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Doctor of Philosophy

Abstract

Magnetic reconnection is a fundamental process in plasma physics, which involves the
often explosive release of magnetically stored energy in both space and laboratory
plasmas. In order for this sudden release of energy to occur, there must be a period
of slow reconnection, in which magnetic stress accumulates in the system, followed by
a quick transition to fast reconnection. The question of what causes this transition
is known as the ‘trigger problem’ and is not well understood.

We address the trigger problem using the Versatile Toroidal Facility (VTF) at
MIT, which we operate in the strong magnetic guide field regime. The resulting
reconnection occurs in spontaneous events, in which there is a transition to fast re-
connection. The reconnection in these events is asymmetric: it begins at one toroidal
location and propagates toroidally in both directions. The spontaneous onset is facil-
itated by an interaction between the x-line current channel and a global mode, which
breaks axisymmetry. We model the onset using an empirical Ohm’s law and current
continuity, which is maintained by ion polarization currents associated with the mode.
The model reproduces the exponential growth of the reconnection electric field, and
the model growth rate agrees well with the experimentally measured growth rate.

We begin, however, by discussing reconnection in the collisional regime and the
effect of neutral gas on plasma flows. We perform experiments which are relevant
to plasmas at the edge of tokamaks, but may also be applicable to reconnection in
the solar photosphere and the interstellar medium, where the ionization fraction is
low. In these experiments, a plasma filament propagates across a magnetic field in a
background of neutral atoms. The filament motion is driven by charge separation in
an inhomogeneous magnetic field, and this drive is balanced by collisional damping.
The filament propagation and internal structure are described in detail.

Thesis Supervisor: Jan Egedal
Title: Assistant Professor
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Chapter 1

Introduction

1.1 The Prevalence of Magnetic Reconnection

Magnetic reconnection [1] is the often explosive release of magnetically stored energy

in the presence of a plasma. This phenomenon, which involves a change in magnetic

field topology, is thought to occur for example in solar flares [2], magnetospheric

substorms [3], and tokamak sawteeth [4].

In solar flares, a sudden brightening of plasma on the sun signifies the energy

release of as much as 1032 ergs (=1025 J) [5]. The only feasible source for the energy is

the magnetic field associated with the flaring structures; the annihilation of these fields

causes plasma heating and large-scale flows associated with coronal mass ejections [6]

(see Fig. 1-1(b)). There are two phases used to describe solar flares [7]. During

the preflare phase, a flux tube of plasma known as a prominence, rises slowly above

active regions, which are bright areas surrounding sunspots. This rising structure

stretches the magnetic field lines, which surround the prominence and tether it to the

photosphere (see Fig. 1-1(a)). At the flare onset, the tension in the magnetic fields

is released as the field lines break and reconnect. This process accelerates during

the main phase and the magnetic energy released is observed in loops of hot, x-ray

emitting plasma and at the prominence foot points, where Hα luminosity increases.

Magnetic reconnection is also important in the interaction of the solar wind with

the Earth’s magnetic field, and it allows the solar wind plasma to enter Earth’s

17



(a) (b)

Figure 1-1: (a) Solar flare cartoon showing the role of magnetic reconnection. Repro-
duced from Ref. [7]. (b) Eruptive solar prominence in He II from 24 July 1999, with
an image of the Earth added for scale. Courtesy of SOHO/EIT consortium. SOHO
is a project of international cooperation between ESA and NASA.

magnetosphere. The role of magnetic reconnection in magnetospheric flow patterns

was first discussed by Dungey [1], as shown in Fig. 1-2. In the figure, a southward-

oriented interplanetary magnetic field (IMF) reconnects with the dipole field of the

Earth and is dragged by the solar wind to produce the polar cap flow patterns,

whose observation motivated Dungey’s idea. A second reconnection occurs in the

magnetotail—the drawn-out magnetic field behind the Earth—as indicated by the

field lines marked by 6 and 6’ in the figure. The field lines proceed through stages

marked by 6 to 9, corresponding to a sunward flow at lower latitudes. Although

Dungey’s idea is fundamental to the subsequent work on magnetospheric dynamics,

Fig. 1-2 is oversimplified [7]. Complications include the strong time-dependence of

the flow patterns, and the variation in IMF orientation.

18



Figure 1-2: Dungey’s proposed explanation for the observed plasma flow in the mag-
netosphere. The interplanetary magnetic field (here pointing southward) marked by
1’ reconnects with the magnetospheric field line marked by 1. Successive numbers
show the field being dragged across the Earth by the solar wind, only to undergo fur-
ther reconnection as shown by the field lines marked by 6 and 6’. The corresponding
flow pattern, which is stationary in the frame of the sun, is shown below. Reproduced
from Ref. [7].
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In the Earth’s magnetosphere, magnetic reconnection is highly dynamic, giving

rise to magnetospheric substorms [8, 5]. During these events, the IMF turns south-

ward and day-side reconnection sends extra magnetic flux towards the magnetotail,

stretching the tail out. During this expansion phase, the tail current increases and

kinetic energy from the solar wind is converted through reconnection into stored

magnetic energy. At substorm onset, the tail current reaches a critical threshold and

decreases suddenly, releasing the stored magnetic energy. This energy is converted

into flow energy, as a tail plasmoid is ejected, and into particle heating. Fast electrons

stream along field lines towards the Earth’s pole, producing the aurora by exciting

neutral atoms in the ionosphere. During the recovery phase, the magnetotail shortens

again, reflecting the reduced magnetic stress.

Magnetic reconnection in space plasmas is diagnosed either by optical based meth-

ods, for reconnection on the sun [9, 10, 11], or by in-situ satellite measurements, for

reconnection in the Earth’s magnetosphere [12, 13, 14, 15] and the solar wind [16].

Optical observations suffer from a limited resolution, while satellites provide localized

point measurements and cannot capture the global reconnection dynamics. In labo-

ratory experiments, it is possible in theory to observe both the global reconnection

dynamics and the detailed local plasma behavior.

An important laboratory manifestation of magnetic reconnection is the sawtooth

instability in tokamak plasmas. Von Goeler et al. [4] first characterized the sawtooth

using x-ray fluctuations, observing that the core plasma temperature slowly increases

and sharply decreases in a repeating cycle (see Fig. 1-3(a)). Farther out from the

core, the opposite behavior occurs and the temperature suddenly increases as the

core energy is released. The sawtooth instability is internal to the plasma, but in

some cases reconnection can lead to major disruptions, in which complete loss of

confinement occurs [5].

A schematic of the model proposed by Kadomtsev [17] to explain the sawtooth

instability is shown in Fig. 1-3(b). In, Kadomtsev’s model, as the core is externally

heated, magnetic reconnection forms a cold island, which then grows and replaces the

hot core. More specifically, ohmic heating reduces the Spitzer resistivity in the core.
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Assuming a steady toroidal electric field, the toroidal current density, and hence the

poloidal magnetic field, must increase as well. Inside the q = 1 region—where field

lines close on themselves in one toroidal circuit—an internal kink mode expels the

plasma, and the cycle repeats [5]. Kadomtsev’s model is useful to frame the sawtooth

problem, but it is incorrect. The poloidal magnetic field does not change as much as

the model predicts, and the resistivity during the sawtooth is not given by Spitzer

resistivity. These factors contribute to a faster observed rate of reconnection than

predicted by Kadomtsev [5].

(a) (b)

Figure 1-3: (a) Detection of sawtooth oscillations in core (r=0) and inverted far-
ther out (r=3.9 cm). Reproduced from Ref. [4]. (b) Kadomtsev’s mechanism for
the tokamak sawtooth, shown with poloidal flux surfaces: (i-ii) heating raises core
temperature (shaded region) of nested flux surfaces; (iii-iv) reconnection forms cold
magnetic island, which grows to become new cold core (v-vi). Adapted from Ref. [18].

Other laboratory experiments in which magnetic reconnection is observed include

reversed-field pinch experiments [19], colliding high-energy-density laser-produced

plasmas [20], and spheromak plasmas, where reconnection it is essential for the sphero-
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mak formation [21]. Other astrophysical examples in which reconnection is thought

to occur include magnetars [22], and disconnection events in tail plasmas of comets

[23]

1.2 Magnetic Reconnection Concepts

Magnetic reconnection involves not only an explosive release of magnetically stored

energy, but also a change in magnetic field topology in the presence of a plasma.

The prevalence of reconnection in space plasmas is at first surprising, since the high

conductivity of these plasmas prevents topological changes to the magnetic field. This

observation is based on the ideal (infinite conductivity) Ohm’s law, which is given by

E + v × B = 0. (1.1)

In combination with Faraday’s law,

∂B

∂t
= −∇× E, (1.2)

we arrive at
∂B

∂t
= ∇× (v × B). (1.3)

Alfvén’s theorem (e.g. Ref. [24], p. 341) states that for a plasma described by Eq. 1.3,

the flux through any closed loop (S) moving with the plasma is constant in time:

d

dt

∫

S
B · da = 0. (1.4)

This is also referred to as “flux freezing”, and it results in the magnetic field topology

being fixed. From Eq. 1.1 it follows that E‖ = E · B/B = 0. In order for magnetic

reconnection to occur, there must be a non-zero parallel electric field, and Eq. 1.1

cannot hold everywhere.
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The simplest non-ideal behavior can be introduced via finite resistivity η, yielding

E + v × B = ηJ. (1.5)

In combination with Faraday’s law (Eq. 1.2), we arrive at

∂B

∂t
= ∇× (v × B) +

η

µ0

∇2B. (1.6)

If the scale of variation of magnetic field is small enough, the last term will dominate

over the middle convective term and the magnetic field will undergo diffusive decay.

Such variation is typically found near current sheets, and the resistive timescale τR

for magnetic field lines to convect into the layer will be given by τR ∼ µ0L
2/η, where

L is the macroscopic size of the current sheet.

1.2.1 Sweet-Parker Reconnection

A faster rate of magnetic field annihilation was found by Peter Sweet and Eugene

Parker [25, 26] in 1958. Their mechanism is shown schematically in Fig. 1-4. They

assume 2D, steady-state, resistive magnetohydrodynamics (MHD), where the plasma

is only non-ideal at the current sheet, marked by 2δ× 2L in the figure. The magnetic

field is purely in the x-y plane, and is oppositely oriented above and below the current

channel (gray region). The field is convected at velocity vvin into the current sheet,

where reconnection occurs, and then the field convects out the sides at vout. The field

line above and the field line below become connected in the outflow region. This is

the topological change referred to previously, and it allows the solar wind plasma,

for example, to enter the Earth’s magnetosphere along field lines. The basic x-like

geometry of Fig. 1-4 forms the basis of much work on magnetic reconnection. At

the middle of the current sheet, there is the x-line, which extends into the page, and

where the in-plane magnetic field vanishes.

To find the time-scale associated with Sweet-Parker reconnection, we start by
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Figure 1-4: Sweet-Parker reconnection geometry. Dashed line represents separatrix,
which separates the inflow and outflow regions. In the central diffusion region (gray),
the reconnection electric field is balanced by the resistive term in Ohm’s law.

requiring pressure balance across the layer, namely

B2
in

2µ0

+ pin +
minv2

in

2
=

B2
out

2µ0

+ pout +
minv2

out

2
. (1.7)

If we assume that the plasma β = 2µ0/B
2 is small, that the inflow speed is small

relative to the Alfvén speed, and that all the magnetic energy from the inflow gets

annihilated and converted to kinetic energy, we have

B2
in

2µ0

=
minv2

out

2
→ vout = vA (1.8)

where vA = B/
√

µ0min is the Alfvén speed computed with the inflow magnetic field

just above the current channel. Next we distinguish between the current channel,

where B is negligible and

Ez = ηJ, (1.9)

and the inflow, where the current is negligible and the plasma is ideal:

vin = Ez/Bin. (1.10)

Eliminating the reconnection electric field Ez, we find vin = ηJ/Bin. Meanwhile,

applying Ampère’s law to the current channel gives 4LBin = (2L)(2δ)µ0J , so vin =
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η/(µ0δ). vin can also be found from mass conservation,

vinL = voutδ, (1.11)

and using these two equations for vin to eliminate δ, we find

vin =

√

η

µ0vAL
vA = vA/

√
S, (1.12)

where the Lundquist number is defined as S ≡ µ0vAL/η. The Lundquist number

represents the ratio of the convective term in Eq. 1.6 to the resistive term, with the

characteristic velocity given by the Alfvén speed. The Sweet-Parker time-scale for

reconnection is then τSP ∼ L/vin ∼
√

SL/vA. Recall that the resistive time-scale is

τR ∼ µ0L
2/η ∼ SL/vA. For a highly conductive plasma, S ≫ 1, and the Sweet-Parker

time-scale is much shorter than the resistive time-scale. Nevertheless, Sweet-Parker

theory fails to reproduce the short time-scales associated with actual reconnection

observations. For example, in the solar corona, we take L ∼ 107 m, vA ∼ 106 m/s,

and T ∼ 100 eV [7, 5], so η ∼ me/(2ne2τei) ∼ 10−6 Ωm, where τei is the electron-ion

collision time [27]. Then S ∼ 1013, and τSP ∼ 10 months. In comparison, solar flares

release stored magnetic energy in time-scales of the order of 100 s. Sweet-Parker

reconnection is therefore too slow to describe solar flares.

1.2.2 Hall Reconnection

Fast reconnection—fast enough to account for observations—is possible, however, if

extra terms in Ohm’s law are taken into account. Ohm’s law, which is based on the

electron momentum equation, is then given by

E + v × B = ηJ +
J × B

ne
− ∇ · Pe

ne
(1.13)

where the electron inertia is still neglected. The inclusion of the new terms, the hall

term and the pressure term, introduces a new scale length, the ion inertial length

di = c/ωpi. For example, taking the ratio of the J×B term to the v ×B term gives
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Figure 1-5: Hall reconnection: ions and electrons decouple on scales below the ion in-
ertial length. The resulting electron current gives out-of-plane quadrupolar magnetic
field. From Ref. [30].

B2/(µ0neL)/(vAB) ∼ √
µ0min/(neL) ∼ c

√

ǫ0mi/(ne2)/L ∼ di/L. When the current

sheet size is on the order of the ion inertial length, the ions become unmagnetized,

and the outflow region opens up to allow faster plasma flow through the central region

[28, 29]. Since the electrons are still magnetized on this scale, they must flow along

field lines (see Fig. 1-5) in order to catch up to the ions and preserve quasineutrality.

This electron motion gives in-plane hall currents, and, as a result, a quadrupolar

out-of-plane magnetic field. The quadrupolar magnetic field is a signature of hall

reconnection, and it has been observed in simulations [31], the magnetopause [32],

and laboratory experiments [33, 34].

The importance of the hall term in Ohm’s law was revealed through a comparison

of multiple simulation codes, including a fully kinetic particle-in-cell (PIC) code, a

hall MHD code, and a resistive MHD code. All codes except the resistive MHD

simulation included the physics of the hall effect. This multi-code comparison is

known as the Geospace Environmental Modeling (GEM) Reconnection Challenge,

and its goal was to identify the essential physics necessary to model collisionless

reconnection [35]. The different codes all started with an initial Harris equilibrium

in which Bx(z) = B0 tanh (z/λ) and the results showed that all models which include
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Figure 1-6: GEM Reconnection Challenge: the reconnected magnetic flux versus
time for a variety of simulation codes. The reconnection rate is fast (∼ vA/10) for all
models which include the hall effect. Reproduced from Ref. [35].

the hall effect had a universal reconnection rate on the order of vin ∼ vA/10. Here

the inflow velocity is taken as a measure of the reconnection rate, and the Alfvén

velocity is computed with the upstream value of the magnetic field B0. The results

are summarized in Fig. 1-6.

1.2.3 Magnetic Reconnection with a Guide Magnetic Field

So far the magnetic field on either side of the magnetic x-line has been assumed to

be purely anti-parallel. However, more generally, the magnetic field may have a com-

ponent pointing into the page. This field is called the guide field and the associated

reconnection process is called component reconnection, or guide-field reconnection.

With purely resistive MHD, where Ohm’s law is given by Eq. 1.5, the reconnection

rate is ‘slow’. However, as in anti-parallel reconnection, the addition of the hall and

pressure terms in Ohm’s law can give fast reconnection.

This increase in the rate of guide-field reconnection was first seen in reduced MHD

simulations by Aydemir [36], but the physical mechanism was clarified by Kleva et

al. [28]. The component of Ohm’s law (Eq. 1.13) along the magnetic field may be

written as

E‖ = ηJ‖ −
Te

ne
∇‖n (1.14)

27



Vin

Vout

Vi┴

V||e

Figure 1-7: Mechanism by which pressure force balances parallel electric field in
guide-field reconnection. From Ref. [28].

where uniform electron temperature is assumed. A non-zero parallel electric field,

which violates Alfvén’s theorem and enables reconnection, can now exist even in

regions where the current density is negligible. Figure 1-7 shows the mechanism by

which Eq. 1.14 is satisfied. The parallel (magnetic field aligned) electric field drives

parallel current at the x-line. This electron current flows along field lines which

bend into the outflow region, creating regions of local enhancement and depletion

in the electron density. To maintain charge neutrality, the slower ions respond by

moving not along the field, but across it through ion polarization currents. The ion

displacements create a field aligned pressure gradient, which can balance a parallel

electric field farther away from the x-line.

The consequence of this larger region of non-zero parallel electric field is that the

outflow region becomes broader, yielding faster reconnection than in purely resistive

MHD. The outflow no longer serves as a nozzle that limits the inflow velocity. The

inclusion of a guide magnetic field breaks the up-down symmetry of the reconnec-

tion dynamics. A distinctive feature of guide-field reconnection is the quadrupolar
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Figure 1-8: PIC simulation of guide-field reconnection. (a) Density normalized to
density far from the x-line; (b) magnetic field magnitude; (c) parallel electric field;
(d) acceleration potential. At right: increasingly anisotropic electron distribution
functions at the locations marked in (d). From Ref. [37].

structure in the density (in contrast to the quadrupolar out-of-plane magnetic field

in anti-parallel hall reconnection). This feature is shown in Fig. 1-8a, for a PIC

simulation with a guide-field [37].

An important length scale in collisionless guide-field reconnection is the ion sound

gyroradius, ρs ≡ cs/ωci. This scale arises naturally from the fact that ion polarization

currents—whose ion velocity is vi = −∇2
⊥φ/(Bωci)—balance the field-aligned electron

current [28]. To see this, consider the ion density

dni

dt
= −ni∇ · vi =

n

Bωci

d

dt
∇2

⊥φ. (1.15)

Integrating, and applying quasineutrality, we find

log ne = log ni =
1

Bωci

∇2
⊥φ (1.16)
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Substituting ne into Eq. 1.14 yields

E‖ − ηJ‖ = −Te

e
∇‖ log n =

Te

mi

mi

eBωci

∇‖∇2
⊥φ = ρ2

s∇‖∇2
⊥φ, (1.17)

which introduces the scale ρs. For length-scales of the order of ρs, the right-hand side

of this equation can balance the parallel electric field even where the resistive term is

small.

Although fast reconnection results from Kleva’s mechanism, the addition of a

guide field in reconnection simulations generally slows the reconnection rate. For

example, in a PIC simulation [38] the reconnection rate decreased by a factor of 2-3

compared to anti-parallel reconnection.

Kleva et al. assume a scalar pressure, but in general the pressure is a tensor,

and this fact can alter Ohm’s law in important ways. This is especially true when

anisotropies exists in the particle distributions. These anisotropies may readily de-

velop in collisionless plasmas, and they have been observed in the electron distribution

function by in situ measurements in the magnetotail [14, 13]. The mechanism for the

development of the anisotropy has been clarified Egedal et al. [39, 40, 41], who derived

an adiabatic solution for the electron distribution function. Building on this work, Le

et al. [42, 29, 37] used this distribution to obtain the appropriate equations of state,

which represent a new closure for the fluid equations. In accompanying collisionless

particle-in-cell (PIC) simulations—both with and without a guide field—Egedal and

Le et al. demonstrated the development of an effective acceleration potential, which

arises to maintain quasineutrality near the x-line. Figure 1-8 shows the results of such

a simulation with a guide-field. Although the parallel electric field (c) is weak, when it

is integrated along field lines from the boundary, the resulting acceleration potential

φ‖ is several times the electron temperature. This implies that most thermal electrons

become trapped. The theory assumes that the electrons bounce many times as they

enter the reconnection region (vte ≫ vA). The resultant electric—and magnetic—

trapping cause strong anisotropy in the electron distribution function (Fig. 1-8 at

right). When the pressure is computed from this anisotropic distribution function, it
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changes Ohm’s law. Specifically, the parallel Ohm’s law (Eq. 5 in Ref. [37]) becomes

− neE‖ = −∇ · P = −∇‖p‖ + (p‖ − p⊥)∇‖ log B. (1.18)

The effect of the anisotropy can enhance the magnitude of the pressure term signifi-

cantly [37], since in the limit of strong trapping, the parallel pressure is found to scale

as p‖ ∝ n3/B2 (CGL scaling [43]). A doubling in density and a reduction in B by half

yield an order of magnitude enhancement in the pressure term compared with the

scalar pressure theory (p = nT ). The enhanced pressure term balances a larger elec-

tric field, resulting in faster reconnection. The acceleration potential causes not only

particle trapping, but it also heats electrons to many times their ambient tempera-

ture. Such heating has been observed near a reconnection region in the magnetotail

as well [14].

While questions remain about steady-state magnetic reconnection in 2D, we have

seen that there has been much progress on this problem. One of the advances is

that the importance of the Hall term has been established in theory and laboratory

and space observations. While the effect of boundary conditions on the stability of

steady-state Hall reconnection is still unclear [44], Hall reconnection clearly provides

a mechanism which gives fast reconnection in 2D.

1.3 The Trigger Problem

Magnetic reconnection is often not steady-state, but rather explosive, involving the

sudden release of stored magnetic energy. This explosive nature of magnetic recon-

nection is not well understood. For example, it is not clear why in the solar wind,

reconnection proceeds in a quasi-steady-state in very elongated structures (> 390

Earth radii) [16], while solar flares and magnetospheric substorms have impulsive

time-dependent character [6]. Furthermore, impulsive reconnection events usually

follow an extended period of steady, slow reconnection in which magnetic stress ac-

cumulates in the system. The question is, then, what causes the sudden onset of fast
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magnetic reconnection?

Much theoretical work has addressed the problem of reconnection onset. In toka-

maks, sawtooth triggering has been explored as a transition from a slow tearing mode

to a fast m=1 kink-tearing mode [45], while other work pointed to the importance of

the hall term in Ohm’s law for fast reconnection onset [46]. The onset of reconnec-

tion in tokamaks has also been ascribed to magnetic field line stochasticity in both

theoretical [47] and experimental [48, 49] investigations; however, in some tokamak

sawteeth, stochasticity is clearly not the trigger mechanism [50]. The sawtooth insta-

bility is also observed in reversed field pinches, where its onset is characterized either

by nonlinear mode coupling, or by linear instability, which results in a spontaneous

onset [51].

In addition, simulations—both fluid and kinetic—have been used to tackle the on-

set problem in geometries simpler than those of tokamaks. For example, in a 2D PIC

simulation with a guide magnetic field, spontaneous and explosive reconnection was

observed from an initial current sheet, with apparently unconstrained island growth

[52]. Other PIC simulations—both 2D and 3D—have shown that the lower-hybrid

drift instability may play a role in triggering reconnection [53, 54, 55]. Recent work

by Cassak [56, 57, 58], using both two-fluid and PIC simulations in 2D, has shown

that reconnection—either with or without a guide-field—displays a transition from a

slow Sweet-Parker regime to a fast hall reconnection regime. This transition occurs

within a bi-stable parameter space as the width of a resistive current sheet approaches

the ion inertial length or ion sound gyroradius. Large-domain fluid simulations have

also been carried out for solar reconnection, where coronal mass ejections are thought

to be caused by reconnection triggered by emerging flux [59].

1.4 Reconnection in 3D

When the constraint of 2D symmetry is relaxed, the character of magnetic reconnec-

tion may change, and new questions arise. In fully 3D reconnection, when there is no

magnetic null (B 6= 0), there is a tangle of magnetic field lines and currents. In this
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case, it is not necessarily clear how to define the separatrix, which demarcates the in-

flow and outflow regions in 2D. This issue has been addressed in a recent laboratory

experiment by Lawrence et al. ([60] and references therein) who employs a quasi-

separatrix layer [5] to describe the merging of two flux ropes. The situation becomes

more difficult in a turbulent plasma, in which reconnection regions may develop on

multiple scales [61]. Reconnection in a turbulent plasma has been observed in the

magnetosheath by the cluster spacecraft [62]. It has been shown that turbulence can

enhance the rate of reconnection beyond the Sweet-Parker rate [63].

An unanswered question is whether 3D effects are important for the onset of

reconnection. Recent measurements of the tokamak sawtooth suggest that they are.

These measurements, which take advantage of advances in electron cyclotron emission

imaging [64, 65, 66], have shown that sawtooth onset is localized both toroidally and

poloidally and that the temperature profile flattening is well-organized as opposed to

stochastic [67]. The localization is observed even though the magnetic field geometry

is mainly 2D. The localized onset of the sawtooth is associated with a global plasma

mode, which may break the toroidal symmetry. In less constrained experiments of

spheromak merging, 3D reconnection structures are observed, which result in very

strong ion heating [34].

Two-fluid and PIC simulations, which have enabled significant progress in 2D

reconnection research, are very computationally intensive in 3D. 3D PIC simulations

have so far used very small simulation domains (several di long) (e.g. [68, 54]), but new

PIC simulations by Daughton [69] on the first peta-flop computer at LANL promise

to improve on this. Preliminary observations show complicated filamentation, which

is related to the formation of new oblique modes that require three dimensions.

Observations of reconnection on the sun also show a 3D nature, and have been

interpreted in terms of quasi-separatrix layers [70]. In addition, a comprehensive

analysis of flares seen by the TRACE and SoHo satellites shows that a localized

brightening can propagate along an arcade of post-flare loops [71, 11]. As the flare

propagates, the flare ribbons at the foot of the loops move apart as well (see Fig. 1-9).

As we will see, the experiments described in this thesis display very similar behavior.
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Figure 1-9: Cartoon from Tripathi et al. [71] that show how reconnection can propa-
gate along a solar arcade.

1.5 Summary and Outline

Despite the improved measurement techniques applied in tokamaks and solar obser-

vations, the internal magnetic and electrical 3D structure of the reconnection region

is still unknown. In this dissertation we describe observations of the localized (3D)

onset of magnetic reconnection in a well-diagnosed laboratory experiment. The or-

ganization is as follows.

In Chapter 2, we discuss reconnection in the fully collisional regime; specifically,

we investigate the drag exerted by a neutral gas on flowing plasma structures—such

as in a reconnection outflow region. We discuss the importance of the results to

the edge of tokamak plasmas, and we suggest a link to reconnection in the solar

photosphere. In the remainder of the dissertation, we discuss magnetic reconnection

in the collisionless regime.

In Chapter 3, we discuss the experimental setup, plasma production, and recon-

nection drive which we use for collisionless reconnection experiments. In Chapter 4,

we describe the observation of spontaneous reconnection and show that the recon-

nection rate is not described by a resistive Ohm’s law. In Chapter 5, we describe the

experimental observation of toroidal localization in the spontaneous onset of magnetic

reconnection, by showing detailed 3D measurements of the plasma parameters. We

also characterize a global rational q mode, which is necessary for the observation of

reconnection. In Chapter 6, we show how this mode, seen in the electrostatic po-

tential, is required for an asymmetric toroidal current. In addition, we compute the
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growth rate of the spontaneous reconnection using a model relating the potential,

current density, and reconnection rate. Relatively good agreement is found with the

experimentally measured growth rate. In Chapter 7 we summarize the dissertation

and present our conclusions. Appendix A confirms that 2D measurements of the

magnetic vector potential provide a valid description of the 3D dynamics of VTF.
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Chapter 2

Collisional Reconnection and the

Dragging of Plasma Filaments by

Neutral Gas

The resistivity in theories of reconnection may be due to electron-ion collisions,

anomalous resistivity related to turbulent fluctuations, or electron-neutral collisions.

In the presence of a neutral gas, the reconnection may be influenced by ionization and

recombination rates [72], as well as by the drag exerted by the neutrals on the plasma

flow. Here, we focus on the effect of such neutral drag. The experiments described

in this chapter are relevant to plasmas at the edge of tokamaks, but they may also

be applicable to reconnection in the solar photosphere and the interstellar medium,

where the ionization fraction is low. We describe the coupling of plasma to neutral

gas for the case of a plasma filament propagating across a magnetic field through a

background of neutrals. This chapter follows Ref. [73].

A plasma filament, also called a ‘blob’, is a magnetic field-aligned structure in

which the density or some other plasma parameter is enhanced [74]. Such structures

propagate convectively across the magnetic field for multiple perpendicular scale-

lengths while maintaining their shape. The propagation of plasma blobs is important

to the overall dynamics in a variety of plasmas, both in space and in fusion laboratory

experiments. For example, propagating filaments are observed in the solar photo-
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Figure 2-1: Plasma velocity and density in the nightside equatorial ionosphere as
observed by ROCSAT-1. Structures with enhanced density (shaded regions) are seen
to propagate relative to the background plasma. Reproduced from Ref. [78].

sphere [75], as mentioned above, and in the F layer of the ionosphere [76, 77, 78],

where there is non-negligible neutral density. Figure 2-1 shows measurements of

field-aligned density enhanced structures in the low-latitude, night-time ionosphere.

Typically these blobs are of order 100 km in size and they tend to propagate upward

relative to the background plasma.

Blobs are also observed near the edge of many laboratory plasmas, including ex-

periments with linear and toroidal geometries [79, 80, 81, 82]. In tokamaks, for exam-

ple, density fluctuations tend to be larger near the plasma edge, where the magnetic
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Figure 2-2: Images of edge turbulence in Alcator C-Mod, observed with fast camera.
The blobs are imaged using gas puff imaging of Dα radiation, and they are seen to
propagate away from the last closed flux surface (the separatrix) towards the chamber
wall at left. Reproduced from Ref. [85].

field lines terminate at a metal surface and the neutral density becomes significant

[83, 84]. Field-aligned blobs can be identified among these fluctuations, and their

convection leads to non-diffusive transport [84]. An example is presented in Fig. 2-2,

where a progression of images shows the propagation of density-enhanced structures

away from the main plasma. The line indicating the separatrix demarcates the main

plasma, where the field lines close on themselves, from the scrape-off layer, where the

field lines intersect the divertor or the limiter. The images show Dα radiation from

a puff of deuterium gas injected into the plasma. The view is approximately that of

a poloidal cross-section, and the density enhancements are aligned with the strong

toroidal magnetic field.

Blobs in tokamaks are driven by magnetic field curvature, and this drive–which is

proportional to electron temperature–competes with a variety of forces that slow and

break up the blobs. The basic picture of blob propagation in a tokamak is described

in Fig. 2-3. The electrons and ions experience curvature and ∇B drifts in a 1/R
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Figure 2-3: ∇B and curvature drifts cause charge separation, resulting in vertical
electric field. The resulting E×B velocity sends the filament radially outward, away
from the main plasma. Alternatively, this motion can be ascribed to an effective
gravity, proportional to the toroidally circulating electrons.

toroidal magnetic field, which cause vertical charge separation. The resulting electric

field gives radially outward E × B velocity, which ejects the blob from the plasma.

Alternatively, the radial drive can be ascribed to the toroidal motion of the electrons,

which results in a effective, centrifugal gravity pointing radially outward. The theory

of convective blob transport in tokamaks is relatively well-developed (see for example

[74, 86], or for geometry similar to ours [87]). In particular, the scaling of the blob

velocity with various parameters has been studied intensively, because this velocity

is thought to be important for the plasma confinement [86]. In experiments, how-

ever, the plasma conditions often prevent detailed internal probing, and spectroscopic

methods are favored (e.g. [80]).

The experiments of this chapter may be relevant as well to reconnection in the

solar photosphere, since flowing plasma filaments are expected in the outflow of re-

connection regions. These flowing filaments must interact with the neutral gas in the

photosphere, which may decelerate the filaments. The applications to photospheric

reconnection are further explored in Section 2.6.
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2.1 Experimental Setup

The basic experimental setup is shown in Fig. 2-4(b) using a poloidal cross-section of

the vacuum vessel. As in the spontaneous reconnection experiments, there is an im-

posed toroidal magnetic field, which depends on major radius as Btor = (B0R0/R)eϕ,

where B0 = 40 mT and R0 = 1 m. We use only electron cyclotron resonant heating

to build up density, as opposed to the reconnection experiments which also use ohmic

heating. This limits the plasma density to approximately 2× 1016 m−3. We use only

60 µs of microwaves (at 15 kW and 2.45 GHz) so that the blob creation time is shorter

than the propagation time.
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Figure 2-4: (a) Photograph of VTF chamber with solenoid at inner wall; (b) exper-
imental setup for filament propagation experiments. The solenoid locally enhances
the toroidal magnetic field to provide electron cyclotron resonance at the inner wall.
The resulting toroidal plasma filament propagates radially outward, diagnosed the
Langmuir probes indicated by dots. Reproduced from Ref. [73].

Since the toroidal magnetic field does not depend on Z, the breakdown would

be expected to occur at all heights Z inside the vacuum vessel. To avoid this, we

turn down the toroidal field so that the resonance condition does not occur inside the

vacuum vessel, and we locally enhance the toroidal field at the inner wall. This is
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accomplished using a solenoid, shown in Fig. 2-4. Electrons then resonate with the

microwaves only near the solenoid, where |B| = 87 mT. Even though the RF power

is injected by a single horn antenna, the microwave reflections off the chamber walls

give axially symmetric breakdown. Since the field is purely toroidal, there are no field

lines terminating at the wall and therefore no sheaths to drain current along the field.

The plasma consists mainly of singly-charged argon ions, and is created in a

chamber filled with argon gas at 4 × 10−5–4 × 10−4 Torr, corresponding to 1018–1019

m−3. Since the plasma density is typically 2 × 1016 m−3, the ionization fraction is

less than 2%, and there is a constant, relatively uniform background of neutrals even

after breakdown. Unlike the reconnection discharges, the blobs are very reproducible.

Table 2.1 shows some of the plasma parameters for the blob experiments.

Parameter Symbol Value

Density n ∼ 1-2 × 1016 m−3

Neutral argon density n0 1018–1019 m−3

Electron temperature Te ∼ 2 eV
Ion temperature Ti . 1eV

Plasma β β ≡ 2µ0p
B2 ∼ 10−5

Toroidal magnetic field Btor 40 mT
Poloidal magnetic field Bpol 0 mT
Ion cyclotron frequency ωci 105 s−1

Electron cyclotron frequency ωce 1010 s−1

Sound speed cs 2.2 × 103 m/s
Ion gyroradius ρi ∼ 1.5 cm
Electron gyroradius ρe 80 µm
Debye length λde 70 µm

Table 2.1: Some of the plasma parameters for the filament propagation experiments

2.2 Diagnostics and ABR Theory for Langmuir

Probes

The plasma is tracked by an array of 200 Langmuir probes. The tip spacing is 7 cm

horizontally and 7 cm vertically, with triple resolution (horizontally) near the center

(see Fig. 2-4(b)). The main Langmuir probe array is located at a single toroidal angle,
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but other Langmuir probes are used to verify the azimuthal symmetry of the blobs.

The other probes (not shown in Fig. 2-4(b)) include 3 vertical lines of stainless-steel

cylinders placed at different toroidal angles.

These cylinders were nearly 10 times larger in area (3.3 cm length × 3 mm di-

ameter) than our usual Langmuir probes in order to minimize the sheath resistance.

Recall from Section 3.2.1 that the sheath resistance between the plasma and the probe

in floating mode is given by Rp = dV/dI|I=0 = Te/(eIi), where Ii is the ion saturation

current. At the edge of the blob, the density—and hence the ion saturation current

as well—is low, and this resistance can be large. For example, for n = 1015 m−3,

Rp = 20 kΩ for the large probes. Given a wire capacitance of Cs ∼ 50 pF, the filter

time constant is RpCs ∼ 1 µs, which is on the order of the digitization time resolution.

This justifies the need for large probes, since our regular Langmuir probes have Rp

about 10 times larger, and the floating potential would be filtered in time.

In addition to the Langmuir array and the large floating potential probes, we use

a horizontal line of cylindrically shaped, heated tungsten filaments (Fig. 2-5). These

filaments are used to measure the full I-V characteristic, and hence the electron

temperature and plasma potential. We heat the filaments to ∼ 1000◦ K for 5 s before

each discharge.

Heating the filaments between discharges eliminates important surface contamina-

tion effects, and prevents overestimation of the electron temperature (see e.g. [88, 89]).

Evidence for this claim is shown in Fig. 2-6, where the I-V Langmuir characteristics

are shown for the same probe with and without heating. Each curve represents data

from more than 70 discharges, recorded for the same probe with similar plasma con-

ditions. The bias voltage to the Langmuir probe was changed before each discharge,

and during the course of this bias scan, the bias was increased and decreased twice,

tracing out the black curve as shown by the arrows. The black curve shows evidence

of hysteresis, while the red curve does not. Furthermore, the slope of the exponential

part of the black curve is much smaller than that for the heated probe. Since the

electron temperature is inversely proportional to this slope (see Eq. 3.2), the unheated

probe underestimates the electron temperature by an order of magnitude. The elec-
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Figure 2-5: Tungsten filament (bottom) used as Langmuir probe to measure full I-V
characteristic. We use a halogen light bulb, removing the glass enclosure to retain the
tungsten filament. The diameter of the wound cylinder is 1.1 mm, and the spacing
between the windings is similar to the electron gyroradius.

tron saturation component of the red curve—at large bias—is not reproducible, but

this part of the characteristic is not described by Eq. 3.2 and is not used in the curve

fitting.

To analyze the I-V characteristic, we use Allen-Boyd-Reynolds (ABR) theory [90],

which accounts for the fact that—especially at the edge of the blob, where the plasma

is less dense—the debye length is comparable to the probe dimensions. We neglect

electron inertia to find a Boltzmann response for the electrons

ne = n0 exp (eφ/Te), (2.1)

where φ = Vbias = Vplasma, while for the ions, we use energy conservation

1

2
miv

2
i + eφ = 0 (2.2)
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Figure 2-6: I-V characteristics for heated and unheated Langmuir probe. The bias
was increased and decreased twice as shots were recorded, tracing out the curves.
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and mass conservation for cylindrical geometry

Ii

2πrl
= nievi. (2.3)

Ii is the ion current collected by the probe, l is the probe length, and r is the radius.

We combine Eqs. 2.2-2.3 to find the ion density as a function of radius

ni =
Ii

2πrle
√

−2eφ/mi

. (2.4)

We use Eqs. 2.1-2.4 to find Poisson’s equation in dimensionless form, which is given

by
y′

x
+ y′′ =

I

x
√

y
− exp (−y) (2.5)

where y ≡ −eφ/Te, x ≡ r/λde, I ≡ Ii/I1, and I1 ≡ 2π
√

2λdeln0ecs. For each I,

Eq. 2.5 is solved numerically by integrating from large r (large x) up to the probe

radius xa = a/λde, where the potential ya(xa, I) is evaluated. We then invert this

relationship to find I(xa, ya). The ion current is then given by

Ii(Te, Vplasma, a/λde, l/a) = I(xa, ya)I1. (2.6)

Meanwhile, the electron current to the probe is given by

Ie = −eAprobe

∫

fevzd
3v, (2.7)

where fe = (me/(2πTe))
3/2n0 exp (−mv2/(2Te) + eφ/Te) is the electron distribution

function, assumed here to be Maxwellian. The electron current is then given by

Ie(Te, Vplasma, a/λde, l/a) = −
√

1

2π
eAproben0 exp (eφ/Te)

√

Te

me

(2.8)

where Aprobe = 2(2rl) is the surface area of the probe projected onto the plane. The

electrons see the projected area since they are well-magnetized, but the ions impinge

on the entire probe surface. Note that the potential φ is the bias voltage relative to
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the plasma potential. Given a measured I-V characteristic, we fit Ii + Ie to find the

electron temperature, plasma potential, and density.

2.3 Density and Potential Measurements

To measure just the plasma density or floating potential, it is not necessary to trace

out the I-V characteristic throughout the blob. Instead we use unheated probes

biased to collect ion polarization current or in floating mode. The Langmuir circuits

are similar to those shown in Fig. 3-7. The plasma density and floating potential are

shown in Fig. 2-7.

We observe experimentally for the first time the mushroom blob shape, which has

been seen in many simulations (e.g. [87, 91]). This is shown at left of Fig. 2-7. The

time step between adjacent density plots is 100 µs and the first plot occurs 25 µs after

the microwaves are turned off. The blob shape exhibits ‘wings’, which develop about

a blob length away from the creation region. The right-hand part of Fig. 2-7 shows

the floating potential with some overlayed density contours. The arrows indicate the

E×B velocity, similar to that of a pair of vortices at the top and bottom of the blob.

The velocity at the blob center is consistent with the radially outward center of mass

motion.

The potential is obtained from the the vertical row of large Langmuir probes.

This measurement of φ(Z, t) is then converted to φ(R,Z) using the measured blob

propagation speed R = vblobt (see below). We use the floating potential to compute

the electric field and the resulting E × B arrows are superimposed on the potential.

The use of floating potential instead of plasma potential assumes that the electron

temperature is uniform. Figure 2-8 shows that this is a good assumption in the

evaluation of vertical electric fields. In the figure, we show two I-V characteristics

measured with the heated tungsten filaments. The probes are separated by 25 cm

in Z and the difference between their floating potentials (8.1 V) and their plasma

potentials (7.7 V) are nearly identical. The use of floating potential to compute EZ

is therefore reliable.
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Figure 2-7: Poloidal cross section of typical blob at 3 different times (∆t = 100
µs), showing characteristic mushroom shape. The density is calculated from the ion
saturation current; its decrease is consistent with the expansion of the blob as its
diameter increases. The blob propagation is consistent with the vertical electric field,
which is reflected in the potential structure at right. The overlaid E × B velocity
arrows show the velocity field of a vortex pair. Reproduced from Ref. [73].
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Figure 2-9: Blob center-of-mass speed versus neutral pressure (Pn). The speed scales
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2.4 Filament Propagation Speed

2.4.1 Time-of-Flight Measurements and Vorticity Equation

The propagation seen in Fig. 2-7 can be quantified and it is found to depend on the

neutral pressure in the chamber. The propagation speed is computed from the blob’s

center of mass radius (RCM). We compute the average slope of RCM as a function

of t. The uncertainty in blob speed is estimated as the standard deviation of the

instantaneous blob speed as it varies in time. The propagation speed is measured

in multiple discharges with different neutral pressure in the vacuum vessel, and the

results for speed are shown in Fig. 2-9. We find that the blob’s center-of-mass speed

is inversely proportional to the neutral pressure. This is indicated by the fit line with

slope 1/Pn. The second line represents the sound speed (cs ≡
√

Te/mi ≈ 2.2 × 103

m/s), which is an upper bound on the blob velocity. However, the three low-pressure

points that give evidence for this bound are from blobs with different shape and very

low density.

To describe the blob propagation we derive the MHD vorticity equation including
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ion-neutral collisions. We start with the momentum equation

min
dv

dt
= J × B −∇p − minνv (2.9)

where d/dt ≡ ∂/∂t + v · ∇, and ν is the ion-neutral collision frequency. We solve for

J⊥ to find

J⊥ = −∇p × B

B2
− min(dv/dt + νv) × B

B2
. (2.10)

Next, we apply current continuity ∇ · J = ∇⊥ · J⊥ + ∇‖J‖ = 0, assume B ∼ eϕ/R,

and use the ideal Ohm’s law, which can be written as v = −∇φ × B/B2, to find

∇ · min

B2

d∇⊥φ

dt
= ∇||J|| +

2

B
b × κ · ∇p −∇ · min

B2
ν∇⊥φ, (2.11)

where b = B/B, κ = b · ∇b is the magnetic curvature. In deriving Eq. 2.11 we have

assumed that v ≪ cs, and |B/∇B| ≫ |n/∇n| ∼ |v/∇v|. The vorticity is given by

∇×v ≈ ∇2φ/B (where v = −∇φ×B/B2). Equation 2.11 is commonly used in blob

theory (see for example Ref. [92]). The concept of vorticity is useful in describing

charge separation in a magnetic field. The reason for this is outlined in Fig. 2-10,

where in (a) a local buildup of charge Q results in a vortex-like E × B velocity flow.

In the expression for vorticity ∇×v = ∇2φ/B, the quantity φ/B2 is equivalent to the

stream function from fluid mechanics. In (b), we see how two such oppositely-oriented

vortices—whose velocity arrows are shown in blue—combine to give a propagating

blob. This velocity field is similar to the E × B velocity arrows in Fig. 2-7. The

vorticity is proportional to the charge by Poisson’s equation ∇2φ = −Q/ǫ0.

Eq. 2.11 may be simplified for our experimental geometry. We have purely toroidal

magnetic field B = Beφ ∝ 1/R, so that b = eφ and κ = −eR/R. We neglect ∇||J‖,

since the toroidally symmetric field lines close on themselves, and therefore no charge

is lost or gained along the magnetic field. We then obtain

∇ · min

B2

d∇⊥φ

dt
=

2

BR

dp

dZ
−∇ · min

B2
ν∇⊥φ. (2.12)
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Figure 2-10: (a) Charge Q in a magnetic field gives vortex-like E×B velocity arrows;
(b) velocity field of two oppositely-oriented point vortices with superimposed blob.
The charge accumulation is related to the vorticity.

Recall that this equation is an expression of ∇ · J = 0, which is required for

quasineutrality. The terms represent divergence of ion polarization currents (vorticity

accumulation), divergence of currents due to curvature and ∇B drifts (outward drive

due to centrifugal force on electrons), and divergence of Pedersen currents (collisional

damping due to neutrals), respectively. Eq. 2.12 is clearly non-linear, since—together

with the density evolution equation (∂n/∂t + ∇ · (nv) = 0)—it couples the density

and potential fields. Numerical simulations show that the non-linear evolution of the

vortex pair that emerges from these arrows is directly related to the formation of the

mushroom shape [86, 87]. Meanwhile, the gross features of the vertical electric field

(see Fig. 2-7) are maintained directly by the vertical curvature and ∇B currents. The

electric field drives Pedersen currents—proportional to both the electric field and the

rate of ion-neutral collisions—and adjusts to balance the divergence of the ion and

electron currents.

To explain the observation that the blob speed scales inversely with the neutral

pressure, we take spatial moments of the density and vorticity equations. The R-

moment of the density equation

∂n

∂t
+ ∇ · (nv) = 0 (2.13)
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gives the center-of-mass motion:

∂〈R〉
∂t

= 〈vR〉, (2.14)

where 〈...〉 is a spatial-average operator, for example

〈vR〉 =

∫

nvRd3r
∫

nd3r
, (2.15)

and the integration volume covers the entire plasma. There is no background plasma,

and the blob makes no contact with the chamber walls, so no surface integrals are

needed. The evolution of 〈vR〉 is computed from the Z-moment of the vorticity equa-

tion. We assume steady state propagation and neglect the d/dt term in Eq. 2.12;

taking the Z-moment (
∫

Zd3r×) of this equation and integrating by parts gives

ν

〈

1

B

dφ

dZ

〉

=
2〈Te〉
miR

(2.16)

and hence

vblob ≡ 〈vR〉 =
2〈c2

s〉
νR

. (2.17)

where vR = −(dφ/dZ)/B, p = nTe (assuming Te ≫ Ti), and we have assumed

uniform collisionality ν. The ion-neutral collision frequency is ν = nnσv̄i, where nn is

the neutral density, σ is the ion-neutral collision cross section, and v̄i is the mean ion

speed. The expression for ν assumes v̄i & vblob, so that the relative velocity between

colliding ions and neutrals is ∼ v̄i. The scaling of blob speed with neutral density is

now apparent:

vblob ∼ 1

nn

, (2.18)

in agreement with Fig. 2-9.

The dominant cross-section for Ar+ ions impinging on Ar atoms at energies on

the order of 1 eV is the symmetric charge transfer cross-section, which we take to be

58 × 10−20 m2 [93]. Furthermore, we assume an electron temperature Te = 2 eV,

leaving Ti as the only unspecified parameter with which to fit the data of Fig. 2-9
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Figure 2-11: Two blob discharges with the same neutral density but different mi-
crowave pulse length. The larger blob is approximately twice the size of the smaller
one, but their propagation velocity is within 15%, as expected from the scaling of
Eq. 2.17.

(since v̄i =
√

8Ti/πmi). The best fit line in Fig. 2-9 is found for Ti = 1.1 eV.

2.4.2 Dependence of Propagation Speed on Blob Size

The scaling of blob speed with blob size depends on which terms are important in

the vorticity equation (Eq. 2.11). In our case, the blob speed is independent of its

size. Figure 2-11 shows two blobs from different discharges, which have the same

neutral pressure (2.1 × 10−4 Torr) but with different RF pulse lengths (10 µs and

150 µs). The longer RF pulse gives a blob about twice the size and with 10 times

the density compared to the shorter RF pulse, but the two blob speeds agree within

15%. The blob size is measured as the standard deviation, i.e. ∆R = 〈(R − 〈R〉)2〉.
The independence of blob speed on blob size is also consistent with Eq. 2.17, for the

regime in which the drive term is completely balanced by the drag term.

2.4.3 Measurement of E×B Velocity

The floating potential structure of Fig. 2-7 is also analyzed quantitatively and the

results are consistent with the blob velocity measured by the time-of-flight method.
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Fig. 2-12 shows the average E × B velocity (empty symbols) calculated from floating

potential measurements using 〈VE×B〉c = (
∫

c
n(EZ/B0)RdZdR/

∫

c
nRdZdR), where

the contour c includes 50% of the total particles (as measured from ion saturation).

This 50% contour (see Fig. 2-7) is chosen to include a significant amount of plasma

while maintaining a density high enough to ensure the accuracy of the measurement.

Recall that for low density, the floating potential signal is R-C filtered (Section 2.2).

The 40% and 60% contours give the error bars displayed in the figure. Assuming

Te has an insignificant dependence on Z, the vertical electric field in the plasma is

obtained from the floating potential.

Figure 2-12 also shows blob velocity measurements for comparison (filled sym-

bols). These are calculated from the 3 vertical lines of Langmuir probes shown in the

inset; the error bars are calculated assuming 5 mm uncertainty in the line separation.

For each pair of vertical lines of Langmuir probes, the velocity is found from the

time at which the center-of-mass (of ion saturation current) crossed the line. Velocity

measurements at two different radial locations (circles and triangles) show clear evi-

dence for the blob slowing down with increasing radius. The decrease in blob speed is

expected due to the decrease in electron temperature (since vblob ∝ Te from Eq. 2.17).

At low fill pressure, the measured electric fields underestimate the blob velocity, prob-

ably due to systematic errors associated with measurements at low plasma density.

The use of floating potential to infer the electric field is checked by measuring the

plasma potential directly from the full I-V characteristics (see Fig. 2-8).

2.4.4 Blob Propagation through Neutral Cloud

We use gas puffing at the inner wall in order to create blobs in the low neutral density

regime. At the time of blob birth, the neutral density in the cloud by the inner wall

may be high, while the neutral density in the rest of the chamber is low. Without the

gas puff, at low fill pressure, the blob density is too low to measure the propagation.

Hence, in Fig. 2-9—recorded with no gas puffing—the low pressure blob speeds have

large error bars. By using gas puffing at the inner wall, we hoped to create blobs

with observable density, which would then propagate away from the gas puff and be
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Figure 2-13: Blob entrainment in a cloud of neutrals by the inner wall. Outside the
cloud, Pn = 2 × 10−5 Torr, and the front of the blob moves faster than its back,
stretching it radially.

influenced only by the background neutral pressure in the vacuum vessel. However,

the gas puff affects the blob propagation.

A typical blob in a discharge with gas puffing is shown in Fig. 2-13. The resulting

blob is stretched in the radial direction since part of it is entrained in the cloud of

neutrals. The background neutral pressure in the chamber is 2 × 10−5 Torr, and the

center of mass propagation is approximately 2.2 × 103 m/s. The argon gas puffing

occurs at 6 toroidal locations and uses fast piezoelectric valves. The valves are opened

1 ms before the burst of microwaves and the neutral atoms can travel at most 30 cm

away from the inner wall during this time. During the short time of the blob prop-

agation, the neutral density profile can be approximated as fixed. It is emphasized

that the stretching of the blob is due to its motion along a gradient in neutral density.

2.5 Energy Loss during the Filament Motion

The electron temperature (measured with Langmuir probes) at the peak density de-

creases by about 50% as the blob propagates across the chamber (∆R ∼ 35 cm). The

cooling of the electrons results from their motion against the vertical electric field of

the blob. Consider the energy equation for adiabatic electrons, i.e. ignoring heat flux:

d

dt

(

pe

nγ
e

)

(2.19)
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where γ = 5/3. Rewriting, we find

3

2

∂pe

∂t
= −p(∇ · ue) −

3

2
∇ · (peue). (2.20)

We integrate over the plasma volume to find

3

2

∫

∂pe

∂t
d3r = −

∫

pe(∇ · ue)d
3r =

∫

(ue · ∇)ped
3r = −

∫

neue · Ed3r (2.21)

where the last step relied on the electron momentum equation dotted with ue and

with electron inertia neglected. Rewriting, we have

3

2

∂〈Te〉
∂t

= −〈ue · E〉 (2.22)

showing explicitly how the electrons cool by moving against the electric field.

Next, we eliminate ue to find how 〈Te〉 evolves with radius. From the electron

momentum equation, we have the E×B and diamagnetic drifts

ue =
E × B

B2
+

∇pe × B

neB2
. (2.23)

Substituting this into Eq. 2.22, we find

3

2

∫

∂pe

∂t
d3r = −

∫ ∇pe × B

B2
· Ed3r

= +

∫

pe∇ · ∇φ × B

B2
d3r (2.24)

= −
∫

pe∇φ · ∇ × B

B2
d3r.

Since B = B0R0eϕ/R, we have ∇× (B/B2) = 2ez/(B0R0), and hence

3

2

∂〈Te〉
∂t

=
2

B0R0

〈TeEz〉. (2.25)

Assuming uniform Ez throughout the blob, this equation gives the scaling of Te as a
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function of R:
∆Te

Te

∼ 4

3

Ez∆t

RB
∼ −4

3

vblob∆t

R
∼ −4

3

∆R

R
, (2.26)

yielding Te ∝ R−4/3, independent of the ions and neutrals.
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∇ B
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Figure 2-14: (a) Electron in blob frame moves against the electric field; (b) ion-neutral
collision in lab frame. The electrons lose energy to the electric field. The ions lose
energy to the neutrals, and are re-accelerated by the electric field. The end result is
cooler electrons and faster neutrals. The gyro-radii are not to scale.

The energy lost by the electrons ends up in the neutrals, as outlined in Fig. 2-14.

The electrons in (a) lose energy by drifting against the electric field, as discussed

above. In (b) an ion-neutral charge transfer collision is presented. The neutral atom

is approximately at rest initially, since it is much slower than the ion. When the

charge transfer occurs, the ion and neutral switch roles. The fast neutral carries away

the energy of the ion, and the ‘new’ ion is accelerated from rest by the electric field, as

it begins its radial E×B drift. The energy lost by the electron is used to re-accelerate

the ion. This process is precisely the process of the Pedersen current. In steady state,

this Pedersen current of the ions balances the upward electron current. We estimate

the energy lost per electron to be ∆Te/∆t = ∆Te/(∆R/vblob) ≃ 2500 eV/s, where

vblob = 880 m/s and ∆Te ≃ 1 eV in ∆R ≃ 35 cm. Meanwhile, the energy imparted to

the neutrals by ions for a single ion is νmiv
2
blob/2 ≃ 1800 eV/s, where we have used
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Pn = 2.1 × 10−4 Torr, corresponding to vblob = 880 m/s. Hence, the energy lost by

the electrons, is comparable to the energy imparted to the neutrals by the ions.

Other notable results of the Te measurements show that the front end of the blob

is hotter than the back end by about a factor of 2, and that the temperature at high

neutral pressure (4.4×10−4 Torr) is about 30% lower than at low pressure (1.1×10−4

Torr). Overall, the electron temperature for blobs at these pressures is in the range

1-3 eV.

2.6 Applications

The results of this Chapter are applicable to a range of plasmas. In the tokamak edge,

the effect of the neutrals will be measurable if the drag is roughly 20% of the drive:

(νvblob)/(2c
2
s/R) & 0.2. For vblob/cs ∼ 0.05 [83], v̄i ∼ cs, R = 1 m, and σ ∼ 4× 10−19

m2 (for 20 eV deuterons [94]), the neutral drag will be important if nn & 2 × 1019

m−3. Some fusion experiments (e.g. Alcator C-Mod) approach this neutral density

in the scrape-off layer, and most exceed it in the divertor [84]. The blob speed in

VTF (relative to the sound speed) is fast compared to tokamaks, probably because in

tokamaks the rotational transform of the magnetic field, among other effects, drains

curvature-induced currents; our experiments have only the effect of the neutrals.

The interaction of a propagating filament with a background of neutrals is impor-

tant also for flux emergence through the photosphere into the corona. Although the

propagation mechanism is different—the flux tubes are driven by magnetic buoyancy—

the neutrals play an important role in dissipating cross-field currents. This dissipation

creates force-free flux tubes, since only field-aligned currents survive the interaction

with the neutrals [95]. Previous simulations had ignored the neutrals and missed this

effect.

In magnetic reconnection with a guide magnetic field, flowing plasma filaments

are ejected in the outflow region of the conventional x-line geometry. Moreover, in

the photosphere, the neutral density is ∼3 orders of magnitude greater than the

ion density [96]. The ionization fraction is similarly low in the interstellar medium
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(ISM), where Zweibel [97] has shown that current sheets are likely to form. The

precise mechanism and even the magnetic geometry of reconnection in the ISM, the

photosphere and the chromosphere above it are not known, and hence the role of

the neutrals is sometimes ignored for simplicity (e.g. [98]). However, as the results

of this Chapter suggest, the neutrals are important in regulating the cross-field flow.

Specifically, in the context of reconnection, the interaction of ions with a density

gradient of neutrals may slow or distort the ejected plasma in the outflow region of

reconnection, as it does in Fig. 2-13. If the outflow plasma is sufficiently nozzled, the

reconnection rate may be significantly reduced. In addition, Zweibel [99] showed that

in the presence of strong ion-neutral coupling—where the neutral and ion flows are

identical—reconnection is significantly slowed, since the Alfvén speed is reduced due

to the higher effective ion mass.
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Chapter 3

Experimental Setup for

Collisionless Reconnection

Experiments

3.1 The Versatile Toroidal Facility

The experiments are conducted in the Versatile Toroidal Facility (VTF) at MIT. The

device consists of a large toroidal vacuum chamber (major radius 1 m), and it has

been used over the past 10 years for magnetic reconnection experiments with both

‘open’ [100] and ‘closed’ [101] magnetic configurations, as well as for blob propagation

experiments [73]. The chamber is pumped by a 450 L/s Leybold turbo pump, with the

exhaust of the turbo removed by a scroll pump. The scroll pump is also used directly

on the chamber to pump down from atmospheric pressure. The base vacuum in VTF

is typically 2×10−6 Torr. A residual gas analyzer shows that this base pressure is

due mainly to water vapor and nitrogen. An ionization gauge is used to monitor the

pressure below ∼ 1.5 × 10−4 Torr.

A photograph of the device is shown in Fig. 3-1. The orange coils, which close

through the hollow center of the torus, provide a toroidal magnetic field, which varies

as inverse major radius. This toroidal field is the dominant magnetic field in the ex-
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Figure 3-1: A photograph of VTF. The orange coils give a toroidal magnetic field,
while the many side ports give excellent diagnostic access.

periment. Also visible in the photograph are many side ports, which provide excellent

diagnostic access, as exemplified by the probe at left. Additional ports are located

at the top and bottom of the facility. There is an electrical break in the chamber,

seen in the middle of the photograph where a port is ‘missing’. This break prevents

toroidal currents from being induced in the chamber walls.

Fig. 3-2 shows a more detailed schematic of the experiment. The toroidal geometry

is characterized by (R,ϕ,Z). There are 4 toroidal coils inside the vacuum chamber,

and these provide the poloidal (R-Z) magnetic field shown at left. At Z = 0 there is

a magnetic x-line, which is characteristic of magnetic reconnection studies. We use

the orange coils mentioned above to apply a toroidal magnetic field Bϕ = B0R0/R

(where B0 = 50-75 mT and R0 = 1 m), which is much larger than the poloidal field.

The dominance of the toroidal field means that we are in the strong guide-field regime

of magnetic reconnection.

To create the plasma, we leak into the vacuum chamber neutral argon gas at

P = 6− 9× 10−5 Torr, corresponding to n = 2− 3× 1018 m−3 at room temperature.

The ionization fraction obtained is roughly 30-50%, though possibly higher [102].

The use of argon, as opposed to lighter hydrogen or helium, slows down the plasma
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Figure 3-2: Half of the toroidal chamber; the 4 internal co-axial coils create the
poloidal magnetic field lines shown at left. At right is one of the Rogowski arrays,
and the microwave horn antenna. The magnetic field is dominated by Bϕ.

dynamics sufficiently to improve the time resolution of the measurements. We create

a seed plasma using 20 kW of 2.45 GHz microwaves amplified by a klystron, and

injected through the horn shown in Fig. 3-2. The toroidal field is set to provide

electron cyclotron resonance (ωmicrowaves = eB(R)/me) in the vacuum vessel. For

f = 2.45 GHz microwaves, the resonant field is 87 mT; the condition that this value

occur inside the vacuum chamber limits the range of toroidal fields for the experiment.

Specifically, we require that

2πfmeRinner

eR0

< B0 <
2πfmeRouter

eR0

(3.1)

where the inner and outer walls are located at Rinner = 0.62 m, and Router = 1.26

m, respectively. Therefore, the toroidal field is limited to 54 mT< B0 <110 mT. A

further constraint on B0 is imposed by the power supply, which excludes fields above

B0 ∼ 90 mT. These constraints apply to the first harmonic of electron cyclotron

resonance. However, plasma breakdown is also possible using the second harmonic of

the cyclotron frequency. This effect allows the breakdown of the seed plasma at fields

as low as 27 mT, which explains how in previous experiments plasma was created at

B0 = 44 mT [101].

After 200 µs of microwaves, the klystron is switched off, and a central solenoid (see
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Fig. 3-3) drives toroidal current in the seed plasma and builds up the plasma density

from 1016 m−3 to 1018 m−3 levels. The plasma β ≡ 2µ0p/B
2 is typically 10−3. Table

3.1 summarizes some of the important plasma parameters during the spontaneous

reconnection.

Parameter Symbol Value

Density n ∼ 1-2 × 1018 m−3

Neutral argon density n0 2-3 × 1018 m−3

Electron temperature Te ∼ 10-20 eV
Ion temperature Ti . 1eV
Spitzer resistivity ηsp ∼10-30 Ωµm

Plasma β β ≡ 2µ0p
B2 ∼ 10−3

Toroidal magnetic field Btor 50-75 mT
Poloidal magnetic field Bpol 0-6 mT
Ion cyclotron frequency ωci 1.4 × 105 s−1

Electron cyclotron frequency ωce 1.1 × 1010 s−1

Sound speed cs 6 × 103 m/s
Alfvén speed vA ≡ B√

minµ0

2 × 105 m/s

Ion gyroradius ρi ∼ 1 cm
Electron gyroradius ρe 150 µm
Debye length λde 30 µm
Ion inertial length di 1.4 m
Electron inertial length de 5 mm
Ion sound gyroradius ρs ≡ cs

ωci

4 cm

Electron-neutral mean free path λen 5-10 m
Electron-ion mean free path λei ∼ 3 m

Table 3.1: Some of the plasma parameters during spontaneous reconnection event.

The reconnection drive is shown schematically in Fig. 3-3. The central solenoid

drives toroidal current not only in the plasma, but also in the outer shells of the four

coaxial in-vessel coils. These shells are connected in series to force them to carry the

same current. This toroidal current produces the magnetic geometry illustrated on

the left of Fig. 3-2. It is emphasized that the applied reconnection drive is up-down

symmetric and toroidally symmetric.

After the central solenoid has been active for 1.2 ms, the switch at the left of

Fig. 3-3 is closed and current flows in the internal conductors of the four in-vessel

coils. This current enhances the total current in coils 1 and 4, but decreases the
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Figure 3-3: Reconnection drive scheme: the central solenoid induces clockwise current
in the outer shells of the four co-axial conductors, connected in series (Iouter). Then the
switch is closed and current is driven in the inner conductors, enhancing or detracting
from Iouter. Overall, there is a net shift of current from coils 2 and 3 to 1 and 4.
Consequently, the drive pulls magnetic flux away from the x-line (see Fig. 3-4).

total current in coils 2 and 3. The net effect is a sudden redistribution of the total

coil current away from the midplane. Figure 3-4 shows schematically the response of

the poloidal magnetic field lines; plasma is pushed into the x-line from the sides and

pulled from the top and bottom. The reconnection drive tears magnetic flux away

from the x-line. One might expect that only two in-vessel coils could have been used

instead of four to tear flux from the x-line. However, with two coils, the strong guide

field would be compressed as flux and frozen-in plasma would be pulled towards the

coils. This compression would be energetically unfavorable and would oppose the

reconnection drive. With four coils, there is an effective transfer of current from two

coils to the other two and the guide field is therefore not compressed.

The current in the in-vessel coils is plotted as a function of time in Fig. 3-5a; the

vertical line represents the time at which current is redistributed from the inner two

coils to the outer two. (b) shows the total plasma current, integrated over the poloidal

cross-section; its magnitude is similar to that of the in-vessel coil currents. In (c) we

see the plasma density build up from the seed plasma by ohmic heating due to the

growing plasma current, which is induced by the central solenoid. The spontaneous

reconnection event occurs around t = 1.4 ms.
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Figure 3-4: Poloidal cross-section of VTF, showing internal coils; the redistribution
of current from coils 2 and 3 to coils 1 and 4 causes the poloidal magnetic field lines
(dashed) to move into the x-line from the sides and away from the x-line at the top
and bottom.

3.2 Diagnostics

We use multiple arrays of magnetic, Langmuir, and Rogowski probes to characterize

the full 3D dynamics of the reconnection process. Table 3.2 summarizes the various

diagnostics, which are described in detail in this section. Although it is possible

that these diagnostics perturb the plasma, we note that as each array is added, the

reconnection dynamics remain qualitatively the same.

The materials used in probe construction include Kapton- or HML-coated cop-

per wires, Teflon tubes, aluminum hardware, Torr Seal, G-10 rods, and ceramic rods.

These materials have withstood thousands of plasma discharges with no sign of degra-

dation. This is probably due to the short duration of the VTF plasmas, which is only

about 10 ms. The Langmuir stainless steel probe tips do get affected by repeated

exposure to the plasma, but they can be treated by glow discharge cleaning, as will

be described below.

To bring the wires out of the vacuum chamber, we use home-made, specially
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Figure 3-5: (a) Current in the in-vessel coils; when the reconnection drive is switched
on, current is transferred from coils 2&3 to 1&4; (b) plasma current integrated over
the poloidal cross-section; (c) spatially-averaged plasma density.

designed feedthroughs in order to reduce cost and eliminate magnetic pickup noise

at the chamber wall [103]. We drill small holes into a regular Conflat flange and feed

bundles of twisted copper wires through. We then use Torr Seal to seal the holes; a

heat gun is essential at this step to make the Torr Seal liquefy and wick into the holes.

These home-made feedthroughs are able to withstand the base vacuum of VTF, which

is typically 10−7–10−6 Torr.

To digitize the signals from all of the arrays, we use ICS645B 2MHz single-ended

digitizers sold commercially by the Radstone Corporation (now GE) and ACQ196

500kHz digitizers sold by D-tAcq Solutions, Ltd. Altogether, we measure more than

1000 signals during each shot.

3.2.1 Langmuir Arrays

We use Langmuir probe arrays to measure the density and floating potential in

the plasma. These include four medium-resolution Langmuir arrays, and one high-

resolution array. The arrays are installed around the torus at different toroidal angles.
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Diagnostic Quantity Measured Where ∆R × ∆Z (cm2)

Langmuir arrays
n(R,Z), Vfloating(R,Z) 4 toroidal angles 7×5

n(R,Z) 1 toroidal angle 1.5×3.5

Magnetic arrays
Aϕ(R,Z) 2 toroidal angles 3×3.5

Aϕ(R,Z = 0) 6 toroidal angles 3×0
Aϕ(R,Z) Attached onto the

high-resolution
Langmuir array

1.5×3.5

Rogowski arrays J(R,Z) 2 toroidal angles 8.5×8.5
Microwave interferometer

∫

n(R0, Z)dZ 1 toroidal angle
16-tip Langmuir probes Te 2 toroidal angles,

each at 4 locations
near x-line

Fast camera Visible light Looking at x-line
from side port

Table 3.2: Summary of diagnostics for VTF plasmas. J : current density; n: plasma
density; Vfloating: floating potential; A: magnetic vector potential; Te: electron tem-
perature. The final column contains measurement resolution, i.e. probe separation in
R and Z.

The probes in each medium-resolution array have a spacing of ∆R × ∆Z = 7 cm ×
5 cm, and they are used in a checkerboard fashion, such that half the probes are bi-

ased to ion saturation (density) and half are floating (potential). The high resolution

Langmuir array has probe spacing of ∆R × ∆Z = 1.5 cm × 3.5 cm.

The Langmuir array design is shown in Fig. 3-6. We use Kapton- and HML-coated

4 mil copper wires (red lines) soldered onto stainless steel cylinders (at blue dot). At

left of (a), the wires are run through a Teflon tube, while the newer design (right)

uses a mixture of Torr Seal and ethanol to hold the wires together without the bulkier

Teflon tube. The diameter of the probe tips is 1.3 mm, and for the glued wires 0.5

mm. The debye length, in comparison, is only 30 µm. A photograph (Fig. 3-6b)

shows the newer design.

The Langmuir probes can be operated in biased or floating mode and the plasma

is modeled differently in each case. In floating mode, the plasma can be thought of

as a voltage source with output impedance Rp. In biased mode, however, the plasma

can be modeled as a current source with large output impedance. Both cases can be
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(a) (b)

Figure 3-6: (a) Two versions of Langmuir array design. Left: cylindrical probe on
Teflon tube, with wires running through Teflon and soldered onto probe (blue dot).
Right: wires glued with Torr Seal reduce the cross-sectional area of Teflon-based
array. A 6 mil guide wire provides mechanical strength to the 3-4 mil signal wires.
(b) Photograph of two probes without Teflon tube.

described by the I-V characteristic ([104])

I(Vbias) = neApcs

[

1

2

(

mi

2πme

)1/2

exp

(

e(Vbias − Vp)

Te

)

− exp

(

−1

2

)

]

, (3.2)

where cs =
√

Te/mi is the sound speed, n is the plasma density, Ap is the probe

surface area, Vbias is the probe voltage, and Vp is the plasma potential. The first term

on the right-hand side represents the electron current to the probe, while the second

term is the ion current. The electron response can be understood by considering the

flux of electrons from the main plasma to the probe. In the main plasma, the electron

velocity distribution is assumed to be Maxwellian with temperature Te. The probe is

assumed to be biased negatively relative to the plasma potential, and most electrons

are therefore reflected. Only electrons whose velocity in the direction of the probe

vy is larger than the cutoff velocity vc =
√

2e(Vp − Vbias)/me are able to reach the
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probe. The flux of electrons to the probe Γ can then be written

Γ

n
=

∫

dvx

∫

dvz

∫ ∞
vc

dvyvy exp
(

−mv2

2Te

)

∫

dvx

∫

dvz

∫ ∞
−∞ dvy exp

(

−mv2

2Te

) (3.3)

=

√

Te

2πme

exp

(

e(Vbias − Vp)

Te

)

.

This expression is equivalent to Γ = nv̄/4, which is predicted by kinetic theory [104],

multiplied by a Boltzmann factor. The mean velocity for a Maxwellian plasma is

given by v̄ ≡
√

8Te/(πme). Given Eq. 3.3, we calculate the electron current to the

probe as

Ie = eΓ × Area = npe
Ap

2

√

Te

2πme

, (3.4)

which is equivalent to the electron term in Eq. 3.2. The probe area Ap is divided

by a factor of 2 because of the small ratio of the electron gyroradius to the probe

dimension. The well-magnetized electrons see the projection of the probe onto a 2D

plane, which for a cylindrical probe is Ap/2.

The second term on the right-hand-side of Eq. 3.2 represents the ion current to

the probe. The potential difference between the probe and the plasma is confined

to within a few debye lengths (λde =
√

ǫ0Te/(ne2)) of the probe. In this region—

called the ‘sheath’—the ions are accelerated by the potential difference. Outside the

sheath, the plasma is quasineutral and ne = ni. It turns out that the ion velocity for

Vbias < Vp does not depend on the bias voltage, and saturates at approximately the

sound speed cs [104]. If the probe is much larger than the debye length, the so called

ion-saturation current can be shown to be

Ii = −neApcs exp

(

−1

2

)

. (3.5)

If the electron temperature is known, the ion saturation current provides a measure

of the plasma density. For these experiments, we assume Te = 15 eV and bias the

probes to -90 V in order to measure the density.

There are several sources of uncertainty in the density measurement. First, there
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may be variations in the electron temperature; however, for a typical variation be-

tween 10 and 20 eV, the square root dependence on Te gives a variation in Ii of only

41%. Second, if the debye length is not small enough compared to the probe size,

sheath expansion can effectively enhance the probe area. This effective area then

depends on the bias voltage of the probe, and the ion saturation current does not

saturate. If the Vbias − Vp is fixed, the sheath expansion could be absorbed into Ap,

but if the plasma potential changes in time and space, the sheath expansion could

affect the measurement of Ii. If the sheath expands, for example, by 2λde, the ion

saturation current would change by ∆Ii/Ii ∼ ∆Ap/Ap ∼ 2λde/rprobe ∼ 2 × 30 µm/1

mm∼ 6%. A more serious problem arises during the spontaneous reconnection, when

the plasma potential can swing by up to 80V, causing some electrons to be absorbed

by the negatively-biased probe. In extreme cases, the electron current is larger than

the ion current, and the plasma density appears to be negative. Caution must be used

therefore when the plasma potential (or the floating potential) show large variation.

The floating potential—at which ion and electron currents to the probe balance—

can be computed from Eq. 3.2 as

V (I = 0) = Vp −
Te

2e

(

1 + log
mi

2πme

)

(3.6)

which for Argon (mi ≈ 40 × mproton) is Vp − 5.2Te/e. Here, the sheath area has been

assumed equal to the probe area. If the electron temperature is spatially uniform and

constant, we can use the floating potential as a proxy for the plasma potential. This

is done because the floating potential is much easier to measure.

The output impedance of the plasma when the probes are in floating mode, Rp, can

also be calculated from Eq. 3.2. This impedance is given by the differential resistance

of the I-V characteristic at I = 0: Rp = dV/dI|I=0 = Te/(eIi). For n = 1018 m−3,

Rp ∼ 500 Ω, while for n = 1017 m−3, Rp ∼ 5 kΩ.

Figure 3-7 shows the circuits used for floating and biased probe operation. Sub-

figure (a) shows the floating potential Vf and output impedance of the plasma Rp,

the capacitance of the wires, Cs, which is about 50 pF, and the divider resistors R1
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and R2. The voltage across R2 is digitized at 500 kHz or 2 MHz. Several consider-

ations affect the choice of R1. Since Rp varies depending on the plasma density, it

is desirable that R1 ≫ Rp so that Rp can be ignored in the divider ratio. Thus, we

choose R1 = 330 kΩ. The capacitance Cs in combination with Rp is a low-pass filter

with time constant RpCs ∼ 2.5 × 10−7 s for n = 1017 m−3. This filter is therefore

negligible for our digitization rates, except at very low densities where Rp is large.

Figure 3-7: Circuits for Langmuir probe measurements. Reproduced from Ref. [102].

In the biased probe operation (Fig. 3-7b), the plasma acts like a current source.

This is especially true when the probe is biased to ion saturation, where the differential

resistance dV/dI (the output impedance) becomes large. To bias the probe to ion

saturation, we apply Vbias ∼ −90 V and measure the probe current through a small

sense resistor Rs, typically 300-600 Ω. The voltage across the resistor is passed

through a decoupling capacitor Cd and digitized across Rd. The capacitor serves

to protect the digitizers from the large DC bias voltage, while passing through the

time-dependent plasma signal. Since the plasma only lasts ∼ 10 ms, we require that

RdCd ≫ 10 ms, so that this high-pass filter lets through all signals of interest. We

choose Cd = 10 µF, which is also small enough that RdCd is much smaller than the
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time between discharges, and the capacitor has enough time to charge up to Vbias.

The decoupling resistor Rd is chosen to be much larger than the sense resistor so that

all current goes through the sense resistor.

With the many-channel probe arrays, the bias voltage is supplemented by a large

capacitor (5 mF) in parallel, which serves as a repository of charge and effectively

decreases the output impedance of the bias power supply. This capacitor prevents

the bias voltage from drooping during the shot.

The Langmuir probes suffer from surface contamination. Over several months to

a year, the stainless steel surface becomes darker, covered by a brown-tinged layer.

The layer effectively adds an extra resistance between the probe and the plasma,

and when it is thick enough, ion saturation current decreases sharply. Before this

total failure of the probes, signs of contamination emerge from measurements of the

I-V characteristic. In normal operation, in order to map out the characteristic in

reproducible discharges, the probe bias is scanned as the current is recorded. As the

probe surface becomes contaminated, hysteresis is observed depending on whether

the bias voltage is incrementally increased or decreased [88, 89]. In Section 2.2, we

discuss this problem in more detail.

To clean the contaminated probe surfaces, we use glow discharge cleaning. Ac-

cording to Ref. [105], an dose of 1022–1023 ions/m2 is sufficient to clean stainless

steel surfaces. We use 100 mTorr of argon and bias the Langmuir probes to about -

160V. We use large metallic tubes for electrodes, and bias these to 200-300V. Since the

chamber wall is grounded, the negative bias on the probes ensures that the probes are

cleaned instead of the wall. After ∼ 10 hours, which is sufficient for the recommended

ion dose, the current to the probes increases and the surface layer is eliminated.

3.2.2 Magnetic Arrays

Two magnetic arrays [103] are used to measure the toroidal inductive electric field,

∂Aϕ/∂t, and the poloidal component of the magnetic field. A schematic of these

arrays is shown in Fig. 3-8. The vertical component of the magnetic field is measured

in each row, but the radial component is only measured in the central column. In
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this way, fewer signals have to be digitized simultaneously. ∂Aϕ/∂t is computed by

integrating

∆R(RȦϕ) =

∫ R1

R2

RḂZdR (3.7)

∆Z(RȦϕ) = −R

∫ Z1

Z2

ḂRdZ,

where Ȧϕ and ∂Aϕ/∂t are used interchangeably. The time integration of Ḃ is done

digitally, after the measurement. The reference point for the integral is taken as

R = 0, and the contribution to RAϕ from R = 0 to the nearest loop on the array is

computed using a toroidal loop at the inner wall (the extra flux from the inner wall

to the inner-most edge of the array is measured by the nearest single-row magnetic

array, mentioned below). The resolution of the magnetic arrays is ∆R × ∆Z = 3

cm × 3.5 cm. The high resolution Langmuir array mentioned above also has a small

magnetic array lined up with the Langmuir probes. Its resolution is ∆R×∆Z = 1.5

cm × 3.5 cm. While Eq. 3.7 is exact when the plasma is toroidally symmetric, in the

more general case of 3D plasma response, the equation is only approximate. However,

in Appendix A it is shown that the error in ∂Aϕ/∂t, which is measured by a magnetic

array at one toroidal angle, is at most 2%. The approximation relies on the large

aspect ratio of VTF and the strong guide field.

To measure the toroidal asymmetry in the reconnection rate, we use 6 single-row

magnetic arrays spread evenly (∆ϕ = 60◦) around the torus at Z = 0. Each array

consists of one row of loops spanning from the inner wall to the outer wall. By mea-

suring Ḃz(R) ≡ ∂Bz(R)/∂t, the reconnection rate at Z = 0 is found from integrating

Ȧϕ(R) = Vinner/(2πR)+(1/R)
∫ R

Rinner
R′ḂzdR′, where Vinner is the induced loop voltage

measured at the inner wall. These magnetic arrays are useful for measuring the re-

connection rate at the mid-plane (Z = 0) throughout the torus, and we will use them

in Chapter 5 to determine the onset angle of spontaneous magnetic reconnection.

Before the magnetic signals are digitized, they are passed through differential am-

plifiers with a gain of 1 (see Fig. 3-9). Since the digitizers are single-ended, the am-

plifiers are necessary to reduce electrostatic noise from the plasma, which presumably
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Figure 3-8: Schematic of magnetic array. Reproduced from [103].

affects both wires in the twisted pair equally and is therefore a common-mode signal.

The circuit was designed to reduce the common-mode signal by more than 1/100. The

good common-mode rejection is due to the resistors R2 in the figure, which divide

down the input to prevent the common-mode from saturating the op-amp. The use of

amplifiers allows the use of cheaper single-ended digitizers, as opposed to differential

ones, which are more expensive.

Some optimization is required when choosing the input resistance of the amplifiers,

Rin [103]. The electrostatic noise of the plasma can couple to the wires capacitively

through their Kapton/HML coating. A typical value for this capacitance is Cp ∼ 10

pF, and the noise is filtered by the combination of this capacitance and the input

resistance of the amplifier. For electrostatic fluctuations with characteristic angular

frequency ω, the noise signal is reduced by a factor of ∼ Rin/(Rin + (iωCp)
−1). For

this factor to be small—and the transmitted noise small—we require ωRinCp ≪ 1.

Another consideration which affects the choice of input resistance involves the

self-inductance of the wires, L. This self-inductance, of order L ∼ 10−6 H, in combi-

nation with the input resistance of the amplifiers can filter the probe signal, reducing

the signal-to-noise ratio. For electrostatic fluctuations with characteristic angular

frequency ω, the probe signal is reduced by a factor of ∼ Rin/(Rin + iωL). For this
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Figure 3-9: Amplifier circuit for magnetic and Rogowski arrays. To get a sense for
the circuit, consider current continuity in the upper part of the circuit (Vin/2)/R1 =
V ∗/(R1||R2||R3). Meanwhile, in the lower part of the circuit Vout/R3 − (Vin/2)/R1 =
V ∗/(R1||R2||R3). Combining these two relationships yields the gain Vout/Vin =
R3/R1.

factor to be close to 1, we require that ωL/Rin ≪ 1.

The signal-to-noise ratio is worse for large ω. Since our digitizers operate at

2MHz, we take the fastest ω of interest to be of order 1MHz. Then the capacitive

noise coupling condition implies Rin ≪ 20 kΩ, while the self-inductance condition

implies Rin ≫ 10Ω. We therefore choose a value of Rin = 1 kΩ. The capacitively

coupled electrostatic noise is then reduced by ωRinCp ∼ 1/20. A further reduction in

noise results from the common-mode rejection ratio of the amplifiers, which is better

than 1/100. At lower frequencies the signal-to-noise ratio improves further. Another

consideration when choosing Rin is that it be large enough to prevent dividing the

probe signal down due to the wire resistance, which is typically ∼ 30 Ω. The chosen

value of 1 kΩ satisfies this condition as well.

A source of systematic error in the magnetic probe signals is the extra magnetic

pickup from the central solenoid and reconnection drive. This pickup occurs in the

cable that leads from the vacuum feedthrough to the digitizers, and is relatively

reproducible. To eliminate it, we record a plasma discharge with the magnetic signals

shorted just after the feedthrough. The shorted signals are then subtracted from

the signals during an un-shorted discharge. We find that this method successfully
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eliminates magnetic pickup in the cables.

The loop dimensions are accurate to within about 2 mm [103], but some of these

inaccuracies can be calibrated against the known vacuum magnetic fields of the in-

vessel coils. Overall, the accuracy in RAϕ is about 2%. This uncertainty does not

account for the extra uncertainty due to toroidal asymmetry, which is discussed in

Appendix A.

3.2.3 Rogowski Arrays

To accurately measure the current density 2 Rogowski arrays have been constructed,

which measure the current density in a poloidal cross-section. Although it is possible

to find Jϕ from ∇2Aϕ, which is measured by the magnetic arrays, the derivatives

involved in this measurement may introduce error. The Rogowski arrays avoid this

problem. One of the arrays is shown in Fig. 3-2 at right, and an individual probe is

shown in Fig. 3-10. Each square probe is mounted on a grid of G-10 rods. One array

is fixed toroidally, while a second array is moved between different toroidal locations.

The spatial resolution of these measurements is 8.5 cm in both R and Z.

To calibrate the Rogowski arrays we use the current in the in-vessel coils. Given

the capacitance of the bank supplying this current and the voltage across the capac-

itors before discharge, we calculate the total charge released. The time-integrated

signal from the Rogowski probe is then equated to this charge to find the correct

calibration factor. The individual Rogowski probes are assumed to be identical to

the two calibrated ones. This is a good approximation since the number of wind-

ings of the copper wire in each probe is determined only by the diameter of these

closely-packed wires.

The choice of resistors in the Rogowski probe circuit is motivated by similar con-

sideration to those applied in the magnetic probe circuits. However, the capacitance

between the probe and the plasma, Cp, is larger, and the self inductance of the probe,

L, is no longer negligible. The capacitance is estimated from the cross-sectional area

of the probe and the HML coating thickness of the copper wires (∼ 40 µm) to be

Cp ∼ 200 pF. We require that the input impedance of the amplifiers be R ≪ 1/(ωCp),
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(a) (b)

Figure 3-10: (a) Schematic of Rogowski probe. Each square consists of 4-6 mil copper
wire wound on Teflon tube. The squares are mounted on a G-10 grid, shown in
Fig. 3-2. (b) Photograph of Rogowski probe corner.

in order for electrostatic noise to be minimally coupled to the probe. For ω ∼ 106

s−1, this condition is R ≪ 5 kΩ. Since we use the same amplifier circuits as for the

magnetic probes with 1 kΩ input impedance, we add a resistor R1 = 140 Ω by the

chamber wall, as shown in Fig. 3-11.

However, we also require that the divider ratio of the Rogowski signal (see Fig. 3-11)

be close to 1, to prevent filtering. This ratio is approximately R1/(R1 + iωL). The

solenoidal probe’s self inductance is estimated as 1.4 × 10−4 H. The condition that

R1 ≫ ωL is then satisfied for ω ∼ 105 s−1, but not necessarily for ω ∼ 106 s−1. So

fluctuations in the current density signals are filtered for short time-scales, but the

noise is sufficiently reduced. The common-mode rejection of the amplifiers further

suppresses the noise.

The systematic error of magnetic pickup in the cables between the chamber wall

and the amplifiers, which affected the magnetic arrays, also affects the Rogowski

signals. To remove this spurious signal, a discharge is recorded in which the seed

plasma is absent. Since there is no plasma current in this false discharge, the recorded

signals represent magnetic pickup. The signals resulting from this vacuum ‘discharge’
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Figure 3-11: Schematic of circuit for Rogowski probes. A small R1 is added to increase
the filtering of capacitively coupled noise from the plasma. However, R1 must be large
enough to prevent the self-inductance of the probe from affecting the signal filtering.

are recorded and subtracted from the actual plasma signals.

3.2.4 Microwave Interferometer

To confirm the Langmuir density measurements, we use a homodyne microwave in-

terferometer. Our source is a mechanically tuned Gunn oscillator from WiseWave

Technologies, Inc., operating at 70 GHz. We use a single horn antenna and a reflect-

ing mirror to measure interference fringes. This simple interferometer compares well

with Langmuir probe data for early times when the density is building up, but past

n ∼ 5 × 1017 m−3, the fringes disappear, most likely because of fluctuations in the

line-integrated density. Nevertheless, the Langmuir measurements are well-calibrated

using this interferometer.

3.2.5 Multi-Tip Langmuir Probe for Electron Temperature

Measurement

We measure the electron temperature by recording the current collected by multiple

Langmuir probes biased to different voltages. This measurement is done in a single

shot. The 16 Langmuir probes, which are shown in Fig. 3-12 are arranged on a grid of

dimensions 1 cm × 1 cm, and the bias order is scrambled to avoid systematic errors.
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Figure 3-12: 16-tipped Langmuir probe for measuring the I-V characteristic and hence
the electron temperature; the bias voltages of the probes are not in order.

The probe tips are cylindrical and are held on a thin Teflon tube, similar to the design

in Fig. 3-6. There are 8 such point-measurements of the electron temperature near

the x-line, at two separate toroidal angles. All measurements may be recorded in a

single discharge.

3.2.6 Fast Camera

We use a fast Phantom v7.1 camera made by Vision Research to record visible light.

The camera looks in from a side port at the x-line. The images recorded in these

experiments have a resolution of 600×300 pixels and a frame rate of about 12 kHz.

The line-integrated nature of these observations limits the quantitative use for the

results, but, as will be discussed in Section 4.3, the qualitative results show plasma

filamentation.
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Chapter 4

Reconnection Results

In this chapter, we show that the spontaneous reconnection is not described by resis-

tive MHD. Specifically, neither the ions nor the neutral atoms in the vacuum vessel

provide sufficient resistivity to account for the fast reconnection observed. The role of

the neutrals has been more fully investigated in dedicated experiments on the prop-

agation of plasma filaments. These experiments are discussed in Chapter 2. The

present chapter proceeds to describe the details of the plasma response during spon-

taneous magnetic reconnection.

4.1 The Neutral and Spitzer Resistivities

We now show that the reconnection is ‘fast’; that is, not described by resistive MHD.

In resistive MHD, electron acceleration due to the parallel electric field at the x-line is

balanced by collisional damping, either by ions or by neutral atoms. Stated another

way, the toroidal (parallel) electric field at the x-line is completely balanced by the

ηJ‖ term in Eq. 1.5. We calculate the resistivity due to neutral argon atoms and

electron-ion collisions and show that these resistivities are insufficient to balance the

electric field.

To calculate the effect of the neutrals, we find the Lorentz resistivity, which treats

the electron-neutral collisions by ignoring electron-electron and electron-ion collisions.

The Lorentz resistivity represents a lower bound on the actual resistivity which in-
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cludes all interactions. From Eq. VIII-2.14 in Ref. [106], we have

(ηLor
n )−1 = σLor =

4π

3

nee
2

me

∫ ∞

0

c3

νen

(

−∂f0

∂c

)

dc (4.1)

where f0 is the unperturbed electron distribution function, and the electron-neutral

collision frequency is given by νen = nnσ
m
en(c)c, where

σm
en(c) =

∫

(1 − cos χ)Ien(c, χ)dΩ (4.2)

is the momentum transfer cross-section (Eq. VIII-2.10 and VII-6.25 in Ref. [106]),

Ien is the differential cross-section, and χ is the scattering angle. Using a Maxwellian

distribution function for the unperturbed f0, and leaving the momentum cross-section

unintegrated, we find
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1
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√
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π
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me

√
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〉
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where n is the plasma density, nn is the neutral argon density, and

〈

1

σm
en

〉

=

∫ ∞

0

( ǫ
T
)e−(ǫ/T )d( ǫ

T
)

σm
en(ǫ)

. (4.4)

Equation 4.3 can be explained up to a factor of order unity by a simple estimate:

if electron collisions with neutrals provide the drag that opposes the accelerating

electric field then νenve ∼ eE/me. Since J ∼ neve (assuming stationary ions), then

ηn = E/J ∼ νenme/(ne2). Then, with νen ∼ nnσenvte, where vte =
√

Te/me is the

electron thermal speed and σen the electron-neutral collision cross-section, we have

ηn ∼ nn

n

me

e2

√

Te

me

σen, (4.5)

which is reminiscent of the inverse of Eq. 4.3.

Meanwhile, the Spitzer resistivity [107, 108] is given by

η
‖
Spitzer =

√
2meZ

2
effe

2 log Λ

12π3/2ǫ2
0T

3/2
e

(4.6)
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Figure 4-1: (a) Momentum transfer cross-section for electrons impinging on neutral
argon (σm

en) from Mitchner et al. [106] (△), Srivastava et al. [109] (◦), and Dasgupta
et al. [110] (×). (b) Data from Dasgupta repeated, and result of integral in Eq. 4.4
based on this data. The uncertainty in σm

en is 20-30% [109].

where Zeff ≡ ΣiniZ
2
i /ΣjnjZj is the effective ion charge (i,j index the different ion

species), and log Λ is the coulomb logarithm, approximated by log Λ ≈ 24−log (
√

n/Te)

[27]. For VTF discharges, log Λ ≈ 12-13.

Figure 4-1 shows data for the momentum transfer cross-section of electrons im-

pinging on neutral argon atoms. We use several sources for the cross-section data,

and the variation among these sources reflects the typical error estimated in [109] to

be 20-30%. We choose the data from Dasgupta et al. [110] since it extends to E = 0

and its values are between the other two references in magnitude. We then use Eq. 4.4

to calculate 〈1/σm
en〉 for different electron temperatures. The result is shown in (b) of

the figure. If we assume an electron temperature of 15 eV, this sets the integrated

cross-section as 6πa2
0, where a0 is the Bohr radius.

The neutral and Spitzer resistivities can now be compared to (∂Aϕ/∂t)/J at the

x-line, and this comparison is shown in Fig. 4-2. The Spitzer resistivity is plotted

in black, while the sum of the Spitzer and neutral resistivities, using the inverse of

Eq. 4.3 (ηn = 1/σLor
n ) is plotted in blue. We assume Zeff = 1, and Te = 15 eV.

The Spitzer and neutral resistivities are much too small to explain the spike of fast
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Figure 4-2: (∂Aϕ/∂t)/J is qualitatively consistent with the sum of neutral and Spitzer
resistivities at early times, but not during the spontaneous reconnection at t ∼ 1.4
ms. The vertical line represents the start of the reconnection drive.

reconnection at t ∼ 1.4 ms (red). The reconnection electric field in the ratio E/J has

been toroidally averaged to exclude the electrostatic component of E (see Chapter

5). Although the sum of the neutral and Spitzer resistivities is smaller than the

(∂Aϕ/∂t)/J trace, the sum qualitatively reproduces the baseline value of the trace

and its behavior at early times. Note that the second spike in E/J is large since the

current density is small there (Fig. 4-4b).

To further evaluate the role of the neutrals in Ohm’s law, we record several dis-

charges while varying the neutral pressure in the chamber; the results are shown in

Fig. 4-3. No spontaneous reconnection events occurred during these discharges. As

before, while the magnitude of the resistivity is lower than expected from (∂Aϕ/∂t)/J ,

there is qualitative agreement. Specifically, as the fill pressure in the vacuum vessel is

decreased, both ηSpitzer + ηneutrals and (∂Aϕ/∂t)/J decrease, since fewer neutral colli-

sions result in lower resistivity. The data at the lowest pressure (Pfill = 0.042 mTorr)

appears to contradict this trend; however, it is possible that a small background of

neutrals was injected with the seed plasma, since in these discharges only, a plasma

gun is used instead of electron cyclotron resonant heating to initiate the plasma. This

background of neutrals may be comparable to the lowest fill pressure in Fig. 4-3.
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Figure 4-3: Top: E/J; bottom: η from density measurements. As the fill pressure
is decreased, both E/J and the total resistivity decrease. However, the curve with
Pfill = 0.168 mTorr does not follow this trend, and the magnitude does not match
between the top and bottom sub-figures.

For t > 1 ms, Fig. 4-3 shows that the ratio of (∂Aϕ/∂t)/J decreases with time and

then saturates. In addition, the saturated value does not depend on the fill pressure

within the measurement errors, which can be estimated from the fluctuations in the

figure. As discussed by Fox [102], the saturation may involve the neutral or Spitzer

resistivities. If it is the neutral resistivity that is saturating, then the ratio of nn/n

reaches a constant (Eq. 4.3). However, Fox argues that this is unlikely since the

ionization cross-section for electron-neutral collisions increases with plasma density,

and this effect could lead to full ionization. In the absence of neutral resistivity, the

saturated ratio of (∂Aϕ/∂t)/J would have to be balanced by Spitzer resistivity. This

resistivity may be larger than shown in Fig. 4-2 if Zeff > 1; that is, if some of the

argon ions are multiply-ionized. The first three ionization energies of argon are 15.8

eV, 27.6 eV, and 40.7 eV [111], so it is conceivable for a Te = 15 eV plasma to have

Zeff > 1.

Despite the uncertainty regarding the saturation mechanism, it is clear that nei-

ther neutral resistivity nor Spitzer resistivity can balance the reconnection electric

field at the x-line during spontaneous reconnection. Hence, since resistive MHD is
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unable to describe the balance of Ohm’s law, we describe the spontaneous recon-

nection as ‘fast’. We focus on this fast reconnection event for the remainder of the

dissertation.

Although the neutral and Spitzer resistivities are too small to balance the re-

connection electric field during the ∼ 20 µs of the spontaneous reconnection event,

the plasma in this time interval cannot be termed completely collisionless. Rather,

since thermal electrons travel about 106 m/s × 20 µs ∼ 20 m during the event,

and the electron mean free path (Table 3.1) is only about 3 m, the reconnection is

semi-collisionless.

4.2 Observation of Spontaneous Reconnection

When the current in the in-vessel coils is redistributed (Fig. 4-4a), the plasma current

at the x-line increases to compensate for the shift in coil currents. This effect—which

is due to Lenz’s law—is shown in Fig. 4-4b. However, in some discharges, the plasma

current then decreases sharply. This decrease is delayed by about 100-200 µs from the

redistribution of coil currents, and it is accompanied by an increase in the toroidal

inductive electric field ∂Aϕ/∂t at the x-line (Fig. 4-4c). Because of the delay, we

interpret this event as a burst of spontaneous magnetic reconnection. Figure 4-4b-c

suggests that at the time of spontaneous reconnection the global plasma response is

that of an inductor, i.e. that Eϕ ∝ dJϕ/dt (see Fig. 3-4 in Ref. [102]).

The spontaneous reconnection events on VTF have been explored by Egedal et

al. [101] and the results from this Letter are now summarized. Figure 4-5 shows

the various plasma parameters recorded at one toroidal location at various times

during the reconnection event. The data in the figure is recorded during a single

discharge. Rows 3-4 of Fig. 4-5 show the same quantities as does Fig. 4-4b-c. In the

third row, the poloidal cross section of the toroidal current density is plotted with

poloidal magnetic field lines superimposed. The current density is evaluated from the

Laplacian of the magnetic data (Jϕ = −∇2Aϕ/µ0), since the Rogowski arrays had not

yet been constructed. Row 3 shows a strong current channel developing at the x-line;
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Figure 4-4: (a) Current in the in-vessel coils; (b) toroidal current density J at x-line;
(c) toroidal inductive electric field ∂Aϕ/∂t at x-line.

as the reconnection begins at t = 80 µs, the current decreases, releasing its magnetic

energy in the process. Reconnection is triggered when the current channel thickness

is on the order of the ion sound gyro-radius ρs =
√

miTe/(eB) ∼ 4 cm, consistent

with predictions by two-fluid models and numerical simulations with a strong guide

field [57].

The fourth row shows the reconnection rate ∂Aϕ/∂t recorded with one of the

magnetic arrays mentioned in Chapter 3. A baseline level of slow reconnection is

taking place, for example, at t = 75 µs (see also Fig. 4-4c), but then the reconnection

rate increases suddenly to 14 V/m at the x-line for t = 80-90 µs, and spreads to the

whole region surrounding the x-line as well. During this time, the field line highlighted

in magenta breaks and reconnects in the outflow regions above and below the x-line.

Eventually, by t = 100 µs, the spontaneous reconnection is over and the rate returns

to the baseline rate of 2–4 V/m.

The first row of Fig. 4-5 shows the plasma density in the full cross-section, while
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Figure 4-5: Plasma parameters recorded during a single discharge. First row: density;
second row: floating potential; third row: current density from magnetic array; fourth
row: reconnection rate ∂Aϕ/∂t; note that the time steps are unequal. Reproduced
from Ref. [101].
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the second row shows the floating potential measured with the Langmuir probe arrays

during a single discharge. The plasma density is large near the in-vessel coils and at

the x-line, where the induced toroidal current is large. Magnetic reconnection involves

the release of magnetically stored energy, which is converted into particle heating and

bulk flow energy. This conversion is evident in the density data, which shows how

the central density is ejected downwards during the reconnection. The motion of

the density filament is consistent with the motion of the highlighted field line and

it is estimated to be about vout ∼ 11 km/s, corresponding to a flow energy per ion

of miv
2
out/2 ∼ 24 eV. We may also estimate this velocity from the floating potential

data. To do this, we use the floating potential Vf shown in the second row to estimate

the in-plane electric field. Since the plasma potential—with which the electric field

should really be calculated—is Vp = Vf +5.2Te/e (Eq. 3.6), we are assuming that the

spatial variations in the electron temperature are small relative to the large floating

potential variations (∼ 80 V over 20 cm). We may then compute the radial electric

field associated with the downward flow as ∼ 80 V/20 cm= 400 V/m. In combination

with the toroidal magnetic field in this discharge (44 mT), we get a downward E ×B

drift of ∼ 9 km/s, which is consistent with the outflow speed vout estimated above.

Figure 4-6 shows the change in the poloidal magnetic field which occurs as a result

of the reconnection. The magnetic field shown is the vertical component measured at

Z = 0 and it is therefore representative of the inflow region. The blue curve represents

the magnetic field 10 µs before the reconnection, while the red curve shows the

magnetic field 10 µs after the reconnection. The figure contains data from more than

20 discharges, and the results for Bz are very reproducible. The width of the plot line

is chosen to be 1 standard deviation from the mean over discharges of Bz. The mean is

shown in black in the figure. This measurement shows the relaxation of Bz associated

with the disappearance of the current channel of Fig. 4-5. It is the energy released by

this relaxation which is converted into the flow energy of the ejected density filament.

Recall from Chapter 1 that in a low β plasma, if all the magnetic energy of the inflow is

converted into flow energy (Eq. 1.8), the outflow velocity will be the he Alfvén velocity

computed with the in-plane, upstream magnetic field vA,upstream. From Fig. 4-6 we
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Figure 4-6: Reconnecting magnetic field Bz at the mid-plane (Z = 0), before (blue)
and after (red) the spontaneous reconnection event. The bar of color around the line
represents 1σ uncertainty.

estimate that Bz,upstream = 4 mT, which gives vA,upstream = Bz,upstream/
√

µ0min ∼ 10

km/s. This suggests that in this discharge, the outflow is Alfvénic.

In Ref. [101] a rough energy balance for the discharge in Fig. 4-5 is performed. The

plasma at the x-line is modeled as a loop of current with self-inductance L ∼ 2πRµ0 ∼
6 µH. The current lost during the reconnection event is approximately I = 500 A.

Therefore the magnetic energy released is approximately LI2/2 ∼ 0.8 J. The fraction

of this energy that is converted into plasma flow energy is calculated using the energy

gained by each ion in the outflow miv
2
out/2 ∼ 24 eV, the density n ∼ 2 × 1018 m−3,

and the volume of plasma in the ejected filament V ∼ 2πR × (0.1 m)2. The result is

nV miv
2
out/2 ∼ 0.48 J, which represents roughly 60% of the magnetic energy released.

Other possible outlets for the released energy include ion and electron heating (see

Section 4.3 below).

The reconnection event shown in Fig. 4-4 is typical of many of the discharges

observed. However, the event is not observed on every shot. On some shots, the

reconnection rate remains at its baseline level, while in others it is weaker than the

18 V/m of Fig. 4-4c. We focus in this dissertation on events stronger than ∼ 14 V/m,
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since their reconnection is clearly ‘fast’, as will be shown in the next section.

4.3 Heating and Filamentation During Magnetic

Reconnection

The electron temperature is measured with the 16-tip Langmuir probe discussed in

Section 3.2.5. Each probe tip is biased to a different voltage and the full I-V charac-

teristic is measured during a single discharge. The resulting electron temperatures are

shown in Fig. 4-7a as a function of time. The temperatures were measured in many

discharges and the data in (a) represent an average over many such measurements

near the x-line. The error bars correspond to 1 standard deviation of these measure-

ments from the mean. Within the measurement error, the electron temperature is

toroidally symmetric, as would be expected from the fast equilibration of electrons

along magnetic field lines (
√

Te/me = 106 m/s).

Two typical I-V characteristics measured at the times shown by the dashed lines

in (a) are shown in Fig. 4-7b. The electron temperature increases by about a factor

of 2 during the reconnection, in accord with previous measurements by Fox [112] of

the electron distribution tail, using a gridded energy analyzer. Egedal et al. [101]

recorded a somewhat smaller temperature increase of 7 eV.

Errors in the temperature measurement could arise from the finite size over which

the 16 probes are distributed (1 cm) and the filamentation which has been observed

in the plasma density [112] with a scale size similar to that of the probe. Furthermore,

the measurements may sample field lines that map away from the x-line and do not

experience the electron acceleration. This last point accounts for the large spread

in electron temperature during the reconnection event (Fig. 4-7a). Nevertheless, the

electron heating is consistent with past results from VTF [101, 112].

As mentioned above, the plasma density is not uniform in the direction perpen-

dicular to the magnetic field, and some filamentation is observed. This filamentation

is shown in Fig. 4-8. The image in (a) is recorded with the fast camera discussed
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Figure 4-7: (a) electron temperature as a function of time, computed from the average
of many discharges; error bars represent the standard deviation; (b) Two typical I-V
characteristics measured before and during the reconnection; these times are indicated
in (a).

in Section 3.2.6. The frame rate is 11.7kHz, and the exposure is 8 µs. The four

in-vessel toroidal coils are at the top and bottom, with a vertical cable for support.

Surrounding the coils are loops of plasma, the structures of which are aligned with

the magnetic field. (b) shows the same plasma, but with more contrast: the frame in

(a) was subtracted from the subsequent frame, and a spatial difference in R and Z

was performed. Plasma filamentation is clearly visible.
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Figure 4-8: (a) Unfiltered light from the plasma just after reconnection drive has
been turned on. Image was recorded with 8 µs exposure. Visible are the four in-
vessel toroidal coils, several probes, and magnetic field-aligned, filamented structures.
(b) Image modified to enhance plasma structures.
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Chapter 5

Observation of 3D Effects in

Reconnection Onset

In the previous chapter, we did not address whether toroidal symmetry characterizes

the plasma dynamics. However, in this chapter, we will show that there are strong

toroidal asymmetries in the plasma response. That is, despite the toroidal (2D) sym-

metry of the experimental geometry, the onset of spontaneous magnetic reconnection

in VTF occurs in the presence of strong 3D effects [113].

5.1 Propagation of Toroidal Electric Field

Figure 5-1 shows the toroidal asymmetry in the plasma response for the time interval

containing the reconnection event. In (a) the current density at the x-line is shown

for two different toroidal angles separated by 120◦. In (b), the reconnection rate at

those same two angles is shown. The current density is measured by the Rogowski

probe arrays (Section 3.2.3) and averaged over a ∆R × ∆Z =15 cm × 25 cm box

around the x-line. The reconnection rate is measured at the x-line using the 6 rows

of magnetic probes spread around the torus at Z = 0 (Section 3.2.2). It is clear that

the decrease in the x-line current and the accompanying spike in reconnection rate

occur at ϕ = 40◦ about 5 µs before they are observed at ϕ = 160◦. This asymmetry

shows that the onset of reconnection is toroidally localized in VTF.
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Figure 5-1: Zoom-in on time interval around reconnection event in Fig. 4-4b-c. (a)
Current density at two toroidal locations, normalized to the same peak value to more
clearly show the time delay; (b) reconnection rate corresponding to same toroidal
locations. Both quantities are measured at the x-line. There is a delay of about 5 µs
between the peaks in (a), indicating toroidal propagation.
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Figure 5-2: (a) ∂Aϕ/∂t at Z = 0 viewed from above; reconnection onset occurs
at ϕ ≃ 0◦ and propagates to ϕ ≃ 180◦ in about 5-10 µs. (b) Total electric field
∂Aϕ/∂t + ∇‖φx remains localized throughout. Time is relative to reconnection drive
turn-on.

The onset of reconnection is shown in Fig. 5-2, where the reconnection rate ∂Aϕ/∂t

at Z = 0 is shown from above at multiple times. This data is measured with the rows

of magnetic probes spread out among 6 toroidal angles. It is evident in (a) of the

figure that after the toroidally localized onset, the reconnection propagates around

the torus in both directions. The onset angle in this discharge is near ϕ = 0◦. The

data in (a) represent only the inductive component of the electric field, but since 2D

symmetry is violated, the toroidal electrostatic field must be taken into account as

well.

The sum of the inductive and electrostatic components of the electric field is shown

in Fig. 5-2b, and we see that the total electric field remains localized throughout the

event. The electrostatic component is computed using the floating potential measured

at the x-line and denoted here by φx. We find it useful to split the potential measured

by the Langmuir arrays into φ = φx(ϕ) + φin-plane(r), so that φx is poloidally uniform

and φin-plane vanishes at the x-line.

The procedure for calculating φx is shown in Fig. 5-3. The floating potential

measured with one of the Langmuir probe arrays is displayed in (a), with a box

surrounding the x-line. The interesting mode structure that emerges will be discussed
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Figure 5-3: (a) Floating potential with box around x-line indicating region for cal-
culating φx. (b) φx as a function of toroidal angle ∆ϕ = ϕ − ϕonset; error bars are
computed as the standard deviation of φx values at each angle; fit line is constrained
to be periodic and mixes first and second harmonics. (c) Negative gradient of fit in
(b), representing toroidal electrostatic electric field at the x-line.

below. φx is computed from the mean of the potential within the box in (a), and

the results, combining measurements from many discharges, are shown in (b) as a

function of toroidal angle. The error bars represent one standard deviation from the

mean computed at each toroidal angle. The red line in (b) represents the best fit,

which is forced to be periodic and includes only the first two harmonics. The toroidal

electric field Ex computed from this best fit (Fig. 5-3c) is largest at the angle of

reconnection onset. This procedure to compute φx and Ex is repeated for each time

sampled. In Fig. 5-2b, it is Ex that is added to ∂Aϕ/∂t.

The measurement of φx (and Ex) is subject to errors due to the uncertainty in

the exact location of the x-line, and the resultant mixing in of the in-plane potential

(see Fig. 5-3a). Furthermore, the strong electric fields at the x-line, Eϕ & Te/(eR)

(Fig. 5-2), may cause toroidal electron trapping and hence toroidal temperature asym-

metry during the reconnection event. Such a temperature asymmetry would prevent

the use of floating potential as a proxy for the plasma potential (Eq. 3.6).

The measurements of φx in Fig. 5-3b use only a few fixed Langmuir arrays to map

out the potential at many toroidal locations. This calculation is possible because the

toroidal angle of reconnection onset varies from shot to shot. We use this observation,

as well as data from many discharges, to construct full 3D measurements of the
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Figure 5-4: (a) Reconnection rate as a function of time at 6 toroidal angles, averaged
over radius; (b) time of peak reconnection as a function of toroidal angle, with fit
line representing the propagation model (red). The positive and negative slopes of
the fit are constrained to be opposite and equal. The onset angle for this discharge
is ϕ = 280◦ ± 30◦.

reconnection dynamics.

First, however, we must discuss how the onset angle is measured, a procedure

which is shown for the typical discharge in Fig. 5-4. In (a), the reconnection rate is

plotted as a function of time for the 6 toroidal angles where the rows of magnetic

probes are located. The reconnection rate is averaged over radius and smoothed

over 10 µs in time. It is evident that the peaks of the traces do not line up in

time. The variation in peak time is plotted in (b) for each toroidal angle, and a line

proportional to |ϕ − ϕonset| is fit for each possible ϕonset. For simplicity the fit is

chosen to be linear, and this choice gives reasonable agreement with the data. The

line that fits best is used to determine the onset angle, which in the discharge in

Fig. 5-4 is ϕonset = 280◦ ± 30◦. The uncertainty in onset angle is estimated as half

the toroidal distance between neighboring magnetic row arrays. The fit assumes the

same propagation velocity in both directions around the torus. Knowing the onset

angle, we are now able to combine the data from multiple discharges while recording

the relative toroidal angle between the probe arrays and the onset angle. We apply

this knowledge towards diagnosing the plasma in full 3D.
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Figure 5-5 shows the resulting 3D dataset of the toroidal inductive electric field

∂Aϕ/∂t. The values are found from averaging the inductive field at each angle over

several discharges, with each ∂Aϕ/∂t normalized to its shot’s peak reconnection rate.

The toroidal angle of each discharge has been shifted so that the reconnection onset

occurs at ϕ = 0◦±30◦. The reconnection rate peaks at this onset angle at t = 210 µs,

and by t = 218 µs it has propagated to ϕ = 160◦ and ϕ = 220◦, on the other side of

the torus. Superimposed on the reconnection rate are magnetic field lines projected

onto the poloidal cross-section and also measured by the 2 magnetic arrays. One of

the field lines at the cross-section near the onset angle is highlighted in gray. The

cross-section near the reconnection onset is also the cross-section where the data in

Fig. 4-5 is recorded. Another effect evident in Fig. 5-5 is that the x-line at ϕ = 100◦

moves downward by a few cm just before the onset.

Using many discharges, we determine the propagation time for the inductive elec-

tric field to reach the far side of the device (3 m away). This time is computed as

shown in Fig. 5-4, using the difference between the times of maximum reconnection

rate at ϕonset and ϕonset + 180◦. The average time is found to be 5 ±3 µs; the un-

certainty represents 1 standard deviation of the propagation times of the different

discharges. This propagation is on the order of the Alfvén time (πR/vA ∼ 15 µs),

although on this time-scale the ions are only marginally magnetized (1/ωci ∼ 14 µs).

The onset location is likely determined by small asymmetries in the in-vessel coils.

This location is often the same in different discharges, but as shown in the present

section there is also variation in the onset location. The VTF group is currently

upgrading the device with new coils, with plans to carry out ‘scans’ in coil asymmetry

and determine the effect of this asymmetry on the reconnection onset.

5.2 Poloidal Potential of the Mode

The reconnection event does not occur on every shot: it occurs only for discrete

values of the toroidal magnetic field. Furthermore, when spontaneous reconnection

does occur, it is accompanied by a global plasma mode. This mode is evident in
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Figure 5-5: Poloidal cross-sections of ∂Aϕ/∂t for different toroidal angles and times,
averaged over several discharges. The onset angle is ϕ = 0◦, and the peak reconnection
rate occurs at t = 210 µs. Superimposed is the poloidal projection of magnetic field
lines, one of which at ϕ = 40◦ is followed in gray. By t = 218 µs, ∂Aϕ/∂t has
propagated to the far side of the torus (ϕ = 160◦).
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Figure 5-6: Floating potential at different toroidal angles for two shots during a
reconnection event: (a) q=2 case with B0 = 56 mT; (b) q=3 case with B0 = 72 mT.
The toroidal angles are shifted so that the onset occurs at ϕ = 0.

Fig. 5-6, which shows the floating potential for two discharges with different values of

the toroidal magnetic field. In (a), B0 ≡ Bϕ(R = 1m) = 56 mT, while in (b), B0 = 72

mT; spontaneous reconnection is observed only for these two values of the magnetic

field1. The discrete values of toroidal field for which spontaneous reconnection is

observed are linked to a condition involving the safety factor q, namely that q be

rational over a large part of the poloidal cross-section. In this region, q varies slowly

with radius.

q is a measure of the number of times a field line goes around toroidally for a

single poloidal circuit. Specifically, along the field line we have

Rdϕ

Bϕ

=
dR

BR

=
dZ

BZ

=
dlpol

Bpol

(5.1)

1In Ref. [101], spontaneous reconnection in VTF was observed at Bϕ(R = 1m) = 44 mT. The
reason involves the earlier timing of the reconnection drive in that experiment. The plasma current—
and therefore Bpoloidal—was lower at the time of reconnection onset, so that q ∼ Bpoloidal/Bϕ was
still rational. The plasma response in Ref. [101] is the same as the response to the q = 2 case
described here.
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where dlpol =
√

dR2 + dZ2 and Bpol =
√

B2
R + B2

Z . q is then given by

q ≡ ∆ϕ

2π
=

1

2π

∫

Bϕdlpol

RBpol

(5.2)

where the integral follows the field line once around in the poloidal cross-section.

When q is rational the field line returns to its starting point in a finite number of

toroidal circuits.

The q profile for VTF is shown in Fig. 5-7 for a time just before the reconnection

event; we compute q from the measured toroidal current density, which we approxi-

mate as toroidally symmetric for this calculation. Although, at the x-line, q is infinite

(Fig. 5-7b) in most of the surrounding region, q is close to 2 (for the B0 = 56 mT

case). The rationality of q is required for the potential of the mode to develop, since

away from the x-line the potential is field-aligned and must map onto itself in one

toroidal circuit. In our experiment, both q = 2 (B0 = 56 mT) and q = 3 (B0 = 72

mT) were attainable, but we focus on the q = 2 case unless otherwise noted. Other

expected values of q (such as 1 or 4) are not attainable due to the limited experi-

mental range of the toroidal field. This range is set by the requirement that electron

cyclotron motion (eB0/(meR) = 2πf) be resonant with the f = 2.45 GHz microwaves

inside the vacuum vessel (Section 3.1).

It may be surprising that the ratio of toroidal fields 56 mT/72 mT=1.3 is not 3/2,

but this is most likely due to the fact that the toroidal current profile depends on the

toroidal magnetic field. Evidence for this claim is shown below in Fig. 5-10 (q = 2)

and Fig. 5-17 (q = 3). Since the toroidal current is different for q = 2 and q = 3, so

is the poloidal magnetic field. In addition, the q = 3 reconnection occurs on average

25 ± 60 µs earlier than the q = 2 reconnection, and the poloidal field at this earlier

time is slightly weaker. Therefore, since the poloidal fields are different for q = 2 and

q = 3, the ratio of toroidal fields is not required to be 3/2.

A 3D dataset of the q = 2 potential is presented in Fig. 5-8, which shows poloidal

cross-sections of φ for each toroidal angle and for several times near the reconnection

onset. This dataset is constructed, as in Fig. 5-5, by using fixed Langmuir probe
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Figure 5-7: (a) q profile just before reconnection event, calculated from measured
current density; (b) q at Z = 0; q = 2 over a large part of the poloidal cross-section.
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Figure 5-8: Poloidal cross-sections of floating potential for different toroidal angles
and times. The black arrows indicate approximate E×B velocity.

arrays from many discharges with different onset angles. We subtract from φ the

potential from a discharge with no reconnection event, in order to bring out the mode

structure clearly. The q = 2 potential structure rotates with the magnetic field lines,

counter-clockwise for decreasing ϕ. From the large floating potential of the mode, we

may make observations regarding the in-plane electric field. Since the mode lasts at

least 50 µs in the figure, while changing only in magnitude, the ions on this longer

time-scale are magnetized and respond to the electric field with E×B velocity. This

velocity points along contours of constant φ, and is shown schematically by black

arrows at t = 202 µs.

At the location of onset, the E×B velocity matches the motion expected from

the reconnection drive (Fig. 3-4), but since the potential structure rotates with the

field lines, the E×B velocity arrows rotate as well. On the opposite side of the torus

(ϕ = 200◦) the E×B velocity arrows point opposite to the direction imposed by the
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reconnection drive.

The form of the potential away from the x-line can be approximated by φ ∼
log |Z/R|, and this log form results from the constraint that E ·B = 0 away from the

x-line [114]. To demonstrate this, we consider a more realistic form of the potential.

We use the same log form, but rotated counter-clockwise by 45◦ and reduced in

magnitude within δ ∼ 3 cm from the x-line, similar to the measured potential

φ = φ0 log

∣

∣

∣

∣

(Z − R)2 + δ2

(Z + R)2 + δ2

∣

∣

∣

∣

. (5.3)

Figure 5-9 shows the measured potential at the onset location (a), as well as the

modeled potential of this equation, normalized to the same amplitude (b). The

magnetic field is modeled for simplicity as a linear cusp: Bpoloidal = RẐ + ZR̂. Then

Epoloidal · Bpoloidal is poloidally uniform except along the separatrix (Fig. 5-9d), and

can balance a toroidal electric field EϕBϕ away from the x-line (e). This toroidal

component is plotted in (c); indeed, away from the x-line the toroidal part (c) and

poloidal part (d) of E ·B are approximately equal and opposite. The data is recorded

8 µs before the peak reconnection.

It is instructive to discuss this form of the potential in the context of previous

experiments on VTF, which had a magnetic cusp with ‘open’ boundary conditions

[114]. A dominant toroidal magnetic field was also applied, and the electrons followed

trapped orbits, because of the boundary conditions [115]. In comparison, in the

present experiments trapping is reduced since the magnetic field lines are ‘closed’

and electrons are able to circulate. In the open configuration, a potential structure

similar to that in Fig. 5-9a extended around the torus without rotating, as did the

reconnection electric field. Reconnection in the open configuration was toroidally

symmetric. The electrostatic component of E‖ balanced the inductive part away

from the x-line, maintaining E · B ≃ 0 as in Fig. 5-9c-e.

In the present, closed configuration, with a rotating potential, we find that a

similar balance occurs at the onset angle. The phase of the mode relative to the

poloidal magnetic field orientation is the same at both the onset angle and the open
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Figure 5-9: (a) Electrostatic potential at onset location, with in-plane magnetic field
lines; (b) model potential and magnetic field; (c) measured -Bϕ∂Aϕ/∂t; (d) model
Epoloidal · Bpoloidal; (e) sum of (c) and (d) showing total E · B is close to 0 away from
the x-line. The Data is recorded 8 µs before the time of fastest reconnection.

configuration. In addition, the inductive electric field is largest at the onset angle (at

the time of onset). Therefore, at the onset angle, E ·B ≃ 0 is maintained away from

the x-line as described in Fig. 5-9c-e. At toroidal angles away from the onset location,

we still expect that E ·B ≃ 0 away from the x-line. It is possible that at the moment

of onset, both inductive and electrostatic components are small away from the onset

angle; however, the detailed balance is not known.

On the opposite side of the torus, where the potential of the mode is reversed, and

Epol · Bpol has the opposite sign, we expect the toroidal EϕBϕ to have the opposite

sign as well. When the electrostatic part of Eϕ is taken into account (see Fig. 5-2b),

it opposes the inductive electric field on the opposite side of the torus, and may be

large enough to make Eϕ,total negative there. However, more experimental data is still

required to determine the detailed structure of the electric fields at this location.

If rational q is required for spontaneous reconnection, we may expect to observe

reconnection for q = 5/2 for example, or even q = 20/7 for that matter. Both values
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are attainable in the experiment. The in-plane potential of these modes would be

highly structured and may not couple strongly to the x-line current channel. This

may be the reason that reconnection at these values of q is not observed.

5.3 Plasma and Current Densities

Figure 5-10 shows a 3D dataset of the toroidal current density, constructed similarly

to the data in Fig. 5-5 using multiple discharges with different onset locations. At

each time and toroidal angle, however, only a single discharge is used for the poloidal

cross-section. The onset angle in the figure is set to ϕ = 0◦, and the current density is

clearly not toroidally symmetric. The asymmetry becomes more pronounced between

t = 170 µs and t = 202 µs, 8 µs before the reconnection onset. The current channel

at the x-line, which is most prominent at ϕ = 340◦, peaks and thins just before the

onset (by Lenz’s law). The thickness of the thin current channel is on the order of

the ion sound gyro-radius ρs, and after the onset, the current density falls to about

half its previous value, or 20 kA/m2. After the onset, a plasma filament is emitted,

as can be seen at ϕ = 220◦ and ϕ = 160◦ for t = 210-226 µs. This filament appears

to be emitted backwards into the inflow region. This observation does not contradict

the observation of plasma flows in the outflow region (Fig. 4-5), because the E×B

velocity is opposite at the onset location (ϕ = 0◦) and the far side (ϕ = 180◦). This

is due to the rotating potential (Fig. 5-8), which reverses sign at ϕ = 180◦. The flow

speed can be approximated from the ϕ = 160◦ data in the figure as v ∼ 0.06 m/8

µs∼ 8 km/s, similar in magnitude to the ejection speed of the outflow filament of

Section 4.2.

It is instructive also to subtract the background current density in order to see the

toroidal variation more clearly. The background current is computed as the spatially-

smoothed average current at t = 202 µs, and it is shown in Fig. 5-11. Note that the

current density presented in Figs. 5-10 and 5-11 includes only the plasma current, not

the current in the in-vessel conductors.

When this background current is subtracted from the current density in Fig. 5-10,
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Figure 5-10: Poloidal cross-sections of current density for different toroidal angles and
times. Near the onset angle, ϕ = 0◦, the x-line current is seen to decrease sharply.
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Figure 5-11: Background, toroidally symmetric current density, computed as the
spatially smoothed average current at t = 202 µs in Fig. 5-10.

we obtain the current density deviation in Fig. 5-12. A similar q = 2 mode structure

to that in the potential is observed, for example, at t = 202 µs. The mode also rotates

clockwise for increasing ϕ, following the magnetic field lines. The mode appears to

converge onto the x-line (ϕ = 340◦ at t = 210-218 µs), and the current at the x-line

decreases suddenly.

The plasma density response is qualitatively consistent with the E×B flow im-

posed by the potential of Fig. 5-8. Figure 5-13 shows the density at three toroidal

locations, at multiple times. The density is measured by the high-resolution Langmuir

probe array biased to collect ion saturation current. At each time and toroidal angle,

we combine several discharges recorded as the array was scanned in major radius.

Following the peak reconnection at t = 210 µs, the density lines up in oppositely

oriented diagonals at ϕ = 280◦ and ϕ = 100◦. This can be understood by considering

the potential of Fig. 5-8 at ϕ = 260◦ and ϕ = 80◦, respectively. The E×B streamlines

correspond to contours of constant potential. Since the toroidal magnetic field points

into the page, the plasma flows from the lower-right and upper-left quadrants into

the lower-left and upper-right quadrants at ϕ = 80◦ and vice versa at ϕ = 260◦. This
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Figure 5-12: Poloidal cross-sections of Jϕ−Jbackground for different toroidal angles and
times. A field-aligned q = 2 mode structure emerges.
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flow pattern can account for the diagonal density perturbation.

At the onset angle (ϕ = 0◦), the x-line density decreases approximately by half

during the reconnection, just as the current density does. In addition, at ϕ = 100◦, a

filament of plasma is ejected into the inflow, as discussed above regarding Fig. 5-10.

5.4 Ohm’s Law at the X-Line

A central question regarding magnetic reconnection is what the important terms are

in Ohm’s law at the x-line. We have shown in Section 4.1 that electron collisions with

ions and neutrals are important in balancing the toroidal electric field. This is the

case at early times as the density is building up and at most other times when the

ratio of E/J at the x-line is at its baseline level. However, during the spontaneous

reconnection event, the collisional resistivity is insufficient to balance the electric

field at the x-line. As discussed in Sections 1.2.2-1.2.3, there are other terms besides

collisional resistivity which may be important in Ohm’s law. Neglecting electron

inertia, we may write one version of Ohm’s law as

− ∂Aϕ

∂t
−∇‖φ = −(∇ ·←→p )‖

ne
+ (η + ηanomalous)J‖ (5.4)

where ηanomalous is the effective resistivity felt by current-carrying electrons due to

waves or plasma turbulence.

The exact balance of this equation in VTF and whether other terms are important

is not yet known. In Ref. [112], Fox suggests that anomalous resistivity due to lower-

hybrid turbulence is too small to balance the reconnection electric field at the x-

line. We may estimate the magnitude of some of the other terms in Eq. 5.4. If we

assume a uniform field-aligned electron temperature of 15 eV, and a scalar pressure,

then the pressure term is (∇‖p)/ne ∼ (Te/e)∇‖ log n ∼ 15 V × 1/1 m ∼ 15 V/m,

where ∇‖ log n at the x-line was estimated from Fig. 5-13. Similarly, the electrostatic

component can be estimated from Fig. 5-3 as -10-10 V/m. It appears then that both

the pressure term and the electrostatic electric field are important in Ohm’s law,
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Figure 5-13: Poloidal cross-sections of plasma density (m−3) for different toroidal
angles and times, with superimposed poloidal projection of magnetic field lines.
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since the toroidal inductive electric field is ∂Aϕ/∂t ∼ 15 − 25 V/m. Furthermore,

recall that the inclusion of the pressure term introduces the ion sound Larmor radius

ρs =
√

miTe/(qB) ∼ 4 cm, and the spontaneous reconnection occurs just as the

current channel width (see Fig. 5-10) approaches ρs [101]. Because of the 3D nature

of the reconnection, the pressure term and the electrostatic field do not vanish at the

x-line. However, in the toroidally integrated version of Eq. 5.4 these terms do vanish.

Therefore, some other effect, such as field line stochasticity or off-diagonal terms in

∇ ·←→p , must play a role in Ohm’s law.

5.5 Observation of q = 3 Reconnection

When the toroidal magnetic field is increased, the spontaneous reconnection event

disappears at first, but then reappears at B = 72 mT. We show that this new event

is associated with a q = 3 plasma mode similar to the q = 2 reconnection mode.

As in the q = 2 case, toroidal asymmetry is observed in the reconnection rate.

This is shown in Fig. 5-14, where the reconnection rate at Z = 0 is shown for multiple

times. (a) and (b) show two separate discharges. Although the asymmetry is clear,

Fig. 5-14 suggests that the onset angle in q = 3 discharges is more uncertain than

that in the q = 2 case of Fig. 5-2. For example, in Fig. 5-14a, the onset angle appears

to be ϕ ∼ 145◦. However, the subsequent time series does not show clear evidence of

bi-directional toroidal propagation and peaking on the opposite side of the torus (as

in Fig. 5-2). Hence, the fitting routine of Fig. 5-4, which relies on propagation to find

the onset angle, fails for q = 3.

The poloidal cross-sections of reconnection rate ∂Aϕ/∂t are shown in Fig. 5-15.

The time of the spontaneous reconnection event is later than the event time in

Fig. 5-14. Superimposed on ∂Aϕ/∂t are poloidal projections of the magnetic field

lines. The reconnection occurs at ϕ = 90◦ (b) before it reaches ϕ = 260◦, shown

in (a). The x-line at ϕ = 90◦ moves downward by several cm during the reconnec-

tion event and then returns to its starting height. This x-line displacement is not as

pronounced in the q = 2 case.
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Figure 5-14: ∂Aϕ/∂t at Z = 0 for two discharges at multiple times.

Figure 5-15: Poloidal cross-sections of reconnection rate ∂Aϕ/∂t at different times.
(a) ϕ = 260◦; (b) ϕ = 90◦.
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Figure 5-16: Floating potential at different toroidal cross-sections. The first three
cross-sections are from a different discharge than the last three. A q = 3 mode is
evident in the potential.

The q = 3 structure of the mode is most clearly seen in the floating potential,

shown in Fig. 5-16. The potential is recorded at the time of fastest reconnection, and

combined from two discharges. The three poloidal cross-sections at left are from one

discharge, while the three at right are from another. The relative toroidal angles in

the two discharges are lined up by matching the potential structure. The potential is

seen to rotate with magnetic field lines and the fact that q = 3 allows the potential

to map onto itself self-consistently in one toroidal circuit.

Figure 5-17 shows the current density at two different toroidal angles at multiple

times. The toroidal current averaged over 10 discharges with similar current. The

current at the x-line is seen to decrease suddenly, as a plasma filament is ejected

radially outward (t = 176 − 196 µs). The q = 3 mode structure is also evident

in the toroidal current density, when the background current is subtracted. This

toroidally symmetric background current is calculated similarly to that in Fig. 5-11.

The toroidally asymmetric component of the current density is shown in Fig. 5-18 for

the same toroidal angles and times as J in Fig. 5-17.

The plasma density is shown in Fig. 5-19 for two toroidal angles at multiple times

with superimposed poloidal magnetic field lines. The data is combined from several

discharges using the high-resolution Langmuir array. During the reconnection, which

peaks at t = 210 µs, strong flows are observed to reorganize the plasma. These flows

are likely related to the large poloidal electric fields associated with the spontaneous

reconnection.
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Figure 5-17: Current density for q = 3 at two cross-sections at various times. Spon-
taneous reconnection occurs at t = 176 µs.

Figure 5-18: Mode structure in current density for q = 3, computed by subtracting
average background current from Fig. 5-17. Spontaneous reconnection occurs at t =
176 µs.
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Figure 5-19: Plasma density at two toroidal angles for multiple times for a q = 3
discharge. Spontaneous reconnection occurs at t = 210 µs.
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Chapter 6

Model for Spontaneous

Reconnection Onset

We find that the global plasma mode plays a key role in breaking axisymmetry and

enabling the spontaneous reconnection event to occur. In this chapter, we will show

that the time-dependent structure of the measured floating potential results in ion

polarization currents which divert parallel current from the x-line, thus providing

current continuity. We focus throughout on the q = 2 case, and show that the

current diversion is not axisymmetric. We then introduce a model for the onset and

the growth rate. The model relates the parallel current density, reconnection rate, and

electrostatic potential. We find good agreement with the experimentally measured

growth rate of ∂Aϕ/∂t during the onset of reconnection.

6.1 Toroidal Asymmetry in Current Density at the

X-Line

We have shown in Section 5.1 that the onset of fast reconnection is toroidally localized,

and that the onset is followed by a propagation of the reconnection around the torus.

The localized onset of reconnection is linked to the behavior of the parallel current

at the x-line, since the magnetic vector potential Aϕ is related to the toroidal current

121



density by

Aϕ(r) ≃ µ0

4π

∫

J‖
|r′ − r|d

3r′. (6.1)

At the x-line, the toroidal current density is identical to the parallel current density.

Although the local value of the reconnection rate −∂Aϕ/∂t is affected by current

dynamics everywhere around the torus, the strongest influence of J̇‖ on the recon-

nection rate is local, because of the 1/r weighting in the integral. Therefore, a local

reconnection onset corresponds to a localized decrease in parallel current at the x-line.

Before the reconnection event, the parallel current density at the x-line flows in

toroidal loops. Immediately after the onset, the toroidal current decreases sharply

at one toroidal angle and ∇ · (J‖B/B) 6= 0. However, in a quasineutral plasma,

there cannot be charge accumulation, and other currents must be present to close

the current loops and maintain current continuity. These cross-field currents turn

out to be ion polarization currents due to the time-dependence of the potential. The

equation for current continuity is given by

∇‖J‖ + ∇⊥ · J⊥ = 0, (6.2)

while the ion polarization current is given by1

J⊥ =
min

B2

d∇⊥φ

dt
. (6.3)

To find the relationship between parallel currents and ion polarization currents, we

integrate up ∇⊥ · J⊥ along field lines from some reference point—the ‘edge’—which

the field lines cross

J‖(r) = Jedge +

∫

r

edge

mn

B2
∇2

⊥
∂φ

∂t
dl (6.4)

1We assume that the poloidal electric field Epol ≃ E⊥ is electrostatic. This assumption can be
motivated as follows. We write Epol = −∇polφ − ∂Apol/∂t and we wish to show that the ratio
R = |∇ × Epol|/|∇polEpol| ≪ 1. We neglect ∇ϕ × Epol relative to ∇pol × Epol because of the
large toroidal aspect ratio R/a ∼ 10 (where a is the poloidal scale length), and write: R = |∇pol ×
Epol|/(Epol/a) ∼ (∆Bϕ/τ)/(Epol/a) where τ is the characteristic time scale. In Appendix A, we
note that ∆Bϕ < 0.1|Bpol|. Therefore, the ratio becomes R < (0.1Bpola)/(Epolτ) ∼ (0.1Bpol/Bϕ)×
(Bϕ/Epol)(a/τ) ∼ 0.1Bpol/Bϕ ∼ 0.01. Hence R ≪ 1 and Epol ≃ −∇polφ and E⊥ ≃ −∇⊥φ.
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where we have assumed uniform density, and the nonlinear part of the time derivative

was dropped in order to focus on the initial linear potential perturbation (d/dt ≡
∂/∂t −∇φ × (B/B2) · ∇ → ∂/∂t).

To proceed quantitatively, we model the magnetic field near the x-line by a linear

cusp, with finite current:

B = b0(zr̂/α + αrẑ + l0ϕ̂). (6.5)

The parameters b0 = 0.035 T/m and l0 = 1.7 m are found from matching this model

to the experimentally measured magnetic field. The parameter α controls the current

density Jϕ = b0(α − 1/α), and hence the angle of the cusp. An angle of 90◦ where

α = 1 gives Jϕ = 0. To match the experimentally measured current density, we

choose α = 1.7.

We model the potential of the mode using a log form similar to that in Fig. 5-9,

but with a few modifications:

φ = φ0 log

[

z′2 + δ2

r′2 + δ2

]

(6.6)

r′ = cos(∆ϕ/2)r
√

α + sin(∆ϕ/2)z/
√

α

z′ = − sin(∆ϕ/2)r
√

α + cos(∆ϕ/2)z/
√

α.

The field line coordinates have a period of 4π, appropriate for q = 2, while the

resulting potential maps onto itself in just 2π, as it must. The parameter α is used

to make the mode line up with the angle of the magnetic separatrix. In addition,

∆ϕ ≡ φ − φonset, and φ0 = 6 V is chosen to match the experiment. The parameter

δ is the poloidal distance of the mode from x-line, and we take it to depend on ϕ:

δ = δ0(1 − 2
3
cos (2∆ϕ)), where δ0 = 0.12 m. This form for δ is consistent with the

measured potential (see Fig. 5-8). The model potential is plotted at different toroidal

angles in Fig. 6-1a.

In Section 5.2, we discussed how the log form of the potential arises to maintain

E · B ≃ 0 away from the x-line, where q ≃ 2. For the potential in Eq. 6.6, with
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∆ϕ = π/2 and r, z ≫ δ, the quantity ∇φ · B—with B given by Eq. 6.5—is spatially

uniform and is balanced by Eϕ = 4φ0/l0. This observation justifies the use of the
√

α

factors in Eq. 6.6. At other toroidal angles, the condition that E · B = 0 is relaxed

in order to have a relatively simple analytic expression for φ. Nevertheless, Eq. 6.6

matches the experimentally measured potential, and is qualitatively consistent with

the ideal Ohm’s law away from the x-line.

Next [113], we evaluate the integral along field lines in Eq. 6.4 using the modeled

φ and B. We focus on a box of dimensions 0.5 m × 0.5 m surrounding the x-line, and

compute ∇2
⊥φ̇, where the time derivative is replaced by the growth rate of the mode,

which is evaluated in Section 6.2 below. Figure 6-1b shows this term at different

toroidal angles, and (d) shows the result of the integral in Eq. 6.4 for J‖. The current

density at the boundary is assumed to be evenly distributed at the two edges of

each field line. The calculated J‖ represents the change in magnetic field-aligned

current due to perpendicular ion polarization currents associated with the growing

mode in the electrostatic potential. The toroidal asymmetry in ∆J‖ is related to the

asymmetry in the potential.

The current density in Fig. 6-1d is assumed to be unchanged on the opposite side

of the torus, since the reconnection at onset is localized to one toroidal region. A

toroidally symmetric background current is added in (d) to make the current density

0 on the far side where ∆ϕ = 180◦. The experimentally measured change in J‖ over

the 8 µs leading up to peak reconnection is shown in (c) of the figure. The model

and experiment agree at the x-line in magnitude, sign and toroidal dependence, if

not in the details of the poloidal cross-sectional profile. The disagreement along

the separatrix may be due to the assumptions of uniform density, linear geometry,

or the simplified potential model. Alternatively, it is possible that slight magnetic

stochasticity affects the separatrix specifically because of its long integration paths

in Eq. 6.4.

The reason for the asymmetry in parallel current has to do with the different

signs of the potential sampled by the field lines along which Eq. 6.4 is integrated.

Consider the two field lines in Fig. 6-1a-b. The gray field line passes near the x-line
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Figure 6-1: (a) 3D potential of Eq. 6.6; the magenta field line passes by the x-
line on the opposite side of the torus from the reconnection onset; the gray field
line passes by x-line at the onset angle; (b) divergence of ion polarization currents
∝ ∇2

⊥φ̇; (c) experimentally measured change in Jϕ during the 8 µs leading up to peak
reconnection; (d) integrating (b) along field lines (Eq. 6.4) gives asymmetric parallel
current.

125



at the onset location (∆ϕ = 0), while the magenta field line passes near the x-line

at ∆ϕ = 180◦. The quantity ∇2
⊥φ̇ in Fig. 6-1b represents the amount of charge

due to perpendicular ion polarization currents which must be drained by parallel

currents. As ϕ increases from −180◦ to 180◦, the gray field line sees first a buildup of

charge (red) and then an outflow of charge (blue), and hence there must be parallel

current in the ϕ̂ direction, which prevents charge build-up and maintains current

continuity. This parallel current turns out to be opposite the background current.

The reverse is true for the magenta field line. This field line first samples an outflow

of perpendicular current (blue) and then an accumulation (red) as ϕ is increases.

Therefore, the parallel current along this field line is in the −ϕ̂ direction and enhances

the background current. We are free, however, to add a toroidally symmetric current

which maintains the parallel current at ∆ϕ = 180◦ at 0.

The importance of the q = 2 mode is revealed by comparison with previous

reconnection experiments on VTF by Egedal et al. [116, 114], with open magnetic

field boundary conditions. These experiments found a toroidally symmetric potential

structure, similar to the one observed at the onset angle here. The similarity is due

to the E · B = 0 condition in a magnetic cusp geometry (see Section 5.2), but there

is a crucial difference between the symmetric-potential experiments and the present

experiments. To show this difference, we apply current continuity to the symmetric

case. As before, the time dependence of the potential gives ion polarization currents,

and these perpendicular currents are balanced by parallel currents, whose change is

related to the magnetic reconnection. The results for the symmetric case are shown in

Fig. 6-2. (a) shows the symmetric potential, in which the magenta and gray field lines

now sample the same values of φ. (b) shows the quantity ∇2
⊥φ̇, which is proportional

to the divergence of the ion polarization currents associated with the potential in

(a). The integral along field lines is computed (Eq. 6.4), and the result is shown in

(c) of the figure. The major difference in the toroidally symmetric case is that the

x-line current is enhanced, as opposed to being reduced in the asymmetric case. As

the potential oscillates in time (Ref. [114]), so does the resulting toroidal current.

Meanwhile, the q = 2 potential, which rotates with the field lines, is necessary not
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Figure 6-2: (a) axisymmetric potential with similar form to Eq. 6.6; (b) ∇2
⊥φ̇; (c)

∆J‖ that results from integrating the symmetric potential in Eq. 6.4; note that ∆J‖
at the x-line has the opposite sign from the case of rotating potential (Fig. 6-1)c.

only for the toroidal localization of reconnection, but also for the spontaneous onset.

From the current density computed and displayed in Fig. 6-1, we may calculate the

reconnection rate for the non-axisymmetric case. We use the relation ∇2A = −µ0J

and apply the time-scale computed in the next section to find ∂Aϕ/∂t. The results

are shown in Fig. 6-3, where the resulting reconnection rate is compared against the

experimental measurement. At the x-line, the reconnection rate is largest at the onset

location and the magnitude agrees as well.

6.2 Model of the Spontaneous Reconnection

We have argued that the potential structure of the mode at the onset angle arises

to maintain E · B ≃ 0 away from the x-line. This condition links the potential with
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Figure 6-3: (Non-axisymmetric results) Top row: experimental ∂Aϕ/∂t reproduced
from Fig. 5-5 at t=210 µs. Bottom row: model ∂Aϕ/∂t computed from the current
density in Fig. 6-1. Although the detailed cross-sections are not identical, the toroidal
dependence at the x-line agrees well.

the reconnection rate. We show this quantitatively in Fig. 6-4, where the correla-

tion between mode amplitude and reconnection rate is shown for many discharges,

including both shots with and without a spontaneous reconnection event. The am-

plitude of the potential is computed as the root mean square of deviations from the

mean of the floating potential. These deviations are evaluated in a box around the

x-line (20 cm × 30 cm) at the time of fastest reconnection. The values of ∂Aϕ/∂t are

computed as the average reconnection rate in that same box, at the toroidal angle of

fastest reconnection. A best-fit line, which is constrained to pass through the origin,

is shown in the figure as well. The two quantities are well-correlated (r = 0.76),

and this correlation can be thought of as an empirical Ohm’s law which balances the

inductive and electrostatic components of the electric field away from the x-line. We

use this Ohm’s law with the results of Section 6.1 to model the onset.

We wish to calculate the growth rate associated with the spontaneous reconnec-

tion event, a process which is shown conceptually in Fig. 6-5a. We relate the current

density to the potential by current continuity (Eq. 6.4), the current density to the

magnetic vector potential by Ampère’s law (Eq. 6.1), and the potential and mag-
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Figure 6-4: Correlation between mode strength and reconnection rate, at the time
that this rate is maximized; the fit is constrained to pass through the origin.

netic vector potential by the empirical version of Ohm’s law discussed above. These

relations give three equations for three unknowns and are combined to give a differ-

ential equation for the potential. From this equation, we predict the growth rate. To

implement the model of Fig. 6-5a, we combine Eqs. 6.1 and 6.4 to obtain

Aϕ ≃ µ0

4π

∫
(

∫

mn

B2
∇2

⊥φ̇dl

)

d3r′

|r − r′| , (6.7)

where Jedge was dropped because we want the magnetic vector potential associated

only with the electrostatic potential.

The empirical relation between φ and Ȧϕ—which is basically Ohm’s law away

from the x-line—is shown in Fig. 6-5b. We assume that ∂Aϕ(r, t)/∂t = Ã(r) ˙̄a(t) and

φ(r, t) = Φ̃(r)φ̄(t), where ˙̄a and φ̄ vary between 0 and 1; the amplitude of the potential

is again computed as the root mean square at each time point, while the reconnection

rate is averaged over major radius for the toroidal angle of peak reconnection. The
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Figure 6-5: (a) Schematic of the model for the exponential growth; E · B ≃ 0 is
an empirical observation which does not apply everywhere, but rather as shown in
(b) where the amplitude of the potential and the reconnection rate are plotted. (c)
Graphic representation of Eq. 6.8.
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empirical observation is then ˙̄a = φ̄. We use this observation to rewrite Eq. 6.7 as

Ãφ̄ ≃
[

µ0

4π

(

∫

r
′

mn

B2
∇2

⊥Φ̃dl

)

d3r′

|r′ − r|

]

¨̄φ. (6.8)

This equation has the form f(r)φ̄(t) = g(r) ¨̄φ(t), which—if f(r) ∝ g(r) and f/g > 0—

gives exponential growth for φ. For f(r) , i. e. Ã, we use the experimentally measured

profile at its time of maximum, while for g(r) we use the model magnetic field and

potential (Eqs. 6.5 and 6.6) to compute the integral along field lines. The result is

shown in Fig. 6-5c, where Eq. 6.8 is shown graphically. We see that f(r) and g(r)

have similar forms and the same sign. The positive signs—which give an exponentially

growing solution—are due to the asymmetry in the potential. Recall that, in contrast,

the symmetric potential of Fig. 6-2a changed the sign of ∆J‖ (Fig. 6-2c). Indeed, in

Ref. [114], where the potential was toroidally symmetric, oscillatory behavior was

observed, as opposed to the exponentially growing spontaneous reconnection seen

here.

We substitute φ̄ ∝ exp (γt) into Eq. 6.8 and use the typical peak values in Fig. 6-5c

for f(r) and g(r), to find a growth rate of (22µs)−1. To compare to the experimental

value, we use exponential fitting as shown in Fig. 6-6. The average value of ∂Aϕ/∂t

is computed as it was in Fig. 6-4 for the same box size. The result is a growth rate of

(20 ± 6µs)−1, where the uncertainty represents the standard deviation of the growth

rates in all discharges. The result depends somewhat on the size of the box over which

the average of ∂Aϕ/∂t is computed, but this variation is within the aforementioned

uncertainty.

The growth rate for the q = 3 spontaneous reconnection may also be computed

using the same method, and we find it to be 22 ±8 µs. This value is the same as the

q = 2 growth rate within the uncertainty.

In order for ions to respond to a time-varying potential, they must be well-

magnetized. In VTF, the ions are magnetized, but only marginally so: ωci = eB/m ∼
1.4×105 s−1, or 1 radian per 7 µs, while the mode grows in approximately γ ∼ 20 µs.

We compare γ to ωci instead of fci because of the way ion polarization current is cal-
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Figure 6-6: Growth rate calculation procedure: an exponential function is fit to the
toroidal inductive electric field up to the point indicated, where the derivative of
∂Aϕ/∂t begins to decrease.

culated. The ion inertia term in the ion momentum equation, mdv/dt = e(E+v×B),

must be small compared to the other two terms. Since for well magnetized ions the

inertia term scales like (γ/ωci)eE, this means that γ/ωci ≪ 1 is the relevant condition.

Furthermore, in Ref. [114], it is shown that for experiments with similar time-scales

the ions are sufficiently magnetized that the use of J⊥ ∼ (mn/B2)∇⊥φ̇ for the ion

currents in ∇ · J = 0 gives good agreement with the experimental data.

6.3 Summary

We have shown how a rational q mode appears in the floating potential when the

toroidal magnetic field is set to one of two discrete values (q = 2 and q = 3). This

mode is important for maintaining current continuity in non-axisymmetric reconnec-

tion. We have modeled the ion polarization currents associated with the q = 2 mode

and shown that these cross field currents can account for the toroidal dependence of

the parallel current density at the x-line.

As shown in Fig. 6-5, we have used current continuity and Ohm’s law in the q = 2

regions where E · B ≃ 0 to derive a differential equation for the spontaneous recon-

nection. This equation gave exponential growth for the amplitude of the potential

and the reconnection rate. The growth rate computed from this equation agreed
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well with the experimentally measured growth rate. The differential equation applies

only to the linear stage of the growth and does not account for the saturation of the

reconnection rate or the toroidal propagation observed, for example, in Fig. 5-2. The

model accounts instead for the toroidally localized onset.

We emphasize that reconnection is not merely a consequence of the current flow

pattern; rather, the magnetic energy released during the reconnection is essential for

driving the ion polarization currents associated with the strong in-plane potential that

develops. This can be seen from the energy balance in Section 4.2, and the fact that

the ions attain their E×B outflow velocity by being accelerated in ion polarization

currents. Meanwhile, the ion currents enable the reconnection by diverting field-

aligned current away from the x-line. Therefore the external q=2 potential and the

reconnection grow in time together, and one does not cause the other.
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Chapter 7

Discussion and Conclusions

7.1 Summary

We began in Chapter 2 by discussing the propagation of plasma filaments through

neutral gas. The experiments described in that Chapter are relevant to the edge of

tokamak devices and other laboratory plasmas, but also to the ionosphere, photo-

sphere, and interstellar medium where neutral density is not negligible. We showed

how the blob (filament) propagation speed depends on neutral density and blob size,

and fully characterized the internal structure and mushroom shape of the blob. The

cooling of the blob was also discussed. We speculated regarding applications to re-

connection in the photosphere, suggesting that that interaction with neutrals in the

outflow reconnection region could reduce the reconnection rate.

We then turned to collisionless plasmas to describe the experimental observation

of 3D effects in the onset of spontaneous reconnection events. Magnetic reconnection

was induced in a toroidal plasma with an embedded x-line. The plasma was diagnosed

by arrays of Langmuir and magnetic probes among other diagnostics, in order to fully

characterize the 3D plasma dynamics during each discharge. After a delay of ∼100 µs

from the reconnection drive, a burst of fast spontaneous reconnection was observed.

The reconnection rate could not be explained by a resistive Ohm’s law.

A closer investigation of the plasma at multiple toroidal locations showed that the

reconnection onset is not toroidally symmetric. The toroidal inductive electric field
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propagates around the device in both directions. The onset was observed in conjunc-

tion with a global rational q mode, seen in both the floating potential and the current

density. Fast reconnection was observed for both q = 2 and q = 3, and therefore only

at discrete values of the toroidal magnetic field. The asymmetry in the reconnection

rate was also observed in the current density at the x-line, which decreased first at the

onset location. Although the onset location varied from discharge to discharge, these

variations were not randomly spread around the torus. Rather, they were likely due

to small toroidal asymmetries in the experiment that favor one location over another.

We modeled the potential of the mode as uniformly growing in time, and repro-

duced the localized decrease in current density at the x-line. The decrease occurs

at the toroidal angle corresponding to the ‘correct’ experimentally observed phase of

the mode. The ion polarization currents associated with the mode growing in time

balanced the toroidally asymmetric field-aligned currents. We use this current con-

tinuity, and a version of Ohm’s law that applies away from the x-line to predict the

growth rate associated with the spontaneous reconnection onset. This growth rate

agreed well with the experimentally measured growth rate. We showed also how the

toroidal asymmetry of the mode was necessary for the localized decrease in current

density at the x-line, by comparing to a toroidally symmetric potential, which gave

an enhancement in current at the x-line.

While we have shown that parallel pressure and potential gradients may be impor-

tant in Ohm’s law, the question of how Ohm’s law is satisfied at the x-line has not yet

been settled. Nevertheless, we were able to use the ideal Ohm’s law, which is satisfied

away from the x-line, to complete a model for the onset of localized reconnection in

VTF. This model shows the importance of 3D effects (toroidal asymmetry) in the

onset of fast reconnection.

7.2 Applications to Tokamak Plasmas

Given the results presented regarding 3D effects in magnetic reconnection, as well as

the experiments by Park et al. [64, 65, 66], which show that the sawtooth onset is
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toroidally and poloidally localized, it is clear that 2D theories of the sawtooth are

insufficient. Specifically, the theories by Kadomtsev [17] and Wesson [117], which are

often used to frame the sawtooth problem, require modification to reflect the new

observations of toroidal localization.

Strong potential gradients, which we observe here, are not often discussed in

relation to the sawtooth instability. An exception is the observation of Hamada et

al. [118], who used a high energy ion beam to measure potential spikes near the

inversion radius during a sawtooth crash. The observed potential was in partial

agreement with single-fluid MHD theory, but further measurements are needed.

In the presence of strong 3D effects, the magnetic field may become stochastic, and

this effect is sometimes suggested as a mechanism for fast reconnection in sawteeth.

In a stochastic magnetic field, electrons could flow along the field into the core, thus

cooling it rapidly. However, Wesson [50] describes experiments in JET, which show

that impurity nickel ions are also observed to rapidly move into the core during a

sawtooth crash. In contrast to the electrons, the nickel is much too heavy to follow

stochastic field lines into the core on the timescale of the sawtooth crash. Hence, the

nickel must have a cross-field velocity. Hastie [119] suggests that the electrons do move

into the core along stochastic field lines, which then builds up a potential difference

between the core and the outer plasma which is of order Te. Hastie suggests that this

potential difference may enable E×B convection of ions, impurities and magnetically

trapped electrons into the core, even with q < 1 inside the inversion radius. Hastie

does not mention ion polarization currents, but it is also possible that these are

responsible for the inward transport of ions and impurities during the sawtooth crash.

Although the q profile in tokamaks is not as flat as in VTF, our results suggest that

future investigations of tokamak sawteeth should more fully investigate the internal

potential structure.
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7.3 Suggested Future Work

The VTF experiment is currently being upgraded with new internal coils, capable of

supporting higher toroidal current and of better controlling the toroidal asymmetry.

In the experiments discussed here, the onset angle varied from discharge to discharge;

the variation was not random, probably due to small toroidal asymmetries in the

experimental setup. The new coils will improve the symmetry of the setup, as well as

support toroidally asymmetric current configurations. The coils will be more robust,

and support stronger currents in order to investigate reconnection at other values of

q, which were unobtainable in the present configuration. To this end, a plasma gun

has been constructed by Arturs Vrublevskis, which will create a seed plasma without

the limitations on toroidal magnetic field associated with having electron cyclotron

resonance in the vacuum vessel.
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Appendix A

Applicability of 2D Calculation of

Magnetic Vector Potential

In Section 3.2.2, we described the magnetic arrays, which are used to characterize the

reconnection rate and magnetic vector potential in the poloidal cross-section. The

measurement of Aϕ at one toroidal location is appropriate in the case of 2D symmetry,

since then

Bpol(R,Z) = ∇× (Aϕ(R,Z)eϕ) (A.1)

and Aϕ can be line-integrated using Eq. 3.7. However, Chapters 5-6 showed the

presence of 3D effects in the onset of magnetic reconnection. These observations call

into question the accuracy of Aϕ, which is determined from magnetic measurements

at just one toroidal cross-section. In this Appendix, we show that for VTF plasmas,

the approximation is valid to within 2%.

To show that the magnetic vector potential Aϕ is accurately measured by our

magnetic arrays, we follow the argument in Ref. [103]. Consider the general poloidal

magnetic field given by

Bpol(R,ϕ, Z) = ∇× (Aϕeϕ) + B̃pol (A.2)

where B̃pol is the part of the poloidal magnetic field that is caused by toroidally
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asymmetric poloidal currents; it is related to the ϕ derivatives of AR and AZ . We use

Eq. A.2 and ∇ · B = 0 to write

|B̃pol| ≈ |∆Bϕ|
∆RZ

πR
(A.3)

where ∆Bϕ is the characteristic magnitude of toroidal variations in Bϕ due to toroidally

asymmetric poloidal currents. ∆RZ ∼ 0.1 m is the poloidal scale length, and hence,

∆RZ/πR ∼ 0.03. For VTF reconnection experiments, we observe by direct mea-

surement that ∆Bϕ < 0.1|Bpol|, and therefore |B̃pol| < |Bpol|/300. This calculation

justifies the neglect of B̃pol in Eq. A.2, which becomes

Bpol(R,ϕ, Z) = ∇× (Aϕ(R,ϕ, Z)eϕ). (A.4)

Equation A.3 can also be differentiated with respect to time yielding |∂B̃pol/∂t| ≈
|∆∂Bϕ/∂t|∆RZ/(πR). We then directly measure |∆∂Bϕ/∂t| and find that it is smaller

than ∼ 0.1|∂Bpol/∂t|. This was implied, but not explicitly spelled out in Ref. [103].

To double-check the negligibility of B̃pol, and show that the reconnection rate is

accurately measured by the magnetic arrays, we compute ∂Aϕ/∂t from a simplified

model of asymmetric current density.

First, we estimate the error in Aϕ due to toroidally asymmetric poloidal currents,

which produce magnetic fields B̃pol. These magnetic fields are related to the ϕ deriva-

tives of AR and AZ , but they can erroneously contribute to the evaluation of Aϕ that

uses a magnetic array at 1 toroidal angle. The likeliest source for these poloidal cur-

rents is the time-dependent q = 2 potential structure. We model a simplified q = 2

potential with the log form of Eq. 5.3, shown in Fig. A-1 at different toroidal angles.

Superimposed are arrows indicating the ion polarization currents computed from this

potential. These currents are toroidally asymmetric and we compute their effect on

the measurement of ∂Aϕ/∂t. We find that the maximum value of erroneous reconnec-

tion rate measured from these poloidal currents—assuming a 30 µs growth rate for

φ—is 0.06 V/m, which is only 0.4% of the 15 V/m typical of the actual reconnection

rate due to variation in the toroidal current.
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Figure A-1: Simplified potential structure with superimposed ion polarization current
arrows. The toroidally asymmetric poloidal currents from this potential are used to
estimate the false component of ∂Aϕ/∂t measured by the magnetic arrays.

Next, we check the error in the reconnection rate measurement due to toroidal

asymmetry in the toroidal current density. We use a simplified model for the toroidal

current based on the measured asymmetry in Fig. 6-1c. This toroidal asymmetry is

reproduced in Fig. A-2a, and for simplicity the same poloidal profile of Jϕ is used at all

toroidal angles, with amplitude shown in Fig. A-2b. In (c), we show the reconnection

rate evaluated from

Aϕ =
µ0

4π

∫

Jϕd3r′

|r′ − r| (A.5)

using information about Jϕ everywhere, while in (d), we evaluate the reconnection

rate using BR and BZ values at only one toroidal cross section. This approximation is

within 2% of the ‘actual’ reconnection rate. In Fig. A-3, we use a different model for

the toroidal current density, and find the same small error in the reconnection rate.

These simple estimates and the argument from Ref. [103] confirm the validity of

the magnetic measurements for reconnection experiments in VTF.
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Figure A-2: (a) Asymmetric current at onset location; the 3D asymmetric current
is modeled simply with the poloidal structure of (a), but with amplitude (b) which
depends on ϕ. (c) ∂Aϕ/∂t computed directly from this model; (d) ∂Aϕ/∂t computed
as in the experiment only from BR and BZ , with a line integral. (c) and (d) are
evaluated for the toroidal angle corresponding to the dashed line in (b).
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Figure A-3: Alternate model for checking error in reconnection rate: (a) Asymmetric
current at onset location; the 3D asymmetric current is modeled simply with the
poloidal structure of (a), but with amplitude (b) which depends on ϕ. (c) ∂Aϕ/∂t
computed directly from this model; (d) ∂Aϕ/∂t computed as in the experiment only
from BR and BZ , with a line integral. (c) and (d) are evaluated for the toroidal angle
corresponding to the dashed line in (b).
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