
Live Interactive Music Performance through the Internet

by

Charles Wei- Ting Tang

B.M., Piano Performance, The Juilliard School (1992)

M.M., Piano Performance, The Juilliard School (1994)

B.S., Computer Science, Columbia University (1994)

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Technology

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1996

@ Massachusetts Institute of Technology 1996. All rights reserved.

Signature of Author7 I..
Charles Wei-Tin Tan

Program in Media Arts and Sciences

August 9, 1996

Certified By

6 ,/Tod Machover

Associate Professor of Music and Media

Program in Media Arts and Sciences

A ccepted By

Stephen A. Benton

Chair, Departmental Committee on Graduate Students

Program in Media Arts and Sciences

2

Live
Interactive
Music Performance
through
the Internet

by

Charles Wei-Ting Tang

Submitted to the Program in Media Arts and Sciences

School of Architecture and Planning

on August 9, 1996

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences at the

Massachusetts Institute of Technology

Abstract

Various models of interactive music systems have been proposed and implemented since the mid-

1980's. To date, however, there exists no interactive music system which supports participation of

remote users in real-time. With the recent introduction of RealAudio and the new Java programming

language, real-time audio transmission and animation on the World-Wide Web (WWW) finally

become possible. The proposed project takes advantage of the Internet to allow remote participation.

Using the WVW, as well as RealAudio and Java applets, three models of networked interactive music

systems will be designed, implemented, and evaluated. This will be followed by an in-depth discus-

sion of the three central research areas of this thesis. They are: 1) design issues such as number of par-

ticipants allowed, musicianship of the participants, role of composer / conductor, and musical

elements or parameters to be controlled by users; 2) presentation issues such as technical difficulties to

overcome, concatenation of materials collected, and structure; and 3) usability of such systems in live

concert performances - e.g., the premiere of the Brain Opera in Lincoln Center, New York.

Thesis Advisor: Tod Machover

Title: Associate Professor of Music and Media

Program in Media Arts and Sciences

4

Live
Interactive
Music Performance
through the
Internet

by

Charles Wei- Ting Tang

Thesis Readers:

R ead er
Micha~l Hawley

Assistant Professor of Media Arts and Sciences
Program in Media Arts and Sciences

Reader...
Mitchel Resnick

Associate Professor of Media Arts and Sciences
Program in Media Arts and Sciences

I

ACKNOWLEDGMENTS

I am greatly indebted to my advisor, Prof. Tod Machover, for his support and guidance throughout

my stay here at the Media Laboratory.

I would also like to thank:

Prof. Michael Hawley, for his guidance and patience, and Prof. Mitchel Resnick, for offering his valu-

able perspectives.

The Performance and the Projects in Media 6 Music classes.

Teresa Marrin, for her support, friendship, and enthusiasm.

Alvin Fu, for his love of music, and being a passionate Rachmaninoff and Honglou Meng fan.

John Yu, Josh Strickon, Jeanne Yu, and Roberto De Prisco, for their collaboration and assistance.

Eric Mdtois, for his expert advice and kindness.

Manish Tuteja, Christina Manolatou, and Bernd Schoner, for being great office-mates and friends.

Linda Peterson, for her help and advice, and Susan Bottari, for taking care of business.

My parents and family here and above

And of course Avalokitesvara, without whom none of anything would be possible.

8

TABLE OF CONTENTS

1. Introduction

1.1 Motivation

1.2 The World Wide Web

1.3 Java and RealAudio

1.4 Theoretical Framework

1.5 A Very Quick Tour of the Brain Opera

2. ITX - The Expressive Piano Tutor

2.1 Description of the Project

2.2 How Does It All Work?

2.2.1 Buttons

2.2.2 How the Graphing Routine Works

2.2.3 How the Amplitude Curve Works

2.2.4 How the Teach Algorithm Works

2.2.4.1 Philosophy

2.2.4.2 The "Flow"

2.2.4.3 Determining "Places of Musical Interest"

2.2.4.4 Good and Bad Exaggerators

2.2.5 How the Harmony Analyzer Works

2.2.6 How the Tempo Analyzer Works

2.2.7 How the Attribute Field Is Used

2.3 Parametrization of Music

3. Interactive Web Systems: Overview and Basic Design Issues

3.1 Basic Design Issues

3.2 Limitations

3.2.1 Java and MIDI-lessness

3.2.2 Speed

4. Simple Yet Effective Games: Sound Memory and Bouncing Balls

4.1 Sound Memory

4.1.1 Making a Match

4.1.2 The Role of Music in Sound Memory

4.1.3 Improving Sound Memory

4.2 Bouncing Balls

4.2.1 From Total Randomness to Rhythmic Perfection

4.2.2 Multiple-Players

4.2.2.1 WebStar and StarClient

4.2.2.2 Running Things Locally

5. Creating and Morphing a Music Stream

5.1 Draw Music

5.1.1 General Description of the Game

5.2.2 Preset Modes and Quantization

5.2 The Role of Music in Draw Music

5.3 Extending Draw Music Other Possibilities

5.3.1 Sequential Compounded-Morphing

5.3.2 Sequential Segmented-Morphing: The William TellExperience

5.3.3 Theme-and-Variations

5.3.4 Multiple-Players

6. The Internet Pong Game

6.1 Overview of the Game

6.2 The Referee

6.2.1 Sending Messages

6.2.2 Bouncing Angle

6.3 Technical Limitations

6.4 MIDI, not .au!

6.5 Linking The Internet Pong Game to Sharle: John Yu's Computer Music Generator

6.6 I Just Want to Win!

6.7 A Big Happy Family

6.8 Possible Expansions

6.8.1 More Parameters

6.8.2 Far Elise Linking to Famous Pieces

7. Broadcasting Live Music with RealAudio and Stream Works

7.1 Problems in Delivering Time-based Information over the Internet

7.2 RealAudio

7.3 Stream Works

7.4 Comparing Sound Qualities - RealAudio versus Stream Works

8. Bigger than Life: the Internet Hyperinstrument

8.1 About the Palette ..

8.2 About the Controls ...

8.3 The Role of Music in The Palette

9. Usability of Games in Concert Performances

9.1 Bouncing Balls

9.2 Draw Music

9.3 The Internet Pong Game and Internet Hyperinstrument

10. Afterthoughts

Appendix

Bibliography

1. INTRODUCTION

1.1 Motivation

Recently, the Hyperinstruments / Opera of the Future group, led by Prof. Tod Machover, has

launched a new interactive performance project called the Brain Opera. An important component of

the Brain Opera will be the participation of people around the world through the Internet. In the

advertisement of the Brain Opera homepage, visitors are encouraged to send in sound materials to be

used in the event. Moreover, a true interactive music system will be designed and implemented so that

users who simultaneously log on to the Brain Opera site can all participate and collaborate in the

making of a live music performance. In the current design of the Brain Opera, there is a five-to-ten-

minute section where the materials presented will almost exclusively come from the events taking

place at the Brain Opera website at that particular time. Creating and exploring various models of

live, interactive music applications thus become the focus of this project.

1.2 The World Wide Web

Due to its user-friendliness and world-wide popularity, the World-Wide Web - a.k.a. "WWW,"

"W3," and "the Web" - becomes the obvious environment-of-choice where the proposed interactive

music system should be built.

The first-generation Web browsers such as Mosaic and Netscape have often been portrayed as "Inter-

net interactivity enablers." If one examines these browsers more closely, however, it becomes apparent

that they only provide an illusion of interactivity. By using these browsers, the user is able to retrieve

remotely linked data of various formats (e.g., text, sound, image), download them, and display them

on the screen. Although this process is automated and can be performed with only a button click, the

fact remains that these Web browsers are but "nice," convenient data-fetching and displaying devices.

And because of the way these browsers are designed, two-way communication over the Web is diffi-

cult and slow.

As the teaching assistant of Prof. Tod Machover's Performance class and Projects in Media & Music

class, the students and I have collectively explored perhaps hundreds of musical and game links during

the course of the semester. Most of the Web sites we have visited are "information stations." Some are

very well laid-out and structured, and some quite poor. In almost all cases, however, the interactive

aspect of the sites consists of nothing more than prompting the user for either comments and sugges-

tions or for completing a product-ordering form!

1.3 Java and RealAudio

Recently, with the release of the Java programming language and the Hot Java browser, real-time

interaction on the Web finally becomes possible. Java is an object-oriented, architecture-neutral, mul-

tithreaded, and dynamic programming language [JavaLang, 95]. It supports programming for the

Internet in the form of platform-independent Java applets (mini-applications). A Java-enabled

browser can thus dynamically download segments of code that are executed right there on the client

machine [JavaLang, 95]. In other words, a user can now interact with the applets in real-time. Instal-

lation of special software will no longer be necessary.

Another recent technological breakthrough is RealAudio 2.0. With the Rea/Audio Player, a user can

hear a sound file (encoded by the RealAudio Encoder) almost immediately at the touch of a button.

One no longer needs to sit for minutes and wait for the downloading process to complete before the

content of a sound file can be heard. The user can also navigate through a sound file and select sec-

tions to listen to, much like the traditional CD player. Most importantly, using the RealAudio client-

servers, real-time sound broadcasting over the Internet is finally achievable. RealAudio is independent

of bandwidth, so it sounds the same on every machine. Currently RealAudio sounds slightly better

than AM radio, but as its compression algorithms become more efficient, improved sound quality will

be made available for lower-end machines. Other Internet streaming software, such as Xing's Stream-

Works, are being developed to send audio-visual signals over the Internet. Stream Works also takes

advantage of a client's bandwidth, in effect by having a faster connection a user can receive better

quality audio and video. The Brain Opera team has been exploring these possibilities as well as other

applications that are currently in development.

Equipped with the Web, the Java language, the new Java-enabled Web browsers, and RealAudio, the

project attempts to create three models of true interactive music systems for the Internet. After they

are designed, implemented, and evaluated, one system (or multiple systems) will be used in the actual

Brain Opera performance.

1.4 Theoretical Framework

Compressing and sending musical information at the gestural level is by far cheaper and more effi-

cient than transmitting actual audio signals. According to Michael Hawley, the data flow between a

performer and an instrument is on the order of 1,000 bytes per minute, whereas a digital recording of

the sound at acceptable commercial rates is about 10,000,000 bytes per minute [Hawley, 93]. At the

gestural level, fundamental musical information such as note-on time, duration, velocity, and pitch

are extracted and stored. This parametrization makes modifying and/or synthesizing music a simpler

task. (Consider changing the velocity value of a note in a MIDI file versus redrawing the amplitude of

the corresponding sound waves). Furthermore, high-level parameters such as tempo, harmony, and

rhythm can be built on top of the fundamental parameters. Like functions and procedures in a com-

puter program, the high-level parametric controllers should be abstract in concept. When a signal is

sent to modify a particular high-level parameter, the caller to the controller should not need to know

anything about how the controller is written, which fundamental parameters are used, etc., but sim-

ply what the controller does and how it is called.

Once the high-level controllers are designed and implemented, different tasks in music become differ-

ent "agents." Each controller can be a different and independent process, and remote manipulation of

musical parameters should be easy to accomplish. A user can send in control information to make a

particular phrase louder; or, if the music is being composed and transmitted in real-time, the user can

request for a livelier rhythm, "flatter" melody, and so forth. The nature of this research deals with

combining this parametric music making process with the remote-communication capabilities of the

Internet. Parametric transmission of musical information and real time interaction on the Web

together create the potential for live music performance over the Internet.

1.5 A Very Quick Tour of the Brain Opera

The physical space where the Brain Opera will take place can be roughly divided into two areas: the

"lobby" and the "performance space." The lobby is where the audience physically interact with vari-

ous stations of "musical agents." Each station in turn extracts raw materials and/or musical informa-

tion from the participant, and stores collected data in a central server for later use. The performance

space is where the actual performance takes place. Materials collected from users, together with pre-

composed sections of music make up the foundation of the piece.

The aforementioned stations of "musical agents" include the Forest, Harmonic Driving, Melody Easel,

Gesture Wall, and Rhythm Trees. They are described as follows [Machover, 95a]:

Forest

The first element in the interactive lobby space will be a large number of obelisks (or "trees"),

arranged in a complex pattern (or "forest"). Each "tree" will offer a different experience, seemingly

independent at first, but in fact interconnected through a complex network. Visitors will explore each

"tree" by peeping into an opening. Some "trees" will give information about music and the mind, oth-

ers will invite the visitor to record personal spoken or sung material, yet others will connect visitors

with the Internet audience.

Harmonic Driving

Of all Brain Opera activities, this will be most like a traditional video game. Three separate "driving"

units will be contained in a circular, translucent kiosk. Players are seated in front of a graphic screen,

with a steering wheel, joystick, and foot pedal as controls. Using specially designed software, the

player will literally be able to "drive" through a piece of music, negotiating onrushing paths and tra-

jectories from the screen. If the central road is followed, a fairly pleasant - but generic and bland -

composition will be experienced. Detours and curvy overpasses must be taken to introduce variation,

transformation and harmonic interest. Extra "spice" (accents, articulation, texture, color, etc.) is

added by manipulating the left-hand joystick. The foot pedal controls the tempo, or speed that one

travels through the piece. Musical "crashes" occur by slamming into roadsides, and points are awarded

for the greatest amount of musical interest introduced in the fastest time!

Melody Easel

This station, of which there will be four, will give visitors the experience of playing a sophisticated

monophonic instrument, like the violin. Seated at a table-like structure, you play melodies with the

touch of a finger. A specially designed surface - made from transparent rubber - subtly measures the

movement and touch of your finger; as you move, a beautiful graphic trace (like an exquisite water

color) is produced on the display. Melodies can be improvised by moving the finger freely, or can be

"rehearsed" by "connecting the dots" of melody fragments from the Brain Opera. In either case, the

"instrument" responds to the most delicate variations in movement, making it possible to practice

and perform the Melody Easel with remarkable virtuosity and sensitivity.

Gesture Wall

This "instrument" gives the experience of playing in a small musical ensemble. Five separate interac-

tive wedges are placed next to each other, angled so as to form a curvy surface. Each wedge can accom-

modate one player, whose every gesture is measured by specially designed (and very precise) invisible

movement sensors. Rather than creating music from scratch, players will react to musical fragments

that flit across the high resolution graphic screens. Players will use arm movements to "throw"

splotches of virtual color onto these screens, transforming, modifying, and "perturbing" the music as

it passes by. The five wedges will be interconnected, so that musical actions by one player will have an

effect on the whole system.

Rhythm Tree

This circular sculpture surrounds the audience member with many suspended objects of varying

shapes, sizes and "feels." Sounds are produced by hitting or tapping these objects. In turn, each is con-

nected to many others, like branches on a tree or synapses in the brain. When an individual object is

struck, the strength of the hit as well as the hand's direction sends a signal ricocheting through the

connected circuits. In this way, the rhythm you play animates the entire system, producing intelligent

echoes and responses to your physical impulse.

The audience will interact with these stations for approximately an hour, then escorted to the perfor-

mance space. The performance itself will last approximately 45 minutes and will have three distinct

parts. According to the composer and the project leader Tod Machover, the three sections are divided

as follows [Machover, 95a]:

- Part 1 will be a Sonic Blitz, as recorded voices of audience members are mixed

into a dense sound collage, turning words into beautiful music.

e Part 2 will inject snippets of music produced by audience members, colliding

and overlapping, and finally combining and aligning to create fascinating

musical mini-pieces.

e Part 3 will bring together all of the musical themes and layers of the Brain

Opera, getting ever faster and more intense, as the music builds to a crashing

and cathartic climax.

Three performers, playing specially designed gesture instruments and

using baton-like "magic wands," will select, modify, and combine the various

strands of music in real-time.

In addition, sensors in the room's carpet and radar beams at head level will

measure audience movement and energy level during the performance, using

this information to automatically influence the musical build-up and formal

shape of the piece.

In Part 3 of the piece, a five-to-ten-minute section will focus almost exclusively on the events taking

place at the Brain Opera website. The task of this project is therefore to explore, examine, and analyze

possible Internet game models suited for interactive music performances.

2. ITX - THE Expressive Piano Tutor

The ITX Project was led by Prof. Tod Machover and Prof. Michael Hawley, and was designed and

implemented by Alvin Fu, Teresa Marrin, and myself. This projects deals heavily with the various

parameters in music performances. Musical parameters are isolated, extracted, modified, and exagger-

ated so as to explore different aspects of musicality. My involvement with the ITX project prepared

me of the necessary skills in manipulating parametrized musical information, as well as in viewing

music as interactions of different parameters and musical changes as combinations of different para-

metric values.

2.1 Description of the Project

Various projects have tried to provide automated musical instrument teaching, especially for piano

students. Most such systems provide feedback about the easily quantifiable aspects of piano playing,

correcting wrong notes and adjusting inaccurate rhythm. In line with the interest of the Hyperinstru-

ment Group in measuring and evaluating human expressive behavior, we have tried to design a system

capable of giving qualitative feedback to the student: advising how to play more musically, and cor-

recting errors in phrasing, articulation, and interpretation.

The Expressive Piano Tutor first asks the student to play a piece, and then uses two parallel systems to

analyze the musicality of the performance. First, the system accesses a statistically prepared database,

constructed from a collection of "normal" pianists playing the same piece, which easily identifies

where the student has deviated significantly from "normal" musical performance. Second, intelligent

music analyzers mark up the piano piece itself, deciding according to its formal and expressive features

where a "normal" pianist would make interpretative variations. This information is used to find the

places where the student performance needs musical work. A system of automated exaggeration is

used to show the student the problems with his playing, and to highlight the musical feature to strive

for.

2.2 How Does It All Work?

For the statistical analysis, we applied estimation and pattern classification theory to build a statistical

profile of each note from a database of instructional performances. Each note is then characterized by

a multi-dimensional feature vector profiling timing and loudness. The instructional performances

enabled us to estimate a probability distribution for the feature vector. The student's feature vector

can then be compared with this distribution. If the student is unlikely to be correct, he will be told to

change his performance.

This approach has a number of advantages and disadvantages. One advantage is that no scores are

needed; the instructional performance will provide all necessary data. Another advantage is that a sta-

tistical approach easily lends itself to a composite portrait of a piece. Perhaps most important, this

approach is able to take in an arbitrarily large number of model performances (the more the better)

and use all of them to instruct the student. In fact, with a rather large number of "model" perfor-

mances, we believe that this system will present a "normal, musical" profile of the piece, rather than

the very particular, hard-to-imitate "great artist" profile.

A disadvantage of this approach is that the method is only as good as the model performances. If the

model performances are poor, the performance of the system will be poor. A further difficulty is that

the number of model performances needed may be quite large, depending on the size of the feature

vector and the exact method of estimation used. This number can be minimized by assuming a gaus-

sian or other exponential distribution, and limiting the dimensionality of the feature vector.

Using data gathered from the estimation and pattern classification method, we developed the idea of

an "interpretive envelope," which would represent one or more parameters of interpretation and

the range of possible values (both dynamics and tempo) for any given point in a piece. Based on this,

we then developed a set of rules for "musical" trajectories through the envelope, and begin trying to

automate that process. In order to fulfill the request of making this a system which is compatible with

"normal" musicians and teachers, we made sure that the concept of "interpretive envelope" encom-

passes a large range of possible and "normal" interpretations of a piece of music, as well as the extreme

ones.

Next, we concentrated on identifying information such as structural sectioning, phrasing, etc. Having

these information in hand, together with other tools which have already been written - e.g., the key,

chord, cadence identifiers - we wrote the beginnings of a rule-based intelligent system which can take

in any MIDI data and know what to do (and where) in order to make the piece sound "more musi-

cal." We designed a range of allowable deviations in volume and timing. When a student uses this

program, the key points (or "places of musical interest") can be identified and analyzed quickly. We

can then give the student appropriate and meaningful responses as well as exercise suggestions. Once

we have tested a core group of these "musicalizing" algorithms, we can isolate the "places of musical

interest" of a piece and compare the student's MIDI data at those points with the numbers we get

from the generative algorithm. If the general curves of the student match those generated by the algo-

rithm, we will consider it "good," and make appropriate comments like "good, but not enough," or

"good, but that was too much!"

In addition, we started to address the problem of defining a structural description for any piece whose

MIDI score is known. This involved feeding a quantized score into a system and receiving a clear

description of the form of the piece, as well as an automated interpretive envelope.

The system itself was developed on NeXTSTEP. We wrote an entirely new MIDI toolkit for the plat-

form which is flexible enough to read and write (record and play, patch, etc.) MIDI files in several dif-

ferent formats. We also created an entirely-new file format for MIDI which would adapt well to our

analysis methods. This representation was designed especially for this project, and will be discussed in

detail below.

Figure 1: The Expressive Piano Tutor.

2.2.1 Buttons

Tempo shows tempo analysis

Perf file shows the student PERF file

Harmony shows harmony analysis

Score shows the score (in .tiff format)

Artists launches Alvin's demo

launches the old "Yamaha Demo 1"

Lesson

EtRMEM EMMBER'E"

Pe rf ie
Harmany

/Usersiafttidi n perf1 student.perf

OAnale

/UsersiaAtxidi nperf/1_student.perf Brdv AM?

Welcesme to the woxlds greatestautomatedpiano-teaching system!
I amyouz piano instzuctox, Se6ushi Tang.

Firstrecozdyouplayingbyusing the RECORD andSTOPbuttons.
Clickon Analyse fox analysis of youz playing
then Studet fox playback of your playing

Exag- for anexaggexattdbadplaying
Exag+ for an exaggerated goodplaying

Goodluck!
STOP

Old Demo

Analyze*

Prev

Next

Student

Exag-

Exag+

RECORD

STOP

PRAELLDIUM I
IDWV ar

Figure 2: By clicking on the Score button, the score of the loaded piece is displayed.

2.2.2 How the Graphing Routine Works

This program draws a graphical representation of the given MIDI file. It simply looks at a MIDI file,

extracts information such as timing, duration, pitch, and velocity from the file, and represents them

performs analysis of student performance

goes to previous section

goes to next section

plays back student performance of current section

plays an exaggerated bad playing of current section

plays an exaggerated good playing of current section

records student performance

stops recording and playing invoked by RECORD, Student, Exag-, and Exag+

in the following manner:

- Each note gets a horizontal "bar"

0 The higher the note, the higher the bar

0 The length of the bar represents the length of the note. The longer the note, the longer

the bar

- The color of the bar reflects the velocity of the note. The louder the note, the darker the

color

2.2.3 How the Amplitude Curve Works

This ProjectBuilder object (aView) takes in the velocity and timing information from a MIDI file, re-

scales them, and draws the curve into a PostScript file. The horizontal axis is the time axis, and the

vertical the velocity axis.

2.2.4 How the Teach Algorithm Works

Note: the PERF file format referred to below is our own ASCII representation of MIDI files. It con-

tains the following information: note-on time, duration time, pitch, velocity, and an attribute string

which records various attributes about that note. Our attribute string contains information such as

right/left hand, dynamic marking, and measure/beat number.

2.2.4.1 Philosophy

The philosophy behind this teach algorithm is the following: the program, when fed any pair of quan-

tized and student performance PERF files, should be able to pick out "places of musical interest" to

analyze. The only pre-condition is that the quantized PERF file should have its attribute fields care-

fully marked.

2.2.4.2 The "Flow"

The program's flow-of-events is as follows:

- student records his playing (RECORD and STOP)

* student presses Analyze* for an analysis of his performance

- program compares the quantized file and student file and checks for simple errors (i.e.,

extra notes and missing notes; takes into account notes played simultaneously). If the stu-

dent's playing is incorrect, the program tells the student exactly where the mistakes are,

and asks the student to record again.

* if the student's performance is error-free, then the program runs the student file through

various loops (e.g., the "cadence loop," the "dynamic loop," etc.) and tags all places that

"went wrong."

program prints messages which points out why each tagged place is "bad." It also gives

suggestions as to how this section can be improved.

* student can then play back his own playing of that section (Student), and/or an exagger-

ated bad version of his playing (Exag-), and/or an exaggerated good version of the same

section (Exag+).

- after analysis is done, student can also click on Draw Amplitude and/or press return at

the upper text drag-in field for graphical representations of his playing (general MIDI and

dynamic).

* student can also go on to the next tagged section by clicking Next, or return to the previ-

ous tagged section by clicking Prev.

There are 4 places tagged (TAG #0 - TAG #3).

TAG #0
DYNAMIC
Your playing of the phrase starting at
<measure 1 beat 1> (where marked mf) is too loud!
Please follow the dynamic markings more closely.

.A..

TAG #1
PHRASE
In <measure 4 beat 4>, the note(s) E5 (right hand)
is at the end of a phrase. You should therefore
make a small decrescendo prior and leading to
that note.

TAG #2

BALANCE
The voicing for the phrase starting at

* <measure 4 beat 4> can be improved....
In your playing, the melodic voice in this phrase

smothered by other voices! In other words,
A the melody is too soft and thus very unclear!

Try to play out the melody more.

TAG3
TONIC
In <measure 4 beat 1 , the note C (left hand)
is the tonic note. You might want to hold on to it
a tiny bit longer to emphasize its importance.

DONE!
A

Figure 3: The Expressive Piano Tutor. After the analysis, the system returns a list of tagged sections which it

thinks the student needs to work on. The student can then navigate through the sections by using the Next and

Prev buttons, or play the exaggerated good and bad examples to follow along.

2.2.4.3 Determining "Places of Musical Interest"

To determine where the "places of musical interest" should be, I drew heavily from my own experi-

ence both as a piano student and a piano teacher. I have had 19 years of piano lessons (from age 5 to

24) with six different piano teachers. I have also taught piano for quite a number of years. One inter-

esting thing I found is that no matter how elementary or advanced a student is, the teacher invariably

spends a big chunk of the lesson time telling the student to play what the music says. Seemingly basic

instructions like "Play piano where the score says piano!" or "keep the tempo! Don't speed up!" are not

reserved only to beginning students. My piano teacher at Juilliard - Mr. Martin Canin (who serves in

the jury of many international piano competition), for example, was even rumored to have forced his

students practice with a metronome at all times. Even though this is indeed only a rumor, it shows

how world-class teachers are, still, known to care a great deal about the most fundamental elements in

music-playing.

Because of this realization, I decided that an important part of the program should be devoted to this

book-keeping, "stick-to-the-score!" type of evaluations. The evaluations include procedures that check

for dynamic and timing ranges.

Another important feature of a "musical" performance is the projection of the melodic line (or, the

right "balance" / "voicing"). I have therefore written a routine that analyzes a phrase at a time, finds

the average balance of the primary voice (the "melody"), secondary voice (often the "bass line"), and

the accompaniment voice (i.e., everything else), and calculates to see if the balances among the three

are acceptable.

Another typical "musical thing to do" is to perform a slight ritardando and/or diminuendo at an

authentic cadence. I have added a procedure that looks at places where perfect and imperfect authen-

tic cadences occur and checks for the presence of ritardando or diminuendo in the student PERF file.

Likewise, a slight diminuendo is almost always performed at the end of a slur - which often marks the

end of a musical motifor idea. This rule often supersedes the more global crescendo or decrescendo

markings. I find this to be an extremely important indicator of the performer's phrasing ability.

A sensitive performer is always aware of the tonal center for each section in the piece he plays. Often a

slight stretch is done to the tonic note when it occurs in the bass and at the beginning of a new mea-

sure. There is also a routine in the program that checks for such a stretch or emphasis of the tonic

note.

These are the "places of musical interest" that the system looks for and examines. The rules I have

developed here are based on my experience as a piano student and a performance artist, my experience

as a piano teacher, what I actually listen to and for in a performance, and my years of study of musical

aesthetics and performance practice. These rules are not made up arbitrarily. Some of them may seem

too simple at first, but they are accurate indicators of a student's level of musicality. The rules that

have been developed are general enough to be applied to most Classical and Romantic music. In the

future (if time and resources permit), it is conceivable to develop different rule banks for different

composers, and teach students how to play more "Chopinesque" than, say, "Lisztian."

The process of tagging sections to "teach about" is not a simple task. A typical tagging routine usually

invokes several other large-scale routines. The "cadence routine," for example, has to invoke a routine

that stores places where cadences occur. This routine in turn invokes another one that determines

what harmony each beat/unit-of-beats is, which too invokes a key-signature determinator. To know

whether a ritardando is performed at a the cadence point, a "tempo profile" also needs to be created

before the analysis can take place.

2.2.4.4 Good and Bad Exaggerators

Good and bad exaggerators are used for demonstration purposes. They include the following catego-

ries:

tempo and dynamic exaggerators

- octavator - which adds an octave above the melodic voice, or an octave below the bass

voice.

- musicalizers - routines which perform "musical procedures" to a file. For example, there

are musicalizers which make a ritardat cadence points or end of phrases, perform decre-

scendo at the end of all phrases, perform decrescendo at the end of all slurs, stretch the tonic

note whenever it is encountered at the bass and at the beginning of a measure (provided

that the first bass note of the previous measure is not the tonic too), etc. The musicalizers

are used for "good exaggerations."

A typical dynamic exaggerator is defined as follows:

exagv(Performance *p, int shou, double Degree) {
int i;
int newamp;
Note *a;

switch (shou) {
case (BOTH): {

for (i = 1, a = p->n; i <= p->nn; i++, a++) {

newamp = a->amp + ((Degree - 1) * diffarrayv[i]);

a->amp = adjustv(new-amp);

}
}
Case (LEFT): {

for (i = 1, a = p->n; i <= p->nn; i++, a++) {

if (a->type[O] == '0') {

newamp = a->amp + ((Degree - 1) * diffarrayv[i]);

a->amp = adjustv(new-amp);

}
}

}
[. ...]

}

In this example, the parameter "shou" ("hand" in Mandarin) indicates to the routine that notes for

the left hand (0), right hand (1), or both (2) are to be dynamically exaggerated. The differences in vol-

ume for notes in file 1 and file2 are stored in diffarrayv. Each of the values is then multiplied by a

degree factor, and added to the original amp of the corresponding note. Ordinarily, the "student file"

(PERF file of a student's performance) is set to be compared against a mathematical, dynamically flat,

and quantized version of the same piece. That way, we see exactly what the student is doing in terms

of volume and timing. Sometimes a "student file" is set against an "expert performance," where we

can quickly obtain statistical information about the differences between a novice and an expert per-

former.

2.2.5 How the Harmony Analyzer Works

The harmony analyzer first calls a routine that determines the key of the piece. Then, for each unit of

beats specified, it marks the presence of each note in a note-map string. The string is then compared

against the pre-stored patterns (e.g., a major chord would contain the pattern 100010010000 where

the digits represent the twelve notes in an octave, 1 indicates "present," and 0 "absent.")

CMCH

CmCH

CACH

Cd_CH

C7MMCH

C7mM_CH

C7mMx5_CH

C7Mm_CH

C7mm_CH

C7mdCH

C7dd_CH

Cs7ddCH

D7dd_CH

"100010010000"

"100100010000"

"100010001000"

"10 010 010 0000

"100010010001"

"100010010010"

"100010000010"

" 100100010001"

"100100010010"

"100100100010"1

"100100100100"

" 010010010010"

"001001001001"

C major triad

C minor triad

C augmented triad

C diminished triad

Major 7th chord - major 7th,major triad

Dominant 7th chord - minor 7th, major triad

dominant 7th with missing 5

7th chord - major 7th, minor triad

7th chord - minor 7th, minor triad

7th chord - minor 7th, diminished triad

7th chord - diminished 7th, diminished triad

#def ine

#def ine

#def ine

#def ine

#def ine

#def ine

#def ine

#def ine

#def ine

#def ine

#def ine

#def ine

#define

A glimpse of how chords are defined in ITX.

This procedure is capable of detecting all major, minor, diminished, and augmented triads, as well as

major, minor, augmented, diminished, half-diminished, major-minor, and dominant 7th chords.

Also, all the notes are weighted by duration. The longer the duration, the more "important" it is.

(Think of passing notes, and how "less important"' they are in determining the quality of a chord in

comparison to a long bass note.) If, after the first pass, no match is found, then the "lightest" note is

eliminated, and the matching process is executed again. This loop is repeated until either a match is

found, or else a harmony of quality "UNKNOWN" (or "ambiguous") is returned.

The following is an example of the Harmony Analyzer at work. The piece analyzed here is J.S. Bach's

Prelude in C Major, from The Well-Tempered Klavier, Book I:

burton> chord -d 4 math2

measure 1 <beats 1

measure 2 <beats 1

measure 3 <beats 1

measure 4 <beats 1

measure 5 <beats 1

measure 6 <beats 1

measure 7 <beats 1

measure 8 <beats 1

measure 9 <beats 1

measure 10 <beats 1

measure 11 <beats 1

measure 12 <beats 1

measure 13 <beats 1

measure 14 <beats 1

measure 15 <beats 1

measure 16 <beats 1

measure 17 <beats 1

measure 18 <beats 1

measure 19 <beats 1

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

C Major root

D minor 2

G Dominant 65

C Major root

A minor 6

D Dominant 2

G Major 6

C Major 2

A minor 7

D Dominant 7

G Major root

C#/Db/E/G/A#/Bb diminished 43

D minor 6

D/F/G#/Ab/B diminished 65

C Major 6

F Major 2

D minor 7

G Dominant 7

C Major root

measure

measure

measure

measure

measure

measure

measure

measure

measure

measure

measure

measure

measure

measure

measure

measure

Cadence

Cadence

Cadence

Cadence

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

<beats

<beats

<beats

<beats

<beats

<beats

<beats

<beats

<beats

<beats

<beats

<beats

<beats

<beats

<beats

<beats -3 to 1>:

found at

found at

found at

found at

measure

measure

measure

measure

beat

beat

beat

beat

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

4>:

Harmony analysis of Prelude in C, from J.S. Bach's WTC Book I

2.2.6 How the Tempo Analyzer Works

The tempo analyzer first determines how many beats there are in a measure, then keeps track of the

length of all beats. From there, buckets of all the different duration lengths are created. The most-fre-

quently-encountered length is set to be the norm. With this information in hand, a tempo profile can

then be created. (e.g., if the length of a beat exceeds a certain percentage of the norm, it is tagged

"faster than usual.") The program also gives a final verdict as to the steadiness of the overall tempo:

burton> tempo /Users/pia/itx/midi n-perf/plstudent .perf

measure 1 beat 1: 0.799000

C Dominant 7

F Major 7

C/D#/Eb/F#/Gb/A diminished 43

ambiguous

G Dominant 7

C Major 64

ambiguous

G Dominant 7

ambiguous

C Major 64

ambiguous

G Dominant 7

C Dominant 7

D minor 2

ambiguous

C Major root

1. Type: Imperfect Authe

1. Type: Imperfect Authe

S1. Type: Perfect Authent

1. Type: Perfect Authent

atic

atic

ic

ic

measure 1 beat 2:

measure 1 beat 3:

measure 1 beat 4:

measure 2 beat 1:

measure 2 beat 2:

measure 2 beat 3:

measure 2 beat 4:

measure 3 beat 1:

measure 3 beat 2:

measure 3 beat 3:

measure 3 beat 4:

measure 4 beat 1:

measure 4 beat 2:

measure 4 beat 3:

measure 4 beat 4:

0 length: 0.800000

1 length: 0.799000

2 length: 0.802000

3 length: 0.801000

4 length: 0.797000

5 length: 1.799000

6 length: 2.355000

7 length: 0.798000

8 length: 0.803000

0.802000

0.797000

0.803000

0.800000

0.798000

0.802000

0.799000

0.801000

0.800000

0.800000

0.799000

0.800000

0.801000

0.800000

2.355000

beats:

beats:

beats:

beats:

beats:

beats:

beats:

beats:

beats:

Compared to standard tempo (length per beat = 00:00.800),

the student is playing

slower at measure 4 beat 4 by 194.37%

Overall tempo is steady!

Tempo analysis of Prelude in C, from J.S. Bach's WTC Book I

2.2.7 How the Attribute Field Is Used

The attribute field is actually an integer string.

Example:

(note-on time; note duration; pitch; velocity; attribute string)

/Users/pia/itx/midi_n_perf/plstudentraw.perf: duration

00:14.600,

00: 01. 799

00 :02 . 000

00: 02 .200

00 : 02 .400

00 : 02 .598

00 : 02 .799

00 : 03 . 000

00:03.200

00: 03 .400

00:03 .598

00:03.799

00: 04 .000

00 :04 .197

00:04.400

00 :04 .598

00 : 04 .800

00:05.000

00 :05. 197

00:05.400

00:05.598

00:05.800

00:06.000

65 notes,

01.554

01.549

00.250

00.250

00.250

00.250

00.250

00.250

01.555

01.550

00.250

00.250

00.250

00.250

00.250

00.250

01.554

01.550

00.250

00.250

00.250

00.250

4.5 notes/sec,

C4

E4

G4

C5

E5

G4

C5

E5

C4

E4

G4

C5

E5

G4

C5

E5

C4

D4

A4

D5

F5

A4

60

63

65

70

75

78

75

68

69

64

61

67

59

57

58

53

56

63

65

64

61

58

avg amp 62

03011000020011500

02010000020011500

11010000020011500

11010000020011500

11010000020012500

11010000020012500

11010000020012500

11010000020012500

03011000020013500

02010000020013500

11010000020013500

11010000020013500

11010000020014500

11010000020014500

11010000020014500

11010000020014500

03011000010021500

02010000010021500

11010000010021500

11010000010021500

11010000010022500

11010000010022500

A PERF file of Prelude in C, from J.S. Bach's WTC Book I

Each digit represents the following:

digit range description

0 [0/1] Left/Right hand (1 = right, 0 = left)

voice number (top-most = 1, etc.)1[1-9]

2 [1-99] phrase number

3

4 [0/1/2] melody (primary = 1, secondary = 2, otherwise 0)

5 [0-999] chord number (members of same chord get same #. 0 for single-notes)

8 [0/1/2] time (2 = accel, 1 = rit, 0 otherwise)

9 [0/1/2] volume (2 = cresc, 1 = decreasc, 0 otherwise)

10 [1-999] measure number
11
12

13 [1-9] beat number

14 [0-9] dynamic marking (if not marked, then "5")
code musical equivalent MIDI-velocity

9 sf +20
8 fff 110-127
7 ff 88-110
6 f 70-88
5 mf 55-70
4 mp 40-55
3 p 27-40
2 pp 20-27
1 ppp 15-20
0 p sub 27-40

15 [0/1] double bar encountered? (1 = yes, 0 = no)

16 [0/1/2] slur (2 = beginning of and/or within, 1 = end of slur, 0 = no slur)

2.3 Parametrization of Music

An important aspect of the ITX project is its treatment of music as an entity of various parameters. As

demonstrated in the previous section, performances of piano music can be captured and later re-cre-

ated by storing the following parameters: note-on time, note-off time, pitch, velocity (loudness),

pedal-on time, pedal-off time, and pedal velocity (depth). In the ITX project, these information are

extracted, calculated, modified, and manipulated so as to create useful teaching tools such as the octa-

vator, tempo exaggerator, and dynamic exaggerator.

In a way, the ITX project can be viewed as a study of the parametrization of musical performances. By

parametrizing a CD recording or a live performance, the system becomes capable of analyzing such

qualitative information as the musicality of the playing, as well as giving useful, intelligent feedback

about the performance.

From the above-mentioned parameters (which are the most fundamental of all), "higher parameters"

can also be constructed. These second-layer parameters include rhythm, harmony, tempo, voicing,

etc. With the knowledge of music theory and performance practice, we were able to take in these

higher parameters and determine the performer's steadiness in tempo, rhythmic accuracy, appropri-

ateness in voicing, etc.

Combining the second-layer parameters, a third-layer parameters can be constructed too. This layer is

perhaps the most "musical" and abstract of all. By combining tempo information and harmonic anal-

ysis, for example, we were able to see if the performer did anything special at pivot chords and

cadence points, or if he just played on as if nothing happened. (A typical "musical" thing to do here

would be to slow down a bit so as to emphasize the harmonic change and/or the beginning of a new

phrase.)

Procedures such as the good and bad exaggerators take in the parameter values, calculate the differ-

ences between those values and the "norm" (both dynamic-wise and timing-wise), and exaggerate

those values by a factor of between 1 and 1.85. A new MIDI sequence containing the exaggerated seg-

ment is then constructed. Likewise, in procedures such as the musicalizers, values are taken from a

plain MIDI file. The file's attribute fields are then carefully marked. By applying rules such as

* right-hand notes - the higher the pitch, the louder the amp;

the lower the pitch, the softer the amp.

- left hand notes - the lower the pitch, the louder the amp;

the higher the pitch, the softer the amp.

to the file, and rules which modify other parameters of the performance, an "expressive," "musical"

performance is created. This sort of routines are espeically interesting to study, because it allows us to

isolate rules of musicality and the parameters affected, and apply them to originally non-musical play-

ings. Studying these routines can also help us in teaching the students precisely what to do in order to

gain the desired effects on a piece of music.

Many of the routines used in the interactive Web systems for music which I have designed and imple-

mented later come from the routines used here in the ITX project. Musical segments produced in

these systems are often the results of changes in the parametric values. These routines can be best

described as "musical filters" or "musical black-box." When a stream of music is passed through these

routines, certain parameters will change, and a new (or modified) stream is produced. Whichever fil-

ter to pass through depends on the effect desired. Although oftentimes these parameters are manipu-

lated independently (as in the case of the Brain Opera), with careful design, they can produce

coherent and wonderful-sounding music.

3. INTERACTIVE WEB SYSTEMS: OVERVIEW AND BASIC DESIGN ISSUES

3.1 Basic Design Issues

This project explores different dimensions of collaborative music making over the Internet. Four

game models are examined, each with a different design philosophy behind it. The first game model,

Sound Memory and Bouncing Balls, are simple games which are fun to play. SoundMemory is modelled

after the famous card game Memory and is written for a single user. Bouncing Balls has both the single-

user version and the multiple-player version. The multiple-user version of Bouncing Balls is designed

so that most of the processing take place locally. Both Sound Memory and Bouncing Balls use .au

sounds, and assume no formal musical training of its players.

The second model, Draw Music, also assumes no formal musical training of its players. This model

explores individualism within a collaborative environment. Each participant is given certain rules to

abide by, tools to use, then is left alone to do whatever he wants. He will submit his final creation -

which will eventually be concatenated with other users' submissions - together forming a finished

piece.

The third model, The Internet Pong Game, is designed for large groups of participants. Players need

not to have any formal musical training, and can join or leave at any point of the game. This model

explores the philosophy of unintentional music-making. In this game, music is a by-product of some

other activity (in particular, game-playing), not the focal point. The system also makes no attempt to

direct or guide the flow of music. The idea is to just "let things be," and see what kind of music comes

out.

The fourth model, the Internet Hyperinstrument, is designed for expert musicians as well as users with-

out extensive musical training. This model explores the possibility of remote improvisation sessions

with other users. Participants will collaborate in the music making process. Short solo performances

("spot-lighting") within a session are also possible.

These four models are designed with different user groups in mind. They also examine important

aspects and types of collaborative music making. These games can serve as the paradigms for Internet

music games to be developed in the future.

3.2 Limitations

3.2.1 Java and MIDI-lessness

As of now, Java does not support MIDI. Java supports only one sound format: 8 bit, glaw, 8000 Hz,

one-channel, Sun ".au" files. The sound quality of .au files is not very good. This presents to be a great

obstacle in developing music-related Java programs for the Internet.

Due to Java's lack of MIDI capability, writing MIDI-style control messages or procedural calls

become problematic. As a result, MIDI output can only be imitated through the use of a large num-

ber of sound files, each file representing a single note. As John Yu writes in Computer Generated Music

Composition:

The primary disadvantage of this method is that output is completely limited

by the number and quality of the sound files. Given the entire MIDI range of

128 pitches, multiplied by the different volumes desired, and again multiplied

by the number of instrument sounds desired, approximation of MIDI

through audio files becomes extremely difficult.

The issue of Java and its MIDI-lessness will be discussed further in chapters dealing with The Internet

Pong Game and Internet Hyperinstrument.

3.2.2 Speed

Another technological limitation is speed. An ideal real-time interactive experience should be seam-

less, fast, and smooth. This is not the case yet with what is available. In the Internet Pong Game, for

example, the constant polling, sending, and receiving of information among the clients and server sig-

nificantly slow down the program. To compensate for this, it became necessary to cut down the num-

ber of objects in the game field as well as to reduce the rate at which information is updated. More

detailed analyses on the speed issue will follow in subsequent chapters.

4. SIMPLE YET EFFECTIVE GAMES: Sound Memory and Bouncing Balls

Fun games do not need to be complicated! Simple games can be exciting and effective too. The fol-

lowing two games: Sound Memory and Bouncing Balls are two examples of such games.

4.1 Sound Memory

One of the most effective Java games developed by the Performance / Projects in Media 6 Music class is

a simple sound memory game, written principally by Roberto De Prisco.

4.1.1 Making a Match

This game is inspired by the traditional card game "memory." In the card game version, all the cards

are laid out face-down. The rules of the game are as follows:

* Each player takes turn to flip over a pair of cards (so that those two cards are now face-up).

e If a player gets a match (i.e., both cards have the same number), then

he gets to flip over two more cards. Repeat this process until a non-match occurs, in which

case the game proceeds to the next player-in-turn.

Otherwise

he loses the turn and the game proceeds to the next player-in-turn.

The rules for Sound Memory are somewhat different. Since Sound Memory is designed for a single

player, there is no one to compete with. Instead of matching numbers, each card - here represented by

a brain for its association with "memory" and the "Brain Opera" - now contains a sound. The goal of

the game is therefore to match as many pairs of sounds as possible. When the player clicks on a brain,

the brain gets a different background color - signifying that the brain has been selected, and the

sound of the brain is revealed (played). The player should then click on another brain. If the sound of

the second brain is same as that of the first, then both brains will disappear, revealing parts of the pic-

ture underneath all the brains. The more matches one makes, the more of the picture one sees. Even-

tually, when all the brains are gone, the entire picture will appear, and some congratulatory message

will also be displayed across the screen.

Figure 4: SoundMemory When matches are made, the brains disappear.

Sound Memory comes in different difficulty levels. The simpler levels contain only highly-distinctive

sounds that are easy to recognize and distinguish, whereas the more difficult levels, for example, ask

the player to match various seventh chords - augmented, dominant, half-diminished, etc. - all played

with the same timbre. In particular, these levels are: notes, chords, sounds, and melodies. Users are

also asked to choose a game of 4 sounds, 8 sounds, or 12 sounds.

Figure 5: Sound Memory and its difficulty levels.

The concept of the game is fairly straightforward. The graphics are simple; the sounds are stored in

.au format. There is no animation involved. Nevertheless, we believe that it is an effective and fun

game which has great potentials.

4.1.2 The Role of Music in Sound Memory

Sound Memory can be categorized as a sound/music game in that it involves remembering and identi-

fying sounds and musical fragments. However, the players are not asked to "make music," or to do

anything that would be considered "musical" in the traditional sense. Nevertheless, a simple game like

Sound Memory which contains lots of interesting, attention-grabbing sounds can be highly entertain-

ing.

Another aspect of Sound Memory is that it is educational in nature. In the "chord" level, for example,

users are asked to match various seventh chords of the same timbre. Recognizing chord qualities by

ear is actually an important skill for all musicians - composers and performers alike. It is entirely con-

ceivable that a solfege teacher in a music conservatory would instruct his pupils to play a few rounds

of Sound Memory as a homework assignment. With some minor improvements and new layers (e.g.,

progressions, intervals, qualities of triads, etc.), SoundMemory can be a useful classroom aid of great

entertainment value.

4.1.3 Improving Sound Memory

Although SoundMemory (as it stands right now) is fun to play, many improvements can still be made.

First of all, the "prize" awarded for completing the game is rather "bleak." When a user completes the

game, he gets to see 1) a picture in full which was once covered up by the brains, and 2) some congrat-

ulatory message. Perhaps a simple animation accompanied by some majestic-sounding music would

be more rewarding.

Another suggestion is to add an all-time top-20 score board for each difficulty level. The score board

should list the name, e-mail address, and the score of the all-time top-20 players. The score should be

inversely related to the amount of time a user takes to complete the game. When a user makes into the

top 20, he will be asked to leave his information at the site. The top-20 list will then be updated.

Small improvements like these will make Sound Memory more attractive. Moreover, the top-20 chart

can make the game more competitive, at the same time give off the air of the existence of a "Internet

Community."

4.2 Bouncing Balls

Bouncing Balls is a Java game written principally by Josh Strickon. This game was inspired by Mat-

thew Krom's Java applet "Musical Balls." In Musical Balls, whenever the user clicks (randomly) in a

designated area, a round ball will appear at the coordinate of the mouse-click. All the balls will then

move upward toward the top of the screen. (This upward movement is constant throughout the

game.) When a ball reaches the top of the window, a sound whose pitch it represents will be played.

The pitches are laid out very much like the traditional piano: the high notes are on the right, and the

low notes are on the left; the pitch of any note is always higher than those to its left.

Bouncing Balls is also called "Rhythm-Bouncer." When the game starts off, the entire window is black.

By clicking anywhere within the window, a ball with a given color, speed, and initial angle will be

launched. Every time that ball hits a wall it will play the sound associated with that color and bounce

off.

There are three menus in this applet. The first pull-down menu represents color. Each color is a

unique sound. The second menu is associated with speed. The user can select a speed for each ball he

fires off. The greater the number, the faster the speed. The third menu is initial angle, which deter-

mines the angle at which the ball will be fired.

The pull-down menu's and buttons for Bouncing Balls are listed below:

[P-d Menu] [P-d Menu] [P-d Menu] [Button]

Color Speed Angle Reset

red 1 0 degree

45 degrees

90 degrees

135 degrees

180 degrees

Figure 6: Bouncing Balls in action. The balls are travelling in different speed and direction. Each time a ball
bounces off the wall, a sound or a musical fragment is played.

yellow

green

blue

orange

magenta

white

gray

cyan

pink

The reset button clears the screen of all balls. A maximum of 20 balls are allowed per game. When the

maximum is reached, clicking on the reset button will start the game over.

4.2.1 From Total Randomness to Rhythmic Perfection

We have observed that when someone plays Bouncing Balls for the first time, he would most likely

select ball colors, speed, and initial angles randomly, and fire off the balls aimlessly just to see how

they all sound together. After a few rounds, however, the user would start to explore more sophisti-

cated rhythmic possibilities. After he becomes familiar with all the sounds available to him, the user

might begin to pick different colors more carefully, and fire off balls at pre-meditated moments so as

to create a rhythmic texture which he desires.

'When a ball is fired off at 0 degree, for example, it will simply travel back and forth across the screen.

When the ball bounces off from the left and the right "walls," the sound associated with its color will

be played, thus creating a "beat." Since the balls all travel in constant speed, a steady rhythmic pattern

can be designed and played out by carefully choosing the right combination of colors, speed, and

angles, and by firing off the balls at the right moments.

This game contains lots of interesting sounds. It can be appreciated by anyone: by those who are sim-

ply clicking away randomly to see "what might happen," as well as by those who have a clearer design

and plan in mind, and use the game as a looping percussion machine.

4.2.2 Multiple-Players

Bouncing Balls was originally written for one player. After the game was completed, the class suggested

that a multiple-player version be implemented.

4.2.2.1 WebStar and StarClient

In order to support multiple-user communication in Java, it is necessary to write some cgi scripts that

will handle all the "interactive connections" between the Web server and its clients. When this com-

munication is set up, Web clients can then "talk" to one another through the way of the Web server.

This layer of communication is essential for implementing multiple-user games, or any truly interac-

tive communication among the users.

For the multiple-player version of Bouncing Balls (and other multiple-user Java applets to follow), we

decided to use the WebStar package, designed, written, and installed by Eric Mdtois of the M.I.T.

Media Laboratory. The WebStar package includes the WebStar server and the StarClientJava class and

interface. The WebStar server is a process running constantly on the server side. It is responsible for

handling all the "interactive connections" among Web clients. This program keeps track of different

users who are connected to the server and dispatches any message that one client sends to the rest of

the appropriate community (or group) [WebStar, 96]. According to the reference manual, "a group" is

defined to be clients tied to, or related to, a specific experience. For instance, each interactive Web

game would have its own group that would be different from the "Web performance" group. So far,

this notion of "group" is associated with the actual port on which this communication takes place. A

single instance of the WebStar server deals with a single group, but there can be many instances of that

same program running on the same machine, each listening to a different port (and therefore dealing

with a different group or community) [WebStar, 96].

The WebStar server first assigns an unique ID number to each client connected. (ID #0 is reserved for

the server itself.) When a new client connects, it is immediately assigned a new ID. Clients can talk to

the server by sending "messages" to the server. A message is simply a string of characters terminated by

a new-line (\n) character. Incoming messages from the clients will be multiplexed and redistributed to

all the clients.

Upon connecting to the server, for example, the client might see the following message:

0 Welcome to Bouncing Balls! 32\n

The first number in the message indicates that it was sent by the server, whose ID number is 0. 32 is

the new ID number which the client has just been assigned.

Here is another example:

12 new ball at x = 25, y = 141\n

This is a message sent by client #12, announcing to everyone in the group the position of the ball

mostly-recently fired. (This message is echoed to client #12 itself as well.)

For the actual writing of the Java code, the applet should use the StarClient class and implement the

WebStarHandler interface. That package deals with all the low level communication layer, including

fetching client ID's from the server, etc.

WebStar is installed on w. media. mit. edu. All the multiple-user games are developed and currently

reside on w.

4.2.2.2 Running Things Locally

With WebStar, modifying the single-user Bouncing Balls to a multiple-player version was quite

straightforward. The new version allows every client to see and hear all the balls fired by everyone else

in the group. In other words, each ball one fires - along with the tempo and sound segment it carries-

will appear on everyone else's screen. Different users can therefore collaborate and make music

together.

One important issue worth noting here is that each client is running Bouncing Balls locally. When

some other client in the group fires a ball, information about its position, color, speed, and initial

angle is sent to the central server. The central server then passes along the information to all the cli-

ents. When a client receives the information, it immediately paints a new ball on the local screen (at

the specified position). Ball positions thereafter are calculated only at the local level. In other words,

after the initial passing of information about each new ball, there is no more data transmission

between the client and the server.

The obvious advantage for restricting most of the activities to the local level is speed. If we were to

perform everything at the server side - for example, to calculate new positions of all the balls (at

approximately 10 times a second), pass them to the clients, then have each client draw all the balls

locally - it would simply take too long.

One major side effect of running things locally is that once the balls are fired off, each client then

completes the rest of the process independently of other clients. Due to different processor speed,

connection speed, etc., clients will invariably run at different speed. In other words, other than the fir-

ing of the balls, the clients are actually running the game off-sync from one another.

The drawback of running Bouncing Balls off-sync is that the game can no longer serve as a rhythmic

machine. Rhythm is inseparable from timing. Now that each client is running the game indepen-

dently, everyone will hear the bouncing of the balls at different times. The multiple-player version of

Bouncing Balls is therefore not suited for creating collaborative (poly-)rhythmic improvisations. How-

ever, it is still an exciting environment for making sound-collages and "tone-painting."

In The Internet Pong Game which we will discuss below, the server becomes an active component of

the game itself. All the ball positions, pedal positions, etc. are calculated on the server level, then

passed onto the clients. We will see how it differs from this game.

5. CREATING AND MORPHING A MUSIC STREAM

This game model provides users with tools to create from scratch or to alter a given music

stream. Suppose a user is handed a stream of music and a box of tools with which to modify the

stream, and is given the instruction to play with the stream so that "the end product will best reflect

your personality." What will he do?

The philosophy behind this model is to provide users with as much freedom as possible, and to retain

their individualism in the final product. Users are given very simple tools (which anyone can master

without much practice). They are then encouraged to play around with the tools and to express them-

selves in any manner they desire. The final version of their work will stand as is, and remain recogniz-

able to their respective creators.

5.1 Draw Music

Draw Music is written principally by Jeanne Yu and myself. In attempt to make the game as simple

and less restrictive as possible, we allowed the users with only one tool - the mouse. The entire game

can be navigated through and controlled by simple mouse movements.

5.1.1 General Description of the Game

Draw Music resembles a traditional drawing program. The difference here is that the user can listen to

what he has drawn by clicking the play button at any moment during the game. The music produced

will correspond directly to his drawing in the drawing window. The user is literally "drawing music,"

and hence the name of the game.

Here are the menus and buttons provided by Draw Music

[Pull-down Menu] Color: red
yellow
blue
cyan

[Pull-down Menu] Mode: chromatic

major
minor
Chinese
Japanese
whole-tone

[Pull-down Menu] Line Type: simple line
quantized

[Button] Play

[Button] Pause

[Button] Reset Play

[Button] Clear

The user is instructed to use the mouse to draw lines and curves anywhere in the window provided.

There are four colors to choose from. The restriction is: for each color, there can only be one y-value

for any given x-value. In other words, nowhere in the drawing plane can a perfect vertical line (of the

same color) ever appear.

red qW chromatic W simple linew play pause reset play clear

Figure 7: Draw Music in action - a melody is drawn.

If the user drags the mouse to a section where some other point of the same color already exists on the

same x-coordinate, and if the new mouse position has a different y-value as the previously-drawn

point, then the program will automatically erase the previous point, and "paint over" a new point at

the new y position.

Figure 8: Draw Music. When the mouse drags over an area that already contains some drawing (in this illustra-
tion, the mouse drags horizontally over the mid-region of the drawing area), the old segment will be replaced
by the new.

Note again that this "one y-value for any given x-value" rule applies only to drawings of the same

color. Drawings of different colors are not restricted by this rule. There are four colors from which the

user may choose. He can choose any color at any point of the game. This means that at any given x-

value, there can be at most four y-values - but each of these points must be of a different color from

the other points.

Figure 9: Draw Music- all four voices are drawn.

While the mouse is down, if the user drags it above or below the drawing area (i.e., the y-value is out

of the vertical range), then the program will erase all points (of the same color) which have the same x-

values as the section that was just "dragged over." This design provides the user with a simple and

intuitive "erase" function, and allows him to insert rests (breaks) in between the left and the right

margins, as well as to modify his drawing.

By allowing for up to four points of different colors to co-exist at any x-value, the program essentially

supports four-voice polyphony. Each drawing color is considered a "voice." All of the voices have the

same range to draw from. In other words, the traditional soprano, alto, tenor, and bass division is not

followed here.

When the user decides to "listen to" what he has drawn (by clicking the play button), the program will

"play the drawing" from left to right at a constant, preset speed. Visually, for each of the four colors, a

small white ball will appear at the left-most point of the left-most line/curve. When it is time to play

those points, the white balls will start travelling across the screen along those segments at a constant

pace. Of course, the music being played corresponds directly to the y-values of the segments, and the

positions of the balls travelling across the screen also correspond directly to the music being played.

Graphically, the "higher" the point is in the drawing (i.e., the greater the y-value), the higher the pitch

of the sound; the "lower" the point, the lower the sound.

Figure 10: Draw Music playing the drawing.

While the drawing is being "played," the user may wish to stop the playing. This can be accomplished

by clicking the pause button. If he wishes to start the piece over, he can resetplay the drawing. If the

user wants to get rid of the entire drawing, he can also clear the drawing board, and start his drawing

all over again.

The other two pull-down menus Mode and Line Type will be discussed in detail in the following sec-

tion.

5.2.2 Preset Modes and Quantization

The default mode for the program is chromatic. Without specifically selecting another mode, the user

will be drawing in the chromatic scale. If the user wishes to, he may set his drawing to a number of

different preset modes. These modes are: chromatic, major, minor, Chinese, Japanese, and whole-

tone. (The Chinese and Japanese modes are two different pentatonic scales with different intervals in

between the member notes. Of course both traditional Chinese and Japanese music use a number of

different pentatonic scales too. Here only one is selected for each label.) The specific note members in

each mode are:

chromatic: C, C#, D, D#, E, F, F#, G, G#, A, A#, B

major: C, D, E, F, G, A, B

minor: C, D, D#/Eb, F, G, G#/Ab, B

Chinese: C, D, E, G, A

Japanese: C, C#/Db, F, G, G#/Ab

whole-tone: C, D, E, F#, G#, A#

By selecting different modes, the same drawing of lines and curves will automatically be transformed

into notes belonging to member-notes of that mode. For example, suppose an ascending line starts

from E4, travels through F4, F#4, G4, G#4, and ends at A4. Under the "Chinese mode," those notes

will be converted to E4, G4, and A4; and under the "whole-tone mode," the same notes will be con-

verted to E4, F#4, and G#4.

The default line type for the program is simple line. When simple line is selected, all the lines and

curves drawn will appear as smooth, connected one-pixel dots in their respective colors. An alternative

line type is quantized, which quantizes the drawn lines and curves into note-regions which they

occupy. Using the example from above, suppose there is an ascending line which starts at E4, travels

through F4, F#4, G4, G#4, and ends at A4. The quantized chromatic representation will be ascend-

ing blocks of rectangles each occupying appropriate spaces which correspond to E4, F4, F#4, G4,

G#4, and A4. If instead of chromatic, the user is in the "major mode," then the blocks of rectangles

will be occupying spaces which correspond to E4, F4, G4, and A4.

Figure 11: Draw Music in simple-lines.

Figure 12: same drawing as Figure 11, but in quantized format and chromatic mode.

Figure 13: same drawing as Figure 11, but in quantized format and major mode.

Figure 14: same drawing as Figure 11, but in quantized format and Japanese mode. Note the two major-third
leaps in the Japanese scale are clearly represented here by thicker rectangles.

One of the unique qualities about Draw Music is that it provides a visual representation of the quanti-

zation process taking place in the music part of the program. Thus, the user is able to see exactly how

the quantization works, and observe the interval relationships between the member notes in each

mode. In the minor mode, for example, the step from G#/Ab to B is greater than the step from C to

D or from E to F. Under quantizedline drawing, these relationships will be shown graphically, and

will become dear to the users.

Another unique quality about Draw Music is that it is very easy to switch back and forth from one

mode to another. After a user finishes the drawing, the drawing is "preserved." Selecting different

modes alters the musical make-up of the piece, but the drawing itself is saved and stored internally.

Thus, with a simple dick of the button, the user is able to transform his drawing from one mode to

another, as well as to always revert back to the original by selecting the mode with which he started

the drawing.

5.2 The Role of Music in Draw Music

In Draw Music, making music becomes the focal point of the game. In contrast to Bouncing Balls,

which concentrates on the rhythmic aspect of music, Draw Music provides an environment in which

the users can focus on and explore the melodic possibilities in music.

By combining music with drawing, the user is able to associate the rising and falling of pitches with

the vertical placement of points in a two-dimensional plane. The melodic contour of a piece of music

can thus be followed, observed, and experimented with in a very tangible manner. This program can

be re-packaged into a helpful teaching tool for those wanting to learn about music composing or just

music in general.

In keeping with the "hands-off" philosophy, I believe this program has just the right amount of guid-

ance and/or restriction. The preset modes are probably more helpful than restricting. And, the user

can always reset the mode to chromatic if he finds the preset modes to be too limiting.

A possible improvement to the current version of Draw Music might be to allow for a library of user-

definable modes. That way, in addition to those that already exist, users can also experiment with

modes of their own creation.

5.3 Extending Draw Music Other Possibilities

The three extensions of Draw Music that naturally comes to mind are: a sequential compounded-mor-

phing program, a sequential segmented-morphing program, and a theme-and-variations morphing

program. "Morphing" here is defined as "changing, modifying, or re-shaping of an existing stream."

In all three extensions, users are given an existing stream of music, and are asked to modify the stream

using the tools with which they are given.

Other than morphing, Draw Music can also be turned into a multiple-player game, in where players

can each be responsible for a color (voice), and together compose a piece of music.

5.3.1 Sequential Compounded-Morphing

In the sequential compounded-morphing section, I will propose two mid-scale performance games.

However, the possibilities here are truly endless. The first game is a straightforward morphing game,

where each user is given a set amount of time to modify a given stream, and the stream is passed down

sequentially from one user to the next. At the time of the performance, everyone will hear the final

version - a piece now containing all of the modifications made by everyone (one on top of another,

thus "compounded"), as well as the collective creativity of all of the participants. After the perfor-

mance, each user can then play back all the stages of the transformation, and see what each player has

contributed to the final version of the stream.

A variation of this game is a modified musical telephone game. In this game, a music stream is played;

the first player is asked to best recreate what he has just heard. When he is done, the player will pass

down his rendering to the user after him. The new player will then hear the rendering of his predeces-

sor, and be instructed to, again, best recreate what he has just heard. This process will continue until

everyone has had his turn. At the performance, the original stream will be played, followed by the first

rendering, second rendering, third rendering, etc. This way, everyone can hear how the stream is

altered from one user to the next, and how see how degenerated it became in the last rendering.

5.3.2 Sequential Segmented-Morphing: The William TellExperience

The difference between sequential segmented-morphing and sequential compounded-morphing is

that in sequential segmented-morphing, each game participant is assigned a segment of music; all of

the morphing processes are independent of the other processes. In sequential compounded-mor-

phing, each morphing process depends on all of the previous morphing processes combined up to

that point.

Let function f(x) be the morphing process. Sequential compounded-morphing can be represented as:

Ycompounded= f(f(f(f(.. f(x) .. -)))

where x is the stream in its entirety.

Sequential segmented-morphing is represented differently:

Ysegmented = f(xi) + f(x 2) + f(x 3) + f(x 4) + f(x 5) + - - - + f(xls),

where x, is segment 1 of stream x, x2 is segment 2 of stream x, and so on, and

operator "+" denotes a simple concatenation operation.

For the Performance class, one of the final projects led by Prof. Tod Machover involves a performance

experience which embodies the sequential segmented-morphing game plan. In this project, a section

from the MIDI version of Rossini's William Tell Overture is further divided into 10 equal sections.

Each of the ten participants is handed a section and asked to "do anything you want with it" using

Performer - a popular sequencer and notation software by Mark of the Unicorn, Inc. Each participant

is given a limited amount of time to complete his portion of the project. At the end, all sections are

concatenated in the original order, and the new (and improved!) version of the William Tell Overture

is played to the public at the Music Garden.

The William Tell experiment turned out to be a positive and encouraging experience. It was received

enthusiastically by the participants, the class, as well as by most of the innocent audience who just

happened to be in the Music Garden at the time.

Part of the success can be attributed to the great popularity of the William Tell Overture itself. The

tune is exciting, well-recognized, and well-liked. Also, all of the sections remain untouched after the

participants have completed their respective portions of the project. Therefore, the final piece retained

a great deal of individuality, which in turn makes the piece so well received.

An Internet version of such an experience can definitely be implemented and carried out. Like the

Performance class project, ten or a dozen users can sign up for morphing a piece of familiar-sounding

music. They will each be given a section of the piece, and asked to morph the section using Draw

Music. (Notice that a user can make small changes here and there in the stream, or - if he so desires -

wipe out the entire stream and compose from scratch!)

After all the participants have sent back their work, the sections will be concatenated in the original

order. At the pre-announced time, the new version of the piece will be broadcasted over the Internet

through RealAudio or Stream Works. Participants can listen to the piece at their terminal, and commu-

nicate remotely with other participants afterwards to share their ideas and thoughts about the project.

5.3.3 Theme-and-Variations

The theme-and-variations extension is designed for a group of users as well. In this model, each user is

given the same thematic material and asked to create a variation based on the theme. All of their out-

put will be linked together at the final performance. A theme-and-variations piece can thus be collab-

oratively composed and performed.

5.3.4 Multiple-Players

A multiple-player version of Draw Music is also available. In this version, up to four users can partici-

pate in the same game. Each user is responsible for a color, and can draw only with that color. At any

point of the game, any participant may click the play button to "hear the drawing." Given the con-

straints, users may wish to divide up the tasks so that each participant needs to concentrate only on

one region (register) of the drawing board. For example, Participant A may want to "take care" of the

bass notes, Participant B may want to concentrate on the accompaniment figure, while Participants C

and D may want to work on the principal and secondary voices in the upper registers. These are only

suggestions, however. In reality, the participants are free to do anything they desire on the drawing

board.

6. The Internet Pong Game

The Internet Pong Game is implemented principally by myself. This game was originally

intended for a large number of participants. Due to technical limitations, the current version supports

only six simultaneous users, but can be modified to accommodate more players. These limitations will

be discussed below.

6.1 Overview of the Game

When a user logs onto the game, he will be shown a list of available teams (i.e., teams so far have not

been chosen by other users), and will be asked to select a team for which he would like to play. The

teams are:

- Tempo Up

. Tempo Down

. Volume Up

- Volume Down

- Transpose Up

- Transpose Down

The current version of The Internet Pong Game only allows for one player per team. Once the user

makes his selection, he will be matched up with a pre-determined rivalry team (Tempo Up will play

against Tempo Down, Volume Up against Volume Down, etc.). Together, the two teams will play a game

of Pong.

On the screen, each player will see his own team on the bottom of the screen, and the rivalry team

near the top of the screen. The other pairs of teams will not be shown to him.

The Pong game itself resembles the Bouncing Balls somewhat. A ball travels up and down the screen

with a preset speed. Each team (one on the top of the screen, the other near the bottom of the screen)

is given one horizontal block with which to block the ball. The blocks are placed a quarter of an inch

away from the horizontal boundaries (the top one a quarter of an inch below the boundary, the bot-

tom one above the boundary). The blocks can be controlled through the keyboard; however, they can

move only horizontally (left and right), and not vertically. The object of the game is to "guard" the

horizontal boundary from being touched by the ball. In other words, each team is to successfully

block the ball every time it comes close to the boundary so that the ball will not go pass the block and

touch the boundary.

Figure 15: The Internet Pong Game.

If the ball is successfully blocked, it bounces off to the other side. The game continues. If a team

"misses," or, allows a ball to touch its side of the horizontal boundary, then the other team scores a

point. No point is awarded for each successful block of the ball

When the game starts, a piece of MIDI music will be played and broadcasted to everyone via the Rea-

lAudio server. The players will in turn collectively "control" the MIDI parameters: depending on the

score each team receives, the corresponding MIDI parameter will be reset accordingly. The central

server keeps track of which teams are winning, and by how much. The data are then sent as parame-

ter-altering messages to another program playing the MIDI sequence. The effect of these changes in

the scores will be broadcasted and heard by all the participants. For a detailed discussion on broad-

casting time-based information over the Internet, please refer to Chapter 7 of this paper.

Let us now take a closer look at the effect of score changes on music. Suppose team Tempo Up is cur-

rently winning. The tempo of the on-going piece will become faster. The more points team Tempo Up

is winning by, the faster the tempo becomes. Suppose later on team Tempo Down catches up - each

time the score difference diminishes, so will the effect of the winning team. Finally, if Tempo Down

becomes the winning team, the tempo of the piece will become slower.

Similar rules apply to the Volume and Transposition teams. Instead of tempo, they will be controlling

volume and transposition respectively. If team Volume Up is winning, the piece becomes louder, other-

wise softer; and if team Transpose Up is winning, the piece transposes up by a half step, otherwise

down a half step.

6.2 The Referee

The Internet Pong Game is set up so that there is a referee program running at the server at all times.

After setting up rivalry teams, the referee starts to keep track of the positions of the ball and the

blocks. It then sends messages to all the clients so that the clients can know the positions of the objects

in the game field and update them accordingly.

6.2.1 Broadcasting Messages

Here is a look at how the ball positions are sent using the WebStar package:

public void run() {

Thread. currentThread () . setPriority (Thread.MINPRIORITY);

sc.start(getDocumentBase() .getHost(), 8121);

while (kicker null) {
repaint (;

String msg =

msg = "position" + " " + bouncing.x + " " + bouncing.y;

sc.send(msg);

try {Thread.sleep(333);} catch (InterruptedException e){}

}
[...]

}

The ball positions are taken three times a second. The clients also update the screen three times a sec-

ond. The object "sc" is declared to be of type StarClient. The sc.send method is called again and again

throughout the program. "Send" is defined in StarClient.java as follows:

/* Sends out a message */

public synchronized void send(String outMsg) {
if(starID < 0) return;

/* No anonymous message allowed -> needs a valid starID /

try {

output.writeBytes(starIDstr);

output.writeBytes(outMsg);

output.writeByte('\n');

} catch (IOException e) {

owner.WS_debugLog("Error while sending: " + outMsg, this);

i

This routine allows messages to be "broadcasted" from the server to all connected clients. The clients

can then decide for themselves what to do with the information received. (In this program, the clients

repaint the ball and blocks at their respective new positions everytime a message is received.)

6.2.2 Bouncing Angles

To keep things simple, the angle at which the ball bounces off the blocks is set to be:

angle of reflection = 90 - (incoming angle - 90)

* I 8

Figure 16: the angle at which the ball is reflected in the Internet Pong Game.

6.3 Technical Limitations

The Internet Pong Game is a game in which timing is crucial. The necessity to synchronize every move

in the game turns out to be a great limitation. Unlike the multiple-player version of Bouncing Balls,

where most of the calculations can be performed locally at the client side, The Internet Pong Game

needs to calculate everything at the server level. To ensure that both teams see the same objects on

their respective monitors, the positions of the ball (which is constantly travelling), as well as the posi-

tions of the blocks, need to be calculated on the server side, and then passed onto all connected cli-

ents. When the clients receive the data, they can then repaint the ball and the blocks as local

processes.

If a computer has a fast processor, and the connection speed is extremely fast, the ball positions can be

calculated more frequently; the ball movement will still look fairly smooth. However, if the connec-

tion is slow, the ball movement can look intolerably jumpy. In order to accommodate most possible

connections, the update rate (the rate at which the positions of the ball and blocks are updated) is set

at 3 times a second. Already, at this rate, the animation becomes slow and awkward. It is hard to imag-

ine how unbearably slow the game will become had more objects - balls, players, etc. - been added to

the game field. Although this game does not look very appealing to the eye when it runs, we have con-

tinued to develop it as an exploration of possible game models for interactive Internet music. As far as

we know, there is no true real-time interactive games out there which supports multiple players like

The Internet Pong Game. Perhaps when the technology catches up, more similar games will be devel-

oped.

6.4 MIDI, not .au!

Another breakthrough in The Internet Pong Game is the use of MIDI. With its modest bandwidth

requirements compared to other audio formats, MIDI is a natural choice for adding a soundtrack to

Web pages. Unfortunately, Java suffers from lack of built-in MIDI support. At this point, adding

MIDI support to Java requires platform-dependent code, native methods in Java parlance. This

means that anyone who wishes to use a Java MIDI applet will have to first download a platform-

dependent native method library. Not only is this highly inconvenient to both programmers and

application users, it also prevents Java from being truly platform-independent and portable as the lan-

guage is designed to be. Java's security feature also prevents a Java applet from downloading a MIDI

library automatically [St. Hippolyte, 96]. We believe that in order for Java MIDI to gain widespread

acceptance, a native library must be compiled and made available to the public; most importantly, it

must follow an open standard.

If Java does not support MIDI, why then is the game designed and implmented to manipulate MIDI

streams? Through hours of net search and surfing, we located a Java MIDI package written by

Michael St. Hippolyte (for Windows). According to the author, "this Java MIDI package only sup-

ports output, does not support System Exclusive messages, and does not have built-in sequencing or

MIDI file support - yet." But it serves our needs. We installed this package, tested it, and decided to

- for this game anyway - abandon .au files, go with MIDI, and use RealAudio and/or Stream Works to

broadcast the MIDI output over the Internet.

6.5 Linking The Internet Pong Game to Sharle: John Yu's Computer Music Generator

The natural question that follows is, "where would the music come from? How is it produced" To

take advantage of the new MIDI package, we wanted a program that would generate MIDI output -

preferably parametrically - so that the scores of each team can be directly linked to the parametric

controllers of the program.

In a parametric music generation system, various musical components are identified, selected, and

treated as separate, but related, entities. An examples of parametric music generation system is Alex-

ander Rigopulos' Seed-Based Music Generation System, in which music is defined in terms of a set of

parameters (e.g., activity, coloration, etc.). Thus, by directly controlling these parameters, the user is

able to modify the output of the system [Rigopulos, 931. Another example is Fumiaki Matsumoto's

Drum-Boy system, where users are given a set of high-level rhythmic controls with descriptive labels

like "stuttering vs. floating," "energetic vs. calm," and "graceful vs. mechanical." Users can manipulate

these controls so as to create rhythmic patterns of their own liking [Matsumoto, 931.

John Yu's computer music generator is in many ways similar to Rigopulos' and Matsumoto's systems.

John describes his system as "[a] computer composition engine [that] has been designed in an attempt

to capture basic music composition and improvisation knowledge in a variety of styles." The output

of this system is based solely on user-controlled parameters and low-level rules embedded within the

generation engine [Yu, 96].

John's system - nicknamed Sharle- does not deal with chords and harmony; rather, it concentrates on

the note-occurrence frequency in each mode, and produces voices of seemingly independent melodic

lines. Because of the voice independency, the music produced by this system reminds one somewhat

of Bach's music. (That is not to say, however, that the music produced here is fugal or contrapuntal in

nature.) If all the parameters of the system remain unchanged for a period of time, the music can

sound aimless and static. But if the parameters change frequently enough, the music becomes surpris-

ingly lively.

After careful evaluations and joyful discussions with John, we found John's system most suited for The

Internet Pong Game. Aside from the technical aspect of the system, the music it produces is also inter-

esting and refreshing to listen to, and at the same time "mellow" enough not to be too distracting. (In

fact, John sometimes refers to Sharle as a "background-music generator.") We therefore decided to go

with John's system, and set up a message-sending channel between The Internet Pong Game's central

server and Sharle. After the link is set up, the parameter values collected by the server from all the cli-

ents will be sent directly to Sharle, and Sharle's parameter controls will then be modified in accordance

with the values received.

6.6 I Just Want to Win!

An unique aspect of The Internet Pong Game is that making music is simply not a top priority to the

game players. Players join the game to win their respective matches; they do not - nor are they

expected to - focus on the musical qualities of the piece which they are co-composing and co-per-

forming. To the players, the music being produced is merely a by-product of their matches, and cer-

tainly not the focal point of the game.

This type of music composition / production is worth exploring. Traditionally, a piece of music is

through-composed, or at least through-designed. Even in "chance composition," for example, instruc-

tions are still being given to the performer(s) by the composer. And in the more modern writings

where performers are allowed even greater freedom, composers still design the overall structure of the

music, and often through-compose the sequences of events to be "randomly selected" or triggered by

performers at the time of the performance.

In The Internet Pong Game style of music production, however, the game players are the composers

and the performers. The development of the piece rests entirely in the hands of the game participants.

But since game players are concerned with winning the matches, not the beauty of the music, The

Internet Pong Game can be said to be a truly anarchic composition-performance system.

6.7 A Big Happy Family

The Internet Pong Game gives rise to the sense of the "Internet Community." In the most obvious

sense - the opponent against whom one is playing comes from somewhere in this Internet Commu-

nity. Furthermore, every time the music changes, a responsive user can pick it up and come to the

conclusion that "someone out there just scored a point." So far, with the exception of The Internet

Pong Game, there is almost no synchronized, graphic-based real-time Internet game out there in

which people can participate in. I believe The Internet Pong Game is revolutionary in this regard as

well.

6.8 Possible Expansions

Of course, some of these expansions can not be implemented effectively until the technology catches

up. Nevertheless, the following are some suggestions worth considering.

6.8.1 More Parameters

For a more sophisticated model (not implemented), other musical and/or extra-musical elements can

be considered. These elements can be controlled by pairs, triplets, or even groups of teams. For exam-

ple, the pair of melodic contour teams could be playing for the "wildness" or "peacefulness" of the mel-

ody, while the chord quality teams could be controlling the number of major, minor, augmented, and

diminished chords being played in the on-going piece, and so forth. It is precisely this constantly-

changing combination of different musical elements that makes each music performance so unique

and fascinating.

6.8.2 Fur Elise: Linking to Famous Pieces

Another possibility to make The Internet Pong Game more fun would be to link it to famous pieces

such as Beethoven's Far Elise, Mozart's Eine Kleine Nachtmusik, or J.S. Bach's Two-Part Inventions.

Audience generally enjoy hearing pieces that they are familiar with. Seeing how their game scores are

affecting the playing of a familiar piece of music can really make the game participants go wild! Judg-

ing from how the audience reacted to the William Tell Overture experiment, I believe that linking The

Internet Pong Game to famous pieces can be another great success story.

7. BROADCASTING LIVE MUSIC WITH RealAudio AND Stream Works

RealAudio, by Progressive Networks, and Stream Works, by Xing Technology Corporation, are the two

most prominent products (as of August 1996) designed to handle continuous time-based information

over the Internet. These two products make live broadcasting of music and/or video possible. In our

projects, both The Internet Pong Game and the Internet Hyperinstrument use this new technology to

broadcast music. In the following sections, we will first discuss problems in delivering time-based

information over the Internet, then Rea/Audio and Stream Works, and finally the sound-qualities of the

two products.

7.1 Problems in Delivering Time-based Information over the Internet

Traditionally, the Internet uses two basic methods to send data - the TCP protocol, and the UDP

protocol. The TCP protocol is more reliable; however, it is slower in speed, with substantial delays at

times. The UDP protocol, on the other hand, can transmit data without significant delay, but its

occasional loss of packets can be quite problematic in situations where data accuracy cannot be com-

promised.

Web servers in particular use the HTTP protocol to transmit data. HTTP in turn sends information

using the TCP protocol. Like the other protocols, HTTP was not designed for handling time-based

information (such as audio). According to HTTP versus RealAudio - Client-Server Streaming [RealAu-

dio, 95], problems in using HTTP for transmitting isochronous information include:

1. when web servers are used to send time-based data such as audio that gets rapidly consumed by

the listener, the TCP delay problem can really bog things down. "Even a 2 or 3 percent re-transmis-

sion rate can bring even a low bit-rate audio data stream over a standard modem (say 8 kilobits/sec-

ond over a 14.4 modem) to a grinding halt" [RealAudio, 95].

2 since the HTTP protocol is designed for one-way continuous transmission, it does not allow for

a user-friendly implementation of desirable features such as "fast forward," "rewind," and "search" -

features which are characteristic of digital medium such as CD and LD players.

3. Web servers were designed to deliver large blocks of data to a client as quickly as possible; they

were, however, designed to handle only a small number of concurrent accesses. For a live broadcasting

of over 100 simultaneous connections, for example, ordinary Web servers will most likely crash.

4. the Web server approach is inefficient in using network bandwidth. When downloading a

sound file, for example, a Web server will need to transmit the file in its entirety before the user can

hear even the first few seconds of the file. (And oftentimes a user is only interested in hearing the first

ten or twenty seconds of a file to determine whether or not to continue.) This results in lots of wasted

network resources.

7.2 RealAudio

RealAudio is a software product which allows playback of audio information over the Internet in real-

time. As explained above, the Internet was not intended for handling continuous time-based (isochro-

nous) information: both TCP and UDP guarantees neither minimum latency nor throughput rate

[RealAudio, 95]. Clearly, in order to better handle isochronous data transfer, special designs or strate-

gies need to be employed.

To solve the speed-versus-accuracy problem, Rea/Audio chooses to deliver audio data via UDP (which

is considered by most to be "superior" to TCP), and further corrects the packet-loss problem by a loss-

correction system which Progressive Networks developed. This system in essence minimizes the

impact of any given lost packet and enables the client to "recreate" the missing pieces of the signal.

The system "works very well under normal lossless conditions, degrades gracefully when packet loss is

in the 2-5% range, and even works acceptably when packet loss is as high as 8-10%" [RealAudio, 95].

RealAudio supports Internet connections of 14.4 kbps or faster. To broadcast audio information live

using RealAudio, the following components are necessary:

1. the RealAudio Encoder encodes audio information into a special RealAudio format.

2. the RealAudio Server delivers live audio over the Internet (or local network)

3. the RealAudio Player plays files in RealAudio format [RealAudio, 95]

The RealAudio Server comes in different "packages." The smallest model supports up to five simulta-

neous streams, whereas more expensive models can support up to 500+ simultaneous streams. The

sound quality of RealAudio (RealAudio Player version 2.0) is similar to that of FM mono, which we

believe is suitable for our purposes.

RealAudio has the following features:

e two algorithms: 14.4 and 28.8 both are proprietary

- new scalable algorithms for better sound quality on ISDN bandwidth

e players available for Macintosh, Windows, and UNIX

- servers are available for Sun, SGI, PC's (486/66 or better), and for Macintoshes (System

7.5 running Open Transport)

e live transmission possible

new features in RealAudio 2. 0:

o better sound quality (AM quality on 14.4 connection, FM mono quality on 28.8)

o Netscape plug-in

o Java controllable

0 multi-casting enabled

* synchronized multimedia: Player can control the download of graphics

The MIDI output of the game - whether from John Yu's computer music generator or altered MIDI

files of famous pieces - is directed to a mixer, then out through the speakers. The audio information is

then encoded by the RealAudio Encoder, and broadcasted using the RealAudio Server. Participants of

the game will need to have installed Rea/Audio Player. When a user clicks to listen to the live broad-

cast, the RealAudio Player will play the (current) encoded audio information, enabling him to hear the

effects of each point his team earns or loses.

7.3 StreamWorks

Stream Works delivers "streaming" multimedia - pictures, video and sound - based on the MPEG inter-

national standards for video and audio compression [Xing, 95]. These streams fall into three catego-

ries: audio-only, video-only, and system (video plus audio). Stream Works uses standard TCP-IP

network protocols, and takes advantage of new "multicast IP" protocols (RFC 1112) for data delivery.

A Stream Works setup contains the following components [Xing, 95]:

1. Stream Works Network Encoders

- video + audio

- audio only

- file transmitter / encoder emulator

2. Stream Works Network Servers

3. Stream Works Network Clients

- for PC Windows

- for X-Windows

- Stand-alone

4. Stream Works Network Manager

In general, the faster the connection, the better output quality one can expect from Stream Works.

With a 9600 baud modem, one can hear audio "similar to a low-powered AM radio station." Video

quality also varies depending on the connection speed. For VCR-like video quality, for example, a TI

connection would be necessary.

Stream Works has the following features:

- scalable algorithms: 8.5kb to ISDN bandwidth, with auto detection and auto-adaptation

to possible bandwidth reduction (network overload)

e uses the International MPEG-1 and MPEG-2 standards for audio and video

e on 28.8 connection, video capabilities = 3 to 5 frames per second

- players exist for Windows, UNIX, and Macintosh (new)

- multicasting enabled

e live transmission possible

e on 14.4: AM quality; 28.8: FM quality

7.4 Comparing Sound Qualities - RealAudio versus Stream Works

From a user's point of view, the biggest difference between Stream Works and RealAudio in handling

audio information is that Stream Works offers different sound qualities for different bit-rates of stream:

Bit Rate Sound Quality Radio Equivalent

8.5 kbps (LBR format) 8 khz mono AM radio quality

24 kbps (an MPEG audio format) 16/22 kHz mono in between AM and FM radio quality

56 kbps (an MPEG audio format) 32/44 kHz mono, or

16/22 kHz stereo approximately FM radio quality

112 kbps used for 44 kHz stereo better than FM radio quality

In addition, with Stream Works, one can reduce from a higher bit-rate audio stream to a lower one "on-

the-fly."

At the same bandwidths, although Rea/Audio and Stream Works use different algorithms, they have the

same sound quality. RealAudio and Stream Works are both scalable to fit the bandwidth, but only

Stream Works offers real-time adaptation to possible bandwidth loss.

As for standards, only Stream Works uses the MPEG standard. Rea/Audio uses its proprietary algo-

rithms.

One advantage that RealAudio has over Stream Works is that Rea/Audio can be controlled by Java, and

can send signals back out to the HTML. This makes Web interaction easier to accomplish.

Choosing the "right" system really depends on the nature of the project (as well as sponsorship from

the companies). Stream Works is obviously more flexible, and has the advantage of being able to handle

video data. The ability to handle video data might come in handy should the Brain Opera project

decide to broadcast live video over the Internet directly from Lincoln Center. If live audio broadcast-

ing is all that is needed, RealAudio is a possible alternative. For the current plan of the Brain Opera, I

see no significant advantage in choosing one system over the other.

8. BIGGER THAN LIFE: THE Internet Hyperinstrument

Prof. Tod Machover started the Hyperinstrument Group at the MIT Media Laboratory in 1986, with

the goal of designing expanded musical instruments, using technology to give extra power and finesse

to virtuosic performers. Such Hyperinstruments were designed to augment guitars and keyboards,

percussion and strings, and even conducting, and have been used by some of the world's foremost

musicians such as Yo-Yo Ma, the Los Angeles Philharmonic, Peter Gabriel, and members of Pierre

Boulez's Ensemble InterContemporain [Machover, 92]. Since 1992, the focus of the Hyperinstru-

ment Group has expanded in an attempt to build sophisticated interactive musical instruments for

non-professional musicians, students, and music lovers in general.

Part of this work is focused upon the principle of engaging participants in an active, kinetic relation-

ship with the musical process - be it with composition, interpretation, improvisation, or some new

experience which can only exist with the aid of a computer. Though great technological advances have

been made in music for sound production, processing, and compositional aids, these tools have far

outpaced our ability to control them in musically interesting ways [Machover, 92]. Musical interfaces,

whether for experts or novices, must possess a refined physical control and an intuitive link with the

sounds they produce. A keyboard key which produces a giant electronic gong, for example, will not

"play" as well as an instrument which requires a swing of the arm to produce the same sound. More-

over, as the musical elements we choose to offer for users' real-time control become more abstract -

concepts such as tempo, embellishment, or rhythmic activity - the question of interface becomes even

more challenging.

Traditionally, a Hyperinstrument consists of a physical instrument modelled after its acoustic coun-

terpart (e.g., Hypercello and cello), sensor devices to measure bow pressure, hand position, etc., a

computer for data analysis, and a sound-generating / altering device. In this model, however, the

physical instrument component will be substituted by common computer peripherals such as music

keyboard, mouse, joystick, or computer keyboard. A user can log on to the Brain Opera homepage,

and start improvising along with the real-time output of others who are also currently "jamming" on

the Internet.

A remote "jamming session" of such magnitude could be exciting, but several problems must first be

taken care of before the system can work convincingly. An intelligent "conductor program" needs to

be written so that not all 100 or 200 instruments will be heard simultaneously at all times. The "con-

ductor" should be able to "spot-light" a soloist or two at a time. It should also keep track of the activ-

ity level of all users, and make intelligent decisions as to which streams it wants to broadcast, which

streams it wants to dispose of, and which streams it wants to alter / enhance at any given moment.

One advantage of this system is that it creates an environment where the user can jam along with real-

time music that he helps to produce, and whatever he is currently producing locally helps to mold the

direction of the piece for the next ten or twenty seconds. It resembles the traditional orchestra or choir

in that each user is a contributing member to the music performance; he is not "fighting" to be heard,

but he knows that whatever he is doing does have a real and immediate effect on the overall music

being produced.

8.1 About the Palette ...

The Internet Hyperinstrument, nicknamed The Palette, is based on John Yu's Sharle system. The Inter-

net Music Team of the Brain Opera, together with John, modified the original system and added a

new user-interface to the Java version of Sharle.

Based on John Yu's Sharle system, The Palette was designed to be the official Internet Hyperinstru-

ment for the Brain Opera. Users can play the instrument from home; the values of their interactions

will be sent, in "real-time," to the main server at the Brain Opera performance site. Together with val-

ues collected from other users, these numbers will be converted into controller information, which

will in turn trigger and/or modify musical events in the system.

Figure 17: The Palette.

In the actual Brain Opera performance, a section of the piece will feature Internet music. Of course,

the Brain Opera homepage has continuously been requesting for its visitors to send in sound materi-

als. In this Internet music section, however, everything else takes a back-seat to the music produced by

The Palette users. In other words, whoever are connected to The Palette at the time - from wherever

they are - will be spot-lighted at the Brain Opera performance site. In parts of this Internet solo sec-

tion, certain individuals might be selected and featured; during other parts of the section, all of the

Internet input values will be combined and collectively they will produce a coherent stream of music.

Playing The Palette is simple. A user simply clicks on the red control bars around the applet, and the

music will be modified accordingly. The activities (changes in the controls) of other on-line Palette

users are represented as the outline of another circle. The user himself is represented as a uniform

white circle. This allows each user to see what he is doing in relation to everyone else on-line. The red

control bars are laid out as follows [Yu, 96]:

cohesion key scale tempo

change of layer rhythm consistency

pitch center rhythm density

change/rate of mutation rhythm length

rhythm style argument consonance

rhythm style activity instrument pitch direction

8.2 About the Controls ...

Here is a more detailed description of the controls [Yu, 96]:

Cohesion Causes maximum repetition at full length, and maximum variation at shortest

length.

Key Changes the key (based on its value modulo 12).

Scale Changes between six distinct settings. From shortest to longest, they are: a major

scale, a more consonant major scale, a more consonant minor scale, a minor scale, a

pentatonic scale, and a more minor pentatonic scale.

Tempo The shorter this control is, the faster the tempo.

Rhythm Consistency

Rhythm Density

The longer this control is, the more regular the rhythm becomes.

The shorter this control is, the sparser the rhythm.

Consonance

Pitch Direction

Instrument

The shorter this is, the more dissonant the current layer becomes.

The longer this is, the more the notes of the current layer will go up in pitch.

This changes the instrument used for the current layer. The results depends on the

Active

Rhythm Style

instrument sounds available.

This has two settings, long and short. Short turns the current layer off. Long turns it

back on. Layer #0 cannot be turned off.

One of four transformations on the current layer's rhythm. From shortest to longest,

they are:

(0) a steady beat,

(1) beats fall between the beats of the normal rhythm,

(2) a rhythm of a different period, and

(3) no transformation.

Rhythm Style Argument

Depending on Rhythm Style, this control has the following effects:

(0) The shorter this is, the faster the steady beat.

(1) At half length, beats fall exactly halfway between normal beats. At quarter length,

beats fall a quarter of the way to the next normal beat. At full length, beats are

delayed to the following normal beat.

(2) The longer this is, the longer the period.

(3) Not used.

Change/Rate of Mutation

The longer this is, the more the controls will mutate themselves.

Pitch Center

Layer

This higher this is, the higher the pitches of the current layer.

Changes the current layer to the one displayed in your Java Console. This control can

be used to add layers, by adjusting it to maximum length.

As one can see, Sharle is a fairly complex system. The Palette server takes in control values and sends

messages to Sharle in the format of P [C I V], where C is the control number (0 through 16), and V is

the corresponding new value to be updated. Once Sharle receives the new values, it will update the

music accordingly.

8.3 The Role of Music in The Palette

The Palette is different from other game models in that it is designed for a truly large group of partici-

pants. It is conceivable that during the time of Brain Opera performances, hundreds of players world-

wide might join in together to play the game. Note that timing for this game is not as critical as in the

case of The Internet Pong Game. While other users are "represented" in the applet, it is not crucial for

a user to keep track of everyone else's every move, as there is no "winning" or "losing" in this game.

Each player is almost like a member of an orchestra: he does what he can to help influence the on-

going piece of music; but he is not "important enough" to single-handedly reverse a trend or an unan-

imous process. Players can still derive satisfaction from playing the game, because he can see exactly

what he is doing on the screen, and how he is contributing to the overall shaping of the piece - how-

ever big or small his influence might be.

9. USABILITY OF GAMES IN CONCERT PERFORMANCES

Most games discussed in this paper can be adapted for concert performances. The following are some

simple suggestions.

9.1 Bouncing Balls

Players of Bouncing Balls can be grouped into different sections in an ensemble. Two or three players

can be in charge of the percussion section of an improvisation session, while another group of players

can concentrate on the melodic and harmonic aspects of the music. Of course, there can be different

sets of sounds added to the game for those who want to make Bouncing Balls a richer instrument. But

overall, players / performers of Bouncing Balls should take advantage of its repetitive, looping nature,

and explore the possibilities of creating syncopations, cross-rhythms, etc. through the use of control

settings provided by the game.

9.2 Draw Music

Draw Music is a game that emphasizes freedom and individualism. It also calls for its participants to

modify or re-create a given stream of music. In order to acquire the best work possible, it is important

that each concert experience allows the participants ample time to complete their individual parts. It

is also important, in forming the finished product, to concatenate the individual submissions in a

cohesive manner.

Consider this scenario: two weeks before a concert, a theme is announced at a Web site. Interested

participants are asked to register for the piece, download the theme and the Draw Music program, and

are given a week to "morph" the theme. When they are done, the registered participants can drop off

their work at the Web site from where they downloaded the theme. Then, when all submissions are

received, the "super-composer" concatenates all the parts according to the "activity level" of the sub-

missions, and further orchestrates the piece. At the concert, the finished piece is played live on stage

by an orchestra and is simultaneously broadcasted over the Internet for everyone to hear.

This type of collaborative music composing certainly has its traditions. The famous Hexameron of

1837 (subtitled Morceau de Concert - Grandes Variations de Bravoure pour Piano sur la Marche des

Puritains de Bellini, composees pour le Concert de Mme la Princesse Belgiojoso au Benefice despauvres) is a

great example of this type of collaborative music-writing. In this piece, six composers - Liszt, Sigis-

mond Thalberg, Johann Peter Pixis, Henri Herz, Carl Czerny, and Fredric Chopin - each wrote a

variation based on a theme of Bellini. These variations are then put together to form a theme-and-

variations piece. Liszt, being the "super-composer" here, not only transcribed the original theme, but

also added small sections here and there so as to better unify the piece.

Following the tradition of these great composers, in Draw Music, we are using technology to bring

together people's creative talents. Of course, as proposed in Chapter 5 of this paper, there are other

possible extensions to Draw Music, and each model could easily be turned into a successful concert

performance experience. The possibilities are truly endless.

9.3 The Internet Pong Game and Internet Hyperinstrument

Both The Internet Pong Game and the Internet Hyperinstrument (The Palette) use John Yu's Sharle sys-

tem to generate music. Chapter 8 thoroughly discussed how The Palette is to be incorporated and fea-

tured in the Brain Opera performances. We are confident that The Palette will work well.

The Internet Pong Game, in a way, is a different version of the Internet Hyperinstrument. Since both

The Internet Pong Game and The Palette take in control values from clients to modify settings in the

Sharle system, The Internet Pong Game can be thought of as another Internet Hyperinstrument- but

with a different user interface. (Of course, The Internet Pong Game has a different design philosophy

behind it, and explores different compositional issues from The Palette, but in terms of its relation to

the music-generation engine Sharle, The Internet Pong Game is very much like The Palette.) With the

present-day connection speed and bandwidth, however, I believe that The Internet Pong Game is not a

good choice to be incorporated into a large-scale concert performance. A game like The Palette would

be a lot more successful, because it does not require fast, continuous updating of positions as in the

case of The Internet Pong Game.

10. AFTERTHOUGHTS

Since musique concrete of the early 1950s, the use of electronics in sound production was introduced

to the world of traditional art music. In the mid-1980s, with MIDI and the availability of personal

computers, computer music became widespread and easily accessible. Today, with the Internet and its

applications, the music world is again being revolutionized.

In the past, the roles of audience and performers do not mix. Performers are the ones out on the stage

performing, and the audience listened and watched. Today, with Internet technology, music perfor-

mances not only can be interactive, but also remotely interactive. In other words, concert-goers can

now enjoy the concert and participate in the music-making process without stepping outside of his

livingroom.

This paper explored different possible models for creating interactive music experiences over the

Internet. These Internet games are designed for different user groups in mind - but of course they are

friendly enough to accommodate users of all types. Most of the games are designed to allow the users

the greatest freedom possible - because after all, the point of these games is to provide a friendly envi-

ronment for the participants to be as creative and imaginative as they can. Writing games with too

many rules or restrictions would defeat the purpose.

Friends of mine who are not so musically-inclined sometimes ask me "the things you guys do in your

group are fun - but what's the point?" To me, this is like asking what the purpose is for playing a ten-

nis game, for seeing a movie, or for living. I believe technological development expands people's

vision. Using technology to create new human experiences helps people to learn more, feel more, and

think more. Projects like the Brain Opera demonstrate to the public how technology can revolution-

ize the process of music making, as well as how it can bring people - who might be hundreds or thou-

sands of miles apart - together to participate in and share a common experience.

Appendix: descriptions of the most-used routines in ITX

exagt [option]flel fle2

exaggerates tempo change in file2 -

in accordance with the note-on to note-on differences between filel and file2.

Example: exag -d 1.5 mathematical.perf interpretive.perf

exagy [option]flel fle2

exaggerates the dynamics in file2 -

in accordance with the dynamic differences between file 1 and file2.

Example: exag -d 1.5 mathematical.perf interpretive.perf

rexagt [option]flel fle2

exaggerates tempo change in file2 -
in accordance with the note-on to note-on differences between filel and file2.

(RATIO BASED)

Example: rexag -d 1.5 mathematical.perf interpretive.perf

invert [files]

invert files (ie, invert the pitch)

Example: invert file.perf

octavate [options] [files]

plays notes of a certain attribute value in octave

Example: octavate -f 2 -v 1 math.perf

for all notes in file math.p, if the 2nd attribute field is marked '1' then octavate that note

key [file]

finds the key of the file (eg., A Major, C minor, etc.)

Example: key file1

boost [options] [files]

boosts files (in volume)

Example: exag -d 10 file1 (boosts the volume by 10)

copyattr [option]fle1.attrfle2

copies (note by note) attribute strings in filel to file2

Example: copyattr file1.attr file2.perf

tempoflex [option]flel

analyzes timing information, and returns diagnostic messages for places with large tempo variations.

It tells the user what the average beat length is, and how much faster or slower the user has played at

which measure and beat. This routine can be used to determine whether a student's performance is
"too stiff" (mechanic) or "too wild."

chord [option]flel

prints the harmony of each beat (or unit of beats) and identifies perfect authentic candences. This
routine handles all major, minor, augmented, diminished triads and their inversions, as well as all
major, minor, diminished, half-diminished, dominant, minor-major seventh chords and their inver-
sions.

makeflatv [options]flel

sets the volume of all notes to 47, making every note the same loudness.

attredit [options] -d digit -k mark flel.attrinitfle2

marks the 'd'th digit of all notes in file1 which also appear sequentially in file2 'k'

This routine takes two input files - filel is a flat, attrinit'ed file, and file2 is a list of notes to be edited
(in sequential order). This routine facilitates the attribute-editing process. For example, if the goal is
to mark all the left-hand notes in file1 "k", the user would first record a left-hand-only version of file1,
and name it file2. By issuing the command "attredit -d d -k k filel file2", all the left-hand notes in
filel will have 'k' entered in the 'd'th position of their attribute strings.

attrinit [option]flel

adds a dummy string "ZZZZZZZZZZZZZZZZZ" (17 Z's) to the "type" field of all the notes. It
prepares a newly-recorded midi file for further attribute-field editing.

musicalizev [option]flel

"musicalizes" a file by giving it new amp values. This routine finds the highest and lowest pitches in
both hands, and reassigns new amp values to all the notes by the following rule:

for right-hand notes - the higher the pitch, the louder the amp; the lower the pitch, the softer

the amp

for left hand - the lower the pitch, the louder the amp; the higher the pitch, the softer the amp.

We can apply musicalizev to a "dynamically flattened" midi file (as prepared by makeflatv), and con-

vert it into a dynamically expressive file. This sort of routines are espeically interesting to study,

because it allows us to isolate rules of musicality and apply them to originally non-musical playings.

Routines of this type can also help us in teaching the students what to do in order to make a piece

sound more musical.

DEMO

***harmony analyzer

>clear

>chord -d 4 math | m

(cadence detector)***

key finder (prelude 1)

>key pl.midi | more

key finder (chopin polonaise no.3)

>clear

>play /Surfski/Tunes/chopin/Polonaise3.midi

>key /Surfski/Tunes/chopin/Polonaise3.midi

key finder (chopin mazurka no.13)

>clear

>play /Surfski/Tunes/chopin/Mazurkal3.midi

>key /Surfski/Tunes/chopin/Mazurkal3.midi

tempo flexibility analyzer

>copyattr math testt > junk

>tempoflex junk I more

***EXAGGERATE

>play testt

>exagt -d 1.8

>play junk

***EXAGGERATE

>exagt -d 0.5

time***

math testt > junk

time (flatten)***

math testt > junk

>play junk

EXAGGERATE volume

>play testy

>exagv -d 1.5 math testy > junk
>play junk

EXAGGERATE volume (reverse)

>exagv -d -3 math testy > junk
>boost -d -15 junk > junkk

>play junkk

musicalizer

>play noct.flat

>play noct19.final

Note: to get noct19.final from original, do the following:

>perf /Surfski/Tunes/chopin/Nocturnel9.midi > Nocturne19.perf
>makeflatv Nocturne19.perf > noct.flat

>attrinit noct.flat > noct.init

>attredit -d 0 -k 0 noct.init lefthand > tmp

>attredit -r -d 0 -k 1 tmp lefthand > noct.hand
>musicalizev noct.hand > noct19
>exagv -d 2 -h 1 noct.flat noct19 > noct.final

Bibliography

[Cope, 91]

[Gosling, 95]

[Grout, 88]

[Hawley, 93]

[HotJava, 95]

[Horowitz, 951

[JavaTutorial, 96]

[JavaLang, 95]

[Lussy, ?]

[Lussy, ?]

[Machover, 92]

[Machover, 95a]

[Machover, 95b]

[Matsumoto, 93]

[RealAudio, 95]

[Rigopulos, 93]

David Cope, Computers and Musical Style, Madison, Wisconsin: A-R Edi-
tions, Inc., 1991.

James Gosling and Henry McGilton, The Java Language Environment: A
White Paper, Sun Microsystems, Inc., 1995. (http://java.sun.com/whitePa-
per/java-whitepaper-2.html#HEADING2-0)

Donald Jay Grout and Claude V. Palisca, A History of Western Music, New
York: W. W Norton & Company, Inc., 1988.

Michael Hawley, Structure out ofSound, Ph.D. thesis, MIT Media Labora-
tory, 1993.

The HotJava User's Guide, Sun Microsystems, Inc., 1995. (http://java.sun.-
com/ 1.0alpha3/doc/misc/using.html)

Damon Matthew Horowitz, Representing Musical Knowledge, Master's thesis,
MIT Media Laboratory, 1995.

The Java Tutorial, Sun Microsystems, Inc., 1996 (http://www.javasoft.com/
doc/tutorial.html)

Java: Programmingfor the Internet, Sun Microsystems, Inc., 1995. (http://

java.sun.com/about.html)

Mathis Lussy, Musical Rhythm.

Mathis Lussy, Treatise on Musical Expression.

Tod Machover, Hyperinstruments: A Progress Report, available at MIT Media
Laboratory, 1992.

Tod Machover, Brain Opera, available at MIT Media Laboratory, 1995.

Tod Machover, ITX- A Progress Report, available at MIT Media Laboratory,
1995.

Fumiaki Matsumoto, Using Simple Controls to Manipulate Complex Objects:
Application to the Drum-Boy Interactive Percussion System, Master's thesis,
MIT Media Laboratory, 1993.

[RealAudio homepage], Progressive Networks, 1995. (http://www.realaudi-
o.com/)

Alexander Rigopulos, Parametric Control of Seed-Generated Musicfor Interac-
tive Environments and Computer-Assisted Composition and Performance, Mas-
ter's thesis, MIT Media Laboratory, 1993.

[Roads, 91]

[Rowe, 93]

[St. Hippolyte, 96]

[Waxman, 95]

[WebStar, 96]

[Xing, 95]

[Yu, 96]

Editor: Curtis Roads, Composers and the Computer, Madison, Wisconsin: A-
R Editions, Inc., 1991.

Robert Rowe, Interactive Music Systems, Cambridge, MA: MIT Press, 1993.

Michael St. Hippolyte, Mumbo Jumbo, 1996. (http://www.users.interport.-
net/~mash/main.html)

David Michael Waxman, Digital Theremins: Interactive Musical Experiences
for Amateurs Using Electric Field Sensing, Master's thesis, MIT Media Labo-
ratory, 1995.

Eric Mitois, [Reference Manual:] WebStar Server and StarClient Java Class
and Interface, internal document, MIT Media Laboratory, 1996.

[Xing Technology Corporation homepage], Xing Technology Corporation,
1995. (http://www.xingtech.com/)

Chong (John) Yu, Computer GeneratedMusic Composition, Master's thesis,
EECS, MIT, 1996.

