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ABSTRACT

Astrocytes play an important role in regulating neuronal activity and local brain states, in part by
serving as intermediaries between neurons and vasculature. We postulate that neurons and
astrocytes are sensitive to biophysical conditions in their local environment, in addition to their
participation in traditional signaling networks with other neurons. Mechanically sensitive
astrocytic endfeet ensheathe cerebral blood vessels, which change size in order to regulate blood
flow.
We found that changes in local biophysical state caused by mechanical perturbations exerted
through blood vessels can depolarize astrocytes and some neurons in slice. To test the
hemoneural hypothesis in vivo, we developed a means of inducing dilation using the SUR2B
receptor agonist pinacidil, which is specific to vascular smooth muscle. It was important to
ascertain that pinacidil had no direct effect on astrocytes or neurons, and we confirmed this in
whole cell recordings in cortical slices.
We then used two-photon imaging to visualize astrocytic calcium dynamics in vivo while
manipulating vasodilation in vivo. Pinacidil caused a 10-20% dilation in most vessels, a degree
of dilation of similar magnitude to those naturally evoked by persistent sensory stimulation (e.g.
in fMRI studies). We found that increases in pial arteriole diameter could occasionally evoke
traveling calcium waves in astrocytes. We also saw consistently slow increases (which took tens
of seconds to onset, and persisted for minutes) in astrocytic calcium levels at both endfeet and
soma in cortical layer 1, corresponding to vessel dilation. When vessels partially reconstricted
due to pinacidil washout, calcium levels also showed a relative decrease. At short time scales
(from 0.5 - 5 seconds) we saw strong correlations (>0.5) between small fluctuations in astrocytic
calcium levels (1-3%) and vessel diameter (1-3%). Fluctuations in vessel diameter predicted
similar fluctations in astrocytic calcium, as often and as strongly as the reverse, suggesting
feedback regulation between vascular diameter and astrocytic calcium activation levels.

Thesis supervisor: Christopher I. Moore
Title: Associate Professor of Neuroscience
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Chapter 1

Introduction

Neuroscience is the study of neurons, but understanding the brain and its capacities requires

more than the understanding of neurons alone. The brain also encompasses systems of glial cells

and vasculature, which may be described as separate self-contained systems as a convenient

simplification, but which clearly interact with neurons in meaningful ways. Vascular smooth

muscle (VSM), astrocytes and neurons share many of the same functions, sensitivities and

signaling molecules (Carmeliet 2003). Astrocytes have been shown over the last twenty years to

be involved in interactions with neurons that impact almost every aspect of neural function, from

plasticity to behavior.

Astrocytes regulate the stimulus-driven increase in blood flow known as functional hyperemia,

in response to the activity and metabolic condition of the surrounding tissue. In that role, they

may act as a buffer to protect neurons from fluctuations in biophysical variables induced by

rapidly changing blood flow. While we do not yet understand the exact mechanism and

significance of many of these interactions, it would be hard to deny that neurons live in an

environment shaped by local conditions internal to the brain, to which they are sensitive as well

as to the environment external to the body, and that part of the total environment is shaped by

glia and vasculature.

This thesis will focus on the impact of blood flow on astrocytes, which has not previously been

examined as a potential source of functional modulation in the brain (though not ignored in the

context of ischemia or other pathological dysfunction). Because bidirectional interactions are a

widespread (perhaps universal) feature of biological regulatory systems, we have reason to

suspect that feedback from blood vessels may play a role in the modulation of astrocytic and

neural activity.

That astrocytes physically bridge neurons and vasculature lends support to the hypothesis that

they play a bidirectional role. On the neural side of this bridge, astrocytic processes surround



synapses, while on the vascular side, astrocytic endfeet ensheathe cerebral arteries and arterioles

(Zonta 2002). On both sides, astrocytes have what might be called "receptors" and "effectors,"

allowing them to both sense the local environment and manipulate it. Astrocytes are thus

positioned to act as transducers, allowing changes in blood flow to exert modulatory effects on

neurons. To test whether they indeed function in such a capacity, we have to establish whether

they are responsive to vascular dynamics. While the question of astrocytic sensitivity to the

vasculature has its own intrinsic merit, discovering that astrocytes are responsive to vasculature

is an important step towards demonstrating one way in which neurons could be impacted by

vascular changes, given the already well-established sensitivity of neural function to astrocytic

modulation.

Astrocyte-Neuron Interaction

Astrocytes are sensitive to neural activity through a variety of potential mechanisms, and can in

turn regulate neurons through a variety of potential mechanisms. Astrocytes have glutamate

receptors, allowing them to detect synaptic activity. They are able to modulate neural activity by

releasing neuroactive substances, including glutamate (excitatory), adenosine (inhibitory), D-

serine (inhibitory), and TNF-alpha (involved in homeostatic regulation of plasticity).

Furthermore, at least some of these neuromodulatory effects have been shown to have behavioral

consequences (Halassa 2010) It remains controversial whether the substances are released via

vesicle fusion, as in exocytosis in neurons, or by another mechanism (Hamilton 2010).

Astrocytes are also able to regulate neural transmission and plasticity by modulating their rate of

neurotransmitter uptake: activity of astrocytic glutamate, GABA and glycine transporters are key

determinants of the concentration of these transmitters in the synapse (Haydon 2001, Nedergaard

2003, Perea 2007).

Astrocyte- Vascular Interaction

Through their endfeet, astrocytes can act as vascular effectors. Endfeet are in direct

communication with smooth muscle cells through the basal lamina, allowing them to control

vascular tone, and release a variety of signaling molecules to which the smooth muscle is

responsive. Vasodilators include prostaglandin PGE2, the arachidonic acid metabolite EET,

adenosine, vasoactive intestinal peptide (VIP), nitric oxide (NO), carbon monoxide (CO), and



release of potassium ions into the extracellular space. Vasoconstrictors include endothelin-3,

thromboxane receptor agonists such as U46619, neuropeptide Y (NPY), somatostatin, other

arachidonic acid metabolites such as 20-HETE, and other prostaglandins, such as PGF-2a

(Haydon 2006, ladecola 2007, Straub 2007, Koehler 2008).

Other agents appear to have effects whose polarity depends on the state of the tissue and

vasculature. For example, the mGluR receptor agonist t-ACPD consistently raises calcium levels

in astrocytes. However, the effect of the evoked astrocytic calcium increase depends on vascular

tone (Blanco 2008). When vessels are already dilated, t-ACPD can cause constriction, whereas

vessels pre-constricted to 30-40% of baseline show dilation. Gordon (2008) showed that the

polarity of the vascular response to uncaging of calcium in astrocytic endfeet depends on the

oxygen saturation level in the tissue. When PO2 is low, endfoot activation results in vasodilation,

whereas when PO2 is high, endfoot activation results in vasoconstriction.

These results suggest that astrocytes may be functionally responsive to vascular dynamics and

related local tissue state. However, they are also consistent with the hypothesis that vascular

smooth muscle reactivity depends on PO2 or vessel tone, rather than astrocytes. In this alternate

scenario, the polarity reversing effects of astrocytes on the vasculature would be due to a

difference in the vascular reactivity to astrocytic signaling, rather than due to a difference in the

astrocytic signaling itself. In sum, astrocytes are able to control the vasculature in a state-

dependent way, but it remains an open question whether this context-dependent impact reflects

their integration of signals from the vasculature in astrocytes themselves.

In support of the scenario in which astrocytes modulate their signaling in response to local

conditions, Girouard (2010) showed that the magnitude of calcium increase in an endfoot can

also change the polarity of the vascular response. Whereas "modest" increases in calcium level

(300-400 nM ) cause vasodilation, larger increases (700-800 nM) caused vasoconstriction. These

calcium amplitude effects appeared to be independent of whether calcium was raised by direct

photolytic uncaging in the endfoot or indirectly by electric stimulation of nearby neurons.



Are Endfeet or Somata the Functional Units in Astrocytes and Astrocytic

Networks?

Astrocytic activation and its downstream effects rely on elevation in internal calcium levels.

Within a given astrocyte, calcium elevations propagate across adjacent processes, though they

often do not involve the entire cell. As one example, more calcium activity has been observed in

endfeet than in astrocytic soma following sensory stimulation in barrel cortex (Wang 2006). A

possible cause of endfoot calcium increases could be signals resulting from vascular dilation,
and/or internally generated signals meant to modulate the blood flow.

Inter-astrocyte signaling has also been observed in the form of traveling calcium waves, a robust

phenomenon in brain slice and culture. Evidence indicates they propagate via extracellular ATP

signaling (Arcuino 2002). There is dispute as to how often these waves occur in vivo, and

whether they result from non-physiological conditions (e.g. photo damage from imaging)

(Agulhon 2008). Astrocytes can also transfer ions and other molecules through selective

connexin mediated gap junctions (Giaume 2010).

The varied effects of increases in astrocytic calcium levels appear to depend on the particular

astrocytic compartment in which calcium rises. As one example, it is not known whether endfoot

calcium increases are merely local control elements that interact only with the blood vessel, or

whether the elevated calcium can propagate to the rest of the cell to affect neural activity at the

synapse. Similarly, there may be astrocyte-to-astrocyte spread of calcium waves that do not

propagate to the end of all astrocytic processes. If, however, there is functional communication

between the vascular end of the astrocyte and the neuronal end, we should expect to see traveling

waves that proceed from the endfeet to the somata, and we would predict an impact of vascular

dynamics on neuronal function - i.e. hemoneural effects via astrocytes.

State of Understanding of Vascular-to-Astrocytic Signaling

The recent studies described above (Blanco 2008, Gordon 2008, as well as Newman 2006 in

retina) suggest that astrocytes are functionally responsive to vascular and hemodynamically-

controlled variables in the local tissue state, meaning there are "communication pathways" from

vasculature to astrocytes. Thus far, none of the observations regarding astrocytic sensing of



vascular signals have been made in vivo, none have been made in the neocortex, and the impact

of vascular events on calcium levels per se have not been tested. Most importantly, the impact of

actual vasodilatory events-as opposed to static changes in dilation or oxygen tension levels-

have not been assessed. As such, the relevance of functional hyperemia (or related faster time

scale changes) per se has not been tested. Crucial to this question is the latency between vascular

signals and subsequent astrocytic responses. Responses on the order of <1-2 seconds have the

potential for impacting ongoing information processing, while slower ones are more likely to be

involved in structural plasticity changes or metabolic regulation.

Many possible mechanisms could support vascular-to-astrocytic communication. One that has

direct experimental support is a mechanosensitive pathway. Astrocytes express

mechanosensitive channels (Niggel 2000), and mild mechanical stimulation reliably evokes

calcium waves (Blomstrand 1999). It has been shown in the hippocampus (Angulo 2004) and

olfactory bulb (Kozlov 2006) in vitro, that experimentally generated pressure waves in blood

vessels increase the occurrence of slow inward and slow outward currents in astrocytes. As

such, a mechanosensitive pathway appears to exist, though many other sensing mechanisms

(e.g., of PO2 levels) are implicated by prior data, and also serve as a potential means for vascular-

driven calcium increases in local astrocytes.

One reason there are few studies thus far detailing astrocytic sensitivity to vascular signaling has

been the lack of a conceptual framework predicting such interactions until recently (Filosa 2007;

Moore 2008; Gordon 2008). A second impediment to progress on this topic has been the lack of

adequate methods for independently manipulating the vasculature. As described in Chapter 2, I

have developed and proven specific a means for this form of selective vascular control (Cao

2009).

Overview of Thesis and its Import

The goal of my thesis work has been to develop a detailed description of the hemo-neural

hypothesis (Moore 2008), to develop means for testing this hypothesis (Cao 2009), and to test a

key aspect of this broad proposal, the prediction that astrocytes can detect vascular motion, as

indexed by astrocytic calcium levels.



While searching for a way to test the hypothesis, we found that almost all vasodilators (e.g. NO)

and vasoconstrictors (e.g. chromakalim) are non-specific, either because they directly affect

astrocytes and neurons as well as blood vessels, or because they affect vasculature by

manipulating astrocytes and/or the whole brain environment (e.g. acidosis).

Pinacidil (N-cyano-N'-pyridin-4-yl-N"-(1,2,2-trimethylpropyl)guanidine) was the one exception

we found, offering a way to induce hyperemia through independent control of vascular smooth

muscle tone. Wahl (1989) showed that pinacidil dilates pial arterioles in vivo. Pinacidil exerts

these effects through activation of the SUR2B subtype KATP channel, expressed only in vascular

smooth muscle and possibly endothelial cells. The KATP channel expressed in neurons and

astrocytes is the SURI subtype, and possibly the SUR2A subtype (Aguilar-Bryan 1998).

Whereas SURI channels can only be driven by high pinacidil concentrations (in the millimolar

range), SUR2B is activated by nanomolar concentration pinacidil. Opening potassium channels

depolarizes vascular smooth muscle cells, causing vessel walls to relax and dilate under internal

pressure. Using pinacidil, we were able to test whether astrocytes respond to the state of the

vessels they are regulating.

Vascular-astrocytic interactions are interesting for two basic reasons. First, astrocytes can

modulate neural activity on timescales relevant to plasticity and information processing. Unless

there is some compelling reason to believe that astrocytes are functionally divided into vascular

and neural compartments that have no effect on each other, we would expect that modulation of

astrocytic activity would also lead, at least in some cases, to modulation of neural activity.

Second, independent of (any) neuronal affects, the discovery of a new mode of communication

from vasculature to astrocytes has implications for understanding homeostatic control of

hemodynamics.



Outline

Chapter 2 of the thesis will describe the hemo-neural hypothesis in general, with a more specific

elaboration of the literature review of astrocytic-vascular interactions and possible mechanisms.

This was previously published as Moore (2008).

Chapter 3 of the thesis will report our method for controlling vasodilation in the brain using

pinacidil, a pharmacological agent that does not have direct effects on astrocytes and neurons but

that dilates cerebral arteries through modulation of smooth muscle. This work reflects in vivo

optical imaging and in vitro slice physiology in neurons and astrocytes I conducted. This Chapter

will derive in large part from Cao (2009).

Chapter 4 will report novel findings with respect to the effects of vasodilation on astrocytes

using two-photon imaging to simultaneously record vascular dynamics and astrocytic calcium

levels in distinct compartments (endfeet and somata). The data I have accumulated indicate that

astrocytic calcium levels are impacted by vasodilatory events of a relevant (non-pathological)

physiological size.
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Chapter 2

The Hemo-Neural Hypothesis:

On the Role of Blood Flow in Information Processinga

Abstract

Brain vasculature is a complex and interconnected network under tight regulatory control that

exists in intimate communication with neurons and glia. Typically, hemodynamics are

considered to exclusively serve as a metabolic support system. In contrast to this canonical view,

we propose that hemodynamics also play a role in information processing through modulation of

neural activity.

Functional hyperemia, the basis of the fMRI BOLD signal, is a localized influx of blood

correlated with neural activity levels. Functional hyperemia is considered by many to be

excessive from a metabolic standpoint, but may be appropriate if interpreted as having an

activity-dependent neuro-modulatory function. Hemodynamics may impact neural activity

through direct and indirect mechanisms. Direct mechanisms include delivery of diffusible blood-

borne messengers, and mechanical and thermal modulation of neural activity. Indirect

mechanisms are proposed to act through hemodynamic modulation of astrocytes, which can in

turn regulate neural activity.

These hemo-neural mechanisms should alter the information processing capacity of active local

neural networks. Here, we focus on analysis of neocortical sensory processing. We predict that

hemodynamics alter the gain of local cortical circuits, modulating the detection and

discrimination of sensory stimuli.

a This chapter was previously published under the same title in J Neurophysiol. 2008 May; 99(5):2035-47. Epub
2007 Oct 3, Moore CI and Cao R.



This novel view of information processing-that includes hemodynamics as an active and

significant participant-has implications for understanding neural representation and the

construction of accurate brain models. There are also potential medical benefits of an improved

understanding of the role of hemodynamics in neural processing, as it directly bears on

interpretation of and potential treatment for stroke, dementia and epilepsy.

Introduction

The brain contains a remarkably rich and inter-dependent network of neurons, whose activity is

well correlated with information processing. The study of this network has been the focus of

modem neuroscience (Ramon y Cajal 1996). The brain also contains a rich and inter-dependent

vascular network, whose 'activity'-blood flow-is typically well correlated with neural

activity. Based primarily on knowledge of anatomy, Aristotle believed that the vasculature was

the biological system that manifested its activity in intelligence, emotion and action (Gross

1998). In contrast, the standard modem view of blood flow is that it serves a physiological

function unrelated to information processing, such as bringing oxygen to active neurons,

eliminating 'waste' generated by neural activity or regulating temperature. Except in extreme

cases of cell damage or death, current hypotheses do not include blood flow as a contributor to

shaping neural activity. Realistic computational models of brain function do not include blood

flow as a component, and neurophysiologists do not consider it as a regressor to explain variance

in their data.

In contrast to this canonical position, we propose the hypothesis that hemodynamics play a role

in information processing, through modulation of neural activity by blood flow. We predict that

functional hyperemia, the 'overflow' of blood to a brain region during neural activity, provides a

spatially- and temporally-correlated source of regulation, modulating the excitability of the local

circuit. This shaping of the neural response will, in turn, impact representation.

The goal of this paper is to describe this alternative view of information processing, and to argue

for the importance of incorporating this potential class of mechanism into our understanding of

how different systems in the brain act in a synthetic manner. We focus our comments on the role



that hemodynamics may play in sensory neocortex, as this brain region is widely studied with

regard to its information processing role and a great deal is known about its hemodynamic

regulation. This focus is not meant to detract from the potential importance of hemo-neural

interactions for processing in other brain areas, or in other contexts, as noted throughout.

A 'Turing Test' for Biological Information Processing Systems

In what is commonly regarded as the 'Turing Test' (Turing 1950), the capacity of a computer for

intelligent, autonomous thought is judged by whether the machine can lead a blinded human

observer, unbiased by direct knowledge of the correspondent, to judge it as intelligent.

Borrowing this logic to begin our argument, we provide a 'Turing Test' for biological

information processing systems. We ask whether, given the following list of traits, a scientist

would predict that this 'anonymous' system plays a role in representation in the brain. The traits

of this system are as follows:

e The system possesses a complex anatomical network in the brain

o This system shows micro-scale structure in all brain areas

o This system shows regional anatomical specializations that reflect information

processing, such as layer-specific localization of pathway density in different neocortical

areas.

" Activity in this system is co-modulated synergistically with activity in the known information

processing network-the major neuromodulators such as acetylcholine (ACh), serotonin (5-

HT) and norepinephrine (NE), for example, are key regulators of this system, and almost all

factors that impact activity in this system also impact neural activity.

* Fine regulation of activity in this network is not tightly coupled to metabolic need

" Fine regulation of activity in this network is tightly coupled to neural information processing:

o The spatial and temporal pattern of activity in this system shifts with perceptual input,

motor output, attention and cognitive performance.



" The spatial resolution of differential activity in this system can be as precise as single

cortical columns or olfactory glomeruli.

" The temporal onset of activity in this pathway is within hundreds of milliseconds of

the onset of neural information processing, with a duration similar to the time scales

for neural phenomena considered important for information processing such as

adaptation and synaptic depression

o Localized damage in this system leads to specific and predictable information processing

deficits

Without the predisposition to view hemodynamics as only a mechanism for meeting metabolic

need or other physiologic function, this anonymous description suggests that the vascular system,

and its 'activity' expressed as blood flow, is poised to play a role in information processing

through the directed modulation of neural activity.

The validity of this hypothesis depends on three points. First, whether the anatomy and

physiological regulatory mechanisms can position hemodynamic signals spatially and temporally

to have an impact on neural activity. Second, whether there are known correlations between

information processing and changes in blood flow. Third, whether there are mechanisms by

which changes in hemodynamics in the normal range of function can impact neural activity. In

the following sections, we suggest that these basic criteria are met, and begin to present

hypotheses as to the information processing role that such regulation may play.

The Interleaved Anatomy and Physiology of Hemodynamic and Neural Systems

Anatomical Specificity

The vascular pathways that regulate blood flow are finely articulated and inter-digitated with the

neural architecture. These anatomical vascular patterns are not uniform, and in many cases

reflect the information processing functionality of the brain area. In the neocortex, capillary

density shows specificity in the 'vertical' dimension through enhanced concentration in specific

layers, such as layer IV of primary sensory areas (Patel 1983; Woolsey et al. 1996; Zheng et al.



1991), in contrast to the flat laminar profile in the entorhinal cortex (Michaloudi et al. 2005).

Further, the system shows 'horizontal' specificity within a cortical area, such as the segmentation

of capillary beds to the 'barrels' of rodent somatosensory cortex or 'blobs' and 'stripes' of V1

(Patel 1983; Riddle et al. 1993; Woolsey et al. 1996; Zheng et al. 1991). Subcortical structures

show similar apparent principles of distribution, as the striatum of the basal ganglia shows

enhanced capillary density in the matrix as compared to the striosomes (Feekes and Cassell

2006). The olfactory bulb also shows localization of capillary density in the glomeruli

(Borowsky and Collins 1989). Peripheral nerves and vessels are known to follow anatomically

similar paths (Vesalius), with recent studies showing that nerves and peripheral vascular supply

employ similar developmental guidance mechanisms (Carmeliet 2003; Eichmann et al. 2005).

Overlapping Physiological Regulation

When local populations of neurons are active, they recruit increased blood flow and volume to

the activated region, a process known as 'functional hyperemia' (Grubb et al. 1974; Hoge et al.

2005; Kong et al. 2004; Martin et al. 2006; Roy and Sherrington 1890). Functional hyperemia

can be induced and modulated by a variety of mechanisms, with the relaxation of smooth muscle

around arteries and arterioles a principal final common pathway leading to changes in blood flow

and volume. As discussed below, astrocytes are believed to be a primary route for detecting

neural activity and engaging the vasculature. Recent evidence has also implicated neurons in the

direct control of blood flow. In neocortex, interneurons directly contact vascular processes, and

intracellular electrical stimulation in vitro of interneurons adjacent to vessels can evoke dilation

or constriction (Cauli et al. 2004; Hamel 2006; Hirase et al. 2004; Vaucher et al. 2000).

The mechanisms that induce functional hyperemia typically also impact neural activity. Almost

all chemical factors that are known to modulate blood flow directly or indirectly regulate

neuronal function. Prime examples of this overlap are the major brainstem neuromodulatory

inputs, such as ACh, 5-HT and NE. Single cholinergic projections, for example, target pyramidal

neurons, local interneurons (which in turn impact vasculature), astrocytes and smooth muscles

around vasculature, and modulate activity in each within a restricted zone (see (Hamel 2006) for

a review). Dopamine is believed to play a similar role in frontal and somatosensory neocortex,

with contacts targeted to vasculature within the cortical mantle, implying local synergistic



regulation (Krimer et al. 1998). Other factors known to directly regulate both networks include

the freely diffusing molecule nitric oxide (NO), which relaxes smooth muscle (Palmer et al.

1987) and modulates neural activity in a variety of ways (see below). Processes from single

interneurons and from astrocytes contact and impact neighboring neurons and nearby

microvascular processes (Hamel; Haydon and Carmignoto 2006; Oberheim et al.; Zonta et al.

2003). These examples of local co-regulation imply fine-scale synergy in the function of neural

and vascular networks.

These observations, that the anatomical organization of vascular networks map to known

information processing subdivisions, and that blood flow 'activity' and neural activity share a

wide range of local regulatory mechanisms, are obviously not arguments that compel an

additional role for blood flow. Rather, they suggest that the anatomy and physiology of these two

networks are positioned to function synergistically in information processing. As discussed in the

next section, changes in blood flow correlate strongly with neural activity, but these correlations

are not closely tied to fine-scale metabolic need.

Functional Hyperemia: Spatial and Temporal Correlation with Information Processing

Spatial Precision

The spatial resolution of functional hyperemia is widely debated, and likely varies as a function

of context and brain area. In the somatosensory and visual neocortex, a general consensus exists

that the pattern of increased blood flow is similar to that of subthreshold neural activity, with a

peak in signal that is localized to a cortical column (-400 pm), and an extent spanning several

columns (Dunn et al. 2005; Hess et al. 2000; Lauritzen 2001; Sheth et al. 2004; Vanzetta et al.

2004; Yang et al. 1998). This correlation is strongest when better localized comparisons are

made between the flow delivered to the neocortical layers through small arterioles and

capillaries. Large vessels that run over the surface of the cortical mantle, which contribute

prominently to many imaging techniques, will typically provide artifactually large estimates of

the spread of blood delivered to the tissue (Disbrow et al. 2000; Dunn et al. 2005; Duong et al.

2001; Sheth et al. 2004; Vanzetta et al. 2004).



Vertical specificity in the cortical pattern of functional hyperemia has also been observed. In the

somatosensory neocortex, the peak flow rate evoked by sensory stimulation is localized to

specific laminae (Gerrits et al. 2000; Norup Nielsen and Lauritzen 2001; Silva and Koretsky

2002). Evoked response amplitude and peak flow have also been correlated within cerebellar

laminae (Akgoren et al. 1997). In other brain areas, evidence for more precise delivery has also

been observed, as flow can be localized to a single glomerulus in the olfactory bulb during

stimulus presentation (i.e., < 100pm) (Chaigneau et al. 2003; Yang et al. 1998). Several potential

mechanisms exist for fast and localized regulation of this type, ranging from direct neural control

due to interneuron activation (Cauli et al. 2004; Hamel 2006) to pericyte control of vascular

diameter in capillaries (Peppiatt et al. 2006).

Temporal Precision

Functional hyperemia is also temporally locked to neural activity onset. In the somatosensory

neocortex, blood flow increases measured using laser Doppler have been observed less than 200

milliseconds after the onset of sensory-evoked neural responses (Matsuura et al. 1999; Norup

Nielsen and Lauritzen 2001). Similarly, optical imaging techniques that integrate over local

volumes at somewhat slower temporal resolution typically record a significant increase in flow

within <500 msec of sensory stimulus presentation (Dunn et al. 2005; Malonek et al. 1997;

Martin et al. 2006). The subsequent duration of these increases is often viewed as 'poorly

correlated' with neural activity, as functional hyperemia can sustain for seconds after the onset

and offset of a stimulus. As discussed in a later section, this sustained temporal pattern may not

be a mismatch between activity and flow, but rather may be consistent with the information

processing role of blood flow.

Functional Hyperemia is not Well Correlated with Oxygen Consumption

This increased supply of blood during functional hyperemia does not match most estimates of

metabolic need. As first shown by Raichle, Fox and colleagues (Fox and Raichle 1986), the

increase in oxygenated hemoglobin recruited by neural activity exceeds the oxygen delivery

needs of the tissue. While there is ongoing debate as to the mechanisms of energy use during



neural activity, and as to the role that glucose demand plays in setting blood flow levels, there is

general consensus that functional hyperemia, as the name suggests, overshoots the oxygen

requirements of the tissue several fold (see (Kida and Hyder 2006) and (Raichle and Mintun

2006) for recent reviews).

Several hypotheses have been proposed to account for this significant 'uncoupling' between the

predicted metabolic need for blood and the actual levels observed, ranging from temperature

regulation to metabolite (waste) removal (Hayward and Baker 1968; Woolsey et al. 1996;

Yablonskiy et al. 2000; Zhu et al. 2006). While these alternative physiological processes may be

one role of functional hyperemia, several recent reviews have concluded, in concurrence with the

original conclusions of (Fox and Raichle 1986), that a much stronger correlation exists between

processes associated with signal processing, such as neurotransmitter release and subthreshold

electrophysiological activity, than with other metabolic or physiologic ends (see (Lauritzen 2005;

2001; Peppiatt and Attwell 2004)).

Potential Mechanisms Linking Functional Hyperemia and Neural Activity

We propose an alternative explanation for functional hyperemia, beyond an exclusively

metabolic account. This spatially and temporally directed process may play an active role in

modulating neural activity, and the observed changes in blood flow and volume may not be

overly exuberant, but rather may meet a different goal. Under this hypothesis, functional

hyperemia is not the over-delivery of oxygenated blood for metabolism, but rather the targeted

regulation of neural processing.

We emphasize that while uncoupling of metabolic need and functional hyperemia is an argument

for positing an alternative hypothesis, the proposed information processing role of blood flow is

not exclusive of other physiological roles for increased blood flow. Even if oxygen supply were

proportional to need in the brain, the localized process of functional hyperemia could still shape

neural activity and impact representation, and would still need to be included in any complete

account of the processing machinery that supports information processing.

22



In this section, we discuss a variety of mechanisms through which functional hyperemia could

impact neural activity. We have grouped these into two broad categories, indirect mechanisms,

where astrocytes play a mediating role between vascular and neural networks, and direct

mechanisms, in which astrocytes do not play an explicit role.

Direct Hemo-Neural Interactions

Diffusible Factors

Diffusible messengers that freely cross the blood-brain barrier represent one class of agent that

can directly impact neural activity and that likely increase in concentration with increased blood

volume. Within this class of modulators, nitric oxide (NO) is the best understood. This molecule

diffuses across cellular membranes and can likely freely traverse the blood brain barrier

(Kitagami et al. 2003). There are at least two vascular sources of NO that could impact neural

activity: transport from the blood and production in vascular tissue. The blood carries NO, much

of which is bound to oxygenated hemoglobin. With deoxygenation under physiologic conditions,

the affinity of hemoglobin for NO decreases, leading to its release (Pawloski and Stamler 2002;

Singel and Stamler 2005). While the impact of the blood-derived NO concentration on

vasodilation is a topic of ongoing debate (Pawloski and Stamler 2002; Stamler et al. 1997), an

increase in blood flow and/or blood volume should lead to an increase in the NO concentration in

the surrounding tissues (Kitagami et al. 2003; Kubes et al. 1991; Vallance et al. 1989). Further,

NO is produced in endothelial cells which could be stimulated to release this factor by shear

stress due to enhanced flow (Charles 1999; Garthwaite et al. 2006; ladecola et al. 1993).

The impact of increased NO concentration on neural activity could take many forms. In the

presence of increased NO concentration, thalamic sensory relay neurons in vitro show

depolarization and modulation of voltage-dependent metabotropic G-protein coupled channels,

leading to dampened oscillatory activity and a more tonic mode of transmission (Budde et al.

1992). In the somatosensory and visual thalamus in vivo, increased NO concentration leads to

enhanced stimulus-evoked firing rate, thought to occur through a distinct, NMDA-dependent

mechanism (Cudeiro et al.; Do et al. 1994; Shaw and Salt 1997). In the primary visual cortex,



both suppression and facilitation of evoked firing rate have been observed following local

increases in NO concentration, potentially indicating sub-populations of neurons with distinct

responses in VI (Kara and Friedlander 1999). Analyses based in signal detection theory suggest

that the cumulative effect of these interactions is an enhanced signal to noise ratio of sensory

transmission (Kara and Friedlander 1999). Various forms of synaptic plasticity such as long-term

potentiation and depression are also modulated by NO (see (Hardingham and Fox 2006) for a

recent review). The presence of enhanced blood flow, when coupled with specific patterns of

spike timing or bursting activity, could combine to induce modifications of synaptic efficacy.

Direct support for the view that vascular NO impacts neural activity comes from recent findings

by Garthwaite and colleagues (Garthwaite et al. 2006). They provide evidence that endothelial

NO production leads to a net depolarization in proximal nerve fibers. This tonic depolarization is

thought to be mediated by guanylyl-cyclase coupled receptors in the axons, whose production of

cGMP engages hyperpolarization-dependent depolarizing ion channel receptors, leading to an

increase in membrane potential. While these observations have yet to be tested in vivo, they

provide strong initial reinforcement for the NO aspect of the Hemo-Neural hypothesis.

Mechanical Engagement

Functional hyperemia within a local region of cortex (e.g., a cortical column) could shape neural

responses through its mechanical impact on the tissue. Increased flow, volume, pressure and the

local expansion or motion of vascular processes may lead to the deformation of neural

membranes. In somatosensory cortex, sensory afferent stimulation evokes a 30-40% increase in

the diameter of single pial arterioles, on average a net increase of 10-15 microns, with individual

examples showing expansion in excess of 15 microns (Hughes and Barnes 1980; Koralek et al.

1990; Ngai and Winn 1996).

These local mechanical signals could modulate neural activity through the engagement of

mechano-sensitive ion channels. Two channels positioned to translate hyperemia into

depolarized membrane potentials are the amiloride sensitive Na+ channel and stretch-activated

cation channel, as both types are present in high concentration in the rodent neocortex (Lein et al.



2007). A further example of a neural channel positioned to sense these events in the neocortex is

TRAAK, a stretch-activated potassium channel (Honore et al. 2006; Maingret et al. 1999). This

channel is present in high concentrations across all neocortical layers, and shows peak density in

the soma and proximal dendrites of neurons (Reyes et al. 2000; Talley et al. 2001). Mechanical

engagement of this potassium channel would lead to hyperpolarization, presumably inducing a

net suppression of the firing probability across a local neural population, or modulating firing

modes of neurons, e.g., bursting in a subset of pyramidal cells (Silva et al. 1991).

Temperature Change

Almost all cellular processes are sensitive to temperature. Ion channels show several varieties of

temperature dependence, and the impact of temperature on the driving force across a membrane

is predicted by the Nernst equation. Blood flow largely dictates brain temperature, transmitting

changes in core body temperature to the brain and maintaining temperature in the context of the

cooler extracranial environment (Baker et al. 1994; Hayward et al. 1966; Zhu et al. 2006). While

there is substantial species-specific variation in the regulation of brain temperature (Baker et al.

1994), changes in behavioral and metabolic state regularly induce fluctuations in mammalian

brain temperature of >20 C (Andersen and Moser 1995; Kiyatkin 2004; Kiyatkin et al. 2002). A

dorso-ventral gradient of temperature (from cooler to warmer) exists across the brain, with

higher temperatures in the ventral regions determined by the large basal arteries (Melzack and

Casey 1967; Serota and Gerard 1938), and a steeper gradient in the neocortex (Zhu et al. 2006).

One hypothesis invoked to explain functional hyperemia is that it provides temperature

regulation of the brain, removing heat due to neural activity (Hayward and Baker 1968;

Yablonskiy et al. 2000). Preliminary studies suggest that tactile stimulation (e.g., of vibrissae or

skin) can induce increases in temperature from an unidentified source in somatotopically

appropriate cortex or thalamus of >. 1 C (Gorbach 1993; Melzack and Casey 1967; Trubel et al.

2006), while different dynamics (and cooling) can be observed with sustained sensory

stimulation (McElligott and Melzack 1967; Trubel et al. 2006; Yablonskiy et al. 2000). While a

potentially important role for enhanced flow, the effects of functional hyperemia on temperature

in a local region (e.g., a cortical column) have not been directly measured, and these effects may



vary as a function of relative depth (Zhu et al. 2006). Recent studies using magnetic resonance

imaging as a probe for temperature change have reported decreases in temperature correlated

with sensory-enhanced flow on the order of 1 C in visual cortices (Yablonskiy et al. 2000).

Direct measurements of brain temperature changes during hypercapnia, a condition that

transiently increases flow and arterial blood pressure, have shown decreased brain temperature,

on the order of .250 C, in the non-human primate (Hayward and Baker 1968).

If functional hyperemia has even a relatively small impact on local temperature, there are several

mechanisms through which it could affect neural activity. Evoked hippocampal field potential

responses show increased latency with decreasing temperature changes of less than 20 C (see

(Andersen and Moser 1995) for a review), and decreasing temperature from 37 to 320 C doubles

the amplitude of the after-hyperpolarization and enhances spike frequency adaptation (Thompson

et al. 1985; Thompson and Prince 1986). Neurons in rodent parietal cortex show substantial

temperature dependence in the physiological range. Decreases of 10 C from 360 to 350 C can

lead to a complete suppression of ACh-induced action potential firing (Mednikova and Pasikova

2005). In layer II pyramidal neurons in the primary somatosensory cortex, a 20 C decrease in

temperature (from 350 to 330 C) induces a 50% decrease in the mini-EPSC rate, a 50% increase

in the input resistance, and a decrease in the current-injection evoked firing rate (Simkus and

Stricker 2002).

The changes in synaptic response observed with small changes in temperature in the

physiological range in parietal cortices suggest that these effects could have a substantial impact

on the net output of a cortical column. For example, within the rat barrel cortex, a difference in

the rise time of excitatory conductances on the order of 1 millisecond can determine whether or

not a vibrissa deflection will evoke a spike (Moore and Nelson 1998; Moore et al. 1999; Simons

and Carvell 1989; Wilent and Contreras 2005). Many of these changes associated with

temperature could modulate conductance and evoked release on this time scale, altering sensory

signal transmission.



Indirect Mechanisms: Astrocyte-Mediated Hemo-to-Neural Signaling

Anatomically, astrocytes are positioned between neurons and vasculature, and play a key role in

neural-to-hemodynamic signaling. However, many recent studies have demonstrated that

astrocytes also modulate neural activity (for reviews, see (Araque et al. 2001; Nedergaard et al.

2003; Newman 2003; Volterra and Meldolesi 2005)). In this section, we propose that glia may

mediate hemo-to-neural interactions, translating functional hyperemia-related vascular signals

into changes in neural activity and, in turn, information processing.

The Anatomical Interconnectivity and Range of Impact of Astrocytes

Astrocytes have multiple processes that are interconnected with glial, neural and vascular

elements. Astrocytes are densely interconnected with other astrocytes, communicating through

gap junctions and chemical signals. As first observed by Golgi ((Golgi 1885)), astrocytic end-

feet form a dense net of multiple discrete contacts with vessels (Nedergaard et al. 2003).

Astrocytic end-feet also overlap axonal-dendritic connections in the central nervous system,

forming the 'tripartite synapse' (Araque et al. 1999; Nedergaard 1994; Nedergaard et al. 2003).

In the hippocampus, 57% of synapses form this kind of anatomical and functional unit (Lehre

and Danbolt 1998).

Individual astrocytes are proposed to have physiological impact over 'micro-domains' spanning

- 300 - 400 microns in diameter (Nedergaard et al. 2003; Oberheim et al. 2006). Within this

extent, a given astrocyte contacts up to thousands of neurons (Fellin et al. 2004; Oberheim et al.

2006), and their end-feet line microvessels at the 'border' of a putative microdomain (Simard et

al. 2003). Signal transmission in astrocytes is triggered by traveling calcium oscillations that

induce the release of several factors (Charles et al. 1991; Cornell-Bell et al. 1990). One support

for the 'microdomain' view is that spreading calcium waves and the related process of ATP

diffusion extend approximately this distance. Evidence also exists for the selective induction of

calcium waves in sub-zones within an astrocyte. Spontaneous calcium oscillations in

hippocampal slices can occur in single astrocytic processes (Pasti et al. 1997; Taylor-Clarke et al.

2002) and electrical stimulation of the cerebellum can recruit activation in sub-regions of glia



(Grosche et al. 2002; Grosche et al. 1999). Local expression of calcium waves may provide a

more precise and more rapid means of communication between vasculature and neurons via

astrocytes.

Role of Astrocytes in Neural-to-Hemodynamic Communication

Several theories predict that astrocytes play a major role in translating neural activity into

enhanced blood flow (Araque et al. 1998a; Paulson and Newman 1987; Pellerin and Magistretti

1994; Rossi 2006; Takano et al. 2006; Zonta et al. 2003). Calcium signaling in astrocytes can be

induced by a variety of factors released by neurons, including glutamate, GABA and ACh (Fellin

et al. 2006), and this increased calcium signal may trigger enhanced blood flow through vascular

end foot contacts. Initial support for this view came from the observation that glutamate

application in culture induces the production of vasodilatory substances in astrocytes (Fellin et

al. 2006). Direct support comes from in vitro and in vivo studies, in which either electrical

stimulation of local neurons or direct stimulation of astrocytes causes dilation of local vessels in

a fashion correlated with increased astrocytic calcium concentration (Filosa et al. 2004; Mulligan

and MacVicar 2004; Takano et al. 2006; Zonta et al. 2003).

Astrocyte-to-Neuron Communication

Astrocytes can regulate neural activity through a variety of mechanisms. A prominent

mechanism is the release of neuro-active factors, including but not limited to steroids,

neuropeptides, growth factors, aspartate, prostaglandin E2, and D-serine (Haydon and

Carmignoto 2006; Volterra and Meldolesi 2005). The potentially most important member of this

class is glutamate. In culture and slice preparations, glutamate release from astrocytes can cause

large, NMDA-dependent depolarizations in adjacent neurons (Araque et al.; Hassinger et al.

1995; Parpura et al. 1994; Parri et al. 2001; Pasti et al. 1997). Further, direct stimulation of

adjacent astrocytes enhances the rate of spontaneous miniature excitatory post-synaptic currents

(EPSCs) and net depolarization in neighboring neurons (Araque et al. 1998a). In some

circumstances, the net effect of astrocytic stimulation is the potentiation of presynaptic neural

inputs (Jourdain et al. 2007), while in others the effect of the astrocyte-induced increase in

spontaneous release is synaptic depression, decreased evoked response amplitudes and increased



failure rate (Araque et al. 1998a). At the neuromuscular junction, glial regulation is responsible

for -50% of the synaptic depression observed during repetitive stimulation (Newman 2003;

Rochon et al. 2001). Similarly, astrocytic release of adenosine is believed to play a role in

heterosynaptic suppression of transmission (Manzoni et al. 1994; Zhang et al. 2003). Some

evidence also suggests a role for astrocytic glutamate release in maladaptive excitatory activity,

specifically in the generation of epileptogenic-like activity in pyramidal neurons (Kang et al.

2005).

Astrocytic glutamate release can also impact local circuit function through influence on

inhibitory intemeurons. Release of caged calcium in hippocampal astrocytes increases the rate

of spontaneous activity in inhibitory interneurons, and the rate of inhibitory post-synaptic

currents observed in neighboring neurons (Liu et al. 2004). Further, activation of intemeurons by

astrocytic glutamate facilitates the potentiation of inhibitory input to pyramidal neurons, leading

to a decrease in the failure rate of presynaptic release from intemeurons (Kang et al. 1998).

In addition to the direct release of factors onto neurons, other astrocytic mechanisms have been

shown to modulate neural activity. The uptake of glutamate is a well-established role of

astrocytes, and provides a complementary mechanism for neural regulation. In the retina, the

amplitude and duration of ganglion cell EPSCs are significantly increased when the glial

glutamate transporter is blocked (Higgs and Lukasiewicz 1999), suggesting that glia can act to

regulate the duration of excitatory signal transmission.

The Impact of Functional Hyperemia on Astrocyte Activity

While it is accepted that astrocytes can impact neural activity, thereby providing a key step in the

hemo-astro-neural progression proposed here, the second essential process, the impact of

functional hyperemia on signaling in astrocytes, has not been established. Functional hyperemia

could cause signaling in astrocytes relevant to neural information processing through a variety of

mechanisms, including all of those described above for direct hemo-neural modulation.



Diffusible messengers carried by blood may modulate astrocytic function. Application of NO to

astrocytes in vitro induces an influx of calcium (Li et al. 2003) and glutamate and ATP release

(Bal-Price et al. 2002). Astrocytes and endothelial cells are known to interact closely in

development, in cell signaling and in the maintenance of the blood-brain barrier (see (Abbott

2002) for a review). The dense apposition of astrocytic endfeet over capillary endothelial cells

(Kacem et al. 1998) positions them to be modulated by endothelial NO release, which can be

triggered by increased hemodynamic activity (Charles 1999; Garthwaite et al. 2006; ladecola

1993).

Mechanical interactions are also a potential mechanism for vascular to astrocytic signaling

leading to neural modulation. Several studies have demonstrated the induction of calcium waves

with mechanical deformation in astrocytes (Charles et al. 1991; Islas et al. 1993; Niggel et al.

2000; Stout and Charles 2003). Astrocytic end feet are, as described above, in an ideal position

to detect the mechanical impact of functional hyperemia, as they ensheath cerebral microvessels,

and endfeet have a high density of mechano-sensitive connexin channels that trigger intracellular

calcium release (Simard et al. 2003).

The Impact of Hemo-to-Astrocytic Activation on Neural Processing

As described in the above review, neural activity is modulated by astrocytic activity, and

astrocytes are in a key position to be modulated by changes in blood flow and volume. As such,

functional hyperemia should, through this indirect mechanism, modulate neural activity.

Anatomical and physiological considerations suggest that these proposed interactions will occur

at least within a microdomain of < 300-400 microns (Anderson and Nedergaard 2003; Oberheim

et al. 2006). The calcium waves in astrocytic processes move slowly, on the order of microns per

second (Mulligan and MacVicar 2004; Wang et al. 2006): However, calcium waves can occur in

astrocytic processes locally opposed to neurons, and sensory stimulation recruits astrocytic

processes on a faster time course (<1s) than cell bodies (Takano et al. 2006). These findings

suggest that local interactions (<10 micron) may be crucial if indirect mechanisms contribute

significantly to a more rapid hemodynamic impact on ongoing neural activity, and more



generally that the hemo-astro-neural pathway may impact longer time course state-related

phenomena.

Summary

The pathways and time courses predicted by the Hemo-Neural hypothesis, and the related

interactions between neurons, vasculature and astrocytes, are summarized in Figure 1. In the

diagram, the gray arrows represent accepted interactions or those for which primary data

currently exists. As reviewed above, neural activity is believed to induce functional hyperemia

through direct contact with vasculature, and/or through astrocytic intermediaries. Astrocytic

activity, in turn, has been shown to be able to drive vascular dilation and contraction, and also to

alter neural processing.

The darker arrows in Figure 1 constitute the present hypothesis. They represent the direct and

indirect pathways through

which hemodynamic Neuron Blood Vessel

modulation of neural (functional hyperemia)

information processing is

proposed to occur. The time

course at the bottom of

Figure 1 shows the predicted Accepted theory

Astrocyte
evolution of these effects. (glia) Dre'hemo-neural

The drectpathay (lack(mechanical, diffusable messenger, thermal)
The direct pathway (black

arrow) is predicted to cause Indirect hemo-neutat

rapid neuromodulation, 'Direct'(msec-sec)

occurring milliseconds to 'Indirect'(sec-tens of sec)

seconds after the onset of Figure 1

functional hyperemia. The indirect pathway that requires astrocytic transduction (dark gray

arrows) is predicted to show delayed modulation, occurring seconds to tens of seconds after the

onset of functional hyperemia.



One Impact of Blood Flow on Information Processing: Cortical Dynamics

The above evidence suggests that both direct and indirect mechanisms exist through which

functional hyperemia can modulate neural activity. In the current section, we propose one kind

of impact of functional hyperemia on neural information processing, the dynamic modulation of

neural excitability in sensory neocortex.

With regards to the primary somatosensory cortex, functional hyperemia has spatial structure on

the order of a single cortical column ( 400 microns), its onset follows neural activity by 5 200

msec, and enhanced blood flow and volume sustain for seconds after the onset of neural activity.

We predict that this signal provides a spatio-temporally targeted modulator of the gain state of

neural transmission. The mechanisms defined above suggest that either enhancement or

suppression of spontaneous and evoked activity can occur, and that the directionality of

modulation depends on brain area and context. Facilitation of neural activation could be engaged

through recruitment of mechano-sensitive cation channels, through modulation by NO or through

astrocyte-mediated depolarization.

Depolarization or hyperpolarization of this type will impact the response of cortical neurons to a

sensory stimulus, and dynamics of this kind have been proposed as a means of optimizing

cortical function for perception. One hypothesis suggests that the transition from high cortical

gain to low cortical gain represents a transition from states optimal for detection to those optimal

for discrimination of sensory stimuli, respectively (see Moore et al., 1999; Moore, 2004 for

reviews). High gain modes in which a broader region of a cortical map is activated by a sensory

stimulus are predicted to facilitate the detection of input, but may be sub-optimal for precise

stimulus representation. In contrast, low gain modes with sharper, more delimited lateral spread

of signal are predicted to facilitate the precise representation and discrimination of sensory

stimuli, but are less optimal for detection of weaker sensory signals. This transition could be

modulated by either the pattern of ongoing sensory stimulation, reflecting the information

context in which processing is occurring. For example, high-frequency sensory input leading to

an adapted state is predicted to impair detection and facilitate discrimination. Similarly, internal



state properties may also modulate cortical activity levels and information processing, such as

ongoing activity in the thalamo-cortical loop at alpha-band frequencies (Worden et al. 2000).

Perhaps the most important context in which to consider the Hemo-Neural hypothesis is during

natural behavior. In many active sensing contexts, preparatory motor or cognitive behaviors will

lead to an increase in blood flow in the cortical representation that is about to process incoming

signals, and may 'pre-condition' neural processing by inducing enhanced blood flow prior to the

receipt of meaningful information. One example of a motor behavior that is correlated with a

shift to an attentive perceptual state is the 'whisking' engaged by rodents during active sensing

with the vibrissae. When a rat searches its environment, looking for an object to contact and

identify, it actively whisks its vibrissae forward and backwards at a rate of 5-12 Hz (Carvell and

Simons 1990; Kleinfeld et al. 2006; Welker 1964). During search, whisking can begin up to

seconds prior to contact with the surface. During whisking in air, both sensory feedback and

input of signals from the motor system drive activity in SI (Fee et al. 1997; Ferezou et al. 2006;

Kleinfeld et al. 2002), activity that should produce enhanced blood flow within 2-3 cycles of the

onset of vibrissa motions (or -250 msec). Under the present hypothesis, blood flow would

'anticipate' the acquisition of information, helping transform cortical circuits to more optimally

represent the incoming signals prior to surface contact.

This kind of anticipatory change in blood flow is not limited to cases where active motor

exploration precedes acquisition. In many 'cognitive' paradigms, blood flow modulation occurs

in anticipation of or independent of the receipt of sensory input. One example of a context in

which hemo-neural modulation of cortical dynamics may impact information processing is

through enhancement of evoked responses during selective attention. A wide variety of studies

have demonstrated that attention to a region of input space (e.g., a retinotopic position or body

area) is correlated with enhanced evoked action potential firing of cortical neurons with receptive

fields overlapping the attended region (Bichot and Desimone 2006). These effects typically

emerge 100-500 milliseconds after the onset of attentional focus (Khayat et al. 2006; Khoe et al.

2006; Worden et al. 2000).



Functional hyperemia is positioned to modulate activity during attention, as enhanced blood flow

is often localized to regions of the cortical map corresponding to the attended region of space.

For example, in area V1, selective and divided attention to specific quadrants of the visual field

is correlated with increased BOLD signal in the attended sub-regions of the retinotopic map

(McMains and Somers 2004). Similarly, anticipation of contact in a specific body region is

correlated with relatively greater blood volume in the corresponding part of the SI homunculus

(e.g., the hand area if finger contact is predicted) as compared to non-cued body regions prior to

stimulation onset (Drevets et al. 1995).

Ongoing blood flow and volume levels that impact representation may be determined by any of

the many mechanisms that control functional hyperemia. Of particular interest given the current

proposal is the regulation of hyperemia by neuromodulators already implicated in regulation of

attention, such as acetylcholine. A wide variety of studies have suggested that ACh release may

be essential to the cortical dynamics mediating attention and working memory (Feldman et al.

2005; Furey et al. 2000; Robbins et al. 2000; Sarter et al. 2005). Under the current hypothesis,

ACh would have synergistic neuromodulatory and hemodynamic influences during enhanced

attentional states, modulating the local vascular and neural network in the service of a common

information processing goal.

Why Engage Functional Hyperemia for Neural Modulation?

This proposal begs the question as to why functional hyperemia is a 'necessary' aspect of neural

modulation, given that other mechanisms are known to exist that recruit these dynamics. Put

another way, why would such a mechanism evolve if it appears redundant to existing processes?

There are several responses to this kind of teleological question applied to biology.

The emergence of a neuroregulatory role for functional hyperemia is not difficult to conceive. If

one presumes any of the several possible metabolic needs for activity-driven increases in blood

flow, in agreement with the existing theories for this phenomenon, then a correlation is present



between blood flow and neural activity. If an 'overflow' of this supply also proved adaptive for

the functionality of neural representation, then one would predict its evolutionary emergence

through the reinforcement of this correlation. Further, there is strong evidence from

invertebrates for the vascular transmission of neuromodulatory substances that regulate neural

firing, neural oscillations and behavior, e.g., in control of the stomatogastric ganglion (Marder et

al. 2005; Nusbaum and Beenhakker 2002).

There are also important physiological reasons why functional hyperemia may be employed to

suppress neural activity. Unchecked neural activation following stimulation is a hallmark of

forms of epilepsy and schizophrenia (Blum and Mann 2002), and in the limit becomes the cause

of excitotoxic cell death (Tsuang et al. 2000). Metabolic 'control systems' such as the

hemodynamic pathways could, therefore, have evolved mechanisms for neural regulation

targeted to the basic health of the system that have additional benefit for the efficient

representation of information. The existence of severe maladies characterized by failed neural

suppression suggests, further, that mechanisms of neural gain regulation are not sufficient in a

significant fraction of the population. As such, the addition of a novel mechanism (functional

hyperemia) is not redundant.

A further argument for a role for functional hyperemia in information processing is its unique

character. While there are several possible mechanisms through which functional hyperemia may

differentially impact different neuron or synapse classes, a distinctive feature of this mechanism

is that it acts on the neurons throughout a local area, 'binding' their function. This kind of impact

would be predicted to be of particular significance in representations, like a sensory map, where

spatial position within a local network is important to representation. High-resolution sensory

cortices such as primary visual cortex (Hubel and Wiesel 1977) and the vibrissa barrel cortex

(Andermann and Moore 2006; Andermann et al. 2004; Moore and Andermann 2005) are

characterized by clustering of neurons with similar tuning in an overlapping set of columns.

These interdependent columnar systems may be ideally positioned to be regulated by a

modulator acting on the spatial scale currently ascribed to hyperemia.



Recent hypotheses have emphasized that energetic efficiency in brain operation is a paramount

constraint, and therefore leads to sparse coding through the dynamic restriction of activity and

the adaptability of networks (Laughlin and Sejnowski 2003). In such a situation, the

interdependence of computation and metabolism would be adaptive. The synergistic engagement

of the metabolic supply network to regulate coding is, in this context, a consistent proposal.

Perhaps the most appropriate answer to the question of why functional hyperemia 'needs' to

exist as an information processing mechanism is that this question is ill-posed. The attempt to

delineate the evolutionary necessity of any given mechanism in an existing organism is almost

always an open-ended endeavor. This practice is particularly difficult when judging the

importance of a newly proposed mechanism, where the nature of its interactions is only

hypothesized. Analysis of the neuromodulatory role of functional hyperemia is, at present, best

focused on the study of the observable impact of hemodynamics on neural processing, reserving

a further discussion of the evolutionary 'necessity' of this mechanism until more is known about

its basic biology and its impact on behaviorally-relevant information processing.

Clinical Implications of the Hemo-Neural Hypothesis

There are several potential clinical implications of the prediction that functional hyperemia

modulates neural activity. Diseases that impact the vasculature and impact cognitive function

may in part be operating through a failure in the hemo-neural interactions, and the loss or

alteration of neuromodulatory function that results.

The negative outcomes of stroke are commonly believed to arise only from localized cell death

in the focus of the lesion and the metabolic losses and stresses associated with deprived flow.

Under the current hypothesis, the altered blood supply in itself, and the subsequent loss of

normal functionality in a given neural circuit, may be causal in behavioral symptoms even if

downstream neurons are viable. One cause of cell death in stroke is hyper-excitation of the tissue

resulting from a variety of factors (Mattson 2003). A direct prediction of the hemoneural



hypothesis is that decreased blood flow could induce an increase in the excitability of neural

tissue, and that this loss of a suppressive mechanism could contribute to this post-traumatic

response. The loss of suppression also predicts a period of enhanced hyper-excitability at the

edge of the lesioned area, sustained until homeostatic mechanisms can be engaged, and leaving

the tissue beyond the predicted penumbra of obvious damage in a maladaptive state for normal

information processing.

Recent advances suggest that Alzheimer's disease is initially expressed as a vascular

phenomenon, with impaired cholinergic dilation of blood vessels implicated in its

pathophysiology (Cauli et al. 2004; de la Torre and Mussivand 1993; Geaney et al. 1990;

ladecola 2004; Sato and Sato 1995). As such, the Hemo-Neural hypothesis would predict an

impact of vascular decline on hemo-neural interactions, taxing the information processing

capacity of the system through loss of one form of normal modulatory control. A specific

prediction is that pre-diagnosis Alzheimer's patients could show enhanced facilitation and/or the

failure of tonic and phasic levels of intracortical suppression, in agreement with recent

transcranial magnetic stimulation studies (Liepert et al. 2001; Pierantozzi et al. 2004).

Epilepsy can arise through a broad variety of mechanisms, including a failure in the normal

mechanisms of neural suppression (Duncan et al. 2006). The Hemo-Neural hypothesis predicts

that hemodynamic abnormalities could lead to these symptoms. In agreement with this

prediction, abnormal vascular anatomy is a hallmark of seizure disorders (Leutmezer et al. 2003;

Zaidi et al. 2000) and a compromised blood-brain barrier predicts seizure onset (Oby and Janigro

2006). Further, vagal nerve stimulation has recently been successfully employed to suppress the

onset of epileptic seizures (DeGiorgio et al. 2000; Schachter 2002) and could operate at least in

part through vascular regulation.

A failure in cortical dynamics is also widely predicted to be a causal factor in schizophrenia.

Schizophrenic subjects show several indications of failed cortical suppressive mechanisms,

including decreased prominence of gamma oscillations (Lee et al. 2003; Spencer et al. 2003).

While this symptomatology has many proposed neural causes (Lewis et al. 2005; Woo and Lu



2006), vascular abnormalities in resting blood volume distribution and presumed vascular

anatomy have also been observed in schizophrenic subjects (Cohen et al. 1995), and could

contribute.

Other Links Between Hemodynamics and Information Processing

The interdependent nature of vascular and neural interactions suggests other hypotheses as to

their combined function in information processing, beyond the suggestion that functional

hyperemia regulates neural dynamics. The role of hemodynamics in shaping oscillatory

behaviors-such as those expressed in EEG and MEG signals-should be considered. This

suggestion is particularly salient given the potential role of NO in regulating thalamic rhythms

(Pape and Mager 1992), and astrocytes in unifying activity across disparate neurons (Angulo et

al. 2004; Fellin et al. 2004). Vascular oscillations are also prominent features of the cerebral

vasculature (van Helden et al. 2006), and changes in these hemodynamic state properties may

interact with neural state properties. A further prediction mentioned above is that the

combination of functional hyperemia and patterns of neural activity may facilitate the induction

of longer-term neural plasticity. On a longer time-scale, selective regulation of the blood-brain

barrier, shaped by the recent history of flow to the region, could also serve an integrative role

(Krizanac-Bengez et al. 2004; Leybaert 2005).

A more radical aspect of the Hemo-Neural hypothesis than the one elaborated above is that the

vasculature also plays a direct role in carrying information, beyond just modulation of neurons. If

neural activity in one region (for example, a specific layer of the neocortex) were to produce a

signal that was taken up by the vasculature, it could be selectively transmitted to a downstream

target (e.g., other layers of the neocortex). At least two mechanisms could support this kind of

communication. Peripheral and central vascular tissue is capable of electrical coupling (Segal

and Duling 1987; Yamazaki and Kitamura 2003). Electrical signals can be transmitted,

putatively through gap junction connections in endothelial and/or smooth muscle cells, from

capillaries to their feeding arterioles, and may condition a vasodilatory response. These changes

in membrane potential in vascular cells can be driven by neuromodulators (e.g., ACh)

(McGahren et al. 1998) and by local changes in flow (e.g., the occlusion of a neighboring



arteriole) (McGahren et al. 1997). These signals generated 'downstream' could induce voltage

dependent interactions in upstream targets, from a capillary bed and the granular layers of the

cortex, for example, to an arteriole and the supragranular layers. Moving in the other direction,

the transport of diffusible messengers is also a possibility. Diffusible messengers produced in a

superficial cortical layer could be transported down an arteriole and released in deeper layers.

This view, while even further from currently accepted models of information processing,

similarly bears further investigation.

Future Directions

The ideas presented have several direct implications for future research. The Hemo-Neural

hypothesis argues that any computational model or broader theory that seeks an accurate and

biophysical account of information processing in the brain should include hemodynamics as an

explicit component. This view also suggests that the wealth of studies that have investigated

hemodynamic patterns and neural-to-vascular coupling are not only informative with regards to

the metabolic functioning of the brain, but are also descriptions of signals that impact

representation. As such, fMRI and related techniques are not simply second-order localization

tools, but probes of part of the process of information representation. If true, there are important

considerations as to the logical interpretation of these hemodynamic signals, and of how they

synergistically interact with the variable that most of these studies would like to track, neural

activity.

The Hemo-Neural hypothesis suggests several lines of experimentation to systematically test this

proposal. Understanding the impact of hemodynamics on neural activity requires the independent

regulation of blood flow in vivo. This kind of probe is essential for systematically dissociating

these effects from alternative explanations, and for ultimately addressing these predictions during

active behavior. An informative frustration in attempting these experiments is the extensive

overlap in factors that regulate hemodynamics that also directly or indirectly regulate neural

activity through other pathways. The interdependent modulation of these two systems, while a

strong argument for the Hemo-Neural hypothesis, also makes the discrete investigation of these

predictions difficult. This challenge underscores the inter-related nature of central neural and



hemodynamic processes, and the likelihood that they function in tandem in the modulation of

information processing.
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Chapter 3

Pinacidil Induces Vascular Dilation and Hyperemia in vivo and Does Not

Impact Biophysical Properties of Neurons and Astrocytes in vitro"

Abstract

Vascular and neural systems are highly interdependent, as indicated by the wealth of intrinsic

modulators shared by the two systems. We tested the hypothesis that pinacidil, a selective

agonist for the SUR2B receptor found on smooth muscles, could serve as an independent means

of inducing vasodilation and increased local blood volume to emulate functional hyperemia.

Application of pinacidil induced vasodilation and increased blood volume in the in vivo

neocortex in anesthetized rats and awake mice. Direct application of this agent to the in vitro

neocortical slice had no direct impact on biophysical properties of neurons or astrocytes assessed

with whole-cell recording. These findings suggest that pinacidil provides an effective and

selective means for inducing hyperemia in vivo, and may provide a useful tool in directly testing

the impact of hemodynamics on neural activity, as recently predicted by the Hemo-Neural

hypothesis.

Introduction
Interactions between the brain and blood are essential to health. Metabolic supply of the brain is

provided through the vasculature, and disruptions of this relationship, in extreme cases such as

stroke, is a key characteristic of neurologic disease. Neuro-Hemodynamic coupling is also

demonstrated in healthy individuals on faster time scales in functional hyperemia, the local

increase in blood flow and volume that accompanies neural activity (Sherrington 1890, Raichle

1998).

b Portions of this chapter were previously published under the same title in Cleve Clin J. Med, 2009 Apr; 76 Suppl
2:S80-5, authors Cao R, Higashikubo BT, Cardin J, Knoblich U, Ramos R, Nelson MT, Moore CI, Brumberg JC.



We have recently proposed a further level of interdependence between the two systems, the

Hemo-Neural hypothesis, which predicts that hemodynamic events such as functional hyperemia

will modulate neural activity (Moore 2008). An impact of hemodynamics on neurons could

occur through a number of mechanisms including the activation of mechanoreceptors on

astrocytes or neurons, a thermal impact of increased blood flow on ion channels and vesicle

release, and the local increase and diffusion of blood-borne factors such as nitric oxide

(Garthwaite 2006, Kozlov 2006). Astrocytes are predicted to play a key role in hemo-neural

modulation, as they are tightly coupled to the vascular system and participate in a number of

neural functions (Nedergaard 2003, Haydon 2006). Through these mechanisms and others,

hemodynamics could shift the 'state' of the local neural circuit, thereby impacting information

processing. This regulation of neural dynamics could also provide a homeostatic mechanism for

promoting healthy brain function (e.g., prevention of kindling).

To study the impact of hyperemia on neural and astrocytic activity in vivo, it is essential to

independently control blood flow in the brain with means that do not directly impact neurons or

astrocytes. Pinacidil is a sulfonylurea receptor agonist that opens the SUR2B potassium-sensitive

ATP channel (Ashcroft 2000). In the telencephalon, SURI receptors are localized to neurons and

glia (Levin 2001, Zawar 1999). In contrast, SUR2 receptors are localized to vasculature, with

SUR2A in cardiac and skeletal muscle, and SUR2B in vascular smooth muscle, with primary

expression in smaller arteries, arterioles and capillaries (Li 2003). By opening the SUR2B

channel, pinacidil hyperpolarizes and relaxes smooth muscle, causing vasodilation. Pinacidil is a

potent and selective SUR2B agonist, with a dissociation constant of 135nM and EC50 value of

680nM (Schwanstecher 1998) . This agonist is -5 times more specific for SUR2B than SUR2A,

and shows -5 orders of magnitude lower affinity for SURI (in the mM range) (Schwanstecher

1998; Shindo 1998; Russ 2003; Higdon 1997). Previous studies have demonstrated the efficacy

of this agent as a vasodilator (Wahl 1989, Hempelmann 1995, Quayle 1997)

In the present study, we systematically examined the utility of pinacidil as an agent for the

selective induction of hyperemia. First, we quantified the vasodilation induced by pinacidil in

vivo, and examined local increases in blood volume in the parenchyma. These studies were

conducted in anesthetized rats and awake mice. Second, we used in vitro slice recordings to



examine whether direct application of relatively high concentrations of pinacidil would have any

impact on the physiology of neurons and astrocytes. We found that in vivo, pinacidil induces a

level of vasodilation and increased local blood volume consistent with natural functional

hyperemia across a variety of preparations, and that there was no detectable impact of this agent

on intrinsic biophysical measures in neurons and astrocytes in vitro.

Methods

Animal Preparation in vivo

To probe the impact of pinacidil on arterial diameter and parenchymal blood volume in vivo, we

measured the effects of topical application to the primary somatosensory cortex (SI) of rats and

mice. Rats and mice (Sprague-Dawley, 250-500 grams, CD57 BL/6 mice, -25 grams) were

anaesthetized with Nembutal (50 mg/kg IP initial dose, followed by 5mg supplements as needed

for maintenance). Animals were maintained at - 370C by a heating blanket. A craniotomy

(-2mm diameter in rats, -1mm in mice) and durotomy were performed over SI, and the cortex

protected with Kwik-Cast silastic elastomer (WPI) while an imaging chamber was attached with

dental cement. Kwik-Cast was removed, and the chamber filled with 0.9% saline and sealed with

a round coverglass (avoiding bubbles) secured with cyanoacrylate.

Controlling Visualization During Drug Delivery in vivo

To minimize brain motion and flow artifacts during visualization of hemodynamics in the rat

preparation, we constructed a customized, pressurized chamber with inflow and outflow for

constant perfusion. The volume of the chamber was ~0.3 ml, and the flow through the system

averaged about 2ml/minute. The chamber consisted of a lcm diameter, 3mm high plastic ring

with a flat top profile and a base shaped to the angle of the lateral skull edge over SI. In the wall

of this chamber, three large holes were drilled and patched with pieces cut from rubber NMR

septa (VWR) to create re-sealable ports for drug application and bubble removal. Three

additional permanent holes were drilled in the chamber walls, through which blunted lcm

lengths of 18-gauge stainless steel needles were wedged and affixed with superglue: one for

ACSF inflow, one for combined outflow, and the third for pressure regulation. The overall

pressure of the chamber was regulated by a small vertical tube whose height (and thus fluid



level) could be adjusted on a manipulator stand, and whose other end was open to the

atmosphere. Inflow and outflow were controlled via regulators on a gravity feed system. In the

mouse preparation, the need to control visualization was addressed by maintaining a constant

rate of wicking in a smaller-profile open chamber, and a microfluidic switch with 12ptL of dead

space was added to minimize propulsive impact and delay due to switching between solutions.

Drug and ethanol solutions were delivered to rat and mouse chambers after being heated to

physiological temperature, 370C degrees.

Optical Measurement of Hemodynamics in vivo

We used a charge-coupled device (CCD) camera (the Roper 512B, Princeton Instruments) to

image the cortical surface at a frame rate of -4Hz, with illumination from a voltage-regulated

xenon arc lamp. A green band-pass filter (550nm) was employed to maximize imaging near the

isobestic point of hemoglobin, providing optimal vessel contrast and a surrogate measure for

blood volume change in the parenchyma. Lenses (50 and 125mm) were arranged in series to

form a macroscope.

We measured the impact of pinacidil on the diameter of the middle cerebral artery (MCA) and on

parenchymal blood volume. Arteries were distinguished from veins by their lighter color, lower

tortuosity and/or the inability to follow individual movement of red blood cells (indicating high

flow rate). To measure arterial diameter, we took a cross section. We calculated the borders in

each frame as the point 50% between the pixel brightness of the lightest part of the profile (over

parenchymal tissue) and the darkest part (over the vessel). In Figure 1A, the green bar bisecting

an artery indicates the point at which we obtained data that went into the width plot at the top of

Figure 1B, which shows a line scan of darkness around the artery as a function of time. For

parenchymal measurements, we summed all pixels in a region without detectable vessels (such

as the red enclosed region in Figure 1A) and measured the change in darkness over successive

frames.

Pinacidil Administration in vivo

Pinacidil is hydrophobic and was therefore dissolved in ethanol at -12 mg/kg and then diluted

1:100 in ACSF to achieve a 400ptM solution in 1% ethanol. Stock solutions were stored at -20C



and diluted in fresh ACSF for each experiment. For each run, the cortex was imaged for 3

minutes to establish baseline. For the pressurized rat chamber, at the end of the baseline period,

0.1-0.3mls of 400pM pinacidil in 1% ethanol in ACSF or saline would be pumped (taking about

Is) into the 0.3ml volume chamber. Simultaneously, an equivalent volume was drawn out to

balance pressure by a push-pull pump with access through two of the resealable rubber ports.

Pinacidil Administration in vitro

Coronal slices were prepared from post-natal day 14-40 Sprague-Dawley rats and maintained in

a submersion chamber at 274C for recording. Solutions were prepared in artificial cerebral spinal

fluid (ACSF (in mM): 125 NaCl, 2.5 KCl, 1 MgCl 2, 1.25 NaH2PO 4, 2 CaCl 2, 25 NaHCO 3, and

25 d-glucose). The applied solutions were 1% ethanol, -400 pM pinacidil in 1% ethanol, and

ACSF, all perfused with 5% CO 2 in 95% 02 (carbogen).

For astrocyte recordings, slices were incubated immediately after cutting for 20 minutes in ACSF

containing 50gM SR1O, a water soluble fluorescent dye specifically taken up by astrocytes

(Nimmerjahn 2004). The slices were then allowed to rest for an hour before intracellular

recordings with a 3-5MK2 pipette. For fluorescence visualization, the light source was a 100 W

Hg arc lamp, with excitation and barrier filters and dichroic mirrors tailored to the spectral

characteristics of SRO1 (excitation - 586nm, emission - 605nm)

Slices were imaged under differential interference contrast optics with IR illumination. Cells in

layers 2/3 and in the same field and plane of view as a blood vessel of >20pm diameter were

targeted, and vessel expansion was monitored during intracellular recording at -4Hz with a

cooled charge coupled device camera (cCCD) from Q-imaging (Retiga EX) connected to the

microscope via a parfocal C-mount. This configuration also enabled imaging of neurons and

astrocytes in the slice.

Drug/control solutions were switched every 90-180 seconds. Recording pipettes were filled with

(in mM) 120 KGlu, 10 NaCl, 20 KCl, 10 HEPES, 2 Mg-ATP, 0.3 Na-GTP, 0.5 EGTA, and 0.3-

1% biocytin (wt/vol) for subsequent visualization of the neurons.



Results

Pinacidil Induces Vasodilation in Anesthetized Rats and Awake Mice

The image in Figure 1A shows the cortical surface over SI. The green bisection line over the

MCA shows the point of sampling for the darkness plot in Figure 1B shown in the rectangular

box below the vascular image. The width of this dark band is the width of the MCA over time,

showing expansion after pinacidil addition (gray bar). The point at which dilation is observed
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Figure 1: In vivo responses to pinacidil application. (A) Cortical surface over the somatosensory cortex

in a rat: yellow lines indicate course of the middle cerebral artery (MCA); purple box indicates area of

subsequent analysis following pinacidil application; red outline indicates the parenchymal region. (B)

Inset reveals change in MCA diameter over time (at green line in panel A); graph shows normalized

changes in absorption measured in the MCA and parenchymal regions over the same time period, with

the gray line indicating the onset of pinacidil application. (C) Average change in MCA diameter in rats in

response to pinacidil (red) and ethanol (blue). (D) Changes in parenchymal absorbance in rats over time.

(E) In mice, MCA diameter increases in response to pinacidil (red) but not ethanol (blue). (F) Changes in

parenchymal absorbance in mice over time.

corresponds to a darkening in a parenchymal region (red triangle in the image) and over the
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MCA and surrounding cortex (purple rectangle, reflecting expansion). Vasodilation and

parenchymal signal increases were consistently observed on the first trial in all experiments (N =

4 first runs from 4 anesthetized rats, Figure IC and D). Dilation initiated <10s after drug arrival,

with maximal dilation and parenchymal darkening at a -50-60 second latency. Ethanol in a

1:100 solution with ACSF under the same conditions evoked a non-significant reduction in

vessel diameter and no change in parenchymal darkening. Following the first presentation,

subsequent pinacidil effects were less reliable.

As shown in Figure 1E and F, the hemodynamic impact of pinacidil in anesthetized rats was

replicated in awake, head-posted mice (N = 2 mice, 2 runs each). Presentation of 220 or 440pM

pinacidil evoked comparable mean increases in arterial diameter (peak diameter increase of

-20%) and parenchymal darkening (peak increase of -2%), effects that were repeatable within

subjects in a single session (N = 2).

Pinacidil Does Not Have a Direct Effect on Non-Vascular Tissue

Vessels in slice only rarely responded to pinacidil application, with no significant changes in

vessel diameter over 14 vessels in 14 distinct slices in vitro (Figure 2A). Presumably pinacidil

succeeds in inducing smooth muscle hyperpolarization under these conditions, but because

unpressurized vessels in slice do not have a source of dilatory force against vessel walls, no

expansion is observed.

Pinacidil Does Not Impact Spiking Probability or Input Resistance in Neurons or

Membrane Potential in Neurons and Astrocytes

In recordings from regular-spiking neurons of pyramidal shape (N=30), we saw no change in any

metric measured. At 50s post-application, approximately the time of peak vasodilatory effects in

vivo, the membrane potential did not change (variation of -0.5 + 0.9mV standard deviation;

Figure 2E), spike rate induced by current injection did not change (variation of 0.1 + 1.1

spikes/stim Figure 2F), and input resistance did not change (variation of -0.7 + 6.5MQ Figure

2D). In a limited subset of recordings from fast-spiking interneurons, we similarly did not

observe any impact of pinacidil application (N=3). All significance tests were paired t-tests (p >

0.1).



Figure 2

Figure 2: (A) Pinacidil at a dose of 400 pM does not show a significant effect on vessel diameters in slice

(14 vessels). (B) Astrocytes depolarize slightly in response to 1% ethanol in artificial cerebrospinal fluid

(ACSF). Depolarization was about 1 mV, on average (30 cells). (C) Depolarization of astrocytes in

response to pinacidil and ethanol is not significant. (D, E, F) Layer 2/3 neurons showed no response to

pinacidil or ethanol in input resistance, resting membrane potential, or spikes evoked by depolarizing

current injection (30 cells), with no additional effect observed in response to application of pinacidil in

1% ethanol.

Astrocytes (N=35) also showed no significant effects of pinacidil application, demonstrating

only a slow depolarization during ethanol (1.3mV +- 1.7mV at 50s post-drug application) and

pinacidil with ethanol (0.5 + 2.1mV) application (Figure 2B). When we plotted the change in

membrane potential at 10 second intervals since drug application (0 to 80 seconds post-drug), we

found no trends in astrocytic response to either ACSF or pinacidil (Figure 2C).

Astrocytes are Sensitive to Changes in Chamber Flow Pressure

In preliminary experiments, we observed 2 astrocytes that depolarized on switching to the

pinacidil solution. These 2 recordings were obtained prior to placing an inline pressure meter in



the flow pathway that allowed us to monitor and exclude trials that showed flow changes. In the

35 subsequent recordings that did not have flow changes, we never observed a detectable impact

of either ethanol or pinacidil on astroctyes or neurons. We also note that neurons and astrocytes

were more likely to die and/or to lose recording quality during a cycle of ethanol or pinacidil

presentation, as opposed to ACSF presentation.

During recordings at double our typical application dose (800pM), we observed 2 pyramidal

cells (out of 8) that showed depolarization (10-15 mV peak) and a loss of spike initiation

capability. Following washout, these cells recovered membrane potential but spiking responses

to current injection remained impaired. We did not evaluate the impact of this dose on vascular

tone or rhythmic vasomotion.

Figure 3
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In contrast to the absence of a detectable impact of pinacidil, we found that the membrane

potentials of neurons and astrocytes were sensitive to flow rate. In several astrocytes, decreasing

flow rate caused a depolarization of up to -10 mV that showed an immediate onset, reaching a
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new baseline within 2-5 seconds, and increasing flow rate had the opposite effect. These effects

can be seen most clearly in the period from -100--1450 seconds (Figure 3) The effect was

observed in every astrocyte probed with flow changes (N = 10), though the magnitude of the

effect varied.

Changes in flow rate generally corresponded to a change in solution (e.g. from ACSF to ethanol)

because of the gravity-drip system, which was sensitive to the level of fluid in the reservoir tubes

upstream. These varied depending on how much of each solution remained at the time of

switching.

Discussion

Pinacidil provides an effective means of creating vasodilation in vivo. At concentrations <

400ptM, pinacidil is also selective for cortical vascular smooth muscle, exhibiting no direct effect

on intrinsic properties of neurons or astrocytes. As an independent means to induce increased

vasodilation and blood volume in a manner analogous to that seen in functional

hyperemia, pinacidil provides a viable technique for testing the impact of hyperemic events on

neural or astrocytic activity. Pinacidil may also be a selective means of emulating other normal

hemodynamic phenomena and could have therapeutic applications, such as targeted

administration of pinacidil in response to acute vessel obstruction to maintain sufficient

perfusion.

The hemodynamic effects induced by pinacidil are similar to natural functional hyperemia. In SI

during sensory stimulation in rodents, increases in total oxygenated hemoglobin during sensory

stimulation-analogous to our measurement of cortical darkening at 550 nm-peak in a range of

2-5% (Jones 2008; Martin 2006, Kong 2004), and arteries/arterioles dilate 10-20% (Woolsey,

1996). The time course of pinacidil effects also parallels the sustained response to continued

sensory drive. Arterial diameter in rodent SI and the fMRI Blood Oxygen Level Dependent

(BOLD) response in humans and rodents remains high when tactile input is sustained for periods

lasting tens of seconds (Woolsey 1996, Moore 2000), as it does under pinacidil application.



While pinacidil represents an important step forward in our ability to control blood flow while

probing the impact of hemodynamics in cortex, it has limitations. The drug is only capable of

producing vasodilation-drugs in the same family that block the SUR2B channels to create

vasoconstriction (such as diazoxide or glibenclamide) or thromboxane receptor agonists (Crepel

1993, Lovick 2005, Quayle 1997) are unfortunately known to be non-specific, affecting neurons

as well as blood vessels. Pinacidil is also non-water-soluble, necessitating its dissolution in

ethanol or DMSO, agents that can have confounding impacts on the system. Applied in vivo,

pinacidil also does not appear to wash out fully, or its impact on smooth muscles persists, so that

the first trial in each animal is the most consistent and effective. These limitations stated, this

pharmacological approach nevertheless represents a unique means of selective hyperemia

induction in vivo.

Perhaps the most unexpected result was the sensitivity of both neurons and astrocytic membrane

potentials to the flow rate through the chamber. Flow changes were crudely controlled by

changing flow-regulator position, and so not quantified, and would have been different from cell

to cell. Flow changes could potentially have corresponded to changes in temperature (depending

on how quickly the in-line heater adapted), pressure, or oxygenation level (as newer ACSF might

be expected to have higher oxygen levels. Another possibility is that the cells were sensitive to

shear stress, as experienced by flow over the cellular surface perturbing the slice. However, flow

rates were not so high as to cause visible changes in the slice being imaged. In some ways, the

flow rate is a proxy in slices for the role of blood flow in vivo, as it fulfills many of the same

functions (oxygenation, temperature and pressure modulation, waste removal). It may be the

case that only some cells (only neurons, only astrocytes, or only a subset of each) are responsive

to these variables, but that they propagate the effects to nearby cells.

TRPV4 channels are responsive to temperature, membrane stretch, and shear stress, and are

known to be expressed on astrocytes (see Ch 3); as such, they may play a role in transducing the

flow rate effects observed.

While the mechanism of these membrane responses are not known, it is consistent with (and

supportive evidence for) the hemo-neural hypothesis that physical factors such as those

influenced by flow rate can impact membrane potential.
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Chapter 4

Astrocytic Calcium Changes in Response to Vasodilation

Measured with 2-Photon Laser Scanning Microscopy

Introduction: Mechanical sensitivity of astrocytes and neurons

Astrocytes have long been known to be sensitive to mechanical stimulation (Charles 1991).

Mechanical stimulation of astrocytes in culture and slice results in a rapid increase in

intracellular calcium, subsequent oscillations and spreading calcium waves. These mechanical

effects are typically demonstrated using glass beads or pipette touches. These stimuli, while

subtle, are obviously non-physiological, begging the question of whether astrocytes are driven by

biologically-generated intrinsic mechanical forces.

The vasodilation and constriction that accompany changes in blood flow are one potential source

of physiological mechanical deformation. As mechanical impingements on the mechanosensitive

endfeet, vascular perturbations are a candidate for modulation of astrocytic activation.

The mechanism of astrocytic mechanical sensitivity is still not conclusively determined, but

likely candidates are mechano-sensitive channels that either directly pass calcium or indirectly

activate other mechanisms (e.g. voltage-gated Ca channels, release from internal stores) by

passing other cations. At least 5 mechanosensitive channels have been shown to be expressed

mammalian neocortical astrocytes, including TREK and TRAAK family potassium channels.

(Kirischuk 2009).

Perhaps the most promising candidate is the non-selective cation TRPV4 channel, which has

been shown to be expressed in rat cortical astrocytes, and highly enriched in layer 1 in astrocytic

processes near large vessels. These channels are sensitive to membrane stretch as well as shear

stress and temperature (O'Neil 2005). They co-localize with aquaporin channels in astrocytic



endfeet enwrapping blood vessels. Treating cultured astrocytes with Ruthenium Red (RR), a

non-specific TRPV channel antagonist, blocks the Ca response to hypo-osmotically induced cell

swelling (Benfenati 2007).

As described in Chapter 3, Charpak and colleagues have shown that mechanically pressurizing

and depressurizing a vessel in slice can give rise to slow inward (granule cells and pyramidal

cells) and slow outward currents (mitral cells) in nearby neurons in hippocampus (Angulo 2004)

and olfactory bulb (Kozlov 2006), through the activation of astrocytes via their sensitive endfeet.

As a preliminary test of whether such mechanisms were also present in neocortex, we similarly

applied mechanical pressure waves to arterioles in vitro.



Part 1: Effects of vascular pressurization in slice

Abstract

To look for mechanosensitive effects of changes in vascular diameter on nearby astrocytes, I

used a similar method to that described by Charpak's group to pressurize the blood vessels, but

recorded directly from nearby astrocytes likely to have endfeet on the stimulated vessel. Rapid

mechanical inflation of blood vessels caused rapid depolarization in nearby astrocytes, where

larger increases in pressure resulted in larger depolarizations. A similar response was seen in

neurons, where depolarization often led to spiking.

Methods

Fresh cortical slices were prepared from P16-P24 rats. Slices were incubated in ACSF with

carbogen, and stained with SRlO1 to label astrocytes. To gain access to the interior of an intact

vessel in slice, a quartz pipette connected to a syringe full of 0.9% saline was driven through the

wall of a pial vessel significantly upstream of the recording site (> 300pm away) at high speed.

The pipette was pulled as for patch clamp recording, then broken to create a sharp edge. A

second pipette was used to record in current clamp mode from layer 2/3 neurons or astrocytes

near the threaded vessel, while the saline syringe was manipulated by hand to increase and

decrease pressure in the vessel.

Figure 1
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Figure 1: (A) Schematic of set-up (from Kozlov 2006). (B) Quartz pipette in pial vessel. (C) Dilation of

vessel caused by pressure injection. Pressure applied upstream at times indicated by green asterisks.
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Results

A typical inflation event dilated the vessel between 20% and 40% from baseline (which we

would expect to be slightly below the baseline dilation in vivo, as the vessels are unpressurized in

slice. The time to maximum dilation from baseline would be around 1 second, and the time to

recover halfway to baseline between 500 and 800 ms (camera imaging at 4 Hz).

Figure 2
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Figure 2: Example of induced vessel dilation and changes in astrocytic membrane potential
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In this example (Fig 2), observation indicated that larger pressure increases resulted in larger

depolarizations of the astrocyte, and there was 100% reliability in pressure events evoking

depolarizations. This cell took -200 ms to depolarize to half-maximum for each event, - 1 sec to

reach maximum, and - 3 sec to decay to half max, and - 15 sec to recover to baseline. All 5

astrocytes probed in this way showed sensitivity to applied vascular pressure.

Figure 3 1 T I

Figure 3 (A) Example neuron trace (fast-spiking cell). (B) Zoom of a rise event.
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This fast spiking cell (one of two recorded from) depolarized and spiked, then stopped spiking

until pressure decrease started and membrane repolarized to below -35mV. The time course of

depolarization from resting potential (--69 mV) to spike threshold (-56 mV) was between 50 and

100 ms, (e.g. 63 ms, 72 ms, for first two instances above). Burst firing rates in this neuron were

-50 Hz. Decay time to half-maximum after the pressure was released ranged from 50 ms to 250

ms, and may have depended on the response time of the vessel wall as well (Fig 3).

A subpopulation of pyramidal cells (N = 4, example Fig 4) behaved similarly, with onset and

offset spiking corresponding to pressure, but with a slower time course, taking 150 - 250 ms to

depolarize, and firing repeatedly (5 Hz) rather than bursting.

Figure 4
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Figure 4: (A) Pyramidal cell responding to pressure waves and

injected current steps (not shown).

(B) Time course of depolarization, short time scale.

In one case I was able to measure pressure onset together

with membrane potential (Fig 4B). The square wave

indicates pressure onset, but gives no information about

shape, amplitude or duration of the pressure wave. The small

initial hyperpolarization and offset transient is probably an

artifact. This recording showed an almost immediate onset of

depolarization, suggesting that the neural depolarization is a
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result of direct neural responsiveness to the pressure wave, rather than a slower effect mediated

by astrocytes. When clamped below -80mV, the neuron depolarized up to 35mV, but did not

reach threshold. However, repeated pressure waves before the cell could repolarize could

depolarize the membrane to threshold.

There were a few other kinds of responses. First, there were 5 pyramidal cells that did not

appear to be responsive at all to this form of mechanical stimulation. These cells were from two

younger animals (P17 - P18), whereas the responsive cells were from two slightly older animals

(P24 - P28). Second, there was a cell that showed an increase in sporadic spontaneous spiking in

the 60 sec after a pressure pulse, but which were not aligned to the pressure pulse. Current

injections in the same cells drove normal spiking. Also, the cell had a different depolarization

slope from either pyramidal or FS interneurons, with either a very low threshold (-64mV) or an

extremely sharp sub-threshold depolarization. Finally, there was one pyramidal cell which did

not depolarize or spike, but showed an increase in the number and size of mini EPSPs in the 5
seconds after a pressure wave versus the 5 seconds before.

Table 1 - Summary of vessel pressure-induced mechanical effects on cell types

# of cells / total
Cell Type Effect 

clsrcrecells recorded

Astrocytes depolarization coordinated with pressure wave 5 out of 5

FS neuron depolarization & bursting 2 out of 3

Pyramidal depolarization & spiking 4 out of 10

Pyramidal increase in size & frequency of mEPSPs after pressure wave 1 out of 10

? Neuron type increased spontaneous spiking after pressure wave 1 out of 3

These effects could not be replicated by moving the intracellular recording pipette into or away

from the patched cell (however, the velocity of that manipulation was lower). Also, seal

resistance did not change during pressure waves.



Discussion

The examples above show a sensitivity to mechanical perturbation in astrocytic depolarization in

both neurons and astrocytes, in agreement with the previous observations in hippocampus

(Angulo 2004) and olfactory bulb (Kozlov 2006). These findings implicate pressure sensitivity in

both cell types, potentially mediated by mechanosensitive channels, as a mechanism by which

astrocytes and/or neurons may be sensitive to vascular changes. In this preliminary in vitro study,

astrocytes were more consistently responsive than neurons, consistent with predictions based on

their association with vessels through mechanosensitive endfeet.

After this preliminary study of mechanosensitivity, we moved on to in vivo 2-photon imaging of

astrocytes during induced vasodilation for several reasons. Most importantly, the experiments

performed here, while providing initial confirmation of our hypothesis, would have required

extensive development as a preparation before they would have yielded quantitative information.

Going beyond these initial observations to make this investment of development time did not

seem appropriate given the inherent limitations of the in vitro approach for making inferences

about in vivo system.

Briefly, I list limitations of these experiments that would have needed to be overcome. The top

speed setting in our micromanipulator was not fast enough to regularly lance arterioles, leading

to a high failure rate. Slower speeds were adequate for normal pipette manipulation, but not for

penetration of the tough pial vessel wall without distorting the rest of the slice. Further,

elaboration of these studies would have required distinction between direct effects of pressure on

neurons versus astrocyte-mediated effects (the 'direct' and 'indirect' pathways of Chapter 2). For

this, we would have needed simultaneous recording of pressure, astrocytic activation and

neuronal activation. These data could not detect any differences in the latency of astrocytes

versus neurons to the vessel dilation events. Another limitation was that with the current

preparation, we could not visualize calcium activity directly, though it might be inferred from the

depolarization.



Perhaps the most important concern we had with making a major effort to generalizing these

experiments was their physiological relevance. The pressurization events could be violent, and

thus were likely aphysiological in their magnitude and velocity. Indeed, slower pressurizations

were much less reliable in inducing depolarization events. Nonetheless, cells appeared to remain

as healthy in these experiments as in normal slice recordings, and the quality of the recordings

did not degrade over course of the recordings (up to 20 mins). Another important limitation is

that the mechanical environment in a slice is significantly different from the one in vivo - slices

and cells may deform away from the expanding vessel in ways not possible in an intact brain

(with more three-dimensional constraints). Finally, because the vessels were not actually

perfused with blood, any number of co-factors might have been missing that would either

compensate for the depolarization effects we saw, or perhaps increase them. For example,

temperature sensitive effects would not have shown themselves, even if they turn out to be

important in vivo.

It would have been interesting to see if these effects were blocked by adding RR to the slice

solution. Being non-specific, RR might have blocked any TRPV channel variants expressed in

neurons as well as astrocytes. Since TRPV4 alone does not appear to be expressed in cortical

neurons (Stine 2005), it might have been a good candidate to block specifically (e.g. with RN-

1734, as described in Vincent 2009) as well, to see if the neuronal effects are dependent on the

astrocytic ones. Alternatively, we could also see if the effects disappeared in the TRPV4

knockout (Mizuno 2003).

It may also have been the case that neuronal activation by the pressure change was responsible

for the astrocytic depolarization - although that seems less likely given the shape of the

astrocytic responses and their close match the shape of the vessel dilations. A related question is

what role was played by the endfeet in causing the somatic depolarization, and whether endfoot

involvement is necessary to propagate mechanical signals from the vasculature.



Part 2: Inducing vasodilation while imaging astrocytic calcium levels in vivo

The apparent sensitivity of astrocytes and neurons in slice to mechanical perturbations of the

vasculature suggests that similar effects might occur in vivo. We therefore employed the methods

described developed in Chapter 3 to independently induce vasodilation through drug

administration while imaging astrocytic Ca levels using 2-photon laser scanning microscopy.

Abstract

To visualize the effects on astrocytes of physiological-scale vasodilations induced in vivo, we

used 2-photon imaging to track the effects of pinacidil-evoked vasodilations of pial arterioles on

nearby astrocytes. We found that increases in vessel diameter corresponded to increases in

astrocytic calcium levels, as measured by Fluo-4 fluorescence changes. In rare cases, traveling

calcium waves were evoked by large dilations, and can be seen traveling down astrocytic

processes from endfeet to the soma. More commonly, these changes were slower and less

discrete in onset and tracked dilation level, with washout of pinacidil and vessel recovery

corresponding to a return to baseline calcium levels.

Methods

Experiments were conducted using 2-photon calcium imaging. A craniotomy was made over

somatosensory cortex of adult (>4 weeks old) wild-type C57BL6/J mice anesthetized with

80mg/kg ketamine and 6mg/kg xylazine. A craniotomy over barrel cortex was performed and an

open chamber made of dental cement was implanted with inflow and outflow ports for topical

drug application. Fluo-4 was then bulk-loaded as calcium indicator with a picospritzer, according

to established protocols (e.g. Sato 2007). For layer 1 imaging, injection was between 50 and 100

pm deep, for layer 2/3 imaging, injection around 150 pim. SR101 was co-loaded as an astrocytic

marker.

Pinacidil was dissolved in 1% ethanol (170ptM) in 0.9% saline for a 400pM concentration to

induce vasodilation. Constant flow at 37 degrees C was maintained across the chamber

throughout the run via syringe pump and in-line heater placed immediately prior to the chamber.



Different data sets had distinct order in which runs were conducted (see Fig 5 for imaging,

stimulation, and vasodilation paradigm). First set of experiments: pinacidil wash in run followed

by a wash out run. Second set of experiments: 1-3 runs with 1% ethanol alone, followed by

pinacidil wash in and wash out. Third set of experiments: single run with 0.6% DMSO (94pM)

in 0.9% saline, followed by pinacidil wash in (400pM pinacidil in 0.5% DMSO in 0.9% saline)

and wash out.

Imaging runs were 6 minutes long, with pinacidil applied 120 sec after the beginning of a run.

Anatomical Z-stacks of each region were taken before and after each trial for alignment purposes

in case of changes in imaging plane due to brain motion. Astrocyte data were taken in layer 1,

neuron data in layers 2/3.

Figure 5

* Whisker stimulation (0.5 sec, 8 Hz, every 20 seconds)

aei 2 & 3 only) P
Vasodilation

Recovery
inacidil wash-out 6seen

Figure 5, experimental paradigm for two photon imaging experiments. Baseline (top bar, gray) runs

were not taken for the first set of experiments. Stimulation frequency also changed depending on

experiment, with no sensory stimulation given in third set of experiments.

In experiments including vibrissal stimulation (1 and 2), deflections were applied for 1 sec at 8

Hz with a 30 sec inter-stimulus interval for the first data set, and for 0.5 sec at 8 Hz every 20 sec

for the second data set, with 10-15 sec before onset of the first stimulus. We used a piezoelectric

actuator for the first data set and electrically induced whisking through an implanted bipolar

electrode wrapped around the facial nerve for the second data set. Imaging data and stimulation

were coordinated through Triggersync and Prairieview software.
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Image analysis

All data analysis was conducted using MATLAB. For each imaging area (set of 2 or three runs

including vasodilation and washout), regions of interest (ROIs) in each image were selected by

hand, circling astrocytic endfeet or soma. Endfeet were identified by their proximity and

orientation parallel to vessel walls, and their curved elongated shape. ROIs ranged from 10 - 200

pixels, depending on optical zoom and imaging resolution, which were adjusted to optimize for

speed and coverage with respect to each area imaged. Two measures of calcium signal were

used. The first was the change in fluorescence summed over all pixels in an ROI in arbitrary

units over time, compared to baseline fluorescence at the beginning of each run (F/FO). This

measure is closest to the raw data, but was subject to contamination from motion caused by

vasodilation, especially for endfoot ROs, which tended to become optically obscured by the

expanding vessel. The second was a thresholded measure that tracked the number of pixels in an

ROI above the 9 0 th percentile in brightness; the 9 0 th percentile was determined with reference to

the distribution of pixels in the ROI over the full time course of the run. When calcium levels

increased, we found that the number of pixels exceeding this threshold increased. This second

measure also partially compensated for motion due to expanding and recovering vessels; since

pixels below threshold were discounted, the measure tracked bright endfeet as they moved

laterally as the vessel expanded (ROIs were drawn so as to ensure that endfeet stayed within the

ROI as they moved). To compensate for these and other sources of noise (including vertical

motion of the imaging plane), we subtracted from the Fluo-4 signal signal from the SR101

channel, measured in the same two ways as described above. Since SR01 is a purely anatomical

label, any changes in that channel should be due to motion or artifact that affects both channels

similarly. Similar corrections have been used elsewhere (see Dombeck 2007). This allowed us to

compensate both for vertical motion and overall darkening of the image due to our vasodilation

manipulation. To check that the manipulation was reducing noise, we compared the standard

deviations of the corrected and uncorrected signals. For Experiment 1, the standard deviation of

the corrected signal was always smaller than that of the uncorrected, with a reduction of about

50%. The correction was more problematic in Experiments 2 and 3; this issue will be addressed

in the results and discussion section.



Results

On two occasions, we saw vessel dilations evoke traveling calcium waves that propagated from

the endfeet away from the vessel. In these two cases, the vasodilation started before the calcium

wave. However, these more massive effects were unusual, observed only twice out of 89 runs

with pinacidil application during imaging of astrocytes. Both examples were observed in layer 1;

no waves were observed in layers 2/3 over the course of 125 imaging runs with pinacidil.

Figure 6

Figure 6 Example of a calcium wave initiated at (B) endfeet around an arteriole. (A)Time course of

arteriole dilation overlaid with the time course of calcium increase in the endfeet (y-axes in arbitrary

units for calcium brightness). (C) Progression of wave traveling away from arteriole, time series colored

to indicate their origin in the ROIs marked in the image on the left.

More consistently, we saw a slow increase in astrocytic calcium levels across the region imaged.

This increase tracked the increase in vessel diameter.

We used two measures to track changes in pixels. In the first (Fig 7B, and Fig 8A and 8C), we

summed the brightness over all pixels in each ROL. The first significantly divergent time point

for calcium levels (delta F/F, Fig 7B) measured in this way for vasodilation runs as compared to

baseline runs was earlier for endfeet (170.8 sec) compared to all ROIs (soma and endfeet

together, 172.2 sec) and much later than for the blood vessels (149.2). In the second

measurement method (Fig 7C, and Fig 8B and 8D), we used a thresholded measure, where only

the pixels above 90th percentile brightness in an ROI were counted, allowing us to focus analysis

on the high signal-to-noise data where there was little ambiguity of sufficient calcium indicator



Figure 7

Figure 7 Increases in astrocytic calcium level in response to vasodilation of pial arterioles in layer I

(A) Top An example image in which green fluorescence indicates Fluo-4 loading. (A) Middle Typical

endfoot example of the increases observed in calcium level following vasodilation. (A) Bottom

Measurement of pinacidil induced vasodilation in this example. Across these plots, pinacidil arrived to

the brain surface at -120 sec, but does not reach full concentration until about 140 sec. Calcium changes

begin to diverge from wash after 140 sec. (B) Top Raw measurement of change in fluorescence (calcium

indicator). The average over all astrocytic ROIs (soma and endfeet) from 4 animals and 6 runs (N = 220

ROIs). The gray vertical line indicates the first significant divergence of the two data sets. (B) Middle

The average over 91 endfeet from same animals and runs. Notice the slightly earlier divergence between

vasodilation (red) and wash-out runs (blue). (B) Bottom The time course of pinacidil induced

vasodilation and calcium indicator brightness across this average. (C) The same data sets as in B, but

using a thresholded measure of calcium signal to track only brightly labeled pixels. These traces show

slightly higher signal to noise as well as an earlier statistically-significant divergence.
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uptake. On this measure (Fig 7C), the first divergence came at 143.8 sec for endfeet and 157 sec

for all ROIs.

For astrocytic regions of interest (as selected by SR101 labeling), we compared calcium levels in

the beginning and ending of runs (first and last 60 sec). In wash in runs, this captured levels

before and after dilation: In wash out runs, this allowed quantification during reconstriction.

Quantifying these changes over all ROIs (N = 220), we found that a larger number of regions

increased in brightness over the course of a trial when vasodilation occurred (pinacidil wash in)

than when the vessel was reconstricting during pinacidil wash out. Note that in both conditions

an increase was observed.

Figure 8
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Figure 8 Histograms of the change in calcium level during vasodilation vs. reconstriction. (A) shows

change in calcium as measured by delta F/F, with the number of standard deviations from initial value on

the x-axis. Delta is taken between the first 60 seconds and last 60 seconds of a run. (B) shows the same,

but using the thresholded brightness measure. (C) simple delta F/F, endfeet only. (D) thresholded, endfeet

only.
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By the delta F/Fo measure, 79% of the astrocytic areas measured showed an increase during

vasodilation when comparing the baseline period (first 60 seconds of run) to the dilated period

(80 seconds from the end of the run to 20 seconds from the end of the run), 65% that showed an

increase during wash-out. Also, more regions (19 in dilation run vs. 5 in washout run) showed a

larger increase (more than 5 std devs above the mean) during vasodilation. A chi-squared

goodness of fit test showed significant differences (p < 0.01) between the distribution of

fluorescence changes in pinacidil runs versus both baseline and washout runs, for soma and

endfeet populations.

With the thresholding measure, 35 ROIs showed increases above 5 std dev during vasodilation,

as compared to 8 ROIs that showed increases as large during wash-out. The thresholding

measurement also allowed us to better isolate endfoot-shaped regions (and only measure those)

using elliptical ROIs. Because endfeet were often displaced by the expanding vessel, we drew

larger ROIs without including non-endfoot pixels, which were less bright. Using this

quantification, we saw a slightly larger difference between wash-in and wash-out runs, with <

60% of the areas showing an increase during wash out. The same quantification on endfeet alone

(Fig 8C and 8D) showed 78% of the endfeet increased in brightness during dilation, and 63%

increasing during reconstriction, a smaller change than in the total population. In all measures,

SR101 brightness signals were subtracted from Fluo-4 signals to compensate for image motion

and other noise that impacted image quality.

However, there was a steady increase in fluorescence in each case. This increase was likely

partly due to the ethanol in pinacidil and washout solutions (and can also be seen in the time

courses in Figure 7, as well as in the depolarization of cells in ethanol described in Chapter 3). In

repeated imaging with no vascular perturbation comparing 1% ethanol in 0.9% saline with 0.9%

saline alone, we found that there was a much smaller increase in overall brightness over time in

the saline runs (< 1% for saline alone, as opposed to - 3% for ethanol in saline).



Figure 9
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0. 7, endfeet only, right) was one third the size of the increase seen in the first data set (mean = 1.9 total

ROIs and mean = 2.1 endfeet only). We still see a cluster of ROIs (N = 5)that increased 5 std dev or more

above the initial calcium level, compared to N=0 in the baseline orN=JI in the washout condition. That

cluster is also smaller compared to 35 in the original data. Bottom panels, washout run, with a smaller

increase than vasodilation run, but again, almost twice as large an increase as in the original data.

A variety of factors, including period of duration of exposure to ethanol, could also have

contributed to order of data acquisition effects. To balance for potential order effects, we

repeated the same experiments but with 1-3 blank trials (randomized) preceding the pinacidil

.. .... .... ......... ........ ................... .....



trials (Experiment 2). This second set of experiments (5 animals, 5 runs, 331 ROIs total, of

which 73 were endfeet) yielded noisier data, most likely because repeated imaging of the same

area for > 50 min prior to collecting vasodilation data had adverse effects on the health of the

cells in the area by the time of the pinacidil run, effects that may have been worsened by

sustained ethanol exposure.

In this second data set, we found that brightness increased rapidly during the pre-wash-in control

run, increased less rapidly during vasodilation, and continued increasing during washout (Fig 9).

At no point did the mean signal for the vasodilation run become significantly different from the

mean signal for the wash-out run (t-test).

This finding was puzzling, not only because of the unexpected increase in calcium during the

baseline condition, but also due to the disappearance of the pinacidil-related effects seen in our

initial data set. Furthermore, the increase in calcium during the vasodilation run was smaller in

absolute terms that it had been in the first data set collected. The chi-squared goodness of fit test

showed significant differences (p << 0.01) between the distribution of calcium changes in

pinacidil runs as compared to both baseline and washout runs, for total and endfoot ROIs.

Control over vasodilation using pinacidil was unchanged, with the same time course as shown in

experiment 1, and similar typical magnitudes (10-20% dilation, depending on the vessel; see

Chapter 3).

We reasoned that a number of possible explanations could explain this failure to replicate, given

changes made in the experimental protocol between the two data collection periods. These

differences included increased astrocyte sensitivity to ethanol over prolonged exposure,

differences due to changes in the pattern of whisker stimulation applied (which changed in the

second data set), and artifacts due to the quality of data collected due to physiological variables,

for example resulting from the introduction of a 50 minute delay before taking pinacidil data.

Artifacts related to the 2-photon itself were also a possibility, as power fluctuations and pockels

cell problems had begun occurring in the 6 months between collection of the two data sets.



To try to resolve these issues, I conducted a third set of experiments (2 animals, 3 runs, 220

ROIs, 61 endfeet). To control for ethanol exposure, I used DMSO as the solvent for pinacidil.

To control for any impact of the pattern of sensory stimulation, I did not provide any. I also

measured the imaging power output through the pockels cell simultaneously with imaging

(which we did not in the second experiment) so any change in this variable could be tracked.

In this new data set, our power level recordings from the pockels cell showed a characteristic

increase in power at the beginning of each day. Some periods of up to 10 minutes were stable,
but overall there was a trend to significantly increased laser power over an hour of imaging time

(e.g. from 1.5 to 3 milliwatts). This pattern could explain the problems in Experiment 2, where

the increase in calcium indicator fluorescence in the baseline control run was much larger than

any potential pinacidil-induced increase in calcium discernible in the dilation run (although the

relationship between dilation runs and wash-out runs was maintained). While we cannot be sure

the laser was experiencing the same problems during data collection in the second data set, we

do know that the problem did not arise until several months after the collection of the initial

dataset. We also found that the two-photon imaging system required increased laser power to

visualize cells in the second (and third) data sets as compared to the first. The nominal difference

was on average around 2 milliwatts in the later data sets vs. < 1 milliwatt in the first.

The relatively high laser power may have contributed to faster bleaching of SR101 during the

baseline run (Fig 10C, most evident in left panel in black). When the calcium signal is

normalized against the SRO1 signal, differential bleaching of SR101 will show up as a relative

increase in the corrected calcium signal, giving the appearance of a disproportionally large

increase during the baseline run. Whereas the baseline period bleaching in the red channel is

smooth (but stabilizing towards the end of the run), there is an inflection point around 130

seconds during the vasodilation phase. This matches the decrease in overall fluorescence (e.g.

measured in the center of blood vessels in regions not directly labeled by either dye) caused by

the onset of vasodilation at that same period, and ought to be corrected for in the calcium signal.

The decrease stabilizes altogether by the washout run.
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Figure 10 Changes in calcium level for control, vasodilation and recovery runs in Experiment 3

(A) Calcium signal during baseline vs. vasodilation conditions for all ROIs (N = 220) and endfeet only

(N = 61). While there is a clear flex point at which the slope of the calcium signal increases

corresponding to the onset of vasodilation, the increase in the baseline condition is larger overall

(similar to the counterintuitive results found in dataset 2). (B) Calcium signal compared between

vasodilation and wash-out runs (which were taken after the transmitted laser power had stabilized;

similar results to dataset 1). (C) Signal in SR101 channel, showing the source of artifact in differential

calcium/SR101 signal. (D) signal in the Fluo-4 (calcium indicator) channel alone, showing a pinacidil

related bump in the central column (red).

Looking at the Fluo-4 calcium signal alone (Fig lOD), there was little or no increase in signal

over the course of the non-vasodilation runs. However, we had previously found it was necessary

to normalize green (active calcium signal) to red (inert measure of fluorescence) to increase
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signal to noise. Because these most recent DMSO runs showed lower noise than the ethanol runs,

it is possible to see an effect in the Fluo-4 channel alone. Our original data from Experiment 1

also showed an increase in uncorrected calcium signal during vasodilation.

Figure 11
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Figure 11: Distribution of changes in calcium levels in individual ROIs. (A) changes in F/std(F) in

normalized units for 220 ROIs (endfeet and soma). (B) Changes for endfeet alone.

To avoid the SR101 decay artifact (Fig 10C) while correcting for the overall darkening, I used

only the green signal for the baseline and washout runs. For the pinacidil run, I subtracted the

normalized red signal from the green. To compensate for the additional increase in the corrected

signal from this subtraction that would be expected simply from the steady SR101 signal decay
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over that period, I added back an estimation of that decay based on an average of the SRlO1

decay during the baseline and washout runs (immediately before and after).

Looking at the distribution of responses from individual endfeet, we found once again that the

largest increases in individual endfeet occurred during the vasodilation run. We found that 52%

of endfeet showed an increase in calcium levels under control conditions, vs. 63% during

vasodilation and 56% during washout. Looking at endfeet only, 44% increased during control,

49% during vasodilation and 43% during washout. In both cases, there were ROIs that showed a

large (>= 5 std dev) increase in fluorescence during vasodilation (N = 14) but none in the other

two conditions.

The mean difference between the distributions during dilation and recovery was significant only

for endfoot ROIs (N = 91, p = 0.002), suggesting that more endfeet were responsive to vessel

dilation than soma. A chi-squared goodness of fit test showed significant differences (p << 0.01)

between distribution of fluorescence changes in pinacidil runs versus both baseline and washout

runs, for soma and endfeet populations.

Discussion

In the first set of experiments, we found an increase in astrocytic calcium that correlated with the

time course of pinacidil-induced vasodilation, and then decreased during recovery towards the

original vessel diameter with pinacidil washout. These changes in astrocytic calcium affected the

soma as well as endfeet of the cells involved.

We failed to replicate these results in the second set of experiments, which were undertaken to

provide a baseline control of astrocytic calcium in layer 1 in the absence of pinacidil-induced

vasodilation. Data from these experiments showed a consistent and large increase in astrocytic

calcium during the baseline condition that, if anything, was damped by pinacidil-induced

vasodilation. It also failed to show the divergence in calcium activation between the dilation and

wash-out trials as predicted by the first set of experiments.



Results from the third set of experiments showed that a loss of signal in the SRlO1 channel was

at least partly responsible for what we took to be an increase in calcium signal during the

baseline condition. When we looked at the raw Fluo-4 signal, without using our correction for

motion and other noise against the SRO1l signal, the rapid increase during the baseline period

was reduced, showing that the "correction" we were making for our calcium signal was adding

artifact to this data set. We believe that the bleaching behavior of the SR1O1 may have had

something to do with our laser instability, though the exact relationship is not clear yet. The

shape of the SR01 signal decay is similar to the shape of the increase in laser power (inverted).

The increase may also have been partly due to sensory stimulation, which was no longer present

in the third set of experiments. Although the stimulation was sparse (1 sec of 8 Hz whisker

stimulation every 20 or 30 sec), we might expect it to have a greater effect during the first run of

a set because of adaptation. While the first run of each pair for the first set of experiments was

the vasodilation condition, the first run for each set of runs in the second experiment was the

baseline condition (1 out of 3). The third set of experiments showed that the vasodilation effect

on astrocytic calcium is not just an artifact of the stimulation sequence (though the effect may

have been enhanced by stimulation in the first set of experiments).

The sensitivity of astrocytic calcium levels to vessel dilation provides evidence for the indirect

mechanism of hem-neural action. In particular, the calcium increases, while earlier and stronger

at the endfeet, are also seen in the soma, which means that they are capable of propagating down

astrocytic processes, whose actions can impact neurons and synapses as well as blood vessels.

For one example relating induced vasodilation to calcium responses in neurons, please see

Appendix.



Part 3: Fine timescale interactions of vasculature and endfoot calcium

Introduction

The new findings in the previous section suggest that vasodilation increases local astrocytic

calcium levels. A recent literature has emerged suggesting that the reciprocal relation, the

control of vasodilation by astrocytic endfeet, depends on current local conditions. Gordon (2006)

showed that elevations of calcium in astrocytic endfeet could cause either vasoconstriction or

vasodilation, depending on the local oxygenation level. Blanco (2008) showed that it also

depended on the extent to which the vessel was already dilated. To further complicate the

picture, Girouard (2010) shows that whether a Ca rise causes constriction or dilation depends on

the size of the increase in calcium, as well as perivascular potassium levels nearby.

While we are not measuring either local oxygenation or potassium levels, in vivo oxygenation

levels are consistent with those termed "high" by Gordon, and we can suppose that vessels at

baseline are in a neutral position with respect to the Blanco measure, whereas they are in a

dilated state after pinacidil application. Meanwhile, the calcium changes we observed on the time

scale of seconds are small compared to those evoked in the Girouard study.

To determine the relationship between our in vivo data and the predictions obtained from slice in

these three papers, we conducted finer time-scale analyses of the relative ability of Ca levels to

predict subsequent dilation, and vice versa. To do this, we looked at the correlation between

small fluctuations in astrocytic calcium and small fluctuations in vessel diameter (on the order of

1-5% each) on short time scales (<; 10 sec), using data from the three experiments described in

Part 2.

Results

In individual runs, significant correlations were seen (xcorr values > 0.45)), for epochs on the

order of 5-20 seconds. We saw a total of 189 epochs of high correlation (xcorr > 0.45) over 44

runs, with one epoch occurring on average once every 80 seconds. There were equal numbers of

epochs showing a positive correlation between calcium and a later vessel dilation, a positive

correlation between change in vessel size and change in calcium, and a negative correlation



between change in vessel size and change in calcium (38,41, and 40, respectively). The one

correlation that stood out was a negative correlation between calcium level and subsequent

change in vessel size, there were 70 epochs where this correlation was above 0.45, or almost

twice as many epochs as for the other three categories (Table 2).

Table 2

Epochs Ca predicts vessel Ca predicts vessel Vessel predicts Ca Vessel predicts Ca
(189 total) (+ correlation) (- correlation) (+ correlation) (- correlation)

Baseline 14 21 10 16

Vasodilation 14 21 15 12
Wash-out 10 28 16 12
Total 38 70 41 40

Breaking the runs down further into early, middle and late periods within each run, a clear effect

of the vasodilation manipulation can be seen in the "Calcium level predicts changes in vessel

dilation, negative correlation" category (Figure 12A, bin 5). A smaller but also significant effect

can be seen in the "Vessel diameter predicts changes in calcium level, negative correlation"

category (Figure 12C, bin 5). That is, an effect is seen at a fine scale (1-5 second correlations,

changes of 1-3% in vessel diameter and calcium levels) after filtering out the slow larger-scale

increase in calcium and vessel diameter that is the direct effect of the pinacidil. As with the

epoch counting, more time was spent in the "negative correlation, calcium predicts vessel motion

state". Notice that the periods collected in Figure 12A and 12B are consistent with the

occurrence of typical "astrocytes drive vascular motion" states, while those in 12C and 12D

suggest the occurrence of hemo-astro states, where vascular motion drives astrocytic calcium.

To look at the dependence of endfoot-vascular coupling on local conditions independently of the

immediate history of dilation or constriction, we also divided each run into three epochs of 120

seconds each, and grouped them according to the vessel diameter at that time (baseline or

dilated), and the astrocytic calcium level (baseline or increased). For these data, there were 50

runs of three epochs each from 10 animals. Data were then high-pass filtered (cutoff at 0.05 Hz)



to eliminate the large, slower time scale shifts in vessel diameter and astrocytic calcium

described above in Part II.

Figure 12
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Figure 12 Total time spent in each of four correlated states by astrocytes and nearby vessel in area

imaged. Each plot shows 9 bins in chronological order: 1- early 70 seconds of baseline run, 2- middle 70

seconds, 3 - late 70 seconds of baseline run, 4 - early 70 seconds of pinacidil run, etc. Vasodilation does

not onset until bin 5.Washout begins during bin 7 for Experiments 2 and 3, and bin 8 for Experiment 1.

(A)Negative correlation: total time spent in correlated state where an increase in calcium predicted a

decrease in vessel diameter (or a decrease in calcium predicted an increase in vessel diameter) within 5

seconds. (B)Positive correlation: total time spend in a state where an increase in calcium predicts an

increase in vessel diameter. (C) Negative correlation: total time spend in a state where an increase in

vessel diameter predicts a decrease in astrocytic calcium levels. (D) Positive correlation: total time spent

in a state where an increase in vessel diameter predicts a decrease in astrocytic calcium.

Cross-correlation analysis showed that changes in Ca levels preceded and predicted changes in

vessel diameter in the undilated condition (in 42 out of 50 undilated epochs), a correlation that

disappeared during the dilated condition (Fig 13A). This took the form of a negative correlation

between calcium level and blood at short negative lag around 1 second. That is, at baseline (and

after recovery), an increase in endfoot calcium predicted a decrease in vessel size a second later.

It should be emphasized that this correlation was an average over many epochs of strong

correlation and many epochs of no correlation, or different correlations at different lags, and so

does not represent a static state of the system during baseline conditions.

....... ............ ... . ............ .... ........ .......... .
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Figure 13 Fine scale correlations between smallfluctuations in astrocytic calcium and vessel diameter

(A) Top Average cross-correlation between calcium and vessel diameter during all dilated epochs (N =

34, 120 seconds each, in red), and all undilated epochs (N=50, 120 seconds each, in black). Undilated

epochs include those pre-pinacidil (baseline and at the beginning of the vasodilation run) and those at the

end of the washout run. (B), (C), and (D) average cross - correlation values between endfoot calcium

and vessel diameter for B) experiment 1 data (vasodilation and wash-out runs only), C) experiment 2 data

(baseline, dilation, and wash-out), and same for D) experiment 3 data. Magenta indicates the 120

seconds at the beginning of each run, while cyan indicates the 120 seconds at the end.
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Discussion

The negative correlation we found at baseline dilation is consistent with the effect described in

Gordon (2008) - at high p02 in the tissue, an increase in astrocytic endfoot calcium results in a

decrease in lumen diameter. The current findings are unique because they describe dependencies

at a time scale of seconds (<2 sec in the averaged data), instead of minutes. This finding is also

consistent with the effects described by Chuquet (2007), where an increase in astrocytic calcium

caused by spreading depression resulted in vasoconstriction, but the amount of constriction they

observed was much larger (> 15%) and slower (- 15 sec to reach maximum constriction from

onset). On time scales closer to the ones we measured, Girouard (2010) showed an increase in

vessel diameter in response to uncaging of "low" concentrations of calcium (from 1 OOnM levels

at baseline to 400nM uncaged). However, these concentrations were significantly higher than

any we saw in any condition except during onset of vasodilation. In those examples, the vessel

was in the process of rapidly dilating, making it harder to interpret any fluctuations riding on top

as being due to endfoot calcium elevations as opposed to the vessel's response to pinacidil.

In the dilated condition, we would expect from Blanco (2006) that an increase in endfoot calcium

would still cause a vasoconstriction. One reason that we may not see one is that pinacidil may

have sufficiently hyperpolarized the smooth muscle so that it is unable to respond to the usual

pathways that would cause a constriction, e.g. reduction of tonic BK channel current in the

smooth muscle. The other pathway for vasoconstriction goes through 20-HETE, which increases

calcium entry into smooth muscle, causing depolarization and thus constriction.

While there was no significant correlation over the entire 120 second dilated epoch-unlike

undilated conditions where astrocytic calcium predicted dilation-there are many instances of

strong coupling in the individual runs on a more local time scale (- 10 seconds) in the vessel-

endfoot direction and the endfoot-vessel direction, with positive and negative correlations.

Epochs of strong correlation between changes in vessel diameter and changes in astrocytic

calcium where vessels change at negative lag (where calcium changes lead diameter changes in

time) relative to endfeet do not appear to be any more frequent or more powerful than epochs of

strong correlation at positive lag (where vessel changes lead calcium changes). The magnitude of



correlation effects at positive and negative lags were similar, suggesting that the direction of

influence runs as often from vessel to endfoot (as found for longer time scales in Part II above)

as the more well-characterized route from endfoot to vessel.
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Chapter 5

Conclusion

In Chapter 2, we proposed the hypothesis that a potentially significant source of feedback

regulation of brain activity may have been overlooked. The physical architecture of vasculature,

astrocytes, and neurons in the brain provide circumstantial evidence for the hypothesis. We

postulated that hemoneural modulation could be direct, as when neural processes are in direct

functional contact with vessels (e.g. through nitric oxide or mechanoreceptors impacted by

vasodilation), or indirect, through modulation of astrocytes. In vitro work from Garthwaite

(2006) provided evidence for the direct route, while Kozlov (2008) and Angulo (2004) showed

neural effects of mechanical perturbations of vasculature acting through astrocytes.

We suggested that it would be evolutionarily favorable for the information processing functions

of the brain to be both integrated with and dependent on the underlying biological substrate.

Complex systems in general are likely to show a degree of "generative entrenchment" - that is,

as a structure becomes more complicated over time, activities will tend to get multiplexed onto

each other, with specializations building on shared cellular infrastructure simply because it is

already available. Thus even specialized functions such as information processing in neurons are

likely to share infrastructure with common permissive functions such as metabolism.

Demonstrating this pushes us towards a more intensely biological view of brain function, in

contrast to a functionalist view that takes the brain to be essentially like a computer, whose

computational operations are only accidentally biological, rather than necessarily so.

As described in Chapter 3, we developed a method for independent control of blood flow in vivo

to experimentally probe the impact of dilation on neocortical dynamics in astrocytes. In the

course of testing the independence of pinacidil, we found that astrocytes in slice were sensitive to

the rate of ACSF flow over the slice, perhaps as a result of their mechanosensitive channels.

Pursuing the mechanosensitive channels further in Chapter 4, we found that a strong dilation

induced by direct injection of pressure into a vessel in slice was sufficient to induce



depolarization in all astrocytes tested, and to produce some effect in 50% of the neurons tested as

well. These effects were typically 'excitatory', including depolarization, increase in minis,

increase in spontaneous firing rate.

We then turned to 2-photon imaging to see if hemoneural effects like the mechanosensitivity

found in slice could be seen in vivo, using pinacidil as the vasodilatory stimulus. We found that

a large slow increase in vessel diameter (10-20% over 30-60 seconds) induced a corresponding

increase in calcium levels in astrocytes, with the effect starting earlier at the endfeet and

spreading to the soma. We also found two instances of genuine spreading calcium waves

triggered by vasodilation, but this phenomenon was rare.

Focusing on shorter timescales in the same set of imaging data (Part 3), we found complicated

patterns of coupling between astrocytes and vasculature that appeared to be symmetrical with

respect to cross-correlational lag time. Being careful not to claim causation where we can only

confirm correlation, we note that the changes in astrocytic endfoot calcium are no more likely to

predict changes in vessel diameter than vice versa. We also found a strong correlation between

an increase in calcium and a subsequent (- 1 second later) decrease in vessel diameter when the

vessel was undilated or mostly recovered from dilation. This correlation, which has not

previously been shown in vivo, is consistent with the causal effects of increases in calcium on

vessels at baseline dilation in well-oxygenated conditions, as described by a number of other

groups working in slice.

These suggest many more experiments, leading in two directions. The first, to better

characterize the fine scale dynamics of endfeet and vascular dynamics, will require more local

and faster time scale control of blood flow. Ideally we would be able to control the diameter of a

vessel at a single location, affecting just a few nearby endfeet, with the ability to contrast the

behavior of astrocytes and neurons at that location with those nearby but closer to a non-dilated

vessel. It would also be very interesting to see effects of vasoconstriction, something we have so

far not attempted because there are no vasoconstrictors that do not also directly affect astrocytes

and neurons. One way to solve both problems would be to use optogenetics to control vascular

smooth muscle directly.



The second would be to follow the effects of the astrocytic perturbations we have seen, and ask

if and how they modulate neural responses. One example is presented in the Appendix, but over

the population observed, variability of the effects on evoked responses in both astrocytes and

neurons is high, and no more complete characterization has been made. This may be due to

differing sensitivity in different cell-types, or differential sensitivity of penetrating vessels to

pinacidil-induced pial arteriole dilation. Direct control of penetrating vessels would allow us to

better answer this question. Also, spontaneous firing rates are low in barrel cortex, and our

evoked responses tended to vary over time even in the baseline condition. Perhaps effects of

vascular changes on probability of firing would be easier to see in areas with higher firing rates.

Another question raised by our investigations is whether cells are more sensitive to changes in

vessel diameter, or rather to the absolute state of dilation (or blood flow). Higher velocity

changes were more likely to elicit spiking in the mechanical stimulation studies, and both

examples of dilation-induced calcium waves in vivo happened during onset of dilation when the

velocity of vessel diameter change was relatively high. Some of the neurons we observed also

appeared to change their firing patterns during periods when vessel diameter was changing,

whether dilating or recovering from dilation, and showed similar properties during relatively

stable dilated and undilated epochs during the run.
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Appendix

Effects of vasodilation on evoked responses imaged in Layer 2

We imaged neurons and astrocytes together in layer 2 to see if pinacidil had effects on sensory-

evoked calcium responses in those cells. Methods were as in Chapter 4.2, but with calcium

indicator OGB instead of Fluo-4. Most cells showed no obvious effect relative to baseline

variability over the course of a run. However, some cells did show interesting variations

depending on vessel dilation state. This example is characteristic of -2% of the cells imaged.

Figure 14
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Figure 14 Example cell showing modulation of evoked sensory response during vasodilation. (A) Two-

photon image of area. Neurons are green (OGB), while astrocytes are yellow or orange, colabeled with

SR101(red) and OGB. Arrow points to cell #16.(B) PSTH of evoked responses of cell #16 during 3

epochs of vasodilation run. Left: 0-120 sec (baseline), Middle 120-240 sec (dilation), Right: 240-360

sec (maximum dilation). Each solid colored line show the average of 6 evoked calcium responses during

the epoch. Baseline (blue), mid-dilation (pink), maximum dilation (red). Stimulus onset at 0. Images were

acquired at 3 Hz. (C) Evoked calcium response magnitude over vasodilation run. First stimulus was at 10

seconds into imaging run, subsequent stimuli were every 20 seconds thereafter. F/FO was measured

during the first frame after stimulus onset (at t=0 in B)). F0 was the average fluorescence in the 10 frames

preceding each stimulus. Red bar indicates approximate onset of vasodilation.

The example cell shown above showed an increased reliability of evoked response during the

wash-in phase (center panel, B) as compared to the baseline period, and the period when the

vessel was already dilated (and thus changing diameter more slowly). There were six vibrissal

stimuli in each period, of which 3 evoked a clear response in the baseline period, 4 evoked a

response in the wash-in period, and 1 evoked a response in the dilated period. There also

appeared to be less spontaneous calcium fluctuation during the middle epoch, which is when the

vessel would have been dilating at maximum velocity.

Other neurons showed increased evoked calcium responses during the dilated period, which

decreased during wash-out, while others showed the opposite, with decreased responses upon

vasodilation. We imaged over a thousand cells in 19 animals, and found that overall the

responses were idiosyncratic and require further investigation to characterize with respect to cell

type and the specificity of the response.
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