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Abstract

In this thesis we study corrections to parton showers in the context of soft collinear
effective theory (SCET). Monte Carlo event generators like Pythia or Herwig are
heavily used by experimentalists to simulate events and they are indispensable tools
to make exclusive theoretical predictions. They are based on a leading log parton
shower algorithm that allows to resum the dominant contributions in the soft and
collinear radiation. In this work we construct a framework to classify corrections
to the parton shower that can be used to systematically improve event generators.
We formulate parton showers as a standard matching procedure between a tower of
soft collinear effective field theories called SCETi. We find two different kinds of
corrections: hard-scattering corrections and jet-structure corrections. To relate these
different effective field theories we make use of an important symmetry of SCET,
called reparametrization invariance. In order to systematically study this symmetry,
we construct operators that are invariant under reparametrization and we use them
to find a minimal basis of operators that are homogeneous in the power counting.
Complete basis of operators are constructed for pure glue operators for deep inelast-
ing scattering at twist-4, for production of two and three jets from e+e- and for
production of two jets via gluon fusion.

Thesis Supervisor: Iain W. Stewart
Title: Associate Professor of Physics
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Chapter 1

Introduction

1.1 QCD

Quantum Chromodynamics (QCD) is the theory of the strong interaction which is

one of the four fundamental forces. It describes the interactions between quarks and

gluons and how they bind together to form particles, called hadrons, such as the

proton, neutron and pion. It is also one of the building blocks of the Standard Model

(SM) of particles physics. QCD emerged in the 1970s and since then its predictions

have been verified by a huge number of experiments. With the Large Hadron Col-

lider (LHC) at CERN, we will probe nature at energies never experimentally reached

before. The discovery of the Higgs boson, the last piece of the SM that has not been

detected yet, and possibly of physics beyond the Standard Model are the major goals

of the LHC. Detecting a signal at the LHC of Higgs particle or of new physics, is not

easy because of the huge background of events that depend on SM processes. For this

reason it is extremely important to improve our prediction of QCD events as much

as possible.

One of the key predictions of QCD is asymptotic freedom [57]. This means that

the coupling constant, as, becomes large at low energy and small at high energy. This

makes it possible to use at high energy "fixed order perturbative perturbation theory",

where we can expand QCD in powers of the small ac. When we study a physical

event, in general, several energy scales are involved. This poses two main problems



to perturbative QCD. First it is fundamental to disentangle the physics that happens

at high energies, where we can use perturbation theory, from the physics at lower

energies that is non-perturbative. This is achieved using "factorization theorems"

[37]. Second, even in the regime where as is small, in the perturbative expansion,

a. often appears multiplied by factor of log(pl/p2), where Ll and p12 are two scales

that are present in the process. In general a generic observable (0) has the following

schematic expansion in perturbation theory

0= 1+a 8 L 2 +a L 4 +alL6 +~ ---. 1)

aL+a 2L3 + a3 L'+--

as + a 2L2 +a 3L+ - -+ -

where 1 denotes the tree level result and L= log(P1/p2). Even if as < 1, for p1 > [p2

we may have as log 2 (pIL/92) ~ 1, and the perturbative expansion breaks down. In

this case the large logarithms need to be resummed. Resumming the first row of

Eq. (1.1) is called leading logarithmic (LL) resumation, resumming the second row of

Eq. (1.1) is called next-to-leading logarithmic (NLL) resumation and so on. In this

thesis we study large logarithms that arise in collinear and soft emissions using an

effective field theory approach.

1.2 EFT

In nature different phenomena happen at different length, time, or energy scales. The

idea behind effective field theory (EFT) is that the physics at a lower scale should

not depend on the details of the physics at a higher scale [76, 88]. For example at the

length scale of everyday life, ~ 100 meter (m), classical mechanics is a very successful

theory, but we know that at the scale of atoms, ~ 10-10 m, classical mechanics breaks

down and the theory that describes the motion of objects is quantum mechanics. We

can consider classical mechanics as an EFT of quantum mechanics at length scales of



~ 100 m. Another example is Newtonian gravity. Planetary motion (orbital radius

~ 106m) can be well explained using Newtonian gravity but we know that the more

fundamental theory that describes the gravitational force is general relativity (GR).

We can recover Newtonian gravity from a perturbative expansion of GR in the ratio

# = GNM/(C2 R), where M is the mass of the sun and R is the typical orbital

radius. Newtonian gravity is an EFT of GR in the limit of small #. An EFT is an

approximate theory of an underlying more fundamental theory, that includes only the

appropriate degrees of freedom to describe physical phenomena occurring at a chosen

length scale. The appropriate parameters are those that are at the same scale as

the physical quantities we are interested in studying, and the rest of the parameters

are either too small or too large for the description. In some cases an EFT can be

obtained from the underlyine theory by doing a perturbative expansion in the small

parameters or in the inverse of the large parameters. Using an EFT makes it possible

to do calculations, and to make predictions, that would be much harder to do using

the underlying theory. For example it is possible in principle to study phenomena like

the motion of a bullet using quantum mechanics, but it is in practice computationally

prohibitive.

There are many EFTs for QCD; each one is suitable to describe phenomena at

a particular scale with particular degrees of freedom. Some examples are: chiral

perturbation theory [97], heavy quark effective field theory [79] and non relativistic

QCD [88]. In this work will use soft collinear effective field theory (SCET) [8, 10, 14,

18]. SCET is the theory that describes soft and collinear particles that we define in

the next section. We give an introduction of SCET in chapter 2.

1.3 Parton Showers

The LHC is a proton-proton collider. In a typical proton-proton collision, two partons,

quarks or gluons, are extracted from the protons and interact in a hard collision. The

collision may produce leptons, such as electrons, muons and neutrinos, and hadrons.

There are at least two energetic scales involved: Q, the energy at which the pro-



tons interact, and AQCD the scale where perturbation theory is not valid anymore.

Q is called a hard scale and in an energetic collision it is high enough that we can

use perturbation theory. AQCD is called the hadronization scale because it is the

energy scale governing how quarks and gluons bind together to form hadrons. Us-

ing the fundamental theory of QCD, fixed order perturbative calculations have been

implemented only at next-to-leading order (NLO), a., in many cases and next-next-

to-leading order (NNLO), a3, in few cases. At tree level, the number of Feynman

diagrams to calculate grows factorially with the number of partons in the final state.

These calculations have only been performed for a relatively low number of external

particles. Even tree-level expressions have only been worked out for 0(10) particles

[55, 69, 75, 83]. At one-loop the frontier is four external particles processes [26, 27, 67]

and at two loops is three [2, 3, 30]. These limitation show that a direct computation of

QCD processes with many external particles is not currently feasible. However, high

energy colliders produce events with thousands of particles in each event. Besides,

there are regions of phase space in which high-order terms are enhanced and cannot

be neglected. If Q is a hard scale in the process then, in these regions, the amplitude

gets enhanced so that its coefficient is (as ln 2 (Q/q))m, where q < Q refers to a small

scale that is induced by the choice of observables.

Instead of studying a process for a precise prediction to some order in perturbation

theory, a different approach is to seek an approximate result where we capture the

dominant contributions taking into account such enhanced terms at all orders. En-

hanced higher-order regions come from kinematic configurations where the relevant

QCD matrix element becomes large. In particular, this is associated with emissions

of soft or collinear particles. To be more precise, let us consider a particle i with

momentum qj coming from some hard scattering that happens at energy scale Q,
branching into two particles j and k with momenta qj and qk, see Fig. 1-1-(A). Be-

cause of the internal propagator, the amplitude (A) of this process is proportional to

1/q2 and in the limit where the mass of the particles j and k is zero, we have

1 1
A ~1j - = (1.2)

q2 2E3 Ek (1 - cos 0)

20



qj

qi qo q1 q2
qk

(A) (B)

Figure 1-1: (A): branching of particle i to particles jk; (B): strongly ordered limit
where q > q2 > q2 > ... , this implies that each emission is more collinear than the
previous one.

where Ej and Ek are the energies of the particles j and k, and 0 is the angle between q'j

and q'. From Eq. (1.2) we see that the amplitude gets enhanced when Ej or Ek --+ 0,

or 0 -+ 0. In the first case the particles emitted are called soft because of the low

energy, while in the second case they are called collinear because the particles are

close to each other. A key characteristic is that in the collinear limit the cross section

factorizes

dox+k -- dz 2 Pi -+jkd'x+i, (1.3)
qi

where dox+i is the cross section to produce the particle i inside some larger process

X, dux+jk is the cross section to produce the particles jk, and P is called "splitting

function" and represents the probability of the particle i to split into particle jk and

can be calculated perturbatively in as. As an example, for a quark splitting to a

quark and a gluon (q -+ qg) after averaging and summing over spins, at leading order

in as, this is

P(O) = C F 1.4)q-+qg 27 1 - Z' 14

where z is the momentum fraction of the emitted quark with respect to the parent

quark and CF = 4/3. If we integrated Eq. (1.3) over q2, we would get a large logarithm

log(Q/q). We can extend this argument to the emission of an arbitrary number of

particles (qo, qi, q2 , ... ) and we get large logarithms in the "strongly ordered" region



where

2 2 2(15q > q > q (1.5)

Condition Eq. (1.5) is equivalent to qoL > qa >> q2 > ... where I refers to the

perpendicular component of the momentum with respect to the momentum of the

mother particle. This means that in the strongly ordered limit, each emission is more

collinear than the previous one, as depicted in Fig. 1-1-(B).

We saw that P(O) gives the probability for a parton to split. Using the Altarelli-

Parisi equation it is possible to prove that the "Sudakov Factor", A(q2 , qO), gives the

probability of a parton to evolve from qO to q2 without branching [44], where

A(q2, q ) = exp - d2 d z2 I as P (z) . (1.6)L 2q q 27r

We can use the splitting function and the Sudakov factor to construct an algorithm

that branches a parton i into two partons jk and then iterates this process to produce

an arbitrary number of partons in the final state. This process is called a parton

shower and can be implemented in a Monte Carlo simulation as an event generator.

Whereas a fixed order calculation is based on the perturbative expansion of a, the

parton showers is defined in the soft-collinear limit and uses a probabilistic Markov

chain of 1 -+ 2 particle splittings to recursively generate partons. In this way we

resum the LL contributions by systematically treating real parton radiation.

To study an event in a hadron collider both fixed order calculations and parton

shower event generators are used. We generate an event in three phases [401. First

we select the hard process at the parton level with a probability proportional to its

production cross section, calculated using standard fixed order perturbation theory.

Second, the produced partons, which are taken to be highly off-shell at the hard

scale Q, radiate additional partons using an event generator and evolve down until

their off-shellness reaches the hadronization scale AQCD. Finally, all the partons

hadronize using a confinement model. We illustrate these three phases in Fig. 1-2 for



Q ~ AQCD

Figure 1-2: ppi collision with final shower: two partons taken from the protons (red
blobs) interact at scale Q. parton showers is used to emit radiations from Q down
to the scale AQCD where the partons hadronize (blue blobs). There is also radiation
from the initial partons and from the remnants of the protons (not shown).

a pp collision. Two partons taken from the protons (red blobs) interact at scale Q
producing two partons. A parton shower event generator is used to emit radiation

from Q down to the scale AQCD where the partons hadronize (blue blobs). There

is also radiation from the initial partons and from the remnants (not shown); these

are also described using a parton showers approach. Monte Carlo event generators

like Pythia [91, 92] or Herwig [5, 38] are heavily used by experimentalists to simulate

these types of events and have proved indispensable for making exclusive theoretical

predictions.

There have been several improvements to LL parton showers such as MC@NLO

[52], or CKKW [31], but a systematic way to resum NLL is missing in the literature

and there is not even a clear method to catalog all the necessary corrections. The main

problem to include NLL corrections is that we have to take into account emissions

that are not strongly ordered, where q > q i and where the factorization formula

Eq. (1.3) is no longer valid. This means that we have to consider interference between

different amplitudes as well as spin and color correlations.

In this thesis we set up a rigorous framework to study corrections to parton showers



using SCET to pave the way for an implementation of a NLL parton shower algorithm.

SCET is an appropriate effective theory for studying parton showers because it is

designed to reproduce exactly the limit of soft and collinear particles. Moreover,

SCET is organized in an expansion of a power counting parameter that makes it

possible to classify all corrections to a known order in this parameter. The first

work on parton showers using SCET was Ref. [17], where the authors proved how the

splitting function and the Sudakov factor emerge naturally in SCET. They reproduced

the LL parton showers using SCET but they introduce choices and approximations

at several points which makes prohibitive to calculate corrections.

In our work, we describe the parton shower using a tower of independent but

related effective field theories that we call SCETi. Each SCET is a soft-collinear

effective field theory. The difference between SCETi and SCETi+1 is that SCETi+1

describes collinear particles with virtuality that is much smaller than the virtuality of

a collinear particle in SCETi, that is if qi+ 1 is a generic collinear particle in SCETi+1

and qi a generic collinear particle in SCETi we have that q,+1 < q. We describe

each emission in the strongly ordered region using a different SCETi. Even if we have

many EFTs, we will use only a single power counting parameter that we call A. The

LO operator in A for n partons describes n emissions in the strongly ordered region.

To resum NLL we need to calculate the NLO operators in A as well as correction in a.

In this work we will focus on corrections of the power counting, but in our framework

we can also calculate corrections in a,. We find two different kinds of corrections

at NLO in A: hard-scattering corrections and jet-structure corrections. The hard-

scattering corrections depend on the hard-scattering process being investigated. The

jet-structure corrections are independent from what happens at the scale Q, hence

they are universal in the sense that they are the same for each process we want

to study. The SCETi picture, besides defining a clear method to calculate NLO

corrections, has another important advantage in that we have factorization between

emissions also at NLO. This characteristic is a crucial ingredient that gives hope for

a future construction of a NLL parton shower algorithm.

In order to relate these different SCETi we will make use of an important symmetry



of SCET, called reparametrization invariance (RPI). Part of this thesis is devoted

to study RPI. Symmetries are fundamental tools in all fields of physics. Knowing

that a quantity is invariant under a set of transformations allows us to make some

predictions. For example, if we have a quantity that depends only on two vectors,

pl and qP, and we know it is a Lorentz scalar, we can immediately say that it can

be only a function of q2 , p2 and p - q. Similarly, knowing that SCET is invariant

under RPI, we are allowed to express all quantities in SCET using a complete a set of

RPI invariant objects. In this thesis we construct operators that are invariant under

reparametrization. Using RPI operators will turn out to be very powerful method

to find a minimal basis that is homogeneous in the power counting in particular for

processes with multiple jets.

1.4 Outline

In chapter 2 we give a brief review of SCET. After describing the main ingredients

of SCET, we define RPI in this context. In chapter 3 we construct a set of operators

that are invariant under reparametrization. It is based on Ref. [80]. We can use

this set to reduce the number of operators in SCET. We construct a minimum basis

of pure glue operators for DIS at twist-4, for production of two and three jets from

e+e~, and for production of 2 jets from gluon fusion. Chapter 4 is dedicated to

parton showers and is based on Ref. [21]. We formulate the shower emissions as a

standard matching procedure between different SCETi, namely SCET -4 SCETi+ 1.

We use this formulation to classify and compute various corrections to the shower.

Conclusions are given in chapter 5. We leave many of the technical details to the

appendices.
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Chapter 2

Soft Collinear Effective Field

Theory

2.1 Introduction to SCET

Soft Collinear Effective Theory (SCET) is an effective field theory of QCD that de-

scribes the interactions of collinear and soft particles [8, 10, 14, 18]. The momentum p

of any particle can be decomposed along two light-cone vectors, n and ii, with n 2 = 0,

2= 0 and n 2, as

pe =n-p- +p- +p_, (2.1)

where p = i p and the particle's invariant mass is p2 = p+p + p2. We use a

Minkowskian notation for p = -2 , where 'l is Euclidean. SCET's degrees of

freedom include collinear and soft fields. 1

A particle is collinear to a direction n if its momentum scales as:

(n -p, , p±) - (A2, 1, A) p , (2.2)

'Our primary interest here is the perturbative structure of jets, so we use what in literature is
often called SCETJ theories with collinear and ultrasoft modes. For simplicitly we will always use
the phrase soft in place of ultrasoft.



Figure 2-1: In SCET, a particle with momentum p is collinear to the direction n if P
is inside a cone centered in n' and of angle A.

where p ~ Q is the hard scale, and A < 1 is the power counting parameter of the

SCET. Pictorially, we can think of a particle collinear to the direction n as having its

three-momentum jis inside a cone centered on n' and of angle A, see Fig. (2-1). A

particle is soft if

(n -p, P, pi) ~ (A2 , A2 , A2) Q. (2.3)

Both Eqs. (2.2) and (2.3) imply p2  2 QA2 .

We obtain SCET from QCD by expanding in powers of A, integrating out the hard

modes and dividing the quark and gluon fields into separate soft and collinear modes.

The soft fields are ( (x) and A,(x) where OP ,(x) ~ OP A,(x) ~ A2. For the collinear

case, we introduce a momentum-space lattice and we give each field an index-label

describing which lattice vector it is collinear to. To divide the QCD fields in this way,

we split the momentum of a collinear particle into a "large" part #3I and a residual

one k' ~ A2

pA = Y+k" , where P" = n-p- + p- I. (2.4)
2

We can remove the large momenta P from the fermion field by the Fourier transform

V(X) = e~-x Vn,p (2.5)

For a collinear particle along n, Ot'8n,P(X) - A2 . The four component field, on,,, has

two large components (n, , and two small components , that are defined using the



following Dirac-space projectors:

L np+ L# ±b ~ + (2.6)

These satisfy the relations

4 ) = (jap = 0 . (2.7)
4

We can also similarly define a collinear gluon field A",(x) whose fluctuations are

characterized by the scale of its residual momenta, q2  A2. Pictorially, we can

think of (n,p and A", (x) as fields that create a particle whose three-momentum lies

inside a cone with opening angle ~ A about the three-direction n'. We define Pn

as the momentum operator that picks up the large component of the momentum:

?n(n,p(x) = 3'# n,(x). Collinear fields always appear with a sum over P, so it is

useful to redefine the fields as

n= ei(x~ , A -= ei44xA,. (2.8)

The leading order SCET Lagrangian is

£C(O) 'C()' (0)(29
SCET -5 n.. 29

nE{n }

where E42) has only collinear interactions among particles collinear to the same n.

Particles collinear to different directions can interact either by the exchange of soft

modes in 4), or from their coupling to other sectors in external operators. Two

collinear sectors in SCET, ni and n2 , are distinct if [9]

nin2> A2 , (2.10)

so any particle is collinear in at most one direction within a given SCET.



Thus the key defining concepts of an SCET-theory are its hard-scale Q, its

collinear sectors {[n]}, and its power counting parameter A which governs the im-

portance of operators and size of the collinear sectors.

We define collinear covariant derivatives as

in-Da= 4+gn-.,,, DL" = Pn4+gA-L,, in-D =in-8+gn-An,,(.1

where Pn is the momentum operator that picks up the large component of the mo-

mentum, that is Pnp,n = Pp ,,. When integrating out hard offshell fluctuations and

constructing gauge invariant structures in SCET, it is necessary to include collinear

Wilson lines, Wn, defined by [14]

Wn (X) = [E exp (_ i- An,,(X) .(2.12)
perms

The collinear fields AP, are defined with the zero-bin procedure [78]. To couple soft

degrees of freedom we define an soft covariant derivative

iDf = i&0+ gA , (2.13)

that can act on collinear fields. At lowest order the coupling to n-collinear fields in-

volves n-De and can be removed from the Lagrangian by the BPS field redefinition [14]

2,,(X) - Yn(x)(n,,(x), An,q(x) -+ Yn(x)An,q(x)Y'(x), (2.14)

with the soft Wilson line

0
Yn(x") = P exp (i g ds n -A, (x" + sn")). (2.15)

This field redefinition allows us to organize power corrections as gauge invariant prod-

ucts of collinear and soft fields as we discuss in the next subsection.

The SCET collinear lagrangian, L4 is derived from the QCD lagrangian by inte-



grating out the field, s. At LO, we have [10, 18]

L(4) = (in-+gn-A + i I Wi ) , (2.16)

where we intrinsically sum over the large, label momenta, P, as well as the collinear

index, n, which we have kept explicit as a label. The LO collinear Lagrangian for

gluons is given in [14].

Operators are formed from products of the above fields, and the power counting

for an operator is determined by adding up contributions from its constituents. The

power counting for the fields and derivatives in SCET is

(n~ A,

i m ~A
2 ,

3,

Ws~Y ~A .

As ~ A2 )

(2.17)

2.1.1 Gauge Invariant Field Products

To build operators in SCET we want to use structures which are gauge invariant and

homogeneous in the power counting. For SCET a convenient set of gauge invariant

structures are:

Xn =Wt' , DP - WnD/-W ,, (2.18)

together with the ?P label momentum operator and derivative operator jIBL acting

on these structures. The collinear fields in Eq. (2.18) are the ones obtained after

the field redefinition in Eq. (2.14). It is convenient to be able to switch the collinear

derivatives multiplied by Wilson lines for gauge invariant field strengths, for which

we use

inD = Pn-+ gBn-B ,

iri*Dn = iri.O+gn-13n, in-.5n = i.0- gn*Bn,(.9

(n -An, ih-An, AZ)~ (A2 11)

(M -0 A-p 7Pnj 2,(A1,1A), I

(2.19)



ki

jPq

1 f

no 6n 6
ROn

(1) (11)
Figure 2-2: Final state with a quark (q1), antiquark (pg), and gluon (ki). Different
kinematic configurations are described by different SCET operators. In (I), the quark
and the gluon are collinear to the direction no, represented by their sharing a cone. In
(II), the vectors qi and ki are too far apart to be collinear. The Feynman diagrams
below show that collinear fields can come from the Lagrangian vertices, but non-
collinear ones arise from higher-multiplicity operators.

and note that ni-D = P,. Here the field strength tensors are

-E-~ 1 -- 1220
gB 1 = [I-[inz-D, iDn4] , gn-3 [=-[in-Dsin-D]], (2.20)

where the label operators and derivatives act only on fields inside the outer square

brackets, and g!3? and gn-B are Hermitian.

We can construct gauge invariant operators using the fields defined above. Since

the collinear fields carry a label referring to a specific light-cone vector, these operators

describe particles in a specific region of phase space. SCET therefore distinguishes

situations with the same number particle but different kinematics using different op-

erators. For example, one can take an amplitude for three external particles: a quark

(q1), a gluon (ki) and an antiquark (pq). We can consider two different configurations

that we call |qngnog) and |qngn'qig). In the first, shown in Fig. 2-2(I), the quark



and the gluon are no-collinear, and the antiquark is collinear to a different direction,

i. Here the amplitude is described by operators with two distinct directions, say

vnoFXn ~ A2 , n.g3 ' IF'Xn ~ A3 , (2.21)

(where the form of the Dirac structures F and ' are not central to our discussion

here). The first operator in (2.21) can emit ii - Ano gluons from the Wilson line in

Xno but requires a Lagrangian insertion to emit an AJ- gluon. Schematically the

amplitude for a transverse gluon has contributions

A' = d {0|T L (0)(x) nX + (0) 1'Xa(0)|quqgne X no

(2.22)

In Fig. 2-2(11) each of the particles is collinear in a distinct direction, so no cone of

size - A fits two of the momenta. In this case, the amplitude can only come from an

operator with three distinct directions, such as inB ,'Xn:

A" = (0OlnigB P"Xalq.g gn) (2.23)

2.2 Reparametrization invariance

When a set of fields have their largest momentum component in a light-like or time-

like direction then the structure of operators built from these fields is constrained

by reparametrization invariance. This invariance appears due to the ambiguity in

the decomposition of momenta in terms of basis vectors and in terms of large and

small components, in other words reparametrization constraints arise because the

decomposition in Eq. (2.1) is not unique. We can shift n by a small amount and still

have a suitable basis vector for the particle. We also have a large amount of freedom

in the choice of i. For each {n, } pair the most general set of RPI transformations



which preserves the relations n2 = 0, i 2 = 0, and n-i- 2 are

M , - n, + A n, n, n, +- (1+a) n,

ii - n, fi Ihn, + E s 1 ->(1 -a) 6,

where the five infinitesimal parameters are {A-, e1, a}, and satisfy ii-e = n -e =

h -A' = n -AL - 0. The transformations (I), (II) and (III) in Eqs. (2.24) are

called RPI-I, RPI-II and RPI-III. To ensure that n provides an equivalent physical

description of the collinear direction for these particles requires the power counting

{A L, e7, a} {A1, A0, AO} [77]. Thus n can only be shifted by a small amount, while

parametrically large values of a and El are allowed. This is because the vector n has

physical meaning, i+ is the direction where most of the momentum is allocated, that

is the direction 7t is inside a cone centered on -R4 with on opening angle ~ A. The

RPI-I transformations moves n inside this collinear cone. T does not carry any real

physical meaning and it is only needed to decompose the momentum in (2.1). The

collinear sectors {n} in SCET are really equivalence classes of null vectors, {[ni]},

where an equivalence class [n] is defined as

[nj] = {n E [nj]| n - nj ;< A 2}1 (2.25)

The class [nj] consists of all light-like vectors connected to n' by a type-I RPI trans-

formation n- ±4nA + A"1

The type-III boost simply ensures that (#Nni) - (#Nni) - (#Dni) + (#DFi) = 0

for each i, where (#Nni) counts the number of ni factors in the numerator of an

operator, (#Dni) counts the numbers of hi factors in the denominator, etc. With

three collinear directions an example of a type-III RPI invariant parameter is

ni -ni2 ln3 (2.26)
n2 naF1

The type-I and type-II transformations of collinear objects are more interesting and

are summarized in Table 2.1, which we take from Ref. [77]. Since the factors induced



Type (I) Type (II)
n2 -+ A n -4 ni

i~i hii ii+ +

n-Da -+ n-D + AL-Dy n-Da -+ n-D

n-+ n -2 D A -D I D" -+ 1" -- n-D - -D

n-Dn -+ n-Dn n-Dn A-Dn +E1 -D

W -+W W -+ [(i-.1 _ e -D)Wj

Table 2.1: Summary of infinitesimal type I and II transformations from Ref. [77].
With multiple collinear directions these transformations exist for each {ni, ni } pair.

by these transformations occur at different orders in A, demanding overall invariance

of a physical process provides connections between the Wilson coefficients of operators

at different orders in the expansion.

When we couple collinear and soft particles there is another ambiguity, associated

with the decomposition of a collinear momentum into large and small pieces. If the

total momentum P of a collinear particle is decomposed into the sum of a large

collinear pl and a small soft momentum k":

PA =p + kA=-n( + k) + 2n-k + (pi + k_),2 2
(2.27)

then operators must be invariant under a transformation that takes r-p -+ n-p + -,

p -+ p" + l, i - k - k - h - f, and kl -± k" - f". To construct invariant

objects that have nice gauge transformation properties we use the combined covariant

derivatives [15, 25],

iD'n- + WniD/' Wt, in-Dn + Wiii-DsW. (2.28)

This can be implemented by taking

iDA' -- iD-LA = iD"_ + iDJP ,I -, e in-Dfun = Pn- + in -Ds ,2 (2.29)



and then expanding in A. The results in Eq. (2.29) give powerful relations as they re-

late the coefficients of operators involving collinear fields to those involving soft fields.

These relations are quite easy to derive order by order in A. Note that reparametriza-

tion constraints associated with transformation of the soft Wilson line Y are auto-

matically enforced by the other constraints. 2

2For example, prior to the field redefinition only the combination in-D = in-O + gn-A, + gn-A,
appears acting on collinear fields. A type-I transformation connects this to a D#, and Eq. (2.29)
then connects this to the same iD± that one would find by direct transformation of Yn.



Chapter 3

Reparametrization Invariant

Collinear Operators

3.1 Introduction

To study a process using SCET, the standard procedure is to take the QCD current,

JQCD, underlying that event and to expand it in terms of SCET operators using an

operator expansion:

JQCD CO, (3.1)

where C2 are the Wilson coefficients describing the physics at the hard scale, and O

are the SCET operators that reproduce the infra-red (IR) behavior.1 The process

of calculating the Wilson coefficients is called matching. All the operators in SCET

have a power counting in A, and the OPE is organized as an expansion in A. In

order to fully reproduce JQCD, we have to match it to an infinite tower of SCET

operators with higher and higher power counting, but at a given power of A, the

number of operators is finite, and we only match JQCD to SCET operators up to a

fixed order in A. To construct the expansion (3.1), the standard procedure is to build

1 We will see in the next paragraph that the product of Wilson coefficients and operators in
Eq. (3.1) is actually a convolution.



a gauge invariant basis of operators with a definite power counting, using the gauge

invariant fields defined in Section (2.1.1). We call leading order (LO) operators, QOi,

the operators in (3.1) with the lowest power counting, next-to-leading-order (NLO)

operators, ONLO, the operators with the next higher power counting and so forth.

Thus we can write (3.1) as

JQD= ECL00LO + CNLOoNLOJQCD + +..(3.2)

SCET is invariant under reparametrization invariance, thus we have

6RPI (Cii) = 0, (3.3)

where with 6 RPI we indicate the set of transformations in table (2.1). We can solve

the Eqs. (3.3) order by order in A and find relations among Wilson coefficients, and

because the transformations in (2.1) occur at different order, Eqs. (3.3) allow us to

relate Wilson coefficients at different order. In other words, we use RPI transforma-

tions to reduce the basis of operators that we need for the matching. Because the

reparametrization invariant transformations depend on the collinear direction n, if we

have operators with different directions, we have a different set of transformations for

each n. Thus when dealing with operators with multiple directions, solving Eqs. (3.3)

becomes hard, if not prohibitive.

In this chapter we will construct RPI operators Q*, which are reparametriza-

tion invariant, that is 6 RPI(Qi) Q The results of the chapter were presented in

Ref. [80]. The operators Q' are made of reparametrization invariant fermion fields

X', and gluon fields gP", that we call superfields. The superfields are made gauge

invariant using a reparametrization invariant Wilson line W that is the generaliza-

tion of the usual Wn. These objects do not have a definite power counting order,

in particular we will know the order in the A-expansion where they start, but they

will contain terms at all higher orders as well. We build a basis with these RPI

and gauge invariant objects, which is made minimal using equations of motion and



kinematic constraints as discussed below in Section 3.4. Each element of this basis

is assigned a Wilson coefficient, and then the elements are expanded to find the final

basis with elements of a definite power counting. In this way we immediately obtain

relations between Wilson coefficients of operators at different orders. Once we expand

and check for redundancy, the number of independent Wilson coefficients is equal to

the number of independent RPI operators in the reduced basis. We will apply RPI

operators to construct the minimal basis of operator for several processes.

In hard-scattering processes, DIS provides a familiar context where the construc-

tion of a minimal operator basis requires judicial use of the quark and gluon equa-

tions of motion, and an invariance under reparametrizations of a light-like direc-

tion [41, 42, 62, 63, 86], for a review see [64]. The invariance under reparametriza-

tions becomes more valuable at higher orders in the expansion, being particularly

constraining on the basis of twist-4 operators derived in Refs. [41, 42, 62, 63]. We

derive RPI constraints for collinear operators in DIS and compare to these classic

results as a test of our setup. For DIS the minimization of the basis of RPI operators

is quite similar to the reduction of operators in Ref. [63]. On the other hand the basis

of SCET operators are comprised entirely of analogs of "good" quark and gluon fields,

namely a two-component quark field Xn and just two components of the gluon field

strength, B. These objects both incorporate Wilson lines, and for these operators

it is easier to find a minimal basis. The RPI relations provide Lorentz invariance

connections between the Wilson coefficients in this basis. These constraints carry a

process independence, they depend on the type of operators being considered, but

not on the precise process in which they will be used. It should be emphasized that

when matrix elements are considered for a particular process, a further reduction in

the number of independent hadronic functions becomes possible. For twist-4 quark

operators in DIS this type of further reduction was discussed in detail in Ref. [42]

and for inclusive B-decays in. [95], but this type of reduction is not our focus here.

Our construction is general enough that it applies not just to DIS like processes,

but to operators with multiple collinear directions, which are useful for processes with

multiple hadrons and jets. These operator bases provide a starting point for deriving



appropriate factorization theorems for different processes. The invariant operator

procedure becomes more and more efficient as the number of directions grows.

The outline of this chapter is as follows. In subsection 3.2 we study the convolu-

tion between Wilson coefficient and operator. We divide hard interactions into two

categories, those with an external hard leptonic reference vector q", and those where

the hard interaction is between strongly interacting particles. Since most SCET ap-

plications focus on the former case, we address some of the additional notational

complications that occur for the latter. A set of RPI invariant collinear objects is

constructed in subsection 3.3, followed by a summary of identities that can be used to

reduce the operator basis in subsection 3.4. The inclusion of mass effects is considered

in subsection 3.5, and the expansion of the RPI objects is carried out in subsection 3.6.

Applications for constructing operators are considered in subsection 3.7. In subsec-

tion 3.7.1 we verify that our approach provides a simple way to reproduce the known

RPI result for the chiral-even scalar current given in Ref. [581. In subsection 3.7.2

we construct a general basis of field structures involving up to four active quark or

gluon operators, and with up to four distinct collinear directions. In subsection 3.7.3

we consider the special case of quark operators for DIS at twist-4 with one collinear

direction, and compare with the literature. In subsection 3.7.4 we derive a basis of op-

erators for pure gluon scattering in DIS up to twist-4. Finally we apply the formalism

to jet production. In subsection 3.7.5 we demonstrate that very little information is

gained about the operator basis describing e+e- - 2 jets. In subsection 3.7.6 we show

that RPI turns out to be quite powerful for constraining the e+e- -+ 3jet operators.

Finally we show that RPI is also useful for two jet production from gluon-fusion,

gg -+ qq, and we construct a basis of operators for this process in subsection 3.7.7.

Conclusions are given in subsection 3.8.

3.2 Convolutions

In the presence of collinear fields, a hard interaction can introduce convolutions in

variables wi between the perturbatively calculable Wilson coefficient C(Q 2, wi) and the



matrix element of the collinear operators. In this case the amplitude, cross-section,

or decay rate has the form

A = J[dwi- -.- dW] C(Q 2, w) (O(wO)). (3.4)

The convolutions occur because a component of the hard momentum and of one or

more collinear momenta are O(A0 ). The exchange of momentum between the hard

and collinear components yields a convolution in variables wi, where the number of

such variables is constrained by gauge invariance and by momentum conservation in

the matrix element. A gauge invariant momentum from the collinear fields can be

picked out by a delta function acting on one of the collinear objects in Eq. (2.18),

such as [6(w - -P)X, and traditionally in SCET a subscript notation is used for

these products,

-n ~ -tnXn ~ip,,,=[

(g[3' [gB o(o - P ), (gn- B)W [gn-Bn 6(W - ). (3.5)

We will refer to these as homogeneous objects since they have a definite order in

A, and call the operators build from these objects homogeneous operators. As an

example we have the bilinear scalar operator,

O(wi, w2 ) = xn, Xn,W2  (3.6)

When we consider RPI it will be convenient to use different 6 functions and con-

volution variables c', that are type-III invariant. Essentially each T = n-Pn must be

multiplied by a scalar transforming as n under RPI type-III. There are two cases to

consider:

i) situations where there is a reference vector q" for the hard interaction, |q2

Q2 > AQCD, which is external to the QCD dynamics,

ii) situations where the hard interactions are purely from strongly interacting par-



ticles.

Case i) applies to examples such as DIS where q" is the momentum transfer from

the virtual photon, or e+e- -+ jets where q' is the four momentum of the e+e- pair.

Here we can use n.q - A' to make the 6-function type-III invariant for n-collinear

fields. Since Q2 > AAQCD > AQCD we know that n - q > n -p, where p is the

momentum of a collinear particle in the jet. Thus we use a variable LZ with mass

dimension two, and will find 6-functions of the form 2

6( - n -qPn) . (3.7)

We also introduce a subscript notation with hatted variables,

(gB21)L 6 g Pg (- n -q ) , (gn -Bn)c , gn-B, o(0-n-q ) (3.8)

Since 5(w^ - n - qPn) ~ A0, it is leading order in the power counting. Furthermore,

we have 6(Ci - n - q P) = 6(c/n - q - P)/n - q, so identifying C = n -q W there is no

real change to the structure of Eq. (3.4). An operator built out of the components

given in Eq. (3.8) has multiple labels, 0 1,2, . . .), and the Wilson coefficient for the

operator will be a function of the same parameters, C(0 1, C2 , ... ), yielding Eq. (3.4)

with C's replacing o's.

For processes in case ii) there is no analog of the external q". Examples here

include pp -+ jets, or any other hard process that does not involve external leptons or

photons. The key difference with case i) is that here the hard interaction must involve

two or more collinear directions, so we are guaranteed that there are scalar products

ni -ni ~ A0 . For this type of reaction the type-III invariant 6-functions which are

convoluted with Wilson coefficients always involve large momenta for two different

2 For B-decays these type-III invariant 6-functions were used in Ref. [85], with q" ~ mbv",
J(O - n-q P,) = 6(C - mbn-v P,) = 1/mb 6(6' - n-v T), where c = mbw'. This form of invariant 3-
function was also quite useful for analyzing the factorization theorem for e+e- -+ J/4VX in Ref. [49].



collinear directions,

1 - -Ai Q = J ij - ni -nj'P,) . (3.9)

Here Pn acts on a gauge invariant block of ni-collinear fields, and Ps, acts on a

block of nj-collinear fields. Since this 6-operator does not act on a single block of

collinear fields we will not use a subscript notation like Eq. (3.8) for Coig. In this case

the structure of the factorization theorem between operators and Wilson coefficients

is a bit different than in Eq. (3.4). For example, consider an operator with collinear

objects for four directions, where the convolution is

[J dij] C(C)i)j[fJ Akm] x a(gB37 ) (gBf,)xna. (3.10)
ij km

Here the products are over the six unique pairs ij with i $ j, and Pn, in the Akm

acts on the ni-collinear field(s). The convolutions in Eq. (3.10) can be manipulated

into the form of Eq. (3.4) by inserting four factors of 1 f dwi J(wi - Pn), writing

g = J(cjij - n -m n wiwj/2) and carrying out the integrals over the six CQij's to give

[dwi -.. dw4 ] C(ni -n wioj) 4nw,(gB w)(gB,-,,4)xn2,2. (3.11)

Here the RPI-III transformation of the measure cancels against that of the 6-functions

in the operator, and RPI has constrained the Wilson coefficients to only depend on

invariant products ni -n2WiW2 , ni-n3xios, etc.

Due to the simplicity of the soft-collinear coupling at leading order in SCET a

further factorization of the EFT matrix element can be made into collinear pieces J,

and soft pieces S at each order in the power counting:

(O(oP)) = J dkj J(wi, kj) S(k). (3.12)

However it is the factorization in Eq. (3.4) that will be central to our discussion of

reparametrization invariant operators.



3.3 Construction of RPI and Gauge Invariant ob-

jects

We now construct reparametrization invariant objects in SCET whose leading terms

give the fields in Eq. (2.17). These are then generalized to objects that are simultane-

ously RPI and gauge invariant whose leading terms give the objects in Eqs. (2.18,3.8).

For simplicity only collinear objects are considered in this section. Pulling out the

large phases from the collinear quark field and gluon field strength, and decomposing

the full theory field into independent collinear sectors we have at tree level,

7P(x) = ) ezX' ,(x)), G"(x) =3 e"xpG"(x) . (3.13)
n n

Full Lorentz invariance act on the fields @b(x) and GW' (x), but the RPI transformations

that we are interested acts independently on each collinear sector labeled by n. Two

sectors i, j are independent if ni -n > A2, and the sums in Eq. (3.13) are really over

equivalence classes, {n}, where a class consists of vectors related by RPI. From the

discussion in section 2.2 the n-reparametrization invariant collinear quark and field

strength are easy to identify

S+igG iD,iD"] . (3.14)

Under the transformations in Table 2.1 for {n, h}, the quark field @n remains invari-

ant [77], while the gluon tensor is invariant because the vector DO is invariant. To

make the fields in Eq. (3.14) invariant under the additional reparametrization trans-

formations that link collinear and soft derivatives we replace in Dn a in -D+gn -A8,

iD -+ iD4 + WaiDIW, and i - D -+ n Dn + Wnin - DsW. After this re-

placement the decoupling field redefinitions in Eq. (2.14) can be made. In Eq. (3.14)

gn = 0, and the term in On with a 1-covariant derivative corresponds to the two

components of the full fermion field that are small when p1 /A -p < 1. Since ##s # 0,

the $n field does not provide a definite power counting for operators. For example,



A~ whereas AnSh4 ~ -.

We also need reparametrization invariant 6-functions whose expansions reproduce

Eqs. (3.7) and (3.9) at lowest order. For example, these are needed to construct an

RPI operator which when expanded gives Xn,w 4
XnW2 at lowest order. For situations

where there is an external hard vector q" the invariant 6-function is

Ai _= ( - 2q - i&n) = 6(6Z - ni -q P,,) +... , (3.15)

where as described in section 2.1.1, q" is a parameter specific to the kinematics of

the process being studied. Notice that 6(c2 - 2q - i&n) starts at O(A0 ), is RPI, and is

gauge invariant when acting on singlet operators. Here

n/- j

an/ - -Pn + P,_L + -in -an (3.16)

and functions of iBn ~ (A2 , 1, A) can be expanded in powers of A. Note that Pn and

P'- are only non-zero when they act on n-collinear fields. It is useful to extend this

property to the full iOn, which we can do by distributing an i&l derivative across all

fields that it acts on, writing for example ia"@/-n1On2 = ('an1y, n)V'n2 + Onb (iO 2 )n 2 ).

In some hard processes there is more than one external hard vector, and a natural

question arises as to whether qP provides a unique choice for this construction. For

example, in DVCS, -y*p - (*)p we have the momentum q' of the incoming y* and

the momentum q'" of the outgoing 7(*). In appendix A we show that as long as

q - qL ~ A or smaller, the choice q suffices, since for the purpose of constructing

a basis of operators it is equivalent to the choice of any linear combination of q and

q'. On the other hand, for situations where there is no external hard vector q", the

appropriate RPI 6-function is

aij = 6(i. - 2ia, - iBn) =( - !i .2 P , +±... . (3.17)

This 6-function operator acts on two independent collinear directions. In general we

must include in an operator a set of Ai and Aij which are linearly independent. Once



we expand, the first term in the series for Aij is not independent of the first term

from Ai, so the 6-function shown on the RHS of Eq. (3.17) can always be eliminated,

as we did in Eq. (3.11).

We will also make use of a reparametrization invariant Wilson line, )/V,, which

has the same gauge transformation properties as W,

W. = W. e- . (3.18)

Here the operator R, starts with a term at O(A) and is built of n-collinear gluon

fields,

Rn-= Rn [ P" , gBnII-L 7Li ,tP] ,(3.19)

where the vector t" is either q" or i,", with n -n' ~ A'. Furthermore, Rn is Hermitian,

dimensionless, and collinear gauge invariant. We leave the explicit construction of Rn

to section 3.6 below, and for the remainder of this section take these properties as

given.

Under collinear gauge transformations, V)4, and W transform the same way as

(, and Wn, and G" transforms as a nonabelian field strength. Thus using )/Wn we

can form analogs of the results in Eq. (3.8) that are simultaneously RPI and gauge

invariant, namely the superfields

T _ W !, " W W,. (3.20)

For cases with an external q" we also introduce a subscript notation,

n,cj - (c( - 2q-ian)A'n] , 9" [g 6 (C,) + 2q-i ti . (3.21)

Operators built out of the superfields In and 9gn" are simultaneously RPI and gauge

invariant. They are not homogeneous in the power counting, but the superfields

reduce to the objects in Eq. (3.8) at lowest order in the A expansion. For example,



the superfield for the fermion

q = eiRn Wt + I n
P 2

Similarly, (g,9)ig(g"') = Pn gJ3+.... Thus to form a RPI version of the bilinear

fermion operator O(wi, w 2 ) in Eq. (3.6) we simply take

Q(C1, 02) = I'n,1 #1 n,C, I (3.23)

and note that expanding in A gives Q((1, C2) = (n-q- 1 O(ww 2 ) + ....

We will also need the equations of motion for the RPI quark and gauge superfields

in Eq. (3.20). The n-collinear Lagrangian for the quark field is [10]

Eqn = n Dn
1

+ iL ._ iL 0 ,
iP n -

(3.24)

We can write Eq. (3.24) in terms of On as a simple Dirac Lagrangian

(3.25)

The equation of motion for $ is a simple Dirac equation $O@n = 0. Using WnW =

1, we can write Wi4n WWn4I.n = 0, and thus obtain the equation of motion for qI

n = 0. (3.26)

Here Dg is the RPI and gauge invariant derivative

' - VtD1 W' = eiR Dy e n. (3.27)

For the gluon field we have the equation of motion [iD,, Gv] = igTA E, i T^I4

(3.22)

+ ._1 i n n =e*lo'"
in - Dn 2 )

Egn = n i~n On ,)



and for the superfield

in""= [ibD", " ] -igT A VT Ay qf . (3.28)

Note that iggv - [iD, iD"].

3.4 Reducing the Operator Basis

In general there are three steps that one can consider to reduce the perturbative and

nonperturbative information in the EFT to its minimal form:

a) Find a minimal basis of homogeneous operators and of RPI operators that

suffice at the desired order in A. The homogeneous operators can be written

entirely in terms of Xn, B , and 'P.

b) Compare the homogeneous and RPI basis to determine which perturbative Wil-

son coefficients are fixed by RPI.

c) Consider the decomposition of matrix elements of operators in the homoge-

neous basis, and derive further relations between the resulting non-perturbative

functions.

Generically the relation between the operator basis looks like

ZZ YJ[F d&D] O(cyj) [Q (cj)] = J[ dw] Ce(w) [O(og)] + ... ,(3.29)
n i  f j ni f j

where Qj(c) are RPI operators and Oe(wj) are homogeneous operators, and the

ellipse denotes higher order terms in the power expansion. In general our focus in

this article is to carry out b) which is still largely process independent. For the most

part we give no discussion of item c), which obviously must be considered process

by process. In order to consider b) we must first determine a) which is the focus of

this Section. We will discuss the equations of motion and other relations that allow

a reduction in the basis of operators at each order in A.



First we consider the gauge invariant objects with homogeneous power count-

ing. We would like to demonstrate that all operators can be reduced to a form that

only involves the basic building blocks Xn, gB 1 , and Pj. All other homogeneous

objects can be reduced to these. For example, one might think that the objects

gL311V [1/P Wt[iDg1 , iD"1 ]W] and gBi2 [1/P Wtf[iD 1 , in-D,]W] are indepen-

dent. However they are related to the building blocks by

gL3" 1 1 1
g"== (g3") - 9P(l3) [gB",gl (3-30)

g312 = Pt(gn-B) - =in-on(gB) + =[gBl, gn-B],

where we will see below that n -B and in -&TB' can also be reduced using the gluon

equation of motion. For Xn the equation of motion is

n-X=-(gn X -i i X, (3.31)

which allows us to eliminate inOn derivatives on Xn. To obtain the equations of motion

for the gluon objects we consider -g 2 TA L' WT [iD,, [iDl, iD"]].

Expanding in A and multiplying on the right with 6(w - Pn) gives three equations

w (gn.B),= 2Pf (gB"), + (2w' [(gB"L-;, (g92)wi] - A [ TAOXf

f

w[in-Ong&-] =-[P[g31, gB]] - [gB, [P g3"]]] - [gB', [g3' gBJ]

+ -[P gn-B] - [p p gBv] + w[gL3j 1 , gn -B] - [(gn.B)._, (gBI) ]

- Y2 T [T +$) 2T J [y fO +g$i)_ T^A

g2 T +$ YT +(fgA
f pt -P JW

- (in-n gn-B] - (QP1 )2 gn-B] - [P [gBT, gn-B] - (gB1 ,, [ Lgn-3]]

+ (gB1,, [in-OngB]] - [gB1,, [gB , gn -B]] + (in- OnPigBf ]



W (332
+ - [(gn-B)w_, (gn)] (3.32)

2

Here we sum over the color A, over the flavors f, and integrate over the repeated

index w'. In our analysis the first two equations will be used to eliminate gn-B, and

in-8, gBA respectively. The last relation only becomes relevant at higher orders than

those we consider here. The above relations imply that when building a homogeneous

basis of operators we do not need to consider the objects

in -nXn,, n-B, in -&Bf4L, B 1 , BP2 . (3.33)

Next we derive relations that can be used to reduce RPI operators to a minimal

form. Given the definition in Eq. (3.27), we can write iD1 = i&/ + [iDP], and it is

straightforward using Eq. (3.50) below to prove that

[q-iOiD"] = qigg" , (3.34)

and hence that q,[Dg] 0. (The results here and below apply equally well for t = q

and t = i 2, with n-n' A'. For simplicity we use the notation with t = q.) Eq. (3.34)

can be used to rewrite the quark superfields equation of motion in Eq. (3.26) as

-i 1
iOn' - L q,-7,ig9"% , (3.35).n- -Iq -ion

Since q - in 6(Ci - 2q - ian) = !Cj 6(Co - 2q - ia) we also have the result

2L

q-ia ,= jD , . (3.36)
2

In a similar way, q - i8a0,g"' = (-CZ/2),""'. The collinear gluon equation of motion

for g" in Eq. (3.28) can be rewritten as

[io,&'"Q" ] = -ig T A4 , T AiI4,q + q. 0 %" , . (3.37)
n ~~~ .q -18 .nn]I'9tz



The quark and gluon operators will have Co subscripts, IJ,3 and 9,, so only the

equations of motion in Eqs. (3.35,3.37) should be used to remove derivatives since

the i&87, derivatives commute with the presence of the 6-function denoted by the C

subscript. The QCD Bianchi identity, DAG., + DvGo, + DaGi, = 0, also gives a

relation for gP", namely Dgg," + D"gy7 + Dnag"' = 0. Rearranging it gives the

following relation

- q13 f - [[ ig e9ina [[n'v ig 0 ~~,c1 ir] t1c~ gn"I.
S[q~i~~~n -On[q-jijn q~ 9n + Lqi&~nJ ijj

(3.38)

which implies that i ", iBG", and iO"g/" are not all independent. Closing

Eq. (3.38) with -y" allows us to remove inG9g", which is how we will choose to use this

identity in quark operators. An analog of the Bianchi identity does not occur for the

building block gBn in homogeneous operators; it easy to verify that when expanded

in A, Eq. (3.38) is trivially satisfied. Eqs. (3.35-3.38) are the RPI equivalent of the

results in Eqs. (3.31,3.32), and can be used to reduce the RPI operator basis.

The above results imply that when building an RPI operator basis we do not need

to consider the objects

ifnWn, q-i8n,cZ, , [i8,"]") ifZ,0%",v [q -i On gn"P] (3.39)

This list is not exhaustive. By manipulating operators in specific situations further

structures can be eliminated using a combination of the above identities. For example,

for in Sections 3.7.3 and 3.7.4 below we will see that qQgni8,, with the iav" acts on

a n-collinear quark or gluon field, can be eliminated.

In principle one can just count the number of RPI operators and compare to the

number of operators in a homogeneous operator basis with definite power counting

to determine whether there are any RPI constraints on the Wilson coefficients. The

key issue here is that of linear independence, even if one has the the same number

of operators in the RPI and homogeneous basis, it could be that two RPI operators

constrain the same linear combination of operators in the homogeneous basis.



3.5 Extension to Massive Collinear Fields

Massive collinear quarks in SCET were first studied in Refs. [74, 89]. After the field

redefinition in Eq. (2.14) they have the LO Lagrangian

=qm= in Dn + (iPi - m). 1 (iP + m) ( .? (3.40)

The appropriate RPI transformations with massive quarks were determined in Ref. [34].

The only change is in the type-II transformation of the fermion field, where one has

to add a mass dependent term:

n - + 1+ (i h- - M) - n. (3.41)
1 2 ii - iDn

Under this transformation the Lagrangian in Eq. (2.14) falls into two invariant parts,

one fixed by the leading order kinetic term and one whose coefficient encodes the

choice of mass scheme. Note that the RPI transformation itself is not modified by

the presence of a mass term, the transformation of h is still exactly as in Eq. (2.24).

We can now build an analog of the RPI superfield for a massive collinear quark.

The reparametrization invariant quark field is

= 1 + _ (i n. + m) (s. (3.42)
ni - zDn

This leads to the modified RPI superfield for a massive collinear quark

Tn = ein 1 + 1 (iXn + m x . (3.43)

This result is included for completeness. Our focus in the remainder of the chapter

will be on massless collinear quark fields.



3.6 Determination of R, and Expansion of T, and

gltvn

In this Section we derive an expression for R, appearing in the RPI Wilson line, and

then expand the invariant objects XFin, gI"V, 6(c - 2q - iOn), and 6(C 12 - 2in, - n2)

We can define the collinear Wilson line Wn by the equation:

[(5 -Dn)Wn] = 0 . (3.44)

We define the RPI Wn generalizing (3.44) to a covariant derivative Dn along a (non

light-like) direction t as:

[(t -Dn)W/n] = 0 , (3.45)

where t is such that n - t - A0. This implies the momentum space representation:

Wn= [ exp -9 t An . (3.46)
_perms ( n

We would like to find R, such that W = Wneinn. Thus einn is the operator that

rotates Wn from the light-like direction n to the direction t. Wi-, is reparametrization

invariant to the choice of the basis vector n, which labels the n-collinear fields A/,

since such reparametrizations cannot change the fact that n - t - A0. Recall that

the subscript n on W labels the equivalence class {n} of vectors that are related by

type-I and type-III RPI transformations. For any t such that n -t ~ A0 we have

1 1. t -An= - -+An ... , (3.47)
t - tan P

and thus

Wn=W +-- . .. (3.48)



where the ellipses represent power suppressed terms. In Eq. (3.47) the n - t's in the

numerator and denominator cancel out in the leading term, leaving a t independent

result.

For situations where we have an external hard vector q", we can simply take

P = q' and use the corresponding WN, as the RPI invariant Wilson line.

For situations where there is no external qt, the choice for t" in Wn is less obvious

since the only available RPI vectors are operators themselves, iD ,, where n' is a

distinct collinear direction from n. In this situation, any choice iP = iOn, satisfying

n - t = n - n' Pn + ... ~ A + ... is equally good, and the existence of the hard

interaction guarantees that such an n' exists. In this case W, still yields Wn at lowest

order, and hence only behaves like an operator in the n' direction through terms in the

power corrections, namely the ellipsis in Eq. (3.48). In these ellipse terms the i&an's

appear linearly order by order. Since the derivative iOn, does not act on n-collinear

fields it behaves just like an external vector q as far as manipulations related to the

n-collinear fields are concerned.

In the remainder of this Section we adopt the notation t = q, even though the

algebra applies equally well to both cases mentioned above, with the substitution

q -+ t = iO, in appropriate places. The only complication for the case t ian, is

that the dot product n - i&nt must be expanded using

n-n' f - n'

2ion-ioani = Pnl + n' ion1P& i + n-i&n11n + 2i ni +i& n-io nPn2 2
h' -n--n- '+ n'- ion + h -i, n -iOn + W'- ia n'- in + n-ion n'-iOn,,

2 2
(3.49)

where the first term is - A0, the next two ~ A, the following three are ~ A2, then the

next two are - A3 , and the last one is A4.

Adopting t = q, Eq. (3.45) can be used to prove that

(q - i"Dn) = W/V (q - iOn) Wt. (3.50)



To calculate iR we exploit Eq. (3.50) and calculate iR, order by order in A. Substi-

tuting Eq. (3.18) into Eq. (3.50) we find

(q - iDa) = e~i n (q- ian) eiR". (3.51)

Because of the Hermicity of iD and iBK, R, is Hermitian. Applying the Hadamard

formula to Eq. (3.51) we obtain

(3.52)+ {{(q -iOn), (iRn)3 }},
j=1

where {{A, B}} = [A, B] and

j

{{A, Bi}} = {{[AB),B }} = [[ -[A, B, ]B, . .. ]B] . (3.53)

Expanding Rn in terms with Rn ~ A' we can expand all the objects in Eq. (3.52)

in A and solve the resulting equations order by order for Rek). Thus we write

00

S 1 k)
k=1 (r.3)

(q -iD.) = n ~pn+ (qiL -Pni) + (qi -gL~n_) + nq(n - i8n)2 2

2 2

+ nq(gn -Bn) ,2

(3.54)

(q -iOn) is a derivative operator, so when it acts in a commutator with (gBn) we have

[(q - ton), (gB)] = [q -i9 (gB )] , (3.55)

where the last set of square brackets means that the derivative acts only inside.

Substituting Eq. (3.54) into (3.52) we can solve for iR k) The first two terms are

iR(1) = q -(gB()36
-n-q-pn

(q - O~n) = (q - iOn)

(3.56)



+ - _. L q -(gBI )) , _ q -(gBI-) .
n-q)5n n-q~nn

The n -B term should be further reduced with the equation of motion in Eq. (3.32) to

and B1 . In terms of the ie) we can determine the A expansion

of the invariant Wilson line
00

W = Wk)

k=0

(3.57)

Using the definition in Eq. (3.18) the first few terms are

W2) [ (iR21)2 - (iR(2)). (3.58)

The expansion of the invariant Wilson line is therefore

Wn = Wn - W(iRn) +Wu[(iR ))2 - (iR$))+ ... (3.59)

Using these R$k's and Table 2.1 it is simple to check explicitly that Wn is RPI up to

order 0(A3 ). Note that we did not assign a suppression for q1 anywhere above (ie,

we took qi ~ AO). Taking qi ~ A causes further suppression of some of the terms in

Eq. (3.56). For cases where q1 = 0 the expansion of W starts at O(A 2 ).

We will also need the A expansion of the invariant 6-functions, 6(CZ - 2q - i&D) and

i(22- 2i0n, -i(n2). For the former we have

(3.60)

n-q I[(1

00

+ Z p(k))(

k=1

where the first two terms are

(1) 2q -Pn1 d

n-q dw'
(2) _ n_ 2 d 2

n ( n-q )dW2
6 -q d
- (in -O) d
n-q dw

(3.61)

4q_ P _L-q1- ,(gL3-Lj
(n-q Pn)2 n

W = -Wn(iR(') ,W1)=Wn ,

6(c2 - 2q - i0,) = 6(Co - n-q Pn - 2q1-.Pn1 -6j-q in-On)

- 5n))

iR(2) = [ I_ (jj- q) (gn-B6n)
nn-q Pn



When combining the operator with the Wilson coefficient C(wi) we can integrate by

parts to move these derivatives onto the C(wo) and leave a simple 6-function in the

operator. For the 6-function with two collinear directions we have

6(012 - 2ini -4i 2)

ni-n2- - - Pni 1.j&o21 - n2 n2*i~fl1 I12 - - Pni n2 nii n nn2iil

2 n12'iOnn2'n2

(3.62)

ni-n2 -

~ nl *0.ni n2

2 2f

in2 12- n1 2 nin2 ,

k=1

where the first two terms are

dwp n - ni~ni-i 1  + n2 2- iOni ,
njn2 'P2 d2

nin2 nnii -i9nal + Tn 2 f On, _

[ hi-n2- 2i,I -i9n2- + 2 ni -ioni'n2
A2 -nn

+ 2n2 -ion2Pn1

All terms with n-iOn in Eqs. (3.61) and (3.63) will be further reduced by the equations

of motion in Eqs. (3.31) and (3.32) when they appear in operators.

Finally we expand the superfields in Eq. (3.20) in A, writing

k= ,
k=1

oo

' = 0g(k v

k=1

where -~ A' and g " (k) Ak. The expansion of the quark superfield is straight-o r, tnhw
forward, the first few orders are

m1) Xn,w,n-q
n(2) -1

n~ n.q (W 7 nf,waw 2 X,Wa

(3.65)

+ LR juwX,w. +

,V = 1 (i R (2)_ + [p2 xnw] + 1
n q Wa+Wb

d
dw

(3.63)

(3.64)

i RXi ,xiR() Lb-L T -x,2

-20inil*20n21

- 2 'in2n2'ian11 -~~



+ p ) 1ikP,_ x# + [( )iR _1) y + 1iR _ _ iR x)1P ~ ~ ~ [p~i~ nC) W-W2Xa n nw-w Xn~waJ + n,wa-Wb-W nR~wbfln,Wa/

Here there is an implicit integration over the repeated indices Wa and Wb. For the

gluon superfield first it is useful to expand WtG,,,W:

WtigGtW = [in- D, iD1 ] - ?[in - D, iD ] + [ii, i] + [in D i D

+ n. -" [ifh D, in - D] + - [in - D, iP ,] - n [in - D, iZDi )2 2 2 2

n [P1gB , n [g, ]+([g1 ] - Inv [Pgn-13] + n,,n, [Pgn-B]

-]2+ ([gBI2] , (3.66)

where gB1 and gBJ 2 are given by the combinations of fields in Eq. (3.30). Using

this result to determine the first few terms gif " from expanding Eq. (3.20), we find

'9ig C = 2(n (9 q) [n)(gL3j) - n"(g3"_ ),] , (3.67)

jgg(2 )iv = q { [Pj(gBn_)w] - [P"(gB)w] + [(gBn'), (gB 1 )]3
'9 , C =n-q IL

+ / (i/-n"-n±) (gn- + i , n"(gBiIR)w -n"(g3'i)w

4 2

- n Vp$o)w(gB1'1 )w - n"pp w(gBvLi)] ,
-1 [flP v'

iggW -={n(i"P" -qP))(gn-Bn)] - [in-On(i"gBgW - 6vgB1U)]
flW 2(n-q)

±['g3", gn-Bn] - ["gBig, gn-3B] - nvw(gBL )wp) - n w(g13)wp)

where again there is an implicit integration over w, in terms where it appears. Here

the ellipsis denotes terms in g )" with an iR 1 or pn) which were not needed for our

analysis. The (gn-Bn) and [in-On gB] terms are further reduced to P1 's, (gB")'s, and

Xn's by using the equation of motion in Eq. (3.32). Finally, recall that the expansion

coefficients in Eqs. (3.63,3.65,3.67) do not encode the RPI relations between collinear



and soft fields which can be determined using Eq. (2.29).

The above results can be used to expand the RPI basis of operators in terms of

operators in the homogeneous basis as in Eq. (3.29).

3.7 Applications

3.7.1 Scalar Current

As a first example to show how the expansion of a RPI current works, we expand

the scalar chiral-even bilinear currents (LL+RR), for processes with a hard external

vector q" up to order A3. In the basis built from superfields there is only one current

that satisfies these conditions

"n,i dZ, 1 n,W2 . (3.68)

All the other possible currents (for example qjn,c2;j jq,!g9" Tn,Z2 ) have expansions that

start at O(A4 ) or beyond. To recover the basis with a homogeneous power counting,

all we have to do is to expand (3.68) using Eq. (3.65),

- 1
TnW14 Wn,,2 = cx Innig n,w2  (3.69)(n. q) X l2X'W

± 2 W(n - q) nw 'wi-wa hLXn, )2 -)nlwihI$ 2P-LWa-W 2 Xn,Wa

1 1
+ (w1 _Wa)(n.q)2 2 XW (q± .gB±)-1 -_afXn,W2 + ( 2 - Wa) (n -q) 2 Xn,wifKqi gL 1)-Wa- 2 Xn,wa

1 0

(n -q) 2 OWi X n,wi Iqhxn,w 2 - 1) 2 _ - 2-

Thus all the 0(A3) terms (the twist-3 terms on the last three lines) are connected.

Eq. (3.69) agrees with the original derivation of these constraints given in Eqs. (122-

126) of Ref. [581. The ease at which Eq. (3.69) was derived demonstrates the power

of the invariant operator formalism. In this example there is only one supercurrent to

O(A3), so all Wilson coefficients are connected to the coefficient of the leading operator



nw #Xn,.. Note that here all of the connected operators involve a qj, which we have

counted as O(A0 ). We will see below that for situations with two collinear directions,

where in the end its natural to specialize to a frame where qI = 0, the connections

tend to appear at higher twist. For situations with three or more collinear directions

RPI will provide useful constraints on the basis already at lowest order.

3.7.2 General Quark and Gluon Operators

In this Section we enumerate an operator basis for the general set of collinear quark

and gluon operators up to O(A4 ). This basis is useful for many applications, and we

keep our notation as general as possible. In particular we consider up to 4 distinct

collinear directions (which for example could be used for e+e- -+ 4jets, or gg, qg, qq --

2jets). We also discuss a basis both for the homogeneous operators with a definite

power counting, and for the RPI operators.

For processes with a hard qP, the most general basis of homogeneous quark oper-

ators in SCET up to O(A4 ) is

Q (Oa) - -,niw IFXn,W2

0 (1b) - Vni,w]i Fcep n?2 ,W f 2 7

0(2a) - n1 ,wjr0 PfC' R'/ Xnw 2

0 (2c) Cc -n~ia3P~Pln,2

0(2e) -XiwLa(gB'
3 -) p Ice n, 2

0 (2g) -Vni1 wW1 Fa1 3 (g3'~ g~w Xn2,wL2,

o (la) - 3 n iP 1 iXw (3.70)

0 (lc) - §nw1F (igL3 3 -) xL03 2

0 (2b) - ~iw~i3pta pt3
- 5 nI~w l j njil Xn2 ,W2 I

0 (2d) -)~iw c/3~~2-(B 3 1 ,Xnw 2

0 (2f) - Xnl,wil ra1 3 [ni 3') n3 ]w 2

0 (2h) - n,W PiX 2,W,2) (Yn3,W3 P2Xn4 ,L4 ).

If we need to specify the subscripts we write for example O(2 )(w1i, w3, w4, w2), with

the wi listed from left to right. Due to the equations of motion in Eqs. (3.31,3.32)

we did not need to consider in - 8xn or gn - Bn. For each operator there may be

a set of different Dirac, flavor, and color structures F which depend on the

particular phenomena being studied (including also two choices for color for the F



in the four-quark operators 0(2i)). In general for each independent I. structure

the operator has a Wilson coefficient that must be determined order by order in

perturbation theory. We included in Eq. (3.70) the mixed quark and gluon operators.

For pure gluon operators up O(A4 ) we have the homogeneous basis

O(Ob) -- 3"' 31"
iwi f2,W2 I

O(1e) = L a BL"
Q~le - fi,wi fln2l fl2,W2

0(i = B3p pta pt
3 1311"

0n1,wi n 1 l n f22 

(2k) _ 1p " a P3  13"v
0 -iwi 2l n2l n22 

Q( 2
m) =Bp [Pa BL" ]1Br

n1#1 n2 n2W21 n3,W3I

0") = BL 31" 1or 1 
1iwi f2,W2 f3,W#3 4l4,W4

0 (1d) - 3111 P" B3" (3.71)
_ 1_ 1 nil f22 (3

O(1f) = B3l31 BL" 31T
f1,wi f2,W2 f3,W3

0( =L131 pta p 1 B13"
0 (2) -nl,wl ' nl' ~l 2,W 2

0(21)_ Pa gly g] IT[ 1±1 1 1 fl2,W2 f3,W3'

O(2n) = 11 131) pa L3 I B 1
n,'i n2,w 2 L n3l n 3,W 3 J

Here we do not need to consider operators with gn-Br and gn-OnB' because using

the equations of motion in Eq. (3.32) they can be written in terms of the operators

in Eq. (3.71), and are hence redundant.

To setup the computation of constraints on Wilson coefficients we also need to

build an RPI basis of operators using the objects in Eq. (3.13) and i&g. Because each

operator will be RPI, its Wilson coefficient is truly independent of those for other oper-

ators in the basis. The RPI operators can then be expanded in terms of homogeneous

operators made out of of gauge invariant objects, and doing so we obtain operators

in the homogeneous basis with all the constraints coming from reparametrization in-

variance. The number of constraints on Wilson coefficients is equal to the number of

homogeneous operators minus the number of RPI operators, once we have accounted

for linear dependencies [46, 73].

Let's construct the RPI basis of operators which is the analog of those in Eqs. (3.70)

and (3.71). The operators with no i&P derivatives are

Q(Og) - fli,W fl2,W , (3.72)Q(Oq = pfn1,cz6 IFP2,(; ,I



where the basis of Dirac structures F, and contraction of indices pVOT in Q(09) depends

on the kind of current we are studying. For cases without a q" the subscripts wi are

erased and RPI operators are multiplied by the Aij factors shown in Eq. (3.17).

Recall that we do not have a good power counting in the RPI basis, this basis makes

the RPI properties transparent but the power counting more tricky. When Q(aq)

and Q(ag) are expanded in terms of operators that are homogeneous in the power

counting, they contain a leading order term, so they are relevant operators to consider

at LO. Of the RPI objects only iBP starts at leading order, so theoretically we can

construct an infinite set of LO operators using (i0,)k for any k. However, the structure

of this operator provides additional constraints. In particular the O(A0 ) term is

48/ = (n/2)P? +---, and the collinear momentum P, acting on a n-collinear field

such as xn,wl just gives a number, wi, which can be absorbed into the Wilson coefficient

C(wi, w2). For cases with a q" this implies that adding ioBn's in a scalar operator

(where all vector indices are contracted) most often gives an operator that differs

from one we already have only at O(A). For these scalar operators we can count

iag ~ O(A) when determining which RPI operators are required, and for simplicity

we follow this counting in the remainder of this Section. If we have an operator with

a free vector index p, then this index can be carried by 28A = (nA/2)P, +--, and

the partial derivative does count as O(A0 ).

The expansion of the RPI operators in Eq. (3.72) in terms of homogeneous oper-

ators up to O(A4) is

Q (Oq) 1 j fl2,W2 ,12 f4 K2 + 1,JJ1 fl2,W2 (3.73)

1io 1 n2 C 2 1iC~ 1 2, 2 1i,C 1 2 2 5

(0g) _9(1)pv g(l)o ( 2 )9v g()p v + g(l)pv g(
2)orr

Q g ,W1 f2,W2 1,W1 fl2,W2 f1,W1 f2,W2

g( 2 )Mv g( 2 )a7T + g( 3 )Iu g(1)or + (1)yv g(3)o + O(A5)
R1,Wl n2402 gn1,W1 n2,CZ2 n1,c 1 n2,W 2

where the Xp (k and g (k are given in Eqs. (3.65) and (3.67). To look for RPI relationsnw nw

the results of this expansion must be compared to power suppressed operators which



also can generate O(A3 ) and O(A4 ) terms. Up to this order the power suppressed

operators involving two or more quark fields are

Qla) - i'7 1 C1, 2 Ia F c2 l2,W2 I

Q(lc) - 1nfl,Cvj 1FO3/' !g" fl3,W3 ?1,I

Q(2b) 4 ~~
C nl'1 i 3 2 2 I

Q (2d) -gllLlFa33,j 
3 ~"fl,2= f1'C1F,33ine n13, 3 n2402 I

Q (2f ) _ - n 2 n 3 3 I n 2,W 2 4I

Q (2h) = [4'njO~ 1F1T2 ,CW2 [
4

'f3,j3 F24'714 ,C;4

Q(lb)

Q(
2 a)

Q(
2

c)

Q(
2 e)

Q(2g)

4 1 2a n 2 7 (3.7

-1' 1 a i n2,2 I

n191 aa n32 2 fl22 I

= 1jc1 Fa/3/3 ' Pi& 3 g3 49F42l2 7

fl4 ,W qn2 ,W2

Again a minimal basis for Dirac structures F will depend on the process being studied

and may differ between the various Q(ix) operators. Such a basis will also in general

differ from the one for the homogeneous operators in Eq. (3.70). We will adopt

notation such as Q(29)(i,0 3, 4 , C2) when we wish to specify these subscripts. For a

field basis for the higher order operators with gluon fields (whose expansion starts at

O(A3 ) or O(A 4 )) we have

_(d gpvy ija gar(ld) 
nn1, 2 n2,W2

Q(lf) _ gpv ,o,-r ga, 3n1,L01 I24W2 In3,W3 I
Q(2j) p gIaL # r

n1,W1 nl nl n2,WZ2 7

Q( 2 1) = [i&n-y g:;,t;_2 1 ]G 0'7,- aL 3 ,l %,w1 n2,WI2 n3,(;3 i

Q ( 2 n ) -= g 1  1 %g2 ,- 4 3a 3a 
3  1

n1,w1~ Zfl2,C22 n f3 fl3,W 31

Q(le)

Q(2i)

Q(2k)

Q(2m)

Q(
2

0)

g141 n1 92ga

1 ,Wi n2 n2 f2,W2

n1,W1 n 1 n2 fl2,W2'

,c1l I 2 fl2,W2 f3,W3

1 1
-7 o, ga)3,3  

,y
6

n1,W1 fl2,W22 f3,WU3 fl4,WZ4

We will include a basis of Dirac structures and expand the RPI operators in Eqs. (3.74)

and (3.75) in terms of the homogeneous ones in several of the examples below, and

consider whether there are non-trivial RPI relations on a case-by-case basis.

4)

(3.75)



3.7.3 Deep Inelastic Scattering for Quarks at Twist-4

In this Section we consider spin-averaged DIS at twist-4. This provides a test of our

technique of constructing a minimal basis, for an example where the basis is already

well known [42, 62, 63]. We will see that RPI constrains the Wilson coefficients of

the homogeneous collinear operators. Our analysis is really of scalar operators with

one collinear direction, qi = 0, with overall derivatives set to zero. DIS is the most

popular application for these operators, so we frame our discussion in that language.

For simplicity we consider the QCD electromagnetic current JP = qy"q for one-

flavor of quark. (We briefly discuss the generalization to non-singlet operators in a

footnote.) The study of higher twist in DIS and related processes is an active field of

research, for example [23, 28, 36, 53, 66, 87]. In the language of SCET, DIS was first

studied in [9], whose notation we follow. The virtual photon has momentum transfer

q2 =_Q2, and X = Q 2/(2p -q) is the Bjorken variable.

In the Breit frame the momentum of the virtual photon is q" = Q(W" - nP)/2,

and the incoming proton momentum is p" = n5 -p/2 + 5fm2/(2- -p) where m, is

the mass of the proton. Expanding in m,/Q we have n -p = Q/X - Xm2/Q +.... The

energetic proton has a small invariant mass p2 = m2 ~ A2CD, and in the Breit frame

it is described by collinear fields in the effective theory with a power counting in A =

AQCD/Q. It is convenient to pick this frame in order to be able to assign definite power

counting to momentum components. What reparametrization invariance enforces is

that all results are invariant to small perturbations about this frame, encoded by

changes to the collinear reference vector nP. Since these changes are small we are free

to use the same power counting when studying the RPI relations. There is a larger

class of frame independence, which says for example that the same results would be

found if we compare an analysis in the Breit-frame with an analysis made about the

initial proton rest frame, but this set of "big" frame transformations does not encode

non-trivial dynamic information that relates coefficients of operators at higher twist.

All final results are of course entirely frame independent.



For spin-averaged DIS the hadronic tensor has the structure

=,1 ) Ti(x, Q2) + (p, + !±) (p, + T2 (x, Q2), (3.76)

where

T,v(p, q) (pIt,,(q)|p), tv(q) i dezT[J,(z), J,(0)]. (3.77)
spin

The scalar structure functions T can be projected out of T,v using

I Q27 ) 1 /V 4x 2
T1Q 29 -Q+4 F2 p"p") T,,

T ~ 2x 2 12X2
T2 (Q2,x) = - 22 Tg_ 2 2  pp.T (3.78)Q2 + 4mjz2  - Q2 + 4mz 2

The expansion of T and T2 has been carried out up to twist-4 with the Wilson

coefficients determined at tree level in Refs. [42, 62, 63]. To simplify our calculations

we will make use of the fact that the projections in Eq. (3.78) commute with taking

the proton matrix element, and hence can be applied directly to T,, to give T1 and

T2 , where 1 EspinKpIisp) = T,(Q 2, x). Thus we consider the expansion of T1 and T2

in scalar chiral-even operators, by writing

i = J[dwk ] C j(wk)Oj(wk). (3.79)

Here [dwk] = dwi ... dw is the integration measure over the independent parton mo-

menta Wk carried by the Wilson coefficients C" and the operators Oj. The superscript

[i] indicates that the Wilson coefficients for the two tensor structures will in general

differ. We also consider a basis of RPI operators Qj by writing

i= [dJkl C((k)Q(Ck). (3.80)

Unlike the Os's the Qj's do not contain contributions of a definite order in the power



counting. Using the RPI Qj operators we can test if there are relations between the

Wilson coefficients C of the O's. A connection would mean, for example, that the

one-loop coefficient for a twist-4 operator is determined by a coefficient at twist-2 at

all orders in a,.

We first write down a gauge invariant basis of chiral-even quark operators that

are homogeneous in the power counting. This can be done using the general basis in

Eq. (3.70) with all directions ni = n. Furthermore, since the DIS matrix element is

forward, we have (pl[P40Jp) = 0 for any operator 0. Thus we are free to integrate

IL-label momentum operators by parts, and hence can ignore all terms with P1's in

Eq. (3.70). (If we consider our analysis to be of the general scalar operators with

one collinear direction, then this is the only simplification that we make which relies

on the form of the final matrix element.) For simplicity we also drop the square-

brackets from inside 0 (2f) in Eq. (3.70). A minimal basis of chiral-even parity-even

Dirac structures between the n-collinear quark fields is easily constructed using the

properties of the SCET Xn fields. We have i) just {} when there are no vector

indices on fields, ii) no elements at all when there is one vector index, and iii) just

{g", Zi"73 5 } or {g"', y1"y} for two vector indices on fields. Here ii) is the

standard fact that the spin-averaged case does not have twist-3 terms. (For polarized

DIS it does not suffice to only consider the scalar operators.) For the four-quark

operators we can have F1 9 F2 = {0 0 , o73 0 Y3} and color structures 1 0 1 or

TA TA. Thus the basis is

01 =inw X , 02 = wi P2Xn , (3.81)

OsW = 02 - (gL) 4x-2, 1 21 ( ) -
2 n) O2 

05a Xnnw 03b-An~w

22 Lnw3nI4 flW

05 XnLj 0(g'nL3 gn-L" nLJ 06 -Xn,wl oTr[('n_)L; (g~-)W4]xn22 2Iw I~lW

07 n - (g Ls 1



09 ~~2 [gnw nU2 nIW3 2Xn,CU4J 010 = I &~,~ Y5Xn,W21 IX n,W3 '-5Xn,W4]

011= 3n,w, STAXnW2  in,w3 -'T AXnw4 , 012 = [xn,wi XTAXn,U2 ][Xn,3 T AXn, 41

Recall that in an operator like 02 the position space analog of PL is to translate all

gluon and quark fields in Xn,w2 in x, differentiate twice with respect to x4, and then

set xI = 0. The basis shown in Eq. (3.81) can be used to describe twist-4 effects in

DIS at any order in a,. Note that we have already discussed and taken into account

the quark and gluon equations of motion in the general result in Eq. (3.70) and hence

already in Eq. (3.81). For 05,7 there are two color structures associated with the

product of Bn's, but these are picked out by consider Wilson coefficients C5,7 that are

odd or even in the exchange W3 ++ W4 . The forward proton matrix element of these

operators will be proportional to an overall 6-function, which is 6(wi - U2) for 01,2,

6(W1 + W3 -W 2 ) for 0 3a,3b,4a,4b, 6(WI + 03 + 4 -W 2 ) for 05-8, and 6(wi + W3 -2 - W4 )

for 09-12.

Next we derive the analogous results for the RPI basis of chiral-even operators.

From Eq. (3.77) the hadronic tensor operator T, depends on q,4 which we use as

our reference vector. To construct this basis we cannot use n" or h". Comparing

Eqs. (3.77) and Eq. (3.78) we see that it suffices to construct a basis of scalar operators

for the expansion of gP"Tw and pyp"T... The forward proton matrix element of the

expansion of these operators then yields an expansion for the observables T and T2 .

Thus, for the scalar basis we allow any number of q's to appear, but only zero or two

p's. This implies that at twist-2 there is only one RPI bilinear quark operator

Qi = 9Fc1# Wn,C2. (3.82)

At twist-3 there are no scalar chiral-even RPI operators. The candidate opera-

tors 'niPTnh and xWn,,Ci(q - iOn) Fn,,(Z?2 are ruled out by the equations of motion

in Eqs. (3.35) and (3.36). Another possible operator is Wai(p -On)4'2 but it starts at

twist-6, since (p -&O) - O(A), being suppressed either by an n-p or n-n, and fi adds

another factor 2 to the power counting when it is squeezed between the n-collinear



fermion fields X,. All the operators with gg", like for example W '1iW, have

expansions whose lowest term is twist-4 because the Dirac structure of the twist-3

component of this operator vanishes between the n-collinear fermion fields, since iV#

Xn = 0. Thus the power suppressed terms start at twist-4 in agreement with the

homogeneous basis in Eq. (3.81). Writing out the RPI operators different from zero

at twist-4 and not connected by operator relations we have

Q2 = n,l,q n,W , Q3 = Tn,4,7jY4vig!9nl 'nW2, (3.83)

Q4 = -9 2n, dT0, 2 n,3T ],Q1 = _g,2#TV !,;2 Nn0d^3a ]

_jvtI7)y ,2 Q5 = g4'fl, 1 0%,yql7)/q/Tr!gn 3 fW4]qfn,2

Q6=-"nCqv!n )l-7~4nW Q7 = 9 - 2 'fl,c2,jqLTr[(gfl,WZ3) I 'lW 4J lW

Q10o [fn,cZ,i14TA4Jn,Z 2 1 [I Xp,Cz,3 OT lJ,Z,41 Q11 [I [4 n,c~q TYlIn4; 21 [CJ,( 0T/y 5 In, 4 ].

One can think of other possible operators at twist-4, but all of them are either ruled

out by the equations of motion and operator relations, or start at higher twist. For

example, there are not operators with both p" and g", like T n,7pvgi,"W2,

because they all start at higher twist. We have integrated by parts making all deriva-

tives act to the right, since here our interest is in forward matrix elements, and we

removed idOgn"i with the gluon equation of motion in Eq. (3.37). The operator 4'n,Cd

(iOn - i&n) T n,CZ72 = +n,c d ionion n,C, and is removed by the quark equation of mo-

tion in Eq. (3.35). For the operators with two 9's only the structures in Q4 .7 have

expansions that start at twist-4. For example, g gfls4, at LO is proportional to

(gBL')W3(gL3.)W 4nrn" so closing the indexes with yli or -y" generates a # that next to

Xn gives zero.

It is less obvious that operators with one gn and one i8, are redundant and can

be eliminated from the RPI basis. Consider the operator

Q,=i~ ~iZ iW~ (3.84)



To remove it we use a manipulation discussed by Jaffe and Soldate in Ref. [63]. First

we write

gii"vO = -g"iD - g1[1/(q- iOn)qaig9',], (3.85)

and note that the term with two gn's can be ignored since it is already in our basis.

Next using the definition (3.20) we can write

qnigggli$" - q"[i$,, i$"]iD, = {-q"[i$, [i$D", i$"]] - (in) 2 ig -qo + iq.(in) 2 }

(3.86)

The double commutator term is turned into a four-quark operator by the gluon equa-

tions of motion in Eq. (3.37). For the remaining terms we write (iDn)2 = i On

iDn + jo-.,gg", where the o-, term gives Q3, and terms involving (ipn)2 are turned

into the operators Q2, Q3, Q4, and Q6 by the quark equation of motion in Eq. (3.35).

(They are not simply set to zero, since Jf/n] does not commute with J(c2-2q-i&O).) Fi-

nally, we can also rule out the only other non-trivial operator TnugiPny qG " ,

Using the gluon equation of motion we write

W ,fdW3q'I"fT,2 ± , i q = -2Q, ±... , (3.87)

where the ellipsis denotes operators with two gn's or four-quark fields that are part

of the basis. The Bianchi identity in Eq. (3.38) gives another relation for the two

operators on the LHS of Eq. (3.87) and implies that they can be written in terms of

Q3, Q*, Q4, and Q6. Thus both the operators nadiqnylq,0 " fn,(2 and W ,Cd

7iongn qvn,6,2 are redundant. Finally we note that the order of the gn's in an

operator like Q6 is not important, since we can always symmetrize or antisymmetrize

its Wilson coefficient in W^3 and 04 . Note that when considering the transformation

of the operators under charge conjugation one must consider both the operator and

its Wilson coefficient. We discuss an example below in Eq. (3.94).

The number of independent RPI operators in Eq. (3.81) is smaller than in the basis



of homogeneous operators in Eq. (3.83), implying that there exist further constraints

on the Wilson coefficients of the homogeneous basis at twist-4. To find the constraints

we must expand the operators in Eq. (3.83) in terms of those in Eq. (3.81). We start

with Q4 through Q11 which are in one-to-one correspondence with operators in the

homogeneous basis,

-W 3 W4 0
4(n.q)

Q7 = , 08
4(n.q)

_ 1
Q n -q 0

Q 5 - W3W4 06,
4(n.q)

Q8 = 12 09,
(n-q)

Qn = 20Ou1.
1 (n -q)

W3W4 07

4(n-q) 0

Q9 = 2 010 ,
(n -q)

(3.88)

Here the order of the cZj subscripts in operators on the left exactly matches up with

the wi subscripts on the right. For the remaining operators whose expansions start

at twist-4 and for Qi that starts at twist-2, we have

(3.89)(nI 2 [ W30 4a (JiW 3 W2) + 7J3 04b(W1,W3,2)
(n- q) 2 02 2wi

- Osa (Wi,W3, W2) + 03b(P1, W3s, W2)] +...,

(W1, C3, 2 ) 2 [104a(W1 W3, W2) + 04b(W1, W3, W2) - 20 3b(W1, W3 W2) + . .

(n -q) 2 W2I

1 nq - d 1 d 1
Q1(CZ1, 2)= 0 1(W1 , w2 )+ 2 + + dww 02(W1,~W2 )

nq (n -q)2 .+12 dWi Wi dW2 W2

+ 2 d 2 03 ( W1, a W2, Wa) -03b(W 1 , Wa -W2, Wa)
(a -W2) dw 2 Wa -- 2

+ -2 d 2  03a(Wa, W -Wa, 2) - 03b(Wa, W1-Wa, W2)
(Wi -Wa) dwi wi -w,

04.(Wa, W1-Wa,W2)+ 04a(W1,Wa-W2, Wa)
-102 dw i do2 Wa

+ ± dI} 0 4b( W1,W a -W2, Wa) -|- 04b(Wa, W1-a, W2)
WIW2 dW2 W2 dwi Wa

Here the ellipses indicate terms involving operators 05-12 that have already occurred

Q2(01, C3,C2)=



in Q4-11 and hence they are no longer important for determining the linear indepen-

dent combinations. It is interesting to note that expanding the operator Q, gives the

same combination of Osa and 0 3b that appears in Q2 - 4w1/w 3Q 3, so even if we had

not eliminated Q, from the RPI basis, the implications for the homogeneous basis

would be the same.

The three RPI operators in Eq. (3.89) have expansions in terms of six homogeneous

operators 01, 02, 0 3a, 0 3b, 0 4a, and 0 4b, so there are three RPI relations. The Wilson

coefficients of these six homogeneous operators are determined by three coefficients,

C1,2,3 in the RPI basis. It is convenient to trade C1,2,3 for the three coefficients C1,

C3a, and C3b. The remaining coefficients C2, C4a, and C4b are then determined by

RPI. We find

C2 (W1, d2) } + + C1 (wi, W 2)n -q 12 Wi dei W2 dW2

C4a(WI, W3,W2) = 1 WC3(1, W3, W2) - C3b(W1,W3, W2) + C 1(wi, w2 -w 3)2 2W2  n-qW2W3

Y-q (w2+w3) C1(W1+W3,W2),
n-qW3(P2)2

C4b(W1, W3, W2) = 2  C3a(W1, W3, W2) - -- 3(W1,W3,W2) + 2-q(wi-W3) 01 (w1,w 2 -w 3)2wi 2 n-qosGji)2

- ~ C1 (Wi +W3, W2) . (3.90)

We have cross-checked the relation for C2 with a tree-level matching computation.

Note that C2 (W1, W2) multiplies a matrix element that gives 6(Wi-W 2 ), while C4a,4b(P1, 3, W2)

multiplies a 6(W1 + W3 - W2), and that we have used these 6-functions at various inter-

mediate steps. That is, the result in Eq. (3.90) applies for a basis of operators, whose

matrix elements have vanishing total derivatives.

Our operator bases can be compared to the flavor singlet and parity even basis

of Jaffe and Soldate in Ref. [63] which has one operator at twist-2, and 12 operators

at twist-4.3 There is a simple correspondence between the 11 operators in our RPI

3 The notation in Eq. (3.81) suggests that all quark bilinears are flavor singlet contractions if Xn
has multiple flavor components. To incorporate other possibilities for the flavor indices is straight-
forward [63]. We consider X, as a doublet of SU(2) flavor, or a triplet of SU(3) flavor, with elements



basis in Eq. (3.82,3.83) and the QCD operators in their basis. The correspondence

is one-to-one for Q1, the four-quark operators Q8 _11, and the operators Q2,3 that

have one gP". For the operators with two gg"'s we have four operators compared to

their six, but the difference is accounted for by the way in which the twist towers

are enumerated. We used continuous &'i s where even and odd symmetry under the

interchange w3 <4 0 4 encodes two possible color structures with fABC and dABc,

while Ref. [63] uses a discrete basis with integer powers of (ih -Dn), where the choice

of which operators to eliminate by integration by parts implies that the two color

structures yield different operators. Our homogeneous basis has 14 operators up to

twist-4, and most closely corresponds to an enumeration of an operator basis in terms

of the so-called "good" quark and gluon fields. The good quark and gluon fields have

been discussed in Refs. [7, 64, 70]. In this basis the power counting is manifest.

From the three RPI relations in Eq. (3.90) the number of independent short distance

Wilson coefficients is 11, and so encodes the same amount of information as the OPE

basis from Ref. [63]. Note that there is no room in the traditional OPE in DIS for

a correspondence with higher order operators with soft fields. In our language, the

validity of the OPE for DIS with generic x implies that soft degrees of freedom are

not needed, and one can consider that fluctuations from that region are reabsorbed

into the collinear fields.

When the basis of bilinear quark operators is considered in the forward proton

matrix element it can be reduced even further as discussed in detail in Ref. [42]. In

this process it is found that the matrix elements of operators like 02, 0 4a, and 04b

do not provide independent information. Hence at this level the RPI relations in

Eq. (3.90) do not appear to have practical implications.

4. For photon currents one has a charge matrix in flavor space in each QCD current, which is
Q = diag(2/3, -1/3, -1/3) for SU(3). Thus, at leading order in the electromagnetic interactions
one must simply introduce a Q2 in all bilinear-quark operators, 01 through OS in Eq. (3.81). When
counting the four-quark operators 09 to 0 12 induced by photons we double the number of operators
because there are two possibilities, Q2 0 1 and Q 0 Q. In this notation the flavor singlet contraction
for the four-quark operators is 10 1. For the RPI basis of operators the analysis of flavor structures
is identical, and hence flavor does not modify the constraints in Eq. (3.90).



3.7.4 Deep Inelastic Scattering for Gluons at Twist-4

Next let us consider the minimal basis for pure gluon DIS operators up to twist-

4. We proceed in a similar manner to our construction for quarks, first writing the

homogeneous basis and then the RPI basis to check if reparametrization invariance

provides constraints on the homogeneous operators. The homogeneous basis is

01 = Tr [(gB.),, -(gBni). 2 ] , (3.91)

02 =Tr [(gB2n1L) L P-2(gBn'JL2 ,)]
02 )2

03,4 Tr [(gBl3) 1 (gBnl )' 2 PI (gnI)3] 'a3 ,

05,6 =Tr [(gBi)O1 (gB3 )W2 (gB 1 )W3 (gBjL),4 ] y

07,8 Tr [(gB3'1)-(gBni)L2] Tr [(9B" I)3(93L)W4] Iap ,

09 =)WP/iP gB6n )W2] ,

where I1a8 = { gagu} and the traces are over color. Recall that the equa-

tions of motion (3.32) were used to eliminate the operators gn -B, and in-On(g3$I).

Again since the basis is designed for taking forward matrix elements we are free to

integrate by parts and hence we do not consider Pt. There is a third tensor struc-

ture, %,Q =gg that can also be considered for 03-8 but which can always

be eliminated. For 03,4 this is done using integration by parts and the cyclic trace,

giving

Tr [(gB 1 )L (g3n1 )WP! (gBL)W 3] IaF a = -0 4 (W2, W3 , W1) - 0 3 (W3 , W1, W2) . (3.92)

For 058 the cyclic property of the trace suffices to eliminate F,3 in an analogous

manner. The operator Tr[(gB 1 V)1Py(gB 1 )w(gBl)- 3] is also not needed in the

basis because it can be put into the form of the operators 03 and 04. This is done

by acting with the P5_ on the two B1 's to the right, using the cyclic property of the

trace, and again noting that 03,4 encode all orderings for the w subscripts.

For forward spin averaged matrix elements the RPI basis of gluon operators up



to twist-4 is

Q = qqTr [iggn'j " igg ]ga 1 , (3.93)

Q2= Tr[igg 1 C 4gg," I gpagv/ ,

= q,qTr [ig g ig " o]

Q4 = q,qq,xTr [igg,"" igg 2 iD'ig g',7 ] g ,9P

Q = qqqqATr [igg4" 1iggC iggp iggA,' ]pl,2

Q7,8 PvgqgA99n,c1o9 nap21Tr09g0 3'9gnW4J PaPr

Here we remove a possible operator q q9Tr [(igQ,,i)" (i0) 2 1gga 3 by writing (i&)2 ,ka1

(ia,)iD~ag2 , and then using the Bianchi identity in Eq. (3.38) to rewrite this oper-

ator in terms of operator with two gn's, plus (i&,)iOQgj and (i&,)io9 g" . The

last two terms are removed by the gluon equation of motion. There is no need to

include the analog of Q4 with the 0, acting on igg,, because it is related to Q4 by

integration by parts up to a term, i0igGn"" that reduces to other operators through

the gluon equation of motion. Again the cyclic nature of the trace allows one to

remove 3 for

In order to consider the effect of charge conjugation on these basis one must

consider the transformation of

J [dcZ' ] Oi (c) Qi (j) , or J[dw]Ci(wj) Oi(w) , (3.94)

where Ci is the Wilson coefficient associated with Qi, and Ci the Wilson coefficient

associated with Oi. We can impose constraints on C (cZy) and Ci(w) such that (3.94)

is C-invariant. For example, note that under charge conjugation Q3 transforms into

-qvq.TrIg ig" , ]g, g 1 ,, (3.95)

so to make it C-invariant we impose that C3 (C1 , C22 , w3 ) = -C 3 (03, 2, 11). Simi-



lar considerations apply to the homogeneous basis. For example, the combinations

0 3 (L1, 02 , LA3) - 0 3(w2, 1 , W 3 ) and 0 4 (w1, W2, w3) + 0 4 (W1, w3 , w2) + 0 3(w3, w2, w1) are

even under charge conjugation.

Next we must expand the RPI basis in Eq. (3.93) in terms of the homogeneous

basis in Eq. (3.91) to find possible constraints. We first expand Q5-8 , they have only

operators with four gBl's, that is 05-8,

W1W2 W3W4 0, 1 2 W3 W4 07,8- (3.96)
S 16 O5,6, Q7,8 16

Next we expand Q3,4 to find

Q- W1 3 [-0 4 (WIW2, w 3 ) - 0 4 (w3 ,W1,w 2 ) - 0 3 (w2 ,W3 ,W1)]+ -
4(n - q)

w1w 2w3 IC ( 3--.
Q4 = 04(1, W2, W3) - C03(W2, W3, Wi) + . .. (3.97)

8 . W1

where we integrate over the repeated wa variable. The ellipses in Eq. (3.97) indicate

terms involving operators O5-8 that have already occurred in Q5-8 and hence are no

longer important for determining the linear independent combinations. Eq. (3.97)

implies that 03 and 04 have Wilson coefficients that are independent of other oper-

ators in the basis. When we expand the remaining RPI operators Q1,2 , we may also

have terms with 01,2,9 which have two g&3's. We find

Q1(C1 2) = 2 1 W 1, W2 ) + 4(h-q) 2-d W1 d W2 02)02(1, 2) +...
4 4(n-q) doi doJ2

Q2( PIC2) =..,(3.98)

where the ellipsis indicates terms involving operators 03-8 that have already occurred

in Q3-8. The fact that 09 does not occur in the expansion of any of the RPI operators

indicates that it is ruled out by RPI (explaining why we listed it last in the basis).

Furthermore, the operators 01 and 02 only enter in the combination obtained from



expanding Q', and so their Wilson coefficients are related by

C2(W1, W2) =Lq 2 + wi + 2 )
n -q( dwi dW2 W1W2

= -q (wi + W2 d)C1(wi, W2). (3.99)
WiW2 n -q dwi do2

For the gluon DIS operators the RPI relations are similar to that for the quark

basis, namely it is the collinear operators with P1 's that are constrained. This was

also observed in Ref. [4] for the heavy-to-light currents at second order in the power

counting. Overall there are eight homogeneous operators for spin-averaged gluon DIS

up to twist-4, and seven independent Wilson coefficients.

An analysis of twist-4 gluon matrix elements was done in Ref. [6] using leading-

order Feynman diagram, based on the methods of Ref. [42]. To the best of our

knowledge, the complete linear independent bases of twist-4 pure glue operators given

in Eq. (3.91) and (3.93) have not been given earlier in the literature.

3.7.5 Two Jet production: n-n' operators

An important application for operators with two-collinear directions, n-n', is the

study of two jet phenomena and event shapes. The effective theory SCET has been

used to study jets at leading order in the power expansion and various orders in the

az expansion in Refs. [12, 13, 22, 47, 48, 59, 65, 71, 72, 90, 96]. Another interesting

application is to describing parton showers with SCET [16, 17], where both leading

and subleading operators with two-collinear directions play some role. In this Section

we study the leading and first power suppressed quark operators with two-collinear

directions. For two jet processes it is convenient to use the center-of-momentum (CM)

frame where the two jets are back to back. In this frame we can take n'= h so that

n'-n = 2. Our main interest will be in the operators that do not vanish in this frame,

however part of our discussion touches on the additional operators that do.

To be concrete we consider operators that appear in two jet production from a

virtual photon of momentum q1' in e+e- -+ JnJng. In QCD the fundamental hadronic



operator is the current JP = $7-"$/', which is conserved 0,,P = 0 or qJ" = 0, is odd

under charge-conjugation, and transforms as a vector under parity and time-reversal.

To describe high-energy jet production this current is matched onto a series of SCET

currents Jf) (wi) ~ A with Wilson coefficients Ce(wi),

JZf[ dw] Ce(wi) [jk) (wi) 2e (3.100)
n,n' k=O f i

Here k denotes the power in A, the subscript f denotes members of the basis at a

given order, and the wi are the set of gauge invariant momentum fractions upon

which the operator depends. We also sum over all collinear directions n and n', and

the appropriate ones for a given computation are picked out by the jet-momenta in the

states. Because of this sum we are free to swap n ++ n' when considering symmetry

implications. The C, P, and T symmetry properties of Cj(wi)Jj (wi) are the same

as JP, and they also satisfy current conservation, q, [J (wi)" = 0. Finally, since the

matching takes place at a hard scale where perturbation theory is valid, the SCET

operators should have the same LL + RR chirality as JA.

We first construct a basis of SCET operators that is homogeneous in the power

counting and with even chirality. For the construction of this basis it is convenient

to define

9V = .9 - 2 7TY =7A - - , (3.101)
q q

n-q n'-q n-q n'q
r = -n'1 - n, ri = n'' + n',

2 2 2 2

where r' is odd under n +-* n' and r+ is even. We also define si as ri with n - i

and n' -+ fi'. Four of these objects are transverse to q", qI' g"= 0, q,-y = 0, and

q-r_ = q-s_ = 0, which is helpful for satisfying current conservation. For constructing

the homogeneous basis it suffices to consider the vectors {r_, q, s_, s+} in place of

{n, ii, n', i'}. When we specialize to the CM frame, qi = q,,= 0, s" = -r", and

the vector r - q", and hence r$ and s' do not need to be considered.

In a general frame the LO operator is 1 1,2 with F = {y, r r"_ /



r_, gr,+, ri 4+, gVrl -, gTrv +} plus terms where r+ or r_ are replaced by s±.

No terms with q" are allowed by current conservation. Things become much simpler

if we focus on operators that are non-zero in the CM frame. In the CM frame inf,Wid

n,w2 =0, n',--n,w 2 = 0, and the vectors r+ and s± become redundant, so there

is only one operator at lowest order

J(=) =Xn',wiYXn, . (3.102)

Here w = {w1i, w2 } and for brevity we suppress the index y on the LHS.

To construct a homogeneous basis at NLO we again consider only operators which

are non-vanishing in the CM frame. In the CM frame we can take the total transverse

momentum of the jet equal to zero, so we have the relations n',, (APiFX,, =

i',Wi F ,P 'Xn,A = 0, with F any gamma structure, and hence do not need to

consider operators with a single P 1 . Again all operators with a # or Y_ vanish, as do

those with q - (gBni) and r_ - (gBa±), and the analogs with n -+ n'. Operators with

three 7's can all reduce to operators with a single -y plus terms that are zero in the

CM frame. This implies that at NLO there are only two operators

JM = rVn/,,,(i~, m ,

J2 = r V,(gB",')wXn,w 2 . (3.103)

Linear combinations of these two SCET currents can both be made odd under charge

conjugation by imposing appropriate conditions on their coefficients under w1 +-+ -w 2.

To see if there are constraints on the Wilson coefficients we write down a basis of

RPI operators up to NLO. The objects 'yT and gl" are invariant under RPI and can

be used for this construction, but the object r' cannot. We find the basis

J0 =Un/,CJ y/tfn,CZ7, (3.104)

JP = UFnl ,c g,,,~igga"(Wq, ,C JF Un/,gTyigW~
Jf= g, a q[ gg 2, 4 gynp [ii,W2 ,

~() g~fQ~[i0&AiggC4 5 ]f n fl2 4 gpx'\ n',c~iYaq3 n[j&2p01iggce) 3 q "l,2



q() ig -&'1 J(l) - T +_ 0*

Here we do not write down RPI operators which vanish in the CM frame when

expanded, such as IFn-g',TiB,"n or operators with only the Dirac structure d. This set

also includes three -y operators since in J(1) replacing F = gT-ys3 by F,a = 7Y7,4

gives an operator that vanishes in the CM frame, and any other order for the -y's is then

redundant. The same is true for Fa= - q2 r[y. Analogous arguments

rule out three 7 terms replacing the tensor in J( ). There are no others operators with

i or i , besides J(l at LO. To see why, notice that for the operators with ia" and

i& ,, only the contraction with T has the potential to give a LO term. Momentum

conservation requires qA = iBn + iZO, and because qAgT = 0, we can exchange i0",

and i&d. The operators J() correspond to keeping i&l when we have a (13 , and iA,

when we have a ,a,.

The number of operators in Eq. (3.104) is greater than that in the homogeneous

basis, and when expanded Jo,1,2 -+ Jo,1 ,2 . Thus the operators in Eqs. (3.102) and

(3.103) are not connected by RPI. For two jet production the constraints imposed

by considering the CM frame are strong enough that RPI provides no further infor-

mation. (RPI could still constrain the homogeneous basis of operators in a general

frame, but does not have practical implications for determining the basis of operators

for an analysis to be carried out with homogeneous operators in the CM frame.)

3.7.6 Three Jet Production: nrin2-n 3 operators

Here we analyze operators for three jet production. As in the two jet case, we consider

production of jets from e+e- scattering through a virtual photon. To construct the

minimal SCET basis needed for a matching we could proceed like in the previous cases,

by writing down both the most general homogeneous basis and RPI basis consistent

with the symmetry of the process, and expanding the RPI basis to find possible

connections. In the two jet processes the interesting terms in the homogeneous basis

are made of only two operators up to NLO. However, for three jets the homogeneous

basis has many operators at LO since we have three distinct directions n1 , n2 and



n 3. With only two directions we could greatly reduced the number of operators by

focusing on the ones that do not vanish in the center of momentum frame, meaning

those that do not vanish when ni -+ n, n 2 - n, and qI -+ 0. This choice rules out

many operators because of the relations VTFidxn = XJrifXn = 0, where FP is a

Dirac structure without 4 or $ factors. With three directions there is more freedom,

for example the perpendicular direction of n1 -ni1 is not the same as the one of n2-n2,

or of n 3-i 3 . Now to construct the homogeneous basis, we can use ni, i, n2, h 2, n3 ,

i 3 , y", so in the three jet case we have a bigger set of objects available.

On the other hand the RPI basis still has a reasonable number of objects, namely

Ig, , 91" , 7", and q". The BK. operators and q" are connected by momentum

conservation, iB4/ 1 + iO02 + iBl3 = q", so one of them can be eliminated. Hence we

expect that reparametrization invariance will give a large number of connections on

the homogeneous basis, so many in fact that it is not even convenient to write down

the homogeneous basis. It is much quicker to just write only the RPI basis and

expand it to determine a basis of allowed homogeneous operators.

The RPI basis for three jets at LO is made of two quarks fields and a gluon

field (we do not consider here the case with pure gluon jets). ni and n2 will be the

directions of the quark and antiquark jets, and n3 will be the direction of the gluon

jet. As for the two jet case, because of current conservation, the only objects that

can carry the vector index and are RPI invariant are g"' and 7y. The RPI basis is

J1 = fni, 7, #7,Tqiggl"", Wn2,Z2, J2 = Tni,,i'7,#7'vqig!9"",e 'F2,; ,

= ~ Tgv - =j -' 1 w',/yig 3~ T'l,2J3 = Fni,17Ygg7, n3,LJ3 n2,W2 J4 = FniC17 -v-i9 9n34,,'Pn2,02 ,

- T j gT - ygvl ~~4J5 gTni,a,z,11g~",yve 00W ''n2,J , J8 = 9, ni,1-7vqig"^"e84920 ,a'n 9!g3 C13y~l3W3 n2 l2,2

J9 g ' ni&,0iggnv",ai12,2,=02, J10 -- 4ni, 17,vig4, 3 012,4n 2,41 2 ,

Jil = iv" i1242, . (3.105)

For the first four operators we chose the Dirac structures {7, , q,, 7yTO _yq ,, T



7,77,e}. in order to simplify the transformation of the basis under charge conjugation.

Since {y, ,} = 0 the sum of the first two structures gives -g T #qq, and using the

antisymmetry of gn"O the sum of the last two gives 4g,7T y,, so structures with a g/T are

redundant. Other three -y operators are also redundant. We have used the equations

of motion and Bianchi identity in Eqs. (3.35,3.38) to eliminate ioni, and momentum

conservation to eliminate iOt3 = qt ~ iP1- i&"2 . For the operators J9_11 we have

a derivative contracted with ig9n/4, and we can use the gluon equation of motion,

TV g (qo - ni - in2)g 3 = ... , where the ellipsis denotes higher twist

terms, to eliminate (ino"1 + ino&2) and leave only z = ( -i4o 2 ). Note that we

cannot use the trick used in DIS for Q,, to eliminate J9_11, because here iBC2 and

gn3" have different collinear directions. Operators with two or more derivatives are

redundant for the construction of the LO basis of RPI currents with one-vector index

p, and hence do not need to be considered.

We can match the three jet RPI basis of currents with the basis of homogeneous

SCET currents by writing

S J[: d ] Oe(lZ ) [J ()]' = J[JJ dwi] Cj(o) [J (og)3-jet +
nlyn2,n3 ni,n2,n3

(3.106)

On the RHS the integration variable was changed using LZ' = n-q wi and any additional

n-q factors were absorbed into the Wilson coefficients Cf(wi). We can determine the

currents [Ji(wi)] -et of the homogeneous basis, whose form is as in Eq. (3.70), by

just expanding the currents (3.105) using Eqs. (3.65) and (3.67). This yields the

homogeneous operator basis

1 = nl,w 1(gJi,)W379 Xn 2 ,w2 , (3.107)

1J2 = Xni,w17( #(g'V 3 )W3 Xn 2 ,W2

3= wa iniWi (g$ 3)- 3243 7'n Xn2 ,W2 ,

= ws Xn,,wa} #3(g1 3)W3Xn2,W2 )



5 = W1 Xn 1 ,w infr(9 I)W3 Xn2 ,W2 ,

= w2 Xn1,Win2n(9'Vn)3Xn2,W2,

,7= Ci 1n ' lwn'l #3 (9'Vn)W3 Xn2,112,

8 = W2 Xni,wiil 03(9Vn33Xn2,W2 ,

§9 = s Xni,wi 3' (r9(Bn3I)W 3 - 3rT(9' 3 )W313 (rn2vW2+nivwi)Xn 2,w2 ,

J10 = W3 -1n7,w9 Y n"(9V 3 ). 3 - 3 (gB 3 l)W 3 ] (n2vW2+nivwi)Xn 2 ,w2 ,

Jfui = jnin wi '17 (gB" (niv2ivoi)Xn2 ,w2 ,

where n = ni -q1qaiq)/q 2 , _ l' q(n 2 -q)/ 2 and =+ (n

1/2. To simplify the results we did not bother to write out the terms with q,(gB 31 )

in Eq. (3.107), which are terms that vanish in a frame where qin3 = 0. In some cases

we have absorbed RPI factors in the Wilson coefficients Ce(wi) when carrying out the

expansion.

The tree level matching from QCD to SCET for three jets comes from matching

two Feynman diagrams in QCD onto the operator basis in Eq. (3.107), and is done

at the hard scale y = Q. This gives

-2 -2C1 = C = , C2 = -C 5 = , C3,4 = C711 = 0. (3.108)
ni -n3 W1W3 n2 -n3 23

The results for these Wilson coefficients are invariant under type-III RPI as expected.

The above matching computation can be compared with the tree level SCET com-

putations for parton showers in Ref. [17], where three final state jets are considered.

To compare the calculations we take the two stages of matching of Ref. [17] both

at p = Q, and we split the operators in Eqs. (27,28) of Ref. [17] into two parts,

03 = 03a + 0 3b and 0(2) =9O + 02) . The matching computation of Ref. [17] used

frame qn2 = 0 for 0 3a and 02 and a frame q1,1j = 0 for 0 3b and 0(2). With these

frame choices, we confirm that C1,1+CJC = 03a+02) and C2 J 2+C 5J 5 = 03b-02),

providing a cross-check on the results in Eq. (3.108).



3.7.7 Two Jets from Gluon Fusion: gg -+ qq operators

Next we consider the example of the production of two quark jets from gluon fusion,

which is relevant for the LHC. In this application we will see that RPI substantially

constrains the number and structure of operators. This basis of operators have not

yet been constructed. The factorization theorem for pp -+ 2 jets has been discussed in

Ref. [68], and were also considered recently in Ref. [11] using SCET. SCET has also

been used to resum electroweak Sudakov logarithms by solving RGE equations for

four quark collinear operators in Refs. [35, 98, 99], and to consider Higgs production

from pp collisions [1].

We consider the incoming gluons to be collinear in different directions, which is

appropriate for the high energy collision of energetic protons at the LHC, and we

assume that the final state jets have a large perpendicular momentum relative to the

beam axis. Hence the final jets are described by two additional collinear directions,

making four in total. Unlike our previous examples, here there is not an external q"

vector, the hard interaction takes place entirely between strongly interacting particles.

Hence this is an example of the case ii) discussed above Eq. (3.7).

Similarly to the three jets case, it is convenient to directly write the RPI basis

without first writing the homogeneous basis, because the presence of four collinear

directions imply that there are a large number of homogeneous operators, many of

which are restricted by RPI. Due to the absence of an external hard vector q' in

this process, in the definition of the currents we make use the RPI delta function

factors of Eq. (3.15), Akmi. The general formula for matching the RPI operators onto

homogeneous operators is

i :1 ZJ[ d(ij Cj j) [J7J Akrn]Q = i E E J[ dwi] Ct(wi) [Of(Wi)]gg*q
nl,n2,n3, n4 f ij km nl,n2,n3,n4 i

+ .. . , (3.109)

where we use the same manipulations needed to get Eq. (3.11). Note that here we

have divided the RPI operators into the 6-functions in Akm which depend on COk, and



the remainder of the operator Qf that does not. The starting point for building a basis

for Q0 is the object 3g 9f -2- We assume a LL + RR chirality for the quarks

which is suitable when strong interactions produce massless quarks, and hence include

either yA or - A7y7. Since the overall operator is a scalar, all the vector indices on

the field strengths and on the Dirac structure must be contracted with g,,v's or ia's '5.

We can use the equations of motion and Bianchi identity in Eqs. (3.35,3.37,3.38) to

eliminate terms with ioni in any operator, and terms witha839gn3" or On4,0M4". In

addition, momentum conservation implies i&C1 + iB 2 i + i&n3 + i", = 0, and we will

use this to eliminate all operators with an i&n. This leaves twenty operators for the

RPI basis

Q = n179a n90 n -2 z19vs3# g'9ign421390f'0Fn2,
Q3 =in179va 9023ig9n,'3Xn2n2 , 94 = n17#Y9va 990"n2/32

Qs= 4
1777 igg 3f 4 4  Q = 17an n90fl944n2 ,

Q, 5,7,772 gG3"i 'nfan2Xn2 , 8 n51707va '9 P3"92 29 2,

Q3= Un17,a igg 3igg~4 i&n2 v fn2 /Fn 2 . (3.110)

The other ten operators Qn- 20 have the same structure as Eq. (3.110) but with a trace

over color for the gluon operators, for example Q11 = n7geri~s~o4i~a]

Note that Qi 1 0 have gn 3 to the left of gn4, so one might think that there are ten

more operators with the g's in the other order. However, in Eq. (3.109) we sum

over n3,4 and integrate over dj 3dj 4 , and hence include operators obtained from the

interchange 723 ++ 74, LU3 ++ W4 . Recall that the directions n2 are only determined by

the matrix elements. So if we consider a matrix element with gluons in the n and

72' direction then there is a contribution from na3=7n,7n4 =7n', and from na3 =7n',

24 = 7. Other possible operators might be ni3in2vn2

Th 1 7in 3 a hr "nonvatrsQI20 2 and similarly with the trace. We can use the

Bianchi identity (3.38) to rule them out. For example, in the first operator we have



implicitly already used the Bianchi identity for the iOn4,jggl 3 term because we did not

write operators with ig~4 igggf. But we can apply the Bianchi identity to i0n, 3 iggg",

that is not connected with y's. In this way we can write this operator in terms of

Q1, Q4 and operators with three gluon fields. Note that we do not need to consider

operators with iOn - iOn, since all these contracted derivatives are contained in the

Akn'S

A natural frame for analyzing gg -+ qq is the CM frame with the choices 1 =n2,

h 2 =ni, h 3 =n 4 , h 4 =n 3. We expand the currents (3.110) with an eye towards using

them in this frame. Actually, only the condition n3 =n4 , r4=n 3 is necessary to find

the following operators

01 =w4X 1,w1#4 (g0'4)(g3 ,)w4 Xn2 ,w2 , (3.111)

02 W W3 Xn1,wi13 (gM 1 )w(gB/)-W4 Xn 2 ,w2 ,

03 = W2 in1,wi (g n3(gn )W4Xn2,W2 ,

04 w b 2 ni,wi (gnr2 -Bn' ) (gln 4 L)W4 Xn 2,w2 ,

05 = W4 V1 ,wi '4(9'n31)W3 (glVnA4 I)W4 Xn 2,w2 ,

06 = W3 Xni,wi d3(gIVn 31)W3 (gt,1n41)w 4 Xn 2,w2 ,

07 = w2W3w4 2 i,3 L4 (gVn3I)w 3(g2 Bn)- 4Xn 2,w2 ,

08 = -2W3W'-'4 ini,wi3 1/%4(gn2-B 3 )w 3 (gn 4 J1)4Xn2 ,w2 ,

09 = (W2)2w4 Xn1,wi14 (gn2-Bn' )-3 n )L4Xn2,W2 ,

010 = (W2)2W3 Vni,wid3 (gn2 B')W3( n )W4Xn2,W2 -

011-20 have the same structure of (3.111) but with a trace over color of the two gluon

operators. Oi is given by the expansion of Qj for i= 1, 2, 5, 6, by the expansion of a

suitable linear combination of Qj and Qj_1 for i =3, 6, and of Qj and Q- 3 for i =4, 8.

09/10 are given by the expansion of a suitable linear combination of Q9 10 , Q1/2 and

Q4/3. In some cases we have absorbed reparametrization invariant prefactors that



appear in the expansion into the Wilson coefficients C1 (wi). By using momentum

conservation it is possible to reduce these ten operators to just four independent

operators at leading order in SCET.4

It is straightforward to carry out the matching from QCD onto the SCET operators

in Eq. (3.111). At tree level there are three Feynman diagrams. The amplitude

squared is also known analytically at one-loop [431, and a full matching computation

at this order involves regulating infrared singularities in the same way for the loops

in QCD and SCET before subtracting. The only point to be careful about is the sum

over the ni's in Eq. (3.109), since definite values for these ni's should be determined

by the states. For example, if we consider the tree level gg -+ qq matrix element of

01 with perpendicular polarization for the gluons then

q- (PgCiw;, (P2)1 w dcjw [d iC1 (wil W3 , W4, W2)01(w ) g3 (p

The two terms come from the cases na3 ,4 = ', and ni3,4 =n'4, respectively. Therefore

to determine the CQ's it suffices to compute terms contributing to the color structure

TATB in QCD, which at tree level gives

-1 1 2 1

1 = 1 , 02 = 1 , C3= 2 , 0- 11
( 3 ' 4)w3w4  (n3.'i4)w3w4  r2 * 4)w2w4 ( 2 ' 4) w2w4

04 = o0 03. (3.113)

Note that the results for the c's are invariant under type-III RPI transformations as

expected, and that in the frame used for our computation na3 -n 4 = 2. We have con-

firmed that a consistent result is obtained by considering the TT terms. Eq. (3.112)

expresses the interesting fact that with distinct collinear directions for all final state

particles, only the color ordered QCD amplitudes are needed for the matching which

4We thank W. Waalewijn for his explicit derivation of this point.



determines the SCET Wilson coefficients.

3.8 Conclusion

In SCET the momenta of collinear particles are decomposed with light-like vectors n

and u!1, where n' is close to the direction of motion. The vectors n and W' are required

to define collinear operators that have a definite order in the power counting. However,

there is a freedom in defining n and fi, which leads to reparametrization constraints.

The decomposition of operators in the theory must satisfy these constraints in order

to be consistent. This reparametrization invariance gives nontrivial relations among

the Wilson coefficients of collinear operators occurring at different orders in the power

counting, and for situations with multiple collinear directions gives constraints on the

form of operators making up a complete basis.

In this chapter we have constructed objects that are invariant under both collinear

gauge transformations and reparametrization transformations, a superfields 'I' for

fermions and a superfield 9g for gluons. Here the subscript ni denotes an equivalence

class of light-like vectors under RPI. The superfields are invariant under collinear

gauge transformations through a reparametrization invariant Wilson line W, that

is the generalization of the usual W,,,. We constructed RPI operators out of these

superfields by introducing reparametrization invariant 6-functions. The 6-functions

act on the RPI operators to pick out large momenta, and are convoluted with hard

Wilson coefficients that must be computed by matching computations. The power

of the RPI operators is that they encode information about the minimal basis of

Wilson coefficients. However, they do not have a definite power counting order. By

expanding them in A one obtains a minimal basis of operators with a good power

counting, where all constraints on the Wilson coefficients are made explicit. The final

basis of operators with a good power counting involves a two-component field x", for

quarks, a field B" for the two physical gluon polarizations, derivatives 'P' and

delta functions 6(w - PT1 ) that pick out the large momenta of these collinear fields.

That is it. Other field components such as ni -Bni, and other derivatives such as



ini - O, are eliminated from the purely collinear operator basis using the equations

of motion.

This procedure was applied to several processes. We studied spin-averaged DIS

for quarks at twist-4, as a means of testing our setup in a framework where the power

suppressed basis of operators is well understood. We then constructed a minimum

basis of pure glue operators for DIS at twist-4. These applications involve a single

collinear direction. For processes with multiple collinear directions we considered

operator bases for jet production. Useful constraints from RPI were not found for

the first power suppressed operators in e+e- -+ 2jets. On the other hand, already

at leading order in the power counting, RPI provided important constraints on the

complete basis of operators for e+e- - 3 jets with three distinct collinear directions.

RPI was also very useful in constructing a complete basis of operators for gluon fusion

producing two quark initiated jets, where there are four collinear directions. In this

case the process of interest is pp -+ 2 jets, which will be studied at the LHC. We

expect the complete bases of operators constructed here will be a useful ingredient in

the study of factorization theorems for this process. The steps we used to construct

complete basis will also be useful when considering factorization for processes with

more jets in the final state. In general we found that RPI becomes more powerful

for processes involving more jets, essentially because the number of vectors ni and ni
proliferates faster than the number of objects that must be considered to build the

RPI basis.

An interesting observation discussed in Section 3.7.7 is that when matching from

QCD onto SCET operators describing multiple collinear directions ni, the Wilson

coefficient is determined by the color ordered QCD amplitude. Since results for

multi-leg QCD amplitudes are often expressed in a color ordered form, this should

simplify the matching of QCD amplitudes onto SCET.



Chapter 4

Parton Showers to NLO

4.1 Introduction

A final state shower MC is based on the "strongly-ordered limit" which describes the

leading log contribution (accounting for soft emission by angular ordering or other

approximations). In this kinematic configuration, each radiated particle comes off

much more collinear to its parent than the previous one, a situation that can be

formulated in terms of perpendicular momenta or invariant masses, i.e.

qOor 2 2 2 (4.1)
goL > gu > q21 > ... , or qa2 > q, > q2 4

Furthermore, and important for practical computation, each emission is independent

of the previous one to leading log order. Thus, if we have calculated the differential

cross section for (i - 1)-parton emission, do-_ 1 , then we can obtain the i-parton case

as P(O)

do- i d-i_1, (4.2)

where P(O) is the leading order (LO) "splitting function" that captures the probability

of the (i - 1)th emitted parton to split into two others, jk, and qi_ 1 is its virtuality.

Thus, we can formulate the process in terms of a probabilistic Markov chain of (i - 1)

-+ 2 particle splittings. The probabilities are determined by the functions P(O)



which are related to Altarelli-Parisi kernels. As an example, for q --+ qg in QCD, after

averaging and summing over spins,

Po) as 1+ Z 2
qPqg a C + (4-3)

where z is the momentum fraction of the daughter with respect to the parent. This

classical, probabilistic process gives rise to the parton shower algorithms used by

event generators to model radiation through Monte Carlo, such as Pythia [91, 92],

Herwig [5, 38], and Sherpa [54] (although by now more sophisticated generalizations

such as the dipole shower [32, 33] are becoming more popular). Given some initial

virtuality, qO, and an initial momentum fraction, xo, MCs generate the virtuality and

the momentum fraction of the daughter particle after the spitting. The virtuality is

determined by a Sudakov factor, A(q 2 , q2), which gives the probability of a parton to

evolve from q2 to q2 without branching,

A(q2 2) exp [- dt2 Jdx a P() . (4.4)

The traditional LL parton shower makes a difficult problem tractable, but has some

shortcomings related to its dependence on the leading log approximation. Even

though the splitting functions only dominate in soft and collinear limits, the shower

is used everywhere in order to generate events that cover the full phase space. In

addition, since each emission is independent from the previous one in the shower, the

LL approximation does not include any spin or color correlations. Furthermore, the

procedure is classical and the interference between different amplitudes is only probed

beyond leading log.

The hierarchy of scales in the parton shower makes it amenable to an effective field

theory treatment. Since the shower regime occurs for fields in the soft and collinear

regions, we can describe it with Soft-Collinear Effective Theory (SCET) [8, 10, 14, 18].

SCET is the appropriate effective theory for studying parton showers because it is de-

signed to reproduce exactly the limit of soft and collinear particles. Moreover, SCET



is organized in an expansion of power counting parameter that makes it convenient

for classifying all corrections. The first work on parton showers using SCET was

Refs. [16, 17], where the authors showed how the splitting function and the Sudakov

factor emerge naturally in SCET. They reproduced the LL parton showers using

SCET, and showed how higher order virtual corrections can be encoded by match-

ing onto Wilson coefficients in the effective theory. Unfortunately they introduced

choices and approximations at several points along the way, which makes our task

of identifying the full set of corrections beyond LL difficult, so some modification of

their setup will be required.

Before discussing our approach, we give here a brief discussion of literature on

improvements to the basic shower Monte Carlo picture. To begin with, consider a

simple setup where one declares that an artificial scale yo divides collinear from hard

radiation. We describe emissions above [to through fixed-order tree-level calculations,

and those beneath by running shower Monte Carlo. Each regime would get an accu-

rate treatment, but interfacing the two results in leading-log introduces sensitivity to

the scale po. This is because the LO (in as) result contains no LL-resummation. The

CKKW algorithm [31] defines a method to include this information. One distributes

the particles in an event according to the probabilities given by the exact tree-level

matrix element, with p as a lower cutoff on the virutality between any two particles.

One then clusters the event using the kT algorithm [29] to determine the splitting

virtualities, q?. With these scales in hand, one reweights the event by multiplication

by appropriate Sudakov factors, as well as factors of a(qi)/a(Q), where Q is some

hard scale. We can then run a parton shower algorithm on these amplitudes, veto-

ing any splitting virtuality harder than p to avoid double counting. The resulting

distribution depends on yo only at the subleading order as(as ln 2 (Q/po))m.

Another important effect concerns soft gluons which are also kinematically en-

hanced. Collinear emissions reinforce the picture of partonic radiation as an isolated

jet as they get distributed within some narrow cone about the original hard parton.

Apriori soft emissions have no preferred direction and can communicate between el-

ements of the shower. Fortunately, azimuthal averaging confines these emissions to



lie within the cone containing the nearest collinear gluon as well as the showering

quark or gluon. This effect is called angular-ordering and can be accomodated by

methods such as evolving the shower by decreasing angle monotonically, as is done

in Herwig [81], or by enforcing it with a veto in a mass-ordered shower (rightmost

expression in Eq. (4.1)), which is an option in Pythia [91]. Additional considerations

treated in shower programs include putting a, at the scale of each splitting, and

encoding momentum conservation at each vertex, which give the parton shower in-

formation beyond an analytic LO/LL calculation. All of these are treated in different

fashions by different MC codes.

There are of course further corrections to include to go to NLO in a, and NLL

in kinematic logs. The most effort to date has gone to working out the NLO/LL

contribution to incorporate one-loop-corrected amplitudes. Adding a, corrections in-

volves the numerical challenge of combining real and virtual results which separately

diverge. The basic resolution is to extract the pole-portion of the real emission of

i-partons and include it along with the virtual contributions to the i - 1 case. Un-

fortunately this does not sum leading logs. One cannot blindly extend the CKKW

procedure to NLO/LL, as it leads to double-counting problems; the Sudakov factors

in the reweighting contain a portion of the one-loop contributions. Thus seperately

adding on the full one-loop result would clearly double count.

There are two main solutions to the NLO/LL merging problem. The older of

the two, MC@NLO [521, works by means of subtraction, finding the places where

the Sudakovs will contribute at NLO, and removing the splitting function contribu-

tion. While conceptually clear, this has numerical and theoretical complications. The

full amplitude and splitting function portions are calculated separately before sub-

traction, which is time-consuming. Furthermore, since the subtractions occur for the

amplitude squared, one cannot guarantee positivity of the result. Hence one deal with

negatively weighted events (and in some pathological cases negative cross-sections,

see eg. [20]). To avoid the computational difficulties of process-by-process subtraction

and the problem of negative weights, an alternative is the POWHEG algorithm [82].

It keeps the IR-safe NLO cross-section manifest, and defines a Sudakov factor based



on a modified splitting function to handle LL resummation. In this way, it makes

use of quantities already obtained in the fixed order NLO calculation, requiring fewer

additional steps for its implementation for each known process. The conservation of

probability obeyed by the splittings and related Sudakov factor avoid double count-

ings and give back o-NLO upon integration.

Another approach to go beyond LO/LL is to incorporate subleading logs by in-

cluding in the Sudakov the contribution of the O(a ) corrections to the Altarelli-Parisi

splitting kernels, P . Unfortunately, doing this alone would fail to conserve proba-

bility if one did not also correct the probability for real emission in Eq. (4.3). Some

of the subleading contributions take the form of 1 -+ 3 splittings, requiring a modifi-

cation of the usual 1 -+ 2 algorithm. The KRKMC group aims to incorporate these

subleading contributions in shower MC [60, 61, 93]. Similar to CKKW, their correc-

tions take the form of a multiplicative reweighting. For a particular configuration of

partons in phase space, they reweight by a factor that includes the insertion of 1 -+ 3

"defects" as loop-corrected 1 -+ 2 splittings that account for the affects of P k). If p

is the fully differential cross-section, they define a corrected weight for n partons, W

as:

Ln-PLO (k1, --. - kn +n n PNr1LO (k1, -I kn)(45
PLO(k1 -.. - kn)

where r determines the number of defect insertions in any configuration.

In this chapter we set up an EFT framework to classify and study perturbative

and power corrections to parton showers. The results of this work will be presented

in Ref. [21]. While the ultimate goal is to facilitate the implementation of a complete

NLL/NLO parton shower algorithm, our goals here are much more modest. The

main objective of our work is to explain a computational framework where we can

enumerate and classify all the needed theoretical ingredients in a NLO/NLL shower at

a theoretical rather than algorithmic level. When carrying out explicit computations

within this framewrok we focus primarily on shower power corrections in the fully



differential cross section for an arbitrary number of emissions, that is

du (4.6)

for n-partons. Similarly to [17], we use an operator approach based on SCET. A

main issue to resolve is taking into account different possibilities for the kinematic

configuration of subsequent emissions, to go beyond the strong ordering described

in Eq. (4.1). We overcome this issue by setting up a tower of related soft collinear

effective fields theory called SCETj, which also helps us deal with several technical

obstacles. We formulate the shower description as a standard matching procedure

between operators in different SCET. Power corrections are encoded by performing

matching computations at subleading order in the kinematic power expansion between

different regions. The hierarchy between regions is expressed by a power counting

parameter A < 1. These power corrections modify the structures that initiate the

shower, branching probabilities, as well as opening up the 1 -+ 3 splitting channel.

Virtual perturbative a, corrections are encoded by performing matching calculations

beyond tree level between SCETj theories. Finally, corrections to the Sudakov no-

branching probabilities are encoded through anomalous dimensions of leading and

subleading operators at the appropriate order within the different SCETis. We will

carry out the necessary computations for the power corrections, and a subset of the

required calculations for anomalous dimensions occuring for operators beyond the

leading shower. This analysis includes the leading corrections to the shower from

interference and from spin correlations. As much as possible we attempt to give

pointers for additional computations that are needed in places where our analysis is

incomplete. For example, to simplify things we have not treated color correlations

since doing so increases the basis of operators and the number of computations, but

does not change the conceptual setup.

The outline of this chapter is as follows. We review the Bauer-Schwartz SCET

shower method in subsection 4.2.1 and discuss the technical obstructions to extend-

ing it to the level needed to determine the desired power corrections. We present our



SCETi framework in subsection 4.2.2 to resolve these issues. In subsection 4.3 we an-

alyze the LL shower in the SCET framework, and show that the transition between

SCETs, SCETi -+ SCETi+1, can be encoded by operator replacement rules on single

parton collinear fields. Soft emissions in SCETi are discussed, and we summarize

the correspondence between SCET objects and LL shower ingredients to show how

the mapping works. In subsection 4.4, we use the SCETi formulation to classify and

compute various corrections to the shower to O(A 2) in the cross-section. Two main

categories of branching corrections emerge, which we refer to as hard scattering and

jet-substructure corrections. We also discuss ingredients needed for renormalization

group evolution, and derive all the LL anomalous dimensions for our subleading op-

erators. A summary of the NLL/NLO corrections is presented as a table mapping

ingredients needed for the subleading shower to those in SCET. Conclusions are given

in subsection 4.6.

Many details are relegated to the appendices B and C. We describe finite reparame-

trization transformations in appendix B.1, we use RPI in our matching computations

to disentangle kinematic choices from kinematic power corrections. Details on the

matching of QCD -+ SCET1 , SCET1 -+ SCET 2, and SCET2 -+ SCET 3 with gen-

eralization to SCETi to SCETi+1 can be found in appendices B.2, B.3, and B.4,

respectively. Appendix C contains a cross-check on our results, where we integrate a
(1)subset of our power suppressed terms to rederive the abelian terms in Pqg, namely

the 0(a,) correction to the q -+ qg splitting function [39].

Before we start analyzing parton showers in SCET, we introduce the operator

notation we will use for this chapter. Most of our discusion will involve interactions

with collinear fields, and we use the notation X, for quarks and L3, for gluons defined

in subsection 2.1.1. We proved in subsection 3.4 that we need only three key building

blocks to construct operators in SCET, these are: Xn, B', and P,1 , each of which

carry a power counting scaling of O(A). A general notation for the i-parton operators



we will consider in this chapter is

j/2 - - k

(0~L1] niJ~] [3 /21-L [na 11 (Pnb )b1 [JJTniegnc,,-

a=1 b=j/2+1 - c=1

(4.7)

where the number of partons is the sum of quarks and gluons, j + k = i, and the

total number of I derivatives is f = Z+k em The arguments in brackets denote the

collinear direction for each parton field, with the superscript denoting the number of I

derivatives acting upon it. The power counting scaling of these operators is 0('jk,)

Aj+k+e. These operators are tensors in the space of spinors and Lorentz vectors,

and the indices get contracted with structures contained in the Wilson coefficient

C for the operator. If CO is a Lorentz scalar then j is even. Since the collinear

fields carry a label referring to a specific light-cone vector, these operators describe

particles in a specific region of phase space. We have seen in chapter 3 that the Wilson

coefficients and the operators are in general convoluted. In this chapter, because we

only treat tree-level quantities there are now convolutions between Wilson coefficients

and operators and we do not need to use the notation in Eq.(3.5).

4.2 Obtaining the Parton Shower with SCET

4.2.1 Bauer-Schwartz Method

The original application of SCET to study and improve the parton shower was carried

out in Refs. [16, 17] by Bauer & Schwartz. The main reasons why SCET is useful

here are:

* The SCET fields, soft and collinear quarks and gluons, encode the infrared

contributions which are exactly where the parton shower amplitudes have their

dominant contributions in phase space.

" Since SCET is improvable order-by-order in the kinematic expansion parameter,

A, one has the potential to systematically correct the shower.



We will give a short overview of the Bauer-Schwartz approach, and then discuss

the complications that arise when trying to extend the analysis to NLO in the A

expansion. In this subsection we will use notation that is not found elsewhere in this

chapter to retain consistency with Refs. [16, 171.

The procedure of [16, 17] starts by constructing i-parton operators, 09, through

matching SCET to QCD at a hard scale. For example, their 02 will equal O( 2,0,0 )(ni1 , n2)

in the notation of Eq. (4.7), and 03 will be 0(2,1,o)(ni, n2, n3). As we run Oi(p) down,

the leading log renormalization group evolution (LL RGE) does not mix operators

and the exponential evolution operator encodes the no-branching probability. The

evolution continues until another parton becomes apparent at a scale p = PT.

If we have an i-parton operator, O = O(j,1O)(ni,... , ni) with all n's distinct,

then it has the RG solution Oi(Q) = U(j,'-j,0)(Q, p)Oi(p) with

U(ja-,o)(Q, p) = exp [(] ,iij<-i,O) ), (4.8)

where (j-j,O) is the operator's anomalous dimension. The leading-log resummation

effects of the Sudakov factor in the PS enter through one-loop operator running in

SCET, as dictated by the cusp anomalous dimension. The one-loop cusp portion is

especially easy to calculate in SCET as it depends solely on the number of collinear

fields, even though the loop calculations do generically involve soft loops as well [16,

17],
n q,ngO)() = aS [ cF +CA log A. (4.9)

L 7r 12 2 1 Q2

This form of the kernel yields a product of Sudakov factors which are the no-branching

probabilities for each parton in the operator:

U ~L'L (Q, P) = Ag (Q, p-)Ag(Q, p) (4.10)

Thus, in agreement with Ref. [31], we can account for leading-log effects for any

particle multiplcity by simply multiplying matrix elements by appropriate Sudakov

factors.



As we run O(p) down, another parton becomes apparent at a scale y = PT. To

account for this, Bauer & Schwartz devised a "threshold matching" of O( to a new,

higher multiplicty operator, () where the subscript still denotes the number of

partons in the operator and the superscript tracks the parent operator. The general

threshold matching equation is [16, 17]

[CU) (00))] = [CU)(O )] _ . (4.11)

After more running and threshold matching, we eventually wind up with On(' for

various n > i. The n - i particles emitted at increasingly lower scales by this process

correspond to the parton showering of the original fields created at the hard scale by

O(. Refs. [16, 17] also showed that an appropriate list of SCET operators (0's and

O(n)'s) can interpolate between fixed-order QCD and parton shower (PS) calculations

of IR-safe observables. Furthermore, Ref. [16, 17] carried out the important task of

including O(a,) effects from matching QCD to SCET at one-loop.

That these subsequent emissions reproduce the usual parton shower splitting func-

tion emerges easily from SCET. Consider an operator Oi = ynQ, where Q is arbi-

trary and we have made explicit a single collinear quark field, yng. If we emit a

collinear gluon from the quark, q(q') - q(q,')g(kt'), the amplitude for the process is:

LOq = q)p , q (4.12)LO qO

where uno is the collinear quark spinor, and p' is the combination of the SCET gluon

emission Feynman rule plus the iVo Wilson line emission (the quark L(O) can be found

in Eq. (2.16)),

p(=n+ _ _ -+ ] +]. (4.13)
q1 q1 go 1k1 q1

Note that p0 in SCET comes entirely from Vno without reference to anything residing

in Q. The subscript (no I) refers to components perpendicular to n" and 5A, which

we denote by I for the remainder of this computation. The amplitude in Eq. (4.12)



is gauge invariant and kOpa = 0. Squaring Axlq' and summing over spins we have

in iin(qi)un(qi) = q#1/2, and the gluon polarization sum denoted Espin e =

dag. Since pa commutes with #0, we get an answer proportional to ppt3p dag, where

without loss of generality we can use a light-cone gauge, da,3 = -gap + (iiakip +

kiangh)/ki. Crucially, this is a Dirac scalar:

pa t d P 1&|2 =2 -6 +j 290- q11 gopapt/3 df 1 2 2
2,3 2 2q0±qii q01 ) X E4, (4.14)

akiqo qi gq 1  g/

where we have used the on-shell conditions q2 = 0 and k2 = 0.

In a frame where qL= 0 we have q11 = -k 11 and go/qO = 1/(no qo). Here

o o = n-k 1 + n- qi= -k/[qo z(1 - z)], where z qi/qo. Thus we have the

simpler expression

pa = no + )n"_ (4.15)
gi ki

and

at 2n -k1  2q q 2k (1+ z2)
ptp dg3  = 2 2n- - _2 14 ~ 2 .i (4.16)ki qiki q- q2 z 2 (1 - Z)

Putting these properties together in the full amplitude squared we get

|AY 2g 2 92CF 2 Tr [app2QQtpt 3 ] da3 = 2CF qg12Qt (4.17)
(no -qo) 2 2 (no -qo) 2  2

= g2CF 2z 2 (1Z 2 )- tQftJ

Thus, all information about the emission factors out to the front of the amplitude

squared and is independent of the rest of the process encoded by Q. Unlike the

analogous computation in full QCD there was no need to expand the amplitude to

obtain this result. In order to recover. Eq. (4.3), we still need to include the z-

dependence from phase space, since jk (z) operates at the level of the cross section.

Using d3k/(2Ek) = dk-d 2k 1 /(2k~), for qi and ki we have

dq1-d2q11 dk1-d 2kiL dqo-d2qo1 dz d2k11
2qi 2ci 2 o 2z(1 - z) (4.18)



Thus we recover the expected 1/(1 - z) dependence from the measure. Combin-

ing pieces and performing the trivial azimuthal integral dtpki, we get the expected

expression:
dk 2

d-x+ = dzkz) do-x+q, (4.19)
1 1

where Pge2 qg(z) is the quark splitting function in Eq. (4.3). Here dux+q is the cross-

section for the rest of the process with emission of a momentum qo quark, and the

corresponding amplitude squared is Tr [ #iffQft]. Whether Q represents a simple

hard current or an entire chain of collinear splittings, we see that the q -+ qg emission

factors out with the expected logarithmic singularities, as in Eq. (4.2).

In order to obtain their results, Bauer and Schwartz introduced choices and ap-

proximations at several points which obscure the path toward systematicaly com-

puting NLO corrections in the SCET power-counting parameter, A. Indeed, they

concluded that obtaining these corrections "... may be prohibitively difficult" [16].

Some of the issues one encounters trying to work at higher orders are:

1. At NLO, it becomes crucial to distinguish which simplifications correspond to

approximations with power corrections, and which involve a choice of coordi-

nates where the final answer is coordinate independent. For example, in general

a collinear state has nonzero momentum components perpendicular to the in-

dex n of the field that annihilates it. In Refs. [16, 17] a choice was made to

have collinear SCET fields in the operators only create particles whose momenta

perfectly aligns with their index direction, n:

Xn Iq) = n,nq, Iwhere n" = q"/Eq. (4.20)

Eq. (4.20) enforces certain kinematical restrictions on final state particles, and

required that fermions fields be rotated to an appropriate n via (n -+ (#$/4)(n.

2. At LO it was possible to avoid a potential double counting between collinear

and soft fields by dropping soft emission and Wilson line emission, and taking

only collinear emissions with transverse polarization. The threshold matching
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procedure is designed to avoid double counting of collinear operators, such as

a Lagrangian emission from 02 and direct emission from 0(2, since only one

of these is allowed to operate at a time. However, the threshold matching in

Eq. (4.11) makes the technical procedure for incorporating power corrections

unclear.

3. Threshold matching contains another impediment to systematic improvement.

The basic idea is that the initial operator 02 has nonzero projection onto Fock

states of any multiplicity, but the number of particles created by an operator is

a scale-dependent question. The matching scales are determined by the strong

ordering kinematics, pu > ... > pm-L. At the scale of an emission, say pa,

one matches to the operator 0 3. However, going to higher orders in the shower

necessitates encoding departures from the strong-ordering condition needed for

this procedure.

There is also an interplay between some of these. For example, if we wish to construct

a qqg operator that is obtained from a time-ordered product of the SCET lagrangian

with 02, then there is a kinematic conflict since the mother quark has nonzero in-

variant mass, but the quark in 02 is suppose to have null momentum to enforce

Eq. (4.20). Encoding the emission in O(2) via threshold matching avoids the conflict

with the choice in 1. In carrying out their method, Bauer & Schwartz carefully enu-

merated the above approximations. They affect the ability to include corrections in

A, but do not impact the LO shower.

Building on the work of Refs. [16, 17], the main goal of the framework we develop

in the next subsection is to overcome this list of issues so that we can determine the

NLO corrections to the shower using SCET.

4.2.2 Using SCET,

The main feature of the parton shower is the ability to capture the dominant physics

of particles emitted in kinematically hierarchical regions of phase space. Our goal

is to reformulate the SCET interface with the shower using a standard sequence of
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matching and running steps in different versions of SCET,

QCD -+ SCET1 -+ SCET 2 -+ - - - -+ SCETN - (4.21)

We refer to this as the SCETj procedure. The key distinction between a SCET at

one stage and the next is the definition of the corresponding resolution parameters

1 > A, > A2 > ... > AN, where A' is the power counting parameter of SCET. As

we move down the chain, the corresponding SCET resolves smaller invariant masses

~ (QAj) 2 , and has a different meaning for its collinear sectors {[nj]}sCET,. To keep

track of this we will attach a subscript to the operators to denote the SCET in which

its fields live,

0 Cjki'' (ni, ... , nj+k) . (4.22)

Effectively with Eq. (4.21), we partiton the momenta of particles in an event into

classes,

Qo D Q1 ... QN (4.23)

where Q3 is defined to contain the momenta of all propogators or particles with invari-

ant mass p2 __ (QAj) 2 or smaller, or an equivalent condition on relative perpendicular

momenta.1 The allowed momenta in Qj correspond to the IR particles of SCETj. The

sequence of SCETj's is truncated when we resolve a scale of order the parton shower

cutoff, QAN _ put 1 GeV, that is in SCETN-

The strongly ordered configuration of partons in Eq. (4.1) corresponds with re-

moving a single q? in Qj as we pass from Qj -+ Qj+1. However with Eq. (4.23) nothing

stops us from having multiple emissions at a single scale. If two mother particles,

with gj and q?+1, are associated to the same Qk, then when we integrate out the scale

'Note that we do not associate a strong hiearchy to the hard scales fij in each SCETj, and we
consider i ~ Q despite the fact that the partons loose energy as they split and evolve. This does
not imply that the hard scale for each SCETj is fixed, but mearly that parametrically it does not
tend to decrease as rapidly as the invariant masses encoded in the power counting parameter Aj.
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in SCETk this configuration just contributes to an operator with a different parton

multiplicity from the strongly ordered case. Thus, with the Eq. (4.21) setup there is

no obstacle to considering corrections from an arbitrary assignment of q's to Qk's.

This resolves issue 3. of Subsection 4.2.1.

To carry out calculations in the SCETi framework it is convenient and sufficient to

take a specific definition of the power counting parameters, Ai = (A)'. The motivation

for this is that we want the hierarchy between neighboring splittings to stay the

same throughout the shower so as not to privilege any portion of it. We will see in

Subsection 4.4.4 that this democratic setup allows us to interpret our O(A) corrections

to i-parton amplitudes as universal corrections to the splitting probability, given at

LO by Eq. (4.3). Our defintion of collinearity will change as we go to lower scales,

and from Eq. (2.2) fields collinear to n within Qi have:

(n - qi, i, ) qi (A2 ) 1, A') i, (4.24)

and virtuality - (q,)2A2i. For convenience we use the same auxillary vector ft? defined

for n-collinear fields in SCET1 for all subsequent collinear fields in SCETi's that

descend from these n-collinear mothers. In SCETi L) again only couples collinear

fields in the same direction n. Since different SCETi's have different definitions of

collinearity, our description of identical physical processes changes when we switch to

a theory with a lower scale.

We depict this in Fig. 4-1, where the left panel is in SCET and the right panel is

in SCETi+1 . In SCETi, the quark (qi) and gluon (ki) are no-collinear. This means

that at LO they are emitted from a qqg vertex in the LO SCETi Lagrangian (or a

Wilson line). Schematically, the amplitude for a 1-polarized gluon looks like2

Ag = Cq Jdx (0|T{LSCETi (X)Oqq }| qqg), (4.25)

namely like the first term in Eq. (2.22). The right-hand panel of Fig. 4-1 denotes

the same configuration as seen by SCETi+1 . The scale of this theory is lower and

2 From here on we will drop the superscript (0) and the subscript n from the collinear Lagrangian.
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SCETj SCETj+ 1

/ \.
/ \

ni

Figure 4-1: The same three-parton process as seen in two different SCET's, SCETs
and SCETi+1. Above: Kinematic configuration of the quarks and gluon. The solid
cones represent the regions considered collinear to the vectors drawn. Below: Feyn-
man diagrams for the corresponding amplitude. Note that in SCETi+1 we have re-
moved a propagating degree of freedom. The amplitude thus comes from a higher
dimension operator 0 qMg, rather than time-ordered product of LCSCETs with the current
Jq, as seen for SCETn.

the definition of collinearity stricter, so the quark and gluon are not collinear here.

Therefore, the amplitude now comes from an operator with three partons,

A" = Cqqg( 0 |0 qqI qqg), (4.26)

as in Eq. (2.23). As usual in EFT, continuity of the S-matrix is maintained by

matching SCETj to SCETj+1 to calculate Cqg.

Before moving on, we list some technical advantages to working in the SCETj

framework:

1. Collinear fields in SCET with different n-labels, as well as soft fields, do not

overlap in Hilbert space. SCET provides built in mechanisms to avoid double

counting that will be inherited by terms in the SCETj chain, such as zero-

bin subtractions [78]. This allows us to separate an i-jet process with i dis-
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tinguished partons, from an (i - 1)-jet process with i partons, where two are

collinear and unresolved. Lower-scale SCETi's distinguish processes more finely

based on their stricter definition of collinearity. This resolves issue 2. from Sub-

section 4.2.1. This SCET property also illuminates simplified structures in the

power corrections, such as the form of the amplitude interference (cf. subsection

4.4.4).

2. Soft modes communicate between collinear sectors and threaten the factoriza-

tion of different jets. Fortunately, SCET constrains the interactions they have

with collinear fields. In fact, one can decouple them with soft Wilson lines in

the LO SCET Lagrangian. At LO we maintain factorization and derive the

angular ordering and coherent branching of soft emissions (cf. subsection 4.3.2).

Soft interactions which are power suppressed can also be systematically studied

in SCET with Lagrangians available in the literature [15, 24, 25].

3. In SCETi we have a symmetry group RPIs which corresponds to coordinate

choices. In SCETi+1 only a subset of this RPI,+1 C RPI remains a symmetry

of the new theory. The kinematics in the coset portion RPIi/RPIi+1 within

SCETi become a set of higher-dimension operators in SCETi+1 , and describe

configurations which would not otherwise be contained in the SCETi+ 1 La-

grangian (cf. subsection 4.3 and appendix B.1). This resolves issue 1. from

Subsection 4.2.1.

4. In matching between SCETi and SCETi+1 , higher order operators in the lower-

scale theory are needed to reproduce the physics of the higher one. We proved

that all higher order purely collinear operators can be built from quark fields

(Xn), perpendicular gluon fields (B±n), and the perpendicular momentum op-

erators (PL,) (cf. subsection 2.1.1). Thus the symmetries and equations of

motion of SCET greatly simplify the operator basis one needs to consider at

each order in A (cf. subsection 4.4 and appendices B.2 and B.3).

The final SCETN corresponds to the scale where the shower stops, i.e. where

QAN pcut. In SCETN, we only require the coefficients of the operators where all
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collinear partons belong to distinct sectors and which have no PnI 's, ". ' 00'N')

Here we have n" = p"/pi3 for each parton that is each perticle is collinear to a different

direction, this is as in Eq. (4.20), but we only do this for operators which have just one

parton in an equivalence class. The more general operators with more than one parton

in a single collinear direction and I-momenta are required for the steps through

intermediate SCETs, to calculate NLO corrections. The coefficients C,kO) encode

the history of the shower, including branching and evolution, and can be written

entirely in terms of: dot products ni - ni (that is equivalent to products of physical

parton momenta), hard momenta i, and the renormalization scale of dimensional

regularization, t. The dot products of ns carry the power counting in A. It is also

worth mentioning that SCET maintains gauge invariance for power corrections, so

the Wilson coefficients encoding the shower information are gauge invariant.

Our goal is to carry out the transition SCETi -+ SCETi+1 with a standard match-

ing procedure, and to find a correspondence between the SCETi setup and the in-

formation needed for carrying out the probabilistic parton shower. A traditional LO

parton shower needs four basic ingredients: an evolution variable, no-branching Su-

dakov factors, the splitting function, and a notion of factorization yielding an iterative

algorithm. Given a desired evolution variable, a correspondence must be set up with

the ni - ni's in the SCETi procedure. At LO this is straightforward, but at NLO

this will effect the manner in which the power corrections enter a probabilistic shower

code. The no-branching Sudakov's are obtained by renormalization of operators in

each SCETi, with calculations that are along the same lines as those covered in detail

in Refs. [16, 17]. At LO, only operators with distinct collinear sectors are required,

while at NLO the renormalization becomes more complicated since operators may

now contain two or more partons that are collinear in the same direction. The split-

ting functions appear in the matching between SCETi and SCETi+1. At NLO, this

includes 1 -+ 3 splitting functions as well as corrections where more partons appear

at the start of the shower. The majority of the splittings in a tree still factorize at

NLO, and the properties of SCET control complications in the interference.

In the above discussion we did not identify the parameter A with an outcome in
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the probabilistic shower. As far as the shower is concerned A is merely a bookkeeping

device which helps determine what pieces are needed beyond LO, and those pieces

depend only on physical momentum and not on A. One could try defining A, = kaQ,

A2  k2 /Q, etc., but this is not ideal since probabilistically there is a chance for

events where ku ~ Q or ka ~ pcut . The organization in Eq. (4.23) instead exploits

the fact that on average showers are strongly-ordered. Our expansion in A will then

on average give a description of the most likely first deviations from strong-ordering.

The correspondence between shower ingredients and ingredients in SCETi implies a

probabilistic interpretation, rather than fixed unique values for the scales QAi. In the

end, we pass to the shower the information obtained along the way to determining

the operators of SCETN to NNLO in A at the amplitude-squared level. Again, what

is important is to obtain the ingredients in the shower, and in this sense SCET is a

crutch to derive the NLO shower ingredients and not a physical theory that outputs

precisely the desired NLO shower.

Now that we have defined the basics of the SCET; setup and its advantages, we

are in a position to give an operational overview of our results. Building on item 4

above, the bulk of this work is devoted to studying how one derives SCETi+1 from

SCETi. We will find that many simplifications occur. We can write down the operator

which reproduces the strongly-ordered parton shower in a closed form expression for

an arbitrary number of partons (subsection 4.3.1). Improving the parton shower then

simply corresponds to matching at higher orders. We will find one set of corrections

that only involve fields near the hard-scattering process. One can determine them

from matching to QCD amplitudes with a small number of partons (subsection 4.4.1).

They represent a set of non-resummable contributions, which we can interpret as

improving the initial condition from the hard-scale matrix element. We will also find a

generalizable set of corrections for an arbitrary number of partons that admits a closed

form expression (subsection 4.4.2). This leads to a correction of the substructure of

the jet, and we can use it to cross-check it by known 0(a,) corrections to the usual

parton splitting functions. Lastly, when we construct the squared amplitude the

interference between all of these operators in the SCET picture is straightforward
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(subsection 4.4.4).

It is also worth commenting explicitly on shower ingredients that we do not com-

pute in this work. We only treat the case of a showering quark q -+ qg and for the

abelian portion (oc CF). We have left gluon splittings, g -+ qq and g -+ gg out of

this analysis, though the extension to these cases should be straightforward. We have

not computed the evolution factors at NLL required for a full NLL shower with a

proper resummation of double logs. We have also not determined the full effect of

NLO power corrections from subleading soft interactions, although we briefly examine

the factorized structure of such corrections in subsection (4.3.2). Finally, and most

importantly, we do not attempt here to develop a realistic numerical algorithm for

implementing an NLL shower. These items are all left to future investigations.

4.3 Parton Shower in SCET via Operator Replace-

ment

In the previous subsection, we presented our approach of using a series of EFTs, the

SCETj, to handle processes with a hierarchy of many scales. We will now use this

technique to calculate the leading contribution to a series of collinear emissions, as

occurs in the parton shower. Our ultimate goal is to incorporate corrections, but

as a starting point we want to easily reproduce the strongly-ordered configuration

Eq. (4.1). We can do this if we declare that in a shower, the ith particle decomposes

as:

(n -qi, j, qa) (A2 i 1, A') Q, (4.27)

and therefore has virtuality q2 ~ Q2A2 i. strongly-ordered i-gluon radiation in Fig. 4-

6. This is exactly the same condition as Eq. (4.24), which we used to define the EFT,

SCETj. Thus, it is natural to treat the ith emission in the theory SCETj.

To calculate the operators that describe i emissions in the strongly-ordered limit,

we will perform a series of matchings SCETj -- SCETji 1 . We will find that the most

efficient way to describe the process at LO is to be in SCETj for i-parton radiation.
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Figure 4-2: We construct the operators that reproduce strongly-ordered gluons
through a series of matchings and emissions. Horizontal dashed arrows refer to the
radiation of a gluon from a time-ordered product of the SCETj lagrangian with the
operator creating fields at the point marked by 0. Diagonal solid arrows denote the
matching the process to a higher multiplicity operator in SCETja1 .

Thus, we emit and match i-times in series, as shown by Fig. (4-2). At LO, we will

show that one can implement this using an operator replacement rule. In the case of

q -+ qg emission, it takes the form:

Xni -- C gB3 'J Xn 2 , (4.28)

where X, and Bn_ are the SCET fields associated with collinear quarks and gluons

respectively, and C is the Wilson coefficient whose indices are suppressed. Though

we do not compute them, there should be similar gBn1  + c'in 2 Xn3 + c"g

rules as well. In SCET, each collinear field carries the label n, which gives its direc-

tion of collinearity. Note that the quark field on the LHS of (4.28) has a different

one from those on the RHS. This relates to the stricter definition of collinearity in
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Figure 4-3: The opening angle of the light grey (blue) cone is A2 , and the aperture of
the dark grey (red) one is A'('+1). The particle with momentum p is collinear to both
n and n' in SCETi, but only to n' in SCETi+1 . RPI in SCETi allows us to move the
index direction, n, anywhere inside the appropriate collinear cone while keeping the
theory invariant.

SCETi+1 shown in Fig. 4-3. In order to perform the matching we will make use of

the reparametrization invariance (RPI) to change fields' index labels, n.

4.3.1 LO Shower Revisited

We first want to reproduce the strongly-ordered contribution to i-gluon radiation

from the quark in qq pair production. Our iterative matching procedure for multiple

EFTs takes a particularly simple form at LO (LO, NLO, etc. refer to the expansion

in A). For our standard example, we take the process e+e- -4 jets. Starting in QCD,

we couple the quarks to another sector via the operator, JQCD = g]q. This allows

us to avoid complications that come from the initial state such a backward evolution.

In SCET1 (which is equivalent to the usual SCET), matching to QCD at tree-level

converts the quark coupling to the following operator at LO: V0 F'y, which produces

q and q in different collinear directions, for details on the matching QCD to SCET1

see appendix B.2. Using the notation in Eq. (4.7) we write the SCET1 operator in

the following way:

VnoX =t (C(0)) 02,0,0) (4.29)
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where

(O1' '4(n,o )) (Xno)i(Xa)j , (4.30)

( 1, LO ) (Fj

and i and j are spinor indices. The subscripts 1 in Eq. (4.30) means that the fields are

defined in SCET 1. Our focus is on gluon emissions from the quark, and we always take

the antiquark in the same direction, n. We can therefore use the following shorthand

notation:

O 2,k,0) (ni, n'1/ n's n) -- (k *(ni, ni,. .. , n's (4.31)

where the subscript indicates that the operators are defined in SCETi. In the rest

of this chapter we will drop the spinor indices to make the notation more readable.

Using the above convention we write the operator in Eq. (4.29) as

no 1-'Xa = C{) 0 O0 )(no). (4.32)

The LO derivations are independent of the exact structure of P7. In fact, even the

antiquark is a spectator, and we could just as easily use 0(q) = nQ, where Q is

arbitrary. However, as we will discuss in sec. 4.4, matching QCD to SCET1 at higher

orders requires us to specify Q.

We start with single gluon radiation. In this case, shown in Fig. 4-4, the emission

amplitude is3

1, Lqg KO! (0)CETI I()0

LO = C O(0| Jdx T{LSE 1 (no) n0 qnogno qa) (4.33)

fin. (ql)g Knoa+(1no-n ±o P'FvT'(pq), (4.34)

where we have now labelled the collinear directions of the particles in the state

3All the amplitudes we write in this work refer only to the hadronic part of e+e- - jets, thus
ALj~5 is the amplitude of * - qqg.
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Figure 4-4: Vector labels for single (A) and double (B) gluon emission.

|qngn0ga) for later convenience. The SCET1 Lagrangian is given in Eq. (2.16). Here

we study the process in the center of mass frame with p, = (Q, 0, 0, 0) and the quark

(qo) and and antiquark (pq) along the directions no = (1, 0, 0, 1) and A = (1, 0, 0, -1),

respectively:

p Q nit, + Q h/

A no pq_,
Pq 2

q1 0-n noo ,~ _ _ .(-5
2 2i .2435

We decompose the emitted quark (qi) and gluon (ki) along the directions (no, 5-)

qY = n + (q1)"+ n , (4.36)

k''=ki nI+ k)o no - ki I
k1 = -n + (ki L + 2 5A/

The variables are defined in Fig. 4-4. By momentum conservation we have (ki)no- =

-(qi)noi, Q = qo = ki+ 1 and no- p = Q-no.q 1 -no-ki. We take all the

external particle on -shell, thus no - qi= -(qi)2 0 /#1 and similarly for no k1 . As

we discussed in subsection 4.2.1, [16, 17] showed that single gluon emission in SCET

reproduces the splitting function (Eq. (4.3)) and factorization behavior (Eq. (4.17))

of the standard parton shower. Take this simple behavior of a single radiation will

reproduce the shower for an arbitrary number of gluons.

We proceed to two-gluon emission as this demonstrates the benefit of going to a
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Figure 4-5: Left panel: Single gluon emission in SCET1 comes from the time-ordered
product of the lagrangian with a quark-creating operator, A = (0|T{LSCETi 0o) I
Right panel: For parent quarks which are too virtual for SCET2 , the gluon comes
from the central vertex via a higher-dimensional operator, A = (0|0(1)|qgq).

lower-scale EFT as more gluons are radiated. If ka1 and k21 are the perpendicular

momenta with respect to their parents of the gluons emitted first and second, then

strong ordering dictates that k2 < ka1 . SCET1 makes no parametric difference

between the two, as all perpendicular momenta are assigned a factor A. Since SCET2

has a stricter definition of collinearity (a cone size of O(A 2 )), it can distinguish that

of the two fields. This allows us to integrate out the parent of k1 , as its offshellness is

too hard O(Q 2A2) for SCET 2 and match to a higher-dimension operator. In this way,

we remove information unneeded to reproduce strong-ordering. By systematically

putting it back (subsection 4.4.2), we can improve upon the standard strongly-ordered

parton shower.

We want to describe the less collinear emission (ki) as coming from a higher-

dimension SCET 2 operator (Fig. 4-5), in this case C3)0 0 1 )(ni1 , n1). To find it,

we just need to find the SCET 2 operator that reproduces the amplitude for single

gluon emission in Eq. (4.34). As one can see, Eq. (4.34) makes explicit reference to

the label direction no. In SCET1, this labels the virtual quark (qo), the real quark

(qi), and the gluon (ki) directions. However, as we have discussed (cf. Fig. 4-1),

we have a tighter definition of collinearity in SCET2 , such that qi and ki cannot

share the same label direction with each other or qo, which is not even a propagating

degree of freedom in the theory. Spinors in SCET have a label dependence, and

so we can have different spinors for qi according to whether we are in SCET1 or
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SCET 2. This makes it difficult to match at the level of an unintegrated quantity such

as an amplitude. The momentum p decomposed along n' and h is This leads to a

technical complication in the computation, but one that is easy to surmount, making

use of finite reparametrization invariance transformations that allow us to rotate the

label vector while keeping the theory invariant, Fig 4-3. We define reparametrization

invariant in subsection 2.2 and we construct finite RPI transformation in appendix

B.1. We define new labels ni and n' as the basis where the final quark, and gluon

respectively have zero perpendicular momentum,

- ni

ki = Ii. . (4.37)

The momenta are especially simple in this basis, qi and ki are on-shell, which means

ni -q = 0. In SCET 1 , we are free to use no or ni to describe the qi quark

and ki gluon because we can use the RPI symmetry to transform between this choice

and other equivalent choices. Whatever choice we make the results for the Wilson

coefficients in the matching will be the same. Since ni is also a valid index for the field

in SCET 2 , we can do the matching computation using the same spinor, unl(qi), in

both theories. The following results show how to express a spinor in the ni direction

in terms of one in the no direction and how to rotate the vector no to n1 (n') such that

the quark(gluon) field with perpendicular momentum (q1)n01 (ki)no1 in the no-basis

has 0 perpendicular momentum in the ni1 (n')-basis:

Un0  Uni, (4.38)
4

no = n a + 2(qi)n- (qi) -

n a = ng + 2(ki),, _ (ki )2 _ _'

1 0 ki ki2

The two different ni-vectors' directions lie within cones of size A, and so we apply

the transformation in SCET1 . It is simple to check that in the new basis, (qi)n-1 =
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qi - (ni -p)A/2 - qi ni1 /2 = 0 and similarly for (ki), . In appendix B.1 we derive

Eq. (4.38) and other rotation formulas. Acting on Eq. (4.34), we get:

ALO = giin1 ( + O.Fv (n,4 (4.39)

where qo = qi + k1 . Terms with subscript no, ni, i are in the frame defined by

qo, qi, ki, respectively. Having changed bases, we can easily write the SCET 2 operator

that reproduce the amplitude (4.39) C2o()O1(ni, ni), where:4

O2 (ni, n') = (,ni)j gB"g (Xa) , (4.40)

1M U(o a filna
C2, LO =O no) (Q, p1t) - ng +# _ 4 E) 8[ni n'].

q 2 q1 41

(4.41)

We have included in the Wilson coefficient the leading log RG-kernel U1T"j that comes

from running down the SCET1 operator O ) from the scale Q to the scale ,1 - AQ

where we have the emission. From Eq. (4.10) we have

U " (no)(Q, 1i) = Aq(Q, 1), (4.42)

where we have simplified the superscript as in Eq. (4.31), that is

U 2 2,k ,o) (ni, n' . . / , ns ) = Ulk) (ni, n'1 . ..., n') . (4.43)

When ULL refers to an operator where all the collinear directions are distinct, we will

drop ns from the notation. In the interpretation of this factor as a Sudakov, we see

that it accounts for the non-branching from the scale Q to the p1 of the emission. We

can write the coefficient C l) only in terms of scalar product of ns, this is shown in

Eq. (B.53) in appendix B.3, for the running coefficient we can take 1t = V ni - n(|Q.

The functioneA2 [ni - n'] in Eq. (4.41) is a function that encodes the information

4 See appendix B.3 for more detail on this matching.
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that (ni -ni) < A2 . The SCET 2 operator (l) (ni, n') knows that the gluon and the

quark are not collinear in SCET 2, that is qi - ki > A4Q2 (or ni -n, > A4), but it does

not know that they were collinear in SCET 1. We calculated the coefficient C2,CL

in a phase space region where qi - ki < A2 Q2 (or ni - n' < A2) in the matching to

the SCET 1 0 0)(no) and this information must be encoded in the Wilson coefficient.

We encode that ni - n' < A2 using the E function in C0() For a LL shower we

can take 0 = 1, because there is not problem of overlap between different regions.

However, once we start considering power corrections, we will need E to turn on and

off particular regions of phase space. For later convenience we define the complement

to the E function as

)Ak[[ni.- 1 -- EAk [ni - nj|. (4.44)

Schematically, we have

E8Ak[ni -n] { (4.45)
0 ni -ni > A k

In principle, we could choose E to be the usual step-function, 0, but for practical

integration, it is better to define a smoothed step. We give an example of such a

function in Eq. (B.61), and plot it in Fig. 4-9.

The coefficient C0() has a power counting in A because of the presence of multiple

SCETs. This is different from what happens in a usual SCET matching where all

the coefficients are of order A0. C0() has an overall weight A-1 . We get A-2 from

the SCET1 propagator, 1/q2. The numerator is proportional to A and comes from

the vertex: (ni + 0 / The second term is O(A) because of the power

counting of ( 1)nol± A. Since n also gets contracted with Bag, it only contributes

its perpindicular component in the n' frame. From Eq. (4.38), we see that (no)± ~

no -ni ~' (k 1), 01 /k 1 ~ A. The vertex thus contributes the power of A corresponding

to the perpendicular momentum of the daughter with respect to its mother.

We can obtain C 00( 1(ni, n') from the original two-parton operator, C 0 o(no)O I (no),
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in two steps: first we multiply it by the running factor U) (no)(Q, pi) = Aq(Q, p 1),

where the Ai are given in relation to the RG kernel in Eqs. (4.9-4.10), and second we

apply the replacement rule

(Vno)- a (c'o(no))gi (,Vn1)gB , (4.46)

where c 0 is:

a go JC ~n + no' #
q~ K~" J4 e2E~1 K1.(4.47)cLO (no) =2 no +~ _A 82ni -n'1] . (.7

qO q1 4

The relation (4.46) is the operator statement of splitting in the parton shower. The

scale p1 defines the endpoint of running in the UV theory. As we evolve down,

more partons become apparent. We can see this here by the presence of two fields

where there had been one. It makes the basic aspects of the shower manifest. The

replacement rule affects the quark alone, and so we see that the amplitude for splitting

factorizes off from the rest of the process. The RG kernel gets modified to reflect the

changing no-branching probabilities. We can interpret the vertex portion of cio as

the "square root" of the splitting function. The spinor projector (goo/4) in Eq. (4.47)

rotates the spin-sum from #1 to #, in accordance with Eq. (4.2). The remaining part

of c 0 after stripping off the Sudakovs is:

Pa = no + (4.48)
qo q1

which squares to a trivial Dirac structure. Furthermore, even though pe(g/q) # Pa

because of the RPI rotations we performed (where p is defined in Eq. (4.15)), where

we square |pj2 (o/q) 2 =p 2 with respect the gauge polarization sum, d,, so

|P|2 = 2+ - (4-49)1

Just as before, including the z-dependence from the measure and spin-sum, we re-

cover the the standard splitting function cx (1 + z 2)/(1 - z). Thus, c~o weights the
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probability assigned to the expectation value of C2 0 (P)O 1 )(ni, n) appropriately.

Having computed the LO result for a single gluon, it is straightforward to proceed

to an arbitrary number of emissions. In SCET2 , we know that two-gluon emission

comes from the T-product of the lagrangian with C2l 0 (ni, n4)O 1) (ni, ni). We can

proceed by emitting a third with another SCET2 lagrangian insertion. The situation

is now exactly parallel to when we were considering two-gluon emission in SCET 1.

Once again, we are carrying around more information than we need to reproduce the

strongly-ordered contribution, so we should integrate out the scale QA2 to get a

new theory, SCET3 , that has a two-gluon operator, C3 0 (n2 , nI, n'2)O2 (n2, n', n')

at LO. Similarly to before, the amplitude has the contribution,

Ag C2o() )(01 dx T{LsCET2()(1) (n2 , ni' )}nI29n29n'g qA). (4.50)

The vertex for gluon emission in the SCET 2 lagrangian is identical to that in SCET1 .

Thus, integrating out the parent of the Lagrangian-emitted, second-most collinear

gluon, we obtain a two-gluon SCET3 operator exactly as before. Similar to the

matching SCET1 to SCET 2, we can obtain the SCET3 operator C2 0 0 2 )(n2, n4, n')

from the SCET 2 C2() )(ni, n), just multiplying it by the running factor for

U = M (po, pu1) A 1 2(po,1) , (4.51)

and applying the replacement rule

(vn2)i - (c' 0 (ni))i (/n3)igB, (4.52)

41 a+(2)ninl #( 2clo (ni) =- 2n" + _ A4 [n2 - n2,q, ( 2 4

where n2 and n' are the direction where the quark and the second emitted gluon are

collinear, they are defined in appendix B.1. One can iterate this procedure to obtain

the LO result for N-gluon emission. If we use the replacement rule N - 1 times we go
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qN- 1

qN -kN

Figure 4-6: Left panel: our kinematical convention for a strongly ordered process.
Quark momenta are denoted by qi and gluon momenta by ki. Right panel: power
counting of the LO coefficient in SCETN. The powers of A with negative exponents
refer to the propagator contribution to the amplitude. Those with positive exponents
refer to the perpendicular momentum of the gluon with respect to its parent, since
SCET vertices are proportional to it.

down to SCETN operator C ON- N+)(UN ri1 - - N+ 1 ), after which Lagrangian

emissions are no longer distinguished as separate particles. We have5

N-1

qk-11 ±/ Ik k1'f~ b/k Ak[rk.n)

CN(N , 1, N-1) =nN .53
(k=1

N-1

CLL - 1 yk (nk-1)I/'

k=1

an qk-1 a i"-n k k-
cLOCek- 2 k-1 - k1k A2k Knk *S

qk-1 4k

UL~)(yk_ 1, Ak) = Aq(Pk_1, yk) (Ag(k_., k))(k-)/2,

Where the variables for i emission are defined in Fig. 4-6, yo =Q, yk = I nk - n'kQ

and qk ( qi + En k,) . nk and n' are the directions where the quark qk and

the external quark kk have not perpendicular component, they can be related to

nk_1 through reparametrization invariant (cf. appendix B.1). We can extend the

argument we used to calculated the power counting of Cl) to the SCETN coefficient

in Eq. (4.53), just counting the contributions form vertices and the propagators,

5 Because we only analyze gluon emissions from a quark, we have at SCETN exactly N - 1 gluon
emissions, so the SCETN operator is ON1.
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C"'-1) has a power counting N 1 /A-i = N(N-1)/2, see Fig. (4-6).

Similarly to the discussion above Eq. (4.49), we can extract the vertex part of c"

to define Pok. We get that
1+ Z 2

|P~k|2 _ z , (4.54)
qkl nk-1

where zk - qk/qk-1. Thus, we get that the amplitude squared goes like the factorized

product of the appropriate 1 -+ 2 splitting functions. Since 0 -) (ni1, n', ... , n'_

is just built up from the repeated use of Eq. (4.46), we see that it requires no added

information after we compute the first q -* qg splitting. Thus, what we need to pass to

a shower algorithm comes just from single real and single virtual gluon computations,

as we list below in Subsection 4.3.3 in Table 4.1. Collinear splitting is entirely handled

by the splitting rule in Eq. (4.46) at LL order.6

We have seen that to describe LO parton shower we only need operators with Xn

and Bn fields, but when we go to NLO, we will see that we can also have operator

with PnI. In the final SCETN where all Xn and Bn fields have their own ni directions

we do not need operators with factors of PiLn, in the operator. Such operators encode

redundant information that is specified by RPI. That is, in SCETN we only have the

operator O($- 1
)(nN, i1, - , N1) and all the corrections are encoded in the Wison

coefficients.

4.3.2 Soft emissions

SCET describes soft degrees of freedom using soft quark and gluon field: q,(x) and

A , (x). In this work we focus on fully differential cross section where we can always

distinguish collinear and soft modes, but in an integrated cross section we have to

6 It is straightforward to see that we do not have additional contributions at LO. Firstly, consider
the possibility of operators that do not take the form of a single-field replacement rule. These
would depend on the details of the hard process that produced the quark in the first place and
could threaten the factorization of the shower. In fact, we will get such terms when we match QCD
-+ SCET 1, but they are always suppressed, as we discuss in sec. 4.4. Returning to single-field
replacement, let us consider matching SCET1 -+ SCET 2 , as results in this case will generalize to all
SCETi. Rule (4.46) sends Xn, 01CB Xn 2 - At LO, we cannot get such a replacement involving
mutliple gluon fields, Bng, as this implies that we have integrated out multiple, hard (~ QA2)
propagators. Such a contribution would not be strongly ordered, and is suppressed. We will see in
sec. 4.4 that we do have such contributions at higher orders.
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implement soft emissions with some form of zero-bin subtractions [78] to avoid in-

terference between soft and collinear radiation. As we have seen in subsection 2.1,

the collinear sector and the soft sector couple through the covariant derivative A2,

iD' = i0P + gA , (Eq. (2.13)) acting on the collinear fields. At LO the collinear

particles only couple to the n -A, component of the soft gluons and the soft-collinear

factorization guarantees that we can absorb all this couplings into Wilson line Y(x)

along the direction of the collinear particle, Eq. (2.15). In SCET this is accomplished

by making the field redefinitions in Eqs. (2.14), so the new collinear fields no longer

couple to soft gluons through their kinetic term. The outcome for the composite fields

considered here is that

Xn - YnXn, B a YnBt . (4.55)

Note that here we consider nonabelian soft interactions which is why the soft Wilson

lines do not cancel for the Bt field.

In matching SCETj to SCETj+1 we will only consider external soft modes in

SCETi+1 with momenta kl' ~ QA2 (i+1). These modes are contained within the soft

modes in SCET. We do not consider particles with soft momenta k" - QA2 i that

could not be encoded by onshell modes in SCETi+1 . Since such modes are forced to

have larger momenta than the soft fields in SCETj+1 they are not responsible for IR

divergences, and any contributions from momenta of this type can be encoded in the

Wilson coefficients of our SCETj+1 operators with its field content.

In a given SCET after making the field redefinition the effect of soft gluons is

encoded by Wilson lines Y, in the operators, with the form

N

nYOtN U Yn By Y O In~xi (4.56)
k=1

In the context of SCETj, the angular ordering property of the soft emission and the

coherent parton branching formalism for soft emission with multiple hard partons
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emerge naturally. If we take the Fourier transform of Y(x) we get

(-)" n - A41 -.-. n -Aam
Y = 1 + z . Tam ... T 1  (4.57)

mn! n -kin -(ki+k2) --.n - (E ki)m=1 perms

where ki, k2, ... kn are the momenta of the gluon fields. The eikonal structure of (4.57)

leads to angular ordering. If a collinear particle with momentum qj in the ni direction

emits a soft gluon of momentum k8, the amplitude acquires a term proportional to

Fsoft- - + O(A), (4.58)
n-k, q -k,

where E, is the polarization vector of the soft radiation and q' = qn'/2 up to power

corrections. If An(q, q2, ... , qn) is the amplitude to emit n collinear particles with

momenta qi, q2, -21 - q,n and An+1 the amplitude with one more emission k, in the soft

region, we get An+ 1(qi, q2 , ... ,q nik) - An(qi, q2 ,- - - , j)= 1 Ci q -Eqi - k, where

Ci is a color factor. For the cross section this implies

don+1 = do-dEs C, Wi, , (4.59)E, 27r 27r .'

where dQs and E, are the element of solid angle and the energy of the emitted soft

gluon, C, 2 is a color factor. Here

WiJ - (4.60)
qj -k, qj- k,

is called the radiation function. After integration of Wjj over azimuthal angular

variables the soft gluons only contribute when the gluon is confined to the cones

centered in the direction of the particle i or j, and are hence angular ordered.

To see how coherent branching emerges we consider the effect of soft gluons in

our leading order matching between SCET and SCETj+1 . If we consider effects

encoded by operators with exactly the same collinear field content in SCETj and

SCETj+1 then graphs involving soft gluons agree and there is no contribution to the

matching. If we consider instead the calculations that lead to the LO replacement
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rule Vno -+ CLOn1B' , then the soft gluons are encoded by

SCET V: inoYnt SCETj+1 : CLO ni Y- Yn/ B' (4-61)
o i i 1 nil nl

For soft gluons at wide angles relative to no, ni, and n' the effect of attachments to

Yt YnI are power suppressed because soft attachments to these two lines cancel up to

terms that are power suppressed by ni - n' ~ A2 . The remaining attachment to Yt

looks the same as attachments to YJ at leading power since no -n ~ A2 . Thus wide

angle soft gluons do not resolve the substructure revealed by matching to SCETj+1

and effectively only couple to the overall color charge of the parent quark .no. Soft

radiation that is close in angle to ni and n' resolves the split quark inl and gluon

B- , compensating for the ni -n' suppression by additional collinear singularities in its

propagator factors. Thus the coherent branching formalism for soft gluons emerges

naturally for amplitudes in our SCET picture.

From the SCET point of view it would be natural to distinguish soft and collinear

radiation in the shower and treat them independently, being careful not to double

count. For simplicity all available shower codes treat them in a coherent fashion.

The effect of accounting for soft coherent branching in the shower typically leads

to modifications of the Sudakov probability factors (see for example Ref. [44]), and

effects the choice of evolution variable or by adding additional vetoes. In the context

of SCET the implications of this were discussed recently in Ref. [19].

4.3.3 Summary LO Parton Showers

In table 4.1 we summarize results for the mapping between the LO/LL parton shower

at and our SCETj picture. In the first column we put the elements needed for show-

ering, and in the central column the translation to elements in the SCETj setup. The

usual splitting function is related to our replacement rule n a cLOn, Bj, that

in turn is related to the SCET2 coefficient of the operator O(). The LL Sudakov

comes from LL running factors related to the one-loop cusp anomoulous dimension

as in Ref. [17]. At leading order soft emission in SCETj is taken into account adding
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Shower Ingredients Quantity in SCETj Found In:
Splitting function Replacement rule Eq. (4.46)

LL Sudakov factor One-loop cusp Eq. (4.10)
anomalous dimension

Soft emission Soft amplitude Eq. (4.59)
Evolution variables g, ni - n_

Table 4.1: Mapping between parton shower and SCETj at LO/LL.

soft Wilson lines Y into our- operators. This leads to angular ordering and coherent

branching, which must be accounted for with modifications to the shower to account

for the soft singular regions. Finally, showers are constructed with different choices

of evolution variables and the choice effects the structure of power corrections. In

SCET we have seen that we can write all coefficients in terms of the large momenta

(q) and dot product of ns vectors (ni -nj), which are natural variables in the SCET

picture. At LO/LL the translation to any appropriate set of evolution variables is

straightforward. Beyond this order one must systematically account for additional

power corrections induced by changing variable from qi and ni - nj to the desired

evolution variabbles for the shower.

4.4 SCET Power Corrections to the Shower

As we have seen in the previous section, we reproduce the usual parton shower by

matching collinear gluon emissions to increasingly lower-scale EFTs, the SCETj. Our

goal is to catalog the leading corrections (in A) to the cross section for the emission

of an arbitrary number of collinear gluons to a quark. By this we mean all amplitude

terms to LO and NLO, as well as those at NNLO that can interfere with LO. As we will

argue in subsection. 4.4.4, in many cases of interest, there is no LO/NLO interference,

and so we focus on NLO/NLO and LO/NNLO. Just as in the strongly-ordered case, it

is convenient to integrate down to SCETj+j when describing the emission of i-gluons.

We obtain these corrections by doing our matching computations at higher order. We

will show that there are two distinct types of subleading matching, and they have a

different physical interpretation:
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* One set originates in matching QCD -- SCET1 at higher orders. This generates

a set of subleading terms that remain suppressed as we move down to lower-scale

SCETj's. We call them hard-scattering corrections as they involve the details

of the hard-scale process that created our initial hadrons. Also, they are most

important for partons radiated closest to the original vertex.

" The other set comes from the subleading matching SCETi -+ SCETi+1 . They

involve processes described by the SCETi lagrangian, but ones that get inte-

grated out into higher dimension operators at lower scales. These corrections

are ubiquitous. They do not depend on the hard-scattering details, and we can

determine them for arbitrary SCETi -+ SCETi+1 once we have found them in

SCET1 -+ SCET2. Furthermore, they relate to known 0(a,) corrections to the

q -+ qg splitting function. For this reason we call them jet-structure corrections..

Determining the above to NLO in the cross-section will only involve single and double

gluon emission. Thus, we will never need to compute in a lower-scale theory than

SCET3 . We perform all the QCD-+SCET1 -+SCET 2- SCET 3 matchings for these

amplitudes necessary to calculate the corrections in appendices B.2-B.4. Below, we

discuss the final results for the corrections, with Subsection 4.4.1 focusing on the

hard-scattering corrections and Subsection 4.4.2 on the jet-corrections ones. For these

portions of the work, the matching is only done at tree level, though formulas in the

appendices include one-loop RG kernels. We discuss the effects of LL running on

correction terms in Subsection 4.4.3. Lastly, in Subsection 4.4.4, we will study the

amplitude squared and we will see there is a great simplification of the interference

structure in SCETN. We will also describe steps going from our subleading operators

toward the systematic improvement of the parton shower to NLL.

4.4.1 Hard-Scattering Corrections

Let us begin by examining the matching QCD-+SCET 1 for single gluon emission

collinear to the quark. For this case, all corrections are of the hard-scattering type.

Unlike LO, corrections can have dependence on the process that creates the qq pair.
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For concreteness, we will consider the coupling of QCD quarks to the vector current

JQCD - yq. The matching is performed in the centre of mass frame with the

initial virtual photon with momentum p, = (Q, 0, 0, 0). The full details of matching

calculation for QCD to SCET1 is performed in appendix B.2. To reproduce the full

QCD current J'CD, we need an infinite tower of SCET1 operators increasingly higher

order in A. However, to get the required amplitude to NNLO, we only need four:

AtoNNLO O fdX K0TISCET1 (x) 0(O) (no) } I qnognoga)

+ C 1 (no, no)(0 0() (no, no) qnognega) + C{-(n)o, (no)(0|T 1 (no, no)IqnegneqF)

+ C 1) (ni, n') (0 0(1) (ni, n') quigniqf), (4.62)

where

O1" (no)= ;no Xa , (4.63)

0(1) (no, no) = Vno [g'aoi, a 1 ,

71(1 (noI no) = -Vno I gB- Onl Xa ,

0' O(ni, n') = V, 91 g 1 Xi -

We gave the expression for C 0) in Eq. (4.41). The amplitude from the operator

O 0 )(no) is shown in the first diagram in the SCET1 column of Fig. 4-7, those from

(1)(no, no) and Tj1( (no, no) in the second, and that for 0(1)(ni, n') in the third. We

call O(' (no, no) and T 1) (no, no) "two-jet" operators as they are labeled only with two

distinct collinear directions (no and h) (for the direction of the antiquark we do not

put a symbol following the convention in Eq. (4.31)). They describe a gluon collinear

to the quark. We obtain the coefficients C(1 (no, no) and Cl-(no, no) by expanding

the QCD amplitude in the limit of small gluon momentum transverse to the quark's

direction with the usual SCET parametrics: (no, ki, k1 o) ~ (A2 , 1, A)Q. There are

an additional set of two-jet configurations corresponding to the gluon being collinear

to the antiquark. These are trivial to obtain by charge conjugation and we do not

discuss them separately here. The operator O(1) (ni, n'l) is a three-jet configuration,
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QCD SCET 1  SCET 2

ni n'j

Figure 4-7: Matching QCD to SCET1 to SCET2 for one emission collinear to the

quark direction. We depict the operator structures that lead to this process in each
of the the three theories. The QCD contribution is standard. In SCET1, we either

emit a collinear gluon through the time-ordered product of the Lagrangian with an
two-parton operator, or from three-parton operators. In SCET2, this configuration

only arises from a higher-dimension three-parton operators.

as it describes three distinct directions where the quark, the gluon and the antiquark

are far apart according to the definition of collinearity in SCET1. Whenever we have

an operator where each field has its own index label, we can chose for the purpose of

matching the ni such that they are exactly aligned with the external particle momenta.

The coefficients C(1 (no, no) and C(1 (ni, n'), are discussed in Eqs. (B. 36) and give:

CI (no no) = I(n - )7 ,

C(' (no, no) = _ Y - Y 7NO744 - - g9yg ,N4.4
qiki1 q1Q

We use the same kinematic variables defined in Fig. 4-4. For C l) (no, no) and C~l (no, no)

the initial current is not a spectator, so neither term is simply proportional to the

- " that we started with. This dependence on the details of the rest of process is

a characteristic feature of these hard-scattering corrections. We give the coefficient
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C(') (ni, n1 ) of the operator with quark, gluon, and antiquark in distinct collinear

directions in Eq. (B.39).

Going to SCET2 for single gluon emission is straightforward. The basis of oper-

ators needed to reproduce the amplitude (4.62) is equal to (4.63), but where they

are defined in SCET 2 instead of SCET 1 : Of (no), 0 (no,rno), T)(no, no), and

0(1) (ni, n'). As the computations get more complicated with subsequent emissions,

we wish to minimize our effort by only including those terms necessary to give the

corrections to a shower algorithm. This means we are only interested in the following:

1. Since we construct observables by squaring and integrating amplitudes, we will

need to keep those NNLO contributions that can interfere with LO. These give

terms at the same order as an NLO operator squared with itself. We do not

compute NNLO amplitude terms which have zero interference with the LO

amplitude. A list of the necessary computations is found in Appendix B.3.

2. Our ultimate goal is not a complete SCET theory from which one can do

computations, but an improved shower algorithm. In Table 4.1, we give a

list of those ingredients needed to construct a map between SCETj and a LL

parton shower. We will augment the map with items needed for corrections

(Table 4.2 in subsection 4.5), but will not calculate contributions which only

contain redundant information for the shower.

The latter point has important implications for the sorts of operator structures we

need to consider. If we wanted to do computations in SCET 2, then of course we

would need all operators and Wilson coefficients to the order we are working. As

discussed above, single gluon contributions in SCET 2 where the gluon and the quark

are collinear at O(A2 ) (i.e. 0') (no, Ino) or TP (ni, ni)) correspond to a quark which

does not split until after the scale of matching SCET1 -+ SCET2 . However the

corresponding no-branching probability is already determined in SCET1 , so the coef-

ficients of these operators in SCET 2 are not required. Thus, we only need to calculate

those single gluon contributions where each field has its own index label in SCET 2,

meaning determine the Wilson coefficient C(1 (ni, n') of (l) (ni, n').
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The matching equation for C(') (ni, n') in SCET 2 is:

C~0)0 (no) Jdx4(|OT{ LSCET1 (x)O0 (n) qni g n + Ca (no, no)(0 0 (no, no) qn gn1

+ C (ni, n')(0|0((ni, n') lg qa) + C((no, no)(0 T (no, no)|q, g )

= CF (ni, n')(00)(ni, n')qn, gn ) (4.65)

It is convenient to decompose CF1)(ni, n') as

C2 =2 + CLO L NLO, -(466)

where C21O is the coefficient multiplying (0|OI) (ni, n') qn, gn, gf) that reproduces

the second line in Eq. (4.65), C(1)La the third line, etc. C(1) was calculated in (4.41)

using RPI to rotate objects in the SCET1 amplitude such that they can come from

SCET2 operators. The third and fourth terms give NLO coeffcients, which we can

calculate in a similar manner to Cdo. Their values are derived in Eqs. (B.57) and

(B.59):

0 (1)H,a 1 kin / ~n ,
2,NLO -( 11 2 02 1 (i + 2n, 1 (4.67)

C(1)H,b _ 2 A
2,NLO k -Y

[( + 2(n.p)
yep q -gn + -n -" 7"'1],

(n-p)Ici7n J1+P(ni-n)ik
C2,NLO (2 (n 1  1 1na

K1 / , W A - M+ In - AAvi-5 (ni-n')L) )8\2[ni -n'].

Here ni and ni are aligned with the direction of the quark and the gluon for the

matching, as in Eq. (4.37), and vi is defined in Eq. (B.14). In Eq. (4.67) we have not

displayed the running factors that come from evolution of the SCET1 operators. The

SCET1 operators in Eqs. (4.63) can have different running factors, in particular the

two-jet and three-jet operators have different LL evolution. Therefore it is important
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Figure 4-8: Plot of the ratios of the amplitudes squared for -y* -+ qqg for RLO =

A OA CD (blue) and RNLO LO,2-jet (red) versus 1

for k1/go = 0.4. The amplitudes are evaluated without running factors.

to decompose the coefficient CF1) as in Eq. (4.66) so that we can keep track of which

SCET1 evolution factor to include for each one. The running of these operators is

discussed further in subsection 4.4.3.

To illustrate the effects of including hard-scattering corrections, in Fig. 4-8 we plot

the ratios RLO O CD and RNLO O toNNLO,2-jet)/ A QCD

versus the gluon perp momentum. Here |Aq|2CD is the QCD amplitude squared for

one-gluon emission, JAqqg 2 is the SCET2 amplitude squared for one-gluon emission

from the LO coefficient C(3)001) (from Eq. (B.62)), and |Aqqg|2 is the NLO

amplitude squared for one-gluon emission in the two-jet region that comes from the

coefficients C [ and C2NNLO (given in Eq. (B.65)). Notice that including correc-

tions up to NNLO in the amplitudes extends the region where tree-level SCET1 and

QCD agree. The advantage of using the one-gluon SCET amplitude over QCD is

that it is incorporated into shower language of branching and no-branching, and also

automatically avoids double counting with LL emissions.

In the above computation we have seen that the SCET2 coefficient CF1) and cor-

responding operator 0(l) carry results that occured in several different operators in

SCET1 . This operator carries the information that its fields are in distinct equivalence
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Figure 4-9: Plot of E(X)A,a defined in Eq. (B.61) for A 5 and a = 0.8. The
parameter A tells where the function switches from 0 to 1 and the parameter a how
fast it does it.

classes, {[n,]}, with separations > A4 . However it does not know just how inequiva-

lent they are, whether they are separated by ~ A2 or by ~ A0 , which is information

that was stored in the operators in SCET1 . In SCET2 this information must be stored

in the Wilson coefficient in the matching procedure. For the case of C(') (n0 , no) and

C(1) (ni, n'), we need to keep their contributions separate as they correspond to para-

metrically distinct regions of phase space in SCET 1. To enforce this distinction, we

use a Wilsonian cutoff on the dot product of collinear directions for different fields

with the smoothed 6-function, , [ni, n'] described in Subsection 4.3.1. The notation

means that E -+ 0 once ni -n > A', and = 1- 0 behaves in the opposite fashion.

Therefore, CL)H o cA2 [n1 , nI] and C2), ocC A2 [ni, n/], as these enforce where

in the SCET1 phase space these contributions originated. In appendix B.3, we define

a smooth 0 function in Eq.(B.61), which is plotted in Fig. 4-9. It depends on two

parameter, e(x)A,a, The parameter A tells where the function switches from 0 to 1

and the parameter a how fast it does it. By virtue of its appearance in the Wilson

coefficients this E function merges the two-jet amplitude squared with a quark and

gluon in one-jet, (|Aq4gl|O + Aqj| 1NNLO,2-jet) with the three-jet amplitude squared

A4 NNLO,3-jet that is the amplitude squared that come from using the coefficient

C N Oj. The full expression is given in Eq. (B.64). As shown in Fig. B-3, the theta
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Figure 4-10: Merging of the two-jet and and three-jet amplitudes squared for * -
qqg process using a smooth theta function. Plots of the two-jet amplitude square,
A O tNNLO,2-j (green), three-jet, |A |NLO,3-jet, (blue) and sum (red)

versus |ki, I I. The amplitudes are evaluated without running coefficients for k1/ 0 =
0.4.

function smoothly merges the two squared amplitudes.

With two-gluon emission, the SCET1 graphs will include jet-structure corrections

in addition to hard-scattering ones. It is straightforward to distinguish the types

as the former result from taking time-ordered products of the SCET1 Lagrangian

with operators generated by the LO replacement rule, Eq. (4.46), while the latter

will come only from terms involving a power suppressed SCET1 operator. To fully

identify the subleading contributions to two-gluon emission, we must match down to

SCET 2 where the LL contribution is first uniquely identified. We already know that

the LO result comes from two applications of Eq. (4.46).

In Fig. (4-11), we show the contributions to two-gluon emission in QCD, SCET1 ,

SCET2 , and SCET 3. The first column in the SCET1 category correspond to the

jet-structure corrections to be considered in the next section. In the second col-

umn we have a set of hard-scattering corrections from taking the T-product of the

SCET1 Lagrangian with the suppressed single gluon operators we calculated above

in Eqs. (4.64), C O1 and C17 1

In considering the basis of operators in SCET 2 we do not need operators such as
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lead to this process in each of the theories. Gluons drawn away from the central vertex

are emitted by the renormalizable lagrangian in that theory, while those coming from

the vertex are due to higher-dimension operators.

T1)(n1, n') since, Pn,_ Bni =L 0, with n' lying along the gluon momentum. The

coefficient of such operators are determined by RPI, and we can use RPI in SCET2

to make a coordinate choice where they are not necessary. As mentioned above in the

single gluon matching section, our interest is only in calculating those terms needed

to improve a shower algorithms, which precludes us from considering operators such

as T-1 M(no, c) or Oi) (no, no). Therefore, for double glu fo w only need to

calculate the coefficients of the following operators

O(ni1, n')= ini Xa(.8

O(,(n2 , n)= ying g xeu,

O(2)(n2, n', n')= Vn2g g1' B 0 " Xil ,

O2) (n2, n', n')= Xn2gB' I 9B'3 Xa-

Thus in SCET2,we are interested in two gluon operators where two fields can have the

same label. When we pass to SCET3we can restrict our interest to only 02) (2, n1, n'2),

the operator whose collinear fields are all in distinct light-cone directions.

The coefficients of te)(ni, n') needed to compute the leading power corrections
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are given in Eqs. (B.59) and (B.57). We get an NLO contribution to the two gluon

amplitude by computing the matrix element, CNLO SCT2 }qgg) (fifth

column in Fig. 4-11). The power counting of the contribution does not change as

the gluon from ESCET2 gives a vertex x propagator factor of A--, which is the same

as LO. There are also coefficients we need from two-gluon matching calculations

for the operator 0O2) (sixth column in Fig. 4-11). Putting in the index structures

on the fields, these include C 2  O(n2, ni, n') for 02) (n2, n2, n), C 2 $O(n2, n'1, n)

for Of (n 2, n', ni) and C(2 nLO(2, r 2, r2 HNLO(n2, n 2 , r2) for O 2 (n 2, n', n').

Since only the last one multiplies an operator that interferes with LO, it is the only

one we will need to keep track of to NNLO for the hard scattering. (We will see in

the next subsection that there are jet-structure corrections to all three terms in the

sixth column at NLO.) All other hard-scattering contributions are beyond the order

we need. Thus we only need to compute C 2 )H(n 2 , n 2, r) given by the matching

equation

C1) Jdx(O|T{LSCETi (x)0 (no, n0) 29 q ngg n (4.69)

- CLO(2, (1 J)SCET 2( (2, n')1qn2 9n 2 gni)

- C(2)H (r2, n 2 , n) (n2 n2, n29 ,

where we subtract the time-ordered product graph in SCET 2 from the time-ordered

product graph in SCET 1. The result for C 2)H(n 2 n2, n') is given in Eq. (B.104).

It is easy to see why 0(2) only gets hard-scattering contributions up to this order.

By defintion, hard-scattering has to involve a suppressed operator from the QCD

-± SCET1 matching, and so we begin at NLO at the lowest order. Including a second

gluon, but demanding that we cannot write it as coming from a SCET2 lagrangian

emission takes us to one order higher, namely NNLO.

All the contributions we have discussed so far have come from the hard-scattering,

single-gluon, suppressed operators in SCET1 . There are also those with two gluons.

That is to say a process where neither gluon comes from the SCET1 Lagrangian,
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represented by the diagram in the third SCET1 column in Fig. 4-11. One example is

double emission from the antiquark, as shown in the third QCD graph of Fig. 4-11. We

know from applying Eq. (4.46) twice, that LO for this process is at O(A- 3 ) counting

only vertex x propagator factors, as these are all we need to compare different qqgg

processes. We readily see that double antiquark emission is ~ A0. This follows from

the same arguments we give above for single emission from the antiquark. Thus, they

are N3LO. This is higher order than we are analyzing. Besides antiquark vertices, we

also have subleading emissions from the quark in QCD that arise from the suppressed

SCET-spinor portion of the QCD quark propagator (cf. appendix B.2). In fact, we

have already such contributions for single emission. However, if both emissions come

from the suppressed propagator, once again, this is ~ A0 at lowest order, and so

we can neglect it. Mixed antiquark/suppressed spinor contributions are also N3LO.

Thus, we do not need corrections to double emission collinear to the quark if they do

not involve at least one SCET1 Lagrangian insertion. We can extend this argument

to further emissions without using the SCET1 Lagrangian. Once again, these will
i(i+1)

go as O(A0 ), while LO goes like O(A- 2 ). Thus, to the order we are working, we

only need the single gluon hard-scattering correction (plus Lagrangian insertions).

Furthermore, we only needed the NLO Wilson coefficient CF1), given in Eq. (4.64).

4.4.2 Jet-Structure Corrections

The jet-structure corrections only involve contributions from the SCET1 Lagrangian.

These arise from the graphs in the first SCET1 column in Fig. 4-11. We specifically

designed our leading order replacement rule in Eq. (4.46), so when it is used twice

it only contains that part of double emission corresponding to the leading strongly-

ordered limit. This occurs for the gluons having collinearities ~ A, A2, respectively.

However SCET1 also describes other kinematic situations and in this section we com-

pute the corrections from these regions.

The prescription for obtaining two-gluon jet-structure corrections is to compute

the double gluon emission amplitude in SCET1 coming from two lagrangian inser-

stions and take different limits on the relative collinearities of n2 , n', and n', where
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these labels refer to the null vectors exactly proportional the corresponding particle

momenta. We can define:

A g = Co(0) fdzd 2 (0|T{LSCET 1 (x1)CSCET 1 (X2) 0 0) n 2 9n;gia), (4.70)NO 1, LO1 q2 'g/0I

and then calculate,

lim A'J =(2) o(n 2 , n', n2)(0102 fqn2gn/g q) (4.71)
2,NL

limA S =2,d (2 n'1Ln1)02 |q2gnlgg f ) (.72

lim A qqgg - C-([) T2

+ Co2 (n2, n2n, n) (0O 2) |qn2 gn1 gn' gq) (4.73)

We make a few things about the above equations. Firstly, there is a four-parton

correction operator that has the same index structure as LO, (ni2 , n2 , ni). We cannot

obtain it as a pure limit of Aff, and we will need to subtract off the LO contributions.

Secondly, the limit in Eq. (4.71) does not lead to an expansion of any part of A as

the scaling of the n-indices' dot products is exactly that from SCET1 . Even though

it just gives back the same expression as the SCET 1 amplitude Ag6 the SCET2

result for CO2f 0 (nz, n4, n'2)Of2 tells us something more. This Wilson coefficient is

proportional to [n4 -2 n'2}n[in2 n'2), where the 8's only have support outside the

phase space region of Eq. (4.72), as well as the strongly-ordered limit of Eq. (4.73),

(see Eqs. (4.45) and (B.61) for the defintion of 8, 8). The full results for the Wilson

coefficients shown in Eq. (4.73) can be found in Eqs. (B.80), (B.94), and (B.102).

At the amplitude level, given a particular phase space configuration for an external

state, we will only ever need one of these terms for double gluon emission in SCET 2 .

Squaring the result is straightforward as there will be no interference between them.

We will now examine how to improve the matching of SCETq to SCET(i, and

show that the jet-structure corrections computed here generalize to a matching result

for this case. We first notice that the first two operators above do not interfere with
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the one giving LO, as they have different index structures. The subleading term in

Eq. (4.73) does inhabit the same region of phase space as C2,) 001, but as we will

argue in Subsection 4.4.4 LO/NLO interference cancels out of most observables of

interest. Before proceeding, we note that our description of corrections to two-gluon

emission gets even simpler when we match to SCET3. In SCET 3 the only operator

we need has distinct collinear directions for all fields. Thus, we can write all hard and

jet corrections to two-gluon emission we have found in the coefficient, C32) for the

operator O (n2 , ni, n'2) = nXa, as we do in Eqs. (B.110). The same

will hold for i-gluon emission in SCETi+1 . Our NLO jet-structure operators therefore

have the following form:

C (n2i, i)O2) = h g9 1 (4.74)

where h!" is given by Eq. (B.118). Here I {1, 2, 3} and we distinguish the co-

efficients C(2), depending from which SCET 2 operators they come from in ordereffciets3, NLO

to properly account for their renormalization group evolution factors in SCET2.

For I = 1, it comes form the SCET 2 operator 0 2 ) (n2, n', n), for I = 2 from

0 2) (n2 , n', n) and for I = 3 from 0 2) (n2, n2, n).

When doing the LO matching for SCETi to SCETi+1 , we found that the replace-

ment rule to go from SCET1 to SCET 2 generalized to the case of i-gluon strongly-

ordered emission. Similarly, we can take the above operator, Eq. (4.74), and recast it

as a replacement rule for our original current insertion, C0) 0(0) It takes the form

of a 1 -+ 3 replacement rule:

+no a h 3 in 2 gB gI, (4.75)

with contributions from I = 1, 2, 3.

If we want to consider the NLO radiation of i+1 gluons, we can perform a very

similar matching between SCET and SCETi+2 to the one above for SCET1 - SCET 3

to obtain an operator 0 (')j 0 (+. Since the first (i - 1) emissions are strongly

ordered, they completely factor out. Thus, the amplitude for the emission of the
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final two gluons will be identical to that for simple two-gluon emission. We can

therefore take the (i - 1) gluon LO operator, C(1)0( , and use the replacementi, LO i ) n s h elcmn

rule in Eq. 4.75), to obtain C+LO(I) Our NLO replacement rule correspondsi±2, NLOI i+ plcmn*ueorsod

to violating strong ordering at any location in the shower, either by taking the jth

and (j + )th gluons to have the same parametric collinearity with respect to their

parents, kj+iu ' kgj, or by including the region of phase space where the propagator

between them is hard, and so we get no collinear divergence as the quark and second

gluon become collinear. 7

It is not difficult to see that this gives an NLO contribution for any j. If we have

i-gluon strongly-ordered emission, the propagators and vertices will go as A-i(i+1)/2,

where the Jth gluon contributes A . If we violate strong ordering as we mention

above for any two gluons, the product of their vertices times propagators goes like

A- 2
i instead of A-( 2 i+). Thus, we can insert J<, -+ h, n 2 gBn, gBj, instead of two

successive x -+ CLOni Bng's in operator matching as a "defect" in strong ordering

at any stage and obtain an NLO jet-structure correction. The 0-functions contained

in the Wilson coefficients, C(Od, allow us to read off at which step in the shower we

violated strong-ordering. In appendix C, we show how an integrated version of h3

is related to the subleading splitting function which serves as a cross-check on our

computations.

4.4.3 Operator Running

Up until now, our discussion of matching has taken place mostly at tree-level. Con-

necting to the leading-log parton shower, however, also requires that we include the

effects of full one-loop and two-loop cusp needed for NLL running. For this reason,

our final expressions for Wilson coefficients in Apps. B.2-B.4 all include the neces-

7 At this point, one may ask why we do not go farther and consider the case kj+i > kg±. In fact,
we do not have to. Since the amplitude for i-gluon emission has an underlying Bose symmetry, we
are free to partition phase space into i! regions, each of which gives an identical contribution to the
cross section. Thus, to get the final answer, we only need to integrate over one of them. While we
can choose this region such that kj+u > kg never occurs, we are forced to include kj+± ~ kg 1 .
If we do not wish to partition phase space in this manner then the Bose symmetry implies that the
result for kj+uI > kg1 can be obtained from the configurations already discussed.
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sary notation for evolution kernels. Identifying the power suppressed amplitudes as

corresponding to perturbative corrections to more inclusive observables it is natural

to take only LL evolution for power suppressed or a, suppressed corrections, and

include NLL evolution only for the leading shower terms. In this section we give

arguments that determine the LL evolution for the subleading operators, and discuss

what precisely is missing to obtain the full NLL evolution kernel.

To set the stage we consider as an example the running in SCET 1. We can consider

our matching to QCD to have taken place at a scale Q, but we can run down to a

lower scale y, as is necessary before we further match to SCET2. The zero and single

gluon operators in SCET1 acquire the following factors (cf. the tree-level version in

Eq. (4.64)):

C"(o) = U(2,0,0)C0 (no) U' 0 (nio) (Q, pt)

C(1 (no, no) = U(2,1,0)(no, no)o(Q, [) 0 Q

C1(no, no) = -U''(no no)(Q, M) _ -, (ynO _ynOL - g"Yf ,
1,7' qi ki qi Q 7oL

CM1 (ni, n() = -U( 2,1,0 2 (
S( -(ni-n)1I1

+i n + 2(n - iT y . (4.76)
(n-p)Ici (ni-n)q1ki

U(i'k'l)(ni, n 2 , ... , nj+k) is the RG-kernel of the operator O(i~k~l) (ni, n 2 ,... , nj+k) de-

fined in Eq. (4.7) and U(' 17 is the RG-kernel for the operator T1(1). Since the

antiquark is always collinear to n, we avoid writing ii in the RG-kernel's argument.

We inserted the symbol 0 in the second and third line of Eq. (B.40), because when

we have an operator where two or more fields share the same collinear direction, there

can be a convolution in the fraction momentum p between the running factor and the

coefficient. If the field are collinear in the same direction, they can talk each other in

SCET and they can exchange momentum in running down from scale Q to p1. The

anomalous dimension of an operator is independent of which SCETj it is defined,

but does depend on the field content and in particular how many different collinear

directions are in the operator. Thus, the RG-kernel of the operator isogBc I XT, is

139



different from that of ,nigB', IgXA.

In Ref. [17] the LL part of Ui'N-i 0 )(Q, p) was related to the Sudakov form factor

Eq. (4.10) (up to accounting for the soft effects of angular ordering). The cusp term

in the anomalous dimension gives the LL part, and comes from soft and collinear

one-loop diagrams. The result from the soft diagrams is constrained by that of the

collinear diagrams in order to cancel out infrared sensitivity that cannot be absorbed

in local counterterms at the hard scale. Here we will use this same argument, but

in reverse, in order to determine the LL anomalous dimension of various subleading

operators.

Due to the soft-collinear factorization, the soft structure only depends on the

number of collinear directions. After making the field redefinition operators like

inoXF and VnogB 3, 0 Xa both have Yt YFa, and so both have the same soft divergences,

and hence have the same one-loop cusp term. Thus the leading-log resummation only

depends on the number of collinear index directions in the operator. We therefore

have

U' 0'LL(no) = UL2 '0(no, no)= (no, no) . (4.77)

Thus at LL order we have the full set of evolution kernels for subleading collinear

operators and we account for these factors in the appendix expressions. Since this

is a LL effect we expect the effects of soft radiation and angular ordering to be

incorporated in a manner identical to the evolution factor in the LL shower.

An important consequence of this result for the LL evolution is that it justifies

treating our hard-scattering corrections as improvements to the fixed-order, matrix-

element calculation that goes into a shower algorithm. Correcting the two-jet ampli-

tude with either CNLO or Cr, we see that the LL resummation is the same as that

in the standard shower except that there is an extra parton already inside the leading

jet. We thus get a shower correction just by using a matrix element improved by in-

cluding our hard-scattering terms. This is different from simply running a LL shower

on higher order matrix elements, as different anomalous dimensions control each op-
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erator's evolution. Some, operators, like those just mentioned with only no and h

collinear directions, run like two-jet configurations, that is with a quark-antiquark

Sudakov. Others, (e.g. C{1 )(n', ni)O 1)) have three-parton running since they have

three distinct collinear directions. This latter set correpsonds to the usual implemen-

tation of fixed order corrections in parton showers, but the former is a novel type of

shower improvement whose implementation will require further study.

On the other hand, the effect of jet-structure corrections is not to modify the

initial scattering process, but to go hand in hand with the NLL change to the leading

operators' running. The complication we must face for this calculation is that this

correction to the evolution kernel must in principal be carried out in the same scheme

used to distinguish the phase space regions for the jet-structure corrections, and hence

may depend on the choice for the 8 functions. Furthermore it is likely that power

suppressed soft effects will also have implications for the subleading evolution kernel.

Our lack of an appropriate NLL evolution factor for the shower is due to these two

issues. In addition at this level of accuracy one must take into account the appropriate

scale choice for a,(p) in the LL expressions.

To setup the distinction between kinematic regions we used Wilsonian type E
functions, but from the point of view of evolution MS would be simpler. Although it

is not directly relevant to our setup it is nevertheless still interesting to consider how

the NLL evolution kernel would arise in MS. As we will discuss in Appendix C, when

integrated over phase space in dimensional regularization the jet-structure corrections

give the real emission portion of P) , which is the O(a,) correction to the Altarelli-

Parisi splitting kernel. Combined with known SCET results for single-emission at

one-loop, we can recover all of P). Obtaining this expression is important both

conceptually and practically. It validates our formal expansion in A, showing that

corrections to O(A2 ), along with a set of previously calculated SCET one-loop dia-

grams, capture the contributions needed for NLL resummation. On the practical side

it provides a cross check on the computations.

With Pq) in hand we can extend the argument of [16, 17] that the Sudakov factor

gives the LL part of the the RG kernel U(')(Q, y) (Eq. (4.10)) to the NLL level, looking
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at U(0)(Q, p) for running of the operator C(O000. Using the Sudakov factor of [31]

for quarks, we have:

CF Q 1 +Aq(Q, p) = exp { j[, (p') dz , (4.78)

where we recognize Pq(q), Eq. (4.3). Performing the z integral and expanding in the

limit of large Q gives:

Aq(Q, p) ~ exp{CFjQ j'as(p') log (2±+ ], (4.79)

which is identical to U(') (Q, p) at one-loop. The term in the exponent proportional

to log(p'2/Q 2) sums the leading logs in the parton shower. Interpreting Eq. (4.79) as

an RG kernel, this log piece is coming from the one-loop cusp anomalous dimension,

CF. The factor of 3/2 is the remaining part of the one-loop anomalous dimension,

and it sums part of the collinear NLL.8 In order to get the full NLL summation,

one also needs corrections corresponding to the two-loop cusp anomalous dimen-

sion. This is a known result in SCET for the operator Mn, which we can relate

to Pq(), by adding the subleading splitting function to the exponent of Aq(Q, p).

Unlike Eq. (4.79), this new expression actually sums next-to-leading logs in the MS

scheme. We wish to stress, however, that the ultimate goal to improve parton showers

through resummation is to include all next-to-leading-logs. In this work, we have not

considered the effects of soft NLL, nor those related to the two-loop running of a,.

Furthermore, one needs the NLL running for all of our operators. While our formulas

in Apps. B.2-B.4 do include all LL running, we only have NLL for C 03d(). The

collinear-NLL-improved Sudakov corresponding to it is:

AqLL(Q, p) = exp -{ J i Q dz [P()(z, p') + P4l)(z, p')], (4.80)

8 Since Eq. (4.79) resums some NLL contributions [31] calls it the NLL Sudakov factor.
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where Pqq given in Eq. (4.3) and Pqj) in [39]. Once again, we integrate in z, expanding

in large Q to get:

ANLL(Q [) = exp {Q aS>') CF (log (,) +

ae' (p'l) 67 7r 2 20 p'2+ 2CF g (F)F nF log , (4.81)
47r 2C C(9 3) 9 (Q2

where the term oc a2 reproduces the known result for the two-loop cusp anomalous

dimension.

4.4.4 From Operators Toward a Corrected Shower

As discussed previously, our end goal is to match down to an EFT, SCETN, where

each field has its own index direction. Further Lagrangian emission from these oper-

ators is physically meaningless, as the resolution scale is set - O(GeV), below which

we stop computing in perturbation theory and pass to a hadronization routine. Thus

in SCETN we match everything to the single operator O 5 1(nN, ni, - , N- 1 ) and

all the information Lo and NLO is encoded in the Wilson coefficients. We have calcu-

lated the coefficients From this SCETN, we define a map to different shower algorithm

ingredients. We gave those needed for a LL shower Monte Carlo in Table 4.1, which

only required single gluon considerations for collinear effects. To include the leading

SCET power corrections and consistently resum collinear NLL, we will need operators

with an arbitrary of partons in the mapping. However, as we saw in Secs. 4.4.1 and

4.4.2, we only needed to do two-gluon emission computations to obtain the ampli-

tudes to NNLO that contribute the leading corrections in A to observables. For the

hard-scattering corrections, this was because modifying the emissions of particles fur-

ther away from the initial hard-scale production led to increasingly suppressed terms.

For jet-structure, while corrections can occur anywhere, the leading ones only involve

the most minimal deviation from strong-ordering, that affecting nearest-neighbor The

LO coefficient for SCETN is given in Eq. (4.53), and for NLO are given in appendix

B.4. As we demonstrate below, upon squaring these amplitudes, the simplicity of
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the picture remains, and we only need to consider the non-trivial phase space of two

particles at a time.

Interference for LO2 and Jet-Structure Corrections

It is a general statement about SCET fields with different n index labels that they

have no overlap in Hilbert space. As an example, we can take two different operators,

Oni and On2. All the fields in Oni, except that labeled by ni (e.g. Xni), have exact

analogs in O9 n2, creating the same type of particle and having the same index label.

Instead, O2 contains a field labeled by n 2, which may or may not be the same as n1.

We thus have: 9

(qi, q 2, ... , qm|O9|0)(0|0n2 |qi, q2, ... , qm)

onj, n2 (q1, q2, . . m| |,0)(0|On2|lqi, q2, . .. , gm). (4.82)

It is to guarantee a relation like Eq. (4.82) that our Wilson coefficients contain

8-functions (cf. Eqs. (4.45) and (B.61)), which will cutoff the overlap regions in

phase space once we begin integrating. The amplitude squared is particularly easy in

SCETN, where we have only the operator 0 (nN, 1, , n-), and where each

particle is defined in a different collinear direction.

SCETj simplifies the amplitude squared by distinguishing at the operator level

which configurations are strongly-ordered and which are not. This means that we have

no interference between C and C 0 - where CN-NL is the LO

SCETN coefficient defined in Eq. (4.53), and C(N71QJ is the NLO SCETN coefficient

defined in Eq.(B.119). Even though the O's are the same, the e-functions in the C's

enforce different conditions, where the former is strongly ordered, while the latter is

not. Thus, in the analog of Eq. (4.82), the Kronecker delta will give zero.

We get a further simplification when we square the NLO contributions. Looking

9By RPI, ni and n2 do not have to be exactly equal, but must concur up to an angle of O(A) in
SCETi.
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Figure 4-12: Amplitude squared for the LO operator C() 0 () Though we do theNLO N'w o h
amplitude computation in SCETN, we illustrate the process here with a cut SCET1

Feynman diagram in order to emphasize the simple ladder structure.

at C(Ni1g in detail, we have:

N-2

( -I) Cj(I), (4.83)CN L N- L

where

3 1-1

CNUS (1) =3 [(IU (pM_1, Pk)c(n UL 1))U 1) ([k1,pk) 0 ha'6 (nl+1, k-1 n 1)
I=1 k=1

N-1

x ( 171 UL-(pk_1, Pk)cLO(nk1)) 1-. (4.84)
k=l+1

In CkNLOj(1) we have made explicit that the 1, (l+1)th gluons violate strong-ordering

and come with the factor hc" of the subleading splitting rule, Eq. (4.75). The sum

in the last term over I counts the different types of NLO jet-structure terms given

in Eq. (4.74). The ck are defined in Eqs. (B.115), and the U's are running factors.

The complete explanation of the symbols in Eq. (4.84) can be found in the discussion

around Eq. (B.120). Since different 1 correspond to a violation of strong-ordering

at different points in the shower, each of the C(+ J(l, 1 + 1) codes a different index
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structure. Therefore, there is no interference for different values of 1, and we have

that the amplitude squared to NNLO for jet-structure corrections is just the sum of

squares of the individual operators:

|Aq(N-1)gqJ2 O q(N-1)gq q(N-1)gJ (4.85)

where

|Aq(N-1)g 2  2 q(- 1)gq)| 2 , (4.86)

N-2

|Aq(N-1)gq J2 NLO-I 2 (N 1|q(N - 1)gg)|12

1

where withjq(N - 1)gg) we indicate a state with N - 1 gluon emission. The simplifi-

cation even extends inside each of the terms, since the Jth gluon only gets contracted

with itself. Diagramatically, this means there are zero nearest-neighbor crossings in

the ILO12 diagram, as we see in Fig. 4-12 and a maximum of one in the INLOI 2 case

shown in Fig. 4-13. We thus only slightly modify the factorized emission formula,

Eq. (4.2).

We have proved that at NLO for the jet-structure corrections the only non trivial

part on the amplitude squared involves at most two near gluons. We can see why

terms that have interference with more than two gluons are suppressed, just looking

at the internal propagators in the amplitude. The amplitude for i + 1 emissions has a

factor 1/q2 x 1/q x -... x 1/qi due to the propagators. The LO term comes form the

strong-ordered region where each new emission is more collinear then the previous

one, that means where q, > q2 - q2, Eq. (4.1). The jet-structure NLO is

given when q3 ~ q3+ 1 and this allows the two gluons kj+1 and kj+ 2 to share the same

region of the phase space and so to interference. Let us suppose that we instead

want to interference the gluon kj+1 with kj+ 3. When these two gluons have the same

momentum we have q 2  and therefore the associated amplitude is

clearly suppressed with respect to the LO and jet-structure NLO amplitudes.
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Figure 4-13: Contribution to the amplitude squared of the jet-structure piece at
NLO. We are using a cut SCET1 Feynman diagram to show that the SCETN oper-
ator, C(N)J O(N) contains only a single deviation from the simple ladder structure
apparent at LO (Fig. 4-12).

Interference for Hard-Scattering Corrections

The corrections to the cross-section to O(A2 ) involve hard-scattering ones as well.

Unlike the jet-structure case, these involve NNLO amplitude terms, as well. As we

argued above, they only involve the gluons closest to the hard interaction. Thus,

we will not need to sum over many terms as we do in Eq. (4.86). In fact, for hard-

scattering corrections, we only need to worry about interfering SCETi operators that

arise from acting with the LO replacement rule Eq. (4.46) on C( , C()LO, and C ()

which are given in Eqs. (4.30) and (4.64). Since the 2nd through ith gluons arise

from the LO rule for all three coefficients, they proceed as in the LO/LO case. The

interference to look at in detail is that of the first two gluons. We only need to compute

single emission graphs, as we can add the other emissions to the amplitude squared

by multiplying the appropriate splitting functions and propagators. In SCETN, we
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have:

|Aq(N-1)gq H 2 _ ( (N-1)tC(N+1)H , (N--1)Ht (N-1) (N-1)H 2~qNl9~ to NNLO0 C C(ltCNl + L-L (4.87)N, LO N, NLO N, NLO N,LO N,NLO

+ c(N-1)t C(N-1)H (N-1)Ht C(N-1) (N- 1) JN- gq2
+ N, LO CN, NN'NL±O N, LO N q(N - 1))

The Wilson coefficients are found in Eqs. (B.114), (B.116), and (B.122), respectively.

The only nontrivial interference in Eq. (4.87) occurs between the first two-gluon

emissions.

The interference between LO and NLO simplifies in many cases of interest. For

example for one-gluon emission

|A g1/NLO2 2 4 lv( - v). (4.88)
q0

If we can cleanly separate the initial and final states (e.g. e+e- -4 jets), then by a clas-

sic proof (i.e. that in [84])) involving the Ward identity, once we have integrated over

final state vector quantities (we are allowed to keep scalars such as zi unintegrated),

the resulting differential observable depends on gt"ALO/NLO A, which for Eq. (4.88)

is zero. While this is quite straightforward for leptonic initial states, one may be able

to extend it to certain hadronic ones as well. Once again, as we said in sec. 4.4.1,

one can account for these corrections by modifying the hard-scale matrix element and

then running a parton shower modified to include the different no-branching prob-

abilities for different phase space configurations of the same particle content. Also

unlike standard shower corrections, we can avoid double counting issues, in principle,

because all contributions, whether LO, hard-scattering, or jet-structure corrections

are kept separately in distinct operators.

4.5 Correction Map at NLO/NLL

We summarize our results for parton shower in Table 4.2 including ingredients neces-

sary for NLO/NLL accuracy in the cross-section. Since it is easier, in the table we use

the language of SCET1 to discuss the corrections, rather than referring to terms in the
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Category Shower Ingredients Quantity in SCETi Found In:
Hard Scattering Hard matrix elements Wilson coeff. of V,,nB XT Eq. (4.67)

with more partons in SCET1
Power correction Wilson coeff. of nBnoXF, Eq. (4.67)

to initial branching and no [PiB..]xT
within the leading jet

O(a,) hard virtual One-loop matching for See [16, 17]
correction Xn1 X_ _

Jet Structure 1 -+ 3 Double gluon real Eq. (4.74)
Splitting functions emission in SCET1

O(a,) virtual correction One-loop correction Left for
for LO 1 -4 2 splittings to 1 -+ 2 replacement rule future work

Probability Compare SCET Left for
of 1 -+ 2 vs. 1 -+ 3 amplitudes future work

No Branching NLL Sudakov factor for NLL anomalous dimension Left for
Probabilities leading branching for leading operators future work

LL Sudakovs for LL anomalous dimensions Eqs.(4.10)
subleading branching for subleading operators and (4.77)

Soft Emission Subleading corrections Include effects of soft Left for
from soft gluons emission from subleading future work

SCET soft Lagrangians

Table 4.2: Mapping between ingredients for a NLO parton shower algorithm and
computations in SCETi. For exclusive cross-sections these ingredients would together
yield results accurate to NLO in as, NLO in the power expansion (A), and with
corresponding NLL resummation.

final SCETN. In SCETN the features of SCET operators that avoid double counting

and allow the various contributions to be distinguished are encoded by E functions in

the Wilson coefficients. In considering the totally differential cross-section we found at

NLO two kinds of power corrections. This includes a set of matrix-element corrections

that we called hard-scattering corrections (Section 4.4.4), and a set of contributions

that improve double real emissions that we called jet-structure corrections (Section

4.4.4).

In the the hard category we have overall three different kinds of corrections. The

first is due the the SCET1 operator VnBIXT, that gives the SCET 2 coefficient C('fj)d

in Eq. (4.67). It is an improvement of the hard matrix element that takes into

account an extra parton. The second is due to the SCET1 operators XnoBnoXfa and

Xno[PiBno1x, that give the SCET2 coefficients C2, and -2,Of LO in Eq. (4.67).
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This correction also accounts for more partons, but it describes a situation where

they are initially emitted close to the collinear quark rather than widely separated,

a correction to the initial branching within the leading jet. It is important to note

that the two kinds of corrections have different renormalization group evolution and

thus different Sudakov no-branching factors. For a full NLL resummation we also

need a third type of hard scattering correction, the one-loop virtual corrections to

the leading shower operator. For the required operator XnoXn these were discussed in

Refs. [16, 17].

For the category of jet-structure corrections there are again several ingredients

to consider. We derived a replacement rule for two emissions 1 -+ 3, which should

be added on top of two leading order 1 -- 2 splittings. This correction takes into

account emissions in a-region of the phase space that is not strongly-ordered. In

addition at NLO/NLL we require the O(a,) virtual correction to the LO splitting

rule. This would be derived from a one loop matching computation that should be

straightforward, but was not considered here. In addition the shower requires a new

type of probability for when to do a 1 -+ 3 splitting versus a standard 1 -- 2 splitting.

The shower we are discussing has positive weights, since the square of amplitudes is

positive, and it is this additional probability function that accounts for situations

where the original LL 1 -+ 2 shower yields a result that is larger than the physical

observable of interest. A full investigation of this is left to the future.

We also saw that the Sudakov factors, that give the no branching probability, are

associated with the running factors of the operator and in turn with their anomalous

dimension (Section 4.4.3). To NLL we need the NLL Sudakovs factor for leading

branching and the LL Sudakovs for subleading branching that are associated repsec-

tively to the NLL anomalous dimensions for the leading operators and LL anomalous

dimensions for the subleading operators. At LL we have the Sudakovs for subleading

branching (Eqs. (4.10) and (4.77)), but we have not yet calculated the NLL Sudakov

for leading branching in the scheme appropriate for our setup, as described in Sub-

section 4.4.3. The last item in the table is the treatment of soft radiation at NLO.

This can be achieved by considering time-ordered products for the matching of QCD
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to SCET1 and SCETj to SCETj+1 that involve soft gluons and subleading soft La-

grangians that are known in SCET [15, 24, 25]. One must then work out the effect

that these NLO soft amplitudes have on interference. The associated soft calculations

and investigations have been left for future work.

Not included in table 4.2, but worth recalling, is the fact that our NLO results have

been expressed in terms of a particular set of variables, namely dot products of light-

like vectors ni -n1 and large light-cone momenta qj. As mentioned in Subsection 4.3.3

there will be corrections at NLO/NLL that arise because of the choice of shower

evolution variables and the translation of the SCETj results to this choice, and these

must be considered on a case by case basis. They are not accounted for elsewhere in

our NLO corrections.

4.6 Conclusion

In this work we developed a rigorous framework based on a tower of independent

but related EFTs, the SCETj, to study corrections to the parton shower. The work

of [16, 17] showed how to formulate the LL parton shower in terms of SCET, and

how virtual corrections are straightforward to incorporate by one-loop matching. The

SCETj framework extends these ideas in a manner that makes it easy to deal with

double counting issues, the issue of disentangling coordinate choices from kinematic

power corrections, and the construction of a complete set of operators for corrections

at a desired order. The interference structure and hence the leading corrections to

spin correlations and color correlations are also straightforward to work out in the

SCETj setup.

The SCETj are iteratively used to integrate out the characteristic scale, QA' for

increasing i. This approach allows one to perform a systematic expansion which

can correct both the hard-scale process that produce partons and the parton shower

itself. We described the parton shower through the operators 0(i) in SCETj and used

standard matching procedures to make the transition from SCETj to SCETj+1 where

more partons become apparent. Performing the matching relied crucially on the RPI
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symmetry of SCET, and we extended the usual infinitesimal version to carry out the

finite rotations in each SCETi that we needed. A summary of ingredients required

for the NLO/NLL shower are given in Table 4.2, including both calculations carried

out here as well as those left for future work. The main result of our work are:

1. An easy replacement rule for the LL shower, xye -+ c0LoXn 1 gB, where cLO

is related to the standard LO splitting-function. Also a demonstration that

angular ordering and coherent branching for soft emissions emerge naturally in

the SCETi framework.

2. At NLO we found two kinds of corrections: hard-scattering corrections and

jet-structure corrections. The hard-scattering corrections depend on the hard

process and appear near the top of the shower tree. They came from matching

QCD to SCET1 at higher order. Since they only occur at the top of the shower

one can treat these as a modified form of matrix-element correction. A sub-

set of these corrections correspond to the usual implementation of fixed-order

matrix elements, while the remaining ones give power corrections to the initial

branching in the LL shower.

3. The jet-structure corrections are independent from what happens at the hard

scale, hence they are universal for any process we want to study. They come

from matching SCETi to SCETi+1 at higher order for any i. They can appear

anywhere in the shower tree and they take into account emissions in regions of

the phase space that are not strongly-ordered. For these corrections we found

that the NLO operator are related to the LO operator via a replacement rule

for two emissions: Xno -+ h X 2 gB0_gL3g.

4. The SCETi picture allows us to easily take into account interference. Once we

reach the final SCETN theory all the fields are labeled in a different collinear

directions. Because in SCET we can only can contract collinear fields that

share the same collinear direction, in SCETN calculating the amplitude squared

becomes very easy. Kinematic information that is encoded by the shower history
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from passing through earlier SCETis is encoded by 8 functions in the final

SCETN Wilson coefficients. We proved that when emitting an arbitrary number

of partons, the non-trivial part of the amplitude squared involves at most two

fields.

The framework developed here allows for systematic improvement to arbitrary

orders in the kinematic expansion. There are still several important steps to take,

though, before this picture can lead to a practical implementation, including addi-

tional computations that we have outlined. We list here three topics whose develop-

ment would be particularly useful, and which we believe should be straightforward to

approach:

1. This work has only considered q -+ qg splittings and an abelian theory. One

should include the full nonabelian results and compute the coefficients required

for gluon splitting as well. This is required to properly treat color correla-

tion corrections in a manner determined by the NLO interference pattern. For

collinear particles we expect that one can include the dominant part of these ef-

fects by considering nearest-neighbor interference, leaving the rest of the shower

as before.

2. Only a subset of the terms required for a full NLL resummation were considered.

We computed LL evolution for subleading operators, but did not carry out the

computation of the NLL evolution of the leading operator in a scheme that is

consistent with our power corrections (we only considered it in MS). In order for

a consistent treatment as a probabilistic process, the real emission probabilities

and Sudakov no-branching corrections must go hand in hand. We also did not

consider how to include the effects of our NLO jet-structure 1 -+ 3 replacements

in an algorithm. The non-trivial task is how to simultaneously implement 1 - 2

and 1 -+ 3 splittings in a consistent manner.

3. Since soft modes in SCET can communicate between different collinear jets,

they carry the ability to spoil their factorization. Fortunately, this did not
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happen when we included their LO couplings. In fact, we were able to derive

the condition of angular ordering and coherent branching in SCETi. It is open

question as to what extent NLO soft couplings can be factorized in the shower

tree and the necessary SCET computations were not carried out here. The

treatment of soft NLO interactions in SCET in the past has always led to

factorized structures, so we remain optimistic that such effects will be tractable

for the shower.

We also briefly comment on how the corrections in Table 4.2 relate to corrections

already implemented in parton shower codes in the literature. In most cases the goal

of these codes differed from the strict NLO/NLL shower corrections considered here.

This makes a strict association impossible, but there is still a general correspondence

that can be made. CKKW [31] is a LO(a,)/LL procedure whose goal is to merge

matrix elements involving multiple partons with a parton shower in a manner that

avoids double counting. In our language this corresponds to the real emission hard-

scattering corrections in the first row of Table 4.2. The XnoXi and XiI B'1XF operators

describe processes with different numbers of initial well-separated jets. In CKKW a

parameter Ycut is used to separate the extra emission in the matrix element from

emissions in the shower. In our analysis the contributions from showering XnoXia. does

not interfere with the direct contribution from Vi B' XT, and this is encoded by e
functions in the Wilson coefficient of SCETN-

In MC@NLO [52] and POWHEG [82], virtual and real matrix element corrections

at NLO in a, are incorporated into the shower, with the goal of ensuring that it

reproduces an associated cross-section completely at NLO in a,. The implementation

includes careful handling of the cancellation of real and virtual IR divergences. In

Table 4.2 our goal was to implement corrections at NLO in powers and NLL in logs/as,

but for all jets from the shower rather than just the first jet needed for the NLO cross-

section. At NLL we have only terms up to O(a, log) in the total cross-section, and

hence does not encode the entire NLO result (in a,). In our language the corrections

that contribute to the NLO cross section correspond to the hard scattering corrections

in the first plus second row, and third rows of Table 4.2. In order to compute the
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NLO cross section it is not necessary to distinguish between the terms in the first

and second rows of the table, and these terms are indeed considered simultaneously

in MC@NLO and POWHEG.

The hard scattering corrections in our second row correspond to how to treat real

radiation at higher precision that has the same strongly ordered kinematic config-

uration as the LO shower. The work of KRKMC group [60, 61, 93], on the other

side, aims to improve the shower algorithm taking into account the Altarelli-Parisi

splitting function at NLO: Pq). In our language this corresponds to our jet-structure

corrections and we have seen in Appendix C how the replacement rule in Eq. (4.75) is

related to Pel. In our method we can consistently take into account both correction

at order o in the 1 -+ 2 splitting function, as well as the subleading contribution

that comes from the 1 -4 3 splitting function.
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Chapter 5

Conclusions

At hadron colliders we compare data to theoretical predictions for exclusive quantities

in order to take into account experimental cuts and detector effects that are necessary

to isolate the signal from the the background. Monte Carlo event generators have

been proved indispensable for making exclusive theoretical prediction and they are

heavily used by experimentalists to simulate events. They are based on a leading

log (LL) parton shower algorithm that is defined in the soft-collinear limit and uses a

probabilistic Markov chain of 1 - 2 particle splittings to recursively generate partons.

There have been several improvements to LL parton showers, but a systematic way

to resum next-to-leading log (NLL) is missing in the literature and there is not even

a clear method to catalog all the necessary corrections. An improvement in the

traditional event generators up to NLL, would allow us to better distribute particles

in phase space, and to have a better normalization of the shower. This will in turn

improve the shape of prediction for cross-section at the LHC and thus yield more

precise theoretical predictions.

In this thesis we developed a rigorous framework to study corrections to partons

showers using soft collinear effective field theory (SCET) to pave the way for an

implementation of a NLL parton shower algorithm. Our work is based on a tower of

independent but related EFTs, the SCETj. We described the parton shower through

the operators OP) in SCETj, where j is the number of parton in the shower, and we

used standard matching procedures to make the transition from SCETj to SCETj±i
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where more partons become apparent. Even if we have many EFTs, we will use only

a single power counting parameter and we calculated corrections to next-to-leading

order (NLO) in the power counting for the parton shower.

At LO in the power counting we recover the usual LL shower. We also proved that

angular ordering and coherent branching for soft emissions emerge naturally in the

SCETi framework. At NLO we found two kinds of corrections: hard-scattering cor-

rections and jet sub-structure corrections. The hard-scattering corrections depend on

the initial hard process and one can treat these as a modified form of matrix-element

correction. A subset of these corrections correspond to the usual implementation of

fixed-order matrix elements, while the remaining ones give power corrections to the

initial branching in the LL shower. The jet-structure corrections are the same for any

process we want to study. They can appear anywhere in the shower tree and they take

into account emissions in regions of the phase space that are not strongly-ordered.

For these corrections we found that determing the NLO operator can be encoding by

a 1 -a 3 particle splitting replacement rule. The SCET picture allows us to easily

take into account interference. We proved that when emitting an arbitrary number

of partons, the non-trivial part of the amplitude squared involves at most two fields.

Thus, our work represents an improvement of parton shower both at the interface

with the matrix element and in the parton splitting. In Table 4.2 we enlisted the

corrections we calculated as well as all the missing ingredients for a full NLL shower.

The next things to calculate are: virtual collection for the LO 1 -+ 2 splittings, the

NLL Sudakov factor for the leading branching and the subleading correction from

soft gluons. The last step towards a NLL shower is to implement these corrections in

a NLL shower algorithm that is able to disentangle the probability of 1 -+ 3 splittings

versus a standard 1 -± 2 splittings.

Performing the matching between different SCETi relied on the reparametrization

invariant (RPI) symmetry of SCET. We extensively studied RPI in Chapter 3. We

constructed operators that are invariant under reparametrization transformations and

we use them to reduce the number of operators in SCET. We constructed a minimum

basis of pure glue operators for DIS at twist-4, for production of two and three jets
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from e+e-, and for production of two jets form gluon fusion.
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Appendix A

Invariance to the choice of

hard-vector q1

From the construction in section 3.3, a natural question arises about the special role

of q" in Eq. (3.15). What happens if there is more than one possible choice for q" in

a given process? Say we have a qP and a q"' with Wilson coefficients that can depend

on q2, q'2, and q - q', where qI - q' ~ A. It turns out that in this case any linear

combination of q" and q' in Eq. (3.15) is equally good, and is equivalent to any other

choice. Hence, one choice suffices. To prove this we consider the expansion of the

reparametrization invariant variable

S2q' ± (2q.ql) 2 
- 4q 2 

- + O(g, (A.1)
q 2 q2 q n -

where we take the plus sign if the expansion is done with n -q/n - q > -q'/ q and

the minus sign otherwise. Now use this variable to define

q' - i0 - (q - i0) [2]iv (A.2)

where the operator 0[v is RPI and its expansion starts at order A2 . Thus

Jdw 0(w) 6(w - q' -0) dw 0(w) 6(w - q - - INV)
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= dw' C((w') a(w' - q -i0 - y /2 )

do' [0(j) 3(w' - q - i&) + 5(w') QOv 6'(w' - q -i) ±... j , (A.3)

where in the second line we changed the dummy variable to w' = (w, In the last

line both terms are RPI, and the ellipsis denotes higher order terms which are also

RPI order by order in A. Eq. (A.3) demonstrates that we can swap the parameter

q' -* q in the 6-function, since the change is compensated by a change of notation in

the leading order Wilson coefficient C -+ C. Given that we imagine starting with a

complete basis of RPI operators built with 6(w - q'-i0) or with 6(w' - q-i&), the higher

terms in the series in Eq. (A.3), like B, also simply change a Wilson coefficient in

our basis. Thus, the choice of q or q' in the a-function just corresponds to a different

choice of the basis for the invariant operators, and one choice suffices.
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Appendix B

Matching SCET, to SCETi+1

In this appendix we perform the matching QCD to SCET1 in subsection B.2, SCET1

to SCET 2 in subsection B.3, and SCET2 to SCET3 to SCETN in subsection B.4.

A key element that we use in the SCETj to SCETjai matching is the finite RPI

transformations that are defined in subsection B.1.

B.1 Finite RPI

We have seen in chapter 2 that we can always decompose the momentum p of a

particle in two light-cone directions n and h

iw n/1
p= n-p2+P +p", (B.1)

with n2 = 0, h2 = 0 and n 2. We define p collinear to the direction n if the

components of (B.1) scale as (n -p, p, pi) ~ (A2 , 1, A) Q , where Q is the hard scale

and A < 1. The vector n has physical meaning, it is the direction where most of the

momentum is allocated, that is the direction p is inside a cone of opening angle A

around ni, see Fig (2-1). ii does not carry any physical meaning and it is only needed

to decompose the momentum in (B.1). The power counting A defines the level of the

collinearity. The decomposition (B.1) is not unique, we can shift n by an amount A

and the particle we still be collinear to the direction n. Pictorially this means that
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if we move the vector n inside the cone in Fig. (2-1), p is always collinear to it. The

transformations that move the n inside the collinear cone are the reparametrization

invariant (RPI) transformation of type-I, Eq. (2.24). Thus if a particle is collinear to

a direction n, it is also collinear to any directions n' that is related to n with an RPI

transformation.

Two collinear sectors in SCET, ni and n2 , are distinct if [9]

nif-n2 > A2 , (B.2)

We will label the external state with the direction n where the particles are collinear to

and with a subscript the magnitude of collinearity, so for example |qnq 2 )i is a state

with two quarks, one collinear to ni and one to n2 where ni - n2 >> (A)2. A collinear

field in SCET labeled with ni can create a particle collinear to the ni direction, but

this means that state is also collinear to any n E [ni], where [ni] is the equivalence

class defined in Eq. (2.25), so we have

njq,) ui if n C [ni , (B.3)
0 otherwise

The type-I RPI transformation connects vectors that belong to the same class [nj].

For each {n, n}, the type-I RPI infinitesimal transformations are given in Eq. (2.24)

These transformations preserve the relations n2 = 0, h2 = 0 and n - = 2. In the

matching from SCETj to SCETj+1 we need to rotate the direction n to a direction

n' that is closer to the momentum of the particle, such that p is collinear to n' in

SCETi+1 , The RPI transformations allow us to do it. Thus the finite RPI transfor-

mations in SCETj is crucial to match the two theories and hence is not simply a

convention. On the other hand the choice within SCETi+1 is purely a convention.

We have some freedom in choosing n', if Ai+ is the power counting of SCETj+1 any

n' such that j is inside a cone of aperture A'+1 around n' is fine, see Fig. (4-3). The
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momentum p decomposed along n' and h is

P Y=n 'n-P +P± +P$,. (B.4)

For this convention we will pick n' as that direction n, where p as zero perpendicular

momentum, that is

nt' 5P
p = p- + np . (B.5)

The relation between n and n, is

( )2
P + 2(B.6))n, = n+2 (B.6)

This is a RPI finite transformation (instead Eq. (2.24) is infinitesimal). It is easy to

check that n = 0, n,-h = 2 and that p" = pA - n,.p f1/2 - p nP/2 = 0.

We will derive similar relations for other quantities. To see how the quark field

transform we use the RPI invariant fermion field [80]

On = (1+ _ ) " n .(B.7)
n-D 2

Because (B.7) is invariant under RPI, $n = @Pf, and we can write

1 __ -P (n, (B.8)
n-D, 2 ni- Dn, 2

Multiplying (B.8) by the projector $/4 we get the finite RPI relation

n = n, . (B.9)

The relation (B.9) is in agreement with the spinor equation (A7) in [17] once you

choose hi = n 2. Object with a full Lorentz index like p" or -y", are RPI invariant

because there is no reference to the light-cone vectors n and fl, but on object in the

perpendicular direction, like pp or 7' are not, because I is defines relative to n and
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i. Using the relation yi = -" - ii"J /2 - n" /2, we derive the expression

71 =7L~~~~ =-. _+n +p (B.10)-/L___

fp

Now we focus on one gluon emission. We consider the case of a virtual quark

with momentum qo emitting an external gluon and quark with momentum k1 and qi

respectively. In Fig. (B-1-A) we portrayed one gluon emission where the initial quark

qo comes from a QCD current g-y"'q. We call no, n' and ni the directions where qo,

q1, i1
(A) (B) (C)

Figure B-1: Kinematic variable for one gluon emission (A), two-gluon emission (B)
and i gluon emission (C). The ns vector are defined such that the momentum has
not perpendicular component along that directions n - ii.

k1 and qi zero have perpendicular direction, that is

go =0o + no-*qo-,
2 2

- in'q

2

where qo - q + k1 by momentum conservation in the ii. direction, and qo

(B.11)

has a A

component because it is off-shell. Using the Eq. (B.6) we can relate n' and ni to no

1 0

n= no +

- 52

2 -o n ,o (B.12)
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where we have used the equality (ki)' _1 = -(qi)" 0 1 . Some useful relations are

-2

ni-n' = no-n'
ki P

~IJ
ci1 Q1 1 iniKinP =h_- n(nl-n')1)0 qo 2 q02

(qj1 I c k(qi) - _ - V Ini - n'|vi=2 q1 + k1

P = 7(,1)no- (

= -2 ,o- O

qi ki

1-

- n (i,

q1)nO- k

n/)iki (Ic - q-)
4q0

2

- r (ni1 -n') -- ,-

A~j - /-
V 1 1~ (B.14)

is a vector with Iv = 2. Another useful relation is

gO = (q,1+ k1 n. i . (B.15)2

Notice that we can express all quantities in terms of the vectors n', ni and the

momenta qi and k1.

In two-gluon emissions the kinematic variables are defined in Fig. (B-1-B). We

called no, n', n' and ni the directions where qo, ki, k2 and qi have perpendicular

direction zero, that is:

no n
go = q02 no q-2'2 2

ki = Ici
2

q1= q 2 + ni2

k2 =kI2- n2
2

in2

q2 = 2-22
(B.16)

now qi is also off-shell and have a component along ii. The definition (B.12) is still

167

-2

no-ni
qi2
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valid, and we can define n' and n 2 as

n' n/- 2 -q

n= ni + 2 (2 - 2
2 (B.17)

where (k2)n1  = -(q 2)n1 ±. The relations (B.13) are still valid, and also the relations

with 0 -> 1 and 1 -> 2, these are

-2

q012
K

-2
q0ftT

n 2 ' (n21b 2 n2 b '2) k2
qi 2

nq ( 2- n2 - 6 n 2'-
1 41 2 41

1 42k2_A q2 k2 (k 2 _-22
(2' - 1 VI-n;~ ~2 IV2h (7221n 2

2 q2 + k2  4 q3

2n- ,g -n(n2 - 2) (B.18)

where

v P = n n 2 ,p
A |2 - 2|

U 2In -

n/2ft
If 2 1

(B.19)

is a vector with v - 2. We can write ni -n' and vi in terms of n2, n' and n':

k2 (n'2 n'1) + q2(n2 -n1)
- (n2n'2) ,

2 k2q1 n'" + 2 1l2n2 - I2q2 (n2 -n') nj - 2 1'1iK
ni - n'I

(B.15) for two emissions is modified to

2 =(q2+ ki+ k2 )2 '-n q2ki0 2 n'2n2 k2 +n -n kik 2
+tf 2 2 ±122 2

Others useful relations are

o 1 712 + q1 I

(2 )n + ((ql)'O_1
k2 

) k2
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(B.20)

(B.21)

(B.22)

( )2q2 njl
n k2

2

)2 q2(q2 nj I-2 - 2
qj2k2

$ ( 112



2 ___2

q2 = (ki + q 2 )2 = (n'1.n2) 2

(k2 + q2 )2 = (n'-2 2) k2 (B.23)2 2

For i gluon emissions Fig. (B-1-C), we call n' the light-cone vector parallel to

the k-gluon, ni the light-cone vector parallel to the external quark, and nk the light

cone vector such that the k internal virtual quark has zero perpendicular momentum

with respect to (nk, h). To calculate ni, n' we can iterate the formulas above up to i

emissions. That is we can calculate ni , nf from ni_1 using Eq. (B.12) with 0 -a (i -1),

1 -+ i.
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B.2 Matching QCD to SCET1

To study the process of q -> qg emission, we match the QCD current,

JQCD = q, (B.24)

to SCET 1 operators for a final state with a quark, antiquark, and gluon. The particle

momenta are qi for the quark, pq for the antiquark, and ki for the gluon, (cf. Fig. B-

2A). We do the matching in the center of mass frame with

p, = qi + pg + ki = (Q, 0, 0, 0). (B.25)

SCET1 , being equivalent to the usual SCET, is formulated as an expansion in the

parameter A. The current in Eq. (B.24) matches onto an infinite series of SCET1

operators. We will perform the matching up to NNLO for one gluons emission, and

focus only on the cases when the gluon is either collinear to the quark or far form both

the quark and the antiquark. Obtaining the limit of gluon-antiquark collinearity from

our work is a simple exercise in charge conjugation. We can construct the SCET1

operators out of a few building blocks: the quark field Xn, the gluon field 13 and

the perpendicular momentum operator P, plus Dirac structures. Xn, B0 and Pnj

all scale as A. The basis of SCET1 operators for one emission up to NNLO is [80]. 1.

O00(no)=VoX

0(l)(no, no) = ino gBn,, Xa ,

T 1
1 (no, no) = no [P- gB]a X ,

0(1)(ni, n') =n iniB'l X (B.26)

0O) (no) standss for O0) (no, A) and similarly for the other operators, we do not write

the antiquark direction as it is always ii. O(") is the LO operator and scales as A2,

1(1) (ni,n') is zero because we can choose the directions ni and n' to align perfectly with
particle momenta such that e.g.. PnIBnI = 0
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(l) (no, no) and O0l(ni, n') are the NLO operators, scaling like A', and 7,(') cx A4.

In SCET1 , two particles are collinear if they are inside a cone of aperture A, or

equivalently if p1 p2 < (QA) 2 . Usually, we formulate this condition with dimensionless

quantities, n1 -n, 2 $ A2 , where n, is exactly proportional to the particle momentum.

To distinguish a two-jet from a three-jet state, we label the external states with the

direction to which the particles are collinear. A state |que)1 indicates a state where a

quark with momentum qi is collinear to the direction no, that is (qi, no -q1, (q1)noi) ~

(1, A2, A)Q, and this state can be annihilated by any operator, Xn, where n and no

are in the same SCET1 equivalence class, {[n]}. The subscript, 1, tells us that we are

using the SCET1 classes here. As we will see when we match to lower-scale SCETi,

we will change this number appropriately. A two-jet state with a collinear quark and

gluon, and an antiquark along h is given by |quo gno gI)1. The fact that the quark and

gluon share an index label implies that qi - ki < (A)2 . A three-jet state is indicated

by 1q., g , where each particle is collinear to a different direction. The operators

O()(no), O()(no, no) and Tj1((no, no) are two-jet operators, that is they can only

create a two-jet state, whereas 0 1((ni, n') is for three-jets. Multiplying the operator

in (B.26) by the Wilson coefficients, we have

JQCD -C LO(no no) (no, no) 0 (no, no) + C{9 -(no, no) T,1)(no, no)

+ C 1) (ni, n')O()(ni, n') + . . . , (B.27)

where the ellipses indicate higher order terms in A. We begin by looking at two-jet

operators in detail. For this region, because we are in the center of mass frame,

the two jets are back to back. We define the kinematics as follows, the antiquark is

exactly parallel to i = (1, 0, 0, -1), while the quark and the gluon are collinear to

no = (1, 0, 0, 1), such that qo qi + ki has no component perpendicular to no and n:

p =- 42 (

qi=1 no-gi- + (gi)'ni
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QCD SCET 1

>P7
qo$

q 0 ...0 ri T

Po

q, i rqio no n

Figure B-2: Matching QCD to SCET1 for the two-jet configuration: In the first
column there are the two Feynman graphs for one-gluon emission in QCD, labelled
by the 4-momenta. In the second column there are the two Feynman graphs in SCET1

that reproduce the same amplitude in the case the quark and gluon are collinear along
the direction no. The first graph come from the operator 01 0 with the insertion of
the SCET1 Lagrangian, the second graph comes from the operators 01) and 'I(l).

k" = q1 + no -ki + (ki)" (B.28)2 2 n

where (no -q, gi, Iqa) and (no -ki, ki, ku1 ) scale as (A2 , 1, A), and (q1) = -(ki)

by momentum conservation. The Wilson coefficients are defined through the equation

(|<CQ n gno # 1C 0 O(no, no) [dx'(oJTfLSCET1 (x)o() qno 9no 5) 1 (B.29)

IQCD~lqo 9.qi 1,LO

+ CF (no, no)((0|06 qno gno A)1 + C()(no, no)(0|'T)qe gno q5)I

Calculating the C's for this two-jet process goes as follows. We decompose the QCD

amplitude along no and ii using Eq. (B.28) and we write the QCD spinor in terms

of the SCET1 spinor Eq. (B.31). Expanding in A up to NNLO, on the RHS, we

compute the amplitudes for the three SCET1 terms. The coefficient C(O) was already
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determined from matching QCD to SCET1 for zero gluon emission, it is

C() -=- A . (B.30)

The coefficients C,' and C{') come from solving Eq. (B.29) at NLO and NNLO,

respectively. Since O1) and T are at different orders in A, there are no ambiguities

in solving Eq. (B.29) for both C 1 and C(".

In order to do the matching, we need the relation between the QCD and SCET

spinors. Using Eq. (B.7), we can write:

u(p) =(i + U.(P)
\2 p

(B.31)

where u(p) is the QCD spinor and un(p) is the SCET1 one. It easy to see that the

SCET spinor satisfies

, Un = 0,

$/0A~l0

i 
us (B.32)

Note that the normalization in the spin sum does not introduce NLO terms.

The QCD amplitude for y* -4 qqg is shown in Fig. B-2:

A qqpo
(B.33)

The amplitude (B.33) is intended to be multiplied by the polarization vector for the

gluon, that in general we do not explicitly write. Using Eqs. (B.28) and (B.31) in

(B.33) and expanding to NNLO in A we get

AQD L ± O +ALO,
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where

A75g +9~in ± (0)nol a ± yLO - n g(o- _n )o n t
q2 1f g k1._)vi7

9 no (k) 1 7y- v(B.35)
-gi Q u.0 (k flO t K 1 !oI

From (B.35), and knowing C(LO, it is easy to determine the other two Wilson coeffi-

cients to reproduce A gD they are

C(1 (n, n)= (no n)

Cl(no no) = - 2fI7 l 0A-'47OI (B.36)
qi kqQ

where we have used the relation qi + ki = Q.
For the three-jet operator O(' (ni, n'), the matching was done in subsection 3.7.6,

but we will translate to the notation used here. In this case we need three distinct

directions in SCET to describe the three external particles, and there is no small

parameter to expand in. This means that the amplitude for this operator is exactly

equal to the tree-level QCD amplitude for a qqg process. One may wonder then,

why we simply do not apply this everywhere instead of just the three-jet region. The

answer has to do with running effects. The RG kernels of our two-jet operators,

00, O1, and T, will resum the large collinear logarithms of those configurations (cf.

Subsection 4.4.3). It is for this reason that we gain by keeping track of these as

separate contributions.

Since the three external particles are collinear to three different directions, in

principle we have to decompose each particle using its own pair of light-cone vectors,

see Eq. (2.1). However, we can show that we need only four independent ones. In the

center of mass frame, qo = qi + k1 is back to back with the antiquark, pq oc ii. We

decompose qo along (no, n!) such that it has no component perpendicular to them:
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gO= n A- qo/2 + n no -qo/2. Using Eqs. (B. 12), we define the light-cone vectors ni and

nj such that they are parallel to qi and ki, respectively. We can actually decompose

the quark along (ni, h) and the gluon into (n/, n). Unlike the two-jet case, where

(q1)noi < A, since the quark was collinear to no, here (qi),_i > A. Summarizing, we

have:

q = q , (B.37)

pq =n-pg ,

k" = R-ki , I
2

where h -q, n -pq and h -ki are 0(1). Since a three-jet configuration has qi ki > A2 ,

we have that ni - n' > A2 . Choosing the directions ni, n' and h exactly parallel to

the external momenta means that we do not need Tj 1 (ni, n') =ninB2,Xa, as

'P,, acting on the gluon field gives zero.

The matching is therefore given by

(0|J<CD gni = C ( 1)(0|O( (ni, n')|q,q gq)1 , (B.38)

and the Wilson coefficient is

C( ((nin')-- 2
(ni-n'1)qiki -',-T

- 1~ 2(n-~pg)+ (I 7 \7T'P - qi n (' 1 + 2nq- nr 7TJ , (B.39)
-(n -pg)Ici 1T (ni -n')qikiT I

where the subscript T applied to a generic four vector f" means: fT = fA - pt (f -

py)/p' and p, is defined in Eq. (B.25). We notice that all the Wilson coefficients

in SCET1 are of order Ao. We described the effects of adding running to them in

Subsection 4.4.3. As we discuss further in Appendix B.3, we do not need to compute

any suppressed two-gluon operators in SCET1 to the order at which we are working.

In the next Appendix we will mach SCET1 to SCET 2. Before doing it we have to

run down the SCET1 operators form the scale Q to the scale pt1 where we have the
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first emission:

C4(o) = U(2,0,0>

C0 (no) = U (no, n(Q, )
C()(no, I n) =U(2 ,1 ,0 ) (no, nio)(Q, [y) 0 P0 - a

1 _n, {Y 2g,
1,- nono ( , ) qiki _ _ _L qi QL

C(1) (ni,n') U 1) (ni,n')(Q, p) Y g
~(ni-n')g1Ici 7Y

I-~

[__1 2(n-pq)

+ )(f -in) + - fT] -y'Oo ). (B.40)[(n -pq)Ic k( (ni-n')qiki

For the definition of the running factors U(i'jk) (Q, y) see Section 4.4.3.

B.3 Matching SCET1 to SCET 2

B.3.1 One-Gluon Emission

We now match SCET1 to SCET2 for one-gluon emission and two-gluon emissions.

In this section we only deal with one emission. The basis of SCET2 operators nec-

essary for the matching up to NNLO is equal to Eq. (B.26) but with the operators

defined in SCET 2 instead of SCET1 : O0 ")(no), 0 1((no, no), '21 (no, no) ,0 (ni, n/ ). 2

In the previous section we have matched QCD to SCET1 for one emission and we saw

that in SCET1 we can have either a two-jet (Iqno gno ) or three-jet configuration

(Iqa, gn' ga)1), depending on the collinearity of the external particles. When we go to

SCET2 we reduce the magnitude of collinearity, now particles with momenta pi and

P2 can be define collinear only if pi -P2 < (A2)2 , and the SCET 2 theory distinguishes

between the states |qne gno gi)2 and |qn, gn' Qa)2. Because of the difference of collinear-

ity between SCET 1 and SCET 2, a two-jet configuration in SCET1 can be matched

both onto |qn g a q)2 and |qn, gn' ga)2 in SCET2 , instead the three-jet configuration

in SCET1 can be only matched to a three state |qn, gn' gA)2 in SCET 2. The matching

2 As before we do not consider operators like O(l) (no, ii) that describe a gluon collinear to the
antiquark.
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is given by

JQCD 1,O (no)O0 (no) + C(1) (no, no)O0(l (no, no) + C(1) (n1, n') n1 (ni, n')

± Cij-(no, no)7; T1~(no, no) + - (B.41)

=CF )(no)O 0((no) + C(1)(no, no)Od1 (no, no) + CF (ni, n)O ( (ni, )n'

+ CN1 (no, no)T (no, no) +-- (B.42)

where in the first equation we have written the original QCD current in terms of

SCET1 operators and in the second equation in terms of SCET 2 operators. The el-

lipses indicate higher order operators. If we close Eq. (B.42) with the state |qn, gno qii)2

we get

CQ 0(no) dx 4(0|T{ScETi ( no) I qno no ai) 2

± CM(no, no)(0|10 (no, no)| q 0 g.0 qi!)2 + C(1)(no, no)(07 (no, no)|qn0 g 2

=- 0 (no) dx4 (0|T{LSCET2 (x) (no) qnO no j q5) 2

+ C(1) (no, no)(0|10(l(no, no)|qne gn,, )2 + C#(no, no) (0|7;(no, no)|que go- )

(B.43)

Because the structure of the operators in Eq. (B.43) is the same in the LHS and RHS,

we simply get

C 0(no) = C~o1 LO(no),

CFl) (no, no) = C(1) (no, no),

CQl)(no, no) = CNl)(no, no) . (B.44)

If we close Eq. (B.42) with the state 1q, gnl qf)2 we have

C 0 (no) J dx4 (OIT{LSCET 1 (x o)(no)} qni n )2 + C(no, no) (01O(l)no, no )jqn 1 n qa) 2

+ CM (ni, n')(0|O1 (n1 , n') |qni g a f)2 + C(1(no, no)(0|Tj(1 (no, no) | qn gn' qA)2
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=CM (ni n1)(1|O (ni , n')|Iqn, gnl qja)2 .(B.45)

We decompose C 1 (ni,nt) as

CM'= CM ± C 1o+ H +C C(1)H (B.46)2 - , L 2, NO 12, NO 7 2, NNLO'

whereC do' is the coefficient that multiplied by (0|0 1)(ni, n')|qn1 gn qa) 2 reproduces

the second line in Eq. (B.45), C('H§ the third line and so on. All the SCET2

coefficients in Eq. (B.44) scale as Ao like in SCET1 , but we will see that the SCET2

coefficients in Eq. (B.46) scale with different powers of A, thus what is meaningful is

not the power counting of the operator by itself but the power counting of the Wilson

coefficient x operator. We will prove that

C )(no)O 0) (no) ~ A , Cf 1 e(ni, n)O (ni, n/) ~ A5 , (B.47)

C(o (no, no)O0(l (no, no) - A' , C? 'o (ni , nj)O 1 ,(ni, n') A6

CM o no(no, Ioo) T( 1 (, (no) ~ A8 , CMH 'L b(n 1, n)O() (n1 , n() ~ A6 ,

0 (1)H (f)i 0iD(l) (in,1 n) A A7 .
2, NNLO -

In the second column we have only one operator O() (ni, n') and we have decomposed

its coefficient according to Eq. (B.46). It is important to notice that the matching

constrains but does not conserve the power counting, this is because in SCET1 the

fields scale as A, but in SCET 2 they scale as A2 , for example we have that the LO

operator in SCET1 is C(o0)0() ~ A2 , but for the LO operator in SCET2 we have

C~o 0(od) ~ A5.

If we have to calculate cross section with a fixed number of external particles

we have to take into account all the SCET2 operators in Eq .(B.42). What we are

interested in this work is to reproduce parton shower. To reproduce the LL parton

shower we only need Cfl (ni, n')O(1 (ni, n). To see why we can emit a second

gluon, k2 from it. Before doing it we have to run it down to the scale of the second

3A consequence of it is that for two emissions we will have NLO operator in SCET1 that con-
tributes only to NNLO operators in SCET2

178



emission using the factor U( (ka1 , k2 1 ). Because the first gluon comes form the

operator O(l)(ni, n') whose coefficient was defined in the matching form SCET1 ,

and the second gluons comes form inserting the SCET2 Lagrangian, we know that

k >> ki, as the parton showering condition requires. The operators 0O()(no) and

0(1) (no, no) carry information that we do not need to describe parton shower. For

example 0(O(no) describes a quark which had not emitted until after the scale of

matching k, 1 . However, the RG kernels already give us the no-branching probability

so, even if they have lower order in A, we do not use them. For this reason we call

C(ni ni)O 1 (ni, n') our LO operator in A and we say that LO is at order A5. The

coefficients C1(i, ni) and C2NLO (ni, n4) give corrections to the parton shower

for one emission, and they describe a three-parton process. This means that if we

want to find correction to a parton shower process that start from a matrix element

with two partons, we have to take into account also parton shower starting from a

matrix element of three partons. Therefore in the rest of the section we will focus

only on the operator we need: 0 (ni, n').

We now turn to calculate the Wilson coefficient (B.46). We do it in three steps:

first we calculate the amplitudes in SCET1 on the RHS of (B.45), second we rotate it

using the finite RPI transformation define in Appendix B.1, so that they overlap with

the SCET 2 states, and third we calculate the SCET 2 amplitudes in the LHS of (B.45)

and calculate the Wilson coefficients necessary to make the two side of Eq. (B.45)

equal. We do it order by order and we start calculating the coefficient CdQ. The

SCET1 amplitude in the first line of the LHS (B.45) is

A _q U(0) (a (J 1 )nOL'_YnoiL A
ALO U((no)(Q, pi) g no no + ) (B.48)

qi

U(0)(no) is the running factor (see Section 4.4.3), and p1 - AQ is at the scale of the

emission. In (B.48) we have omitted the term proportional to A' because we work in

the light-cone gauge where the Wilson lines are equal to the identity. The amplitude

(B.48) is written in terms of objects projected in the n and h directions. As discussed

in Appendix B.1, these directions are not suitable for a SCET 2 states but we can use
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the formulas (B.9) and write (B.48) in terms of the directions ni and n' that are the

directions where the quark and gluon have zero perpendicular component, this gives

ALO =U)(no) (Q, p1) g ga, n" 2+72( (B3.49)

In (B.49) we have rotated the spinor in the ni direction, 'ynQi in the n' direction

and we have written no in terms of ni, n' and q,_. We have dropped all the terms

proportional to rio and we made use of relations $ = 0 and ( = 0. Because the

momentum of the gluon is parallel to n/, only the polarizations in the perpendicular

direction with respect to n/I are physical, thus we can neglect the term proportional

to n' in Eq. (B.49). The SCET2 amplitude (0linigLan xalquign' ga) is

([xg X qin ta) = g n, CO" I , (B.50)

where in Eq. (B.50) we have explicitly written the polarization vector for the gluon.

From Eq. (B.49) and Eq. (B.50), we can see that the LO Wilson coefficient is

Cdo = U(0)(no)(Q, (ki)no-cto(no)(g ,O (B.51)

where

cLO(no) = 2  + ) OA2[ni- n']. (B.52)

eA2 [ni -n'] is a function that encodes the information that (ni -n') < A2, we will say

more about it below. Because the matching come from a SCET1 operator, (qi)no-

can go up to order A and q up to A2 , thus C(1) has power counting A Using

formulas (B.13), we can write (B.51) only in terms of ni and ni, this gives

C U = (0)(n)Q pi0n -n i + ki an 2qo
Q 2Q (ni -n') qgiki

X ( FIA - 5 F/ni -nj l/1 . (B.53)
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where v' is defined in Eq. (B.14), qi + ki = Q. For p,1 we have to take a quantity

that scale as AQ, we choose t = n|Q. Because |v'| = 2, the power counting

of (B.53) is only from the scalar product ni -n' that here is of order A2. In a similar

way we can calculate C(')H," and C (1)H
2, NLO 2, NNLO

We have done the matching starting from the QCD current JQCD q '7"q. If we

had started from a general current, qFtq, the results (B.51) for C§l) would have the

same upon the substitution

7 g F" . (B.54)

We can obtain Cfl% 02) (ni,n) from the SCET1 operator r"Xn running down

from scale Q to scale p1 using the factor U(0) (Q, p1) (no), and subsequently using the

replacement rule

(Xno)i -+ (c'o)ji(no) (,niJ gB I. (B.55)

On the other side we will see that the coefficients C()H, C '(1)H,b C(L)H are much

2, NLO' 2, NLO' 2, NNLO

different in the presence of a different QCD current. We labeled the coefficients whose

structures depend on the hard scattering with the upper-script H, that means hard-

correction. Starting from two-gluon emissions, there are corrections whose structures

are independent from the initial currents and we will call them jet correction.

We now calculate CILfa and C NLO. For the NLO and NNLO amplitudes in

the second and third line of the LHS of Eq. (B.45) we have

n - (4- n+ - 6i
x U(2,1,) g - 2 g .

ANLO =U '(no, no) (Q, p1) Q gn i ~ n ~l

=L U- '(no,7 no) (Q, pi)

x + 9617401#1,37 o gs,(ki" 7gva , (B.56)
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where in the last equation we have performed the rotation to the directions ni and

n'. The SCET 2 coefficients needed to reproduce the amplitudes in Eq. (B.56) are

(B.57)C(I'- = U(' 1' )(no,I no)(Q, p1)c_ LO

C, NLO =T U''(noI no) (Q, p1) c2 NNLO

- U(2,1,0)(no, no)(Q,

- U(2 ,1 ,0) (no, no)(Q,

2 (21,1) (no, no),(Q,

n - 6n

0 N 7) 8e2[nl- n]

I Icin'P + gini

+

(B.58)

- (1+ (nn2 )2

7) 1 2 -1)nor}1 A n) -

= U '(noI no)(Q, P 1) 7 niQ _/- nW|I + iP (ni,

+ |Vni -n/1|v/ - ni/ (ni -n )L 7 )8\2[n1 - n')

0 (1)Ha has power counting Ao and C NLO A.-2, NLOha2 NOr.

For the coefficient C(1,b the matching comes from the SCET 1 three-jet operators

where ni -n' is now of order A0. Because C 1 "(ni, n') defined in Eq. (B.39) is already

labeled in terms of the directions ni, n' and fi exactly parallel to the external particles,

we can simply write

C1H' b (ni, n) - C 1"(nI, ne)52[n1 -n') , (B.59)

where 8X2 [n1 - n] carries the information that (ni - n') > A.

ni -n/ ~ A, C~ d'b(ni, n') scale as A0 and

C2, 'O(ni, n'(l) (ni, n') ~ A6 .

Knowing that now

(B.60)

The SCET2 coefficients (B.53) and (B.57) comes from matching SCET1 to SCET2

for the two-jet SCET1 phase space region where q -ki < A2Q2 that implies ni -n' A2 ,
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c H aC2, NLO

HC2, NNLO

)N/ 8 2[n1 -n/)]

-/) a,



instead the coefficient C('fj~ comes for the three-jet SCET1 region where ni -n' > A2.

Because the operator 0(1) (ni, n') only knows that ni - n' > A', it is not able to

distinguish the two regions, and this information has to be encoded in the Wilson

coefficients, and we have done it inserting the function E and 8. We can think of

E)2 [x] as usual theta function: eA2[X] = O[A 2 - x] and EA2[X) = 1 - EA2[X], but if

we have to calculate inclusive quantities we need to integrate the phase space and

having hard theta functions in the integrand could be problematic. We can define a

smoother theta function, an example is in Fig. 4-9

0 if x < A - a
2aSign(x-A)

9 A,a(X) { -Sign(x - A)e (x-A)-aSig(x-^)A + (Sign(x - A) + 1)e- 2 if A - a < x <A + a

1 ifx > A+a
(B.61)

and EA,a(x) = 1 - eA,a(x). The parameter A tells where the function switches from

0 to 1 and the parameter a how fast it does it. To see how this theta function works,

we integrate the amplitude squared up to NLO. The LO amplitude squared is

A I9|LO 2 O l 1 2qik1k2, pg) ,(.2

where

G(q1, kiI k2, Pq) =2(qui gn'i gaO lf(ni, n')|0)(0O ('(ni, n')|qngn gA)2 . (B.63)

The NLO and NNLO amplitude squared is

| NLO + NLO = toNNLO, 2-jet A NNLO, 3-jet, (B.64)

where

=q 2M (C~b(i 1)C,~rl H i + C~i(1Hi,ar )+Ato9|r20 NNLO, 2-jet l (i, 1 + O ( 1 O

+(C)~a (ni n') + Cfl)'Hto(ni n1))Cq L (nI1'
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Figure B-3: Merging of the two-jet and and three-jet amplitudes squared for qqg
process using a smooth theta function. Plots of the two-jet amplitude square,

+ (green), three-jet, LO,3-jet (blue) and sum (red) ver-
sus ka 1,. The amplitudes are evaluated two-jet and and three-jeted without running
coefficients for k1/q0 = 0.4.

+ , O ' LO(ni, n1)|2)G(qi, 7k1, k2,) ,

|A N|NLO, 3-jet 2,'On 21)G(qi, k1, k2, pq) .(B.65)

AqI|LO, 2-jet is the contribution to the amplitude squared from the two-jet region

and A | 3-jet is the contribution from the three-jet region. In Fig. 4-8 we plot

the ratios |A I |O/|A4 IQCD O NLO, 2-jet) /I IQCD versus kg19,
We notice that including NLO corrections extends the region where tree-level SCET

and QCD agree. In Fig. B-3 we plot the the merging of the two-jet and and three-

jet amplitude squared using the theta function. The theta function defined above

smoothly merges the two amplitude squares. In Fig. B-4 we plot |A4qg|2O + A4q9|gLO

with and without running factors.

B.3.2 Two-Gluon Emissions

We now match SCET1 to SCET 2 for two-gluon emissions up to NNLO. In order to

do it we first should calculate the matching QCD to SCET1 for two emissions up

to NNLO. Besides the operators in (B.26), for two emissions in SCET1 there is the
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Figure B-4: Plot of the SCET2 amplitudes square up to NLO, |Aq4 9O +| Aqg 92

with (green) and without (red) running factors versus ki, for k1/qo = 0.4.

additional NNLO operator

O2 (no, no, no) = VngB,,g3g jX , (B.66)

but this operators in not relevant for the matching SCET1 to SCET2 at NNLO. (B.66)

matches to SCET 2 operators with two gluon field, like for example O (ni, n4, n) =

VnBa 3,Igxa, with Wilson coefficient C(2)(ni, i, n) of order A0 , that is (B.66)

matches to a Wilson coefficient xoperators in SCET 2 of order A8 that is N3LO ac-

cording to the power counting in (B.47). Thus the SCET1 operators (B.26) are enough

for the matching to SCET 2 up to two emissions.

Besides the operators necessary for the matching for one emission, the SCET 2

basis for two emissions has the additional two gluons operators

) (n2, n2, n')= n 2gBgix, (B.67)

( 2)(n2, n', n') =n 2gB 9gl 3 nigX,

O(2 (n2, n', n') = in2gB"_9gB'g x

O( 9(no,no,no) = 0VogBL30 gB xa .

In the first operator in (B.67) the quark and the gluon are collinear and it does
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QCD SCET 1  SCET 2  SCET 3

no n 2 n , nl2no

no n2 n 'n n nn

n2n n' n

n n'

Figure B-5: Matching SCET1 to SCET 2 to SCET 3 for two emissions for the two-jet
configuration. In the first column there are the QCD Feyman diagrams; in the second
column the SCET1 diagrams from the operator O"(no); in the third column the
SCET1 diagrams from the operator 0((no, no) and 7Tl)(no, no); in the fourth column
the SCET 1 diagram from the operator 0~ (no, no, no), this operator contributes only
at N3LO to the SCET 2 matching; in the fifth column the SCET 2 diagram from the
operator 011) (n2, n'); In the sixth column the SCET2 diagrams from the operators
O 2

) (n2, n', n'), O 2
) (n2, n2 , n') and O 2) (n2 , n', ni); in the seventh column the SCET3

diagram from the operator 0 2) (ni, ni, n').

annihilate the state [qn2 gn2 gn'qt) 2 , in the second the two gluons are collinear and it

does annihilate the state |qn2 gn'gn/a)2, and in the third all the particles are far apart

and it does annihilate the state |qn2 gn'g7 Fia)2 . The last SCET 2 operator in (B.67)

is not necessary for the matching at NNLO. It can only be closed with the state

|qno gno gn Q) 2 that describes two emissions both collinear in SCET 2, his coefficient

can only come form the SCET1 operator O 2
) (no, no , no) and so it only contribites at

N3LO. The Wilson coefficients of the operators (B.67) are defined such that

JQCD 1, LO(no) 
0 o)(no) + C l) (no, no)O0(l (no, no) + C~1#Tj1 ) (no, no) (B.68)

+C(1)(ni, n')O01)(ni, n')+ -- -

= C 0 (no)O 0 (no) + C (1 (no, no)O 2
) (no, no) + C(2T7 2

2 (no, no) (B.69)

+ CF (ni, n'1)O 1 (ni, nt) + C(2 (n2, n 2 , n')O(2 (n 2 , n 2 , n')

+C(2 (n2, n', n')O(2 (n2, n', ') + C(2 (n2, n', n')O(2 (n2, n', n') + - - -
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where in the first equation we have written the original QCD current in terms of

SCET1 operators and in the second equation in terms of SCET 2 operators. The

ellipses indicate higher order operators.

We divide the Wilson coefficients in two category: jet and hard. We labeled the jet

coefficients with the upper script J, and the hard with H. As already mention in the

previous section, the jet coefficients are those whose structures do not depend on the

QCD current. That is, if we had starting the matching from a general QCD current,

7FIq instead of J<CD = qgfq, the jet coefficient would be the same upon the substitu-

tion in Eq. (B.54). The corrections that come from these coefficients are universal in

the sense that they are independent of the information about the hard scattering that

happens at the beginning of the shower. Instead the hard coefficients are those who

depend on the QCD current, that it they give corrections that depend on the hard

scattering. All the jet coefficients come from the matching with the SCET1 operators

0O) (no) because it can emits two gluons only through the Largangian insertion and

the Lagrangian does not dependent on the initial QCD current.

We have seen in the previous section that the LO coefficient x operator that we

need for the parton shower is CF (ni)O f (ni, n'), that is of order A5, Eq. (B.47). We

are interested to calculate the amplitude squared at NNLO, that is we only need to

calculate the NNLO amplitudes that interference with the LO amplitude. The LO

amplitude for two emissions is

Ag C(1) (ni, n/) Jdx(OIT{LSCET 2 (x)01)(nl, nl)'n 2 gn2 9nt .5)2. (B.70)

Because AJgg comes from closing the operator with the state |qn29n2gnia) 2, it can

only interferences with the amplitude that comes from 02) (n2, n2, ni). Thus we will

only calculate the component of the coefficients C(2) (n2 , ni, ni), and C(2) (n2 , n, n4)

that give NLO contribution, that is such that C(2) 0 (n2, n', n') and C (O2 (n2 , r n)

is of order A'. Knowing that O(2) A8, we have to calculate C 2 ) (n2 , ni, n'), and

C(2 (n2, ni, n) only up to A-2. For O 2) (n2, n2 , n) instead we have also to calcu-

late his coefficient up to A-1 . We will use the lower script NLO/NNLO/N 3 LO if the
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coefficient scales as A-2 -1 0.

We now turn to calculate the coefficient of (B.67), it can be defined by closing

Eq. (B.69) with the state |91gnign qa)2. We decompose C 2 (n2, n1, n2) as

C(2) (n2, n', n') =C2o(n 2 , n, n'2) + C(2)H(2 , nin 2) , (B.71)

where

C2 o(0|O (n2, n' n') I qn2gnigaa)2 = (B.72)

C( 0) 0 (no) JdxId 2(O0T{LSCET1 (X1)LSCET 1 (X2) 0) (n0 , no) n2n'9n'q5 2

and

C2)H (n2, ni, n2 n2, ni, n n 2= (B.73)

+ C (no, no) Jdx(OIT{LSCET (X) 1 ) (n0 , n n29n9')2

+ C1 (no, n0 ) Jdx(OiT{LsCETi (x) 7j1 ((no, no) }qn29n'n'5)2

+ C 1 (ni, n') Jdx(0T{LSCET1 )(n, n1) I I}qn2 gn/gn'A 2 -

We decompose C2 (2, ni,'

C 2)H (n 2 ni, n2) 2 O(2, n, n2 + )LO 2, n 2, +C2 Lo(22, ni, 2 1,

(B.74)

where C 2  o(n 2 , i, n') is the coefficient that multiplied by (010I2
) (n2, n'1, n')|9n2 gngn/ qA)2

reproduces the the second line in the Eq. (B.73), C L(n2, ni, n') the third line

and so on. In Eqs. (B.71-B.74) we put the labels in the coefficients to indicate their

power counting. Because the operator 0(2) (n2 , ni, n') does not interference with the

LO operator we only need the coefficient C(2
) 0 (r 2, ri, n'2) to calculate the amplitude

squared at NLO. We calculate C2 o(n 2 , ni, n') and also C2 o(n 2 , ni, n'2) becauset no 2, NNLO

it will be useful later, and we prove that are of order A -2 and A-' respectively. We
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Figure B-6: Feynman diagrams for two emissions in SCET1 from the operator do)

will not calculate here the other coefficients, however it is easy to do it just repeat-

ing the method we will show below and one can prove that they have the power

counting labelled in Eq. (B.74). C(2 L(n 2 , ni, n') and C(ff2o(n2, n', n'2) come from

two-jet operators in SCET 1, thus they are defined in a phase space region where

n2 -n , n 2 '2 n ' -n' < A2 . As we have done for the coefficients calculated in the one

gluon matching, we have to encode this information in the Wilson coefficients because

the SCET 2 operator Of (n2, n', n) only knows that n 2 -n', n2 -n', n' -n' > A4 . We

will do it inserting E functions in the coefficients like for the one gluon matching.

To calculate the coefficients we proceed like we have done for one-gluon emission:

on the LHS of Eqs. (B.72) and (B.73) we calculate the SCET1 amplitude, we rewrite

it along the direction n2 , n', n' where the quark and the two gluons are aligned using

the finite RPI defined in Appendix (B.1); on the RHS we write the SCET 2 amplitude

and calculate the Wilson coefficient necessary for the matching. We decompose the

SCET1 amplitude

A4=C JdxidX2 (O|T{sCET, (x1)LSCET1 (X2 ) 0 0) n 2 gnn) 2 , (B.75)

in

A = ANLO, A + ANLO,B + ANO, C, (B.76)

where A, B, C correspond to the three graphs in Fig. B-6. Using the SCET Feynman
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rules we have

(o +

7Yn 2 n- + + 2q 2 + k
A [rig (0) g2 6-~~ a

ANO,3 = U)(no) (QI (ki)nol) g2 no [no+

x no + _ - 17 03(2+0)o Flvi,
q2 +k1 O

A , c = U(0)(no)(Q, (ki)no1 ) g2 ii " [
- NO, - qo-

U 13
<YnO -LYnO±

12

+ 1 Y -L ] a 2
2 +qI2 OFv,

(B.77)

where qi = q2 + k2 and qO = qi + q2 + k2. As before we do not write terms with

A' and 0, they are not necessary for the matching because the operator ni- An is

constrained by gauge invariant to be only in the Wilson line. Now we rotate the

amplitude (B.77) to the directions n 2 and n' and n' parallel to the quark and the

two gluons, as described in Eq. (B.16)

A , A =U(0(no) (Q,p1)g22[ - n2 n2 v+ _ k22 I2' 7
q2 + k2 q2 +k2 2 2L

x ni - 1 C+ in I - A
q1 q0 _v

ANO, B= U (0) (no)(Q, p i)g i 2  ni-nIo+ k2 n22
1q1 + k1 q2 + k2 2

k~ ii,
± (q+ I (q2 + I2) I2- 2 1 2 7 

+

x _q 2 n2|1 V,

q2 + k2 fl 2

x q2 + ki qo cv ,I(q2 + k)2 g o

ASc=U(0) (no)(Q,p1)g2

- _ 1  i ni-V o + k1
1 + k1q 1 +k 1 i2 -

(B.78)

qo Ik2
1 0I3a 1 -~ 0 V 1

k 2 + 2 2nIqo

ni - n'i is defined in terms of n2 , ni and n' in Eqs. (B.20),

vi and v 2 are defined in Eqs.(B.14) and (B.19), and the values of q, q2 and
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(q1 + k2)2 are given in Eqs.(B.22) and (B.23). As for the one-gluon emission, we can

neglect the term with n and n'3 because not physical. The SCET2 amplitude for

(0|1 2 (n2 , ni, n')|qn29n9njiF) is

(0|X' n2gB g l n 1n 2 9 n/ C / I= va. (B.79)

In Eq. (B.79) we have expicitly written the polarizations vectors of the external gluons

in the state. Thus the Wilson coefficients C 2  (n 2 , n, n'2) is

C2  o(n 2, n', n') - U(0)(no)(Q, pi) dj'8(n2 , n', n')0\2[n2 ]n']E\2[n' ,

(B.80)

where

1 dlA#n2, n'1, n') + df (n2, n/, n') + d (n2, n', n),

q 2 )l*f2I2dj "p(n2, n1, n2) =- - |'n 21 n2|v +
1q

2 + k 2

-q1 + k1 VI

_k2_ -t2n 2 7
q2 + k2  Tn2127Yn-I

_ki q o t
q1 + k1 2 q 2 goIq~0

d,"a(n 2, n/, n2)
q1+ k1

nin -1 iI +

+ 9 _ k2 ) 2 2
(q2 + k1)(q2 + k2)

x _ -
I 2 + k2

/'n2 l '2

q2 + ki I q-
(q2 + k1), oo

F 1
L 1'1- 12

2 2 ki qi
2 1(q2 + k1) (qi + k1)

ki- n - ki8
1+1 q 1+ k1 2

1 No3 1 07 AL n
k+ q2 2l

The E functions in Eq. (B.80) are necessary to encode the information that C 2  o(n2 , n , n')
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(B.81)

k2
q2 + k2

(B.82)

dPn 2,nl,n,) =

2

n 2 - c7'V n~ 2-2 2'Y'I
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Figure B-7: Feynman diagrams for two emissions in SCET1 from the operator C1O

comes from the two-jet SCET1 operators. To calculate the power counting of C 2 LO(n 2 , ni, n'),

we have to consider that this coefficient comes from matching SCET1 to SCET 2 in

the region where n 2 - n' n2 -n' ~ n' - n' A2 , thus we have

(B.83)

We proceed similarly to calculate the coefficient C 0 (n2, n', n') and prove that

it has power counting A-1 . We decompose the SCET1 amplitude

A qg = Cl (no, no) dx(OIT{LSCET1 n0) , (n 0 n2o)nIq 9n272

NNLO - NLO , A+ ANLO, B

where A, B correspond to the two graphs in Fig. B-7. We have

A O A U(2,1,0) ( g2  
2  - n2 n'|I
q2 + k2

+ k2 n _,W I 2 '
+ 2 n 2 n2 n2- ] nI x 2 2q1 q0

n - &6A
7nQv ,YOIV

A e =gg u(2,1,0) o2 [2 - n 'NNLO, B iin2 lO)-,,kl1)glfl 2 I
L91 + ki

+ _ 2- |n2n2 k 2q2 -q|2-21
q2+ k2 2 (q2+ ki)(q2+ k 2 ) 2
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(B.85)

C(2)J on2 , n'1, n'2) ~- A -2



Sk1 q1 q, q1 O n/. - 6l9

4 (q2 + Ici)(qi + k1) 2 .4 q1 qo Q "0n,

where in Eq. (B.85) we have already rotate the amplitude to the directions n2,

n/ and n'. From Eqs. (B.79) and (B.85) we can see that the Wilson coefficient

C2, No(n2, ni, n') is

C(2  o(n 2, n' In') =U(2,1,) (no, no)(Q, 1ti)dH ",3(n2 , n , n')

x eA2[n 2 n]A2[n2 n']EA2[n''n'] ,

where

da3 (n 2 , n'1, n2) = d H 3 (n 2, n', n') + d H' (n2, ni, n')

with

df ( 1 2)

q2
q2 + k2

q,±

n2 -n'v +i 21| V2 +

n -v +

k2

q2 + k2
n2 -n2 17nq'Q

n _ 'I

Q Tni

k2 - n2
q2 +k2 V2 -

k2 q2  2
I' (q2+k 1 )(q2 +k 2 ) 2

(B.88)

k q1 31 q2 + ki qo n" -
q" ( k2 1 )(i + ki) 74 (q2+ k1)2 g2 Q no

For the power counting of C12 o(n2, n4, n'), as for the previous case, we have to

consider that the matching is done in a region where n 2 - ni n 2  ' n'1 '.' A2,

this implies

(B.89)

We now turn to calculate the coefficient C 2 )(ni, n', ni). We will follow the same
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path done above. We decompose C 2 )(i, n) as

(n2 n' n') (n2, n, n'1) +C 2 H(n2 , n', n), (B.90)

where

C2 O1 ( ) (n2, ni n')|Iqg ) (B.91)

= CLO Jdxidx2(OIT{ISCET (x1 )LSCET 1 (X2 ) 0(0)(no, no) jqn29n19n 5)2,

and

C(2)H (n2, ni, n' (102(n2, ' 9n29n 9nIq

C Jdx(OT{LsCET n(x)00()(no, no)} qn29ng9ngq?) 2

+ CiJd(O|T{ISCET1 (x)7(rno, n qn29n 9ni 52- (B.92)

We decompose C(2 (n2, n', n4) as

C(2)H (n2, nn,) = C 2 NLO(n2, n i) + C2LO(n2, n, ), (B.93)

where C2 ,NLO(n 2 , n', n') is the coefficient that multiplied by (O0 2 (n2, ni, ng

reproduces the the second line in the Eq. (B.92) and C 2 LO(n 2 , ni, n4) the third line.

We will only calculate CN2 O(n2, n', n') and prove that scales as A 2 . This is the

only operator that we need to calculate the amplitude squared at NLO. We will not

calculate C 2 NLO(n2, n, ni and C2, NLO(n2, n', n') here, but it is not difficult to do

it and to prove that they scale as A- and AO.

To calculate the amplitude in the second line in Eq. (B.91), we can use Eqs. (B.78)

that is written in terms of the directions n2 , n' and n' that are the directions parallel

to the external particles and take the limit n' -n' -+ A4 . This is because in this case

the two gluons are collinear in SCET 2 , that is we have ki -k2~ A4Q or equivalently

n/ n2 ~ A4 with ni -n' and n -n'2 still of order A2. Thus we can define CjO(n2 , n4, n)
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C (n2, ni ni) =UC )(no)(Q, pi)d "#(n2, n', n2)8A2 [n2 -n']E),2 [n2-n'],(.42, NL~271 1 n'], (B.94)

where

d "n2,n',n')= lim d 3(n2,n',rn2) (B.95)a'3 1 2 ~n -+A
4 

1 12(.5

2 1i>x

_ ' _ k2 | 2 7 (B.96)(1q2+ k2  q2 + k2 22 I 2

x _ - ninilv it+ ki
1qi+ ki q1 +ki 2

#1 4 0 1

qq 2ki(n 2-n) + q2I2(n2 2n'2

F + nngIv + _ k2 - n2 7q k2 q1  q2+k2
+ k2#2  - an2-n2 2 k 1

(q2 + k1)(q2 + k2 ) 2 (q2 + k1)(q1 + K1) 2

[ |n2-n'2V- _ k1  k1-q2 + k2  4 1 qk1-q1v + k

(q2 + k1)2 q2ki(n 2 nj) + q2k2(n2 -n')2

k+ 2 + 7 g I 2K1(n 2 -n/) + q2k2(n2-n2)
x E4[n.n'].

In Eq. (B.94) there is a mismatch of notation between the LHS and RHS. In the LHS

we have the quark labeled with n2 and the two gluons with ni because the coefficient

(B.80) is for the operator ( 2) (n2, n', n'), where the tow gluons are labeled with the

same direction n' because they are collinear in SCET 2. In the RHS of (B.80) n2 ,

nj and n' are the directions parallel to the quarks and the two gluons as defined in

Appendix B.1. We encode the information that the two gluons are collinear using

the theta function in the RHS of equation Eq. (B.96) that carries the information

that ni - n' < A. In the RHS of Eq. (B.96) we could decompose n2 in terms of ni

and i, writing everything only in terms of this two directions, and in this way we
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can avoid to insert the theta function, however it is convenient to leave explicitly n 2 ,

ni and n', because it will make easier for the matching to SCET3. We notice that

the RHS of Eq. (B.96) is just equal to the coefficient C(2)(nI 2 , ni, n') defined in

Eq. (B.80) with the substitution q -4 q 2 kI(n 2 -n)/4 + q2I2 (n2 n)/4. Knowing that

n n '~~ A', ni -n' A2 and ni - n' A2 , it is easy to check that Eq. (B.96) scales

as A-2. Because C( 2)(n 2, n4, n) comes from a two-jet SCET1 operator, we have

encoded the information the n 2 , ni' < A2 in Eq. (B.94) on the E functions.

For the coefficient C(2) (n2, n2, ni), we decompose it as

Ci(2 2, n'1) + C 2)H (n2 , n 2, n), (B.97)

where

C O(n2, n n2 (2)J 2, n'1)(010C2 (n2, n2, n') I 292 )2(B.98)

- CL JdxlidX2 (0[T{LSCET 1 (x)lSCET1 (X2  0) (n 0 , no) qn2gn29nqi) 2

-C4O(n 2, Jn dx(0 T{LSCET2( n2, n n29n29n'qA)2 i

and

C 2)H (n 2, n2, ni) (010(2)(n2, n2, n1) Iqn29n29nqI)2 (B.99)

= C Jdx(OT{LSCET1(x)60(l (no, n0)}I qn29n29nq q) 2

2,NLO n 2 2 niqn29n29n'ql5)2

+ C Jdx(O0T{SCETi(x)Tn(1)(no0 n 2

- C NLO(2, n) dx(OT CET2 (x)0 (n 2, ni)ffqn2 9n2 gn' f)2 ,

We decompose C(2)H(n 2 , n2, nI) as

( 2, n ) = C 2 NLO (n2, n2, ni) + C2HLO (n2, n 2 , ni), (B.100)
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where C 2NLO(n2, n2, n/) is the coefficient that multiplied by (O0 2 (n 2, ni'l, n'2)n 2 9gn') 2

reproduces the the second and third line in the Eq. (B.99), and C(2 )H the forth2, N3 LO

and fifth line. As for the previous cases, the coefficient C2JLO(n2 n2 , ni) scale as

A-2, Cf LO(n 2, n2, n) as A4 and C 2 LO(n 2, n2, n,) as A0 . Because the operator

O(2) (n 2 , n 2, n') interferences with the LO operator 0(1) (ni, n'), to have the amplitude

squared up to NLO we need both C2 and C( 2)H Let us star with C(2)J. To2, NLO 2, NNLO -"2, NLO

calculate the amplitude in the second line in Eq. (B.98), we use Eq. (B.78) and take

the limit n 2 n' -4 A4 with n 2 .n' ~ n' -n' A2 because now we have the quark and

a gluon are collinear in SCET 2.4 It is easy to check that

lim CLO, A 2) (n2 , n2 , ni) C) J fdx(OT LsCET2 (91)}qn 2gn2gn'5)2
n2-n'-+A4

(B.101)

Thanks to Eq. (B.101), we can write C 2 O(n2 , n2, n) as

S$LO (n2,n ni)-=U(O)(no)(Qji) d " (n2, n/, n2)A2[n2 - n'2]X2[ - n'2 (B.102)

where

dj "o(n2, n/ , n'2, lim (dj (n2, n', n2) + djceO(n2, n/, n'2)) (B. 103)
3 1 2 ~~n2'n'2 --+A41B 12 i72

1 a - a 1=1

1( + ki 1 ( 2 + ki)(i + ki) 2
+ 1 -y'- ++ q-0  k2 ' 2~ k2 +q 2 2f~flL

x - 8q E)4[n2 -n'].
ki (I2(n'' n') + q-(n2 -n')) Yo-

The limit (B.102) is define for (n2ni) - (n2n') A2, thus the coefficient C 2$LO( 2 , n2 , n1

is of order A-2. As previously for C 2 LO(ni, n', n'), we prefer leaving (B.102) in terms

of the direction n2 , n' and n'. To calculate C(2LO(n2, in2 , n) we proceed in the same

"We could alternatively take the limit n2 -n A4 with n2 -n' ~ n n' ~ A2
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way. We have

C 2 ,NLO(n2, n 2 , ni) U(2 '"0 (no, no)(Q, pi)d' " (n-2 , n'1, n'2)OA2 [n2 -n'21]A2 [n n'

(B. 104)

where

d,3 a(n2, n'1, n') = lim d Yl (n2, n'1, n'2)

n2fl2 -nA4

([iq ki 1q2 ( 2  q)(q1 + ki) 2 .

X ' 2(q 2 + ki)2  Qo ' ).4[n2-nn'1. (B.105)

In Eq. (B.104) we have use the fact that

lrn 0", O( 2) (n2 in2 , n') =Cllim C NLO, A 2)(2, 12, ni C LOJdx(0OTLSCET2(X)OG1)qn2gn 2gn'qii) 2 -

(B.106)

In Eqs. (B.102, B.104) there is a mismatch of notation between the LHS and RHS of

the same kind of Eq. (B.94). In the LHS we have the quark and one gluon labeled

with n 2 and the other gluon with n' because the coefficient (B.100) is for the operator

((2) (n 2 , n 2, n'), where the quark and a gluon are labeled with the same direction n 2

because they are collinear in SCET 2. In the RHS of (B.80) n2 , ni and n' are the

directions parallel to the quarks and the two gluons as defined in Appendix B.1.

We encode the information that the quark and a gluon are collinear in the theta

function in the RHS of equation Eqs. (B.103, B.104) that carries the information that

n 2 - n' < A'. Because C 0 (n 2, n2 , n') and C2 fLO(n2, n2 , nk) comes from two-jet

SCET1 operators, we encoded the information that n 2 , -n' < A2 in Eqs. (B.102,B.104)

in the E functions.

We have that all the NLO terms from the two gluon matching come from the

SCET1 operator 0O()(no) and are jet corrections and at NNLO we have only hard

corrections. Before matching SCET 2 to SCET3 , we have to insert in the coefficients
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the SCET 2 running factors. Below we list all the SCET 2 coefficients at NLO that we

have calculated with the appropriated SCET 2 running factors. From the matching of

one-gluon emission we have the coefficients:

C 1
0(ni, ') = U( 2 ,1,0 )(ni, n'1)(pI, p)U(0)(no)(Q, p 1 ) O )/2 , (B. 107)

q0

'(ni, n' =U(2 )(ni, n' 1  M)U(2,1 o)(no, no)(Q, 1k) 9 c2HaLO

C2, LO(ni, n' = U(2,1 o)(ni, ni)(pi, )U(2,1,o)(no, no)(Q, , 1) 0 C2,NNLO

CM 'b(ni, n'1) = U(2,1,)(ni1, n/1)(t 1, ) , n' )62[n1 -n'],

where the first coefficient in (B.107) is defined in Eq. (B.51), the second and third

in Eqs. (B.57), and the last in (B.59). From the matching of two-gluon emission we

have the coefficients:

Cf 2 o(n2 , n'2, n'1) = U(2,1 ,o)(n 2, n'2, nij)(pi, y) U( 0 (no)(Q, p1) (B.108)

xLOn d' (n2 1i n28 [n2 -108[2-)282[''n1

xd'(n2, n', n')8A2[n2 -n'1]8 (A n2 -n'] ,)2n 'C(2  (n2 , I n2 ) U( 2 ,o)(n 2, 2i4, n1)(pi, tt) @ U(0) (nio)(Q, [Li)

x dj(n2, n', n')A2 [n2 . n']EA2 [n2 -n'],

)x 1 d (in2 '1, Un 2 , [2n'02 n'2]0 [n' -(Q 'il

C, LO(n 2 n2,i) - U(2,1 o)(n 2 , n 2 , ni)( 1i, y) 0 U(2 ,1o) (n,,)(Q, ip1)
xd3"(n2, n' , n') O2 [n2 -n'2]8A2 [n'1 -n'2] ,

where the coefficients are defined in Eqs. (B.80, B.94, B.102, B.104).

B.4 Matching SCET 2 to SCET3 to SCETN

In this Appendix we match SCET 2 to SCET 3. All the SCET3 operators necessary

for the matching up to two-gluon emission are: Ono(o), Of (no, no), O (ni, n),

199



0 2 ) (n2, n'1 n'2) O (n, ni, ni), O (ni, n ', 4). We have seen that to describe par-

ton shower for one emission we only need the information of the coefficient of the

SCET2 operator () (ni,n'). We can apply the same argument here and infer that

in SCET 3 the only information that we need, is in the the coefficient of the op-

erator O (n2 , n'i), that is the only one that we calculate. We can follow the

same steps made for matching SCET1 to SCET 2 to calculate the Wilson coefficients

C(2 ) (n2, n', n'). In this way it is no difficult to show that

C(2 (n2, n'2 n)= C32o

3, +L 3, CLO , O + , ±L ,

+ C(to + C(2 e , (B.109)

where

= C Lo(n2, n') CLo(ni, nj), (B.110)

C(2H a'o(n2 n', n') =C Fen2 n'2) H'"ni, nt) ,

C() b (n2,na, n'2) =C3(n2, n'2) H ' ni, n1) ,

C3,/ (n2, i, n2)

C320(n2,

= C O(n2, n'I, n')e) [n2-n' 2]5e [n2-n']e [*n'-n'j,

i, n2) = CNLo(n2, n', n')e4 [n2-n'2]N [n2 n']e [n],

= C 4(n 2, n2, nl)X4[n2 -n']e 4[n2- n'1e4[n'- n']

3, LO(n2, n 2 ) 2 C2,NLO (n1 , nr
= 2,NLO (n2, n2j ni)E),4n2 -n2] 6,X4n2 ' ni] OX[n2 -n1',

and

C3, o(n 2, n'2) ±(02 )norY'i)
+ 

2

q2
q, E\4[n2 -n']i 4 21~

In the LHS of the equations in the first, second and third line of (B.110) we can write

ni in terms of n2, n' and n' using the formulas in (B.18). The SCET 2 coefficients
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C, NLO(n2) n1, 2
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C3, LO and C3 L are defined in Eqs. (B.108) and thy were already defined in terms

of n2, n' and ni (see Eqs. (B.80, B.94, B.102, B.104). As for the SCET1 to SCET2

matching, there is the problem of encoding additional information into the Wilson

coefficient. The operator O (n2 , n'2., n') only knows that n 2 - n', n2 - n'2 n/ >

A6 , but we can see that the Wilson coefficients defined in Eqs. (B.110) come from

matching SCET 2 to SCET 3 in different regions of the phase space. C32) 0 , C),

C3 Zo are defined for n2 n' A4 and A4 < n2 - n', n/ - n' < A2, C for

A4 < n2 -ni, n2 -n' ,n -n' < A2; C (2)'<, for n' -n' < A4 and A4 < n2 i, n2n2 n A 2

C(2 ) J,C for n2 - n' < A4 and A4 < n2 - n, n' n' < A2. Some information about the

scalar product of ns is already present in the theta functions of the SCET2 coefficients,

we add the missing information in the 8 functions present in Eqs. (B.110). All the

coefficients SCET 3 defined above are for the same SCET3 operator, thus now all the

power counting is in the Wilson coefficients. The LO coefficient scales as A-3 , the

NLO coefficients as A-2 and the NNLO coefficients as A-1 .

At LO the coefficient x operator in SCET 3 is given by the LO coefficient x operator

in SCET2 , C(') 0(1) (ni, n') multiplying it by the running function U(2 ,1 0)

and applying the replacement

(,vn2)i -> (c'O)jj(n1)(,n)jgB"n, ,I (B. 112)

where c0 (ni) is

(q) (i 2)"1nj 2 _Lk+1'CO(ni) 2 + ) 2 [n2 n']. (B.113)
L k2 q2 4 n

Eq. (B.112) has the same structure than Eq. (B.55). If we go on with the matching

down to SCETN we find that the LO result would be given applying the above

replacement N - 1 times. At SCETN we could match everything to the operator

O(N- 1 (nN-1, ni,.. , n'-1), and the LO coefficient is

N-1

N 17 U(k1-)(-1, Ak)cLO(nk-1)1, (B.114)
k=1
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with Pk = fkn_1-n'klIQ and

Ca(ne) ( 2 ( - -L + (Ok+1)nk'Qk 1 4 (9# k+1))2 [nk+1 k+1 (B.115)
LO~k)kk+1 gk+14

At NLO we have two kinds of corrections: hard and jet. The hard coefficients

in Eqs. (B.110) depend on the QCD current, that is on the hard process at the top

of the shower. We notice that the coefficient xoperator in SCET 3 is just given by

the coefficient x operator of the hard corrections in SCET2 with the application of the

replacement rule (B.112). If we go on with the matching down to SCETN we find

that the NLO hard correction would be given applying the above replacement rules

N - 2 times to the SCET2 hard correction operators. Thus we can consider this

correction as a correction on the matrix elements from whom we start the shower:

N-1

C, -L = (Cf (nin1) + CNLO (ni, n')) ( UCk 1)(Pu- 1 , IA)cJO(nk1.))

k=2

(B.116)

The NLO jet corrections do not depend on the QCD current. In this case the

SCET 3 coefficient xoperators O(2)J, 10(2) (n2,n n'2), where I = {1, 2, 3}, are given by

the LO SCET1 operator &non'xh in three steps. First we multiply it for the running

factor U( 2,1,0)(no)(Q, p1 ), second we apply the replacements

(,vn2)i -+ (hi")ji (n2, n', n') (,Vni)j gB "1gB3" , (B. 117)

where

h (n 2 , n'1, n') - dc13 (n2, n', n'2)5X4 [n2 -n']5E4 [n2.n']E4 [n' -n'1 , (B.118)

hfj(n 2, n', n'2) - d (n 2, n', n n']E)4 [n2 n']8\4 [n' -n'],

he3 (n2, nI, n') - d (n2, n'1, n')6\4[n2 -n']Nx4 [n2 -n' 1]04 [n''n'] .

The d"3 coefficients are defined in Eqs.(B.81, B.96, B.103). Third we multiply the
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opeartors that come from applying Eqs. (B.118) by the second running factor. This

depends on the SCET 2 operator so each replacement rule (B.117) is followed by a

different factor: h?" by U(2,1 ,o)(n 2 , n/, n')(#1, #2), h!" by U(2 2 o)(I 2, n ', i)( 1 , P 2)

and hc'by U(2,2,o) (n 2, n 2, n)(P1, P 2 ). Because these corrections are independent of

the hard scattering, we would encounter the same calculations we have done in the

previous section for SCET1 to SCET2 , at any matching SCETi to SCETi+1 . Thus

the NLO jet coefficients for the SCETN final operator is

N-2

C -= C (l), (B.119)

where

3 1-1

C(N- (1) = Uk1)(pk_1 , tk)c%(k_1)) U-1)(pk_1, Pk) 0 h"3(nl+,,n',n'
I=1 k=1

N-1

x ( U(k-1) (pA_1,7Il p)cl(nk_1) 1-'. (B. 120)
k=1+1

and

h(nl+(n1, ni, ni+1) = d?"(nl+1, n', h+135(\+1)2 [nl+1'nl+l](Al+1)2 [n1-nOi(+1)2 [n'+1 n/

h (n1+1, n', n'+1) = d2 1(nl+, n', n'+1)e(A+1)2 [n+1.nl+1](,\1+1)2 [n+1 nl]O(+1)2 [n'+ ni)]

h n1+1, n', n'+1) = da3 (nl+1, n', n'+1 12[l1nl1 (012n+ -"](,\+1)2[n/+'i

(B.121)

The coefficients d3(n1+1 , n, n1+1) are equal to the coefficients dc"(n 2 , n', n') defined

in Eqs.(B.81, B.96, B.103) upon the substitution (n 2,n,n') -+ (nl+1 ,nl,rij+1 ) and

A2 -+ A21. At NLO we calculated only the coefficients for the operators that interfer-

ence with the LO operator, and we found only hard corrections. The considerations

we have done above for the NLO hard corrections apply also to the NNLO hard
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correction, and we can write for the NNLO hard coefficient at SCETN

N-2C(N-1)H - C(l)Ha ( n) (riUl 1)

N,NNLO -U2, NNLO (n n U 'j-k-1, IAk cLO rik-1)J

k=2

N-3

+ C O(n 2, n'1, n2)(Jl U(k-1 )(Ik-1, /k)CLO(nk_1))
k=3

(B.122)

where the coefficients CNj f (ni , n') and C 1 {(n 2 , n1, n2) are defined in Eqs. (B.108).
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Appendix C

O(a2) Correction to Splitting

Function

In this appendix we rederive the (Abelian part of) the O(o) correction to the q -4

qg splitting function, P3). This follows from obtaining the NLO (in A, the SCET

power counting parameter) correction to two-gluon emission. For comparison, we

have chosen the classic result of Curci et al. [391. The full expression for P3) involves

many real and virtual contributions. We only calculated the - Ck component of P) ,

and found that it agrees. Fortunately, [39] tabulated the different terms by graph,

and so we were able to determine that we matched exactly for those calculations we

did. Obtaining the full result would be a straightforward calculation of various one-

loop renormalizations and non-Abelian emissions in SCET and combining them with

our result. Ref. [39] splits the Abelian, two-gluon, real emission contributions to P)

into two topologically inequivalent diagrams, the box and crossed graphs, Fig. C-1.

We calculated each of these individually.

The SCET1 amplitude contains three graphs for two-gluon emission. These are

shown in Fig. B-6, and we give the corresponding amplitudes in Eqs. (B.77). In order

to obtain Pq, we will need to square the amplitudes and integrate over phase space.

Thus, we need to choose an explicit kinematics. We redraw, in figure (C-2), our

vector labels for two-gluon emission. We choose a somewhat nonstandard assignment

for our variables. This is to aid in the comparison with [39]. The final state parton
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q0 4 q0

C0 k [k2 kl k2:

q2 q2

Figure C-1: Two distinct real emission contributions to Pqq) drawn as amplitudes
squared. They are referred to as the box (L) and crossed (R) contributions.

Thy

q0

ki
q2 k2

Figure C-2: Kinematics for double gluon emission. This particular diagram corre-
sponds to the "A" graph of figure (B-6).

shower occurs for timelike virtual particles, and momentum fractions decrease the

farther we are from the initial hard scattering. By contrast, [39] considered a DIS-

type interaction where the shower is spacelike. Since the radiation in that case comes

from initial states, the momentum fractions decrease toward the hard interaction.

Only at LO in a, are the spacelike and timelike splitting functions equal. This is

the Gribov-Lipatov relation [56]. At higher orders, this gets violated, but there is a

straightforward conversion procedure, detailed in [39, 94]. We, however, choose our

kinematics such that our variable relations are equivalent to those for a spacelike

process. For example, Pq) is a function of x = q/q 2. In a spacelike process,

x E [0, 1]. Rather than convert our answer, we will also define x as above, even

though this means for us x E [1, oc). Other integration variables will have their

ranges shifted so that they have the same relation with x as in DIS, and thus they
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enter into our expression in the same way. Lastly, we do not do the phase space

integration for q2 . While this is necessary for the timelike splitting function, the

analogous particle for a spacelike process is a fixed initial state. Thus, for comparison

purposes, we can leave it undone. Our vectors are as follows (note that this is a

different frame from the one used previously for matching):

q2 = {p 0, 0, p}
ki = -Zip - 4 , ku cos(# 1), ki sin(# 1), -zip + 4 f

4pzi 4pzi

k2 = -z2p - ki , k21 , 0, -z 2p + k
4pz2 4pz2

g2 +k _+ k 12 _4 _4$+ku+k |

0= p +2 , ku + Ikip-} (C.1)
4px 4px

Before proceeding, we wish to note some things about our assignment. First of all,

while it is redundant to include q0 = ki + k2 + q2 , we will integrate over d4q0 and

wanted to present our parametrization. We see that x 1 - Zi - z 2 . This is for

consistency with the spacelike case, but here, z 1 , z 2 C (-oo, 0], hence the minus signs

in ki and k2. Additionally, only the relative azimuthal angle between k1 and k2 is

physical. Thus, to simplify our formulas, we fix k2 in the x - z plane. A trivial factor

of 27r will enter from the k2 phase space once we integrate.

As a last step before squaring and integrating, we will introduce our measure

and integral parametrization. While one could integrate the full final state phase

space, we found such an approach prohibitively difficult. Instead, we can exploit the

factorization of the the cross-Subsection into a hard interaction and a jet-function

for an appropriate definition of each. We need only integrate the latter, and it will

remain independent of the details of the former. We split up the cross-Subsection as

follows (d 4 + c):

U = 7-t(x) (JLO(x, q2 ) + JJ, NLO(x, q2 ) + . . .)qB, F(X), (C.2)
I x
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where

JLO - d-k j9dqo dq2 pp [C L(01 O(N)q(Ng)) |2 (C.3)
i j=

x6(x - qo/ i)6(q 2 _ (qi + k) 2) (2-r)m6(m) (qO - k)),
j=1 j=1

2 d-1 jO p C()
JJ,NLO dqo dq 2 PP LO|(0|0c( Iq(Ng)q)|2 (C.4)

i j=13

i i

x6(x - go/qi)6(q 2 - (qi + E kj) 2) (2wr)m(m)(qo - E kj))
j=1 j=1

and the qi phase space and spin-sum gets moved into 'W. We define zj analogously

to Eqs. (C.1) and (C.1). The function qB,F(x) is the bare fragmentation function

which determines how the partons arrange themselves into hadrons. We call it 'bare'

as it contains singularities necessary to cancel the collinear divergences from parton

splitting to give a finite observable. The J terms defined above consist of only the

pole portions of the corresponding operator expectation values. The reason we extract

only the pole terms is that these are precisely what give the expression for P(ql).

By fixing the virtuality of qO q2, we can obtain an expression without having

to know its exact limits, which will depend on the details of the hard scattering. For

Pq(q, one only needs to calculate one-loop corrections to single emission and double

emission, and we now specialize to the latter case. We perform the d-dimensional

3-function over ddqo and rewrite the integral in terms of ki1 and k21 dependent

functions with zi,2-dependent coefficients. Using the parametrization of [45], we can

write:

gg q 1 f 2 dz1 dz2 dd- 2ku dd- 2k2  (
NLO (167r2)2 Z1 Z 2  Ir 7r

x6 (q2 - (aik1 +a 2 k22 - ku -k2 ))

x (A(zi, z2) + B(zi, z2) k+ - kl + C(z1 , z2) ku - kl

Sk 21
(____ __ kk2 12

+ D(zi, z2) ku-k 2  + E(zi, z2) k21 + F(zi, z2) k 1  (C.5)
ki 2k2 k2 k / g2 q
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- [LO],

where

1 -z 2  _ 1- zi
al =- , a2 =- (C.7)

z1  z2

The functions A, B, C, D are defined in [45], and their corresponding ku1 integrals

are finite. We can check the intermediate step of their integration with [45]. The

terms in our q2 6-function have a relative sign compared to theirs, as our q2 > 0. We

found it simplest to calculate in SCET 3 where only C(2)J, in Eq. (B.110) contributes.

This corresponds to taking limits such that only its e-function gives support, while

the jet-structure coeffecients are zero. By doing this, we wind up integrating over the

strongly-ordered region of phase space, but since we know the LO contribution from

C(2, we can formulate the subtraction in Eq. (C.6) at the operator level. There is just

one subtlety, which we describe below, having to do with the appropriate treatment

of dim reg in the standard scheme for calculating P().

As a computational aside, we found it easiest to pass to a change of variables:

(u ka1 k21 , w=- k1 I/k 2 ). Then the 6-function just enforces:

q2
U =o a .2 a 2  (C.8)

a1w2+a - 2 w cos(#1)'

Performing all but the dzi integrals in J, we get Table C.1, which corresponds to

[45]'s Table 5. We thus reproduce the earlier result except for what we believe is a

Function of ku1  Contribution to 3 multiplying
in integrand of equation (C.6) (16q)2x f dzi dz2 6(1 - - - x)

A(zi, z 2)

k 2_-i Z B(zz2)

kjL _ -k2 L - 1 C(zi, Z2)
k~L1-z\' 2

k 1 1 k 2 1  _2__

__(1 + 2zlz2 In (1-Z1) (1-Z2) D(zi, z2)

Table C.1: Purely finite contributions to 3

typo on their part swapping the B and C entries.
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The E, F functions multiply integrals that lead to single c poles after the dka1

integral (and double poles after integrating q2), and so we must be more careful in

treating them. These double poles correspond to the LO contribution, which we are

explicitly subtracting as it does not contribute to P(l). We discuss it in detail below

Eq. (C.17). For now we concentrateon the divergent integrals multiplying E and F.

When we did our computations for Table (C.1), we were helped by the finiteness

of the expressions under the dka1 integration. We could thus take E -+ 0 for these

terms, which greatly simplifies their integrals. By contrast, we will need to keep the

E-dependence of the E, F terms, which results in an intractable computation. To get

around this, one can introduce subtraction functions, which simply reproduce the E

poles (these are merely a computational aid and are not related to the subtraction of

LO). We will need to take care that they do not remove any finite pieces. Secondly,

since their full contribution to j is oc 1/c2, we will need to include for E and F

any terms oc c that multiply k or k. These arise from doing Dirac algebra in

m-dimensions.

To do the integrals in 5 multiplying and E and F, we will change variables to

U, w, and perform the u integration as well as the trivial #2 azimuthal one. We get

for this contribution to 5:

1 2 f dzi dz 2

JIE,F 1 - Idq 2  - 1, w 0(- X - Z1 -z 2 )(167 2) 2 7r J z1 z2( WU02, 2+E
x 22 E(zi, z 2 ) + 0 2 F(ziz 2) q (C.9)

2q 2wq

where nO is defined by equation (C.8). Unfortunately, we could not manage to perform

the w and #1 integrals for the functions multiplying E, F and obtain a result in terms

of elementary functions. However, we only need the leading poles in e, and so we will
2+E 2+E

define subtraction functions to reproduce the poles of "2-"2 2 22, respectively:
2q 2wq

2 -E

SEZ -2a (w +1)
q2 E

SF - (C-10)
2a 2(w+w 2 ) 
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Integrating these in w gives us a pure 1/c term. Subtracting them from the functions

in equation (C.9):

AE 2 3  2  (C.11)
22 2(a 2 + aiw2 - 2wcos(# 1))2 (a 2 + aiw2 - 2w cos(# 1)J

U0A+ q 2 w
F -2wq 2  2 w(a 2 + aw 2 - 2wCoS(# 1))2 (a 2 + alw2- 2w cos(#i)

leads to finite integrals, allowing us to pass to the c -+ 0 limit prior to integration

making the calculation tractable. Note that the subtraction terms are purely com-

putational aides and are different from the factorization scheme mentioned above,

which is designed to absorb a collinear divergence into a fragmentation function. Af-

ter integrating w and #1, we want the 6-1,0 pieces as these turn into the single and

double poles upon doing the q2 integral and contribute to J. The co piece, has one

contribution besides that from (AE,F - SE,F) =0 (SE,F contributes a pure 1/e pole).

Our w integration goes from 0 to oc, and we obtained SE,F by expanding AE,F in the

appropriate w -+ 0, o0 limit to pick up the pole, while carefully regulating the other

integration limit so as not to contribute its own spurious divergence or any subleading

terms. However, we see that in equation (C.12), taking these limits actually results

in factors (aiw)-E and (w/a 2). Expanding the aiE to LO in e does not affect SE,F-

Nonetheless, since the subtraction functions have 1/e poles, including the NLO piece

will yield an 60 contribution. We do not have it in AE,F E=0 since that sends u0 0

1. Thus, we have the following addition to the contributions from the integration of

J|E, F:

BE 6 1n(ai) 2 (C.12)
2al (w + 1)

q 2 W e
BF -eln(a 2) 2 2 (W W2 (C-13)

2 w2)

In the end, our e-'o contributions after w and #1 integration come from: SE,F +

BE,F + (AE,F - SE,F) e=o. For integrating the first two terms, we leave the full E

dependence as this is tractable. Once we have accounted for where it is needed, we

can set 6 = 0 in the last term to pick up the remaining finite result. Collecting
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all terms, we can obtain the counterpart to Table C.1 for E, F. The origin of the

contributions in terms of S, B, and S - A should be straightforward.

Function of ku1  Contribution to J multiplying
in integrand of equation (C.6) q16 22 f dzi dz 2 6(1 - zi - Z2 - X)

k 2
k21 _(1-z2)2 2 E Z1

+ 1 212)2 {ziz2 + X In -,2(1 -Z2) -1 E(zi, Z2)

k2 2_ 2X z2 i _el 1-

+ z1(1-zi)
2 ziz 2 + x In '2(1-zi) - 1 F(zi, z2)

Table C.2: Contributions to JIE, F

Having set up this much of the integration, we can take the amplitude squared

from the process of interest and decompose it in terms of the A(zi, z2), B(zi, z2), etc.

basis. We then simply have to read off the results from Tables C.1 and C.2, and

perform the z 1,2 integrals. One of these is made trivial by the remaining x-dependent

6-function. As mentioned at the beginning of this Appendix, Ref. [39] recognizes

two topologically distinct contributions, which we shall refer to as box and crossed,

Fig. C-1, because of their appearance as cut two-loop diagrams. We can identify

them in our calculation by their color structure (CF and C) - jCFCA, respeCtively).

In fact, we can already calculate the entire crossed contribution as it only involves

terms from Table C.1, having no double pole contribution to J. Determining the box

graph, however, involves treating the LO subtraction properly.

As this subtraction is one of the more subtle points of the computation, we will

present it in some detail. Its handling is tied up with what one means precisely by

a "subleading splitting function." At LO in as, the definition is clear. The same

splitting function that gives us the probability for a 1 -+ 2 radiation also determines

the running with scale of parton densities:

Q2 af (X, Q2) = d Pq q , as (Q2) f Qz Q2), (C. 14)

where the 0(a,) part of Pqq, P(qo) is given by Eq. (4.3). To determine P,(0, we have

had to calculate a 1 -4 3 splitting, thus the probabilistic interpretation in terms of
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radiation is nontrivial as it involves a mix of 1 -+ 2 and 1 -* 3 processes. At the

level of Eq. (C.14) though, we see that we are just correcting PDF (or fragmentation

function) evolution. In addition to the real-emission calculation that we are pursuing,

one can alternatively determine Pqq from the anomalous dimension of certain twist-2

operators [50, 51]. Ref. [39] made a comparison to this approach and found agreement

to O(a2). Since P(1) is thus a two-loop object, it has the scheme dependence one would

expect at this order, and so we need to make sure that we compute in the same one.

In SCET, one could attempt the same cross-check from a straightforward two-loop

calculation after fixing the renormalization scheme.

We will now show how to subtract the LO portion in the calculation of J qlqgg We

get a double collinear pole associated with the strongly-ordered emission of two gluons.

We want to write this as removing the emission from our LO operator, C0(2) 0(2)
3, LO 3

As with any subtraction scheme, while the pole is unambiguous, we need to make

sure to remove the appropriate finite pieces. We note that c 0 defined by Eq. (4.47)

contains NLO pieces (in SCET 3 power counting) which come from the offshellness

of the intermediate quark. It is true that the LO replacement rule, Eq. (4.46), gives

only the splitting function times the logarithmic, collinear divergence. Nonetheless,

the Wilson coefficients given by Eq. (4.53) for offshell quarks have additional terms.

From the point of view of amplitdue matching, this poses no problem. However, if

we want to copy [39]'s scheme, then we can only subtract poles associated with the

pure LO result. As an operator subtraction in SCET3 , this means we need to change

02). In order to recover the correct splitting function with no NLO contribution, we

will need to project the offshell quark momentum to an onshell one with the same p-

fraction. This alone, though, does not specify the spatial orientation of the vector and

will not necessarily kill the subleading terms. To do that, we write the replacement

rule, but in the limit that the offshell quark's daughters are exactly collinear with

it. Equivalently, if we are in the frame determined by i {1, 0, 0, -1}, we can

project the quark momentum along n {1, 0, 0,1}, i.e. qi -+ n = q . Since the

replacement rule also makes reference to the quark's parent's momentum, we also

need to project it to what it would be if it had emitted an onshell quark with q.
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Thus, qji -+ ki +q = q_. In the end, this changes our replacement rule coefficient

for the jth quark to:

c -" = +1_ ()* . (C.15)K qi 4
This changes the expression for C(2 )oO( 2 ) to involve c'O instead of c'O (cf. Eq. 4.53)

After the dq2 integration, the 1/c term in J]~q3 9 will allow us to read off P()

The subtraction operator lives in SCET 3 as both gluons have their own direction and

Wilson coefficient in that theory. We need it because our NLO operator, C(2 )J,1 0(2)

is supported over all of phase space, and there contains LO portions. We therefore

have

j =Jdk, k2 ,qo [IC2J (001(2) 1|qggg) 1 - (|cI o"1 c1oa2(0|0I2)1FI|qggg)12)

(C.16)

The MS indicates that we are only subtracting pole parts of the LO contribution,

with no finite pieces. However, there is still an amibiguity over which pole parts we

subtract, as even though the LO contribution has a double pole from its two collinear

divergences, we are at some liberty to decide which single pole parts we remove as

well. As we expect, this subtraction operator squared takes the form of a convolution

of two splitting functions:

dII (1c o" c oa2(0|O2FIqqgg)|2) 2 dq2 dy xp (1 - y)i (q2>-1+</2

1 P(() P(X/y)
x -Pq (Y) . (C.17)

What may seem surprising is that different splitting functions live in different dimen-

sions. The reason for this particular scheme for regluating phase space has to do with

the alternate, two-loop method for calculating Pq(ql), which was the original approach.

For that result, in MS we would subtract a simple pole counterterm, regulate the loop

integral in d-dimensions, and leave external particles in 4d. Since the phase space

214



integrals are related to loops by cuts, we see above that our y-integral is, in fact, in

d-dimensions, but the splitting involving two external particles is left simply in four.

Looking at the SCET1 diagrams for the process (Fig. B-6), the amplitude

lo" C fa2((00 2)FL|qggq) comes from a subset of diagrams A2 and B 2 . The ex-

pression for subtraction is thus:

dII (ICIo" cIoa2(01O2)FI qqgg)|2) = dq2 dzixp Z z

xq (2)-1+2x 1 1 + (x + zi) 2

e 27r2 x+zi - 2 x + zi (g) + zi -1 )
+ Z1 ++ Z2. (C.18)

We can note several things about this expression. For concreteness, we discuss the

zr-dependent term corresponding to graph A2 , Fig. B-6. The p fraction of qO relative

to qi is x/(x+zi), and that of qi to q2 is x+z 1 , in terms of the variables in Eq. (C.17),

yI = x/(x + zi). Performing the integrals leads to double and single poles. For later

use, we write down the result of doing the dq2 , dzi integrals, where one of latter is

trivial since we have 6(1 - x - Zi - z2 ) sitting inside I (cf. Eq. C.6).

dIlCI c 0"1 c 002K(0|0 (2)p, qqgg) =2

2xp 2 2 1 [(-2 (2 (x2 + 1) log(A) + (x - 1)2)

+ 4 (x 2 + 1) log(x - 1) - (X2 _ 1) log(X))]

+ _ 1) 2 x 2x(x - 1) (2 (X2 + 1) Li 2 (1 - x) - L

+* X-2 (X2 +1) (X-1) log2 (A) +4 (X2 + 1) (log

- (X - 1)3) log(A) - (3x 2 + 5) (X - 1) log 2(x) + 2(x

+ 6x (X2 + 1) (x - 1) log 2 (x - 1) - 2x(x - 1)3

- 2x(x + 1)(x - 1)2 log(X - 1) log(x)((x - 1)2x)1

i2 + 2 - 1) Li2(x 1

X +z log

1)2 log(x))

(C.19)

where we have done the dzi integrals between 1 - x + A and -A to regulate soft
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divergences. All A-dependence cancels out of the final answer, which gives us a

consistency check on the scheme.

Before comparing Pqq, we can check our setup with P(qo), by looking at the O(a,)

contribution to JLO We see that [39} gets the following contribution:

P(O) (a2 1 + x (C.20)
qq k271e 1-x

Calculating in SCET 1, we get the following amplitude squared:

Aq_+qg4 ( 2n-k 1  2knq q1 Tr[%QQt] (C.21)
g0  k1 k1 q1

With our definition of 7LO in Eq. (C.6), we get:

P(O) - a 21 + X2.
qq 27 E x - 1 (C.22)

The overall minus sign between eqns. (C.20) and (C.22) is due to the difference

between the spacelike and timelike processes. It arises in the dzi integral. Even

though the zi dependence is the same in the two calculations, and the integration

limits are the same, 0 and 1 - x. For us, 1 - x < 0, but in Ref. [39], it is positive.

We will compare the different contributions to double emission separately. In

SCET1, the C graph in Fig. B-6 will give box and crossed terms when interfered with

itself and the A and B ones. We identify the crossed contribution by inserting the color

structure and taking those terms proportional to CJ - jCFCA. As mentioned above,

it only contains the integrals in Table C.1. In terms of its notation, we have: The

Function defined in Eq. (C.6) Value in crossed diagram

A(zi, z 2 ) -16x (x2+XZ+(z1-1)Z+1)

_ zi(x+zi-1)
B~zi 2) _8(X2 (zi -2)-zi+zi-1)

Bziz2) _X+zi -1

C(zi, z 2 ) (X(x2±(Xl)zl±2)+Z1

D(zi,z 2) 16 (X2 + 1)

Table C.3: Contributions to crossed amplitude squared diagram

box contribution additionally contains the functions in Table C.2, though we are only
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interested in the finite parts. Their zi dependence is: For the crossed contribution,

Function defined in Eq. (C.6) Value in box diagram
A(zi, z2) 12x2 + 8xzi + 8(zi - 1)zi + 12

8(zi -1) (x2+(zi -2)zi+2)
B(zi, Z2) X+Z1 -1

8(x+zi)(2x2+2xz1+ +1)
C(zi, Z2) Z

D(zi, z2) 0

E(zi, z 2)
(2x4+6x3zi+x2(7Z 2) (2 z+ z)

4 z2

(x+zi -1)2

Table C.4: Contributions to box amplitude squared diagram

we perform the multiplication in

and integrate dzi, having already

to avoid soft divergences, thus its

obtain:

Table C.1 with the functions defined in Table C.3

done the trivial dz 2 integral. We again use a cutoff

range is between 1 - x + A and -A. In the end, we

qqcrossed )2 + X2) (4ln(x - 1) - ln2(x) - ln(A)) - 2(x + 1) ln(x) .

(C.23)

The A-dependent pieces will cancel against those from the box contribution. The

other terms agree with [39] up to the previously discussed minus sign, and wherever

ln(1 - x) appears in the spacelike calculation, we get ln(x - 1). Since our integrand

and integration region are real, the imaginary pieces generated by ln(1 - x) when

making x > 1 all must cancel.

The box calculation proceeds similarly except that we also include the terms

proportional to E(zi, z2 ) and F(zi, z2 ) and perform the internal collinear subtraction,

which changes the overall single pole term. Doing all this, we get:

Pe aox =) (ln(A) - ln(x - 1)) + 2(2x - 1) ln(x). (C.24)
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The soft divergent pieces cancel against the crossed contribution, and once again we

agree with [39] up to an overall sign, and the continuation ln(1 - x) -- ln(x - 1).

In addition to these real emission contributions to the CF portion of Pqgl, there

are also single-emission, one-loop diagrams, Fig. C-3. We can account for their con-

q2 q2 q2

Ci C ki k

q2 q2 q2

Figure C-3: Single emission, one-loop contributions to Pq(q.

tributions in SCET easily. We have already derived the the same expression for single

emission (Eqs. C.20 and C.22). Furthermore, both the quark wavefuncton renormal-

ization and the vertex renormalization are the same in SCET as in QCD [10]. Thus,

we recover the entire, gauge-invarant, oc a2 C2 contribution to the splitting function

[39],

(M 2 a,2 ~1-xlnx 3 1+ x 2l -2 1 +X2 x2 n1-x
qq abelian =CF - 2 nx 1n( -X

2(1 + X) In2(X) - 5(1 - x) - (1 + x) n (x) ,(C.25)

where we have written it with its usual sign conventions for spacelike evolution.
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