
A Hybrid Data Structure for Dense Keys in

In-Memory Database Systems

by

Jos6 Alberto Muiz Navarro

MASSACHUSETTS INSTITUTE
OFTECH LCLOGxY

DEC 16 201

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
ARCHAVES

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

© Massachusetts Institute of Technology 201 . All rights reserved.

/-I

Author-................
Department of Electrical Engineering and Computer Science

August 20, 2010

Certified by.......... -.. .. -- ---.----- - ---

Samuel Madden
Associate Professor

Thesis Supervisor

A ccepted by------.-------
Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

A Hybrid Data Structure for Dense Keys in In-Memory

Database Systems

by

Jos6 Alberto Mufiiz Navarro

Submitted to the Department of Electrical Engineering and Computer Science
on August 20, 2010, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents a data structure which performs well for in-memory indexing of

keys that are unevenly distributed into clusters with a high density of keys. This

pattern is prevalent, for example, in systems that use tables with keys where one field

is auto-incremented. These types of tables are widely used.
The proposed data structure consists of a B+ Tree with intervals as keys, and

arrays as values. Each array holds a cluster of values, while the clusters themselves

are managed by the B+ Tree for space and cache efficiency. Using the H-Tree as an in-

memory indexing structure for an implementation of the TPC-C benchmark sped up

the transaction processing time by up to 50% compared to an implementation based

on B+Trees, and showed even more dramatic performance gains in the presence of

few and large clusters of data.

Thesis Supervisor: Samuel Madden
Title: Associate Professor

4

Acknowledgments

First and foremost, I wish to thank my advisor, Prof. Madden, for all his advice and

support on this project.

I'd also like to thank Evan Jones for his continued support and guidance during

the elaboration of this thesis. Evan was always available to help me, and his advice

and comments were essential to the completion of this thesis.

Thanks to my parents, S6crates and Ruth, for their constant encouragement and

inspiration. Their hard work and intelligence have set an example that I'll always

strive to follow in my life.

Finally, many thanks to my friends and my girlfriend, Natalie, for their patience,

understanding and invaluable feedback throughout the year.

The inspiration and insights I received from all of you go well beyond what is

reflected in these pages.

6

Contents

1 Introduction 13

1.1 Index Structures in Main Memory Database Systems 13

1.2 Indices with densely-populated keys 14

1.3 Practical applications . 16

2 Previous Work 19

2.1 Multi-level memory model . 19

2.2 B+ Trees, AVL Trees, Arrays, and Hash Tables as main memory index

structures 20

2.3 T -Trees . 27

2.4 Cache Conscious Trees . 28

2.5 Sum m ary 29

3 The H-Tree Data Structure 31

3.1 Overview............... 31

3.2 The ArrayObj object . 32

3.3 Q uery ..34

3.4 Insertion . 35

3.5 Deletion......... 38

3.6 Analysis 39

3.7 Algorithm Parameters..... 40

3.7.1 pmi 40

3.7.2 so 41

3.7.3 split-array() .

3.8 Implementation details .

4 Benchmarks

4.1 Insertion benchmarks

4.1.1 General Setup

4.1.2 Performance under different loads

4.1.3 Varying across key dimensions . .

4.2 Deletion benchmarks

4.3 The algorithm parameters

4.3.1 pmi

4.4 OLTP Workload: The TPC-C Benchmark

5 Conclusion

A Benchmark architecture

A.1 Single point benchmarks .

A.2 Multi-point benchmarks .

45

. 46

. 46

. 46

. 53

. 60

. 60

. 60

. 61

67

67

69

List of Figures

1-1 A sample small hybrid tree representing the following clusters: [1 to

20], [100 to 125], [750 to 790], [1300 to 1350], [1400 to 1450]. In this

example, keys represent the starting value of some ArrayObj instance

as which holds the values for that interval.

1-2 Histogram of zip code cluster sizes

1-3 Histogram of cluster sizes on Wikipedia's page table 18

2-1 An array index data structure . 21

2-2 An AVL tree . 22

2-3 A B+ Tree . 23

2-4 Cost model comparing different in-memory indices using two levels of

m em ory . 26

2-5 A T -Tree . 27

3-1 Components of ArrayObj instance a 33

3-2 Query of key 110. The value in the array cell marked with red is

returned only if the corresponding value valid[110 - 1001 is set to

true........ 34

3-3 Algorithm for lookup of key k from H-Tree T. 34

3-4 Sample insertion of key 19. The key fits perfectly in array ai. The

blocks shaded red are read by the H-Tree algorithm. 36

3-5 Sample insertion of key 30. The key does not fit its closest array ai, but

doubling it would fit it and preserve the density property. We therefore

reset array ai to contain values 1 through 40, twice its original value,

and reduce insertion to the first case. 37

3-6 Sample insertion of key 3000. The key does not fit its closest array a5 ,

and doubling it would still not make it fit or would violate the density

property. We therefore create a new array a6 starting on this key and

w ith size so. 38

3-7 Algorithm for insertion of key k with associated value v into H-Tree T. 39

3-8 Two different array splitting policies. The position marked with k is

the key that was just deleted. The left diagram splits the array into

two subarrays from the position of the largest sequence of zeroes. The

right diagram shows the split from the position of the largest sequence

of zeros containing k . 40

3-9 Algorithm for deletion of key k from H-Tree T 41

4-1 Schematic representation of keys in a clustered configuration 46

4-2 Keys inserted in order . 47

4-3 Benchmark for strictly sequential insertions and few (4) large clusters 48

4-4 Benchmark for strictly sequential insertions and several (400) small

clusters . 49

4-5 Keys inserted in random cluster order, but sequential intra-cluster order 49

4-6 Benchmark with keys inserted with random cluster selection and few

(4) large clusters . 50

4-7 Benchmark with keys inserted with random cluster selection and sev-

eral (400) sm all clusters . 51

4-8 Keys inserted in random cluster order, but sequential intra-cluster order 52

4-9 Benchmark with keys inserted with window algorithm. The window

size is 15............. 53

4-10 Benchmark with keys inserted with window algorithm. The window

size is 1, 500. 54

4-11 Benchmark with keys inserted with window algorithm. The window

size is 15, 000. 55

4-12 Density graph with almost sequential insertion and large number of

keys (8 x 105). 56

4-13 Density graph with almost sequential insertion and small number of

keys (80). 57

4-14 Density graph with almost random insertion and large number of keys

(8 x 105). 58
4-15 Density graph with almost random insertion and small number of keys

(80 . 59

4-16 Number of arrays created as a function of the clustering factor in an

array for a random insertion . 61

4-17 Result of TPC-C Benchmark with modified Items table. 63

4-18 Result of TPC-C Benchmark with all tables indexed by H-Trees and

all tables indexed by B+Trees . 63

12

Chapter 1

Introduction

1.1 Index Structures in Main Memory Database

Systems

Traditional database systems store most of their data on hard disk drives. An in-

memory buffer stores pages from the hard disk to provide faster access to information

that is accessed frequently [9]. However, the cost and availability of main memory

has reached a point where it is feasible to hold entire databases in it. According to

[20], the majority of OLTP databases are at most 1 TB in size. In a few years, servers

that hold this amount of memory should not be atypical.

For this reason, database systems that store their entire content in memory are

of rising importance. The data for some applications can feasibly be held by an

in-memory database system, such as enterprise applications that need to hold a few

thousand bytes per employee or customer, where the amount of information to be held

is small and grows more slowly than the rate at which memory capacities improve [10].

Several commercial and open-source database products already mainly store data in-

memory. Some examples include H-Store ([12], [20]), Oracle's TimesTen, McObject's

eXtremeDB, and MonetDB.

Main memory is significantly faster than hard disks, and also behaves differently

under random accesses. In particular, whereas hard disks have large seek times -

times used to physically move the read/write heads to the correct position in non-

sequential accesses, main memory incurs in no such delay. For that reason, the block

arrangement of B-Trees, for example, may be less attractive in main memory [101.
Section 2.1 describes a more complete model of the behavior of main memory.

There have been some previous attempts to develop data structures that are based

on trees and hash tables ([17], [18], [14], [10]). These structures are explained briefly

in Sections 2.2, 2.3, 2.4, along with a summary of their performance, cache utilization,

and storage efficiency, using the results from these papers. In this thesis, we present

a data structure based on arrays and B+ Trees which performs better than other

trees whenever the inserted keys consist of a series of regions of contiguous keys. This

workload is explained in more detail in Section 1.2.

1.2 Indices with densely-populated keys

A particularly interesting workload is one where key values are grouped into several

densely-packed clusters. These clusters are sets of contiguous or almost contiguous

keys with perhaps large gaps between different clusters. This pattern emerges, for

example, when an application assigns a key automatically and incrementally, and then

performs batch deletions of intervals of keys. The pattern may also arise when batches

of keys are assigned to different parties so that they perform sequential insertions

independently.

One way in which we may store a table with keys that can be grouped in large

clusters is an array of pointers, where the ith position is a pointer to the structure

associated with key i. The advantage of this storage is that structures associated with

a given key can be found in constant time. However, the array cells corresponding

to inter-cluster gaps would be empty, resulting in very large empty spaces whenever

there are few, small clusters separated by large gaps. Moreover, since the data struc-

ture must be flexible enough to allow arbitrary insertions and deletions, an array

implementation could potentially require a very large number of expensive resizing

operations.

a, a2 a3 a4 a.

Figure 1-1: A sample small hybrid tree representing the following clusters: [1 to
20], [100 to 125], [750 to 790], [1300 to 1350], [1400 to 1450]. In this example, keys
represent the starting value of some ArrayObj instance ai which holds the values for
that interval.

Other data structures, such as tree structures or hash tables do not necessarily

have this wasted storage problem, but they do not exploit the clustering structure of

the keys, providing worse performance than arrays. Chapter 2 provides a cost-model

for previous data structures considering two levels of main memory (cache and RAM)

and compares and contrasts the differences in performance and storage between them.

Chapter 3 describes the H- Tree, a tree-like data structure for in-memory storage of

keys that follow the densely-populated cluster structure described in Section 1.2.The

H-Tree exploits the performance advantage of arrays, but minimizes the amount of

empty spaces. At a high level, the H-Tree is simply a tree of arrays. The arrays

hold the values corresponding to contiguous keys. In order to insert or access the

value associated with a key, we first find the node that contains the array that holds

the key, and then perform the operations in that array. Figure 1-1 shows a sample

H-Tree.

The H-Tree's performance is bounded between the performance of an array and

the performance of a tree. Whenever the data is inserted sequentially with few, large

clusters, the H-Tree performance is comparable to an array. On the other hand,

when the data is inserted in random order, and the data set itself consists of several

very small clusters, then the H-Tree performance is comparable to the performance

of a B+Tree plus a small constant overhead. Chapter 4 shows the results of several

benchmarks that showcase the performance of the H-Tree under various tests.

1.3 Practical applications

An example of a data set that shows a clustering behavior is a table keyed by zip

code. Zip codes uniquely identify regions of the US, and therefore a table with all zip

codes may be used by an application that wishes to identify a customer's approximate

address based only on their zip code.

Zip codes have an internal structure, whereby the most significant digits represent

a group of states, the next digits identify cities, and progressively less significant digits

demarcate smaller regions. However, not all the possible zip codes corresponding to

a particular state and city are used, resulting in a series of clusters of contiguous

zip codes. Figure 1-2 shows a histogram of the cluster sizes. The average size of a

cluster of contiguous keys is 15.7, with the most popular cities containing clusters of

hundreds of contiguous zip codes. For example, the region of zip codes starting with

form 100xx consist of 50 contiguous keys representing regions in the New York City

borough of Manhattan.

There are 29, 470 different zip codes [1], ranging from zip codes 01001 and 99950.

If we represent a pointer to the row associated with a zip code in memory as a 4

byte integer, then storing the complete table of zip code pointers requires 29, 470 x

4 bytes = 115 kb. An array storing this data in the way described above would

require a size of roughly 100, 000 elements, which would take 390 kb, three times

more than the required size. Other tree-based data structures provide better storage

characteristics, but at the expense of worse access performance.

The underlying database that persists the articles behind the online encyclopedia

Wikipedia also shows clustering behavior. Each page on Wikipedia has an entry on

'5 600-
a)
E

z 400-

200-

0
0 20 40 60 80 100 120 140 160

Size of cluster (# elements)

Figure 1-2: Histogram of zip code cluster sizes

the page table, containing meta-data such as the page title, the type of page, etc

[4]. The key for this table is page-id, assigned auto-incrementally. Since some pages

are deleted, the resulting distribution of page ids has a clustered pattern. Figure 1-3

shows a histogram of the cluster sizes. The average size of a cluster of contiguous

keys is 134.59 elements.

There were 1, 163, 319 unique page ids as of the database dump from April 2010,

ranging from ids 1 to 1, 499, 144. Representing a page id as a 4 byte integer, storing

the complete table of page ids requires 4.4 Mb, whereas an array as described above

would require 5.71 MB - about 30% more space than the necessary space.

A third system that exhibits a clustered key set distribution is the TPC-C bench-

mark. The TPC-C benchmark is an online transaction processing (OLTP) workload.

It consists of a mixture of insert and update-intensive transactions that simulate the

typical execution of a wholesale company system that processes orders and manages

stock. This company operates with a variable number of warehouses, specified at the

start of the benchmark. Each warehouse, in turn, covers a fixed number of districts,

each of which in turn covers a fixed number of customers. A database with nine dif-

ferent tables stores the information regarding order and stock information. A number

7000,

6000

5000

4000

3000
E
z

2000

1000

0
0 1000 2000 3000 4000 5000 6000

Size of cluster (# of elements)

Figure 1-3: Histogram of cluster sizes on Wikipedia's page table

of realistic transactions are then run on these tables, such as attempting to fulfill a

new order of several items from a warehouse. [2] provides a good general overview of

the TPC-C benchmark, while [3] describes the full specification for the benchmark.

Several tables within the benchmark contain sequential keys, such as the Stock

table, which stores information about the stock on each warehouse, and the table of

Items, which contains information about items such as its price and name. Section

4.4 explains the behavior of several data structures, including the newly-developed H-

Tree [15] .The New Order Transaction in the benchmark inserts a sequence of orders

in the Orders relation with increasing order ids.

Chapter 2

Previous Work

2.1 Multi-level memory model

Typically, access time for data in main memory is assumed to be constant. However,

as main memory becomes the principal access method in some database systems,

it is useful to expand the single-access time model to account for the existence of

heterogeneous access times in modern day memory system architectures [19].

In particular, modern systems include caches in small fast-speed memories. Caches

are mappings of ranges of addresses to the bytes in memory corresponding to those

ranges. These bytes are referred to as a line. The cache line is thus the unit of transfer

between main memory and cache.

Since these caches are expensive, they are small compared to the total size of

RAM. Modern architectures have at least two levels of cache with varying sizes and

speeds. On typical Intel Core2 systems, an Li cache miss creates a delay of 10 CPU

operations (or about 4 ns on a 2.27 GHz CPU), while an L2 cache miss creates a

delay of 200 CPU cycles (or about 90 ns on a 2.27 GHz CPU) [7], [11]. Virtual to

physical address translation can add additional latency to this process.

When information cannot be found in cache, it is then retrieved from the address

translator or main memory, respectively. This new information, along with possibly

more, is then inserted into the cache in accordance with the cache fetch algorithm.

For example, nearby addresses may be cached in addition to the requested address

in expectation that they are likely to be used in the future. If the cache was already

full, a pair is deleted according to the cache replacement policy such as FIFO, LRU,

or random eviction.

As implied above, the existence of cache is justified by the existence of temporal

and spatial locality of reference. Temporal locality of reference assumes that the

probability that a given address is used at a given time is larger when this address

has been accessed before than when it has not. This is true, for example, in the case

of a loop, when the same instructions and variables are read several times. Spatial

locality of reference assumes that the probability that a given address issued is larger

when addresses nearby have been accessed. This is true, for example, in the case

where instructions are fetched sequentially or when structures that are used at a

given time are allocated in contiguous memory locations and accessed regularly.

2.2 B+ Trees, AVL Trees, Arrays, and Hash Ta-

bles as main memory index structures

Several traditional data structures can be used as in-memory indices. [5], [6], [14],
and [13] discuss the performance in terms of characteristics and access time of each

of the structures.

Arrays Arrays are the simplest data structures for storing values. Here, the ith

position stores the value with key i. This provides the advantage that keys

do not need to be explicitly stored, thus saving space. Plus, when an array is

situated in memory, the constant time in random access allows a fast insertion

and retrieval time, since any value can be obtained and modified after one offset

calculation and one memory access, in constant time.

Figure 2-1 shows a diagram of an array index data stucture.

The usefulness of the cache in this case is dictated by the access pattern of

the application: if it uses values that are close to each other, a cache that uses

locality of reference will be effective in minimizing access costs.

k~J fk3j . Ik I..Ik I
1 2 3 -.- i .-- j

Figure 2-1: An array index data structure

The memory footprint of this structure is as large as the maximum value of the

key kj multiplied by the size of each value. This is optimal only if the structure

holds the keys 1...j. For this reason, sparsely populated sets of values are not

suitable for arrays.

Using a similar argument as [13], an estimate for the access time in a two-level

memory model is given for random access by:

Carray =Z x 1 - (2.1)

Here,

" Z is the relative cost of memory access with respect to cache access

" |MI is the size of the cache (number of cache lines).

" |RI is the number of tuples in the relation

" |PI is the size of a cache line

The analysis assumes a random eviction policy, random querying and a fully

associative cache. Also, we do not store the full tuple into the array, but rather

store a pointer to a memory address where we can find it. In the coming data

structures, we store the full tuple data inside of the structure. An alternative

to this behavior would be to store only the pointer to the structure with all the

tuple data.

Figure 2-2: An AVL tree

AVL Trees AVL Trees are a type of self balancing Binary Search Tree (BST). In

order to maintain their balance, AVL Trees perform rotations whenever an

insertion or deletion causes any of a node to stop satisfying the condition that

the height of its children should differ by at most one. Figure 2-2 shows a

diagram of an AVL Tree.

Insertion and querying occur in O(lnn) time, where n is the number of nodes.

As developed in [13], a tight estimate for the access time in a two-level memory

model is given by:

CAVL=ZXCX (1-± +YxC (2.2)
S)

Here,

" Z is the relative cost of reading to memory with respect to an AVL node

comparison.

" C is the number of comparisons needed to find a tuple, where C = log 2 |R

approximately.

" M is the size of the cache (number of cache lines).

Figure 2-3: A B+ Tree

* S is the amount of space in bytes occupied by the tree, where S = IIRI x

(L + 2p), with pointers of size p bytes and L bytes per tuple and ||RI| is

the number of tuples in the relation,

e Y < 1 is some constant that states the relative cost of an AVL comparison

with respect to a B+ Tree comparison. Y < 1 because AVL requires less

comparisons in a node, whereas B+ Trees require binary search on the

node to locate the key and the next link to follow.

As stated in [6], AVL Trees have a low ratio of data to pointers, since each

node holds only one value and has two pointers, so cache utilization is relatively

ineffective.

B+Trees Similar to AVL trees, B+Trees are self balancing trees. Each node stores a

sequence of keys ki, k2 , ...kb, and between each node ki, kj a pointer to a subtree

that have all key values km E [ki, kj]. Each node must have a number of keys

and children in some predefined interval at any given point, and when insertions

or deletions would violate any of these properties, new nodes are created and

merged, and the tree rebalanced in order to continue satisfying the previous

properties. Figure 2-3 shows a diagram of a B+Tree.

As before, insertion and querying occur in O(In n) time, where n is the number

of nodes. However, the cost for key access in this case is in given in [6] by:

CBTrec = Z X (height + 1) 1 - + C' (2.3)

Now,

* Z is the relative cost of reading to memory with respect to an AVL node

comparison,

e |M| is the size of the cache (number of cache lines),

* S' is the amount of space in bytes occupied by the tree, where S = D x A

" D is the number of leaves, estimated as IR||Ig,

" A is the fan-out, given by 69 ,K+p'

* C' is the number of comparisons needed to find a tuple. For simplicity,

assume C = C'.

Using these models, the prediction is that AVL Trees will outperform trees when

cache misses are not a factor (when the cache size is very large with respect to

the amount of data in the tree). When this is not the case, then using Equations

2.2 and 2.3 we obtain that B-Trees will be preferred dependent on the values

of Z, H, and Y = heigt+ [6] concludes that for reasonable residency factors,

close to 80 or 90 per cent of the table must fit in the cache for AVL to outperform

B+ Trees.

However, [14] results seemingly contradict these theoretical expectations, by

showing a benchmark of insertions and deletions on B+ Trees and AVL Trees

and reporting that B+ Trees are slightly faster than AVL Trees. In fact, Lehman

and Carey explain this by pointing out a very low value of Y, the relative cost

of an AVL node comparison to a B+ Tree comparison. They also note that

the AVL Tree, however, requires more regular allocation calls and constant

tree rebalances, which partially offsets the gain in performance. The effects

Variable Description Formula

||RI| Number of tuples in the relation n

p Pointer size 4 bytes
Z Ratio of memory access cost to register access 200

|MI Size of the L2 cache (number of lines) 2MB
MI 64bytes

|PI Size of cache L2 line 64 bytes
L Bytes per tuple 128 bytes
Y Ratio of AVL to B+Tree node comparison time 0.8
C Comparisons to find a tuple in AVL Tree log 2 n
C' Comparisons to find a tuple in B+Tree log 2 n

D Number of leaves in B+Tree 0.03n
A Fan out of B+Tree 552

height Height of B+Tree -0.55 + 0.1110g 2 n

Table 2.1: Description of variables along with some typical values, as shown in [7].
We assume a key size of 32 bits (4 bytes) and a tuple size of 128 bytes. Cache values
for an Intel Core2 processor.

of caching are not discussed, and the results seem to imply (when evaluated

through the previous theoretical model) that the results were evaluated in a

system with a very small cache.

Hash Tables Hash Tables are mappings from keys to values. In order to insert and

delete elements from the hash table, a function f : K -* Z is required, where K

is the set of all possible keys. Extendible Hashing [8] and Linear Hashing [16] are

two well-known techniques for growing the size of hash-functions dynamically

as elements are inserted and deleted.

Random access queries, like arrays, allow for constant time insertions and dele-

tions. However, there are several disadvantages associated with using a hash

table as an index data structure:

1. Since f is not monotonic, elements are not stored in order, and therefore

any range query requires a linear scan of the table.

2. Since contiguous keys are not stored close to each other, there are no cache

benefits of looking-up or storing contiguous keys.

Table 2.2: Table for Costs for random access on different data structures according

to a two-level memory hierarchy model. The value of the literals is explained in Table

2.1

2000 -
-- AVL Tree

1800 - ----- B+Tree
- .- Array

1600 -

1400 -

1200-

C- 1000 -
E
_0

800-a I
600 -

400 --

200 -- - -- - ~~I * ~ ~~ ~~~~--200 ~ ______ ... emo2Yacess time

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of keys x 105

Figure 2-4: Cost model comparing different in-memory indices using two levels of

memory

Table 2.2 summarizes the cost model developed in this section. Figure 2-4 shows

a graph of the random query cost varying the number of keys in the data structure,

and assuming some reasonable values for memory access time and cache sizes as

documented in [7]. Table 2.1 summarizes these variable values. We observe the

array outperforming every other structure in this model. Similarly, whenever the

whole data structure fits in cache, AVL Trees outperform B+Trees, since it performs

roughly the same amount of operations, but the operations on AVL Tree nodes are

expected to be cheaper than the binary search within a large B+Tree node. However,

the B+Tree exhibits much better cache performance in this model, resulting in a

Data Structure Random access cost

Array Z IMIIPI(i- LIRI

AVL Tree ZxCx I- MI + Y2p) +Yx C

B+Tree Z x (height + 1) 1 - + C'

Figure 2-5: A T-Tree

preferable structure whenever the number of keys is large with respect to the size of

the cache.

2.3 T-Trees

T-Trees are self-balancing trees that are hybrids between B+ Trees and AVL Trees

that exploit the fast comparison times of AVL Trees along with the low pointer density

of the B+ Trees, in an attempt to provide a structure that is as space efficient as a

B+Tree and as fast as an AVL Tree. A T-Tree node represents an interval of keys

ki,..., kj. Each node has only two pointers: the left pointer points to a subtree where

all keys k satisfy k < ki; the right pointer points to a subtree where all keys k satisfy

kj < k. All nodes have an equal maximum capacity, and a guarantee of minimum

occupancy of each node keeps the tree balanced. Whenever this guarantee is violated,

nodes are added and removed in order to enforce the self-balancing property. Figure

2-5 shows a diagram of a T-Tree.

Like B+ Trees, T-Trees have a high density of values, which makes this structure

cache-friendly in terms of key density. T-Trees gain some cache efficiency over a binary

tree, since at the bottom of the tree, the keys are packed densely together. However,

at all other levels of the tree, a search only makes a comparison by reading only two

keys, resulting in a worse cache utilization compared to a B+Tree. In paritcular,

cache misses for T-Trees are on the order of log 2 n whereas B+ Trees have a miss

rate of logm n((log 2) + n) [17], where m is the number of keys, L is the number

of bytes per key (as before), n is the number of records indexed, and c is the size of

a cache line. For this reason, B+ Trees will in general have less cache misses than

T-Trees in the 2 memory level architecture model.

Additionally, unlike the B+ Tree which requires expensive binary search in the

node in order to do comparisons, this tree requires to do at most two comparisons to

determine which subtree should be picked, and then binary search is necessary only

at the last level. The performance of the T-Tree relative to other data structures

is analyzed by [14]. However, all the benchmarks are performed on VAX-11/750

machines, with cycle times of 300 ns and 2 MB MOS memory with a latency of 100

ns, which implies a much faster memory with respect to CPU cycle times [18]. Under

these CPU and memory speed characteristics, the results show that T-Trees are faster

than B+ Trees and AVL Trees [14]. Insertion is thought to be faster than either tree

under these conditions because it performs less node allocations and rebalances by

relying on intra-node key movement. Similarly, the results show that T-Trees are

faster than B+ Trees when querying, and only slightly slower than AVL Trees. The

reasoning given in the paper for this behavior is that AVL Trees need not perform any

binary search, T-Trees require to do it only at the last node, and B+ Trees need to

do it always. A benchmark with more current CPU and memory speeds is developed

in [17] and explained in Section 2.4.

In terms of space usage, T-Trees are very similar in footprint as B-Trees because

of their key to value ratio. Benchmarks in [14] showed space utilization improvements

over AVL Trees, which have a large amount of pointers.

2.4 Cache Conscious Trees

CSS Trees In an effort to solve the relative cache-inefficiency of T-Trees, [17] devel-

ops CSS Trees, an index structure very similar to B+ Trees that attempts to

minimize cache misses. This structure makes a trade-off between computational

cost of comparing between nodes and key/pointer ratio. By removing pointers,

cache lines can be used more efficiently and therefore generate less cache misses.

In particular, cache trees do not require pointers by placing the tree nodes con-

tiguously, so that the children of a node n are all located between b(m + 1) + 1

and b(m + 1) + (m + 1), where m is the number of keys at each node.

Queries on this type of indexing structure are very fast when m is chosen suit-

ably, because most of the binary search inside a node is done with the help of the

cache, and cache utilization is maximized in the absence of pointers, allowing

the cache to hold more levels of the tree.

However, insertions and deletions from this tree are very expensive, because they

require the nodes to be stored contiguously and as such need to be restructured

several times when a new key is inserted. For this reason, this structure is only

useful in OLAP databases, where insertions are rare in comparison with queries,

and are performed in batches.

CSB+ Trees As a solution to the very expensive insertion operations developed

above, [18] introduces a B+ Tree variant that does contain pointers, but with

a much lower density than regular B+ Trees. Nodes of a given node belong

to a node group; nodes inside a given node group are placed contiguously, so

that they can be accessed in a manner similar to CSS Trees. The node then

needs a single pointer, which points to the beginning of the node group. In

this way, new levels can be added at locations that are not contiguous to their

parents, since the parent will hold a pointer to them, decreasing the overhead

for inserting new nodes.

2.5 Summary

According to the theoretical model and previous benchmarks explained above, arrays

are ideal data structures for insertion and lookup of values, since they require a

constant time to perform these operations on a single key, regardless of the number of

keys already inside the structure. Hash tables provide similar guarantees, but require

a good hash function. Furthermore, they do not maintain the keys in order, making

operations such as range scans very computationally expensive.

Trees lack the ability to perform constant time operations, but can adapt their

structure sizes much more easily than arrays. Amongst trees, AVL trees have worse

cache performance than other trees such as B+ Trees and cache conscious trees, in

part because of its large number of pointers which make the structure bigger. B+

Trees provide an overall good cache performance, further enhanced by the CSB+

Trees. Although these last structures provide better cache performance than AVL

trees, the amount of operations per node is larger on the former structures, making

AVL trees better suited to deal with key sets with very few keys.

Chapter 3

The H-Tree Data Structure

3.1 Overview

In Section 2.2, we discussed the array data structure as an indexing structure that

provides extremely fast lookup compared to using a tree. However, the applicability

of arrays is limited, since they can only store keys efficiently when keys are contiguous

and when the first key is 0. Similarly, adding or deleting an unbounded number of

keys is complicated, and could potentially require making copies of the whole array.

We can think of an H-Tree as a B+Tree with integers as keys and array-like

structures as values. Every key in the B+Tree is the starting value of some array-like

structure. We refer to these array-like structures as ArrayObj objects; these contain

the array of values associated with contiguous keys, plus some extra information such

as density and node validity of the array of values. Section 3.2 describes these objects

in more detail. The ArrayObj objects are shown in Figure 1-1 as ai, and these can

store values associated with a contiguous range of keys. In particular, the tree from

Figure 1-1 can currently hold, without modification, all keys that lie in the intervals

[1 to 20], [81 to 1001, [350 to 370], [1001 to 1100], and [1350 to 1700].

Notice that unlike other trees like the B+Tree or BSTs, we require that the stored

keys be integers, and not just comparable objects, since the H-Tree stores contiguous

keys next to each other. However, unlike cache-conscious trees, we attempt to exploit

the contiguousness of certain keys for faster lookups, instead of requiring expensive

binary search within all nodes of the tree.

The main challenge of the insertion and deletion algorithms is to maintain a tree

structure with a small amount of wasted space, but that creates as few arrays as

possible. Long, densely packed arrays provide fast lookups. However, (key, value)

pairs are potentially inserted in any order, and the data structure needs to decide

when to create clusters, when to merge clusters, and when to split them dynamically.

Sections 3.3, 3.4, 3.5 explain the algorithms for query, insertion, and deletion.

3.2 The ArrayObj object

Logically, these objects hold the values corresponding to contiguous keys in some in-

terval kmin.. .kmax, plus some metadata. In particular, each ArrayObj object contains

the following information:

Start value kmin This is the smallest key the array can hold, and is used to offset

insertions and queries.

End value kmax This is the largest key the array can hold.

Array of values value [n] The actual array of size kmax - kmin + 1 that holds the

contiguous values. The value value En] holds the value associated with key

kmin+ n

Validity bit array valid [n] Not all the cells in an ArrayObj instances necessarily

represent valid values. For example, some key in an interval may not have been

inserted, or it may have been deleted. In that case, the value [n] array will

hold some value in that position, but this value will be invalid. The valid [n]

array is an array of bits, where the kth bit is equal to one if and only if the

value at value[k] is valid.

Array density p We also maintain the percentage of the array that contains values

associated with actual inserted keys. In other words, this is the sum of the

Figure 3-1: Components of ArrayObj instance ai.

number of bits with value one in the validity array, divided by the length of this

array (| kmax - kmin + 1|).

We use shorthand notation to represent an ArrayObj instance a as [ki, k±i1], which

represents the array of length lj| and such that a.kmin = ki. Figure 3-1 shows a

detailed view of one of the arrays ai shown in Figure 1-1. In particular, it shows its

actual array of values, its density, and its validity bit array, represented as a binary

stream of size j + 1. When we have an array an = [ki, kj], we refer to its attributes as

[ki, kg.valid [n], [ki, kj).value [n], and [ki, kj].p, or an.valid [xl, an.value [xl, and

an.p.

In general, we keep two invariants on ArrayObj objects along the tree.

Disjoint array property Two different array objects cannot represent overlapping

keys. In other words, no two arrays in the H-Tree can hold the same key. This

is necessary for correctness of the query, insertion, and deletion algorithms.

Density property An array cannot have a density p < Pmin. In Section 4.3.1 we

provide a discussion of performance under different values of Pmin. Although

this value does not affect the correctness of the insertion, query, and deletion

algorithms, it does have a performance impact.

V1 100 V750 V1300 V1400

V20 V1 15 V79 0 V1350 V1450

al a2 a3 a4 a5

Figure 3-2: Query of key 110. The value in the array cell marked with red is returned
only if the corresponding value valid [110 - 1001 is set to true.

3.3 Query

In order to retrieve the value V associated with a key k, we first find the ArrayObj

array a = [ki, kj] that would contain the value associated with this key if it existed

in the H-Tree. We then verify if k is indeed in the range of the array (that is, if k

is between ki and kj). If so, we finally verify the valid En] array to make sure that

the value for key k is valid. Figure 3-2 shows a sample query for key 110 on a given

H-Tree. The shaded boxes correspond to nodes traversed by the H-Tree algorithm.

QUERY(T, k)

1 > Check the candidate Array0bj instance
2 [a, b] <- Largest array such that k > a
3 if k in [a, b] and [a, b].valid[k - a]
4 then
5 return [a, b].values[k - a]
6 else
7 return Not found

Figure 3-3: Algorithm for lookup of key k from H-Tree T.

Figure 3-3 shows a more detailed pseudo-code for querying an H-Tree. Line 2

obtains the largest array [a, b] such that k > a. This is the candidate ArrayObj since

if any instance is to hold the key, it would be this candidate instance. This operation

can be implemented by finding a nearby lower bound and then scanning the leaves

of the tree in ascending key order until we find the desired value. The particular

implementation of this operation is discussed in Section 3.8. If no candidate array

exists, then the key is not found. Notice that no other array associated with the key

could be a candidate array because of the disjoint array property. In particular, if

another array b = [a', b'] existed such that k E [a', b'], then we'd have that a' < a

(by the choice of [a, b] as the largest lower bound), and that b' < b (by the disjoint

array property). Therefore, we'd have a' < b' < a < b < k, so k cannot be in the

interval [a', b']. Lines 4 though 7 simply return the appropriate value, assuming the

value corresponds to a valid key in the range of array [a, b]. The position of the value

in array [a, b] is [a, b].values[k - a], since the first element in the array is key a.

3.4 Insertion

When a key k is to be inserted, there are three possible cases that need to be consid-

ered:

Key fits In this case, one of the arrays of values already contains the slot that would

fit the key. In this case, no further modification to the tree is needed. The value

is inserted in the correct position, and the validity bit array and density values

are updated as needed. Figure 3-4 shows a sample insertion of key 19 into an

H-Tree. The metadata update is shown in red, with the value of the bit array

updated to 1 to indicate a valid inserted key.

Near miss This occurs whenever no existing array holds the key that needs to be

inserted, but there is an array that holds nearby keys. If the array a can be

resized to twice its original size so that it can hold the new key without violating

the density property, then we replace a with an array of twice the original size,

such that it can fit the value to be inserted. When doubling the original array

a, a2 a3 a4 a,

Figure 3-4: Sample insertion of key 19. The key fits perfectly in array a1. The blocks
shaded red are read by the H-Tree algorithm.

£ 100 1100Z
Closest array

181 35 10O15

v1 a2 a3 a4 a,

p, >-
2 V2

a,

Figure 3-5: Sample insertion of key 30. The key does not fit its closest array ai, but
doubling it would fit it and preserve the density property. We therefore reset array
ai to contain values 1 through 40, twice its original value, and reduce insertion to the
first case.

a, the new end key may overlap with the next array. In that case, we merge

both arrays into a single array. Figure 3-5 depicts a simple insertion without

merging. In this case, we wish to insert key 30, which is not part of either a1 or

a2. However, doubling this array would fit the key while satisfying the density

property. Therefore, the array is doubled and its data is updated accordingly.

Since the next array a2 starts further than 40, these arrays do not need to be

merged.

We must note that we may need to merge more than one array, if the array that

is being doubled is very large such that the new size covers a number of other

(smaller) nearby arrays.

We can also see that merging these arrays does not violate the density property,

since both arrays satisfy it, the number of valid keys after merging equals the

sum of the valid keys of the merged arrays, and that total size of the array is

at most the sum of the sizes of the subarrays.

Far miss Whenever we wish to insert a key that is far away from every array and

v20115 790 1350 1450 6 j~

a, a2 a3 a4 a5

Figure 3-6: Sample insertion of key 3000. The key does not fit its closest array a5 ,
and doubling it would still not make it fit or would violate the density property. We
therefore create a new array a6 starting on this key and with size so.

thus does not qualify for the previous two cases, then we build a new array of

size so, the default initial array size. As with pm'in, this is a parameter that can

be adjusted for performance reasons, and its impact is discussed later. Figure

3-6 shows the same tree, after key 3000 has been inserted.

Figure 3-7 details the pseudo-code for the insert operation. Lines 4 and 5 deal

with the first case, lines 7 to 19 deal with the second case, and lines 21 to 23 deal

with the third case.

3.5 Deletion

In the case of deletion, we simply update the validity array to zero out the position

corresponding to the key we wish to delete. Upon performing this operation, we may

violate the density property, which we then need to restore by splitting the array into

parts. To do this, we use a function split-array(o that takes in the ArrayObj that

just violated the density property upon deletion of an element, and outputs a set of

subarrays, each satisfying the density property.

INSERT(T, k, v)

1 > Check if k is in some ArrayObj instance [a, b]
2 if k in [a,b]
3 then
4 [a, b].values[k - a] <-- v
5 update p
6 else
7 > Check if nearby arrays can fit in k b
8 [a, b] <- Largest array such that k > a

9 if k E [a; a + 2. (b - a)]
10 then
11 Reallocate [a, b] twice the size
12 [a, a + 2 - (b - a)]].values[k -

13 > Check if we need to merge E
14 [c, d] +- next array after [a, b]

15 if c<a+2.(b-a)]+1
16 then
17 Merge arrays [a, 2. (b
18
19 update p
20 else
21 Create new array [k, k + so -
22 a[0] <-- v
23 update p
24

y doubling them

[a, a + 2. (b - a)]]
a] <-- v

an array

- a)] and [c, d].

1]

Figure 3-7: Algorithm for insertion of key k with associated value v into H-Tree T.

Figure 3-9 details the pseudo-code for deleting elements. Lines 6 and 7 replace

the original array [a, b] with the result of splitting arrays.

3.6 Analysis

There are many possible ways to define optimality of an H-Tree for a given key

set, such as an instance with the smallest number of arrays without violating the

tree density property. However, an arbitrary insertion of values does not inevitably

converge to an optimal H-Tree. For example, inserting values 1, 3, 5, ... will result in

a H-Tree with as many arrays as values, instead of a single array with density p = .

k
4

1001010001

Longest 00 ... 00 subsequence Longest 00.-00 subsequence
containing k

k k

Figure 3-8: Two different array splitting policies. The position marked with k is the

key that was just deleted. The left diagram splits the array into two subarrays from

the position of the largest sequence of zeroes. The right diagram shows the split from
the position of the largest sequence of zeros containing k

However, in the worst case, the data structure will behave similarly to a B+Tree,

since it will consist of several single-valued arrays. Apart from the added overhead

at lookup caused by the extra level of indirection created by the array, and the

insertion overhead of inspecting nearby arrays to see if doubling can fit the value,

the B+Tree bounds our worst-case performance. This overhead is a constant cost

above the B+Tree, and occurs when the structure is used to store non-contiguous

ranges of keys. Similarly, due to the density property of arrays, the wasted space is

at most a constant multiple of the number of keys present in the data structure. This

guarantees that our data structure will never exhibit an extremely bad processing or

memory behavior.

3.7 Algorithm Parameters

3.7.1 Pmii

In some sense, increasing the value of Pmin artificially creates a key set with a higher

clustering. However, it also amplifies the negative performance effect of randomness

DELETE(T, k)

1 > Check the candidate ArrayObj instance
2 [a, b] +- Largest array such that k < a
3 [a, b].valid[k - a] +- f alse
4 if [a, b].p < pmin
5 then
6 T.remove([a,b])
7 T. add-al 1 [spliitarray([a,b])]
8

Figure 3-9: Algorithm for deletion of key k from H-Tree T.

in the insertion pattern. This is because the amount of doubling causes more frequent

merges. Additionally, In terms of space, the lower the minimum threshold density,

the more potential for unoccupied space. Chapter 4 describes some benchmarks to

measure the effects of different values of pmin.

3.7.2 so

This specifies the initial size of the array. This size cannot be picked in a way that

would violate the density property. For example, if the density were chosen as Pmin =

, then the maximum value of so would be 4, since the original array would only have

a single element. Chapter 4 describes some benchmarks that measure the effect of so.

3.7.3 split-array()

There are several candidate functions that can be used to split arrays. For example,

we considered the following two splitting functions:

1. Split the array into two, by finding the longest subsequence of invalid keys, and

then by creating two subarrays: one of them out of the values to the left of the

longest subsequence, and another one of them out of the values to the right of

the longest subsequence.

2. Split the array into two, as before, by finding the longest subsequence of invalid

keys that include the key that was just deleted. This policy prevents us from

having to visit the whole array to detect where to split, but does not guarantee

the removal of the largest possible amount of zeroes.

The first strategy will delete the largest number of zeroes when splitting into two

arrays. However, it requires an entire scan to the array before deciding how to split.

On the contrary, the second strategy only requires to scan keys that will actually be

deleted, but may not necessarily get rid of a large number of zeros. The justification

for this heuristic is that when deletions also occur clustered, then several nearby zeros

are likely to be found when attempting to split the array.

Figure 3-8 shows an example of these two array splitting policies in action, by

depicting the validity bit array of some ArrayObj object. The letter k marks the key

that was just deleted and that caused the violation of the density property. In the

first case, we find the last run of three zeros and create two sub-arrays from the arrays

in both sides of the run of invalid keys. In the second case, only one cell is removed,

corresponding to the value that was just deleted. Once more, we discuss the impact

of each of the parameters below.

3.8 Implementation details

Choice of representation We implemented the structure detailed above in C++.

The H-Tree contains an stx::btree with integers as keys and Array~bj objects

as values. The value array in the ArrayObj class is actually an array of pointers

to values. We chose to implement the array as an array to pointers with the

expectation that values could potentially have large sizes, and could make the

operations of merging and splitting even more expensive. Keeping these objects

separated sacrifices locality of reference when accessing contiguous values, but

ensures that only address values get copied during array operations.

next-smallest() In the pseudocode from Sections 3.3, 3.4, 3.5, we needed to obtain

the array starting at the largest key smaller or equal to a key k. The function

that retrieves such a key is the procedure next-smallest 0. In order to im-

plement this function, we use the tree's lower-bound function. This function

takes in a key and returns a pointer to the first key equal to or greater than

the specified key. After appropriate boundary conditions, the next-smallest ()

element is the element preceding the lower-bound element.

Store value start, value end, pop-count Instead of storing the density as a float-

ing point number, we preferred to store the actual number of valid elements in

the array. This avoids using floating point arithmetic, while still making it pos-

sible to calculate the density whenever needed. The end value is stored, even

when it is redundant and can be calculated from the array size. This allows us

to perform one operation less every time we want to check if a key is contained

in some array.

Representation of valid array entries Initially, we implemented an array of pairs

(V value, bool is-valid). However, storing the arrays separately allows us

to compress the array of booleans and store them contiguously into integers,

accessing their values by shifting and masking bits, and even resulted in speed

improvements of up to 10%. There are other reasonable ways to encode valid

array entries. For example, in the case of a highly dense range, we could simply

store an array of positions that are invalid.

44

Chapter 4

Benchmarks

We now test the performance of the data structure under different sequences of key

insertions and compare it to other data structures.

Section 4.1 details the two kinds of benchmarks to measure insertion behavior.

Section 4.1.2 discusses the performance under different insertion orders and varying

key sizes. Section 4.1.3 then characterizes the structure of a key insertion sequence

by three dimensions: the amount of clustering, the number of keys inserted, and

how sequentially keys are inserted. We report and compare the performance of the

H-Tree and other structures along different points in the dimensions. Section 4.2

then modifies the insertion benchmarks to incorporate deletions after keys have been

inserted. Section 4.3 discusses the results of running the insertion benchmarks with

different parameter values of the insertion algorithm discussed in Section 3.7. Finally,

Section 4.4 discusses the performance gains of the H-Tree under a more complete

system, the TPC-C benchmark.

Appendix A summarizes the design and implementation details of the developed

benchmarking system.

4.1 Insertion benchmarks

4.1.1 General Setup

The benchmarks in this section proceed in two phases:

Insertion Phase In this phase, we insert the keys according to the particular inser-

tion pattern outlined below.

Query Phase After the data structure contains all the keys to be inserted, we per-

form several query operations to lookup keys at random.

4.1.2 Performance under different loads

We first tested the performance on the H-Tree under three different benchmarks, one

in a condition where it should excel and another in a situation where its behavior

should be not be much worse than other data structures. For these cases, we con-

sidered insertion of keys that form densely-packed clusters. Figure 4-1 shows a series

of clusters of keys. A cluster is simply a sequence of contiguous keys. Notice that

although the keys themselves are contiguous, the order in which these keys are in-

serted into the data structure can vary. On each of the benchmarks described below,

we first generate a set of keys of a given size, and then run and time both phases of

the benchmark on each data structure, and then generate a new set of keys with a

larger size. We then graph the insertion and query time as a function of the number

of keys inserted. We built three insertion scenarios for clustered keys, depending on

the order of insertion of the keys:

a, a2 a, a --- bb 2 b3 b4 . c1 c 2 c 3 c4
Cluster a Cluster b Cluster c

Figure 4-1: Schematic representation of keys in a clustered configuration

Strictly sequential insertion

In this case, keys were inserted, one cluster at a time, and in increasing order within

the cluster. This type of insertion could correspond to an insertion into a table with

an auto incrementing key. Figure 4-3 shows a depiction of the insertion order of the

keys in the cluster.

a, a2 a3 a4 - b, b2 b3 b4 ... jc c2 cc 4 .

t

Figure 4-2: Keys inserted in order

Figures 4-3 and 4-4 show the results of the sequential insertion benchmark with

4 and 400 clusters. The top diagram on each figure shows the average time it takes

to query a key for a varying number of inserted keys. The bottom diagram of each

figure shows the average time it takes to insert a key on a varying number of inserted

keys.

In terms of insertion time, the data structures other than the H-Tree are unaffected

by the number of clusters. In particular, since the insertion sequence is monotonically

increasing, the state of these trees should be the same under both benchmarks. The

array presents the best possible performance, with no growing insertion or query

time as the number of keys increases. On the other hand, both the B+Tree and the

AVL Tree show a logarithmic increase in the time it takes to insert keys, with the

B+Tree being strictly faster than the AVL Tree regardless of the number of keys.

The insertion times for the H-Tree, however, change dramatically depending on the

number of clusters present. Whenever there are few, large clusters, insertion is fast

and similar in performance to the array, since the arrays are large in comparison

to the tree portion of the data structure. However, for several, small clusters the

operations on the tree part of the H-Tree begin to dominate, and the performance

progressively resembles the B+Tree.

A similar situation occurs in the performance of queries. When there are few,

jII I I I ..

H-Tree -

--- AVL Tree
2 - --- B+Tree

- ----- Array

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Numberof keys x 10

0.5

H-Tree
0.4 - - AVL Tree

---- B+Tree 0 - -- -

E 0.3 - ------ Array

0 0.2

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x105

Figure 4-3: Benchmark for strictly sequential insertions and few (4) large clusters

large clusters, the H-Tree easily outperforms B+Trees even when few keys are present.

However, when there are many more small clusters, the query performance starts off

as worse than B+Trees (and even AVL trees), although it eventually catches on, since

its tree component does not grow as fast as the other structures because of the small

amount of clustering still present.

Alternating cluster, sequential intra-cluster insertion

In this case, we pick a cluster randomly, and then pick the key to insert within

that cluster sequentially. In other words, the only guarantee on ordering is that if

we consider the subsequence of inserted keys corresponding to a single cluster, this

subsequence is monotonically increasing. This type of pattern could emerge, for

example, when different entities insert data sequentially into the table, each using a

different range of pre-allocated keys. Figure 4-6 shows one sample insertion scenario

with this property.

I % I -- 0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Number of keys

2

x 10,

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

Figure 4-4:
ters

Benchmark for strictly sequential insertions and several (400) small clus-

ai I c, b, a2 b2 c2 c3 iab,--
t

Figure 4-5: Keys inserted in random cluster order, but sequential intra-cluster order

Figures 4-6 and 4-7 show the insertion and query time results of benchmarking the

H-Tree with the alternating sequence insertion pattern, again with 4 and 400 clusters,

respectively.

Compared to the strictly sequential insertion pattern shown on Figures 4-3 and

4-4, the structures other than H-Tree show differences, since the relative key ordering

has now changed. However, the performance is still similar when comparing the case

with few large clusters and the case with many small clusters. For the H-Tree, the

insertion time is larger on average on alternating insertions than strictly sequential

H-Tree
- - AVL Tree

- - - - - B+Tree
------ Array

0.5-

0.4-

0.3-

0.2

0.1

0-
0

WOO -- W

OEM a 9=

I I I

- ' -01 .0-*

0.2 0.4 0.6 0.8 1 1.
Number of keys

2 1.4 1.6 1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 4-6: Benchmark
large clusters

with keys inserted with random cluster selection and few (4)

insertions, presumably because arrays are accessed with less locality, hurting cache

performance.

On the other hand, querying time did not seem to vary compared to the strictly

sequential insertion. This suggests that the structure of the H-Tree (tree component

and array configuration) after the two types of insertions was the same. As before,

querying performance when the key set had few, large clusters resembled array perfor-

mance, moving more towards B+Tree like performance as the clusters became smaller

and increased in number.

Windowed randomization

The previous two insertion patterns showcase some idealized insertion patterns that

could be performed on the H-Tree, but are potentially hard to find in practice. In

particular, although the data structure is designed as an index structure for clusters

H-Tree
-- AVL Tree
-- - - B+Tree -

--- y- - - - - -

0.5

0.4

0.3

0.2

0.1

0
0

H-Tree
-- AVL Tree
- - - - B+Tree

------ Array -

/ ~z~ - - - -- -

2

x 10,

2

x 105

-- AVL i ree---Cn

-) -.-.-.-. Array-

C

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Number of keys x 10,

0.5

H-Tree
0.4 - - AVL Tree

0.3 -- -- B+Tree --
E ------ Array

. 0.2 ~

C 0.1

0 -------
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

Figure 4-7: Benchmark with keys inserted with random cluster selection and several

(400) small clusters

of data when keys are inserted almost sequentially intra-cluster, this insertion pattern

may not be perfectly sequential. For example, the insertion may proceed with some

keys missing, or inserted much later. Figure 4-8 summarizes a procedure to obtain

an insertion pattern that follows this idea.

We define a window of size k; the larger the value of k, the larger amount of

randomization that we have. We start with the sequence of insertions from sequential

intra- cluster insertion, and the window positioned over the first k elements of the

sequence. Elements under the window are shuffled, such that every permutation is

equally likely. The window is then moved forward by one element, and the procedure

is repeated. The resulting sequence is the randomized insertion pattern. Essentially,

this procedure creates a localized randomization, where keys are unlikely to move

too far from their original insertion point. However, it is still theoretically possible

(although unlikely) that an early key be moved to the end of the insertion sequence.

Position window

t Window

Shuffle window a2 cb2a 7c b 3

t

a2 c 2bac2 c3 a3b
Slide window

t

Figure 4-8: Keys inserted in random cluster order, but sequential intra-cluster order

From Figure 4-8, we can see that a choice of window size k = 1 reduces to the

random cluster, sequential intra-cluster insertion pattern, whereas choosing k to be

the total size of the keys reduces to a uniformly random shuffling of the keys within

the cluster.

Figures 4-9, 4-10, and 4-11 show the benchmark executed on key sets with the

same number of clusters, but with varying randomization by increasing the size of the

window. In particular, we used window sizes of 15, 1500, and 15000 with 4 clusters.

The insertion times for data structures other than the H-Tree are not noticeably

affected by the variation of window size in these graphs. However, as more variation

is added, the performance of the H-Tree becomes gradually worse, especially for few

keys. At this stage, the number of array creations is very large, and does not get

compensated by insertions into array portions. This is a similar effect as exhibited

on Figures 4-4 and 4-7, with a slightly decreasing insertion time curve.

Query time, on the other hand, gradually increases with the randomization. The

query performance under very small randomness in this benchmark creates the tree

structure with less amount of arrays possible, and therefore provides good query time.

The larger amount of randomization creates a larger tree with more, smaller arrays,

a, b, a_ c,, J j-Jc b12

H-Tree
;- - AVL Tree

2 - --- B+Tree
(D
E -- --- Array

1 -

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Number of keys x 105

0.5 -

H-Tree
0.4 --- AVL Tree
0. - - - B+Tree

E 0.3- ------ Array
C
o 0.2-

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10

Figure 4-9: Benchmark with keys inserted with window algorithm. The window size

is 15.

that increase query time. However, perhaps surprisingly, the performance penalty

under a very large randomization does not make the performance as bad as that of a

B+Tree.

4.1.3 Varying across key dimensions

For this section, we determined the key insertion sequence by varying three different

dimensions that characterize the sequence of inserted keys:

Clustering key set This refers to how close to each other the set of keys to be

inserted are. This measure is completely independent of the actual order in

which these keys are inserted. A set of contiguous keys has as large as possible

clustering of keys, whereas a set of keys where every key is very far away from

each other has a very low clustering.

We expect that, all else being equal, a higher amount of clustering will make

SI I 1

H-Tree
AVL Tree

2 ---- B+Tree
E - Array

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Number of keys x 105

0.5

H-Tree
0.4 - - AVL Tree

- - - - B+Tree
0.3------Array

.900.2-

0
S0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x105

Figure 4-10: Benchmark with keys inserted with window algorithm. The window size
is 1, 500.

the H-Tree perform better, since its performance will resemble that of an array,

with a large number of arrays with respect to the size of the tree portion. On

the other hand, the smaller the clustering, the more performance will resemble

that of a B+Tree, since the array portions will hold a low number of values,

and the time spent traversing the tree will dominate the performance.

Key insertion randomness This refers to the actual order in which the keys get

inserted into the data structure. For a given key set that gets inserted, whenever

it is inserted in order, we say that the key clustering is very high.

Ideally, the H-Tree would generate an optimal structure based exclusively on

the key set, and regardless of the actual insertion pattern. However, in practice

this is not true. However, the hope is that the structure is somewhat resilient

to randomness in the key insertion.

3
H-Tree

~- - AVL Tree

2 - --- B+Tree
E -- Array

0-----------------

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Number of keys x 105

0.5

H-Tree
0.4 - - AVL Tree

---- B+Tree
E 0.3- ------ Array

0.2-

C 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 105

Figure 4-11: Benchmark with keys inserted with window algorithm. The window size
is 15, 000.

Key set size This refers to the actual absolute number of keys held by the H-Tree.

If we fix the key insertion randomness and key set size, we can generate a plot

of insertion and query times as a function of the amount of clustering (ranging from

many, small clusters to few, large clusters. Based on the previous results, the ex-

pectation is that the B+Tree and the array will be constant along the graph, since

their insertion and queries depend on the relative ordering between keys, and not

how spread out they are. However, the H+Tree should have a similar performance to

an array for few large clusters, and resemble a B+Tree for many small clusters, plus

some overhead.

We chose four extreme points regarding size and randomness in its insertion of

keys, to get a picture for how the performance characteristics of the H+Tree varied

depending on how many keys it was holding, and how they were inserted. We thus

came up with four graphs that are representative of the whole input space, and

should provide some insight on the performance of the H-Tree on very different types

of loads. For each of these loads, we plot the insertion and query times as a function

of the amount of clustering (which ranges from many, small clusters to few and large

clusters).

1. Almost sequential insertion. Large n. Figure 4-12 shows the outcome from

this benchmark.

-C 0.6

* 0.4
0

'UD 0.2

I I I II

H-Tree
- - AVL Tree
- - - - B+Tree

-..- --. Array

3 10 20 30 40 50 6
Density of clustering (larger values mean more but smaller clusters)

H-Tree
-- AVL Tree
- - -- B+Tree

_ - -- Array

-.-...........----------- -

Figure 4-12: Density graph with almost sequential insertion and large number of keys
(8 x 10).

2. Almost sequential insertion. Small n. Figure 4-14 shows the outcome from

this benchmark.

3. Almost random insertion. Large n. Figure 4-13 shows the outcome from

this benchmark.

H-Tree
' C3 -- AVL Tree

- -- B+Tree
W .---- Array

2-2

(>

0 - -- --- - '- --- -

0 10 20 30 40 50 60
Density of clustering (larger values mean more but smaller clusters)

III I I

H-Tree
0.6 -- AVL Tree

D - - - - B+Tree
E _ Array- 0.4
C

S0. 2 -..

0 " _

0 10 20 30 40 50 60

Figure 4-13: Density graph with almost sequential insertion and small number of keys
(80).

4. Almost random insertion. Small n. Figure 4-15 shows the outcome from

this benchmark.

The different key sets for a fixed size n and insertion pattern are generated for a

given amount of clustering by increasing the number of clusters and then choosing the

number of keys per cluster that create n keys total. As Figures 4-14, 4-12, 4-15, and

4-13 demonstrate, the H-Tree begins with a performance comparable to a B+Tree

and becomes more array-like as the key set consists of fewer, large clusters.

When the value of n is small the query time decreases for all data structures, are

expected from a smaller data structure. However, the query performance for the H-

Tree should be very similar when there are fewer keys than when there are more keys,

but a fixed clustering since the number of keys per cluster is smaller, but the size of

0)

c 3

0
C

0.6

E* 0.4
0

S0.2

10 20 30 40 50
Density of clustering (larger values mean more but smaller clusters)

0 1 ' - -a- - -- - - - - - - - - --- "- - - - - - -- - - - - - - - - - - - - - - - -'- - - - - -- .-
0 10 20 30 40 50 60

Figure 4-14: Density graph with almost random insertion and large number of keys

(8 x 105).

the tree stays constant. Figures 4-12 and 4-15 share the same amount of keys being

inserted, and present similar query behavior. The same is true of Figures 4-13 and

4-14, except this effect is less apparent, since because the presence of very random

insertions causes the tree with more keys more inefficient by creating clusters more

inefficiently. Notice that there are, however, small differences that make a larger tree

slightly worse than the smaller tree counterparts in both cases. This can be attributed

to different cache performance, since lookups in a large array may presumably exhibit

worse cache performance than lookups in a smaller array.

However, in the case of insertions, the same amount of nodes is created, but the

cost of creating the array is distributed between less keys, increasing the average

insertion time per key. Figures 4-12 and 4-15 show this effect, which is clearer with

-- H-Tree - % -- - -

- - AVL Tree
- - - - B+Tree

------ Array

-- H-Tree

> 3 .- AVL Tree
- - - - B+Tree
- .- -- Array

-2-

(Da>

0 -- --

0--------------.1 .. .
0 10 20 30 40 50 60

Density of clustering (larger values mean more but smaller clusters)

H-Tree
0.6 -- AVL Tree

(I) - -- -B+Tree

E _--- --- Array0.4
0

Q~n 0. 2 - ' -- - - -

0 10 20 30 40 50 60

Figure 4-15: Density graph with almost random insertion and small number of keys
(80

few keys. Notice that, in the case of Figures 4-13 and 4-14, the effect is not as

apparent because each cluster contains more keys per cluster than the previous pair.

The less randomization, the faster the H-Tree starts behaving like an array in

terms of query performance. This is caused by a relatively poorer tree configuration

whenever insertions are random, which in turns counters some of the performance

gains as the clustering of the keys increases. The query overhead with respect to

the B+Tree does not change, since the performance worst case is still the creation of

really small arrays as leaves. This effect can be seen clearly by comparing the query

performance between Figures 4-12 and 4-14.

However, even in the case of a completely random insertion, there are still gains in

terms of query performance with respect to the B+Tree for a densely enough packed

key set. Insertion is slower when there is more randomness, presumably because

more key copying is required than when the keys are inserted randomly. This is

especially noticeable with few keys, since the average costs of merging and splitting are

distributed amongst less keys, which is even more apparent when comparing Figures

4-15 and 4-13 where - as discussed above - the small amount of keys distributes the

extra merging costs amongst less keys and increases the average insertion time per

key.

4.2 Deletion benchmarks

We considered two different scenarios for deletions. The first, random deletions,

removes keys from the data structure with equal likelihood. After performing the

same routine of insertions described in the section above, we then performed a series

of deletions and then queried the structure as before. Secondly, we performed batch

deletions, removing large chunks of contiguous keys in order. The query time remained

mostly unaffected on both benchmarks, since the H-Tree remained with a similar tree

configuration. The average deletion time of the structure is comparable to the average

deletion time of the other data structures.

4.3 The algorithm parameters

4.3.1 pm2

Figure 4-16 shows the result of running a benchmark with some randomization, and

varying the threshold pmix. A high value pmix makes the algorithm less eager to create

new arrays, causing less merge operations to be performed. This is especially true

for key sets with few, large clusters. However, it also causes the algorithm to create

a larger number of arrays. We can see that varying the threshold invariably causes

more arrays to be doubled.

The other two parameters, so and split array () showed no visible different in the

benchmark results. Intuitively, although large values of so create larger initial values,

2500

2000

1500

1000

500

0
30 40 50

means more but smaller clusters)

n 800
a)

0 600

o 400

00
-D200

E
Z3

20 40

Figure 4-16: Number of arrays created as
array for a random insertion

a function of the clustering factor in an

the density pmin actually dominates the performance of the algorithm in terms of

array creations and merges and thus is responsible for the performance differences for

the ranges of keys analyzed in this section. Similarly, the splitarray () split policies

showed few differences in the deletion times and subsequent query times. This occurs,

presumably, because the deletion time is dominated by the copying of arrays, and not

by the lookup of large chunks of empty values.

4.4 OLTP Workload: The TPC-C Benchmark

We then tested the performance of H-Tree on a more realistic benchmark with mixed

operations: the TPC-C benchmark. We used an implementation of an in-memory

database system, which stores each table in memory completely, using different data

- ----- --- - --

. - - - - - - High density -

- - Low density

0) 10 20
Density of clustering (larger

2000

1500

1000

500

0

-A"

\ ~----

structures to hold each table. We then ran the benchmark using different types of

data structures to store the different tables.

Some of these tables, such as the table of Stock is keyed by a composite key

(stock-id, warehouse-id). Since the H-Tree holds values that are keyed by inte-

gers, and not composite keys, we used a mapping from composite keys to integers.

For example, we use the function f[(stock-id, warehouse-id)] = (warehouse-id x

NUMSTOCKPERWAREHOUSE) +stock-id. Here, NUMSTOCKPERWAREHOUSE is-the max-

imum amount of stock entries there can be for a given warehouse.

However, some of these tables do not require the existence of such a function.

For example, the table of Items is keyed simply by the item-id. Figure 4-17 shows

the benchmark execution times whenever the tables that do not contain composite

keys are stored using the H-Tree, compared with other data structures. Figure 4-18

shows the benchmark execution times whenever all tables are stored using the H-Tree,

compared with storing the same values using exclusively arrays, and B+Trees. Note

that, in order to store the values using an array, we need very tight upper bounds for

each of the maximum values of the sub-keys.

Figure 4-17 shows the amount of time required to complete 200,000 new order

transactions in the TPC-C benchmark. The H-Tree performs about 5% better than

the B+Tree because of the clustering of keys. However, the H-Tree performs about

5% worse than the hashmap and about 15% worse than the array on average.

Figure 4-18 shows the same benchmark, but with all tables indexed by H-Trees,

versus an identical version indexed by B+Trees. The H-Tree performs constantly

better than the B+Trees for all the number of warehouses tested, with a performance

gain of between 20% and 30%.

-I-

E

40(
*E.
E
0
0
2 30(
a)
E

20(

10(

Figure 4-17:

1 2 3 4 5 6 7 8 9 10
Number of warehouses

Result of TPC-C Benchmark with modified Items table.

E

4 4000-

C>

E

1000
-H-Tree

---- B+Tree
0

1 2 3 4 5 6 7 8 9 10
Number of warehouses

Figure 4-18: Result of TPC-C Benchmark with all tables indexed by H-Trees and all
tables indexed by B+Trees

64

Chapter 5

Conclusion

We presented the H-Tree, a data structure for storing values with integer keys. This

data structure exhibits its best behavior when it stores a large number of keys that

form clusters (intervals of contiguous keys). Its behavior in these idealized conditions

is that of an array. When the stored keys are more spread out (and thus form less

clusters), the behavior of the data structure is similar to a B+Tree.

The H-Tree performs best when clusters are inserted sequentially or almost se-

quentially. However, it still performs well when the keys are not inserted in order,

outperforming B+Trees even when there are clusters consisting of a few keys.

The data structure performs well under both random and batch deletions, dynam-

ically adjusting it size and ensuring that the allocated size for the data structure is

at most a tunable constant factor.

Using the H-Tree as an in-memory indexing structure for an implementation of the

TPC-C benchmark sped up the transaction processing time by up to 50% compared

to an implementation based on B+Trees. Although other data structures, such as

hash tables, provide similar performance on this benchmark, the H-Tree allows for

range scan operations, which are not possible on hash tables.

H-Trees are ideal data structures for main memory databases with keys inserted

close to sequential order. They can be added to existing systems easily, without

significant degradation in performance when used on data sets that are not ideal.

66

Appendix A

Benchmark architecture

For all data structures, we used 32-bit signed integers, and 32-bit pointers to struc-

tures . The tests were performed on a GNU/Linux machine with 2 Intel Pentium(R) 4

CPUs at 3.06 GHz and a cache size of 512 MB. The test computer had 2 GB in RAM.

We benchmarked four different data structures: H-Tree, an AVL Tree (std: :map),

and a B+Tree (stx: :btree version 0.8.2). In addition, we created an array with a

perfect hash-function. In this case, calculating the array offset for a key consists of

a multiplication and an addition. This data structure provides the best-case perfor-

mance of our data structure.

For each test, we ensure that we test a large enough range of keys so the differences

between data structures are visible. We found that showing the range of 10' keys

already highlights the differences between each data structure.

A.1 Single point benchmarks

In order to support the different combinations of clusters, operation patterns and

data structures, we built a generic benchmarking tool for easily adding benchmarks

and obtaining the results. The benchmark is a templated C++ function do-worko

which takes in the following arguments:

1. List of operations to be performed. The ith operation tells the benchmark

how to use the ith key provided to the benchmark. Example operations are

KEYINSERT, KEYDELETE, and KEYQUERY.

2. List of keys on which operations are to be performed. These keys are

read in sequential order.

As mentioned before, the function is parameterized by two types: a MapType and

a BenchType.

1. A MapType specifies the type of data structure to initialize. In order to use

the benchmark, for each MapType, the user must implement functions that act

as wrappers that translate the particular syntax of the data structure to a

homogenous set of modifiers for use by the benchmark. These are:

(a) insert(MapType& struct, Key k, Value v)

(b) V find(MapType& struct, Key k)

(c) delete(MapType& struct, Key k)

2. A BenchType specifies the type of data structure to initialize. In this case,

the user must implement a number of functions that do pre-processing and

post-processing on the data structure as required.

3. init (MapType& struct, List& keys) . This method initializes the structure.

This is useful, for example, when we want to pre-populate the values so that

we only measure the query times, and not the time it takes to insert the values

into the data structure.

4. finalize(MapType& struct, List& keys) This method is called once the

benchmark has been performed. The method can be used to collect additional

data required by the benchmark, such as the size of the final structure or, in the

case of the H-Tree, the number of merges and array creations that happened

during the benchmark.

The do-work function times the time that passes between the preprocessing and

the post-processing stage, and returns it as the return value. All functions are marked

as inline, to indicate to the compiler that we wish to generate particular benchmarks

for each data structure, each with the correct modifiers called directly from the body

of the benchmark.

A.2 Multi-point benchmarks

In order to generate graphs that measure performance varying the set of keys (say, by

increasing its size gradually or by increasing some property of the set, like its clustering

factor), we can create different BenchType classes, each of which calls do-work () using

a different key set. We created a generic TwoPhaseBench, which creates the the two-

phase benchmarks described above. The first phase consists of timing the insertions

of the key set, while the second phase consists of timing the query time once the

insertion has been completed. The TwoPhaseBench type is parametrized by a key

generating function. This function receives a number, from a minimum range to a

maximum range (specified at construction of the TwoPhaseBench object), and outputs

a list of keys and operations. The number can, for example, specify the amount of

keys to be generated, or the amount of clustering they should exhibit. By calling this

function with successively increasing values as arguments, the TwoPhaseBench object

can generate a graph consisting of several distinct points.

70

Bibliography

[1] ZIP code statistics. United States Census Bureau. http: //www. census. gov/
tiger/tms/gazetteer/zips.txt, 2002.

[2] Benchmark overview TPC-C. White paper, Fujitsu. https://globalsp.ts.
fuj itsu. com/dmsp/docs/benchmark-overview-tpc-c-jp .pdf, October 2003.

[3] TPC benchmark C standard specification. Standard Specification, Transac-
tion Processing Performance Council. http://www.tpc.org/tpcc/spec/tpcc_
current.pdf, February 2010.

[4] Wikipedia database layout. MediaWiki. http://www.mediawiki.org/wiki/
Manual: Database-layout, 2010.

[5] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, MA, 1990.

[6] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R

Stonebraker, and David Wood. Implementation techniques for main memory
database systems. In SIGMOD '84: Proceedings of the 1984 ACM SIGMOD
international conference on Management of data, pages 1-8, New York, NY,
USA, 1984. ACM.

[7] Ulrich Drepper. What every programmer should know about memory, 2007.

[8] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond Strong. Ex-
tendible hashing-a fast access method for dynamic files. A CM Trans. Database
Syst., 4(3):315-344, 1979.

[9] E. B. Fernandez, T. Lang, and C. Wood. Effect of replacement algorithms on a

paged buffer database system. IBM J. Res. Dev., 22(2):185-196, 1978.

[10] H. Garcia-Molina and K. Salem. Main memory database systems: An overview.

IEEE Trans. on Knowl. and Data Eng., 4(6):509-516, 1992.

[11] Rodrigo Gonzlez, Szymon Grabowski, Veli Mkinen, and Gonzalo Navarro. Prac-

tical implementation of rank and select queries. In In Poster Proceedings Volume

of 4th Workshop on Efficient and Experimental Algorithms (WEA05) (Greece,
pages 27-38, 2005.

[12] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, John Hugg, and Daniel J. Abadi. H-Store: a high-performance,
distributed main memory transaction processing system. Proc. VLDB Endow.,
1(2):1496-1499, 2008.

[13] Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting and Search-
ing (2nd Edition). Addison-Wesley Professional, April 1998.

[14] Tobin J. Lehman and Michael J. Carey. A study of index structures for main
memory database management systems. In VLDB '86: Proceedings of the 12th
International Conference on Very Large Data Bases, pages 294-303, San Fran-
cisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

[15] Scott T. Leutenegger and Daniel Dias. A modeling study of the TPC-C bench-
mark. SIGMOD Rec., 22(2):22-31, 1993.

[16] Witold Litwin. Linear hashing: a new tool for file and table addressing. pages
570-581, 1988.

[17] Jun Rao and Kenneth A. Ross. Cache conscious indexing for decision-support in
main memory. In VLDB '99: Proceedings of the 25th International Conference
on Very Large Data Bases, pages 78-89, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[18] Jun Rao and Kenneth A. Ross. Making B+-trees cache conscious in main mem-
ory. SIGMOD Rec., 29(2):475-486, 2000.

[19] Alan Jay Smith. Cache memories. ACM Comput. Surv., 14(3):473-530, 1982.

[20] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. The end of an architectural era: (it's time
for a complete rewrite). In VLDB '07: Proceedings of the 33rd International
Conference on Very Large Data Bases, pages 1150-1160. VLDB Endowment,
2007.

