CityCarControl: An Electric Vehicle Drive-by-Wire Solution for Distributed
Steering, Braking and Throttle Control

by
Thomas B. Brown
S.B.,CS.MIT., 2009
Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology
May 2010
©2010 Massachusetts Institute of Technology

All rights reserved.

Author

l%g@arﬁ?itfjof Electrical Engineering and Computer Science
May 17, 2010

Certified by

Professor Kent Larson
Thesis Supervisor

-1
1

Accepted by

\ VU - Dr. Christopher J. Terman
Chairman, Masters of Engineering Thesis Committee

I MASSACHUSETTS INSTITUTE
OF TECHHOLOGY

i
i
f DEC 16 2010

LIBRARIES
ARCHIVES

CityCarControl: An Electric Vehicle Drive-by-Wire Solution
for Distributed Steering, Braking and Throttle Control
by
Thomas Brown

Submitted to the
Department of Electrical Engineering and Computer Science

September 10, 2010

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

1 Abstract

In this paper, we propose CityCarControl, a system to manage the steering, braking, and
throttle of a new class of intra-city electric vehicles. These vehicles have a focus on extreme
light-weight and a small parking footprint. In order to maximize maneuverability within a
city environment, we show the feasibility of omnidirectional steering, and the integration of
a folding chassis. Furthermore, we apply traditionally programming best-practice
techniques to simplify the design of the control system. Specifically, we present the concept
of a modular, fail-silent wheel-robot with a standardized API responsible for controlling
steering, braking and throttle within the vehicle.

Table of Contents

1
2
3
4

5

11X o1 - Vot SO PO UUS PO PR 2
INErOdUCHION uviiiiiiiiiiiii e e s s s ns e e e e s e s nnneeeseaen w5
BACKEBIOUNG ...t e s e s e s e ee e ae e e s e e e e e e s s e s e aeenanan 5
APPIOACH et s s s e s s e e e e et e s s s sne s nrnnnenns 6

4.1 DIriVEMOAE FUNCHOM tuuuurcisecseensssesesessssssessssssssssssssssssessssssssssssssssssssssessssssssssassssssssasssssssssssassssssssssssssansssssassnsssssaseens 7
4.1.1 Standard Driving Mode.. 8
4.1.2 O-Turn Driving Mode...... 9
4.1.3 Folding Mode... 9
4.1.4 Parked Mode...... 9
4.2 SafeThrottle FUNCHOM st csssseresesssssssssss s sssssessssessssssssssssssasssssssssssssssssssasssasesssssnsssssssssssssssss 9
4.2.1 Electronic Stability Control (ESC) Module Description 9
4.2.2 Traction Control System (TCS) Description 10
4.2.3 The Electronic Brake Force Distribution Module (EBFD) Description 10
4.2.4 Antilock Braking System (ABS) MOAUIE DESCIIDEION.......ouv.owrevevesserisssserssssseerssssssssssssssssssssssssssssssssenssssssanss 10
4.3 SteerBYWIre FUNCHOM ...ttt et sessss s sts st et sss s sssss st st s e s ses e e ten 10
4.3.1 Standard Steering Mode w11
4.3.2 O-TUIN SLEETING MOUE cooueeeerreseeresrrrsesrreesieorsesesrssssessssssssssssssasssssssss s ssss s s ssssass st sssssaasossassssssssssssssasns 11
4.4 ThrottleByWire FUNCHION e ssessssssesessssssssssssssssmssssssssssssssesssssssssssssssssssssssassss ssssssssssssssssssessssasssssssssnas 11
4.4.1 Standard Throttle Mode 11
4.4.2 O-Turn Throttle Mode..... 11
4.5 BraKeREZEN FUNCHIOM ccocoumeeeeeresecerecesseneeessecsusesessesessesssssssesssessssssssssssssssessessssssssssssssssssssssassssssansssssesssssanssssanssssanes 12
IMPIEMENLAtION ..coiiiiiiiiiiiiii e e e s s e e e e e e e s e e e s e e e e e s e e s e s aeareaan 12

5.1 Domain COMMUNICATION vuuwcrrereesssemrussessssssssssmsesssmsssassssssmessssmsessiossssssssssssssssssssessssssnssssssssssssssssamastsssssansssssesssssemsessans 13
5.2 WhEel RODOE DESIZI.coiririmrmrisrsmessissesssssssssssssssssssessssmmsssssssssasssssssssssssssssssssssessiasssssssssssasesssssssssmessassasssssasssssans 14
5.2.1 General Approach.. 14
5.2.2 Wheel API 15
5.2.3 Electronic Braking 16
5.3 Steering AlGOTithm DeSIGNiiirisiineciiececsissesessesssass e csssssssssssssse s ssssssasess s sssasssssessessssssssssnes 17
5.3.1 Steering Simulator.... 18
5.3.2 User INterface REQUITEMENLSccmvvcrmsvmmsssssssussssssssssssssmmssssssssssssssssssssssssssmmsessssssssssmmsssssssssssamssssssssssssanes 18
5.4 Energy Management SYSTEIM . .. mmmmsrsesessssmsssssessesssssssssssisassssssssssssssmsssssssssssssssssesssasss ssssesssessssssssases 19
541 HIGR VOILAGE BUS.corcsririsssssssssmssserssisssssssisssssssssssssssssssmsssssssmssssssssassssssssassssssssansssssssssssssssssssssssssssossssssasssssssssmsssssssssnns 19
54,2 BALLETISccmvvrurereeresnssessssersvsssssssssesssssssssssssssssssssasssssasssssssassssssssssssssss s ssssssssssssossssssssssmsssssssasssssasssessmessmmessessssessesson 19
5.4.3 Motor Controllers .20
5.4.4 Safety Switches... .20
54.5 Low Voltage Bus..... .21

6 CONCIUSION ..ottt et nenraeeane e s e e seaeese s e snnnsaseesenees 21
A - Y+« =T 4T L OO PO 23
7.1 Block Functional MOAUIES and SENSOTIS....reeesmsissessssssisssessssssssssssssssssssssssesssssssssssssssssessssossennns 23
7.2 Preliminary CommuniCation FIOWoceirisncsssscssnsesssnssssssssssannens 25
7.2.1 DriveMode Message Flow 25
7.2.2 SafeThrottle Message Flow 26
7.2.3 SteerByWire Message Flow 27
7.2.4 TRrottleByWire MESSAGE FIOWceeerecosssreseessssissssssssssssmsmsssssssssssssmssssssssssssssssesssssssssmmassssssssssssmmsassssss 28
7.2.5 BrakeRegen Message Flow ... 29
7.2.6 Infotainment Message Flow. 30
7.2.7 FoldByWire Message Flow........ 30

7.2.8
7.2.9

7.2.10 Telematics Link Message Flow....

7.2.11

Safety Message Flow........
BatteryMan Message Flow

Autonomy Message FIOWoeeroccessirisiissiresercscsssssnssns

7.3 ASIL DECOMPOSIION . ccccvtrmsreersserrssicssssssssssssssssssssnsessssssssssss s s s ss bR s s RSB

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13

7.4 Drivetrain Simulator Source Code

DriveMode Function ASIL Decomposition........... rrreesssssssssesssiaassssenes

SafeThrottle Function ASIL DeCOMPOSILION.cuvmrsmssmmmssssssssssssssssssssssssssssmmmsssssssssssssssssssssasssssssssssssssssssses
SteerByWire Function ASIL DecompoSition........ommmmn
ThrottleByWire Function ASIL Decomposition

31
31
31
31
32
32
33
33
33

BrakeRegen Function ASIL Decomposition
Infotainment Function ASIL Decomposition
Body Systems Function ASIL Decomposition
Canopy Function ASIL Decomposition
FoldByWire Function ASIL Decomposition
Safety Function ASIL Decomposition....
BatteryMan Function ASIL Decomposition ..
Telematics Link ASIL Decomposition
Autonomy Function ASIL Decomposition......

33
34
34
34
34
34
35
35
35

2 Introduction

With increasing urbanization worldwide, city streets are becoming ever more crowded and
parking spaces are becoming more difficult to obtain. It is clear that a radical rethinking of
the current automobile industry has become necessary. One solution to this growing
problem is Professor Bill Mitchell’s CityCar implemented as a fleet of lightweight electric
vehicles that can be used in a one-way shared-use program within the city center.! These
vehicles can be made very light-weight and can maintain a greatly reduced footprint if we
allow for a reduction in maximum range and maximum speed. Furthermore, these
specialized vehicles provide for the capability of rapid charging, and because of the shared-
use system, can hypothetically receive much more use than their personal-use counterparts.
With the objective of allowing for efficient parking of the vehicles, we design them with the
capability of omnidirectional steering as well as the capacity to fold in order to reduce their
footprint.

In addition to meeting the novel demands of this new vehicle class, the drivetrain system
must be demonstrably reliable and responsive to the user’s interactions. Because we desire
omnidirectional steering, adjustable vehicle dynamics and regenerative braking, a
traditional drivetrain presents many problems and obstacles to our parallel goals. Instead,
we posit a drive-by-wire system composed of fail-silent, redundant wheels controlled by a
simplified but powerful wheel API and a decoupled, modular user interface.

3 Background

The CityCar system provides the unique opportunity to redesign a vehicle from the ground
up with a focus on sustainability and integration within the city’s ecosystem. With this in
mind, there are four main goals to consider: integrating with the city’s power system,
utilizing the “mobility internet”, deploying with a one-way shared-use model and basing the
vehicle on an electric drive system with a drive-by-wire control system. 2

The vehicle should take advantage of the infrastructure of the city. As electric vehicles
become more common, it is clear that manufacturers are moving towards a standard
connector for rapidly charging vehicles from the city’s power network. By integrating with
this system, the vehicle can reduce charge times and take advantage of the more economical
and environmentally friendly power generating techniques that power cities in general.

The “mobility internet” is made possible by the ease of a pervasive internet connections
coupled with the low cost of computation. CityCar vehicles are conceived to be intelligent
and capable of communication with each other as well as with the infrastructure of the city.
This communication allows a wide variety of advantages including dynamic pricing, smart
insurance, and even autonomous driving and parking.

1 Reinventing the Automobile - Personal Urban Mobility for the 21st Century.
William J. Mitchell, Christopher E. Borroni-Bird and Lawrence D. Burns
2 Reinventing the Automobile - Personal Urban Mobility for the 21st Century.
William J. Mitchell, Christopher E. Borroni-Bird and Lawrence D. Burns

Finally, the vehicle’s drive-by-wire control system allows for the removal of several
mechanical components, facilitating the independent maneuvering of each wheel, and the
decoupling of the user interface. Furthermore, drive-by-wire permits the vehicle to be a
simple platform for autonomy, opening the vehicle up for a myriad of different applications
including automated towing, self-parking and remote driving. 3

There has been significant research along the lines of drive-by-wire systems within the last
ten years. For example, GM produced an entirely drive-by-wire vehicle entitled the Hy-wire
which demonstrated the ease of customizing the user interface of electronically controlled
vehicles.# Furthermore, modern hybrids like the Toyota Prius and the Nissan Leaf use
throttle-by-wire systems that have proven safe and effective in a mass market. However
despite the many advantages of drive-by-wire, there has yet to be a paper looking at the
specific problem of dealing with a wheel-robot based distributed-drive vehicle.

4 Approach

We break the drive-by-wire system up into several functional modules. In Figure 1 we
describe the basic interrelations of these modules. These functions are then spread across
electronic control units (ECUs) in such a way as to maintain fast close-loop control between
sensors and actuators that need to react quickly.

3 Reinventing the Automobile - Personal Urban Mobility for the 21st Century.

William J. Mitchell, Christopher E. Borroni-Bird and Lawrence D. Burns

4 Chernoff, Adrian. "The 2003 Hy-wire Concept Car”. Ideation Genesis, LLC. Retrieved 2010-
07-22.

Drivetrain Functional Modules

BrakeRegen

ThrottleByWire

Figure 1 - Drivetrain functional modules and their associated actuators and sensors.

In the above model, we use the Joystick Controller to relay Angle X and Angle Y readings to
the SteerByWire and ThrottleByWire functions. In the joystick scenario, Angle X and Angle Y
correspond to horizontal and vertical movement of the joystick respectively. However, due
to the modularity of the system. We are free to use any number of user interfaces. For
example, with a classical steering system, the rotation of the steering wheel would
correspond to Angle X and the action of the gas and brake pedals would correspond to Angle
Y.

4.1 DriveMode Function

The DriveMode function determines which mode the car should be in and relays
information that affects the behavior of the SteerByWire and ThrottleByWire functions. In
order to determine the feasibility of state changes, the DriveMode function also monitors
the status of folding and whether the vehicle is traveling forwards or backwards. The
vehicle is always in exactly one mode, and for the purpose of safety, during transitions
between modes both the throttle and steering is deactivated . Because of the complexity and
length of time for the folding action to complete, we include both Folding and Unfolding as
distinct but temporary modes. The different DriveModes that the car may be in are:

* Parked Mode

* Folded Parked Mode

¢ Standard (Driving) Mode

* Reverse Standard (Driving) Mode

* Folded Driving Mode (Limited Speed)
* Reverse Folded Driving Mode

* (O-Turn Mode

* Folded O-Turn Mode
* Folding Mode

¢ Unfolding Mode

The state flow controls is displayed in Figure 2. Note that the vehicle must be parked to
initiate folding.

Drive Mode States

Standard Driving

/ Parked N “~./ O-Turn Drivi ng

L

Parked O-Turn Driving

Unfolding Standard Driving .

Figure 2 - Possible states and transitions for the DriveMode function.

Because accurate reporting of the status of the folding is necessary for safe steering, the
DriveMode module requires a reliable connection to the folding sensors.

Additionally, the DriveMode module requires a reliable, fast connection to all mission-
critical driving inputs provided by the driver. These include:

¢ AngleX

* AngleY

* Fold Button

* O-Turn Button

* Driving Button

¢ Reverse Button
¢ Park Button

4.1.1 Standard Driving Mode

When in Standard Steering, the full range of the joystick is mapped to the current safe wheel
range determined by the SteerByWire function described in section 4.3. This safe range
based on speed and road conditions and allows for small course corrections while traveling
at high speeds; steering angle adjustments become more limited as speed increases.

In order to avoid stability problems, speeds are further limited when in Folded Driving
mode, as the center of mass of the vehicle is higher. Further study is necessary to properly
measure the effects of folding upon the vehicle dynamics of the car.

4.1.2 O-Turn Driving Mode
O-Turn steering allows the car to rotate in place around its central axis. The car must have
come to a complete stop before it can transition in or out of O-Turn steering mode.

4.1.3 Folding Mode
Folding mode is the temporary mode that the car is in while it is in the process of folding.

The car must be in Parked Mode in order begin folding. After folding has completed, the car
returns to Parked Mode.

While in the process of folding, all steering is disabled, and the wheels are set to directly
forward, as it is in Parked Mode. The throttle is automatically engaged to assist in the
folding action, and the brakes are activated for the front two wheels.

4.1.4 Parked Mode

In Parked Mode, the car’s brakes are engaged, the throttle is disabled, and the steering of
each wheel is locked in the forwards-facing position. This allows the vehicle to maintain a
minimal footprint and also facilitates static parking when using a wheel with a caster
system. Casters allow the wheels to maintain fail-silence in the event of a loss of power to
the steering system, and are discussed in more depth in section 5.1.

Before the vehicle may enter Parked Mode, all wheels must come to a complete stop. If the
user tries to enter Parked Mode while the car while moving, a message is displayed alerting
them to park the vehicle first. The user may cancel the folding process while the vehicle is
being folded, in which case the vehicle begins the unfolding process.

4.2 SafeThrottle Function

The goal of the SafeThrottle function is to develop a situation-adaptive system for drive and
braking support. The system increases the vehicle’s safety by detecting situations where a
loss of traction is imminent and then either warning the user or intervening in brake or
drive functions.

Because the physical dimensions of the vehicle change when folded, the SafeThrottle
function needs to have awareness of the current state of the DriveMode module.

The function is broken into four subsystems:

* Electronic Stability Control

* Traction Control

* Electronic Brake Force Distribution
e Antilock Braking System

4.2.1 Electronic Stability Control (ESC) Module Description

The goal of the Electronic Stability Control Module is to improve the vehicle stability by
detecting and minimizing skids. The ESC module works in the background and continuously
monitors the car’s steering and vehicle direction as determined through sensors measuring
the vehicle’s lateral acceleration, vehicle rotation (yaw) and individual wheel speeds. A
description of the major sensors and their interrelations can be found in the appendix
section 7.1.

When the ESC module detects that the vehicle is in a skid, it applies the brakes
asymmetrically, realigning the vehicle with the desired angle.

4.2.2 Traction Control System (TCS) Description

The Traction Control System monitors all four wheels and detects if an individual wheel is
turning at a different rate than the others. When this loss of traction begins to occur, the TCS
adjusts the power to that wheel until it has matched the turn rate of the other wheels.

4.2.3 The Electronic Brake Force Distribution Module (EBFD) Description

The Electronic Brake Force Distribution Module balances initial brake force over the front
and back pairs of wheels during braking. This allows for significantly safer and gentler
braking. Generally the front brakes are able to provide significantly more braking power, as
they are driven down with some force during the braking process. However, this will be
subject to the weight distribution within the vehicle as well. This final weight distribution
will vary from vehicle to vehicle, thus directed study of the vehicle dynamics is necessary
before the EBFD function’s constants can be hard coded. Alternatively, weight sensors
within the wheel robots’ suspension could allow for dynamically setting the EBFD at the
cost of additional expense and complexity.

4.2.4 Antilock Braking System (ABS) Module Description

Each Antilock Braking System Module monitors an individual wheel for signs that the wheel
is about to lock up. A locked wheel can stop spinning much more quickly than a car can
decelerate even under optimal conditions. The ABS module observes wheel speed for signs
of locking and when triggered reduces braking until the wheel begins accelerating again.

For optimal behavior, this module must have very tight loop control with the braking
module of the wheel robot.

4.3 SteerByWire Function

With a steer-by-wire design, there is a complete physical decoupling of the steering controls
and the steering actuator. In order to allow intuitive steering, the vehicle’s SteerByWire
Function provides the user with force feedback based on force sensors and gyroscopes
within the wheels and body of the car. For more details, see section 7.1.

Based on inputs from the DriveMode function, the SteerByWire function may be in one of
two modes:

* Standard Steering Mode
* O-Turn Steering Mode

These modes determine the relationship between the user’s joystick input and the steering
angles provided by the actuators.

When we describe wheel steering angle we use the following convention: A positive steering
angle value signifies that the front of the wheel is pointing away from the chassis. A negative
steering angle value signifies that the front of the wheel is pointing towards the chassis.

Because the joystick presents a single point of failure, and a fault would lead to an extremely
dangerous situation, great care must be taken to ensure fail safety in the joystick. By using a
fail silent mechanical design in the wheel robots (such as a well-designed caster system,

10

discussed more in section 5.1), we can use the natural symmetry of the vehicle to produce
redundancy from simply fail silent wheel robot units.

4.3.1 Standard Steering Mode

When in Standard Steering, the full range of the joystick is mapped to the current safe wheel
range based on speed and road conditions. For example, the safe range of wheel steering
angles when traveling at 60km/h is much smaller than the full range of wheel steering
angles when traveling at 10km/h. This restriction allows for small course corrections while
traveling at high speeds.

Additionally, there are two behaviors (sub-modes) that the vehicle may use for steering
depending on the situation and the driver’s preference:

* Two wheel frontal steering
* Four wheel mirrored steering

Two wheel frontal steering is generally what modern drivers expect from a steering
system. However, four wheel mirrored steering gives the driver a tighter turn radius at
low speeds.

4.3.2 O-Turn Steering Mode

O-Turn steering allows the car to rotate in place around its central axis. The angle of the
wheels during an O-turn steering maneuver is highly dependant upon the dimensions of the
vehicle’s chassis, thus the SteerByWire function must know whether the vehicle is folded or
unfolded, and must therefore have reliable access to the state of the FoldByWire function.

4.4 ThrottleByWire Function
Like the SteerByWire function, ThrottleByWire interprets the user’s inputs and based upon
the current DriveMode, converts them into the appropriate output for the wheels.

As such, the ThrottleByWire function behaves differently based upon the possible modes of
the DriveMode system described below:

¢ Standard Throttle Mode
e O-Turn Throttle Mode

4.4.1 Standard Throttle Mode
In standard steering, the vehicle may be traveling either forwards or backwards, as dictated
by the DriveMode function.

The ThrottleByWire function monitors the speed of the vehicle, and always keeps it within
the safe limits of the vehicle’s stability. When the vehicle is folded, the maximum speed is
reduced significantly.

The SafeThrottle function affects the ThrottleByWire function most directly when in
standard steering mode.

4.4.2 O-Turn Throttie Mode
When in O-Turn mode, the ThrottleByWire function translates the driver’s inputs into
clockwise or counter-clockwise motion of the car.

11

As in standard steering mode, the ThrottleByWire function monitors the vehicle’s speed and
prevents the vehicles from rotating at unsafe speeds.

4.5 BrakeRegen Function
The BrakeRegen Function determines how much braking power should come from the
mechanical brake, and how much should come from the regenerative braking of the motor.

In order to avoid overcharging the batteries, BrakeRegen must have access to the charge
status of the battery pack that it is recharging.

5 Implementation

In order to implement the described functions, we break the system into ECUs based upon
their physical location necessitated by time-critical sensors-actuator loops. With this in
mind, we use the physical placement of the ECUs described in Figure 3. The general
subsystems created by this organization are the WheelRobot, the Driving Algorithms, and
the Energy Management System. We describe these systems in greater detail below.

12

High Level Harness Routing

Figure 3 - The different components of the CityCarControl system, as well as their wiring harness and layout
within the physical body of the vehicle.

5.1 Domain Communication

One advantage of the CityCarControl system is that it integrates neatly with the other
systems in a vehicle with a backbone/gateway structure like that described in Figure 4

13

Control System Domains

Energy
Management

|

Body ;
_ Systems Chassis Safety

Information Drivetrain

13l CANBL Jackbone SUOKD

Key

ECUs are Equipped with two

Figure 4 - An example layout for communication between various control system domains.

The backbone/gateway structure described above is the common choice for vehicle systems
because it prevents the broadcasting of superfluous messages to the system as a whole,
while still limiting the amount of hardware necessary for full functionality and safety.5

We use CANBus for non-mission-critical functions, and FlexRay for mission-critical
functions that require deterministic-time response. The specifications of these protocols are
beyond the scope of this paper.

5.2 Wheel Robot Design

As described above, a primary aspect of the CityCarControl system is the incorporation of
steering, throttle and braking functions into each wheel robot. Thus great care must be
taken to ensure both the safety and simplicity of design of each wheel robot.

5.2.1 General Approach
The design of the wheel robot maintains a focus on modularity. This allows us more easily

develop physical connection of each wheel to the main system, and assists in system
integration and testing.

Additionally, in order for each wheel robot to be capable of performing all the necessary
time-critical reactionary adjustments on its own within the given time frames, they must
maintain tight-loop control with their actuators. This means that the wheels should be
given simple instructions as to their desired angle and their desired speed and the wheel
itself must autonomously and optimally work to achieve those goals. This includes antilock
braking, regenerative brake balancing and steering adjustments. The tight-loop control
system also assists in rapid autonomous response times by providing a close coupling of the

5 Deliverable D2.2 - Conceptual Hardware Architecture Specification Kosinski, R.]. (2008).

14

actuators, sensors and ECUs. Where there are less components to pass through, their tends
to be less latency.

The modularity of each wheel also allows us to achieve fail-silence in each wheel robot. For
the purpose of this document, we define fail-silence in accordance with EASIS as a module
that upon encountering a fault goes into a “safe state” that cannot spread the problem to
other subsystems.67 Although it is beyond the scope of this paper, it is important to note that
the greatest impediment to fail-silence in a wheel is the possibility of a catastrophic failure
within the steering system. Our recommended solution to this is to implement a caster
system which allows a depowered wheel to safely follow the remaining functional wheels.

5.2.2 Wheel API
We provide a simple API to the wheel that consists of the following four simple commands:

* set_desired_speed

* set_desired_angle

e update_battery_status
* get_wheel_status

By limiting the communication between the wheels, we great simplify the process of
debugging our system and also open the way for later wheel developers to provide their
own compatible wheel robots, and later platform developers to utilize our wheel robots.

6 C. Temple, "Avoiding the Babbling-Idiot Failure in a Time-Triggered Communication
System,” ftcs, pp.218, The Twenty-Eighth Annual International Symposium on Fault-
Tolerant Computing, 1998

7 Deliverable D2.2 - Conceptual Hardware Architecture Specification Kosinski, R.]. (2008).

15

i

f

Drivetrain Function Allocation

L 1

Control Algorithms

(Two ECUSs for Fai-Salety) Flexray Wheel Robot Staug
Messages L :
\3 Controlier Steering R ey e
- and Force Conrot, | —p——————
Feedback Algorithms
Drive Torque
Guage
/ Wheel Drive Control Module Kh____
[Core | il
Control
Drive Mode Drive
" Throttle Encode
Algorithms Control < x ;
Algorithms
: Brake

‘Antilock
Braking
|wl \ Module

\ Wheel " ACTa0!
Control <
Regenerative
\ Es;":ﬂpm | b Braking Module B Force
! Gm:g e BB Module Gauge
% Functional %,
1 Module

Y

Figure 5 - The allocation of various functions within the Drivetrain, as well as basic communication flow.

Figure 5 depicts the allocation of the various functions, along with the message passing
between the Control Algorithm ECU and the Wheel Robots. As one can see, there are four
basic messages that are passed between the two groups.

5.2.3 Electronic Braking

The braking system of the wheel must take into account two important factors. One is the
automatic balancing of the braking between the mechanical brake force and the
regenerative electronic brake force provided by the reverse-driving of the wheel’s main
drive-motor. The other is the initiation of the antilock braking function built into the wheel.
In our system we describe these functions as the BrakeRegen and SafeThrottle function
respectively.

The BrakeRegen function keeps track of the current state of charge of the battery packs as
reported by the BatteryMan function. This prevents a possibly catastrophic thermal event
from occurring due to the overcharging of the battery packs. The message flow presented in
Figure 6 shows how the BrakeRegen function interacts and communicates with the other
functions present.

16

¢ -, BrakeRegen Message Flow

BatteryMan =,
%";3:3" Control Algorithms
e
: %
: %{5 Wheel
ThrottieByWire \
< =

‘l.---'"‘""'-\l A 'h"m\'
T S hY o
i N

power dwectly 1o --._.___._ %

* Processes are run in the order that their

left leading edge appears. Multiple sensors
correspond to multiple readings. | Time — - >

Figure 6 - A basic message flow for the BrakeRegen system. This depicts a single cycle within the communication
bus.

The goal of the SafeThrottle function is to develop a situation-adaptive system for drive and
braking support. The system increases the vehicle’s safety by detecting situations where a
loss of traction is imminent and then either warning the user or intervening in brake or
drive functions. The ABS function monitors the spin of the wheel for signs that the wheel is
about to lock up. A locked wheel can stop spinning much more quickly than a car can
decelerate even under optimal conditions.® When triggered, the ABS function reduces
braking until the wheel begins accelerating again. As described above, for optimal behavior,
this module must have very tight loop control with the braking module of the wheel robot
and is therefore placed in the actual WheelRobot module.

5.3 Steering Algorithm Design
The steering algorithm provides the logic necessary to convert the user’s simple inputs into
the appropriate messages to each wheel robot.

8 Semmler, S., Isermann, R, Schwarz, R., and Rieth, P., “Wheel Slip Control for Antilock
Braking Systems Using Brake-by-Wire Actuators,” SAE Technical Paper 2003-01-0325,
2003.

17

5.3.1 Steering Simulator

The general approach to the steering algorithm focuses on modularity and testability. With
this in mind, we created the control algorithm simulator, as seen in Figure 7. The simulator
allows for debugging of the complex system, and also allows for the isolation of the user
interface and wheel robot APIs.%

Figure 7 - A screenshot from the simulator found at http://mobility-server.media.mit.edu/drivetrain/car.html

An example of how the simulator simplifies complex interactions is the implementation of
the drive modes we described in Figure 2. In our simulator, they are controlled by a
separate DriveModeAlg object that controls the actual DriveMode that the vehicle is in and
presents methods that simulate the user requesting a mode change. By enclosing this logic
and the state of the vehicle’s DriveMode within a private object, we ensure that other
functions cannot change the DriveMode unexpectedly or illegally. The data encapsulation
and abstraction used further allow our simulator to provide a seamless interface between
the user’s inputs, and the API used for controlling the wheel robots.

5.3.2 User Interface Requirements

Through the decoupling of the user interface and the drive system, we gain the unique
ability to explore with novel user interfaces. With that in mind, the only requirements we
have are the ability to steer left and right, to adjust the throttle forwards and backwards,
and change the vehicle’s DriveMode. Because the user interface is a mission-critical system,
it may make sense to use redundancy to achieve fail-tolerance. For example, in our
prototype we chose to use a pair of redundant joysticks as the primary user interface.

? More screenshots, source code, and a link to the working simulator can be found in the
Appendix.

18

5.4 Energy Management System

The full extent of the vehicle’s energy management system is beyond the scope of this paper.
However, it is important to consider the redundancy necessary for safely operating the
system using both the high-voltage and low voltage buses.

5.4.1 High Voltage Bus

In order to provide each wheel with an uninterrupted supply of power, and to allow for
regenerative braking, we recommend the following architecture for the high voltage system
within the vehicle:

High Voltage Energy Management System Architecture

Figure 8 - An example architecture for the high voltage energy management system powering CityCarControl.

5.4.2 Batteries
The system'’s battery pack must achieve certain benchmarks with regard to the following
criteria:

* Form Factor

* Energy
¢ Power
* Voltage

Since we are developing under extreme constraints on size and weight, but also want the
ability to rapid charge, the energy density and power density of the batteries are crucial.

5.4.2.1 Battery Form Factor

Each battery pack must fit in one of the compartments located between either the front
wheels or the rear wheels. Further, they must be accessible for maintenance and
replacement. If the battery packs retain their charge properties for 1000 cycles, for high-use

19

vehicles (more than 5 recharges per day) we predict that battery replacement may be as
common as once every six months.

5.4.2.2 Battery Energy
In order to provide the desired maximum range of 60 km in a loaded vehicle, we estimate
that t at least 10 kW-h of energy must to be contained within the vehicle’s batteries.

5.4.2.3 Battery Power
To provide power to the Powertrain and to all subfunctions of the vehicle, we need to be
able to draw up to 30 kW from the batteries for peak operation.

Additionally, in order to charge the battery packs within 15 minutes, they need to be able to
absorb 40kW when rapidly charging. This may require additional cooling during the
charging process.

5.4.2.4 Operating Voltage

Higher voltages allows for thinner wires and less energy loss throughout the wiring of the
system. However, limitations are imposed by both the chemistry of the battery packs, and
the operating voltages of the drive motors.

We suggest a maximum operating voltage of 264 V for each of the battery packs in the
battery system. Further, we suggest that between 160V and 240V be used on the main high
voltage bus. During the lifetime of the battery packs, their operating voltage will decrease
from their initial operating voltage. By setting the voltage of the bus to significantly lower
than that of the battery, we can use a unidirectional buck-boost converter, simplifying the
system and allowing for cost savings.

Assuming the use of a unidirectional buck-boost converter, and a maximum battery pack
operating voltage of 264V, there is a tradeoff to be considered when determining the
operating voltage of the drivetrain system:

* Ahigher voltage (~240V) will allow the system to operate more efficiently for some
time. However, as the battery pack degrades, it’s voltage will decrease to 240V fairly
quickly.

* Alower voltage(~160V) would allow the battery pack to last longer, as more
recharge cycles can take place before the battery voltage will be reduced to 160V.
However, more energy will be lost in the wires running through the system, and late
stage batteries may have significantly worse total energy stores.

We recommend an operating voltage of 200V in order to provide a good balance between
these competing goals.

5.4.3 Motor Controllers

We will be using Reductive Controllers to power the drive motors in each wheel robot. This
MCU also functions as a rectifier or inverter, allowing us to use three-phase AC current to
charge the batteries.

5.4.4 Safety Switches
We have a set of safety switches that are used in the case of a fault such as a soft-short to
minimize damage.

20

5.4.5 Low Voltage Bus

The low voltage bus provides power to all systems that operate near 12 Volts. For the
purpose of redundancy, we create two redundant low voltage power buses that share no
connection point. These independent buses allow us to ensure fail operability of the mission
critical ECUs.

Low Voltage Energy Management System Architecture

Drivetrain

Information, Chassis, Buck
Body Systems and Safety pred-sry

i
i
?
e
i
.

Figure 9- An example architecture for the low voltage energy management system powering CityCarControl.

6 Conclusion

Through our investigation of the CityCarControl system, we have laid the foundation for a
drive-by-wire solution that allows vehicle designers to create a product with adjustable
vehicle dynamics, omnidirectional steering, regenerative braking, chassis folding and
customizable user-interfaces. We believe that by applying popular programming best-
practices like data-abstraction and message passing, we can greatly reduce the time,
expense, and complexity of designing vehicles incorporating myriad novel features.
Furthermore, through the simulation and the partitioning of the system into the logical
subcomponents we have described, we believe that we can greatly reduce the length and
complexity of the subsequent development process of said vehicle.

We foresee three important areas of future study stemming from the work presented in this
paper. Generally these three areas correspond to the user interface, the vehicle dynamics,
and the safety system. We describe each problem below, and give suggestions for further
research.

As we described early in this paper, one of the advantages of a drive-by-wire system is its
flexibility with regard to various user-interfaces. However, with this broadening of
possibilities comes the responsibility of evaluating the usability and safety of these new

Z1

user-interfaces. Thus we suggest that a further area of study is the development of sensible
user interfaces to allow for usability and universal accessibility.

The vehicle dynamics of the system are another area that must be properly evaluated. By
allowing the vehicle to fold, we force designers to consider the dynamics and properties of
both a folded and an unfolded vehicle. However, by controlling each wheel independently
we gain the ability to dynamically adjust the vehicle’s handling capabilities on the fly. The
ramifications of this shift in design warrant further study but are beyond the scope of this

paper.

Finally, an in depth safety analysis of CityCarControl is necessary before it may be used in
commercial production. As a starting point, we present our basic hazard analysis along with
Automotive Safety Integrity Level (ASIL) decompositions in section 7.3 of the attached
appendix.

22

7 Appendix

7.1 Block Functional Modules and Sensors

23

Key

Sensor

g

DriveMode

Block Functional Modules and Sensors

Autonomy

Telematics

- Wireless
. Cannection

: - : { Swearing
- Encoder
SteerByWire ot @

SafeThrotlle

BrakeRegen

TrrottieByWire

Joystick

/ Contro!

FoldByWire

1 >4 i Batery
BatteryMan j : { e)

Primary Actuators
and Sensors

24

Figure 10 - This diagram provides a complete picture of the major functional modules and their primary actuators
and sensors.

7.2 Preliminary Communication Flow

We present some preliminary solutions for the communication flow of the functions of the
vehicle. Processes on the left of the diagram begin first and progress sequentially to the
right of the diagram. These diagrams may serve as a template for the development of a fully
functional system implementing CityCarControl

7.2.1 DriveMode Message Flow
DriveMode Message Flow

%%’ DriveMode D ‘,&"\d’q
i ~ o "
‘ Transition 10 requested drive
:odlhhn:"‘r:'ﬂ currentode ———»| Relay drive mode information.
w '_Mmm S it
utors — ¢ %%
Y L
::‘ ;:‘wx Stere angles of sieenng -mm‘ Determine ao0raot até
£” amotios Soetverce smostes ey Rty
Crrespe: g 0 .aomgfv-?u_ S c—
~ ? P ——
q’b O%o
f é -~ Ny
/ yd Wheel e N

* Processes are run in the order that their
left leading edge appears. Multiple sensors r Time
comespond to multiple readings.

Figure 11

25

7.2.2 SafeThrottle Message Flow

SafeThrottle Message Flow

Control Algorithms

(Gyraszapn)

—
e

“a

i ‘SfmerByWire T C?eu vehicle is
% Frequires: wheol - whee! d l:a"::ngnm Ifl::ms
- B — jrection the w S
;7 arglesupoaed ' angles are facing, I not, ske Wividy Wiheg, i, T
e g in are frame _ - Ioknriacl Dowe,adu 1l et -
e - Meimenty ~—— p" ;
b v
. ThrotileByWire ™,
e - -] L
- “ThrottleByWire ™+ Cheek d 2l whaels are i rents et
) s
'\ drequies:iwheel . wheel tuming atrear the | — powel
-" soseds wocated ' speeds same spead. If not,
‘L wihinore frame L ¢ traction has beenlosl.

Wheel

Chaek if brakes have

Creckif brakes nave
lozked. laduce trake

Actuator

* Processes are run in the order that their
left leading edge appears. Multiple sensors
correspond to multiple readings.

Time

Figure 12

Checx f bra«es have i
) 7 tocked. Reduce brake locsed. Redute brake -t L e
force ol sc. Also disable force s0. Also disable toree if 55, Also disable Reg % i
regenerative raxing. regenerabive braking. ragenerative braking. ' B K'Enehr\%l:jvel i
v raking ule ¢
f 1! i ? 1 y f v Y~ Erequires: Batery ‘,
- = .- © eharge state upested ¢
) g3 b1 23 e ‘ ; % .
g QE § 'Q,E g; i’,ﬁ .. within one frame. e
Y S
; Y h L ; \ o0
” \ ™
Brake Brake
., Actuator

>

26

7.2.3 SteerByWire Message Flow

SteerByWire Message Flow

___Control Algorithms
geernd el
Aggrogate camert anghes
‘&;,’b I G .3"':'..:.‘"."'&
R S N
wf_ S *%%%,
/, Wheel S
o | | sootng s +f | S s ;,,:;m..,.,:-
7 N N
5, . .

T ——————
i
Encoder

* Processes are run in the order that their
left leading edge appears. Multiple sensors
correspond 10 multiple readings.

Figure 13

27

7.2.4 ThrottleByWire Message Flow

.
ThrottleByWire Message Flow
— — Control Algorithms
‘—-___‘:..-.‘_ e e
s |
s, SafeTnrote ~.__ e Rosiy
2z 2 adisstments adjusimants 1o
w\"::g .—«"’/""' -t oni wheel pewers.
» 5
Agaregate S
current wrzsl = o APETESRLE ﬂesmr!firmm /
sgeacs. i a :. fostek a
% ':f’e-, ‘:, Autonomy R \@ 4{ ' "
.r\ S \”J__—“_lpsguoo a;,& & c%%
e~y / it
N w3
L) - Calgulata =
ey DriveMode * = dtive mode ————a»| cesired power %
. " for each whsel.
5 Btk -
/ Wheel \
. oeec.
Set naw desireoPower, AT b
Pasitve of negatve | desirad. f BrakeRegen 3
powEr datermines Pawor ~®'. @requies: Banery *.
brakrg or drving. ,~ cnzre slate upeated ¥
. winin one frama.
Ca!c.zaine current :"G.'ye RTEY g
wheel spead. Gﬁe'. \ -——
f Cr\a“g(e tcitie powear Change throtile sower
o 1 safe. Erequires: i saf
& / updated cesredPower,
Ed o
o o
Drive Torque Drive Torque
Guage Guage
° Processes are run in the order that their
left leading edge appears. Multiple sensors I Time
cerrespend 10 multiple readings.
Figure 14

28

7.2.5 BrakeRegen Message Flow

BrakeRegen Message Flow

> 4

A,

%\ Control Algorithms

State upcates fom

BateryMan Pelays

Tamery charge staus
1 wheel.

%,
o Wheel
@
\
\ rrw:‘w

power decty io

.__“_H_____.*-.GN? S—— E \ m"::”"’

* Processes are run in the order that their

Figure 15

29

7.2.6 Infotainment Message Flow
Infotainment Message Flow
CAN BackBone
v -
£ Infotainment
\ Update approprate
osplaybode models:
el | L g | E e
e Chanrges the current
funcrionality o the
o | | oesmotos ™| | gl | [T,
Stree, Bl
! Stale updareg
/ \\\- Rander Sereen, \\
y,
o S oy
Touchscreen Display |
Time >

* Processes are run in the order thal their
left leading edge appears. Multiple sensors
correspond 1o multiple readings.

Figure 16
7.2.7 FoldByWire Message Flow
FoldByWire Message Flow
Control Algorithms
':. DriveMode “'.
& ";_jea
& Folding ’
N
Randirpu e o Compzss inputs. enter dosirod ﬁmﬁ:ﬂ:&
o T e poston | |-
AsDropnale.
Read inpu: ms‘.\\of\

- oo jCyEtck.

E 4 4%‘.

§ ; B
Foldi Foldi 2
roms X ooy) Tne

Encoder Encoder e S

* Processes are run m me ortser that their
Time >

left leading edge appears. Multiple sensors
correspond 1o multiple readings.

Figure 17

30

7.2.8 Safety Message Flow

7.2.9 BatteryMan Message Flow

BatteryMan Message Flow .

{ wanagement 4
Control Algorithms P W
w
Staee ugaares kom u"ﬂm
/v St |
fﬁﬁ
_~ Energy Management System
] | =
Pl

* Processes are run in the order that their

left leading edge appears. Multiple C Time

correspond 10 multiple readings.

. Figure 18

7.2.10 Telematics Link Message Flow

7.2.11 Autonomy Message Flow

31

Autonomy Message Flow
Control Algorithms

. DriveMode *, 5. SteeBywie ", ThotleByWire =,

4 2. 5./
&, ks S
E > &
e B YeE
_________________________________ whsssscsnssmsegaiessmalivasaa o e ——

Autonomy Box
| (Implemented by MIT)

L

o -
o

\z\e\a@&
R o

RADAR

. i
3 Telematics Link =,

LIDAR

* Processes are run in the order that their

left leading edge appears. Mullipie sensors
correspond to multiple readings. L Time

Figure 19

7.3 ASIL Decomposition
For the purpose of determining the functional safety requirements of each function in the
system, we perform a hazard and risk analysis on each.

For each possible hazard, we rate the severity of the hazard (S), the probability of exposure
(E), and the controllability of the hazard (C). Based off of these three estimations, we assign
each hazard an Automotive Software Integrity Level (ASIL) rating using the guidelines put
forth in [S02626210

7.3.1 DriveMode Function ASIL Decomposition
There are several possible hazards related to the DriveMode function to consider. These
include:

* Arequested or unrequested transition out of Standard (Driving) Mode while driving
at high speed. (S3 E4 C3 ASIL-D)

* Aninternal folding state change that does not reflect the actual folding state of the
vehicle while driving unfolded at high speeds and cornering quickly. (S3 E4 C1 ASIL-
B)

* Aninternal folding state change that does not reflect the actual folding state of the
vehicle allowing the driver to travel at high speeds while folded. (S3 E2 C1 QM)

101S0O 26262-3, Page 10, Table 4

32

7.3.2

An unrequested transition out of Parked Mode while the vehicle is parked. (S2 E4 C2
ASIL-B)

SafeThrottle Function ASIL Decomposition

There are several possible hazards related to the SafeThrottle function to consider. These
include:

7.3.3

An unnecessary increase in braking power to one or more wheels due to a problem
with the Electronic Stability Control or Electronic Brake Force Distribution functions
when the vehicle is moving at high speeds. (S3 E4 C3 ASIL-D)

An unnecessary decrease in throttle power to one or more wheels due to a problem
with the Traction Control function when traveling at high speeds in traffic. (S3 E3 C2
ASIL-B)

A failure in the initiation of antilock braking function leading to a single wheel’s
brake locking. (S3 E4 C3 ASIL-D)

A problem with the antilock braking function leading to all wheels’ brakes failing to
activate. (S3 E4 C3 ASIL-D)

A problem with the antilock braking function leading to a single wheel’s brake failing
to activate. (SO E4 C3 QM, due to redundancy of the wheels)

SteerByWire Function ASIL Decomposition

There are several possible hazards related to the SteerByWire Function to consider. These
include:

7.3.4

A failure that causes one or more wheels to actively steer in an unrequested direction
while at high speed. (S3 E4 C3 ASIL-D)

A failure to place one or more wheel at the appropriate angle during O-turn. (S2 E4
C2 ASIL-B)

A failure that causes all wheels to lose steering power and passively steer in an
unpowered state while at high speed. (S3 E4 C3 ASIL-D)

A failure that causes one wheel to lose steering power and passively steer in an
unpowered state while at high speed. (SO E4 C3 QM, due to redundancy of the
wheels)

ThrottleByWire Function ASIL Decomposition

There are several possible hazards related to the ThrottleByWire Function to consider.
These include:

7.3.5

A failure that causes one or more wheels to increase their throttle in an unrequested
manner. (S3 E4 C3 ASIL-D)

A failure that causes one or more wheels brake in an unrequested manner. (S3 E4 C3
ASIL-D)

A failure that causes one or more wheels to lose the ability to brake or drive as
requested. (SO E4 C3 QM, due to redundancy of the wheels)

BrakeRegen Function ASIL Decomposition

There are several possible hazards related to the BrakeRegen Function to consider. These
include:

33

* A failure that causes a brake to continue to use regenerative braking after the
batteries are already full, leading to a thermal event and loss of steering control in at
least two wheels. (S3 E4 C3 ASIL-D)

* Afailure that causes braking to be impaired in a single a wheel. (S2 E4 CO QM, due to
redundancy of the wheels)

* Afailure that causes one or more wheels brake in an unrequested manner. (S3 E4 C3
ASIL-D)

7.3.6 Infotainment Function ASIL Decomposition

There are several possible hazards related to the Infotainment Function to consider. These
include:

* Afailure that causes the rear-view video to fail while backing the car up. (S2 E3 C1
QM)

* Afailure that prevents up to date diagnostic information from being displayed. (52
E4 CO QM)

* Afailure that causes the stereo system to suddenly become very loud. (S2 E4 CO QM)

7.3.7 Body Systems Function ASIL Decomposition

There are several possible hazards related to the Body Systems function to consider. These
include:

* Afailure that causes the headlights to go out while traveling at high speeds through
the dark. (S2 E3 C1 QM)

* Afailure that causes the seat to adjust itself into an uncomfortable position while
traveling at high speeds. (S2 E3 C1 QM)

* Afailure that prevents the user from being warned of impending battery exhaustion,
resulting in loss of control. (S3 E4 C3 ASIL-D)

* Afailure in the network management system that causes a component of the drive or

energy management systems to enter sleep mode when not requested. (S3 E4 C3
ASIL-D)

7.3.8 Canopy Function ASIL Decomposition

There are several possible hazards related to the Canopy Function to consider. These
include:

* A failure that causes a requested or unrequested opening of the canopy while
traveling at high. (S3 E4 C2 ASIL-C)

7.3.9 FoldByWire Function ASIL Decomposition

There are several possible hazards related to the FoldByWIre Function to consider. These
include:

* Afailure that causes a requested or unrequested folding of the vehicle while
traveling at high. (S3 E4 C2 ASIL-C)

7.3.10 Safety Function ASIL Decomposition
There are several possible hazards related to the Safety Function to consider. These include:

* Afailure that causes the airbag to deploy unnecessarily while stationary (S1 E4 C3
ASIL-B)

34

* Afailure that causes the airbag to deploy unnecessarily while driving (S3 E4 C3 ASIL-
D)
* Afailure that prevents the airbag from deploying during impact (S3 E4 C3 ASIL-D)

7.3.11 BatteryMan Function ASIL Decomposition
There are several possible hazards related to the BatteryMan Function to consider. These
include:

* Afailure that causes all four wheels to lose power. (S3 E4 C3 ASIL-D)
* Afailure that prevents the driver from being notified of impending battery
exhaustion. (S3 E4 C3 ASIL-D)

7.3.12 Telematics Link ASIL Decomposition
There are several possible hazards related to the Telematics Link to consider. These include:

* A failure that causes the GPS system to fail. (SO E4 C1 QM)
* Afailure that prevents the system from assisting the user with inter-vehicular
communication. (S0 E4 C1 QM)

7.3.13 Autonomy Function ASIL Decomposition
There are several possible hazards related to the Autonomy Function to consider. These
include:

* Afailure that causes the vehicle to lose control when driving autonomously in an
occupied area and hit a bystander. (S1 E2 C3 QM)

* Afailure that causes the vehicle to lose control when driving autonomously in a
controlled environment and destroy property (S0 E2 C3 QM)

7.4 Drivetrain Simulator Source Code
Processing Code capable of being run with the IDE found at www.processing.org or the tools
at www.processingjs.org.

Live demo can be found at http:

Here are screenshots of the system in action:

35

Figure 20

Rear Right ECU: Change Desired Angle: 49.76164169072618
Rear Left ECU: Change Desired Angle: -49.76364169072618
Front Left MCU: Change Throttle: -52 percent of max.
Front Right MCU: Change Throttle: 52 perceat of max.
Rear Right MCU: Change Throttle: -52 percent of max.
Rear Left MCU: Change Throttle: 52 percent of max.

T

Figure 21

// Global variables
float wheelOffsetX;
float wheelOffsetY;
float X, Y;

float nX, nY;

boolean bover = false;

36

float sWidth, sHeight;

//Car Components

Chassis chassis;

SteeringControlAlg steeringControlAlg;
ThrottleControlAlg throttleControlAlg;
DriveModeAlg driveModelAlg;

Wheel wheelFL;

Wheel wheelFR;

Wheel wheelRR;

Wheel wheelRL;

WheelECU wheelECUFL;

WheelECU wheelECUFR;

WheelECU wheelECURR;

WheelECU wheelECURL;

//Enumerate Driving Modes

int normalMode = 0;

int hurricaneMode = 1;

int foldingMode = 2; //Disables driving while in the process of
folding

int unfoldingMode = 3; //Disables driving while in the process of
folding

//Colors
int bgColor = 124;

boolean messageMode;

[111717707110777771771777177777717777777777777777777777777777177177
111111777177711777117777711177171777 ,
[1111777117771177717777717/77/77777/77777//77///// ECUS
[1117710771777777777777777777777777777777177777777
[11777107107077107777717777777777777777777777777777777777777771777777
11111777177 71177711777711771717777

/*
Drive Mode Algorithm ECU Class
Determines active mode and sets the activeMode of the steering
Alg.
Singleton Pattern
*/
class DriveModeAlg extends Node{
String name;
int currentMode;
int lastMode;
float steeringInput;

37

DriveModeAlg(String name) {
super (name);
this.name = name;

this.currentMode = normalMode;
this.lastMode = normalMode;
}
void run(){
check folded status();
}
void check_folded status()({
if (currentMode == foldingMode && chassis.get length() ==
chassis.foldedL){
currentMode = lastMode;
}
if (currentMode == unfoldingMode && chassis.get length() ==
chassis.unfoldedL) {
currentMode = lastMode;

}
}
void h_mode(){
if (currentMode != foldingMode && currentMode !=

unfoldingMode) {
currentMode = hurricaneMode;
print message("Activate Hurricane Mode");

}
}
void n_mode() {
if (currentMode != foldingMode && currentMode !=

unfoldingMode) {
currentMode = normalMode;
print message("Normal Hurricane Mode");

}

}
/*Bring wheels straight, fold, put wheels back into mode they

were in before folding began.
Disable all inputs except unfold */
void fold(){
print message("Activate Folding Mode");

if (currentMode == foldingMode) {
//don't do anything
return;

}

else if (currentMode == unfoldingMode) {
//don't change lastMode

}

else{

//store the mode we were in before folding began
lastMode = currentMode;

38

}
//set folding mode

this.currentMode = foldingMode;
check folded status(); //are we already folded?

}

/*Bring wheels straight, fold, put wheels back into mode they
were in before folding began.
Disable all inputs except unfold */
void unfold(){
print message("Activate Unfolding Mode");

if (currentMode == unfoldingMode) {
//don't do anything
return;

}

else if (currentMode == foldingMode) {
//don't change lastMode

}

else{

//store the mode we were in before folding began
lastMode = currentMode;

}

//set folding mode

this.currentMode = unfoldingMode;

check folded status(); //are we already unfolded?
}
int get _mode(){

return this.currentMode;

}

String get mode string(){
if (get _mode() == 0)
return "Normal Mode";

if (get mode() == 1)
return "Hurricane Mode";
if (get mode() == 2)

return "Folding Mode";
if (get mode() == 3)
return "Unfolding Mode";

return "ERROR";

}
}

/*
Throttle Control Algorithm ECU Class
Singleton Pattern
*/
class ThrottleControlAlg extends Node{
String name;
float throttleInput;
ThrottleControlAlg(String name){

super (name) ;
this.name = name;
}
void process_input(float throttleInput) {
this.throttleInput = 1l-(throttleInput/300); //between -1 and

void run(){
int driveMode = driveModeAlg.get _mode();
if (driveMode==normalMode) {

change throttle(this.throttleInput,wheelECUFL,driveMode);
change throttle(this.throttleInput,wheelECUFR,driveMode);
change throttle(this.throttleInput,wheelECURR,driveMode);
change_ throttle(this.throttleInput,wheelECURL,driveMode);

}
else if (driveMode == hurricaneMode) {
float scalar = .75;//reduce the throttle power by some
scalar

change_throttle(-
this.throttleInput*scalar,wheelECUFL,driveMode);

change throttle(this.throttleInput*scalar,wheelECUFR,driveMode);
change_throttle(-
this.throttleInput*scalar,wheelECURR,driveMode);

change throttle(this.throttleInput*scalar,wheelECURL,driveMode);
}
else{
change throttle(0,wheelECUFL,driveMode);
change_throttle(0,wheelECUFR,driveMode);
change_ throttle(0,wheelECURR,driveMode) ;
change throttle(0,wheelECURL,driveMode);

}
}
/*
Determine desired throttle based on throttle input and drive
mode
*/
void change throttle(float throttleInput, WheelECU wheelECU,
int driveMode) {

Wheel wheel = wheelECU.wheel; //Get the wheel associated with

the wheel ECU
wheel.set_throttle(throttleInput);

40

/*
Steering Control Algorithm ECU Class
Singleton Pattern
*/
class SteeringControlAlg extends Node{
String name;
float steeringlInput;
SteeringControlAlg(String name) {
super (name) ;
this.name = name;

}

void process input(float steeringInput) {
this.steeringInput = steeringlInput;
if (driveModeAlg.get mode() == foldingMode ||
driveModeAlg.get mode() == unfoldingMode) {
//set all wheels to straight forwards
this.steeringInput = width/2; //set wheels straight

}
}

void run()({
int driveMode = driveModeAlg.get mode();
print message("Current Mode is:

"+driveModeAlg.get mode_string());
change_steering(this.steeringInput,wheelECUFL,driveMode);
change steering(this.steeringInput,wheelECUFR,driveMode);
change steering(this.steeringInput,wheelECURR,driveMode);
change steering(this.steeringInput,wheelECURL,driveMode);

//calculate the turn radius based on the current steeringInput
float get turn radius(){
float trOffset=0, trCenterX=0, trCenter¥=0;
if (driveModeAlg.get mode() == normalMode) {
//calculate desired turn radius
trOoffset = turn radius((this.steeringInput*2/width)-1);
trCenterX = trOffset;
trCenterY = chassis.carCenterY;
}
else if(driveModeAlg.get mode() == hurricaneMode) {
trCenterX 0; //hack to put it in the right place
trCenterY chassis.carCenteryY;

}
else if(driveModeAlg.get_mode() == foldingMode |

driveModeAlg.get mode() == unfoldingMode) {
//calculate desired turn radius

41

}

trOffset = turn radius((this.steeringInput*2/width)-1);
trCenterX = trOffset;
trCenterY = chassis.carCentery;

return trCenterX;

}
/%

Determine desired angle based on steering input and drive mode

*/

void change steering(float steeringInput, WheelECU wheelECU,
int driveMode) {
Wheel wheel = wheelECU.wheel; //Get the wheel associated with
the wheel ECU

if (driveMode==hurricaneMode) {

}

float yOff = chassis.carCenterY-wheel.wheelCenteryY;
float x0ff = chassis.carCenterX-wheel.wheelCenterX;

float angle = PI/2-atan(xOff/yOff);

//hack to keep it pointing forward
if(angle>(PI/2)){

angle = angle-PI;
}
//Send message with angle
wheelECU.set angle(angle);

else{

float trOffset =

this.turn radius((this.steeringInput*2/width)-1);

float trCenterX = trOffset;
// trCenterX = turn radius(X)
float trCenterY = chassis.carCenteryY;

float yOff = chassis.carCenterY-wheel.wheelCenterY;
float xOff abs (wheel.wheelCenterX-chassis.carCenterX) +

trCenterX;

float angle = PI/2-atan(xXOff/yOff);

//hack to keep it pointing forward
if (angle>(PI/2)){

angle = angle-PI;
}
//Send message with angle
wheelECU.set angle(angle);

42

// takes an input between -1 and 1, calculates turn radius.
// we let the minimum turn radius be 100px and the max be 10712
float turn_radius(float normSteeringInput) {
if (normSteeringInput<0){
//make positive, change scale, then make result negative
return -this.turn function(-normSteeringInput);
}
else{
return this.turn_function(normSteeringInput);

}

}
//maps [0,1] to [1075,1072]
float turn_function(float val)({
float sensitivity base = 10;
float sensitivity scalar = 3;
float offset = 2.3; //how tight is the closest turn radius?

//map [0,1] to [5,2]

val=offset+sensitivity scalar-(val*sensitivity scalar);
//use as exponent

val = pow(sensitivity base,val);

return val;

}

// Draws turn radii that show the turning range of the car
void draw_turn radii(){

float carCenterX = chassis.carCenterX;

float carCenterY = chassis.carCentery;

float wheelOffsetX = chassis.wheelOffsetX;

float wheelOffsetY = chassis.wheelOffsetY;

float TR = steeringControlAlg.get turn_radius();
//draw turn left and right radius based on calulated trCenter
// Draw inner turn radius

// Set stroke-color to grey

stroke(40);

strokeWeight(10);

// Set fill-color to clear

£i11(0,0,0,0);

if (driveModeAlg.get _mode() == hurricaneMode){
float wheelRadius= sqrt(pow(wheelOffsetX,2)
+pow(wheelOffsetY,2))+10;
ellipse(carCenterX,carCentery,
wheelRadius*2,wheelRadius*2);
}
else{
float leftTR = sqgrt(pow((TR+twheelOffsetX),2)
+pow(wheelOffsetY,2));

43

ellipse(TR+carCenterX, carCenterY, leftTR*2, leftTR*2);
float rightTR = sqrt(pow((TR-wheelOffsetX),2)

+pow (wheelOffsetY,2));
ellipse(TR+carCenterX, carCenterY, rightTR*2, rightTR*2);

}
}
}

/*
Wheel Robot Class
*/
class WheelECU extends Node{
float desiredAngle;
Wheel wheel;
String name;
WheelECU(String name,Wheel wheel){
super (name) ;
this.wheel = wheel;
this.name = name;
}
/*
Sets the desired angle, motor controller should take care of
the rest.
*/
void set_angle(float angle){
//we print this in degrees rather than radians for clarity
this.print message("Change Desired Angle:
"+str(angle*180/PI));
this.desiredAngle = angle;

//update steering MCU and receive updated position from it.
wheel.set angle(this.desiredAngle);

}
}

[117107777700777077
[17771771777777777777777777777777777
[17177/Flex
Ray///////1/1/171777777777777777777777777777777777777
[171777
[1777177777777777777777777777777777

/*
FlexRay Bus Class
Messages are sent over the Flexray network, all the nodes on the

FlexRay bus receive all
the messages and write them to their FlexRay buffer. The Bus

keeps track of all the nodes on it.
*/
class Bus extends NamedObject({

44

ArrayList nodes;
Bus(String name, ArraylList nodes){
super (name) ;
this.nodes = nodes;
}
void write(Message message) {
for (int i = nodes.size()-1; i >= 0; i--) {
//ArrayList doesn't know what it's storing so we have to
cast it
Node node = (Node) nodes.get(i);
node.to buffer(message);
print message(message+"");

}
}
}
/*
FlexRay Message Class
Messages are sent over the Flexray network

*/
class Message {
Node fromNode;
Node toNode;
String command;
float argument;

Message(Node FromNode, Node toNode, String command, float
argument) {
this.fromNode = fromNode;
this.toNode = toNode;
this.command = command;
this.argument = argument;
}
}
/*
FlexRay Node Class
Everything connected to the FlexRay bus with a FlexRay
tranceiver is a FlexRay Node.
*/
class Node extends NamedObject ({
ArrayList buffer;
Node (String name){
super (name) ;
buffer = new ArrayList(); //set up an empty arraylist
}
void to buffer(Message message){
buffer.add(message);

}

void read buffer(){
//read from front to back. Acts like a queue.

for

(int i = buffer.size()-1; i >= 0; i--) {

//ArrayList doesn't know what it's storing so we have to

cast it
Me
//
th

}
}
/* For
*/
void p
prin

}

/111117177
/11111177
/11117177
out)////
/111117177
/11111177

class Wh
float
float
float
float
float
degrees
Wheel (
supe
this

this.

this
this
}

ssage message = (Message) buffer.get(i);
figure out what to do with the message.
is.process(message);

now, just print the message instead of processing it.

rocess (Message message) {
t_message(message+"");

L1177 777777177
[1777777777777777777777777
/1/17//717//////////////////Wheels (and MCU abstracted
[177777777777177777777777777777777
[17771777771777
[177177771777777177777777777

eel extends NamedObject{

wheelCenterX;

wheelCenterY;

currentAngle;

currentThrottle; //between -1 and 1
maxSteeringSpeed = .1;//P1/180*5; //we can turn at 5
per frame

String name, float centerX, float centerY)({
r(name);//create the parent

.wheelCenterX = centerX;

wheelCenterY = centery;

.currentAngle = 0;

.currentThrottle = 0;

void update_folded_position(float centerY){

this

}
/*

.wheelCenterY = centerY;

Send desired angle to MotorController and receive actual angle

back
*/
void s

et_angle(float desiredAngle){

//figure out new current angle

float angleDiff = this.currentAngle - desiredAngle;

if (abs(angleDiff)<=maxSteeringSpeed) {
this.currentAngle = desiredAngle;

}

46

else if(angleDiff>maxSteeringSpeed) {
this.currentAngle = this.currentAngle-maxSteeringSpeed;

}

else if(angleDiff<-maxSteeringSpeed) {
this.currentAngle = this.currentAngle+maxSteeringSpeed;

}

void draw(){
pushMatrix();
£ill(0);
set throttle_color();
strokeWeight(10);
translate(wheelCenterX,wheelCenterY);
rotate(this.currentAngle);
ellipse(0,0,30,70);
popMatrix();
}
void set throttle_color(){
// stroke(0, 121, 184); default
// stroke(255*abs(currentThrottle), 121+(255-
121)*currentThrottle, 184+71*currentThrottle);
stroke(255*max(currentThrottle,0), 121+(255-
121)*currentThrottle, 184*(currentThrottle+l));

}

float get current_angle(){
return this.currentAngle;
}
void set throttle(float throttle)({
currentThrottle = throttle;
this.print message("Change Throttle: "+str(throttle*100)+"
percent of max.");

}
}

17177177177
111117177717 7717777777777777777777

/1177777117711 7/777/7///////////////////// Chassis and Sensors
1171111777777 77777777777777777777777777
[1117110770777777771777177
[117111177771777177777177777777777

class Chassis {
float chassisL;
float chassisW;
float wheelOffsetX;
float wheelOffsetY;
float carCenterX;
float carCentery;

47

float foldedL = 130;
float unfoldedL = 180;

Chassis(){

chassisL = 180;

chassisW = 150;
wheelOffsetX =chassisW/2-20;
wheelOffsetY =chassisL/2-25;
carCenterX =sWidth/2;
carCenterY =sHeight/2;

//Set up the car

wheelFL = new Wheel("Front Left MCU",carCenterX-
wheelOffsetX,carCenterY-wheelOffsetY);

wheelFR = new Wheel("Front Right
MCU",carCenterX+wheelOffsetX,carCenterY-wheelOffsetY);

wheelRR = new Wheel("Rear Right
MCU",carCenterX+wheelOffsetX,carCenterY+wheelOffsetY);

wheelRL = new Wheel("Rear Left MCU",carCenterX-
wheelOffsetX,carCenterY+wheelOffsetY);

//set up the ECUs
wheelECUFL = new WheelECU("Front Left ECU",wheelFL);
wheelECUFR = new WheelECU("Front Right ECU",wheelFR)

wheelECURR = new WheelECU("Rear Right ECU",wheelRR);
wheelECURL = new WheelECU("Rear Left ECU",wheelRL);
}
void update_folded_size(){
if ((driveModeAlg.get mode() == foldingMode) &&

chassis.chassisL>130){
chassisL-=2;
wheelOffsetY =chassisL/2-25;
}
else if ((driveModeAlg.get mode() == unfoldingMode)
chassisl<180){
chassisL+=2;
wheelOffsetY =chassisL/2-25;

}
}

void run(){
//folding stuff
if (((driveModeAlg.get mode() == unfoldingMode) &&
chassis.chassisL<180) ||

.
14

&&

48

(driveModeAlg.get mode() == foldingMode) &&
chassis.chassisL>130) {

update folded size();

wheelFL.update folded position(carCenterY-wheelOffsetY);

wheelFR.update folded position(carCenterY-wheelOffsetY);

wheelRR.update folded_position(carCenterY+wheelOffsetY);

wheelRL.update_ folded_position(carCenterY+wheelOffsetY);

}

void draw(){

£ill(0, 200);

stroke(0, 121, 184, 255);

strokeWeight(10);

// ellipse(carCenterX,carCenterY,chassisW,chassisL);

ellipse(carCenterX,carCenterY,chassisW,chassisL);

float get length(){
return this.chassisL;

}

[101777
1117177777777 777777777777777777777

117171171777 7777777/77/7/7/7//7/7/7/7//////DISPLAY UTILITIES -
CONTROLS////////////////1///////1/1/17///7//71/
[177177777707777777777777777777777777777777777777070777777777777777
1177770077777 777777777777777777777

class NamedObject{
String name;
NamedObject(String name) {
this.name = name;
}
void print message(String message){
if (messageMode)
println(name + ": " + message);

void draw_controls(){
float bh 20;
float bw 85;

49

float bx = 20;

float by = 20;

strokeWeight(1l);

/ /modes

mode_ box(normalMode, "Normal (n)",bx,by,bh,bw);

bx = 140;

by = 20;

mode box(hurricaneMode, "O-Turn (h)",bx,by,bh,bw);

//folding

bx = 20;

by = 50;

fold box(true,"Fold (f)",bx,by,bh,bw);

bx = 140;

fold box(false,"Unfold (u)",bx,by,bh,bw);

//messages

by = 80;

stroke(255);

text("Messages (m):",20,by+bh-3);

bw = 30;

bx = 145;

messages_box(true, "On",bx,by,bh,bw);
bx = 195;

by = 80;

messages_box(false,"Off",bx,by,bh,bw);

}

void mode box(int newDriveMode,String newDriveModeText, float
bx,float by, float bh, float bw){
int thisColor = 255;
int contrastColor = 000;
fill(thisColor);
stroke(153);
// if the cursor is over the grey box
if (mouseX > bx && mouseX < bx+bw &&
mouseY > by && mouseY < by+bh)
{
bover = true;
if (mousePressed) {
stroke(000);
fill(contrastColor);
if (newDriveMode == hurricaneMode) {
driveModeAlg.h mode();
}
else if (newDriveMode == normalMode) {
driveModeAlg.n _mode();

}
}

else {

stroke(000);
bover = false;

}

}
// Draw the box

rect(bx, by, bw, bh);

£i11(000);

textSize(16);

text (newDriveModeText,bx+3,by+bh-3);

}

void fold box(boolean newFolded,String foldModeText, float
bx,float by, float bh, float bw){
int thisColor = 255;
int contrastColor = 000;
fill(thisColor);
stroke(153);
// if the cursor is over the grey box
if (mouseX > bx && mouseX < bx+bw &&
mouseY > by && mouseY < by+bh)
{
bover = true;
if (mousePressed) {
stroke(000);
fill(contrastColor);
if (newFolded) {
driveModeAlg.fold();
}
else {
driveModeAlg.unfold();

}
}

else {
stroke(000);
bover = false;

}

}
// Draw the box

rect(bx, by, bw, bh);
£i11(000);
textSize(1l6);
text (foldModeText,bx+3,by+bh-3);
}
void messages_box(boolean newMessageMode,String messageModeText,
float bx,float by, float bh, float bw){
int thisColor = 255;
int contrastColor = 000;
fill(thisColor);
stroke(153);
// if the cursor is over the grey box
if (mouseX > bx && mouseX < bx+bw &&

}

mouseY > by && mouseY < by+bh)
{
bover = true;
if (mousePressed) {
stroke(000);
fill(contrastColor);
messageMode = newMessageMode;
}
else {
stroke(000);
bover = false;
}
}
// Draw the box
rect(bx, by, bw, bh);
£i11(000);
textSize(16);
text (messageModeText,bx+3,by+bh-3);

void keyPressed()

{

}

// if the key is between 'A'(65) and 'z'(122)
if(key == 'H' || key =='h') {
driveModeAlg.h mode();

}

else if(key == 'N' || key =='n') {
driveModeAlg.n mode();

}

else if(key == 'M' || key =='m') {
messageMode = !messageMode;

}

else if(key == 'F' || key =="£f') {
driveModeAlg.fold();

}

else if(key == 'U' || key =='u') {
driveModeAlg.unfold();

}

LITTITIL7T7777007707777777077777777107777777777777777777777777177177
[1717177777777777777177771177771777

117177777 77777777777/777/77//77///////////DISPLAY - SETUP AND
DRAW//////111117171771/111777777111777777
LITIITTTT77777777777777777777777777771777777777717771777777717777
1177777777777 77777777777717117777777

52

void setup(){

// Setup the Processing Canvas

messageMode = false;

chassis = new Chassis();

steeringControlAlg = new SteeringControlAlg("Steering Control
Alg");

throttleControlAlg = new ThrottleControlAlg("Throttle Control
Alg");

driveModeAlg= new DriveModeAlg("Drive Mode Alg");

size(1000, 600);

//for some reason width and height are buggy

swWwidth = 1000;

sHeight = 600;

strokeWeight(10);

frameRate(15);
X = width / 2;

Y height / 2;
nX = X;
ny = Y;

// Main draw loop
void draw(){
// Fill canvas grey
background(100);

//Read inputs from Joystick
driveModeAlg.run();
steeringControlAlg.process_input(X);
throttleControlAlg.process input(Y);
steeringControlAlg.run();
throttleControlAlg.run();

chassis.run();

// wheelFL.run()
// wheelFR.run()
// wheelRR.run()
// wheelRL.run()

pushMatrix();
translate(width/2,height/2);
steeringControlAlg.draw_turn_radii();

// Draw wheels (clockwise)
wheelFL.draw();
wheelFR.draw();
wheelRR.draw();

wheelRL.draw();

// Draw Car translucent
chassis.draw();
popMatrix();

draw_controls();

// Set the input's next destination
void mouseMoved() {

X = mouseX;

Y = mouseY;

}

54

