness and brittle failure behavior.

We tackle the problem of enhancing the ductility of silica in chapter 4, by taking

inspiration from a silica-based bioinaterial, the diatom. and describe the design and

mechanical properties of a nanoporous silica structure inspired from its nanostruc-

ture. The next question is how to measure the mechanical properties of hierarchical

structures built from the bottom-up using these nanostructures, and we proceed, in

Chapter 5, to develop a mesoscale modeling method to describe the mechanics of hier-

archical silica nanocomposites. Chapter 6 describes the use of this mesoscale method

in measuring toughness improvements over several levels of hierarchy. Chapter 7

summarizes major findings of this thesis. and provides an outlook for future research.



Chapter 2

Methodology

In this Chapter, a brief overview of computational techniques used in this work is

presented. The focus is on computational methods to study mechanical behavior of

materials, and they are classified here by the length scales accessible to the different

methods. Firstly, different schemes of atomistic simulations are reviewed which can

access nanometer and sub-nanoneter length scales. Then we cover multiscale mod-

eling methods which can access sub-micron and micron length scales. In the next

section, we establish the link between the data from atomistic and mnesoscalc simu-

lations and material properties measured at a continuum level. Finally, visualization

techniques and packages are covered,

2.1 Atomistic modeling

This section describes the atomistic modeling approaches used in this thesis. Par-

ticular emphasis is given to the molecular dynamics method and its variants. An

extensive discussion of atomistic force fields, which are a key factor in the success

of any atoinstic simulation, is also undertaken. Finally, scaling and computational

limitations of atomistic modeling are briefly touched upon.



2.1.1 Classical molecular dynamics

Molecular dynamics (MD) is a computer simulation tool for studying the real-time

motion of a group of atoms or molecules under their mutual interactions for a certain

period of time. Since its development in the late 1950s [43, 44]. it has been used to

simulate groups of atoms in sizes from a few to several billions recently. and over a time

of femtoseconds (fs) to fractions of microseconds. It has found several applications

in materials science, chemistry, solid-state physics, fluid mechanics. biomnechanics

and other fields. In the field of materials science, the MD method is capable of

capturing atomnistic mechanisms that play a key role in several materials phenomena

e.g. deformation, fracture, diffusion, chemical reactions, self-assembly, and phase

transformations.

The core requirement for an atomistic simulation using MD is a (2-body to multi-

body) aton interaction potential or force description. This is a coarser system descrip-

tion than the use of ab-initio quantum methods [45] to describe atonic interactions

that allows anl accurate description of ground-state and excited-electronic states of a

group of atoms, leading to ab-initio molecular dynamics. However, ab-initio methods

are hugely expensive in terms of computational time and power, and can only be used

for systems with a few 100 atoms. What we will discuss further is classical molecular

dynamics. where the ground-state of the system is used to obtain an atomic interac-

tion potential, losing all electronic states information. The atomistic potentials can

however be designed to capture reactions and bond making or breaking events. The

main idea then is to compute the dynamical trajectory of each atom in the group,

considering their atomic interaction potentials, by solving each atom's equation of

motion according to F = ma. where F, n and a are force, mass and acceleration

respectively, leading to atomic positions r(t), velocities vi(t) and accelerations ai(t)

for the ith atom. The numerical integration of Newton's law by considering proper

interatomic potentials to obtain interatomic forces enables one to simulate a small/

large group of atoms. The basic concept of molecular dynamics is shown in Figure

2-1(a,b).
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Figure 2-1: Model of the individual energy contributions due to bond stretching, bond
bending, bond rotation as well as electrostatic and vdW interactions. The combination
of these terms constitutes the entire energy landscape of interatomic and intermolecular
interactions. Figure reprinted from Ref. [46].

Classical molecular dynamics generates the trajectories of a large number of par-

ticles, interacting with a specific interatomic potential. Thereby. the complex 3D

structure of an atom (composed of electrons and a core of neutrons and protons) is

approximated by a point particle, as shown in Figure 2-1(b)). The total energy of

the system is written as the sum of kinetic energy (K) and potential energy (U),

E=K+U (2.1)

where the kinetic energy is

K 2 =m(vi, (2.2)
j=1

and the potential energy is a function of the atomic coordinates rj,

U = U(rj), (2.3)
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with a properly defined potential energy surface U(rj). The numerical problem to be

solved is a system of coupled second order nonlinear differential equations:

d 2r.-
m = -Vr U(rj) j 1..N. (2.4)

which can only be solved numerically for more than two particles. N > 2. Typically,

MD is based on updating schemes that yield new positions from the old positions.

velocities and the current accelerations of particles. In the commonly used Verlet

scheme, this can be mathematically formulated as

ri(to + At) = -r (to - At) + 2r (to) + ai (to) (At)2 + O((At)4) (2.5)

The forces and accelerations are related by ai = fi/m. The forces are obtained

from the potential energy surface - sometimes also called force field - as

d2r-
F=mdt = VrU(rj) j =1..N. (2.6)

Molecular dynamics simulations can be used as a tool for discovering mechanisms

or reaction pathways in a small group of atoms, where the simulated system is the

actual designed experimental sample. Thus it can be used for small molecule reac-

tions, and nano-sized systems such as carbon nanotubes. proteins, nanofluids etc.

However. it is also extensively used to create a sample picture of much larger systems

in length scale. The idea then is to use molecular dynamics as a tool for statistical

mechanics for studying systems under equilibrium or evolving boundary conditions.

In either case, the actual system, may be under certain thermodynamic conditions

e.g. a certain temperature or pressure or energy constraint. These thermodynamic

boundary conditions need to be applied to the MD simulation. Tinme-averaged ther-

modynamic variables can then be estimated over the length of the MD run. The

ergodic hypothesis then postulates that the time averaged statistical quantities for a

system approach the ensemble average over all possible states of the system at very

large times.

The primarily used thermodynamics conditions, or statistical ensembles in MD



are the micro-canonical (also called NVE -conserved number of atoms. volume and

energy), the canonical (also called NVT- conserved number of atoms. volume and

temperature) and the isobaric-isothermal (also called NPT - conserved number of

atoms. pressure and temperature). Next we provide a brief overview of how these

ensembles are implemented in various molecular dynamics codes.

2.1.1.1 NVE ensemble

In the NVE ensemble, the group of atoms is isolated from any changes in number of

atoms (N), system volume (V). and total system energy (E). The system evolution

is by the same equations provided in (2.5). It is critical to ensure energy conservation

in the numerical approximation of these equations, which require a judicious choice

of the timestep of integration in (2.5).

2.1.1.2 NVT ensemble

In the NVT ensemble, the number of atoms (N), system volume (V) and system

temperature (T) are conserved. The system is thus allowed to exchange energy

with a virtual heat bath, to maintain constant temperature. The implementation is

through the interactions of the atoms in the system with a thermostat. A simple and

common implementation is the Bercndsen thermostat [47], which scales the velocities

of the atoms every few steps in the simulation so that the temperature approaches the

desired value, thus mimicking a heat bath. This is realized by calculating a rescaling

parameter A,

At
A= 1+ -( -1), (2.7)

T 
7 set

where At is the MD time step and T is a parameter that describes the strength of the

coupling of the system to the virtual heat bath. The velocities are then resealed by.

vnewi = Avi. (2.8)



for each atom i. Other approaches to enforce the NVT ensemble include the Nose-

Hoover scheme [48] and methods based on Langevin dynamics [49].

2.1.1.3 NPT ensemble

In the NPT ensemble, the number of atoms (N). system pressure (P) and system

temperature (7T) are conserved. In addition to a thermostat. a barostat is needed,

and the system volume is adjusted for the system pressure to converge to an applied

pressure tensor. Here the popular schemes are the Nose-Hoover [50], and Parrinello-

Raiman [51].

The availability of interatomic potentials for a specific material is often a limiting

factor for the applicability of the MD method, since, the complete material behavior is

determined by this choice. Designing appropriate models for interatomic interactions

provides a rather challenging and crucial step that remains the subject of very active

discussions in the scientific community. A variety of different interatomic potentials

are used in the studies of metals. inorganic materials and biological materials, with

various degrees of accuracy and speed, and the choice of potential depends heavily on

the application area, and not just a stand-alone description of the material behavior.

Designing or choosing a potential that is accurate enough to capture all possible

phenomena expected in the application under study. and not too complex that it

slows down computation time and size scale considerably is an art in this field.

The goal of the next section, 2.1.2, is to provide a brief overview of popular

interatomic force fields and modeling approaches suitable for simulating the behavior

of metals and brittle inorganic materials, which are the focus of study here. For

additional information, the reader may refer to extensive review articles, in particular

regarding force field models [52., 53.

2.1.2 Force fields

All-atom force fields are used in molecular dynamics simulations of metals and inor-

ganic materials at the nanoscale. Some classes of force-fields can be tuned and made



applicable to a wide range of materials whereas others exist for only specific elements

and compounds. For the sake of brevity, we will only cover the atomistic force-fields

used in this work, i.e., the two-body Lennard-Jones (U) and Morse potentials, and,

the multi-body Embedded Atom Method (EAM) and Reactive Force Field (ReaxFF)

potentials.

2.1.2.1 Two-body potentials-LJ, Morse and harmonic

The simplest atom-atom interactions are ones in which the potential energy only

depends on the distance between two particles. The total energy is then given by,

Utotai - (rg), (2.9)
ifj=1 j=1

where #(rj) is the distance between particles i and j. Two-body (pair) potentials

must capture attraction at far distance leading to creation of a bond. and repulsion

at very close distances arising from the quantum-mechanical Pauli exclusion principle.

The Lennard-Jones pair potential can be used to model realistically the behavior

of noble gases (e.g. argon, neon). The form of the energy functional is:

12 6

#(r, ) = 4Ec (2.10)
Tij rij

where co is a measure of the energy minimum of the pair potential, and o- is a measure

of the equilibrium distance between two atoms, where the force is zero. A crystal made

up of LJ interactions allows for the formation and existence of defects, dislocations

and vacancies. Though very rudimentary, the U potential can also be used as the

simplest model for metals in sonic situations, and can be fitted to the elastic constants

and lattice spacing of a metal crystal. However, the model has shortcomings with

respect to stacking fault energies and anisotropic elasticity of metals. Other simple

models for metals are the Morse potential and the harmonic potential.

The Morse energy functional is defined as,

0(rgj) = D [1 - exp (-) (rj - ro))]2, (2.11)



where ro stands for the nearest neighbor lattice spacing and D and 3 are additional

fitting parameters. A fit of this potential for different metals, can be found, for

instance in [54]. The Morse potential allows greater freedom in fitting to experimental

properties than the LJ because of the higher number of parameters.

In some cases, it is advantageous to linearize potentials around their equilibrinm

position; this leads to the harmonic bond potential:

1
#(rg) = ao + -k (r -) . (2.12)

2

where k is a spring constant. ro is the equilibrium spacing between atoms, and ao is a

constant parameter. The harmonic bond potential can be augmented with harmonic

3-body angle and 4-body dihedral potentials. The major strength of harmonic po-

tentials is their computational simplicity, and thus, the ability to model systems of

large sizes of micron length scale.

The U. Morse and harmonic potentials are also used for testing 'model' materi-

als. i.e., to obtain general qualitative and order of magnitude insight into behavior of

different classes of materials. The low number of parameters and their relative muag-

nitude can be varied easily to study the impact of atomistic parameters on large-scale

materials behavior.

2.1.2.2 EAM potential

One of the most widely used force-fields for metals is the Embedded Atom Method

(EAM) and its modifications [55, 53, 56, 57]. The EAM is a multi-body force-field

that takes into account not only interactions between pairs of atoms, but also atoms

with their entire surrounding neighborhood.

An EAM potential for metals is typically given in the form,

Ett= F (Phi) + ' E E (i) I (Rij ,
2 ~(2.1t3)

Ph.i - j(gi) pja (Rij)

where Etat is the total energy of the system, ph,i is the density contribution at



atom i due to remaining atois of the system, Fi (p) is the energy to embed atom

i in the density p, 6j (R) is the pair-pair interaction between atoms separated by a

distance R. The electron density depends on the local environment of the aton i, and

is captured here by the distribution of other metal atoms around the atom i within a

cutoff distance. It is usually captured by a two-body density measure that describes

how the electron density changes as a function of the distance between two atoms.

The embedding function F describes how the energy of the atom depends on the local

electron density. Several different analytical forms are used to represent these two

functions for different metals. The other half of the potential is the two-body term #
that captures the basic attraction or repulsion of two atoms.

EAM potentials allow a much better representation of the anisotropy of elastic

properties and dislocation properties than two-body pair potentials. They have been

used successfully in modeling several FCC metals such as silver, gold., copper. nickel,

platinum and their alloys [53, 58]. They have been widely used to unlock mechanisms

and predict properties in nanoscale metals size regime, e.g. in predicting strengths

and phase transformations in metal nanowires, and crystal size-strength relations in

nanocrystalline metals. They are, however, incapable of modeling effects of directional

bonding. which is important in metals with some covalent character. To address

directional bonding in metals, modified EAM methods (MEAM) have been proposed

for materials such as aluminum, iron and several others [59, 60].

2.1.2.3 Reactive force field - ReaxFF

Reactive force fields [61, 62, 63] represent a strategy to overcome some of the him-

its of classical force fields, in particular their inability to model chemical reactions.

Capturing the response of chemical bonds far from equilibrium turns out to be very

important for modeling mechanical response in some materials.

Reactive potentials start off with a bond-length to bond-order relationship. This

is used to obtain smooth transitions between different bond types, including single,

double and triple bonds. All connectivity-dependent interactions such as valence

and torsion angles are formulated to be bond-order dependent. Energy contributions



disappear smoothly upon bond dissociation. so that no energy or force discontinuities

appear during reactions. They also feature shielded nonbonded interactions such as

Van der Waals and Coulomb interactions, without discrete cutoff distances to ensure

smoothness. The method uses a geometry-dependent charge equilibration scheme

(QEq) [64] that accounts for polarization effects and redistribution of partial atomic

charges as a cluster of atoms changes its shape.
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Figure 2-2: Concept of developing reactive potentials [42]. In a nonreactive potential.
the potential expression does not change during deformation of the molecule. The reactive
potential is based on the idea that the potential parameters, e.g. the tangent spring con-
stant k. depends on the local atomic environment. In this example, the bond order (BO)
modulates both the tangent spring constant and the equilibrium distance ro. This approach
enables one to express a continuous energy landscape with several metastable states. The
bond order can be directly related to the bond distance between atoms.

A characteristic feature of the ReaxFF force fields is that all parameters of the

force field are derived from fitting against quantum mechanical (QM) data (density

functional theory (DFT) calculations). This process is referred to as force field train-

Yng and the group of QM experiments is called the training set. The basic concept is

to obtain a close-as-possible fit to properties of several reactions and deformations of

groups of atoms from DFT calculations and ReaxFF results. Typically these prop-

erties include elastic properties and equations of state, surface energies, dissociation

energies, and energy landscapes. The absence of any empirical fitting to experimental

data makes this a completely QM-based force field.



Several flavors of the ReaxFF potential have been developed. The reactive poten-

tials. originally only developed for hydrocarbons, have been extended recently to cover

a wide range of materials, including metals, semiconductors and organic chemistry in

biological systems such as proteins [65. 66, 61. 63, 67]. Among other applications, they

have been used successfully to reproduce properties of several carbon nano-systems

such as nanotubes. buckyballs and graphene. They have also been used successfully

in reproducing silicon oxidation and fracture in silicon and silica [68, 69., 70, 71].

However, due to the increased complexity of the force field expressions and the

cost of the charge equilibration steps, the ReaxFF simulations are usually between 50

to 100 tines more expensive than non-reactive force fields, in terms of computational

power. Still they are several orders of magnitude faster, and can model systems much

larger than DFT calculations, which can also be used to model bond rupture.

2.1.3 Scaling and computational issues

All-atom simulations are an expensive proposition as far as computational resources

and time are concerned. Large number of atoms, and complexities of force-field cx-

pressions often lead to the requirement for parallel computing techniques and the use

of supercomputers with several computing nodes. The state-of-the-art in terms of

svsten size modeled have been several-billion atom simulations [72, 73], e.g. shock

loading response of crystals [74 and reactions in energetic materials [75]. Most of

these calculations have been carried out on parallelized codes on supercomputers

with > 1, 000 computing nodes. The increase in computational speed. (now , 1015

floating point operations per second (PFLOPS)), over the last few decades has defi-

nitely helped in the success of molecular dynamics as a widely used tool. However,

this size is still a minuscule part of a macroscopic sample with approximately 1023

atoms (corresponding to 1 mole). This size is clearly not achievable today. and even if

possible., would provide huge challenges for data handling., storage, analysis and visu-

alization. However, for many material properties it is not necessary to consider 1023

atoms. Many thermodynamic and mechanical properties can be captured in systems

of thousands of atoms or much less.



Another scaling issue of molecular dynamics is of time-scaling. The unit computa-

tional step in time is of the order of a femtosecond in most MD simulations, to ensure

system energy conservation and the capture individual atomic vibration events. This

implies a MD simulation run over a few days will capture a system evolution over a

few nanoseconds only. However. in many applications, such femtosccond accuracy is

not helpful. as significant changes in the system are rare events, and a lot of com-

putational time is wasted following atomic vibrations. This also requires the use of

artifices to speed up rare event encounters, by imposing unrealistically high loading

rates on the system.

Some of these problems can be overcome by methods for modeling across length

and time scales, called multiscale modeling. The core philosophy here is to use combi-

nations of quantum. atomistic or continuum methods to tackle problems of large scale,

while keeping computational costs tractable. An excellent example is the problem of

chemical complexity (e.g. reactions at a crack tip) in the deformation of a material.

The reaction may be highly localized to the crack tip region. requiring quantum or

reactive force field usage in that region, but the effect on stress fields will be large

length scale. requiring the entire system to consist of thousands of atoms or more.

2.2 Multiscale modeling

The properties of materials are often determined by highly localized phenomena that

influence the material at wider spatial and temporal scales. Materials whose proper-

ties are affected by such localized processes occurring at specific spatial and temporal

scales can be handled efficiently with multiscale methods, based on the idea of de-

composing the computational domain to reflect requirements for spatial variations of

computational accuracy, depending on specific mechanisms that occur.

The deformation and fracture mechanics of materials is one such area where pro-

cesses occur over a wide range of length scales, while processes can be highly lo-

calized at defects such as grain boundaries or crack tips. Chemistry and mechanics

are typically considered independently for material deformation studies in large-scale



simulations using non-reactive force fields. However, the details of bond breaking and

formation have been shown to have significant influence on the macroscopic fracture

mechanics of materials, and can not be neglected in order to obtain predictive models

of the material behavior under extreme conditions and harsh environments.

Multiscale methods for deformation and stress analysis in materials can be broadly

categorized into two types, depending on information passing between different length

scales: hierarchical and concurrent [76]. Hierarchical schemes include MD meth-

ods whose underlying potentials are derived from ab-initio quantum calculations e.g.

ReaxFF [61, 62], and many EAM [60] potentials. Some of these methods use phe-

nomenological parameters derived from smaller length scale behavior, used to charac-

terize the coarser length scale. The primary challenge for these methods is the need

for complete knowledge of all relevant mechanisms and processes at the lower scale.

Moreover, the lowest length scale method in these schemes has to have no or minimal

empirical character like Density Functional Theory (DFT) [77, 78, 79] or quantum

chemistry [80] methods.

Concurrent schemes link methods across length scales simultaneously. They com-

municate through handshaking approaches - often featuring regions where two distinct

methods are used to implement the transition from one method to another. There

are many systems and processes where concurrent modeling across scales is useful in

analysis, for example, in interface-controlled materials phenomena like grain bound-

ary diffusion, crack propagation. material embrittlement or thin film adhesion. A

major challenge is to obtain smooth coupling of the disparate simulation methods.

with no ghost. forces or barriers at the method interfaces., to provide a smooth en-

ergy landscape. Several concurrent multiscale schemes have been developed, among

them the MAAD method (microscopic. atomistic and ab-initio dynamics) [81, 82]

for studying fracture in silicon, the quasi-continuum method [83. 84] for coupling

atomistic and finite-elements, and the CADD method (coupled atomistic and dis-

crete dislocation method) [85]. A recent scheme developed is a hybrid ReaxFF-EAM

coupling, developed within the Computational Materials Design Framework [86., 87].

a set of computational tools that allows for easy integration of simulation methods



across various length scales.

2.3 Link to continuum state variables

It is often useful to be able to derive continuum thermodynamic and mechanical state

variables from atomistic simulations. Temperature and pressure of a system can be

easily measured as statistical quantities over a certain time length of a simulation [52].

Below are outlined how stress and strain are measured from atomistic simulations.

2.3.1 Stress

The challenge in defining an atomistic stress tensor is relating it to a continuum stress

valid at every point in space is the discreteness of an atomistic materials simulation.

The virial stress is defined as,

-7jM-C Va m iv 2Vj + ~ r~iQi).(2.14)

where %.j is the velocity of atom a in the direction ii, mr, is its mass, rag, is the

distance vector from atom a to atom #3 in the direction i and f is the force exerted

on atom a by atom # in the direction j.
The first term on the right is the kinetic contribution, and the second the contribu-

tion from forces between the atoms. The virial stress needs to be averaged over space

and time to converge to the Cauchy stress tensor of continuum mechanics [88, 89].

2.3.2 Strain

Local atomistic atomic strains can be defined in terms of the affine transformations

that transform the neighborhood of an atom from the unstrained configuration to the

strained state.

To fit a transformation in a least squares sense, we seek the transformation matrix

J, at atom a that minimizes Z3,, Jari - r,, where 3 runs over all the neighbors

of atom a and ro is the undeformed distance vector from atoms a to 3 and rs is



the deformed distance vector (both written in column form here). The solution of

this least squares minimization is.

J V 1- 11 Wapha. whereVa = r O r r, rr, (2.15)
OENa /3ENj

where the superscript T denotes the transpose of the matrix. The Lagrangian strain

matrix can then be calculated as

r1a = (J Ja - I), (2.16)

where I is the identity matrix [90].

2.4 Visualization and data analysis

Molecular dynamics simulations produce large quantities of data, sometimes running

into several terabytes. This is because they usually save snapshots of the system

state as the simulation proceeds, storing atom positions, velocities, energies, forces,

stresses, and system tenperatures and pressures. It is necessary to have scripts and

programs that can post-process such huge data sets to filter out useful information

and display it in a user-friendly fashion. For example, a billion-atom simulation of a

single crystal under shock loading can provide a very useful visualization if only the

resulting defects in the crystal are visualized and not the entire system.

For the analysis of atomistic simulations for mechanical properties, measures like

strain, stress or potential energy of atoms are important quantities that provide in-

sight with respect to continuum mechanics theories. However, it is often also useful to

post-process the data and derive new quantities providing information about defect

structures within condensed-matter systems.

Next we discuss a few examples for the analysis of crystal defects in metals and

inorganic crystals that will be useful in the later chapters.



2.4.1 Energy method

An easy way to 'see' in the interior of solids and find defects is to use the energy

method. Here only atoms with potential energy greater than a critical energy cr

above the bulk energy #b are visualized. This method is very effective for plotting

dislocations, inicrocracks, surfaces, grain boundaries, voids and other sites of high

energy. The method, however faces difficulties in visualization for defects with very

low energies of formation, or systems at high temperatures, when the thermal energies

of ordered bulk atoms become comparable to certain defect energies. It is very useful

in crack propagation simulations, as it can quickly identify the position of a crack tip

and formation of new microcracks/ defects in the vicinity of an existing crack.

2.4.2 Slip vector analysis

The slip vector analysis [91] provides visualization of slip planes, dislocation cores

and stacking faults in crystalline materials. It provides the exact Burgers vector

and direction of slip and can also visualize incipient slip (before a dislocation core is

completely formed). The slip vector of an atomi a is defined as

- - Ia - X-r , (2.17)

where n, is the number of slipped atoms, x is the vector difference of positions of

atoms a and 3 at the current configuration, and X2 is the vector difference of these

atomic positions at no mechanical deformation.

The slip vector analysis was originally used in visualizing defect structures formed

during the nanoindentation of imetals. It has also proved very useful in simulations

of ductile fracture.

2.4.3 Centrosymmetry parameter

Centrosynmietry parameter [92] measurement is used for crystalline structures with

a center of symmetry. It uses the fact that centrosymmetric crystals remain cenl-



trosyinnetric after homogeneous deformation. Each atom has pairs of equally oppo-

sitely placed neighbors in a centrosyminetric crystal. This rule breaks down when

a defect is in the neighborhood of the atom under consideration. The method is

particularly useful to distinguish different types of defects, and to display stacking

faults (which are hard to observe using the energy method). For example, defining

the centrosymmetry parameter in a face-centered cubic (FCC) crystal as,

6 3 2

Ci - { Erkj - rkj+6 , (2.18)
j=1 k=1

where rk,j is the kth component of the bond vector of atom i with its neighbor atom

j. and rkJ+6 is the same quantity with respect to the opposite neighbor in the FCC

crystal. The method can display defects at high temperatures also. where the energy

analysis starts to fail due to the thermal fluctuations of the atoms. It has been used

successfully in many simulations of FCC metals to display stacking faults and partial

and full dislocation cores.

2.4.4 Common neighbor analysis

The conmnon neighbor analysis [93] is also used for crystalline structures, to classify

atoms according to their local crystalline structure (FCC, BCC. HCP etc.). This

analysis method is based on a nearest-neighbor graph, i.e., a mathematical graph

structure consisting of edges that connect nearest neighbor atoms. Which atoms are

considered nearest neighbors is determined by a user-defined cutoff distance. Each

crystal structure exhibits a characteristic local topology of the nearest-neighbor graph,

and each atom is the classified as belonging to a certain local crystal structure. It is

again very useful for visualizing stacking faults in FCC crystals as the atoms lying

within the fault have a local HCP structure.

A wide variety of scripts in Python, C and FORTRAN have been written in this

thesis for analyzing data from MD simulations. A wide range of functions available

in MATLAB have also been used in this thesis to use raw data from simulations to

extract material properties. displacement profiles and strain distributions. All scripts



used in this thesis are provided in Appendix A with appropriate descriptions within

the script.

2.4.5 Visualization programs

Visualization plays a crucial role in the analysis of MD simulation results, as the raw

data represents a collection of positions, velocities and accelerations as a function of

time [42]. In particular, structural defects and patterns of cooperative atom motion

are difficult to analyze. To address this point, many visualization tools have been

developed for displaying atoms, molecules and assemblies such as nanostructures and

bulk systems. A rather versatile., powerful and widely used visualization tool is the

Visual Molecular Dynamics (VMD) program [94]. VMD enables one to render com-

plex molecular geometries using particular coloring schemes. VMD however suffers

from a drawback of being unable to process large systems with > 100, 000 atoms.

Atomneye [95] is another visualization program used extensively in this thesis for vi-

sualizing large systems. Aimed at crystalline materials, it possesses several tools for

the analyses of crystals and crystalline disorder. Very large systems possessing 0(10

million atomis/particles) are visualized using OpenDX [96] and Ovito [97]. These

visualizations are often the key to understanding complex correlated dynamical pro-

cesses and mechanisms in analyzing the motion of atoms, and they represent a filter

to make useful information visible and accessible for interpretation.



Chapter 3

Strength enhancement through

bone-inspired metal-matrix

nanocomposite design

Bone. a natural composite material, comprises of particularly "weak' constituent

phases, soft protein matrix and hard hydroxvapatitc mineral platelets. These con-

stituents possess very poor mechanical properties to be used as stand-alone structural

materials. Hvdroxyapatite is as brittle as commercial ceramics. and fractures catas-

trophically. whereas proteins have the same order of stiffness of soft polymers such

as polythene. In fact, the nanostructural makeup of bone has been shown to be of

crucial importance for its superior nechanical properties over its constituent phases,

providing high strength at high stiffness (see Chapter 1, section 1.3). This raises,

as discussed in Chapter 1, interesting questions about the viability of the transfer

of similar mechanical property enhancement strategies to engineering materials and

structures. In particular. the application to the design of metal-matrix composite

materials seems promising due to the availability of corresponding 'soft' and 'hard'

metal constituents. The scope and viability of the application of bone nanostructure

to functional metal-matrix composites, however, remains unresolved. In this chapter,

a novel class of biomimetic nanocomposites inspired by the structural motif found in

bone and nacre is proposed. and used to formulate structural composites for mechan-



ical loading applications. We then report a series of computational experiments using

molecular dynamics simulation to study the yield response of the metal-matrix com-

posite subject to tensile loading, and study the changes in mechanisms and properties

that arise.

3.1 Structure inspiration from nanostructure of bone

Metal-based nanocomposites provide a great potential for applications in high hard-

ness and toughness material design. Potential applications include coatings for fric-

tion and wear-resistant cutting tools, shock impact-dissipating structures and other

tribological applications where strong functional materials are the key to initiate fur-

ther technological development [98, 99. 100, 101]. Recent advances in the development

of nanocomposite materials have suggested that a new paradigm of composite design

might be to systematically engineer the nanostructural arrangement of components

by designing their properties, interfaces and geometry to tailor desired macroscopic

functional properties. These efforts extend earlier studies of creating nanomaterials

out of metallic constituents (e.g. nanowires. thin films) towards bulk materials [102].

However. the optimal choice of nanostructural arrangement of material constituents

to maximize performance remains unknown, preventing us from systemiatically car-

rying out a bottom-up design approach.

A variety of biological structural materials such as bone and nacre are known to

feature a common "brick-and-mortar" structural motifs at the nanoscale, composed

of material constituents with disparate properties [103, 33, 46, 23, 7] (Figure 3-1).

These universal nanostructures are seen to combine inferior building materials, soft

protein and brittle calcite or hydroxyapatite crystals to obtain structures with high

strength and high toughness at biological scales [1. 104. 13]. Their improved proper-

ties have been attributed to their hierarchical structure, as well as their fundamental

structural organization of constituting elements at the nanoscale [36] (see Chapter

1). The biological role of these materials is strongly related to load carrying and

armor protection in nature. Based on their intriguing properties, these materials



raise an important question whether their desion strategies could provide directionsC))

for conventional structural engineering material design. However, for materials de-

velopment, the use of proteins is not a viable option, because these materials are

rather difficult to synthesize and engineer. Here we propose an alternative approach,

based on using nctal-inetal nanocomposites that utilize the material concepts iden-

tified from biological analogs as guiding principles in the design process. However.

despite earlier studies [36, 105, 106], the transferability of designs found in biological

structures towards conventional metal and ceramic based composites remains an un-

resolved question, partly because the fundamental mechanisms of how structure and

properties are related have not yet been explored. Specifically, the wide parameter

space associated with different platelet shapes and orientations has not been described

in the literature.

Mimicking the universal design motif found in mineralized protein tissues (Figure

3-1) using metals requires a systematic design of a soft metal/hard metal composite

structure. To address this issue, here we report a systematic analysis of the defornia-

tion mechanisms and yield strength for a broad variation of nanostructural arrange-

ments, by using full atomistic molecular dynamics simulations. This study elucidates

the different deformation mechanisms under plasticity and effect of the nanostructure

design parameters on their yielding behavior. We identify optimal design solutions

by providing specific length-scales and geometries that yield maximum strength at

efficient material use.

3.2 Model construction

All simulation studied are performed using fully atomistic simulations, using EAM

potentials (see section 2.1.2). All nanocomposite structures under study are con-

structed out of single crystals of the matrix and platelet phases. Face-centered cubic

(FCC) metals are chosen for both phases, due to availability of well-tested atomistic

potentials [55, 107]. Structures are designed such that crystal orientations of both

matrix and platelets are X=[110] Y=[111] Z=[112] (for geometry see Figure 3-1(b)).



To replicate uniaxial tensile load, load is applied in X direction. allowing system re-

laxation in the Y and Z directions to zero applied bulk normal stresses in these two

directions (Figure 3-1(b)).

collagen protein mineralized platelets
(soft/ductile) ((stiff/brittle)

(a)

Y = [l11]

soft metal matrix hard metal platelets
X =[I] (b)

Figure 3-1: Panel (a) The ultrastructure of bone showing hard mineral platelets 2-4 nm
thick and up to 100 nm long embedded in a soft collagen-rich matrix (figure adapted and
redrawn from reference [33)). Panel (b): A geometrically two-dimensional, simple schematic
model of hard/soft phases arranged in a nanocomposite, based on the ultrastructure of
bone. This structure is realized with metallic components using a "soft" Cu metal matrix
and modified "hard" EAM model metal platelets. To create this composite structure, a
single copper crystal is arranged in the [110] x [111] (X- Y) orientation, and a regular array
of rectangular voids is created. The platelet crystals are inserted in the voids in the same
crystallographic orientation, ensuring no overlapping atoms (by avoiding any distance closer
than Cu-Cu nearest neighbors). The resulting structures are relaxed to minimize the global
normal stresses. The plot also shows the various parameters that determine the geometrical
arrangement of such a system. See Eq. 3.2 for the relation between these parameters and
the ones used in our study.

To implement a fully atomic-scale study of deformation in these materials, atom-

istic interaction potentials are required for an accurate description of deformation in

the soft matrix phase. the hard platelet phase, and a cross-potential for interactions

across the matrix-platelet interfaces. The embedded atom method (EAM) alloy po-

tential [53, 58] is chosen to model the two phases and their interactions. The EAM

model has been shown extensively to provide an accurate description of FCC met-



als and their alloys [56]. The use of the EAM alloy potential allows the freedom of

modeling of two distinct metals with quite different stiffness and strength properties.

The samples are subject to energy minimization to relax internal stresses, followed

by quasi-static tensile loading using molecular statics. System sizes chosen for sinu-

lations are approximately 500 A x 200 A x 25 A, with approximately 200.000 atoms

in each system. Periodic boundary conditions are applied in all three directions. to

mimic large crystal systems. The system size is large enough to allow dislocation

interactions across 4 layers of platelets, but not too large to slow down computa-

tion. Larger sized samples with periodic boundary conditions show similar flow stress

values. Load application is achieved in two steps- system global stress relaxation,

followed by application of uniaxial tensile load. Quasistatic loading is achieved using

displacement boundary conditions along with an energy minimization scheme imple-

mented using a micro-convergence integrator. Flow stresses are calculated as system

averaged virial stresses [52] at large strains, where the system stress fluctuates around

constant values. The flow stress calculation is averaged over a strain range from 0.15

to 0.2, over a range where plasticity has initiated, and the stress is about constant.

The local stress distribution in the sample is calculated through atomic level virial

stresses [89].

3.3 Interatomic potential development and testing

The model developed here is not designed to represent a particular pair of materials.

Rather. it is developed to allow the freedom to modify material properties in their

absolute values and ratios for matrix. platelets and interfaces., in the spirit of a model

material [108]. The concept behind using such an approach is driven by the desire

to explore a wide parameter space and to understand the material behavior of a

wide range of material properties, without focusing on a single, specific material.

This facilitates a computational engineering approach in which we systematically

investigate the sensitivities of key design parameters on the overall material behavior

to provide generic understanding of the relationship between structure and properties.



We specific avoid focusing on modeling a specific material. The atomistic model in this

stludv is based oi earlier EAM potentials developed for two species alloy systems such

as Ni-Al. Cu, and Ag alloys [53, 109]. The Baskes-Daw model of an EAM potential

for face-centered cubic (FCC) metals is reproduced here from Chapter 2, since. it will

be used for the modified potential development (see eq. (3.1) below). It consists of

a pair interaction term. and an electron density term which contributes through an

embedding energy term that charges an energy penalty for deviating from an FCC

environment. The development of an alloy potential requires the development of a

cross-pair potential, and density functions for atoms of type A in an environment of

type B, and vice versa. The total potential energy is given by,

Eo = F (ph,) - 2 Z, 0i) 6s (Ri) , (31)

Ph~i - Zij) pja (Rij)

where Etat is the total energy of the system, Ph,i is the density contribution at

atom i due to remaining atoms of the system, F (p) is the energy to embed atoim

i in the density p, 6di (R) is the pair-pair interaction between atoms separated by a

distance R.

The matrix material is chosen as a soft metal, copper, modeled using the Mishin

potential [107]. A model material of higher stiffness and higher strength is chosen as

the platelet phase. To achieve this, a modified copper EAM potential is used to model

elemental second phase material. This provides the freedom to modify stiffness and

strength ratios between matrix and platelets. The inter-elemental potential terms

consist of the cross-potential pair potential, which has also been chosen as a modified

Mishin potential. Use of a modifiable cross-potential allows us to vary the interfacial

strength, and effect of the same on flow stress. To design the modified interatomic

potentials, we selectively change the pair interaction of the copper EAM potential

while keeping the density and embedding energy terms unmodified. Modification

of only the pair term allows us to modify the bulk modulus, cohesive energy, and

unstable and stable stacking fault energies, while maintaining lattice parameter of

the FCC phase constant. We use the modified potentials for describing the platelets



and interface, which yields the potential properties shown in Figure 3-2. The ratio of

elastic moduli of the metal phases. are not as dissinilar as for bone constituents, due

to limitations of the materials used.

3.3.1 Interatomic potential properties

The cross-species potential parameters are adjusted so that the matrix-platelet in-

terface is always weaker than both the matrix and platelets. In the present study,

two different interfacial strength levels are used, referred to as "strong" and "weak"

interface, defined in this fashion by the adhesion energy across the (111) interface.

The work of adhesion for these two interfaces in the (111) orientation is compared

with several example metal/ceramic interfaces from literature in Table 3.1 (where

the "strong"" interface resembles the surface energies of an Al/TiC structure, and

the "weak" interface a Cu/A120 3 structure). The freedom in variation of interfacial

strength allows mechanisms of matrix-platelet decohesion and interfacial sliding to

be activated and become dominant defornation mechanisms at different stress levels.

The strength and stiffness of the matrix., platelets, and interfaces are summarized in

Figure 3-2a. The stiffness of the platelet material is approximately two times that

of the matrix material. This is close to actual stiffness ratios of soft and stiff metals

such as Cu/Fe and Cu/Pt. The generalized stacking fault curves [110] have also been

calculated for the matrix, platelets and interfaces, and are shown in Figure 3-2b. The

large unstable stacking fault energy [111] for the platelet material shows the difficulty

of nucleating dislocations in this material, thus making it a "strong", less ductile

material.

Interface type Wadhesion (in min2)
Strong interface 2.42
Weak interface 1.12
Al/TiC 2.63
Cu/A120 3 1.09-1.30

Table 3.1: Work of adhesion across a "strong" and "weak" interface and comparison to
actual metal-ceramic interfaces.
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Figure 3-2: Properties of the interatomic potentials, for the various cases considered

here. Panel (a) shows the theoretical shear strength against (111) plane shearing in the

[112] direction, for matrix (Mishin Cu potential), platelet, "strong" interface (interfacel)

and "weak" interface (interface2) EAM potentials, showing matrix:platelet stiffness ratio

of 1:2. Panel (b) depicts generalized stacking fault curves for the same, showing high

dislocation nucleation barrier in platelet phase. Panel (c) shows enthalpies of formation of

intermetallics and heats of mixing of disordered alloys between matrix (A) and platelet (B)

materials at both "strong" and "weak" interfaces, showing very high positive values leading

to low solubility of one material in another [1061.



The thermodynamic stability of atomically sharp interfaces between matrix and

platelets as they appear in these models is also investigated. The heat, of formation

has been calculated for alloys of matrix and platelets materials with both types of

interfaces over the entire composition range. The heat of formation of possible inter-

metallic structures AB 3 and A3B (where A is matrix and B is platelet material) are

calculated assuming a Lio structure, and for AB assuming a L1 2 structure (Figure

3-2e) [57, 112]. The heats of formation of the disordered alloys over the entire com-

position range are calculated from these values using the cluster expansion method

(Figure 3-2c) [113]. The large positive heats of formation for the intermetallics show

no possibility of them forming at the interfaces. The positive and large heats of

formation of the disordered alloys also hint at very low solubility of one element, in

another and vice versa. Thus overall the implicit assumption of stable interfaces

betwcen matrix and embedded platelets is justified.

3.3.2 Design Parameters

The quasi-two dimensional geometrical arrangement of platelets is characterized uniquely

in terms of five independent geonietric parameters (shown in Figure 3-1b). These pa-

rameters are assuming rectangle shaped platelets arranged on a regular two-dimensional

notif. Irregular shaped platelets can also be considered in terms of average platelet

sizes and distances, to be specified by the five independent parameters. The relation

between different parameters is given below:

I (lxy+w)(ly+wy)

A = ljl/, (3.2)

AP = Ix IY,

where Vf, l., ly, wx. wy,. A and .4, are volume fraction, length and width of platelets,

axial and transverse spacing of platelets, aspect ratio. and area of a single platelet.

The axial and transverse spacing between platelets are defined as spacing parallel and

perpendicular to the loading direction X respectively. The independent parameters



chosen here are Vf. A, wX. wy and f, where f is defined as the stagger between

platelets across successive rows as a fraction of the axial repeat distance.

The choice of these parameters helps us to answer questions as: are elongated

platelets needed and why? How far apart should the platelets be spaced? What is the

effect of volume fraction of platelet phase on flow stress? Changes in other parameters

can be studied as a conibination of changes of any of these five. First order effects

of each of these parameters are studied by varying one particular parameter while

keeping the other four constant.

3.4 Atomistic simulations under tensile deforma-

tion

3.4.1 Effect of geometric parameters

Studies of effect on flow stress of varying all geometric parameters are presented in

the subsequent sections.

3.4.1.1 Effect of platelet volume fraction V

First the platelet volume fraction is varied from e10% to ~45%, and effect on flow

stress is measured. Keeping the aspect ratio and spacing between platelets constant,

the increase in volume fraction is achieved by increasing absolute size of the platelets.

There is a slight decrease in flow stress as voluime fraction is increased, but the effect

is not very strong. The results are shown in Figure 3-3.

3.4.1.2 Effect of platelet offset f

Platelet rows parallel to the axial direction have a pronounced offset from one row

to the next in structures such as nacre and bone (see Figure 3-la). To explore the

significance of this offset, a systeimatic analysis using the present imodel systei is

carried out. The offset in the present experiments is measured as a fraction of the
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Figure 3-3: Effect of volume fraction on flow stress. Volume fraction is varied from ~10%
to 45% and a slight dependence of flow stress is seen within this range. Black line depicts
best linear fit to data. Insets show nanostructure at different volume fractions. The flow
stress of the pure copper matrix is shown for comparison (triangular marker on the left; with
1.800 parts per million platelet material. to induce heterogeneous dislocation nucleation).

repeat unit length in the axial direction, and thus, can vary from 0 to 1. The flow

stress is measured as a function of this offset and results are shown in Figure 3-4a.

A significant change of r10 times is identified in the flow stress, with a saturation

observed at a platelet offset of -0.25. The load distribution within the structure is

studied through the local shear stress distribution og, in the regime of elastic de-

formation (just prior to plasticity), as depicted in Figure 3-4b. Significant effects of

the details of shear stress distribution as a function of nanostructured geometry is

observed, with large homogeneous domains of shear stress transfer found at platelet

offsets beyond 0.25. Gao's shear-tension load sharing model [33] is seen to be ap-

plicable to this case, since at offsets of r0.25 to r0.75 there is sufficient overlap

between platelets in subsequent rows to induce predominant shear loading of the

matrix material situated between platelet rows. This optimal platelet overlap leads

to an effective distribution of load that plays to the respective strengths of platelet

and matrix material. Specifically, platelets are subjected to tensile load with very

small shear loading, and the ductile matrix material is under shear loading with very

small tensile loading. These results show a critical platelet offset beyond which the
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Figure 3-4: Effect of platelet offset on flow stress, (a) shows large effect of variation of
offset on flow stress, and a saturation of value at ~0.25 offset; insets show the nanostructure
at different offset amounts (b) shows the X- Y plane local shear stress distribution in the
nanostructure, with dashed-line bars indicating the location of platelet. The results show
that effective load transfer between platelets through shear of matrix material occurs at
offsets larger than -0.25 (note the symmetry of the problem).



shear-tension model provides an accurate model.

3.4.1.3 Effect of aspect ratio A

The aspect ratio of second phase particles plays an important role in load transfer

and anisotropic properties in composites. The discontinuous reinforcement material

shape can vary from a needle geometry (oriented in the direction of loading) to a flat

disk shape in the other extreme. Platelets in nacre and bone are typically observed

to be of flat disk shape with large aspect ratios in length/thickness to width.

7S -__----__ _

4

3

0 5 10 15 20

platelet aspect ratio (length/width)

Figure 3-5: Effect of platelet aspect ratio on flow stress. The results reveal that large
aspect ratio platelets provide a better mechanical performance, as the flow stress saturates
at a maximum value. Insets show the nanostructure at different aspect ratio values.

In the two-dimensional geometric nanostructure, we measure the aspect ratio as

the relation of length of platelets in the axial direction to the length in the transverse

direction. The aspect ratio is varied from ~1 (square platelets) to ~20 (highly elon-

gated platelets). The results of the effect of aspect ratio on flow stress, while keeping

other four parameters fixed, are shown in Figure 3-5. For small aspect ratios, the

change of platelet ratios results in an increase of the yield strength. A critical aspect

ratio is observed beyond which the flow stress is almost constant, occurring at an

aspect ratio of ~4. An analysis of the tensile stress distribution (results not shown)

reveal a significant change in load redistribution as the aspect ratio is increased, which

suggests that elongated platelets are to be preferred for maximal tensile load to be



carried by the platelets.

3.4.1.4 Effect of axial platelet spacing w,

As the next step we vary the spacing between platelets in the same row, while keep-

ing the volume fraction, platelet offset, aspect ratio and transverse platelet spacing

constant. The analysis of the flow stress as a function of spacing shows a relatively

weak dependency. However, despite the limited effect on the flow stress, a change

in deformation mechanism is identified. At small spacing, we observe platelet-matrix

decohesion, and partial dislocation emission from interfacial cracks (Figure 3-6). At

larger spacing, no decohesion is found, and dislocations are emitted from regions of

stress concentration. such as the corners of platelets.
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Figure 3-6: Effect of axial platelet spacing tw on the flow stress. Axial spacing is the
distance between platelets along the loading axis. Minimal effect on flow stress value is
seen, though, change in mechanism is observed as the spacing is increased. The upper
insets shows centrosymmetry plots of slipped regions during initial plasticity with colored
bars indicating location of platelets, and the lower insets show corresponding nanostructure.
At lower spacing, platelet-matrix decohesion occurs, shown by the red circles, followed by
dislocation emission from the cracks. At higher spacing, dislocation emission is seen from
areas of stress concentration such as platelet corners.



3.4.1.5 Effect of transverse platelet spacing wy

The spacing transverse to the direction of loading is varied in the next step., while

keeping the other four parameters fixed. These analyses show a gradual decrease in

the flow stress as the transverse spacing is increased. A plot of the parameter wf

versus flow stress shows a linear trend, suggesting Hall-Petch like behavior where

the flow stress increases by -50% [114. 115] (Figure 3-7). The analysis reveals that

the effective length-scale parameter for the Hall-Petch like behavior is the transverse

spacing. w.. This is probably due to dislocation motion barrier established at the

matrix-platelet interface, which effectively acts as a grain boundary-like structure.
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1/\ wy (1N/A)
Figure 3-7: Effect of transverse spacing wy between platelets on flow stress. The plot
shows the flow stress as a function of 1//W-y, revealing a Hall-Petch like behavior up to the
strength limit (insets show nanostructure at different spacings).

3.4.1.6 Effect of interfacial strength

The effect of matrix-platelet interfacial strength on deformation mechanisms and flow

stress is studied by performing a self-similar size scale analysis for both the "weak"

and "strong"' interfaces (see Table 3.1). The non-dimensional parameters, that is,

platelet offset, aspect ratio and volume fraction are kept constant, while the size of

the platelets A is scaled up. Figure 3-8 shows how the flow stress varies with 1/Vw/,

for both the interface types.
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Figure 3-8: Effect of interfacial strength on flow stress by varying the composite size.
by scaling dimensions in same ratio. Panel (a) displays effect of system size on flow stress
for "strong" interface, showing a Hall-Petch like behavior up to a strength limit. Panel (b)
shows the effect of system size on flow stress for "weak" interface showing transition from
Hall-Petch like to inverse Hall-Petch like behavior at small scales. The circled region shows
the length scale at which this transition occurs.
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We observe a significant qualitative difference in behavior, depending on the type

of interface between the platelet and matrix. The structure with "weak" interface

has an optimal size at which the flow stress is maximal, whereas, the structure with

"strong" interface reaches a strength limit at lower sizes. The structure with "weak"

interfaces features dislocation sliding, and interfacial debonding mechanisms activated

under plastic deformation. At small sizes, these become the dominant mechanisms

due to the increase in interfacial area in the structure. This is reminiscent of the

grain size dependence of yield stress in nanocrystalline metals, and hence the small

size regime is referred to as inverse Hall-Petch behavior in Figure 3-8b. The "strong"

interface structure, on the other hand. has only bulk dislocation mechanisms for

plasticity.

The study of interfacial strength suggests that the optimal size of platelets for

maximum flow stress strongly depends on the interfacial strength. For interfaces of

high strength. which suppress interfacial sliding altogether, the results suggest that

there exists a critical size below which the flow stress is size-independent.

3.4.2 Sensitivity analysis of design parameters

The sensitivity of changes in flow stress to changes in any of the five parameters is

analyzed to determine the important ones which greatly influence the yielding behav-

ior. The sensitivities are measured as rates of changes of flow stress with parameter

change. and results are shown in Figure 3-9. The figure illustrates that platelet off-

set and transverse spacing are the most significant parameters that control the flow

stress. The platelet offset affects the flow stress by changing the local load distri-

bution, whereas transverse spacing has an affect through a Hall-Petch grain size-like

effect.

3.5 Strength saturation with size

We observe that the interfacial strength between matrix and platelets is a key pa-

rameter that determines the importance of sliding and decohesion as deformation
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Figure 3-9: Sensitivity of flow stress to different design parameters as measured by
rate of change of flow stress to parameter value change. Panel (a) shows sensitivity limits

(minimum-to-maximum) to non-dimensional parameters, that is. volume fraction, platelet
offset and aspect ratio. Panel (b) shows the sensitivity limits of dimensional parameters.
i. e.. axial spacing and transverse spacing.



mechanisms at small spacing and platelet sizes. This leads to a peak flow strength for

the nanocomposite as a function of platelet size (observed at a critical length scale of

17 A for the "weak"' interface considered here). However. when the interface is strong

enough to prevent sliding and platelet pullout well after the matrix has started de-

forming plastically, we observe no such peak flow strength. Instead, we see a strength

saturation for platelet spacing below a certain value. This raises interesting questions

about what happens to plasticity mechanisms in the matrix under confined conditions

(bound by interfaces with platelets on top and bottom). To understand this strength

saturation more carefully. we devise experiments to study the effect of specimen size

confinement on dislocation plasticity mechanisms in the following sections.

3.6 The size confinement effect on dislocation plas-

ticity

Confinement effects have been previously suggested as an explanation for the high

strength of nanostructured materials. It has been suggested that the underlying phys-

ical reason is that the nucleation and propagation of dislocations becomes increasingly

difficult under reduction of the material size. For example, size effects in nanocrys-

talline materials [116, 117, 118, 119 and nanostructured ultra-thin films [120, 121]

suggest fundamental changes in deformation mechanisms once the dimensions of the

microstructure approach nanoscale, often characterized by the breakdown of complete

dislocation mechanisms [122. 123, 124] and dominance of interfacial processes.

However, up until now a systematic, joint atomistic-nanomechanical analysis of

size effects of ductile materials has not been reported. Earlier studies have been

carried out by explicitly including the material nanostructure (e.g. polycrystalline

metals [116. 117, 119]). However, due to the complexities of the nanostructures in

these materials these studies have not yet enabled a systematic investigation of size

effects limited purely to dislocation processes, since other competing phenomena (e.g.

grain boundary mechanisms) have been present.



Here we investigate the atomistic mechanisms of plastic deformation of a ductile

single crystal under size confinement effects via a combination of theoretical and

molecular dynamics analyses. The goal of this analysis is to show that geometric

confinement of materials can control the deformation mechanism. once the material

dimensions reach a characteristic length scale. We design a simplistic thin strip

single crystal model system that enables us to focus solely on size effect studies of

mechanisms of full and partial dislocation plasticity. This is admittedly simple model

system, however, enables us to investigate fundamental length scale limits associated

with dislocation mechanisms.

3.7 Theoretical analysis of the size confinement ef-

fect

Our theoretical analysis is based on the Rice-Peierls model [1111 that predicts a critical

energy release rate for nucleation of leading and trailing partial dislocations from a

crack tip as a function of the unstable stacking fault energy 7yus and the stacking fault

energy TsF. We consider a thin strip geometry with width and a semi-infinite crack

of length a >> on a single {111} slip plane, as shown in Figure 3-10. The choice of

this model is motivated by the fact that this geometry is accessible to both theoretical

and molecular dynamics studies. In this geometry, the semi-infinite crack plane and

slip plane in an elastically isotropic material coincide, and a dissociated dislocation

will move out from the crack tip in the slip plane under pure mode II loading. For this

geometry. the critical energy release rates for nucleation of the leading and trailing

partial dislocations from the crack tip are [111]:

G i = (1 + (1 - v) tan2 6A) 7WS, (3.3)



1- pri> bA (COSOA +(1 - v)tandB) 4)
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with,

bA

(G /Gyn) 2 [cos2 6A + (1 - v) sin 2 OA] (p bA/lUs)

47 (1 - V) [1 - V/i- (7SFk7US) (Gcyi/Gt i)2 2

where v is Poisson's ratio, p is the shear modulus, bA is the partial dislocation

Burgers vector length, and rA denotes the separation distance between the two partial

dislocations, and 'A, 4B are the angles between the partials Burgers vectors and the

X-axis in the slip plane [111].

..crack/slip
plane

2 4 ~ ~

0

crack tip

Figure 3-10: Configuration and atomistic interactions of the thin strip geometry. Crack
length from left end of sample to crack tip is 300 A. Morse interactions are defined across
the slip plane/ crack plane, i.c.. for pairs of atoms in regions 1-4, 2-3 and 2-4: there are no
interactions across the slip plane for regions 1-3 (signifying the crack region); and all other
interatomic interactions are harmonic pair potentials.

(3.5)



WNVe consider this model crack-slip plane system bounded within a slab of height (

(see Figure 3-10). The energy release rate G for this thin slab geometry is [125]:

G = 7 . (3.6)2p

Setting G equal to Gytii (that is, we require that Git= G) leads to a critical

load Trit = 2pi7/ (i = 1. 2).

Since Tc"t 1 /R, the strength of the crystal increases as its size is reduced.

However, the strength of the single crystal must be limited by the theoretical shear

strength 7 th, the strength limit associated with homogeneously shearing the crystal.

Thus at small dimensions, the crystal must fail by homogeneous shear across the crack

plane, representing a breakdown of the ability to fail under dislocation nucleation.

We now consider an FCC crystal with a [110] r-direction and a (111) crack plane.

This implies that the two partials to emerge in the (111) slip plane will be at 130

degrees orientation relative to the x-axis in the x-z plane. By setting T = T we

obtain two critical length scales,

Crit 2[G /ricc and 2t I/ (3.7)

We note that after the first partial or uniform shear event, the slip plane contains

an HCP stacking fault region, with rCP $ CC (Figure 3-11(b)).

This model provides important predictions: At large crystal dimensions ( > (;",

shear deformation is mediated by nucleation of full dislocations, representing the

conventional regime of plasticity. However. below < ( ", deformation proceeds

under nucleation of only a leading partial dislocation. Nucleation of the trailing

partial dislocation is then impossible since the theoretical shear strength rCP is

reached before the critical nucleation load. Moreover, below - I < (r t any

dislocation mechanism disappears and failure occurs by homogeneous shear. The

competing mechanisms are illustrated in Figure 3-12.

Numerical estimates of the length scales for some metals based on ab-initio data

[126] are summarized in Table 3.2. illustrating that (r" and (r" are 0 (1nm).
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Figure 3-11: Subplot (a) shows generalized stacking fault curve (Morse potential, compar-
ison with EAM copper). We consider 3 atonic (111) layers in the weak plane on either side
of the crack plane. Subplot (b) depicts the theoretical shear strength against (111) plane
shearing in the direction, for FCC and HCP stacking (Morse potential). The HCP stacking
is treated as a completely faulted FCC structure, representing a close approximation to the
local (111) planar arrangement after nucleation of the first partial dislocation.
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Figure 3-12: Illustration of the three regimes of pure homogeneous shear (ss), partial
dislocation nucleation and shear (ps). and 1st partial and 2 nd partial dislocation nucleation
(pp) events on the slip plane. The two curves in the figure show nucleation stress as a
function of , for the 1" and 2"d partials. The horizontal lines show the theoretical shear
strengths for FCC and HCP stacking. Intersection of the 1st partial nucleation curve and
the theoretical shear strength for FCC crystal yields (ri, and intersection of the 2 nd partal
nucleation curve and the theoretical shear strength for the HCP crystal yields (rit

Material (111)[112] (111)[110]
(it (A) (c" (A) (ci (A) (c" (A)

Copper 25 21 23 51
Aluminum 13 11 12 13

Table 3.2: Summary of the two critical length scales. (r" and "ri for Cu and Al, con-
sidering two different crack/slip systems, both with coincident crack and slip planes. The
estimates are based on ab-initio data for stacking fault energies and shear strengths [126].
for which TtC is not available. Here, it has been assumed that, 7Th thfrwiHl CP IIHCP F--7'CC



3.8 Atomistic simulations of the size confinement

effect

The above derivation predicts a change in deformation mechanism at crack tips as

the system size is reduced to the order of a few nanometers. Here we report a series of

atomistic molecular dynamics simulations to directly show this effect. Simulating this

behavior in a molecular dynamics simulation provides us with the atomistic details

of change in mechanism as the system size is gradually changed.

We develop a simple atomistic system with coupled interatomic interactions de-

fined by Morse [54] and harmonic potentials (Figure 3-10). We consider a two-

dimensional system with a crack along a weak interface joining two harmonic crystals.

All atomic interactions are harmonic except for a thin layer on both sides of the crack

plane. Here, pairs of atoms which are separated by the plane of the crack. ahead of

the crack tip. are allowed to interact through a simple Morse potential which allows

bonds to break and shearing to take place. The crack region and crack faces are

defined by zero interactions across the crack plane from the edge of the sample to the

crack tip. Harmonic interactions define the interactions between pairs of atoms on

the same side of the shear plane on both sides of the crystal. The choice of these sim-

plistic potentials is dictated by our goal to focus on fundamental concepts of metallic

systems. that is. their ability to undergo localized or homogeneous shear deformation

along specific slip planes for different crystal sizes. The use of harmonic potential

interactions between atoms on the same side of the crack plane, allows us to ensure

existence of a single slip plane to ensure that twinning is impossible [127]. This atom-

istic model resembles the case considered in the theoretical calculations. Even though

we have chosen a specific thin strip geometry, our model includes the key character-

istics of the conditions that define the onset of plasticity, that is. the competition

between release of elastic energy and the energy required to nucleate partial disloca-

tions. Since plasticity can in general be described based on this framework, our model

provides generally valid results, for cracks of any size under geometric confinement

regardless of the details of boundary conditions.



We emphasize that this model system is deliberately designed to be such a simple

representation., and that its simplicity is not a due to the lack of the ability to build

a more complex representation of nanoscale plasticity. Further, our atomistic model

is not designed to make quantitative predictions. Instead, our model is developed to

capture the most significant physical quantities and processes involved in dislocation

nucleation - elastic energy stored in the bulk (harmonic potential) released to induce

localized shear in a slip plane (Morse potential). Thus, for the specific case considered

here, our atomistic model does not have limitations compared with EAM potentials

[56]. Similar concepts of mixed pair potentials (harmonic potentials of different types)

have been used earlier to study hyperelasticity at crack tips in dynamical fracture

[108].

The Morse and harmonic potentials used in the atomistic model are defined in

section 2.1.2 and reproduced here:

Vab "" (r) =ab [ - exp (--ab (r -ab)2 - 1] . (3.8)

and,

Va (r) = - r )2(. (3.9)

The variables Vorseand Vharm are the potential energies for a and b atom typeab ab eIh lO

interactions of Morse and harmonic character respectively. Eab, nab, -ab are Morse

parameters and kab, rOab are harmonic potential parameters for a-b atom type inter-

actions. We choose Eab= 0.2926 eV, aeab= 1.7866 A-' aab=2.7 1 1 0 A with rcut=5.1 A

for the Morse potential; and kab= 20.0 eV/A, r 0 ab= 2.675 A (only nearest neighbor

harmonic interactions). The Morse potential parameters lead to 7YUs - 200 mnJ/m 2

and yTSF - 40 m m/in2 (values for Cu), with t=4.25 GPa (FCC) and 3.25 GPa (HCP)

(Figure 3-11(a)). The spring constant k of the harmonic potential controls the elastic

strain energy stored in the bulk crystal under shear strain and is set to a value such

that the harmonic bulk modulus is ten times the size of the pure Morse-potential bulk

modulus.

The system considered here has a length of 3,000 A and a thickness of 30 A,



whereas the height parameter ( is varied between 30 A and 60 A to investigate size

effects. The crack length a = 300 A in all simulations. The system is loaded in

shear by displacement boundary conditions at the top and bottom. A microcanonical

ensemble with a time step of 2.5 fs and a low starting temperature at 0.1 K is used.

The shear strain rate is 3.5E7 see-- (for all systems).

3.9 Results and Discussion

We carry out a systematic study of the deformation mechanisms while varying (.

First, we study the shear activity at the slip plane under the lateral shear loading

using an atomic slip vector analysis [91]. The change in the x-component of the slip

vector (measured 500 A ahead of the crack tip) versus the simulation time is shown in

Figure 3-13, measuring the relative shear displacement of the upper and lower part.

We observe two distinct shear events for each slab size. Notably. the character of

the shear events changes from a smooth continuous profile at smaller slab sizes to a

sudden jump at larger dimensions.
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Figure 3-13: Variation of x-component of slip vector in the x-direction with bulk shear
strain, at a distance of 500 A ahead of the crack tip. The curves show slip vector plots for

various slab heights.

To elucidate the atomistic details of the deformation mechanism. we plot the



variation of the x-component of the slip vector across the entire slip plane in the x-

direction at times close to the particular shear events (Figure 3-14 for the first, Figure

3-15 for the second). Comparing these plots with the results shown in Figure 3-13

reveals that the jagged junips indeed represent the emergence of partial dislocations

from the crack tip, and the smooth transitions represent uniform. homogeneous shear

across the whole slip plane.

This agrees with the notion that each shear event is a competition between nu-

cleation of a dislocation at the crack tip and a homogeneous shear event that is not

localized at the crack tip. After the first partial or uniform shear event, the slip plane

has a stacking fault region and then the second partial/uniform shear event has mod-

ified energy barriers to overcome because of the change in stacking sequence ahead

of the crack tip. If the second event is a non-local homogeneous shear event on the

slip plane. the modified barrier is the energy to shear planes in a HCP configuration;

whereas if it is nucleation of the second partial, the modified barrier can be treated as

a combination of a reduced energy barrier due to presence of a higher energy stacking

fault and also the stress shielding effect of the presence of the first partial in the

vicinity of the crack tip.

The results shown in Figures 3-14 and 3-15 confirm the predictions of the the-

oretical analysis. For the smallest slab size (37 A), the two shear events represent

homogeneous shear along the [1121 directions on the slip plane, as is clearly visible in

Figure 3-14(a) and 3-15(a). As the size is increased, the first slip event changes into

nucleation of a partial dislocation at the tip, as is shown in Figure 3-14(b). However,

the second shear event remains nonlocalized, revealing formation of a shear displace-

ment far ahead of the tip (Figure 3-15(b)). At larger slab heights, both first and

second shear events are identified as partial dislocations nucleating at the crack tip.,

forming a complete dislocation (Figure 3-14(c) and 3-15(c)).

We note that the critical length scales associated with the nucleation of the first

and second partials are very similar for the (111)[112 system (Table 3.2). Thus the

regime of a single partial dislocation ('ps' in Figure 3-12) is extremely difficult to

observe. This is reflected by the results shown in Figure 3-15(b) that, while providing



crack tip slab end

5 10 15 20 25 30 35
x100 distance along slip plane (A)

50 A

*0.0174
0.0 184

- 0.0193
* 0.0197i

0 15
x/100 distance from crack tip (A)

(c) .;- -
.0.0171

0.01 72
I 4 4 .} 0.0173

. *0.01735

0.6
~ 011 I-mu.~.i0.0174

0.0175
0.6+ 0.0176

0.0172

0.4+ 0.0173
0 -00M- 0.0174

0.4
0 5 10 15 20 25 30

x/100 distance from crack tip (A)

Figure 3-14: Variation of r-component of slip vector along the slip plane x-direction from
the crack tip to the slab end (first shear event), for slab sizes (37 A, 50 A and 57 A). The
numbers in the legend show the corresponding applied strain values. The results show a
transition from uniform shear across the slab length ((a)) to partial dislocation nucleation
at crack tip ((b) and (c)).

(a)

S
~1
U

-C

bk
1.2i

0.8k

0.4



crack tip

(a)2

z. L1.5

1.6

1.5

slab end
37 A

70

3

(b)
2.41

10 IS 20 25

10 15 20 25
x/100 distance (A)

50 A

08

0.0457
0.04621

* 0.0467
S0.0471
0.0476

*0.041
0.04851
0.0490,

*0.049

I -

0.0316
0.0317

W- 0.0319
S0.03195

0.0320
0.0321

I t

5 10 15 20 25 30
x/100 distance from crack tip (A)

Figure 3-15: Variation of the x-component of the slip vector along the slip plane. (a)
reveals uniform shearing across the slab length. (b) reveals that shear deformation occurs
also ahead of the crack tip (marked by the circle), indicating that the deformation mecha-
nism is not controlled by the crack tip stress field but occurs homogeneously along the weak
plane. (c) shows nucleation of the trailing partial dislocation.

57 A(c)

*2

X 1.8

1.6



some evidence for nonlocal slip, do not clearly reveal homogeneous shear as observed

in Figures 3-14(a) and 3-15(a).

In sunnary, our theoretical and numerical analysis revealed that there exist fun-

damental length scales that depend only on material parameters, controlling the de-

formation mechanism. The theoretical calculations show us that these characteristic

length scales are on the order of a few nanometers for metals such as Cu and Al.

Moreover, theoretical calculations for inclined slip planes at the crack tip, that is,

not lying in the crack plane. show a characteristic length scale for dislocation nucle-

ation that would be larger by a factor of ~2 than this simple case [111], bringing

the numerical estimates to the range of 5 to 10 im (based on the estimates shown

in Table 3.2). Considerations of crystal anisotropy change the characteristic length

scale further by ± 50% [128]. These change the characteristic length scales while

maintaining the same order of magnitude.

A crack tip stress field rises from a discontinuity in interactions along the crack

tip line across a plane, giving rise to a stress field oj~ 1/F for a semi-infinite

crack under far-field uniform Kni loading. Whereas our study has been limited to a

cracked thin strip geometry, one can extend these models to other cases. e.g. to rigid-

compliant interfaces in composites or grain boundaries in nanocrystalline materials.

Our analysis [129] is directly applicable in the design of bone-inspired metal-

lic nanocomposites, covered earlier. Figure 3-16 illustrates the application of the

size effect discussed in this section for the analysis of the flow stress of a bioin-

spired nanocomposite discussed earlier [106]. Figure 3-16(a) shows the geometry of

a nanocomposite composed of a soft, ductile matrix and hard. brittle platelets. The

application of uniaxial tensile load reveals that large shear stresses are transferred

between the platelets as shown in Figure 3-16(b), leading to nucleation of disloca-

tions in the matrix phase during plastic deformation. Therefore the characteristic

dimension ( (characterizing the thickness of the ductile matrix naterial) controls the

flow stress level, and at small dimensions below the characteristic length scales it

is expected that dislocation based deformation breaks down. Figure 3-16(c) depicts

an analysis of the flow stress as a function of the building block size, for a different
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Figure 3-16: Illustration of the application of the size effect discussed here for the analysis
of the flow stress of a bioinspired nanocomposite [106]. Subplot (a) shows the geometry
of a nanocomposite, also shown in Figure 3-1. The application of uniaxial tensile load
reveals that large shear stresses are transferred between the platelets (subplot (b)), leading
to nucleation of dislocations in the matrix phase during plastic deformation. Therefore the
characteristic dimension controls the flow stress level, and at small dimensions below the
characteristic length scales it is expected that dislocation based deformation breaks down.
Subplot (c) depicts an analysis of the flow stress as a function of the building block size.
for a Ni-Al nanocomposite [1051 possessing the same design morphology, showing that the
flow stress increases with a reduction of the building block size (notably, the strengthening
behavior agrees well with the predicted scaling) then reaches a maximum at a critical
building block size, followed by a decay. This transition corresponds to the breakdown of
dislocation activity in favor of interfacial slip (between Ni and Al particles), as is revealed
by the analysis of interfacial slip (green curve in subplot (c), transition from regine I to
regime II).
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Ni/Al nanoconposite with the same design morphology [105], showing that indeed

the flow stress. increases with reduction of (, then reaches a maximum at a critical

building block size, followed by decay. This transition corresponds to the breakdown

of dislocation activity, as is revealed by the analysis of interfacial slip (green curve,

transition from regime I to regime II). Notably. the strengthening behavior agrees well

with the predicted scaling Tri" ~ i/V . providing further evidence that the simple

model captures the essential features of the flow stress hardening process.

In nanocrystals, the grain boundaries are sites of weaker stress concentration than

crack tips. and there exist several other accommodating mechanisms. Our system was

deliberately designed so that it only contains two failure mechanisms; realistic systems

contain other failure mechanisms (grain boundary sliding, twinning, diffusion). Thus,

in nanocrystals, change in plasticity mechanism due to geometric confinement can be

considered to be only one of several length scales of importance in the competition

between different deformation mechanisms [123. 130, 131, 132].

Since these other geometries feature a weaker stress concentration, our analysis

provides a lower bound for the critical length scales. This can be explained by

considering the scaling relation of the change of the characteristic length scales. The

condition for nucleation of a dislocation can be generally written as G = G. Since

GC~ Kj, ~ _. a change in K11 to aK 11 leads to a change of ~ G7|/a 2 Therefore

for a < 1 the characteristic length scales (rit increase. Thus, while the basic physical

mechanisms are captured appropriately in our simple model, for many applications

the critical length scales may be several times larger than those reported here.

Our theoretical system was deliberately designed so that it only contains two fail-

ure mechanisms. Realistic systems contain other failure mechanisms (grain boundary

sliding, twinning. diffusion). This may explain why transitions of mechanisms in

experiments and simulations of nanocrystalline metals have been observed at larger

scales than those listed in Table 3.2. MD simulations [105, 130. 131, 133] and ex-

periments [123] of nanocrystalline metals have shown that that at grain sizes below

~20 im. all dislocation plasticity arises at grain boundaries. Further, this gives rise

to twins and stacking faults across the grains, that is, complete dislocations are not



observed at these grain sizes [130, 131, 132. 133].

The partial dislocations that give rise to these features are emitted from grain

boundary dislocation networks close to triple junctions [130]. These are possible loca-

tions where high energy and low energy grain boundaries meet, and stress relaxations

along particular grain boundaries leads to stress concentration at the junctions. The

atom packing and thus interatomic bonding is quite different between these sections

of the grain boundaries which produce a stress concentration field at the intersection

of these regions in the plane of the grain boundary when a shear stress is applied

across the two grains sharing the boundary. The change in bonding arrangement

is not as sharp as for a crack tip. Thus the stress field falls off much slower as a

function of distance to the grain boundary than it is the case for a sharp crack. This

implies that our calculations are a lower bound on the characteristic crystal sizes

that have change in mechanism. In agreement with this notion, at sizes below -10

inn both experiments and simulations show breakdown of any dislocation activity

either from grain boundaries or the bulk. All plastic deformation is accounted for by

grain boundary sliding. atomic shuffling or grain boundary diffusion as accommodat-

ing mechanisms [130, 131]. This shows a fundamental application of our length scales

which limit dislocation nucleation to the problem of change in plasticity mechanism

as grain size is reduced in the nanometer scale. Even though the model reported

here does not provide a quantitative link, it leads to an explanation of the underlying

physical mechanisms.

Similar considerations apply for the mechanics of thin filn systems. It has been re-

ported that dislocation activity is absent in nanocrystalline thin films of average grain

size of 10 20 inn grain size under tensile deformation [120. 133]. Earlier MD studies

have also shown that plasticity from threading and parallel glide plane dislocations

is seen to be absent at a length scale below 25 nm [133].

Our theoretical analysis has also used in the design of bone-inspired metallic

nanocomposites. Figure 3-16 illustrates an application of the size effect discussed

in this study for the analysis of the flow stress of a bioinspired nanocomposite. Fig-

ure 3-16(a) shows the geometry of a nanocomposite composed of a soft. ductile matrix



and hard, brittle platelets. The application of uniaxial tensile load reveals that large

shear stresses are transferred between the platelets as shown in Figure 3-16(b), leading

to nucleation of dislocations in the matrix phase during plastic deformation. There-

fore the characteristic dimension ( (characterizing the thickness of the ductile matrix

material) controls the flow stress level, and at small dimensions below the charac-

teristic length scales it is expected that dislocation based deformation breaks down.

Figure 3-16(c) depicts an analysis of the flow stress as a function of the building

block size, showing that indeed the flow stress, increases with reduction of (, then

reaches a maximum at a critical building block size, followed by decay. This transition

corresponds to the breakdown of dislocation activity, as is revealed by the analysis

of interface slip (green curve, transition from regime I to regime II). Notably, the

strengthening behavior agrees well with the predicted scaling T7r' . 1/9/, providing

further evidence that the simple model captures the essential features of the flow

stress hardening process.

To the best of our knowledge, this study is the first to systematically show intrin-

sic length scale limitations to plasticity. along with direct confirmation by atomistic

simulation. A related behavior has been observed in simulations of failure of thin

metal nanowires (diameter ~~15 A) under tension, where a competition between ho-

mogeneous shear and dislocation nucleation is controlled by the energy of slip across

cross-section of nanowire and the self-energy of the dislocation [134]. The analysis

reported here is similar to earlier work in brittle materials [33], where a single critical

length scale has been proposed below which no brittle fracture mechanism can oc-

cur (the 'flaw-tolerance' length scale). Interestingly, for plasticity, two critical length

scales exist, provided that full dislocations are split up into two partial dislocations

as it occurs in many FCC metals.

3.10 Conclusions

Our analysis reveals that there exist fundamental, intrinsic length scales that depend

only on material parameters and the particular geometry that control the plastic de-



formation mechanism and strength properties in metallic nanocomposites. Our study

may be vital in the analysis and design of new nanonaterials. for instance bioinspired

nanocomposites, providing concrete design suggestions and associated mechanistic

models. Specifically, in agreement with earlier findings [135, 33] we find that the use

of elongated platelets of high aspect ratio and staggered arrangement of platelets for

optimal load transfer, and control of spacing between layers of platelets are critical

factors in strengthening the material. We also observe that the strength of the matrix-

reinforcement interface determines the optimal size of the second phase platelets at

which the maximal flow strength is observed.

To the best of our knowledge, unlike earlier studies of similar geometries, here we

have for the first time explored a much larger parameter space and provided a detailed

investigation of associated mechanical properties and their relationship to the under-

lying nanostructural design. This provides details insight into structure-property

relationships in this class of materials from a bottom-up atomistic perspective that

explicitly includes dislocation mechanics and interfacial phenomena.

We summarize the main results of the study of dependence of strength of bone-

inspired metallic nanocomposites on their design:

1. Reinforcing phase platelets arranged in staggered rows with the stagger perpen-

dicular to the direction of loading lead to optimal load transfer in the nanocom-

posite. A stagger of 0.25 to 0.75 leads to a characteristic tension-shear load

transfer in platelets/matrix that maximizes the flow stress.

2. Reinforcing phase platelets with large aspect ratio with the long edge in the

direction of loading lead to higher flow stress. Beyond a critical aspect ratio

(larger than 4 for materials considered here), the flow stress saturates, and this

parameter has no further effect.

3. The spacing between platelets perpendicular to the direction of loading (trans-

verse spacing) has a Hall-Petch like effect on flow stress with the spacing minm-

icking the grain diameter.



4. The volume fraction of the second phase, while keeping the aspect, ratio and

platelet spacing constant, does not have a significant effect on flow stress. This

result provides strong evidence for the significance of the specific geometry, and

suggests that nanoscale control of structure and shape of platelets is crucial to

maximize material performance.

5. A comparison of the effect of various geometrical effects on flow stress shows

that a factor of 1.94 improvement over the unreinforced matrix flow strength is

possible by systematically engineering the nanostructured design.

6. The interfacial strength between matrix and platelets is a key parameter that

determines the importance of sliding and decohesion as deformation mechanisms

at small spacing and platelet sizes. This leads to a peak flow strength for the

nanocomposite as a function of platelet size and spacing.

Our analysis also reveals that there exist fundamental, intrinsic length scales that

depend only on material parameters and the particular geometry that control the

plastic deformation mechanism in small crystals under confined conditions. These

characteristic length scales separate regimes of no dislocation activity., partial dislo-

cation plasticity, and complete dislocation plasticity at a crack tip in ductile metals.

We have confirmed this effect by direct atomistic simulation of a model system under

shear mode II loading with coincident crack and slip planes. We have also shown

the applicability of this concept to the interfacial effect on strength we observe inl

the metallic nanocomposites. Confined ductile phases, in such materials, will show a

transition to homogeneous shear based plasticity below a critical length scale. This

could provide important guidance for the optimal design of such nanocomposites. as

the ductile phase will fail at their theoretical strength and any further reduction in

the critical dimension will not increase the failure strength.

The study reported here illustrates that universally observed biological nanos-

tructures might provide effective design solutions for structurally strong materials.

Thereby. the design of a material's nanostructure is a crucial element in achieving



superior mechanical properties. By utilizing functional building blocks such as met-

als. ceramics or polymers it might be possible to add additional functionality to the

materials, beyond structural mechanical properties. By the control of interfacial prop-

erties, e.g. by sensitive polymers that respond to external cues such as magnetic fields.

light or chemical environment [136], it might be possible to engineer novel responsive,

active and tunable materials with substantial variations in mechanical properties.

The use of metals in the design of bioinspired structures is, however, a costly

proposition. due to the economic cost of the raw materials. The design of bioinspired

structures would be economically much more feasible. if it could be undertaken with

very cheap raw materials. Silica, found abundantly in sand, is one such cheap, however

structurally 'poor' material. Is it possible to use silica as the building block of a

bioinspired structure, which will provide excellent mechanical properties? In the next

chapter, we turn for inspiration to the exoskeleton of diatoms, a silica-based biological

material. We present the design and mechanical properties of diatom-inspired silica

nanostructures.



Chapter 4

Ductility enhancement through

diatom-inspired nanoporous silica

design

Silica is one the most abundant minerals in the earth's crust. known for its hardness

and brittle fracture behavior. Silica is its amorphous glassy form or crystalline quartz

form is considered a prototype of a perfectly brittle ceramic material, with little to

no plastic deformation prior to fracture, and thus following the Griffith's criterion of

fracture [137, 1381. In biology, silica structures have been observed to be assembled up

from the nanoscale in honeycomb and porous form [139]. For example, nature shows

the use of porous silica structures in the exoskeleton of diatoms [140, 141, 142. 143].

In diatoms, a porous hierarchical structure dominates the landscape of the cell wall

and encompasses intricate patterns that are highly varied and ordered, as shown in

Figure 1-2, and reach all the way down to the nanoscale. A marine diatom species

(Concinodicus sp.), seen in Figure 1-2. possesses a silica-based exoskeleton (called

frustule-external surface of the diatom at a micron scale) made up of porous parts

arranged in a hierarchical fashion, with areola pores, the internal surface of the diatom

(at micron length scale); the 2nd central porous layer, the cribrum (with pores at a

sub-micron length scale); and the cribellum, the external porous layer (with pores

at a nanometer length scale). Beyond the key biological functions of the cell wall



lie important mechanical functions. such as preventing virus penetration, protecting

diatoms from the jaws of predators, or even protection from digestion in some cases

[144, 145]. It is intriguing that a material that is so brittle in its engineering form. is

used by nature as the major constituent of the protective casing of these species.

The question of the mechanical properties of these silica structures is key to un-

derstanding their use in the exoskeletons [39]. Some recent experimental studies that

revealed the mechanical properties of diatom shells were covered in Chapter 1, section

sec:hierarchyeffectfailure. Briefly. they have been found to possess high strength, and

carry large reversible elastic strains. Also large variations in mechanical properties

have been observed to be influenced by pore size, pore distance, porosity and under

different biomineralization processes [40, 41].

In accordance with our aim in Chapter 1, we thus want to study the effect of

(a) nanostructuring, and, (b) the use of hierarchical assembly. on silica material

design. We study in this chapter firstly, the effect of nanostructuring on silica. and

the mechanical properties of nanoporous diatom-inspired silica structures.

4.1 Background on nanoscale silica structures

Nanoporous silica structures have been also designed in the lab [146, 147]. and have

great utility as catalysts and adsorption media. They could also be used as tem-

plates for assembling other materials into nanostructures. However, their mechanical

properties have not been investigated, and it remains unknown how they perform

mechanically, in particular under extreme loading or deformation. This is important

for the reliability of the application devices, where issues such as fracture proper-

ties are essential. A detailed analysis of the mechanics of nanoporous silica struc-

tures can also be used to discover design criteria to maximize their load-carrying and

fracture-resistant capacity, and open up new applications for these structures in novel

materials.

One-dimensional (ID) structures of silica, silica nanowires, have also been under

investigation experimentally and theoretically for possessing potential applications



as structural building blocks in nanoelectronics and optics. Precise measurement,

of their mechanical properties is important, as mechanical failure of these blocks

may lead to failure of the entire devices. Several experiments show that there exists

a size-dependent brittle-to-ductile transition in these nanowires. Amorphous silica

nanowires of 50-100 umn diameters, obtained using chemical vapor deposition tech-

niques. have been shown to exhibit brittle fracture under bending loads [148]. However

silica nanowires of diameters down to 20 nm, created using physical taper-drawing,

show pristine smooth surfaces and great deformnability, with the ability to be assem-

bled into spiral coils, nanorings and nanoloops [149]. Also, crystalline SiC, another

brittle ceramic. has been shown to exhibit plastic deformation for nanowires with

diameters below 100 nm. under bending loads through lattice disordering and amor-

phization. Silicon nanowires with diameters below 60 nm1 show large plastic defor-

mation before fracture, through emission of dislocations, amorphization and necking

[150].

An understanding of silica behavior at the nanoscale is thus critical to under-

standing the mechanics of nanoporous silica structures and their role in the structure

of diatom exoskeletons, and also the mechanics of silica nanowires. Though there

exists an abundance of literature on their optical properties, the mechanical proper-

ties of silica structures at the nanoscale. whether they are nanowires or nanoporous,

have been difficult to measure exp erimuentally due to problems in fabricating struc-

tures with no surface defects (smooth surfaces) and problems in loading setup. with

some exceptions [149, 150]. Atomistic simulations with accurate descriptions of silica

behavior are a critical way to obtain insight. Previous work by the authors on the

modeling of the behavior of nanoporous silica structures using atomistic modeling

has shown increased ductility with a reduction in the constituent silica strut size,

and a change of fracture behavior from brittle crack propagation to ductile failure

with size scaling [1511. In this work, we use atomistic simulations and theoretical

nano-mechanical analysis to understand the enhanced ductility and toughness seen

in these nanoporous structures.



4.2 Design parameters of the nanoporous silica struc-

tures

Here we follow the structural framework of diatoms closely, such that it resembles

their porous structure at the smallest hierarchy level of the cribellum, with pores at a

nanometer size scale, resulting in a similar model system of silica as shown in Figure

4-1. The nanoporous structures thus designed will also subsequently be referred to as

nano-honeycoib structures due to their 2-dimensional periodic symmetry and simi-

larity with macroscopic honeycombs. The widths w of the nano-honeycomb structures

arc controlled in our analysis. and range from 5 A to 72 A (the upper size is limited

by computational resources). The approach pursued here is guided by our desire to

develop a general model system in which we can test the effect of the size (geometric

confinement) of the nanostructure on the bulk material behavior. By systematically

varying the size and hierarchy of the constituting silica nanostructure, we examine

associated mechanical properties, as well as fracture and toughening mechanisms.

facilitated through a series of molecular dynamics simulations.

4.3 Materials and methods

At the nanoscale we use molecular dynamics simulations to study the mechanics of

the nanoporous silica structures. To describe the inter-atomic interactions, we use

the first-principles derived ReaxFF force field [62] (see Chapter 1, section 2.1.2).

The ReaxFF description for Si-O systems, is based on a bond-length bonld-order

description and fitted to density-functional calculations of energy landscapes of bond-

distortion, breaking and forming events of various Si-O reactions. A variety of Si-O

clusters are used for fitting parameters, as also energetics of bulk crystalline phases of

silicon and silica under tension and compression. The ReaxFF potential has been used

successfully in predicting fracture phenomlena in silicon and silica [86, 104. 70, 152],

and interfacial structure at silicon/silica interfaces [71. 153].
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Figure 4-1: Geometry of the bioinspired silica structure, and setup used in our simulations.

Panel (a): Three-dimensional schematic of the silica nano-honeycomb structure (shown on

left), with periodic boundaries along the X, Y. and Z directions. On the right, the geometry

and loading of the individual silica struts are shown. The crystallographic orientation is the
same for all silica structures considered. The arrows indicate tensile load applied uniformly

along the structure. Panel (b): Initial geometry of nano-honeycomb structures considered

here, illustrating the wall width (w, definition indicated in one of the structures) variation

in the geometry. The inset shows a detailed view of the relaxed surface structure.



4.4 Deformation of nano-honeycomb silica struc-

tures

Here we present our analysis on the effect of changing the wall width on the me-

clianical properties of the silica nano-lioneyconb(see Figure 4-1(a) for the geometry

considered). As shown in Figure 4-1, the honeycomb wall widths are varied between

w = 5 A to 72 A for the structures.

Figure 4-2 shows the stress-strain response of the nano-honeycoinb structure for

varying widths w. The structures show an increase of deformation in the plastid

regime, a lower modulus, and lower maximum stress with decreasing wall width.

Even though silica is considered a brittle material, the results show that it is possible

to transform it into a ductile system for small nanoscale wall widths which reach a

maximum failure strain of ~120%.
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Figure 4-2: Stress-strain graphs for silica nano-honeycomb structure for all sizes (wall
widths range from w = 5 A to 72 A). For wall widths below ~~60 A, we observe the existence
of a plastic deformation regime. The greatest deformation is obtained for the smallest wall
width of 5 A. Failure mechanisms are characterized by crack initiation and propagation, or,
shearing followed by nanoscale void formation and coalescence.

We proceed with analysis of the silica meshes as shown in Figure 4-3, which shows



the equivalent von Mises stress field at the maximum stress. For larger wall widths,

high stress is mostly concentrated on the surface and specifically near the edges,

thus suggesting possible locations for crack or shear nucleation. However, with lower

wall widths. the stresses become relatively homogeneous throughout the structure.

For large deformation, the void shapes gradually change from a rectangular to a

hexagonal one for decreasing wall widths, and can be clearly seen for w < 31 A.
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E 82 % t 52%
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w=52A w= 72 A 12

8wE = A
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Figure 4-3: Von Mises stress field at the maximum load, for different nano-honeycomb

wall widths (the strain value at which the snapshot was taken is indicated in the plot). For

widths smaller than ~~31 A. the structure at the maximum load becomes hexagonal, and

the stress is distributed homogeneously throughout the structure. For larger wall widths,
high stresses are concentrated around the corners. Moreover, the initial, rectangular shape

of the structure is maintained. In order to improve image clarity, we only show the stress

values associated with silicon atoms within the silica system.

The analysis sheds some light on the remarkable stress-strain response of nano-

honeycomb structures with thin wall widths. as shown in Figure 4-2. A key feature

is the geometric pattern that allows large deformations to be accommodated by the

mesh by changing from a rectangular pattern to a hexagonal one at large strains (see,



e.g. in Figure 4-3). specifically for wall widths below 31 A. The reason for these very

large strains without failure seems to be due to the more homogeneous distribution of

stresses and the geometry transformation from. rectangular to a hexagonal shape for

smaller wall widths. In the next few sections, we develop detailed theoretical models

to explain and predict this increase in ductility with decreasing wall size precisely.

4.5 Analysis of deformation using theoretical mod-

els

The atomistic studies show the effect of pore size, distribution and porosity on elastic

modulus, plasticity, ductility and toughness of the structures. In the next section,

the underlying mechanisms are discovered through a systematic analysis of the earlier

simulation results. Also, continuum elasticity theory and fracture mechanics, using

atomistic simulation data. are used to make theoretical predictions of structural stiff-

ness and strength for varying geometry. The theoretical predictions provide design

guidelines for how to make nanoporous materials that show enhanced ductility, plastic

flow, and toughness.

4.6 Results and discussion

We study the miechanies of silica nanoporous structures whose morphology is shown

in Figure 4-4a. The structures consist of rows of rectangular pores arranged in a

staggered fashion, as seen in several natural and man-made nanoporous structures.

The structures can be uniquely identified by the inter-pore distance and the size of the

pores, and will hereafter be referred to by three numbers, (pore distance t, pore length

p, pore width pw) (see Figure 4-4a). The material considered is silica in its a-quartz

polyinorph, which is the stable crystalline form at room temperature and pressure.

The structure is free of any grain boundaries or initial defects. All structures are

periodic in all 3 directions, and loading is achieved by deformation of the system in

the Y direction. System evolution is studied through molecular dynamics simulations



using the canonical ensemble with the Berendsen thermostat [47]. A time step of 0.2

fs is used to advance the dynamics and a deformation strain rate of 1 x 10Ts4 is

applied. All simulations are carried out in GRASP [154]. a parallelized code for large

scale ReaxFF simulations. Figure 4-4(b) shows the stress-strain curves for some of the

different nano-honeycomnb structures of silica that were analyzed. There is a marked

difference from a typical macroscopic brittle ceramic honeycomb stress-strain curve,

which shows brittle fracture at a few percent strain [139].
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Figure 4-4: Geometric shape classification and stress-strain behavior for the nano-
honeycomb silica structures; several more structures showing ductile response are analyzed
here, apart from Figure 4-2. (a) shows the geometry of the nano-honeycomb structures
under consideration with 3 independent parameters required for the geometric shape clas-
sification (e.g. t, p and pw), (b) show stress (oyy)-strain curves obtained from atomistic
simulations of different nano-honeycomb structures. The legend shows the classification of
the structures, which is shown as (t, pi, pw) parameters for each structure, values given in
A. The (323 A, 78 A., 30 A) structure shows purely brittle fracture, the (56 A, 78 A, 30 A)
structure shows simultaneous plasticity and crack propagation in different struts, the rest
of the structures show ductile fracture.



4.6.1 Elasticity

The nanostructure can be considered to consist of a collection of interlocking struts,

some of which are initial horizontally oriented (length in the X direction) and the

others vertical (length in the Y direction) and are referred to as such in the rest of

this study. Our simulations show that the elastic response of the structure depends

on the ratio of the strut length to its thickness (l/t in Figure 4-4(a)), or its slenderness

ratio.

For short struts with small 1/t ratio (l/t < 1.67), the load transfer is as follows.

Figures 4-5(a) and (b) show the atomic-level tensile and shear strain distribution for

the (45 A, 78 A. 30 A) nanoporous structure. Also, Figures 4-5(c) and 4-5(d) shows

a Z-section slice of the structure while undergoing elastic deformation. Both the load

distribution and the deformation profile of the Z-plane cross-section, show that the

vertical struts are mainly under pure tensile load, whereas the horizontal struts are

under pure shear load. The total tensile deformation in the structure can thus be

written as,

=(1 -t) sin # + wE ; (4.1)

where t is the thickness of the struts, w is the height of the vertical strut and I is

the length of the horizontal strut, # is the angle the length of horizontal strut makes

with the X axis. as shown in Figure 4-6a, and Jn and Ew are the tensile strains in

the overall structure and the vertical struts respectively.

For small deformations, sin 4 tan d F e . whereEc> is the shear strain in the

horizontal strut. Thus Equation 4.1 can be written as:

E T = ItglE 1 2+E It T~ + 0

22 W 22 - W /112 E' 2 2 '(.2

UT 1-t.r

22 W 1 22

where T and 12 are the shear stress and shear modulus for the horizontal strut, o-

and E 22 are the tensile stress and elastic modulus in the Y direction for the vertical

strut, and (r and ET are the tensile stress and elastic modulus in the Y direction for
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Figure 4-5: Strain plots and deformation shape analysis for a nano-honeycomb structure
with thick struts. For the (45 A, 78 A, 30 A) structure at an overall tensile strain of 0.105,
(a) and (b) show a neasure of the per-atom tensile strain and shear strain through the
components of the Jacobian of the local deformation matrix, i.e., Jyy and Jxy respectively.
Note that only Si atoms are visualized. The strain distributions clearly show the presence of
simple shear loading in the horizontal struts, and tensile loading in the vertical struts. For
the (45 A, 78 A, 30 A) structure, (c) shows a Z cross-section of the undeformed structure;
(d) shows the same cross-section at a overall strain of 0.105. The atomic bonds clearly show
the simple shear loading in the horizontal struts.
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Figure 4-6: Load distribution and stress transfer for the nano-honeycombs with thick
struts; (a) shows the various geometry parameters used to calculate elastic strains in the
honeycomb structure. and the deformed shape for structures with thick struts. and (b)
shows the load balance between the vertical and the horizontal struts.
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the overall structure. Doing a force balance on the members, as shown in Figure 4-

6(b). gives us, o t = 2r t -> a - 2r. And. a force balance overall gives us, o-t = 2 Tl.

Combining these with Equation 4.2 gives us the elastic modulus of the nanoporous

material,

1 21 (1-tt + = - (-I-t) A + .) 1 (4.3)
E2'2 t w 2pn2 E2 Wt p12 t E22

To check the validity of Equation (4.3), by treating the geometry parameters.

1 (1 - t) /wt, and 21/t as variables we perform a least square curve fit over four different

nano-honeycomb geometries for the overall structure elastic modulus obtained from

molecular dynamics simulations (Table 4.1). These give us a shear modulus of the

struts as 13.3 GPa and elastic modulus as 109.1 GPa. These can be compared to

bulk a-quartz ReaxFF values of shear modulus of 14.1 GPa. Youngs modulus (E 22 )

of 67.4 GPa and elastic constant C2 2 of 130.3 GPa. The calculated E22 lies between

the Youngs modulus (Poisson effect in the transverse directions) and the elastic

constant C2 2 (no Poisson contraction) showing that the vertical struts have boundary

conditions between these two extremes.

honeycomb slenderness 1(1 - t)/(tw) 2 l/t E(GPa)
ratio (l/t)

(45 A, 78 A. 30 A) 1.38 0.29 2.75 20.06
(67 A, 112 A, 30 A) 1.33 0.30 2.67 22.5
(56 A, 78 A, 30 A) 1.20 0.15 2.40 30.38
(67 A, 89 A. 30 A) 1.17 0.13 2.33 31.98

Table 4.1: Geometric parameters and elastic moduli for nano-honeycomb structures with
thick struts (l/t < 1.67). For the nomenclature for referring to the structure specifications.
refer to Figure 4-4(a).

The pores change shape as the structure is deformed. The change in shape can

be followed by the changing angle between a vertical strut and an adjacent horizontal

strut, with strain. The elastic modulus equation (Equation (4.3)) can also be checked

by measuring the angle of deviation of the horizontal struts from their original hor-

izontal position as a function of strain. Equation 4.3 predicts the following relation



between the sine of the angle and applied strain.

T ( - t 2
E (1 + sin d. (4.4)

w (E22/Pn2))

This plot is shown in Figure 4-7, for a particular nano-honeycomb structure, the

(45 A, 78 A, 30 A). Interestingly the sine of the angle variation remains linear with

applied strain, as predicted from Equation 4.4 during elastic deformation, but the

angle becomes constant on the onset of plasticity in the form of shearing in the

struts.

0.25

0.2 V

0.15

s 0.1- .'-''...s.- elastic
0.1 - plastic

0.05 - ,'

0 0.1 0.2 0.3 0.4 0.5
strain

Figure 4-7: The variation in pore shape, measured through sine of the angle between
the length of the horizontal strut and the X axis (see Figure 4-6), as a function of applied
strain. The relation is linear on the regime of elastic deformation (part of the curve in
diamond-shaped data points colored blue), as predicted by the theory. There is no change
in the angle during plastic deformation (part of the curve in square data points colored
pink). This shows that the pore shapes remain about the same during plastic deformation.

For structures with more slender struts. with larger 1/t ratio (1/t > 1.67), the

response of the horizontal struts are seen to be governed by bending deformation.

Figure 4-8(a) and (b) show Z-section slice of the structure while undergoing elastic

deformation for the (45 A, 133 A, 30 A) nanoporous structure. The deformation

profile of the Z-cross-section show that the vertical struts are mainly under pure

tensile load, whereas the horizontal struts are under beam bending load.

In this case, the horizontal struts can be approximated as beams fixed at both
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Figure 4-8: Deformation shape analysis for a nano-honeycomb structure with slender
struts. For the (45 A, 133 A, 30 A) structure, (a) shows a Z cross-section of the undeformed
structure; (b) shows the same cross-section at an overall tensile strain of 0.133. The atomic
bonds clearly show the bending loading in the horizontal struts.

ends, with a point load in the middle. The horizontal displacement can, in this case

be written as:

_ P(21)
3

192Ei I A r\

(t.t)where P = o-t ; I

In this equation, A is the vertical displacement at the end of a horizontal strut

(see Figure 4-9), P is the load on the beam, I is the moment of inertia of the strut

(assuming its width in the Z direction =1), and Eli is the elastic modulus of the

horizontal strut in the X direction. This simplifies to:

o- 1a

2En1 t2
(4.6)

The total tensile deformation in the structure can thus be written as,

we = 2Et2 22- (4-7)

Or. the total strain in the structure.
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Figure 4-9: Load distribution and stress transfer for the nano-honcycombs with slender
struts; (a) shows the various geometry parameters used to calculate elastic strains in the
honeycomb structure, and the deformed shape for slender struts. and (b) shows the load
balance and deflection relation between the vertical and the horizontal struts.
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T 13u a
_ = + . (4.8)

2EnI wt 2  E2

Thus the elastic modulus can be calculated as.

-+--2-)+1 .(4.9)
E2 wt3 En t E22

To check the validity of Equation (4.9). treating the geometry parameters, l4/wt3

and 21/t, as variables. we perform a least square curve fit over three different nano-

honeycomb geometries with slender struts for the overall structure elastic modulus

obtained from molecular dynamics simulations (Table 4.2). These give us an En

of the struts as 76.2 GPa and E22 as 104.3 GPa. These can be compared against

ReaxFF values of bulk a-quartz Young's modulus in the X direction (Ell) of 65.8

GPa and Young's modulus in Y direction (E 22) of 67.4 GPa and elastic constant

C22 of 130.3 GPa. The calculated E22 here too lies between the Young's modulis

(Poisson effect in the transverse directions) and the elastic constant C22 (no Poisson

contraction) showing that the vertical struts have boundary conditions between these

two extremes. The calculated En lies close to the Young's modulus in the X direction.

showing that the horizontal struts under bending load are almost completely uider

free surface boundary conditions.

honeycomb slenderness 14 /(wts) 2 l/t E(GPa)
ratio (l/t)

(17 A, 78 A. 30 A) 2.83 21.48 5.67 2.97
(45 A, 134 A, 30 A) 2.00 9.14 4.00 6.41
(33 A, 78 A. 30 A) 1.67 3.86 3.33 11.89

Table 4.2: Geometric parameters and elastic moduli for nano-honeycomb structures with
slender struts (l/t > 1.67). For the nomenclature for referring to the structure specifications.,
refer to Figure 4-4(a).
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4.6.2 Plasticity and failure

All nano-honevcomb structures fail either by brittle crack propagation or plastic de-

formation followed by necking in the struts. Here, we find the critical size parameters

at which we observe this brittle-to-ductile transition. We observe that as the width

of the constituent strut elements (parameter t in Figure 4-4a) is reduced, the large

strain deformation behavior changes from crack initiation and propagation to plas-

tic deformation in some of the struts. This change is seen for strut sizes of a 60

A, and the change is gradual, with some intermediate nano-honeycomb structures

showing presence of both plasticity and crack propagation in different areas. The

structures exhibiting plastic deformation show crystalline shearing of thin struts. We

also observe that once plasticity starts the flow stress does not change until one of

the deforming struts starts to form a neck region. Once a strut ruptures, whether

through brittle or ductile fracture, other struts still carry load and thus the overall

structure shows stress softening and graceful failure (as seen in the last part of the

stress-strain curves in Figure 4-2).

The plastic deformation of the struts is seen to occur due to crystal slip, which

will happen at the theoretical shear strength. This is in conformity with the idea

of a flaw-tolerant size in brittle materials, where below a certain crystal size the

presence of cracks does not affect the fracture stress and the material always fails at

the theoretical strength [33). Using this and the stress-transfer path in the structure,

we can predict the yield strength.

7T t(4.10)
yield =Th --

where o-ld is the yield stress of the structure and Tthis the theoretical shear

strength in silica. Figure 4-10 shows a fit of the yield stress versus the structure

geometry (t/0), which allows a prediction of the theoretical shear strength, which for

silica turns out be a 5.46 GPa. To calculate a length scale order-of-magnitude at

which the flaw-tolerant behavior steps in, we have to find a strut size below which

plastic deformation sets in. Assuming a, maximum stress concentration at a crack
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tip of a semi-infinite crack in an infinite solid of height t, and since the plastically

deforming strut is under shear loading, using mode II loading equations on the crack.

we get through application of the Griffith criterion

T t
G 27s- (4.11)

where G is the energy release rate at the crack tip. and-ys is the fracture surface

energy. So to induce plasticity, the system stress should reach the theoretical shear

strength, or.

t < . (4.12)

1;1

9 4

2
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V/1 (A/A)

Figure 4-10: Plot of yield stress versus a geometry parameter for nano-honeycomb struc-
tures showing plastic flow. Equation (4.10) in the main text shows that the slope of the
linear fit, here 5.46 GPa, corresponds to the theoretical shear strength of the struts.

Substituting values for the (0001) cleaved surface energy in silica (0.17eV/A 2 )

[155], and the shear modulus and the theoretical shear strength (from Equation 4. 10).

we get an estimate of ~~ 80 A. This is close to the strut size of 60 A below which

we see evidence of plasticity in our molecular dynamics simulations. Thus for t strut

thickness values less than this value, the nano-honeycomb structures will exhibit

plasticity.
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4.7 Conclusions

The mechanics of diatom-inspired nanoporous silica structures under tensile loading

has been investigated using molecular dynamics simulation and theoretical analysis.

We find that the elastic modulus of the nanoporous structures is geometry dependent,

and can be modified for a given porosity by changing the microstructure. Under elastic

deformation, the load distribution in the structure is dependent on the slenderness

ratio of the constituent struts. For thick struts (l/t < 1.67), the structure carries

stress through a tension-shear-tension loading chain where the horizontal struts are

under pure shear loading and the vertical struts under tensile load. For slender

struts (l/t > 1.67). the structure passes load through a tension-bending-tension load-

ing chain; the vertical struts are again under tensile load while the horizontal struts

behave like beams with fixed ends under bending load.

The structure changes shape as it is loaded. with the pore shapes deforming. The

pore shape change can be tracked by an angle change between adjoining struts, and

it is shown that there exists a linear relation between the sine of this angle d (Figure

4-7(a)), and the applied strain in the regime of elastic deformation.

On further loading, the structures either undergo plastic deformation followed by

necking or brittle fracture starting by crack propagation from corners of the pores.

There exists a minimum strut width size below which plasticity can be seen (~ 60-80

A), and this size is justified based on the flaw-tolerance concept for brittle materials

failure. For structures with strut widths larger than this, fracture always proceeds by

brittle crack initiation and propagation. For strut widths below this size. plasticity

is seen in the form of shear deformation in the horizontal struts under shear loading.

The yield strength of these plastically deforming structures has been calculated to

depend on the structure geometry.

An iniportant consideration for the mechanical response of nanoporous silica struc-

tures is the effect of presence of water, in particular for a more in-depth consideration

of the properties of diatoms as they live in aqueous environments. Preliminary in-

vestigations by Garcia et al. [156] suggest that nanoporous silica structures (similar
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to those found in this study) have reduced ductility and yield stress once the surface

is hydrated. Similar results have been obtained in a previous study of silica nanorod

deformation in the presence of water using semi-empirical quantum mechanics meth-

ods [157]. The authors concluded that strained siloxane (Si-O-Si) bonds are attacked

by water which results in lower stress and lower failure strain of the silica nanorod,

compared to a dry silica nanorod.

Our results establish a size-dependent brittle-to-ductile transition in nanoporous

silica structures. Similar behavior has been observed experimentally in silica nanowires,

where the size range for the transition is 20 nm. The aspect ratio and shape of pores

can be modified to change the yield strength of these structures. The high values

of stress for yielding or fracture lead to large enhanced ductility in these materials

over bulk silica. The structures that show plastic yielding also show large toughness

improvement over bulk silica. These results reveal that nano-scaling with control of

porous geometry can lead to application of silica in carrying loads in small devices.

The increased toughness. elastic ductility and plastic ductility arising from nano-

scaling may also be fundamental in understanding the use of similar structures by

nature in creating porous exoskeletons in diatoms.

Apart from the improved ductility, one property that is affected to a large extent

is the material stiffness. Nanostructuring, as outlined in this chapter, can reduce the

stiffness of the silica structures by up to 90% of its original value. Is it possible to

design structures which recover the stiffness value of bulk silica while retaining the

toughness improvement of the nanoporous silica? In the next chapter, we design hi-

erarchical silica nanocomlposites with 2 levels of hierarchy. We proceed by developing

an mesoscale method for studying the mechanics of silica structures at the micron

length scale. We then use the method in the analysis of the mechanics of hierarchical

silica structures.
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Chapter 5

Mesoscale Model of Deformation

and Failure of Hierarchical Silica

Nanocomposites

This chapter is focused on the development of a mesoscale model for studying the

mechanics of hierarchical silica nanocomlposite structures. Biomineralized silica-based

materials, such as sea sponge exoskeletons. and diatoms. showcase the use of inferior

constituent materials such as brittle ceramics like silica and soft protein to create

materials that have surprisingly high toughness and resistance to crack propagation,

and retain stiffness values close to the ceramic constituent (see Chapter 1). A common

design paradigm seen in these materials is the existence of multiple levels of structural

hierarchy [22, 29, 23. 28, 31]. Various studies have pointed at how the existence of

these structural design levels and their functional adaptation helps the material in

retaining the best possible combination of properties of the constituent materials

[2, 158].

5.1 Review of structural bio-silica materials

A fascinating example of biomineralized structures are those of diatoms [140, 159.,

160], a microscopic algae that feature cell walls, or frustules, mainly composed of
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amorphous silica. A porous hierarchical structure dominates the landscape of the cell

wall and encompasses intricate patterns that are highly varied and ordered. as shown

in Figure 1-2, and reach all the way down to the nanoscale. Please see Chapter 1,

section 1.2 and 1.3 for more details on the diatom structure and mechanical properties.

Another silica-based design is found in the deep sea sponge (Euplectella sp.) skeleton

(Figure 5-1). The structure shows structural design at several length scales. ranging

from a composite consisting of consolidated nanometer sized silica spheres embedded

in an organic matrix at the sub-micron scale (Figure 5-1(d)), through cylindrical

lamellar silica-organic material composite at a micron length scale (called spicules-

Figure 5-1(c)) to a square-lattice cage-like structure consisting of cylindrical rods

(Figure 5-1(a-b)) at the macroscale.

()(b) (C) (d)

VI

Figure 5-1: Structural hierarchies in a silica-based skeletal structures in a sea sponge. (a)

shows the external cage structure of the silica-based skeletal system of Euplectella sp.. scale

bar 5 mn (b-d) show some of the underlying hierarchical structures with (b) showing fiber-

composite structure in a constituent beam consisting of many spicules, scale bar 20 microns.

(c) single spicule showing laminated silica-protein structure, scale bar 5 microns and (d)

biosilica constituent of the silica layers revealing its consolidated nanoparticle nature, scale

bar 500 nm. Figure reproduced from [28].

We summarize some key mechanical properties of diatoms and sea sponge ex-

oskeletons here. Several studies reported in the recent literature have revealed the

mechanical properties of diatom shells. Hamin et al. [39] used a glass needle to load

and break diatom frustules in order to probe their mechanical response at failure,

and found high strength and reversible elastic strains (e.g. 2.5% reversible strain in a

frustule section). Other researchers [40] have used AFM nanoindentation to study the

nanoscale material properties of the porous frustule layers of diatoms, identifying pore

sizes on the order of several tens of nanometers at the smallest levels in the hierarchy,

with ultra-thin silica walls on the order of several nanometers. They observed that

the variation of mechanical properties between the hierarchical frustule layers could
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be influenced by the pore size. pore distance, porosity, and under different biominer-

alization processes. Experimental tests to identify the mechanical properties of sea

sponge spicules have also been reported. The spicules consisting of 97-98% volume

fraction of silica and 2-3% of organic material, are seen to be tougher in both tension

and bending than silica glass, by a factor of 6-7 times [161]. The thin organic layers

present between silica layers in these spicules show delamination, crack-bridging, and

provide elastic, viscoelastic and viscoplastic means for energy absorption under load-

ing. leading to the high toughness [28, 161]. The fracture strength was also improved

3-5 times [162, 163]. with large improvement in ductility over silica glass [163, 30].

We hypothesize that the nanoporous geometry and hierarchical arrangement of

the frustules in diatoms, and the hierarchical structure of the spicules and their ar-

rangement in sea sponge skeletons are crucial to providing enhanced toughness at high

strength and stiffness even though the constituting material itself (that is, silica) is

inherently brittle and mechanically inferior for structural applications. Previous work

by the authors has focused on nanoporous structures of silica and shown that this

geometry leads to high ductility and toughness [151, 164], although at the cost of

structural stiffness. We thus explore here the creation of a multi-level hierarchical

composite structures made of nanoporous silica and much stiffer bulk silica, and in-

vestigate their mechanical properties through an in silico approach.

The focus of the study reported in this article is first the development of an

atomistically-informned inesoscale particle-spring model, which is then used for mod-

cling these composite structures at the micro-scale [165]. The method is tested on

the mechanics of randomly-dispersed fiber-reinforced composite structures made from

bulk silica and nanoporous silica phases, to enable fracture studies at micrometer

length-scales. An important question our model is expected to answer is whether or

not it is possible to create a highly functional material with great strength and tough-

ness out of a single material constituent, silica, by solely engineering its structural

design at multiple levels without adding any additional material component.
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5.2 Materials and Methods

A multiscale bottom-up computational methodology is used here to study the effect

of hierarchical design on material properties and the mechanics of deformation. At

the nanoscale we use molecular dynamics simulations to study the mechanics of the

nanoporous silica structures. Molecular dynamics with the first principles based reac-

tive ReaxFF atomistic force field is a powerful tool to capture fundamental nanoscale

phenomena and the mechanisms behind them. At the micron length scale. we de-

velop a niesoscale spring-lattice network model. The model is derived from as well as

validated against the atomistic results. Spring-lattice network models at the micron

length scales are able to capture elasticity, plasticity and fracture phenomena at these

length scales. We describe the details of the methods in the following sections.

At the nanoscale, the first-principles derived ReaxFF force field [62] is used to

characterize the mechanical behavior of nanoporous silica structures, as discussed in

Chapter 4. Fully-atomistic simulations have been carried out for the mechanics of

nanoporous silica structures [151, 164] (see Chapter 4). These studies show the effect

of pore size, distribution and porosity on elastic modulus, plasticity, ductility and

toughness of the structures. Figure 5-2(a) shows one of these characteristic nano-

honeycomb silica structures. The availability of these studies allows us to extract

constitutive laws of nanoporous silica behavior that can be used to build mesoscale

models of silica structures with hierarchies.

5.2.1 Mesoscale method development and validation

Figure 5-2(b) shows the model setup consisting of a network of material particles

connected in a lattice arrangement through springs. Such two-dimensional spring-

lattice networks have been used previously to model deformation and fracture in

brittle and quasi-brittle materials [166, 167, 168, 169], and are particularly suitable

for studying fracture phenomena in heterogeneous materials [170, 171, 1721. The

two-dimensional nature of the model resembles plane strain loading conditions. The

constitutive stress-strain law under tensile load is obtained for a particular nano-
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Figure 5-2: Atomistic and mesoscale modeling approaches are combined here to describe
the material from the nano- to the micro-scale. Parameters for the mesoscale model are
derived from constitutive behavior at the nanoscale obtained using atomistic simulations.
Panel (a) shows the geometry of the nano-honeycomb used as building blocks for the com-
posite structures, panel (b) shows a section of the triangular mesh mesoscale particle-spring
model setup, panel (c) show stress-strain curves obtained from atomistic simulations of a
nano-honeycomb structure, and for bulk silica with a crack of the same size as the pores
in the nano-honeycomb. The legend defines the nano-honeycomb structure. which is shown
as (t, pi, p,) parameters for the structure (numerical values given in A). The bulk silica
structure shows purely brittle fracture, the nano-honeycomb structure show ductile frac-
ture. Panel (d) shows the behavior of the mesoscale triangular mesh lattice fitted to this
constitutive behavior (the agreement with the full atomistic result depicted in panel (c) is
evident and provides direct validation of the mesoscale model).

honeycomb silica and bulk silica using atomistic simulations, shown in Figure 5-2(c).

In this figure, the bulk silica structure has a pre-crack with dimensions of the pore

size in the nano-honeycomb structure, to compare structures with similar defect sizes.

As seen in Figure 5-2(c). the bulk structure is stiff and brittle, while the nanoporous

structure is soft and ductile. The force-extension law for the mesoscale inter-particle

potential is hyperelastic and is fit to the constitutive law behavior of nano-silica and

bulk silica under tensile load (Figure 5-2(d)). The hyperelastic spring potential mod-

els the atomistic results for the nano-honeycomb as elastic-perfectly plastic behavior,

and the bulk silica as elastic-brittle behavior. For the nano-honeyconib. the flow stress
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is obtained from atomistic simulations, and is calculated as the mean stress during

plastic deformation. Since the aim of this study is to obtain mechanics of different,

composite structures, the properties of the local springs in the lattice in a certain

material model are changed according to whether they lie geometrically inside the

matrix or reinforcing phase.

The brittle bulk silica phase inter-particle potential is modeled as follows:

kAALA if ALA < ALAc5

FA (ALA) -(5.1) 0 if ALA > ALA,c,-

where FA is the force on a spring between two material particles of the brittle

phase. kA is the force constant for the spring, ALA is the extension in the spring,

and ALAc is the critical cutoff distance for the spring. The cutoff distance ALA,,

beyond which the mesoscale spring carries zero load, is fixed based on the failure

strain. and the force constant kA is fit to the elastic modulus of the material obtained

from atomistic simulations.

The ductile nano-porous phase inter-particle potential is modeled as:

kBALB if ALB < ALB,

FB (AL) - kBALB,l + kc (ALB - ALB,1) if ALB., < ALB < ALB,,

0 if ALB > ALB,c.

(5.2)

where FB is the force on a spring between two material particles of the ductile

phase, ALB is the extension in the spring. and ALB,1 is the extension for the spring

for the onset of the plastic regime, and ALB.c is the critical cutoff extension when the

spring breaks and stops carrying load, kB is the force constant for the elastic response,

and kc = kB/100 is a small force constant to model plastic deformation at constant

flow stress. ALB,1 is fit to the yield strain, and ALB., is fit to the failure strain, and

kB is fit to the elastic modulus for the nano-honeycomb structure obtained from the

atomistic simulations (Figure 5-2(c)).

The mesoscale model uses a triangular lattice regular miesh for the arrangement
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of the springs. This results in isotropic elasticity behavior which can be assumed

if the underlying structure is polycrystalline with regular arrangement of grains.

Anisotropic behavior could also be introduced in the niesoscale model in principle.,

but for the proof-of-concept study targeted in this study (in the spirit of simple con-

putational experiments), we assume isotropic behavior in the underlying atomistic

structure. The implications of this assumption are that crystal-orientation dependent

anisotropic elastic and fracture behavior phenomena will not be captured through this

model. The interfaces between the two phases in the composite, if the crystal strue-

ture is not continuous across the interface, would also possibly contribute to plasticity

in the material through slip and friction, however the interfaces have been just as-

signed the low strength and stiffness values of the nanoporous phase in the model.

This doesn't allow the model to capture any toughness enhancement by interfacial

plasticity mechanisms.

Bulk two-dimensional mesoscale models are constructed of bulk silica and nanoporous

silica and subject to tensile testing. Comparison of the elastic moduli and fracture

toughness between the atomistic sinmulations and mesoscale simulations are used to

fix spring constants and inter-particle distance in the mesoscale model.

The elastic modulus and fracture toughness for the atomistie model are calcu-

lated for a bulk silica sample with a center-crack. The fracture toughness using the

ReaxFF force field for silica is calculated to be 0.79 MPa 'm. This is rather close to

experimental values in the literature for fused quartz, 0.6-0.75 MPa/-ii [173, 174].

The elastic modulus for the spring-lattice model is fit to 102.3 GPa and the mode I

fracture toughness to be 0.79 MPa im.

To match the atomistic simulation values (see brief review above), an inter-particle

distance of 78 nm and spring constants of 3,932 N/n and 134.4 N/m for the brittle

and ductile phases, respectively, are chosen for a through thickness of 100 nm. This

ensures for a separation of scales between the scales described by the atomistic model

and the characteristic length-scale associated with the mesoscale model (the typical

scales of the atomistic-level models is up to ten nanometers). All mnesoscale models

are implemented within the LAMMPS software package [175].
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It is noted here that the model parameters can easily be adapted to describe

other nanostructures. and can even be extended to describe multiple nanostructures

in the study of hierarchical systems. The specific model considered here represents

one specific case study explored here.

5.2.2 Fracture property characterization

For materials that show failure by growth of a single dominant crack, we characterize

them by calculating their fracture toughness. The toughness is calculated by calcu-

lating the energy release rate by invoking the J-integral [176, 177] in its domain form

[178] around the crack tip, given by:

J_ W62- P dS, (5.3)

where W is the strain energy density, PjJ is the first Piola-Kirchoff stress tensor.

ui represents the displacement field. X are the material coordinates, So represents

the undeformed area of the domain, 6 is the Kronecker delta, and

0 : r =:- ri.

q = 1 : r = r>. (5.4)

(r - ri)/(r2 - ri): ri <r <r2,

where the parameters r 1 and r 2 are shown in Figure 5-9(a). The discrete form of

this equation, for small displacements, is given by (see. e.g. [179, 180]):

J W "62j -P zolO u O X , S o, (5.5)
aES0 1: -X -9X

where So is the initial undeforned area occupied by the material particle a, X,

is the initial position of material particle a, W" is the local strain energy density at

any material particle a which is calculated as follows,

1
Wo1 = 1(0 (Ei) - a (0)).(5.6)
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where p" is the potential strain energy of the material particle a, obtained from

simulation by splitting the spring potential energy between material particles sharing

the spring bond., and the stress at the atom a. (Ps) is calculated from the virial

theorem [181]:

Po =a 0 r"3 o f"a, (5.7)

where r"O is a vector joining material particles a and 0, f03 is the force applied on

material particle a by material particle 3, and Q, - Sat is the volume occupied by

material particle a, where So is the area occupied by the material particle a in the

deformed configuration. This formulation of the J-integral is used to avoid involving

high stress values at the crack tip region in the calculation, and the convergence of

the J-integral is checked by measuring its value against different integration domain

regions. The strain E., and Bu./&X1 are obtained by a local least square fit to the

neighbor displacement field at each material particle location.

5.2.3 R-curve calculation

Stable crack advance for every load configuration is noted by finding the crack tip

location. A particular spring bond is regarded as broken when its deformation exceeds

the cutoff for the interaction. Crack surfaces are visualized by finding all spring bonds

which have snapped for a given load. The J-integral is used to find the energy release

rate for a given amount of stable crack advance. Plot of the J-integral from the

start of crack initiation through crack propagation provides the R-curve [182] for the

material, i.e. how its fracture toughness changes as a function of stable crack advance.

5.3 Results and discussion

We consider models of randomly-distributed fiber-reinforced composites of bulk silica

with small volume fractions of nanoporous silica. Figure 5-3 shows the different

geometries considered here. In all cases. the fibers are circular in cross-section and

117



randomly distributed through the matrix, oriented parallel out-of-plane (in the Z

direction in Figure 5-3) and loaded in the cross-section (X- Y plane). Fiber diameters

are 1.3 pm in a model size of 27 pm by 23.3 pm and 100 nm out-of-plane. Two

kinds of composites are designed- a), hard-fibers of bulk silica (of volume fraction

76%) embedded in a soft nanoporous matrix, and b), soft fibers of nanoporous silica

dispersed in a hard silica matrix (of volume fraction 86%). The two designs are shown

in Figure 5-3. We select five different random structures for both morphologies as

representative bulk-silica rich composites to obtain statistically relevant data. and will

refer to them henceforth as the brittle-fiber and brittle-matrix structures respectively.

Y

Z -X
Figure 5-3: Geometry of randomly distributed fiber-composite structures at the
mesoscale. Constituents are, bulk silica (in grey/light, with a high volume fraction) and
nano-honeycomb structures (in blue/dark, small volume fraction). Design conditions that
enhance toughness of bulk silica by distribution of small amount of nano-honeycomb silica
are being investigated here. The structure on the left shows bulk silica fibers as reinforce-
ment, whereas the right structure shows nano-honeycomb silica fibers as the reinforcing
phase. The structure sizes are 27 pm by 23.3 pm and 100 nm out-of-plane. Reinforcing
phase is always in fiber form of diameter 1.3 pm, aligned parallel out-of-plane but randomly
distributed in-plane. Structures of both types are studied for crack propagation response
under mode I loading with plane strain conditions. Initial pre-crack sizes range from 3.9 to
5.4 pm.).
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We now present a systematic study of the effect of composition and material

distribution on the elasticity, plasticity and fracture of these composites. Figure 5-4

shows the elastic modulus measurements for both the brittle-fiber and brittle-matrix

materials. We observe that for a random dispersion of the second phase in the first.

the elastic modulus lies between the Reuss and Voigt bounds. However, the brittle-

matrix composite is seen to have a modulus closer to the upper bound (Voigt) than

the brittle-fiber composite. Thus brittle-matrix morphologies are more suitable for

obtaining a higher stiffness for random fiber distributions.
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Figure 5-4: Elastic modulus for the brittle-fiber and brittle-matrix composites plotted as
a function of volume fraction of the brittle phase. The limits at 0 and 1 volume fraction
correspond to nano-honeycomb silica (soft) and bulk silica (stiff) respectively. The com-
posite moduli are seen to lie within the Reuss and Voigt bounds of load sharing between
the phases, the brittle-matrix morphology providing stiffness closer to the upper limit (of
Voigt modulus).

Next we create sharp edge cracks in all materials and load them under quasi-

static mode I loading. Loading is carried out by stepped edge displacement boundary

conditions and relaxing the global positions of all material particles using a conjugate

gradient energy minimization scheme [183]. Initial crack size is 3.9-5.4 pin. Crack

initiation is identified by the advance of the crack front at a particular loading strain
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value. Plastic deformation is visualized by calculating local strains in springs and

comparing to yield strain values. We notice the absence of any plasticity prior to crack

propagation initiation in all the composite designs. Figure 5-5 shows representative

overall stress-strain response for composite structures with brittle-fiber and brittle-

matrix morphologies, with and without the presence of the edge crack.
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Figure 5-5: Stress-strain curves for (a) composite structures with bulk-silica as the rein-
forcement, with and without presence of a pre-crack. The near-identical response shows the
flaw-tolerance behavior for these structures to pre-cracks of the given size. The structures
show multiple cracking throughout the material, and this is reflected in the stress-strain
curve as a gradual loss of stiffness of the material as the number and size of the multiple
cracks grow. (b) Stress-strain curves for composite structures with nano-honeycomb sil-
ica as the reinforcement, with and without presence of a pre-crack. The varying fracture
strengths clearly show an effect of the crack size. All structures fail by the growth of a
single dominant crack.

The brittle-fiber structures- show multiple micro-cracking sites (throughout the

120



Z X 0.48% strain 0.64% strain

(c) (d) * 7 -ArA

0.48% strain 0.64% strain

Figure 5-6: Crack pathways for composite structures with nano-honeycomb structure as
the matrix and brittle silica as the reinforcing fiber phase. The volume fraction of silica
phase is 76%. (a) and (b) show fracture progress starting from a material with no pre-crack;
(c) and (d) show fracture progress in the same material with a pre-crack present. In these
cases we observe that the pre-crack propagates for a small distance but does not propagate
through the sample, and other smaller cracks are initiated throughout the sample. These
multiple small cracks determine the stress-strain response of the structure. The structure
is thus flaw-tolerant to pre-cracks of these sizes, and the fracture stress and behavior are
almost independent of the size of the pre-crack. This is reflected also in the stress-strain
curve for the stress-strain response of the undefected, and cracked structures (shown in
Figure 5-5a). The fracture toughness cannot be measured for these structures and crack
sizes.

sample) under tensile load. The presence of pre-cracks is not seen to affect this phe-

nomnenon. and the material fails by the growth and coalescence of several micro-cracks

(Figure 5-6). This phenomenon is also captured by the absence of any effect on the

stress-strain curve to the presence of pre-cracks of a certain size and below (Figure

5-6(a)), and can be classified as a defect-tolerant state. Fracture mechanics formula-

tions cannot be used for such material microstructures and crack sizes, and damage

mechanics which deals with evolution of damage with applied load for example in

the form of diffuse micro-cracking would have to be used to characterize the failure

response. The diffuse cracking also leads to an effect on the elastic modulus (slope
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of the stress-strain curve) of the material, as seen in Figure 5-6(a), the modulus is

lowered at higher strain values when the microcracks start to increase in size and

number.

0.29% strain U.48%u strain

Figure 5-7: Crack pathways for composite structures with brittle silica as the matrix and
nano-honeycomb structure as the reinforcing fiber phase. The volume fraction of bulk silica
phase is 86%. (a) and (b) show fracture progress starting from a no pre-crack material;
(c) and (d) show fracture progress from the same material with a pre-crack. In both
cases we observe that fracture occurs through the propagation of a dominant crack. (a)
and (c) show the un-cracked and pre-cracked specimens at the same load, the tin-cracked
specimen is intact. whereas the pre-crack has started propagating in the other specimen.
Since the fracture strength of a structure with a dominant propagating crack is pre-crack-
size dependent (according to fracture mechanics), the stress-strain curve for the stress-strain
response of the undefected, and cracked structures are markedly different (shown in Figure
5-5b). Fracture toughness can be measured for these structures, as the energy required for
the growth of the pre-crack per unit crack advance

The brittle-matrix structures, on the other hand, show failure by growth of a

single dominant crack (Figure 5-7). This phenomenon is captured in the stress-strain

curve by the decrease in fracture stress with increase in pre-crack size (Figure 5-

5(b)), as expected from fracture mechanics. Snapshots of the pre-crack growth are

shown in Figure 5-8 for all the brittle-matrix composite structures considered. The

crack path shows several phenonena, such as linking fibers lying in its path, and
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following a tortuous pathway. In some cases, we see crack branching at a fiber-matrix

interface and in one case (Figure 5-8(b)) the crack is not continuous but is bridged by

a ligament of the matrix. These highlight all the different mechanisms at this length

scale that can affect the fracture behavior of the material.

(a) gt 0 (b)* (C)

0.48% strain 0.48% strain 0.48% strain

0.48% strain 0.48% strain

Figure 5-8: Different composite structures with brittle bulk-silica as the matrix (volume
fraction 86%) and ductile nano-honeycomb structures as the reinforcing fiber phase showing
fracture toughness improvement mechanisms. The fibers have circular cross-section and are
randomly distributed and five different random structures are shown here. A single pre-crack
is introduced and then subjected to mode I loading. Propagation of the sinigle dominant
crack is seen on loading, and the propagation path is marked in white. All structures show
that the crack path is not straight, but connects reinforcing fibers lying close to the original
crack plane. Crack deflection and bridging by reinforcing fibers behind the crack tip are
the mechanisms seen to increase toughness here.

The fracture toughness is calculated for the brittle-matrix composite structures

using the J-integral formulation (Figure 5-9(a)). Crack initiation toughness is mea-

sured by a J-integral calculation of the strain energy release rate just prior to crack

propagation. IR-cumrve measurements (crack advance resistance as a function of stable

crack growth) are then undertaken by obtaining stable crack propagation distances

for different load strains and repeating the i-integral calculations. We thus obtain

the fracture toughness as a functioni of crack advance distance. We notice all struc-
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Figure 5-9: Calculation of the J-integral and R-curves. (a) shows the J-integral calculation
for a stationary crack by the use of a domain-integral around the crack. The J-integral
provides the value of the energy release rate per unit advance of the crack into the crack
tip, or the resistance to crack propagation. The red/dark region shown is the domain of
integration and the convergence of the J-integral is tested by taking different and regions
for the same crack and specimen configuration. (b) shows fracture toughness measures as
a function of crack advance (R-curve behavior) for all the structures in Figure 5-8. The
toughness of bulk silica is also shown as a dotted curve.

tures show an initiation toughness close to bulk silica and significant improvement

in toughness (~ 4.4 times) as the crack proceeds (Figure 5-9(b)). The improve-

ment in toughness arises from crack-deflection and crack-bridging by the reinforcing

phase, and also ligament-bridging by the matrix. Simultaneously, the stiffness is not

compromised due to the large volume fraction of the bulk silica phase (Figure 5-4).

Steady-state fracture propagation toughness values can be obtained from the R-curve

for the composite for large crack growths in the range of several microns.
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5.4 Summary and Conclusions

We established here a hierarchical mesoscale modeling scheme that represents the

mechanics of silica-nanoporous silica composites at the micron length scale, bridging

scales from a few nanometer (accessible to full-atomistic modeling) to scales of tens of

micrometers. The particle-spring mesoscale model has parameters fitted to atomistic

simulations using the ReaxFF force field. The ReaxFF force field itself has parameters

fitted to first-principles quantum simulations of energetics of silicon-oxygen clusters.

We establish the validity of the mesoscale model by capturing the stress-strain relation

of the bulk silica and nanoporous silica, and the fracture toughness and fracture

mechanisms (e.g. crack bridging, spreading., etc.) of silica in different hierarchical

designs.

Enabled by the mesoscale model, we studied the fracture mechanics of randomly-

dispersed fiber composite structures using this coarse-grained model. ReaxFF simula-

tions have shown us previously that the design of nanoporous silica leads to enhanced

ductility and toughness at the cost of compromising stiffness. We demonstrated that

through using composites with a large volume fraction of the bulk silica, it is possible

to obtain structures with stiffness almost as large as the silica phase, but signifi-

cant toughness improvement due to the use of nanoporous materials as the other

phase. To this end, we completed a case study of fracture of two kinds of compos-

ites, one characterized by hard fibers of bulk silica embedded in a soft nanoporous

matrix (brittle-fiber), and another one that consists of soft fibers of nanoporous silica

dispersed in a hard silica matrix (brittle-matrix).

The brittle-fiber structures showed multiple micro-cracking initiation under tensile

load, and the material fails by their growth and coalescence, independent of presence

of pre-cracks in the material (Figure 5-6). Fracture mechanics formulations cannot be

used for such material microstructures and crack sizes, and damage mechanics which

deals with evolution of damage with applied load e.g. in the form of diffuse micro-

cracking, have to be used to characterize the failure response in this flaw-tolerant

regime of cracking.
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The brittle-matrix structures, on the other hand, showed failure by growth of a

single dominant crack (Figure 5-7). The fracture toughness was calculated for several

randomly dispersed fiber-composite structures using the J-integral formulation. The

crack toughness is tracked as a function of crack advance, using an R-curve (Figure

5-9(b)), and we observed that all structures show an initiation toughness close to

bulk silica and significant improvement in toughness as the crack proceeds. similar to

findings reported earlier for bone [184]. The improvement in toughness arises from

crack-deflection and crack-bridging by the reinforcing phase, and ligament bridging

by unbroken matrix. At the same time, the stiffness of the composite structure lies

close to its Voigt upper limit (Figure 5-4). To the best of our knowledge. this type

of R-curve analysis is reported in this article for the first time for hierarchical silica

structures. and implemented in a multiscale simulation scheme of these structures. We

note that our model is simple and has several limitations, such as the lack of describing

anisotropies, and its two-dimensional nature. Nevertheless, it provides a useful tool

for computational experiments geared to elucidate fundamental design principles of

biological materials at multiple length-scales, and the formulation presented here can

be easily adapted to other cases.

The improvement in toughness and retaining of stiffness of bulk silica by designing

small regions of nanoporous geometry in the bulk phase point to a design method-

ology for obtaining stiff and tough materials out of an inherently brittle material

(silica) to begin with (Figure 5-10). The design philosophy can be summed up as

the use of a single material silica - which is traditionally considered an undesirable

(mechanically inferior) structural material due to its brittleness, arranged in a hier-

archical pattern with substructures that go down to the nanoscale dimensions. A

future refinement in this model would be modeling mechanical response of interfaces

between the phases in the composite using atomistic simulations and incorporating

interfacial parameters in the mesoscale model. Further work, shown in Chapter 6,

aims at studying effect of additional levels of hierarchies on these properties. The

present design scheme suggested enables us to obtain highly functional materials that

feature enhanced toughness and stiffness. The utilization of the design paradigm
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Figure 5-10: The design of the hierarchical silica composite improves the toughness of
bulk silica significantly (~~z 4.4 times) while compromising on the stiffness only slightly (~~ 70
% of bulk). This points towards the use of hierarchies along with a single design material
to improve undesirable mechanical properties significantly (here low toughness) while not
compromising on the desirable ones (here high stiffness).

outlined here leads to a substantial increase the design space for brittle materials,

without the need to add additional materials, and solely by geometrical design.

Likely driven by evolutionary pressures, materials in living systems already use

this design philosophy in a variety of protective armor and internal load-carrying

structures in many different species through the use of hierarchies (as it was shown

for soft protein materials in earlier studies [185]), and our simulations point to the

strength of using this philosophy for designing engineering structures made out of

hard materials as well. The exploitation of this method for de novo material design

could be substantial, as it provides a pathway to utilize nanoscale material elements

with superior properties for macroscale highly functional materials-with superior

properties, despite the utilization of simple and abundant building blocks such as

silica. In the next Chapter, we extend the use of the mesoscale model developed

here, to the study of fracture properties and toughness of hierarchical materials with

multiple levels of hierarchy. Our attempt is to observe numerically, how the addition
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of more levels of hierarchy improves toughness properties.
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Chapter 6

The role of multiple structural

hierarchy levels in defect tolerance

and toughness

This chapter extends the use of the mesoscale model developed in Chapter 5 to the

direct simulation of the fracture properties of structures with several levels of hierar-

chy. This is motivated by the observation that many biological structural materials

show not just 2 or 3, but several levels of structural hierarchies from the nanoscale

up to the macroscale. Cortical bone, for example has 7 distinct structural hierarchy

levels [1. 186], using two basic constituents of collagen protein and hydroxyapatite

mineral. Sea sponge exoskeletons, made of silica and protein, show 6 levels of struc-

tural hierarchy [28]. A question that arises is how does the increase in number of

hierarchy levels impact mechanical properties? Does it give rise to properties that

are not apparent from 1 or 2 levels of hierarchy? Here, we will specifically focus on

the affect of adding more hierarchical levels on crack advance and toughness.
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6.1 Background on structures with multiple lev-

els of structural hierarchy and study of their

mechanics

In biological structural materials possessing multiple levels of structural hierarchies,

many phenomena and properties are linked across structural scales (see Chapter 1.

section 1.3). Experimentally, fracture behavior of these materials, such as bone and

nacre have been shown to be heavily linked across scales [35, 301, with mechanisms at

several different hierarchy levels participating in the overall behavior. This has also

led to some contention as to which mechanisms are the important ones [184., 33].

The field of computational and theoretical studies of mechanics of materials with

a large number of hierarchical levels is in its infancy. A major problem in the field

is the issue of studying deformation mechanisms and their interactions across a huge

range of length scales, which are often beyond the computational capabilities of a sin-

gle computational technique such as atomistic simulation or finite-element methods.

Another challenge is that a representative volume element cannot be found at any

length-scale without accounting for its entire sub-structure down to the nanoscale.

because of the heterogeneity of the design at any length-scale. This heterogeneity

can potentially lead to very large models in terms of computational cost, beyond the

reach of today's computational resources. Multi-scale methods (as described in Chap-

ter 2) have to be applied in these cases. Nonetheless, concurrent multi-scale methods

cannot be applied easily due to the non-applicability of localized deformation; and

hierarchical multi-scale methods, tend to develop into too coarse a description at very

large length scales, due to the loss of detailed information about mechanisms with

every additional level of coarse-graining.

One recent approach has been the study of self-similar hierarchical assemblies

with some assumptions about similarity in failure mechanisms at each hierarchy level

[22. 36, 187, 188]. These continuum models predict strength, stiffness and toughness

scaling with number of hierarchy levels for a number of simple. self-similar assemblies
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e.g. for self-similar hierarchical assembly of bone nanostructire [36] or gecko adhe-

sion [189. 190]. A key drawback of these models is the use of a self-similar geometry

assumption, and also the assumption of correspondence of energy dissipation mecha-

nisms and failure mechanisms across hierarchies. Self-similarity in geometric design

is not seen in many biological materials, such as bone, nacre, sea sponge exoskeleton.

diatoms etc. [186. 158, 28, 27]. where the structural arrangement at each hierarchy

level is very different. Another approach has been of taking into account explicit

probabilistic modes of failure pathways down several levels of hierarchy, assuming

certain possible unit failure events (e.g. failure of unit hydrogen bonds in hierarchical

alpha-helix structures, and their combinatorial arrangements) [191, 192]. Some qual-

itative models have also been derived to identify design similarities in the hierarchies

of various biological materials that may offer the key to improvements of properties

[13. 31, 193].

In this work, our aim is to study the effects of hierarchical arrangements on tough-

ness. Toughness in materials is often measured through fracture toughness, which fo-

cuses on energy dissipated in the structure per unit length advance of a major crack

that eventually leads to complete failure of the structure. However, as demonstrated

in the last chapter, complex mnicrostructures can have very different failure mecha-

nisms than the propagation of a single large crack, e.g. through diffuse damage in

the form of several cracks interacting throughout the structure. We aim to study

how toughness is enhanced through hierarchies. specifically given that, through the

fracture mechanics viewpoint, the crack will have to interact with all different lev-

els of hierarchy. Specifically, our goal is to observe whether each additional level of

structural hierarchy effect has a substantial effect on toughness.

We will also study a related property, the defect-tolerance length scale. Defect

tolerance measures the sensitivity of fracture strength to the presence and size of a

crack. A higher defect-tolerance implies a lower sensitivity to crack size. i.e., a large

change in the size of a crack present in the rmaterial/structure is required, for a small

change in the fracture strength. One of the aims of robust design is the increase of the

defect-tolerance length scale, so that the material/structure strength does not vary
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for a range of flaw size distribution. This can be related to the parameter insensitivity

definition of robustness in biological systems theory [25] (see Chapter 1. section 1.2).

Through the use of flaw-tolerant design at the nanoscale in brittle materials [33], and

suppressing dislocation-mediated plasticity in ductile materials [129], it is possible to

eliminate any dependence of fracture strength oi crack size for very small nanometer-

sized crystals. Here, however, we also want to study the effect of hierarchies on this

sensitivity of fracture strength on crack size.

With this aim, we use the bulk-silica/nanoporous silica model developed in Chap-

ters 4 and 5. We focus on the use of silica as a 'poor' structural material, and attempt

to engineer it to possess better properties., through nanostructuring (Chapter 4) and

use of hierarchies (Chapter 5 and here). In this chapter. the atomistically-informed

mnesoscale method developed in Chapter 5, is thus extended to several levels of hier-

archy.

6.2 Mesoscale simulation results

In many biological materials possessing several hierarchy levels, the design substruc-

ture at each level is periodic and built from an repeating template. Examples include

cortical bone, nacre at all their hierarchy levels (see Chapter 1, section 1.2); diatoms

and sea-sponge skeletons at all hierarchy levels except the nanoscale biosilica, which

is a randomly-dispersed composite (see Figures 1-2 and 5-1).

6.2.1 Two-hierarchy level structures with periodic geometry

We extend the mesoscale designs of Chapter 5, to regularly distributed (periodic)

composite structures. The protein constituent found in biological structures. which

is soft and tough is replaced by nanoporous silica in our structures: the mineral

constituent. which is hard and brittle is replaced by bulk silica. For a particle-

reinforced composite, there are two distinct design schemes possible, one in which

the soft material is the matrix, the other where it is the reinforcement, particles. We

thus choose two representative systems, one in which the soft/tough material is the
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continuous phase, with the hard/brittle material dispersed in platelet form within

the matrix. mimicking the periodic arrangement observed in several hierarchy levels

in bone and nacre [1]. The second representative system is where the hard/brittle

constituent is the continuous phase, with regions of soft/tough material embedded

within the hard matrix. These structures are found in biocrystals, where protein

material is encapsulated in a hard crystal. such as biological calcite single crystals

[194, 195]. The use of a periodic distribution of one material in another not only

allows us to capture actual design morphologies observed in biological structures, but

also removes the stochastic element of the dependence of mechanical properties on

random morphologies.

These regularly distributed composite structures are shown in Figure 6-1. The

volume fraction of the stiff silica phase is kept at a high value and constant at 80%.

For the bone-like arrangement, the platelets of bulk silica have a rectangular shaped

cross-section and 8.4 pm by 2.4 pm in size in the X- Y plane, and 100 nim in the

out-of-plane direction. They are arranged in a staggered fashion, with an overlap

equal to half their length across subsequent layers. The overall structure size is 27

pm by 70 pin and 100 nm1 out-of-plane. For the biocalcite-like arrangement, the soft

nanoporous silica is embedded as rectangular inclusions with a cross-section size of 8.7

pin by 0.7 pm in size in the X- Y plane, and 100 m in the out-of-plane Z-direction.

Next we create sharp edge cracks in all structures and load them under quasi-

static mode I loading. Loading is carried out by stepped edge displacement boundary

conditions and relaxing the global positions of all material particles using a conjugate

gradient energy minimization scheme [1831. Initial crack sizes range from 5-20 pm.

Crack initiation is identified by the advance of the crack front at a particular applied

strain. Figure 6-2 shows representative overall stress-strain response for composite

structures with bone-like and biocalcite-like morphologies, with and without the pres-

ence of the edge crack. The data shows that both structures have a drop in fracture

stress in the presence of a crack. The bone-like structure has a higher fracture stress

but shows a larger drop in strength when a crack is introduced, whereas the biocalcite-

like structure has smaller fracture strength. but also a lower sensitivity to the presence
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(a) (b)

Figure 6-1: Periodic repeating design morphologies are chosen for the composite structure
at the 2 "d level of hierarchy. (a) shows the two representative systems chosen, one in which
the soft/tough material is the continuous phase. with the hard/brittle material dispersed
in platelet form within the matrix, mimicking several hierarchy levels in bone and nacre;
the second representative system, in the lower part of (a) panel, is where the hard/brittle
constituent is the continuous phase, with regions of soft/tough material embedded within
the hard matrix. These structures are found in biocrystals, where protein material is en-
capsulated in a hard crystal, such as biological calcite single crystals [194. 195]. These
geometric arrangements are reproduced using bulk silica/nanoporous silica materials using
the two-dimensional mesoscale model (see Chapter 5). as shown in (b). which we will refer
to as bone-like and biocalcite-like in the subsequent text.
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of a crack. Thus the biocalcite-like structure shows higher defect-tolerance at the cost

of lower fracture strength.
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Figure 6-2: Stress-strain curves for (a) bone-like composite structures, with and without
presence of a pre-crack. Fracture strength changes drastically on the introduction of a crack.
(b) Stress-strain curves for a biocalcite-like composite structure, with and without presence
of a pre-crack. The sensitivity to fracture strength is much smaller than for the bone-like
composite, though the magnitude of the fracture strength is lower.

Taking a closer look at the fracture mechanics and crack propagation in both

structures, Figure 6-3 gives us a clue as to why the biocalcite-like structure possesses

higher defect tolerance. For small crack sizes, failure in these materials propagates

through the nucleation of several micro-cracks at nano-porous silica/bulk-silica inter-

faces located from the original crack tip. This makes the failure morphology appear

quite similar in the presence of smaller cracks and the absence of any, and provides

comparable fracture strength values. On the other hand, for the bone-like structures.,

the pre-crack always propagates and is toughened by platelets bridging the wake of

the crack as it propagates.
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(a) (b)

Figure 6-3: Crack pathways (marked in red) for bone-like and biocalcite-lie hierarchical
structures in the presence of a pre-crack. (a) shows that for the bone-like structures. the pre-
crack propagates through the sample. but the structure is toughened by platelets bridging
the wake of the crack as it propagates. (b) shows that for small crack sizes, failure in
the biocalcite-like structure propagates through the nucleation of several micro-cracks at
nano-porous silica/bulk-silica interfaces located far from the original crack tip. The fracture
strength is reached when several of these micro-cracks link up along with the pre-crack to
create a failure pathway through the sample. These results show that the different crack
propagation pathways in the two structures lead to different defect-tolerance response.
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6.2.2 Extension to 3- and 4-hierarchy level structures

The 2-hierarchy structures in the last, section are now extended to an additional level

of hierarchy. Both self-similar geometries, in the vein of earlier studies [36], and

dissimilar geometries are considered (see Figure 6-4). Self-similar (fractal) geometries

are not found in biological materials, but have been used in previous literature to

build simple models of hierarchical structures; dissimilar geometries are chosen as

more representative of how the actual hierarchy levels in bone, diatoms etc. are very

different from each other in geometry. The self-similar geometry uses a replica of the

bone-like arrangement at two different scales (Figure 6-4(a)). The platelets size at

the 2nd level of hierarchy is 5.95 pm by 1.16 pm in cross-section, while at the third

level is 12.7 pm by 5.4 pm. The overall sample size is 54 pm by 70 pm in the X- Y

plane, and 100 n in the out-of-plane Z-direction. The dissimilar geometry is using

the bio-calcite template for the 2nd level., and bone-like arrangement for the 3rd level

of hierarchy (Figure 6-4(b)). Here, the platelets size at the 2nd level of hierarchy is

2.02 pm by 0.47 pm in cross-section, while at the third level is 12.6 pm by 5.5 pm.

Initial crack sizes in these models range from -5 35 pm.

Figure 6-5 shows the stress-strain plot going from a 2-hierarchy bone-like structure

to a 3-hierarchy self-similar assembly. The volume fraction of the two constituents.

bulk silica and nanoporous silica, are kept constant at 80% and 20% respectively.

The move from 2-hierarchy to 3-hierarchy system shows. (a) a decrease in fracture

strength, and (b) an increase in defect-tolerance. Figure 6-6 shows the stress-strain

plot going from a 2-hierarchy biocalcite-like structure to a 3-hierarchy dissimilar as-

seibly. The volume fraction of the two constituents, bulk silica and nanoporous silica,

are again, kept constant at 80% and 20% respectively. In this case, the move from

2-hierarchy to 3-hierarchy systeiu shows a small change in fracture strength decrease

in fracture strength, and again an increase in defect-tolerance.

We thus observe a pattern of increase in defect-tolerance size scale with the in-

crease in number of hierarchy levels. In figure 6-7, we take a closer look at the

source of this defect-tolerance. Here, we have taken several samples of the dissimi-
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(a)

self-similar assembly (fractal)

(b)
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Figure 6-4: Geometry of 3-hierarchy composite structures, both self-similar and dissimilar

in design between the 2 nd and 3 rd levels of hierarchy. The models are used to study how the

assumption of self-similarity across hierarchies affects stress-strain response and toughness

values. (a) shows the self-similar geometry using a replica of the bone-like arrangement at

two different scales. The platelets size at the 2 nd level of hierarchy is 5.95 pm by 1.16 pm in

cross-section, while at the 3 rd level is 12.7 pm by 5.4 lim. (b) shows the dissimilar 3-hierarchy

geometry using the bio-calcite template for the 2 nd level, and bone-like arrangement for the

3 rd level of hierarchy. The platelets size at the 2nd level of hierarchy is 2.02 pm by 0.47 pm

in cross-section, while at the 3 rd level is 12.6 pin by 5.5 pin. The overall sample size is 54

pm by 70 pm by 100 nm in the out-of-plane direction (both cases).
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Figure 6-5: Stress-strain curves for (a) 2-hierarchy bone-like composite structures, with

and without presence of a pre-crack; (b) 3-hierarchy self-similar structure made of bone-like

composite structure at both the 2"" and 3 rd levels, with and without presence of a pre-

crack. The sizes of the pre-cracks are given in the figure legends. The sensitivity of fracture

strength vs. crack size is much smaller for the 3-hierarchy material.
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Figure 6-6: Stress-strain curves for (a) 2-hierarchy biocalcite-like composite structures,
with and without presence of a pre-crack; (b) 3-hierarchy dissimilar structure made of

biocalcite-like composite structure at the 2 nd level and bone-like at the 3 rd level, with and

without presence of a pre-crack. The sizes of the pre-cracks are given in the figure legends.

The sensitivity of fracture strength vs. crack size is smaller for the 3-hierarchy material.
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lar 3-hierarchy structure with different crack sizes, and found the fracture strengths

(Figure 6-7(a)). We find that with a 3-fold increase in crack size from 6 pim to 18

pIm, there is only a 24% drop in fracture strength. A closer look at the mechanics

of the stress-strain curves is taken in Figure 6-7(b) and (c). Here, we observe that

the latter part of the rising stress region before fracture consists of the opening up of

micro-cracks throughout the sample. Once these microcracks start moving, and link

up to the pre-crack, there is unstable crack-propagation leading to a peak in stress

and the fracture strength. This effect can also be measured through the total new

surface area created during the diffuse micro-cracking regime, and while the main

crack doesn't move (Figure 6-7(c)).

To observe whether this pattern of increase in defect-tolerance proceeds with the

number of structural hierarchies, we create a model with 4 levels of hierarchy (Figure

6-8). Here the 2 "d structural level is biocalcite-like, while the 3 rd and 4 th levels

are bone-like in design. The overall volume fraction of the bulk-silica constituent is

still maintained at 80%. The overall sample size is 108 pm by 140 pin in the X-Y

plane, and 100 nm in the Z-direction. The system consists of P3 million particles

and ~9 million bonds. The same mesoscale potentials used for the 2-hierarchy level

structures is still used, and no further coarse-grainig in the potential is carried out.

Figure 6-8(b) shows the stress-strain curves for the 4-hierarchy structure with various

crack sizes from ~6 pm to ~64 pm. Almost no change in fracture strength is seen

over this very large change in the size of a crack present in the structure. The

defect-tolerance. thus has improved substantially over that of the 2-hierarchy and

3-hierarchy structures. Figure 6-8(c) shows the R-curve behavior over 1, 2, 3. and 4

levels of hierarchy structures. The R-curve measures changes in fracture toughness as

a crack proceeds through the change in energy released per unit length stable crack

advance.

We observe a distinct effect of the addition of hierarchies on the R-curve behavior

of the material. Both the absolute value of GIc versus crack advance, and the slope

of the R-curve, dGIc/OAa increase with the number of hierarchies. The slope of the

R-curve has a close relation to the concept of flaw-tolerance. As seen in Figure 6-9.
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Figure 6-7: A closer look at the source of defect tolerance in 3-hierarchy structures. (a)
shows the stress-strain behavior and fracture strengths for several samples of the dissimilar
3-hierarchy structure with different crack sizes. We find that with a 300% increase in crack
size from 6 prm to 18 Jim, there is only a 24% drop in fracture strength. (b) and (c) show
that the latter part of the rising stress region before fracture consists of the opening up of
micro-cracks throughout the sample. These micro-cracks are shown in red in part (b), with
the numbers indicating overall strain values. Once these microcracks start moving, and
link up to the pre-crack. there is unstable crack-propagation leading to a drop in stress and
thus, the fracture strength. The lower part of (c) graph also shows that this effect can also
be measured through the total new surface area created during the diffuse micro-cracking
regime, at which time the main crack remains stationary.
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Figure 6-8: 4-hierarchy structure morphology, stress-strain plots and R-curve behavior.
(a) shows the 2-hierarchy, 3-hierarchy and 4-hierarchy structures for comparison, with the
4-hierarchy structure having a 2 "d hierarchical level that is biocalcite-like, while the 3 rd and

4 th levels are bone-like. In the 4-hierarchy structure, the color scheme is: bulk silica-red,
nanoporous silica-green and blue, to show the 4 levels clearly. The overall volume fraction

of the bulk-silica constituent is still maintained at 80%. The overall sample size is 108 pm
by 140 pm in the X- Y plane, and 100 nm in the Z-direction. (b) shows the stress-strain
curves for the 4-hierarchy structure with various crack sizes from e6 pin to ~64 pm. Almost
no change in fracture strength is seen over this very large change in crack size. The defect-
tolerance has thus increased substantially over 2-hierarchy and 3-hierarchy structures. (c)
shows the R-curve behavior over 1, 2, 3, and 4 levels of hierarchy structures. The R-curve
measures changes in fracture toughness as a crack propagates through the change in energy
released per unit length of stable crack advance.
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in a material with a rising R-curve, unstable crack advance only occurs when the

following conditions are satisfied,

Gapp, =Gc

(6.1)
DGapp 8G_ e

Oa Oa~

where. Gapp is the applied energy release rate, G1 c is the fracture toughness from the

R-curve, and a is the crack length. This, along with the load/energy-release relation

for an edge crack, implies that the load at which a certain crack size will propagate

unstably causing fracture, can be calculated by marking off the crack size on the

negative-X axis of an R-curve, and constructing the tangent to the R-curve passing

through this point. The slope of this curve is proportional to the load/ fracture

stress at which this crack propagates unstably. This also implies that for a rising

R-curve, the higher the rate of rise with crack advance, the lesser the sensitivity of

fracture stress to crack size, and thus the higher the defect-tolerance length scale.

Defect-tolerance length scales are thus closely linked to not only absolute values of

fracture-crack initiation values [36], but also to the rising part of the R-curve through

the slope of the R-curve.

This relation is clarified through the results shown in Figures 6-10 and 6-11. Frac-

ture stress is measured for 2-, 3- . and 4-hierarchy structures for different crack sizes.

The loss of strength as a percentage of the strength of the no-cracked samples has

been plotted in Figure 6-10 for all the levels of hierarchy. We observe that the sensi-

tivity of fracture strength to crack size goes down with increasing hierarchy level. If

a 10% loss in strength is fixed as a defect-tolerance length scale, Figure 6-11 shows

how this length scale increases non-linearly with the number of hierarchies.

6.3 Discussion and Conclusions

In this study, we study the fracture mechanics of hierarchical structures with 2

4 levels of hierarchy, using an atomistically- informed mesoscale method. We span
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Figure 6-9: R-curve behavior in a material with a rising R-curve resistance, and link to
unstable crack propagation. All hierarchical structures shown in Figure 6-8(a) show rising
R-curve behavior, where the toughness grows with crack propagation from its initiation
value. The load, at which a certain crack size will propagate unstably causing fracture,
can be calculated by marking off the crack size on the negative-X axis of an R-curve, and
constructing the tangent to the R-curve passing through this point. The slope of this curve
is proportional to the load/ fracture stress at which this crack propagates unstably.
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Figure 6-10; This shows the fracture stress. as a percentage loss from the strength of
structures with no cracks. measured for 2-, 3- , and 4-hierarchy structures for different crack
sizes. The shaded region shows the crack sizes for which there is a 10% loss in strength.
We observe that the sensitivity of fracture strength to crack size goes down with increasing
hierarchy level.

structures from sub-micron length scales to several hundreds of microns in size. The

basic constituent of these structures is silica. which are nanostructured into porous

form, inspired by diatom morphology, as shown in Chapter 4. Composites are created

out of nanoporous silica and bulk silica as constituents.

We begin the study with the design of periodic ordered composite structures

of bulk silica/nanoporous silica, classifying them into two representative systems;

one in which the soft/tough material is the continuous phase, with the hard/brittle

material dispersed in platelet form within the matrix, mimicking several hierarchy

levels in bone and nacre. The second representative system is where the hard/brittle

constituent is the continuous phase, with regions of soft/tough material embedded

within the hard matrix. These structures are found in biocrystals, where protein

material is encapsulated in a hard crystal, such as biological calcite single crystals.

We observe that the biocalcite-like structures have a larger defect tolerance, i.e., the

sensitivity in change in fracture strength with crack size is smaller. We observe that

this can be correlated to diffuse microcracking throughout the material even in the
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Figure 6-11: A defect-tolerant length scale is calculated to be the crack size at which
the material retains 90% of its fracture strength. This figure shows how this length scale
increases non-linearly with the number of hierarchies. The defect-tolerance reaches up to
160 pin with 4 levels of hierarchy. The red line represents an exponential fit of L =
1.17e 1 .255N , where L is the defect-tolerant length scale in microns, and N is the number of
hierarchy levels. The limiting value of I level of hierarchy, i.e., bulk silica, does not show
any defect-tolerant response to crack size.

presence of stress-concentrators such as small cracks.

Subsequently, we design 3- and 4-hierarchy level structures using different coin-

binations of the bone-like and biocalcite-like templates. We observe that the defect

tolerance length scale increases with number of hierarchy length scales. R-curves,

which capture change in fracture toughness per unit length stable crack advance in

a material, are measured for all hierarchy levels. The defect-tolerance property is

then correlated with a rising R-curve behavior, in particular the slope of the R-curve.

It is seen that the R-curve increases in both magnitude and slope as the number of

hierarchy levels increase. Experimentally. R-curves have been measured for fracture

samples of hierarchical biological materials such as bone, nacre, and dentin, and a

similarly rising R-curve behavior is seen [196, 184, 197, 198].

The improvement in the defect-tolerance property, which captures both increase

in crack initiation toughness [36], and the increase in the R-curve slope, is captured

numerically through a length scale at which the structure loses 10% of its no-crack

fracture strength. We observe that this quantity increases rapidly with number of
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hierarchy levels, reaching ~60 pm for 4 levels of hierarchy.

The use of several levels of hierarchy is thus shown to impact toughness through

nany effects. Apart from higher absolute toughness values, we find that the use of

hierarchies also increases the rate of increase of toughness per unit crack advance.

These together lead to a higher defect tolerance for structures with greater number

of hierarchy levels. This behavior can provide an explanation for the use of multiple

hierarchies in biological materials. Stable crack advance is not catastrophic or dis-

abling for biological materials, since many materials, such as bone, have the ability

to self-heal over time. A rising R-curve behavior, across several microns or higher

length scales, promotes stable crack advance in the material and allows it to be useful

beyond its fracture initiation load point. Thus large loads. which would shatter a

single hierarchy material with a single crack propagating right through the material.

dissipate energy in multiple-hier archy materials through several cracks being initiated

and arrested at different length scales (see Figures 6-3(b) and 6-7(b) and (c)). If the

load doesn't rise to unstable propagation values, this probably provides the material

time to heal, and still carry load. We observe that a higher number of hierarchies is

provides a better rising R-curve behavior.

Future work could be aimed at optimizing the entire R-curve behavior over several

microns or higher length-scale of crack advance. Both the number of hierarchies,

and design of individual hierarchy levels., would have different effects on the entire

R-curve shape. Our nesoscale model is a stepping stone that can be utilized for

design-optimization to maximize R-curvc magnitude and slope improvements. The

model can also be extended to larger length scales., potentially sub-mm, such that R-

curve toughness improvement is seen over length scales comparable to the macroscopic

sample size.
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Chapter 7

Conclusion

This chapter summarizes key findings of this thesis. and discusses the significance of

results obtained from simulation and theoretical considerations of the importance of

(a) nanostructuring and (b), the use of hierarchical assembly in bio-inspired materials.

The ability to use mechanically 'poor' materials as building blocks to obtain structures

that optimize disparate mechanical properties simultaneously, is the goal of mimicking

biological nechanical design, and a bottom-up design methodology to achieve this

has also been outlined. Also. later in this chapter, we touch on directions for future

research to improve and build on these results.

7.1 Summary of key findings and significance

Mimicking biological materials design is an important frontier in materials design.

This is driven by several enviable properties of biological materials, primary of which

is they utilize very 'poor' engineering materials such as protein, silica. hydroxyapatite

to build animal skeletons and protective armors. They also combine these 'poor' en-

gineering materials to make composites that possess a combination of the best of

the properties of their constituents. As an example, this behavior is easily captured

through Ashby materials properties' charts of stiffness versus toughness for biological

materials and engineering materials (see Figure 1-1). Engineering materials, such as

metals, alloys, ceramics, and their composites, show a 'banana-curve" behavior where
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one of these properties is improved at the cost of another [4]. Biological materials.

made of protein and calcite/hydroxyapatite, such as bone. antler, enamel etc. show

an 'inverse banana-curve" behavior where these materials combine the high toughness

of the protein constituent with the high stiffness of the mineral constituent [2]. Bio-

logical materials also present multi-functionality and optimization of several desirable

properties. Finally, they also show robustness, or resistance to catastrophic damage.

Due to the heterogeneous, hierarchical nature of the design structure of these biolog-

ical materials, and the presence of a wide variety of designs, it is key to be able to

discover key underlying universal design principles that can then be transferred and

applied to any common engineering constituents. In this work. we identified three

general design principles,

" nanostructuring according to nano-motifs found in several biological systems,

e use of 'poor' materials as structural building blocks,

e use of several hierarchy levels to reach from the nanoscale structure to nacroscale,

using well-defined assembly at each level of intermediate hierarchy.

We began our analysis by firstly, selecting the platelet-matrix nanostructure of

bone and nacre, as a design template to mimic. Since these nanostructures are com-

posed of hard/stiff calcite/hydroxyapatite platelets embedded in a soft/ductile pro-

tein matrix, we chose hard and soft metals to replace the bone constituents. We thus

designed iiietal-mnatrix composites with geometric design inspired by bone nanostruc-

ture in Chapter 3, and studied their mechanical properties under tensile loading. We

found significant dependence of flow strength of these nanocomposites on the geome-

try parameters of the bone nanostructure, and found size limits which maximized the

strength of these composites. Or analysis also revealed that there exist fundamental,

intrinsic length scales that control their plastic deformation mechanism and strength

properties. Specifically, we found that the use of elongated platelets in the composite,

of high aspect ratio and staggered arrangement of platelets for optimal load transfer,

and control of spacing between layers of platelets are critical factors in strengthening
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the material. The spacing between platelets perpendicular to the direction of loading

was found to have a Hall-Petch like effect on the flow strength. We also observed

that the strength of the platelet/matrix interface determines the optimal size of the

platelets at which the maximal flow strength is observed for the nanocomposite. The

interfacial strength between matrix and platelets turned out to be key in determin-

ing the importance of sliding and decohesion as deformation mechanisms at small

platelet sizes, and inter-platelet spacing. This leads to a peak flow strength for the

nanocomposite as a function of platelet size. Analysis of the mechanisms behind this

plateauing of strength, revealed that there exists a few fundamental length scales

that depend only on material parameters and the particular geometry, that control

the plastic deformation mechanism in small crystals under confined conditions. The-

oretical analysis shows that these characteristic length scales separate regimes of no

dislocation activity, partial dislocation plasticity, and complete dislocation plasticity

at crack tips in ductile metals. We confirmed this effect by direct atomistic simulation

of shear loading of a model ductile single crystal system. Thus, geometrically confined

ductile phases, in the metal-matrix nanocomposites under loading, will show a tran-

sition to homogeneous shear based plasticity below a critical length scale. This could

provide important guidance for the optimal design of such nanocomposites, as below

a certain size scale of the ductile constituent, it will fail at its theoretical strength and

any further reduction in the critical dimension will not increase the failure strength.

Metals, however are economically costly constituents to use in design. Is it possible

to design bio-inspired structures using cheap and readily available materials? An ex-

ample is silica, which is abundantly found as sand; economically very inexpensive but

also possessing -poor' mechanical properties. In particular, it is brittle and possesses

low fracture toughness, and cannot be used as a structural material in its bulk form.

whether its amorphous glassy form or crystalline quartz form. However, in biological

materials, silica is abundantly used to create protective exoskeletons in many species

of diatoms and sea sponges. We, thus, next moved to the use of this 'poor' engineering

material, silica, instead of metals for creating bio-inspired structures in Chapter 4.

We turn to the structure of diatom exoskeleton (see Figure 1-2) for inspiration. The
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inechanics of diatom-inspired nanoporous silica structures under tensile loading were

investigated using molecular dynamics simulation and theoretical analysis. We found

that the elastic modulus of the nanoporous structures is geometry dependent., and can

be modified for a given porosity by changing the mnicrostructure. Moreover, we found

that the stress-strain loading curves for these silica structures exhibit plasticity be-

low a certain size scale. We were able to establish a size-dependent brittle-to-ductile

transition in nanoporous silica structures. The aspect ratio and shape of pores can be

modified to control the yield strength of these structures, and obtain large amounts

of ductility of up to 120% strain. The structures that show plastic yielding also show

large toughness improvement over bulk silica. These results reveal that nanostruc-

turing with control of porous geometry can lead to application of silica in carrying

loads in small devices.

The advantages of this nanoporous design. however, come at a cost: these struc-

tures lose up to 90% of the stiffness of bulk silica. Since hierarchical design is hvpoth-

esized to be a methodology to achieve multiple property optimization, is it possible

to use hierarchies to improve stiffness of the nanoporous silica structures up to bulk

silica values? Moreover, can this be accomplished by engineering silica alone, i. C.. use

of a single constituent material? In Chapter 5, we demonstrated that it is possible to

enhance the toughness of silica while retaining its stiffness, without using any other

material, through the use of structural hierarchies. We developed an atomistically-

informed mesoscale model that can model bulk silica and nanoporous silica behavior

at the micron length scale. By design of a randomly-dispersed composite structure

of the bulk silica/ nanoporous silica, we are able to retain stiffness up to 70% of

bulk silica while increasing toughness four times over its value. This improvement

in toughness and retaining of stiffness of bulk silica by designing small regions of

nanoporous geometry (~14%) in the bulk phase point to a design methodology for

obtaining stiff and tough materials out of an inherently brittle material (silica) to

begin with. Thus we were able to achieve a hierarchical structure with high stiffness

and toughness through the use of a single material silica which is traditionally

considered an undesirable (mechanically inferior) structural material due to its brit-
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tleness, by arranging it in a hierarchical pattern with substructures that scale from

the nanoscale to inicroscale dimensions.

We then proceeded to the analysis of several levels of hierarchical arrangement of

bulk silica/ nanoporous silica composites on toughness, in Chapter 7. We observed

that the structural R-curve shows a rising characteristic for additional levels of hi-

erarchy. Thus both the absolute value of toughness, and the slope of the R-curve

increase with the number of hierarchy levels (see Figure 6-8. This leads to an increas-

ing defect-tolerance, i.e.. fracture strength loses its sensitivity to changes in crack

length (see Figure 6-10). We showed a non-linear increase in this defect-tolerance

length with additional levels of hierarchy (see Figure 6-11). This behavior can be

linked to the use of multiple hierarchies in biological materials. Stable crack advance

is not catastrophic or disabling for biological materials, since many materials, such as

bone, have the ability to self-heal over time. A rising R-curve behavior. across several

microns or higher length scales, promotes stable crack advance in the material, and

allows it to be useful beyond its fracture initiation load point.

This thesis established a direction and methodology in understanding and applying

universal design principles that can be gleaned from biological materials for materials

design for structural applications. Fully-atomistic and mesoscale modeling showcased

a bottom-up fully computational approach to implementing these design principles.

7.2 Opportunities for future research

The previous section discussed the atomistic, theoretical and mesoscale modeling of

implementation of bio-inspired design principles in hierarchical structures based on

metals and silica. The purpose of this section is to illustrate the shortcomings of the

current work and propose directions for future research on computational design of

bio-inspired hierarchical materials.

The design and manufacturing of bone-inspired metal-matrix nanocomposites re-

quires the simulation of actual metal/metal composite systems. Model materials, as

used in Chapter 3, provide broad design guidelines, but the question of exactly which
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metal constituents to use can be settled by atomistic simulations with well-developed

metal and metal alloy interatomic potentials. The thermodynamic and kinetic sta-

bility of interfaces between the constituents and the equilibrium configuration of the

interfaces are also important considerations to the mechanical behavior that can only

be settled through simulations of particular metal/metal systems and experiments.

The study of the design of diatom-inspired nanoporous silica structures can be

enhanced by analyzing their mechanical properties in a hydrated environment. This

is because the presence of water has been shown to have an effect on silica mechanical

properties, both in bulk and nanoscale [157]. Some preliminary investigations have

been performed on the response of these nanoporous structures in the presence of hy-

drogen and water [156]. Silica surface termination is also affected by the environment

and nature of the exposed crystal surface. and the nanoporous structures possess

sufficient surface area such that the surface mechanical response is important. Also.

these designs experiments can be undertaken for amorphous silica, which is the form

in which bio-silica in diatoms is found.

The study of hierarchical assemblies of silica through atomistically-informed mesoscale

models, as seen in Chapters 5 and 6, can be regarded as a preliminary attempt in this

emerging area of computational study of hierarchies in materials. Mesoscale models

have been used for several other biological systems with hierarchies, such as collagen

fibrils. amyloids. spider silk, and is a promising approach to extracting qualitative de-

sign information about the requirement and advantages of hierarchical design. This

can be contrasted with fractal continuum-level approaches [36, 187] which are much

coarser in the details of geometry and deformation they capture. In further studies.

mesoscale models of hierarchical materials, can be used along with design optimiza-

tion techniques such as genetic algorithms, to optimize material distribution and

arrangement over several length scales of hierarchy. In particular, it may be possible

to optimize R-curve shape over several levels of hierarchy and length-scale to increase

crack propagation toughness, and stop and repair cracks before they cause complete

failure.
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