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Abstract

A key generation scheme is proposed and its performance analyzed. The method, the
logistic map scheme (LMS), is applicable for use on wireless networks because it does not
require devices to engage in computationally intensive algorithms. In addition, the method
is shown to achieve reliability from the perspective of the communication agents, as well
as unpredictability and randomness from the perspective of an eavesdropper. Lastly, the
performance of the LMS is compared against that of an existing technique. Results from a
comparative analysis indicate that the proposed method generally yields a greater number
of reliable, unpredictable, and random key bits than the existing technique under the same
conditions.
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Chapter 1

Introduction

In this following chapter, we motivate the need for alternative methods for achieving covert

communications. Secure wireless networks are essential for many military, commercial, and

public service applications (e.g., air transportation systems, mobile wireless networks, and

medical sensor networks). Current security systems (i.e., public-key schemes, such as RSA)

rely on unproven computational complexity conjectures. Moreover, they are not appropriate

for some applications. In particular, they are too computationally intensive to implement

on ad-hoc networks.

1.1 Motivation

The security of known public-key systems relies on the intractability of computationally

equivalent problems (e.g., the integer factorization problem and the quadratic residuosity

problem). One concern is that it is currently unknown whether these computational prob-

lems belong to the class of NP-complete problems (i.e., generally considered intractable) or

in P (i.e., generally considered tractable). Another concern is that the equivalence of the

computational problems for public-key systems implies that if any of these is proven to be

tractable, then all others are necessarily tractable as well. Finally, even if it is proven that

these computational problems are NP-complete, the validity of computational security as

a whole as well as the existence of pseudo-randomness depend on the unproven conjecture

that the computational complexity classes, P and NP, are unequal. It is, therefore, prudent

to find an alternative or complementary method whose security does not depend on the

hardness of computational problems.



Moreover, even if the validity of computational methods can be assumed, the handshak-

ing protocol in current public-key schemes are too computationally and energy intensive for

use on ad-hoc networks in many military, commercial, and public-service applications. For

example, tactical networks typically consist of sensor devices with low computational capa-

bilities and battery life; meanwhile, these devices ideally engage in covert communications.

As a second example, implantable medical sensors are not rechargeable and meant to last

five to seven years without replacement [1-3]. Yet personal information from these devices

should be kept private and encrypted.

1.2 Background

Researchers have approached the problem of securing networks from two basic vantage

points: a computational complexity perspective, which relies on the intractability of com-

putational problems [4, 5], and an information-theoretic perspective, which is a natural

extension of Shannon's communication theories [6-10]. Historically, researchers in the field

of cryptography have focused almost exclusively on computational approaches. However,

in recent years more researchers are revisiting information-theoretic methods in part be-

cause they offer a higher level of security. Computational security relies on the eaves-

dropper's limitations as well as the intractability of computational problems. In contrast,

information-theoretic security does not rely on either of the above assumptions. The above

reasons motivate our interest in designing a communication system that is operationally

informationally-secure.

Ultra-wide bandwidth (UWB) channels offer an alternative approach to generating keys

in wireless networks. The idea is to design a computationally lightweight private-key sys-

tem by utilizing the intrinsic properties of wireless communication channels: namely, the

reciprocity of a channel response and the uncertainty of channel responses over a static

environment found in the channel responses. The first property facilitates efficient key

agreement, while the second property provides unpredictability. Since physical-layer sys-

tems can bypass a resource intensive handshaking protocol, it also meets the efficiency

criteria of wireless networks.

UWB signals are an ideal candidate for this kind of key-generating systems, because

they allow for fine time delay resolution, thus facilitating the precise estimation of the of



multipath delays [11-23]. Compared with narrow band signals, UWB signals can convey

more information about the environment, and so the communication agents are able to agree

on a longer shared key. The idea for using UWB signals for key generation was proposed

by [24]; three schemes, the per-sample, block-coded, and trellis-coded schemes, have been

designed for physical-layer systems based on the theory of forward error correction. These

schemes all work in the same basic way, as described below.

In the first round of communication, Alice and Bob (i.e., the communicating agents)

send each other the same transmit signal, and each agent samples and decorrelates his

or her respective receive waveforms. Two samples (or blocks of samples) are defined to

be equivalent if they are the same up to some observational noise. Thus, the space of

samples / blocks of samples can be partitioned into cosets, where each coset consists only

of equivalent samples / blocks of samples. It is assumed that such a coset assignment is

available to all agents operating in the network. In the second round of communication,

Bob publicly reveals the cosets corresponding to his samples; and Alice is able to infer Bob's

complete sequence of samples since Alice and Bob's receive waveforms are identical up to

observational noise by the reciprocity of their shared channel.

The reliability (i.e., the probability of key agreement) for the per-sample scheme, the

block-code, and the trellis-code schemes were tested via Monte Carlo simulations [24]. The

802.15.3a UWB channel model proposed in [25] was utilized; and a raised cosine pulse with

4 GHz bandwidth and 7 GHz center frequency was used as the transmit signal. Of the three

methods, the per-sample scheme yielded the smallest error probability for a theoretical

shared bit per sample according to the published results. In this thesis, an alternative key

generation scheme is proposed, and its performance is compared against that of a modifica-

tion to the best performing scheme, the per-sample scheme.

1.3 Road Map of Thesis

The remaining chapters are organized as follows. In ch. 2, we formally define our problem

statement and justify our mathematical models for the communication channels as well as

the agents' observables. In chs. 3 and 4, we present our key generation scheme as well as

the performance analysis of the scheme. In ch. 5, we present a modification to an existing

scheme, the per-sample scheme, proposed in [24] and, likewise, present its performance



analysis. Finally, in chs. 6 and 7, we present the results from our analyses and deliver our

conclusion and recommendations for future work.



Chapter 2

System Model

In order to explain design choices, it is necessary to first lay down the system model. In

this chapter, the system model for the proposed scheme is described; while the proposed

key generation scheme is detailed in ch. 3.

We begin the discussion with the problem statement: Alice and Bob are two agents in a

UWB wireless network who wish to send each other messages, such that the contents of their

messages remain a secret to all other observers within range. Eve is a passive eavesdropper

whose intent is to discover the contents of Alice and Bob's covert communications. The

objective is enabling such secure communications. Specifically, the problem is in designing

a scheme, which allows Alice and Bob to agree on a random key, such that Eve cannot

determine the key. This key will then be used in a private-key cryptosystem to allow for

proper encryption and decryption of messages.

2.1 Reciprocity

It will be assumed that the given environment exhibits the following two properties: reci-

procity as well as uncertainty of the communication channels. These properties are described

below.

A given communication channel exhibits reciprocity if the channel response in one direc-

tion is identical to the channel response in the opposite direction up to some observational

noise. In the proposed scheme, the channel between Alice and Bob is assumed to be recip-

rocal. That is, the channel response, hAB, from Alice to Bob is assumed to be the same as

the channel response, hBA, from Bob to Alice up to some observational noise.



A channel response is uncertain if any eavesdropper located some distance away from

the receive antenna cannot determine the channel response. We assume that Alice and

Bob are operating in a UWB channel environment; and, furthermore, the eavesdropper

cannot precisely model the environment. Thus, in addition to reciprocity, uncertainty of

the channels over a fixed, time-invariant environment is assumed.

Given the above assumptions, the general strategy for the key agreement scheme is as

follows: In the handshaking phase, Alice broadcasts a signal, p(t). The signal Bob receives

can be modeled as TB(t) = p(t) 0 hAB(t) + nB(t), where hAB denotes Alice and Bob's

shared channel, nB(t) denotes Bob's observational noise, 0 denotes signal convolution, and

+ denotes signal addition. Then Bob broadcasts the same transmit signal, p(t); while Alice

receives rA(t) = p(t) hAB(t)-+nA(t), where nA(t) denotes Alice's observational noise.1 The

signal received by Eve due to Alice and Bob's separate transmissions during the handshaking

phase can be modeled as rE1 (t) = p(t) 0 hAEt) + nE1 (t) and rE2 (t) p(t) 0 hBE(t) + nE2 (t),

respectively, where hAE(t) denotes Alice and Eve's shared channel, hBE denotes Bob and

Eve's shared channel, and nEi (t) and nE2 (t) denote Eve's observational noises. A schematic

of the handshaking phase is given in fig. 2-1.

By the reciprocity assumption, rA(t) and rB(t) are identical up to some observational

noise; and, by the uncertainty assumption, Eve is unable to determine an accurate enough

approximation of either rA(t) or rB(t). The reciprocity assumption, therefore, explains how

two agents at opposite ends of a channel may be able to communicate encrypted messages

to each other; while, the uncertainty assumption explains how a third, unauthorized agent

may be unable to decrypt these communications.

2.2 Channel and Sample Models

Because observational noise is composed mainly of thermal noise, it is usually modeled

as white noise with constant spectral density. Such a channel model is a widely accepted

standard and is referred to by the communications community as additive white Gaussian

noise (AWGN). In keeping with the AWGN model, all observational noises are modeled as

white noise in the context of this thesis.

'It is assumed that the handshaking phase occurs within a coherence time of Alice and Bob's shared
channel (i.e., an interval of time in which the main channel is time-invariant); and, therefore, the objective is
to produce some shared key bits in every coherence time during which Alice and Bob wish to communicate
securely.



Main Channel

Bob

rB(t)
Key Gen iKB

KA * Key Gen PWt

Eve

A-E Channel rEj rIE2 (t) B-Chne
*Estimator

Figure 2-1: A schematic drawing of the handshaking phase for the logistic map scheme.

In the key-generating phase of the proposed scheme, Alice and Bob sample their re-

spective receive waveforms, and then decorrelate and normalize their respective samples.

Let xA = [X(A,1), X(A,2),*.. - X(A,n)] and x B [X(B,1), X(B,2), ... ,X(B,n)] denote decorrelated

and normalized samples from Alice and Bob's received waveforms, respectively; and let

XE = (E,1), X(E,2), ... , X(En)] denote Eve's best estimation of Alice's samples.

Let the triple, [XA, XB, XE], denote an arbitrarily chosen X(Ai) and corresponding sam-

ples, z(B,i) and X(E,i). The analysis presented in this thesis will be conducted on this triple;

that is, the reliability of the proposed scheme as well as the unpredictability and random-

ness of the shared key will be studied on a per sample basis. We choose to work with a per

sample analysis due to its better readability. Moreover, because the samples are assumed

to be decorrelated, results from the per sample analysis are easily extended to include cases

where A B, and -E are of length greater than one. (A discussion on how to extend the

results from ch. 4 is given in sec. 6.1.)

Because the waveforms received by Alice and Bob are identical up to some white noise,

Alice

p(t) -

.. .. .. .. .... ... . .......... ......... W. ...- _ .. ..._ .. ........ . ........ - - ---- - -- - -------- .. . .... . ............. ................ ................



Bob's sample is modeled as Alice's corresponding sample plus some zero-mean, Gaussian

noise. Under the reasonable assumption that Eve's estimation of Alice's receive waveform

is some white noise, Eve's sample can also be modeled as Alice's corresponding sample

plus some zero-mean, Gaussian noise. Thus, both Bob and Eve's sample observables are

modeled as Alice's sample observables plus some zero-mean, Gaussian noise.

Within the context of this thesis, we will use upper case variables to denote random

variables. So XA, XB, and XE will denote Alice, Bob, and Eve's samples modeled as

random variables, respectively. Alice's random variable sample, XA, is assumed to be

uniformly distributed over the interval, [0, 1]; and, given XA = (, Bob and Eve's random

variable samples, XB and XE, are normally distributed with ( as their mean. So, conditioned

on XA

XB =Nro,1] Bo-

XE = J[o,] ( oE)

where A 0 , 1 (P, o.2) denotes the normalized Gaussian distribution with mean, [y, and stan-

dard deviation, o, truncated at 0 and 1.2

2Note that, while it is standard practice to model noise as a Gaussian distribution (partially for tractabil-
ity), the methods presented here will work for any analytic function used to model the noise distribution.



Chapter 3

Logistic Map Scheme

The logistic map scheme is a key generation scheme whose unpredictability is guaranteed

by properties of a logistic map.1 The main contributions of the research described in this

thesis are the design and performance analysis of the logistic map scheme and, to a lesser

degree, a modification to an existing scheme (the per-sample scheme proposed in [24]) and

its performance analysis.

In this chapter, we present the logistic map scheme. A detailed analysis of its reliability,

unpredictability, and randomness are presented in the next chapter.

3.1 Scheme

The logistic map scheme (LMS) is described in two parts: the handshaking phase and the

key-generating phase.

1. In the handshaking phase: Alice and Bob send each other the same transmit signal.

A schematic of the handshaking phase is given in fig. 2-1.

(a) Alice broadcasts a signal, p(t). The signal Bob receives can be modeled as

rB(t) = p(t) 9 hAB(t) + nB(t)-

(b) Then Bob broadcasts the same transmit signal, p(t); while Alice receives rA(t)

p(t) 0 hAB(t) + nA(t).

'A logistic map is the result of several iterations of a quadratic transformation of the form

cx(1 - x)

where c is some constant. The logistic map for when c = 4 is a well-known chaotic iterator [26].



2. In the key-generating phase: Alice and Bob each extract a key from his or her respec-

tive receive waveform. Each agent first generates decorrelated, normalized samples

from his or her respective receive waveform and then computes a key from the ampli-

tudes of these samples.2 A flowchart of the key-generating phase is given in fig. 3.1.

(a) For each normalized sample, x, the agent first computes y = .CN(X), where :

[0, 1] -+ [0, 1] is a well-known chaotic iterator [26] defined as:

f(x) = 4x(1 - x)

eN(x) denotes the N-times composition function of f(x), and an appropriate N

is determined by the statistics of Alice and Bob's observational noise as well as

Eve's estimation error. 3

(b) For each transformed sample, y, the agent then computes q : [0, 1] x N -

{1, 2,... 2L} defined as:

q(y, L) = 72arcsin(gy) , yE (0,1]

1, y= 0

where L denotes the number of binary key bits per sample. Note that the out-

puts of q(., -) are discrete. The quantized values for a sequence of y's are then

concatenated sequentially to produce the final key.

It will be assumed that all agents operating in the network, including Eve, know the

N- and L-values for the samples.

2The preprocessing techniques depend highly on the bandwidth of the channel, and a full discussion on
the design and implementation of these techniques is outside the scope of this thesis. As an example, UWB
channel impulse responses can be modeled as multipath components whose delays and amplitudes are Poisson
and Rayleigh distributed, respectively. In such instances, the time delays of the multipath components can
be located by applying a linear predictive coder to determine the samples with highest signal to noise ratio.
Standard signal processing techniques then can be applied to reduce the time dependencies of the amplitudes
at these time delays.

3In order to be stored and computed digitally, x is pre-quantized in a practical system. However, so long
as x is represented with on average (L + 2N)-bits of precision, the analysis made in ch. 4 remains valid since
the Lyapunov exponent (i.e., the growth rate of infinitesimally small differences in initial conditions) for f(x)
is 2.



Preprocessing

1 -

r(t)

Logistic Map / Quantization

Ni() q(., L)

fN2(. q(., L2) concatenation

fNa (.q(., L3)

Figure 3-1: A flowchart of the key-generating phase for the logistic map scheme.

........ ............................ ..... ........................

x1

X2

Xn

W Key



3.2 Rationale

In this section, we provide some insight into why the LMS may be a scheme that provides un-

predictability and randomness. Let Alice's calculated key segment be KA = q(fN(XA), L);

and let Bob's key be KB = q(fN(XB), L). Conditioned on KA = KB = K, the shared key

segment, K, is unpredictable if Eve's observables, Z = q(fN(XE), L), do not contain any

statistical information pertaining to K.

For a fixed XA = (, the i-value can be thought of as the true value, whereas the random

variables, XB and XE, represent Bob and Eve's estimates of the true value; likewise, the ran-

dom variables, fN(XB) and eN(XE), represent Bob and Eve's estimates of the fN()-value.

In step (a) of the key-generating phase, any statistical information that Eve might otherwise

have had about the final sample value, £N((), is destroyed by sufficiently amplifying the

noise in the initial conditions.

This phenomenon occurs for the following reason noted in [26]:. Given any random

variable, X, defined over [0, 1] and with non-zero measure distribution, d,

lim fN(X) f(X)
N-*oo

where f : [0, 1] -- R is defined as

1
f(x) = __ __

7r 2x(1 - X)

For example, by utilizing parameters for the sample model derived from a realistic UWB

channel environment, it can be determined that Eve's belief (i.e., the distribution of her

estimate, £N(XE)) converges to a distribution close to f(-) after a small number of iter-

ations (see sec. 6.1). Because Eve's belief eventually transforms to the same distribution

irrespective of K, it cannot contain any information about the agreed key segment, K; and,

therefore, K is unpredictable as desired.

Conditioned on KA = KB = K, the shared key segment, K, is uniformly random if

the probability that K = k is the same for any k -C K, where K denotes the keyspace.

In step (b) of the key-generating phase, uniformity in K occurs because a sample from a

random variable, X - f(x), quantizes to an arbitrarily chosen bin with uniform probability,

and because the distribution of K is sufficiently close to f(x).



Chapter 4

Performance Analysis

In this chapter, we define performance metrics, which we then use to formally analyze

our proposed scheme. Interpretations and further analysis of the equations derived in this

chapter are given in sec. 6.1.

4.1 Performance Metrics

We begin the discussion with the definitions for the performance metrics:

Definition 4.1.1 The reliability of the key agreement scheme is defined as

P{KA = KB}

where P{A} denotes the probability of event, A; and KA and KB are Alice and Bob's keys,

respectively. Thus, unreliability is defined as 1 - IP{KA = KB}.

Definition 4.1.2 When KA = KB = K, the predictability of the shared key is defined as

I(K; Z)

log(|K|)

where I denotes mutual information; and K is the shared key, Z is Eve's observables,' and

K is the keyspace. Thus, unpredictability is defined as 1 - ____.

'In other words, Z is what is observed by Eve during the handshaking phase of the key agreement
protocol.



Definition 4.1.3 When KA = KB = K, the randomness of the shared key is defined as

H(K)
log(KICl)

where H denotes entropy. Thus, unrandomness is defined as 1 - H(K)

The metrics given in defs. 4.1.1, 4.1.2, and 4.1.3, measure the reliability, unpredictability,

and randomness of a key-generating system for the following reasons. High reliability is

equivalent to high probability of key agreement. High unpredictability is equivalent to low

mutual information. High randomness is equivalent to high entropy.2

We claim (and prove later in sec. 6.1) that our key generation scheme provides security in

the sense that non-zero, secret key lengths are achievable for some positive key length L and

for some reasonably small, allowable errors in reliability, unpredictability, and randomness.

4.2 Reliability

To determine the probability of key agreement (as well as the mutual information between

the shared key and Eve's observables, and the entropy of the shared key), we need a way

of tracking the underlying distribution of EN(XB) given XA = (, where N is an arbitrary

number of iterations of the chaotic map. Since f : [0, 1] -* [0, 1] defined as

f(x) = 4x(1 - x)

is monotonic over each of the disjoint intervals [0, j] and (j, 1], the usual rule for monotonic

transformations on cumulative density functions (CDFs) can be applied in a piece-wise

fashion. Thus, the formula for the CDF at the Nth iteration is as follows: Let X be a

2We chose to work with these definitions, because they relate to the standard definition of secret key rate,
R.(X; Y |Z), given in [7, 24]. By considering the scheme's handshaking phase to occur within a coherence
time, the problem statement broadens to include time-variant systems. Thus generalized, the definition can
be extended to include maximum achievable secret key rates with allowable errors. For infinitesimally small
errors, the extended definition matches that of the achievable secret key rate.



random variable defined over [0, 1]. The CDF of fN(X) at x is

2N-1

FJN(X)(x) = [Fx (g- -1 + N Fx g i 2N-
i=11 -N2 -

+ Fx g- 2- + Fx g-FX 2N-1

where Fx(.) is the CDF of the original random variable, X; g(x) = arcsin (x ; and

g- 1(x) = sin (,) 2 . (A detailed derivation of the transformation is given in appendix A.)

The probability of key agreement is the probability that fN(XA) and £N(XB) quantize

to the same bin. It is the probability that q (fN(XA), L) = q (eN(XB), L), where L denotes

the per sample key length. For any k E k, the probability that KB = k is given by

P{KB k} EXA {P{KB = kIXA}}

= /I P{KB = klXA = } fXA( )ck

=jP{KB = klXA = } d (4.1)

Here, (a) follows from the law of total probability; (b) follows from the definition of expec-

tation of a continuous random variable; and (c) follows from the uniformity of the random

variable, XA-

Conditioned on XA, the probability that £N(XB) falls into the kth quantization bin can

be found by subtracting the CDF of £N(XB) at the lower endpoint of the kth bin from the

CDF of £N(XB) at the upper endpoint of the kth bin. Thus,

P{KB = klXA} = FN(XB) (L (k- 1) XA) -FN(XB)(g 1 () XA) (4-2)

Now fix XA =, and let k be the quantization of fN((). Then, the probability that

£N(XB) falls in the same quantization bin as eN(XA) precisely matches the expression above;

and so the probability of key agreement is given by

IP{KA KB} j= 1 F (g-1 (q(fN ( )L) - 1) XA -

FJN(XB) (g 1 (q(fN( ) L)) XA = ( d( (4.3)



Fig. 4-1 is drawn from the analytical formula given in (4.3) and plots the unreliability for

L = 2. Note that as N increases, the reliability decreases and settles to -; this is expected

since the chaotic iterator has amplified small deviations in initial conditions (the noise in

Bob's received transmission) with each iteration. (Plots of the numerical results from this

chapter are presented at the end of appendix A along with the corresponding plots of the

competing scheme that is introduced in ch. 5.)
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Figure 4-1: Unreliability plotted against UB for L = 2 and various N.

4.3 Unpredictability

I(K;KEIKA=KB) s given by:By definition, unpredictability, lOg(II) gvn y

I(K; KEIKA = KB) 1 p(k, kE)
-oE Y p(k, k)) log(

log (|K|}1 log(|K|} ke sxp1(kO p2(k )
(4.4)

where p(k, kE) = IP{K = k and KE = kEIKA = KB}, pl(kE) = P{KE = kEIKA = KB}, and

p2 (k) = P{K = kIKA KB}.

To derive the mutual information, I(K, KEIKA = KB), we first determine the joint and

marginal probabilities associated with the shared key, K, and Eve's estimate, KE. That is,

we derive formulas for: (1) the probability that KE = kE conditioned on KA = KB, (2) the

....... ..... ::::::::::::::::: zzz; -. - . - j _Wi! §



probability that K = k conditioned on KA = KB, and (3) the joint probability that K = k,

and KE = kE conditioned on KA = KB. The formulas for these probabilities are presented

in the above order.

The first probability is

pi(kE) = K P{KB = {N(K))XA = (} - P{KE = kE|XA =} dc
P{ KA = } oi gi

where P{KB = k|KA = } is given in (4.2), P{KB = KAI is given in (4.3), and

P{KE = kEIXA} =FN (XE) S1 (kE XA - FN(XE) g 1(kE) XA)

(4-5)

(4.6)

Proof of (4.5):

Since, conditioned on XA, the random variables XB and XE are independent,

P{KE = kEIKA = KB,XA = }
P{KE

IP{KE

= kg and KA= KBIXA

P{KA= KBlXA = 0
= kE|XA = } . P{KA= KBIXA

P{KA = KBIXA = (}

= P{KE kEXA = }

Let fxAIKA=KB() d IP{XA < (|KA = KB); and let fx () d P{XA <)-

(a)
fxA KA=KB 

(a)

(b)

Pf{KA = KBIXA = 0}fXA(

IP{KA = KB X
P{KA = KBlXA = 0

P{KA = KB}

(c) P{KB = q(fN())|XA=
P{KA = KB}

(4.8)

Here, (a) is an application of Bayes' rule; (b) follows from the uniformity of the random

variable, XA; and (c) substitutes q(fN(()) for KA.

By the law of total probability, pi(kE) = P{KE = kEIKA = KB} can be written as

P{KE = kEIKA =KB} = jO IP{KE = kEIKA = KBXA = } fXAKA=KB(S) <

Finally, by substituting the results of (4.7) and (4.8) in (4.9), we obtain (4.5). D

(4-7)

(4.9)



The second probability is

P2 (k) = P{KA 1= KBN()) = KB = kXA = d

where IP{KA = KB} Is given in (4.3), and

P{q(.N()) = KB = klXA = j
P{KB = q(gN q(eN( )) k

q (fN ()) #k

and where P{KB = kIXA = } is given in (4.2).

Proof of (4.10):

Let k denote a random variable, which takes values in the set of extended real numbers:

KA = KB

KA # KB

For a finite k, P{K = k} can be derived as follows:

lPfk = k} =a) Pfk = k|XA = j d

(b)j
P{q(fN(()) = KB = klXA (4.12)

Here, (a) follows from the uniformity of the random variable, XA; and (b) substitutes

q(eNQ()) for KA.

For a finite k, the two events, {K = k} and {K = k and KA = KB} are equivalent,

giving:

P{K k} = P{K =k and KA = KB}

By applying the definition of conditional probability to the righthand side of the equation

above, we obtain

P2(k) P{K =k}
P{KA KB}

(4.13)

Finally, by substituting the results of (4.12) in (4.13), we obtain (4.10). E

(4.10)

(4.11)

~KA,
K=



The joint probability is

1
p(k, kE) =P{KA =KB(

x P{q(eN( )) = KB = klXA = } - IP{KE = kE|XA =} d

where P{KA = KB} is given in (4.3), P{KE = kEIXA =} is given in (4.6), and IP{q(tiN

KB = kIXA =} is given in (4.11).

Proof of (4.14):

P{K = k and KE kEIKA = KB}

= jIP{K = k and KE kE|KA = KBXA= } - fXA KA-KBQ ) <

(b) Pf{K= k and KA =KB and KE= kEXA =}K )

(c) IP{K =k and KA = KBlXA = (} . PKE= k|XA 0
foJ P{KA = KB|XA = (}AKAK ()d

(d) 1 Eq(fN() KB = klXA = } - P{KE = kE|XA fXAKAKB() d

fo P{KA = KBIXA X

(e) P{q(IN(()) =KB = klXA=}- P{KE =kEXA P{KA =KBIXA=0

Jo P{KA = KBlXA =P{KA = KB

IP{KA = KBI

x JP{q(fN(()) = KB = klXA = - P{KE = kE|XA = } dc

Here, (a) is an application of the law of total probability; (b) is an application of Bayes'

rule; (c) follows from the from the independence of XB and XE, conditioned on XA; (d)

substitutes q(EN()) for KA; and (e) follows from an application of Bayes' rule and the

uniformity of the random variable, XA (see (b) of (4.8)). D

Note that by marginalizing the joint probability in (4.14), we obtain the probabilities

in (4.5) and (4.10). Fig. 4-2 is drawn from the analytical formula given in (4.4) and plots

the predictability for L = 2 and = 2. As expected, the predictability decreases from a

value less than 1 and approaches 0 as the number of iterations and noise increase.
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Figure 4-2: Predictability in bits plotted against UB for L = 2, rE =2, and various N.

4.4 Randomness

By definition, randomness, H(KKA) ven by:

H(KIKA = KB) _ 1- EP2(k) log P2 (k) (4.15)
log(IC) log(IK|) keIC

where p 2 (k) = P{K = kIKA = KB} is defined in (4.10).

Fig. 4-3 is drawn from the analytical formula given in (4.15) and plots the randomness

for L = 2 as a function of N. Note that randomness stabilizes after two iterations of the

chaotic map.
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Chapter 5

Modified Per-Sample Scheme

It is important to note that the experiments published in [24] covered only the special

case with zero eavesdroppers. Thus, the only metric that was effectively studied was re-

liability; neither unpredictability nor randomness was addressed in the published results.

In this chapter, we present a modification to the per-sample scheme, which enables covert

communication in the presence of a passive eavesdropper.

5.1 Scheme

The per-sample scheme works in the following way:

1. In the handshaking phase: The handshaking phase is identical to that given for the

LMS. Alice and Bob send each other the same transmit signal. A schematic of the

handshaking phase is given in fig. 2-1.

(a) Alice broadcasts a signal, p(t). The signal Bob receives can be modeled as

rB(t) = p(t) 3 hAB(t) - nB (t)-

(b) Then Bob broadcasts the same transmit signal, p(t); while Alice receives rA(t)

p(t) @ hAB(t) + nA (t)-

2. In the key-generating phase: Alice and Bob individually extract a key from his or

her respective receive waveform. Each agent first generates decorrelated, normalized

samples from his or her respective receive waveform and then computes a key from

the amplitudes of these samples. Flowcharts depicting the similarities and differences



of the key-generating phases for the unmodified per-sample scheme (UPSS), the LMS,

and the modified per-sample scheme (MPSS) are given in fig. 5.1.

(a-1) For the UPSS only:

i. Bob sends the coset assignments of his samples, where a sample's coset

assignment is determined completely by the noise of the sample.

ii. Alice receives Bob's coset assignments and determines his quantized sample

values from the received information; thus, Alice and Bob are able to agree

on the same key bits. 1

(a-2) For the MPSS only:

i. For each normalized sample, x, the agent first computes y = sN(x), where

s : [0,1 -* [0, 1] is the binary shift map, defined as:

s() = 2x, 0 < x < 0.5

2x-1, 0.5<x<1

sN(x) denotes the N-times composition function of s(x), and an appropriate

N is determined by the statistics of Alice and Bob's observational noise as

well as Eve's estimation error.2

ii. For each transformed sample, y, the agent then computes qs : [0, 1] x N -+

{1, 2, ... , 2L} defined as:

qs(y, L) = [2Ly1

where L denotes the number of binary key bits per sample. The quantized

values for a sequence of y's are then concatenated sequentially to produce

the final key.

It will be assumed that all agents operating in the network, including Eve, know

the N- and L-values for the samples.

'It is assumed that Alice and Bob both have access to a lookup table, which maps the samples to their
corresponding coset assignments.

2In a practical system, x is pre-quantized. However, so long as x is represented with (L + 2N)-bits of
precision, the analysis made in sec. 5.2 remains valid.
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The rationale for step (a-2) in the MPSS is as follows. Let Alice and Bob's samples and

Eve's best estimation of Alice's sample be denoted by:

XA XA 1 XA 2 - -

XB XB 1 XB 2 - - -

XE = XE 1 XE 2 -

respectively, where XAj, XBj, and xE, denote the ith bits in the binary representations of

XA, XB, and XE, respectively.3

Alice and Bob each truncate the most and the least significant bits of each sample.

Given the sample model in sec. 2.2, the most significant bits are insecure, because Eve

has too much statistical knowledge of Alice's most significant bits. In addition, the least

significant bits are unreliable, because Bob does not have enough statistical knowledge of

Alice's least significant bits. Thus, these insecure or unreliable bits are removed from the

final key.4

5.2 Reliability, Unpredictability, and Randomness

The results from this chapter is used in sec. 6.2 to compare the performance of the LMS

against the MPSS. The reliability, the unpredictability, and the randomness for the MPSS

are derived analytically, much like what was done for the LMS in ch. 4. These derivations

will enable a fair comparison between the performances of the two key generation schemes.

Let X be a random variable defined over [0, 1]. By using arguments similar to those

used in appendix A, the CDF of sN(X) at x is

2N

FFN((x) = Fx + - Fx 0 < X < 1 (5.1)

where Fx(-) denotes the CDF of the initial distribution. Now, by using derivations similar

3A real number may have two binary representations (e.g., 0.1 and 0.0111 ... are binary representations
of the same number). In such instances, we chose the binary representation, which does not terminate with
an infinite sequence of l's.

4Note that truncating the most significant bit of a binary number, x, is equivalent to running s(x) on x,
and that truncating the N most significant bits is equivalent to running .sN(X) on x. The number of bits
which remain in the key segment depends on the quantization parameter, L.



to those in ch. 4 and by using (5.1), we can determine the reliability for the MPSS as

P f{K(s,A) = K(s,B)} = FSN(X,) (qs (N(,) L) -1 XA -

FN (XB) (q (XN L) XA d(
2).

(5.2)

where K(s,A) = qs (SN(XA), L), and K(s,B) = qs (SN(XB), L)-

Figs. A-1(b)-A-2(b) are drawn from the analytical formula given in (5.2) for L = 2.

Figs. A-1(b) and A-2(b) plot the reliability and the unreliability as a function of UB-values,

respectively.

Conditioned on K(,,A) = K(s,B) = K., the unpredictability for the MPSS is as follows:

I (Ks; K(s,E) K(8 ,A) = K(s,B)) _ ZkEK kEE/C ps (k, kE) log p ,,)(kE)P s (k)

log(|KI) log(I I )
(5.3)

where ps(k,kE) = IP{Ks = k and K(,,E) kE|K(s,A) = K(s,B)}, P(s,1)(kE) = P{K(s,E)

kEIK(s,A) = K(s,B)}, and P(s,2)(k) = P{Ks k IK(s,A) = K(s,B) -

By repeating the proofs for (4.5), (4.10), and (4.14) (see sec. 4.3), the joint and marginal

probabilities are given by:

f6 P{K(s,B) = q(N()XA I P{K(s,E) = kE|XA = 'J d
(s,1)P (k)=PK(s,A) = K(s,B)I

P(s,2)(k) P - x IP{q(sn(()) = K(s,B) = klXA = d 
{fK(s,A) - (s,B) 0

1
PS (k, kg )= IP{K(s,A) K(s,B)}

x fP{q 8(s"(()) = K(s,B) = klXA = } -P{K(s,E) = kEIXA <

(5.4)

P{q,(sN(()) = KB = klXA { P{K(s,B) = qs N

0,

qs(SN( )) k

qs(sN(j) k

and where P{K(s,B) = kBIXA} and P{K(s,E) = kE|XA} are defined in terms of FSN - .

Figs. A-3(b)-A-7(b) are drawn from the analytical formula given in (5.3) with L = 2

and D = 2, 4, 8, 16, or 32; the figures plot the predictability over a range of o-B-values.

I

where



Conditioned on K(s,A) = K(s,B) = K., the randomness for the MPSS is given by:

H(KsIK(s,A) = K(s,B)) __ k-CP(s,2)(k) log p(s, 2)(k) (5.5)
log(IK ) log(|I)

where P(,,2)(k) = P'{K, = kIK(s,A) = K(s,B)} is defined in (5.4).

Figs. A-8(b) and A-9(b) are drawn from the analytical formula given in (5.5) for L = 2;

the figures plot the randomness and the unrandomness as a function of N.



Chapter 6

Numerical Results

In the first section of this chapter, we determine whether the LMS provides reliability,

unpredictability, and randomness. In addition, we explain how to extend our per sample

analysis to include cases where the number of samples per agent exceeds one. In the second

part, we compare the performance of the LMS against that of the MPSS.

6.1 Interpretations of Eqns. 4.1, 4.4, and 4.15

The LMS can be determined to be a viable secret key agreement scheme by solving a sys-

tem of inequalities. Let 7 = [i,62, 63] denote the allowable error vector for the triple,

(XA, XB, XE). For a fixed key segment length, L, the LMS provides reliability, unpredictabil-

ity, and randomness for the allowable error, 7, if the following system of inequalities is

met:

1 - P{KB = KA} < 61

I(K; KE|KA = KB)

log(|KI)
H(K|KA = KB) 3

1- <ogj3~
log(0|k1)~

I(K;KEIKA=Ikb) H(KIK=B

where IP{KB = KA} is given in (4.1), ( = is given in (4.4), and H(isKB

given in (4.15). Note that as N increases; reliability decreases (i.e., the probability of key

agreement decreases), whereas as unpredictability and randomness increase (i.e., mutual

information decreases, and entropy increases). Under the reasonable assumption that Eve's



estimation error is strictly larger than Bob's observational noise, there exists some N such

that the inequalities hold for some i = [El, E2, 63]. This insight suggests that for the LMS

to be a viable secret key agreement scheme, there exists some bounded values of N that

satisfy the error criteria.

The numerical results presented in this thesis indicate that the LMS provides reliabil-

ity, unpredictability, and randomness under realistic conditions. In ultra-wide bandwidth

systems, typical signal to noise ratios (SNR) range from 0 dB to 40 dB, which translates

to typical values for UB ranging from rom 5 x 10-3 (high SNR) to 0.5 (low SNR). From

figs. A-3(a)-A-7(a), and A-9(a), 3-5 iterations of the chaotic map suffice to reach acceptably

small errors in unpredictability and randomness. From fig. A-1(a), even after 3-5 iterations,

the probability of key agreement is still relatively high for lower JB-values in the typical

range. Thus, the LMS is information-theoretically secure in the sense that non-zero, secret

key lengths are achievable for some positive key length L and for some reasonably small,

allowable errors in performance.

The per sample analysis can be extended to include cases where the number of samples

per agent exceeds one. If the samples are independent, then the mutual information as well

as the entropy can be scaled trivially. The challenge lies in preserving a high probability

of key agreement. To that end, the decision to keep or to drop a sample as well as deter-

mining the key segment length, L, can be made on a per sample basis depending on the

estimated values for XA, UB, and UE. Furthermore, in time-variant systems, we can allow

error detection and correction schemes to guarantee reliability at a cost in key rate.

6.2 Comparative Analysis

Having derived the analytical expressions for the reliability, the unpredictability, and the

randomness for both the LMS (in ch. 4) and the MPSS (in sec. 5.2), we are now able to

compare the two methods' performance in terms of the average achievable key length. We

do this by fixing E2, 63, L, and the ratio, 2 > 1. From figs. A-8(a) and A-8(b), the entropy

of the shared key stabilizes to near the maximum entropy after about two iterations of e(x)

for the LMS, and about two iterations of s(x) for the MPSS. We, therefore, assume that an

acceptable level of uniformity in the shared key is reached in all conditions where N > 2.

Based on the mutual information values given in figs. A-3(a)-A-7(a) and A-3(b)-A-7(b), a
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threshold of 10 4 is chosen for 62.

For both the LMS and the MPSS, we determine M, the maximum of 2 (i.e., the number

of iterations needed to satisfy the randomness condition) and the minimum number of

iterations necessary to reduce the mutual information to 10-4 (i.e., the chosen threshold

for mutual information). We then calculate the corresponding average key length (after M

iterations) over a range of o-B-values for L, E) E {1, 2} x (2, 4, 8, 16,32).

Fig. 6-1 below depicts the average key length for L = 2 and E = 8 using the LMS

and the MPSS, respectively. Note that for the typical range of observational noise, UB 6

[5 x 10-3, 0.5], the LMS generally outperforms the MPSS. (Similar plots with different

L, O)-pairs are provided in figs. A-10(a)-A-14(a) at the end of appendix A.)

Figure 6-1: Comparative analysis for 62= 10-4 and OE= 8 for L = 2.
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Chapter 7

Conclusion and Recommendations

A key generation scheme is proposed and its performance analyzed. The method, the LMS,

is applicable for use on wireless networks because it does not require devices to engage in

computationally intensive algorithms. In addition, the method is shown to achieve relia-

bility from the perspective of the communication agents, as well as unpredictability and

randomness from the perspective of an eavesdropper. Lastly, the performance of the LMS

is compared against that of an existing technique. Results from a comparative analysis indi-

cate that the proposed method generally yields a greater number of reliable, unpredictable,

and random key bits than the existing technique under the same conditions. These results

bring us closer towards realizing information-theoretically secure cryptosystems.

However, more research should be conducted to understand the practicality of the LMS.

In order to truly understand whether the LMS is a competitive technique for secure com-

munications, a thorough proof-of-concept study to tackle the challenging problem of how

to realistically model Eve's best estimation of Alice's sample should be conducted. In ad-

dition, pre-processing techniques for producing decorrelated and normalized samples from

receive waveforms should be developed and analyzed for standard channel models. Finally,

it may be of interest to determine the achievable secret key rate by utilizing the LMS for

various coherence times and to extend the results of this thesis to include multiple malicious

and / or colluding eavesdroppers.
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Appendix A

CDF of N Logistic Map Transforms

In this section, we derive the formula for the cumulative density function (CDF) of fN(X),

given any random variable, X, defined over [0, 1] and with arbitrary CDF, Fx, given in

analytical form. We first introduce a linear map, t(x), which is easier to analyze than

f : [0, 1] -- [0, 1] defined as f(x) = 4x(1 - x) (our quadratic map). Our general approach

will be to derive the formula for the CDF of tN(X) and then derive the formula for the CDF

of £N(X) by performing the appropriate transformations between the linear and quadratic

domains.

Definition A.0.1 Let t : [0,1] -- [0,1] denote the tent map given by:

t(x) = 2x, 0 x < 0.5

-2x +2, 0.5 < x < 1

The tent map is a mathematical description of the quintessential example of a chaotic

system: the kneading of dough [26]. In one iteration of the tent transform, an initial

distribution is evenly stretched to twice its original width and then folded over in the middle;

thus, the CDF of the distribution after one iteration at an arbitrarily point, x [0, 1], is

equivalent to the measure of the original distribution from 0 to 1 plus the measure of the

original distribution from (1 - g) to 1.

By generalizing this insight, the formula for the CDF at the Nh iteration is as follows.

The formula for the CDF of tN (X) at x is as follows.
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Figure A-1: Reliability plotted against crB for L = 2 and various N. Figs. (a) and (b) depict
the results for the LMS and the MPSS, respectively.
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(a) Logistic Map Scheme
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(b) Modified Per-Sample Scheme

Figure A-2: Unreliability plotted against jB for L = 2 and various N. Figs. (a) and (b)
depict the results for the LMS and the MPSS, respectively.
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(a) Logistic Map Scheme
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(b) Modified Per-Sample Scheme

Figure A-3: Predictability in bits plotted against JB for L = 2, E =2, and various N.

Figs. (a) and (b) depict the results for the LMS and the MPSS, respectively.
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(a) Logistic Map Scheme

10 2 10-1

(b) Modified Per-Sample Scheme

Figure A-4: Predictability in bits plotted against UB for L = 2, 1 = 4, and various N.

Figs. (a) and (b) depict the results for the LMS and the MPSS, respectively.
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(a) Logistic Map Scheme

10-2 10-
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(b) Modified Per-Sample Scheme

Figure A-5:

Figs. (a) and

Predictability in bits plotted against UB for L = 2, 'E= 8, and various N.
(b) depict the results for the LMS and the MPSS, respectively.
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(a) Logistic Map Scheme
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(b) Modified Per-Sample Scheme

Figure A-6: Predictability in bits plotted against aB for L = 2, - = 16, and various N.

Figs. (a) and (b) depict the results for the LMS and the MPSS, respectively.
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Figure A-7: Predictability in bits plotted against aB for L = 2, 'E = 32, and various N.

Figs. (a) and (b) depict the results for the LMS and the MPSS, respectively.
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Figure A-8: Randomness in bits plotted against the number of iterations for L = 2. Figs. (a)
and (b) depict the results for the LMS and the MPSS, respectively.
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Figure A-9: Unrandomness in bits plotted against the number of iterations for L = 2.
Figs. (a) and (b) depict the results for the LMS and the MPSS, respectively.
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Figure A-10: Comparative analysis for 62 = 10-4 and I = 2. Figs. (a) and (b) depict the

results for L = 1 and L = 2, respectively.
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Figure A-11: Comparative analysis for E2 - 10-4 and E = 4. Figs. (a) and (b) depict the
results for L = 1 and L = 2, respectively.
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Figure A-12: Comparative analysis for 2 = 0-4 and = 8. Figs. (a) and (b) depict the

results for L = 1 and L = 2, respectively.
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Figure A-13: Comparative analysis for E2 = 10-4 and 'E= 16. Figs. (a) and (b) depict the
results for L = 1 and L = 2, respectively.
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Figure A-14: Comparative analysis for E2 = 10-4 and = 32. Figs. (a) and (b) depict the

results for L = 1 and L = 2, respectively.
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