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ABSTRACT 
Committees of experts are critical for decision-making in engineering systems. This is because the 
complexity of these systems requires that information is pooled from across multiple specialties and 
domains of knowledge. The social elements of technical decision-making are not well understood, 
particularly among expert committees. This is largely due to a lack of methodology for directly 
studying such interactions in real-world situations. This thesis presents a method for the analysis of 
transcripts of expert committee meetings, with an eye towards understanding the process by which 
information is communicated in order to reach a decision. In particular, we focus on medical device 
advisory panels in the US Food and Drug Administration. The method is based upon natural language 
processing tools, and is designed to extract social networks in the form of directed graphs from the 
meeting transcripts which are representative of the flow of information and communication on the 
panel. Application of this method to a set of 37 meetings from the FDA's Circulatory Systems Devices 
Panel shows the presence of numerous effects. Prominent among these is the propensity for panel 
members from similar medical specialties to use similar language. Furthermore, panel members who 
use similar language tend to vote similarly. We find that these propensities are correlated – i.e., as panel 
members' language converges by medical specialty, panel members' votes also converge. This suggests 
that voting behavior is mediated by membership in a medical specialty and supports the notion that 
voting outcome is, to some extent, dependent on an interpretation of the data associated with training, 
particularly when a small number of interpretations of the data are possible. Furthermore, there is 
some preliminary evidence to suggest that as clinical trial data ambiguity and difficulty of decision-
making increases, the strength of the mediating effect of medical specialty decreases. Assuming a 
common decision is reached, this might indicate that committee members are able to overcome their 
specialty perspective as the committee jointly deals with hard problems over longer periods of time. In 
cases where the panel’s vote is split, a lack of linguistic coherence among members of the same 
medical specialty correlates with a lack of linguistic coherence among members who vote the same 
way. This could be due to the presence of multiple interpretations of the data, leading to idiosyncratic 
or value-based choice. We also find that voting outcome is associated with the order in which panel 
members ask questions – a sequence set by the committee chair. Members in the voting minority are 
more likely to ask questions later than are members in the voting majority. Voting minority members 
are also more likely to be graph sinks (i.e., nodes in a social network that have no outflow) than are 
voting majority members. This suggests an influence mechanism on these panels that might be 
associated with framing – i.e., later speakers seem to be less able to convince other panel members to 
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discuss their topics of interest contributing to these members’ minority status. These results may have 
some relation to FDA panel procedures and structure. Finally, we present a computational model that 
embodies a theory of panel voting procedures. Model results are compared to empirical results and 
implications are drawn for the design of expert committees and their associated procedures in 
engineering systems. 

Thesis Supervisor: Christopher L. Magee 
Title: Professor of the Practice of Mechanical Engineering and Engineering Systems 
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C h a p t e r  1  

INTRODUCTION 

<<Diodore de Sicile [marg: lib.2. Biblioth. Hist.] explique l’invention des Langues de cette 

maniere. Les hommes faisant leurs premiers coups d’essai pour parler, prononcerent d’abord des 

sons qui ne signifioient rien: puis, aprés qu’ils se furent appliqués à ces sons, ils en formerent 

d’articulés pour exprimer mieux leurs pensées. La raison corrigea la nature, & accomoda les 

mots à la signification des choses…La necessité où les hommes étoient de parler les uns aux 

autres, les obligea d’inventer des mots à proportion qu’on trouvoit de nouvelles choses... Ce fut la 

raison pourquoi il fallut inventer de nouveaux mots, lors qu’on bâtit cette fameuse Tour de 

Babylone: & on ne doit pas s’étonner s’il y arriva tant de confusion, d’autant qu’il se présentoit 

quantité de choses qui n’avoient pas encore leurs noms. Chacun les exprimoit à sa maniere; & 

comme la nature commence ordinairement par ce qui est de plus simple & de moins composé, on 

ne peut pas douter que la premiere Langue n’ait été tres-simple & sans aucune composition.>> 

“Diodorus of Sicily explains the invention of languages as follows. Men, in making their first 

attempts to speak, initially pronounced sounds that signify nothing: then, after applying 

themselves to these sounds, they formed articulations to express their thoughts. Reason corrected 

nature & adapted the words to the significance of things…The need for men to speak to one 

other obliged them to invent words in proportion to their finding new things…This is the reason 

why they were required to invent new words while building the famous Tower of Babylon & one 

should not be surprised if there was so much confusion because they were presented with so many 

things that didn’t yet have their names. Each one expressed himself in his own manner & 

because nature ordinarily starts with what is the most simple and the least complex, one cannot 

doubt that the first Language was not simple and without complexity.” 

– Richard Simon (b. 1638 – d. 1712), Histoire Critique du Vieux Testament (1678), trans. 

French, on the dangers of miscommunication associated with complex technical innovation 
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We live in a world of increasing technical complexity. Large-scale engineering 

systems now dominate the landscape of our society. Examples of such system 

include multi-modal transportation, military acquisitions, and health care delivery, 

touching upon just about every domain of modern human experience.  

As technical complexity increases, organizational complexity must necessarily 

follow since the detailed operations of the system begin to exceed a single 

human’s cognitive capacity (Conway 1968). More individuals will therefore be 

required to construct, maintain, and understand the systems upon which we rely 

for our way of life. The communication and aggregation of relevant knowledge 

among these individuals could conceivably benefit from an explicit design effort 

to ensure that the right knowledge is possessed by, and shared among, the 

appropriate people.  

A traditional engineering organization in the United States typically responds to 

complexity via specialization. In other words, individuals are trained, recruited 

and paid to focus on a particular subsystem. Knowledge of, and experience with, 

the inner workings of system components is spread among expert specialists. Any 

large-scale engineered system must also receive the approval of several 

stakeholders of the system and its functionality, many of whom have different 

perceptions and hence, different requirements. Examples include design reviews 

that large-scale engineered systems must pass (consider, for example, the PDR 

and CDR cycles within the aerospace domain). These approval activities bring 

additional expertise to bear on improving the ultimate design. Highly experienced 

specialists develop expertise which is then communicated to mid-level managers, 

who are responsible for aggregating experts’ recommendations and passing this 

information to upper-level management. For this procedure to work, problems 

faced by the decision-making organizations must be quickly diagnosed as relevant 
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to a particular specialty. The appropriate specialist must then possess the correct 

knowledge if s/he is to make a decision that is in the best interests of the 

organization.  

Different experts, having been trained in different areas or components, will tend 

to pay attention to those elements of the system that they find consistent with 

their professional training – i.e., cognitively salient (Douglas 1986). The 

mechanisms by which this training is achieved include acculturation within 

specific professional specialties, and require learning that professional institution’s 

language and jargon. By institution, we mean a set of social norms to which a 

particular community adheres. This leads to a situation wherein individual experts 

develop different views of the system. In such cases, the system becomes a 

boundary object (cf. Carlile and Schoonhoven 2002), knowledge about which 

must be jointly constructed by the experts in question.  

In the committees that concern us in this thesis, information must be aggregated 

from multiple expert specialists. Evaluating committee decision processes 

requires a means of understanding the interaction between the social and 

technical specifics of the system in question. For example, (Jasanoff 1987) notes 

that disagreements between technical experts regarding whose expertise is most 

appropriate might lead to “boundary conflicts”, wherein each expert attempts to 

define the problem in such a way as to make it consistent with his or her realm of 

expertise. The decision of what information is important and how it should be 

interpreted is the subject of exchange up until the time that each committee 

member casts a vote. That different experts hold different perspectives and values 

makes it more likely that additional aspects of a problem will come under 

consideration. Nevertheless, this does not guarantee consensus on the 

interpretation of data. 
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There is much evidence to suggest that decisions that are informed by a diversity 

of viewpoints are superior (e.g., Hong and Page 2004). This is because different 

experts will bring different domains of knowledge to bear on solving the problem 

at hand, potentially leading to a better-informed decision outcome. Modern 

technical organizations therefore require a capacity for lateral (i.e., non-

hierarchical, or informally hierarchical) communication, especially if the 

organization is to respond quickly to uncertain future states (Galbraith 1993). 

Nevertheless, with specialization comes acculturation – we have noted that 

specialists, having been differentially trained, view the system differently. Thus, 

with acculturation may come difficulty in communication across specialty 

boundaries. This might be due to disagreement on goals (i.e., local vs. global 

optimization) or a simple inability to comprehend the jargon of specialists from 

other disciplines. This motivates three main questions driving our research 

endeavor:  

1. How can we study, in a repeatable, consistent manner, the flow of 

communication among technical experts in committee decisions?  

2. How do technical experts’ decisions change as they learn and interact 

during the decision-making process?  

3. How might we design committee procedures so as to enable desirable 

behavior on the part of technical expert committees? 

The question of how to design decision-making processes that successfully 

leverage different perspectives is one that is extensible to a range of technology 

and policy activities across both public and private sectors. We differ from 

previous analyses in our use of an empirical quantitative methodology based upon 

analysis of meeting transcripts. Such a methodology can be extended to similar 

studies in other domains of interest to engineers, managers and social scientists.  
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This thesis presents an empirical method aimed at extracting communication 

patterns through a computational analysis of committee meeting transcripts. A 

computational approach is used for its consistency and reliability across meetings. 

Furthermore, an algorithmic approach enables any potential biases that might be 

present in the analysis to be minimal and transparent. Indeed, the process of 

developing such a methodology is an exercise in making such biases explicit and 

then, systematically attempting to eliminate those that are unjustified.  

In particular, we use a modification of the Author-Topic Model (Rosen-Zvi et al. 

2004), a Bayesian inference tool used in the field of machine learning to discover 

linguistic affinity between committee members.  We find that the resulting output 

may be used to construct social networks representing patterns of 

communication among panel members. Analyses of these networks are then 

performed. Finally, a computational model is constructed that points the way 

forward for theory development. 

Thesis Outline 

Decision-making by groups of experts is an area that touches on a number of 

different disciplines within the social sciences. In Chapter 2, we review the 

literature on decision-making in small groups across economics, political science, 

social psychology, sociology and anthropology. This review motivates the need 

for a methodology that can analyze real-world decision-making by committees of 

experts.  

Chapter 3 identifies the FDA Medical Device Advisory Panel committees as a 

relevant data source and reviews the structure of the panel decision-making 

process.  

Chapter 4 introduces an empirical methodology which generates directed social 

networks from meeting transcripts based on Bayesian Topic Modeling.  
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Chapter 5 analyzes the networks generated from a set of 37 meetings of the 

Circulatory Systems Devices Panel and presents empirical findings.  

In Chapter 6, we present a computational model that embodies a theory of panel 

voting procedures. Model results are presented and compared to empirical results, 

and directions for future modeling work are outlined.  

Finally, Chapter 7 concludes by drawing implications from the empirical and 

modeling results for the design of expert committees in engineering systems. 



 

 

C h a p t e r  2  

LITERATURE REVIEW 

“Siquidem pene totum humanum genus ad opus iniquitatis coierat: pars imperabant, pars 

architectabantur, pars muros moliebantur, pars amussibus regulabant, pars trullis linebant, pars 

scindere rupes, pars mari, pars terra vehere intendebant, partesque diverse diversis aliis operibus 

indulgebant; cum celitus tanta confusione percussi sunt ut, qui omnes una eademque loquela 

deserviebant ad opus, ab opere multis diversificati loquelis desinerent et nunquam ad idem 

commertium convenirent. Solis etenim in uno convenientibus actu eadem loquela remansit: puta 

cunctis architectoribus una, cunctis saxa volventibus una, cunctis ea parantibus una; et sic de 

singulis operantibus accidit. Quot quot autem exercitii varietates tendebant ad opus, tot tot 

ydiomatibus tunc genus humanum disiungitur; et quanto excellentius exercebant, tanto rudius 

nunc barbariusque locuntur.”  

“Virtually all of the human race had united in this iniquitous enterprise. Some gave orders; 

some did the planning; some raised the walls; some straightened them with rule and line; some 

smoothed mortar with trowels, some concentrated on cutting stone and others on transporting it by 

land and sea. Thus diverse groups applied themselves in various ways, when they were struck by 

Heaven with so great a confusion that though all had been using the same language in their 

work, made strangers to one another by the diversity of tongues, and never again succeeded in 

working together. Only each group that had been working together on one particular task kept 

one and the same language: for example, one for all the architects, one for all the stone movers; 

for all the stone-cutters, and so on with every trade. And now as many languages separated the 

human race as there were different kinds of work; and the more excellent the type of work, the 

more crudely and barbarically did they speak now.”   

– Dante Alighieri (b. 1265 – d. 1321), De Vulgaris Eloquentia (1302-1305), Book I, 

Section 7, 6-7. trans. Latin, M. Shapiro (1990), on the origin of language and technical jargon 
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Chapter 1 noted the necessity for information aggregation in order to make 

decisions within engineering systems. The primary means by which this occurs is 

via the expert committee – a body charged with the review and approval of 

complex projects. The committee is a common means by which experts pool 

their knowledge in an attempt to reach a consensus decision about a complex 

system or process. A successful committee will be able to integrate the disparate 

knowledge and viewpoints of its members so as to make a decision that is as well-

informed as possible (moderate success will involve coming to a better decision 

than a randomly informed decision maker). An unsuccessful committee can fail in 

a number of ways – for example with decisions that are less than optimal but still 

quite good, or with very poor decisions. Lack of success can hold for many 

reasons. These include, but are not limited to, the absence of relevant technical 

expertise; the inability of committee members to communicate (e.g., across 

disciplinary boundaries); and personality conflicts (see Boffey 1976, for an 

example of these challenges in the early FDA drug and medical device approval 

committees).  

Pooling and communication of information across specialty boundaries is not 

straightforward. Committees are social entities and are therefore affected by a 

number of mechanisms recorded in the social sciences. Our challenge is to 

determine which of these are likely to be encountered by committees of technical 

experts and to evaluate how they might impact upon decision outcomes. To do 

this, we review a number of bodies of academic literature that are concerned with 

committee decision-making, motivating the methodological approach outlined in 

Chapter 3.  

Rational Choice  

A natural place to begin a review of literature on committee decision-making is in 

the rational choice tradition where we find the most precise theoretical constructs 
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due to well-developed mathematical machinery. This literature typically follows 

the utilitarian philosophy of Jeremy Bentham, arguing that individuals seek to 

maximize their individual utilities in any decision-situation (Bentham 1988/1780). 

This individual behavior then aggregates to often-unexpected group behaviors. 

The advent of utility theory by von Neumann and Morgenstern (2007/1947) 

provided one mathematical framework for this approach which was ultimately 

developed into the body of literature now known as Game Theory. Economists 

and political scientists have applied this theory to committee decision problems, 

most notably those of bargaining, (Rubinstein 1982), organizational structure (Sah 

and Stiglitz 1988), coalition formation (Aumann and Dreze 1974; Baron and 

Ferejohn 1989), and recently, ritualized common knowledge (Chwe 2003). These 

models are highly appropriate for their political science context (e.g., in legislative 

bodies) where individuals frequently behave in a manner aimed to maximize the 

interest of their own constituents, even when cooperation and exchange of 

expertise is required (cf. Broniatowski and Weigel 2006). Therefore, a major focus 

of this work is strategic and payoff-focused, and therefore does not incorporate 

to the technical specifics of the question that the committee is considering. 

Furthermore, decision-makers are treated as homogeneous, whereas decision 

rules are instead made to vary. More recent work has begun to focus explicitly on 

committees of experts (Visser and Swank 2007). Although theoretically 

compelling, this work has not yet incorporated the notion that experts may be 

qualitatively different from one another (e.g., with access to different sources of 

information or different value structures). This work recognizes different levels of 

ability among experts, but not different kinds of knowledge or expertise.  Such an 

approach could therefore be augmented by an incorporation of heterogeneity 

among the knowledge and beliefs of decision-makers.  
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Social Choice 

Social choice is a second strand of modeling literature within the traditions of 

economics and political science. Unlike rational choice, social choice does not 

require algebraic utility functions, instead relying on simple ordering among 

preference alternatives (Gaertner 2009). Assuming the existence of at least three 

alternatives, Arrow (1963) demonstrated the logical impossibility of generating a 

stable preference ranking under a set of conditions that have been generally 

accepted as reasonable namely: 

1. Non-dictatorship: The preference ordering for the group must not 

depend solely on the preference ordering of only one individual. 

2. Unrestricted domain: All preference alternatives of all individuals should 

be included in the ranking, and no comparison among pairs of 

alternatives is invalid a priori. 

3. Independence of Irrelevant Alternatives: Changes in an individual’s 

preferences between decision alternatives that are not included in the 

group preference ordering will not change the group preference ordering. 

4. Monotonicity: An increase (decrease) by an individual in his/her 

preferences such that one alternative is ranked higher (lower) than it had 

been previously can not result in a lower (higher) ranking for that 

alternative in the group preference ordering. 

5. Non-imposition: Every group preference order could be attained by 

some set of individual preference orders. 

Arrow’s theorem would seem to suggest that a rational (i.e., non-cyclical) 

aggregated preference ranking is impossible. Nevertheless, if one were to impose 

a domain restriction on the preferences of individuals (i.e., relaxation of 
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assumption number 2) one could generate stable preference orderings (Black 

1948). One possible source of a domain restriction could be “empirical reality” 

(Frey et al. 2009), which would prevent certain inconsistent interpretations of a 

given decision-situation, and hence, certain preference orderings. In principle, as 

more information becomes available to committee members, they should 

converge on the right choice. Indeed, consensus in the presence of large amounts 

of information might be one definition of expertise (cf. Romney 1986). Work 

performed by Whitman Richards and his colleagues has shown that creation of a 

“shared knowledge structure”, i.e., a socially shared set of relations among 

preference alternatives, greatly increases the likelihood of a stable preference 

ordering (Richards et al. 2002). This suggests that the creation of a shared 

interpretation of the data representing a given system under analysis is critical for 

the committee to reach some kind of agreement, even in the absence of common 

preferences. Even without definitive data, committee members from the same 

specialty or discipline might share such an interpretation a priori due to commonly 

held assumption, beliefs and training (Douglas 1986). Furthermore, as a 

committee becomes more diverse, we would expect more possible interpretations 

to become available. In the absence of a shared interpretation the committee 

might be unable to agree – this should be particularly true when there are multiple 

possible interpretations and the data is sufficiently ambiguous to rule out few of 

them (March 1994). Furthermore, very complex systems may be most likely to 

lend themselves to multiple viable interpretations. In the absence of clear 

communication (e.g., learning across disciplinary boundaries), we should expect a 

tradeoff between a panel’s diversity and its capacity to reach consensus. If 

communication is flawless, i.e., learning always occurs, agent-based modeling 

work by Scott Page has shown that, a diverse group that is individually less expert 

will outperform a homogeneous group of individuals who are each more expert 

(Page 2008). This is because each expert in the diverse group can bring a different 

set of perspectives and heuristics to bear upon solving a common problem. Once 
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that expert has reached his/her local optimum, another expert takes over. 

Underlying Page’s model is an assumption that there exists a global optimum for 

all decision-makers. This assumption provides a domain restriction in the sense of 

Arrow’s theorem that is consistent with the notion of an empirical reality. The 

assumption of perfect communication among committee members further 

supports this shared outcome; nevertheless, it is not always realistic. Page’s work 

suggests that, if useful communication can be established in committees, we 

might expect better outcomes. We therefore turn to the empirical social 

psychology literature for insight into communication patterns in small groups. 

Social Psychology 

One of the foundational researchers in social psychology, Leon Festinger, 

outlined a theory of social comparison processes based upon the notion that 

individuals within a small-group setting constantly compare their performance 

with other group members (Festinger 1954). These comparisons are based on 

social and physical comparisons that depend on meeting context, e.g., 

demonstrated expertise in a committee meeting. The implication is that similar 

individuals may be driven to behave in a way that emphasizes their value to the 

group. As a particular trait or opinion becomes elevated in importance, there is a 

“pressure toward uniformity”, when group members, in trying to demonstrate 

their value, become less willing to deviate from the opinions expressed by their 

peers. This is one explanation for the phenomenon commonly known as 

“groupthink”. Festinger’s theory has implications for expert committees because 

it suggests that individual members might not be willing to reveal important 

information if it would lead them to draw a conclusion differing from that 

espoused by the majority. Festinger further noted that social comparisons 

decreased in importance as similarity decreased between group members. This 

indicates a second benefit of diversity, suggesting that there are ways in which 

diversity promotes, rather than inhibits, communication. 
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Festinger’s theory does not consider actual expertise and provides no information 

regarding whether it is equally plausible that committee members might converge 

on a correct interpretation of the data as on an incorrect one. Thus, we might ask 

the circumstances under which a panel that does reach consensus is likely to 

achieve the correct outcome. Experiments run by Bottger (1984) suggest that a 

distinction can be made between actual expertise and perceived influence. Using a 

simulated NASA mission, Bottger found that group members were most 

influenced by the correct statements of panel members – experts were not 

ignored. On the other hand, when asked to rate which group member was the 

most influential, other group members frequently identified those who spoke 

most often. Bottger concluded that groups often do not attribute influence 

correctly to their members. Furthermore, groups make the best decisions when 

actual expertise and perceived influence (i.e., air-time) covary. In the absence of 

this covariance, actual experts do not have the opportunity to contribute their 

useful knowledge. In other words, experts must be given the opportunity, and 

inclination, to express their views. Bottger’s findings supplement Festinger’s 

theory by providing information about task performance, while emphasizing the 

importance of focusing group efforts in the right direction. 

A much referenced paper by Stasser and Titus (1985) showed that in situations in 

which individual students possessed different information regarding a group 

decision, conversation and recall were both dominated by shared information – 

i.e., group members tended to discuss information that everyone else already 

knew. The implications of this result for group decision-making suggested that 

specialized information, e.g., due to expertise, was unlikely to be shared, thus 

resulting in an outcome biased towards shared information. Not only did 

discussion fail to promote information exchange, it succeeded in promoting a 

biased viewpoint. Stasser and Titus (1987) confirmed this result in a second 

experiment which showed that unless group members shared very little 



 

 33 

information to begin with (i.e., had very diverse information sets), shared 

information dominated the discussion and perpetuated the associated bias, even 

though individual group members had access to more information that 

contradicted the group’s decision. This suggests that group diversity might lead to 

better communication. Stasser (1988) explained this result with a computational 

model, called “DISCUSS” which posited that individual group members sampled 

information items uniformly. Shared information was much more likely to be 

discussed simply because each group member had access to it. Using the 

DISCUSS model, Stasser showed that no explicit bias was necessary in order to 

explain his earlier results – i.e., group members did not have to behave 

strategically to create groupthink. In a second paper Stasser (1992) used 

DISCUSS to show that increasing the salience (i.e., probability of discussion) for 

an unshared item did not significantly change the probability of that item’s being 

mentioned except for very small groups (four members or fewer). The results 

presented by Stasser and Titus would seem to suggest that learning among group 

members is unlikely, even in the absence of the social comparison processes 

identified by Festinger.   

One major limitation of the early work of Stasser and Titus is its empirical 

reliance on samples of undergraduate students. In particular, this literature suffers 

from a problem of external validity. Although decision-makers are not assumed 

to be homogeneous as in the rational choice literature, they only differ in the 

information in which they possess. The experimentally-controlled knowledge 

shared among groups of undergraduates does not constitute domain expertise of 

the sort that we would expect among committees of technical experts. This 

suggests that the generalization of these findings to real-world scenarios might 

not hold. This motivates the need for an analysis of actual group decisions by 

technical experts, rather than experiments run on groups of students. 

Furthermore, no group member is aware of the knowledge possessed by other 
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members. A seminal paper by Wegner (1987) introduced the concept of 

“transactive memory” – the notion that a group requires meta-knowledge in 

order to perform efficiently. Group members must know who else in the group 

holds what knowledge. When transactive memory is present, group members are 

able to assign specialists appropriately and learn from one another. It stands to 

reason that this capacity would be of particular value on a committee of technical 

experts. Indeed, even when groups of students were tested, Stasser et al. (1995) 

found that the public assignment of expert roles led to the sharing of otherwise 

unshared information. Stasser et al. attributed the success of their scheme to a 

“cognitive division of labor” of the sort described by Wegner. This paper 

overturned the probabilistic conception of information sharing found in (Stasser 

1992), but did not tender a new computational model to explain it. It is 

interesting that the findings of Stasser et al. (1995) are consistent with Festinger’s 

social comparison theory – in particular, individuals who have publicly recognized 

expert roles may be perceived, and may perceive themselves, as different from 

other panel members. This would decrease the strength of their “pressure toward 

uniformity”. It further suggests that that, on expert committees, each expert 

should be assigned a public role consistent with the knowledge that that expert is 

expected to convey. Although decision-making groups might be ad hoc, the roles 

of their members should not be. It seems possible that the association of experts 

with known specialties may provide this function in real groups. For example, 

public knowledge of the biographies of other panel members would promote 

meta-knowledge of the sort described by Wegner. 

Acknowledging the external validity problems inherent in generalizing from 

laboratory conditions to real-world expert committees, the findings of Stasser et 

al. (1995) are encouraging if the expertise necessary to solve a problem is known. 

In cases of deeper uncertainty where there is no objective standard of expertise, a 

group might still be able to reach a consensus. Kameda et al. (1997) show that the 
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key to this is “cognitive centrality,”  a concept related to breadth of expertise. A 

group member is cognitively central if they share at least one information item 

with many other group members. This implies that their knowledge is socially 

validated. Such group members come to be viewed as credible sources of 

expertise by others, thereby creating an effect very similar to pre-existing meta-

knowledge. Kameda et al. showed that because cognitively central members 

possess more shared information, they are more often able to change the 

preferences of their peers. They are also more resistant to preference change 

under influence from others. The relation between shared information and 

perceived expertise is further confirmed by Winquist and Larson (1998) who 

propose a dual-process model in which individuals discuss shared information so 

as to build their perceived expertise, whereas changes in actual preference only 

occur as a result of discussion of unshared information. This finding mirrors that 

of (Bottger 1984) with perceived expertise corresponding to the discussion of 

shared knowledge and actual influence corresponding to the discussion of 

unshared knowledge. Thomas-Hunt et al. (2003) suggest that this dynamic might 

also be linked to social validation with their experiments showing that socially 

connected members tend to focus more on shared information, whereas socially 

isolated members tend to focus more on unshared information. Furthermore, 

socially-connected group members evaluated the contributions of others 

positively when they followed this scheme and negatively otherwise. Although 

actual influence and perceived expertise are separate, it seems that concerns about 

social validation in small groups may cause perceived expertise to drive individual 

behavior. These results also tend to confirm Festinger’s social-comparison theory 

in that individuals are more likely to mention a shared topic if other, comparable, 

group members have done so. The implication for committees of experts is that, 

when possible, clear roles should be assigned to committee members so as to 

avoid these effects. In the absence of clear knowledge regarding which sources of 

expertise are appropriate for decision-making (e.g., under conditions of high 
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ambiguity), group members with a breadth of expertise, able to validate the 

knowledge of others via the expression of shared information, are likely to serve a 

key role. Shared information, therefore, serves a similar role as a “shared 

knowledge structure” (Richards et al. 2002). This suggests that breadth of 

expertise might be particularly valuable under conditions of ambiguity because it 

might enable more knowledge sharing to a wider population. If group members 

are very specialized, they will be unable to communicate with one another. On 

the other hand, if a group member can communicate across specialties, deeper 

information that was otherwise unshared might be shared after the broad expert 

first mentions it. Furthermore, the broad member’s expertise is recognized by 

other group members, giving him/her significant influence. However, if there are 

too many group members that are too broad, there is likely to be a large amount 

of shared information. This may create an incentive for these members to focus 

on the information that they share in common at the expense of the valuable 

unshared information that they might otherwise elicit from other group members 

who possess a depth, rather than a breadth, of expertise.  

Sociology of Small Groups 

We note that certain members are more likely to speak than are other members. 

A cognitively-central member of a group will likely be setting the agenda, 

although this might occur through a focus on knowledge that is already shared. 

Ideally, an expert would identify and discuss relevant topics and issues, and 

members who are less expert would follow. If the members who utilize the most 

air-time are not experts, it not impossible that the necessary expertise might not 

be revealed. Within the literature on the sociology of small groups, propensity to 

speak is commonly referred to as “status”. Given Bottger‘s finding that perceived 

and actual expertise must covary in order to generate a well-informed meeting 

outcome, a deeper understanding of the determinants of status would be 
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enlightening. We therefore turn to the literature on the sociology of small groups 

in order to better understand status effects in expert committees.  

Expectation States 

Foundational work by Báles et al. (1954) found that unstructured small groups 

(three to ten people) consistently generated hierarchies among group members.  

This finding was robust across a range of domains and groups. This manifested 

as a strict ranking where the person at the top of the hierarchy spoke most often 

and was most often addressed by others. The next person was ranked second in 

terms of his/her total number of utterances generated and received, etc. This 

finding is quite robust within the sociology literature, and perhaps reflects the 

distribution of perceived influence as in Bottger (1984). If such is the case, then 

actual expertise should be made to covary with these characteristics through the 

institution of procedures that embody this perceived expertise. This raises the 

question of how to determine a priori the hierarchy that seems to emerge 

organically in a small group. Hare and Bales (1963) found that status is often 

correlated with physical location in a group, such that members who are central 

display a higher propensity to speak, and that members who are physically distant 

will be less likely to interact. Furthermore, personality testing showed that when 

seats were not assigned, more dominant personalities tended to choose more 

central seating locations. Such results suggest that attention paid pre-meeting to 

procedural variables, such as seating location, could strongly impact on the 

information that is shared and, consequently, on the ability of the panel to 

successfully pool information. 

Other research within sociology has found that the status hierarchies identified 

above are associated with the personal attributes of speakers, including their age, 

race, and gender. In a foundational paper for what came to be known as the 

“expectation states” paradigm in small group research, Berger et al. (1972) 
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provided an extensive overview of the literature on status characteristics in small 

groups, and then proposed a theory to account for it. Berger et al. propose status 

as an explanatory variable which determines “…evaluations of and performance-

expectations for group members and hence the distribution of participation, 

influence, and prestige.” (Berger et al. 1972). Furthermore, Berger et al follow 

Festinger in noting that “a status characteristic becomes relevant in all situations 

except when it is culturally known to be irrelevant” (Berger et al. 1972). Status is 

therefore proposed as an abstract hidden variable which explains the hierarchies 

identified by Báles et al. Skvoretz (1981) extends expectations states theory with a 

mathematical formulation of this concept based upon data from a psychiatric 

hospital. He identifies two dimensions of status – namely, position in the hospital 

hierarchy and clinical competence. It is interesting that, in this context, the two 

dimensions of status are unrelated to age, race and gender, as specified by Berger 

et al., and are instead related to expertise. Recognizing that external social 

relations often contribute to the formation of status hierarchies within groups, 

Fararo and Skvoretz (1986) introduced “E-state structuralism” – a mathematical 

synthesis of the expectation states literature outlined above and the structuralism 

of the social network literature in order to explain the change over time of 

dominance relations in small groups, including groups of animals. Smith-Lovin et 

al. (1986) tested Skvoretz’s (1981) mathematical formulation and found that it did 

not explain the participation rates of six-person task oriented groups of 

undergraduates that were explicitly designed to vary along the dimension of 

gender. This is because they found a large degree of variation within gender 

groups. They proposed a two-dimensional refined model that first segmented 

each group by gender and then, within each gender, explained status 

characteristics using Skvoretz’s approach. Skvoretz (1988) further tested this 

finding by systematically varying the gender composition of six-person groups, 

finding that none of his models sufficiently explained his data. These results 

would seem to indicate the importance of gender as a status characteristic in small 
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groups. Fişek et al. (1991) reviewed the data collected by Skvoretz (1988) and 

Smith-Lovin et al. (1986), noting an “undeniable gender effect” and introduced a 

mathematical model based upon expectation-states theory and the presence of 

external status characteristics. Nevertheless, it is important to note that Smith-

Lovin et al. (1986) did not examine groups of experts as did Skvoretz (1981). 

Indeed, there seemed to be little else that could differentiate these undergraduates 

from one another since all other potential status characteristics were controlled 

for. These results suggest that, only in the absence of an existing hierarchy, such 

as that defined by the social structure of a hospital, or by mutually recognized 

expertise, might gender be an adequate explanatory variable. This interpretation is 

consistent with Festinger’s notion that group members will differentiate 

themselves on the basis of characteristics that are relevant to the task at hand 

(1954). 

Conversation Analysis 

Parallel to the expectation-states literature is conversation analysis – a tradition 

that traces its roots to the ethnomethodology of Garfinkel (e.g., 1984), the 

observations of Goffman (e.g., 1981) and the work of Sacks, Schegloff and 

Jefferson (e.g., 1974) and is focused on generating a qualitative understanding of 

how the unspoken rules of conversation drive the content communicated. 

Maynard (1980) identifies topics as a key feature of conversations, arguing that 

changes in topic are non-random occurrences that can be related to the structure 

of the group that is discussing them. Okamoto and Smith-Lovin (2001) extend 

the insights of conversation analysis into the expectation states literature, with a 

focus on how status characteristics, of the sort identified above, impact on an 

individual’s capacity to change the topic of conversation. Gibson (2003) notes 

that because only one person can generally speak at a time, external status 

characteristics manifest in conversation as participation-shifts and often as topic 

shifts. Gibson (2005) verifies this statistically, by linking network structure to 
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participation shifts. This shows a mechanism by which external status 

characteristics impact upon what is discussed, and is perhaps the first quantitative 

result in the conversation analysis tradition. These results suggest that an analysis 

of the speech of committee member participants might provide some deep 

insight into the dynamics of group decision-making, even among committees of 

experts.  

Appreciative Approaches  

The above literature still assumes that group members can perfectly understand 

information that has been communicated, regardless of its source. If such is the 

case, then a correct structuring of a given committee should, as Page predicts, 

lead to selection of the best solution to the problem being studied given the 

information available. Nevertheless, literature relating language and culture 

suggests otherwise. This literature notes that language, beyond being simply a 

means of exchanging information, is also an expression of identity. This idea 

began as a philosophical concept, perhaps most strongly connected with the 

German Idealists (von Herder 2002/1767, von Humboldt 1997/1820), who 

argued that national language both reflects culture and shapes patterns of 

thought. According to this tradition, different national languages represent 

different world-views that are incommensurable. The implication is that it is 

impossible to truly translate from one language to another – some element of the 

original concept must be lost, a question of great interest to literary criticism (e.g., 

Benjamin 1969; Eco and McEwen 2001). This idea was formalized within 

linguistics as the Sapir-Whorf hypothesis – the notion that linguistic structure and 

usage places limits on the cognition of its users (Sapir and Mandelbaum 1947; 

Whorf et al. 1998). Although the Sapir-Whorf hypothesis had fallen out of favor 

in linguistics, it has begun to be rehabilitated by the work of Lera Boroditsky – a 

cognitive scientist who has tested the effects of Chinese and English language on 

cognition (Boroditsky 2002). 
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Work within the anthropology and Science, Technology and Society (STS) 

literatures extends this notion to the realms of professional and institutional 

cultures. In particular, the penetrating analyses of Mary Douglas note that group 

membership may affect perception of data (Douglas 1986). Membership is 

conferred upon those individuals who group features of the world into categories 

that are consistent with group norms. This is reflective of a wider principle in 

anthropology that different professional or institutional cultures will selectively 

direct individuals’ attention to the elements that are salient within their group 

structures. Among technical experts, this is reflected in the fact that each specialty 

possesses its own unique language and jargon, which carries with it an implicit 

scheme for categorizing perceived phenomena (Brown 1986). On the other hand, 

an outsider to the group, who is unfamiliar with the jargon used, may be unable 

to understand the discourse. This is because the specific jargon refers to 

commonly held sensory and social experiences that a member of another 

institution is unlikely to have directly encountered. This is particularly true in 

medical and academic disciplines, where conceptual precision is required to 

communicate within the specialty. One could argue that just as Whorf’s Eskimo 

has many different words for snow, and therefore a deeper capacity to categorize 

these types, a technical specialist has jargon that is specific to their specialty and, 

most importantly, to their experience. Communicating this experience is a classic 

dilemma in the knowledge management literature, largely because many of the 

important elements are tacit (Polanyi 1958; Nonaka et al. 2000). Nelson notes the 

importance of written and oral language as a means of encapsulating and 

transferring tacit knowledge (Nelson 2005). On the other hand, an outsider to the 

institution may be unable to understand the discourse because they lack the 

underlying shared experience. The STS literature extends this notion by noting 

that language is used as a cognitive mechanism to delineate professional 

boundaries. This directs the attention of experts within a specialty toward a given 

interpretation of a problem that is consistent with that expert’s training, while 
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simultaneously directing that attention away from other possible interpretations 

(Cohn 1987; Mulkay et al. 1987; Rapp 2000; Winner 1986). The same groups that 

drive selective perception and word choice also confer a sense of identity. March 

notes the dialectic between decision-making as rational choice based on a 

consequentialist pursuit of preferences and identity-based rule-following, 

ultimately noting that each viewpoint supplements the other, particularly under 

conditions of low ambiguity when roles are clear (March 1994).  We may 

therefore expect preferences to be correlated with group membership and, by 

extension, its associated jargon. Furthermore, this literature suggests that even 

when each speaker is given the appropriate amount of time to discuss their 

viewpoints, a listener might have trouble understanding or assimilating all of the 

implications of the information being shared. Communication within a group 

should be relatively easy, whereas communication across groups may be more 

difficult. This strongly motivates the presence of at least one interdisciplinary 

panel member who can act as a translator so as to be able to assimilate 

information from members of other specialties, and as a teacher, so as to be able 

to communicate with members of the same specialty.  

Strategic Behavior within Groups 

In addition to the difficulties in comprehension that might exist across group 

boundaries, literature in political science and STS suggests that group loyalty 

could possibly lead individuals to focus on group goals over those of the 

committee as a whole. Casting “organization [as] the mobilization of bias”, (Elder 

& Cobb 1983) recognizes institution-specific symbolism in language, noting that 

the choice of terminology in defining a problem may be seen as a means of 

mobilizing support. Furthermore, the linguistic definition of a problem dictates, 

to some extent, its solution. Choosing to use specialized technical words serves to 

narrow the range of subjective meaning of otherwise ambiguous terminology 

(such as “safety” or “efficacy” in FDA’s context) thereby implicitly redefining the 
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problem according to a given speaker’s particular interest. This can be viewed as 

an example of “agenda-setting” behavior, which is common in political discourse. 

Here, the major concerns are related to framing and issue-redefinition (Cobb and 

Elder 1983). In the worst case, if a given interpretation of data is favored by one 

group over another, that group may try to promote a particular interpretation 

rather than attempting to learn from one another. This worst-case scenario would 

be an example of contested boundaries among groups of experts in science policy 

(Jasanoff 1987). However, this sort of behavior need not be strategic among 

committees of experts and could instead be a way of expressing the knowledge 

inherent in a particular specialty’s training scheme. Experts may try to learn from 

one another even though they state their positions. Learning could become a 

particularly difficult problem under conditions of ambiguity (March 1994; 

Lawson 2008). Furthermore, the more a given pair of interpretations are equally 

plausible, the more likely that the committee will be unable to rule one of them 

out, potentially leading to a preferential selection according to group membership. 

In such a case, learning may not occur – instead the majority group within the 

committee may decide policy. Douglas and Wildavsky (1982) further note that 

different individuals are likely to have different values. Under conditions in which 

group norms are clear, these values may not be evident. March notes that under 

conditions of ambiguity, values (e.g., sacred values, cf. Tetlock 2003) become 

more important in driving behavior (March 1994). Even if individuals share the 

same perspective, agreement on an appropriate course of action may be unlikely 

if questions of values or identity (e.g., ethical or other moral dilemmas) are 

involved. This last point is particularly important for complex engineering 

systems, in which lives and livelihood frequently depend on the correct operation 

of the system. 
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C h a p t e r  3  

CASE STUDY: FDA ADVISORY PANELS 

מתחילין מן , ודיני נפשות; מתחילין מן הגדול, דיני ממונות הטהרות והטמאות

 הצד.

“…in legal matters involving money, and ritual purity and impurity, we begin 

with [the opinion of] the greatest [of the judges]; whereas in legal matters 

involving capital charges, we begin with [the opinion of] those on the side 

[benches]…” 

– Mishna Sanhedrin 32a, trans. Hebrew. 

“According to the Oral Tradition, we learned that with regard to cases 

involving capital punishment, we do not ask the judge of the highest stature to 

render judgment first, lest the remainder rely on his opinion and not see 

themselves as worthy to argue against him. Instead, every judge must state 

what appears to him, according to his own opinion.”  

– Rabbi Moshe ben Maimon (Moses Maimonides), b. ca. 1137 – d. 1204, 

Hilchot Sanhedrin V'HaOnshin Hamesurim Lahem, (The Laws of the Courts and the 

Penalties placed under their Jurisdiction), Chapter 10, Par. 6, trans. Hebrew, Rabbi S. Yaffe, 

on the impact of procedure in group decision-making 
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The U.S. Food and Drug Administration (FDA) advisory panel meetings are a 

committee evaluation of a complex engineered system involving different 

specialties. Furthermore, transcripts of these meetings are generated by a court-

recorder and are available to the public as stipulated by the American Federal 

Advisory Committee Act. The transcripts of these panel meetings therefore 

provide a rich data source from which we may study technical decision making by 

committees of experts (Sherman 2004). Decisions made by technical expert 

committees in the FDA are analogous to those that must be made by committees 

of technical experts within other complex engineered systems. As explained 

above, different experts may possess varying interpretations of data, potentially 

leading to alternate, but equally legitimate, readings of uncertain evidence. 

Reaching a design decision requires that information from these different 

specialties be aggregated in some way. Ideally, the ultimate decision would be 

well-informed by all perspectives in the room.  

Multi-Stakeholder Environment 

As in a decision involving multiple stakeholders in a complex engineered system, 

the FDA decision-making process is embedded in a policy environment. The task 

of approving medical devices for the US market falls to the Food and Drug 

Administration’s Center for Devices and Radiological Health (CDRH). CDRH 

classifies each device into one of the classes, grouped by risk (see Figure 1).  
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Figure 1: Medical devices are classified 
into three categories based upon risk 
to the patient. PMA = Pre-Market 
Approval; GMP = Good 
Manufacturing Practices. 

Figure 2, sourced from (Maisel 2004), provides an overview of the process by 

which a device is reviewed for approval by CDRH.  
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Figure 2: Medical devices are classified 
into three categories based upon risk 
to the patient. Diagram sourced from 
(Maisel 2004). 

The grant of a 510(k) or Pre-Market Approval (PMA) by the FDA allows a 

device to be marketed in the United States. These approvals often act as de facto 

monopolies for the device involved because any competitor must demonstrate 

additional safety or efficacy of the new device as compared to the initial baseline 

in order to receive approval. Advisory panels review devices “as needed” 

(Parisian 2001).  Devices brought to committees for review are generally those 

which the FDA does not have the “in-house expertise” to evaluate. As such, the 

devices under evaluation by the committees are likely to be the most radical 

innovations facing medical practice, and those facing the most uncertainty. 

Furthermore, advisory panel members are “by definition, the world’s experts who 

are engaged in cutting-edge bench science, clinical research and independent 
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consulting work” (Sherman 2004). Advisory panels therefore serve to bring 

needed expert knowledge and political credibility with industry and consumer 

advocate groups to the FDA device approval process. In practice, a very small 

proportion of all devices submitted to FDA for approval are reviewed by the 

panel. Audience members will include representatives of the media, consumer 

advocate groups, the financial community, and competitor companies, all of 

whom are looking for information regarding how the medical device might 

perform on the market (Pines 2002). Therefore, panel recommendations and the 

judgments and statements of individual members carry significant weight both 

inside and outside the FDA.  

Panel Procedures 

A typical FDA advisory panel meeting follows a number of sequential procedural 

steps, as follows: 

1. Introduction and Conflict of Interest Statement 

In this part of the meeting, each panel member is introduced and the Executive 

Secretary reads a statement regarding the degree and source (sponsor or 

competitor) of a given panel member’s potential financial conflict of interest. 

Panel members are seated at a U-shaped or V-shaped table with the committee 

chair located at the apex. A representation of this arrangement is shown in Figure 

3 (FDA 1994). 
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Figure 3: Standard Layout for FDA 
CDRH Advisory Panel Meeting. 

2. First Open Public Hearing 

In this stage, any member of the public can make a presentation to the panel. 

3. Sponsor Presentation 

In this stage, the device sponsor (usually a medical device company) presents 

their review of clinical trial results to the panel. Individual panel members may 

ask questions at the discretion of the committee chair.  
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4. FDA Presentation 

In this stage, the FDA review team presents their review of clinical trial results to 

the panel. Individual panel members may ask questions at the discretion of the 

committee chair. 

5. Panel Questions  

In this stage, the panel members ask questions to the sponsor and FDA 

representatives. The phase will often begin with presentations by one or two 

panel lead reviewers, followed by questions asked by panel members at the 

discretion of the chair. In practice, the committee chair typically chooses one 

person to begin asking questions (e.g., sitting adjacent to a lead reviewer, or sitting 

at one end of the table). Other panel members proceed to ask questions in order 

around the table. 

6. Open Discussion 

After each panel member has had an opportunity to ask questions of the FDA 

and sponsor, there is an open discussion session in which each panel member 

may ask additional questions and discuss the device application. This discussion is 

often guided by questions asked to the panel by the FDA Executive Secretary 

regarding recommendations for approval. 

7. Open Public Hearing  

A second open public hearing is held to allow members from the public to speak.  

8. Panel vote 

Panel members move for approval, approval with conditions, or non-approval of 

a device. Although panel members might bargain over which conditions of 
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approval to include, this often occurs implicitly during panel discussion. Panel 

members then vote in an order determined by the executive secretary (i.e., 

sequentially or simultaneously). Finally, panel members express their reasons for 

their votes. The committee chair then adjourns the meeting. The meeting 

typically has breaks for lunch between stages three and four or between stages 

four and five. In addition, the committee chair can call for a coffee or restroom 

break at his/her discretion. 

Within the health-care domain, there has been a movement towards “evidence-

based medicine” (Sackett et al. 1996). Although aimed at integrating clinical 

expertise with experimental findings, this movement has often been interpreted 

by practitioners as privileging population-level experimental results over the 

expertise of individual practitioners. It is in response to this narrow definition that 

Gelijns et al. (2005) note that decisions cannot be strictly “evidence-based” for 

the following reasons: 

1. A given data-set may be interpreted differently by different experts, 

especially in the presence of high uncertainty. Unless these experts can 

learn from one another, good decision-making might be impaired. 

2. Patterns of technological change are difficult to predict, particularly when 

innovations are ultimately used for different purposes than originally 

intended. 

3. Even in the case of clear evidence, decision-makers may disagree on its 

implications due to differing value systems. 

These are all reasons why expertise must be integrated with evidence; not 

replaced by it. Although referring to health care, these caveats apply equally to 

any engineering system. Unless experts can learn from one another, good 
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decision-making will be impaired. This suggests that a device’s determination as 

safe or efficacious depends strongly on factors that are not within the purview of 

“evidence-based” decision-making, narrowly defined.. Douglas (1986) argues that 

these are largely shaped by the perceptions, and hence, the knowledge and 

expertise, of risk assessors. Groups that might impact decision-making include 

membership in a particular profession, specialty, or bureaucratic organization. 

When combined, the diversity of viewpoints arising from these different groups 

may lead to a better decision outcome than that reached by one limited 

interpretation of the evidence. 

Collaborative Technical Decision-Making in the FDA 

As in any complex engineered system, technical experts in the FDA may not have 

an explicitly political aim. Nevertheless, their decisions may be perceived as 

biased by those who believe they would have made a different decision in their 

place. Although FDA advisory committees are aimed at producing “evidence-

based” recommendations, differential interpretation of the evidence allows room 

for debate, and concomitant accusations of bias. Panel members’ professional 

experiences might allow for intuition that can seem to go against the indications 

shown by the data. (Friedman 1978) expressed a concern that this constitutes a 

form of “specialty bias,” especially when multiple medical specialties are involved. 

On the other hand, this view presupposes that a reading of the data that is 

entirely uninformed by past experience is best, which obviates the role of 

expertise in advisory panel decision making. A distinction must be drawn 

between decision-making that is based on evidence and decision-making that is 

driven by one “orthodox” reading of the evidence. Others argue that financial 

conflicts of interest should be mitigated in advisory panels. On the other hand, a 

prominent study recently found only a minor correlation between conflict of 

interest and voting patterns with no actual effect on device approval (Lurie et al 

2006).   
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Data availability  

One of the primary advantages to using the FDA Advisory Panels as a case study 

is the availability of data. There are 20 different panels whose transcripts are 

recorded over a period of ten years. This leads to the possibility of examining 

hundreds of committee meetings – a sufficiently large number that generalizable 

findings may be inferred. If the study were to expand to include the drug-

approval committees within the FDA, the number of cases upon which we could 

draw would number in the thousands1. Furthermore, all panel transcripts are 

transcribed by a court-recorder, ensuring a standard of quality that is admissible 

in a court of law. 

The empirical analysis mentioned above requires data in the form of committee 

meeting transcripts. These are often not recorded in textual form, or are 

proprietary to the organization that commissioned the committee. We therefore 

turn to transcripts of expert committee meetings that are a matter of public 

record. The ideal data source must have the following attributes: 

1. Analysis or evaluation of a technological artifact 

2. Participation of multiple experts from different fields or areas of 

specialization 

3. A set of expressed preferences per meeting(such as a voting record) 

4. Multiple meetings, so as to enable statistical significance 

These requirements are met by the Food and Drug Administration’s medical 

device advisory panels. 

                                                 
1 Transcripts of FDA committee meetings are open to the public and located at: 

http://www.fda.gov/AdvisoryCommittees/default.htm 



 

 

C h a p t e r  4  

METHODOLOGICAL APPROACH 

 אברא כדברא

Transliteration: “Abra Cadabra.” 

“I will create as I speak”, trans. Aramaic. 

This thesis is aimed at developing a deeper understanding of how communication 

on committees of technical experts impacts upon multi-actor decision-making 

through an analysis of the language used by each speaker in the discussion. The 

most direct way of deepening our understanding is to attempt to cluster speakers 

by the co-occurrence patterns of words in their discourses. In particular, this 

thesis presents an empirical quantitative methodology based upon a 

computational linguistic analysis of meeting transcripts. 

A major challenge to the use of linguistic data for the analysis of social behavior 

on expert committees stems from the strong assumption that such dynamics are 

entirely reflected in language, and that differences in language necessarily indicate 

differences in perception. Another similar concern is absence of data that might 

result if a particular voting member of the committee remains silent or says little. 

Neither can strategic attempts by actors to hide preferences and thereby avoid 

revealing personal information be explicitly captured in this representation. 

Indeed, work by Pentland (2008) has shown that much social signaling occurs 

through body language and vocal dynamics that are not able to be captured in a 

transcript. It should, therefore, be clarified that this thesis does not claim that all 

social dynamics are manifest in language – rather, word-choice provides one 

source of insight into a complex, multi-modal process. The extent and severity of 
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this challenge is mitigated somewhat by the work of Boroditsky (2002, 2003), a 

cognitive scientist who has found evidence to indicate that not only does thought 

express itself through language, but that language use shapes patterns of thought. 

If such is the case, then differential use of language due, for example, to assigned 

roles, may reflect a salient role-based difference between decision-makers that is 

worth studying on its own merits (e.g., Simon 1964).  

The approach presented here may be viewed as an extension of “latent coding” – 

one type of formal content analysis prevalent in the social sciences. The most 

important limitations of latent coding, and other hand-coding methods, are the 

inability to scale to large numbers of documents. This limitation stems from a 

dependence on the coder’s knowledge, leading to inter-rater reliability concerns 

(Neuman 2005). Furthermore, hand-coding is labor-intensive, often requiring that 

teams of several coders be trained. The motivation behind using a computational 

approach is therefore to create a method that is automatic, repeatable and 

consistent. Quinn et al. (2006) provide a compelling justification for the adoption 

of computational text analysis techniques by social scientists. Furthermore, a 

computational method requires that the assumptions underlying the application 

of the methodology presented here are explicit, which enables a cumulative 

research paradigm. The work presented here therefore fits squarely in the 

tradition of statistical analysis of texts such as Network Text Analysis (Roberts 

1997). Prominent examples in this tradition include cognitive mapping (Axelrod 

1976) – a non-computational method for analyzing relations among causal 

structures, AutoMap (Carley 1992; Carley 1997; Diesner and Carley 2004) – a 

computational method currently under development, for extracting, analyzing 

and comparing mental models from texts based upon inferred and pre-defined 

conceptual categories, and Centering Resonance Analysis (Corman et al. 2002) – a 

method designed to identify and link important words within a discourse. Unlike 

these methods, in which the dominant paradigm is the representation of relations 
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among concepts, the ultimate goal of the method presented here is the analysis of 

relations among individual panel members.  

Chapter Outline 

We take the approach that a method which would accomplish the goals described 

above should aim for simplicity without being overly reductive. For example, one 

might simply count the number of each type of word that a particular speaker 

uses. This is a common approach favored by many users of latent coding 

methods. Due to the context-specific nature of the meetings analyzed, it is 

difficult to identify, a priori, words that might be important and thus, it is difficult 

to know which words to count or compare. We therefore begin our analysis with 

a method known as “Latent Semantic Analysis” (LSA), a natural language 

processing tool which was developed for purposes of information retrieval and 

topic grouping (Deerwester et al. 1990; Landauer et al. 1998). LSA was chosen 

because of its ability to identify a reduced number of putative concepts within a 

corpus. Two speakers who share similar concepts might therefore be related in 

some fashion. A preliminary study was performed with the goal of exploring the 

applicability of LSA to the problem space outlined above. Distributional 

assumptions underlying the application of LSA were found to introduce 

limitations that restricted its methodological applicability. These limitations were 

addressed using Latent Dirichlet Allocation (Blei, Ng, et al. 2003), a probabilistic 

model that circumvents many of the distributional assumptions underlying LSA. 

In particular, a variant of LDA, known as the Author-Topic (AT) model (Rosen-

Zvi et al., 2004) was used, because of its ability to aggregate data from multiple 

speakers. For each transcript, the AT model was used to identify topics of interest 

to each speaker with the ultimate goal of constructing multiple probabilistic social 

affiliation network among topics. These networks were then aggregated to 

generate a representation of each meeting. Finally, for each meeting, temporal 
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information was incorporated. The final output is a directed graph, which may be 

interpreted as representing the flow of communication and influence within a 

given panel meeting. 

Latent Semantic Analysis 

One of the simplest computational approaches for analyzing terminology in 

context, is Latent Semantic Analysis (LSA) – a natural language processing tool 

which was developed for purposes of information retrieval and topic grouping 

(Deerwester et al. 1990; Landauer et al. 1998). LSA was initially created to address 

the issue of synonymy in information retrieval. Synonymy refers to the use of 

different words to represent the same concept (e.g., spice and seasoning). LSA 

addresses the synonymy issue through the use of Singular Value Decomposition 

(SVD), a technique from linear algebra that is aimed at determining a set of 

mutually orthogonal dimensions which describe the variance within a given set of 

data. When text data are analyzed, SVD tends to associate together words that 

have similar meanings. This is due to the empirical fact that words which have 

similar meanings tend to appear within the same contexts; i.e., words with similar 

meanings will co-occur either with each other or with the same sets of words. For 

example, one might encounter the following pair of sentences: 

d1: Pepper and salt add seasoning to the salad. 

d2: Pepper and salt are the two spices found most often in American restaurants. 

These two sentences both contain the words “pepper” and “salt”. From a brief 

overview of both documents, we would be able to infer that pepper and salt are 

seasonings (as in the first document), and that pepper and salt are spices. We 

would like to be able to infer that spices are seasonings.  
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The LSA Algorithm 

Consider a corpus of documents, D, containing n documents d1…dn. Consider, as 

well, the union of all words over all documents, W. Suppose there are m>n 

words, w1…wm. We may therefore construct a “word-document matrix”, X, with 

dimensions m x n, where each element in the matrix, xjk, consists of a frequency 

count of the number of times word j appears in document k.  

We conceive of the original word-document matrix as a “noisy” representation of 

word-word similarity (or document-document similarity). One source of this 

“noise” is the use of multiple words to represent the same concepts. We would 

therefore like to recover the original concepts implicit (or latent) in each word. 

Singular value decomposition with dimensionality reduction is a commonly used 

algorithm for the reduction of statistical noise. Using the above analogy, LSA 

performs noise reduction on the original word-document matrix. 

The Singular Value Theorem in linear algebra states that any matrix may be 

represented as the product of three matrices, X = W S DT, where X is the word-

document matrix derived above. In this case, W is an m x m matrix of singular 

unit vectors, each of which are, by definition, mutually orthogonal.  Each of these 

singular vectors corresponds to a word. Similarly, D is an n x n matrix of mutually 

orthogonal singular unit vectors. Each of the singular vectors in D corresponds 

to a document. Finally, S is an m x m diagonal matrix of decreasing, non-negative 

singular values, with each element corresponding to a linear combination of 

weights associated with each singular vector.  

Without loss of generality, let r be the rank of X. In order to reduce the noise in 

X, we would like to reduce the rank of X such that r’ < r corresponds to the 

number of latent concepts within the corpus. We therefore set the smallest (r-r’) 

singular values to 0, generating S’. The value of r’ must be chosen by the user, 

although values of r’ between 100-300 seem to work well for information retrieval 
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purposes (Landauer et al. 1998). The resulting matrix, X’ = W S’ DT , is a rank r’ 

approximation of X that can be represented as having r’ mutually orthogonal 

singular vectors. Words and documents, which were previously represented by 

linear combinations of r mutually orthogonal singular vectors, are now 

represented as linear combinations of r’ mutually orthogonal vectors, such that 

the locations of words and documents in the vector space represented by X’ 

approximate the corresponding locations of words and documents in X in a least-

squares sense. If we were to treat X’ as a Euclidean space, the normalized inner 

product of (i.e., the cosine between) two word-vectors (represented as rows of 

the matrix W S’) can be thought of as the projection of each word upon a set of 

axes, each of which corresponds to a latent concept. Therefore, this value would 

correspond to the two words’ degree of synonymy (or similarity for documents). 

LSA is therefore able to capture higher-order relations between synonymous 

words (e.g., words that do not directly co-occur, but that mutually co-occur with 

a third word as in the spice/seasoning example above).  

LSA Implementation 

LSA was implemented in Python 2.5 and MATLAB. Python 2.5 was used to 

parse an FDA Advisory Panel meeting into a word-document matrix, which was 

then imported into MATLAB. One possible source of measurement error 

includes the existence of various forms of word conjugation (e.g., patient vs. 

patients) that might be classified as different words. In general, syntactic 

information is not captured by the “bag-of-words” representations of corpora 

used in this thesis. The use of stemmer algorithms (such as PyStemmer2) are 

aimed at eliminating some of this error. Finally, frequently-occurring, but non-

content-bearing words (such as “the”, “and”, “a”, etc.,) can skew results. Error 

due to this problem is eliminated through the incorporation of a “stop list”, 

which automatically removes these words. The stop list used for the analyses in 

                                                 
2 Available at: http://sourceforge.net/projects/pystemmer/ 
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this thesis was compiled by the Semantic Indexing Project 

(http://www.knowledgesearch.org) and is shown in Appendix 1. In the LSA 

approach, remaining error associated with non-content-bearing words is managed 

by the use of log-entropy weighting3 (Dumais 1991).  Singular value 

decomposition and log-entropy weighting were executed using built-in MATLAB 

functions, generating an LSA space. Finally specialized functions were written to 

perform the coherence analyses described below. These approaches are typical in 

natural language processing (Manning and Schütze 1999).  

Other applications of LSA have included automated student essay evaluation 

(Landauer and Dumais 1997), measurement of textual coherence (Foltz et al. 

1998), knowledge assessment (Rehder et al. 1998), information visualization 

(Landauer, Laham et al. 2004), the quantitative analysis of design team discourses 

(Dong et al. 2004), and the construction of a theory of human learning and 

cognition (Landauer and Dumais 1997). In particular, Dong (2005) has used LSA 

to study conceptual coherence in design and the process by which members of a 

design team agree upon a common design representation. This work begins by 

extending Dong’s techniques to the realm of advisory committee decision-

making, and is ultimately meant to contribute a data-driven methodology that 

may provide insight into the effects of institutional background on decision-

making for complex engineered devices and systems.  

Committee Textual Coherence as a Metric  

The use of LSA to measure textual coherence can provide insight into the extent 

to which different speakers within an advisory panel meeting are using 

                                                 
3 Log-entropy weighting is applied to a word-document matrix in order to improve its information-retrieval 

performance. This has the effect of emphasizing words that are unique to a given speaker, thereby enabling  

a focus on his/her unique language characteristics. The formula consists of two coefficients: the term 

weight, t, is simply log(1+f), where f is the frequency of a specific word in a given document; the global 

weight, g, is p*log(p), where p is the ratio of times that a specific word appears in a given document to the 

number of times that word appears in all documents. The log-entropy weight is simply t*g.  
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terminology in the same way. Coherence analysis was first implemented in (Foltz 

et al. 1998), and extended to design teams in (Dong 2005). In a design team, 

designers must be “on the same page”. This means that they must be speaking in 

words that are sufficiently similar as to be comprehensible to each other, i.e., 

speaking similar professional languages. LSA does allow for the analysis of 

relative linguistic homogeneity, thereby enabling a determination of the extent to 

which designers are “on the same page” relative to one another through a 

coherence metric.  

Medical advisory panels may be equivalently viewed as teams (McMullin and 

Whitford 2007). Although they are not designing an artifact, as in Dong’s work, 

such panels must produce a policy recommendation that will have a strong 

impact upon the success or failure of the technical system under review and thus 

have an overall common objective. Our approach is to use LSA to study mutual 

understanding within medical advisory panels by studying the respective 

coherence of one actor as compared to another. Given that committee members 

vote, voting records provide a measurable source of data against which to 

compare LSA performance, a test not available to Dong in his studies of design 

teams. 

Preliminary Results from LSA 

Shown below are the results from a preliminary analysis of a meeting of the 

Circulatory Systems Devices Advisory Panel Meeting held on April 22, 2005 

using LSA. In this panel meeting, the Circulatory System Devices Advisory Panel 

discussed and made recommendations regarding the approval of the “PAS-port”, 

a device aimed at reducing the risk of stroke inherent in coronary artery bypass 

(Maisel 2005). This device was under review for 510(k) approval when its 

predicate device was pulled from the market. This had the effect of prompting 

the FDA to create new requirements for similar devices. Since the predicate 
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device was now invalid, the PAS-Port device was brought to the advisory for 

review despite the fact that the sponsors had initially not planned to execute full-

fledged clinical trials. The device’s sponsors used observational data from two 

clinical trials conducted outside of the United States, and therefore, under 

different conditions than those which might have been required by the FDA had 

they been conducted under an Investigational Device Exemption (IDE) for a 

PMA. As a result, there were several questions regarding the viability of the data 

(and hence, the sponsor’s contention that the device was safe). Among these were 

the following: 

1. The sponsor’s presentation attempted to combine the results of two clinical 

trials conducted under different conditions. Thus, there was a question of 

whether the data could be pooled to yield meaningful results. 

2. Following the failure of the predicate device, the FDA increased the lower 

bound for the confidence interval surrounding a proposed device’s patency 

rate (i.e., the rate at which a vein graft would remain un-blocked). This 

implied that a statistical test with higher power was required. Nevertheless, 

these new requirements occurred after the sponsor had already run the 

clinical trials. 

3. The data were collected outside of the United States, and therefore, were not 

supervised by the FDA. Rather, the studies were designed for European 

clinical trial reviewers. 

4. The device under study was improved between clinical trials, thereby 

leveraging the experience of the designers to improve its safety and efficacy, 

but simultaneously contributing to the non-comparability of the two trials. 
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Examination of Top Five Log-Entropy Words 

In order to determine whether different actors do use substantively different 

terminology, we examined the top five log-entropy-weighted stemmed words for 

each speaker. Table 1 demonstrates the results of this analysis. A qualitative 

analysis of this table shows that different speakers’ unique terminology relates to 

their roles in the meeting. For example, the chairman seems to use largely 

procedural rules, the executive secretary is using words associated with conflict of 

interest regulations, etc.  

Table 1: Listing of  the top five log-
entropy weighted words for each 
speaker. 

Speaker Occupation Word 1 Word 2 Word 3 Word 4 Word 5 
Chairman 'jeff' 'move' 'norm' 'session' 'afternoon' 

Executive Secretary 'waiver' 'compet' 'firm' 'conflict' 'particip' 

FDA 
Representative 'landscap' 'stori' 'krucoff' 'stratifi' 'agenc' 

Cardiologist  'late' 'surrog' 'inpati' 'prevent' 'fitzgibbon' 

Cardiologist 'overt' 'iter' 'concept' 'flesh' 'engin' 

Cardiologist 'ultim' 'lumenolog' 'behavior' 'concord' 'behav' 

Statistician 'variabl' 'henc' 'certainti' 'school' 'weight' 

Cardiac Surgeon 'censor' 'cleveland' 'wider' 'precious' 'obliqu' 

Cardiologist 'draw' 'extrapol' 'feasibl' 'popul' 'electrocardiogram' 

Cardiac Surgeon 'room' 'vote' 'forth' 'esteem' 'variabl' 

Pharmacologist 'gray' '75' 'zone' 'noncompar' 'variat' 

Cardiac Surgeon 'handl' 'stroke' 'calcifi' 'unfortun' 'val' 

Cardiologist 'cath' 'old' 'anybodi' 'struck' 'catheter' 

Cardiac Surgeon 'shower' 'disturb' 'biggest' 'hole' 'clamp' 

Industry 
Representative 'agenc' 'salvag' 'therapeut' 'vice' 'proxima' 

FDA 'feedback' 'track' 'premarket' 'piec' 'cdrh' 

FDA 'gore' 'approv' 'program' 'recommend' 'pma' 

Sponsor CEO 'endotheli' 'japan' 'surfac' 'amount' 'tool' 

Sponsor Clincian 'remain' 'convert' 'literatur' 'sequenti' 'stenosi' 

Sponsor Statistician 'adjust' 'valu' 'strata' '26' 'bucket' 

Sponsor Surgeon 'connector' 'saphen' 'sutur' 'spot' 'endoscop' 
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FDA 'preclin' 'element' 'stainless' 'implant' 'flang' 

FDA 'pivot' 'covari' 'visit' 'intraop' 'itt' 

FDA 'undertaken' 'recruit' 'sutur' 'input' 'pivot' 

FDA 'side' 'ophthalm' 'yue' 'lili' 'variabl' 

Consumer 
Representative 'decreas' 'cool' 'aw' '61' 'deployt' 

 

Cluster Analyses 

Prior to the execution of the Latent Semantic Analysis, individuals’ utterances 

were grouped together into speaker-specific vectors. This was accomplished by 

adding together the vectors for each of their utterances. A k-means clustering 

algorithm was then run on these vectors in an attempt to separate the actors into 

two clusters. This generated clusters that corresponded to advisory panel 

members and FDA or sponsor representatives. Table 2 outlines the results: 

Table 2: "Confusion Matrix" for 
stakeholder cluster analysis. (p = 9.97 

x 10-5; χ2 = 15.14; df = 1) 

 FDA or sponsor reps. Panel Members 
Cluster 1 2 14 
Cluster 2 9 1 
Some meaning might be imputed to these clusters. Cluster 1 is largely made up of 

the Panel Members who can be thought of as “non-partisans” whereas cluster 2 

largely consists of potentially “partisan” FDA or sponsor representatives.  The 

“non-partisan” who was incorrectly classified corresponds to the panel’s 

executive secretary, whose primary role at the end of the meeting was to read 

questions posed by the FDA. On the other hand, the two “partisans” who were 

incorrectly classified were the sponsor’s statistician, who interacted directly with 

the panel, and the FDA representative to the advisory panel, who serves a dual 

role as panel member and whose job it is to oversee the advisory panel 

proceedings.  
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Attempts to separate actors into more clusters resulted in other subdivisions of 

the group which could be explained in terms of combinations of formal roles, 

training (e.g., statisticians, cardiologists, etc.), partisanship, frequency of speech, 

and random assignment due to noise. Often, a clustering algorithm would yield a 

small number (5 or less) of clusters roughly corresponding to identifiable groups, 

with most other clusters assigned randomly or by frequency of speech. Therefore, 

the ability of the cluster analysis to reliably perform fine divisions among panel 

members is questionable.  

Coherence Analysis 

 Following (Dong 2005), an LSA-based coherence analysis of the meeting was 

performed. Figure 4 shows an analysis of the meeting described above. For the 

purposes of this analysis, actors were categorized into four bins: Voting members; 

FDA; Sponsors; and Non-Voting Members. Each time series represents the 

running average of the semantic coherence of a particular group, measured with 

respect to the final semantic coherence of the voting members. Running average 

semantic coherence, c(τ) =cos(θ), where θ is the angle between two vectors s(τ), 

the running average centroid of speaker s at time τ, and v, the centroid of the 

voting members at the end of the discourse. s(τ)=
)(

)(
0

τ

τ

n

tu
t

∑
= , where u(t) is the 

location of utterance t in the semantic space, and n(τ) is the number of utterances 

spoken by speaker s at time τ. In this case, each “speaker” is actually a group of 

speakers, constituting the FDA representatives, the voting members, the non-

voting members, and the sponsors.  The sponsor’s coherence with respect to the 

voting members’ final position (the dashed line) drops dramatically around 

utterance number 200, hitting its minimum at utterance number 218, as indicated 

by the large, negative slope for the sponsor’s coherence time-series curve.  Note 

that the FDA’s coherence (the dashed and dotted line) also drops with respect to 
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the voting members. This is likely due to the fact that the voting members did not 

focus on all of the FDA representatives’ arguments.  

 

Figure 4: Coherence of group centroid 
with respect to final centroid of voting 
members. The horizontal axis, 
representing the utterance number in 
the discourse, represents progress 
through the discourse. The vertical 
axis is coherence as measured with 
respect to the final position of the 
voting members. Each curve 
corresponds to a different group 
present at the meeting (Non-voting 
panel members, FDA representatives, 
sponsors, and voting members). 
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Figure 5: Breakdown of  sponsor’s 
presentation by speaker/section. Each 
curve corresponds to a different 
speaker, each of  whom presented a 
different phase of  the sponsor’s talks 
(introduction, clinical data, statistical 
method, and physician endorsement).  

Figure 5 further examines the sponsor’s coherence measured with respect to the 

final position of the voting members in semantic space. The greatest drop occurs 

at the time of the presentation of the data, at utterance 218. This is consistent 

with a focus on the data that is different from that used by the panel members. 

Although there was some disagreement regarding the viability of pooling the two 

clinical trials together (captured in the Statistical Methods Presentation), most of 

the later discussion focused on the interpretation of the data rather than on the 

methods used to reach that interpretation.  
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Analyses of other meetings yield results that are qualitatively very similar, 

suggesting that the LSA approach outlined above is not actually extracting 

information that is specific to each meeting – rather, it is reflecting the procedural 

aspects of the meeting. In particular, it stands to reason that the sponsors and the 

FDA would use very different language than the panel members would, simply by 

virtue of their role. Hence, this analysis requires a tool that is more sensitive to 

individual differences between speakers. As an introduction, an overview of some 

of the limitations of the LSA approach is therefore essential. 

Limitations of the LSA approach 

Construction of LSA Metrics 

Differences between Dong’s and Foltz’s approaches in studying coherence 

highlight some of the limitations of using LSA for representing coherence in 

design teams. Whereas Foltz studied individual students writing essays about a 

well-defined topic, Dong studied interactions between multiple people attempting 

to discuss a design that has not yet been produced. Therefore, Foltz pre-trained 

LSA on domain-relevant materials, whereas Dong explicitly did not do so 

because it would bias the outcome in favor of a particular design or method 

(Dong 2007, personal communication). Group coherence, as defined above, is a 

relative measure.  

Representing group coherence over the course of a discussion is challenging. 

Because coherence is defined as a distance metric between two utterances, there 

is no natural baseline against which to evaluate the coherence of a particular 

statement. Dong uses the group document Euclidean centroid as this baseline. 

This has suspect validity because the group document centroid is not necessarily 

representative of the instantaneous coherence between two adjacent utterances at 

any point in time. Indeed, as the overall coherence of the design discussion 

decreases, we may consider the document centroid to be an increasingly worse 
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representation of the group’s “shared mental model”, presuming one exists. An 

assumption that group members share a mental model stands in contrast to an 

analysis of differences in perspectives on committees of technical experts. 

Furthermore, the use of a running average metric has a tendency to 

overemphasize early statements and damp out later ones because early points in 

the time series carry more weight when compared directly with the group 

document centroid than do later points. Later points are averaged with all of the 

earlier points and therefore may lose important dynamics. This leads to a result 

that always converges, by definition, to unity. This can impart a significant bias on 

the time series results since later statements will tend to have a higher coherence 

than do earlier ones, giving the potentially false impression that the conversation 

is converging when it may not be. The comparison of individuals’ utterances 

against the group centroid shows how an individual may be converging to the 

ultimate group decision, although it provides little information about how 

individuals interact with one another.  

Choice of Document Size 

There are many different ways of dividing a discourse, each of which might yield 

slightly different results. Use of a court-recorder’s discretion in defining the 

boundaries of an utterance typically ensures conceptual coherence, at the cost of 

a potential source of subjectivity. Furthermore, very short utterances might make 

less of a contribution to the analysis than do longer utterances. An ideal approach 

would incorporate both temporal information and authorship information 

sources. The former would enable some insight into meeting dynamics, whereas 

the latter would allow for sufficient data to enable a statistically meaningful 

characterization of a given speaker’s position relative to others. 
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Dimensionality Selection 

There is currently no theoretically optimal number of dimensions for a latent 

semantic analysis. Foltz and Dong used different dimensionality reduction 

choices when calculating their respective LSA spaces. Foltz, possessing a training 

set against which to measure, kept 300 latent dimensions (i.e., r’ = 300) using LSA 

as described above. Dong, on the other hand, kept dimensions 2-101, a technique 

first used in (Hill et al. 2002) that removes the largest-weighted singular value. 

This seems to under-emphasize effects due to word frequency and direct word 

co-occurrence, and over-emphasize higher-order co-occurrence. This difference 

highlights the fact that there is currently no theoretical optimum for determining 

the appropriate number of dimensions in an LSA analysis. Attempts to calculate 

such an optimum suggest that it may be highly dependent on the structure of the 

individual discourse and the nature of the query (Dupret 2003).  

Polysemy  

Although LSA is largely successful in reducing the synonymy problem by 

grouping words together that appear in the same context, the polysemy problem 

– encountered when two words have the same spelling but different meanings 

(compare “bat” the animal vs. “bat” in the context of baseball) – is not well 

addressed by this specific methodology. This is because polysemous words are 

typically represented as weighted averages between any number of document 

vectors. Rather than being assigned multiple times to different 

meanings/contexts, polysemous words are represented inaccurately as the 

weighted average of those contexts. Among these is the assumption that words 

are embedded within a Euclidean “semantic-space”. This particular assumption 

breaks down when comparing words that are polysemous. LSA represents the 

location of these words in the Euclidean semantic space as the average over the 

two separate locations – an incorrect representation. LSA is known to be 

vulnerable to problems of polysemy. As such, use of LSA to analyze 
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conversations is likely to be susceptible to this weakness. Medical device approval 

committee meetings may tend to avoid polysemy because of the use of highly 

specialized and well-defined professional terms by the physicians, statisticians and 

health policy experts performing the evaluation. On the other hand, those words 

that are most likely to be ambiguously defined, and thus most interesting, are de 

facto polysems. Such words as “safety” and “efficacy”, whose meanings must be 

defined relative to a device during these FDA meetings are likely to be sources of 

debate. This is a major limitation of LSA, that has been overcome by existing 

algorithms designed to solve problems associated with polysemy (Blei et al. 2003; 

Dhillon and Modha 2001; Hofmann 2001). 

Unrealistic modeling assumptions 

Papadimitriou et al. (2002) explain the empirical success of LSA by formulating it 

as a probabilistic model. In the process, the authors make explicit the statistical 

distribution assumptions that underlie the LSA approach. LSA assumes linearity 

for a set of latent dimensions underlying a Euclidean semantic space. 

Furthermore, each word’s location in the Euclidean space is linearly-distributed, 

an assumption that introduces increasingly more distortion into the analysis as a 

given speaker uses fewer words. These limitations make it difficult to resolve the 

linguistic attributes of individual speakers, particularly in the absence of extensive 

speaker data within a given meeting. Furthermore, the latent dimensions of the 

LSA feature space, which nominally correspond to latent concepts of a discourse, 

are often difficult to interpret.  

Bayesian Topic Models  

The leading alternative to LSA is Latent Dirichlet Allocation (LDA), a Bayesian 

“topic model” (Blei et al. 2003). For an excellent comparison of LSA to Bayesian 

models of text analysis, see (Griffiths et al. 2007). Approaches based on Bayesian 

inference, such as Latent Dirichlet Allocation (LDA), provide a platform that may 
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be used to avoid many of the limitations noted above. Of particular interest are 

topic-modeling approaches to studying social phenomena in various contexts. 

Topic models have been applied to the social sciences in a limited fashion, with 

examples having largely taken the form of studies of the evolution of specialized 

corpora (Hall et al. 2008), analysis of structure in scientific journals (Griffiths and 

Steyvers 2004), finding author trends over time in scientific journals (Rosen-Zvi 

et al., 2004), topic and role discovery in the Enron email networks (McCallum et 

al. 2007), analysis of historical structure in newspaper archives (Newman and 

Block 2006), and group discovery in socio-metric data (Wang et al.,  2005). Topic 

models have also been applied to other fields, using, for example, genomic data as 

input.  

Topic Models address the limitations of LSA 

Unlike LSA, which uses a continuous Euclidean metric space representation, 

LDA assumes probabilistic assignment of each word to a discrete topic. Each 

topic is assumed to be exchangeable, i.e., conditionally independent of each other 

topic (de Finetti 1974). LSA’s assumption of orthogonal latent dimensions in a 

Euclidean space implies that each word can be located by a unique point in that 

semantic space. LDA’s exchangeability assumption, on the other hand, allows for 

words to have multiple “senses” – i.e., the same word may occur in two different 

topics. Rather than modeling a word as an average between two locations in a 

latent Euclidean space, a word is instead modeled as having been drawn from a 

discrete probability distribution over topics. This provides a natural solution to 

the polysemy problem (Griffiths et al. 2007). The basic structure of an LDA 

model is shown in Figure 6.  
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Figure 6: A plate-notation 
representation of the Latent Dirichlet 
Analysis algorithm (Blei, Ng, et al. 
2003).  

In an LDA model, words are observed in a word-document matrix, as in LSA. 

Each word (w) is assumed to be drawn from a topic (z). A topic is accordingly 

defined as a multinomial distribution (φ) over words (i.e., a word is chosen at 

random by rolling a weighted w-sided die, where w is the total number of words 

in the corpus). Each document is similarly modeled as a multinomial distribution 

(θ) over topics. The parameters (i.e., the die-weights) for each multinomial 

distribution are drawn from a symmetric Dirichlet prior distribution – a 

multivariate distribution that is the conjugate prior to the multinomial 

distribution. Each Dirichlet distribution has a number of parameters equal to the 

number of parameters of its corresponding multinomial distribution. 

Nevertheless, early LDA models all assume that the Dirichlet priors are 

symmetric – i.e., all of the parameters are the same. The utility of this assumption 

has only recently been tested (Wallach and McCallum 2009). The 

“hyperparameters” defining each Dirichlet prior (α and β) are chosen by the 
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modeler, and are the primary means, along with choosing the number of topics, 

by which the form of the model might be controlled. These hyperparameters may 

be interpreted as smoothing parameters. In particular, if 0 < α < 1, topics are 

very document-specific, whereas for values of α > 1, topics are smoothed across 

documents. Similarly, if 0 < β < 1, words are very specific to topics (i.e., there is 

relatively little polysemy), whereas for values of β > 1, words are smoothed across 

topics. Thus, topic models may account for polysemy in a way that LSA cannot. 

LDA defines a family of probabilistic models, and must be fit to a specific corpus 

using Bayesian inference algorithms. We are interested in finding the most 

probable hypothesis, h, (i.e., the most appropriate model), given the observed 

data, d. Model fitting may be explained using Bayes’ theorem: 
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Using the notation specific to the LDA model, Bayes’ theorem may be expressed 

as follows (Blei et al. 2003): 
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This guarantees that the topics that are inferred by LDA are appropriate to the 

corpus being analyzed. Furthermore, the presence of the Bayesian priors ensures 

that the model is not over-fit to the corpus data – a limitation that had been 

encountered by previous attempts to generate a probabilistic form of LSA 

(Hofmann 2001). The flexibility of LDA’s representation therefore circumvents 

the problems encountered by LSA as a result of its distributional assumptions. 

This comes at the cost of computational efficiency, since explicit computation of 

LDA’s posterior distribution (i.e., the distribution that we would like to determine 

in order to be able to fit topics to the data) is intractable. To see why this is, we 
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must expand the expression above into its constituent parts. The numerator is 

easily expanded using the canonical expressions for the multinomial and Dirichlet 

distributions. 

 
)(*)(*)(*)(*),(

)|(*)|(*)|(*)|(),|,,(

1

1

11

1

1

1 ∏∏∏∏
=

−

==

−

=

=

=
T

k

t

T

k

z

t

V

j

j

V

i

w

i
tiC

pzppwpwzp

αβ θθφφβα

αθθβφφβαθ

            (3) 

Here, V is the total number of words in the corpus and T is the total number of 

topics. C1 is a term whose value is a function only of the hyperparameter values. 

It serves as a normalizing parameter. As can be seen from this expression, the 

Dirichlet distribution may be interpreted as a “virtual count” – i.e., the 

hyperparameters may be interpreted as presumed data that has already been seen 

and added to the observed data. The Dirichlet prior therefore may be said to 

reflect one’s prior beliefs regarding the propensity of a particular topic or word in 

the data. The denominator is not analytically tractable, and may be expressed as 

follows (Blei et al. 2003): 
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The original implementation of LDA inferred the posterior distribution for its 

test corpus using a technique known as variational inference (Blei et al. 2003). 

Nevertheless, variational inference has not been widely adopted by the topic 

modeling community because it is difficult to implement and because it lacks a 

theoretical guarantee that it will converge to the global maximum of the posterior 

distribution. Gibbs sampling, a Markov-Chain Monte Carlo (MCMC) method, 

adopted from statistical physics, possesses such a guarantee and, although 
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potentially slower4, is currently in widespread use among topic modelers 

(Griffiths and Steyvers 2004). Gibbs sampling for LDA proceeds following 

Algorithm 1: 

Algorithm 1: LDA Implementation 

1. Initialize topic assignments randomly for all word tokens 

2. repeat 

3.      for d=1 to D do 

4.           for  i=1 to Nd do 

5.                draw zdi from P(zdi|z-di ,w,α,β) 

6.                assign zdi and update count vectors  

7.           end for 

8.      end for 

9. until Markov chain reaches equilibrium 

 

Here, D is the total number of documents and Nd is the number of word tokens 

in each document, zdi is the topic assigned to word token i in document d. The 

non-normalized form of P(zdi|z-di ,w,α,β) is derived in (Griffiths and Steyvers 

2004) as follows: 
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4 Recent work by (Goodman, Mansinghka et al. 2008) has focused on generating a probabilistic programming 

language whose purpose is to enable fast Bayesian inference of the sort required for these analyses. Such 

research could significantly increase the adoption of MCMC-type algorithms as they become more easy, 

and faster, to implement. This could increase the rate of adoption of MCMC over variational inference 

even further. 
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In this expression, n(a)
-b,c  is a count vector – i.e., a count of the number of times 

all tokens with identity a (e.g., all words with identity wi or all tokens in document 

d), excluding token b are assigned to topic c. n(.)
-b,c  denotes that all tokens 

assigned to topic c should be considered, regardless of word or document 

identity, with the exception of token b. V is the total number of unique words in 

the corpus, and T is the total number of topics. As can be seen from the form of 

the above expression, each token’s probability of being assigned to a given topic 

is proportional to the number of times that that word appears in that same topic, 

and to the number of times a word from that document is assigned to that topic. 

This defines a Markov chain, whose probability of being in given state is 

guaranteed to converge to the posterior distribution of the LDA model as fit to 

the corpus after a sufficiently large number of iterations. Evaluating Markov 

chain convergence is currently an open area of research. It is therefore standard 

practice for a Markov chain to be run for multiple iterations in order to ensure 

convergence. These initial iterations are known as a “burn-in” period. 

Throughout this thesis, burn-in length is set to 1000 iterations – a value 

frequently used in the topic modeling literature (Griffiths and Steyvers 2004). 

The ability to fit the probability distribution underlying the LDA model to a 

specific corpus neatly solves the problem inherent in the statistical distribution 

assumption underlying LSA. Once the LDA model has been defined, variants 

may be utilized, given the nature of the problem being solved. In particular, the 

LDA model as outlined above is still sensitive to the arbitrary document 

boundaries imposed by the court recorder. Furthermore, documents vary 

significantly in length – some might only be two words (e.g., “Thank you”) 

whereas others might be significant monologues. One possible approach would 

be to attempt to group documents together by their temporal ordering – this 

would enable groups of documents to pool statistical power. This is the approach 

taken by the work of (Quinn et al. 2006), who built a topic model of US Senate 
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proceedings with the goal of identifying agenda-setting behavior. Quinn’s model 

explicitly incorporated time as an explanatory variable, using techniques 

pioneered by (Pole et al. 1994; Blei and Lafferty 2006). In practice, this approach 

serves to smooth topics across time such that they rise and fall in a continuous 

fashion. The temporal element of the analysis enables insight into how agendas in 

the US Senate are built and changed. (Fader et al. 2007) used the resulting dataset 

to identify influential members of the US Senate using a technique knows as 

“MavenRank”. Influence was operationalized as “lexical centrality” – a metric of 

similarity between a given speaker’s utterances and all other utterances by 

speakers using that topic. (Fader et al. 2007) present results indicating that lexical 

centrality is associated high-status positions within Senate committees. 

Preliminary tests of MavenRank on FDA panels suggests that an individual’s 

influence under the lexical centrality scheme is strongly correlated with their air-

time in that topic (i.e., the number of utterances that they express). Findings in 

social psychology dispute the relation between actual influence and air-time 

(Bottger 1984) suggesting that MavenRank captures procedural sources of 

influence instead of actual influence. Furthermore, MavenRank is unable to 

determine influence across topics, and therefore cannot address questions 

regarding why one topic might come to prominence within a given committee 

meeting. Indeed, Fader et al. treated specific topics as standing in fixed 

association with specific committees – an assumption that makes sense given the 

standing committees in the US Senate, but is inappropriate for the more flexible 

committees to be found in FDA and other engineering systems. Furthermore, in 

applying their technique, Quinn et al. fit a model to several different simultaneous 

Senate discourses. Data on FDA panels is much more linear, since it represents 

one conversation rather than several years’ worth of speeches5. Therefore the 

                                                 
5  On the importance of linearity in speech, see (Gibson 2005). 
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approach of Quinn et al. is not directly applicable to the problem addressed in 

this thesis. 

The Author-Topic Model 

A variant of LDA, the Author-Topic (AT) model, can been used to generate a 

distribution over topics for each participant in a meeting (Rosen-Zvi et al. 2004). 

Given that the literature suggests that each speaker possesses an institutional or 

role-based signature in his or her word choice, we would like to have the identity 

of the speaker inform the selection of topics. We therefore use a variant of 

Rosen-Zvi et al.’s Author-Topic (AT) Model (2004), which creates probabilistic 

pressure to assign each author to a specific topic. Shared topics are therefore 

more likely to represent common jargon. The Author-Topic model provides an 

analysis that is guided by the authorship data of the documents in the corpus, in 

addition to the word co-occurrence data used by LSA and LDA. Each author (in 

this case, a speaker in the discourse) is modeled as a multinomial distribution over 

a fixed number of topics that is pre-set by the modeler. Each topic is, in turn 

modeled as a multinomial distribution over words. A plate-notation 

representation of the generative process underlying the Author-Topic model is 

found in Figure 7.  
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Figure 7: A plate notation 
representation of  the Author-Topic 
model from (Rosen-Zvi et al. 2004). 
Authors are represented by a 
multinomial distribution over topics, 
which are in turn represented by a 
multinomial distribution over all 
words in the corpus. 

As an LDA variant, the Author-Topic model is populated using a Markov-Chain 

Monte Carlo Algorithm that is designed to converge to the distribution of words 

over topics and authors that best matches the data. Information about individual 

authors is included in the Bayesian inference mechanism, such that each word is 

assigned to a topic in proportion to the number of words by that author already 

in that topic, and in proportion to the number of times that specific word appears 

in that topic. Thus, if two authors use the same word in two different senses, the 

AT Model will account for this polysemy. Details of the MCMC algorithm 
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derivation are given in (Rosen-Zvi et al. 2004). The AT model was implemented 

in MATLAB by the author, based on the Topic Modeling Toolbox algorithm 

(Griffiths and Steyvers 2004). Gibbs sampling for AT proceeds following the 

algorithm in Algorithm 2: 

Algorithm 2: AT Model 
Implementation Algorithm 

1. Initialize topic assignments randomly for all word tokens 

2. repeat 

3.      for d=1 to D do 

4.           for  i=1 to Nd do 

5.                draw zdi & xdi from P(xdi,zdi|z-di, x-di w,α,β) 

6.                assign zdi & xdi and update count vectors  

7.           end for 

8.      end for 

9. until Markov chain reaches equilibrium 

 

Here, D is the total number of documents and Nd is the number of word tokens 

in each document, zdi is the topic assigned to word token i in document d, and xdi 

is the author assigned to word token i in document d. The form of P(xdi,zdi|z-di, x-

di w,α,β) is derived in (Rosen-Zvi et al. 2004) as follows: 
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As can be seen from the form of the above expression, each token’s probability 

of assignment to a given topic is proportional to the number of times that that 

word appears in that same topic, and to the number of times a word from that 
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author is assigned to that topic. This defines a Markov chain, whose probability 

of being in given state is guaranteed to converge to the posterior distribution of 

the AT model as fit to the corpus after a sufficiently large number of iterations.  

Under the special case where each document has one unique author, the AT 

model is equivalent to LDA. Similarly, under the special case where each 

document has one non-unique author, the AT model is equivalent to an LDA 

model where each author may be treated as one document. As will be shown 

below, the multiple authorship feature of the AT model may be used to 

determine a given speaker’s idiosyncratic word choice, a useful feature when 

many panel members share procedural language that may not necessarily be 

related to their decisions.  

Hyperparameter Selection 

Like LDA, the AT model requires the selection of two parameters. Ideally, we 

would like to determine which parameters used for the AT model best fit the 

corpus data. We must simultaneously be wary of over-constraining the analysis 

with the assumptions underlying the AT model. A popular metric for goodness-

of-fit used within the machine learning literature is cross-entropy (Manning and 

Schütze 1999). Cross-entropy is a metric of the average number of bits required 

to describe the position of each word in the corpus and is closely related to 

perplexity. Both perplexity and cross-entropy are closely related to log-likelihood, a 

measure of how well a given model predicts a given corpus. Therefore, lower 

perplexity indicates a more parsimonious model fit. Lower perplexity also 

indicates that the assumptions underlying the model are descriptive of the data. 

For the AT model, cross-entropy may be calculated as follows: 

N

xpzpwp

qpH
i

N

i

ii ))(*),|(*),|((log

),( 1

2∑
=−=

αθβφ

                    (7) 



 

 83 

In this expression, N is the total number of word tokens. The expression in the 

numerator is the empirical log-likelihood (although log-likelihood is usually 

calculated using a natural logarithm). Thus, a natural interpretation of cross-

entropy is the average log-likelihood across all observed word-tokens. Perplexity 

is defined as
),(2 qpH
. The lower a given model’s perplexity or cross-entropy, or 

the higher its log-likelihood, the more parsimonious is the model’s fit to the data. 

Each author’s topic distribution is modeled as having been drawn from a 

symmetric Dirichlet distribution, with parameter α. Values of α that are smaller 

than unity will tend to more closely fit the author-specific topic distribution to 

observed data – if α is too small, one runs the risk of overfitting. Similarly, values 

of α greater than unity tend to bring author-specific topic distributions closer to 

uniformity. A value of α=50/(# topics) was used for the results presented in this 

thesis, based upon the values suggested by (Griffiths and Steyvers 2004). For the 

numbers of topics considered in these analyses (generally less than 30), this 

corresponds to a mild smoothing across authors. Similar to α is the second 

Dirichlet parameter, β, from which the topic-specific word distributions are 

drawn. β values that are large tend to induce very broad topics with much 

overlap, whereas smaller values of β induce topics which are specific to small 

numbers of words. Following the empirical guidelines set forth by Griffiths and 

Steyvers (2004), and empirical testing performed by the author, we set the value 

of β = 200/( # words). Given that the average corpus generally consists of 

~25,000 word tokens, representing about m = 2500 unique words in about n = 

1200 utterances, the value of β is generally on the order of 0.1, a value close to 

that used in (Rosen-Zvi et al. 2004). Tests of the AT model with β=0.1 generated 

results that were qualitatively similar to those with “fitted” priors, but fitted priors 

presented a slightly lower cross-entropy value. Thus, topics tend to be relatively 

word-specific. As will be shown below, values of α tend to be on the order of 1 - 
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5, incorporating some amount of smoothing, so the topics are not entirely 

author-specific. This corresponds to a number of topics between 10 and 35, 

depending on the specific meeting being analyzed. Tests of the model with a 

fixed α=5 generated results that were also qualitatively similar to those with fitted 

priors, although added smoothing likely introduced some noise into analysis 

results, as reflected in a slightly higher cross-entropy for fixed priors for most 

meetings (Figure 8). The outliers are shorter meetings in which the fitted priors 

impose relatively more smoothing. 
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Figure 8: A comparison of  perplexity 
values for three different 
hyperparameter conditions tested. 
Fitted priors generally have slightly 
lower perplexity, particularly for 
longer meetings. 
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Smaller hyperparameter values than those presented above result in even lower 

perplexity values. This is because the number of topics must be increased in 

tandem. As topics become more specific to individual words and authors (i.e 

hyperparameter values decrease) the number of topics required to accurately 

model the corpus increases, and the model has a correspondingly higher 

resolution. This comes at the cost of sensitivity to spurious linkages between 

words that might co-occur a small number of times in the corpus, without 

necessarily corresponding with an intuitive sense of what constitutes a topic. 

Ultimately, the goal of this analysis is to determine which words, and potentially 

ideas, speakers might have in common. If hyperparameter values are too low (i.e., 

topics are too author-specific or word-specific), there will be very little overlap 

among speakers. This means that conditional independence assumptions 

underlying the AT model become very strong and topics come to be defined by 

small numbers of relatively infrequent words (in which case many topic are 

required to generate a meaningful model) or entirely by speaker identity. At this 

point, a topic ceases to become a meaningful construct. The analysis in this thesis 

therefore only uses cross-entropy/perplexity sparingly as a metric of model 

quality to differentiate between hyperparameter schemes that have already been 

established in the literature. We do not try to minimize global cross-

entropy/perplexity. This represents a modeling choice that departs from standard 

machine-learning methods – indeed it is interesting that there has been relatively 

little work within the topic modeling community on the appropriate choice of 

hyperparameters. Exceptions include hyperparameter optimization algorithms, 

such as those designed by (Wallach 2008) which will be discussed below. To the 

author’s knowledge, there has been no analysis of the co-selection of topics and 

hyperparameters. 
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Committee Filtering 

Our analysis primarily focuses on the voting members on an advisory panel. This 

decision was made because it is precisely these members whose evaluations will 

determine the panel recommendations. Other panel members, such as non-

voting guests and consultants, are also included in the analysis because, like the 

voting members, they play the role of resident experts. Panel members such as 

the executive secretary, and consumer, patient and industry representatives are 

not included as part of the committee in the following analyses because they play 

a relatively small role in panel discussion in the meetings examined. Inclusion of 

these members is straightforward, and examination of their roles is left to future 

research. 

The LSA approach demonstrates that it is often difficult to differentiate between 

panel members, especially since the majority of the speech during an FDA panel 

meeting is occupied by presentations from the sponsor and the FDA. A given 

voting member might speak relatively rarely. Furthermore, panel members share 

certain language in common including procedural words and domain-specific 

words that are sufficiently frequent as to prevent good topic identification. As a 

result, a large proportion of the words spoken by each committee member may 

be assigned to the same topic, preventing the AT model from identifying 

important differences between speakers. In a variant of a technique suggested in 

(Rosen-Zvi et al. 2005)6 this problem is solved using the AT model by creating a 

“false author” named “committee”. Prior to running the AT model’s algorithm, 

all committee voting members’ statements are labeled with two possible authors – 

the actual speaker and “committee”. Since the AT model’s MCMC algorithm 

randomizes over all possible authors, words that are held in common to all 

committee members are assigned to “committee”, whereas words that are unique 

to each speaker are assigned to that speaker. In practice, this allows individual 

                                                 
6 The author of this thesis would like to thank Dr. Mark Dredze for suggesting this approach 
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committee members’ unique topic profiles to be identified, as demonstrated 

below. In the unlikely case where all committee members’ language is common, 

half of all words will be assigned to “committee” and the other half will be 

assigned at random to the individual speakers in such a way as to preserve the 

initial distribution of that author’s words over topics.  

Preliminary testing of the AT Model  

Preliminary tests of the AT model held the number of topics constant at 10, for 

each meeting analyzed. Although this is not a realistic representation of the 

structure of different FDA panel meetings (discussed below), these initial tests 

provide insight into the capabilities of the AT Model when applied to this 

problem domain. 

Sample Output – Identifying Topics of Interest 

One preliminary use of the AT model is to identify the major topics of interest 

for each speaker. For example, Figure 9 shows sample output of the Author-

Topic model applied to the FDA Meeting held on March 4th, 2002. In particular, 

this is the author-specific topic distribution for one panel member. Note that a 

plurality of this panel member’s words is confined to the topic labeled 1. 



 

 88 

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

 

Figure 9: Sample output from the 
Author-Topic model run on the FDA 
Circulatory Systems Devices Advisory 
Panel Meeting for March 4th, 2002. 
This chart is the per-speaker topic 
distribution for one of the panel 
members. 

Table 3 displays the top five most probable word stems for each topic:  

Table 3: The top five word-stems for 
one run of  the AT model on the 
corpus for the Circulatory Systems 
Devices Panel Meeting of  March 4, 
2002. 

 
Topic 

Number 

Top Five Word-Stems 
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1 'clinic endpoint efficaci comment base' 

2 'trial insync icd studi was' 

3 'was were sponsor just question' 

4 'patient heart group were failur' 

5 'devic panel pleas approv recommend' 

6 'think would patient question don' 

7 'dr condit vote data panel' 

8 'effect just trial look would' 

9 'lead implant complic ventricular event' 

10 'patient pace lead were devic' 

 

Within a clinical trial administered by the FDA, a device manufacturer must meet 

a certain set of clinical “endpoints”, often defined as a proportion of a population 

that is free from disease or adverse events (e.g., device failure). Such trials 

typically have different endpoints for device safety and efficacy, both of which 

must be met. From this table, we can see that this panel member’s major topic of 

interest involved questions of what was the appropriate clinical endpoint for the 

study in question (often debated in these panel meetings).  

The use of the AT model to identify topics that are salient to each speaker can be 

helpful in determining how agreement is reached. Consider the meeting of the 



 

 90 

Circulatory Systems Devices Panel held on November 20, 2003. This meeting 

was convened to review a PMA for approval of the Taxus ® Paclitaxel Drug-

Eluting Stent, designed and marketed by Boston Scientific Corporation. Taxus 

was the second drug-eluting stent on the market, following the panel’s decision to 

approve Cordis Corporation’s Cypher Sirolimus-Eluting Stent one year prior. The 

ultimate outcome of the meeting was a consensus decision to approve the PMA. 

The vast majority of decisions to approve a device come with conditions of 

approval that the panel recommends to the FDA that the sponsor must meet 

before the device can be marketed. The conditions of approval for the Taxus 

stent were as follows: 

1. The labeling should specify that patients should receive an antiplatelet 

regimen of aspirin and clopidogrel or ticlopidine for 6 months 

following receipt of the stent. 

2. The labeling should state that the interaction between the TAXUS 

stent and stents that elute other compounds has not been studied. 

3. The labeling should state the maximum permissible inflation diameter 

for the TAXUS Express stent. 

4. The numbers in the tables in the instructions for use that report on 

primary effectiveness endpoints should be corrected to reflect the 

appropriate denominators. 

5. The labeling should include the comparator term “bare metal Express 

stent” in the indications. 

Each of these conditions may be traced to a particular voting member, or set of 

voting members, on the panel, using the AT model.  Table 4, below, outlines the 

primary topics for each voting member. The top five words, identifying each 
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voting member’s preferred topic (out of 10 total), are identified, in addition to the 

topic proportion – the proportion of words spoken by that voting member in the 

corresponding topic. Finally, each topic is assigned to a condition of approval as 

listed above. 

Table 4: Results of  the Author-Topic 
Model applied to a transcript of  the 
Circulatory Systems Devices Panel 
Meeting of  Nov. 20, 2003. Each row 
of  this table corresponds to a 
different voting member. Topics 
correspond to conditions of  approval 
for the final vote. 

 
Committee Member’s 

Medical Specialty 

Major Topic of Interest (stemmed) Topic 

Proportion 

Corresponding  

Condition # 

Cardiologist 'metal bare express restenosi 

paclitaxel' 

0.36 5  

 

Cardiologist  'physician stainless ifu steel plavix' 0.42 1 

Pharmacologist 'metal bare express restenosi 

paclitaxel' 

'materi drug interact effect potenti' 

0.30 

0.29 

5 

2 

Statistician  'tabl detail denomin six number' 0.56 4  

Cardiologist 'metal bare express restenosi 0.23 5  
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paclitaxel' 

Cardiologist  'drug clinic present appear event' 0.23 2 

Cardiologist 'angiograph reduct nine think 

restenosi‘ 

0.12 <None> 

Electrophysiologist 'millimet length diamet coronari 

lesion' 

0.34 3  

Surgeon 'know bit littl take present' 0.23 <None > 

 

The above table shows a rough correspondence between topics of discussion and 

conditions of approval. This demonstrates that the AT model is able to generate 

author-specific topics that are meaningful to specific panel meetings. AT 

therefore overcomes another key limitation of LSA.  

Sample Output – Identifying Roles 

Aside from examining topics of interest to specific committee members, we 

would like to be able to examine role-based behavior. In particular, how do 

different panel voting members interact with one another? One preliminary 

insight into speaker roles may come from comparing author-specific topic 

distributions. Panel members who speak often and focus on one aspect of the 

discourse potentially display a depth of expertise and will be more likely to have 

their words assigned to a topic focused on that speaker. If they focus on several 

aspects of the discourse in concert with other speakers (e.g., if they engage in a 

discussion), they will tend to have their words assigned to a number of topics 

related to their areas of focus and potentially display a breadth of expertise. If 
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they do not speak often, but are focused in their area of discourse, their words 

will likely be assigned to topics defined by other speakers. Finally, if they speak 

rarely their words will be assigned uniformly at random to all topics. These 

different types of speakers are summarized in Table 5. 

Table 5: Different types of speakers 
identified by the AT model. A 
frequent, focused speaker tends to 
drive topic formation, whereas a rare 
speaker tends to be assigned to topics 
defined by others. Multi-focus, or 
interdisciplinary, speakers may serve as 
mediators. These sample results have 
been generated from actual panel 
meetings. 
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Generation of Social Networks 

We may use the output of the Author-Topic model to gain insight into the social 

structure of a given committee. Since the results of the Author-Topic model 

assign each word to a topic, we may compare topic distributions across speakers. 

In particular, if two speakers’ words are assigned to the same topic frequently, we 

say that they are “linked”. The definition of a link is another modeling choice. 

Early versions of this algorithm considered two authors to be linked if, in a model 

with ten topics, they had at least one topic in which they both spoke more than 

20% of the time. In the current version, speakers are linked together if they 
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commonly use the same topics of discourse. In particular, we construct an 

Author-Topic matrix, A, with entries equal to 1 where that author uses that topic, 

and entries equal to 0 otherwise. This matrix, when multiplied by its transpose (A 

* A’) yields a linkage pattern among speakers. This may be interpreted as a social 

network (Wasserman and Faust 1994). A more rigorous definition of linkage 

between speaker-pairs is to be found below. Using authors as nodes, and the links 

derived from their topic distributions as edges, we may generate an author-topic 

graph. Because we are only interested in the voting members (and committee 

chair) we analyze only the subgraphs consisting of the nodes and edges linking 

these members, such as that shown in Figure 10. 

 

Figure 10: A graph of the meeting of 
the FDA Circulatory Systems Devices 

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Statistics

= Bioethics Attorney

Legend:
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Blue = Voted for Device Approval
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Advisory Panel Meeting held on 
March 5, 2002. Node size is 
proportional to the number of words 
spoken by the corresponding speaker. 
Random seed = 613. Graphs were 
generated using UCINET. 

 
Different schemes for determining topic membership yield different networks. 

For example, the binomial statistical test might be seen as a more principled way 

of determining topic membership. The binomial statistical test operates by 

examining the cumulative distribution of the binomial probability mass function, 

given by  

 
( ) knk pp

k

n
kK

−−







== 1)Pr(                             (8) 

Under this scheme, an author is assigned to a topic if the cumulative probability 

that that author used k out of n words in a given topic is less than 0.05/b, where 

b is the Bonferroni significance level correction factor. Given a authors, b = a * 

(a-1) / 2, since one comparison is being made for each pair of authors. Unlike the 

uniform 20% cutoff used above, the binomial cutoff accounts for the total 

number of words a given speaker contributes to a given topic. Therefore panel 

members who speak rarely are less likely to be linked. A sample social network 

from this scheme is shown in Figure 11, for the same meeting as in Figure 10. 
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Figure 11: Social network of the FDA 
Circulatory Systems Devices Advisory 
Panel Meeting held on March 5, 2002. 
Threshold value is determined using 
the binomial test described above. 
Node size is proportional to the 
number of words spoken by the 
corresponding speaker. Random seed 
= 201.657. 2100th draw from MCMC 
algorithm. Graphs were generated 
using UCINET. This iteration shows 
the presence of two separate 
discussion groups. Note that voting 
members 5 and 6, both bridging 
members in Figure 10, are now 
disconnected. This is due to their 
small number of words contributed. 

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Statistics

= Bioethics Attorney

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Statistics

= Bioethics Attorney



 

 98 

 

As above, each social network generated using this scheme is the result of one 

MCMC iteration. Multiple iterations, when taken together, form a probability 

distribution over a set of possible Author-Topic assignments, and therefore, 

connectivity patterns. We can expect that different iterations of the MCMC 

algorithm will yield drastically different graphs. For example, the results of a 

second draw from the same MCMC chain that yielded Figure 11 is shown in 

Figure 12. 

 

Figure 12: A second iteration of  the 
meeting of  the FDA Circulatory 
Systems Devices Advisory Panel 

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval
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Meeting held on March 5, 2002. 
Threshold value is determined using 
the binomial test described above. 
Node size is proportional to the 
number of  words spoken by the 
corresponding speaker. Random seed 
= 201.657. 2200th draw from MCMC 
algorithm. Graphs were generated 
using UCINET 

The high variability among draws from the MCMC algorithm again suggests that 

links should be differentially weighted – some links appear in virtually all 

iterations, whereas other links appear in relatively few iterations. Averaging over 

multiple MCMC iterations enables a social network to be created with weighted 

links, where the weight of each link is proportional to its frequency of occurrence 

among iterations. Examples of this may be found in Figure 13 and Figure 14, 

corresponding to constant and binomial threshold conditions, respectively.  
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Figure 13: Average of 200 graphs for 
the meeting of the FDA Circulatory 
Systems Devices Advisory Panel 
Meeting held on March 5, 2002.  A 
heavy line indicates a strong link 
(linked in >100 graphs). A light line 
indicates that the speakers are linked 
more frequently than the global 
average of all speakers. Spurious links 
have been eliminated. 
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Figure 14: Average of 200 iterations 
for the meeting of the FDA 
Circulatory Systems Devices Advisory 
Panel Meeting held on March 5, 2002. 
Iterations use a binomial threshold 
value for each of ten topics.  Heavier 
lines indicate stronger links (linked in 
>100 iterations), whereas lighter lines 
indicate weaker links (> than the 
global average). All links shown are 
stronger than the global average of all 
speakers. Remaining links have been 
deleted. 
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Despite differences in the locations of rare speakers, Figure 13 and Figure 14  

have similar overall structures. For example, both figures display a structure that 

tends to group together those speakers who voted similarly. This is encouraging 

for testing hypotheses about voters who speak the same way tend to vote the 

same way.  

The difference in the two figures highlights the differences between the two 

threshold conditions. The constant threshold condition tends to favor speakers 

who speak infrequently, such as voting members 5 and 6. Because of their 

relatively small numbers of words, it is harder for these speakers to achieve 

statistical significance using the binomial test, and so they are less likely to be 

linked. On the other hand, the constant threshold condition requires more words 

to establish a link to a frequent speaker, compared to a binomial threshold.   

Comparison of multiple cases 

The case in the previous section demonstrated a preliminary method for how 

social networks can be built. Later in this section, we will discuss how to refine 

this method. Nevertheless, it is instructive to perform some preliminary analyses 

of the capabilities of these early networks. 

 

Grouping by medical specialty? 

Network representations of some meetings display voting along institutional lines 

more clearly than do others. For example, Figure 15 and Figure 16 show a strong 

grouping by medical specialty. In particular, surgeons and internal medicine 

experts (cardiologist and pharmacologists) seem to form two different parts of 

the same graph. 
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Figure 15: Average of 200 iterations 
for the meeting of the FDA 
Circulatory Systems Devices Advisory 
Panel Meeting held on January 13, 
2005. Iterations use a constant 
threshold value for each of ten topics.  
A heavy line indicates a strong link 
(linked in >100 iterations). A light line 
indicates that the speakers are linked 
more than the global average of all 
speakers. Remaining links have been 
deleted. 

Legend:

Red = voted against device approval

Blue = voted for device approval

= Surgeon

= Cardiologist

= Pharmacologist

= Statistician
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Figure 16: Average of 200 iterations 
for the meeting of the FDA 
Circulatory Systems Devices Advisory 
Panel Meeting held on January 13, 
2005. Iterations use a binomial 
threshold value for each of ten topics.  
Heavier lines indicate stronger links, 
whereas lighter lines indicate weaker 
links. All links shown are stronger 
than the global average of all speakers. 
Remaining links have been deleted. 

 
Both of these figures place Voting Member 8 in the most central position on the 

graph of committee voting members. Both graphs also show a potentially 

Legend:

Red = voted against device approval

Blue = voted for device approval
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important role for Voting Member 6 who is graphically closer to the cardiologists 

while still voting with the other surgeons. It may be significant that Voting 

Member 6 was Canadian whereas all other surgeons were employed at hospitals 

in the United States. Furthermore, Figure 16 recognizes strong links between 

Voting Members 9 and 10 to Voting Member 8. This is consistent with a reading 

of the meeting transcript that indicates that Voting Member 8 shared many of the 

concerns of her colleagues, despite ultimately voting with the surgeon majority. 

Voting Member 12, who abstained from voting, is strongly linked to Voting 

Member 10, consistent with his background as a clinical trial designer who would 

be interested in both the clinical and the statistical elements of the analysis. It is 

interesting to note that both figures also display long “tails” of surgeons, who 

seem to have voted as a bloc.  

The above results indicate that, at least in some cases, medical specialty might 

have some predictive value for voting outcomes. Further analysis in Chapter 5 is 

aimed at attempting to confirm or deny this hypothesis. Of particular interest are 

those panel members who are linked across specialty boundaries. These 

individuals might possess a skill set or personal inclination that enables them to 

mediate between or learn from panel members in other specialties. This might be 

associated with a breadth of expertise. 

Selection of Number of Topics 

Without any knowledge of the content of a particular meeting corpus, it is 

difficult to choose an appropriate number of topics, T, a priori. Given 

hyperparameter values, as defined above, we may use perplexity as a metric for 

choosing T. Ideally, T would be chosen so as to be as small as possible (i.e., 

maximum dimensionality reduction) while still constituting a good model fit.  

The number of topics is chosen independently for each transcript as follows: 35 

AT models are fit to the transcript for t = 1 … 35 topics – given the 
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hyperparameter values as defined above, we found that 35 topics was an 

appropriate upper bound since,  as the number of topics increases, model cross-

entropy becomes asymptotically smaller. When fixed values of α are used, there is 

a unique minimum in the function relating perplexity to number of topics. 

Griffiths and Steyvers (2004) report a similar unique minimum for fitted values of 

α with fixed values of β, although they tested topics in increments of 100 – their 

analysis did not focus on finding a model that fit a comparatively precise number 

of topics within the neighborhood of the minimum value. In principle, given a 

sufficiently large number of topics, the perplexity would begin to increase at a 

relatively mild slope as the model starts over-fitting. Lacking such a unique 

minimum here, we choose the minimum number of topics such that the cross-

entropy values are statistically indistinguishable from larger numbers of topics. 

Thus, for each model, 20 independent samples are generated from one randomly 

initialized Markov chain after a burn-in of 1000 iterations. Sample independence 

is guaranteed by introducing a lag of 50 iterations between each sample (lags as 

large as 100 iterations were tested, yielding qualitatively similar results). We find 

the smallest value, t0, such that the 95th percentile of all samples for all larger 

values of t is greater than the 5th percentile of t0. Given fitted priors of the sort 

recommended by Griffiths and Steyvers (2004), the asymptotic behavior 

displayed in Figure 17 is typical of AT Model fits. We set the value of T = t0 + 1 

so as to ensure that the model chosen is well beyond the knee in the curve, and 

therefore in the neighborhood of the minimum perplexity.  



 

 107 

0 5 10 15 20 25 30 35 40
550

600

650

700

750

800

850

900

950

1000

Number of Topics

P
e
rp
le
x
it
y

 

Figure 17: Perplexity vs. number of 
topics for the meeting of the FDA 
Circulatory Systems Devices Panel 
held on July 9, 2001. T, the number of 
topics, is equal to 28, using the 
procedure described above. 
Horizontal lines indicate the 5th and 
95th percentiles for perplexity for a 27 
topic model fit. 

 
Once the number of topics has been chosen, a T-topic AT Model is again fit to 

the transcript. Ten samples are taken from 20 randomly initialized Markov chains, 

such that there are 200 samples in total. These form the basis for all subsequent 

analysis. 

Future work in parameter selection could focus on incorporating these 

parameters into a fully Bayesian framework. For example, (Wallach 2008) 
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presents a hyperparameter optimization algorithm7 that, when used with the AT 

model on FDA panel meeting transcripts, generates non-symmetric 

hyperparameter values of α  that are roughly two orders of magnitude smaller 

than those used in this analysis. Values of β remain roughly similar to those 

presented here. In order to minimize perplexity for these hyperparameter values, 

the number of topics must be increased by roughly one order of magnitude to 

about 300 per meeting. These topics are extremely specific, such that there is 

virtually no overlap between authors. This one extreme implementation of the 

AT model takes the modeling assumptions to its limits and, although perplexity is 

absolutely minimized, the modeling assumptions so dominate the analysis as to 

render it useless for the applications intended in this thesis – namely comparison 

of topic overlap between speakers. 

Selection of Network Cutoff  

Network Construction 

We would like to develop a principled way to determine what constitutes a link 

within a given model iteration. As noted above, we would like to link together 

speakers who commonly use the same topics of discourse. In particular, we 

examine each author-pair’s joint probability of speaking about the same topic.  

∑ ===∩
T

i

ii XzZPXzZPXXP )|(*)|()( 2121
 (9) 

We would like to be able to construct an Author-Author matrix, ∆∆∆∆, with entries 

equal to 1 for each linked author pair, and entries equal to 0 otherwise. Note that 

this is different from the author-topic matrix, A, noted above. 

                                                 
7  Wallach’s algorithm requires a prior over hyperparameter values. The results of this test used an “improper 

prior” – i.e., a prior set equal to zero. This is equivalent to a fully data-driven hyperparameter selection 

process that, empirically, has a tendency to over-emphasize the independence of authors for the purposes 

of the analyses performed in this work. 
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Author-Author Matrix Determination 

The AT model outputs an Author-Topic matrix, A, that gives the total number of 

words assigned to each topic for each author. This information must be reduced 

to the ∆∆∆∆ matrix identified above. The form of the author-topic model makes an 

explicit assumption regarding an author’s prior distribution over topics. This 

value is expressed by the hyperparameter α. Given the number of topics fit to a 

particular model, we may use the value of α to generate a set of a priori author-

specific topic distributions. These, in turn, can be input into the equation above 

in order to generate a prior distribution for any given author-pair’s link 

probability. Such a distribution is shown in Figure 18 
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Figure 18: A priori probability 
distribution for links between speakers 
in the April 21, 2004 meeting with 28 
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topics. The median of this distribution 
is 0.0356; whereas 1/28 = 0.0357. The 
assumption of a symmetric Dirchlet 
prior distribution implies that this 
distribution holds for all speakers until 
it is updated with data observed from 
the transcripts.  

In practice, the median value of this distribution becomes arbitrarily close to 1/(# 

topics). Therefore, within one iteration we assign a link if the observed 

probability that a given author pair discusses the same topic is linked exceeds 

1/(# topics). In other words, it is more likely than not that the author-pair is 

linked. If there are 10 topics, we would expect every author-pair to have a 10% 

probability of being linked, a priori. We consider an author pair to be linked within 

a given model iteration if that pair’s joint probability exceeds what we would 

expect under a uniform distribution. This scheme allows network construction to 

adapt to changing numbers of topics. 

As before, we average over multiple MCMC iterations to enable a social network 

to be created with weighted links, where the weight of each link is proportional to 

its frequency of occurrence among iterations. Nevertheless, the variability among 

draws from the MCMC algorithm suggests that links should not be weighted. 

Histograms of the distribution of these link frequency values tend to show a 

bimodal structure (see Figure 19) suggesting that a description of author pairs as 

either connected or not connected is appropriate.  
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Figure 19: Sample histogram of 
linkage frequency for an FDA 
Advisory Panel meeting of April 21, 
2004. The horizontal axis is the link 
weight (i.e., the frequency with which 
author-pairs are connected over 200 
samples from the AT model). The 
vertical axis is the link frequency of 
links with the weight specified by the 
abcissa (i.e., the number of author-
pairs that are connected with the 
frequency specified by the abcissa). 
Note the existence of two modes 
located at the extremes of the 
distribution.  
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The final challenge in constructing a network is determining where to establish 

the cutoff beyond which we accept that a pair of speakers is linked.  

Bonferroni Cutoff Criterion 

Two authors are considered to be linked in a network if they are more likely to be 

connected by an edge in a given sample iteration than not. Since there are 200 

samples from which a link might be inferred, we would like to establish a cutoff 

value that is consistent across networks. The largest committee in our sample of 

37 FDA advisory panel meetings possesses 15 potential voting members (not 

including the committee chair). Therefore, the largest network has 15*14/2 = 105 

potential links among voting members. Each potential link must be tested in 

order to determine if it occurs more frequently than would be expected by 

chance. Lacking any prior information on link probabilities, we assume that a 

given speaker has no predisposition towards either linking or not linking. 

Therefore, we would expect that a randomly chosen pair of speakers would be 

linked 100 times out of 200.  We would like to know if a given pair’s link 

frequency is higher than what we would expect under a uniform distribution 

across conditions of linkage and no linkage. The binomial test may be used for 

precisely this sort of analysis. Furthermore, given that we are testing up to 105 

different independent potential links, the p-value for this test should be subject to 

a Bonferroni correction. Using a binomial test, and a family-wise error rate of 

p=0.05, a given author pair must be linked at least 125 times out of 200 samples 

to be considered more frequently linked than we would expect by chance. This is 

the criterion that we use for all of the results presented in Chapter 5.  

Sample Networks  

The results of the analysis below anecdotally support the assertion that language 

and medical specialty are correlated. Nevertheless, some meetings display voting 

along institutional lines more clearly than do others. For example, Figure 20 and 
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Figure 21 show a strong grouping by medical specialty. Such clustering 

relationships are reminiscent of work in social psychology, in particular Dynamic 

Social Impact Theory (Nowak, Szamrej et al. 1990; Latane 1996). 

 

Figure 20: Graph of the FDA 
Circulatory Systems Advisory Panel 
meeting held on December 5, 2000. 
This meeting yielded a consensus 
approval of the medical device under 
analysis. Node shape represents 
medical specialty. The committee chair 
is in black.  

Legend: 
Red = Voted against Device Approval 
Blue = Voted for Device Approval 

= Surgery 
= Cardiology 
= Electrophysiology 

Legend: 
Red = Voted against Device Approval 
Blue = Voted for Device Approval 

= Surgery 
= Cardiology 
= Electrophysiology 
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Figure 21: Graph of the FDA 
Circulatory Systems Advisory Panel 
meeting held on October 27, 1998. 
This meeting yielded an approval of 
the medical device under analysis, with 
only one dissenter (in red). Node 
shape represents medical specialty. 
The committee chair is labeled and did 
not vote. The voter in black was not 
present for the vote. 

Grouping by Votes 

In situations where the panel’s vote is split, the method described in this paper 

can often isolate voting cliques (see Figure 22 and Figure 23). In some meetings, 

medical specialty and vote are aligned. This is the case in Figure 22. In this 

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Statistician

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Statistician
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meeting, all surgeons voted against device approval, whereas most cardiologists 

voted in favor. Radiologists’ votes were split evenly between the two. In others, 

such as Figure 23, there is a weaker correspondence. Both graphs show members 

of the same voting coalition to be connected. It is interesting that the device 

analyzed in the meeting represented by Figure 23 would not have been used by 

the vast majority of the medical specialties represented on the panel. That panel 

members interacted more frequently across boundaries on this device suggests a 

context-dependence for specialty grouping. Furthermore, both of these meetings 

were quite long, (approximately 10 hours) suggesting that panel members may 

have taken more time to learn from one another in the face of uncertain data. 

 

 

Figure 22. Graph of the FDA 
Circulatory Systems Advisory Panel 
meeting held on April 21, 2004. This 
meeting yielded an approval of the 
medical device under analysis, 
although the panel was split (blue, in 
favor; red against). Node shape 

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Radiology

= Neurology

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Radiology

= Neurology
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represents medical specialty. The 
committee chair is in black. 

 

Figure 23: Graph of  the FDA 
Circulatory Systems Advisory Panel 
meeting held on June 6, 1998. This 
device was not approved. Node shape 
represents medical specialty. The 
committee chair is in black. Non-
approval votes are in red; approval 
votes are in blue. In this meeting, vote 
is not correlated with medical 
specialty. 

 

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

Legend:
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Legend:
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Legend:
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In many of the cases for which graphs were generated, connectivity patterns 

could be understood using vote or specialty information alone. Chapter 5 will 

present an analysis exploring the relation between network connectivity and 

cohesion by vote or specialty. 

Other Factors  

On June 23, 2005 the Circulatory Systems Devices Panel held a meeting to 

determine whether a particular device should be approved for a Humanitarian 

Device Exemption. Such a meeting almost surely appeals to a sense of personal 

ethical responsibility that transcends medical specialty. In situations such as these, 

we might expect that individual votes and connectivity patterns will be more 

idiosyncratic and exhibit less coherence. Figure 24 shows the connectivity pattern 

for this meeting. Note that this graph cannot be as easily partitioned by vote or 

by medical specialty confirming the idea that the evaluation is independent of 

medical specialty and suggesting that voting blocs are not operative in this special 

case. That voting blocs are not connected in this graph suggests that dialogue may 

not be effective in changing preferences in the face of ethical or value-based 

decision-making. 
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Figure 24: Graph of the FDA 
Circulatory Systems Advisory Panel 
meeting held on June 23, 2005. Node 
color represents the vote (red is 
against humanitarian device 
exemption, blue is in favor of 
humanitarian device exemption, black 
is abstention. The committee chair is 
also black. Node shape represents 
medical specialty. 

Explicitly Representing Uncertainty in Graphs 

Future work can focus on explicit representation of link uncertainty between 

speakers. For example, given the prior background link distribution shown in 

Figure 18, we might ask how much more likely is a particular link to occur given 

its author-pair-specific distribution. An example of a prior link distribution 

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology
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compared to its posterior is shown in Figure 25, for a very strongly linked pair of 

authors. 
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Figure 25: Comparison of  prior and 
posterior distribution of  link 
probabilities for two strongly-linked 
voting members during the April 21, 
2004 meeting. An ideal observer 
would place the link probability 
threshold around 0.04, indicating that 
a joint probability greater than this 
value would signal a link with very 
high likelihood. 

Given a pair of probability distributions we would like to determine how likely it 

is that a random sample is drawn from the posterior distribution, as opposed to 

the prior distribution. If the posterior distribution is treated as a signal and the 

prior distribution is treated as noise, we may formulate this problem as one of 
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signal detection. Solving this problem first requires setting a threshold, Θ. An ideal 

observer, i.e., one who assigns equal weight to false positives as to false negatives, 

would set Θ at the point of intersection between the curves representing the 

posterior and prior distributions. All observations that are greater than Θ would 

be considered evidence of a link. Given Θ (which might be calculated using the 

distributions described above), we can calculate the likelihood-ratio or signal-to-noise 

ratio of a given link. This is simply the probability of a correct detection divided 

by the probability of a false positive: 
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∫
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LR                                  (10) 

LR1,2 may serve as an edge weight on a graph between nodes representing 

speakers 1 and 2. For values of LR1,2 > 1, a link is more likely than not. Examples 

of such graphs are shown below in Figure 26 and Figure 27.  
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Figure 26: Weighted graph 
representation of the meeting held on 
March 5, 2002. Link weights reflect 
the likelihood that a given edge is due 
to sharing a topic compared to a 
background prior distribution. Note 
that this graph has a similar 
connectivity pattern to that shown in 
Figure 13, although it is somewhat 
denser due to low-likelihood links 
(e.g., those near 1) 

 
 

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Statistics

= Bioethics Attorney

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Statistics

= Bioethics Attorney
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Figure 27: Weighted graph 
representation of the meeting held on 
March 5, 2002. Link weights reflect 
the likelihood that a given edge is due 
to sharing a topic compared to a 
background prior distribution. Note 
that this graph has a similar 
connectivity pattern to that shown in 
Figure 15, although it is somewhat 
denser due to low-likelihood links 
(e.g., those near 1). 

The graphs shown above are qualitatively very similar to those using the 

Bonferroni cutoff criterion and add apparently more detail. Nevertheless, more 

precise or explicit representation of uncertainty may be misleading. For example, 

a link that is 20 times stronger between two speakers does not necessarily imply 

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Statistics

= Bioethics Attorney

Legend:

Red = Voted against Device Approval

Blue = Voted for Device Approval

= Surgery

= Cardiology

= Electrophysiology

= Statistics

= Bioethics Attorney
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an affinity that scales proportionally. Furthermore, a very weak link, with log-

likelihood near 1.0, is likely to be due to noise. The above method of weighting 

graph links may prove useful in future research. Still, our analysis is more 

concerned with the presence or absence of links than their weights. Therefore, all 

subsequent results rely on the Bonferroni cutoff criterion. Nevertheless, future 

work could focus on refining the signal-detection scheme described above.  

 

Comparison across time 

Having established a means of grouping voters in a social network, we would 

now like to be able to include a temporal aspect in the analysis so as to be able to 

examine patterns of influence. Early attempts to do so focused on the idea that 

each FDA meeting may be divided into sections that coincide with natural breaks 

in the meeting. Examples of such include lunch, and coffee breaks. These breaks 

provide natural stopping points for an analysis. In addition, it is precisely during 

these breaks that committee members may share information off-the-record that 

would otherwise remain unshared. Thus comparing pre- and post-break graphs 

might provide insight into the evolution of committee decisions. All graphs 

shown in this section use a linkage threshold of 20% with ten topics. Figure 28, 

Figure 29 and Figure 30 show the social networks of the January 13, 2005 

meeting for the amount of time between each break: 
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Figure 28: First segment of the 
January 13, 2005 Circulatory Systems 
Devices Panel Meeting. At this point 
in the meeting, voting members had 
not yet expressed any preferences 
regarding voting. Rather, committee 
members were listening to the open 
public hearing and sponsor 
presentations. Data include utterances 
1-377 of 1671 total utterances. 

 

Legend:

Red = voted against device approval

Blue = voted for device approval

= Surgeon

= Cardiologist

= Pharmacologist

= Statistician
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Figure 29: Second segment of the 
January 13, 2005 Circulatory Systems 
Devices Panel Meeting. This graph 
shows that, at this point in the 
meeting, Voting Members 5, 7, 8, 10, 
11 and 12 had begun discussing the 
statistical elements of the clinical trial 
design. Five of the six surgeons 
present have not yet expressed 
utterances. Data include utterances 
378-589 of 1671 total utterances. 

Legend:

Red = voted against device approval

Blue = voted for device approval

= Surgeon

= Cardiologist

= Pharmacologist

= Statistician



 

 126 

 

Figure 30: Third, and final, segment of 
the January 13, 2005 Circulatory 
Systems Device Panel Meeting. This 
graph shows that, after lunch, the 
surgeons in the room, who were 
previous silent, seemed to align in 
favor of device approval. Voting 
Members 8, 9, 10 and 12 seemed to 
maintain their relative positions 
between the second and third 
segments. Data include utterances 
590-1671.  

The above figures show a small group of voters engaging in a discussion of 

interest – forming a coalition, as it were – while those who remain silent 

Legend:

Red = voted against device approval

Blue = voted for device approval

= Surgeon

= Cardiologist

= Pharmacologist

= Statistician
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eventually come to dominate the voting outcome through strength of numbers. It 

is particularly interesting that these two groups may be roughly divided by 

medical specialty, with exchange between representatives of each specialty group 

having appeared by the third segment. 

 
We may perform a similar analysis on the meeting analyzed previously – i.e., the 

meeting of the Circulatory Systems Devices Panel of March, 5th, 2002. This 

meeting is divided into “before lunch” and “after lunch” segments, as shown in 

Figure 31 and Figure 32. 

 

Figure 31: Before-lunch segment of 
the March 5th, 2002 Circulatory 
Systems Devices Panel Meeting. This 
graph shows that, at this point in the 

Legend:

Red = voted against device approval

Blue = voted for device approval

= Surgeon

= Cardiologist

= Bioethicist

= Electrophysiologist
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meeting, voting members had largely 
aligned themselves into blocs that 
would later vote similarly. Data 
include utterances 1-703 of 1250 total 
utterances. 

 

Figure 32: After-lunch segment of  the 
March 5th, 2002 Circulatory Systems 
Devices Panel Meeting. This graph 
shows that, by the second half  of  the 
meeting, those who would later vote 
against device approval had become 
more strongly linked to those who 
would later support device approval. 
This pattern perhaps reflects attempts 
by the approval voters to convince the 

Legend:

Red = voted against device approval

Blue = voted for device approval

= Surgeon

= Cardiologist

= Bioethicist

= Electrophysiologist
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non-approval voters to vote 
differently. Data include utterances 
704-1250 of  1250 total utterances. 

These graphs indicate a strong grouping by vote prior to lunch, followed by 

communication across these groups afterwards. Voting seemed to occur along 

the lines established early in the meeting. 

Finally, we examine a meeting held on April 21, 2004. This meeting was originally 

divided into four parts. Given that the voting members did not speak during the 

first two quarters of the meeting (leading to a fully disconnected graph), we 

present only the last two parts of the meeting, displayed in Figure 33 and Figure 

34.  
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Figure 33: Before-lunch segment of 
the April 21st, 2004 Circulatory 
Systems Devices Panel Meeting. This 
graph shows well-defined coalitions 
having been formed relatively early in 
the meeting. It is interesting that 
voting  patterns seem to largely 
respect the boundaries of particular 
medical specialties (i.e., surgeons vs. 
cardiologists). Data include utterances 
399-876 of 1822  total utterances.  

 

Legend:
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Figure 34: After-lunch segment of the 
April 21st, 2004 Circulatory Systems 
Devices Panel Meeting. This graph 
shows that the well-defined coalitions 
of the before-lunch segment have 
broken down – particularly the anti-
device coalition. This may well be due 
to attemtps by members of one 
coalition to influence the other, 
leading to cross-coalition dialogue.. 
Data include utterances 877-1822 of 
1822  total utterances. 

Legend:
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The first meeting segment shows the formation of two coalitions that ultimately 

voted oppositely. It is interesting that the pro-approval coalition is composed 

largely of cardiologists, whereas the anti-approval coalition is composed largely of 

non-cardiologists. Furthermore, the bridging members, Voting Members 4 and 8 

were outliers within their own group. Both served as chairs of other meetings, 

and are therefore perhaps more likely to listen broadly and to work to achieve 

consensus among panel members. The second meeting segment shows the 

breakdown and fragmentation of the anti-approval coalition and the 

consolidation of the pro-approval coalition prior to voting which may again 

indicate that, later in the meeting, attempts at dialogue across groups occurred but 

did not achieve consensus in this case. Because we do not know an individual’s 

preference midway through the meeting, we cannot tell if this effect holds during 

meetings that did reach consensus. 

Extraction of time dynamics using the above method is not generalizable across 

meetings. The reason for this is that the locations of the lunch and coffee breaks 

are not always timed to coincide with speech from voting members. In many 

meetings, the lunch break occurs before any panel member has an opportunity to 

speak. It is difficult to tell, from this representation, how influence passes in these 

committee meetings. Furthermore, a representation that separates post-break 

from pre-break implicitly assumes that no words spoken before the break carry 

over – this is clearly incorrect. Finally, there may be significant dynamics that 

occur on a shorter time-scale than depicted above. Although future work could 

focus on further developing this technique using methods such as Dynamic 

Network Analysis (Carley 2003), this thesis presents a different method of 

incorporating time into the analysis. This will be presented below. 
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Directed Graphs  

The conversation analysis literature in sociology (e.g., Gibson 2008) notes that, 

within small groups, influence is often linked to capacity to affect a topic shift. 

This is because of  the linear nature of  speech – two people cannot typically speak 

at the same time if  both are to be understood. Speaking order is therefore related 

to agenda control. For example, a more influential speaker may change the 

subject, whereas a less influential speaker will remain on the subject introduced by 

the higher-status speaker.  

Given an infrastructure for examining topic overlap among speakers, we can take 

advantage of  the temporal aspect of  our data to develop insights about topic 

changing as follows:  

Consider a sample, s, from the posterior distribution of  the AT model. Within 

this sample, choose a pair of  speakers, x1 and x2, and a topic z. Given that 

utterances are temporally ordered, this defines two separate time-series. Figure 35 

shows two time series for two different speakers in the meeting held on March 4, 

2002.  
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Figure 35: Time series for two 
speakers on topic #13 during the 
meeting held on January 13, 2005. 

This chart clearly shows that x1 speaks about topic z before x2 does. Based on this, 

we can say that x1 leads x2. These time series can be used to generate the topic-specific 

cross correlation for speakers x1 and x2, in topic z: 
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where fi,t
s (d) is the number of  words spoken by author i and assigned to topic z in 

document d, in sample s. The cross-correlation function for the data shown in 

Figure 35 is shown in Figure 36. 
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Figure 36: Cross-correlation of the 
two time series shown in Figure 35. 

Figure 36 clearly shows that the maximum value of  the cross-correlation function 

is less than zero. This is a quantitative indication that x2 lags x1. The location of  

this peak is described by the expression ])[(maxarg ,,1 δ
δ

s

zj

s

zi ffm ∗= . In 

principle, there may be multiple peaks in the cross-correlation function, as in 

Figure 37.  
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Figure 37: A cross-correlation 
function with two peaks, representing 
two speakers who are equally involved 
in leading conversation on this topic. 

For each sample, s, from the AT Model’s posterior distribution, we examine the 

cross-correlation function for each author pair, {xi, xj}, in topic z. Let there be k 

peaks in the cross-correlation function. For each peak, if  mk > 0, we say that 

author i lags author j in topic z, at point mk (i.e., 1,,, =
k

s

mzjil ). Similarly, we say that 

author i leads author j in topic z at point mk (i.e., 1,,, −=s

mzji k
l ) if  mk < 0. 

Otherwise, 0,,, =s

mzji k
l . For each sample, s, we define the polarity of  authors i and j 

in topic z to be the median of  the lsi,j,zt.  
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If  most of  the peaks in the cross-correlation function are greater than zero, then 

the polarity = 1; if  most of  the peaks are less than zero, then the polarity = -1; 

otherwise, the polarity = 0. 

We are particularly interested in the topic polarities for author-pairs who are 

linked in the graph methodology outlined above – i.e., where ∆i,j = ∆j,i =1. Using 

the polarity values defined above, we are interested in determining directionality 

in ∆∆∆∆. For each sample, s, we define the direction of  ei,j in sample s as: 

∑
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This expression weights each topic polarity by its importance in the joint 

probability distribution between xi and xj, and is constrained to be between -1 and 

1 by definition. The set of  200 ds(ei,j) defines a distribution, three types of  which 

are shown below: 

The net edge direction, d(ei,j) is determined by partition of  the unit interval into three 

equal segments. In particular, we examine the proportion of  the ds(ei,j) that are 

greater than 0. If  more than 66% of  the ds(ei,j) > 0 then d(ei,j) = 1 (the arrow 

points from j to i) – an empirical example of  this case is shown in Figure 38.  
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Figure 38: Edge direction distribution 
for two speakers, one of  who clearly 
leads the other. Both speakers were 
voting members in the meeting held 
on January 13, 2005. 

 
If  less than 33% of  ds(ei,j) > 0 then d(ei,j) = -1 (the arrow points from i to j) – an 

empirical example of  this case is shown in Figure 39. 
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Figure 39: Edge direction distribution 
for two speakers, one of  whom clearly 
lags the other. Both speakers were 
voting members in the meeting held 
on January 13, 2005. 

Otherwise, d(ei,j) = 0 (the arrow is bidirectional) – an empirical example of  this 

case is shown in Figure 40.  
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Figure 40: Edge direction distribution 
for two speakers, neither of  whom 
clearly lags the other. Both speakers 
were voting members in the meeting 
held on January 13, 2005.  

 
The result is a directed network, examples of  which are seen in Figure 41 and 

Figure 42. 
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Figure 41: Directed network 
representation of  the FDA Circulatory 
Systems Advisory Panel meeting held 
on January 13, 2005. Node size 
increases with the number of  words 
spoken by that author; node shape 
represents medical specialty. Non-
approval votes are red; approval votes 
are blue; non-voters are black. Each 
speaker’s top five words are listed, as is 
each edge’s link frequency. This 
diagram is generated using the dot 
algorithm (Gansner and North 1999). 
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Figure 42: Directed network 
representation of the FDA Circulatory 
Systems Advisory Panel meeting held 
on July 9, 2001. Node size increases 
with the number of words spoken by 
that author; node shape represents 
medical specialty. Non-approval votes 
are red; approval votes are blue; non-
voters are black. This diagram is 
generated using the dot algorithm 
(Gansner and North 1999). 

These directed graphs address all identified limitations of  the LSA approach 

while simultaneously providing a computational platform for the analysis of  
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communication patterns in technical expert committee meetings. The next 

chapter focuses on analysis of  these graphs and presents results regarding 

decision-making on FDA panels.   
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C h a p t e r  5  

RESULTS AND IMPLICATIONS  

יום ובא אחר ' אמר אביי ולטעמיה דרב בא אחד ואמר לה הרי את מקודשת לי מעכשיו ולאחר ל

 ובא אחר ואמר לה הרי את מקודשת לי ואמר לה הרי את מקודשת לי מעכשיו ולאחר עשרים יום

מעכשיו ולאחר עשרה ימים מראשון ומאחרון צריכה גט מאמצעי אינה צריכה גט מה נפשך אי 

קידושי דהנך לאו קידושי אי חזרה הואי דבתרא קידושי דהנך לאו קידושי תנאה הואי דקמא 

ל" קמפשיטא מהו דתימא האי לישנא משמע תנאה ומשמע חזרה ותיבעי גיטא מכל חד וחד  

Abaye said: According to Rav, if [a man] came and said to [a woman]: “Behold, you are 

betrothed to me from now and after thirty days,”and then another man came and said to [the 

same woman]: “Behold, you are betrothed to me from now and after twenty days,” and then 

another man came and said to her: “Behold, you are betrothed to me from now and after ten 

days,” she requires a divorce from the first and from the last, but from the intermediate she does 

not require a divorce. Whatever you consider, if [each man’s statement] is a stipulation, the first 

man’s betrothal [is valid]. If, [each man’s statement] is a retraction, the last man’s betrothal [is 

valid]; the other mens’ betrothals are not. This is obvious; [but] you might have interpreted [Rav 

to mean that] this language can carry the meaning [of] a stipulation, and can [also] carry the 

meaning [of] a retraction. Thus [the woman] would require a divorce from each and every one. 

[Abaye] informs us. –Babylonian Talmud, Kiddushin, 59b-60a, trans. Hebrew and Aramaic 

“It is not that the rabbis went to the depth of peoples’ minds that they either all mean a 

stipulation or they all mean a retraction. Rather, the implication of the words was uncertain to 

them. Therefore, even if one of them says that he meant one thing, and the other says he meant 

the opposite, we only pay heed to the primary indication and law of the language. For the 

intention of the one who made the betrothal isn’t known to the witnesses except from the language 

and what it indicates.” – Rabbi Shlomo ben Aderet, b. 1235 - d. 1310, Chiddushei 

HaRashba.  trans. Hebrew, Rabbi B. Ganz, on socially determined limits of verbal ambiguity. 
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Sources of Influence on FDA Panels  

One of the major goals of this work is to attempt to identify potential flows of 

communication on FDA panels, and their implications for committee behavior. 

In order to better understand these, we first examine the backgrounds of 

individual panel members. The following information has been collected for each 

panel member: 

1. Gender 

2. Race 

3. Medical Specialty 

4. Age (number of years since doctoral-level degree granted) 

5. h-Index8 

The first four attributes were collected using a combination of Google searches 

and information stored at http://www.vitals.com; whereas h-Index for a given 

panel member in a given year was provided by the ISI Web of Science.  

With the exception of medical specialty, all of the variables listed above fall into 

the category of “attribute-based status characteristics”, as defined in the “small-

groups” strand of literature in sociology (e.g., as represented in Berger et al. 1972). 

This body of literature predicts that these status characteristics might be 

associated with different voting behaviors. One sort of behavior that we might 

see on FDA panels is “air-time” – i.e., the amount of time that a given speaker 

speaks. Research in social psychology has shown that perceived influence is 

                                                 
8 H-Index is a metric of academic prestige associated with journal citation behavior. “A scientist has index h if h 

of [his/her] Np papers have at least h citations each, and the other (Np − h) papers have at most h citations each.” (Hirsch 

2005). Deeper analysis of the impact of other demographic variables on h-index (cf. the analysis performed 

in Kelly & Jennions 2006) is shown in Appendix 2. 
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associated with air-time (Bottger 1984). This is to be contrasted with actual 

influence, which Bottger finds is associated with problem-solving expertise. 

Results shown in Table 6 indicate that several variables have a significant effect 

on air-time: 

Table 6: 4-way ANOVA showing the 
effects of Gender, Medical Specialty, 
h-Index, and Age on air-time for our 
sample of 37 meetings. In this 
analysis, air-time has been normalized 
and a logit transform has been applied 
to enable comparisons across 
meetings. When race is included as an 
explanatory variable, it fails to reach 
significance (p=0.20), suggesting no 
identifiable effect of race. Medical 
Specialty captures most of the 
variance in air-time, followed by h-
Index, gender and age. 

Variable Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F p-value 

Gender 5.81 1 5.81 14.24 0.0002 

Medical 

Specialty 

9.69 7 1.38 3.39 0.0016 

h-Index 7.19 1 7.19 17.64 <0.0001 

Age 2.61 1 2.61 6.40 0.012 

Error 137.78 338 0.41  
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Total 168.44 348  

 

Independent Tukey Honestly-Significant Difference (HSD) tests of multiple 

comparisons show that women use significantly more air-time than do men; 

however, this effect does not exist for the subset of 17 meetings in which a voting 

minority existed. Table 7 shows the same ANOVA analysis on this subset of 

meetings: 

Table 7: 4-way ANOVA showing the 
effects of Gender, Medical Specialty, 
h-Index, and Age on air-time for the 
subset of 17 meetings in which there 
was a minority. In this analysis, air-
time has been normalized and a logit 
transform has been applied to enable 
comparisons across meetings. Here, 
most of the variance is captured by h-
Index followed by Medical Specialty 
and age. Gender fails to reach 
significance as an explanatory variable. 

Variable Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F p-value 

Gender 0.0022 1 0.0022 0.93 0.34 

Medical 

Specialty 

0.039 6 0.0065 2.73 0.015 

h-Index 0.043 1 0.043 18.22 <0.0001 
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Age 0.013 1 0.013 5.28 0.023 

Error 137.78 338 0.41 

Total 168.44 348  

 

 

Empirical Finding 1: Gender, Medical Specialty, h-Index, and Age are all 

significant variables associated with a panel member’s air-time. Women 

tend to have more air-time than men do, although this effect is not visible 

in meetings with voting differences. 

Bottger found that, in the most effective teams, air-time and actual influence 

covary. We might therefore expect that, in meetings where there is not consensus, 

members of the voting majority would tend to have a higher air-time than do 

members of the voting minority. Figure 43 shows that this is not the case.  
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Figure 43: A Kruskal-Wallis test 
shows no significant difference 
between the air-time proportions of 
majority and minority voters (p=0.86) 
for the 17 meetings in which a split-
vote existed. 

Empirical Finding 2: There is no observably significant effect between 

vote and air-time. 

Finally, we might examine the impact of many of the status characteristics 

outlined above on voting behavior. Although vote is a dichotomous variable, and 

therefore does not meet the ANOVA assumptions, one may argue that, with a 

sufficiently large number of datapoints, ANOVA still provides useful results with 

a sufficiently large number of degrees of freedom for error (Lunney 1970; see 

Table 8). 
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Table 8: 4-way ANOVA showing the 
effects of Gender, Medical Specialty, 
h-Index and Age on voting outcome 
for the 17 meetings in which there was 
a voting minority. In this analysis, 
voting outcome is a dichotomous 
variable, thereby violating the 
ANOVA assumptions. Only gender 
has a significant effect on voting 
outcome. 

Variable Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F p-value 

Gender 1.442 1 1.442 7.76 0.006 

Medical 

Specialty 

0.5096 6 0.085 0.46 0.84 

h-Index 0.039 1 0.039 0.21 0.65 

Age 0.097 1 0.097 0.52 0.47 

Race 0.51 3 0.17 0.91 0.42 

Error 29.72 160 0.19 

Total 32.31 172  

 

 

The above table shows no significant effect of any of the variables tested on 

voting outcome, with the exception of gender. Table 9 shows an independent 
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analysis of the effect of gender on voting outcome, with the result that women 

are more frequently in the voting majority than men are.  

Table 9: A chi-square test examining 
the impact of gender on voting 
outcome for the 17 meetings in which 
a minority existed shows a significant 

result (χ2=8.29;dof=1;p=0.0040) with 
women more likely to be in the 
majority. 

 Majority Minority TOTAL 

Male 100 41 141 

Female 33 2 35 

TOTAL 133 43 176 

 

Empirical Finding 3: There is no observably significant effect of medical 

specialty, h-Index, age or race on voting behavior. Women are more likely 

to be in the voting majority than men are.  

Medical Specialty as an Organizing Factor 

We now turn to the role of medical specialty as an organizing factor on the FDA 

Circulatory Systems Advisory Panel. Unlike the other characteristics discussed in 

(Berger et al. 1972), medical specialty is typically not associated with status in the 

sociology literature. Indeed, Table 10 shows that medical specialty alone is not a 

strong predictor of voting behavior: 



 

 152 

Table 10: There is no significant 
relation between medical specialty and 
voting behavior 

(χ2=4.29;dof=8;p=0.83) 

 Surgeon Cardio-

logist 

Electrophysio-

logist 

Statistician Other TOTAL 

Abstention 2 2 1 1 2 8 

Voting 

Minority 

15 16 6 2 4 43 

Voting 

Majority 

33 53 15 12 20 133 

TOTAL 50 71 22 15 26 184 

 

Empirical Finding 4: There is no observably significant effect between 

medical specialty and vote. 

We have already noted the statistically significant role of medical specialty as a 

control variable when measuring air time. Figure 44 shows a boxplot for the four 

most strongly-represented specialties on the panel: surgeons, cardiologists, 

electrophysiologists and statisticians. Visual inspection shows that surgeons and 

electrophysiologists speak less frequently than do cardiologists and statisticians. A 

Tukey HSD test for multiple comparisons shows that surgeons speak less 

frequently than do cardiologists and statisticians, and that cardiologists speak 

more frequently than do electrophysiologists.  
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Figure 44: Box plots for the four most 
strongly-represented specialties. Note 
that more “clinical” specialties 
(surgeons and electrophysiologists) 
tend to speak less than the more 
“medical” specialties (cardiologists 
and statisticians).  

The mediating effect of medical specialty is perhaps most apparent when it is 

examined using the graph-based methodology outlined in chapter 3. We have 

already noted some graphs where individual voters tend to group by medical 

specialty. This is because, in these meetings, members of the same specialty use 

common terminology. This strongly suggests that, in these meetings, the subject 

of discussion is mediated by the specialties present. We would like to formalize 

this intuition in order to determine if it is a phenomenon that is widespread 

across meetings: 
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Consider a graph, ∆∆∆∆, generated by the method outlined in chapter 4. One such 

graph may be generated for each of the 37 meetings that we analyze. We would 

like to be able to determine, on a given graph, how likely members of the same 

medical specialty are to be linked to one another. Suppose that graph ∆∆∆∆ has n 

edges, m of which connect a pair of speakers who have the same medical 

specialty. We may therefore define specialty cohesion as m/n – the proportion of 

edges in graph ∆∆∆∆ connecting members of the same medical specialty. A high 

specialty cohesion might indicate that members of the same medical specialty are 

more likely to link than are members of different medical specialties – on the 

other hand, it might just indicate that the meeting is homogenous – if there is 

very little diversity on a panel, then we might expect cohesion to be high by 

definition. We would therefore prefer to compare the observed specialty 

cohesion to the cohesion of graphs that have similar properties to ∆∆∆∆.... We can do 

this by examining specialty cohesion percentile: For each graph, ∆∆∆∆, representing a 

meeting, 1000 random graphs are generated having a number of nodes, and a 

graph density, equal to those found in ∆∆∆∆. . . . Each node is similarly assigned a 

medical specialty as in ∆∆∆∆. Specialty cohesion is calculated for each of these 

random graphs, generating a meeting-specific distribution. Specialty cohesion 

percentile is defined as the proportion of the resultant graphs that have lower 

specialty cohesion than ∆∆∆∆.... 
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Random Graph Background Distribution

Empirical Specialty Cohesion Percentile Distribution

 

Figure 45: Histogram of Specialty 
Cohesion Percentiles for the 37 
meetings in our sample. The empirical 
specialty cohesion percentile 
distribution's cumulative distribution 
function is significantly less than that 
of the background distribution (one-
sided Kolmogorov-Smirnov test; 
p=0.0045) indicating that the 
empirical distribution has more 
probability density concentrated near 
unity and away from zero. 

Figure 45 shows the empirical distribution of specialty cohesion percentiles for 

the 37 meetings analyzed (in red). This is contrasted with the specialty cohesion 

percentile distribution for 1000 random graphs – a uniform distribution. We may 

see, by inspection, that the empirical specialty cohesion percentile distribution has 

a right skew – i.e., probability mass is concentrated near 1 and away from 0. This 

suggests that specialties are more likely to group together than we might expect 

under conditions of chance. A Kolmogorov-Smirnov test for equality of 

distributions finds that the empirical cumulative distribution function (CDF) is 
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significantly less than the uniform background CDF (p=0.0045), indicating that 

the skew shown in Figure 45 is statistically significant. Plots of the CDFs are 

shown in Figure 46.  
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Figure 46: Cumulative Distribution 
Plot of Specialty Cohesion Percentiles 
for the 37 meetings in our sample. 
The empirical specialty cohesion 
percentile distribution's cumulative 
distribution function is significantly 
less than that of the background 
distribution (one-sided Kolmogorov-
Smirnov test; p=0.0045) indicating 
that the empirical distribution has 
more probability density concentrated 
near unity and away from zero. 
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These results provide support for the notion that members of the same medical 

specialty tend to preferentially link to one another, but not in a way that totally 

precludes links to other specialties.  

Empirical Finding 5: Panel members of the same medical specialty are 

significantly more likely to be linked than would be expected under 

chance. 

Anecdotal experience also shows a relation between voting behavior and linkage 

patterns. If people who vote the same way also share linguistic attributes, then 

this suggests that their attention may be directed towards something that drives 

their decision outcome. This further suggests the possibility of agreement on a 

relatively small number of reasons for either approval or non-approval. On the 

other hand, the absence of links between members who vote the same way 

suggests that there may be a high diversity of reasons for why individuals vote a 

certain way, combined with attempts by some panel members to convince others 

who might disagree. In a similar manner to how we define specialty cohesion, we 

define vote cohesion as the proportion of edges in a graph that connect two panel 

members who vote the same way. Vote cohesion percentile is the proportion of 

random graphs, out of 1000 samples, that have lower vote cohesion than a graph 

representing a given meeting. There are 11 meetings in which there is a voting 

minority that has at least two people in it. These are used to generate a second 

meeting-specific distribution found in (in red) in Figure 47. This is contrasted 

against the vote cohesion percentile distribution for 1000 random graphs – a 

uniform distribution. 
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Figure 47: Histogram of Vote 
Cohesion Percentiles for the 11 
meetings with a minority of size 2 or 
greater. The empirical vote cohesion 
percentile distribution's cumulative 
distribution function is significantly 
less than that of the background 
distribution (one-sided Kolmogorov-
Smirnov test; p=0.015) indicating that 
the empirical distribution has more 
probability density concentrated near 
unity and away from zero. 

We may see, by inspection, that the empirical vote cohesion percentile 

distribution has a right skew – i.e., probability mass is concentrated near 1 and 

away from 0. This suggests that people who vote alike are more likely to group 

together than we might expect under conditions of chance. A Kolmogorov-
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Smirnov test for equality of distributions finds that the empirical cumulative 

distribution function (CDF) is significantly less than the uniform background 

CDF (p=0.015), shown in Figure 48. These results provide support for the 

notion that panel members who vote similarly tend to be linked.  
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Figure 48: Cumulative Distribution 
Plot of Specialty Cohesion Percentiles 
for the 11 meetings with a minority 
with two or more voting members. 
The empirical vote cohesion percentile 
distribution's cumulative distribution 
function is significantly less than that 
of the background distribution (one-
sided Kolmogorov-Smirnov test; 
p=0.015) indicating that the empirical 
distribution has more probability 
density concentrated near unity and 
away from zero. 
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Empirical Finding 6: Panel members who vote the same way are 

significantly more likely to be linked than would be expected under 

chance. 

A scatter plot of specialty cohesion percentile vs. vote cohesion percentile for the 

11 meetings analyzed shows that the two quantities are correlated (Spearman rho 

= 0.79, p=0.0061). This is a relatively tight correlation, suggesting strongly that 

specialty cohesion and voting cohesion increase together. In other words, 

meetings in which individuals’ language links them by specialty are also meetings 

in which they are linked by vote. Of the 11 meetings observed, five have 

particularly high specialty cohesion and high vote cohesion, suggesting that these 

factors are dominant in these particular meetings.  
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Figure 49: Scatter plot of Vote 
Cohesion percentile vs. Specialty 
Cohesion percentile for 11 meetings in 
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which there was a minority of two or 
more. Vote and specialty cohesion 
percentiles are positively associated 
(Spearman Rho =0.79; p=0.0061). 
Each datapoint is labeled by its 
corresponding meeting ID, as 
catalogued in Appendix 3. Datapoints 
are also color-coded by the 
proportional size of the minority in 
each meeting, suggesting that this 
effect holds independent of 
proportional minority size. 

Empirical Finding 7: Vote cohesion percentile and specialty cohesion 

percentile are significantly positively associated for the subset of 11 

meetings with at least two members in the voting minority. 

Directed Graph Results 

The Effects of Panel Member Speaking Order  

Chapter 4 outlined a methodology for creating directed graphs by taking 

advantage of temporal ordering among topics. Influential panel members, who 

initiate topics that others follow, are more likely to be near the “top” of the graph 

(i.e., a low indegree) whereas panel members who are not followed tend to be 

near the “bottom” (low outdegree). This perhaps reflects a tendency for members 

of the voting minority to speak later in the meeting, compared to members of the 

voting majority. Figure 50 shows the difference between the median speaking 

order locations of voting majority and voting minority members. Voting minority 

members tend to speak later (p=0.0008) than do members of the voting majority.  
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Figure 50: Kruskal-Wallis non-
parametric ANOVA finds a significant 
difference between the median 
speaking order rank of voting majority 
and voting minority voting members 
in the 17 meetings in which there was 
a voting minority (abstentions were 
not included); p=0.0008. Voting 
minority members speak later than 
majority members do. 

When meetings with a voting minority of only one member are excluded, we also 

find a significant difference between the median speaking order locations of 

members of the majority and the minority (p=0.011). A boxplot of this result is 

shown in Figure 51. 
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Figure 51: Kruskal-Wallis non-
parametric ANOVA finds a significant 
difference between the median 
speaking order rank of voting majority 
and voting minority voting members 
in the 11 meetings in which there was 
a voting minority with two or more 
voting members (abstentions were not 
included); p=0.011. Voting minority 
members speak later than voting 
majority members do.  

Empirical Finding 8: Members of the voting minority tend to speak later 

than do members of the voting majority. 

Members of the voting minority tend to have a lower graph outdegree than do 

members of the voting majority (p=0.045), shown in Figure 52.  
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Figure 52: Kruskal-Wallis non-
parametric ANOVA finds a significant 
difference between the outdegree of 
voting majority and voting minority 
panel members in the 17 meetings in 
which there was a majority 
(abstentions were not included); 
p=0.045. There is no observable effect 
for indegree (p=0.67) or undirected 
degree (p=0.37).  

Examining the subset of 11 meetings in which there was a voting minority of size 

two or larger, we find that this effect also holds, but is only marginally statistically 

significant (p=0.058), shown in Figure 53.  
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Figure 53: Kruskal-Wallis non-
parametric ANOVA finds a significant 
difference between the outdegree of 
voting majority and voting minority 
panel voting members in the 11 
meetings in which there was a majority 
of size two or larger (abstentions were 
not included); p=0.058.  

Empirical Finding 9: Members of the voting minority tend to have a lower 

graph outdegree than do members of the voting majority. 

There is an association between outdegree and speaking order (Spearman rho=-

0.35; p=1.15 x 10-6), and between indegree and speaking order (Spearman 

rho=0.45; p=5.9 x 10-11) for the 17 meetings with a voting minority, something 

that is to be expected given that directionality is chosen on the basis of topic-
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ordering, which is in turn shaped by procedural constraints. This association also 

holds for the subset of 11 meetings with a minority of two or more (Outdegree 

rho = -0.27; p=0.0026); (Indegree rho = -0.48; p=5.9 x 10-8). Furthermore, an 

analysis of covariance shows no significant difference between the correlations 

between location in speaker order and meetings with a minority of one compared 

to meetings with a minority of two or more (p=0.49 for outdegree; p=0.34 for 

indegree).  

Empirical Finding 10: Outdegree is negatively and significantly associated 

with location in the speaking order, and indegree is positively and 

significantly associated with location in the speaking order. 

An ANOVA identifies speaking order as capturing the main effect in voting 

behavior, whereas the effect due to outdegree is not significant (see Table 11).. 

Table 11: 2-way ANOVA Table 
showing effect of Outdegree and 
Speaking Order on vote (majority vs. 
minority) for those 17 meetings in 
which there is a minority. Although 
the ANOVA assumptions are not 
met, an effect of Speaking Order is 
still evident (cf. Lunney 1970). The 
absence of an effect due to outdegree 
suggests that the variance in speaking 
order accounts for the variance in 
voting behavior as well as in 
outdegree.  

Variable Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F p-value 

Outdegree 0.076 1 0.076 0.043 0.51 
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(normalized) 

Speaking 

Order 

(normalized) 

1.5 1 1.5 

 

8.7 0.0036 

Error 30 173 0.18 

Total 32 175  

 

 

This result also holds for the subset of 11 meetings with a voting minority of at 

least two voting members, as shown in Table 12.  

Table 12: 2-way ANOVA Table 
showing effect of Outdegree and 
Speaking Order on vote (voting 
majority vs. voting minority) for those 
11 meetings in which there is a 
minority with at least two members. 
Although the ANOVA assumptions 
are not met, an effect of Speaking 
Order is still evident. The absence of 
an effect due to Outdegree suggests 
that the variance in speaking order 
accounts for the variance in voting 
behavior as well as in outdegree. 

Variable Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F p-value 

Outdegree 

(normalized) 

0.082 1 0.082 0.28 0.60 
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Speaking 

Order 

(normalized) 

1.44 1 1.44 4.91 0.029 

Error 34.6 118 0.29 

Total 36.6 120  

 

 

Empirical Finding 11: Location in the speaking order seems to account for 

the variance in voting behavior that is associated with outdegree. 

Recall that empirical finding 2 shows that vote and air-time are not associated. 

Instead, some of the above results might seem to indicate that the outcome of a 

meeting depends on a procedure that could equalize air-time, but that might have 

other effects on voting behavior. To further explore this idea, we examined the 

subset of meetings in which there was a minority of at least one person. These 

meetings were then further subdivided into meetings in which the device was 

approved (n=7) and meetings in which the device was not approved (n=10). In 

meetings in which the device was not approved, we found that members of the 

voting majority (i.e., those who voted against device approval) spoke significantly 

earlier than did members of the voting minority (p=0.0025; see Figure 54) 
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Figure 54: Members of the voting 
minority (in favor of device approval) 
speak significantly later than do 
members of the voting majority 
(against device approval) in the 10 
meetings in which the panel voted not 
to approve the devices (p=0.0025) 

In meetings in which the device was approved, there was no significant difference 

between members of the voting majority and voting minority (p=0.12), although 

there is a trend towards members of the voting minority speaking later (see 

Figure 55). 
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Figure 55: Members of the voting 
minority (against device approval) do 
not speak significantly later than do 
members of the voting majority (in 
favor of device approval) in the 7 
meetings in which the panel voted not 
to approve the devices (p=0.12). By 
inspection, there is a non-significant 
trend for the voting minority to speak 
later than does the voting majority. 

Empirical Finding 12: Members of the voting minority spoke significantly 

later in meetings in which the panel did not approve the devices than did 

members of the voting majority. This trend was not present in meetings in 

which the panel did approve the device. 
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An opposite trend was found when examining outdegree. In meetings in which 

the device was not approved (n=10), we found that there was no significant 

difference between the normalized outdegrees of members of the voting majority 

(i.e., no voters) and members of the voting minority (p=0.27; see Figure 56). 
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Figure 56: Members of the voting 
minority (in favor device approval) do 
not have significantly smaller 
outdegrees than do members of the 
voting majority (against device 
approval) in the 10 meetings in which 
the panel voted not to approve the 
devices (p=0.27). 

In meetings in which the device was approved (n=7), there was a marginally 

significant difference between members of the voting majority and voting 
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minority (p=0.056), such that members of the voting majority had a higher 

normalized outdegree. 
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Figure 57: Members of the voting 
minority (against device approval) 
have marginally significantly smaller 
outdegrees than do members of the 
voting majority (in favor of device 
approval) in the 7 meetings in which 
the panel voted to approve the devices 
(p=0.056). 

Empirical Finding 13: Members of the voting minority had a significantly 

smaller outdegree in meetings in which the device was approved. This 

trend was not present in meetings in which the panel did not approve the 

device. 
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Analysis shows that use of directed graphs can help identify which voting 

members are likely to be part of the voting minority. This is accomplished by 

analyzing “graph sinks”, i.e., nodes with zero outdegree and nonzero indegree. 

Graph sinks are more likely to be members of the voting minority than are other 

nodes (see Table 13). 

Table 13: Analysis of the 17 meetings 
with a voting minority indicates that 
members of the minority are more 
likely to be graph sinks than are 

members of the majority (χ2 = 4.92; 
dof=1; p=0.026). 

 Sink Non-Sink TOTAL 

Voting Minority 13 30 43 

Voting Majority 20 113 133 

TOTAL 33 143 176 

 

This result also holds for the subset of meetings in which there is a majority 

including at least two voting members, as shown in Table 14.  

Table 14: Analysis of the 11 meetings 
with a voting minority including at 
least two members indicates that 
members of the voting minority are 
more likely to be graph sinks than are 

members of the voting majority (χ2 = 
4.66; dof=1; p=0.031). 
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 Sink Non-Sink TOTAL 

Voting Minority 11 26 37 

Voting Majority 10 67 77 

TOTAL 21 93 114 

 

Empirical Finding 14: Members of the voting minority are more likely to 

be graph sinks than are members of the voting majority. 

These results are understandable in light of the speaking-order effect on FDA 

panels identified above. In particular, we find that panel members who speak last 

are more likely to be in the voting minority than are panel members who don’t 

speak last (see Table 15). 

Table 15: Analysis of the 17 meetings 
with a voting minority shows that 
members of the voting minority are 
more likely to the last speaker than are 

members of the voting majority (χ2 
=5.22; dof=1; p=0.022)  

 Last Speaker Other TOTAL 

Voting Minority 8 35 43 

Voting Majority 9 124 133 

TOTAL 17 159 176 
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Although a voting minority member is almost twice as likely to be the last speaker 

as is a voting majority member in the subset of 11 meetings in which there is a 

voting majority including at least two panel members, this result is not statistically 

significant, as shown in Table 16. On the other hand, singleton voting minority 

members are significantly more likely to be the last speaker than are members of 

the much larger voting majority, as shown in Table 17. 

Table 16: Analysis of the 11 meetings 
with a voting minority of size two or 
more shows that members of this 
voting minority are not more likely to 
the last speaker than are members of 

the voting majority (χ2 =0.94; dof=1; 
p=0.33) 

 Last Speaker Other TOTAL 

Voting Minority 5 32 37 

Voting Majority 6 71 77 

TOTAL 11 103 114 

 

Table 17: Analysis of the 6 meetings 
with a voting minority of size one only 
shows that members of the voting 
minority are more likely to the last 
speaker than are members of the 

voting majority (χ2 =12.36; dof=1; 
p=0.00044). Of the three voting 
minority members who are the last 
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speaker, two are graph sinks and one 
is a graph isolate (outdegree and 
indegree are both 0). 

 Last Speaker Other TOTAL 

Voting Minority 3 3 6 

Voting Majority 3 53 56 

TOTAL 6 56 62 

 

Empirical Finding 15: Members of the voting minority are more likely to 

be the last speaker to ask questions of the sponsor and FDA, than are 

members of the voting majority, especially for meetings in which there is a 

singleton voting minority.  

We therefore have two competing heuristics that might be used to evaluate 

whether a given voter is likely to be in the minority. This is a binary classification 

task, whose efficacy we can measure using the “F-score”, a commonly used 

metric in the information retrieval literature. The F-score is defined as the 

harmonic mean of precision and recall, where: 
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Table 18 shows precision, recall and the F-score for the two conditions 

examined.  

Table 18: Table of Precision, Recall, 
and F-Score for the data shown 
above. The graph sink method has a 
consistently higher precision and F-
score, and is lower on recall only in 
the case of 17 meetings. 

17 Meetings with a minority of 

size 1 or larger 

11 Meetings with a minority of 

size 2 or larger 

 

Graph Sinks Last Speaker Graph Sinks Last Speaker 

Precision 0.30 0.19 0.30 0.14 

Recall 0.40 0.47 0.52 0.45 

F-score 0.34 0.27 0.36 0.21 

  

We note that precision and F-score are both higher for the graph sink heuristic 

across both conditions. Recall is higher for the last speaker condition only when 

the six meetings with a voting minority of size one are included. 

Empirical Finding 16: Using F-score as an evaluation criterion, the graph 

sink heuristic provides a superior classification of minority members when 

compared to the last speaker heuristic. 
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The Effects of Lead Reviewers  

Speaking order is an important variable associated with voting behavior. Thus we 

would also like to examine those at the start of the speaking order – namely, the 

lead reviewers.  Lead-reviewers are panel members designated by FDA to review 

a given device in more depth prior to the panel proceedings. They always speak 

first or immediately after another lead reviewer. A panel meeting may have as 

many as two lead reviewers. Although lead reviewers speak more than do other 

voting members across the set all subsets of meetings9, lead reviewers are not 

significantly more likely to be in the minority when compared to other voting 

members10. Although lead reviewers have a significantly or marginally-

significantly larger outdegree11 and a significantly smaller indegree12 than do other 

panel members, lead reviewers in the minority do not have a significantly 

different outdegree or indegree from lead reviewers in the majority13.  

Empirical Finding 17: Although lead reviewers have a significantly higher 

air-time and outdegree, and a significantly lower indegree than other panel 

members, their overall voting behavior is not significantly different. 

There is at least one lead reviewer in the majority for all but one meeting for 

which lead reviewers were assigned (n=35). The one outlier was a meeting in 

which the lead reviewer was a specialty isolate – i.e., the only surgeon on a 

committee largely composed of cardiologists. This individual was also a graph 

                                                 
9 (n=37;. p=0.031 by a Kruskal-Wallis analysis); (n=17; p=0.0004 by a Kruskal-Wallis analysis); (n=11; 

p=0.0115 by a Kruskal-Wallis analysis) 

10 (n=37;.χ2=0.27; dof=1; p=0.87); (n=17;.χ2=0.0029; dof=1; p=0.95); (n=11;.χ2=0.15; dof=1; p=0.70) 

11  (n=37;. p=2.1 x 10-5 by a Kruskal-Wallis analysis); (n=17; p=0.011 by a Kruskal-Wallis analysis); (n=11; 

p=0.079 by a Kruskal-Wallis analysis) 

12  (n=37;. p=1.31 x 10-5 by a Kruskal-Wallis analysis); (n=17; p=0.0017 by a Kruskal-Wallis analysis); (n=11; 

p=0.0026 by a Kruskal-Wallis analysis) 

13  (n=37;. p=0.32 by a Kruskal-Wallis analysis); (n=17; p=0.22 by a Kruskal-Wallis analysis); (n=11; p=0.42 

by a Kruskal-Wallis analysis) 



 

 179 

isolate (i.e. indegree and outdegree = 0). Furthermore, for meetings where there is 

at least one lead reviewer in the voting minority, the voting minority tends to be 

proportionally larger (p=0.0006), shown in Figure 58.  
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Figure 58: Kruskal-Wallis non-
parametric ANOVA finds a significant 
difference between proportional 
voting minority size in the 35 
meetings in which there was a voting 
minority and at least one lead reviewer 
in the voting minority (p=0.0006). 
Similar results are obtained when 
focusing on the subset of 17 meetings 
with a voting minority (p=0.027). 
There is insufficient data to obtain a 
similar result for the subset of 11 
meetings with a voting minority of 2 
or more (p=0.33), although the 
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direction of the trend remains the 
same.  

Furthermore, with only one exception, in cases in which there was at least one 

lead reviewer in the voting minority, there was a second lead reviewer in the 

voting majority. The exception was the meeting held on July 9, 2001 (Meeting ID: 

16) in which the lead reviewer was a surgeon on a committee comprised largely of 

cardiologists. Therefore, the proportional size of the voting minority is also larger 

when lead reviewers disagree14. 

Empirical Finding 18: The proportional size of the voting minority is larger 

when lead reviewers do not vote with the majority within a given meeting, 

and when there is disagreement among lead reviewers. 

Furthermore, we find that meeting length is negatively correlated with the 

proportion of lead reviewers in the voting majority (Spearman Rho = -0.37, 

p=0.027).  

Empirical Finding 19: Meetings are longer when more lead reviewers are 

in the voting minority. 

Although, in general, members of the voting minority are more likely to be graph 

sinks, we find that, as meetings get longer, the maximum outdegree of a member 

of the voting minority increases – i.e., a voting minority member is more likely to 

reach the “top” of the graph (Spearman rho = 0.50; p=0.04).  Figure 59 shows 

the relation between the maximum outdegree of a member of the voting minority 

and meeting length. This is consistent with the anecdotal time dependence seen 

in Chapter 3 wherein graphs of later of meeting subsections showed increasing 

connectivity across voting blocs. 

                                                 
14 (p=0.0015; n=35), (p=0.029; n=16), (p=0.20; n=10, ns) 
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Increasing Trend:

Spearman rho = 0.50

p=0.04

 

Figure 59: Maximum normalized 
outdegree is significantly associated 
with meeting length (Spearman 
rho=0.50; p=0.04). Datapoints are 
labeled by the meeting ID assigned in 
Appendix 3. There is no significant 
association between location of first 
minority member in the speaking 
order and meeting length (p=0.50). 

Empirical Finding 20: Meeting length is significantly positively associated 

with the maximum normalized outdegree among voting minority 

members, but not with maximum location in the speaking order. 

Under such conditions, voting minorities also become larger – indeed, the 

maximum outdegree of a voting minority member is strongly associated with the 
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proportion of voting members in the minority (Spearman rho = 0.62, p=0.0082; 

see Figure 60) 
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Figure 60: Maximum normalized 
outdegree is significantly associated 
with voting minority proportional size 
(Spearman rho=0.62; p=0.0082) for 
the 17 meetings in which there is a 
minority. Datapoints are labeled by the 
meeting ID assigned in Appendix 3. 

Empirical Finding 21: Maximum normalized outdegree is significantly 

associated with proportional voting minority size.  

This is generally consistent with the observation that as meeting length increases, 

so does the size of the voting minority (see Figure 61).  
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Figure 61: Plot of Meeting Length vs. 
voting minority proportional size. 
Meeting length is significantly 
positively associated with voting 
minority proportional size (Spearman 
Rho = 0.53; p=7.1 x 10-4). Decisions 
that are likely to have been clear or 
ambiguous are labeled.  

Empirical Finding 22: Meeting length is significantly positively associated 

with proportional voting minority size. 

One possible interpretation of this result is that longer meetings are associated 

with difficult decisions, perhaps due to complex devices or procedures, poor data 

quality or other sources of ambiguity about the device. Longer meetings typically 

involve more committee deliberation, which is more likely to be necessary when 

there is no consensus on how best to interpret the available data. In these cases, 
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minority voters tend to be more randomly distributed in the graphs and 

procedural effects seem minimal. 

Chair effects 

The results shown above do not include the impact of the committee chair in the 

analysis. Using the directed graphs developed in the previous chapter, we can 

determine the impact of the committee chair on the meeting by examining 

his/her role in facilitating communication. Figure 62 shows a directed graph from 

the meeting held on June 23, 2005.  

 

Figure 62: Directed Graph 
representation of meeting held on 
June 23, 2005. Luo's hierarchy metric 
= 0.35. 
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We may quantify the impact that the committee chair has upon the meeting by 

determining, for each graph, the proportion of edges which are part of a cycle. 

This is a metric of the hierarchy in the graph (Luo et al., 2009). We display this 

metric for the graph without the chair (e.g., Figure 62) and with the chair (e.g., 

Figure 63).  

 

Figure 63: Directed Graph 
representation of meeting held on 
June 23, 2005, with the committee 
chair included. Luo's hierarchy metric 
= 0.78. 

The difference in this metric between graphs with and without the chair therefore 

quantifies the impact of the chair on the meeting. For the meeting held on June 

23, 2005, this value is 0.78-0.35 = 0.43. This suggests that the chair is significantly 

changing the topology of the meeting structure – in particular, it seems that the 

chair is connecting members at the “bottom” of the graph to those at the “top”. 
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Other meetings display different behavior by the chair. Consider the meeting held 

on October 27, 1998 (in Figure 64 and Figure 65).  

 

 

Figure 64: Directed Graph 
representation of meeting held on 
October 27, 1998. Luo's hierarchy 
metric = 0. 
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In this meeting, the committee chair served to connect the two disparate clusters 

on the panel. Nevertheless, the chair is not creating any new cycles on the graph. 

This is reflected in the fact that the hierarchy metric for both of these meetings is 

equal to 0. 
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Figure 65: Directed Graph 
representation of meeting held on 
October 27, 1998, with the committee 
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chair included. Luo's hierarchy metric 
= 0. 

Given that both meetings have a hierarchy of 0, the difference between them is 

also 0. In general, we can examine the difference in hierarchy for a given meeting. 

A histogram of these is shown in Figure 66. This histogram is bimodal.  
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Figure 66: Distribution of chair 
impacts for the set of 37 meetings 
analyzed. This distribution shows a 
bimodal structure.  

Empirical Finding 23: Inclusion of the Committee Chair in directed 

graphs leads to a bimodal distribution of the extent to which the chair 

changes the structure of the graph. These two modes may correspond to 



 

 190 

different sorts of behavior by the Chair in his/her interactions with panel 

members during the meeting. 

This bimodal structure is particularly pronounced when we focus on the subset 

of meetings in which there is a voting minority. Among these meetings, the 

bimodality seems to be associated with meeting date (p=0.005). This effect is 

shown in Figure 67.  
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Figure 67: The impact of the 
committee chair seems to be 
associated with meeting date. The 
vertical axis represents the number of 
days since January 1st, 1900. 



 

 191 

Empirical Finding 24: Committee chair impact is significantly positively 

associated with meeting date for meetings in which there is a voting 

minority. 

A closer analysis of the meetings associated with this distribution is instructive 

(see Figure 68). We see that the impact of the chair seems to be increase markedly 

around March 2002.  
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Figure 68: Impact of chair vs. meeting 
date for each of the 17 meetings in 
which there was a voting minority. 
Note that after March 4, 2002, chair 
impact seems to increase for most 
meetings. Each meeting is labeled by 
its corresponding ID.  
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Using this date as a cutoff, we find that meetings prior to March 4, 2002 are 

significantly shorter than meetings after March 4, 2002 (p=0.0004, by a Kruskal-

Wallis test). This is largely because half-day meetings were no longer held after 

this date (see Figure 69). 

 

7.295 7.3 7.305 7.31 7.315 7.32 7.325

x 10
5

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34 35

36

37

Date (days since Jan. 1st, 1900)

M
e
e
ti
n
g
 L
e
n
g
th
 (
H
o
u
rs
)

March 4, 2002

Half-Day Meetings

 

Figure 69: Half-day meetings were not 
held after March 4, 2002. These later 
meetings are marked in red, whereas 
earlier meetings are in blue. Each 
meeting is labeled by its 
corresponding ID. 
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Concerns about bias on FDA Panels 

(Sherman 2004) identifies two potential sources of “bias” on FDA Panels. These 

may be broadly construed as financial and intellectual. Up until now, we have 

been largely studying intellectual factors, e.g., those related with medical specialty. 

A financial conflict of interest arises when a panel member in some way receives 

funding from either the device sponsor or one of its competitors. We would 

expect conflicts of interest to arise when panel members who possess the 

appropriate expertise yet lack a financial conflict are not available (McComas, 

Tuite & Sherman 2005). Indeed, we find that panel members with conflicts of 

interest have a higher h-index and therefore, or academic expertise, than do panel 

members without a conflict (p=0.002, by a Kruskal-Wallis test).  

Empirical Finding 25: Panel members with conflicts of interest tend to 

have a significantly higher h-index than do panel members without a 

conflict. 

Concerns regarding the effects that panel members with conflicts of interest 

might have on panel operations have been raised frequently with regards to FDA 

panels, particularly in the news media. A study by Lurie et al. (2006) found no 

significant relation between committee voting outcomes and conflict of interest 

on a subset of panels in the Center for Drug Evaluation and Research (CDER), 

and only a small relation between individual voting outcome and conflict of 

interest. One limitation of Lurie’s work is its inability to account for influence 

patterns – in particular, a given panel member may influence the vote of another 

through direction of attention. The method presented in chapter 3 and applied in 

this chapter allows an analysis of this potential effect. If an individual with a 

conflict of interest is influencing other panel members, then that individual would 

have a relatively high outdegree. We find that this is not the case (p=0.66 using a 

Kruskal-Wallis test)  
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Empirical Finding 26: Panel members with conflicts of interest do not 

have higher outdegrees than panel members without conflicts of interest. 

A possible concern is that when panel members with conflicts of interest are in 

influential positions (e.g., they have a high outdegree), the panel will follow them. 

We find that there is no significant difference between the outdegrees of panel 

members with conflicts who are in the voting majority and the outdegrees of 

panel members with conflicts who are in the voting minority (p=0.38). 

Empirical Finding 27: Panel members with conflicts of interest, who are in 

the voting majority do not have higher outdegrees than panel members 

with conflicts of interest who are in the voting minority. 

We find that, across our sample of 37 meetings, members with conflicts of 

interest are in the voting majority in 45 times out of 49 total conflicts (i.e, 92% of 

the time). After January 2002, panel members were required to report not only 

the presence or absence of a conflict of interest, but also its direction (i.e., with 

the sponsor or one of the sponsor’s competitors). In the 15 meetings since the 

beginning of 2002, there were 34 total conflicts of interests, of which 30 (88%) 

were in the voting majority. This finding is offset by the fact that of those 34 

conflicts of interest, 13 (38%) voted against their conflict of interest. There were 

14 meetings in which there was at least one panel member with a reported 

direction of conflict of interest. Of these, there were four meetings in which there 

was only one member with a conflict. In each of these four meetings, this 

member either voted against the conflict reported or was not allowed to vote at 

all. In each case, the panel’s voting outcome went against the reported conflict. 

There were five meetings in which there were multiple conflicts of interest that 

went in the same direction. In all but one of these meetings, the panel voted 

unanimously in favor of the direction consistent with the conflict. Finally, there 

were five meetings in which the conflicts of interest were “balanced” – i.e., 
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members representing both directions were present. In these meetings, there 

were a total of 15 panel members with conflicts of interest. Seven of these voted 

in the direction of their conflict, and eight voted against the direction of their 

conflict. This evidence suggests that conflicts of interest may be  minimized when 

there is only one member on the panel with a reported conflict or when there are 

opposing reported conflicts on the panel. When there are multiple panel 

members with consistent conflicts of interest, unanimous support for those 

conflicts might result. More data is required to rigorously test this finding. 

This chapter presented 27 empirical findings derived from an application of 

statistical analysis and the methodology outlined in Chapter 4 to a set of 37 

transcripts of the FDA Circulatory Systems Devices Advisory Panel Meetings. 

Implications of these findings are discussed in Chapter 7. The next chapter 

presents a quantitative model that attempts to replicate in silico the empirical 

findings outlined here, with a goal of deepening our theoretical understanding if 

decision-making on committees of technical experts.  
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C h a p t e r  6  

MODEL DEFINITION AND INITIAL RESULTS  

“The meaning of a representation can be nothing but a representation. In fact 

it is nothing but the representation itself conceived as stripped of irrelevant 

clothing. But this clothing can never be completely stripped off: it is only 

changed for something more diaphanous. So there is an infinite regression here. 

Finally the interpretant is nothing but another representation to which the 

torch of truth is handed along; and as representation, it has its interpretant 

again. Lo, another infinite series.”  

– Charles Sanders Peirce (1934-48), Collected Papers, 1.339, on modeling 

This chapter examines the role of expertise and one way that it might generate 

some of the empirical results observed in Chapter 4. To this end, we present a 

computational model whose purpose is to explore theoretical bases for the kinds 

of results found in Chapter 4. If the model can reproduce these empirical results 

and provide a potential explanation for the observed data, the underlying theory 

provides one potential explanation for the observed data. The results presented in 

this chapter are preliminary and subject to future investigation. The model 

presented here relies heavily on the literature in social psychology and, in 

particular, is a modification of the DISCUSS model, presented by Stasser (1992).  

DISCUSS was originally developed to explain the discrepancy between shared 

and unshared information first observed by Stasser and Titus (1985). Although 

successful at replicating and explaining these findings (Stasser 1992), DISCUSS 

was not used to explain later findings regarding the nature of expertise (Stasser et 
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al. 1995). Indeed, the original version of the model treats all decision-makers as 

equivalent except for their initial information distributions.  

In addition to incorporating expertise our version of DISCUSS must also be  

adapted to the case of the FDA panels. Thus, we must more closely examine 

FDA panel procedures. In particular, we would like the model to capture salient 

elements of the FDA panel process. The model presented in this chapter largely 

focuses on stages 5-8 of the panel process described in Chapter 3 (panel 

questions and later). Stages 1-4 (including sponsor and FDA presentations) are 

considered to be information revelation stages and fit into a pre-discussion phase 

as will be shown below.  

The model takes as input the following variables: 

Table 19: Model Input Variables 

Name Type Range 

Number of Speakers  Integer 4 – 15 

Device Complexity 

(Number of Topics) 

Integer 10 – 30 

Device Quality Real -1 – 1 

Device Ambiguity Real 0 – 1 

Specialty Membership Logical Matrix 0 or 1; matrix has as 

many rows as speakers 

and as many columns as 

specialties. There may be 
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as many as 8 specialties. 

Mean Breadth of 

Expertise 

Real 0 – 1 

Dispersion in Breadth of 

Expertise 

Real 0 – 1 

Mean Depth of Expertise Real 0 – 1 

Dispersion in Depth of 

Expertise 

Real 0 – 1 

Speaker Hierarchy Real 0 – 1 

Process Openness Real 0 – 1  

 

The purpose of the model is to generate a simulated discourse between panel 

members – this discourse is then used to generate sample networks, whose 

properties can be compared to the data shown in Chapter 5.  

Figure 70 shows a schematic of the model: 
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Figure 70: Schematic of the model 
outlined in this chapter. 

As shown above, the model may be divided into four phases, which are then 

further subdivided into modules. 

Phase 1: Background Generation 

In this phase, conditions of “empirical reality” are determined based upon model 

input. Properties of the device and its associated domains of knowledge and 

expertise are generated from model inputs. 

Module 1: Generate Ground Truth, Breadth and Depth 

In this module, properties of the device are generated from the summary statistics 

used as input. In particular, we conceive of a device as having a finite set of 

features, or topics, which might describe it. The number of topics, n, required to 

describe a given device is equal to its complexity as defined in Table 19. Consistent 

with the DISCUSS model, these topics may be thought of as items of 

information that are necessary to fully describe whether a given device should or 



 

 200 

should not be approved. Although there are formal problems with this 

assumption (Watanabe 1985), we consider it to be sufficient for modeling 

purposes. Future work might circumvent these concerns by introducing a 

structure relating topics to one another (Richards 2008). Each one of m specialties 

has a different perspective on a topic, which is recorded as an entry in an a n x m 

matrix.  Each perspective is assumed to embody information that is either pro- or 

anti- device approval. The intuition is that a device has a given quality ranging 

between -1 and 1, which describes, overall, whether it should or should not be 

approved. Furthermore, the data describing that device has an associated amount 

of ambiguity such that if the data is very ambiguous, different topics will give very 

different signals, whereas if the data is very unambiguous, different topics will 

give similar signals. For each feature, we would like to generate a number 

between -1 and 1 that describes whether and how strongly its associated topic 

supports or opposes device approval. We therefore construct a probability 

distribution that meets these requirements. 

To do this, we use a beta distribution, which is defined by two parameters, α and 

β, and has the following form for its probability distribution function: 

11 )1(
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As can be seen from this expression, the range of a beta distribution is between 0 

and 1. Furthermore, the mean of a beta distribution is given by the expression 

α/(α+β). We would like to scale this range to be between -1 and 1. Therefore, 

quality, as defined above, is given by the following expression: 
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Further examination of the form of the beta distribution shows that for values of 

α and β less than 1, the beta distribution resembles an inverted-U, whereas for 

values of α and β near 1, the beta distribution resembles a uniform distribution. 

As α and β increase, the distribution has an increasingly large peak around the 

mean value. We take advantage of this property of the beta distribution to 

operationalize data ambiguity (A), which is defined on the interval 0 – 1. We first 

transform this number to At using the following formula: 

1
1

−
= A

t eA                                                         (15) 

This generates a number between one and infinity. We then use this effect to 

capture ambiguity as follows: 

 βα +=tA                                                       (16) 

Therefore as ambiguity goes to one, At goes to one, leading to a widely-dispersed 

distribution. Similarly, as A goes to 0, At goes to infinity, tending towards a 

distribution that is tightly concentrated around the mean. Solving these two 

equations simultaneously, we can determine values for α and β as follows:  

α = Q At                                                                                                        (17) 

β  = At –  α                                                       (18) 

Given these values of α and β, we then generate n random draws from a 

beta(α,β) distribution. Finally, these values are scaled onto the interval -1 – 1, 

defining a Ground Truth value for each topic/specialty pair, that fits the criteria 

described above. In particular, we define a Ground Truth matrix, GT, having m 

rows and n columns, such that for specialty i and topic j, GTi,j ~ beta(α,β). 
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Ground Truth is then re-scaled such that it is between -1 and 1, by multiplying 

each entry by two and subtracting one. 

A similar method is used to assign values of breadth and depth to each speaker. 

In particular, each of these quantities is drawn from beta distributions with the 

parameters defined in Table 19 (Mean Depth/Breadth; and Dispersion in 

Depth/Breadth). With the exception of the re-scaling procedures used on the 

quality parameter and Ground Truth values, the transformations of the depth and 

breadth parameters are the same as those used for Ground Truth (e.g., 

αbreadth=Mean_Breadth * Breadth_Dispersiont; βbreadth= Breadth_Dispersiont - 

αbreadth, where Breadth_Dispersiont is the result of the application of the 

transform in Equation 15 to the Breadth Dispersion shown in Table 19). 

Module 2: Assign Medical Specialties to Topics 

Each specialty is assigned a number of topics, representing information that 

members of that specialty are capable of knowing a priori. Each topic is assigned 

to each specialty with probability equal to 1/n. In addition, each topic is 

sequentially assigned to a given specialty in a deterministic fashion, such that the 

set of all topics is assigned sequentially among specialties. For example, if there 

are five topics and three specialties, then topic 1 is sequentially assigned to 

specialty 1, topic 2 to specialty 2, topic 3 to specialty 3, topic 4 to specialty 1, and 

topic 5 to specialty 2. As a result, each topic will be assigned to at least one 

specialty, and possibly more. Since each speaker is also assigned to a medical 

specialty, this forms the basis for an initial information distribution.  

Phase 2: Pre-Discussion Phase 

In this phase, preliminary information about each voting member is assigned 

prior to discussion. 
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Module 3: Assign Initial Information  

A given speaker knows a given topic in his/her specialty in equal proportion to 

that speaker’s depth. Recall that depth for each speaker is generated from a beta 

distribution with mean and dispersion parameters as shown in Table 19 and as 

transformed above. Furthermore, any speaker is capable of expertise. A speaker 

does not start with any knowledge about a topic outside this specialty.  

Module 4: Assign Initial Valence 

Each speaker is assigned a valence value for each topic about which s/he is 

knowledgeable. We may think of this value as the cognitive salience of that topic 

for that speaker, encoding its support or opposition to device approval. A beta 

distribution is generated for each author-topic-specialty triple. For author a seeing 

topic t from the perspective of specialty s, the mean of this distribution is the 

absolute value of Ground Truth – |GTs,t|. The dispersion, d, is a function of 

author a’s depth, such that 
1

)(1

1
−

−= adepthed  as per equation 15. Thus, as depth 

increases, that speaker’s initial valence is more likely to be close to Ground Truth. 

Each speaker’s preference is the sign of the sum of their valences across all 

topics/specialty pairs in which they are knowledgeable.  

Module 5: Assign Speaking Propensity 

As in DISCUSS, speakers are assumed to generate an utterance with probability 

proportional to their location in a speaking hierarchy (cf. Stephan and Mishler 

1952). In the DISCUSS model, if a speaker at the top of the hierarchy speaks 

with probability p, then the second speaker speaks with probability kp, the third 

with probability k2p, etc, where k is the Speaker Hierarchy value defined in Table 

19. Unlike the DISCUSS model, we assume the existence of two “lead 

reviewers”. These are the first two speakers in the hierarchy, both of whom speak 

an equivalent amount, and three times more frequently than all other speakers. 

The lead reviewers each generate a number of utterances proportional to device 
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complexity and ambiguity throughout the meeting. In particular, the number of 

utterances for a lead reviewer is equal to 4 * Complexity * Ambiguity. Given that 

complexity ranges between 10 and 30, this allows the total number of utterances 

to go as high as 120, a number that is approximately equal to the total number of 

utterances empirically observed in the longest meetings. The remaining speakers 

follow the hierarchy defined in DISCUSS.  

 Module 6: Determine Speaking Order  

In FDA panel meetings, speakers ask questions in a fixed order, followed by a 

period of open discussion. This order is determined by the direction in which the 

chair decides to go around the table in soliciting panel questions, and is therefore 

jointly dependent on seating location and the chair’s procedural choice. Chwe 

(2003) notes that this is a form of ritual common knowledge. Lead reviewers 

always speak first, followed by the remaining panel members. This speaking order 

operates in the first part of the discussion phase, below.  

Phase 3: Pre-Discussion Phase 

The discussion phase consists of two modules: Structured Panel Discussion and 

Open Panel Discussion. The length of each of these depends on the Openness 

parameter shown in Table 19. Openness is defined as the maximum number of 

utterances in the Open Panel Discussion phase divided by the maximum number 

of utterances in the Structured Panel Discussion phase.  

Module 7: Structured Panel Discussion 

In this module, each speaker sequentially generates a finite set of utterances. The 

topic of each utterance is chosen with probability proportional to the absolute 

value of its valence, summed across all specialty perspectives with which that 

author is familiar for that topic. As in DISCUSS, we could allow for an advocacy 

parameter which might bias discussion of topics to those that support a given 

speaker’s current preference. In particular, we can assume that speakers only 
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discuss those topics that support their current preferences. The benchmark 

model implemented below does not make this assumption.  

Each utterance has the potential ability to influence other panel members to 

change their salience. Once a topic is discussed, each listener evaluates whether to 

adopt that topic’s valence. With a finite probability, the listener adopts the 

salience of the speaker in that topic, t. The probability that a given listener will 

adopt the salience of a given speaker, a, is inspired by Latane’s Social Impact 

Theory (Latane 1981), as follows: 
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where Ut,a is the number of utterances spoken by speaker a in topic t and Ba is a 

bias parameter. If the speaker and the listener share the same specialty, then B is 

equal to unity. Otherwise, Ba is equal to the breadth of the speaker. A speaker will 

adopt a topic’s valence in proportion to the number of times that speaker has 

mentioned that topic (i.e., the speaker’s perceived expertise in that topic) and in 

inverse proportion to the square of the distance of that topic’s valence from 

Ground Truth (i.e., the speaker’s actual expertise in that topic). The definition of 

perceived expertise presented here is limited to topic-specific air-time, as inspired 

by Bottger (1984). Future work might incorporate a notion of perceived expertise 

that changes members’ contributions are judged valuable by others (such as panel 

members in other specialties). 

Normalizing over all speakers yields the probability that a given listener adopts 

the valence of a given speaker. Preferences are then updated for all speakers. 

Otherwise, the listener retains his/her original valence value. This module 

terminates when all speakers have generated their assigned number of utterances.  
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Module 8:  Open Panel Discussion 

This module is equivalent in nature to the Structured Panel Discussion module 

with the exception that speakers are chosen at random in proportion to their 

speaking propensity as defined in Module 6. This module terminates if the panel 

has reached a near- (i.e., minority of size 1) or full-consensus, or if each speaker 

has used up their full set of utterances.   

Phase 4: Post-processing 

Once the discussion phase has terminated, networks are generated from the 

simulated discourse. Since, in this model, documents are assigned 

deterministically to topics, there is no need to create a distribution over networks 

for each meeting. Instead, two authors are linked if they both generate at least 

one utterance in the same topic.  

Model Benchmarking 

Although the model presented in this chapter is a sparse representation of the 

actual dynamics within FDA panels, we may explore whether its outputs reflect 

the data shown in Chapter 4. 1000 samples were drawn from the model, while 

allowing mean depth, mean breadth, dispersion in depth, dispersion in breadth 

and openness to vary. These parameters were all drawn from uniform 

distributions on the unit interval. Hierarchy was set to 0.99, consistent with panel 

procedures that attempt to allocate approximately equal amounts of time to all 

voting members. So as to enable a direct comparison, the distribution of 

specialists and the number of panel members were chosen according to the 37 

meetings tested previously (i.e., one sample from the model would have the same 

number of panel members and the same distribution of specialties as a randomly 

chosen Circulatory Systems Devices Panel meeting).  

As in Chapter 5 there is a tight correlation between simulated medical specialty 

cohesion and simulated vote cohesion (Spearman Rho = 0.57; p=8.97 x 10-16) for 
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the subset of meetings in which there was a voting minority consisting of at least 

two members. A scatter plot is shown in Figure 71.  
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Figure 71: Plot of Simulated Specialty 
Cohesion vs. Simulated Vote 
Cohesion. Spearman Rho = 0.57; 
p=8.97 x 10-16. Proportional minority 
size (including abstentions) is 
represented in color.  

Modeling Result 1: Simulated vote cohesion percentile and simulated 

specialty cohesion percentile are significantly positively associated. 
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As in Chapter 4, we find that members of the simulated voting minority tend to 

speak later than do members of the simulated voting majority (p<0.0001, see 

Figure 72).  
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Figure 72: Members of the simulated 
voting minority tend to speak later 
than do members of the simulated 
voting majority (p<0.0001). 

Another way in which we might verify the model fit is to examine the extent to 

which the specialty cohesion, specialty cohesion percentile, vote cohesion, and 

vote cohesion percentile distributions fit the observed data. Kolmogorov-

Smirnov tests show that the model generates distributions that are not 

significantly different from those observed in the empirical data (see Table 20).  



 

 209 

Table 20: Kolmogorov-Smirnov tests 
show no significant differences 
between the empirical and simulated 
distributions for vote cohesion and for 
specialty cohesion. 

Distribution Tested Probability that data is consistent with hypothesis of 

no significant difference (p-value) 

Specialty Cohesion 0.68 

Specialty Cohesion 

Percentile 

0.12 

Vote Cohesion 0.18 

Vote Cohesion Percentile 0.11 

 

One further test would be to examine the proportion of simulated meetings that 

reached consensus, those that have a voting minority consisting of just one 

member, and those that have a voting minority with more than one member. 

Recall that, in the empirical case, there were 11 meetings with at least two 

members in the voting minority, and there were 6 meetings with only one 

member in the voting minority, out of a total of 37 meetings. Table 21 shows that 

the empirical and simulated distributions are significantly different (p=4.54 x10-5).  
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Table 21: A chi-square test shows that 
the simulated data distribution of 
panel meeting outcomes does not 

match the empirical distribution (χ2 
=20.00; dof=2; p=4.54 x 10-5)  

 Panel 

consensus 

One voting 

minority 

member 

Larger voting 

minorities 

TOTAL 

Simulated 

Data 

811 41 148 1000 

Empirical 

Data 

20 6 11 37 

TOTAL 642 143 252 1037 

 

In general, we find that there are larger voting minorities in the empirical data 

than in the simulated data. One possible explanation for this is that simulated 

panel members are not reviewing devices that are as uncertain. We correct for 

this by constraining device quality to vary between -0.33 and 0.33, ensuring that 

those devices reviewed in the simulation do not have any “easy answers”. This is 

consistent with the role of the panels in reviewing only difficult devices. An 

additional 1000 samples from the model were drawn, yielding results that are 

consistent with the empirical data. Table 22 shows that under these conditions, 

the two distributions examined above are not significantly different. 

Table 22: A chi-square test shows that 
the simulated data distribution of 
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panel meeting outcomes does not 

match the empirical distribution (χ2 
=3.02; dof=2; p=0.22)  

 Panel 

consensus 

One voting 

minority 

member 

Larger voting 

minorities 

TOTAL 

Simulated 

Data 

639 85 276 1000 

Empirical 

Data 

20 6 11 37 

TOTAL 659 91 287 1037 

 

Kolmogorov-Smirnov tests continue to show no significant difference in vote 

and specialty cohesion percentile distributions, as shown in Table 23. 

Table 23: Kolmogorov-Smirnov tests 
show no significant differences 
between the empirical and simulated 
distributions for specialty and vote 
cohesion or for their percentiles. 

Distribution Tested Probability that data is consistent with hypothesis of 

no significant difference (p-value) 

Specialty Cohesion 0.36 
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Specialty Cohesion 

Percentile 

0.095 

Vote Cohesion 0.91 

Vote Cohesion Percentile 0.12 

 

We also continue to observe that members of the voting minority speak later 

than do members of the voting majority (p<0.0001), and that there is a strong 

correlation between simulated voting cohesion percentile and simulated specialty 

cohesion percentile (Spearman Rho = 0.61; p=1.70 x 10-33). 

These parameters seem to fit the data reasonably well, with the exception of a 

tendency for the simulated data to have larger values of specialty cohesion 

percentile and vote cohesion percentile than does the empirical data. Therefore 

we set this as the benchmark from which we can test the effects of deviation of 

other parameters. Future work will focus on determining a mechanism by which 

the simulated percentile distributions may better fit the empirical data. 

Model Result 2: Proportional minority size, and specialty and vote 

cohesion, are functions of device quality. 

Deviations from the Benchmarked Model 

Random Speaking Order 

We find that, in the absence of a pre-set speaking order, there is no significant 

difference between the locations in the speaking order of members of the voting 

majority and the voting minority (p=0.69, see Figure 73).  
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Figure 73: In the absence of a pre-set 
speaking order, members of the 
simulated voting minority do not tend 
to speak later than do members of the 
simulated voting majority (p=0.69). 

Interestingly, when speaking order is randomized, Kolmogorov-Smirnov tests 

yield significant differences in vote and specialty cohesion percentiles when 

compared to empirical data (see Table 24). 
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Table 24: Kolmogorov-Smirnov tests 
show significant differences between 
the empirical and simulated 
distributions for specialty and vote 
cohesion percentiles.  

Distribution Tested Probability that data is consistent with hypothesis of 

no significant difference (p-value) 

Specialty Cohesion 0.37 

Specialty Cohesion 

Percentile 

0.032 

Vote Cohesion 0.88 

Vote Cohesion Percentile 0.036 

 

In addition there is a stronger correlation between simulated voting cohesion 

percentile and simulated specialty cohesion percentile than that observed under 

pre-set speaking order conditions (Spearman Rho = 0.10; p=1.30 x 10-41). 

Modeling Result 3: Members of the simulated voting minority tend to 

speak later than do members of the simulated voting majority when only 

when speaking order is pre-set. Furthermore, simulated vote and specialty 

cohesion percentile distributions fit the data better when speaking order is 

pre-set. Correlation between specialty cohesion percentile and vote 

cohesion percentile is slightly stronger than under conditions of pre-set 

speaking order. 
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Advocacy 

Assuming full advocacy – i.e., that panel members only discuss topics whose 

valences are consistent with their preferences, changes the model’s results such 

that, under these conditions, the correlation between vote cohesion percentile 

and specialty cohesion percentile strengthens (Spearman Rho = 0.84; p<0.0001). 

In addition, the Kolmogorov-Smirnov tests show significant differences between 

empirical and simulated vote and specialty cohesion, and vote and specialty 

cohesion percentiles (see Table 25). 

Table 25: Kolmogorov-Smirnov tests 
shows significant differences between 
the empirical and simulated 
distributions for vote cohesion and 
specialty and vote cohesion 
percentiles. 

Distribution Tested Probability that data is consistent with hypothesis of 

no significant difference (p-value) 

Specialty Cohesion 0.87 

Specialty Cohesion 

Percentile 

1.01 x 10-5 

Vote Cohesion 2.36 x 10-5 

Vote Cohesion Percentile 0.041 

 

Modeling Result 4: The model better explains the empirical data 

distributions when no advocacy among panel members is assumed, 
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although correlation between specialty cohesion percentile and vote 

cohesion percentile is stronger than under conditions of non-advocacy. 

Expertise and Meeting Parameters 

A 5-way Analysis of Variance, shown in Table 26, demonstrates that complexity, 

mean breadth, mean depth, depth dispersion, openness, and meeting profile 

(number and diversity of panel members) are all significant variables affecting 

specialty cohesion percentile. 

Table 26: 6-way Analysis of Variance 
showing the impact of Complexity, 
Mean Breadth, Mean Depth, Depth 
Dispersion, Openness and Ambiguity 
on Specialty Cohesion Percentile 

Variable Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F p-value 

Complexity 1.23 1 1.23 10.92 0.001 

Mean 

Breadth 

2.87 1 2.87 25.53 <0.0001 

Mean Depth  5.39 1 5.39 47.99 <0.0001 

Depth 

Dispersion 

2.14 1 2.14 19.03 <0.0001 

Openness 1.12 1 1.12 10.00 0.0016 

Ambiguity 14.26 1 14.26 126.87 <0.0001 
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Error 116.60 994 0.11 

Total 136.94 999  

 

 

Modeling Result 5: Simulated complexity, mean breadth, mean depth, 

depth dispersion, openness and ambiguity all have a significant effect on 

simulated specialty cohesion percentile. 

We find that specialty cohesion percentile decreases with mean breadth and 

openness, and increases with mean depth, depth dispersion, complexity and 

ambiguity.  

A 2-way ANOVA, shown in Table 27, shows that complexity and ambiguity are 

both significant predictors of voting cohesion percentile.  

Table 27: 2-way Analysis of Variance 
showing the impact of Complexity 
and Ambiguity on Vote Cohesion 
Percentile 

Variable Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F p-value 

Complexity  1.41 1 1.41 14.72 0.0002 

Ambiguity 4.89 1 4.89 51.05 <0.0001 

Error 30.18 315 0.096 

Total 37.01 317  
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Modeling Result 6: Simulated complexity and ambiguity have a significant 

effect on simulated voting cohesion percentile. 

Vote cohesion percentile increases with complexity and ambiguity. 

Given that both specialty cohesion percentile and vote cohesion percentile 

depend on ambiguity and complexity, we may use this information to further 

fine-tune the model. For example, an analysis of covariance (see Figure 74) shows 

that the correlation between specialty cohesion percentile and vote cohesion 

percentile is significantly weaker when ambiguity is greater than 0.5 (p=1.26x10-5).  

 

Figure 74: Analysis of Covariance Plot 
showing the effect of ambiguity on 
correlation between Specialty 
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Cohesion Percentile and Vote 
Cohesion Percentile 

A similar analysis shows that the correlation between specialty cohesion 

percentile and vote cohesion percentile is significantly weaker when complexity is 

greater than 20 topics (p=0.0078, see Figure 75).   

 

Figure 75: Analysis of Covariance Plot 
showing the effect of complexity  on 
correlation between Specialty 
Cohesion Percentile and Vote 
Cohesion Percentile 

Modeling Result 7: Association between specialty cohesion percentile and 

vote cohesion percentile is stronger when ambiguity is less than 0.5 and 

when complexity is less than 20 topics.  
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Panel’s Ability to Reach Consensus 

We have noted above that the panel’s ability to reach consensus depends on 

device quality. Other factors include diversity, complexity, mean breadth, and 

ambiguity, all of which are significant predictors of proportional minority size 

(see Table 29). 

Table 28: 5-way Analysis of Variance 
showing the impact of Diversity, 
Complexity, Mean Breadth, Mean 
Breadth, Quality and Ambiguity on 
proportional minority size.  

Variable Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F p-value 

Diversity 0.095 1 0.095 5.66 0.018 

Complexity 0.20 1 0.20 12.05 0.0005 

Mean 

Breadth 

0.28 1 0.28 16.79 <0.0001 

Quality 0.79 1 0.79 47.03 <0.0001 

Ambiguity 0.71 1 0.71 42.12 <0.0001 

Error 16.69 994 0.017 

Total 18.89 999  
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In particular, proportional minority size increases with diversity and ambiguity, 

and decreases with complexity, mean breadth, and quality.   

Modeling Result 8: Simulated proportional minority size is significantly 

associated with diversity, complexity, mean breadth, quality and 

ambiguity. 

Panel’s Ability to Correctly Decide 

The simulated panel correctly decided the correct outcome in 778 of the 1000 

meeting samples drawn from the model. As expected, mean depth, quality and 

ambiguity are all significant predictors of whether the voting outcome is correct 

(see Table 29). 

Table 29: 5-way Analysis of Variance 
showing the impact of Complexity, 
Mean Depth, Openness, Ambiguity 
and Quality on correct vote outcome. 
Although correct vote outcome is a 
dichotomous variable, the analysis is 
still qualitatively instructive (Lunney 
1970). 

Variable Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F p-value 

Meeting 

Profile 

8.38 36 0.23 1.55 0.021 

Complexity 1.71 1 1.71 11.38 0.0008 

Mean Depth 2.60 1 2.60 17.35 <0.0001 
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Depth 

Dispersion 

1.02 1 1.02 6.8 0.0093 

Openness 0.68 1 0.68 4.55 0.033 

Ambiguity 4.62 1 4.62 30.82 <0.0001 

Quality 8.19 1 8.19 54.67 <0.0001 

Error 143.42 957 0.15 

Total 172.72 999  

 

 

Modeling Result 9: Simulated meeting profile, complexity, mean depth, 

depth dispersion, openness, ambiguity and quality are all significantly 

associated with the panel’s capacity to reach a correct decision. 

In particular, as complexity, depth, depth dispersion, and quality increase (or 

move away from zero, in the case of quality), the panel is more likely to reach a 

correct decision, whereas as ambiguity and openness increase, the panel is less 

likely to make a correct decision. The significant effect of meeting profile may be 

understood as a control variable. In some configurations, the panel always 

generated the right answer (e.g., meetings 5 and 29), whereas in others, the panel 

was often incorrect (e.g., meeting 36, in which the panel was correct only 60% of 

the time). The interesting question of why these profiles yielded these outcomes 

is left to future work. 
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Preliminary Modeling Conclusions and Future Work 

The model presented in this chapter is still in its infancy, and fails to explain many 

facets of the operations of FDA panels. Nevertheless, we may derive many 

insights from this analysis. In particular, the fit of the model to some aspects of 

the data, even using randomized parameters, suggests that some major elements 

on FDA panels are captured. These, and their implications, are discussed in 

Chapter 7.  



 

 

C h a p t e r  7  

CONCLUSIONS 

"...natural languages are perfect in so far as they are many, for the truth is 

many-sided and falsity consists in reducing this plurality into a single definite 

unity." 

– Umberto Eco, The Search for the Perfect Language, (1997), trans. 

Italian. James Fentress, on the benefits of diversity  

Committees of experts are essential to engineering systems because of their ability 

to aggregate information from multiple domains of expertise – a necessary 

function when system complexity is large. This has the potential to enable better 

decision-making about a complex problem. Assuming a perfect flow of 

communication, we can expect diverse committees to pool their knowledge to 

make far better decisions than individuals possible with the information available 

(Hong & Page 2004). Even with less than perfect information flow, improved 

outcomes over individuals are likely. The literature indicates that communication 

flows on these committees are crucial to optimal decision-making. In particular, 

committee members with the appropriate expertise must be given the 

opportunity to express their views (Bottger 1984). Furthermore, their advice must 

be appropriately received and interpreted by the majority of committee members. 

The literature suggests that the correct procedural interventions could create 

conditions under which communication for information sharing could be 

optimized. In particular, if at all possible, members with appropriate expertise 

must be identified as such early in the decision-making process (e.g, through the 

assignment of lead reviewer status). In the case that there is a disagreement 
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regarding whose expertise is valid, the literature suggests that a decision might be 

made on other bases, with committee members potentially defaulting to other 

decision-making schemes, such as those controlled by idiosyncratic beliefs and 

values. Furthermore, different perspectives might be incommensurable, leading to 

a persistent disagreement and a split-vote on the panel. The literature suggests 

that, in the presence of clear, unambiguous data, role- and preference ambiguity 

inherent in the decision-making process is reduced since panel members would 

likely be able to agree on the interpretation of a significantly well-defined data 

artifact.  

Better understanding the role of information flow on committees of technical 

experts requires a methodology that can used to study real-world committee 

decision-making. The method developed in this thesis is based upon the Author-

Topic model (Rosen-Zvi et al. 2004), and is able to extract meaningful directed 

social networks from transcripts of the FDA Circulatory Systems Devices Panel 

Meetings. These networks represent the flow of communication, and potentially 

information, among panel members.  

Empirical Results and Their Implications 

Analysis of the networks generated from the methodology described in Chapter 4 

has yielded 27 empirical results, with the following implications: 

Air-Time on FDA Panels 

1. Gender, Medical Specialty, h-Index, and Age are all significant variables 

associated with a panel member’s air-time. Women tend to have more air-

time than men do, although this effect is not visible in meetings with 

voting differences. 

Although there is an effect for gender on air-time, it goes in a direction opposite 

than that predicted by (Berger et al. 1972), with female speakers using more air-
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time than do male speakers, and seems to disappear entirely for meetings in 

which there is a voting-difference present. Air-time increases with h-index 

(Spearman’s Rho=0.26). After correcting for h-index variation, air-time decreases 

with age, although the effect is very weak (Spearman’s Rho=-0.06). Finally, when 

controlling for the variables outlined above, we find no effect of race on air-time. 

These results suggest that FDA panel procedures are largely free from the status 

effects predicted in the “small-groups” sociology literature. One possible 

explanation of this may be found in Festinger’s (1954) theory. In the presence of 

a clear task requiring expertise, generalized status effects might become less 

important with panel members instead focusing perceived expertise on measures 

that are directly relevant to the task at hand (e.g., h-index and other metrics of 

academic or clinical experience). 

2. There is no observably significant effect between vote and air-time. 

This implies that the FDA process seems to allow those in the voting minority an 

equivalent amount of time to speak as those in the voting majority. Viewed 

within the context of Bottger’s (1984) distinction between perceived influence 

(based on air time) and actual influence (based on expertise) we see that the two 

are quite independent. Bottger predicts that performance should increase as 

expertise and air-time covary; however, given that all FDA panel members are 

acknowledged experts in their respective fields, this lack of covariance is not 

surprising and might be attributed to a procedure whose goal is to ensure that 

many different, but valid, viewpoints are heard in a public forum. Indeed, these 

findings suggest that in a structured task, such as on FDA panels, perceived 

expertise may not be equivalent to air time, For example, a priori perceived expertise 

might be explained by a procedural variable (e.g., speaking order). Under such 

circumstances, where each panel members has an opportunity to talk, a posteriori 

perception of expertise could match actual expertise. 
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3. There is no observably significant effect of medical specialty, h-Index, age 

or race on voting behavior. Women are more likely to be in the voting 

majority than men are. 

The prevalence of women in the voting majority, coupled with the additional air-

time used by women when consensus meetings are included may be due to the 

role of women as information integrators on committees (Johnson & Eagly 

1990), and suggests future work in determining the balance on a committee 

between broad integrators versus deep specialists. 

Empirical findings 1 - 3 seem to suggest that FDA panel procedures are 

successful in avoiding both perceived and actual bias associated with commonly 

expected attribute-based status characteristics. The absence of a difference in air-

time between majority and minority members further contributes to the 

perception of the panel meeting as a fair and balanced process, in which minority 

and majority members may equally express their views. It is particularly 

interesting that there is no significant impact of h-index on vote (p=0.66, using a 

Kruskal-Wallis non-parametric one-way ANOVA), which could be explained in 

that the FDA panel process might weight academic publication record against 

other sources of expertise, such as clinical experience. 

Medical Specialty as a Mediating Variable 

4. There is no observably significant effect between medical specialty and 

vote.  

Medical specialty, and technical training in general, is not a status characteristic as 

defined in the sociology literature. Specialties are different areas from which a 

panel may draw upon a diversity of expertise. Associated with these specialties are 

different standards for evaluating expertise and different speaking habits (cf. 

empirical finding 1). Social scientists might term these as different “professional 
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cultures” or “institutions” (e.g., Douglas 1986, Trice 1993). Empirical finding 4 

suggests that medical specialty is a cross-cutting categorization that influences 

behavior in a more subtle way.  

5. Panel members of the same medical specialty are significantly more likely 

to be linked than would be expected by chance. 

(Brown 1986; Douglas 1986) note that members of a common professional 

institution are likely to share common language and jargon. This may explain 

empirical finding 5, which finds that panel members with the same medical 

specialty tend to be linguistically linked. This indicates that the majority of 

communication on most FDA panels likely occurs between members of the same 

medical specialty. Nevertheless, the presence of some probability mass that is less 

than or equal to 0.5 may indicate meetings where some panel members made 

stronger attempts to communicate across specialty boundaries. 

6. Panel members who vote the same way are significantly more likely to be 

linked than would be expected by chance. 

This finding suggests that panel members who vote the same way share the same 

language. One possible explanation of this phenomenon is that these panel 

members are focusing their attention on a common area, such as a component of 

the device or an aspect of the sponsor’s data. One strategic interpretation is that 

different panel members may have similar preferences a priori, and would 

therefore focus on a device’s common shortcomings or merits to signal their 

preferences. It is more likely that within each voting group, a relatively small 

number of device features might attract the attention of a number of panel 

members, causing them to vote a certain way for that reason. Common language 

could suggest a common direction of attention and therefore, common 
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preferences. This might arise as panel members successfully learn from one 

another. 

7. Vote cohesion percentile and specialty cohesion percentile are 

significantly positively associated for the subset of 11 meetings with at 

least two members in the voting minority. 

In cases of mild ambiguity, where a small number of potential interpretations of 

the data are possible, (Douglas 1986) notes that institutional membership acts to 

direct one’s attention to a given framing of a situation or problem. This framing 

mechanism could potentially serve as an antecedent to preference formation. If 

such is the case, then a correlation between vote cohesion percentile and specialty 

cohesion percentile would be expected. We may use this insight to explain 

empirical finding 7 by assuming that a medical specialty directs a given voter’s 

attention to a certain interpretation of the data, thereby creating conditions under 

which members of a given medical specialty will pay attention to the same things. 

Within the medical community, Kaptchuk (2003) calls this phenomenon 

“interpretive bias”. This common perception of the data leads to a propensity to 

vote in a manner consistent with that perception. This is further supported by the 

fact that when specialty cohesion is low, voting cohesion also tends to be low. In 

these situations, it is likely that the data is difficult to interpret, e.g., due to mixed 

signals from a device that has a high risk but high potential reward, or sparse or 

ambiguous data. Under such conditions, many possible interpretations of the data 

might be possible within each specialty, suggesting that voters could rely on 

idiosyncratic beliefs. Medical specialties would have a weaker effect on an 

individual’s perception since the data might not match any situation previously 

encountered. Specialty cohesion would be lower because panel members from 

the same specialty would have different perceptions of the data. Under these 

circumstances, individual expertise becomes particularly valuable, although it is 
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unclear whose expertise is most appropriate. Panel members who vote the same 

way would likely do so for different reasons, thus leading to low vote cohesion.  

This finding cannot account for those meetings in which the panel reached 

consensus or only had one member in the voting minority. In these cases, voting 

cohesion has no meaning, whereas specialty cohesion runs the gamut of values. 

Low specialty cohesion during a consensus meeting might indicate learning across 

medical specialty boundaries, ultimately leading to a common interpretation.  

Agenda-Setting and the Effects of Speaking Order 

8. Members of the voting minority tend to speak later than do members of 

the voting majority. 

One interpretation of this finding might be the presence of framing and agenda-

setting effects, such as identified in (Cobb & Elder 1983). This would seem to 

suggest that those panel members who speak first are more likely to influence 

other panel members, because later speakers must respond to the problem as it 

has already been framed by the first speakers. Later speakers are less likely to have 

influence over defining the issues discussed in the panel meeting and their 

opinions are therefore more likely to be in the minority. This suggests the 

possibility that vote might be influenced by what have been called “ritual” 

elements in the literature (e.g. Chwe 2003; Douglas and Wildavsky 1982). In 

particular, speaking order typically begins with the lead reviewers and then 

proceeds sequentially around the table in a direction chosen by the committee 

chair. Choice of seating location is jointly determined before the meeting by the 

committee chair and FDA executive secretary (FDA 1994).  

9. Members of the voting minority tend to have a lower graph outdegree 

than do members of the majority. 
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10. Outdegree is negatively and significantly associated with location in the 

speaking order, and indegree is positively and significantly associated with 

location in the speaking order. 

11. Location in the speaking order seems to account for the variance in 

voting behavior that is associated with outdegree. 

Taken together, empirical findings 9-11 suggest that panel members who speak 

later are less likely to be repeated even in the presence of multiple rounds of 

discussion. If empirical finding 9 suggests the presence of an order-based 

hierarchy, then empirical finding 10 finds that it extends beyond the simple 

speaking order of the first round of panel questioning and throughout the 

meeting.  All of the information above points to the role of speaking order as an 

important procedural variable, potentially embodying a form of perceived 

expertise. The FDA Policy and Guidance Handbook (1994) emphasizes the role 

of the FDA Executive Secretary and the committee chair in choosing the seating 

order of different panel members, suggesting that this is one possible lever by 

which control over the decision-making process could potentially be exercised. 

Ideally, seating order would correlate with actual expertise. This is often the case 

when expert lead reviewers are chosen to speak first. In other cases, it may not be 

clear a priori, which expertise is most relevant. In these situations, it is important 

to be aware of the potential procedural consequences of seating order. 

12. Members of the voting minority spoke significantly later in meetings in 

which the panel did not approve the devices than did members of the 

voting majority. This trend was not present in meetings in which the 

panel did approve the device. 

One possible explanation of this effect might be that there is not enough 

statistical power to differentiate between voting minority and voting majority 
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groups due to the smaller number of meetings in which there was a voting 

minority and the device was approved. Another possible explanation might be 

that negative comments about a device are weighted more strongly than are 

positive comments as per Kahneman and Tversky’s (1979) Prospect Theoretic 

bias in which “losses loom larger than gains”. If negative opinions are expressed 

relatively early in the panel discussion, this might predispose the panel to vote 

against device approval. If such is the case, then one way to counteract such a 

bias might be choose speaking order to insure that members who are likely to 

contributed negative comments speak later15. This would best enable both 

positive and negative comments to be expressed, ensuring a balanced process. 

More data is necessary to test this hypothesis. 

13. Members of the voting minority had a significantly smaller outdegree in 

meetings in which the device was approved. This trend was not present in 

meetings in which the panel did not approve the device. 

This suggests that, in meetings in which the device was approved, members of 

the voting minority seemed to exercise less influence over topic selection than did 

members of the voting majority. On the other hand, in meetings in which the 

device was not approved, members of the voting majority and the voting 

minority tend to have the same amount of influence.  

Together, empirical results 12 and 13 suggest that when there is a minority and 

devices are approved, the voting minority (i.e., those who voted against the 

device) has less influence over topic selection and so may not need to be located 

later in the speaking order. On the other hand, when there is a minority and 

devices are not approved, the voting minority (i.e., those who voted in favor of 

the device) have more influence over topic selection despite their location later in 

                                                 
15 The author would like to thank Dr. Susan Winter for suggesting this interpretation. 
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the speaking order. One might simply interpret this data in terms of a disparity 

between perceived and actual expertise. We would expect that minority panel 

members would have less actual influence (and hence, a lower outdegree) in a 

panel meeting in which the majority and the minority are equally distributed 

throughout the speaking order (i.e., the procedure does not embody perceived 

expertise). On the other hand, when procedural effects seem to locate the voting 

minority at the end of the speaking order (as is the case in non-approval 

meetings), we notice that the actual influence of the majority and the minority are 

statistically indistinguishable. In such cases, it might be that perceived expertise 

and actual influence do not covary. 

Another interpretation would seem to suggest an opposite effect to that discussed 

after empirical finding 12. Those who are in favor of device approval seem to 

have an outdegree that is at least as high as those who oppose device approval, 

even when they are located at the end of the speaking order. On the other hand, 

those who are opposed to device approval seem to have a lower outdegree, even 

when they are not significantly later in the speaking order. One way of 

interpreting this result is that it might suggest a predisposition towards approval 

on FDA panels, particularly since panel members might choose to impose 

conditions of approval rather than rejecting the device wholesale. Examining the 

direction of causation underlying these effects is an area for future work. 

14. Members of the voting minority are more likely to be graph sinks than are 

members of the voting majority. 

Even in situations in which voting minority members aren’t linked to one 

another, they are still likely to be graph sinks. This suggests that independent 

meaning may be derived from graph sink status. For example, voting minority 

members may not agree with the voting majority for different reasons which 

other voting members do not repeat. 
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15. Members of the voting minority are more likely to be the last speaker to 

ask questions to the sponsor and FDA, than are members of the voting 

majority, especially for meetings in which there is a singleton voting 

minority. 

16. Using F-score as an evaluation criterion, the graph sink heuristic provides 

a superior classification of voting minority members when compared to 

the last speaker heuristic. 

Empirical findings 12 and 13 follow as consequences of the effects of speaking 

order. On the other hand, empirical finding 14 shows that introducing topic-

related information can aid in classifying minority members, and may point to a 

dynamic on the panels wherein members of the voting minority may be unable to 

convince other panel members to adopt their perspectives. The examination of 

graph sinks is a better method for determining voting minority membership than 

is examining the last speaker. In the case of the 17 meetings with a minority, 

precision is higher using the graph sink heuristic, suggesting that graph sinks 

capture a higher proportion of minority members than do last speakers. This 

makes sense given that there can be multiple sinks per meeting, but only one last 

speaker. On the other hand, recall is higher using the last speaker heuristic, 

suggesting that a randomly chosen member of the minority is more likely to be 

correctly classified using the last speaker method. This can be explained by the 

fact that a meeting with only one minority member might have multiple sinks, 

introducing a potential source of noise, perhaps due to valence effects (i.e., the 

tendency not to oppose the majority for reasons of maintaining one’s reputation 

– cf. Ashworth & Bueno de Mesquita, 2005). These additional sinks might not be 

influential, even though they vote with the majority. We find that F-score is 

higher for the graph sink heuristic, suggesting that the noise in the recall metric is 

more than offset by the advantages gained in the precision metric. This 
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conclusion is stronger in the subset of 11 meetings with a voting minority of 2 or 

more, where recall is also higher using the graph sink metric. This suggests that, 

for larger minorities, the graph sink metric becomes increasingly accurate in 

classifying voters.   

Framing and Ambiguity 

17. Although lead reviewers have a significantly higher air-time and 

outdegree, and a significantly lower indegree than other panel members, 

their overall voting behavior is not significantly different. 

This result is surprising in light of the effects of speaking order identified above 

and seems to contradict a major tenet of the agenda-setting literature – namely 

that those with the capacity to frame an issue can set the agenda and, therefore, 

strongly influence decision outcomes. One would expect lead reviewers to be 

more frequently in the majority; nevertheless, the lead reviewers’ probability of 

being in the majority is statistically indistinguishable from that of the rest of the 

panel (the values of χ2 are near zero, and the p-values are close to 1). One 

possible explanation of this result is that the FDA might choose lead reviewers 

that are representative of different perspectives on a given device, with the 

intention of fostering open communication. Thus, when lead reviewers disagree, 

it might be reflective of a wider split within the medical community. On the other 

hand, it might be that the panel’s vote distribution follows that of the lead 

reviewers present. We cannot determine the direction of causation from this 

analysis – nevertheless, it is clear that the votes of the lead reviewers are indeed 

correlated with the votes of the rest of the panel in some manner.  

18. The proportional size of the voting minority is larger when lead reviewers 

do not vote with the majority within a given meeting, and when there is 

disagreement among lead reviewers. 
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As stated above, the direction of causation underlying this result is unclear. One 

possible explanation, following the agenda-setting literature, is that there are 

multiple competing interpretations in situations in which lead reviewers disagree 

– each frame is a different description of the problem and leads to different 

conclusions regarding the appropriateness of approving the device. Another 

explanation is that the device or the data describing it is inherently ambiguous 

and that there is deep uncertainty regarding its suitability for approval. These two 

explanations are not necessarily contradictory, since the existence of multiple 

credible frames is much more likely as ambiguity increases (cf. March 1994). The 

increase in the proportional size of the majority may therefore be a reflection of 

this ambiguity as voting members preferentially adopt frames. Often, these are 

related to an individual’s medical specialty, which serves to direct that individual’s 

attention to a particular set of salient device characteristics. 

19. Meetings are longer when more lead reviewers are in the voting minority. 

One possible interpretation of this result is that as meeting length increases, the 

procedural components of the meeting become relatively less important – i.e., 

there is more open discussion. This might happen because of disagreement 

regarding how to interpret a given set of clinical trial data, or because of some 

other source of ambiguity (March 1994). The presence of multiple competing 

interpretations, possibly advanced by the presence of lead reviewers who disagree 

with other prominent panel members (or other lead reviewers) supports the 

notion that that ambiguity is a driver of dissensus on FDA panels. As the panel 

works to reconcile these different perspectives, meetings may take more time.  

20. Meeting length is significantly positively associated with the maximum 

normalized outdegree among voting minority members, but not with 

maximum location in the speaking order. 



 

 237 

As meetings get longer, more time is likely to be devoted to open, non-structured 

discussion. The hierarchy established by speaking order is therefore less likely to 

have as strong an impact on voting outcome. Furthermore, in some longer 

meetings, lead reviewers may be more likely to be in the voting minority. Thus, as 

meetings get longer, we see voting minority members begin to appear higher on 

the graph and to have a larger outdegree. 

21. Maximum normalized outdegree is significantly associated with 

proportional voting minority size. 

22. Meeting length is significantly positively associated with proportional 

voting minority size. 

Empirical results 17-22 show a set of four variables that are mutually correlated: 

meeting length, proportional voting minority size, maximum voting minority 

outdegree, and minority voting dissensus. Such clusters of correlated variables are 

indicative of a “natural mode” (Richards 2008b), and might suggest the presence 

of an underlying driver. One explanation is the presence of device ambiguity – as 

the data regarding a particular device becomes harder to read, it leads to the 

possibility for multiple possible interpretations of the data. These interpretations 

are often mutually inconsistent, and may require additional time to resolve. 

Alternatively, they might not be resolved at all, leading to a split vote on the 

panel. When different interpretations from different experts are equally probable, 

it is possible that lead reviewers will be chosen who reflect this dichotomy. 

Nevertheless, it is precisely under conditions of ambiguity that different 

interpretations, based upon different values, may dominate (March 1994). 

Impact of the Committee Chair 

23. Inclusion of the Committee Chair in directed graphs leads to a bimodal 

distribution of the extent to which the chair changes the structure of the 
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graph. These two modes may correspond to different sorts of behavior 

by the Chair in his/her interactions with panel members during the 

meeting. 

Among the many roles of the committee chair is to serve as a facilitator, 

ensuring that all of the panel members present are able to express their views. 

The chair’s role in “flattening” the structure of a given meeting’s graph could 

suggest a particular facilitation strategy, wherein the committee chair tries to 

elicit the opinions of voting members who speak later, and might otherwise 

be less influential. When the chair does not act to significantly change the 

graph structure, the chair may be taking on the role of a synthesizer – 

gathering the opinions of the other voters to answer FDA questions, but not 

causing any of the other members to repeat what has already been said. The 

histogram shown in Figure 66, suggests that there may be two different 

strategies that committee chairs could use during a meeting. 

24. Committee chair impact is significantly positively associated with meeting 

date for meetings in which there is a voting minority.  

The marked change in committee chair strategy has many potential explanations 

– one might be that the identity of the committee chair changed around this time, 

suggesting a change in personal style, but this would have to explain a consistent 

change across multiple chairs. Alternatively, prior to 2002, most of the meetings 

were chaired by women, whereas after March 2002 most chairs were men. There 

is literature to suggest that men and women utilize different leadership styles on 

committees (e.g., Johnson & Eagley 1990). Another explanation might be that 

there was a change in FDA policy regarding committee operations. For example, 

there was a change in conflict of interest reporting procedures that was 

concurrent with the shift shown in empirical result 22, but there is no obvious 

connection between these two events. Another possibility is that the types of 
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devices that came to the Circulatory Systems Devices Panel changed around this 

time – this could be reflected in the fact that there were no half-day meetings 

after 2002. Perhaps there was an increase in the difficulty of the devices that the 

panel reviewed (e.g., concurrent with the entrance on the market of drug-eluting 

stents, Left Ventricular Assist Devices and other potentially risky devices). Finally, 

we might hypothesize some combination of these ideas – that a change in FDA 

policy might have some way impacted upon chair style, and that this change in 

policy might have been driven by changing market conditions. Testing these 

hypotheses requires looking across multiple panels and committees, which we 

leave to future work.  

Conflicts of Interest 

25. Panel members with conflicts of interest tend to have a significantly 

higher h-index than do panel members without a conflict. 

This finding recognizes that panel members with conflicts of interest tend to have 

greater academic credentials than do other panel members. When a particular 

panel member is granted a waiver by the FDA despite their conflict of interest, 

the FDA recognizes the impossibility of entirely eliminating conflicts of interest 

on panels of experts. The need for specialized expertise often requires that 

individuals who have extensive experience with a device be consulted. On the 

other hand, it is precisely these individuals who are likely to have financial 

conflicts due to their previous work. (McComas et al. 2005) call this the “shared-

pool dilemma”.  

26. Panel members with conflicts of interest do not have higher outdegrees 

than panel members without conflicts of interest. 
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27. Panel members with conflicts of interest, who are in the voting majority 

do not have higher outdegrees than panel members with conflicts of 

interest who are in the voting minority. 

Procedures on the Circulatory Systems Devices Panel seem to be unaffected by 

the conflicts of interest outlined above. Indeed, there seems to be no evidence of 

systemic bias due to conflict of interest on this panel. Further investigation 

therefore focuses on the level of individual meetings. The evidence here suggests 

that conflicts of interest are minimized when there is only one member on the 

panel with a reported conflict or when there are opposing reported conflicts on 

the panel. When there are multiple panel members with consistent conflicts of 

interest, unanimous support for those conflicts might result. Although more data 

is required to rigorously test this finding, if this speculation is correct, it suggests a 

direction for future research on conflicts of interest. In particular, trends in the 

data seem to indicate that, where there is one panel member with an identified 

conflict, or when there are opposing conflicts on a panel, these conflicts are 

typically neutralized. This is reflected in the first part of empirical findings 26. 

One possible explanation for this phenomenon is that the prospect of appearing 

biased might cause panel members with conflicts of interest to become more 

aware of how their conflicts might drive their decision-processes. On the other 

hand, when consistent conflicts are distributed across many panel members, it is 

less likely that any one individual will question another’s conflict. Another 

explanation could be that a given device is unambiguously approvable or non-

approvable – under these circumstances, the conflicts of interest might simply be 

consistent with the device’s qualities. Future work will focus on testing these 

hypotheses further. 



 

 241 

Synthesis of Empirical Results 

Because committee members have scarce attention resources (Cobb and Elder 

1982), procedure is necessary to ensure that the appropriate members are given 

ample time to speak. A sociologist would characterize these procedures as 

embodying a status hierarchy – nevertheless, we do not use the standard status 

assumptions that are found in the sociology literature. This is because empirical 

results do not agree with the hypothesis that some of these variables (e.g., race 

and gender) significantly impact of air-time in the direction predicted (i.e., women 

tend to speak more than men). Festinger’s theory of group decision-making 

(1954) suggests that these variables are not the source of significant differences 

because they are not perceived as directly relevant to a technical query. Panel 

procedures likely act to focus attention of panel members to the question at hand, 

potentially explaining the effects of h-Index, a metric reflecting recognized 

academic expertise. Panel procedures may represent a form of common 

knowledge (cf. Chwe 2003) that may encode assumptions regarding perceived 

expertise. Thus, procedural choices may modulate the flow of communication on 

a committee in ways that can enable or disable the covariance of actual influence 

and perceived expertise.  

A generalized relation between panel procedure and actual influence could be 

supported by the empirical observation that members of the voting minority tend 

to have a lower graph outdegree than do members of the voting majority. A 

covariance between actual influence and perceived expertise could be reflected in 

the fact that voting minority members also tend to be positioned later in the 

speaking order than do their voting majority counterparts. Nevertheless, this 

approach might lead to a situation in which some experts are marginalized – e.g., 

if the majority of committee members are unwilling to listen to an opinion that 

might have some merit but disagrees with their intuition. This effect would 

reduce some of the benefit from diversity shown by Hong and Page (2004). In 
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such circumstances, a respected mediator, such as the committee chair, might 

take action to promote the exchange and re-consideration of information that 

might otherwise be ignored by the majority. That such chair behavior indeed 

occurs on FDA panels is reflected in the “flattening” of the panel hierarchy as 

seen in our directed graphs by the committee chair.  

The above assumes that an expert committee member is able to determine 

whether another member is correct in his or her comments. This assumption may 

break down in the case of very different technical specialties, wherein a member 

from one specialty has limits in evaluating the contribution of a member from 

another specialty. This reflects a sort of cognitive limitation that can prevent a 

perfect flow of information, even in the face of clear procedure (Douglas 1986). 

This effect is reflected in the empirical observation that members of different 

medical specialties have different speaking habits. Furthermore, members of a 

given medical specialty seem to preferentially link to one another on FDA panels. 

Nevertheless, this effect is not incommensurable, as indicated by the fact that the 

empirical distribution tends to place more probability mass near 0.5 than does the 

simulated distribution. These results suggest that medical specialty plays a role as 

an informal constraint on communication (North 2006/1990), which may be 

circumvented by various mechanisms including cross-specialty understanding, or 

if another identity is evoked. On one hand, evocation of a common identity 

might further enable learning among panel members. On the other hand, as 

individuals’ language deviates from their assigned roles, panel members may not 

know how to evaluate the contributions of others. Furthermore, in the most 

uncertain meetings, in which there is a minority of size two or more, we find that 

when vote cohesion among specialists of a given type is high so is specialty 

cohesion. This suggests that, under conditions of high uncertainty, individuals 

might engage in role-based behavior (March 1994), relying on their medical 

specialty identification to determine what to talk about and how to vote. On the 
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other hand, if this identification is not found to be relevant (i.e., there is a low 

specialty cohesion percentile) vote cohesion percentile is also low. This suggests 

circumstances in which panel members’ voting behavior is not related to their 

expressed concerns, potentially indicating voting for idiosyncratic reasons. That 

voting cohesion percentile is low when specialty cohesion is low suggests that 

medical specialty is an organizing factor on these panels. For example, if one were 

to think of the data regarding a particular medical device as a correlation device 

(e.g., a coin flip, cf. Aumann 1974) indicating data quality, then an individual’s 

subjective interpretation of that data would be conditional on medical specialty. 

The strength of this conditional dependence is a decreasing function of 

ambiguity. 

Empirical results demonstrate that meeting length, minority size, minority 

outdegree, and propensity for the lead reviewers to disagree are correlated. This 

suggests the presence of an underlying explanation for this effect. We propose 

that these are all related to the difficulty of evaluation of a given device. For 

example, the data might be ambiguous or it might not be clear what constitutes a 

correct decision. This is a form of deep uncertainty that panels such as these 

occasionally face – the information necessary to make a clear choice may simply 

not be available because the right expertise may not be possessed by panel 

members, or because it may simply not exist. In such cases, committee members 

are likely to be unsure which role is appropriate, and may instead rely upon 

idiosyncratic opinions and values (March 1994). Meeting length would increase as 

panel members discuss different perspectives, whereas the added controversy 

could also result in larger and more influential minorities (i.e., more dissent).  

Modeling Results and Their Implications 

In Chapter 6, we presented a computational model that attempts to capture some 

of the dynamics described above. Although still preliminary, the model yields 
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nine results that may provide some theoretical insight into the empirical trends 

discussed above. 

1. Simulated vote cohesion percentile and simulated specialty cohesion 

percentile are significantly positively associated. 

As in the empirical data, this result suggests that medical specialty is an 

organizing factor in determine voting behavior on panels in which there is no 

consensus. The model posits that panel members from the same medical 

specialty are more likely to understand information that is consistent with 

their training, thereby shaping their voting behavior. 

2. Proportional minority size, and specialty and vote cohesion, are functions 

of device quality. 

This demonstrates that proportional minority size is associated with device 

quality; an intrinsic characteristic of the device being reviewed. 

3. Members of the simulated voting minority tend to speak later than do 

members of the simulated voting majority when only when speaking 

order is pre-set. Furthermore, simulated vote and specialty cohesion 

percentile distributions fit the data better when speaking order is pre-set. 

Correlation between specialty cohesion percentile and vote cohesion 

percentile is slightly stronger than under conditions of pre-set speaking 

order. 

These results suggest one possible mechanism by which the empirical speaking 

order effect on vote might be explained. In particular, speaking order and seating 

order may be chosen in advance as one means by which the FDA could exercise 

control over the process. Reasons why this might be the case were presented in 

the discussion of the empirical results. If such is the case, then speaking order 
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might represent a coordination mechanism by which FDA expresses common 

knowledge to panel members (Chwe 2003). Of course, other explanations that 

are not captured in the model are possible. Future work may focus on 

determining a mechanism of emergence of voting effects on speaking order. 

4. The model better explains the empirical data distributions when no 

advocacy among panel members is assumed, although correlation 

between specialty cohesion percentile and vote cohesion percentile is 

stronger than under conditions of non-advocacy. 

These results suggest that the model better represents reality under conditions of 

non-advocacy. This suggests the possibility that discussion on such panels is 

indeed motivated by learning or information sharing rather than strategic 

concerns. That specialty and voting cohesion are more strongly correlated under 

conditions of advocacy is not surprising, since panel members are less likely to 

share information. When specialties are relatively homogeneous in their 

preferences, this would reduce the possibility that information is shared across 

specialty boundaries, perhaps leading to a “group think” within each specialty. On 

the other hand, when specialties’ preferences are internally diverse, specialty 

groups would fragment since information sharing would be limited. Furthermore, 

links would be unlikely to form across specialty boundaries between members 

who vote the same way because simulated panel members with broad expertise 

might be unwilling to discuss relevant information. 

5. Simulated complexity, mean breadth, mean depth, depth dispersion, 

openness and ambiguity all have a significant effect on simulated specialty 

cohesion percentile. 

These simulated results suggest potential drivers of the results seen in the 

empirical data. In particular, we find that specialty cohesion percentile decreases 
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with mean breadth and openness, and increases with complexity, mean depth and 

depth dispersion. We may explain these findings by noting that panel members 

who share deep domain expertise will be more likely to discuss that shared 

knowledge with members of the same specialty. Members of other specialties 

may not be able to learn this specialized information and so will not be linked. 

This increases the propensity for panel members from the same specialty to link 

in a conversation while decreasing the propensity for links across specialties. A 

similar argument holds for depth dispersion. A high dispersion in depth increases 

the likelihood that at least one panel member will have a very high depth, and 

then share the resulting knowledge with other members of that specialty. Panel 

members have more topics to discuss with increasing complexity, and therefore 

are less likely to discuss all topics, potentially leading to a preferential discussion 

of those topics in their specialty – especially since they are more readily able to 

assimilate these topics from others, potentially creating a “hidden profile” effect 

of the sort described by Stasser and Titus (1985). They are also likely to speak 

longer, creating more of an opportunity for members from the same specialty to 

link. A similar argument holds for ambiguity – as ambiguity increases, panel 

members spend more time in discussion, enabling linkage between members of 

the same specialty. For very low values of ambiguity, panel members have 

relatively little to discuss and so do not require linkage within their specialty 

groups. Unambiguous device data leads to an early consensus. Furthermore, 

discussion time is curtailed. On the other hand, as mean breadth increases, panel 

members are more likely to link across specialty boundaries, reducing specialty 

cohesion. Finally, as openness increases, panel members are less constrained to 

follow a fixed speaking order. This reduces the degree to which initial speakers 

can cause later speakers to adopt favored topics. As a result, specialties may be 

less aligned since they will be less likely to share, and therefore discuss, common 

information in their specialties.  
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6. Simulated complexity and ambiguity have a significant effect on simulated 

voting cohesion percentile. 

These simulated results suggest that as complexity and ambiguity increase, vote 

cohesion increases. This is consistent with the previous argument because vote 

cohesion is only defined for those meetings in which there is a sizable voting 

minority. In these meetings, it is likely that discussion causes panel members who 

exchange information to align their preferences. If there is not enough time for 

this to occur, voting cohesion will be low.  As ambiguity and complexity increase, 

there is more information shared, since panel members are more able to discuss 

their specific unshared knowledge. This could lead to more learning, and 

ultimately, higher vote cohesion. Excluded are the cases in which the panel 

reaches consensus. These are typically associated with low ambiguity. Thus the 

association of high vote cohesion with high ambiguity and complexity suggests 

the formation of coherent subgroups on the panel that are unable to reach 

consensus. This could indicate the presence of multiple competing interpretations 

of the data.   

7. Association between specialty cohesion percentile and vote cohesion 

percentile is stronger when ambiguity is less than 0.5 and when 

complexity is less than 20 topics. 

This result suggests that in the presence of high complexity and ambiguity, the 

correlation between medical specialty and vote cohesion percentiles breaks down. 

Although specialty cohesion percentile and vote cohesion percentile are both 

positively associated with ambiguity and complexity, their association with each 

other decouples. One possible explanation is that, under these conditions, there 

are too many topics to discuss as well as conflicting signals from the data. Even 

though there is more time to discuss these issues, it is unlikely that panel 

members will cover enough ground to reach a consensus within their specialty. 
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This might suggest a high specialty cohesion – i.e., among members in a specialty 

that share similar topics – but a low vote cohesion, since there may be subgroups 

within specialties. If there is a breadth of expertise on the panel, learning across 

specialties would strengthen this trend, because the learning would be selective. 

Furthermore, the presence of conflicting signals suggests that a small difference 

in valence in one topic could a panel member’s vote. This would suggest high 

specialty cohesion but low vote cohesion.  

8. Simulated proportional minority size is significantly associated with 

diversity, complexity, mean breadth, quality and ambiguity. 

In particular, proportional minority size increases with diversity and ambiguity, 

and decreases with complexity, mean breadth, and quality.  This makes sense 

because, as diversity increases, there are more barriers to communication across 

specialty boundaries. This is either because there are more specialties which may 

not share knowledge with one another a priori. Furthermore, as ambiguity 

increases, different topics give different signals. Thus voting behavior is highly 

sensitive to the information accessed by a particular voting member. As 

complexity increases, there is more time for panel members to discuss different 

topics, leading to a higher likelihood of information sharing. Furthermore, there 

are more topics to discuss. As a result, it is more likely that a speaker will discuss a 

previously unmentioned topic, leading to a situation in which panel members 

could learn. As mean breadth increases, information is more likely to be 

communicated across specialty boundaries, leading to a common understanding 

of the data, and consequently, a higher probability of consensus. Finally, as quality 

moves away from zero, topics are more likely to display similar signals, leading to 

less reason for disagreement a priori. 
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9. Simulated meeting profile, complexity, mean depth, depth dispersion, 

openness, ambiguity and quality are all significantly associated with the 

panel’s capacity to reach a correct decision. 

In particular, as mean depth and depth dispersion increase, the available 

information also increases, and that information becomes more accurate and 

more likely to be correctly transmitted. Furthermore, as the absolute value of 

quality increases, and as ambiguity decreases, different topics display consistent, 

correct signals to all panel members, leading to a consensus on the correct 

outcome. As complexity increases, panel members are more likely to spend time 

in discussion, and therefore more likely to come to a correct conclusion. It is 

likely that very low values of complexity lead to short discussion times, suggesting 

that a panel’s decision might not be well-informed. For example, one panel 

member might have access to a depth of unshared expertise that other panel 

members ignore. This is interesting because it indicates that many “easy” 

decisions might require deeper consideration than they are given. Often, 

prolonged discussion may raise issues that might have otherwise gone unnoticed. 

A similar argument holds for the impact of openness. If openness is too high, 

then panel members will be unable to make extended arguments in a given topic. 

In the model, this manifests as repeated mention of a topic, increasing its 

probability of adoption. On the other hand, with a well-established structure, 

panel members have sufficient time to ensure that the full range of their topics is 

heard. Otherwise, the panel meeting might end early, with the panel having 

achieved total- or near-consensus with an uninformed perspective. 

These initial results serve as a benchmarking for the model that may be expanded 

upon in future work. The fit of the model to some aspects of the data, even using 

randomized parameters, suggests that some major elements on FDA panels are 

captured. These include the following: 
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1) The “technical” effects of ambiguity and complexity – It is interesting 

that the correlation between specialty cohesion percentile and vote 

cohesion percentile erodes under conditions of high ambiguity and 

complexity, as panel members speak about very different topics and draw 

different conclusions from the same topic. This is a finding that is 

generally consistent with the theories of March (1994). This suggests that 

a limit placed upon interpretation of empirical reality erodes as that reality 

becomes harder to discern. 

2) The “cognitive” effects of learning and medical specialty – The model is 

consistent with the notion that medical specialty is an organizing factor. 

Vote and specialty cohesion are correlated following model rules. The 

model assumes that communication between medical specialties can only 

occur via the mechanism of individuals who possess a breadth of 

expertise – i.e., a capacity to learn from and teach other in different 

medical specialties. The role of mean breadth in decreasing proportional 

minority size and specialty cohesion percentile points to another sort of 

learning on panels that, when combined with high depth, could enable 

better information aggregation across specialty boundaries. That mean 

breadth is not associated with voting cohesion percentile is a reflection of 

the fact that voting cohesion percentile may not exist in these cases – the 

panel may instead have reached consensus. The absence of an effect of 

breadth on correct voting outcome suggests that learning requires a depth 

of expertise on which to draw in order for information to be successfully 

transferred – absent the appropriate depth of expertise, breadth of 

expertise is not useful. Indeed, proximity to ground truth on a topic is a 

function of breadth and not depth. If there is no depth of expertise on 

the panel, breadth will not lead to the correct answer. 
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3) The “social” effects of speaking order and procedure – It is interesting 

that the model only matches the data when speaking order is pre-

determined, such that members in the voting minority already speak last. 

This provides one possible explanation for the observed behavior in the 

FDA panels. Nevertheless, other explanations, that do not assume an 

explicit pre-set ordering, are possible (see, e.g., Chwe 2000). It is not 

inconceivable that this result could instead have emerged due to another 

mechanism such as a tendency for late speakers to want to disagree e.g., 

due to resentment over being assigned a late position. Furthermore, a 

structured panel process with sufficient discussion time may be important 

in enabling panel members to express information that would otherwise 

be unshared. On the other hand, if much of the information discussed in 

the structured phase is already known by other panel members, or if 

ambiguity is very low, then a strict structure to the discussion might not 

be beneficial since there is little that panel members could learn. In such a 

case, open discussion would better serve the goals of the panel conveners 

by avoiding the repetition of shared information (potentially leading to a 

quick, but potentially uninformed, decision in favor of what this 

information represents). 

We may draw some concluding observations from the analysis that we have 

already performed. If the logic underlying our model is correct, the Circulatory 

Systems Devices Panel in the FDA may largely allow for learning and correct 

decision-making. Empirical results suggest that three major factors affect panel 

decision-making; namely, technology, procedure and training. In general, these 

are representative of three interacting layers, or orders (cf. Hayek 1952, Richards 

2009, see Figure 76): respectively, the technical, cognitive, and social. Within the 

technical layer, data are important – this is where data ambiguity and device 

quality can impact upon decision outcomes. Within the cognitive layer, direction 
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of attention is important – this is where learning may occur as modulated by the 

effects of medical specialty. Finally, within the social layer, dynamics of perceived 

expertise are strong – this is where speaking order becomes a determinant of 

voting behavior. No one of these layers on its own is sufficient to explain voting 

behavior. Instead, interactions among these layers cause complex social behavior 

of the sort required to successfully cope with a complex technical environment 

(Conway 1968).  
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Figure 76: Three interacting orders or 
layers. Each one constrains the layer 
immediately above it (cf. Polanyi 
1970). Thus very clear data would 
constrain the set of possible 
interpretations, etc. 

Today’s engineering systems must be able to adapt quickly to an increasingly 

complex world. Only by pooling knowledge from across many different domains 

can this be accomplished. Still, there has been little empirical research into how 

this occurs in real-world settings. We addressed this query by asking three 

questions that guide our research: 

1. How can we study, in a quantitative, consistent manner, the flow of 

communication among technical experts on committee decisions?  

2. How do technical experts’ decisions change as they learn and interact 

during the decision-making process?  

3. How might we design committee processes so as to enable desirable 

behaviour on the part of technical expert committees? 

The methodological contribution of this thesis answers question 1, providing a 

tool that may be used by future researchers to study verbal communication flows 

on expert committees. This tool is used to inform theory, which has been 

instantiated as a preliminary computational model, thus providing a first answer 

to question 2. As more data is gathered and analyzed, we will be even more able 

to answer question 2, providing insight into the decision- and learning-processes 

of technical experts. Finally, this chapter provides a preliminary framework for 

question 3. Together, these diverse sources of information can be combined to 

lead us to a deeper understanding of committee decision-making on technical 

expert committees, and ultimately, to the better design of engineering systems. 
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A p p e n d i x  1  

LIST OF FUNCTION WORDS (STOP LIST) 

's 

i 

a 

aboard 

about 

above 

across 

after 

afterwards 

against 

agin 

ago 

agreed-upon 

ah 

alas 

albeit 

all 

all-over 

almost 

along 

alongside 

altho 

although 

amid 

amidst 

among 

amongst 

an 

and 

another 

any 

anyone 

anything 

around 

as 

aside 

astride 

at 

atop 

avec 

away 

back 

be 

because 

before 

beforehand 

behind 

behynde 

below 

beneath 

beside 

besides 

between 

bewteen 
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beyond 

bi 

both 

but 

by 

ca. 

de 

des 

despite 

do 

down 

due 

durin 

during 

each 

eh 

either 

en 

every 

ever 

everyone 

everything 

except 

far 

fer 

for 

from 

go 

goddamn 

goody 

gosh 

half 

have 

he 

hell 

her 

herself 

hey 

him 

himself 

his 

ho 

how 

however 

i 

if 

in 

inside 

insofar 

instead 

into 

it 

its 

itself 

la 

le 

les 

lest 

lieu 

like 

me 

minus 

moreover 
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my 

myself 

near 

near-by 

nearer 

nearest 

neither 

nevertheless 

next 

no 

nor 

not 

nothing 

notwithstanding 

o 

o'er 

of 

off 

on 

once 

one 

oneself 

only 

onto 

or 

other 

others 

otherwise 

our 

ours 

ourselves 

out 

outside 

outta 

over 

per 

rather 

regardless 

round 

se 

she 

should 

since 

so 

some 

someone 

something 

than 

that 

the 

their 

them 

themselves 

then 

there 

therefore 

these 

they 

thine 

this 

those 

thou 

though 
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through 

throughout 

thru 

till 

to 

together 

toward 

towardes 

towards 

uh 

under 

underneath 

unless 

unlike 

until 

unto 

up 

upon 

uppon 

us 

via 

vis-a-vis 

vis-à-vis 

we 

well 

what 

whatever 

whatsoever 

when 

whenever 

where 

whereas 

wherefore 

whereupon 

whether 

which 

whichever 

while 

who 

whoever 

whom 

whose 

why 

with 

withal 

within 

without 

ye 

yea 

yeah 

yes 

yet 

yonder 

you 

your 

yours 

yourself 

yourselves



 

 

A p p e n d i x  2  

IMPACT OF DEMOGRAPHIC VARIABLES ON H-INDEX 

We identify the effect of demographic variables on h-Index, a measure of 

academic expertise independent of panel dynamics. Results of this analysis are 

found in Table 30. 

Table 30: 4-way ANOVA showing the effects of 
Age, Medical Specialty, Gender, and Race on h-
index for our sample of 37 meetings. All variables 
reach significance. 

Variable Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 

F p-value 

Age 8528.97 1 8528.97 51.79 <0.0001 

Medical 

Specialty 

23317.9 7 3331.12 20.23 <0.0001 

Gender 2381.26 1 2381.26 14.46 0.0002 

Race 2356.5 3 785.49 4.77 0.0029 

Error 55333.8 336 164.68 

Total 98491.4 348  
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These results show that age, medical specialty, gender, and race all contribute 

significantly to explaining the variance in h-index. Independent Tukey honestly-

significant difference tests of multiple comparisons show that men have a 

significantly higher h-index than do women, and that white panel members have 

a significantly higher h-index than do black panel members. These results are 

known trends in the h-index, and are consistent with the analysis in (Kelly and 

Jennions 2006). 
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A p p e n d i x  3  

CATALOGUE OF MEETINGS STUDIED  

Meeting 

ID 

Meeting 

Date 

Device Name 

1 '7/28/1997' PLC CO2 Heart Laser 

2 '7/29/1997' Spectranetics Laser Sheath 

3 '9/15/1997 - 

morning' 

Alliance Monostrut Valve 

4 '9/15/1997 - 

afternoon ' 

Medtronic Freestyle Aortic Root Bioprosthesis   

5 '9/16/1997' Toronto SPV® Valve, Model SPA-101 

6 '4/24/1998' PLC CO2 Heart Laser 

7 '6/29/1998' Ambu CardioPump 

8 '10/27/1998' Eclipse Holmium Laser 

9 '6/23/1999 - 

morning' 

Guidant Endovascular Technologies, EBT Abdominal Aortic Tube 

Bifurcated Endovascular Grafting System   

10 '6/23/1999 - 

afternoon' 

Medtronic AneuRx, Inc.  AneuRx Bifurcated Endovascular Prosthesis 

System   
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11 '6/24/1999' Medtronic Jewel AF Arrhythmia Management Device   

12 '6/19/2000' Cordis Checkmate System  

13 '9/11/2000' Beta-Cath™ System intravascular brachytherapy device 

14 '12/5/2000' Model 7250 Jewel® AF Implantable Cardioverter Defibrillator System  

15 '4/23/2001' Sulzer IntraTherapeutics IntraCoil Self-Expanding Peripheral Stent 

16 '7/9/2001' Eclipse PMR Holmium Laser System   

17 '7/10/2001 - 

morning' 

Guidant Corporation P010012, Contak CD, and EasyTrak Lead System   

18 '7/10/2001 - 

afternoon' 

Medtronic Corporation P010015, Medtronic InSync Atrial 

Synchronous Biventricular Pacing Device and Attain Lead System   

19 '9/10/2001 - 

morning' 

AMPLATZER® Septal Occluder  

20 '9/10/2001 - 

afternoon' 

The CardioSEAL® Septal Occlusion System with QwikLoad™  

21 '9/11/2001' CryoLife, Inc.  P010003, BioGlue Surgical Adhesive  

22 '3/4/2002' Thoratec Corporation's HeartMate VE Left Ventricular System   

23 '3/5/2002' InSync® ICD System  

24 '9/9/2002' Gore EXCLUDER® AAA Endoprosthesis  



 

 272 

25 '9/10/2002' NMT Medical P000049/S3, CardioSEAL STARFlex Septal Occlusion 

System with Qwik Load   

26 '10/22/2002' Cordis Corporation  P020026, CYPHER Sirolimus-Eluting   Coronary 

Stent System 

27 '3/6/2003' CryoCath Technologies' 7 French Freezor Cardiac Cryoablation 

Catheter   

28 '4/10/2003' Cook Zenith AAA Endovascular Graft  

29 '5/29/2003' Cardima, Inc. REVELATION_ Tx and NavAblator Catheter System   

30 '10/2/2003' Spectranetics CVX-300 Excimer Laser System   

31 '11/20/2003' TAXUS ® Drug Eluting Stent   

32 '4/21/2004' Cordis Precise Nitinol Stent System 

33 '6/8/2004' World Heart Novacor N100PC and N100PC(q) left ventricular assist 

system 

34 '7/28/2004' Guidant Cardiac Resynchronization Therapy Defibrillators, P010012, 

Supplement 26 

35 '1/13/2005' GORE TAG Thoracic Endoprosthesis  

36 '6/22/2005' Acorn CorCap™ Cardiac Support Device (CSD) 

37 '6/23/2005' Abiomed, Inc. H040006: AbioCor Implantable Replacement Heart 
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Meeting 

ID 

Specialty 

Cohesion 

Specialty 

Cohesion 

Percentile 

Vote 

Cohesion 

Vote 

Cohesion 

Percentile 

Minority 

Size 

Voting 

Outcome 

Proportion 

Approving 

the Device 

1 0.4 0.859 0.5333 0.541 0.22 0.00 0.22 

2 0.2 0.566 N/A N/A 0.00 1.00 1.00 

3 0.3684 0.829 N/A N/A 0.00 1.00 1.00 

4 0.4545 0.883 N/A N/A 0.00 1.00 1.00 

5 0.625 0.966 N/A N/A 0.00 1.00 1.00 

6 0.5 0.832 N/A N/A 0.00 1.00 1.00 

7 0.2222 0.922 0.5 0.899 0.33 0.00 0.33 

8 0.3636 0.975 N/A N/A 0.14 1.00 0.86 

9 0.25 0.507 N/A N/A 0.00 1.00 1.00 

10 0.3846 0.882 N/A N/A 0.00 1.00 1.00 

11 1 0.644 N/A N/A 0.00 1.00 1.00 

12 0.1765 0.913 N/A N/A 0.00 1.00 1.00 

13 0 0.713 N/A N/A 0.00 1.00 1.00 

14 1 0.968 N/A N/A 0.00 1.00 1.00 
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15 0.2727 0.797 N/A N/A 0.00 0.00 0.00 

16 0.6667 0.959 1 1 0.22 0.00 0.22 

17 0.25 0.534 0.625 0.667 0.25 0.00 0.25 

18 0.1429 0.326 N/A N/A 0.00 1.00 1.00 

19 0.2667 0.792 N/A N/A 0.00 1.00 1.00 

20 0.25 0.735 N/A N/A 0.10 1.00 0.90 

21 1 0.983 N/A N/A 0.00 1.00 1.00 

22 0.3125 0.614 0.6875 0.674 0.20 1.00 0.80 

23 0.2857 0.537 0.3571 0.487 0.50 1.00 0.50 

24 0.2308 0.44 N/A N/A 0.10 1.00 0.90 

25 0.08 0.058 N/A N/A 0.14 0.00 0.14 

26 0.2 0.362 N/A N/A 0.00 1.00 1.00 

27 0.6364 0.996 0.8182 0.987 0.27 1.00 0.73 

28 0.3333 0.53 N/A N/A 0.00 1.00 1.00 

29 1 0.967 N/A N/A 0.00 0.00 0.00 

30 0.0769 0.194 N/A N/A 0.10 0.00 0.10 
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31 0.3846 0.862 N/A N/A 0.00 1.00 1.00 

32 0.2 0.774 0.6 0.911 0.40 1.00 0.60 

33 0.2143 0.436 N/A N/A 0.09 0.00 0.09 

34 0.0909 0.302 N/A N/A 0.00 1.00 1.00 

35 0.7 0.989 0.7 0.949 0.20 1.00 0.80 

36 0.2632 0.494 0.4737 0.277 0.36 0.00 0.36 

37 0.1667 0.087 0.3667 0.586 0.54 1.00 0.46 

 

Meeting 

ID 

Length 

(Hours) 

Author 

Topics 

LDA Topics 

with 

Hyperparameter 

Optimization 

Maximum 

Minority 

Outdegree 

Committee 

Chair 

1 7.67 28 232 0.3 1 

2 2.67 9 148 N/A 1 

3 3.00 13 152 N/A 2 

4 5.10 14 129 N/A 2 

5 3.10 16 158 N/A 2 
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6 7.25 19 341 N/A 2 

7 9.17 23 259 0.3333 2 

8 8.00 18 207 0 3 

9 3.92 14 217 N/A 2 

10 4.45 9 155 N/A 2 

11 3.67 14 165 N/A 3 

12 7.08 21 304 N/A 2 

13 7.08 20 292 N/A 4 

14 5.98 24 203 N/A 4 

15 8.08 17 212 N/A 4 

16 7.35 20 300 0 4 

17 4.65 16 173 0 1 

18 3.37 11 135 N/A 1 

19 3.93 12 128 N/A 4 

20 5.00 14 128 0.2222 4 

21 2.97 11 155 N/A 5 
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22 7.67 18 260 0.2222 5 

23 7.42 18 236 0.4 5 

24 7.92 23 228 0 5 

25 7.25 18 263 0.0833 4 

26 11.62 22 302 N/A 5 

27 7.42 19 244 0.1 5 

28 7.03 28 207 N/A 5 

29 7.55 20 269 N/A 5 

30 6.45 19 198 0 5 

31 7.53 22 305 N/A 5 

32 10.33 28 300 0.4 5 

33 7.15 22 176 0.3 5 

34 8.38 23 208 N/A 5 

35 8.28 25 299 0.0909 6 

36 9.70 21 295 0.3333 6 

37 8.87 25 257 0.3571 6 
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Meeting 

ID 

Number 

of 

Cycles 

No 

Chair 

Number 

of 

Cycles 

with 

Chair 

Added 

Cycles 

Normalized 

Cycles 

Cycle 

Proportion 

No Chair 

Cycle 

Proportion 

with Chair 

Chair 

Effect 

1 14 17 3 0.18 0.70 0.68 -0.02 

2 0 0 0 0.00 0.00 0.00 0.00 

3 0 0 0 0.00 0.00 0.00 0.00 

4 7 7 0 0.00 0.50 0.39 -0.11 

5 10 16 6 0.38 0.83 0.94 0.11 

6 4 11 7 0.64 0.50 0.85 0.35 

7 2 2 0 0.00 0.11 0.09 -0.02 

8 0 0 0 0.00 0.00 0.00 0.00 

9 0 11 11 1.00 0.00 0.61 0.61 

10 2 4 2 0.50 0.15 0.21 0.06 

11 0 0 0 0.00 0.00 0.00 0.00 

12 9 15 6 0.40 0.50 0.60 0.10 
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13 5 10 5 0.50 0.63 0.77 0.14 

14 0 2 2 1.00 0.00 0.29 0.29 

15 3 9 6 0.67 0.27 0.53 0.26 

16 2 2 0 0.00 0.20 0.15 -0.05 

17 0 0 0 0.00 0.00 0.00 0.00 

18 6 6 0 0.00 0.67 0.50 -0.17 

19 0 0 0 0.00 0.00 0.00 0.00 

20 15 20 5 0.25 0.94 0.91 -0.03 

21 0 0 0 0.00 0.00 0.00 0.00 

22 0 7 7 1.00 0.00 0.33 0.33 

23 0 0 0 0.00 0.00 0.00 0.00 

24 0 7 7 1.00 0.00 0.35 0.35 

25 5 19 14 0.74 0.19 0.56 0.37 

26 0 0 0 0.00 0.00 0.00 0.00 

27 0 7 7 1.00 0.00 0.41 0.41 

28 2 7 5 0.71 0.29 0.50 0.21 
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29 3 7 4 0.57 1.00 1.00 0.00 

30 9 20 11 0.55 0.53 0.87 0.34 

31 13 13 0 0.00 0.68 0.57 -0.12 

32 0 8 8 1.00 0.00 0.32 0.32 

33 8 8 0 0.00 0.47 0.42 -0.05 

34 12 12 0 0.00 0.80 0.52 -0.28 

35 12 21 9 0.43 0.80 0.91 0.11 

36 4 13 9 0.69 0.19 0.52 0.33 

37 12 35 23 0.66 0.35 0.78 0.42 

 


