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Abstract

Spinal Cord Stimulation (SCS) is a technique used to treat chronic pain and has
been shown to be an effective method of treatment, both financially and socioeco-
nomically. Stimulating electrodes are surgically implanted into the epidural space,
outside the dura, a protective sac filled with cerebral spinal fluid (CSF) surrounding
the spinal cord. The thickness of the CSF changes according to body orientation,
causing the distance between the stimulating electrodes and the spinal cord to vary.
This phenomenon has been reported to cause painful or ineffective stimulation. In
order to detect postural behavior and adjust SCS parameters accordingly, a tri-axial
accelerometer based algorithm has been developed. The algorithm enables patients
to adjust stimulation therapy parameters real-time, associates the patient indicated
parameters with a vector, and stores them in a therapy library. Stimulation therapy
parameters are then automatically selected by classifying incoming TA data according
to the vectors in the therapy library, providing individualized, closed-loop stimulation
therapy.
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Chapter 1

Introduction

Implantable Neurostimulators (INSs) are a broad class of devices used to treat a

variety of neuropathological conditions using electrical stimulation. By stimulating

different target nerves or regions in the brain, INSs can be used to improve a variety

of conditions including sleep apnea [1], chronic headaches [2], and chronic pain [3].

The most basic understanding of the therapeutic effect induced by an INS is that

the electrical pulse generated disrupts or blocks pathological nerve signals thereby

reducing symptoms associated with the disease being treated. Therapeutic effects of

neurostimulation include reduction of tremor in Parkinson's Disease patients, preven-

tion of seizures in epilepsy patients, and pain relief by induced paresthesia in chronic

pain patients.

INSs require a defined set of stimulation therapy parameters (STPs) to specify

various aspects of the electrical stimulation, such as pulse width, frequency, voltage

(or current) amplitude, and electrode configuration. The exact correlation between

stimulation therapy efficacy and STPs is still not completely understood for many INS

applications, such as with deep brain stimulation [4] and spinal cord stimulation [5].

Often times, programming of these devices is done via trial and error [6], and is an

arduous task for both clinician and patient [7]. In the field of spinal cord stimulation

(SCS), various theoretical models [8] and automated methods [7] have been designed

to aid with initial STP selection and electrode configuration based on surgical lead

position and patient feedback. Selecting appropriate lead configurations such that the



paresthesia induced by the device is concordant with painful regions is the definition

of success for this therapy therapy [9].

The "single most important factor" which dictates the magnitude of the pulse

required to produce a therapeutic effect (in terms of energy delivered to the spinal

cord) is the distance between the stimulating electrodes and the neural structures

being targeted in the spinal cord [5]. Various researchers have found that the difference

between the stimulation amplitudes required to elicit therapeutic responses in upright

versus supine postures to be statistically significant [10] [11] [12]. Methods developed

for compensating for these variations in distance between the stimulating electrodes

and the neural target include constant current models [12] and ultrasonic distance

detection [13]. The former has been deemed an ineffective method, as impedance

does has no statistically significant dependence on posture [9], and the latter has not

been fully developed and decreases battery life of the device by approximately 20%.

A SCS device which 1) accommodates for changes in STPs over time and 2) au-

tomatically adjusts STPs according to distance between the stimulating electrodes

and the spinal cord, had not be developed until recently. A device designed to meet

these unmet needs has been underway at Medtronic. Since the position of the spinal

cord in the spinal column has been found to vary based on body orientation [14],

Medtronic assessed the feasibility of detecting five basic postures using a single, tri-

axial accelerometer (TA). The TA provides information about a patient's posture,

which is then used to automatically select appropriate STPs. This concept has lead

to the development of a newly emerging, closed-loop SCS, currently commercially

released in Europe and under clinical investigation in the US.

The work described in this thesis is an extension of the TA based posture detection

algorithm developed by Medtronic. Instead of using five, predefined postures to select

STPs, the proposed algorithm allows patients to indicate STPs at any given time.

The algorithm associates the information with a vector in three-space, and uses the

information to automatically administer stimulation therapy for future TA data. This

method allows patients to develop their own closed-loop SCS therapy such that it

uniquely suits their therapy needs.



Chapter 2 provides a basic background on SCS systems and spinal cord physi-

ology. It also describes the relevant research supporting the development of body

orientation based SCS systems. The body orientation based algorithm for stimula-

tion (BOBAS) developed by Medtronic is outlined, and details regarding the data

available for assessing the performance of the algorithm developed in this thesis is

also described. Chapter 3 explains the functional aspects of the Advanced Therapy

Learning Algorithm for Stimulation (ATLAS) and the parameters involved in defin-

ing an individualized stimulation therapy plan. The performance of ATLAS in terms

of defined objectives and comparisons with BOBAS are presented in Chapter 4. A

summary of the optimal algorithm implementation is given in Chapter 5, along with

suggestions for future work.
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Chapter 2

Background

This chapter gives the basic information necessary for understanding the develop-

ment of the Adaptive Therapy Learning Algorithm for Stimulation (ATLAS). First,

the history, basic functional components, and implantation of a spinal cord stimu-

lation system will be presented. A discussion of the research which motivated the

development of a posture detection algorithm will follow. The current closed-loop

algorithm developed by Medtronic will then be described in detail. Finally, the study

data used to design the algorithm developed in this thesis will be discussed.

2.1 Spinal Cord Stimulators

Spinal cord stimulation (SCS) is an effective technique used to treat a variety of

chronic pain conditions including failed back syndrome, degenerative disk disease,

and complex regional back syndrome [15] [16] [17]. In 1965, Melzack and Wall's Gate

Control Theory of Pain proposed that transmission of pain is performed by central

transmission cells which relay pain signals to the brain [18]. This theory lead to the

first experiment attempting to treat pain by means of percutaneous epidural spinal

cord stimulation in 1967, conducted by Shealy et al [19]. This experiment, though

followed shortly by death of the patient due to an undiagnosed bacterial infection

in the brain, demonstrated that SCS was a feasible and effective technique for pain

management. Since then, advancements in surgical techniques, stimulation methods,



and device designs have transformed SCS therapy from an extremely risky procedure

to an effective alternative for pain management [3].

Despite the risks associated with the therapy [20], it has been found to improve

quality of life in the long term [21]. With proper patient selection and surgical

techniques, SCS has been identified as an effective method for pain management,

leading to a reduction in pain and increased patient satisfaction when compared to

conventional medical management alone [22]. In addition, SCS has been found to

reduce the net per patient cost when compared to conventional pain management

treatments [23].

As shown in Figure 2-1(b), a SCS is an IPG with one or more insulated conductive

lead wires connected to it. At the end of the lead wire, a lead with exposed conductive

electrodes delivers the electrical impulse from the IPG to the spinal cord. As shown

in Figure 2-1(a), the number, shape and size of lead and electrodes varies. The lead

is implanted beneath the lamina, into the epidural space (Figure 2-2(a)), either via a

laminectomy or through percutaneous needles depending on the lead design [24][25].

The other end of the lead wire is attached to the IPG (Figure 2-2(b)). The IPG

is typically implanted in the lower abdominal or gluteal region (Figure2-2(c)), and

generates an electrical pulse which is then sent to the spinal cord via the stimulating

electrodes. The electrical pulse interrupts the pain signal to the brain and replaces it

with a tingling sensation known as paresthesia [12].

The parameters of the electrical impulse generated by the IPG are called stimula-

tion therapy parameters (STPs). STPs include pulse width, rate, voltage or current

amplitude, and electrode configuration. In addition, the SCS can be programmed to

cycle through multiple programs, where each program may have electrondes config-

ured to target different pain regions. The anode-cathode configuration of the elec-

trodes can also be specified as a means of steering the electric field generated to

achieve different therapeutic effects. STPs are set by a clinician shortly after implan-

tation [24] [12]. Recent SCS systems come with a patient programmer (PP), shown in

Figure 2-1(c). The PP allows patients to adjust their STPs outside of the clinic. While

the PP does improve the overall efficacy of a patient's SCS therapy, it still requires



(a) (b) (c)

Figure 2-1: (a) Percutaneous type lead with eight-electrodes (top left) and paddle
type lead with two, eight-electrode arrays (bottom right) - Courtesy of Boston Sci-
entific. (b) SCS device, RestoreUltra - Courtesy of Medtronic. (c) MyStim Patient
Programmer - Courtesy of Medtronic.

patients to manually change STPs whenever the SCS therapy is either not masking

pain, or worse, causing uncomfortable or painful stimulation. Medtronic was among

the first companies to incorporate closed-loop functionality into their SCS system,

aiming to reduce patient burden and improve patient's quality of life.

-had

L-electrode

--lamina

-lamioomy

k lead
-wires

yield Crpc

(a) (b) (c)

Figure 2-2: The "T#" identifies the Thoracic Vertebrae. (a) Sagittal view of elec-
trode placement - Courtesy of Mayfield Clinic. (b) Posterior view of electrode place-
ment - Courtesy of Mayfield Clinic. (c) Overall view of SCS device placement -
Courtesy of Neuron Medical Art.
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2.2 Physiological Motivation for Body Orientation

Based Stimulation

Originally, SCS leads were placed subdurally, resulting in a high degree of risk and

morbidity associated with the therapy. To mitigate these detrimental factors, leads

were instead placed in the dorsal epidural space [18]. Coupled with the prevalent

use of percutaneous electrodes rather than paddle type electrodes, this meant that

a less invasive surgery could be used to implant the electrodes using a percutaneous

needle [26]. While this made SCS a more viable technique for treating chronic pain,
it also introduced other technical challenges. Because of the distance separating the

electrodes from the neural target - namely, the transmitter systems in the dorsal

horns [27] - the varying thickness of the dorsal cerebral spinal fluid layer changes

the effective electric field received at the target location. In addition to the varying

thickness of the cerebral spinal fluid depending on spinal level [8], body orientation has

been shown to change the position of the spinal cord in the spinal column [9][13][28].

Standing Supine Prone

Electrodes

Figure 2-3: Spinal cord movement in the spinal column due to body orientation.

The diagram in Figure 2-3 depicts the movement of the spinal cord dorsally when



going from standing to supine. Since the distance between the spinal cord and the

stimulating electrodes is decreased, this causes an effective increase in the electric field

intensity and could lead to a painful or shocking sensation [12]. The difference between

the therapeutic stimulation voltage required for upright versus supine postures has

been found to be statistically significant [11][10]. To compensate for the adjusted

stimulation level required to elicite a therapeutic effect, Medtronic developed a Body

Orientation Based Algorithm for Stimulation which uses a tri-axial accelerometer

to detect five basic postures. Based on these posture detections, the stimulation

therapy parameters (STPs) are automatically adjusted to patient preferred levels for

each posture, mitigating the likelihood of over-stimulation.

2.3 Body Orientation Based Algorithm for Stimu-

lation (BOBAS) using an Accelerometer

Motivated by the literature suggesting a statistically significant difference between

standing and supine stimulation voltages, Medtronic developed a body orientation

based algorithm for stimulation (BOBAS) which could reliably detect five basic pos-

tures: standing upright (UP), lying face up (FU), lying face down (FD), lying on the

right side (R), and lying on the left side (L). The algorithm uses five orientation vec-

tors (VORS) corresponding to UP, FU, FD, R, and L to partition three space and sort

TA data according to its spatial location relative to the VORS. The five vectors are

defined during an initialization period, during which data is collected while the pa-

tient assumes each of the five postures. Stable data within the start and end times of

an orientation, indicated by shaded purple boxes in Figure 2-4(a), is used to compute

a mean vector for each orientation. Ideally, the VORs would be orthogonal; however,

factors such as implant location and physical constraints result in the relative vector

positions that are far from ideal. In order to clearly differentiate upright postures

from lying ones, a virtual upright (VvirtUp) orientation vector is synthetically created

as the vector normal to the plane approximated by the lying vectors. The VORs, which



include VvirtUP, are depicted spatially in Figure 2-4(b).

104) ............... .....................................

150 ... ... - -- - - --80 - UP.. .......... ..... ....
Virtual UP -.-

100 - Z .... - -- ....... --...... - -... ----- FD-

- FU-

50 - - ------ -----_ -- - - _ -- - -- -- - - -.. ... .. -.... . -. 20, - ... -..-

0- 
--- - -

0 ------- ---- --------- - -.. . -. . ---. -2 0 -.. ..

~FU -100 -... -------- ------- --- ------ 0-0

150 1 1 X5

FO ~ 0

m100 50 x-accel (Cent s)

(a) (b)

Figure 2-4: (a) Temporal representation of VORS. Shaded purple regions indicate data
that was used to aggregately equal the final VOR. (b) Spatial representation of VORS
transformed into xyz-coordinates.

A set of partitioning parameters are used to uniquely divide three-space according

to the position of the VORs. Two parameters, Oup and OLD, are used to form cones

around vUP and vvietup. As shown in Figure 2-5(a), two cones 0 p around both vup

and VvirtUp define upright postures. Another cone 0 LD from voirtUp divides upright

from lying therapy space. Anything greater than 0 LD from VvirtUP is considered a

lying posture. Data that fall between these two defined regions are classified as

hysteresis postures. Therapy space regions are shown in Figure 2-5(b). Planes that

are equidistant between two adjacent lying vectors further divide the lying therapy

space into four regions, as shown in Figure 2-5(c) and (d).

For a pain patient, these six VORs define the basis of the therapy space. Optimal

STPs are selected for each of the five basic postures and are used for stimulation

therapy whenever the posture corresponding to the VOR is detected by BOBAS. Both

the VOR data and the associated STP values are stored in a therapy library. Each

column of the therapy library contains the xyz-coordinates of one of the VOR and

the associated STP values. The information in the column of the therapy library

is referred to as an entry. Since BOBAS uses five basic postures, a BOBAS therapy

- - - - W- - m - ..............
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Figure 2-5: (a) Two cones defined 00 from VUP (blue) and virtUp (cyan) specify the
upright region shown in (b). A third cone (grey) 9 LOD from VvirtUp divides the upright
therapy-space from the lying down therapy-space, with a hysteresis region between
the two broad posture regions, shown in (b). (c) and (d) Planes equidistance between
two neighboring lying vectors divide the lying therapy space into four regions.

library always has five entries. In addition to the five static posture detected, BOBAS

may also classify a TA signal as "Upright and Active" using an concurrently running

activity detection algorithm. Since the algorithm developed in this work only develops

a detection algorithm for static postures, the activity algorithm will not be discussed.



2.4 Description of Study Data

The data used to design and validate the closed-loop adaptive algorithm developed in

this work was collected in a two-part, Medtronic run research study called the PRS

Study. The first protocol of the study was a three-day monitoring period designed

to identify subjects who made frequent STP adjustments due to changes in posture

or activity. In order to participate in the second protocol of the study, enrolled

subjects were required to make at least two amplitude adjustments per 24 hour period

during the first part of the study. The first portion of the study will be called the

"qualification protocol" since subjects were required to meet certain criteria in order

to qualify for the second part of the study. The second part of the study will be

called the "validation protocol" since the objective of this portion of the study was to

evaluate the performance of BOBAS and subject's satisfaction with algorithmically

derived stimulation therapy adjustment. The validation protocol was a 4 hour, in-

clinic protocol. The objective and description of each protocol and the constraints of

the data sets collected will be discussed in detail in Sections 2.4.1 and 2.4.2.

The two-part study was conducted over an eight month period from August 2008

to April 2009. A total of 19 subjects completed the qualification protocol and 16 com-

pleted the validation protocol. Of these data sets, 16 and 11 were available from the

qualification and validation protocols respectively for development of the algorithm

described in this thesis. Subjects who participated in the study were ambulatory

chronic pain patients with a Medtronic Restore or Restore Advanced SCS device im-

planted for at least three months. Subjects were required to be at least 18-years-old,

have a BMI of 40 or less, and implanted with percutaneous thoracic leads. Hardware

for each protocol of the study will be described in each subsection.

2.4.1 Three-day Qualification Protocol

In the qualification protocol, subjects were instructed to change their SCS STPs as

they normally would throughout the day and were asked to maintain an activity log.

Subjects were given a personal data assistant (PDA) to keep their activity log. The



device was specially formatted for the qualification protocol. An ambulatory data

recorder, called a [pADR (mircoADR) (Figure 2-6), is an external, battery powered

device which is adhered to the hip or abdomen of a subject before beginning the

study. It encases a TA (ADXL 330, Analog Devices) and onboard memory used to

record data over the three-day period. The [tADR itself does not have the capabil-

ity of delivering, monitoring or augmenting therapy, but rather simply records TA

data. To change STPs, subjects were given a research PP identical to the one pic-

tured in Figure 2-1(c) with modified software to record all programming changes and

associated timestamps made by the subject.

Figure 2-6: The Micro Ambulatory Data Recorder (paADR) is a small device ap-
proximately 1.5 x 2 inches which is adhered to a subject's gluteal region. It encases a
triaxial accelerometer (ADXL-330, Analog Devices) as well as a data recording device.

The objective of the qualification protocol was to summarize the time course and

type of STP changes made relative to TA data collected. No algorithm was used to

automatically administer therapy during the course of the qualification protocol. Be-

fore beginning the study, orientation vectors were defined and used for post-processing

purposes to broadly characterize daily activity for pain patients. These data were

also used to validate BOBAS posture detection accuracy. Data sets resulting from

the qualification protocol are referred to as three-day study data (3data). Each data

set included the following information:

o Two to four days worth of TA xyz-data

e PP data indicating changes to STPs and the timestamp associated with each

change (required modification to commercial software available for the device)



" Patient activity log information recorded using a PDA data. The activity be-

ing performed and the timestamp associated with the activity log entry was

recorded.

" Five orientation vectors recorded in-clinic

" Post-processed BOBAS posture and activity classifications for each TA data

point

Subjects were able to have four active programs at any given time. In each pro-

gram, the simulation voltage amplitude, pulse width, or rate can be adjusted. Addi-

tionally, the device may be turned on or off. A string indicates the STP adjustment

and the corresponding timestamp. This information is then saved in a PP data file.

These changes are identified by 'Inc Amp #', 'Dec Amp #', 'Inc PW #', and 'Dec PW

#' where # is an integer 1-4 representing the program which was changed. Changes

in rate are identified by 'Inc Rate' and 'Dec Rate' and turning the SCS on or off is

indicated by strings 'Stim On' and 'Stim Off'. Along with the string descriptions and

timestamps, the final STPs after each PP input are given for each program.

The intention of the subject annotated activity log from the PDA was to validate

the basic BOBAS functionality; however, actual daily activity and precision of any

subject's activity log could not be asserted, as subjects were not visually monitored.

Activity annotations were only loosely considered as a validation tool. Subjects an-

notated their activity by selecting from a predefined list: Bath, Car Ride, Go To Bed,

Lie Down, On Back, On Left Side, On Right Side, On Stomach, Other, Shower, Sit,

Stand, Wake Up, and Walk. On average, subjects made 20.5 activity annotations per

day with a standard deviation of 13.3 and minimum and maximum annotations per

day of 6.3 and 49.3, respectively.

Based on post-posture classifications from BOBAS and observation of the data

in three space, subjects frequently annotated an activity before or after physically

performing the indicated activity. An example would be a subject indicating "Go To

Bed" while remaining in a posture classified as upright for several minutes before ulti-

mately assuming lying postures for several hours. These deviations between activity



log annotations and true engagement of the annotated action made it difficult to as-

sign a true start and end time to any given activity log annotation. Similarly, subjects

would make STP changes before or after assuming one of the five BOBAS postures

for an extended period of time, making it difficult to attribute the STP change to a

specific posture or posture transition. A common phenomenon was changing STPs

from high, "awake amplitudes" to lower, "sleeping amplitudes" before going to bed.

Many subjects would lower stimulation amplitudes in active programs 2-30 minutes

before assuming a lying posture for several hours, indicating the while a STP change

was being made, it was actually intended for a posture somewhat far in the future.

Figure 2-7 depicts the two scenarios described above. The subject indicates "Go to

Bed" as the current activity at 1900.2 minutes (indicated by the cyan line); however,

as shown by the BOBAS classification of the TA data, his posture is still classified

as UP until about 1924.2 minutes (indicated by the magenta line). In addition, the

stimulation amplitude voltage is changed from 5 V or greater to 2 V at 1912.7 minutes

(indicated by the green line). A stimulation amplitude of 5 V or greater was used for

about 13 hours before the subject turned the amplitude down to 2 V, which was the

stimulation voltage level he used for the following 7.7 hours. Primarily lying postures

were assumed from 1924.2 to 2364.5 minutes of this particular subject's qualification

protocol data, indicating that he was sleeping and that the 2 V stimulation level was

intended for the sleeping period.

Other problems which made the data difficult to interpret were (1) using a wide

range of stimulation amplitudes in a single posture (or region of three space), and (2)

using the same stimulation amplitude for a variety of postures (or a vast region of

three space). While the relationship between the activity annotations, STP changes

and the BOBAS basic posture classifications may be reasonably inferred by examining

the data, these discrepancies are difficult to resolve without artificially creating a data

set and limited the extent of analyses possible using the 3data.
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Figure 2-7: Activity log input versus changes in posture and stimulation therapy pa-
rameter levels. The cyan line indicates time associated with the "Go to Bed" activity
log input, the green line marks the time associated with stimulation voltage adjust-
ment from 5.1 V to 2 V, and the magenta line indicates the time when the subject
goes from primarily UP BOBAS classifications to primarily lying classifications.

2.4.2 In-clinic Validation Protocol

The data from this portion of the study is referred to as in-clinic study data (ICdata).

As mentioned, to qualify for the validation protocol, subjects were required to make

at least two posture or activity related programming changes per 24-hour period in

the qualification protocol. The objective of the validation protocol was two-fold: to

demonstrate a statistically significant difference between standing and supine ther-

apeutic stimulation amplitudes, and to compare the satisfaction of algorithmically

versus manually changed STPs. In the verification protocol, a clinician instructed

subjects to perform a sequence of physical tasks, such as stand, lie supine, lie prone,
ect., while the BOBAS algorithm ran real-time to adjust STPs based on detected

posture.

For the validation protocol, subjects were given a pADR capable of wireless com-

munication with a separate memory module. The memory module, which is a sep-

arate, battery powered unit, connects to a lab programmer (LP) via USB. As TA

data is collected from the pADR, it is wirelessly sent to the memory module and

interpreted by the LP. The LP runs BOBAS and performs real-time STP selection

based on the posture classification of the given TA data. The stimulation information



is then telemetered to the implanted SCS and is used to adjust stimulation therapy.

Various metrics were collected in order to asses how satisfied subjects were with the

algorithmically derived STPs and how comfortable the stimulation therapy was for

each physical task in the protocol.

Each data set from the validation protocol included the following:

" About 15 minutes of TA xyz-data

" Event timestamps and labels which correspond to the time and type of activity

the subject was instructed to perform

" Truth postures associated with the BOBAS classification for each of the physical

tasks in the protocol

" Five orientation vectors recorded in-clinic, as well as a calculated virtual upright

vector

Since the ICdata was collected in a controlled environment and at a higher sam-

pling frequency than the 3data, it was used to characterize the signal features of stable

postures, noise, and transitions between postures. Values for typical point to point

distance variation for each these TA features were derived using these data sets. This

information was used to define the preliminary parameter values for the algorithm

described in this work. These data sets were also used to compare the classification

accuracy between BOBAS and ATLAS. Results from this comparison will be detailed

in Section 4.2.1.
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Chapter 3

Adaptive Therapy Learning

Algorithm for Stimulation

(ATLAS)

As discussed in Section 2.3, given a set of TA data, BOBAS will determine appro-

priate stimulation therapy parameters (SPTs) using a therapy library seeded with

five orientation vectors (VORS). While the STPs associated with each VOR may be

redefined by the patient at any time, the number of library entries is fixed at five and

the xyz-coordinates of the VORS used by BOBAS must be defined in a clinical setting.

BOBAS has the following limitations:

1. The practical inter-postural variation from the VORs recorded in clinic. A pos-

ture assumed outside of the clinic may correspond to a somewhat different area

in three-space relative to the VOR defined in the therapy library.

2. The utility of any given VOR outside of the clinic. For instance, it is common

for patients to avoid lying down on the side that the IPG is implanted on. If

the IPG is implanted on the right side, the patient may rarely lie on that side,

thus making the library entry unnecessary.

3. The possible need for a greater density of vectors to adequately describe the

STPs needed in a given basic orientation region.



For these reasons, an algorithm which allows patients to define arbitrary refer-

ence vectors (Vrefs) without associating them with any body orientation or fixing

the number of library entries would allow patients to dynamically customize and fine

tune their therapy space. Using a patient programmer (PP), patients can indicate

preferred STPs real-time and the Adaptive Therapy Learning Algorithm for Stimu-

lation (ATLAS) will progressively build a therapy library containing valid vrefs and

their associated STPs. If VoQs are required for diagnostic purposes, two or more VORs

can be defined as part of the clinical initiation process.

Section 3.1 will give a high level overview of the interaction between ATLAS's

three functions. Sections 3.2- 3.4 will discuss the data association function (f(assoc)),

library modification function (f(libmod)), and data classification function (f(class))

of ATLAS in detail.

3.1 System Overview

ATLAS operates within a global environment where information from the therapy

library, TA, and PP dictate execution of functions. There are three functions: data

association, library modification, and data classification. Initially, a clinician will seed

the therapy library with at least one default entry. Until a PP input is registered, the

data classification function selects STPs based on the distance between the incoming

TA data and the vrefs currently stored in the therapy library.

Once a PP input is registered, the data association function (f(assoc)) is executed.

In the f(assoc), association criteria is used to search for a series of stable data to

generate a valid association vector (Vassoc). The Vassoc, along with the STPs indicated

by the PP input, are collectively called association data. If a stable series of data is

identified, the association data will be passed into the f(libmod) and the library will

be updated according to similarity criteria imposed within the function. Figure 3-1

shows the interaction between the three ATLAS functions and the events which result

in a change in the functional state.

The f(assoc) and f(libmod) perform various high level tasks. In the f(assoc),



time, distance, and noise criteria are used to evaluate whether the STPs indicated by

the PP input can be reliably associated to a Vassoc. If a time series of data passes the

stability and same posture distance criteria for the duration of the stable timer (Ttable)

within a search timer (Tsearch) period, a Vassoc will be generated and the association

data will be passed into the f(libmod). The f(libmod) then assesses whether the

new Vasoc is sufficiently similar to any of the existing Vref in the therapy library or

whether the new Vassoc is different enough to create a new library entry with the

association data. A detailed state diagram with the high level processes performed

during transitions from one state to another is shown in Figure 3-2.

Clear
association

Unclassified parans
TA data

Diata

Update bu) fian Lion Fail associat on
library criteria

PbP input dLibrary,
Modfcation

asso ad Pass desocition
data criteria

Figure 3-1: Basic state diagram depicting relationship between the Data Classification
(green), Data Association (blue) and Library Modification (purple) functions. The
boxes outlined in red indicate incoming input data which will change the current
functional state.

The algorithm was implemented in MATLAB where a main script' reads in data

files containing time-series TA and PP data. Figure 3-3 describes the main function of

ATLAS in flow chart format. The variable naming scheme used in Chapter 3 is given

on Table 3. 1. The time-series data is read in one data point at a time at a frequency

Of frA Hz. For each sample, the xyz-coordinates of the current TA data point (ot),

the time when the last PP input was recorded (tpp) and the current sample time (t)

'The terms script and function are used interchangeably.
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Figure 3-2:
Association

Detailed state diagram showing states of the Data Classification, Data
and Library Modification functions in green, blue and purple respectively.

are known. In addition, a collection of flag variables (Ftype) indicate the current state

of the algorithm.

Abbreviation Type of Variable Units
Ttype Period of time seconds
ttype Time keeping variable seconds
Ftype Flag binary value (0 or 1)
Dtype Distance threshold metric dependent

d2 Distance between two vectors metric (D, E, or S, see
Table 3.2)

Vtype xyz-data points centi-g
variablet_, Value of variable at time t-n where variable dependent

n corresponds to number of samples

Table 3.1: General reference for variable and parameter symbolic nomenclature and
their definitions and units of measurement.

By default, the f(class) is executed. Until an input is received from the PP,

STPs will be selected for each incoming TA data point using the therapy library.

ATLAS begins executing the f(assoc) when a new PP input is received (Fnew=1).
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The registered PP input prompts the initialization of the time keeping variables tsearch

and tstable, as well as other data keeping variables which control the generation of a

vassoc within the f(assoc). The f(assoc) is executed as long as Fassociate = 1. As

shown in Figure 3-2, the f(assoc) will continue to be executed with each new sample

until either the search timer has expired (t - tsearch Tsearch) or an association

vector, Vassoc, has been formed (which occurs when t - tstable Tstable). The former

case occurs in the main script when Fassociate, Fnew, and Flibrary all equal zero and

the latter case occurs when the the library modification flag is set (Flibary = 1). The

method by which these flags get set and the Vassoc gets formed will be discussed in

detail in Section 3.2.

All three functions require that the distance between two points be measured.

Three distance metrics are used throughout ATLAS to measure the relative position

of two vectors: Angular (A2), Squared-Euclidean (E) and Sum-of-Differences (S3 ).

The distance metrics are defined on Table 3.2. Each time ATLAS is run, the same

distance metric is used to measure all require distances throughout the algorithm.

The three methods for calculating distance were chosen to explore the performance

between different methods of partitioning three-space. In addition, the computational

complexity of each of the distance metrics ranges from very complex (requiring a

trigonometric operation as well as two square root operations for D) to very simple

(requiring only simple addition and absolute value for S).

Distance Metric Abbreviations Formula, d2(vi, v2)

Angular (Degrees) D cos- i V11V2 )
Squared Euclidean E (v(i) - ))2

Sum-of-Differences S = IIV1(i) - v2(i)

Table 3.2: Distance metrics used in ATLAS to compute the distance between two

vectors, vi and v2. The vectors are three dimensional (n = 3) where the first, second

and third elements correspond to x, y, and z components of the vector.

2While the angle between two vectors is not necessarily a distance, it will be referred to as
such in this work. Vectors will always be formed as lines extending from the origin to the vector's
xyz-coordinates.

3Also known as Manhattan or City-block distance [29].



Resetf(assoc) variables

Figure 3-3: Functional layout of the ATLAS main script implemented in MATLAB.
The data association, data classification and library modification functions are called
from this script. Variable abbreviations and definitions can be found on Table 3.1.

3.2 Data Association: Mapping of Therapy Pa-

rameters to a Position Vector

The f(assoc) is the most computationally intensive function of ATLAS. This function

must identify a segment of data that corresponds to the postural behavior causing

a patient to make a STP change. A natural technique for a problem of this na-

ture would be to implement a machine learning algorithm and collect training data



over some period of time. Unsupervised learning techniques were explored, but were

considered unsuitable since they require large data storage capacity and impose signif-

icant patient burden during the training period. In addition, since machine learning

algorithms tend to be sensitive to factors such as initial conditions [30], there is no

guarantee that the output would accurately reflect a patient's stimulation therapy

needs.

The method used to associate a segment of data to a PP input in the f(assoc)

minimizes the computational complexity and gives patients the ability to refine their

therapy space whenever necessary. While the capability to update STPs associated

with a VOR is possible using BOBAS, the f(assoc) of ATLAS allows patients to define

STPs in whatever way best suits their individual therapy needs. Presumably, patients

change their STPs upon experiencing inadequate or painful stimulation therapy. For

instance, if a patient were to go from FU to UP 4 , he may require a higher stimulation

amplitude. Upon standing, he might therefore increase the stimulation amplitude,

and continue doing whatever activity he stood up to do.

The main objective of the f(assoc) is to generate a representative vector which

can be used to identify the STPs indicated by the PP input. Due to the variation in

the position of the TA vector, this presents a major challenge. The distance between

successive TA data points is constantly changing. Even when a patient is reasonably

still, some variation in the location of the TA data points is expected as a result of

insignificant patient movement or measurement error. When a patient changes his

STPs to suit the new body orientation he is in, the f(assoc) attempts to identify a

concise region in three-space which is representative of the body orientation which

caused the patient to change his STPs. The concise region is identified by a vector

called an association vector (Vassoc). If a Vassoc is generated in the f(assoc), it is

passed into the f(libmod) along with the indicated STPs and is incorporated into the

therapy library.

The generation of a Vassoc is triggered by a PP input. Once a PP input is registered

in the main function, the new PP input flag is set (F=ew 1) which causes the f(assoc)

'Posture references used for conceptualization, but are not actually defined in ATLAS.



to get executed (see Figure 3-3). The f(assoc) uses six data association parameters

and a variety of data variables to generate a Vassoc. There are two distance thresholds,

two timers, and two noise allowance parameters. Collectively, the parameters are used

to select a segment of data following a PP input which is suitable for generation of

a Vassoc. The parameters and their function will be described below and the various

operations performed during each iteration of the f(assoc) are detailed in flow chart

format in Figure 3-4. The data variables keep track of the state of the f(assoc) and

maintain data upon each iteration of the function. The function uses the following

variables to dictate the generation of a vassoc:

* Three time keeping variables

- tsearch Time associated with the receipt of a PP input

- tstable Time indicating the beginning of a stability period

- tbuffer A data vector with N elements which saves the last N times from

previous iterations

* Two TA data recording variables

- Vstable xyz-data of the Vassoc being generated

- Vbuffer A data vector with N sets of xyz-data corresponding to the last

N TA data points from previous iterations

* A logical buffer

-Bp2 : A logical buffer with N elements corresponding to the result of the

stability criterion (explained below)

" Three flags

- Few : Indicates the detection of a new PP input

- Fassociate : Indicates whether a PP input is in the process of being associ-

ated to a Vassoc



- Flibmod : Indicates whether the f(assoc) has successfully generated a Vassoc

for a registered PP input or not

Using a point to point threshold (Dp2p), a same posture threshold (Dassoc) and two

parameters which control the amount of noise acceptable out of N points (Mof N),

data with an acceptable amount of noise and spatial variation is identified and used

to create a Vassoc. The four parameters impose three criteria which must be met to

create a Vassoc: (1) a stability criterion, (2) a noise criterion, and (3) a same posture

criterion. In order for an association to be made, all three criteria must be met within

a specified time frame. The stable timer, Ttable, specifies the amount of data required

to generate the Vassoc, and Tsearch limits the span of time during which a Vassoc can

be generated after the receipt of a PP input. At the beginning of each iteration of

the function, these time period requirements are checked. First, the search period

it checked (t - tearch Tsearch, Figure 3-4 B.0). If the current time is outside of

the search period, then the STPs indicated by the PP input are not incorporated

into the therapy library (Figure 3-4 B.1). If the current time is within the search

period, a check to determine whether the stability period has expired is conducted

(t - tstable < Tstable, Figure 3-4 C.0). If it has, Vtable is associated with the STPs

indicated by the PP input, and is referred to as an association vector (Figure 3-4 C.1).

Both the vector and the STPs information are then passed into the f(libmod).

The stability criterion is used to identify "stable" data which has very little vari-

ation in three-space. On the second iteration of the f (assoc), the distance between

the previous TA data point, Vt_1, and the current TA data point, Vt, is measured

and compared to Dp2p (Figure 3-4 D.0). If the distance between t-1 and vt is less

than Dp2p (d2 (t_ 1 , Vt) < Dp2p), the two vector components are averaged together to

generate a single stable vector, Vstable (Vstable - mean(vt, Vt_1), Figure 3-4 H.0). New

data points that pass the stability criterion continue to get averaged into the value

of Vstable (Vstabte - mean(vt, vstable)). The first time the distance between Vt1 and vt

exceeds Dp2p, then the TA data point is flagged as noise (Figure 3-4 F.2 and F.3).

A logical vector (Bp2p) with N elements is used to record the result of the stability
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Figure 3-4: Data association function flowchart.

criterion for the last N points. A value of 1 or 0 is stored in the N"h element depending

on whether the criterion is passed or failed. Initially, the Bp2 p is padded with N ones.

After the stability criterion is checked (Figure 3-4 D.0), the noise criterion is verified

by summing the elements of Bp2p to ensure that at least M of the last N data points

were considered suitable for inclusion in the Vstable (Figure 3-4 E.0). If greater than

N - M of the last N points failed the stability criterion ()IZ Bp2p(k) < M, Figure 3-

4 E.1), it indicates that the patient is either active or that the signal has too much

variation to specify a concise region in three-space. If this occurs, the stability time

keeping variable, tstable, is reset so that the maximum number of noisy points are

included and Vstable is recalculated accordingly.



If Vt fails the stability criterion, as long as the noise criterion is met, the point

is regarded as noise. Once the noisy data subsides (as indicated by Bp2p(N) = 1,

Figure 3-4 F.1), the distance between vt and Vstable is measured and compared to

a same posture threshold, Dassoc (d2 (vt, ostable) < Dassoc, Figure 3-4 G.0). This is

called the same posture criterion. Passing the same posture criterion indicates that

the the point to point deviation in three-space between t-2 and t_1 was caused by

noise, or an insignificant movement. The current data point is therefore incorporated

into the calculation for Vstable (Vstable = meao(vt, Vstable)). If vt fails the stability

criterion, the noisy data is considered to represent a transition rather than noise

(Figure 3-4 G.1), and the Vstable and tstable are reset to the current data and time

(Vstable - vt and tstable t ).

3.3 Library Modification: Redefinition of Therapy

Vector Space

Once an association between a PP input and a vector is made in the f(assoc), the

f (libmod) determines how the new association data should be incorporated into the

therapy library. The objective of this function is to maintain a therapy library which

accurately describes a patient's stimulation therapy space according to changes they

have made to their STPs over time. To minimize the amount of computation and

storage space necessary, it is important to keep only sufficiently different information.

This function first measures the distance between every existing vref in the therapy

library and the Va...c from the f (assoc). The minimum distance between any of the

Vref and vassoc is compared to the f (libmod)'s same posture threshold, Dlibmod. If the

distance is less than Dlibmod, then the library entry is considered sufficiently similar,

and is replaced by the association data corresponding to the associated PP input. If

Vassoc is greater than Dlibmod away from all existing therapy library vref, then a new

entry is created and filled with the association data.

Both the f(assoc) and f(libmod) have same posture thresholds, Dassoc and Dlibmod



respectively. While the same posture thresholds serve similar purposes, their values

are independently defined and affect the properties of the final therapy library differ-

ently. The current implementation of the f(libmod) uses only the Dlibmod to determine

whether two entires are "sufficiently similar". Suggested improvements for determin-

ing whether to replace a library entry or not will be addressed in the conclusion

(Chapter 5).

Entry 1 2 3 4 5 6 ...

Association# 1 2 3 4 5 6 ...

X VFU(1) vFD(l) vR(1) VL(l) VUP(1) Vrefl(l) -

Y VFU(2) VFD(2) VR(2) VL(2) vup(2) Vrefl(2) ...

z VFU(3) VFD(3) vR(3) VL(3) vup(3) Vrefl(3) ...

Time to to to to to tstable .

Rate (Hz) 60 60 60 60 60 60 ...

Ampl (V) A1  A1  A1  A1  A1  A1  ...

Amp2 (V) A2  A2  A2  A2  A2  A2  ...

Amp3 (V) A3  A3  A3  A3  A3  A3  .

Amp4 (V) A4  A4  A4  A4  A4  A4  ...

PW1 (ms) PW1 PW1 PW1  PW1  PW1 PW1 ...

PW2 (ms) PWV2  PW 2  PW2  PW 2  PW 2  PW 2  ...

PW3 (ms) PW 3  PW P1473  PW PW PW ...

PW4 (ms) PW 4 PW 4 P144 PW 4 PW 4 PW 4 ...

Table 3.3: Data contained in a therapy library.

Each library entry has 15

ber and the xyz-coordinates.

components and is uniquely identified by the entry num-

All the necessary STPs required to specify a stimulation

in the SCS are stored in the therapy library. Table 3.3 shows the components of a

therapy library and an example of information a therapy library may contain. In the

table, an entry corresponds to a column of data. The first five entries are the basic

VOR, which may be a typical initial library set up. As a patient increasingly makes



programming changes, the library may grow and the VOR entires may be replaced

by arbitrary vref (like Entry 6). The association number is assigned by finding the

maximum association number and adding one to it. It uniquely identifies the therapy

library entry at a given time. The order which a library entry was added is indicated

by both the association number and by the time. If sufficient storage capacity exists,

entry data which get replaced by new associations can be saved and used to consol-

idate the therapy space periodically. This suggestion is mentioned in more detail in

the conclusion (Chapter 5).

3.4 Data Classification: Selection of Stimulation

Therapy Parameters

The f(class) uses the therapy library to select an appropriate set of STPs to deliver

for a given TA data point. While it is important to deliver appropriate therapy at any

point in time, it is equally important to filter out noisy data and to avoid delivering

sporadic or painful stimulation therapy. For this reason, the f(class) not only mea-

sures the relative position of the incoming TA point to existing vref, but also requires

that the data exhibit a trend in its relative position before delivering stimulation ther-

apy associated with a therapy library entry. The method of filtering noise is identical

to the method used in the f(assoc) where two variables, K and L, limit the number

of extraneous library entry classifications allowed in a segment of L classifications.

The parameters K and L dictate how often the STPs will change. Smaller values for

L and K enforce a looser requirement for a library entry classification trend. Larger

values lead to a delayed response when changing STPs.

The distance between the incoming data point and all existing vref is measured.

The vref which is closest to the TA data point location is identified and the associ-

ation number is extracted. The current library association number is compared to a

library association number buffer which contains the association numbers of the last

L classification made. If the current association number is greater than or equal to K



of the last L association number classifications made, then the STPs for library entry

corresponding to that association number are used for the stimulation therapy for the

current time, t. Otherwise, the STPs of the last valid library entry classification will

be used.



Chapter 4

Assessment of Algorithm

Functionality

Since collecting data for a clinical trial was not feasible for the scope of the project,

ATLAS performance was characterized using the 3data and ICdata. In addition, out-

puts from ATLAS were quantitatively and qualitatively compared to BOBAS outputs.

Section 4.1 will evaluate the effect of the data association and library modification

parameters on the final properties of the therapy library. Section 4.2 analyzes various

aspects of the performance of ATLAS relative to BOBAS.

4.1 Effects of Parameters on Data Association Vec-

tors and Therapy Library

As mentioned in Section 2.4.1, optimal stimulation parameters for a given point in

three space cannot be asserted using 3data. Instead, quality of a particular therapy

library generated by a patient's PP usage is assessed using several guiding principles.

First, we assume that a patient changes his STPs because the current STPs are

unsuitable for the posture or activity that the patient is or will be in. While it is

sometimes difficult or impossible to know exactly what posture or activity a given

programming change was intended for in the 3data, it is assumed that the change



was not made without reason and that the subject intended the change for a present

of future posture or activity, not a previously assumed one. Therefore, for most PP

inputs, it is desirable to associate the indicated STPs to some representative vector

and to save the information in the therapy library.

A therapy library entry can be replaced several times throughout the course of

the study. As an entry gets replaced over time by new vassoc, the spatial similarity

between the Vassoc and the original vref is more likely to decrease. For example, in

the worst case scenario, after two replacements of a library entry, the final vref can

be a distance of up to 2 - Dlibmod away from the original reference vector, placing it

significantly far from it's original position and risking spatial overlap with the vrefs

from other library entires. To avoid spatial drifting or spreading of the vref s pertaining

to a given library entry over time, it is important to minimize the spread between

vectors which corresponded to the same library entry throughout the course of the

study. An identical case can be made for the individual data points which collectively

define a Vassoc. Ideally, the individual points should be confined to a small region of

space, thus increasing the specificity of a given Vassoc.

Based on the above arguments, the following therapy space objectives will be used

to assess the quality of a therapy library:

01) Maximize the number of PP inputs which get associated

02) Minimize the percentage of points labeled as noise within the stable window

03) Minimize the spread between data points which make up an association vector

04) Minimize the spread between vectors used to define a single library entry over

the course of the study

4.1.1 Parameter Screening Using Design of Experiment

The properties of the data which contribute to the generation of Vassoc and of the

positions of the vref within a therapy library are dictated by the parameters of

the f(assoc) and f(libmod). To identify the main and interaction effects between



f (assoc) and f(libmod) parameters, a design of experiment (DoE) was used to evalu-

ate the effects of ATLAS parameter values on the content of the final therapy library

and the properties of the vassoc generated within the f(assoc). The DoE data was

used to select suitable parameter values for subsequent evaluations of ATLAS. The

parameter values and responses metrics used to conduct the DoE will be introduced

followed by conclusions of the analysis conducted based on the data collected.

Factors

A total of four parameters are used in the DoE to analyze their effect on the final

therapy library properties. The parameters, formally referred to in DoE as factors,

and are described below:

F1) Dp2p: Point to point distance threshold used to check the stability criterion in

the f(assoc)

F2) Dassoc: Same posture distance threshold used to check the same posture criterion

in the f(assoc)

F3) Mof N: Two parameters which collectively are used to check the noise criterion

in the f(assoc)

F4) Dlibmod: Same posture distance threshold used to check the distance between an

new Vassoc and existing therapy library entries in the f(libmod)

The two timers used in the f (assoc), Tstable and Tsearch, were not included in the

DoE since the concept and values of these parameters had been previously verified

in the creation of BOBAS. The values of the tinier parameters were not considered

significant factors to vary. For each factor listed above, a minimum, nominal and

maximum value was specified. Values for each of three distance metrics were used

for the three distance threshold parameters Dp2p, Dassoc, and Dlismod. Since M and

N collectively specify the percentage of noisy points allowed in an N-point segment

of data, three values (a minimum, a nominal, and a maximum) are used the specify

N and values of M are chosen such that the overall fraction is minimal, nominal or



maximal. The numeric values for the f(assoc) and f(libmod) used in the DoE are

given on Table 4.1. A random subset of seven of the 15 3data sets were selected to run

the analysis on. A full factorial DoE was conducted, where the responses resulting

from each permutation of parameter value combinations was measured. Evaluating

all permutations for values of the four factors results in 243 (35) iterations of the

algorithm per data set per distance metric.

Variable Units Minimum Nominal Maximum

Angular 3 6 10
Dp2, Squared-Euclidean 30 100 400

Sum-of-Differences 8 18 28
Angular 10 15 20

f(assoc) Dassoc Squared-Euclidean 400 700 1000
Parameters Sum-of-Differences 28 40 50

M # of points 7 11 14 8 12 16 9 13 18
N #of points 12 18 24 12 18 24 12 18 24
tstable Seconds 120
tsearch Seconds 420

f(libmod) Angular 10 15 20
Parameter Dlibmod Squared-Euclidean 400 700 1000

Sum-of-Differences 28 40 50

Table 4.1: Design of experiment values. Final factor values used for subsequent
analyses are highlighted in yellow. Selection of these values is discussed in the DoE
conclusions section.

Responses

To evaluate the four objectives listed in Section 4.1, the following seven responses

were collected:

R1) Percentage of associations made: The percentage of search triggers which ulti-

mately get associated. Both components of this response are explained in Ria

and Rib. The response is measured as a percentage of Rib with respect to Ria.

Ria. Total number of search triggers: Once a search period has ended (either

because an association is made or because the search timer has expired), the

search period will be recorded as a search trigger. Initiation of the search



timer is triggered by a new PP input; but, if a new PP input is registered

before the search timer expires and before the PP input was associated,

then the previous PP input will not be counted as a search trigger. Instead,

the two inputs will be considered part of the same programming period.

Therefore, the number of search triggers depends both on how quickly

associations are made and how long the search and stable timers are.

Rib. Number of associations made: If the association criterion has been ful-

filled, the data is used to generate a vassoc. This response counts the num-

ber associations made in the f(assoc).

R2) Time required to make an association: In order to make an association, the sta-

bility timer must expire; however, depending on how many times the stability

timer is re-initiated due to failure of the association criteria, the time between the

detection of the PP input and the creation of a Vassoc can vary. Only associated

PP inputs were considered for this response.

R3) Percentage of noisy points within a stable period: Any point that exceeds the

Dp2, is automatically flagged and can potentially be classified as either noise or

a transition. The percentage of points classified as "noise" within a stable period

will be presented. Only associated PP inputs were considered for this response.

R4) Distance between vassoc and each of the data points used to create the vector: The

average distance between all non-flagged points and the final Vassoc generated will

be measured in degrees.

R5) Number of library entries: The number of library entries depends on how similar

a new vassoc is to existing library Vrefs. The final number of library entries

depends on the value of Dibmod, the number of associations made and loosely on

the position of the Vassoc.

R6) Number of associations per library entry: Throughout the study, information in

the library can change depending whether a new association replaces an existing



library entry or creates a new entry. This number not only depends on the

Dlibmod, but also on the number of associated PP inputs.

R7) Library entry spread: For library entries that have more than one v,ef through-

out the duration of the study, the average vector will be calculated. The distance

between the average library entry vector and each vref pertaining to that entry

will be measured in degrees. A depiction of this response metric is shown in

Figure 4-1.

100G4-1

80-

-40-

Figure 4-1: Entry spread calculation using a therapy library entry with five vectors
over time. The mean vector, indicated by the red circle labeled Vm, is defined as
the mean of all the previous vref corresponding to a particular library entry (points
labeled 1 - 5). The distance between each vector and om is then measured, and the
metric presented per library entry is the average of these distances.

These seven responses were collected per ATLAS distance metric mode (3) per

subject data set (7) per parameter combination (243). Responses are measured after

all three ATLAS distance metric modes are run sequentially on one subject data set

using one parameter combination. This process is repeated on the remaining data

sets. After data responses are collected from each data set for a given parameter com-

bination, the response values across all subjects are averaged together. The average

responses from all seven data sets for each distance metric mode using one parameter



combination constitutes one run. A total of 243 runs are required to collect response

data for each of the parameter combinations.

Conclusions

Differences between response values due to the unique factor combinations were ex-

plored using the MATLAB Statistical Toolbox. Both main effects and interaction

effect plots were analyzed. As mentioned in Section 4.1, the performance of an AT-

LAS output is measured according to whether each of the objectives is appropriately

maximized or minimized with respect to the factor value and distance metric used.

Objective performance is measured using the values of the responses collected in the

DoE. Factor values which produced desirable performance were identified and used

for the subsequent ATLAS evaluations described in this chapter.

The effects of the four factors on the responses were observed to have the same

general trend for the three distance metrics used. These trends are summarized on

Table 4.2. The rows of Table 4.2 indicate the relationship between an objective num-

ber and the response number(s) used to evaluate that objective's performance. The

arrows next to the objective (0) number indicate the desired direction for improved

performance of that objective. Similarly, the arrows next to the response (R) numbers

indicate how the value of the response must change in order to achieve the indicated

direction of the objective. Double hashed arrows are used for responses which are

most relevant for the evaluation of the objective performance and which have a clear

direction of change to support an improvement of the objective. The arrows in the

F# columns indicate how factor values need to be changed to illicit the indicated

change in response value. Factors which have an insignificant effect on the response

value have a tilde (~) symbol instead of an arrow.

Objectives 01- 03 - which deal with the percentage of associated search trigger,

the percent noise within an association period, and the distance between data points

which make up the final Vassoc - depend directly on the performance of the f (assoc).

As expected, the value of Dlibmod (F4) was found to have an insignificant effect on the

final values of the responses used to measure the first three objectives. The main effect



0# R# F#: Main Effects
F1 F2 F3 F4

01f R1f t ? 4
R24 t T 4-

024 R34 T 4 - ~
034 R44 4 4 t ~

R54- ~l ~ ~ -T
044 R67 t ? 4 

R74 ~ 4

Table 4.2: Relationship between ATLAS therapy space evaluation objectives and

the responses used to quantitatively evaluate performance of a given parameter set

relative to the objective number. Objectives number descriptions can be found on

page 44, response numbers on page 46, and factor numbers on page 45.

plots for responses R1, R3 and R4 are shown in Figure 4-2(a)-(i). The DP2P (F1) has

the most significant main effect on the final value of the first four responses; however,

as shown in Figure 4-3, there are interaction effects between the first three factors

which also must be considered. Regardless of the distance metric used to measure

distances in ATLAS, there is a trade off between percentages of search triggers which

get associated (R1) and the spread of the data points used to generate a vassoc (R.4).

To increase RI for better performance according to 01, Dp2p should be increased.

While this decreases the percentage of noisy points included in the association period

(R3) and augments performance according to 02, it does so deceptively since the

increased D, 2, makes it less likely that the stability criterion will fail. As DP2P is

increased, points which are further from each other still constitute a stable signal

and therefore decrease the specificity of the points which make up a Vassoc. This

degrades the quality of the vassoc according to 03 and is indicated in Figure 4-2(i)-

(g) by the increased association spread due to increasing Dp2p. This same trade off

is observed across distance metrics. For instance, the maximum percentage of search

triggers associated using D is 96.37%, which is the average value for R1 when Dp2p

is the maximum value (10 degrees). The maximum value achieved for R1 using the

S is 98.22% when Dp2p is 28. This increased maximum R1 value achieved using S

is countered by increased association spread compared to equivalent factor values

using D.
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Figure 4-2: Main effect of factors on: (a-c) percent associations (RI), (d-f) percent
noise (R3) and (g-i) association spread (R4). The columns correspond to the different
distance metrics used (a,d,g)-D, (b,e,h)-E, and (c,f,i)-S. For the minimum, nominal
and maximum factor values, see Table 4.1.

Because RI and R4 are the most straight-forward f(assoc) performance indicators,

the interaction plots for these two responses are shown in Figure 4-3(a) and (b)

respectively using angular distance metric results. Basic matrix notation will be used

Angiar Distance Metric

Squared-Euclidean Distance Metric



to identify an interaction plot were Figure 4-3[i, j] will refer to the plot in the ith row

and jth column. The row numbers indicate that the factor values (Fi) in that row are

distinguished using different line styles. Columns corresponding to a factor number

(Fj) indicate that the x-axis specifies the three possible factor values. The interaction

plots are constructed such that [i, j] and [j, i] have the same information, but with

the x-axis and line properties as means of indicating a factor's value switched. The

dashed boxes indicate the factor value chosen as optimal for the jth column, and the

circles indicate the optimal value corresponding the ith row.

As shown in Figure 4-3(a) [1, 2] and [1, 3], there is significant interaction between

Dp2, and the other two factors, particularly when considering the difference in re-

sponse values when Dp2p goes from 3 to 6. In [1, 3], we see that as Dp2p assumes

the nominal and maximum values, the effect of Mof N on RI diminishes. Both plots

show that as Dp2, is set to its nominal and maximum values, the percent association

performance drastically improves. Since the nominal value for Dp2p greatly increases

the value of Ri while still resulting in relatively good performance for R4, it was

selected as the most appropriate value for subsequent evaluations of ATLAS (Dp2 =

6 using D, 100 using E and 18 using S).

The minimum value of Dassoc which still yielded acceptable response values was

chosen assuming the nominal value of Dp2,. As shown in Figure 4-3(a) [2, 1], the

difference between the value of RI achieved when the minimum and the nominal

Dassoc value is used is greater than the difference of RI achieved between the nominal

value and the maximum. A similar relationship between Mof N and Dassoc is observed

in Figure 4-3(a)[3,2]. While the value of Dassoc significantly dictates the value of

R4, a nominal value of Dassoc was chosen as a compromise between an increase in

the percentage of association and an increase in the association spread; however,

a convincing argument could be made for choosing the minimum value of Dassoc,

depending on the desired level for R1.
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Figure 4-3: Interaction effects of the first three factors on (a) percent associations (RI)
and (b) association spread in degrees (R14). Interpretation description on page 52.



The Mof N values were chosen by first comparing the performance between the

minimum, nominal and maximum fraction values. When Dp2p and Dassoc are set

to their nominal values, there is only a small gain in performance when going from

minimum to maximum fraction values; therefore, only the minimum fraction values

were considered since they increase RI while only marginally affecting R4. The

minimum value of N (12) had notably worse performance compared to the nominal

(18) and maximum (24) values. Comparing the difference between N = 18 (blue line

with circular markers) and N = 24 (blue line with triangular markers) in Figures 4-

3(a) and 4-3(b) [3,21, it is apparent that while there is only a very small difference

between the R1 values achieved, the differences between the R4 values are noticeable.

By using N = 18 (the nominal value), there is a reduction in the association spread

with a very small reduction in the percentage of points associated.

Upon analyzing the main and interaction effects on R7, which is the primary

performance indicator for 04, it was found that Dibmod was the only factor with a

significant effect on the final value of the response. The number of library entires

in the final therapy library (R5) decreases as the value of Dlibmod increases since a

Vassoc and vref can be further apart, but still be considered "sufficiently similar." This

causes the number of associations per library entry (R6) to increase, and in turn the

library entry spread increases as Dlibmod increases. Without knowing the position

of the library entires in the therapy space, it is difficult to determine the optimal

direction of change for R5 and R6. Therefore, the value of Dassoc was selected for

nominal performance of library entry spread for each of the distance metrics. The

final values selected for each of the factors are highlighted on Table 4.1.

4.1.2 Effect of Dlibmod on Therapy Library

Based on the DoE results, the Dlibmod parameter is primarily responsible for the

definition of the stimulation therapy space by determining how new associations relate

to existing vref and dynamically redefining the therapy library. To explore the effect

of Dlibmod on the final therapy library content, two of the response metrics measured in

the DoE, R5 and R7, were used to evaluate the effect of Dlibmod on the final properties



of the stimulation therapy space for a range of values. R5 is the resulting number

of library entries after using running ATLAS on a 3data set. R7 is measured as the

average distance between each Vref corresponding to a given library entry and the

average vector defined by mean of all the vref corresponding to a given library entry

throughout the course of the study. Responses were collected using each distance

metric mode for all subject 3data sets.

Angular Distance Metric Squared-Euclidean Distance Metric Surn-of-Differences Distance Metric
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Figure 4-4: Effect of Di mod on the final number of library entries in the therapy
library for (a) D, (b) E, and (c) S distance metrics.

The average number of library entries produced by ATLAS for all 3data sets (R5)

versus Dluod is shown in Figure 4-4. The data is plotted on logio-logio scaled axes

with the linear best fit line (in red) fitted to the mean patient data line (in blue). The

linear best fit line, having the standard form of y = mx + b, yields the relationship

between R5 and Duoo0 described in Eqn (4.1).

x = log1o(Dluomd)

y = logio(R5)

lo91o(R5) = mlog1o(Dliba) -+ b

R5 = 1 0 0mlogo(Dlibmod)+b

R5 D'o d2 10 (4.1)

The number of library entries was found to be inversely proportional to approximately



DlJod lD,S for both D and S distance metrics. For E, Dlimmo E was raised to the

approximately the -1/ 4th power, due to the fact that squared-euclidean distance was

being used. The final relationships between the value of Dlibmod and the average

number of library entries are described by Eqn (4.2), (4.3), and (4.4) for D, E, and S

respectively.

R5 =D7,;.0 Dl 10.58 (4.2)

R5 - n-0.25 F10171 (4.3)

R5 - Dj |s 10.76 4.4)

While the number of library entries versus Dlibmod is comparable for all distance

metric modes, the entry spread versus Dlibmod exhibits very different behavior depend-

ing on the distance metric used. In Figure 4-5, the average entry spread, measured as

the average of each 3data set's individual entry spread, is shown as a blue line with

circular markers for D, E, and S distance metrics. The mean patient data curves in

Figure 4-5 show that as Dlibmod increases, the entry spread also increases, however,

the rate of increase and the final "saturation values" of the entry spread differ widely

across distance metric modes. The final Dlibmod values used for each of the distance

metric modes (45, 2100 and 150 for D, E, and S respectively) are larger than the

advised Dlibmod values; however, the effect on R5 as Dlibmod assumes non-practical

levels sheds light on how robust each distance metric mode is. As Dibmod approaches

45 using D, the entry spread begins to level off to about 9.15 degrees. Using E, the

entry spread begins to level off to 7.31 degrees as Dlibmod goes to 2100. The entry

spread using the S distance metric does not exhibit this same "saturation" behavior.

The increase in entry spread as a function of Dlibmod is approximately linear, with a

maximum measured value of 13.55 degrees.

An increase in entry spread indicates a degradation of a given library entry's speci-

ficity in three-space and increases the ambiguity of data classification. To explore the

fundamental effects of Diod on the therapy library content over time, two subjects
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Figure 4-5: Effect of Dlibmod on the entry spread using (a) D, (b) E, and (c) S
distance metrics. Entry spread data for two subjects (106 and 207) is shown on each
graph. Probed points indicate the values for entry spread (Y) and Dhmod (X) which
correspond to data shown in Figures 4-6 (subject 106) and 4-7 (subject 207). See
page 47, for the definition of "entry spread."

were chosen to conduct a qualitative analysis. Subject 106 was chosen to compare

the effects of the different distance metrics at high Duimod values, since the entry

spread for this subject's therapy library closely followed the mean entry spread across

all subjects. The fundamental differences between the distance metrics as Dlibmod

assumed higher values were explored using Subject 207's 3data set. This subject's

data set went on to have one of the highest entry spread values as the value of Dlibmod

increased, and was selected to show the differences between a "problematic" subject's

therapy library evolution for the operating parameter values highlighted on Table 4.1.

The curves for the entry spread versus Duomod for both subjects are shown in Fig-

ure 4-5 with data point indicating the entry spread (Y) for each Dlumod (X) value

used to produce Figures 4-6 and 4-7.

Figures 4-6 and 4-7 show the location of the therapy library entry vref throughout

the course of the qualification protocol for Subjects 106 and 207 respectively. In each

figure, the orientation vectors are rotated into the Cartesian coordinate system with R,

FD and UP being roughly aligned with the xyz axes. The basic posture abbreviations

are shown on the plot for reference. The method used to make these transformations

is shown in Section 4.2.1, Eqn. (4.5). This step is done simply to make the 3-D plots



of the data easier to view and does not change any relative properties of the data.

The hemisphere roughly defines the location of the TA data points in 3-space, and

is meant to provide spatial context to the data. Finally, vref corresponding to the

same library entry are identified by color and marker shape. While the color of a

marker always maps to a single library entry, the shape may be repeated since total

of eight distinct markers were used. Except for six Vref on Figure 4-7(a), the temporal

information of the vref is not included in Figures 4-6 and 4-7.
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Figure 4-6: Three-dimensional depiction of ATLAS therapy library development on
Subject 106 3data using nominal values for all parameters except Dlebmod. Graphs
are shown for (a) Dlbmoa |D = 40, (b) Dibmod E = 1800, and (c) Dlibmod Is = 120.
To compare a value of Dmod using S which yields seven therapy library entires, (d)
shows the resulting therapy library using Dlibmod |s = 70.

Figures 4-6(a), 4-6(b), and 4-6(c) correspond to the data stored in the therapy li-

brary using Dimod ID= 40, Dlibmod IE= 1800, and Dlumod |s= 120 respectively. These



particular values were chosen since they exhibit the therapy library development as

entry spread reaches its near maximum value. The Dlibmod values mentioned for D

and E yield a final therapy library with seven entries; however, the seventh entry

using D has only one corresponding Vref. In contrast, the therapy library using the

indicated value for Dlraod Is results in a final therapy library with only five entires,

which is the number of entries the algorithm is initially seeded with (the five basic

VORs). In Figure 4-6(c), we see that Vrefs corresponding to Entry 2 extend into the

"UP" region, near the Entry 5 VrefS. Comparing the resulting therapy libraries us-

ing the different modes of ATLAS, we see that the partitioning of the therapy space

by the library entries is done uniquely for each metric. In addition, the differences

between the entry spread curves in Figure 4-5 are put into context.

Aside from the fundamental difference between the distance metric modes, the

high degree of entry spread when using Dlibmoad s of 120 could have resulted because

the Dlmod value was relatively higher than the nominal Dlibmod value for S than

the large values were to the nominal values using D or E. To compare an S therapy

library with seven entries for Subject 106, the resulting library with Dlibmod = 70 was

generated (Figure 4-6(d)). While the therapy library generated using this value for

Dlibmod |s was much more similar to the therapy libraries generated using D and E,

the Vref belonging to Entry 6 and Entry 7 were substantially more mixed than the

vrefs belonging to the same entries using E.

Figure 4-7 shows the components of the therapy library throughout the course

of the qualification protocol for Subject 207. For all distance metrics, the nominal

parameter values highlighted on Table 4.1 were used. A total of 17, 15 and 15 library

entries resulted using the D, E, and S distance metrics respectively from the 30 PP

inputs made by this subject. For the most part, the Vrefs corresponding to a given

library entry are the same for the different distance metric used. Discrepancies include

the lack of an Entry 14 Vref using E and content of E's Entry 9 compared to D and

S. The vref representing Entry 11 does not exist in the S therapy space since the

contents of Entry 7 and Entry 5 differ from the same entries using D or E. Finally,

D generates an extra entry, Entry 17, near the "L" Entry 3 Vrefs. This association is
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Figure 4-7: Three-dimensional depiction of ATLAS therapy library development on
Subject 207 3data using nominal values for all parameters except Dubmod. Graphs
are shown for ((a) Dimod ID = 15, (b) Dlibmod IE = 700, and (c) Dlibmod Is 40.
The numbered points shown in (a) indicate the relative temporal order of the six
points. (d) The PP input associations made by BOBAS. The black circles represent
PP inputs that were not associated. Five of the seven not associated were "classified"
as hysteresis.

included in Entry 3 for both E and S. For comparison, the classification of PP inputs

into five library entries corresponding to the basic body orientations using BOBAS is

shown in Figure 4-7(d).

Looking at the figures, the necessity for some of the library entries may not be

clear. For instance, in Figure 4-7 (a-c), Entry 10 and Entry 13 appear to occupy the

same region in the therapy space. The order of the PP inputs and the movement of

a library entry location upon incorporation of new Vref results in a Vref for a given

60
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Angular Distance Metric, Dii,,s = 15



library entry that may be distant from the entry's original vref. The red arrow in

Figure 4-7(a) and the numbers along the arrow near the entry points indicate the

relative order of the incorporation of that Vref into the therapy library. While the

points numbered 1 and 2 are very close to the points labeled 5 and 6, the addition of

Vref 3 and 4 move the therapy library vref sufficiently far from its original position,

resulting in the formation of a new library entry once v,ef 5 gets incorporated. This

phenomenon is known as "entry drift" and occurs because the only criterion used

to modify the therapy library is based on distance from the existing library vref.

Strategies to mitigate entry drift will be discussed in the conclusion, Chapter 5.

Based on this analysis, for the Dlibmod range of interest (see Table 4.1), the perfor-

mance of the three algorithms is similar. The E distance metric results in the lowest

entry spread and S in the greatest. Depending on constraints for number of therapy

library entries that can be stored on the SCS device, the relationship between Dlibmod

and number of entries (R5) described in Eqns. (4.2), (4.3) and (4.4) can be used to

help select an appropriate value for Dluod.

4.2 ATLAS versus BOBAS Comparisons

While the four objectives discussed in Section 4.1 were based on reasonable assump-

tions concerning PP usage, the true performance of the therapy library generated

by ATLAS cannot be assessed without programming a pain patient's SCS with the

algorithm and monitoring his satisfaction with the resulting stimulation therapy. In

order to objectively evaluate the performance of ATLAS, various characteristics of the

algorithm's performance will be compared directly to BOBAS. In Section 4.2.1, pos-

ture classification performance of ATLAS using a therapy library constructed based

on PP inputs will be compared to that of BOBAS using the ICdata. Section 4.2.2

will quantify of the number and type of operations required to make an association

using ATLAS verses BOBAS.



4.2.1 Posture Detection Accuracy Using In-Clinic Study Data

Since known postures are being assumed in the validation protocol, the ICdata pro-

vides a means of objectively evaluating the data classification accuracy of a posture

detection algorithm. A therapy library will first be generated by ATLAS using the

3data. All spatial data will then be rotated from 3data space into ICdata space.

Each entry of the transformed therapy library will then be identified with a basic

posture, and the TA data from the ICdata will be classified by ATLAS's f(class)

using the therapy library generated from the 3data. Each data point will be classified

to a library entry, which in turn is mapped to a basic orientation. The accuracy of

the data classifications made by ATLAS will then be evaluated.

Different accelerometer devices were used in the qualification protocol and the

validation protocol. As an initialization step for each protocol, VORS were defined.

Since the VORS were defined at different times and were generated using different de-

vices, the position of the VORs defined in the qualification protocol cannot be directly

compared to the VORs defined in the validation protocol. In order to compare posture

detection using the therapy library generated by ATLAS on 3data, the 3data VoRS

need to be mapped with minimal error to the VORs recorded from the ICdata for

the same subject. Singular value decomposition [31] is used so that the norm of the

difference between the ICdata VORS (A) and the transformed 3data VORS (BQ) is

minimized (Eqn 4.5).

min| 1A - BQ|| = trace(AT A) + trace(BT B) - 2 - trace(QTBT A)

UT(BT A)V E

Z VT QTU

trace(QTBT A) = trace(QTUEVT) = trace(ZE)

Q = UVT (4.5)

The order of the orientation vectors and the number used affects how well the two



vector sets are aligned. The mapping is done so that the sum of the angular distance

between the 3data VORs and the ICdata VORS for each of the five orientations is

minimized. This is done to optimize the alignment of orientation vectors that are

relatively more alike across both the 3data and ICdata. Different permutations of

VOR order and number are tested and the set of vectors which minimizes the distance

between the same postures using 3data VORs and the ICdata VORs is determined. A

rotation matrix (Q) is found to minimize the distance between the subset of vectors,

and is used to rotate all the vref within the therapy library into the ICdata vector

space.

Once 3data VORs and therapy library v,ef have been transformed into the vector

space defined by the ICdata VORs, each association made during the qualification

protocol is mapped to a posture: (lying) face up, face down, left, right, hysteresis,

or upright. Each of these posture associations are made using the ICdata VORS. All

vref within OuP (300) of either the VvirtUP or vUP are mapped to upright. All vref

greater than OLD (60') from the vvitup are considered lying postures and are then

mapped to the nearest lying Vof. All associations greater than Oup but less than OLD

of the virtUp are classified as hysteresis. After the Vref are mapped to an ICdata

orientation, posture detection accuracy is assessed by assigning acceptable postures

to each physical task in the validation protocol. Table 4.3 contains a list of all the

physical task descriptions and their numbers along with the acceptable postures.

Physical Task (#) Acceptable
Postures

Sit (1, 3, 15) UP, HYST
Stand (2, 4, 13) UP,HYST
Treadmill (14) UP, HYST
Recline (16) UP, HYST, FU

Physical Task (#) Acceptable
Postures

Face Up (5, 12, 17) FU
Face Down (7, 10) FD
Right Side (6, 9) R
Left Side (8, 11) L

Table 4.3: Validation protocol physical tasks and associated acceptable postures.

For all distance metric modes used by ATLAS, one classification error occurred,

which was the misclassification of physical task (PT) 17 (FU) performed by Subject

101. As shown in Figure 4-8, the library entries used to classify the data corresponding

to PT17 (associations 9 and 11, indicated by magenta stars), were both located
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Figure 4-8: Misclassification of PT17, which should be classified as EU according to
the validation protocol truth. TA data corresponding to PT17 is circled in red, and
the corresponding therapy library entries which were used to classify the data are
indicated by their association numbers, 9 and 11, and are represented by magenta
stars.

in the hysteresis region, according to the three-space partitioning method used in

BOBAS. While not necessarily identified by the same association numbers, all three

ATLAS distance metrics modes produced a library entry which had two vectors in

the same relative location as those shown in Figure 4-8. The PT17 data points were

all associated with this library entry and resulted in a misclassification of PT17 as

HYST instead of EU. While the angular distances between PT5 and PT12 and the

l~data VFU were 10.350 and 2.63' respectively, the average angle between the PT17

data, circled in red in Figure 4-8 and the l~data VFU was 38.50. The relatively

large distance between J~data VFU and the mean PT17 data indicates that PT17

was in some way different than PT5 and PT12. Therefore, this misclassification is

considered insignificant when comparing the posture detection performance of ATLAS

and BOBAS.
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Figure 4-9: (a) Shows the fraction of points corresponding to PT8 which were incor-
rectly classified as FU instead of L using the S distance metric, (b) shows all the data
corresponding to PT8. Data classified as FU has a red outline a A marker and data
classified as L has a black outline and a r> marker.

One additional misclassification which occurred for the same subject was the clas-

sification of 47.9% of the points corresponding to PT8 as FU instead of L using the

S distance metric. Figure 4-9 shows the lying ICdata and 3data VORs and PT8 data

points projected onto the xy-plane. The PT8 data points which were incorrectly clas-

sified as FU rather than L are shown in Figure 4-9(a). All the data corresponding

to the PT are shown in Figure 4-9(b). While this misclassification can be partially

explained by the transformation error between the 3data VORs and the ICdata VORs,

this same misclassification was not observed in either of the other two distance metric

modes (D and E) used by ATLAS. While further analysis would be necessary, this

partial misclassification of PT8 observed only when using S could indicate a disadvan-

tage of using S over D or E. Other than the misclassification of PT17 for all distance

metric modes of ATLAS and of PT8 using S, the posture classification performance

using therapy library vref was as good as BOBAS.

4.2.2 Computational Complexity

The number of mathematical operations required in the f(class) and f(libmod) func-

tions increases with the number of library entries. This leads to an increase in the

. .. ........... .......... ...... ......



current draw of the microprocessor in the SCS and ultimately depletes the battery

life of the device. In order to operate within power dissipation budges, it is important

to balance the objectives for system performance and the practical considerations of

the system. The computational complexity of each algorithm will be presented as

a count of logical, addition, multiplication and trigonometric operations which must

be performed by each function in the worst case. Depending on the microprocessor

being used, the power cost of each of these operations varies.

Currently, BOBAS is implemented such that the angular distance metric is used

to measure the angle between each of the incoming TA data points and the upright

vectors, VvirtUP and vup. A "posture code" is assigned to each of the TA data points

and depending on whether a PP input is being associated or not, the posture code

information is used by either the data association function or the data classification

function. Because the number of library entries is fixed and this same computation

is performed regardless of algorithm state, BOBAS requires 7 logical, 24 addition, 27

multiplication, and 5 trigonometric operations per TA data point in the worst case.

A few minor logical operations are also required in BOBAS f(assoc).

The associated mathematical operation counts for each distance metric used by

ATLAS are given on Table 4.4. The computational complexity of D > E > S. The

number of operations required to complete each of the ATLAS functions are shown

on Table 4.5. Depending on how the distance between two vectors is measured (d2),

the number of operations required varies. While the number of operations in f(class)

and f(libmod) depend on the number of library entries (f), the f(assoc) depends

only on whether certain criterion have been passed or failed. The worst case number

of operations for f(assoc) is shown on Table 4.5, where all three stability, noise, and

same posture criteria must be checked.

d2 Logicals Additions Multiplications Trigonometric

D 0 6 11 1
E 0 5 3 0

S 3 5 0 0

Table 4.4: Number of mathematical computations required for each distance metric.



FLogicals dditions Multiplications jTrigonometric d2

f(assoc) 5 5 1 2

D 5 18 23 1

E 5 16 7 0

S 8 16 1 0

f(libmod) f-1 0 0 ~

D - 1 6 i1e

E e-1 51 3 0

S 4-1 5 0 0

f(class) f - 1 0 0

D f - 1 6 11

E f-1 5 3 0

S 4-1 5 0 0

Table 4.5: Computational operations required for each of the ATLAS
f(assoc) and f(libmod) depend on the number of library entires, f.

functions. The

While the actual specifications for current draw per mathematical operation de-

pends on the microprocessor used, to quantify the differences between the BOBAS

and ATLAS algorithms, MATLAB (v7.8) functions tic and toc were used to measure

the time required to run BOBAS and ATLAS on each 3data set. Data was collected

using an HP Pavilion tx2500 machine with an AMD TurionTM X2 Dual-Core Mobile

RM-70, 2GHz, 2.75 GB of usable RAM, and 32-bit Windows 7 operating system. The

results, though somewhat surprising, were encouraging. The average times required

to run each algorithm on the 3data sets was 48.27, 17.51, 17.08, and 17.49 seconds

per data set using BOBAS, and ALTAS D, E, and S algorithms respectively. It was

expected that, ATLAS would require a longer time for completion, given that there

would be more library entries than when using BOBAS. The result, however, was

that ATLAS compiled the 3data at least 2.76 times faster than BOBAS. This result

could be explained by the fact that BOBAS was written by a previous author and

was not optimized for use in this thesis. ATLAS was written originally and used



different methods to compute distances and structure data. A result somewhat more

difficult to explain is the difference between the D, E, and S run-times. This analysis,

however, could have been affected by many factors, such as CPU usage variation, and

optimization of certain mathematical functions in MATLAB. With these consider-

ations in mind, the run-time results for each of the ATLAS distance metric modes

are very similar indicating a minimal cost associated with choosing one metric over

another.



Chapter 5

Conclusion

The concept of body orientation based stimulation, long acknowledged as an unmet

functional necessity in SCS devices [28], was not incorporated into a SCS device

until Medtronic's development of BOBAS. While patient satisfaction with algorith-

mically derived STPs was higher than manual STP adjustment, the opportunity to

even further improve the closed-loop functionality was investigated. In this work,

development of an Advanced Therapy Learning Algorithm for Stimulation (ATLAS),

funded by Medtronic, has been proposed. ATLAS allows patients to individualize

their stimulation therapy so that they receive comfortable, therapeutic stimulation

at all times according to their individual needs. ATLAS develops the fundamental

aspects needed to implement such an algorithm. From determining how to identify

and save new PP input to investigating the effect of different distance metrics, the

tri-axial accelerometer based algorithm proposed in this work has the potential to

improve the current five-posture-based detection method currently used.

The following work has been detailed in this thesis:

1. Development of a tri-axial accelerometer based algorithm used to define a stim-

ulation therapy space for a SCS device using patient programmer input

2. Characterization of three distance metrics - angular, squared-euclidean, and

sum-of-differences - and their affects on the final properties of a therapy library

developed when used by ATLAS



3. Method for comparing data acquired from two different studies

It was found that by using the highlighted values on Table 4.1 for the six data

association function parameters and the library modification parameter, an average

of 9.67, 9.20, and 9.33 library entries are created with entry spreads of 5.10, 5.41,

and 5.17 using angular, squared-euclidean, and sum-of-differences distance metrics

respectively. Due to nature of the data available for analysis, the quality and accuracy

of the STPs selected using the therapy library produced by ATLAS could not be

verified. When compared to the validated posture detection accuracy of BOBAS,

however, ATLAS performed as well as BOBAS in most cases.

Based on the analysis conducted, the squared-euclidean distance metric is sug-

gested due to its robust design in terms of therapy library entry spread and low coin-

putational complexity with respect to the angular distance metric. The highlighted

values indicated on Table 4.1 yielded desirable results for subsequent analyses, how-

ever, it should be assessed whether the specificity of the association vectors generated

in the data association function or the percentage of associated patient programmer

inputs should be optimized. As mentioned in Section 4.1.1, there is a trade off be-

tween these two objectives when setting Dlibmod to the minimum value versus the

nominal value.

The major limitation of the data available was the inability to make a correlation

between posture and preferred stimulation therapy parameters (particularly stimu-

lation voltage). An extensive study either requiring subjects to continually optimize

their therapy real-time or using an algorithm to select suitable STPs for a given

subject state (such as posture) and assessing whether changes in STPs are required

would be beneficial in determining the therapeutic ranges associated with arbitrary

regions in three-space. The ICdata did provide information of this nature for the five-

basic orientations, but since ATLAS proposes to more finely and arbitrarily partition

three-space, this data could not be used for validation. Other complications include

accounting for day-to-day variations in preferred stimulation parameter levels. To

move forward, it would be beneficial to collect data implementing both ATLAS and

BOBAS for an extended period of time and assessing patient satisfaction during that



period.

Depending on the memory and computational capacity of the microprocessor,

more advanced methods for library modification and data classifications are suggested.

For the library modification function, these strategies may be used to mitigate pro-

liferation of redundant therapy library entries, decrease entry spread over time, and

group entries that are more alike in multiple dimensions (not merely spatial). Other

suggestions are made in regards to STP selection. Improvements are listed below:

" Rather than completely replacing a "similar" therapy library with association

data, the previous Vref and the new Vassoc could be averaged together to lessen

the entry drift.

* Use additional parameters to dictate therapy library refinement after an asso-

ciation has been made. Similarity could be assessed on the basis of stimulation

therapy parameter similarity (such as stimulation voltage amplitude) or the

amount of time a given library entry was used without being modified. Cost

functions could potentially be developed in order to decide how a new set of

association data should be incorporated into the therapy library.

" Keep a record of previous PP inputs and after some elapsed time period (on

the order of days), aggregated the data into a compressed therapy library which

interprets the relationship between PP inputs and defines the therapy space

accordingly.

" Classify data according to its relative distance to n neighboring therapy library

reference vectors. The STPs could be calculated as a fraction of the STPs

designated by the VrefS in the same vicinity as the TA data point.

" The therapy library can be organized such that library entries that are spatially

close together are grouped. When data classification is performed for a new TA

data point, instead of calculating the distance between the data point and each

library entry vref, different parts of the library, corresponding to distant regions

in three-space, could be checked sequentially. As soon as the relative region of



the data point is determined, the STPs can be selected from the library entries

within that region.



Appendix A

Glossary

3data

association

association criteria

ATLAS

BOBAS

CSF

D

Dassoc

Dlibmod

E

FD

Three-day qualification protocol data (Section 2.4.1)

xyz-coordinates of an association vector and the associ-

ated set of stimulation therapy parameters

Criteria that must be met in order for a valid reference

vector to be generated in the data association function.

Individual stability, noise, and same posture criteria must

be met.

Advanced Therapy Learning Algorithm for Stimulation

Body Orientation Based Algorithm for Stimulation

Cerebral Spinal Fluid

Angular distance metric (Table 3.2)

Data association function same posture distance thresh-

old

Library modification function same posture distance

threshold

Data association function point to point distance thresh-

old

Squared-Euclidean distance metric (Table 3.2)

Lying Face Down (prone)



FU

f (assoc)

f(class)

f(libmod)

ICdata

IPG

INS

L

noise criterion

PP

R

S

same posture criterion

SCS
SPT

STP

stability criterion

TA

therapy library

therapy space

therapy

UP

space objectives

Vref

Lying Face Up (supine)

Data Association Function

Data Classification Function

Library Modification Function

In-clinic validation protocol data (Section 2.4.2)

Implantable Pulse Generator

Implantable Neural Stimulator

Lying Left Side

Requires that M of the last N points in the data asso-

ciation function pass the stability criterion, or the same

posture criterion if separated by noise. Essentially im-

poses a noise ceiling for an N-point segment of data.

Patient Programmer

Lying Right Side

Sum-of-Differences distance metric (Table 3.2)

d2 (VstableVt) < Dassoc

Spinal Cord Stimulator

Same Posture Threshold

Stimulation Therapy Parameters (amplitude, pulse

width, rate, and electrode polarities)

d 2(Vt _1, Vt ) < Dp2p

Tri-axial Accelerometer

Data structure which contains information used to select

STPs.

The spatial position of reference vectors within a therapy

library which influence how three-space is partitioned.

See page 44

Upright (standing)

Reference Vector (xyz-coordinates)
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Appendix B

MATLAB Scripts

B.1 ATLAS Main Function

1 function [ATLAS] = ATLASMainFctn (sub j-num, varargin)
2

3 % Script Requirements : get pat ient-data, group-valid-pp data,
4 % seed-library, initialize-ClassifyParams, initialize-ATLASparams,
5 % initialize-AssocVars, LibraryMod MainTool,
6 % fassoc, classify _data, modifylibary
7

8 %% Initialize Libraries
9 d2 = [1,2,3];

10 library = cell(0,3);
11 distances = {'degrees','edist','sdiff'};
12

13 %% Initialize Sensor Data Variables
14 patient-data = getpatient-data (subj-num);
15 pp-data = group-valid-pp-data (subj-num);
16 all-pp-data = pp-data. all (2: end, :) ;
17 pptimes = cell2mat(pp-data.all(2:end,l));
18 pptype = ppdata.all(2:end,2);
19

20 %% Initialize Sensor Data Variables
21 pos-data = patient-data.sensor-data.pos-data;
22 data-times = patient-data.sensor-data.rsdate;
23 npnts = length (data-times);
24
25 for e = 1:length(d2)
26 %% Initialize Library Parameters and Variables
27 ATLASparams.distmeasure = distances{d2(e)};
28 [ATLASparams,searchtimer,stabletimer,Dp2p,Dassoc,Dlibmod,M,N,distmeasure]
29 = initialize-ATLASparams (ATLASparams);
30 saveParams.searchtimer = searchtimer;
31 saveParams.stabletimer = stabletimer;
32 saveParams.Dp2p(d2(e)) = Dp2p;
33 saveParams.Dassoc(d2(e)) = Dassoc;
34 saveParams.Dlibmod(d2(e)) = Dlibmod;
35 saveParams.M = M;
36 saveParams.N = N;
37

38 if strmatch('seed',PropertyNames)
39 library-seed-instructions = PropertyVal{strmatch('seed',PropertyNames)};
40 else
41 library-seed-instructions = [1,1];
42 % default instructions indicate to seed the library with the



43 % orientation vectors using virtual upright instead of the
44 % recorded/actual upright
45 end
46

47 library-seed = seed-library (sub jnum, library-seed-instructions);
48 %seeds the library with the five basic orientation vectors
49 all{d2(e)} = library-seed;
so nassociations = all{d2(e)}(end,l);
si library{d2(e)} = library-seed;
52 entry-history{d2(e)} = cell(1,30);
53 for 1 = 1:size(library{d2(e)},1)
54 entry-history{d2(e)}{l} = library{d2(e)}(1,1);
55 end
56
57

58 %% Initialize Data Classification Parameters and Variables
59 ClassifyParams.distmeasure = distances{d2(e)};
60 [ClassifyParams,Dlibmod,L,K,thigh2low,tlow2high] =

61 initializeClassifyParams (ClassifyParams);
62

63 ClassifyData{d2(e)}.associationID = zeros(npnts,6);
64 ClassifyData{d2(e)}.LibEntryID = zeros(npnts,6);
65 ClassifyData{d2(e)}.LibEntryID(:,1:2) = 1;
66

67 %% For each incoming data point
68 current-data =
69 current-time =
70 i = 0;
71

72 %% Initialize AssccVars
73 % Data Variables
74 AssocVars = initialize-AssocVars;
75 while i < npnts
76 i = i + 1;

77 current-data = pos-data (i,:);
78 current-time = data-times(i);
79 tOppinput = AssocVars.t0ppinput;
80 [Fnew,ppID] = serviceppinput(current-time,tOppinput);
81 if length(ppID) > 1
82 ppID = ppID(end);
83 end
84 AssocVars.Fnew = Fnew;
85 if Fnew
86 %CALLS TO DATA ASSOCIATION FUNCTION
87 if -isempty(ppID)
88 if strmatch(pptype(ppID),'Stim On')
89 %disp('Stim turned back on')
90 if ppID > 1 & strmatch(pptype(ppID-1),'Stim Off')
91 AssocVars.ppID = ppID;
92 [AssocVars] =
93 fassoc(ATLASparams,AssocVars, current-time, current-data,i);
94 elseif ppID == 1
95 AssocVars.ppID ppID;
96 [AssocVars] =
97 fassoc(ATLASparams,AssocVars, current-time,current-data,i);
98 else
99 Fnew = 0;

100 AssocVars.tOppinput = current-time;
101 AssocVars.Fnew = Fnew;
102 [AssocVars] =
103 fassoc(ATLASparams,AssocVars,current-time,current-data,i);
104 end
105 else
106 if strmatch(pptype(ppID),'Stim Off')
107 % Once stim is turned off, there should be a routine
108 % that checks for the following stim on command AND
109 % disables all output stim-params sent to the device.
110 % Once the following stim on command is recieved, it
ill % should immediately begin classifying data again
112 % according to exisiting library entries.



113 all-pp-data(ppID,5:12) = num2cell(zeros(1,8));
114 end
115 AssocVars.ppID = ppID;
116 [AssocVars) =
117 fassoc(ATLASparams,AssocVars, current-time, current-data,i);
118 end
119 else
120 disp('ppID is empty')
121 end
122 elseif AssocVars.Fassoc
123 [AssocVars] = ...
124 fassoc (ATLASparams,AssocVars, current-time, current-data, i);
125 end
126 - - -
127

128 if -AssocVars.Fassoc & -AssocVars.Fnew
129 %% If a new association was made (which occurs if stable
130 % criteria is fulfilled AND the stability timer has EXPIRED
131 % (which means the current point does not contribute to the
132 % data that comprises the association reference vector))
133 if AssocVars.Flibmod
134 % First decide what to do with the new association => replace a
135 % library entry to create a new one
136 nassociations = nassociations + 1;
137 nLibEntries = size (library{d2 (e) },l);
138 newstate.data = AssocVars.stabledata;
139 newstate.time = AssocVars.tOppinput;
140 ppID = AssocVars.ppID;
141 newstate.group = cell2mat(all-pp-data(ppID,3));
142 newstate.amplitude = cell2mat(all-pp-data(ppID,5:8));
143 newstate.pulse-width = cell2mat(all-pp-data(ppID,9:12));
144 newstate.rate = cell2mat(all-pp-data(ppID,4));
145 newstate.ppID = ppID;
146 newstate.entry = [nassociations,newstate.data,O,newstate.time,...
147 newstate.group,newstate.rate,newstate.amplitude,...
148 newstate. pulse-width, newstate.ppID ] ;
149 current-statevector = newstate.data;
150 if nassociations == 1
151 library{d2(e)} = [];
152 LibEntry2replace = 1;
153 else
154 existing-state-vectors = library{d2(e)}(:,2:4);
155 all-state-vectors = all{d2(e)}(:,2:4);
156 % CALL TO LIBRARY MODIFICATION FUNCTION--- -
157 [LibEntry2replace, entries-within-posthresh ] =. ..
158 flibmod(all-state-vectors,existingstatevectorS,
159 currentstatevector,ATLASparams);
160 ------- - - -^- -

161 end
162

163 all{d2(e)}(nassociations, :) = newstate.entry;
164

165 if isempty(entry-history{d2 (e) }{LibEntry2replace})
166 %means a new library entry was created
167 entry-history{d2 (e) }{LibEntry2replace} =

168 nassociations;
169 else
170 %means that the association replaced information in an existing
171 %library entry
172 entry-history{d2 (e) }{LibEntry2replace} =

173 [entry-history{d2(e)}{LibEntry2replace},nassociations];
174 end
175

176 library{d2 (e) } (LibEntry2replace, :) = newstate.entry;
177 assoc-ind = find(data-times == AssocVars.tOstable) :i;
178
179 AssocVars = initializeAssocVars;
180 AssocVars.tOppinput = current-time;
181

182 elseif -skip-fclass



183 %% Classify Current Data Point
184 if i > L
185 bufferpnts = ClassifyData{d2(e)}.LibEntryID(i-L:i-1,1);
186 else
187 bufferpnts = [ClassifyData{d2(e)}.LibEntryID(l:i,l);1;1;l;1;l];
188 bufferpnts = bufferpnts(1:5);
189 end
190
191 if i == 1
192 prev-stimLibEntry = 1;
193 prev-stim-assoc = 0;
194 else
195 prev-stimLibEntry = ClassifyData{d2(e)}.LibEntryID(i-1,2);
196 prevstim-assoc = ClassifyData{d2(e)}.associationID(i-1,2);
197 end
198
199 %CALL TO DATA CLASSIFICATION FUNCTION- -
200 [library,dataclass-assocID,dataclass-libID,stim-assocID,stim-libID,
201 ramptime] = fclass(library,ClassifyParams,bufferpnts,...
202 prev-stimLibEntry,prev-stim-assoc, current-data);
203 %

204 ClassifyData{d2(e)}.association-ID(i,1) = dataclass-assocID;
205 ClassifyData{d2(e)}.associationID(i,2) = stim-assocID;
206 ClassifyData{d2(e)}.associationID(i,3:6) = ramptime;
207 ClassifyData{d2(e)}.LibEntry-ID(i,l) = dataclass-libID;
208 ClassifyData{d2(e)}.LibEntryID(i,2) = stim-libID;
209 ClassifyData{d2(e)}.LibEntryID(i,3:6) = ramptime;
210 if stim-assocID # 0
211 all{d2(e)}(stim-assocID,5) = all{d2(e)}(stim-assocID,5)+l;
212 end
213 end
214 end
215 end
216
217 %% Make the output Variables more and store as cells instead of
218 % matrices with columns labeled appropriately
219 nentries = size(library{d2(e)},1);
220 entry-history{d2(e)} = entry-history{d2(e)}(1:nentries);
221

222 lib-data = library{d2(e)};
223 library{d2(e)} = cell(nentries+1,17);
224 library{d2(e)}(1,:) = ('ENTRY','X','Y','Z','CNT','TIME','GROUP','RATE',...
225 'AMPl','AMP2','AMP3','AMP4','PW1','PW2','PW3','PW4','ppID'};
226 library{d2(e)}(2:end,:) = num2cell(lib-data);
227

228 all-data = all{d2(e)}(1:nassociations,:);
229 all{d2(e)} = cell(nassociations+1,17);
230 all{d2(e)}(1, :) = {'ENTRY','X', 'Y','Z','CNT','TIME','GROUP', 'RATE',...
231 'AMPl','AMP2','AMP3','AMP4','PW l','PW2','PW3','PW4','ppID'};
232 all{d2(e)}(2:end,:) = num2cell(all-data);
233

234 class-data-assoc = ClassifyData{d2(e)}.associationID;
235 class-data-lib = ClassifyData{d2(e)}.LibEntryID;
236 ClassifyData{d2(e)}.association-ID = cell(npnts+1,6);
237 ClassifyData{d2(e)}.LibEntryID = cell(npnts+1,6);
238 ClassifyData{d2(e)}.associationID(1, :) = {'Nearest Association ID',...
239 'ID for Stimulation Parameters', ..
240 'Ramp time (seconds) for program 1', 'Ramp time (seconds) for program 2',...
241 'Ramp time (seconds) for program 3', 'Ramp time (seconds) for program 4'};
242 ClassifyData{d2(e)}.LibEntryID(1,:) = {'Nearest Entry ID',...
243 'ID for Stimulation Parameters',...
244 'Ramp time (seconds) for program l','Ramp time (seconds) for program 2',...
245 'Ramp time (seconds) for program 3','Ramp time (seconds) for program 4'};
246 ClassifyData{d2 (e)}.associationID(2:end,:) = num2cell(class-data-assoc);
247 ClassifyData{d2(e)}.LibEntryID(2:end,:) = num2cell(class-data-lib);



248 end
249

250 function [Fnew,ppID] = serviceppinput(t,tOppinput)
251 % if a button has been pressed, return 1 for newppinput; otherwise,
252 % return the past value of newppinput
253 % This routine should be serviced every for everysample
254 ppID = find(pptimes > tOppinput & pptimes < t);
255 if isempty(ppID)
256 Fnew = 0;
257 else Fnew = 1;
258 end
259 end
260

261 ATLAS.library = library;
262 ATLAS.all = all;
263 ATLAS.ClassifyData = ClassifyData;
264 ATLAS.entry-history = entry-history;
265 ATLAS.subj-num = subj-num;
266 ATLAS.virtualup = library-seed-instructions (2);
267 ATLAS.ATLASparams = saveParams;
268
269 end

B.2 Data Association Function

1 function [updatedAssocVars] = ...
2 fassoc(ATLASparams,AssocVars,current-time,current-data)
3

4 % Input variables ATLASparams, AssocVars, current-time, current data,
s % detailed-data, and data-pnt-ind are passed in from the ATLAS main
6 % function script and indicate the current state of the f(libmod).
7 %

8 % Script Requirements : initializeAssocVars, initialize-ATLASparams,
9 % dist-from vector
10

ii %% Load previous state data and split up parameters
12 [stabledata,prevdata,Bp2p,p2pbuffertimes,bufferdata,Flibmod,...
13 Fnew,Fassoc,insearchperiod,instableperiod,t0ppinput,t0search,...
14 tOstable,ppID] = initialize-AssocVars(AssocVars);
15 [ATLASparams,searchtimer,stabletimer,Dp2p,Dassoc,Dlibmod,M,N,distmeasure]
16 = initialize-ATLASparams (ATLASparams);
17 fs = 5.125; %sampling frequency for 3data
18

19 if Fnew
20 %% Service new pp input and appropriatly set time variables
21 tOppinput = current-time;
22 t0search = current-time;
23 tOstable = current-time;
24 stabledata = current-data;
25 bufferdata = nan(N,3);
26 bufferdata = [bufferdata(2:end,:);current-data];
27 Bp2p = ones (l,N);
28 p2pbuffertimes = ones(l,N);
29 p2pbuffertimes = [p2pbuffertimes(2:end),current-time];
30 Flibmod = 0;
31 Fnew = 0; %**SHOULD BE REDUNDANT
32 Fassoc = 1;
33 elseif Fassoc
34 %% Associate or continue associating new pp input
35 insearchperiod = (current-time - t0search) < searchtimer;
36 if insearchperiod %search time HAS NOT expired
37 instableperiod = (current-time-t0stable) < stabletimer;
38 if instableperiod %stable time HAS NOT expired
39 %% This means that stability timer has not expired, therefore,
40 % incoming accelerometer data should be tested for association
41 % criterion
42 p2pdist = dist-from-vector(current-data,prevdata,distmeasure (1));



43 stablecrit = p2pdist Dp2p; %STABILITY CRITERION
44 Bp2p = [Bp2p(2:end),stablecrit];
45 p2pbuffertimes = [p2pbuffertimes(2:end),current-time];
46 bufferdata = [bufferdata(2:end,:);current-data];
47 if sum(Bp2p) > M %NOISE CRITERION
48 %% M of N points are within the point to point threshold
49 if Bp2p(end-1) == 1 & stablecrit
so % the last point also fulfilled the stable criterion, so we can
51 % automatically add current data point to the stable data vector
52 stabledata = mean([stabledata;current-data]);
53

54 elseif Bp2p(end-1) == 0 & stablecrit
.5s % the last point failed the stability criterion so we must
56 % check if the new point is sufficiently similar to the last
57 % recorded data points to be added to the stable data variable
58 LTp2pind = find(Bp2p(1:end-l)==l);
59 stablepntdist = ...
60 dist-from-vector (stabledata, current-data, distmeasure (1));
61 sameposcrit = stablepntdist < Dassoc; %SAME POSTURE CRITERION
62 if sameposcrit
63 % Indicates the two portions of accelerometer signal separated
64 % by noise are similar enough to be considered the same posture
65 stabledata = mean([stabledata;current-datal);
66 elseif -isameposcrit % Indicates a "transition"
67 Bp2p = [ones(l,N-1),stablecrit];
68 p2pbuffertimes = [ones(l,N-l),current-time];
69 bufferdata = [ones(N-1,3);current-data];
70 stabledata = current-data;
71 tOstable = current-time;
72 end %EO same posture criterion IF
73 elseif --istablecrit
74 % Do nothing, simply regard the point as noise.
75 end %EO noise criterion passed IF
76 else
77 %% M of N points were not "stable", but we will try to save
78 % as much stable data as possible
79 noise-ind = find(Bp2p == 0);
80 save-ind = find(Bp2p == 1);
81 save-ind = save-ind(find(save-ind > noise-ind(l)));
82

83 % allow the maximum number of noisy data points (N - M) and save as
84 % much "stable data" as possible
85

86 if isempty(save-ind)
87 stabledata = current-data;
88 bufferdata = [bufferdata(2:end,:);current-data];
89 Bp2p = ones(l,N);%nan(1,N);%
90 p2pbuffertimes = ones(l,N);
91 p2pbuffertimes = [p2pbuffertimes(2:end),current-time];
92 else
93 Bp2p = [ones(l,save-ind(l)-l),Bp2p(save-ind(l):end)];
94 p2pbuffertimes = ...
95 [ones(l,save-ind(l)-l),p2pbuffertimes(save-ind(l):end)];
96 bufferdata = ...
97 [nan(save-ind(l)-1,3);bufferdata(save-ind(l):end,:)];
98 stabledata = mean(bufferdata(save-ind,:),l);
99 current-time = p2pbuffertimes(save-ind(l));

100 end %EO salvage usable data IF
101 tOstable = current-time;
102 end %EO noise criterion IF
103 elseif -instableperiod
104 % The current patient programming input indicated by ppID was able to
105 % be associated to a set of data (stabledata) and should be used to
106 % modify the library.
107 Flibmod = 1;
108 Fassoc = 0;
109 end %EO stability timer check IF
110 elseif -insearchperiod
ill % Search timer expired before an association could be made.
112 Flibmod = 0;



113 Fassoc = 0;
114 tOppinput = current-time;
115 stabledata = zeros(0,3);
116 end %EO search timer check IF
117 end %EO f(libmod) state check IF
118
119 prevdata = current-data;
120 updatedAssocVars = initialize-AssocVars(stabledata,prevdata,Bp2p,...
121 p2pbuffertimes,bufferdata,Flibmod,Fnew,Fassoc,insearchperiod,...
122 instableperiod,tOppinput,tOsearch,tOstable,ppID);
123 end %EOF

B.3 Library Modification Function

1 function [entryID,posthresh-entries] = flibmod(ALLrefparam,LIBrefparam,...
2 new-vector,ATLASparams);
3

4 % Purpose : Giving the all the vectors that have already been saved and the
s % vectors that currently compose the library, using criterion given in
6 % parameters, this function determines whether a new library entry needs to
7 % be created or which library entry to new-vector should replace.
8

9 [ATLASparams,searchtimer,stabletimer,Dp2p,Dassoc,Dlibmod,M,N,distmeasure]...
10 = initializeATLASparams (ATLASparams);
11

12 %% Automatically add data to the all-entry library
13 if isempty(ALLrefparam)
14 posthresh-entries = 0;
15 else
16 nassoc = size(ALLrefparam,l);
17 dist-from-entries = ...
18 dist-from-vector (ALLrefparam,new-vector,distmeasure);
19 dist-from-sameposthresh = ...
20 dist-from-entries - ones (nassoc,l)*Dlibmod;
21 posthresh-entries = find(dist-from-sameposthresh < 0);
22 end
23

24 %% Decide whether to create a new library entry or replace an exrciting one
25 if isempty(LIBrefparam)
26 entryID = 1;
27 else
28 nentries = size(LIBrefparam,l);
29 dist-from-entries = ...
30 dist-from-vector (LIBrefparam,new-vector,distmeasure);
31 dist-from-sameposthresh =

32 dist-from-entries - ones (nentries,1) *Dlibmod;
33 [dist-from-closest-entry,closest-entry-ID] =
34 min(dist-from-sameposthresh);
35 if dist-from-closest-entry > 0 %CREATE a new entry
36 nentries = nentries + 1;
37 entryID = nentries;
38 else %REPLACE an existing entry
39 entryID = closest-entryID;
40 end
41 end
42 end

B.4 Data Classification Function

1 function [library,data-associationID,dataLibEntryID,
2 stim-associationID,stimLibEntry-ID,ramp-time] = ...
3 fclass(library,ClassifyParams,bufferLibEntries,...
4 last-stimLibEntry,last-stim-assoc,current-data);



5
6 % Purpose: Classifies data on a point to point basis and determines the
7 % closest library entry, the appropriate stimulation output and the
8 % appropriate ramp time required
9

10 distance-measure = ClassifyParams.distmeasure;
11 [ClassifyParams,sameposthresh,L,K,tlow2high,thigh2low) =
12 initialize-ClassifyParams (ClassifyParams);
13

14 if strmatch(distance-measure, 'degrees')
is d2 = 1;
16 elseif strmatch(distance-measure, 'edist')
17 d2 = 2;
18 elseif strmatch(distance-measure, 'sdiff')
19 d2 = 3;
20 end
21

22 library-ref-params =library{d2}(:,2:4);
23 dist-from-entries = ...
24 dist-from-vector(library-ref-params,current-data,distance-measure);
25 [minval,min-libID] = min(dist-from-entries);
26 closest-entryID = minlibID;
27 closest-association-num = library{d2} (closest-entryID, 1);
28 data-associationID = closest-association-num;
29 dataLibEntryID = min-libID;
30

31 if sum(bufferLibEntries == min-libID) == K
32 stim-associationID= closest-association-num;
33 stimLibEntryID = min-libID;
34 lastEntry = last-stimLibEntry;
35 currentEntry = stimLibEntryID;
36 if lastEntry == currentEntry
37 ramp-time = zeros(1,4);
38 else
39 prevAmps = library{d2}(lastEntry,9:12);
40 currentAmps = library{d2}(currentEntry,9:12);
41 AmpDiff = prevAmps - currentAmps;
42 h21 = find(AmpDiff > 0);
43 12h = find(AmpDiff < 0);
44 if -isempty(h21)
45 ramp-time(h21) = thigh2low;
46 end
47 if -isempty(12h)
48 ramp-time(12h) = tlow2high;
49 end
50 end
51 else
52 stim-associationID = last-stim-assoc;
53 stimLibEntryID = last-stimLibEntry;
54 ramp-time = zeros(1,4);
.s end
56

57 library{d2}(stimLibEntry-ID,5) = library{d2}(stimLibEntryID,5) + 1;
58

59 end
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