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Abstract

We consider the following k-sparse recovery problem: design a distribution of m x n
matrix A, such that for any signal x, given Ax with high probability we can efficiently
recover i satisfying ||x - i|l, C mink-sparse x' IIx - x'11. It is known that there
exist such distributions with m = O(k log(n/k)) rows; in this thesis, we show that
this bound is tight.

We also introduce the set query algorithm, a primitive useful for solving special
cases of sparse recovery using less than 8(k log(n/k)) rows. The set query algorithm
estimates the values of a vector x E R"n over a support S of size k from a randomized
sparse binary linear sketch Ax of size O(k). Given Ax and S, we can recover x' with

|lx' - XS| 2 < e |x - xs|| 2 with probability at least 1 - k--M. The recovery takes
O(k) time.

While interesting in its own right, this primitive also has a number of applications.
For example, we can:

* Improve the sparse recovery of Zipfian distributions O(k log n) measurements
from a 1 + e approximation to a 1 + o(1) approximation, giving the first such
approximation when k < O(nlE).

e Recover block-sparse vectors with O(k) space and a 1 + e approximation. Pre-
vious algorithms required either w(k) space or w(1) approximation.

Thesis Supervisor: Piotr Indyk
Title: Associate Professor



4



Acknowledgments

Foremost I thank my advisor Piotr Indyk for much helpful advice.

Some of this work has appeared as a publication with coauthors. I would like

to thank my coauthors Khanh Do Ba, Piotr Indyk, and David Woodruff for their

contributions.



6



Contents

1 Introduction

1.1 A lower bound. . . . . . .

1.2 Set query algorithm . . . .

2 Overview of Lower Bound

2.1 Our techniques . . . . . .

2.2 Related Work . . . . . . .

2.3 Preliminaries.. . . ..

2.3.1 Notation . . . . . .

2.3.2 Sparse recovery . .

3 Deterministic Lower Bound

3.1 Proof. . . . . . . . . . . . . . . . . . . . . ...............

3.2 Randomized upper bound for uniform noise...............

4 Randomized Lower Bound

4.1 Reducing to orthonormal matrices . . . . . ...............

4.2 Communication complexity . . . . . . . ................

4.3 Randomized lower bound theorem . . . . . ...............

5 Overview of Set Query Algorithm

5.1 Our techniques . . . . . . . . . . . . . . . ...............

5.2 Related work . . . . . . . . . . . . . . . . ...............

5.3 Applications . . . . . . . . . . . . . . . . . ...............

7

. . . . . . . . .. . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . .. . . . . .

. . . . . . . . .. . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .



5.4 Prelim inaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.1 N otation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.2 Negative association . . . . . . . . . . . . . . . . . . . . . . . 37

6 Set-Query Algorithm 39

6.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 A lgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Exact recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 Total error in terms of point error and component size . . . . . . . . 45

6.5 Bound on point error . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.6 Bound on component size . . . . . . . . . . . . . . . . . . . . . . . . 49

6.7 Wrapping it up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Applications of Set Query Algorithm 55

7.1 Heavy hitters of sub-Zipfian distributions . . . . . . . . . . . . . . . . 55

7.2 Block-sparse vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A Standard Mathematical Lemmas 59

A.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 Negative dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B Bounding the Set Query Algorithm in the f1 Norm 63

C Locating Block Heavy Hitters 65



List of Figures

6-1 Instance of the set query problem . . .

6-2 Example run of the set query algorithm



10



Chapter 1

Introduction

In recent years, a new "linear" approach for obtaining a succinct approximate repre-

sentation of n-dimensional vectors (or signals) has been discovered. For any signal x,

the representation is equal to Ax, where A is an m x n matrix, or possibly a random

variable chosen from some distribution over such matrices. The vector Ax is often

referred to as the measurement vector or linear sketch of x. Although m is typically

much smaller than n, the sketch Ax often contains plenty of useful information about

the signal x.

A particularly useful and well-studied problem is that of stable sparse recovery.

The problem is typically defined as follows: for some norm parameters p and q and

an approximation factor C > 0, given Ax, recover a vector x' such that

|x' - xII < C - Errk(x), where Errk(x) = min ||i - x|j| (1.1)
k-sparse x

where we say that 5 is k-sparse if it has at most k non-zero coordinates. Sparse

recovery has applications to numerous areas such as data stream computing [40,

29] and compressed sensing [6, 17], notably for constructing imaging systems that

acquire images directly in compressed form (e.g., [18, 41]). The problem has been

a subject of extensive study over the last several years, with the goal of designing

schemes that enjoy good "compression rate" (i.e., low values of m) as well as good

algorithmic properties (i.e., low encoding and recovery times). It is known that there



exist distributions of matrices A and associated recovery algorithms that for any

x with high probability produce approximations x' satisfying Equation (1.1) with

fp = fq = f1, constant approximation factor C = 1 + e, and sketch length m =

0(k log(n/k))1 . Similar results for other combinations of fp/f norms are known as

well. In comparison, using a non-linear approach, one could obtain a shorter sketch

of length 0(k): it suffices to store the k coefficients with the largest absolute values,

together with their indices.

This thesis has two main parts. The first part is a tight lower bound on the number

of measurements for general sparse recovery, and the second part introduces a useful

primitive for circumventing the lower bound in special cases of sparse recovery.

1.1 A lower bound

Surprisingly, it was not known if the 0(k log(n/k)) bound on measurements for linear

sketching could be improved upon 2 , and 0(k) sketch length was known to suffice if

the signal vectors x are required to be exactly k-sparse [1]. This raised hope that the

0(k) bound might be achievable even for general vectors x. Such a scheme would have

been of major practical interest, since the sketch length determines the compression

ratio, and for large n any extra log n factor worsens that ratio tenfold.

In the first part of this thesis we show that, unfortunately, such an improvement

is not possible. We address two types of recovery scheme:

" A deterministic one, which involves a fixed matrix A and a recovery algorithm

which work for all signals x. The aforementioned results of [6] and others are

examples of such schemes.

* A randomized one, where the matrix A is chosen at random from some distri-

bution, and for each signal x the recovery procedure is correct with constant

'In particular, a random Gaussian matrix [10] or a random sparse binary matrix ([28], building
on [9, 13]) has this property with overwhelming probability. See [27] for an overview.

2The lower bound of Q(k log(n/k)) was known to hold for specific recovery algorithms, specific
matrix types, or other recovery scenarios. See Section 2.2 for an overview.



probability. Some of the early schemes proposed in the data stream literature

(e.g., [9, 13]) belong to this category.

Our main result in this section is that, even in the randomized case, the sketch

length m must be at least Q(k log(n/k)). By the aforementioned result of [6] this

bound is tight. Thus, our results show that the linear compression is inherently more

costly than the simple non-linear approach. Chapters 3 and 4 contain this result.

1.2 Set query algorithm

Because it has proved impossible to improve on the sketch size in the general sparse

recovery problem, recently there has been a body of work on more restricted problems

that are amenable to more efficient solutions. This includes model-based compressive

sensing [4], which imposing additional constraints (or models) on x beyond near-

sparsity. Examples of models include block sparsity, where the large coefficients tend

to cluster together in blocks [4, 21]; tree sparsity, where the large coefficients form a

rooted, connected tree structure [4, 37]; and being Zipfian, where we require that the

histogram of coefficient size follow a Zipfian (or power law) distribution.

A sparse recovery algorithm needs to perform two tasks: locating the large coef-

ficients of x and estimating their value. Existing algorithms perform both tasks at

the same time. In contrast, we propose decoupling these tasks. In models of interest,

including Zipfian signals and block-sparse signals, existing techniques can locate the

large coefficients more efficiently or accurately than they can estimate them. Prior

to this work, however, estimating the large coefficients after finding them had no

better solution than the general sparse recovery problem. We fill this gap by giving

an optimal method for estimating the values of the large coefficients after locating

them. We refer to this task as the Set Query Problema.

Main result. (Set Query Algorithm.) We give a randomized distribution over

0(k) x n binary matrices A such that, for any vector x E R' and set S C {1,... , n}

3The term "set query" is in contrast to "point query," used in e.g. [13] for estimation of a single
coordinate.



with S| = k, we can recover an x' from Ax + v and S with

x' - XS||2 < C|X - XS||2 + 11v12)

where xs E R"n equals x over S and zero elsewhere. The matrix A has 0(1) non-zero

entries per column, recovery succeeds with probability 1 - k-( 1), and recovery takes

O(k) time. This can be achieved for arbitrarily small e > 0, using O(k/e 2) rows. We

achieve a similar result in the f1 norm.

The set query problem is useful in scenarios when, given the sketch of x, we

have some alternative methods for discovering a "good" support of an approximation

to x. This is the case, e.g., in block-sparse recovery, where (as we show in this

paper) it is possible to identify "heavy" blocks using other methods. It is also a

natural problem in itself. In particular, it generalizes the well-studied point query

problem [13], which considers the case that S is a singleton. We note that although

the set query problem for sets of size k can be reduced to k instances of the point

query problem, this reduction is less space-efficient than the algorithm we propose,

as elaborated in Chapters 5 and 6.



Chapter 2

Overview of Lower Bound

This chapter gives intuition and related work for our lower bounds. Proofs and further

detail lie in Chapters 3 and 4.

2.1 Our techniques

On a high level, our approach is simple and natural, and utilizes the packing approach:

we show that any two "sufficiently" different vectors x and x' are mapped to images

Ax and Ax' that are "sufficiently" different themselves, which requires that the image

space is "sufficiently" high-dimensional. However, the actual arguments are somewhat

subtle.

Consider first the (simpler) deterministic case. We focus on signals x = y + z,

where y can be thought of as the "head" of the signal and z as the "tail". The "head"

vectors y come from a set Y that is a binary error-correcting code, with a minimum

distance Q(k), where each codeword has weight k. On the other hand, the "tail"

vectors z come from an f1 ball (say B) with a radius that is a small fraction of k. It

can be seen that for any two elements y, y' E Y, the balls y + B and y'+ B, as well as

their images, must be disjoint. At the same time, since all vectors x live in a "large"

E1 ball B' of radius 0(k), all images Ax must live in a set AB'. The key observation

is that the set AB' is a scaled version of A(y + B) and therefore the ratios of their

volumes can be bounded by the scaling factor to the power of the dimension m. Since



the number of elements of Y is large, this gives a lower bound on m.

Unfortunately, the aforementioned approach does not seem to extend to the ran-

domized case. A natural approach would be to use Yao's principle, and focus on

showing a lower bound for a scenario where the matrix A is fixed while the vectors

x = y + z are "random". However, this approach fails, in a very strong sense. Specif-

ically, we are able to show that there is a distribution over matrices A with only 0(k)

rows so that for a fixed y E Y and z chosen uniformly at random from the small ball

B, we can recover y from A(y + z) with high probability. In a nutshell, the reason is

that a random vector from B has an £2 norm that is much smaller than the f2 norm

of elements of Y (even though the f1 norms are comparable). This means that the

vector x is "almost" k-sparse (in the £2 norm), which enables us to achieve the 0(k)

measurement bound.

Instead, we resort to an altogether different approach, via communication com-

plexity [36). We start by considering a "discrete" scenario where both the matrix

A and the vectors x have entries restricted to the polynomial range {--n ... nc} for

some c = 0(1). In other words, we assume that the matrix and vector entries can

be represented using 0(log n) bits. In this setting we show the following: there is a

method for encoding a sequence of d = 0(klog(n/k) logn) bits into a vector x, so

that any sparse recovery algorithm can recover that sequence given Ax. Since each

entry of Ax conveys only 0(log n) bits, it follows that the number m of rows of A

must be Q(klog(n/k)).

The encoding is performed by taking

log n

x = E jj

j=1

where D = 0(1) and the x are chosen from the error-correcting code Y defined as in

the deterministic case. The intuition behind this approach is that a good f1/1 approx-

imation to x reveals most of the bits of xlogn. This enables us to identify xlogn exactly

using error correction. We could then compute Ax - Axiogn = A( E"- 1 Dizx), and

identify Xiogn1 ... x 1 in a recursive manner. The only obstacle to completing this



argument is that we would need the recovery algorithm to work for all xi, which

would require lower probability of algorithm failure (roughly 1/ log n). To overcome

this problem, we replace the encoding argument by a reduction from a related com-

munication complexity problem called Augmented Indexing. This problem has been

used in the data stream literature [11, 32] to prove lower bounds for linear algebra

and norm estimation problems. Since the problem has communication complexity of

Q(d), the conclusion follows.

We apply the argument to arbitrary matrices A by representing them as a sum

A' + A", where A' has O(log n) bits of precision and A" has "small" entries. We then

show that A'x = A(x + s) for some s with ||s|1, < n-- 1 ||x11. In the communication

game, this means we can transmit A'x and recover Xlogn from A'(Eg " Dix,) =

A(Eg1" D3-x + s). This means that the Augmented Indexing reduction applies to

arbitrary matrices as well.

2.2 Related Work

There have been a number of earlier works that have, directly or indirectly, shown

lower bounds for various models of sparse recovery and certain classes of matrices

and algorithms. Specifically, one of the most well-known recovery algorithms used in

compressed sensing is fi-minimization, where a signal x E R' measured by matrix A

is reconstructed as

x' := arg min||2||1 .
2: Ai=Ax

Kashin and Temlyakov [34] gave a characterization of matrices A for which the above

recovery algorithm yields the £2/f 1 guarantee, i.e.,

l|x - x'| 2 < Ck-1/2  min ||x - 2||1k-sparse z

for some constant C, from which it can be shown that such an A must have m =

Q(k log(n/k)) rows.

Note that the £2/f 1 guarantee is somewhat stronger than the E1/fi guarantee in-



vestigated in this paper. Specifically, it is easy to observe that if the approximation

x' itself is required to be 0(k)-sparse, then the f2/f1 guarantee implies the f1/f1 guar-

antee (with a somewhat higher approximation constant). For the sake of simplicity,
in this paper we focus mostly on the E1/E1 guarantee. However, our lower bounds

apply to the E2/f 1 guarantee as well: see footnote on page 31.

On the other hand, instead of assuming a specific recovery algorithm, Wain-

wright [44] assumes a specific (randomized) measurement matrix. More specifically,

the author assumes a k-sparse binary signal x E {0, a}", for some a > 0, to which is

added i.i.d. standard Gaussian noise in each component. The author then shows that

with a random Gaussian matrix A, with each entry also drawn i.i.d. from the standard

Gaussian, we cannot hope to recover x from Ax with any sub-constant probability of

error unless A has m = Q(1 log 1) rows. The author also shows that for a = /k,
this is tight, i.e., that m = 8(k log(n/k)) is both necessary and sufficient. Although

this is only a lower bound for a specific (random) matrix, it is a fairly powerful one

and provides evidence that the often observed upper bound of O(k log(n/k)) is likely

tight.

More recently, Dai and Milenkovic [15], extending on [24] and [26], showed an

upper bound on superimposed codes that translates to a lower bound on the number

of rows in a compressed sensing matrix that deals only with k-sparse signals but can

tolerate measurement noise. Specifically, if we assume a k-sparse signal x E ([-t, t] n

Z)", and that arbitrary noise y E Rn with ||p||1 < d is added to the measurement

vector Ax, then if exact recovery is still possible, A must have had m > Ck log n/ log k

rows, for some constant C = C(t, d) and sufficiently large n and k.1

Concurrently with our work, Foucart et al. [25] have done an analysis of Gelfand

widths of fp-balls that implies a lower bound on sparse recovery. Their work essentially

matches our deterministic lower bound, and does not extend to the randomized case.

1Here A is assumed to have its columns normalized to have Li-norm 1. This is natural since
otherwise we could simply scale A up to make the image points Ax arbitrarily far apart, effectively
nullifying the noise.



2.3 Preliminaries

2.3.1 Notation

For n E Z+, we denote {1, . .. , n} by [n]. Suppose x E R". Then for i C [n], xi E R

denotes the value of the i-th coordinate in x. As an exception, ej E R" denotes the

elementary unit vector with a one at position i. For S ; [n], xs denotes the vector

x' E R" given by x' = xi if i E S, and x' = 0 otherwise. We use supp(x) to denote

the support of x. We use upper case letters to denote sets, matrices, and random

distributions. We use lower case letters for scalars and vectors.

We use Bpn(r) to denote the f, ball of radius r in R"; we skip the superscript n if

it is clear from the context. For any vector x, we use ||l|0 to denote the "to norm of

x", i.e., the number of non-zero entries in x.

2.3.2 Sparse recovery

In this paper we focus on recovering sparse approximations x' that satisfy the following

C-approximate f1/1 guarantee with sparsity parameter k:

|ix - '1|1 < C min ||x - .||. (2.1)
k-sparse

We define a C-approximate deterministic 4//1 recovery algorithm to be a pair

(A, d) where A is an m x n observation matrix and !/ is an algorithm that, for any

x, maps Ax (called the sketch of x) to some x' that satisfies Equation (2.1).

We define a C-approximate randomized 4//1 recovery algorithm to be a pair

(A, d) where A is a random variable chosen from some distribution over m x n

measurement matrices, and d is an algorithm which, for any x, maps a pair (A, Ax)

to some x' that satisfies Equation (2.1) with probability at least 3/4.
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Chapter 3

Deterministic Lower Bound

3.1 Proof

We will prove a lower bound on m for any C-approximate deterministic recovery

algorithm. First we use a discrete volume bound (Lemma 1) to find a large set Y

of points that are at least k apart from each other. Then we use another volume

bound (Lemma 2) on the images of small f1 balls around each point in Y. If m is

too small, some two images collide. But the recovery algorithm, applied to a point in

the collision, must yield an answer close to two points in Y. This is impossible, so m

must be large.

Lemma 1. (Gilbert-Varshamov) For any q, k E Z+,e E R+ with e < 1 - 1/q, there

exists a set Y c {o, 1 }qk of binary vectors with exactly k ones, such that Y has

minimum Hamming distance 2ek and

log |Y| > (1 - Hq(e))k log q

where Hq is the q-ary entropy function Hq(x) = -x log, q - (1 - x) logq(1 - x).

See appendix for proof.

Lemma 2. Take an m x n real matrix A, positive reals e, p, A, and Y C Bp(A).

If |Y| > (1 + 1/e)"m, then there exist z,7 E Bg(cA) and y,Y E Y with y $ - and



A(y + z) = A(+ -f).

Proof. If the statement is false, then the images of all IY| balls {y + B"n(eA) I y E Y}

are disjoint. However, those balls all lie within B"'((1 + c)A), by the bound on the

norm of Y. A volume argument gives the result, as follows.

Let S = AB"n(1) be the image of the n-dimensional ball of radius 1 in m-

dimensional space. This is a polytope with some volume V. The image of Bpn(eA) is

a linearly scaled S with volume (eA) m V, and the volume of the image of B"((1 + e)A)

is similar with volume ((1 + e)A)"m V. If the images of the former are all disjoint and

lie inside the latter, we have |Y (EA)"m V < ((1 + e)A) m V, or |Y| 5 (1 + 1/c)m. If Y

has more elements than this, the images of some two balls y + B(cA) and -Y+ B"(eA)

must intersect, implying the lemma. D

Theorem 3. Any C-approximate deterministic recovery algorithm must have

1 - H[/kj(1/2) n

log(4 + 2C) k

Proof. Let Y be a maximal set of k-sparse n-dimensional binary vectors with mini-

mum Hamming distance k, and let -y = 1. By Lemma 1 with q = [n/kJ we have

log YI > (1 - HL/kj (1/2))k log [n/kJ.

Suppose that the theorem is not true; then m < log |Y| / log(4+2C) = log |Y| / log(1+

1/y), or |YJ > (1 + I)" Hence Lemma 2 gives us some y,V E Y and z, C Bi(yk)

with A(y + z) = A(V +

Let w be the result of running the recovery algorithm on A(y+z). By the definition

of a deterministic recovery algorithm, we have

ly + z - wl < C min ||y + z -Q
k-sparse 9

- wlli - ||z|il C jzz||

|ly -- w~l, < (1 + C)||~z||1 < (1 + C)-yk = + k,



and similarly || - < ll k, so

|1y - M1|1 ||y - w|1 + 11p - will = 2 Ck < k.

But this contradicts the definition of Y, so m must be large enough for the guarantee

to hold. L

Corollary 4. If C is a constant bounded away from zero, then m = Q(k log(n/k)).

This suffices to lower bound the number of measurements for deterministic matri-

ces. The next section gives evidence that this proof is hard to generalize to randomized

matrices; hence in the next chapter we will take a different approach.

3.2 Randomized upper bound for uniform noise

The standard way to prove a randomized lower bound is to find a distribution of

hard inputs, and to show that any deterministic algorithm is likely to fail on that

distribution. In our context, we would like to define a "head" random variable y from

a distribution Y and a "tail" random variable z from a distribution Z, such that any

algorithm given the sketch of y + z must recover an incorrect y with non-negligible

probability.

Using our deterministic bound as inspiration, we could take Y to be uniform

over a set of k-sparse binary vectors of minimum Hamming distance k and Z to

be uniform over the ball B1(yk) for some constant -y > 0. Unfortunately, as the

following theorem shows, one can actually perform a recovery of such vectors using

only O(k) measurements; this is because lIz1|2 is very small (namely, O(k/in)) with

high probability.

Theorem 5. Let Y C R' be a set of signals with the property that for every distinct

yi, y2 E Y, ||y1 - y2 112 > r, for some parameter r > 0. Consider "noisy signals"

x = y + z, where y E Y and z is a "noise vector" chosen uniformly at random from

B1(s), for another parameter s > 0. Then using an m x n Gaussian measurement



matrix A = (1/vf)(g j), where gi 's are i.i.d. standard Gaussians, we can recover

y E Y from A(y + z) with probability 1 - 1/n (where the probability is over both A

and z), as long as

0 rmn1/2 n1/2-1/m

( YJI/m lega/2 n
Because of this theorem, our geometric lower bound for deterministic matrices

is hard to generalize to randomized ones. Hence in Chapter 4 we use a different

technique to extend our results.

To prove the theorem we will need the following two lemmas.

Lemma 6. For any 6 > 0, Y1, Y2 E Y, Y1 # Y2, and z E R , each of the following

holds with probability at least 1 - 6:

" ||A(y1 - Y2)112 > |1rn - y2112 , and

" ||Az|2 (v(8/m) log(1/6) + 1)11z12.

Proof. By standard arguments (see, e.g., [30]), for any D > 0 we have

Pr IIA(y1 - Y2)||2 1 y Y2112] (

and

Pr[|Az||2 > D|z| 2] < e-m(D1) 2 /8

Setting both right-hand sides to 6 yields the lemma. l

Lemma 7. A random vector z chosen uniformly from B1 (s) satisfies

Pr[||z112 > as log n/v/n] < 1/no- 1 .

Proof. Consider the distribution of a single coordinate of z, say, zi. The probability

density of IziI taking value t E [0, s] is proportional to the (n - 1)-dimensional volume

of B "~0(s - t), which in turn is proportional to (s - t)- 1 . Normalizing to ensure

the probability integrates to 1, we derive this probability as

p(Izi I = t) = k(s - t

24



It follows that, for any D E [0, s],

Pr[IziI > D] = (s - t)" 1 dt = (1 - D/s)".

In particular, for any a > 1,

Pr[Izi| > aslogn/n]= (1 - alogn/n)" < e

= 1/n".

Now, by symmetry this holds for every other coordinate zi of z as well, so by the

union bound

Pr[lz||oo > as log n/n] < 1/no,

and since ||z|| 2  Vfi ||z||oo for any vector z, the lemma follows. El

Proof of theorem. In words, Lemma 6 says that A cannot bring faraway signal

points too close together, and cannot blow up a small noise vector too much. Now,

we already assumed the signals to be far apart, and Lemma 7 tells us that the noise

is indeed small (in E2 distance). The result is that in the image space, the noise is

not enough to confuse different signals. Quantitatively, applying the second part of

Lemma 6 with 3 = 1/n 2 , and Lemma 7 with a = 3, gives us

[ log/2 n s (slog3/2 n
||Az|2 <- 0 2 z|12 < O (mn)1/2 (3.1)

with probability > 1 - 2/n 2 . On the other hand, given signal yi E Y, we know that

every other signal Y2 E Y satisfies ||Y1 - Y2112 > r, so by the first part of Lemma 6

with J = 1/(2n|Y|), together with a union bound over every Y2 E Y,

|IA(y 1 - Y2)|12 > 3( IY )1 m 2 3(2nY)1/m (3.2)

holds for every Y2 E Y, Y2 -/ Y1, simultaneously with probability 1 - 1/(2n).

Finally, observe that as long as ||Az|| 2 < ||A(y1 - y2)112/ 2 for every competing



signal Y2 E Y, we are guaranteed that

IIA(y1 + z) - Ay,1| 2 = ||Azj| 2

< ||A(y1 - y2)||2 - ||Az|| 2

< |IA(y1 + z) - Ay21|2

for every Y2 # Y1, so we can recover yi by simply returning the signal whose image is

closest to our measurement point A(yi + z) in f2 distance. To achieve this, we can

chain Equations (3.1) and (3.2) together (with a factor of 2), to see that

0 rm1/
2n1/ 2-1/m

(y|1/m log3/2n

suffices. Our total probability of failure is at most 2/n 2 + 1/(2n) < 1/n.

The main consequence of this theorem is that for the setup we used in Chapter

3 to prove a deterministic lower bound of Q(k log(n/k)), if we simply draw the noise

uniformly randomly from the same fi ball (in fact, even one with a much larger radius,

namely, polynomial in n), this "hard distribution" can be defeated with just 0(k)

measurements:

Corollary 8. If Y is a set of binary k-sparse vectors, as in Chapter 3, and noise z

is drawn uniformly at random from B1(s), then for any constant e > 0, m = 0(k/e)

measurements suffice to recover any signal in Y with probability 1 - 1/n, as long as

0 k3/2+en1/2-c

( loga3/2 n

Proof. The parameters in this case are r = k and IYI < (") < (ne/k)k, so by Theorem

5, it suffices to have
<0 k3/ 2 +k/mn1/ 2-(k+l)/m

log3/2

Choosing m = (k + 1)/E yields the corollary. E



Chapter 4

Randomized Lower Bound

In the previous chapter, we gave a simple geometric proof of the lower bound for

deterministic matrices. We also showed that this proof does not easily generalize to

randomized matrices. In this chapter, we use a different approach to show a lower

bound for randomized as well as deterministic matrices. We will use a reduction from

a communication game with a known lower bound on communication complexity.

The communication game will show that a message Ax must have a large number

of bits. To show that this implies a lower bound on the number of rows of A, we will

need A to be discrete. But if A is poorly conditioned, straightforward rounding could

dramatically change its recovery characteristics. Therefore in Section 4.1 we show

that it is sufficient to consider orthonormal matrices A. In Section 4.2 we define our

communication game and show a lower bound on its communication complexity. In

Section 4.3 we prove the lower bound.

4.1 Reducing to orthonormal matrices

Before we discretize by rounding, we need to ensure that the matrix is well condi-

tioned. We show that without loss of generality, the rows of A are orthonormal.

We can multiply A on the left by any invertible matrix to get another measurement

matrix with the same recovery characteristics. If we consider the singular value

decomposition A = UEV*, where U and V are orthonormal and E is 0 off the



diagonal, this means that we can eliminate U and make the entries of E be either 0

or 1. The result is a matrix consisting of m orthonormal rows. For such matrices, we

prove the following:

Lemma 9. Consider any m x n matrix A with orthonormal rows. Let A' be the result

of rounding A to b bits per entry. Then for any v E R" there exists an s E R" with

A'v = A(v - s) and hsjjj < n22-b iIV1.

Proof. Let A" = A - A' be the roundoff error when discretizing A to b bits, so each

entry of A" is less than 2 -b. Then for any v and s = ATA"v, we have As = A"v and

js|\j = 11 AT A"vjj : \F||A~lv||l

mV2-' ivii n22-b lvJii.

4.2 Communication complexity

We use a few definitions and results from two-party communication complexity. For

further background see the book by Kushilevitz and Nisan [36]. Consider the following

communication game. There are two parties, Alice and Bob. Alice is given a string

y E {0, 1}d. Bob is given an index i E [d], together with yi+1, yi+2, . .. , yd. The

parties also share an arbitrarily long common random string r. Alice sends a single

message M(y, r) to Bob, who must output yi with probability at least 3/4, where

the probability is taken over r. We refer to this problem as Augmented Indexing. The

communication cost of Augmented Indexing is the minimum, over all correct protocols,

of the length of the message M(y, r) on the worst-case choice of r and y.

The next theorem is well-known and follows from Lemma 13 of [38] (see also

Lemma 2 of [31).

Theorem 10. The communication cost of Augmented Indexing is Q(d).



Proof. First, consider the private-coin version of the problem, in which both parties

can toss coins, but do not share a random string r (i.e., there is no public coin).

Consider any correct protocol for this problem. We can assume the probability of

error of the protocol is an arbitrarily small positive constant by increasing the length

of Alice's message by a constant factor (e.g., by independent repetition and a majority

vote). Applying Lemma 13 of [38] (with, in their notation, t = 1 and a = c' - d for a

sufficiently small constant c' > 0), the communication cost of such a protocol must

be Q(d). Indeed, otherwise there would be a protocol in which Bob could output yi

with probability greater than 1/2 without any interaction with Alice, contradicting

that Pr[yi = 1/2] and that Bob has no information about yi. Our theorem now

follows from Newman's theorem (see, e.g., Theorem 2.4 of [35]), which shows that

the communication cost of the best public coin protocol is at least that of the private

coin protocol minus O(log d) (which also holds for one-round protocols). L

4.3 Randomized lower bound theorem

Theorem 11. For any randomized f1/f1 recovery algorithm (A, &), with approxima-

tion factor C = 0(1), A must have m = Q(k log(n/k)) rows.

Proof. We shall assume, without loss of generality, that n and k are powers of 2, that

k divides n, and that the rows of A are orthonormal. The proof for the general case

follows with minor modifications.

Let (A, d) be such a recovery algorithm. We will show how to solve the Augmented

Indexing problem on instances of size d = Q(k log(n/k) log n) with communication cost

0(m log n). The theorem will then follow by Theorem 10.

Let X be the maximal set of k-sparse n-dimensional binary vectors with minimum

Hamming distance k. From Lemma 1 we have log IX| = Q(k log(n/k)). Let d =

[log IX IJ log n, and define D = 2C + 3.

Alice is given a string y E {0, 1}d, and Bob is given i c [d] together with

Yi+1, Yi+2, ... , Yd, as in the setup for Augmented Indexing.



Alice splits her string y into log n contiguous chunks y1 , y2, ... , log" n, each con-

taining [log XIJ bits. She uses y3 as an index into X to choose xj. Alice defines

x = Dix1 + D 2x2 + - - - + Dlognx iogn.

Alice and Bob use the common randomness r to agree upon a random matrix A with

orthonormal rows. Both Alice and Bob round A to form A' with b = [2(1 + log D) log n] =

O(log n) bits per entry. Alice computes A'x and transmits it to Bob.

From Bob's input i, he can compute the value j = j(i) for which the bit y

occurs in y'. Bob's input also contains yi+1,.. ,y7n, from which he can reconstruct

xj+ 1 , ... , Xlog n, and in particular can compute

z = Dj+lxj+1 + Dj+2x 3+2 +- + D "onXiog.

Bob then computes A'z, and using A'x and linearity, A'(x - z). Then

< kD i+log n
||x - z||1 < kD' < k D 1 < kD20n

So from Lemma 9, there exists some s with A'(x - z) = A(x - z - s) and

|s|1 < n22 -21ogn-21ogDiogn |x - zf11 < k.

Set w = x - z - s. Bob then runs the estimation algorithm d on A and Aw,

obtaining w' with the property that with probability at least 3/4,

||w - w'||1 < C min ||w - >|1l.k-sparse i



Now,

min 11w - w||11 < ||w - Djx||,k-sparse t
j-1

< ||s|| + i ||D'xi||,
i=1

<k -D.
D - 1

Hence

Djxj - w'||K < ||Djxj - w|1K + 11w - w'||

< (1 + C)||lDjxj - w ll,
kDj

2

And since the minimum Hamming distance in X is k, this means |lDix - w'111 <

|Dix' - w'11 for all x' E X, x' 7 x 1 . So Bob can correctly identify xo with probability

at least 3/4. From xo he can recover y3 , and hence the bit yj that occurs in y'.

Hence, Bob solves Augmented Indexing with probability at least 3/4 given the

message A'x. The entries in A' and x are polynomially bounded integers (up to

scaling of A'), and so each entry of A'x takes O(logn) bits to describe. Hence,

the communication cost of this protocol is O(m log n). By Theorem 10, m log n =

Q(k log(n/k) log n), or m = Q(k log(n/k)). 0

1Note that these bounds would still hold with minor modification if we replaced the E1 /E guar-
antee with the f 2 /L1 guarantee, so the same result holds in that case.
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Chapter 5

Overview of Set Query Algorithm

The previous chapters show that the general sparse recovery problem cannot be solved

with fewer than 8(k log(n/k)) linear measurements. However, many problems that

can be cast as sparse recovery problems are special cases of the class; one can still

hope to solve the special cases more efficiently. The rest of this thesis introduces the

set query problem, a useful primitive for this kind of problem. We show a particularly

efficient algorithm for this problem and two applications where our algorithm allows

us to improve upon the best known results. Recall from the introduction that we

achieve the following:

We give a randomized distribution over 0(k) x n binary matrices A such that, for

any vector x E R"n and set S C {,.. . , n} with |SI = k, we can recover an x' from

Ax + v and S with

||x' - XS||2 < C(|Ix - XS12 + |1v112)

where xs E R' equals x over S and zero elsewhere. The matrix A has 0(1) non-zero

entries per column, recovery succeeds with probability 1 - k-9(), and recovery takes

0(k) time. This can be achieved for arbitrarily small e > 0, using 0(k/e 2) rows. We

achieve a similar result in the 4 norm.



5.1 Our techniques

Our method is related to existing sparse recovery algorithms, including Count-Sketch [9]

and Count-Min [13]. In fact, our sketch matrix A is almost identical to the one used

in Count-Sketch-each column of A has d random locations out of 0(kd) each inde-

pendently set to ±1, and the columns are independently generated. We can view such

a matrix as "hashing" each coordinate to d "buckets" out of 0(kd). The difference

is that the previous algorithms require 0(k log k) measurements to achieve our error

bound (and d = 0(log k)), while we only need 0(k) measurements and d = 0(1).

We overcome two obstacles to bring d down to 0(1) and still achieve the error

bound with high probability1 . First, in order to estimate the coordinates xi, we need a

more elaborate method than, say, taking the median of the buckets that i was hashed

into. This is because, with constant probability, all such buckets might contain some

other elements from S (be "heavy") and therefore using any of them as an estimator

for y2 would result in too much error. Since, for super-constant values of |S|, it is

highly likely that such an event will occur for at least one i E S, it follows that this

type of estimation results in large error.

We solve this issue by using our knowledge of S. We know when a bucket is

"corrupted" (that is, contains more than one element of S), so we only estimate

coordinates that lie in a large number of uncorrupted buckets. Once we estimate a

coordinate, we subtract our estimation of its value from the buckets it is contained in.

This potentially decreases the number of corrupted buckets, allowing us to estimate

more coordinates. We show that, with high probability, this procedure can continue

until it estimates every coordinate in S.

The other issue with the previous algorithms is that their analysis of their prob-

ability of success does not depend on k. This means that, even if the "head" did not

interfere, their chance of success would be a constant (like 1 - 2 -(d)) rather than

high probability in k (meaning 1 - k~(d)). We show that the errors in our estimates

of coordinates have low covariance, which allows us to apply Chebyshev's inequality

'In this paper, "high probability" means probability at least 1 - 1/k' for some constant c > 0.



to get that the total error is concentrated around the mean with high probability.

5.2 Related work

A similar recovery algorithm (with d = 2) has been analyzed and applied in a stream-

ing context in [23]. However, in that paper the authors only consider the case where

the vector y is k-sparse. In that case, the termination property alone suffices, since

there is no error to bound. Furthermore, because d = 2 they only achieve a constant

probability of success. In this paper we consider general vectors y so we need to make

sure the error remains bounded, and we achieve a high probability of success.

5.3 Applications

Our efficient solution to the set query problem can be combined with existing tech-

niques to achieve sparse recovery under several models.

We say that a vector x follows a Zipfian or power law distribution with parameter

a if [Xr(i) = E(8Xr(l) |i~) where r(i) is the location of the ith largest coefficient in x.

When a > 1/2, x is well approximated in the f2 norm by its sparse approximation.

Because a wide variety of real world signals follow power law distributions ([39, 5]),

this notion (related to "compressibility" 2) is often considered to be much of the reason

why sparse recovery is interesting ([4, 7]). Prior to this work, sparse recovery of

power law distributions has only been solved via general sparse recovery methods:

(1 + e) Err2(x) error in 0(k log(n/k)) measurements.

However, locating the large coefficients in a power law distribution has long been

easier than in a general distribution. Using 0(k log n) measurements, the Count-

Sketch algorithm [9] can produce a candidate set S C {1 .. ... , b} with |SI= 0(k) that

includes all of the top k positions in a power law distribution with high probability

(if a > 1/2). We can then apply our set query algorithm to recover an approximation

x' to xS. Because we already are using 0(k log n) measurements on Count-Sketch,
2A signal is "compressible" when |xr(i)l = O(Ixr(1)I j) rather than E(Ixr(1) I -a) [4]. This

allows it to decay very quickly then stop decaying for a while; we require that the decay be continuous.



we use O(k log n) rather than O(k) measurements in the set query algorithm to get

an 6//log n rather than e approximation. This lets us recover an x' with O(k log n)

measurements with

|1X' -X1|2 < 1 + C Err 2(X).
log n)

This is especially interesting in the common regime where k < nl-C for some constant

c > 0. Then no previous algorithms achieve better than a (1+ c) approximation with

O(k log n) measurements, and the lower bound in [16] shows that any 0(1) approxi-

mation requires Q(k log n) measurements3 . This means at E(k log n) measurements,

the best approximation changes from w(1) to 1 + o(1).

Another application is that of finding block-sparse approximations. In this case,

the coordinate set {1... n} is partitioned into n/b blocks, each of length b. We define

a (k, b)-block-sparse vector to be a vector where all non-zero elements are contained

in at most k/b blocks. An example of block-sparse data is time series data from n/b

locations over b time steps, where only k/b locations are "active". We can define

Err(k,b)(x) = min - 11X - 112
(k,b)-block-sparse x

The block-sparse recovery problem can be now formulated analogously to Equa-

tion 1.1. Since the formulation imposes restrictions on the sparsity patterns, it is

natural to expect that one can perform sparse recovery from fewer than O(k log(n/k))

measurements needed in the general case. Because of that reason and its practical

relevance, the problem of stable recovery of variants of block-sparse approximations

has been recently a subject of extensive research (e.g., see [22, 42, 4, 8]). The state

of the art algorithm has been given in [4], who gave a probabilistic construction of a

single m x n matrix A, with m = 0(k + log n), and an n log0 1 ) n-time algorithm

for performing the block-sparse recovery in the f1 norm (as well as other variants). If

the blocks have size Q(log n), the algorithm uses only 0(k) measurements, which is a

substantial improvement over the general bound. However, the approximation factor

3The lower bound only applies to geometric distributions, not Zipfian ones. However, our al-
gorithm applies to more general sub-Zipfian distributions (defined in Section 7.1), which includes
both.



C guaranteed by that algorithm was super-constant.

In this paper, we provide a distribution over matrices A, with m = O(k + ! log n),

which enables solving this problem with a constant approximation factor and in the

f2 norm, with high probability. As with Zipfian distributions, first one algorithm tells

us where to find the heavy hitters and then the set query algorithm estimates their

values. In this case, we modify the algorithm of [2] to find block heavy hitters, which

enables us to find the support of the k "most significant blocks" using O( log n)bb

measurements. The essence is to perform dimensionality reduction of each block

from b to O(log n) dimensions, then estimate the result with a linear hash table. For

each block, most of the projections are estimated pretty well, so the median is a good

estimator of the block's norm. Once the support is identified, we can recover the

coefficients using the set query algorithm.

5.4 Preliminaries

5.4.1 Notation

For n E Z+, we denote {... , n} by [n]. Suppose x E R". Then for i E [n], xi E R

denotes the value of the i-th coordinate in x. As an exception, e E R"n denotes the

elementary unit vector with a one at position i. For S C [n], xs denotes the vector

z' E R' given by x' = xi if i E S, and x' = 0 otherwise. We use supp(x) to denote

the support of x. We use upper case letters to denote sets, matrices, and random

distributions. We use lower case letters for scalars and vectors.

5.4.2 Negative association

This paper would like to make a claim of the form "We have k observations each of

whose error has small expectation and variance. Therefore the average error is small

with high probability in k." If the errors were independent this would be immediate

from Chebyshev's inequality, but our errors depend on each other. Fortunately, our

errors have some tendency to behave even better than if they were independent:



the more noise that appears in one coordinate, the less remains to land in other

coordinates. We use negative dependence to refer to this general class of behavior. The

specific forms of negative dependence we use are negative association and approzimate

negative correlation; see Appendix A.2 for details on these notions.



Chapter 6

Set-Query Algorithm

Theorem 12. We give a randomized sparse binary sketch matrix A and recovery

algorithm d, such that for any x E R", S C [n] with SI = k, x' = d(Ax+v, S) E R"

has supp(x') C S and

||x - XS|2 E(||x - XS||2 + ||v|2)

with probability at least 1

per column, and c runs

We can achieve l|x' -

with only O(fk) rows.

- 1/kc. Our A has O( pk) rows and 0(c) non-zero entries

in O(ck) time.

xs||1 < c(|lx - xs||1 + ||v|1) under the same conditions, but

We will first show Theorem 12 for a constant c = 1/3 rather than for general c.

Parallel repetition gives the theorem for general c, as described in Subsection 6.7.

We will also only show it with entries of A being in {0, 1, -1}. By splitting each

row in two, one for the positive and one for the negative entries, we get a binary

matrix with the same properties. The paper focuses on the more difficult f2 result;

see Appendix B for details on the fi result.



6.1 Intuition

We call xs the "head" and x - xS the "tail." The head probably contains the heavy

hitters, with much more mass than the tail of the distribution. We would like to

estimate xs with zero error from the head and small error from the tail with high

probability.

Our algorithm is related to the standard Count-Sketch [9] and Count-Min [13]

algorithms. In order to point out the differences, let us examine how they perform

on this task. These algorithms show that hashing into a single w = 0(k) sized hash

table is good in the sense that each point xi has:

1. Zero error from the head with constant probability (namely 1 -W).

2. A small amount of error from the tail in expectation (and hence with constant

probability).

They then iterate this procedure d times and take the median, so that each estimate

has small error with probability 1 - 2 -2(d). With d = O(log k), we get that all k

estimates in S are good with 0(k log k) measurements with high probability in k.

With fewer measurements, however, some xi will probably have error from the head.

If the head is much larger than the tail (such as when the tail is zero), this is a major

problem. Furthermore, with 0(k) measurements the error from the tail would be

small only in expectation, not with high probability.

We make three observations that allow us to use only 0(k) measurements to

estimate xs with error relative to the tail with high probability in k.

1. The total error from the tail over a support of size k is concentrated more

strongly than the error at a single point: the error probability drops as k-(d)

rather than 2 -(d).

2. The error from the head can be avoided if one knows where the head is, by

modifying the recovery algorithm.

3. The error from the tail remains concentrated after modifying the recovery al-

gorithm.



For simplicity this paper does not directly show (1), only (2) and (3). The mod-

ification to the algorithm to achieve (2) is quite natural, and described in detail in

Section 6.2. Rather than estimate every coordinate in S immediately, we only esti-

mate those coordinates which mostly do not overlap with other coordinates in S. In

particular, we only estimate xi as the median of at least d - 2 positions that are not

in the image of S \ {i}. Once we learn xi, we can subtract Axiej from the observed

Ax and repeat on A(x - xiej) and S \ {i}. Because we only look at positions that

are in the image of only one remaining element of S, this avoids any error from the

head. We show in Section 6.3 that this algorithm never gets stuck; we can always find

some position that mostly doesn't overlap with the image of the rest of the remaining

support.

We then show that the error from the tail has low expectation, and that it is

strongly concentrated. We think of the tail as noise located in each "cell" (coordinate

in the image space). We decompose the error of our result into two parts: the "point

error" and the "propagation". The point error is error introduced in our estimate of

some xi based on noise in the cells that we estimate xi from, and equals the median

of the noise in those cells. The "propagation" is the error that comes from point

error in estimating other coordinates in the same connected component; these errors

propagate through the component as we subtract off incorrect estimates of each xi.

Section 6.4 shows how to decompose the total error in terms of point errors and the

component sizes. The two following sections bound the expectation and variance of

these two quantities and show that they obey some notions of negative dependence1 .

We combine these errors in Section 6.7 to get Theorem 12 with a specific c (namely

c = 1/3). We then use parallel repetition to achieve Theorem 12 for arbitrary c.

6.2 Algorithm

We describe the sketch matrix A and recovery procedure in Algorithm 6.2.1. Un-

like Count-Sketch [9] or Count-Min [13], our A is not split into d hash tables of size

'See Section 5.4.2 and Appendix A.2 for discussions of negative dependence.



O(k). Instead, it has a single w = O(d 2k/e 2 ) sized hash table where each coordi-

nate is hashed into d unique positions. We can think of A as a random d-uniform

hypergraph, where the non-zero entries in each column correspond to the terminals

of a hyperedge. We say that A is drawn from Gd(w, n) with random signs associated

with each (hyperedge, terminal) pair. We do this so we will be able to apply existing

theorems on random hypergraphs.

Figure 6-1 shows an example Ax for a given x, and Figure 6-2 demonstrates

running the recovery procedure on this instance.

Definition of sketch matrix A. For a constant d, let A be a w x n - 0( k) x n
matrix where each column is chosen independently uniformly at random over all
exactly d-sparse columns with entries in {-1, 0, 1}. We can think of A as the incidence
matrix of a random d-uniform hypergraph with random signs.
Recovery procedure.

1: procedure SETQUERY(A, S, b) r> Recover approximation x' to xs from
b = Ax + v

2: T <- S
3: while |TI > 0 do
4: Define P(q) = {j I Aqj 5 0, j E T} as the set of hyperedges in T that

contain q.
5: Define L = {q | Aqj # 0, P(q)j = 1} as the set of isolated vertices in

hyperedge j.
6: Choose a random j E T such that |Lj > d - 1. If this is not possible, find

a random j E T such that ILI > d - 2. If neither is possible, abort.
7: x +-- medianqEL Aqjbq
8: b <- b - x'Aej
9: T - T\{j}

10: end while
11: return x'
12: end procedure

Algorithm 6.2.1: Recovering a signal given its support.
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Figure 6-1: An instance of the set query problem. There are n vertices on the left,

corresponding to x, and the table on the right represents Ax. Each vertex i on the

left maps to d cells on the right, randomly increasing or decreasing the value in each

cell by xi. We represent addition by black lines, and subtraction by red lines. We are

told the locations of the heavy hitters, which we represent by blue circles; the rest is

represented by yellow circles.
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Figure 6-2: Example run of the algorithm. Part (a) shows the state as considered by

the algorithm: Ax and the graph structure corresponding to the given support. In

part (b), the algorithm chooses a hyperedge with at least d - 2 isolated vertices and

estimates the value as the median of those isolated vertices multiplied by the sign of

the corresponding edge. In part (c), the image of the first vertex has been removed

from Ax and we repeat on the smaller graph. We continue until the entire support

has been estimated, as in part (d).



Lemma 13. Algorithm 6.2.1 runs in time 0(dk).

Proof. A has d entries per column. For each of the at most dk rows q in the image of

S, we can store the preimages P(q). We also keep track of the sets of possible next

hyperedges, Ji = {j I LI d - i} for i E {1, 2}. We can compute these in an initial

pass in 0(dk). Then in each iteration, we remove an element j E J1 or J2 and update

xj, b, and T in 0(d) time. We then look at the two or fewer non-isolated vertices q

in hyperedge j, and remove j from the associated P(q). If this makes |P(q)I = 1, we

check whether to insert the element in P(q) into the Ji. Hence the inner loop takes

O(d) time, for 0(dk) total. El

6.3 Exact recovery

The random hypergraph Gd(w, k) of k random d-uniform hyperedges on w vertices is

well studied in [33].

We define a connected hypergraph H with r vertices on s hyperedges to be a

hypertree if r = s(d - 1) + 1 and to be unicyclic if r = s(d - 1). Then Theorem 4

of [33] shows that, if the graph is sufficiently sparse, Gd(w, k) is probably composed

entirely of hypertrees and unicyclic components. The precise statement is as follows 2:

Lemma 14 (Theorem 4 of [33]). Let m w/d(d - 1) - k. Then with probability 1 -

O(d 5w 2/m 3), Gd(w, k) is composed entirely of hypertrees and unicyclic components.

We use a simple consequence:

Corollary 15. If d 0(1) and w > 2d(d - 1)k, then with probability 1 - 0(1/k),

Gd(w, k) is composed entirely of hypertrees and unicyclic

We now prove some basic facts about hypertrees and unicyclic components:

Lemma 16. Every hypertree has a hyperedge incident on at least d - 1 isolated ver-

tices. Every unicyclic component either has a hyperedge incident on d - 1 isolated
2 Their statement of the theorem is slightly different. This is the last equation in their proof of

the theorem.



vertices or has a hyperedge incident on d - 2 isolated vertices, the removal of which

turns the unicyclic component into a hypertree.

Proof. Let H be a connected component of s hyperedges and r vertices.

If H is a hypertree, r = (d - 1)s + 1. Because H has only ds total (hyperedge,

incident vertex) pairs, at most 2(s - 1) of these pairs can involve vertices that appear

in two or more hyperedges. Thus at least one of the s edges is incident on at most

one vertex that is not isolated, so some edge has d - 1 isolated vertices.

If H is unicyclic, r = (d- 1)s and so at most 2s of the (hyperedge, incident vertex)

pairs involve non-isolated vertices. Therefore on average, each edge has d - 2 isolated

vertices. If no edge is incident on at least d - 1 isolated vertices, every edge must

be incident on exactly d - 2 isolated vertices. In that case, each edge is incident on

exactly two non-isolated vertices and each non-isolated vertex is in exactly two edges.

Hence we can perform an Eulerian tour of all the edges, so removing any edge does

not disconnect the graph. After removing the edge, the graph has s' = s - 1 edges

and r' = r - d +2 vertices; therefore r' = (d - 1)s'+1 so the graph is a hypertree. O

These two lemmas show that the algorithm terminates without aborting:

Lemma 17. With probability at least 1-0(1/k), Algorithm 6.2.1 terminates without

aborting. Furthermore, in each component at most one hyperedge is chosen with only

d - 2 isolated vertices.

6.4 Total error in terms of point error and com-

ponent size

Define Cjj to be the event that hyperedges i and j are in the same component, and

Di = >j Cjj to be the number of hyperedges in the same component as i. Define Li

to be the cells that are used to estimate i; so Li= {q | Aqj # 0, P(q)I = 1} at the

round of the algorithm when i is estimated. Define Y = medianeL Aqi(b - Axs)q to

be the "point error" for hyperedge i, and x' to be the output of the algorithm. Then



the deviation of the output at any coordinate i is at most twice the sum of the point

errors in the component containing i:

Lemma 18.

(x' - xs )d 2 ( |YI Cijs
jeS

Proof. Let T = (x' - xs)i, and define R= { | j # i, 3q E Li s.t. Aqj # O} to be

the set of hyperedges that overlap with the cells used to estimate i. Then from the

description of the algorithm, it follows that

Ti = median Aqi((b - Axs)q - yAqjTj)
g6 Li

|Ti <- |Yi| + E |T|
jE Ri

We can think of the RI as a directed acyclic graph (DAG), where there is an edge

from j to i if j E RI. Then if p(i, j) is the number of paths from i to j,

|Ti| I < p )Ij i

Let r(i) = Ij | i E Rj}I be the outdegree of the DAG. Because the Li are disjoint,

r(i) < d- |Li. From Lemma 17, r(i) < 1 for all but one hyperedge in the component,

and r(i) < 2 for that one. Hence p(i,j) 2 for any i and j, giving the result. E

We use the following corollary:

Corollary 19.

|x' - 2xs|| 4( DiYi
iES

Proof.

Ix'-xs|| = E(x' - xs)< A S |Y 2  4(D 2  Y|2 =4 D Y
ieS icS jes ics jcs iES

C,j=l Cij=l

where the second inequality is the power means inequality. E



The D and Y are independent from each other, since one depends only on A

over S and one only on A over [n] \ S. Therefore we can analyze them separately;

the next two sections show bounds and negative dependence results for Y and Dj,

respectively.

6.5 Bound on point error

Recall from Section 6.4 that based entirely on the set S and the columns of A corre-

sponding to S, we can identify the positions Li used to estimate xi. We then defined

the "point error"

Y = median Aqi(b - Axs)q= median Aqi(A(x - xs) + v)q
qELi qELi

and showed how to relate the total error to the point error. Here we would like to show

that the Y have bounded moments and are negatively dependent. Unfortunately, it

turns out that the Y are not negatively associated so it is unclear how to show

negative dependence directly. Instead, we will define some other variables Zi that are

always larger than the corresponding Y. We will then show that the Zi have bounded

moments and negative association.

We use the term "NA" throughout the proof to denote negative association. For

the definition of negative association and relevant properties, see Appendix A.2.

Lemma 20. Suppose d > 7 and define y = O((|x - xs|| + |v||1)). There exist

random variables Zi such that the variables Y2 are stochastically dominated by Zi,

the Zi are negatively associated, E[Zj] = p, and E[Z2] = O(y 2).

Proof. The choice of the *Lj depends only on the values of A over S; hence condi-

tioned on knowing Li we still have A(x - xS) distributed randomly over the space.

Furthermore the distribution of A and the reconstruction algorithm are invariant un-

der permutation, so we can pretend that v is permuted randomly before being added

to Ax. Define Bi,q to be the event that q E supp(Aej), and define Di,q E {-1, 1}



independently at random. Then define the random variable

V = (b - Axs)q = vg + ( xiBi,qDi,q.
iE[n]\S

Because we want to show concentration of measure, we would like to show negative

association (NA) of the Yi = medianqELi AqiVq. We know v is a permutation distri-

bution, so it is NA [31]. The Bi,q for each i as a function of q are chosen from a

Fermi-Dirac model, so they are NA [20]. The Bi,q for different i are independent, so

all the Bi,q variables are NA. Unfortunately, the D,q can be negative, which means

the V are not necessarily NA. Instead we will find some NA variables that dominate

the V. We do this by considering V as a distribution over D.

Let W = ED q g + iE[n]\S XBi,q. As increasing functions of NA variables,

the Wq are NA. By Markov's inequality PrD [Vq]2  c , , so after choosing the

Bq and as a distribution over D, V2 is dominated by the random variable Uq = WF,

where F is, independently for each q, given by the p.d.f. f(c) = 1/c 2 for c > 1 and

f(c) = 0 otherwise. Because the distribution of V over D is independent for each q,

the Uq jointly dominate the V.

The Uq are the componentwise product of the W with independent positive ran-

dom variables, so they too are NA. Then define

Zi = median Ug.
qG Li

As an increasing function of disjoint subsets of NA variables, the Zi are NA. We also

have that

Y2  (medianAgjlQ 2 A (median |Vq) 2 = median V2 < medianUq = Zi
6qLi q qELi qELi q qELi

so the Zi stochastically dominate Y2. We now will bound E[Zi]. Define

p E[W] = E[v2]+ E xiE[Biq] = d 21 +0v|||| 5 -(|x - xs|| +||v|).
- Sn\ k

iE[n]\S



Then we have

1
Pr[Wq cp] < -

c

Pr[Uq cp] = f(x) Pr[W cp/x]dx

<j 1dx + j dx = 1 I clnc
1 2C c x2

Because the Uq are NA, they satisfy marginal probability bounds [20]:

Pr[Uq > tq, q G [w]] < 17 Pr[Uq tq]
iE[n]

for any tq. Therefore

Pr[Zi cp] 5
< ( 4 1±InC)d/2-1

C( ( Pr[U cp] < 2 |Li| ( C 1+nc)L/ 2

TcLi qcT
|T|=|Li|/2

(6.1)

If d > 7, this makes E[Zj] = O(p) and E[Z2] = O(p2).

6.6 Bound on component size

Lemma 21. Let Di be the number of hyperedges in the same component as hyperedge

i. Then for any i | j,

Cov(D2, D2) = E[D2D ] - E[D2] 2 <Q(log k

Furthermore, E[D2] = 0(1) and E[Df] = 0(1).

Proof. The intuition is that if one component gets larger, other components tend to

get smaller. There is a small probability that i and j are connected, in which case

Di and D are positively correlated, but otherwise Di and D should be negatively

correlated. However analyzing this directly is rather difficult, because as one com-



ponent gets larger, the remaining components have a lower average size but higher

variance. Our analysis instead takes a detour through the hypergraph where each

hyperedge is picked independently with a probability that gives the same expected

number of hyperedges. This distribution is easier to analyze, and only differs in a

relatively small O(v/i) hyperedges from our actual distribution. This allows us to

move between the regimes with only a loss of O( ), giving our result.

Suppose instead of choosing our hypergraph from Gd(w, k) we chose it from

Gd(w, ); that is, each hyperedge appeared independently with the appropriate

probability to get k hyperedges in expectation. This model is somewhat simpler, and

yields a very similar hypergraph G. One can then modify G by adding or removing

an appropriate number of random hyperedges I to get exactly k hyperedges, forming

a uniform G C Gd(w, k). By the Chernoff bound, |Il O(Vklog k) with probability

1 - 1ri
1 Q1

Let Di be the size of the component containing i in G, and Hi = D2 - D . Let

E denote the event that any of the Di or Di is more than C log k, or that more than

CVk log k hyperedges lie in I, for some constant C. Then E happens with probability

less than y for some C, so it has negligible influence on E[DD?]. Hence the rest of

this proof will assume E does not happen.

Therefore Hi = 0 if none of the 0 (VT log k) random hyperedges in I touch the

0(log k) hyperedges in the components containing i in C, so Hi = 0 with probability

at least 1 - 0(1"$5 k). Even if Hi $ 0, we still have | Hi < (D2 + D?) < O(log 2 k).

Also, we show that the i are negatively correlated, when conditioned on being in

separate components. Let D(n, p) denote the distribution of the component size of a

random hyperedge on Gd(n, p), where p is the probability an hyperedge appears. Then

D(n, p) dominates D(n', p) whenever n > n' - the latter hypergraph is contained

within the former. If Cj is the event that i and j are connected in C, this means

E[Dj | Dy = t, UCjj = 0]



is a decreasing function in t, so we have negative correlation:

--- -2 -
E[D|D U = 0] < E[D' I Usj = 0] E[D I 0] E[Di] E[D].

Furthermore for i j, Pr[U, 3 = 1] = E[UC-,] =- E10 E[Ci,] = EDj}-1

O(1/k). Hence

E[DiDj] = E[ID |Uj = 0] Pr[ = 01 + E[-DD Di = 1] Pr[Ci,j = 1]

< E[Db] E[D ]+ 0(log k
k

Therefore

E[DiD ] = E[(D!+ H)(Di + Hj)]

E[-DD ]+ 2 E[HibD] + E[HiHj]

< E[Di]E[Dj]+0(2 log k  4k+ logk 2k)

E[D - H] 2 + glog k)

E[D |2 -2 E[Hi] E[D ] + E[Hi]2 + O(log k

< E[D 2]2 +0(loi v/-k

Now to bound E[D4] in expectation. Because our hypergraph is exceedingly

sparse, the size of a component can be bounded by a branching process that dies

out with constant probability at each step. Using this method, Equations 71 and

72 of [12] state that Pr[D > k] e-(k). Hence E[Di] = 0(1) and E[D7] = 0(1).

Because Hi is 0 with high probability and O(log 2 k) otherwise, this immediately gives

E[Df) = 0(1) and E[D4] = O(1).



6.7 Wrapping it up

Recall from Corollary 19 that our total error

|Ix' - xs| 2  4ZYD i < 4 ZiDi.

The previous sections show that Zi and D2 each have small expectation and

covariance. This allows us to apply Chebyshev's inequality to concentrate 4 J ZjD2

about its expectation, bounding |Ix' - xS||2 with high probability.

Lemma 22. We can recover x' from Ax + v and S with

||x' - XS||2 5 C(|x - XS||2 + 1112)

with probability at least 1 - in 0(k) recovery time. Our A has O( g k) rows and

sparsity 0(1) per column.

Proof. Recall from Corollary 19 that our total error

||x' - xs||

Then by Lemma 20 and Lemma 21,

E[4 ZjD i]

4Y iD < 4 ZtiD
2 j

4 E[Zi] E[D2] kp



where y = O(2((|x - xs||2 + I|v|)). Furthermore,

E[(E
i

Var((
i

ZjD2) 2] = E[ZD4] + E[ZiZjD Dj|
isij

= E[Z] E[D ] + (3 E[ZiZj] E[D Dj]

<3 O(p2) + E[Z ] E[Zj](E[D | 2 + O(log 6 k

= O(p2k log 6 k) + k(k - 1) E[ZD 2]2

ZjD2) = E[(( ZjD2) 2] - k2 E[ZD 2]2

<O(p2kv/k log 6 k)

By Chebyshev's inequality, this means

Pr[4 Z D 2 ( + 4log6 k
P1|k/ )

Pr~lx' XS1Pr[(I+ 4>CE ZID _ X1+c IIkI21 O ( 12/

Pr[ ~ 2 - xs~ ( )2Ix-X~2 ± flc~] (2i1/3)

for some constant C. Rescaling e down by VC(1 + c), we can get

lx' - xs| 2  C(||x - XS||2 + 11v|12)

with probability at least 1 1 :
c2 k0/

3

Now we shall go from k-1/ 3 probability of error to k-c error for arbitrary c, with

O(c) multiplicative cost in time and space. We simply perform Lemma 22 O(c) times

in parallel, and output the pointwise median of the results. By a standard parallel

repetition argument, this gives our main result:

Theorem 12. We can recover x' from Ax + v and S with

lix' - Xs112 C(||x - xs||2 + |V112)



with probability at least 1 - 1 in O(ck) recovery time. Our A has O(-Lk) rows and

sparsity 0(c) per column.

Proof. Suppose our algorithm (as in Lemma 22) gives an x' such that |Ix' - xs||2 < t

with probability at least 1 - p, and that we run this algorithm m times indepen-

dently in parallel to get output vectors x,..., x m . We output y given by yi =

medianelm(xi)i, and claim that with high probability |ly - xs||2 < 1 V5-

Let J= {j E [m] I |lxj - XS1| 2 < p. Each j e [n] lies in J with probability at

least 1 - p, so the chance that IJI 3m/4 is less than (m4)pm/ 4 < (4ep)m/4. Suppose

that |J| > 3m/4. Then for all i E S, {j E J (xi)i yjI IJI - 2 | jJ| /3 and

similarly |{j E J I (xj)i > yi}I } IJ /3. Hence for all i E S, lyj - xi is smaller than

at least IJI /3 of the I(x)i - xi| for j C J. Hence

I p2 X )2 (y - Xi)2 - _fly _ X11
icS jeJ iES

or

Ily- X112 < V3ft

with probability at least 1 - (4ep)m/ 4.

Using Lemma 22 to get p = 1/ and y = c(||x - xs||2 +||vl| 2), with m = 12c

repetitions we get our result. L]



Chapter 7

Applications of Set Query

Algorithm

We give two applications where the set query algorithm is a useful primitive.

7.1 Heavy hitters of sub-Zipfian distributions

For a vector x, let ri be the index of the ith largest element, so |Xr| is non-increasing

in i. We say that x is Zipfian with parameter a if Ixri = 8(1xro l i-a). We say that

x is sub-Zipfian with parameter a if |x,, = e(|x l i--af(i)) for some non-increasing

function f.
Zipfian distributions are common in real-world data sets, and finding heavy hitters

is one of the most important problems in data streams. Therefore this is a very natural

problem to try to improve; indeed, the original paper on Count-Sketch discussed it [9].

They show something complementary to our work, that one can find the support

efficiently:

Lemma 23 (Section 4.1 of [9]). If x is sub-Zipfian with parameter a > 1/2, one can

recover a candidate support set S with|S| = O(k) from Ax such that {ri,... , rk} C S.

A has 0(k log n) rows and recovery succeeds with high probability in n.

Proof sketch. Let Sk = {ri,... , rk}. With O( k log n) measurements, Count-Sketch



identifies each xi to within | 1|X - XSk 12 with high probability. If a > 1/2, this is

less than Xrk 1/3 for appropriate E. But |Xr9k| < Xrk |/3. Hence only the largest 9k

elements of x could be estimated as larger than anything in XSk, so the locations of

the largest 9k estimated values must contain Sk. l

They observe in [9] that a two-pass algorithm could identify the heavy hitters

exactly. However, for one-pass algorithms, nothing better has been known for Zipfian

distributions than for arbitrary distributions; in fact, the lower bound [16] on linear

sparse recovery uses a geometric (and hence sub-Zipfian) distribution. The set query

algorithm lets us improve from a 1 + c approximation to a 1 + o(1) approximation:

Theorem 24. Suppose x comes from a sub-Zipfian distribution with parameter a >

1/2. Then we can recover x' from Ax with

||X' - |<Err2(X)Vlog n

with O( k log n) rows and 0(n log n) recovery time, with probability at least 1 - .E2 kc.

Proof. By Lemma 23 we can identify a set S of size O(k) that contains all the heavy

hitters. We then run the set query algorithm of Theorem 12 with 1 substituted

for c. ElI

7.2 Block-sparse vectors

In this section we consider the problem of finding block-sparse approximations. In

this case, the coordinate set {1. .. n} is partitioned into n/b blocks, each of length b.

We define a (k, b)-block-sparse vector to be a vector where all non-zero elements are

contained in at most k/b blocks. That is, we partition {1, ... , n} into T = {(i - 1)b+

1, ... , ib}. A vector x is (k, b)-block-sparse if there exist S1, ... , Sk/b E {T 1 , ... , Tn/b

with supp(x) G U Si. Define

Err(k,b)(x) - mn -2(k,b)-block-sparse x



Finding the support of block-sparse vectors is closely related to finding block heavy

hitters, which is studied for the fi norm in [2]. We show how to do it in Appendix C.

Lemma 25. For any b and k, there exists a family of matrices A with O(41 log n)

rows and column sparsity O( ! log n) such that we can recover a support S from Ax

in O( E-log n) time with

|ix - xs||2 < (1 + e) Err(k,b)(x)

with probability at least 1 - n-Q(1).

Once we know a good support S, we can run Algorithm 6.2.1 to estimate xs.

Theorem 26. For any b and k, there exists a family of binary matrices A with

O(-k + - log n) rows such that we can recover a (k, b)-block-sparse x' in O(k +

2 log n) time with

lix' - x1 2 < (1 + c) Err(k,b)(x)

with probability at least 1 - _ks_

If the block size b is at least log n and E is constant, this gives an optimal bound

of 0(k) rows.
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Appendix A

Standard Mathematical Lemmas

A.1 Proof of Lemma 1

Proof. We will construct a codebook T of block length k, alphabet q, and minimum

Hamming distance ek. Replacing each character i with the q-long standard basis

vector ej will create a binary qk-dimensional codebook S with minimum Hamming

distance 2ek of the same size as T, where each element of S has exactly k ones.

The Gilbert-Varshamov bound, based on volumes of Hamming balls, states that

a codebook of size L exists for some

qk
L >qk

- ()(q -

Using the claim (analogous to [43], p. 21, proven below) that for E < 1 - 1/q

ek kH 
fZ (q - 1)i < qHq(ejk

i=0(Z

we have that log L > (1 - Hq(e))k log q, as desired.

Claim 27. For 0 < c < 1 - 1/q,

k
(q - 1)' < q Hg (E)k

i=0(k



Proof. Note that

q~ Hq( ) - (q - 1)(I - ( 1 c)) 1

Then

1=(E +(1- ))
Ek

> (k E (1 -E)k-i

1=0
k Z

(q -1)1(- e)kk e k
> ( q -1 (1 -(e)

'Ek
=q-Hg(E)k E()(

i=0

A.2 Negative dependence

Negative dependence is a fairly common property in balls-and-bins types of problems,

and can often cleanly be analyzed using the framework of negative association ([20,

19, 311).

Definition 1 (Negative Association). Let (X 1 , ... , X) be a vector of random vari-

ables. Then (X1, ... , Xn) are negatively associated if for every two disjoint index

sets, I, J C [n],

E[f (Xj, i E I)g(Xj E C J)] <; E[f (Xj, i E I)]E[g(Xj, j E J)]

for all functions f : RI' --+ R and g: RI'| -- R that are both non-decreasing or both

non-increasing.



If random variables are negatively associated then one can apply most standard

concentration of measure arguments, such as Chebyshev's inequality and the Chernoff

bound. This means it is a fairly strong property, which makes it hard to prove directly.

What makes it so useful is that it remains true under two composition rules:

Lemma 28 (120], Proposition 7).

1. If (X 1,... , X,) and (Y1,... , Yn) are each negatively associated and mutually

independent, then (X1,... , Xn, Y1 , ... , Y) is negatively associated.

2. Suppose (X 1,... , Xn) is negatively associated. Let I1,... ,Ik C [n] be disjoint

index sets, for some positive integer k. For j E [k], let hj: RI'i -> R be functions

that are all non-decreasing or all non-increasing, and define Y= hj(Xi, i E Ij).

Then (Y 1,... , Yk) is also negatively associated.

In terms of our set query algorithm, Lemma 28 allows us to relatively easily show

that one component of our error (the point error) is negatively associated without

performing any computation. Unfortunately, the other component of our error (the

component size) is not easily built up by repeated applications of Lemma 281. There-

fore we show something much weaker for this error, namely approximate negative

correlation:
1

E[XiXj] - E[Xi]E[X]< k< 1) E[Xi] E[Xj]

for all i -# j. This is still strong enough to use Chebyshev's inequality.

'This manuscript considers the component size of each hyperedge, which clearly is not negatively
associated: if one hyperedge is in a component of size k than so is every other hyperedge. But one
can consider variants that just consider the distribution of component sizes, which seems plausibly
negatively associated. However, this is hard to prove.





Appendix B

Bounding the Set Query Algorithm

in the fI Norm

This section works through all the changes to prove the set query algorithm works in

the i norm with w = O(Ik) measurements.

We use Lemma 18 to get an fi analog of Corollary 19:

||x' -xs||i =E (x'-xs)i| < Z2E Ci,|Y| = 2ZDi|Y
ics ics jES ics

Then we bound the expectation, variance, and covariance of Di and |YI.
bound on Di works the same as in Section 6.6: E[D] = 0(1), E[D? =

E[DiDj] - E[D ]2 < 0(jog 4 k/v k).

The bound on |Y I is slightly different. We define

(B.1)

The

0(1),

Uq =|vg|+ I IxiIBi,,
iE[n]\S

and observe that U' ;>| IV, and U' is NA. Hence

Z = median U'
qEL q



is NA, and |Yj Zj. Define

d
y =E[U'] j= x - xs||1 +w

then

Pr[Zi cp] 2|Lij(

|v||1 < j(|x - xs|1 + 1v|| 1)

Lil/2 < ( 4 )d-2

so E[Zj] = O(p) and E[Z 2  2).

Now we will show the analog of Section 6.7. We know

Ix' - XS| 2  2Z DZ

and

E[2 DiZi|= 2Z E[Di] E[Z]= kp'

for some p'= O((IIx - xs||1 + J|v||)). Then

E[(Z D Zi) 2] =( E[D2] E[Zi2] + Y E[DiDj] E[ZjZ|1

<Z O(P'2) + Z(E[Di]2 + O(log 4 k/V')) E[Z ]2

isi

O(p2k V/ log 4 k) + k(k - 1) E[D Zj]2

Var(2 ZD) < O( pi2 kv/k log4 k).

By Chebyshev's inequality, we get

Pr[||x' - xs||j > (1 + a)ky']
log 4 k

a2v

and the main theorem (for constant c = 1/3) follows. The parallel repetition method

of Section 6.7 works the same as in the £2 case to support arbitrary c.



Appendix C

Locating Block Heavy Hitters

Lemma 25. For any b and k, there exists a family of matrices A with O(k- log n)

rows and column sparsity O(1 log n) such that we can recover a support S from Ax

in O(-2-log n) time with

X - xs||2 < (1 + e) Err(k,b)(X)

with probability at least 1 - n-Q I).

Proof. This proof follows the method of [2], but applies to the f2 norm and is in the

(slightly stronger) sparse recovery framework rather than the heavy hitters framework.

The idea is to perform dimensionality reduction, then use an argument similar to those

for Count-Sketch (first in [14], but we follow more closely the description in [27]).

Define s = k/b and t = n/b, and decompose [n] into equal sized blocks T1, . . . , T.

Let x(T) E Rb denote the restriction of xT, to the coordinates T. Let U C [t] have

|UI = s and contain the s largest blocks in x, so Err(k,b)(x) - IZi4U xTi 12

Choose an i.i.d. standard Gaussian matrix p E Rmxb for m = O( log n). Define

2
yq,i (px(Tq))i, so as a distribution over p, yg,i is a Gaussian with variance ||x(Tq) 2.

Let hi, ... , hm: [t] -- [1] be pairwise independent hash functions for some 1 =

(1 s), and gi,. .. , g: [t] - {-1, 1} also be pairwise independent. Then we make

m hash tables H(, ... , H(m) of size I each, and say that the value of the jth cell in



the ith hash table H(') is given by

H s) = gi(q)y,,

q:hi(q)=j

Then the H(' form a linear sketch of ml = O(L log n) cells. We use this sketch to

estimate the mass of each block, and output the blocks that we estimate to have the

highest mass. Our estimator for XTi1 2 is

z =a median H

for some constant scaling factor a ~ 1.48. Since we only care which blocks have the

largest magnitude, we don't actually need to use a.

We first claim that for each i and j with probability 1 - O(E), (H - y..)2<

O(62(Err(k,b)(X))2). To prove it, note that the probability any q E U with q f i

having hj (q) = hj (i) is at most < 0 e3. If such a collision with a heavy hitter does

not happen, then

E[(Hij) - yiJ) 2 ] =E[ y , ]
p:Ai,hj(p)=hy (i)

<E[y ,2

piU

z,2
= ZfXTp112
p U

- (Err(k,b)(x))2

By Markov's inequality and the union bound, we have

Pr[(Hj) - yi,j) 2 > £(Err(k,b)(z) 2 ] 6 + s _

Let Bi, be the event that (H - yi,) 2 > O(2(Err(k,b)(X))2), so Pr[Bi,j] = O(E).

This is independent for each j, so by the Chernoff bound E', Bij O(em) with

high probability in n.



Now, lyjjl is distributed according to the positive half of a Gaussian, so there is

some constant a ~ 1.48 such that a y.,3. is an unbiased estimator for |IXT|2- For any

C > 1 and some 6 = O(Ce), we expect less than 'C'm of the a yi,j| to be below

(1 - 6)||XTiH2, less than l-CEm to be above (1 + 6) ||xTJI2 , and more than CEm to

be in between. Because m > Q(1 log n), the Chernoff bound shows that with high

probability the actual number of a Iyi,j I in each interval is within -m = O( log n) of

its expectation. Hence

IxTi 112 - a median Iyi 1| 6 I|xTi 112 = O(Ce) IIXTi I2 -
jE[m]

even if (C 1)<m of the yij were adversarially modified. We can think of the events

Bij as being such adversarial modifications. We find that

|||XTI 2 - z I||xT|2 - a median H( <O()|xT|| + O( Err(k,)(x.))I IX~i112- Zl = IIXi 12 je Im] I h,(i)I< W IXi12+0 V-

2

(IIxTi12 - zi)2 < (2 ||x1| + 6(Err(k,)(x))2)
S

Define wi =I I XTi 2, p = Err(kb)(x), and U C [t] to contain the s largest coordi-

nates in z. Since z is computed from the sketch, the recovery algorithm can compute

U. The output of our algorithm will be the blocks corresponding to U.

We know p 2 = Ziuw2 = |w [t]\Uj and |w - zil < O(Ewi + ' p) for all i. We

will show that
2

w 2 l (1 + O(e))P 2

This is analogous to the proof of Count-Sketch. Note that

| 2 
2 

2

El]&2 =WuE\& 2 + Wrt]\(u&) 2

For any i E U \ U and j E U \ U, we have zj > zi, so

E
wi -wj : O( A p+ Ewi)



Let a = maxicU\( wi and b = mingE6\U wj. Then a < b + OQfp + ca), and dividing
2

by (1 - 0(c)) we get a < b(1 + 0(iE)) + 0(--Li). Furthermore W\

w 
(6)

U\U

< (IIWJ\(J2
- W6U\Ufl(.

$ w2

> b2 U \ U1,

U\U

(1 + 0(e)) + O(ep)

1 + 0(c)) + (2+ 0(c)) w1 1O(ep) + O(c2/u2)

< IWfU + 0(Et 2)

because W(J\U 2 < p. Thus

IW - W 112 = Wtj\&j 2
2 2

WJU2 I Wt\ (U) 1

= O(ep2) + p_2 = (1 + O(C))[t 2.

This is exactly what we want. If S = Uigec T contains the blocks corresponding to

U, then

||x - Xs||2 - W 2 < (1 + O(c))p = (1 + O(e)) Err(k,b)(X)

Rescale e to change 1 + O(e) into 1 + c and we're done.

e
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