
DESIGNING AN ECOLOGY OF DISTRIBUTED AGENTS

by

Nelson Minar

B.A. Mathematics (1994)

Reed College

<nelson@media.mit.edu>

http: //www.media.mit.edu/~nelson/

Submitted to the Program in Media Arts and Sciences, School of Architecture and
Planning, in partial fulfillment of the requirements for the degree of Master of Science in

Media Arts and Sciences at the Massachusetts Institute of Technology

September 1998

@1998 Massachusetts Institute of Technology. All rights reserved.

Author

Nelson Minar
Department of Media Arts and Sciences

August 7, 1998

Certified by Pattie Maes

Associate Professor of Media Arts and Sciences
/,T -Mediatab

Accepted by O tphen A.
Stphen A. Kenton

Professor of Media Arts and Sciences
Chair, Departmental Committee on Graduate Students

Program in Media Arts and Sciences

fr

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NOV 3 0 1998

LIBRARIES

2

DESIGNING AN ECOLOGY OF DISTRIBUTED AGENTS

Nelson Minar

<nelson@media.mit.edu>
http://www.media.mit.edu/~nelson/

Submitted to the Program in Media Arts and Sciences, School of Architecture and
Planning, on August 7th 1998, in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

The Internet is a rich environment for computation. There is a need for design principles
to organize distributed computational activity on the Internet, something analogous to the
way the World Wide Web is an organizing principle for documents. This thesis introduces
the idea of an ecology of distributed agents as a paradigm for building distributed software.
Computers run servers that are local environments of computation. Applications are built out
of agents that live in these servers. Mobile agents move to servers to use local resources and
servers support agent query services to allow agents to discover each other and communicate
information over the network. A system that creates an ecology of distributed agents, Straum,
is presented with a technical discussion of its implementation. Two applications, commu-
nicating user presence and monitoring server activity, are presented along with sketches of
other possible applications. Straum and the underlying design paradigm are evaluated with
respect to other distributed systems research. Finally, ideas for future work are presented,
plans towards making the Internet a natural environment for computational activity.

Acknowledgments

I am very grateful for the advice and support of my advisor, Pattie Maes, for her feedback
and for keeping me focussed in my research. The comments and time given by my readers
Mitchel Resnick and Judith Donath have greatly improved and clarified this work. Thank
you to MIT UROP Kyle Jamieson for his contributions to the Straum software and to UROP
Maggie Oh for designing agent icons. The dist-obj community has been a wonderful
forum for discussing ideas about distributed systems; I am particularly thankful for the con-
tinued input of Ron Resnick, Joe Kiniry, and Mark Baker. Finally, I owe a lot to my friend
and colleague Kwin Kramer. Our conversations and work together have greatly influenced
this thesis.

4

DESIGNING AN ECOLOGY OF DISTRIBUTED AGENTS

Thesis Readers

Advisor
N-/ V

ie Maes
Associate Professor of Media Arts and Sciences

MIT Media Lab

Reader
Mitchel Resnick

Associate Professor of Media Arts and Sciences
MIT Media Lab

Reader
Judith Donath

Assistant Professor of Media Arts and Sciences
MIT Media Lab

6

Contents

1 Computation in the Network
1.1 The Rise of the Network
1.2 The Lesson of the World Wide Web
1.3 Active Internet Processes
1.4 Straum
1.5 Overview of the Thesis Document

2 Ecologies of Distributed Agents
2.1 Distributed Object Systems
2.2 Distributed Agents
2.3 Ecologies of Agents

2.3.1 Overview of Ecology
2.3.2 Servers
2.3.3 Agents
2.3.4 Existing Software Ecologies

2.4 Conclusion

3 Presence, Activity, and other Applications
3.1 The Straum Application Design
3.2 User Presence

3.2.1 Presence Applications
3.2.2 Straum's Presence Application . . .
3.2.3 Implementation Description
3.2.4 Reflection on Presence Application

3.3 Web Server Status
3.3.1 System Status Applications
3.3.2 Straum's System Status Application
3.3.3 Implementation Description

11
. 1 1
. 12
. 14
. 15
. 16

19
. 19
. 2 1
. 2 3
. 24
. 24
. 2 6
. 2 6
. 27

3.3.4
3.3.5

3.4 Other
3.4.1
3.4.2

Reflection on Implementation
Possible Improvements

Application Scenarios
Monitoring Multiple Servers
Workgroup Community

3.4.3 Ambient Displays and Smart Rooms .
3.4.4 Automobiles
3.4.5 Automated Trading

3.5 Summary

4 Straum Implementation and Evaluation
4.1 Servers

4.1.1 Technology Base
4.1.2 Resource Management
4.1.3 Agent Query Services
4.1.4 User Interface

4.2 A gents .
4.2.1 Agent Requirements
4.2.2 Agent Support

4.3 Evaluation and Comparison to Other Systems
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

Voyager's Distributed Object Model
Distributed Object Systems
Mobile Agent Systems
Group Communication
Jini

5 Conclusions and Future Work
5.1 Lessons for Distributed Systems

5.1.1 Transparency and Location
5.1.2 Compartmentalization of Function .
5.1.3 Mobile Agents

5.2 Future Implementation Work
5.2.1 Technology upgrade: RMI and Jini
5.2.2 Semantic Ontology
5.2.3 Agent Persistence
5.2.4 Security

5.3 Future Design Work
5.3.1 Dynamic Monitors

39
40
41
41
43
44
46
47
48

67
. 67
. 67
. 68
. 69
. 69
. 69
. 70
. 70
. 71
. 72
. 72

5.3.2 Agent Parameters . 72
5.3.3 Server Directories . 73
5.3.4 Server Neighborhoods . 73
5.3.5 Ontology Coordination . 74
5.3.6 Distributed Agent Construction Kits 75
5.3.7 Economic Coordination . 76
5.3.8 Evolving Agents . 76

5.4 The Future of Internet Systems . 77

A Agent Bestiary 79
A. 1 Information Agents . 79
A.2 Data Analysis Agents . 80
A.3 Display Agents . 81

B Class Hierarchies

10

Chapter 1

Computation in the Network

1.1 The Rise of the Network

With the advent of the Internet age, the nature and structure of computation has fundamen-
tally changed. A computer is no longer a box standing in the corner that operates only when
the high priest is standing in front of it mumbling the right magic words. Computers are on
our desks, part of our daily lives both at work and at home. And desktop computers are no
longer isolated; they are on the Internet, often 24 hours a day, a mere packet away. The Inter-
net is a global network swarming with activity. Millions of computers are sending messages
back and forth to each other all the time for purposes both mundane and arcane. What can
we do with all of the power of this network?

As the Internet grows larger the capability of the system increases. The most obvious
increase is in CPU power: thousands of computers crunching numbers together can perform
impressive tasks such as breaking cryptosystems [3] [22] [59] solving number theory prob-
lems [68], or processing huge volumes of radio signals [72]. Similarly, networked computers
can also provide raw storage capacity, allowing documents to be published literally forever

[1].
Desktop computers are currently the most ubiquitous networked devices, with the famil-

iar interface of a bitmapped screen, a keyboard, and a mouse. But all sorts of other computers

are also part of the digital other, devices with interesting ways of interacting with people.
Wrist watches, automobiles, coffee machines [70], even people's bodies [46] [39] are all be-

CHAPTER 1. COMPUTATION IN THE NETWORK

coming networked. As networked devices infiltrate our physical world, we will see more and

more applications of computer networks in our daily lives. Smart objects can bring in data

from our physical environments, such as biosensors carrying in information about a runner's

heartrate [41]. They can also express data, communicating information in more intimate and

immediate ways [47]. The question is, how do we make all of these devices work together?

The growth of the Internet means that the network itself will become more active, with

more programs and processes operating and interacting on the network. Key enablers of this

transformation are low-cost computers and wireless networks. But these technologies only

make physical networking possible, they do not say much about how devices will interoper-

ate, about what they will say when they are networked.

There are many hard questions in creating systems out of a myriad of networked com-
ponents. What will the devices do? How will they work together, coordinate, cooperate? A
particularly difficult problem is the open Internet environment, where computers come and

go without any central approval. How do we build distributed systems that work with such

diverse components?

These issues can be summed up with one essential question; how do we build computa-
tional activity in the Internet? This thesis proposes a particular methodology to address the
design question, an "ecology of distributed agents." In pursuing this idea, suggestions for
specific applications will be developed and used as a means to understand the future of the

Internet as an environment for interacting processes.

1.2 The Lesson of the World Wide Web

The central question in the design of large-scale distributed systems is "how do we manage

complexity?" System design is particularly difficult on the Internet because the Internet is an

open network: anyone can add or remove a computer to it at any time. While this openness is

the major strength of the Internet, it is also one of its greatest weaknesses. There is no way to

trust another computer on the Internet, except in very limited cases. Our daily experience on

the Net is plagued by random outages, faulty software, and security problems. The Internet is
also largely decentralized, with very limited administration. System designers cannot rely on

1.2. THE LESSON OF THE WORLD WIDE WEB

a centrally administered reliable network of trusted computers.' How do we get something
useful done on this difficult substrate?

The World Wide Web is the most powerful example we have today of a large-scale In-
ternet system. The Web was started only in 1990, but in just eight years it has grown to
an enormous size, encompassing some 320 million documents [28]. The Web has literally
transformed our notion of distributing information. Not only can anyone publish documents
(and anyone does!), those documents are available instantaneously anywhere in the world at
an incredibly low cost, and exist in a rich interactive document context.

As a distributed computer system, the Web is fairly simple: the components are (mostly)
inert documents, not running programs like those that most distributed systems researchers
work with. The technology is quite basic: the HTTP protocol enables a document to be
downloaded, and the URL gives a document an address. The interactions between compo-
nents are very limited: no complicated interlocking transactions, just the humble hyperlink
to express "this document is related to that document." But despite the relatively simple and
static nature of the Web, it is valuable to look at what makes it work as a lesson on how to
build Internet systems.

The Web is not remarkable only because of the volume of information: it is the con-
nections between documents, their interaction, that makes the Web truly useful. A simple
device, the hyperlink, enables a giant web of interrelated documents all referencing each
other. The author of a Web page can make a link to any other document on the Web trivially,
just by pointing at the referrent's URL address. It is easy to overlook the significance of
this architectural feature of the Web - one can make a web page interact with any another
web page without any central authority approving of the link, without any cost to the second
document's owner, with nothing more complicated than the address of the document.

Search engines are the second part of the story of the power of the Web. Anyone can visit
one of the many available search engines, type in a simple query, and instantly be presented
with a list of documents that are related to the query term. The remarkable thing is that
search engines work without any central coordination. An owner of a web site does not have

to do anything in order to have his documents indexed in search engines. No agreements

'Paradoxically, the chaos of the Internet is the very thing that makes it grow so effectively. We should love
the complications, not be afraid of them.

CHAPTER 1. COMPUTATION IN THE NETWORK

have to be reached, no special transaction protocol has to be followed, no service request has

to be filed. A search engine's spiders just go out and fetch pages just like any other reader of
the document would do. From a systems design point of view this is horribly inefficient, but
the fact is it works.

In looking at the Web for lessons on how to build distributed applications, the crucial

lesson is to make systems that are simple and decentralized. Overdesigned protocols are
too unfriendly; a simple approach like the Web can be incredibly powerful. And central
coordination is a bottleneck; if authors had to register with a central authority every time a
new link to a page was made, a new web page created, or even a new web site added, the
Web's growth would have been very limited.2

The Web is a wonderfully effective application working on the global network. However,
it only uses a fraction of the Internet's capability; Web servers seldom do anything proactive,
they merely wait until something queries them for a page. And Web browsing computers
are largely quiescent, sitting there waiting for a user to command it. A lot of potential in
the Internet is going to waste. We can learn lessons from the Web in how to build scalable
systems, but the time has come to add more activity, more process.

1.3 Active Internet Processes

Our current personal information spheres consist largely of an email address and a few static
web pages. This thesis work concentrates on allowing people to augment their infospheres
with active services and dynamic capabilities. Much like web servers allow users to have
their own personal web pages available to the world, this research aims to make it possible
for users to have their own personal processes living in the Internet.

There are a huge number of possible applications for active distributed computation
ranging from cluster computing [22], to interactive shared environments, to science-fiction-
sounding visions of intelligence emerging in the network [25]. This thesis focuses on the
possibilities implied by the presence of computational devices in our everyday environment.
Computers are not just generic resources - they are particularly personal devices, with

2The eventual breakdown of the "What's New with NCSA Mosaic" site tracking all new web pages is an
example of the futility of centrally tracking Web growth.

1.4. STRAUM

specific interface capabilities. Each computer is also physically located; machines are in a
particular place, a home or office or outdoor space, and they have a particular relationship to
the people around them. And while desktops are somewhat generic, other networked devices
that are being built (such as wearable computers, room sensors, ambient displays, etc.) are
even more idiosyncratic and site-specific.

Computers are input devices, bringing in data from all over the world. They are also
output devices, providing ways to display information in particular locations. The Internet
is the way to transport all this scattered data, to collect information, process it, and then
ship it out for presentation. The physical network provides the way to get the bits from
one place to another, but those bits still need to be given meaning: They need to be routed,
manipulated, and interpreted. And that interpretation happens every step along the way as the
data is moved. Managing the data that comes from the networked world is not as simple as
browsing the Web: the data needs to be found, processed, and delivered. And the programs
that do this processing create a buzz of activity on the Internet, a swarm of process.

And so the network is naturally becoming more active, more alive, as programs run
to manipulate data. The Internet is becoming one large distributed computer system. The
question then becomes, how do we create a system that allows as much power and capability
as the World Wide Web, but for active programs, not just static data? How do we design
systems that use the latent power in the Internet, while also managing the trust and reliability
issues? How can we give users the tools to understand and control the interactions of all of
these running programs? And what will these systems do when we do build them? What
will their capabilities be?

1.4 Straum

This thesis describes Straum,3 an infrastructure developed for building distributed appli-
cations on the Internet. In summary, Straum is a way of building a system of interacting

processes on a network. These processes are encapsulated as software agents; the natural en-

vironment of these agents is the network of Straum systems in the Internet. Every computer

3The name is taken from Vernor Vinge's novel Fire Upon the Deep [49]. Straum is the place where a
particularly virulent form of network activity started.

CHAPTER 1. COMPUTATION IN THE NETWORK

system participating in the Straum system runs a server, a program that has two main tasks:
running agents and providing access to information resources in the local environment. Ap-
plications are built out of software agents that coordinate to communicate and display data.

As an example, consider a simple distributed application where someone in Boston

wanted to know the temperature in Budapest. In Straum, this would be accomplished with

two servers and two agents. The thermometer in Budapest and the display in Boston would

be resources managed by two Straum servers. When the user in Boston wants to start up the

application, he or she would create an agent and send it to the server in Budapest to locate

the local resource of temperature information. Meanwhile, a second agent would be created

on the Boston machine, a display agent to graph the temperature. This agent would com-
municate with the server in Budapest, find the information agent with the temperature, and
arrange recurring communication to ask for data.

A more traditional Internet solution to this problem would be to simply create a web
page in Budapest that listed the temperature. The Straum approach is both more flexible and
powerful. The explicit nature of agent creation and communication allows users to easily

understand what is going on in the system and gives clear places to put in access control
policies. And unlike a web-based hack, Straum is scalable to large numbers of interacting
processes. Adding new types of data gathered in Budapest, creating new types of presenta-
tion in Boston, or gathering data from multiple sites is as simple as creating a few new agents,
not redesigning the whole system. Complicated analysis is also possible: for example, the
site in Boston could process the data looking for patterns and send it on to a meteorology
facility that used the processed data to try to predict the weather. An ecology of agents is
a useful paradigm for building distributed applications; the rest of this document examines
these arguments in detail.

1.5 Overview of the Thesis Document

Chapter 2 describes the paradigm used to design the Straum system. An ecology of dis-
tributed agents is a way of managing the complexity of distributed applications by providing
a simple natural metaphor for the interaction of the computational components. Servers in
Straum are like islands, local environments with specific natural resources. Agents in Straum

1.5. OVERVIEW OF THE THESIS DOCUMENT

are the creatures living on these islands, each an autonomous part of a larger ecosystem.
Two applications have been developed on Straum so far. One application helps to create

communities on the Internet by revealing information about users' presence, enabling social
interaction by making people more aware of other people who are in front of their computer
on the Internet. The second application is for monitoring the status of a computer's activity,
allowing server administrators to watch the behavior of their systems. These applications
will be described in detail in chapter 3 as a way of explaining how the Straum architecture
functions. In addition, several other planned applications will be sketched, including more
sophisticated activity monitoring systems, processing of data from the physical world, and
enabling "smart room" applications.

The technical design of Straum is presented in chapter 4 and appendices A and B are
useful references to the agents that have been built in Straum and the class hierarchy for the
system. Design decisions are explained and evaluated, both to reflect on the power of the
ecological metaphor and in particular to comment on the technical challenges of building
Internet-wide distributed systems. Specific lessons learned in the construction of Straum in-
clude insights on current research issues in distributed systems such as code mobility, ontolo-
gies for describing capabilities, and the problems with transparency in networked systems.

We are living now in the cusp of a transformation in our world, one in which computer
networks and networked devices are becoming a pervasive and essential part of our daily
existence. Integrating these individual devices into large-scale, coherent applications is a
challenging problem. Straum today is a demonstration and first implementation of the idea of
ecologies of distributed agents. In chapter 5, conclusions drawn from the experience of this
project are presented, along with a roadmap of specific future research and implementation
directions. The problems discussed here are vital to creating the distributed systems that will
shape our networked world in the near future.

18 CHAPTER 1. COMPUTATION IN THE NETWORK

Chapter 2

Ecologies of Distributed Agents

Given that we want computation on the network, how do we build it? What paradigm do we
use for building applications that involve programs running on multiple computers? How do
we build systems that are practical in the Internet, in an environment of ad-hoc networking
and untrusted computers?

In current practice there are three major methodologies for building distributed systems.
In historical order, they are message passing systems, remote procedure call, and distributed
object systems [5]. Each of these technologies builds on the last. (Discussion of a fourth
emerging methodology, state-space systems such as Linda [18] or JavaSpaces [66], will be
deferred to the chapter 5.)

Straum is built as an extension of distributed objects, distributed software agents. In
this chapter, the idea of an ecology of distributed agents will be introduced: the notion of a
population of agents existing together in an environment of server computers. This method-
ology will be shown to be a natural way of building distributed computation, and particularly
well-suited to the open environment of the Internet.

2.1 Distributed Object Systems

The first model of distributed programming is the message passing model [17]. The idea is
very simple and literal: if one program wishes to communicate with another, it does so by
simply sending a message, a packet on the network, to the other program. Message passing

CHAPTER 2. ECOLOGIES OF DISTRIBUTED AGENTS

systems form the core of all networked systems. The Internet itself is a large message pass-
ing system, with extensions such as long-lived connections and address resolution. Many
Internet applications such as FTP, the Web, or email are based on simple message passing.

Remote procedure call (RPC) was the first successful abstraction on top of message pass-
ing architectures [32]. If message passing systems are analogous to assembly language pro-
gramming, RPC is like procedural programming, adding the abstraction of the function call
to distributed systems. In RPC, if a program wants to communicate with a program on an-
other computer it just calls a function on that other computer's machine much like it would
call one on its own machine. RPC adds "transparency" to distributed programming, the il-
lusion that talking to a remote program is not any different than talking to a local program.
NFS, the usual Unix networked file system, is the most commonly known RPC based appli-
cation.

Distributed object systems work similarly to RPC, only with an object oriented abstrac-
tion on top of procedure calls. Instead of calling a fixed method name distributed object
systems gives programs references to remote objects, allowing the program to manipulate,
call methods, and store the remote object just as a local object. In essence, distributed objects
add a concept of thing to the concept of function from RPC.

Distributed objects are the current state of the art in building distributed systems. The
major standard is OMG CORBA, a language-neutral specification for communicating object
systems [37]. Competitors to CORBA include Microsoft's DCOM architecture [45] and the
various distributed object systems layered on top of Java [65] [74]. These architectures all
share the basic underlying paradigm of distributed objects but handle specific subtleties such
as mobility, typing, synchronicity, and language independence differently.

For completeness, it should be noted that there are many subtleties and variations in
distributed programming systems. Particular implementations of message passing, RPC, and
distributed objects all differ in the way they deal with particular issues such as asynchrony,
group communication, discovery, typing, and security. The path Straum takes through these
details will be discussed as they are relevant, particularly in chapters 4 and 5.

2.2. DISTRIBUTED AGENTS

Message Passing RPC

Distributed Objects Distributed Agents

Figure 2.1: Distributed systems models.

2.2 Distributed Agents

Distributed objects are a good way to describe things on the network, resources and capabil-
ities that are out there and available. However, distributed object systems are mostly static;
they do not say much about activity on the network. To address this, a concept of process
needs to be added to distributed objects. Distributed agents is about adding autonomy to
objects, adding agency, to make them active participants on the network. Figure 2.1 charac-
terizes message passing, RPC, distributed objects, and distributed agents.

Software agents research is very open and diverse. Almost anything that is a program has
been called an "agent," from web robots that filter information to software help systems to
large artificial intelligence constructions. If there is a consensus in software agent research,
it is that agents are autonomous, proactive, and adaptive [30].

Straum's distributed agents make the most use of the first two characteristics of agents,

autonomy and proactivity. Straum agents are autonomous: they are identifiable units of
computation, executing independently, with their own set of goals partially independent of
their larger environment. They are also proactive: every agent is a running program, an active
process. In distributed object terms, then, a Straum distributed agent is simply an object with

CHAPTER 2. ECOLOGIES OF DISTRIBUTED AGENTS

a thread of execution. This idea may seem simple (and it is!) but the implications of having

many concurrently running, independent distributed objects are quite complex.

The third characteristic of agents, adaptable, has varied interpretations. Depending on the
researcher, "adaptable" can mean anything from a thin veneer of explicit user configurability
to a fully learning artificial intelligence. Straum makes no requirements that agents be in any
way intelligent, although that ability is not disallowed, either. Straum remains agnostic on
issues of artificial intelligence.

Straum does require agents to have a feature related to adaptability: self-description. An
important aspect of a distributed agent is that it be able to describe the capabilities that it has.
These descriptions allow agents to easily find other agents with the capabilities they need.
Agents can then negotiate their communications during their lifetimes rather than requiring
that a system engineer design the agent interactions ahead of time. Self-description enables
adaptive interactions to emerge in the network: it is crucial to flexible distributed systems.

In Straum every agent carries with it an explicit list of the interfaces the agent understands
and the meaning of the information it provides. In the simplest cases, an agent's description
is similar to the type system of distributed objects: its capabilities are equivalent to the list
of object methods that it understands. The type system of the distributed agent application
defines an ontology of kinds of agents, one based on the syntactic description of the agent
object's type. This ontology is open: the type system can be extended as the system is
running with the addition of new types of agents. It is also ad hoc: any agent can add a new
term into the implicit ontology without having to register with a central ontological database
by just publishing it as part of its self-description. It is then the responsibility of other agents
to understand what an agent's self-description means.

In addition to the basic type compatibility between interfaces, an agent's self-description
can also include auxiliary information about the meaning of the interfaces that it possesses,
entries in a semantic ontology. For example, a distributed object system typically has an
ontology of data types such as int and double for integer and real numbers. Part of an
agent's type is the fact that it has a method int getCount () which returns an integer,
the count; this information is a syntactic marker. But in addition a distributed agent might
also include the information that its getCount () method means the count of keystroke
events it has seen in the last minute; this describes the semantics of the information. This

2.3. ECOLOGIES OF AGENTS

extra information, the meaning of the method, is beyond the type system of basic distributed
object systems. It must be defined with respect to another ontology, an ontology of meanings.

One final aspect of distributed agents that can be useful in building systems is the concept
of "mobility." Mobile agents are agents that can move from one computer to another [55]
[50]. More specifically, a mobile agent is capable of stopping its execution, transmitting its
current state and its executable code to another computer, and then resuming its execution
on the other computer. 1

Mobility is a controversial technology for agent systems as it adds considerable complex-
ity and security issues. But mobile code can be a helpful tool, allowing a distributed system
to be more configurable while running. The current implementation of distributed agents in
Straum allows for agent mobility and makes use of it in building up and dynamically config-
uring applications. Mobility is particularly useful in Straum in making it easy to upgrade an
application by simply creating new agents, not redesigning the entire system. Ideas for the
use of mobility in distributed agent systems are some of the most exciting future research
directions. Sketches of applications that could use mobility more inventively are presented
in section 3.4.

2.3 Ecologies of Agents

Distributed agents augment distributed objects with autonomy, proactivity, and adaptability.

But how are the agents organized? Where do they execute, how do they coordinate their
placement, how do they access information resources from the outside world? Distributed

object systems designers have many different patterns for building applications out of ob-

jects, from simple client-server systems to three tier enterprise architectures to complicated

federated systems. Distributed agent systems are new enough that a consensus on specific

patterns have not emerged, every system has it's own design principles.

'It is actually more complicated for an agent to move than to replicate; the agent has to destroy itself on
the host it is moving from. This fact about software agents is quite different from biological entities and partly
explains why computer viruses are so prevalent.

CHAPTER 2. ECOLOGIES OF DISTRIBUTED AGENTS

2.3.1 Overview of Ecology

Straum introduces the idea of an ecology of distributed agents as an organizing principle
for building distributed systems. The word "ecology" is borrowed as a metaphor to suggest
a system where software agents in the Internet are like plants and animals in the natural
world. There is a strong similarity between the complex interaction of organisms in a natural
ecosystem and the complex interaction of software components in a networked system. The
word "ecology" is also meant to specifically refer to the field of artificial life and other
complex systems computer science work [27] [23].

In a computational ecology software agents have a specific lifecycle. Every agent is
born in a particular environment, on a particular computer. The agent lives its computational
life, possibly moving to new computers as the need strikes it, until it meets its end either
by its own choice, by the hand of a user, or by an accidental mishap like a power failure.
Agents interact with their local computational environment, consuming CPU, memory, and
raw information resources from the local world, possibly using effectors on the computer
such as displays or actuators. During the agent's life it also meets and interact with other
agents, consuming information resources from another agent and/or producing information
to be consumed. The interactions between these agents creates a complex ecosystem of
computational activity.

2.3.2 Servers

The servers that an agent lives on dictate the computational environment that the agent op-
erates in. The server provides a home for the agent, giving it memory and CPU. In addition,
servers provide a series of natural resources in the form of input and output capabilities.
Servers implement a set of monitors, giving information about things local to that computer
such as current keyboard activity or system load. Servers also provide effectors to agents
such as bit-mapped displays to render information or a speaker to play sounds.

Straum is like an island ecosystem. Every Straum server is a different island with its
own particular resources, its own owner, and its own unique mix of local resident agents.
Islands are not completely isolated: two agents living on different servers can talk to each
other across the network and agents can choose to move to a new server entirely.

2.3. ECOLOGIES OF AGENTS

An important aspect of Straum's model of distributed agents is the significance of loca-
tion in a software agent's life. Computers on the Internet are not identical. Systems have
different capabilities, they are owned by different people, and most importantly each ma-
chine has different local information and presentation resources. This is reflected in Straum
by the fact that the location of any particular agent dictates which computer's core resources
they have access to: what information they have, what kind of effector capabilities exist.

An agent must be on a specific computer to make use of its resources. To perform a
distributed task, agents on different computers have to coordinate. For example, if an agent's
goal is to communicate to Alice how fast Bob is typing, then that agent needs to be living on
Alice's computer to draw the display and it needs to get in contact with an agent living on
Bob's computer to acquire the typing rate rate information there.

This choice might seem odd from the point of view of conventional distributed systems
design. It is possible to allow an agent to make use of resources on a remote host without
having to communicate to a second agent. But this requires a specific, fixed interface be
defined to export the remotely-usable capabilities. If all remote communication is at the
agent level, then systems can be upgraded by simply changing the local agent population,
not by reengineering the interfaces of the entire installed base.

Another unusual aspect of the ecology of distributed agents is that an agent only lives on
a server at the largesse of that server's owner. The agent is dependent on the server for CPU
and memory. If someone chooses to kill an agent on his or her server there is nothing the
agent can do about it, it will die. This aspect of the ecology makes it more difficult to design
reliable systems, but it is an absolute and essential problem in contemporary distributed
computing. On the Internet, people often make use of computers they do not own. Most of
the time, this use of a remote computer is dependent on the generosity of its owner. Many

distributed systems try to pretend that reliability and trustworthiness are not problems, that

the computer on the other end of the connection will always work. Straum faces up to the

reality of the Internet by explicitly considering agent death as a possibility, exposing the

design challenges directly to the systems architect.

26 CHAPTER 2. ECOLOGIES OF DISTRIBUTED AGENTS

2.3.3 Agents

Straum servers provide the sunlight, water, and raw nutrients. Agents are the inhabitants of

this Straum world, the plants and animals that consume the natural resources and produce
something processed, useful. Some agents never travel anywhere; they simply stay on their

local computer and consume the data that is available there. Other agents look out on the net-
work just a bit, find an agent that has some processed information that it needs and engages it

in a lifelong relationship of exchange. But because agents are mobile, an agent could decide

at some point in its lifetime it needs to move closer to a data source and migrate to a more
prosperous locale. Agents do not even need to be fixed to one location: an agent could roam
the network endlessly, traveling around in pursuit of its own goals, occasionally interacting
with other agents and sampling the best that the local islands have to offer.

New agents can be created at any time, for any purpose. In the applications developed to
date agents are largely created at the request of the user, but the architecture fully allows for
agents to spawn other agents. Agents are not limited to a fixed set of types: a new species
of agent can be created at any time by simply uploading an instance of the new type into
a server. This flexibility allows for much power in creating a distributed system, but also a
certain amount of risk. Ideas for managing the complexity of these systems are presented in
chapter 5.

2.3.4 Existing Software Ecologies

This vision of flexible, mobile distributed computing is similar to other systems we see in
the Internet. Tom Ray's NetTierra project [40] is one of the main precursors to the ideas in
Straum. NetTierra aims to create a "Digital Reserve," a networked home for small programs
to evolve in, to "set off a digital analog to the Cambrian explosion of diversity, in which
multi-cellular digital organisms (parallel processes) will spontaneously increase in diversity
and complexity." Ray's research is largely motivated by naturalist artificial life research;
he intends to grow a complex ecosystem and then study it, as a way to reflect on natural
evolution. Straum aims to create the same kind of complex ecosystem, but with a focus on
applications to practical problems.

In addition to controlled experiments, there are many examples in the wild of this sort

2.4. CONCLUSION

of distributed ecosystem interaction. The most common experience people have with these
phenomena is computer viruses. Viruses are the closest things we have to artificial life in
the Internet, small programs that spread from host to host without the permission of their
owners. Unfortunately, viruses are usually damaging and never desired. One goal of Straum
is to take the effectiveness of computer viruses and try to tame it into a safe, trustable, and
useful system.

Another (more useful) example of the complicated interactions between distributed soft-
ware are the various "bots" that inhabit chat systems, MUDs, Usenet, and the Internet at
large. In his book "Bots: The Origin of New Species" [29], Andrew Leonard gives case
studies of the complex and often surprising interactions between software agents in a variety
of distributed systems. The main lesson of the book is that while the Internet allows for
unprecedented capability for software agents interaction, it is difficult to predict or control
the results of those interactions. Again, Straum aims to tame these phenomena by providing
a more structured environment.

2.4 Conclusion

In summary, an ecology of distributed agents consists of several key points:

" Servers with local information and computation resources.

" An open-ended population of autonomous agents.

" Agent mobility so that agents can move to servers with resources they need.

* Agent interaction so that agents can communicate over the network.

The long-term goal of this research is to create a more open-ended distributed system,

one in which surprises could emerge, capabilities that we had not expected to occur on

our own. The key ideas enabling this goal are open, decentralized Internet systems and

the structuring principle of an ecology of distributed agents. The Internet is the reality of

distributed systems today; a powerful, unruly network of millions of computers. The design

space of all distributed agents is vast, but the ecological metaphor helps to constrain it,

28 CHAPTER 2. ECOLOGIES OF DISTRIBUTED AGENTS

localizing agent computation to particular places with specific restrictions to try to contain

the chaos.

These are lofty goals. This thesis reports on the first implementation of these ideas. The
implemented applications described in the next chapter apply the ideas of an ecology of dis-
tributed agents to develop two simple, relatively closed-ended systems. These applications

fall short of the grand vision of a vast, seething network of distributed agents, but they do

point to how a distributed system could grow to become more complex and powerful. The
larger goal of open-ended distributed systems is addressed by the presentation of several sce-

narios that suggest how ecologies could be used to create new kinds of dynamic applications.

Chapter 3

Presence, Activity, and other
Applications

The major motivation for creating an ecology of distributed agents is the flexibility it gives in
designing applications. The hope is that with an open-ended distributed architecture suitable
for use on the Internet, many new kinds of distributed applications can be created.

Straum is a first implementation of an ecology of distributed agents. Creation and devel-
opment of the methodology and infrastructure has gone hand-in-hand with the design and
development of several sample applications. This chapter describes the basic Straum sys-
tem, presents two simple applications in detail, and then sketches out several other possible
application scenarios. All of these applications are built out of the combinations of simple
agents; the reader may find it useful to refer to appendix A for a listing of all of the agents
referred to here.

These applications are based on a simple methodology for building programs: dataflow.
The applications here are largely built as systems where data originates in one location, flows
through a population of agents that process the data in some fashion, and is finally delivered
to an agent that presents that data. Straum is not limited to only dataflow systems, but this
type of application is relatively simple to work with and is easy to implement with an ecology
of distributed agents.

CHAPTER 3. PRESENCE, ACTIVITY, AND OTHER APPLICATIONS

Figure 3.1: Screenshot of Straum.

3.1 The Straum Application Design

Straum is implemented as a server program with particular populations of agents loaded into

it to implement a specific application. The intention is that users of Straum would run their
server all the time, providing a permanent home for their agents. When a user wants to
perform a particular task, he or she creates a few task-specific agents on their server. The
Straum server is an extension of a person in the Internet, much like an active version of his
or her personal web pages.

Straum starts up with a server console window (see figure 3.1). The window has three
parts: a menu bar for controlling Straum, a text console for notification messages, and a

graphical view of the current agent population. The menu bar is straightforward: it provides
user commands for creating agents as well as debugging facilities and the option to close
down Straum. The text console reports status messages such as when a query for an agent
service is received or a new agent comes onto the server.

The middle panel, the graphical view of the agents, is where most of the action is. Every

3.2. USER PRESENCE

agent that the local Straum knows about is drawn in this panel, represented by an icon that
the agent itself provides. Agents that are living on the local server are drawn normally.
Agents that this server has had some connection with but are not local (typically, agents
communicating with some agent on the local server) are rendered at 50% transparency. In
figure 3.1, there are five agents living on this user's server and a sixth (the keystroke agent in
the upper left) that is on another server but is talking to a local agent. The display of agent
icons allows a user to easily understand what agents are connected to his or her server.

The agent display is also useful for understanding the communication pathways between
agents. Every time one agent sends a message to another Straum notifies the user of that
communication by drawing an arrow between the two agents. Arrows start out red, then
turn blue and slowly fade away over time if there is no further communication. Individual
messages are drawn as small dots traveling along the arrows. Arrows are directional, reflect-
ing whether the agents' communication is bidirectional. The graph view allows the user to
quickly understand the interrelationship between agents.

When the user selects a menu item to create an agent a small form is popped up on
the screen to allow the user to configure the agent. Information agents typically need no
configuration. Display agents need to be told what host to look for information agents on
and several agents have options to tune their behavior. Once created, display agents also
create a separate window to do their actual display in. This window is a resource that the
Straum server gives to the agent.

The Straum interface is minimal; many more user interface features would be desirable
in a commercial application. But the implemented interface is sufficient to explore the ap-
propriateness of an ecology of distributed agents for building a variety of applications.

3.2 User Presence

The Internet is not merely a way of transferring files. It is a social environment, a home,

a place where millions of people are online and present at any moment. Traditionally the

Internet has had few tools to reflect the presence of other people in real-time. The usual

experience of the Internet is lonely, a person sitting by himself or herself in an empty room.

There is a need to have more social presence expressed online. For example, if I am

32 CHAPTER 3. PRESENCE, ACTIVITY, AND OTHER APPLICATIONS

online in Cambridge the same time my mother is online in Houston, I would like to know

that we are both "there" at the same time. At a minimum, just knowing a person is out there

is comforting and pleasant. It also creates opportunities for more communication - if I see

my mother is online, maybe I will think to send her an email or call her on the telephone.

Presence information is also useful in many other contexts. For example, a workgroup of

people in different cities could use an Internet presence application to aid teamwork or a

distributed community might use presence information to become more tightly knit.

3.2.1 Presence Applications

Many tools have been written to communicate some sort of social presence online. The old
Berkeley Unix tools f inger and rwho, for example, provide simple information such as

whether a person is logged on to a particular computer, how many minutes it has been since
he or she has typed, and how long ago he or she read email. These tools are limited -

they require that you know what computer a user might be logged in,' the information they
provide is not well standardized across implementations, and current practice is to not even
run these services as they are potential security problems.

The contemporary equivalents to these services, tools such as ICQ [62], Ding! [58], and
AOL Instant Messenger [56] are more reliable and better designed for the distributed nature
of the Internet. They all share a common architecture - every user runs a client program that
notifies a central server when they are online. The server then manages putting individual
users into contact with each other. Once two clients have found each other, they typically use
peer-to-peer messaging to continue communication. This semi-centralized approach seems
to scale reasonably well, although the more popular services (ICQ has fifteen million users)
have reliability problems.

However, these systems are all very limited in that they provide only a small amount of

information about what a user is doing. ICQ, for example, will correctly tell other people
whether I am currently connected to the Internet. However, it cannot automatically tell others
whether I am currently at the keyboard, or how busy I am, or what I am doing at the moment

'This worked better in the old days when everyone on campus was logged into the same computer. With
workstation networks, conventional finger is nearly useless.

3.2. USER PRESENCE

or whether I can be disturbed. There is a facility for the user to set his or her status to one
of several selections (such as "away," "extended away," and "do not disturb"), but as this
usually requires a manual setting it tends not to be used, and so even this limited information
is seldom accurate. What is needed is a system that conveys more subtle information about
a user's presence.

For example, when I am working I have an awareness of my officemate's presence, even
though his back is to me and I cannot see him. The main channel of information I get
about him is the sound of his typing; a rapid staccato indicates he is here and working
hard, occasional keystrokes indicate he is reading email or a web page, and silence means
he is either not working actively on the computer or is not in the office. This channel is
not perfect, but it conveys a surprising amount of subtle information very simply. Internet
presence applications should be augmented to include this kind of data.

User presence is a very personal thing - the kind of information I may want to know
about someone I work with might be different than what I want to know about my mother.
But programs such as ICQ are limited in an unfortunate way: they are closed-ended, fixed
protocols with no extensibility. Adding a new presence capability to ICQ would require
changing the protocol and upgrading the servers and all of the ICQ clients to the new system.
A good application should be able to have new capabilities added to it without such impact.
An application built out of an ecology of distributed agents allows for new types of agents
to be added into the system without any redesign. This capability means that it is simple
to create new ways to communicate a user's presence as well as test and deliver agents that
implement the new methods.

3.2.2 Straum's Presence Application

Straum's implementation of presence monitoring starts with the idea of listening to someone
at the keyboard, replicating the experience over the Internet. In Straum, agents take the
information available about one user's use of a desktop computer and send it over the Internet
to another user. For example, if Alice wanted to know how busy her friend Bob is, she simply
creates agents to observe how fast he is typing. This basic presence application consists of
two agents: one on Alice's computer and one on Bob's. Every time Bob presses a key, the
keystroke information agent on Bob's computer sends an event to an event display agent

CH APTER 3. PRESENCE, ACTIVITY, AND OTHER APPLICATIONS

Figure 3.2: Alice's view of Bob with Flashing Dot Agent.

on Alice's computer which renders the keystroke in some specific way. Alice's view of the

network along with her display agent are in figure 3.2.

3.2.3 Implementation Description

The implementation of the two agents is quite simple. Alice's display agent is a basic event

client: it looks for a keystroke information agent on Bob's computer and then listens for

keystroke events to display. The agent on Bob's machine is a simple "signal passthrough"

agent; it listens to a keyboard monitoring facility on Bob's server and sends an event to

Alice every time Bob presses a key. The two agents work together over the network to

communicate an aspect of Bob's presence: the rate he is typing at. Bob could also watch

Alice's keystroke by creating the two symmetric agents.

The information agent only sends one bit, the fact that an event happened, which in this

case is interpreted as "a key was pressed." Naturally, the agent does not send which key was

pressed; the goal is to communicate a general pattern of activity, not totally invade users'

3.2. USER PRESENCE

privacy! Alice's display agent could do many things with this bit of information: it could
store it, process it, combine it with other information, or display it. To be literal, the agent
could play the sound of a key click every time it received an event. In Straum's implemented
presence application, the display agent is a "flashing dot agent" that draws a blue circle on
the screen. Every time an event is received, the circle pulses. If many events are received
in a short time then the circle warms up and turns red, and will cool down again after thirty
seconds of inactivity. The timings in this particular agent are tuned specifically for typical
keystroke rates; in practice, it gives the observer a fairly good measure of keyboard activity.
But the flashing dot agent itself can take input from any event stream, it does not care what
the events mean.

To actually build this application, all the users have to do is run Straum and the necessary
agents. Alice and Bob, as regular Straum users, would each be always running their Straum
server. If Alice decides to watch Bob at his keyboard one day, she creates a display agent
and instructs it to ask Bob's server if it has any appropriate information agents. If the agent
she needs is not running on Bob's computer, then she can create the right kind of information
agent herself and send it over to Bob's computer.

Naturally, Bob has control over who is watching him. The key idea is that for an agent
to listen to his keystrokes, it has to talk to the keystroke monitoring facility on his Straum
server. And the communication between the information agent and the monitor can only
happen on the same computer, not over the network, so the information agent has to be

living on Bob's computer. Bob can choose not to allow any keystroke information agents

to live on his computer at all, or to only allow a few friends (like Alice) to send him those

agents, or to only allow them to live on his computer at certain times. By managing the
agent population on his computer, Bob can create his own security policy. This is one way

the ecosystem metaphor simplifies understanding the system: Bob is the ruler of his island,

and he has final say over what agents live there.

3.2.4 Reflection on Presence Application

The keystroke monitor is only one possible application to communicate a user's presence.

Straum has several other information monitors to communicate a user's activity at a com-

puter. For example, Straum's system load average monitor can be useful to convey presence:

36 CHAPTER 3. PRESENCE, ACTIVITY, AND OTHER APPLICATIONS

if my friend's computer is very busy, it may be an indicator that he is working hard as well.

Other system monitors are easy to implement in Straum: watching mouse movement, or the
particular applications someone is running, or the network traffic and disk usage the user

is generating. Anytime a new system monitor facility is implemented on a user's machine

existing Straum agents can immediately take advantage of that capability to communicate
and interpret information about the user's presence.

There is no one single best way to monitor a user's presence. Instead, there are many

different types of information one could use: a person's activity at the keyboard, or usage of

the computer's resources, or what task he or she is currently performing. Straum's distributed

agents architecture makes it simple to implement many different types of presence monitors,
by providing a clean abstraction of how information is communicated between machines.

And the particular pattern of data flowing through the system is immediately apparent simply
by looking at the local ecology of agents.

3.3 Web Server Status

A second distributed application that has been implemented in Straum is a program to mon-
itor the status of a web server, to see how much traffic it is getting and whether the server
is overloaded. This application could be useful to server administrators and other people
interested in their web server's usage patterns.

3.3.1 System Status Applications

There are many tools out there to monitor system behavior. Most of the available applications
are general system load monitors; programs such as xosview or Norton System Doctor show
the user a variety of graphs, charts, and flashing lights to indicate how much CPU load there
is, how much free memory exists, how busy the network is, etc.

These programs can be quite configurable; for example, Norton System Doctor has some
eighty different sensors that can each send their data to several different display and alarm
capabilities. Most of these applications are not distributed, so that the monitor has to run
on the computer it is monitoring. A notable exception are tools based on SNMP, the Simple

3.3. WEB SERVER STATUS

Network Management Protocol; these are explicitly distributed and somewhat more flexible
than typical system monitoring tools [43].

Like user presence applications, system monitoring applications also tend towards the
monolithic. Adding a new type of instrument is often tantamount to upgrading the entire
program. But installing a new version of a program is expensive. For a desktop user it
might only be an inconvenience, but for an administrator managing a cluster of hundreds of
critical servers it is not acceptable to have to spend valuable time upgrading the monitoring
application on every system. Furthermore, the problem is not always more features; these
system monitors often incur overhead even when not being used. It should be easy to remove
features from applications as well as to add them.

An ecology of distributed agents can be used to easily provide extensibility of features.
Each computer in the network has a set of resources, the raw system information that is
available on that computer. Information agents live on each machine, consuming the raw
materials and producing useful, processed information. Display agents can then live any-
where on the network, connecting to the information agents on the relevant hosts to acquire
the data the user needs. The population of agents provides a simple metaphor for understand-
ing what system monitoring facilities are currently being used and the distributed nature of
the communication makes it possible to run these applications over the Internet.

3.3.2 Straum's System Status Application

Straum implements a web server watcher by creating several agents to monitor access to the
web server and the server's computational load. This is obviously a simplistic version of
a full-featured server monitor, but it serves to demonstrate several features of Straum. In
particular, this server monitor highlights the the power of composing agents as well as the
convenience of using mobile agents to move a facility to a remote host.

3.3.3 Implementation Description

Figure 3.3 shows the web server monitor application in action. The example implements

three displays of the activity of a web server. The monitoring host has a graph of the server's

load average, a graph of the average number of web hits, and an event-oriented display of

CHAPTER 3. PRESENCE, ACTIVITY, AND OTHER APPLICATIONS

Figure 3.3: Web server monitoring application.

dots, one per web hit. This application makes use of several different kinds of agent species.
There are two information agents running on the remote host, one data processing agent on
the local host, and three display agents on the local host rendering information into three
different windows.

Data starts flowing from the web server. Two species of information agents live there -

a load average agent and a file growth agent. The load average agent does not send any data
out on its own; instead, whenever it is asked it will return a number, the current system load.
The file growth agent is proactive, much like the keystroke agent in the presence application.
It watches a file and sends an event every time the file gets bigger. In this case, it is watching
the web server log. Every time a web page is hit the log file gets bigger, and so the file
growth agent is actually sending out an event for every web page access.

On the monitoring client side, four agents are running. The event-oriented random dot
agent works exactly like the flashing dot agent in the user presence application. It listens
for events; every time it receives an event (indicating a web hit) the agent draws a circle
with random color and placement. Over time the circles shrink and disappear, reflecting

3.3. WEB SERVER STATUS

the age of the data (a device borrowed from the ChatCircles project [15]). Straum's user
interface displays a one-way arrow from the file growth agent on the remote host to the
random dot agent on the localhost to indicate that information only flows in one direction;
from information agent to display agent. Note that a flashing dot agent could be used instead
of a random dot agent. The two agents are interchangeable, they only differ in how they
display the data.

A second agent displays the system load average as a graph. This agent is more proactive:
it queries the information agent on the server every five seconds for the current load average.
It takes the number that the information agent gives it (the load average) and plots it on a
graph. The user interface draws a bidirectional arrow because the communication between
these agents is two-way; the display agent makes a request and the information agent replies.

The third display, the average web hit graph, is built out of two cooperating agents. No
display agent listens directly to the information agent on the web server; instead, a moving
average agent is interposed. This data processing agent listens for events from the server's
file growth agent and accumulates a moving average of the number of events every three
seconds. A second running graph agent (exactly the same type as the one used to graph load
average) then asks this moving average agent for a number every five seconds. The combined
result is a graph of the number of web hits.

3.3.4 Reflection on Implementation

This example application demonstrates several advantages of the ecology of distributed

agents. A key power is the composability of the agents. Each agent has a simple require-
ment, the information resources it produces and/or consumes. For example, a file growth
agent produces one resource: events. Any agent that consumes events can communicate

with that agent: the random dot display, the flashing dot display from the user presence

application, or the moving average agent. Similarly, several agents produce or consume a
different kind of resource: numbers. The running graph agent can consume information from

any agent that produces numbers, such as the load average agent. The moving average agent

is a particularly noteworthy number producer since it also is an event consumer. It serves a

role like herbivores in an ecosystem, converting plants into meat or in this case, events into

numbers. This sort of simple data conversion is not exactly a new idea, but Straum allows

40 CHAPTER 3. PRESENCE, ACTIVITY, AND OTHER APPLICATIONS

agents to take an active role in interpreting data.

Straum extends the power of dataflow by basing the system on distributed agents. Just

as described in the user presence application, the displaying client is free to create agents

and send them to the web server (with its permission, of course). In addition to the two

information agents which must live on the web server in order to access the data, the user

can also choose to place the data processing agent on any machine that it has access to.

In the example described above, the moving average lives on the display client side. But

this choice would be inefficient if there are large number of web hits because the raw event

traffic would be sent over the network. Instead, the user could decide to create the agent

and move it over to the web server, to do the number crunching on the web server and

only send over a small amount of data to update the graph. Because the agents are truly

mobile, the moving average agent could even decide itself that it would be more efficient to

do the computation on another computer and migrate during its lifetime to another machine,
thereby doing dynamic load balancing. With distributed agents it is easy to make choices
about where to locate the computation without having to predetermine anything.

Furthermore, the agents are not just distributed in any random fashion; they are in par-
ticular locations, part of a particular population, and under the control of the owner of the
server they inhabit. This design paradigm makes it easy to understand what is going on in the
distributed system, to understand the effects of location and interaction. The only agents that

can get data about the web server are the ones living directly on its Straum server. Similarly,
the display agent has to be living on the computer that owns the screen. The data processing
agent can live anywhere, but it has a specific interaction with the other agents. The ecosys-
tem is an organizing principle, making the interactions between agents and their locations
explicit and direct.

3.3.5 Possible Improvements

Several things could be done to flesh out this example application. The most obvious option
is to add more monitors: network saturation, memory usage, error reporting. Agents to report
exceptional conditions would be particularly useful; a watchdog agent could be created that
regularly tests that the web server is running. If the server goes down, the watchdog agent
would send an event which could then be caught by an error display agent that pages the web

3.4. OTHER APPLICATION SCENARIOS

site administrator.

The application could also be improved by taking advantage of the composability of
agents. For example, the existing random dot display can be used to convey more information
than just the fact that an event was fired. A web log analysis agent could be interposed that
interprets the data that the file growth agent sends. This analysis agent could then direct the
dot display agent to, for example, show web hits from the US in one color and the rest of the
world in another. Composing agents to change the interpretation of data is simple.

The system is configurable after the core Straum servers are deployed with no reengineer-
ing required. If a third party comes up with a fancy new kind of web log analysis algorithm,
an agent can be created with the new code and put into the system without any sort of change
to the rest of the installed base. And new computers can easily be brought in; if an admin-
istrator decides she wants to watch the web server performance on her palmtop computer
when she leaves for the weekend, all she does is ask her agents to migrate into her palm-
top and carry their computation with them. Because the communication between agents is
dynamically negotiated, there is a lot of flexibility in how the application is built.

3.4 Other Application Scenarios

Straum is intended to be a platform for many types of applications. The examples imple-
mented so far have been fairly simple systems, communicating data from one computer
to another computer in a largely predetermined fashion. But distributed agents are capa-
ble of more complex interactions than simple dataflow and the ecological paradigm allows
for much more flexible applications than the simple cases described above. This section
describes several other applications that have been envisioned, sketching their design and
highlighting how Straum simplifies their implementation.

3.4.1 Monitoring Multiple Servers

An interesting capability of an ecosystem of distributed agents is that it is very simple to

aggregate data from several different information sources. For example, a web site is often

run off of many different servers; a web site administrator would like to watch the load on

CHAPTER 3. PRESENCE, ACTIVITY, AND OTHER APPLICATIONS

DEZ1: EWll DD

Figure 3.4: Three arrangements for many-to-one monitoring.

all of these sites to monitor for any possible bottlenecks or outages.

It is trivial to extend the web watcher application discussed above to watch the hits from

several different web servers. The user could create several display agents pointing at infor-
mation agents on different hosts or just create one display agent that knows to register itself
as a listener to web hits on several different servers. Alternately, the user could create an
event aggregating data processing agent. This agent acts as a funnel, taking in events from
multiple streams and joining them out on one output stream. Adding an extra agent into the
pipeline improves the system; the display agent is simpler as it only needs to listen to one
agent. And the extra agent allows flexibility in choosing on which host the actual aggrega-
tion occurs as well as the option to redirect the processed event stream later. A schematic of
these three different implementations of many-to-one monitoring is presented in figure 3.4.

However, with many sources of information coming in at once it might not be appropriate
to naively join them together. Thousands of web hits on a busy network of servers would
overwhelm the simple data presentation system. With Straum, it is easy to add extra agents
to do higher level event processing, extracting higher level patterns of data. Related web hits
on different servers (a page loaded from one server, images loaded from another) could be
collapsed into one single event by an agent that knows about the relation between the two
servers. This sort of analysis can be positioned anywhere in the Straum network: close to
the data sources to reduce event-reporting network traffic or close to the observer to reduce
computational load on the servers. These patterns of analysis can easily be modified and
updated in the ecology at runtime.

3.4. OTHER APPLICATION SCENARIOS

Figure 3.5: Monitoring pattern for a community of developers.

3.4.2 Workgroup Community

The original Straum presence application was described as a one to one application: one
observer, one observed person. Naturally, it would be simple to extend this application to a
many to one situation so that one user is watching several different people. The construction
is just like the many to one server application discussed above.

The Straum network becomes more interesting if you consider a whole workgroup of
users all running Straum together. For example, consider a group of programmers working
together over the Internet on a collaborative software project. They are scattered all over
the world and coordinating through the network.2 Each user in the system runs Straum with
a few agents to export information about their presence and a population of other agents
observing that information from their peers.

To each individual user, his or her use of Straum appears to simply be many to one.
The data that the Straum agents carry about a user's presence serves to knit the community
together. However, the aggregate Straum network has more information embedded in it than
any individual user's view of it. The actual pattern of agent interaction - which people
are paying attention to which people - also contains interesting social information. For
example, if a team of programmers is split into two teams working on separate parts of the
system then the clustering of agent interactions should follow the team organization (figure

3.5). A person watching these agent interactions could inspect the clusters and derive the

2Widely distributed development is a fairly common situation with open source projects, for example in the
Linux community.

44 CHAPTER 3. PRESENCE, ACTIVITY, AND OTHER APPLICATIONS

team structure simply from looking at the dataflow in the Straum network.

For a small workgroup this sort of analysis might seem complicated; the members of

the group probably know their interactions already. But for large projects with hundreds of

developers the members of the community might not be aware of their relationships. An

agent that watches the interactions of other agents can gather information about the flow of

information in the Straum network, thereby revealing social patterns in the network. This

kind of information could be used by a manager who wants to improve efficiency or by the

participants themselves as a way to become self-aware about the social dynamics of their

group. Sometimes the patterns of communication between users is as interesting as what

they are actually communicating [14].

A group of programmers working closely together might also form the nexus of an in-

teresting community of Straum developers. For example, suppose one of the programmers

gets bored one day with the project and hacks up a nifty new kind of display agent. Thanks

to the ease of Straum's mobile code architecture, he or she could simply send the agent off

to a couple of friends to let them play with it. One of those people might also like the agent

and forward it off to others, and fairly soon this new agent would populate the local Straum

network with minimal effort. It would even be possible to build an agent whose job it was to

look for new agents and propagate interesting ones to friends automatically. Straum makes
it possible to make software distribution more fluid by using the openness of an ecology of

distributed agents.

3.4.3 Ambient Displays and Smart Rooms

The application scenarios described above have all been in the context of conventional desk-
top and server computers. These scenarios are limited by the capabilities of the input/output

devices, the sources of information about people and the screen to display data. In practice,
a desktop computer is actually a fairly strange device for measuring a person's presence.

Even something as basic as monitoring typing rates is surprisingly difficult in contemporary
operating systems3 and it can only tell you about a person's presence if they happen to be

3The Win32 version has to install a DLL in every running program, the Unix version has to hook events in
every open window.

3.4. OTHER APPLICATION SCENARIOS

typing on the box on their desk. Similarly, computer screens are also fairly rigid ways to
display information, limiting the presentation to graphical displays in little windows.

The potential applications of Straum become much more exciting when we consider
integrating it with objects in people's everyday environments. The various research programs
in ubiquitous computing [54], smart rooms [38], and Things That Think [73] all point to a
host of ways of bringing computational devices into our everyday world. But even if the
physical engineering problem of embedding small networked computers in our environment
is solved, there is still the application-layer integration question; how will these devices work
together and coordinate? One possibility is to use a population of distributed agents living in
the various devices, giving each object just enough smarts to send or receive the data that it
needs.

As a simple example, consider the work of Hiroshi Ishii and Brygg Ullmer to represent
accesses to a web server as the sound of rain falling [24]. The simplest way to implement
this would be to run a long speaker wire from the web server to the speaker. But wires
are ugly and slow, and a specific installation would limit what that speaker could be used
for. Instead, a nicer solution would be to make the speaker a true peer on the network, run-
ning Straum. The speaker environment would provide one resource to agents: the ability
to play an arbitrary sound. It is then simple for the raindrop web-server application to be
built; merely create a raindrop-sound agent, tell it to listen to an agent web server for ac-
cesses, and send the agent to the appropriate speaker in the room. Later, if you want the
sound to play in another room, just move the agent to a new speaker. If you need to use a
Straum-enabled speaker for another application as well, simply load another agent into it.
The speaker can implement its own policy for handling resource contention (perhaps mixing
two simultaneous sounds), or the agents themselves could negotiate sharing.

Similarly, Straum provides an easy way to hook sensors in our physical environment to
other kinds of ambient displays. For example, consider a building that is outfitted with many
different motion sensors. Each sensor hosts one Straum agent, an event notifier that tells lis-
teners when a person walks by that particular spot in the building. This specific information

is sensitive; the building manager would not want to give it out to protect people's privacy. So

the manager puts access restrictions on those servers and creates several processing agents

on a public server that 'wash' the data, perhaps time averaging it a bit or combining input

46 CHAPTER 3. PRESENCE, ACTIVITY, AND OTHER APPLICATIONS

from several sensors so a person's motions are not easily trackable. This less sensitive data

would then be available to the occupants of the building to access, interpret, and display.

Each of these particular applications could be implemented in an ad-hoc fashion by hard-

wiring network connections and using proprietary protocols. The point is that Straum pro-
vides a generic platform for this sort of system. All the manufacturer of a particular device
has to do is arrange for Straum to run on it.4 Once that is done the particular device becomes
a generic resource, an open capability that can easily be used for a variety of applications.

3.4.4 Automobiles

Automobiles are a good domain for Straum's combination of mobile agents and the location-
based model of computation. Cars are interesting platforms for distributed agent computa-
tion: they are personal spaces, they move, and their location is an important property for
their owners. With a Straum server in every car, mobile agents would have an interesting
environment in which to live and a host of problems to solve.5

One potential application is location-dependent advertising. For example, suppose Mc-
Donald's wanted to advertise to you when you drove by their stores. The local McDonald's
would run a Straum server stocked full of agents that are primed to bring an advertisement
into your car. As you drive by, the agent would hop from the store into your car, taking
advantage of the local display resources (the car stereo, perhaps a heads-up display on the
windshield) to suggest tempting Happy Meals. Naturally, you could configure your car's
Straum server to refuse these advertisements or restrict them to only play a quiet advertise-
ment on the rear speakers. But if the advertising offers an incentive (perhaps a discount
coupon) then you might want to allow the advertising agent in. Straum provides the infras-
tructure for these agents and leaves the control over their capabilities up to the car's owner.

Straum could also be used to help monitor car traffic. If every automobile on the highway
runs a Straum server, then a network of cars creates a perfect medium for agents to coordi-
nate data about traffic patterns. Agents would live in the network of automobiles, traveling

4Admittedly, this might not be trivial. But embedded Java is quickly becoming a reality and the Straum
system itself has very little overhead.

5Thank you to Judith Donath for suggesting these car-related applications.

3.4. OTHER APPLICATION SCENARIOS

up and down the highways by hopping from car to car. These agents would carry informa-
tion about local traffic conditions and display relevant data to interested drivers. Some agents
could be generic agents launched by the state police: they would simply alert drivers to traf-
fic conditions on the road ahead. Users could also create and launch personalized, specially
programmed agents that would scout out the driver's particular path and return with infor-
mation, possibly suggest alternative routes. Working out the details of these algorithms is
not trivial, but the Trafficopter project points to the possibilities of distributed data collection
for traffic patterns [35].

3.4.5 Automated Trading

One final example application that highlights the applicability of Straum in an open network
is the possibility of agent-mediated trading of commodities. As a simple example, consider
a suite of four agents; a stock quote agent, a data analysis agent, a user interface agent, and a
trading agent. Data flows from the beginning to the end. The quote agent reports the current
price of a commodity. An analysis agent takes this data in and analyzes it for signals that
indicate that this is a particular time to make a transaction. If the data analysis agent finds
something, it fires off a message to a user interface agent to ask the user if he or she wants to
act on the signal. If the user clicks "OK," the interface agent then fires off a message to the
trading agent to place the trade. Brave people who trust software could just let another agent
make this decision, thereby fully automating their trading strategy.

What makes this example interesting is that all four of these agents will not be on one
person's computer. Naturally, the user interface agent would live close to the user: the
agent has a close communication with the user. But stock quote services are an information
commodity, consumers purchase the data stream. So the stock quote agent would be living
on a computer close to the trading room floor, providing data to all subscribers. Similarly,
trading services are also a commodity. The actual trading agent would live at the brokerage,
accepting orders from customers' agents.

The piece in the middle, the data analysis agent, is the most interesting. Trading systems

are sold by vendors; there is a brisk business in selling software packages that look for

trading signals. Straum would streamline the process of selling these packages. A user user

would buy a system from the author, who would then spawn off one copy of the agent and

48 CHAPTER 3. PRESENCE, ACTIVITY, AND OTHER APPLICATIONS

send it over to its new master's computer. Or maybe the system is very secret and the author

does not want to give away the code. In that case he or she would merely rent the services

of the analysis agent, giving the user the right to connect to the analysis agent and read its

signals. The ecology of agents is a flexible way of composing applications out of smaller

pieces, allowing choices not only for distribution but for ownership.

3.5 Summary

Straum implements a methodology for designing software, the ecology of distributed agents.
This paradigm is quite powerful for building applications on the Internet, allowing much flex-

ibility and open-endedness in structuring systems. The core technology of agent-mediated
peer-to-peer communications makes composing pieces of software together easy. The ex-
amples of communicating a user's presence and monitoring the status of a web server show
how it is simple to construct a distributed application out of simple agents.

These implemented programs demonstrate the usefulness of Straum today in desktop
applications. But they also point to other interesting application domains. The simplicity
of the distributed agent architecture makes it natural for being the 'glue' that knits together
smart objects in our environments. Agents can easily be inserted to mediate information
from many different sources. And the interaction of the agents can itself be interesting data,
reflecting patterns of use in a community of users.

Finally, the strong notions of locality and mobility, the structure of the ecosystem, points
to a new conception of distributed systems. Software should not just be brittle installations
of code that can only run in one place; programs can live in the network. New agents can
be sent far and wide across the network, populating users' machines with new functionality.
Proprietary agents can remain at their author's homes, keeping their code safe from prying
eyes. An ecology of distributed agents provides great flexibilty for building applications in
the Internet.

Chapter 4

Straum Implementation and Evaluation

Straum's implementation of an ecology of distributed agents is a fairly straightforward ex-
tension of existing distributed object software. Straum derives most of its functionality, par-
ticularly its portability and clean design, from Sun's Java language and runtime environment.
Support for distributed object programming comes from Objectspace's Voyager library [74].
Everything else - the system monitors, the graphical interface, and the server and agents
themselves - is implemented in the Straum libraries..

Straum's Java classes are broadly split into two categories: server code and agent code.
The server code provides the home for the agents, the various system monitor facilities,
and the majority of the user interface. The agent code implements a few base classes for
common types of agents but is largely taken up by a suite of application specific agents.
The server code is 1400 lines plus another 500 lines for system monitors. The agent code
is 1200 lines; individual agents vary from 20 to 100 lines each. In this chapter details of
the implementation of servers and agents will be presented followed by a discussion of the
lessons learned in building and testing the system. The class hierarchy of the server and
agents are diagrammed in appendix B.

4.1 Servers

Servers provide the execution context and resources for agents. The server also provides

the user interface; it manages the agent graph interface and gives the user controls to create

CHAPTER 4. STRAUM IMPLEMENTATION AND EVALUATION

new agents. Underneath, the server is responsible for managing resources and access, setting

security policy, and generally keeping track of what is going on. In many ways the Straum

server is analogous to an operating system for agents, an OS written for the Java virtual

machine.

4.1.1 Technology Base

Most of Straum's capability derives from its base in Java [2]. Java is more than another

computer language, it is an entire environment, a virtual machine architecture. The language

aspects of Java make it quite suitable for designing a project such as Straum: the object

oriented model is quite clean and the language has good support for Internet programming.

But the Java virtual machine (VM) is what makes Java particularly powerful for building an

environment for distributed agents.

Java's most hyped VM characteristic is the "write once run anywhere" capability. Java

programs are in a bytecode that can be interpreted by any Java VM. This portability is use-
ful - it means that a Straum agent can trivially run anywhere that Java runs. But beyond

that, the Java VM also provides an entire layer of abstraction for the Straum execution en-
vironment. It gives the capacity to hook all sorts of agent actions, such as accounting for
their CPU and memory usage or restricting their network access. Because most Java VM
implementations are closed, in practice it is difficult to take advantage of all of this potential.
Sun's Java is fairly good at giving access for security restriction, the well known "sandbox
model," but currently provides no hooks for CPU accounting and the like. As open Java VM
implementations such as Kaffe [67] and Japhar [63] mature it will be possible to have more
fine-grained control over agents behavior in the servers. Specific ideas for this are discussed
in chapter 5.

Java has excellent support for Internet programming. The low-level socket libraries make
message passing easy and the RMI and Serialization libraries [65] make it relatively straight-
forward to do distributed object computation. However for this project a different distributed
object system, ObjectSpace's Voyager 1.0 [74] was selected. Voyager was chosen because it
seemed to provide a simpler, more powerful, more transparent interface to distributed objects
and mobile agents.

Voyager provides a very direct model of distributed objects. In addition to a normal Java

4.1. SERVERS

Obj ec t reference to an object, every object in Voyager has a VObj ec t reference. This
VObj ect reference points to a proxy object representing the underlying object. The proxy
reference can be messaged just like the regular object reference; messages pass through the
proxy to the real object. But the proxy is more powerful: it can be a reference to a object
on another computer, another Java VM. In this case, the proxy forwards the message to the
underlying object over the network. Proxies provide transparent access to distributed objects:
the programmer does not even need to know if the object is local or remote.

The key feature of Voyager is that any object can be "remote enabled" by simply cre-
ating a VObj ect reference to it. There are several messaging models for remote access:
synchronous method calls that work just like normal methods in a nondistributed context,
"one-way" calls that return immediately and do not guarantee delivery, and "future" calls
that are asynchronous like one-ways but allow return values to be collected later. In addition,
Voyager provides many other useful services. These include distributed garbage collection,
a simple name database, and a group communication facility. Finally, Voyager also provides
object and agent mobility. Every VObj ect implements a moveTo method that causes an
object to be moved to another Java VM. The underlying support for this capability are mostly
present in Java 1.1, but Voyager encapsulates object mobility, making it a simple primitive
for programmers to use.

Straum uses the core Voyager features, particularly the distributed messaging and mobil-
ity. In general, Voyager worked well for Straum. However, many of the other capabilities in

Voyager either seem superfluous or inappropriate in the context of an ecology of distributed
agents. Reflection on using Voyager for implementing Straum are evaluated in section 4.3.

4.1.2 Resource Management

The main task of the server is to manage the resources of the local machine. The primary

resource is the CPU; the server must create threads to allow agents to run. The server also

manages access to local input and output resources, in particular access to monitors and the

capability to create display windows.

When a Straum server starts up, it initializes Voyager to listen for messages and mobile

agents on a well known port. It also registers itself with the alias "server" so that incoming

agents can find the server object itself. The server then creates monitor objects and the user

CHAPTER 4. STRAUM IMPLEMENTATION AND EVALUATION

interface window. Finally, the server's own thread exits; it has nothing active left to do.

Instead, the server waits for the user to ask for a service via the interface or for an agent to

ask for a service through a method call.

From an agent's point of view the most important method the server implements is

newAgent. This method must be called by an agent as soon as it arrives on a server.1

When the server receives this message, it stores a reference to the new agent in its list of the

local agents and spawns a thread for the agent to run in. The newAgent method is the way

that an agent joins the local population and gets the CPU it needs to live.

Once an agent has moved to a server it is free to access the local monitor resources on that

system. The suite of possible monitors is hard-coded into the server object: Straum servers

simply have methods such as ge tKeys trokeMoni t or and ge tMemoryUs ageMoni t or.
Different servers can implement different monitors; each server can have a different set of
natural resources. For example, the Unix version of Straum does not have a window creation
monitor, only the Windows version does. It is up to the agents to handle the failure to find a

particular resource.

The monitors themselves are application specific and their implementation is not particu-
larly interesting to the design of the ecology. Briefly, the sysinfo library provides JavaBeans
style [64] access to low-level system information such as keystroke events and system load
average. The base sysinfo package provides abstract interfaces to system monitors, and spe-
cific implementations are provided in subpackages for Windows and Unix. 2 This library
is independent of Straum and could be reused in any Java application; its functionality is
merely imported by Straum servers to provide data access.

In addition to access to input in the form of monitors, Straum servers also provide one
output resource, the ability to create a window on the screen. Agents are free to create graphi-
cal components with Java's graphics libraries; the agent then calls acceptComponentFrom
on the server to have the component drawn on the screen. Straum servers therefore also give
agents the capability to affect the environment the server is running in. Other output re-

'Currently, Straum doesn't enforce this - a malicious agent could disobey the protocol and avoid being
tracked by Straum. The problem is that Voyager has already created and run the object; possibilities for
enforcing this protocol are deferred to the security discussion in chapter 5.

2Actually implementing these monitors was surprisingly time-consuming: it turns out to be quite difficult
to, for example, capture keystrokes in Windows.

4.1. SERVERS

sources could easily be added such as the ability to play a sound or control an ambient
display device.

4.1.3 Agent Query Services

Servers provide a home to agents and access to input and output resources. The server
also provides the capability for agents to find each other. Discovery is implemented by the
server's queryAgents method. If an agent is looking for an agent on a remote server to
provide information, it calls queryAgents on that remote server with a specification of
what it is looking for and gets back a list of matching agents. This method is the only one
that agents are allowed to call on a server remotely, all other server methods can only be
called by an agent living in that server.

The query specification itself is simply a list of Java types. For example, a flashing dot
agent might be looking for agents that implement the EventSending interface: it makes
a call to otherServer. queryAgents (this, " EventSending ") ; to get a list
of event sending agents on the remote server. The reply is a list of agents that match the
given criteria. The flashing dot agent then picks one of these agents to talk to and calls the
addListener method on the remote agent to subscribe itself as an event listener. If there
are multiple agents that match the query, it is up to the querying agent to choose the right
agent from the list.

The agent query facility implicitly uses a particular ontology of possible agents, the Java
type system. There is a one to one correspondence between Java types and entries in the
ontology of queryable agent services. This ontology is syntactic, it is rooted in Java syntax.
It is the bare minimum necessary to make distributed agents work: if the remote agent is not
of the correct type, then the necessary methods would not be present. For example, the query
for EventSending guarantees that only agents that implement an addLis tener method
are found in the query, so that remote agents then know it is safe to call addLi s tener. This
query system enforces a sort of "plug compatibility" between agents; the query is designed

to find all the remote agents that could possibly talk with the querying agent.

However, plug compatibility is not the only criterion an agent might want to use when

searching for other agents. For example, there can be several agents on a remote server

that all implement EventSending; a keystroke agent, a file growth agent, and a window

CHAPTER 4. STRAUM IMPLEMENTATION AND EVALUATION

creation agent all send events. How does the querying agent distinguish between them? One

way is to be more specific in the type query, to ask explicitly for a Keys trokeInf oAgent

or the like. However, this approach is limited because of Java's rigid type system. The

other approach is to also use a second ontology, a semantic ontology about the meaning of

the information an agent provides. This second ontology has not been implemented yet;

discussion of its design is in section 5.2.2.

4.1.4 User Interface

In addition to providing services to agents, the server is also responsible for providing an

interface for the user to see what is happening on his or her Straum island. The implemented

interface is relatively simple, providing a set of menus to manage agents, a text console for

message reporting, and a graphical view of all of the known agents. The other part of the
interface in Straum applications, what the agents themselves display, is under the control of
the agents (subject to acceptComponentFrom being called by the agent).

The menu options are straightforward. The server menu allows the user to turn on de-
bugging options and to quit Straum. The agents menu provides easy access to commands to
create all the different kinds of agents. Specific agents have different parameters that can be
set at create time. For example, display agents can be told which remote server to look for
an information agent on.

The graphical view of the agent world is the most interesting part of the interface, pro-
viding a dynamic view of the state of the entire Straum system. The code is contained in
the AgentGraphCanvas class, one of the most complicated pieces in Straum. The agent
graph tracks two things: icons for each agent that the server knows about, and arrows for the
communication between agents.

The agent graph is event driven. Every time an agent sends or receives a message and
every time a new agent comes to a server the graph is sent a message telling about the event.
When a new agent is referenced, the graph asks that agent for an image and then uses it to
draw the agent icon. If the agent is remote, the icon is drawn with 50% transparency. When
a message is reported, the graph updates the arrow between the two communicating agents
to reflect the recent message activity. Arrows are drawn red initially (with a small animated
dot to convey the message activity), then turn blue and fade away until the next message is

4.2. AGENTS 55

sent on the link.

The concept behind the AgentGraphCanvas is that distributed computation should
be observable - it should be easy for a user to see what is going on in the system. Unfor-
tunately, this property is not common in the design of computational systems. For example,
in Voyager it is impossible to trap all agent messages at the server level.3 Instead, Straum
relies on agents to send messages to the server notifying it when a message has been sent.
This requirement is unacceptable in a production system. It should be the server's responsi-
bility to monitor communications, not the agents'. Distributed object infrastructures should
be augmented to make observing messaging easier.

4.2 Agents

The major goal for Straum's implementation is to provide a simple, clean interface for cre-
ating new agents. The server is the operating environment for agents: because it is written
once by the central architect its code can be as complicated as necessary to get the job done.
But agents might be written by any user of Straum. Creating new agents needs to be simple.
An important corollary is that server code is trusted, but agent code may not be. Agents
can potentially come into a server from anywhere on the open Internet. The server needs to
protect itself from malicious or buggy agents.

4.2.1 Agent Requirements

The major requirement of a Straum agent is that it implements a doBehavior method.

This method is called by Straum after an agent has arrived at a new home and has had a
thread created for it. The code to define the agent's actual behavior goes here: the agent

can look for local monitors, create windows, query other servers for agents, or do whatever
else the agent wishes to do. Most agent classes only override this one method. In addition,
the agent can also provide a get IconPixels method to provide an image for the server's

agent graph interface.

3Voyager does try to provide this service with its Obj ectListener and SystemListener interfaces,
but the information is incomplete.

CHAPTER 4. STRAUM IMPLEMENTATION AND EVALUATION

protected void doBehavior() {
displayCanvas = new FlashingDotCanvas(;
myServer.acceptComponentFrom(this, displayCanvas,

"Flashing Dot");

this.findRemoteEventAgent();

// Now main loop

while (!timeToDie) {
displayCanvas.updateDisplay(;

try {
Thread. sleep (updateInterval);

} catch (InterruptedException e) {}

}

// callback method. Manage display

public synchronized void event(VBaseAgent sender,

Object event) {

super.event(sender, event);

displayCanvas . growAndWarmDot (;

Figure 4.1: Flashing Dot Agent Code

4.2. AGENTS

As an example, figure 4.1 is the significant parts of the code for a flashing dot agent:
the doBehavior method and the event method that is called by the remote agent for
each event. Lines 2-4 create a display object for the flashing dot agent and asks the server
to display it. Line 6 calls a method to find a remote event agent; this method is inherited
from the agent support libraries and calls queryAgents on the remote server looking for
agents that implement Event Sending. Lines 8-14 implement the main loop of the agent:
the agent simply updates its display every 100 milliseconds. Finally, lines 17-22 implement
the event receiving interface for the agent. The remote event agent found in line 6 calls this
method over the network: when the flashing dot agent receives this message, it changes its
display to reflect the received event.

This code is not the entire software for the flashing dot agent, but it does give the fla-
vor of implementing a Straum agent. A few bookkeeping methods have been omitted:
the getIconPixels to give the agent a face, the main method for launching agents
on the command line, and two accessor methods to manage the update interval parame-
ter on the agent. In addition, a fair amount of graphical code (65 lines) is contained in
FlashingDotCanvas, but this code is graphic design, not related to Straum or distributed
computation. The 22 lines of code presented above are the essential parts of the agent, the
code that is required for an agent to be part of Straum.

4.2.2 Agent Support

An agent could be written for Straum from scratch using only core Java and the basic Voyager
support for mobile objects. It is important that Straum can work this way - because agent
code can come in from anywhere on the network, there is no guarantee that an agent will
inherit code from the "right" classes. However, normal application developers will use the
various agent support classes provided with Straum.

All agents implemented in Straum today inherit code from BaseAgent, a core class
that provides basic agent support. This class provides three variables: myServer, which
contains a pointer to the local server the agent is living on; vthis, a VObj ect reference
to the agent itself (the distributed equivalent to the this pointer); and a timeToDie flag
that is used to politely notify an agent that it should die. BaseAgent also provides three

methods to wrap up some of the complexity of the Voyager interfaces. The launch method

CHAPTER 4. STRAUM IMPLEMENTATION AND EVALUATION

is called to send an agent to another host. It takes one argument, the name of the host to

move to, and moves the object to the new server. The land method is called on the other

end after the move; it finds the server object by looking up its Voyager alias, sets up the

myServer and vthis pointers, and notifies the server that the agent has arrived. Finally,

the run method is the actual method invoked in the thread that the server creates for the

agent; this simply turns around and calls the application agent's doBehavior method.

Several agents are simple enough that this is all the support they need. They just directly

inherit from BaseAgent. These include the load average information agent, the memory

usage agent, and the running graph agent. However, there are several information agents that
all provide the same basic service, a simple passthrough to export event-oriented monitor
data out to other agents on the network. These include the file growth information agent, the

keystroke information agent, and the window creation information agent. These agents all
inherit from SignalPass through, a class that simplifies the process of exporting events
from a monitor.

The SignalPass through class maintains a list of listeners, other agents who are in-
terested in the agent's event stream. Agents add themselves with Signal Pas s through's
addListener method: the information agent checks that the requesting agent really is
capable of receiving events, adds it to the list, and reports the new listener to the user. The
s ignal method is the other half of the S ignalPas s through: it takes a signal received
from a monitor and re-propagates it as an event to the listening agents. The actual method
call is a oneway method: the information agent sends a message to each listener but does
not check for either a return value or that the message was delivered correctly. This allows
the information agent to be robust in the case where one of the listeners is slow or fails
entirely, but does make event propagation potentially unreliable.

The final agent support class is EventReceivingAgent, a base class for agents that
receive events from one remote source. This class implements a stub for the event method
that simply notifies the server of a message being sent; actual agents override this method
to provide application-specific behaviors when an event is received (such as the flashing
dot's growAndWarmDot behavior). In addition, EventReceivingAgent implements
a f indRemoteEventAgent method: this method makes contact with the remote server,
calls queryAgents there to look for agents that implement EventSending, and then

4.3. EVALUATION AND COMPARISON TO OTHER SYSTEMS

adds itself as a listener to the remote event sending agent. This simple code is used by the
flashing dot, random dot, and moving average agents to simplify the process of finding the
right remote agent.

The rest of the code in the Straum agents package is all application specific agents and
graphics code to implement agent displays. Writing new agents is very simple, requiring
only a single doBehavior method to be implemented that is the agent's actual code. Now
that the server is implemented, a major avenue of future work is to create new types of agents
to implement new applications.

4.3 Evaluation and Comparison to Other Systems

The experience of writing Straum has been largely positive. The hardest part was getting
the design correct: the metaphor of an ecology of agents, the split between agent and server
functionality, and the carefully limited use of distributed messaging. Much needs to be done
to take the existing Straum code base and turn it into a production environment; specific
plans for that are discussed in chapter 5. However, as a whole, Straum has been an effective
educational experience in building distributed applications.

The biggest weakness in the work to date is that the existing Straum applications do
not reflect the larger goals of an ecology of distributed agents. The project started out as
an attempt at building computation in the network, at making the Internet come alive with
millions of interacting agents. Obviously, this is too ambitious a project for the scope of a
master's thesis. The existing applications are very simplistic, too static and dataflow driven
to really show the power and flexibility of this design approach. The application scenarios
discussed in section 3.4 give several possible future avenues for advancing the research, for
exploring the possibilities of more complex distributed systems.

The work done to date has helped develop the vision of open-ended distributed systems.
There is much value in having a working system: the code base is developed enough to allow
for those future applications to be built. In addition, in the course of this research much has
been learned both about other related systems and what sort of infrastructure is necessary to
build distributed agent applications on the Internet.

CHAPTER 4. STRAUM IMPLEMENTATION AND EVALUATION

4.3.1 Voyager's Distributed Object Model

Distributed object programming is just now coming into common practice. There is agree-

ment about the basic model but many differences about the particulars of implementation.

One interesting difference is in the notion of "transparency," the attempt to provide a model

so that talking to something on a remote computer looks exactly like talking to something on

the local computer. On the face of it, transparency is ideal in distributed systems; if you can

just hide all that network mess underneath the hood then programmers can write distributed

code without having to work very hard.

However, in an influential paper [52] Jim Waldo argues that transparency in distributed

systems is often dangerous and misleading. Waldo points out that the semantics of messaging

remote computers is often quite different than local ones: there are additional failure modes

and issues of concurrency, asynchrony, and consistency. Straum, with its location-oriented

computing, has a model of agents that precludes full transparency. The locality of an agent

is important as it dictates the kind of resources the agent has available to it. Locality also

affects issues of trust and security.

The underlying distributed object package that was chosen, Voyager, is a mostly trans-

parent system. If an agent has a vobj ec t pointer to another agent the default behavior is

entirely network transparent: messaging takes place the same way whether the object is local

or remote. The transparent distributed object model of Voyager has several far-reaching im-

plications. One of them is that it is very difficult to restrict which interfaces are published for

remote agents. For example, the only method on a server that should be called from remote is

queryAgents. But Voyager blindly exports all of the methods, thereby exposing inappro-

priate methods like killAgent. What Straum needs is a model where the programmer has

to explicitly flag a method as exportable, much like programmers flag methods as public

or private.

Transparency in Voyager also causes other problems. The default remote method call se-

mantics are synchronous, to best duplicate conventional local programming. But many times

this is exactly the wrong thing. For instance, an event notifying agent should not be hung

because the listener has died. Voyager does provide alternate options for message seman-

tics, but using them is a bit awkward. Moreover, because of the transparency of Vobj ect
it sometimes is not even clear that a method call might go out over the network, making it

4.3. EVALUATION AND COMPARISON TO OTHER SYSTEMS

harder to restrict network exposure.

In summary, Voyager provides a completely open model of distributed object program-
ming: anyone can talk to anyone else. But Straum has the exact opposite model, where
agents are very careful as to whom they talk to and what interfaces they expose. It is pos-
sible to implement a more restricted communication model in Voyager but doing so breaks
the fundamental design principles they chose. It may be possible that Voyager's transparent
distribution is useful in some contexts, but in the location-oriented computing of an ecology
of distributed agents a more restricted model is required. Other distributed object systems
provide a better match.

4.3.2 Distributed Object Systems

The grand dame of distributed object systems is CORBA [37]. CORBA is quite large and
complicated, providing a huge variety of different distributed object services. However,
CORBA tends to be very static: CORBA does not allow mobile agents or easy runtime
composition of objects.4 The main strength of CORBA is that it is language independent,
but for research projects such as Straum this capability is not a requirement. It is not clear
how language independence would even operate with true mobile code.

There are many other Java distributed object systems available. One attractive alternative
to Voyager is Java's own remote method invocation, RMI [65]. On its face RMI provides
much the same basic functionality as Voyager, the ability to call a method on an object
on another computer. But there is an important difference: classes that wish to be called
remotely have to explicitly tag the individual methods they wish to be exported. While this
makes RMI seem clumsy at first, it can be useful in requiring the programmer to carefully
think about the methods that are exposed to remote calls. This discipline is desirable for
Straum.

Unfortunately RMI does not provide some of the other capabilities that are in Voyager.
The main weakness of RMI for Straum is that RMI has very little support for mobile objects.
However, the mobile agent facilities needed by Straum can quickly be built out of Java's
serialization and class loading capabilities. This approach would also allow experimentation

4There is an OMG mobile agents facility proposal underway.

CHAPTER 4. STRAUM IMPLEMENTATION AND EVALUATION

with different implementations of mobile code and might help lead the way towards solving

problems such as class versioning.

Caltech's Infospheres project [10] [11] also starts with a Java distributed object model.

Out of the base of distributed objects, Infospheres adds composable component, allowing a

user to publish active objects as part of their "information sphere" on the Internet. Straum

is similar to the Caltech research in studying issues of scalability and reconfigurability by

designing systems that allow composability through object capability specification and dis-

covery services. Straum differs from Infospheres in that it is primarily agent based, with

emphasis on loose confederations of mobile agents. The Infospheres project is notable for

their guarantees of reliability and verifiability.

4.3.3 Mobile Agent Systems

Mobile agents are a new and fertile research field. There are a host of mobile agent systems

out there, all providing similar services. Like Voyager, most of these systems are focussed

largely on getting the mobile agents plumbing working, to make it possible to send a pro-

gram from point A to B. But most systems develop some sort of model of computation that

particularly addresses location and security. In the past mobile agent systems were devel-

oped in any language that has a runtime environment (most notably Dartmouth's Agent TCL,
now a multi-language system called D'Agents [20]) but current research is mostly focussed
on Java. Active mobile agent systems include the University of Stuttgart's Mole [69], IBM's

Aglets [26], Mitsubishi's Concordia [57], General Magic's Odyssey [71], and ObjectSpace's
Voyager [74].

All of the mobile agent systems implemented have some sort of notion of location of
computation. This model seems implicit in mobile agent research: if an agent is going to
move from one place to another, the system needs to have a concept of place. However,

different projects address the concept of what distinguishes places differently. Voyager, for

example, has no built-in support for distinguishing one place from another: Straum adds

more locality to Voyager by adding the concepts of local resources and the local agent

population. In contrast, Odyssey's Place abstraction or Mole's mobile agent model both

account for location-dependent computation, albeit in a less explicit form than Straum's
server-maintained set of resources.

4.3. EVALUATION AND COMPARISON TO OTHER SYSTEMS

One minor difference between Straum and many other mobile agents platforms is how
an agent's movement is managed. Many systems such as Concordia have an explicit notion
of an agent itinerary that lists the places the agent is to travel to. Straum does not support
such a facility. Instead, agents themselves simply choose to where to travel to. In practice
this does not make much of a difference in the power of the system, although perhaps in a
future version of Straum itineraries could be added as an agent support class.

Another distinction between mobile agent systems is how they handle security, in partic-
ular protecting the host from the agents that move to them and restricting access to particular
resources. Most systems have some basic protection for the host. For example, IBM Aglets
uses the standard Java security manager interface to control agent operations, thereby pre-
venting agents from accessing parts of the host that are not allowed. Concordia provides a
very rich security model including protection for the host, access control for resources on
the host, and protection for the agents themselves with a combination of code signing, and
resource permissions. Straum currently has no security implemented at all, although the
intended design closely resembles Concordia (section 5.2.4).

Finally, Straum seems to largely be alone in using an ecological model to describe a group
of interacting agents. This idea was partly inspired by the NetTierra system [40], but that
system is well outside the mainstream of mobile agents research. Instead, most mobile agent
system examples work with a predefined set of agent interactions in the context of particular
applications. As researchers become more comfortable with the basics of mobile agents, we
can expect to see a flowering of different models for how to manage their interactions.

4.3.4 Group Communication

Straum's communication model is entirely peer-to-peer. Agents communicate entirely one
to one and any sort of communication from one agent to a group is done by sending unicast
messages one by one. This architecture is suitable for many of the applications discussed in
chapter 3 where there are localized sources of information and relatively few receivers. But
in applications where there may be a large number of agents all listening to one information
source this simplistic approach will not be efficient or robust. Instead, some sort of multicast
or tuplespace approach will be necessary.

One possible technology that could address this need is SoftWired's iBus system [61].

CHAPTER 4. STRAUM IMPLEMENTATION AND EVALUATION

iBus provides an alternative to peer to peer communication, the information bus. This device

is a channel that an object can send messages to. All objects subscribed to that bus receive

the message. The core of iBus is IP Multicast, but the protocol stacks in iBus are nicely

configurable to provide varying options for quality of service. Straum could easily add iBus

as an extra capability on the server so that agents that needed iBus services could simply

message out an iBus channel instead of a standard remote method call.

Another group communication paradigm that could be useful in Straum is the notion of

"tuplespaces," developed initially by Gelernter in his Linda system [18] and implemented

recently by Sun as JavaSpaces [66]. A JavaSpace is like an abstract distributed database,

a place where arbitrary objects can be placed and associated with each other. JavaSpaces

provide a very elegant abstraction for relationships between objects. Straum could simply

add JavaSpaces as another service, maintaining a JavaSpace on each service for objects to

share. But a more interesting avenue might be to try to marry the Straum abstraction of a

population of agents with the JavaSpace abstraction of groupings of objects. The models are

different, but there is enough overlap that a combination might be fruitful.

4.3.5 Jini

In the last month this thesis was being written, Sun made a big announcement about Jini, a

new distributed systems architecture being built for Java [51]. Jini is not yet released and
information is still a bit sketchy, but what they have explained so far looks very promising as

a way of building flexible distributed systems. The available white papers and specifications
give enough information for a preliminary comparison between Jini and Straum.

Jini builds on the existing Java core, making particular use of serialization and RMI for
a distributed object infrastructure and class loading for mobile code. Jini adds the notion
of a "service," a way to publish specifications on what a distributed object can do. For

example, a hard drive might be a service, an object with a published interface for storing

and retrieving files. Jini provides a discovery meta-service to enable remote objects to find

relevant services.

Jini and Straum are very similar in supporting discovery. However, there are important

differences between the two systems. Straum uses Voyager instead of RMI, although now the
RMI model seems better suited for Straum (see section 4.3.2). Instead of services, Straum

4.3. EVALUATION AND COMPARISON TO OTHER SYSTEMS

implements a two layer approach: monitors that are the raw resources only available on the
local machine, and agents to mediate higher level access to the monitors. The discovery
service of Jini is much like Straum's queryAgents interface, although the details of Jini's
ontology are not yet available for comparison.

Jini is quite different from Straum in other important ways. First, Jini currently has no
implementation of software agents at all: the metaphor of autonomy and adaptability is not
there. Jini is more like a distributed objects system, not a distributed agents system. One
implication is that Jini cannot have the split between monitors and agents that Straum uses
to simplify access to local resources; this seems to be a weakness in Jini.

Closely related is that from what has been published so far, Jini has very little support for
location. Jini's model is more like one computer system with many services registered in it,
while Straum's model is to have many different computer systems in different locations, each
with their own services, communicating together. There are hints in Jini's design documents
that they intend Jini to be used across the entire Internet, but it is not clear yet how that will
work.

In many ways Jini will be superior to what has been implemented in Straum. Jini adds a
host of other useful distributed systems features including time leases on services, two phase
commit transaction support for consistency, access control based security, JavaSpaces (sec-
tion 4.3.4), and a more robust distributed event system. These capabilities are all presumably
integrated into a simple, well-designed Jini API.

If Jini delivers on its promises it will be a very nice toolkit for creating distributed sys-
tems. The core distinction between Straum and Jini is that Jini has no notion of agents nor
any way of localizing and coordinating active processes in the system. Therefore, Jini has no
model of an ecology of agents. An important future research project will be to combine Jini
and Straum, to add an ecology of distributed agents to Jini's rich distributed objects model.

66 CHAPTER 4. STRAUM IMPLEMENTATION AND EVALUATION

Chapter 5

Conclusions and Future Work

This thesis has laid out a new way to build distributed software on the Internet. The core
paradigm, the ecology of distributed agents, is a simple and effective way of organizing
distributed systems. Straum, the first implemented version of an ecology of agents, allows
distributed agent applications to easily be built and deployed. This work has uncovered many
interesting issues in distributed systems, and also points to a program of future research
towards building software that lives in the Internet.

5.1 Lessons for Distributed Systems

The process of designing and using Straum has revealed many object lessons in practical
distributed systems. Among them are issues about transparency, the power of designing
systems with clear compartmentalization of functionality, and the use of mobile agents to
create open and flexible systems.

5.1.1 Transparency and Location

As discussed in section 4.3.1, transparency in a distributed system is not necessarily a desir-
able quality. Building a system so that programmers and users do not have to know about
the location of computational objects is appealing on the surface: it would seem to sim-
plify the task of understanding the system. But in practice it is too difficult to truly hide all

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

of the complexities of a distributed system. And even if we develop technology someday

powerful enough to smooth over all possible errors from distribution, it is still not clear that

transparency is desirable.

The location of a computational process, in particular its local environment and input and

output capabilities, is a fundamentally important property in a distributed system. Distributed

systems should not wash over the distinction of place. The physical location of an agent

dictates the resources it has access to. The logical location of an agent dictates the virtual

environment it has access to, in particular its relationship to other agents. Two agents on

the same computer are fundamentally different than two agents on different computers: they

have faster and more reliable communication, they share a common frame of reference,
and their collocation often indicates that there is some deeper relationship between the two

agents. Location is an interesting property of computers and agents. Systems should not be

designed so transparently that locality disappears.

5.1.2 Compartmentalization of Function

Straum divides the distributed software world up into two clear pieces: servers that manage

local resources and agents that implement applications. This split, based on the split be-

tween the kernel and the applications in conventional operating systems, greatly simplifies

the design of the system.

Servers are relatively heavyweight, stable code. In a deployed application the servers
will be the legacy code, the things that cannot easily be changed once the system is installed.

It is important that the servers be designed correctly early on. That means that the server's
functionality needs to be simple. Straum servers are as simple as possible: a server simply
accepts agents, tracks the agent population, and manages access to the local monitor and
display resources. In the future Things That Think world one could imagine Straum servers

being installed in every smart object. When every light fixture, appliance, and piece of
furniture has a server in it, it will not be acceptable to require users to upgrade all of their

servers to implement a new application. The Straum server design, in having a rigidly defined

boundary on its function, makes it possible to imagine implementing the server correctly and
installing it only once.

With the servers fixed, the agents are then free to change on the fly. Agents can be

5.2. FUTURE IMPLEMENTATION WORK

lightweight, ephemeral processes, living in a server for as long as they need and disposed of
when the application is finished or it is time for an upgrade.

An additional compartmentalization in Straum is the relatively rigid boundaries between
individual agents. The interaction between agents is tightly controlled, limited to interfaces
that are negotiated through the query service. Agents are protected from the vagaries of
the implementations of other agents, meaning that an agent's code can be changed without
breaking every agent that knows about it. The boundary between agents and the server and
the boundary between agents themselves simplifies the system design.

5.1.3 Mobile Agents

Straum uses a relatively new and controversial technology, mobile agents. The application
of mobile agents in Straum so far is fairly limited. An agent can be elsewhere during its
lifetime, but typically this is only done at an agent's birth. Even this simpleuse of mobility
gives Straum flexibility: it is easy to send new functionality into a remote server. Combined
with the careful design of servers, mobile code can potentially solve the problem of legacy
software on the installed base. Install the server once on your computer, leave it running, and
when you need to change how the computer operates simply load a new agent into it.

5.2 Future Implementation Work

The experience implementing Straum has focussed the vision of an ecology of distributed
agents from a vague idea to a specific application platform. The most important components
to enable this vision have been implemented. But there are many more things that need to
be added to Straum to make it simpler to use, more powerful, and more robust for serious
usage. This section discusses parts of the system that have been designed already but have
not yet been implemented.

5.2.1 Technology upgrade: RMI and Jini

The next bit of work planned is to replace the Voyager distributed object system with RMI.
As discussed in section 4.3.2, RMI's model of distributed objects seems to be better suited for

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Straum than Voyager. Reimplementing Straum with RMI will help clean up the distributed

messaging in Straum by requiring agent programmers to carefully think every time a message

is sent over the network. It will also open up a pathway towards integrating some of Jini's

functionality into Straum, and should also simplify licensing issues.

The main work in moving to RMI will be creating a new mobile object facility. This

should not be too difficult as it mostly requires stitching together existing class loaders and

serialization and providing a clean interface. Once that first piece of work is done, then the

rest of the work is simply removing the Voyager-specific communication and replacing it

with RMI-specific communication. Because remote communication is so limited in Straum,
this task is not expected to be very difficult.

RMI cleans up the distributed messaging in Straum. It will also facilitate using Jini,
which should provide nicer versions of several Straum features including resource discovery

and event distribution. The support for leases, transaction support, and security will also

make Straum a more robust application.

5.2.2 Semantic Ontology

Straum so far has only implemented a syntactic ontology, the type system. A semantic
ontology system is also necessary so that agents can easily distinguish between, for example,
two event sending agents. Such a system is relatively simple: the idea is to simply augment
every agent with a getMeaning call that returns a list of strings. The strings will be

arbitrary nouns. For example, a keystroke information agent might return "keystrokes." The
querying agent can then interpret this extra information however they want to. This simple
approach will be useful, but it does not solve larger questions of coordinating ontologies.
That issue is discussed in section 5.3.5.

5.2.3 Agent Persistence

Currently, if a user shuts down their Straum server all of the agents disappear. This restriction
is fine for limited use, but it would be nice if the agent population were persistent so that they

could be restored when the server starts up. In theory this is simple; just serialize the agents
and write them to disk. One possible issue is class versioning; one has to insure the right

5.2. FUTURE IMPLEMENTATION WORK

version of code is loaded for the right version of agents. Java now has some limited support
for versioning that will probably need to be extended.

5.2.4 Security

Straum so far has no security at all. It is already approaching the point where this is unac-
ceptable because it makes it dangerous to have long-running Straum servers running on the
Internet. The first part of Straum security will be a simple host-based system, restricting who
is allowed to connect to the server. It should be possible for a user to restrict access to the
server so that, for example, only people inside the Media Lab can connect. This simplistic
security mechanism is quite helpful and very easy to implement.

The second level of security to implement is a custom Java security manager that creates
a sandbox for remote agents [36]. This security system will restrict what any agent coming
into the system can do. For example, it would allow communication from the agent to the
Server object but prevent an agent from directly accessing the hard drive. Basic sandboxes
are a well supported capability in Java although it is difficult to correctly define the policy so
as to allow agents to be useful and yet secured.

The problem with this sort of sandbox is that it is not very specific; in general, all agents
are treated the same. What one would like is a policy where particular agents have particular
capabilities. For example, agents from my friends would have more powers than agents from
a stranger. Java 1.1 allows for code signing so that one can determine who is responsible for
the agent's program and grant permissions based on how much you trust the software. The
Concordia project notes that code signing is not enough and that one needs user authentica-
tion, since often one wants to know who the agent belongs to, not who wrote the code [53].
Using pieces of code signing and user authentication, combined with the upcoming Java
1.2 policy architecture [19], it will be possible to give individual agents specific capabilities
depending on what user they represent.

Sandbox techniques will allow the Straum server to limit what information resources an

agent has access to: what monitors, what display capabilities. But they do not currently

allow Straum to control how much CPU time an agent takes or how much memory it uses.

This limitation is fundamental in the design of Java; it is easy to control what methods

an object can call but not what raw resources are used. Straum will eventually need to

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

implement these sorts of restrictions to prevent denial of service attacks on servers. It might

even enable a marketplace for spare CPU cycles such as the Enterprise system [31]; when

a computer is idle, its Straum server could advertise to allow paying agents to run CPU

intensive operations. Unfortunately, doing any sort of CPU or memory usage accounting

will require augmenting the Java VM.

5.3 Future Design Work

In addition to these various capabilities that are fairly well understood and mostly need im-

plementation, there are several features that would be good to have in the system that are

not yet well understood. The design of these functions has not been worked out, nor have

the implications of adding them. This work represents the most exciting future research for

Straum as it means expanding the capabilities of the system itself.

5.3.1 Dynamic Monitors

The current set of monitors built into a Straum server is hard coded: each server process

loads its own monitors and builds interfaces such as getKeystrokeMonitor to access

them. This approach is not ideal because it means that special servers have to be compiled for
every possible set of monitors. Straum needs a way for servers to load monitors at runtime
and an interface so that local agents can find the monitor they need. Loading a monitor and
allowing agents to find it is quite similar to loading an agent and allowing other agents to
find it; some of the same code could be used to support both functions. However, there is a
danger that this approach might confuse the boundary between agents and monitors. This is
not appropriate as monitors should not have all the capabilities and complexities of agents.

As more experience with deploying Straum is gathered, the current ad hoc system can be

replaced with one designed to meet observed needs.

5.3.2 Agent Parameters

Many of the agents implemented in Straum have obvious parameter settings to tune their
behavior. For example, display agents typically have update rates, the moving average agent

5.3. FUTURE DESIGN WORK

has parameters for the size of data windows, and the file growth agent has the actual file it
is watching. Straum currently hard codes these parameters, but that is clearly not a proper
solution.

There are several options for parameterizing agents. One solution is to provide an inter-
face for the user to set parameters - this is clearly useful for the display agents. Another
option is to have agents have a defined interface for setting parameters, so for example a
remote agent could call se tWindowSi ze to configure a moving average agent for its pur-
poses. That solution raises issues on who has permission to reconfigure an agent. A third
option is to not parameterize agents at all, and instead create new agents with new settings on
the fly and send that in. So if a user wanted to watch a particular file, instead of configuring
a remote file watching agent he or she would simply create a new file watching agent with
the right filename and send it to the remote host. This solution has nice properties of agent
identity but could quickly become inefficient. In practice, some mixture of these solutions
will probably be necessary.

5.3.3 Server Directories

Straum servers have a location, a place in the network. Currently the name for a server's
location is simply its IP address. This naming is functional but a bit awkward to work with;
Straum would benefit from a naming system that is more abstract, so a user can specify
"Nelson" instead of 18 . 85. 16 . 10 4. DNS names alone are not enough: an interesting

service might have a dynamic IP address. Some sort of directory of servers would be useful.
A simple implementation would be a centralized server, but a distributed directory like DNS
or a group model like JavaSpaces would be scalable.

5.3.4 Server Neighborhoods

Straum has a concept of "place," the individual server. However, it has no concept of ge-
ography, of topology, of interconnections between servers. As with the Internet itself, every
Straum server is right next door to every other server, merely one message away. There
is a real convenience to this lack of order in computer relationships, it makes any possible
communication easy. However, it also makes for a completely unstructured environment.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

One possible way to structure the environment is to introduce an idea of "neighboring"

servers, Straum islands that are "close" in virtual space. For example, I might define my

Straum server to be next-door to those of my personal friends and my workgroup. Agents

would then be restricted to only being able to communicate with neighboring servers. Natu-

rally, these neighborhoods should be reconfigurable so that servers could choose to become

neighbors in order to facilitate communication.

There are many reasons why a spatial restriction on Straum might be useful. First, it

will simplify the interface of the system; when a user creates a new agent and tells it to

monitor someone, he or she could simply chose from the list of neighbors. A server topology

would also help structure the space; much like the locality of agents on one computer is a

useful property for organizing and understanding a system, the concept of neighborhood

might help organize more complex interactions between groups of Straum agents. Finally, a
"neighborhood" is a simple hook for defining security policy: agents from one's neighbors

might be more trusted. A special neighborhood guard server could even protect a group of

users by screening agents that want to come in through the neighborhood gate. Adding more

structure to the Straum network could allow more sophisticated organization of the global

agent population.

5.3.5 Ontology Coordination

Straum takes an ad hoc approach to ontologies - new types of things can simply be defined
and used without any central coordinator. This choice scales nicely and avoids the difficult
question of defining an a priori ontology of possible agent types. However, it also shifts the
hard work of figuring out what an entry means to the querying agent. le: if a new agent
publishes that it has information of type Spec ialObj ec t, or that the information means
"widgets", how will the remote agent understand what these nouns mean?

The belief underlying Straum's ad hoc ontology is that it is not necessary to solve this
problem, at least in the short run. Instead, people will just go on defining entries in the
ontology just like they define new words in a language; other agent designers will then need
to actively keep abreast of current developments in Straum ontologies to make sure their
agents interoperate. This approach is not entirely unprecedented. For example, XML has an
equivalent ontological problem in the proliferation of document type definitions (DTDs) [7].

5.3. FUTURE DESIGN WORK

It remains to be seen whether XML will result in a Tower of Babel of millions of different
kinds of documents, or whether developers will converge on a common, ad-hoc ontology.
If Straum proves popular enough that these concerns are palpable, then it will be successful
indeed!

However, some sort of system should be built in Straum to simplify ontology coordina-
tion. What is needed is a way for agents to easily tell the world when they have defined a
new entry so that other agents can know about the new term. This registry will probably need
to be a centralized resource. For the syntactic ontology this is relatively simple: agents can
just report their Java types to the ontology registry and have the information recorded; the
structure of Java's type system will help coordinate entries. The semantic ontology is much
more free-form however, and it is possible that conflicts will arise where two agents register
the same noun with a different meaning or two different nouns for the same meaning. Guid-
ance for solving this problem can be taken from work done towards using XML for enabling
active applications [6] as well as from KQML research, in particular the Ontolingua system
[16].

5.3.6 Distributed Agent Construction Kits

Straum's visual interface to agents strongly suggests graphical programming environments
where programmers can build applications by simply drawing wires between components.
However, Straum's view is currently read-only. The links between agents are created deep
in the agents' own code, the user cannot link two agents up visually. One avenue of fu-
ture design work is to build a visual programming system into Straum so that users could
easily connect agents on different machines simply by drawing links between them. This
interface would replace the currently clumsy way of telling an agent explicitly which host to
look at and what kind of information to look for, thereby enabling a simpler construction of
applications out of agents.

A more ambitious project is to open up the construction of the agents themselves, to pro-

vide a high level interface to allow users to specify an agent's behavior. This approach would

greatly improve the diversity of types of Straum agents as users could work with a simpler

abstraction for building agents rather than writing low-level Java code for the doBehavior

method. Designing this properly will take more research in programming paradigms, per-

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

haps borrowing component assembly like JavaBeans [64] or workflow templates for assem-

bling agent plans [34].

5.3.7 Economic Coordination

Straum creates a system that enables agents to find each other and enter into relationships.

But Straum does not say anything about why agents would want to communicate, what the

motivations and agreements are that prompted users to create communicating agents in the

first place. In the applications envisioned so far there has typically been a user or group of

users who have a preexisting need, a framework that they build agents into. But Straum is
also intended to enable more fluid kinds of applications, ones in which agents themselves

step forward and take over some work without a human planning the interaction.

One way to coordinate and motivate this type of behavior is to put economics into the

system. For example, an agent might charge for its services; if an agent wants access to
some sort of information source on another server, it would have to pay an agent on the
remote system to provide that data. An economic system would give an incentive for agents

to provide services: they can make money for their owners. Furthermore, economics can
be a way of coordinating a distributed system. For example, if there is a cost associated
with communication then an agent has an incentive to communicate more efficiently to save
money. A new agent that could perform a service more efficiently could step in and offer its
services. A marketplace of agents would be quite a dynamic system. Existing research in
market based control [13], in particular conceptions such as Agoric computing [33], point to
how economics can help coordinate a complex computational system. Straum could be an
excellent platform on which to test these ideas.

5.3.8 Evolving Agents

Straum uses mobile agents to aid configurability of the system. But mobile agents could
potentially make the system much more than just an application that people can easily re-
configure. If Straum servers become widely deployed the network as a whole will become a
medium for agents to live in, a natural environment for software.

One possibility is that this new environment would have software evolving inside of it.

5.4. THE FUTURE OF INTERNET SYSTEMS

We already have a certain kind of software evolution; new versions of software are released
every day, and users upgrade them or not as the mood strikes them. Eventually people stop
running the old version and it dies out. Similarly, in Straum as people write new versions of
agents they will be sent out into the system. If these new versions are better (more robust,
more efficient, more featureful), then they will naturally replace the older versions. And so
there would be a kind of human-aided evolution of the agent population.

This sort of evolution is not automatic; it requires agent authors to write new versions
by hand and send them out. But what if the agent code itself is produced algorithmically?
It is possible to have an agent's code be under the control of a genetic algorithm so that the
agent's implementation changes dynamically. Combine this with a selection mechanism for
"fit" agents, and Straum would have an autonomously evolving agent population. Naturally
it will be quite difficult to actually make this evolution process effective but because the
agent interfaces are so constrained it is not impossible. The implications of this are huge:
on one hand you could have a system where more efficient programs just magically appear
in the execution of the system. On the other hand, agent evolution might quickly get out of
hand, producing hordes of useless software that somehow exploited unforeseen niches in the
ecosystem. Online evolution is obviously not going to be a solution in the near term, but it is
an exciting topic worth pursuing. And Straum's design, with its explicit ecology of agents,
is a natural testbed for evolutionary computation.

5.4 The Future of Internet Systems

The purpose of Straum is not just to enable distributed dataflow applications. Straum is
a work towards creating a new form of computation, a new paradigm for how we use the
Internet. The goal is to make software more fluid, to put active processes into the Internet
and make more complex and powerful systems.

The best way to advance this agenda with Straum is to build applications with it, to create
practical things on top of the distributed agents infrastructure. We need more experience
with agent based applications on the Internet; Straum is good enough to be a starting place.

Section 3.4 discusses some plans for applications to build on top of the Straum system today.
These applications, in particular the Things That Think related ones, are underway now.

78 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

However, it is also important to think beyond those relatively static applications, to build-

ing larger and more fluid applications where agent interactions are not predetermined, where

the software could possibly surprise us. The shape of these applications, what they do, is not

completely apparent. Straum has helped to develop a vision of the future of Internet systems,
to explore this paradigm of an ecology of distributed agents. Through refining Straum and

building more applications, this vision will become more complete.

Appendix A

Agent Bestiary

A.1 Information Agents

I MemoryUsageInfoAgent
INPUT: None.

OUTPUT: Floating point number representing the fraction of memory used.

BEHAVIOR: Finds the memory usage monitor and quits its thread. Responds to getFloat.

I LoadAverageInfoAgent
INPUT: None.

OUTPUT: Floating point number representing the current number of jobs waiting to run
on the system.

BEHAVIOR: Finds the load average monitor and quits its thread. Responds to getFloat.

E FileGrowthInfoAgent
INPUT: None.

OUTPUT: An event every time a watched file grows.

BEHAVIOR: Installs itself as a signal listener with the file growth monitor and quits its
thread. Accepts listening agents and sends them events.

APPENDIX A. AGENT BESTIARY

KeystrokeInfoAgent

INPUT: None.

OUTPUT: An event every time a key is pressed.
BEHAVIOR: Installs itself as a signal listener with the keystroke monitor and quits its

thread. Accepts listening agents and sends them events.

WindowInf oAgent
INPUT: None.

OUTPUT: An event every time a window is created.
BEHAVIOR: Installs itself as a signal listener with the window creation monitor and quits

its thread. Accepts listening agents and sends them events.

A.2 Data Analysis Agents

E MovingAverageAgent
INPUT: Events.

OUTPUT: Floating point number representing the moving average of the number of
events received in its history.

BEHAVIOR: Adds itself as a listener to an event generating agent on the remote host.
Updates a count every time it receives the event, and runs a thread to update the
history. Returns the current moving average in response to getFloat.

A.3. DISPLAY AGENTS

A.3 Display Agents

I FlashingDotAgent
INPUT: Events.

OUTPUT: None.

BEHAVIOR: Adds itself as a listener to an event generating agent on the remote host.
Creates a canvas with a dot in it. When an event is received, the agent makes the
dot pulse. Also keeps a record of how many events have come recently: if there is
a lot of activity, the agent warms the dot from blue to red.

RandomDotAgent
INPUT: Events.

OUTPUT: None.

BEHAVIOR: Adds itself as a listener to an event generating agent on the remote host.
Creates a blank canvas. When an event is received, the agent draws a dot with
random placement and colour. The agent slowly fades dots over time until they
disappear. This display is closely modeled after the display in ChatCircles [15].

RunningGraphAgent

INPUT: Events.

OUTPUT: None.

BEHAVIOR: Finds a source of floating point numbers on the remote host. Creates a
canvas for a graph. Periodically asks the remote agent for a floating point number
and plots it on the graph.

82 APPENDDC A. AGENT BESTIARY

Appendix B

Class Hierarchies

Figure B. 1 is a diagram of the class hierarchy for the Straum server and system information
packages. Figure B.2 is a diagram of the class hierarchy for Straum agents.

The diagrams follow the convention of the Java Class Libraries documentation [9]. A
square box represents a class, a rounded box represents an interface. A small circle on the
right side of a class box indicates the class is abstract. Solid lines show the inheritance
hierarchy, dotted lines represent implementation of an interface.

For convenience, the package names have been shortened in these diagrams. The actual

package names are

" edu.mit.media.nelson.straum

" edu.mit.media.nelson.straum.agent

" edu.mit.media.nelson.straum.sysinfo

" edu.mit.media.nelson.straum.sysinfo.unix

" edu.mit.media.nelson.straum.sysinfo.win

APPENDIX B. CLASS HIERARCHIES

Server

ServerInterface

AgentGraphInterface

AgentThreadGroup

Global

EventPublisher 0

- FileGrowthMonitor

-KeystrokeMonitor 0

unix.UnixKeystrokeMonitor

win.WinK

WindowMonitor

Unix .Unixl

win.WinK.

LoadAverageMonitor

eystrokeMonitor

O0

KeystrokeMonitor

eystrokeMonitor

0

unix.UnixLoadAverageMonitor

MemoryUsageMonitor

win.WinLoadAverageMonitor

unix.XEventServer

Figure B. 1: Class hierarchy for Straum server and system information

Signalable

Monitor

*I..

I

OV'

BaseAgent 0

EventReceivingAgent
I ___________________

FlashingDotAgent

RunningGraphAgent

MemoryUsagelnfoAgent

LoadAveragelnfoAgent

(java.lang.Runnable

il.

Z0 ..i....

(EventReceiving

sysinfo.Signalable

InformationConsumer

AFloatSource

InformationProducer

~~~~~~2

SignalPassthrough

-FileGrowthlnfoAgent

1-WindowInfoAgent

(EventSending

BaseCanvas 0

FlashingDotCanvas

-RandomDotCanvas

- RunningGraphCanvas

Figure B.2: Class hierarchy for Straum agents

LA



86 APPENDIX B. CLASS HIERARCHIES



Bibliography

[1] Ross J. Anderson. The Eternity Service. In Proceedings of PragoCrypt '96. Czech
Technical University Publishing House, 1996. http://www.cl.cam.ac.uk/users/rja14/
eternity/eternity.html

[2] Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley,
1996. ISBN: 0-201-63455-4.

[3] Derek Atkins, Michael Graff, Arjen Lenstra, and Paul Leyland. The Magic Words are
Squeamish Ossifrage. In AsiaCrypt '94, 1994.

[4] Mario Baldi, Silvano Gai, and Gian Pietro Picco. Exploiting Code Mobility in Decen-
tralized and Flexible Network Management. In Proceedings of the First International
Workshop on Mobile Agents, Berlin, April 1997. http://www.polito.it/~picco/papers/
ma97.ps.gz

[5] Kenneth P. Birman. Building Secure and Reliable Network Applications. Manning Pub-
lishing Company, 1996. ISBN: 0137195842. http://www.browsebooks.com/Birman/
index.html

[6] Jon Bosak. XML, Java, and the Future of the Web, March 1997. http://sunsite.unc.edu/
pub/sun-info/standards/xml/why/xmlapps.html

[7] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
(XML). Technical Report PR-xml-971208, W3C, December 1997. http://www.w3.org/
TR/PR-xml-971208

[8] G. Di Caro and M. Dorigo. Mobile Agents for Adaptive Routing. In Proceedings of
the 31st Hawaii International Conference on Systems, January 1998. ftp://iridia.ulb.ac.
be/pub/dorigo/conferences/IC.22-HICSS3 1.ps.gz



BIBLIOGRAPHY

[9] Patrick Chan, Rosanna Less, and Douglas Kramer. The Java Class Libraries, volume 1.
Addison Wesley, 2nd edition, 1998.

[10] K. Mani Chandy, Joseph Kiniry, Adam Rifkin, and Daniel Zimmerman. Framework
for Structured Distributed Object Computing. 1997. http://www.infospheres.caltech.
edu/papers/framework/framework.html

[11] K. Mani Chandy, Adam Rifkin, Paolo A.G. Sivilotti, Jacob Mandelson, Matthew
Richardson, Wesley Tanaka, and Luke Weisman. A World-Wide Distributed Sys-
tem Using Java and the Internet. Technical report, Caltech Computer Science, 1996.
Caltech CS Technical Report CS-TR-96-0. http://www.infospheres.caltech.edu/papers/
chandy-etal/hpdc.html

[12] D. Chess, C. Harrison, and A. Kershenbaum. Mobile Agents: Are they a Good Idea?
In Jan Vitek and Christian Tschudin, editors, Mobile Object Systems: Towards the
Programmable Internet, volume 1222 of Lecture Notes in Computer Science. Springer-
Verlag, 1997. http://www.research.ibm.com/massive/mobag.ps

[13] Scott H. Clearwater. Market-Based Control, A Paradigmfor Distributed Resource Al-
location. World Scientific Publishing Co., 1996. ISBN: 9810222548.

[14] Judith Donath. Inhabiting the Virtual City: The Design of Social Environments for
Electronic Communities. PhD thesis, MIT Media Arts and Sciences, 1997. http://judith.
www.media.mit.edu/Thesis/

[15] Judith Donath, Karrie Karahalios, and Fernanda Viegas. Visualizing Conversations. In
Proceedings of the 32nd Hawaii International Conference on Systems, January 1999.
http://www.media.mit.edu/~fviegas/circles/new/index.html

[16] A. Farquhar, R. Fikes, and J. Rice. The Ontolingua Server: A Tool for Collabora-
tive Ontology Construction. Technical Report KSL-96-26, Knowledge Systems Lab-
oratory, Stanford University, September 1996. ftp://ksl.stanford.edu/pub/KSLReports/
KSL-96-26.ps

[17] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, June
1995. http://www.mpi-forum.org/docs/docs.html

[18] David Gelernter. Mirror Worlds. Oxford University Press, 1991.

[19] Li Gong. Java Security Architecture (JDK 1.2), June 1998. http://java.sun.com/
products/jdk/1.2/docs/guide/security/spec/security-spec.doc.html



BIBLIOGRAPHY

[20] Robert Gray. Agent Tcl: A Flexible and Secure Mobile-Agent System. PhD thesis,
Dept. of Computer Science, Dartmouth College, June 1997. Available as Dartmouth
Computer Science Technical Report TR98-327. http://www.cs.dartmouth.edu/~agent

[21] David Halls. Applying Mobile Code to Distributed Systems. PhD thesis, Computer Lab-
oratory, University of Cambridge, June 1997. http://www.cl.cam.ac.uk/users/dah28/

[22] Brian Hayes. Computing Science: Collective Wisdom. American Scientist, 1998.
http://www.amsci.org/amsci/issues/Comsci98/compsci 1998-03.html

[23] B. A. Huberman, editor. The Ecology of Computation. Elsevier Science Publishers,
1988.

[24] Hiroshi Ishii and Brygg Ullmer. Tangible Bits: Towards Seamless Interfaces be-
tween People, Bits and Atoms. In Proceedings of the Conference on Human Fac-
tors in Computing Systems (CHI '97), pages 234-241. ACM Press, March 1997.
http://tangible.media.mit.edu/~ullmer/papers/tangible-bits.pdf

[25] Kevin Kelley. Out of Control. Addison-Wesley, 1994.

[26] Danny B. Lange and Daniel T. Chang. IBM Aglets Workbench: Programming Mobile
Agents in Java, September 1996. http://www.trl.ibm.co.jp/aglets/whitepaper.htm

[27] Chris Langton, editor. Artificial Life (Proceedings of the First International Confer-
ence. Addison-Wesley, 1987. ISBN: 0-201-09356-1.

[28] Steve Lawrence and C. Lee Giles. Searching the World Wide Web. Science,
280(5360):98-100, April 1998. http://www.neci.nj.nec.com/homepages/lawrence/
papers/search-science98/index.html

[29] Andrew Leonard. Bots: The Origin of New Species. Hardwired, 1997.

[30] Pattie Maes. Agents that Reduce Work and Information Overload. Communications
of the ACM, 37(7):31-40, July 1994. http://pattie.www.media.mit.edu/people/pattie/
CACM-94/CACM-94.pl.html

[31] Thomas W. Malone, Richard E. Fikes, Kenneth R. Grant, and Michael T. Howard.
Enterprise: A Market-like Task Scheduler for Distributed Computing Environments. In
B. A. Huberman, editor, The Ecology of Computation, pages 177-206. Elsevier Science
Publishers, 1988.



BIBLIOGRAPHY

[32] Network Working Group Sun Microsystems. RPC: Remote Procedure Call Protocol
Specification. RFC 1057, June 1988. http://info.internet.isi.edu:80/in-notes/rfc/files/
rfc1057.txt

[33] Mark S. Miller and K. Eric Drexler. Markets and Computation: Agoric Open Systems.
In B. A. Huberman, editor, The Ecology of Computation, pages 133-176. Elsevier Sci-
ence Publishers, 1988. http://www.webcom.com/~agorics/agorpapers.html

[34] Kazuhiro Minami and Toshihiro Suzuki. Java-Based Moderator Templates for Multi-
Agent Planning, October 1997. Presented at OOPSLA '97 Workshop on Java-
based Paradigms for Agent Facilities. http://www.trl.ibm.co.jp/aglets/jmt/oopsla97/
jmt-oopsla97.html

[35] Alexandros Moukas, Kostas Chandrinos, and Pattie Maes. Trafficopter: A Distributed
Collection System for Traffic Information. In Proceedings of Cooperative Information
Agents '98, volume 1435 of Lecture Notes in Artificial Intelligence. Springer-Verlag,
1998. http://lcs.www.media.mit.edu/projects/trafficopter/

[36] Scott Oaks. Java Security. O'Reilly & Associates, Inc., 1998. ISBN: 1-56592-403-7.

[37] Object Management Group (OMG). The Common Object Request Broker: Architec-
ture and Specification (CORBA), revision 2.0. Object Management Group (OMG), 2.0
edition.

[38] Alex P. Pentland. Smart Rooms. Scientific American, April 1996. http://www.sciam.
com/0496issue/0496pentland.html

[39] Rosalind W. Picard and Jennifer Healye. Affective Wearables. Personal Technologies,
1(4):231-240, 1997. MIT Media Lab Vismod tech report 467. ftp://whitechapel.media.
mit.edu/pub/tech-reports/TR-467.ps.Z

[40] Tom S. Ray. A Proposal to Create a Network-wide Biodiversity Reserve for Digital
Organisms. Technical report, ATR, 1995. http://www.hip.atr.co.jp/~ray/pubs/reserves/
reserves.html

[41] Maria Redin. Marathon Man. Master's thesis, MIT Department of Electrical Engineer-
ing, 1998. http://ttt.www.media.mit.edu/SF/

[42] Mitchel Resnick. Turtles, Turmites, and Traffic Jams. MIT Press, 1994.

[43] Marshall T. Rose. The Simple Book: An Introduction to Networking Management.
Prentice Hall, 1996. ISBN: 0134516591.



BIBLIOGRAPHY

[44] Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter. MIT Press, 1994.

[45] Roger Sessions. COM and DCOM: Microsoft's Vision for Distributed Objects. John
Wiley & Sons, 1997. ISBN: 0-417-19381-X.

[46] Thad Starner, Steve Mann, Bradley Rhodes, Jeffrey Levine, Jennifer Healey, Dana
Kirsch, Rosalind W. Picard, and Alex Pentland. Augmented Reality Through Wear-
able Computing,. Presence, 1997. MIT Media Lab Vismod tech report 397. http:
//wearables.www.media.mit.edu/projects/wearables/

[47] Hong Z. Tan and Alex Pentland. Tactual Displays for Wearable Computing. In The
First International Symposium on Wearable Computers, pages 84-89. IEEE Computer
Society, 1997. ISBN: 0-8186-8192-6.

[48] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden. A Survey of
Active Network Research. IEEE Communications Magazine, 35(1):80-86, January
1997. http://www.tns.lcs.mit.edu/publications/ieeecomms97.html

[49] Vernor Vinge. A Fire Upon the Deep. Tor Books, 1993. ISBN: 0812515285.

[50] Jan Vitek and Christian Tschudin, editors. Mobile Object Systems: Towards the Pro-
grammable Internet. Springer-Verlag, April 1997. Lecture Notes in Computer Science
No. 1222. http://cuiwww.unige.ch/~ecoopws/tpi

[51] Jim Waldo. Jini Architecture Overview. Technical report, Sun Microsystems, Inc.,
1998. http://java.sun.com/products/jini/

[52] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A Note on Distributed
Computing. In Jan Vitek and Christian Tschudin, editors, Mobile Object Systems:
Towards the Programmable Internet, volume 1222 of Lecture Notes in Computer Sci-
ence, pages 49-64. Springer-Verlag, Heidelberg, April 1997. http://www.sunlabs.com/
techrep/1994/abstract-29.html

[53] Tom Walsh, Noemi Paciorek, and David Wong. Security and Reliability in Concordia.
In Proceedings of the 31st Hawaii International Conference on Systems, January 1998.
http://www.meitca.com/HSL/Projects/Concordia/HICSS98_Final.htm

[54] Mark Weiser. The Computer for the Twenty-First Century. Scientific American, pages
94-101, September 1991. http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html



BIBLIOGRAPHY

[55] James E. White. Telescript Technology: Mobile Agents. In Jeffrey Bradshaw, edi-
tor, Software Agents. AAAI Press/MIT Press, 1996. http://www.genmagic.com/agents/
Whitepaper/whitepaper.html

[56] AOL Instant Messenger. http://www.aol.com/aim/home.htnl

[57] Concordia - Java Mobile Agent Technology. http://www.meitca.com/HSL/Projects/
Concordia/

[58] Ding! http://www.activerse.com/ding/dingintro.html

[59] distributed.net: The Fastest Computer on Earth. http://www.distributed.net/

[60] dist-obj FAQ and mailing list archives. http://www.infospheres.caltech.edu/mailing_
lists/dist-obj/distobjgroup.html

[61] iBus: The Java Multicast Object Bus. http://www.softwired.ch/ibus/

[62] ICQ. http://www.icq.com/

[63] Japhar - The Hungry Java Runtime. http://www.hungry.com/products/japhar/

[64] Java Beans home page. http://java.sun.com/beans/

[65] RMI: Remote Method Invocation. http://java.sun.com:80/products/jdk/rmi/index.html

[66] JavaSpaces White Paper. http://java.sun.com/products/javaspaces/

[67] Kaffe OpenVM. http://www.transvirtual.com/kaffe.html

[68] The Great Internet Mersenne Prime Search. http://www.mersenne.org/prime.htm

[69] Project Mole - Mobile Agents, March 1996. http://www.informatik.uni-stuttgart.de/
ipvr/vs/projekte/mole.html

[70] Mr. Java. http://mrjava.media.mit.edu/

[71] General Magic's Odyssey. http://www.genmagic.com/technology/odyssey.html

[72] SETI@Home. http://setiathome.ssl.berkeley.edu/

[73] Things That Think - MIT Media Lab. http://ttt.www.media.mit.edu/

[74] Objectspace Voyager Core Package Version 1.0 Technical Overview, 1997. http://www.
objectspace.com/voyager/whitepapers/VoyagerTechOview.pdf


