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Abstract

Liquid droplets in the Cassie-Baxter state form liquid-air interfaces that are not flat but
distorted due to pressure differences across the interfaces between the asperities. These
distorted interfaces play an essential role in the transition from the composite Cassie-Baxter
state to the fully-wetted Wenzel state and in the determination of the robustness of the
composite state. As well as the static pressure difference due to the Laplace pressure,
dynamic pressure difference due to various configurations including drop impact is also a
source that causes the transition with the distorted interfaces. However, there are few
experimental and numerical studies that consider the details of the distorted interfaces for a
wide range of liquids and there is a lack of an apriori method to evaluate the robustness of
three-dimensionally complicated textures. In addition, previous studies on drop impact
pressure did not cover the maximum pressure at impact in the range of low velocities (< 2
m/s). We have first investigated the shape of distorted liquid-air interfaces and their
transition conditions experimentally by using droplets of various low surface tension
liquids on millimeter-sized re-entrant surface topography. For the dynamic pressure
difference, we proposed a modified water hammer pressure formula and compared with the
experiment using a high speed camera. The static experimental results by using three
dimensionally printed millimetric structures are in good agreement with our newly-
developed finite element simulations. I These three-dimensional simulations of the
interfacial shape provide a predictive tool for the robustness of a wide range of proposed
micro-texture in terms of the breakthrough pressure at which the distorted liquid-air
interface infiltrate into the space between asperities and the droplet transitions to the
Wenzel state. The dynamic experimental results open a broad avenue to a novel approach
to delve into the dynamic breakthrough pressure of droplets of a variety of liquids.

Thesis Supervisor: Gareth H. McKinley
Title: Professor, Mechanical Engineering
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Chapter 1

1. Introduction

1.1 Motivation: hydrophobic and omniphobic surfaces

In the last decade, research on surfaces that are not wetted by water has attracted

great interest [1-5]. A lotus leaf is a well-known example of a surface that is non-

wettable with water, which is called a hydrophobic surface [4-7]. The water-repelling

property of the lotus leaf is attributed two factors: surface chemistry and

micro/nanometer-scaled surface structure [2, 8-11]. In addition, the dual-scaled

structure has been focused and emphasized because this leads to an enhancement in its

self-cleaning property, which has a broad range of applications (as shown in Section

1.3) [4, 5, 9, 12-15]. To mimic the hydrophobicity of natural examples many kinds of

texture have been tested in the literature [9, 16-20]. A variety of materials from silicon

to polymers as well as fabrication methods from Microelectromechanical Systems

(MEMS) to replica molding process have allowed researchers to enhance the

functionality of hydrophobic surfaces and to reduce manufacturing cost [12, 16, 21-24].



conservationreport.com/tag/nature/

(a) A computer graphic micrometric-scale

contaminating particles on a lotus leaf.

image of three water droplets with

(b) Scanning Electron Microscope (SEM) images of lotus leaf surfaces [25].

Figure 1.1 Lotus leaf (Nelumbo Nucifera).

a. b.
o;m

Figure 1.2 Hydrophobic surfaces with various textures (SEM images) [16].

. .............. .... ...... .. ...... .................. ........ .................................. ............



The hydrophobic surfaces attain their non-wetting property by forming a solid-

liquid-air composite interface when a liquid droplet is placed gently or when a droplet

impacts on the solid surfaces. The composite state of droplets can be created because

the textured surfaces trap plenty of small air pockets and the liquid droplets resides

partially on the solid texture and partially on the trapped air; thus preventing the liquid

from imbibing into the surface texture. (A more detailed explanation is given in the

section 1.2.)

In addition to hydrophobic surfaces, many researchers and our group have

developed the surfaces that are not wetted by a broad range of liquid and therefore

named oleophobic or omniphobic surfaces [8, 26-30]. Whereas hydrophobic surfaces

are easier to produce because of the higher surface tension (72 mN/m) of water, it has

been difficult to achieve omniphobicity because many liquids including oils possess

very low surface tension (e.g., for hexadecane , the surface tension is 27.5 mN/m). To

overcome the limit of conventional textured surfaces, which provides equilibrium

contact angles (OE) about 60 degrees at most with low surface tension liquids, a

mushroom-like or nail-like re-entrant topography (similar to hoodoo in nature in Figure

1.3 (a)) was used [8, 30].



Figure 1.3 (a) Hoodoo (b) microhoodoos and (c) omniphobic surface [28].

1.2 Literature review

1.2.1 Equilibrium contact angle and apparent contact angle

To understand the mechanism that leads to sphere-like drop formation on

hydrophobic and omniphobic surfaces, the Young's equation

cos OE = (ysv ~ ysi) yv (1.1 )

should be first noted [31]. This relation illustrates the contact angle of liquids on

chemically homogeneous smooth surfaces when the liquid-vapor-solid (denoted by 1, v,

and s, respectively) system is at an equilibrium state and it is also locally satisfied even

on rough surfaces. The equilibrium contact angle is induced from the force balance

among the three interfacial tensions (y, yst, and ytv); therefore modifying any of the three

tensions can change the local contact angle. The left illustration in Figure 1.4 is showing

the equilibrium contact angle smaller than 900. It is reported that the maximum

equilibrium contact angle of water is nearly 1200 on Teflon® surfaces [32]. In this work,

we have used fluorodecyl polyhedral oligomeric silsesquioxane (POSS) as our surface



coating material to attain equilibrium contact angles such as 1200 for water and 600 for

ethanol [8].

YsvV

Figure 1.4 Equilibrium contact angle (OE) and apparent contact angle (0) [27].

On textured surfaces there are two kinds of wetting state, leading to different

apparent contact angles. First, liquid droplets can be partially supported by non-

wettable air pockets entrapped between solid asperities much smaller than the size of

droplets. In this case, an apparent contact angle (0*) is given by the Cassie-Baxter

relation

cose* = ro,, cos6E + -1 [33]. (1.2)

Here r, is the roughness of the wetted surface, $, is the area fraction of the liquid-air

interface occluded by the surface texture (See Figure 1.5), and GE is the equilibrium

contact angle on a smooth surface of the same chemistry as the textured surfaces, given

by Young's equation.



On the other hand, there is another wetting regime in which the space between

textured solid structures underneath droplets is fully-wetted with liquids. The apparent

contact angle in the fully-wetted Wenzel state is given by the Wenzel relation

cos* =r cos1E (1.3)

where r is the surface roughness [34]. As shown in Figure 1.5, r is represented as green

line and clearly greater than unity if a surface is not flat.

A ug _ - ,

Air
- 1 -pS

- r

Figure 1.5 Schematic illustration of the representative characteristic geometrical

parameters in two different geometries [28]. (a) cross-sectional view of grates. (b) cross-

sectional view of cylindrical fibers.

For high surface tension liquids including water, a square arrays of posts coated

with low surface energy material have been widely used to design superhydrophobic

surfaces, leading to 6* > 1500 and low contact angle hysteresis i.e., the difference

between the apparent advancing contact angle and apparent receding contact angle [2,



9]. As shown in the Cassie-Baxter relation, for post-textured surfaces where , (= r, $,)

is smaller than unity, when OE > 900 the apparent contact angle can be maximized

greater than 150'. The high apparent contact angle can also be obtained from the

Wenzel relation if OE> 90' and r> 1. However, it is hard to achieve a low contact angle

hysteresis because liquid fill the space between asperities and tends to be pinned on

rough surfaces (r > 1), whereas a Cassie-Baxter state droplet has a tendency to weakly

adhere to the small wetted portion of rough solid surface [2, 10]. An array of posts, if

designed to have small spacing and great height enough to prevent the imbibition of

water between the posts, can support composite interfaces in case of water droplets. On

the contrary, low surface tension liquids always wet this texture, as the Young equation

cannot be satisfied at any location on an array of posts for such liquids because the

direction of force due to the surface tension is downward, leading to the complete

wetting regime. Therefore, a surface on which the local force balance can be satisfied is

necessary for the existence of composite interfaces.

1.2.2 Re-entrant structure

The re-entrant structure refers to a surface topography that has continuously

varying texture angle y as shown in Figure 1.7, i.e., the angle between the horizontal

line and the tangential line at the liquid-air-solid three phase contact line, greater and

less than 900. The cross-section of a cylindrical fiber is a representative example of this



re-entrant structure. Natural hoodoo structure (Figure 1.3) is another example of the re-

entrant structure that has the texture angle from 0' to 1800.

Many researchers have focused similar kind of surface texture for the

development of high apparent contact angles with low surface tension liquids [35-39].

Nosonovsky has first studied the stability of equilibrium state of flat liquid-air interface

on a multiple re-entrant structure for liquids with the low equilibrium contact angles

(Figure 1.6) [40]. He demonstrated interfacial energy analysis that the liquid-air

interface can be suspended by two and three-dimensional pillars with semicircular

bumps and grooves. Marmur also illustrated the re-entrant structure similar to hoodoo

structure as shown in the Figure 1.6 (a), (b), and (c) [41]. He showed through rigorous

mathematical approach that it is possible to achieve a high apparent contact angle from

a low equilibrium contact angle if the surface topography is re-entrant. Their ideas are

summarized in Figure 1.6. In conclusion, the local force balance is satisfied when eE =

yf and therefore there is a possibility that a solid-liquid-air composite interface might

exist at such a location.
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~qwijj

W

(d) f / Liquid
- / eU

Stable
equilibrium

Unstable
equilibrium

Figure 1.6 Various re-entrant structures in the literature [40, 41]. (a) mushroom structure.

(b) metastable equilibrium state of high surface tension liquid (GE> 900). (c) metastable

equilibrium state of low surface tension liquid (GE< 90-). (d) The upper point indicates

stable equilibrium (GE =0 > 6) and the lower point indicates unstable equilibrium for a

low surface tension liquid (GE< 90').

If GE - yf> 0, the direction of force generated by surface tension is upward and

this hoodoo structure can balance with pressure difference across the liquid-air interface.

Thus the value of yf smaller than the equilibrium contact angle enables this hoodoo

structure to support low surface tension liquid, which has low equilibrium contact angle

(See Figure 1.4) on flat and smooth surfaces homogeneously coated with low surface

energy material.

....... .. .... ..



Figure 1.7 The texture angle (0) and direction of resultant force (F) by surface tension.

1.2.3 Thermodynamics - metastable composite state

As demonstrated in the previous section, the Cassie-Baxter (CB) composite state

is the only way to attain both high apparent contact angles and low contact angle

hysteresis for all kinds of liquids. However, calculations show that the CB composite

state is local minimum in the free energy and metastable for low surface tension liquids

(red dot line in Figure 1.8) whereas the fully-wetted state represents global minimum

(blue solid line in Figure 1.8) [27].

OE



Wenzel state
Non-Wefting Diagram
Qpo etal. (1996)

cose6'

f., f =area fraction of
s&b~ and air, respectively

180*)

COSGF

1 (6,= 0)

- 6s = 180*)

Figure 1.8 Non-wetting diagram [27, 42].

Tuteja et al. have calculated the areal Gibbs free energy density as a function of

apparent contact angle and dimensionless height (h/zm.) on an omniphobic

microhoodoo surface and results are shown in the Figure 1.9. Here G*min is the areal

Gibbs free energy density for the composite interface. The two minima in Figure 1.9 at

h/zm.~ 0.05 and h/z. - 1 correspond to a metastable composite (local minimum) and a

fully wetted (global minimum) interfaces, respectively. The inset shows a schematic of

the solid substrate. The discontinuity in the y-axis (hz.) is for easier visualization of the

minimum in free energy corresponding to the composite interface based on the thickness

of the hoodoo caps (2R = 0.3 jim) and height of the hoodoos (H= 7 jm).

Cassie-Baxter state



r2.0, Os 0.44

Hexadecane

Apparent contact angle

Figure 1.9 Calculation of areal Gibbs free energy density on a microhoodoo surface [27].

The global energy minimum is at the apparent contact angle of 740 (the Wenzel state,

dark blue) while there is a local energy minimum at the apparent contact angle of 1200

(the Cassie-Baxter state, light blue).

1.2.4 Robustness of the composite state

From the free energy calculation, Tuteja et al. argued that the transition from the

Cassie-Baxter composite state to the Wenzel fully-wetted state is induced when the

pressure difference between the liquid and air increases up to a critical value defined as

the breakthrough pressure, i.e., the maximum pressure difference that the liquid-air

interface can resist, by the curvature of liquid droplet or other external perturbations,

which is similar to many studies on the transition [43-46]. This robustness problem was

demonstrated by methanol evaporation experiment in Figure 1.10. The equilibrium

shape of a liquid droplet is nearly spherical because it is governed by the balance between

the gravity and surface tension (Rdrop -ca,). As the droplet size decreases by evaporation,



the pressure difference given by the Laplace equation i.e., AP(t)~ PLap,,ce = 2 yLV / Rdrop(0

increases. When the pressure difference reaches the critical breakthrough pressure by the

evaporation, the Cassie-Baxter state transitions to the Wenzel state.

Composite Fully-wetted

Figure 1.10 Methanol evaporation experiment [28].

Although the calculated energy surfaces in Figure 1.9 were approximating the flat

liquid-air interfaces, Tuteja et al. hypothesized more realistic description has a curvature

because of the pressure difference at the interface between the liquid and air. Based on

this distorted liquid-air interface shape (Figure 1.11), they identified then two different

kinds of failures on re-entrant structure, illustrated in Figure 1.9.

When the droplet approaches the hoodoo cap parts (i.e., the top round disk parts

on the pillars), the lowest point of the liquid-air interface touches the bottom of solid

between the hoodoos just before the other parts of the interface reach the hoodoo cap



parts. Once the contact occurs, it leads to a spontaneous wetting on the solid surface

(the left image in Figure 1.11).

The second case is when the height of hoodoos is great enough to prevent the

first failure mechanism. The composite contact line (i.e., the two point where the liquid

(blue), air (white), and solid (red) contact in Figure 1.11) first reaches the point of the

minimum texture angle (Vmin) before the lowest part of liquid-air interface wets the

bottom solid surface. This case leads to another instantaneous wetting from the point of

the minimum texture angle because the curvature of liquid-air interface cannot resist a

greater pressure difference across the interface and instead advances across the surface

from point A towards point B. (the right image of Figure 1.11)

AP when h -0 AP when V +0
H =T*

PP ref

Figure 1.11 The illustration of the two failure modes and concept of

nondimensionalization.



For the evaluation of robust omniphobic surface structures, Tuteja et al.

developed suitable dimensionless criteria that assess the robustness of the composite

state and the two kinds of failure modes. The two dimensionless design parameters

robustness height (H*) and robustness angle (T*) are the ratio between the

breakthrough pressure in two failure modes and the minimum reference pressure of a

millimetric droplet (Pref=2y/ly/ap), where Iap(= yjpg) is the capillary length, ylv is

the surface tension and p is the density of the liquid.

The value of dimensionless robustness parameters can be interpreted as follows.

It is obvious that the value of unity represents the balance between the actual pressure

resistance of the textured surface and the reference pressure; thereby if the values of H*

and T* are greater than unity, the textured surface can support the composite interface

under pressure difference greater than the reference pressure. The surface is referred to

be robust against perturbations. On the other hand, the lower value of either H* or T*

than unity is interpreted as low inherent robustness of the textured surface. In summary,

the greater the values of both dimensionless design parameters are, the more robust the

textured surface is.

As well as the evaluation for the robustness of liquid-air-solid composite

interface on present surface texture, these dimensionless parameters provide a guideline

on how to obtain or optimize the robustness of omniphobicity by designing the

dimensions of the surface features. More detailed information is covered in the next

section 1.3 on the objectives of this work as well as in Chapter 3 and 4.



1.2.5 Numerical calculations of breakthrough pressure

In this section, we provide an overview of the recent work in the numerical

calculation for breakthrough pressure on various textured surfaces. Most of these

calculations studied the shape of liquid-air interface under pressure difference across it,

on a square array of pillars with flat top surfaces. Dupuis and Yeomans developed a

dynamic model that presents a liquid droplet on an array of micrometer-scale posts using

a lattice Boltzmann solution of the governing equation of a spreading droplet [47, 48].

This model provided an apparent contact angle from the three-dimensional shape of the

droplet and demonstrated the effect of topologically patterned substrate. Further, by

imposing the gravitational field on the model, it showed a clear transition from the

Cassie-Baxter state to the Wenzel state.

Figure 1.12 The three and two dimensional computer graphic images of the Cassie-

Baxter state (top) and Wenzel state (bottom) droplets based on lattice Boltzmann solution

[47].



Zheng et al. intensively studied the role of the pressure difference across the

water-air interface and calculated the maximum sustainable pressure (i.e., breakthrough

pressure) [49]. They approached the pressure and transition problems by considering the

effect of each sharp edge on square posts. This numerical calculation revealed the optimal

dimensions of square arrays of post (i.e., a, b, and H in Figure 1.13) for a possible high

pressure difference above 105 Pa, for example rain drop impact pressure.

(A) (B)

A H

JA4y
a/2

b/2

a/2 b/2

Figure 1.13 Distorted liquid-air interface supported by a square array of square posts

[49].

Lobaton and Salamon computed the shape of liquid-air interface of a pressurized

fluid on various cap-shaped posts including re-entrant structure [50]. Their simulation

model was based on the Young-Laplace equation and an overall force balance between

the surface tension and pressure difference. They also compared their prediction using the

numerical model with many previous experimental results containing direct measurement

of the distorted liquid-air interface as well as the critical pressure and dimensions of posts



inducing transition from the Cassie-Baxter state to the Wenzel state, which was in a good

agreement with the reported experiment results.

Figure 1.14 Distorted liquid-air interface supported a square array of circular posts [50].

1.2.6 Drop impact pressure

Apart from the static or quasi-static droplet on a non-wettable surface, the

interaction between dynamic droplets and textured surfaces is important for a wide

range of practical application because the impact of droplets with high velocity on solid

surfaces generates much higher pressure, leading to an irreversible transition between

the two wetting regimes on the textured surfaces.

The drop impact pressure was first highlighted because of the importance of

erosion problem due to the drop impact and has been an interesting research field for

about one century [51, 52]. Engel first estimated the impact pressure when a water drop

collides with solid surfaces based on the analysis of sequential high-speed camera

images of the drop collision [53, 54]. He derived the formula that quantifies the water

hammer pressure (PwH = a pcv, where a is a coefficient determined by experiment, p is

the density of the working liquid, c is the velocity of sound in the liquid, and v is the



impact velocity), i.e., the maximum pressure during the impact, under several

assumptions based on the observation using a high-speed camera. He considered the

effect of pressure wave propagation inside the water drop after the contact instant and

added that the coefficient a is about 0.2 if the impact velocity of water drop is around 9

m/s.

Nearing et al. measured the impact force and impact pressure by the collision

between water drop and solid surfaces using piezoelectric pressure sensor [55, 56].

They compared the experimental data with Engel's theory and reported that the

coefficient a in the water hammer pressure equation is approximately 0.1 at around the

impact velocity of 10 m/s.

More recently, Deng, Varanasi and coworkers applied the concept of water

hammer pressure to the robustness of the Cassie-Baxter state on various textured surfaces

[57]. They categorized the motion of water droplets after impact into three cases by

comparing the water hammer pressure with Bernoulli and capillary pressures. For

example, if the characteristic pressure of the textured surface is greater than the water

hammer pressure, the droplet completely bounces off the solid surface. They interpreted

this rebound stems from the inherent property of the designed textured surface that

induces the high robustness of the composite state.

1.3 Applications and robustness problems

Non-wettable solid surfaces with various kinds of liquids have been highlighted in



many studies for a wide range of practical applications including smart fabric, engine

elements, and turbine blades [58-60]. Non-wettability is a useful property in the combat

uniform industry because a fabric with omniphobicity can inhibit the infiltration of

harmful chemicals into soldier's skin.

In addition, due to the high apparent contact angles and low hysteresis of liquids

on the superhydrophobic surfaes, they possess an inherent self-cleaning property, which

can reduce an enormous amount of cost in cleaning private and industrial surfaces.

Finally, liquid drag reduction for ships or submarines or icephobicity for airplanes

attracts many researchers by opening a pathway to use the superhydrophobicity on

textured surfaces [61-64]. In the near future, the integration between interfacial fluid

mechanics and optics would be necessary for many applications including display

panels of electronics.

defense-technologynews.blogspot.com apple.com

Figure 1.15 The application of opaque and transparent omniphobic surfaces.

Despite of attractive features including self-cleaning property, the artificial

hydrophobic and omniphobic surfaces have a limit in terms of ability to maintain the

high apparent contact angles against pressure difference across the liquid-air interface.

. .. ........ ... ......... ......... - ..........



This substantial problem has initiated a discussion of the robustness of non-wetting

states. As shown in Fig. 1.6, the size of a liquid droplet decreases as it evaporates and

then abruptly transitioned into the Wenzel state that shows low apparent contact angle.

Laplace pressure increases as the radius of the droplet decreases and finally surface

tension of liquid at the contact line cannot balance with the critical pressure difference

beyond a threshold. In addition, dynamic droplets have much higher pressure difference

depending on impact velocity and physicochemical properties of liquids [57, 65].

In particular, typical micrometric post or hoodoo surfaces can support

breakthrough pressure on the order of 100 Pa, which is much lower compared to

pressure differences experienced in our daily life. The static pressure under 1 meter of

water is about 10 kPa and the impact pressure of raindrops (lm/s) is approximately

200kPa. More robust non-wettable surfaces are required for practical application.

1.4 Objectives and approach

The goal of this thesis is to explore various topics relevant to the robustness of

omniphobicity to overcome the critical practical problems associated with the

breakthrough pressure. The main topics in this work is based on the systematic analysis

of the robustness in the Figure 1.16, which shows the effect of multiple length scale on

the robustness.

Based on this design framework, at first re-entrant structure at the millimetric

scale was investigated using a new fabrication method, three-dimensional printing. The



two failure mechanisms and robustness of static liquid droplet on the millihoodoo

structure were examined experimentally and then simulation models describing the

composite system at the multiple length scales were verified using the experiment

results. Exploiting the a priori evaluation method, the breakthrough pressure of

nanopost was calculated and correlated with the impact force of dynamic droplets.
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Cassie's wire gratings
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Figure 1.16 Plot of the robustness parameter (H*) as a function of the spacing ratio (D*)

for droplets of octane (surface tension yl,= 21.6 mN/m) on various natural and artificial

surfaces presented in the literature [27].
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1.5 Chapter description

Before the three main approaches and results in this work, the methodology that

will be used in the three chapters is first introduced. Chapter 2 describes three-

dimensional printing and dip-coating for the fabrication of millimetric hoodoos, Surface

Evolver for the development of simulation models for the droplet-air-texture composite

system, and replica molding process for the fabrication of nanometric posts. In addition,

instrumentation that was employed to investigate the dynamic robustness of composite

system is added.

In Chapter 3, based on the discussion of free energy and pressure difference

across the liquid-air interfaces introduced in Chapter 1, we primarily delve into the

transition from the Wenzel state into the Cassie-Baxter state using millimeteric textured

surfaces. The effects of the dimensionless robust design parameters for re-entrant

geometry on distorted interfaces and the two failure modes are extensively explored

with ethanol evaporation experiment on millihoodoo surfaces.

In Chapter 4, with the basis of the experimental results in Chapter 3 and other

literature, an a priori method that evaluates the robustness of the Cassie-Baxter state at

the multiple texture scales was developed using simulation software Surface Evolver.

Further, the input routines modeling the liquid-air-solid composite system were used to

compute the shape of evaporating ethanol droplets on omniphobic surfaces, varying the

volume of liquid droplets. At the end of the chapter, changes in the distorted liquid-air

interface of droplets on nanohoodoo surfaces were also realized altering the pressure



difference across the interface directly and exploited to predict the breakthrough

pressure of the nanohoodoo surfaces.

In Chapter 5, to explore the robustness of liquid droplets that dynamically

interact with textured surfaces, a water drop impact experiment was conducted using

transparent superhydrophobic nanopost surfaces. In addition to the observation of side

and bottom view utilizing a beam splitter, the impact force was measured using a

piezoelectric film to compare it with the water hammer pressure at the impact velocity

ranging from 0.5 m/s to 2 m/s.

In Chapter 6, three main works - millihoodoo, Surface Evolver modeling, and

nanopost- are summarized with the evaluation of thesis objectives in each chapter.

Finally, future work associated with the combination between the robustness issue in

wetting and the transparency issue in optics is suggested.



Chapter 2

2. Methodology

This section is devoted to the introduction of various fabrication methods,

computer simulation software, and instrumentation that were used for the work in the

subsequent chapters. Chapter 3 contains a description of the three-dimensional printing

and dip coating protocols used to prepare textured surfaces. In Chapter 4, the finite

element method (FEM) based simulation software Surface Evolver is introduced to

provide an overview of the background principles that were optimized to model

interfacial phenomena. Finally, the replica molding process used to fabricate polymer-

based transparent superhydrophobic surfaces is detailed in Chapter 5.

2.1 Fabrication of millihoodoos

2.1.1 Three-dimensional printing

Millihoodoos were fabricated using a three-dimensional printer (Connex5 0 0 TM,

Objet). Conventional Microelectromechanical Systems (MEMS) technology was not

utilized, as MEMS techniques focus on the fabrication of submillimetric features,



whereas our target is in the range of several millimeters. The steps for the three-

dimensional printing are shown in Figure 2.1.

First, surface structure design files were created and transformed into the

stereolithography (.stl) file format using SolidWorkSTM. Based on the three-dimensional

structure information in the design (.stl) file, the Connex5OO T M printed ultraviolet (UV)-

curable polymer drops on the horizontal plane. The volume of each drop is

approximately 25 pL including supporting material. Then the printer cured the printed

drops by exposing them to UV light, layer by layer. After finishing printing, the sample

with supporting material was soaked in sodium hydroxide solution (2 wt%) for 10

minutes to facilitate removal of the supporting material using a water-jet and was then

brushed.

SET UP PNLEAN

The Obiet Polyjet Process

objet.com

Figure 2.1 Overview of the three steps for the three-dimensional printing

(Connex5 0 0 TM)

.......... . ............ ........



There are some important points to consider for the design of the structure along

with the dimensionless robustness parameters introduced in the Chapter 1. First, the

position of each printed drop is digitalized because of the minimum volume (25 pL ~

42 x 42 x 16 gm3) of UV-curable polymer drops. Second, relatively poor accuracy, i.e.,

the distance between two printed drops in different layers that are designed to be at the

vertically identical place (~100 gm), compared to the resolution (600 dpi from the

minimum droplet size of 42 gm x 42 gm on the horizontal plane) influences the

dimension of actual printed structures. The dimensions of printed samples were

examined using a scanning electron microscope (SEM) (following dip-coating, as

explained in the following section) and then averaged.

2.1.2 Dip Coating

To decrease the surface energy of the solid textured surface, the three-dimensional

printed samples were coated with a nanocomposite comprised of 50 wt% fluorodecyl

POSS (polyhedral oligomeric silsesquioxane) and 50 wt% Tecnoflon (BR9151). The

Tecnoflon and fluorodecyl POSS were dissolved in Asahiklin AK-225 (Asahi glass

company) at an overall solids concentration of 10mg/ml, the printed substrates were

submerged in the solution for 2 minutes at room temperature, and the dip-coated samples

were then dried in a vacuum oven for 30 minutes at 60'C [8].



2.2 Surface Evolver

Surface Evolver is a C language-based simulation program that has been

developed by Brakke to calculate the free energy state of a system on the basis of a

mean curvature theory [66, 67]. The steps for calculating the equilibrium shape of the

liquid-air interface of droplets are as follows. Physico-chemical conditions are specified,

including the surface geometry that is composed of vertices, edges, facets, and bodies,

and Surface Evolver divides facets and triangulates them. According to the given

parameters, such as surface tension, contact angle, density, volume of liquids and

gravitational field, the triangles evolve and move to another location to satisfy the force

balance and minimize the free energy of the liquid-air-solid composite system. Other

external forces, such as external pressure, can also be applied in calculating an

equilibrium state using the mean curvature theory.

The physico-chemical conditions are coded and transferred into the "evolver" by

an input routine, which is written by users. For more detailed information about the

Surface Evolver and the composition of an input routine used in this work, see the

general manual written by Brakke and Chapter 4 in this thesis.

2.3 Replication process using nanomolds

To produce rough hydrophobic surfaces similar to the micro bumps on lotus leaf,

nanomolds were first prepared using conventional Microelectromechanical Systems



(MEMS) techniques. A mask was designed with a nanopattern comprised of a square

array of small holes (diameter ~ 500 nm). This pattern was transferred onto a photoresist

(PR)-coated standard 6 in silicon wafer utilizing conventional stepper-photolithography

techonology (Nikon NSR2005i9TM). Then the silicon wafer was etched anisotropically

using the developed photoresist pattern as an etching mask (by Applied Materials P5000

Mark II EtcherTm ).

PR coating

photolitho
graphy

Etching

Figure 2.2 Fabrication process for the nanomold.

The perfluoropolyether (PFPE) replica molding process used for the preparation

of textured polymeric substrates is summarized in Figure 2.3 (in collaboration with Dr.

Adam Meuler in the department of Chemical Engineering at Massachusetts Institute of

Technology (MIT)). The PFPE oligomers were poured onto the nanomold and then cured

by exposing them to ultraviolet radiation (wavelength X = 365 nm). The cured post

structure (Figure 2.4) was then peeled off the mold.
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Figure 2.3 Replica molding process for nanoposts.

Figure 2.4 The SEM image of nanoposts.

This textured PFPE surface provided low solid surface energy leading to high

equilibrium and apparent contact angles (Figure 2.5) for water. In addition, sufficient

optical transparency was attained to capture both front and bottom views using a beam

splitter as illustrated in Figure 2.6.

3



1mm

Figure 2.5 Measurement of apparent contact angle with water droplet on PFPE nanoposts.

2.4 Instrumentation for drop impact experiment

In Chapter 5, a drop impact experiment designed to investigate the dynamic

aspect of the robustness of the Cassie-Baxter state droplet is described. The schematic

overview and actual instrument setup for the experiment are provided in Figures 2.6 and

2.7. A beam splitter was used to enable simultaneous viewing of both the side and bottom

of liquid droplets, as illustrated in Figure 2.6.

Figure 2.6 Schematic view of beam splitter [68].



A photograph of the actual instrument setup comprised of a light emission diode

(LED), another light source, a beam splitter, and a syringe is provided in Figure 2.7. A

series of drop impact images were obtained using a Phantom V5.OTM high-speed camera

(5000 frames per second). The impact force was measured using a piezoelectric film

connected to the universal serial bus (USB) data acquisition (DAQ) device and then

analyzed using LabVIEWTM.

Figure 2.7 Actual experiment setup using a beam splitter.



Chapter 3

3. Static Robustness

Our interests were to image bulging interfaces and to explore gradual transition

to failure by using commercial camera. These interests motivated us to fabricate

hoodoo geometry on the millimeter scale and to use ethanol as the working liquid.

Ethanol not only evaporates quickly but has a surface tension as low as decane;

therefore, we reduced our experiment time to record the gradual transition of low

surface tension liquid droplets as pressure difference increased, i.e., ethanol droplets

evaporated isothermally.

3.1 Transition from the Cassie-Baxter state to the

Wenzel state

As explained in the literature review section in Chapter 1 Introduction, the

transition of a liquid droplet in the Cassie-Baxter state to the Wenzel state stems from

the metastability of the Cassie-Baxter state in the specific region where the red dot line

is in Figure 1.8 [42]. In this region, thermodynamically, the Wenzel fully-wetted state

is the global minimum energy state and the Cassie-Baxter composite state may possess



several local minimum energy states. When the energy barrier originated from solid

surface topography is overcome by some external perturbations, such as evaporation of

the liquid, vibration, and impact by dynamic droplets, the Cassie-Baxter state

transitions into the Wenzel state and the liquid-air-solid composite system is stabilized.

As a consequence of this transition, the apparent contact angle generally decreases

whereas the equilibrium contact angle is satisfied locally at the composite contact line.

In this chapter, we first review the dimensionless robustness parameter and the meaning

of the two failure mechanisms. Qualitative and quantitative analyses are then followed

with the experimental results using the three-dimensionally printed re-entrant structures.

3.2 Two failure mechanisms

It is assumed that there are two kinds of the transition of a composite state liquid

droplet. The first category is when the lowest part of the distorted liquid-air interface

touches the bottom of the solid between two asperities because of the pressure

difference across the liquid-air interface. The second case is when the height (or aspect

ratio defined as the ratio between height and spacing) of asperities is large enough to

prevent the liquid-air interface from reaching the bottom first. In this case, the three-

phase contact line approaches the point of the minimum texture angle (YImin) as the

pressure difference increases, before the first case occurs. As the composite contact line

reaches the minimum texture angle point, thermodynamics indicates that the state of the

composite system passes on the summit of energy barrier. The next step is spontaneous



imbibition into the asperities, which is the similar to the first case. However, these two

mechanisms have not been verified by using video camera due to the limit of the size of

the surface texture.

3.3 Qualitative analysis

One of the most significant component of this work is to show the transition

directly through a video camera. To allow to video the transition, millimetric scale is

employed because the value of dimensionless robustness parameters H* and T* is about

unity at this scale, which means it is close to the transition point of millimetric liquid

droplets. Moreover, the observation problem relevant to small texture scale of micro-

textured surfaces can be avoided because the texture scale is large enough to video

using a video camera.

To determine the specific dimension of the hoodoo structure at the millimetric

scale, the dimensionless robustness parameter that was derived in the PNAS paper has

played a key role. Some candidate designs that are distributed like a square array on the

H* and T* graph around the H*=T*=l were tested, as shown in the Figure 3.1. The

state of liquid droplets was checked by gently placing droplets on each design and then

two approaches were employed: decreasing the height of hoodoo and increasing the

spacing between neighboring hoodoos. The former leaded to the H* failure mode and

the latter caused the T* failure mode.



Figure 3.1 Three-dimensionally printed millihoodoos.

H

Figure 3.2 The Cassie-Baxter state droplet (top) and sequential images of two failure

modes (bottom).

The two failure modes are shown clearly in the Figure 3.2. The top image

exhibits the Cassie-Baxter state of an ethanol droplet and the distorted liquid-air

interface under the droplet. From the design in the top image, the height or spacing of

... ....... . ................................ ..... .............. -



millihoodoos was changed first. The images on the left side are representing the

sequential results of placing an ethanol droplet on the hoodoos possessing a height

shorter than the design in the top image. When the droplet approaches the hoodoo cap

parts, the lowest point of the liquid-air interface touches the bottom of solid between

the hoodoos just before the other parts of the interface reach the hoodoo cap parts. Once

the contact occurs, it leads to a spontaneous wetting on the solid surface. As a result,

the Wenzel state of the droplet is shown in the bottom image (H* failure mode).

The other case is when the height of hoodoos is great enough to prevent the first

failure mechanism. The composite contact line first reaches the point of the minimum

texture angle (lymin) before the lowest part of liquid-air interface wets the bottom solid

surface. This case leads to another instantaneous wetting from the point of the

minimum texture angle because the curvature of liquid-air interface cannot resist

greater pressure difference across the interface (T* failure mode).

In addition to observation of the transition from the Cassie-Baxter state to

Wenzel state, we have employed a three-dimensional printing technique for the

fabrication of the structure negative minimum texture angle, as shown in the Figure 3.3.

As mentioned in the Chapter 2 Methodology, in the three-dimensional printing process,

the supporting material that is deposited to support re-entrant (or overhang) structure is

dissolved after the UV-curing step. Thereby, this method can produce a variety of

structures including spade and club shape in the below since the UV-curable polymer

droplets are deposited without any limit in three dimension thanks to the supporting

material. Note that the below two-dimensional images are the cross-sectional views of

the three-dimensional structures.
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Figure 3.3 Ethanol droplets with green die on the textured surfaces with four card shapes

shows the effect of negative minimum texture angles (Vmin) on the two wetting regimes.

Four different card shapes were three-dimensionally printed and coated with

fluorodecyl-POSS. As shown in Figure X, ethanol droplets (volume ~ 10 gl) with green

dye were gently placed on top of the square array of each structure. The height of pillar

part, diameter of cap part, and the period of square array are kept to be identical in the

four shapes. Therefore the different results on the four card shapes represent the effect

of the minimum texture angle on the wettability of the textured surfaces. As expected,

ethanol droplets form the Cassie-Baxter state on both the spades and clubs whose Vmin=

-300, whereas the droplets were not supported by both the hearts and diamonds whose

Vfjmin = 450, immediately as the droplets are placed on top of the solid structure.



The overall results are analyzed by using the dimensionless robustness

parameters in the Figure 3.4. Note that since the diameter of the hoodoo cap part (W),

the radius of curvature of the hoodoo cap part (R) and the volume of droplets are fixed

in this experiment. Therefore, the expression for H* depends on only H and D, which

are the two axes of the Figure 3.4. In particular, the T* failure mode depends only on D

because it is assumed that H is large enough to prevent H* failure in this case.

However, the specific values of H* and T* are not consistent with the meaning of

values of the dimensionless robustness parameters. We expected that failures occur when

H* and T* is about 1 where the critical pressure difference of droplets on the surface

topography is around the value of the reference pressure difference. But the existing

formulae have turned out that they lead to unexpected values of H* and T*. Ethanol

droplets failed on the millihoodoos even when H* is equal to 12.3.
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Figure 3.4 The overall results of millihoodoo experiment with theoretical prediction

based on the dimensionless robustness parameters derived for microhoodoos.
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3.4 Derivation of dimensionless robustness parameters

for millihoodoos

Although the dimensionless robustness parameter has been in good agreement

with the experiment using microhoodoo surfaces, for analyzing the millihoodoo

experiment the results have shown unexpected values. The derivation of the previous

formula that were optimized for microhoodoo surfaces was checked and it turned out

that some assumptions in the derivation are not appropriate because of the significant

differences between microhoodoo and millihoodoo.

First, the shape of the hoodoo cap is different. The previous formula is based on

the square top view shape of microhoodoo cap but the millihoodoo caps have round top

view shapes. At a first glance this looks a minor or even negligible factor; however, the

combination of relatively great diameter of the hoodoo cap (2W) and small spacing

(2D) of round cap shaped hoodoo (millihoodoo case) leads to about five times greater

spacing between two diagonally adjacent hoodoos compared to the square cap shaped

hoodoo (microhoodoo case). This greater spacing is one of the major reasons that

cause a smaller resistance against pressure difference across the liquid-air interface

between hoodoos despite of the high values of H*.



2W 2D

Figure 3.5 The scanning electron microscope (SEM) images and schematic oblique

view of microhoodoos and millihoodoos. The upper illustration describes the unit area

for the calculations of the dimensionless robustness parameters [28] and the lower

illustration shows an important difference compared to the square hoodoos. The

diagonal distance between the edge of two hoodoo cap parts is much greater than the

horizontal or vertical distance between them (in case of top view).
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Figure 3.6 The cross-sectional view of hoodoo geometry and some notations [28].

Second, the relative dimensions (R, W, D, and H in Figure 3.6) of the hoodoo

structures also attributes the distorted values calculated based on the previous theory on

robustness. Whereas the microhoodoos have a negligible thickness (2R) of cap parts,

millihoodoos possess relatively great thickness, which affects the vertical position of

the lowest liquid-air interface. Thus this difference between the calculated vertical

position and real position of the lowest liquid-air interface becomes another source that

causes unexpectedly high H* values of millihoodoo surfaces.

Based on the observation and understanding the reasons of misleading values,

the generalized dimensionless robustness parameters have been derived from the

derivation of H* and T* in the paper [28] and then particular values for the millihoodoo

structure have been substituted. First, using the notations in Figure 3.6, H* for a striped

hoodoo structure is derived first and then extended to discrete hoodoos with the round

top view shape of hoodoo caps.
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Although the previous derivation has ignored R (the radius of curvature of the

hoodoo cap side), it cannot be negligible because R is on the order of H.

PH -2{D+ R(1 - sin V)}L = YLV -2L -sin (5,,pe (3.4-1)

Simply, the following equation is obtained from (3.4-1) and correlated with the

Laplace Pressure.

P_ YLV sin 3 stripe YLV

D + R(1- sin V) Rsag (3.4-2)

From the derivation in the paper (Figure S7 [28]), if the simplification using the

approximation is changed to the original trigonometric relation the following relation is

determined.

Rag
2 sin 2 ( 8 / 2) -[D+ R(1 - sin V)] 2

sin 2 ( 30) -[R(1 - cos6E )+ H]
(3.4-3)

By substituting Eq. 3.4-3 into Eq. 3.42, the critical pressure difference for the H*

case is calculated.

YLV YLV sin2 (6)- [R(1 - cos OE)+ H]
H Rsag 2 sin 2(61 / 2) [D + R(1- sin V)] 2

(3.4-4)

, PH

P,.f

cap sin 2 (6) -[R(1- cos9E)+H]
4 sin 2 (

46 / 2)- [D + R(1 - sin y)] 2

(3.4-5)

Next step is for the discrete hoodoos with the round top view shape. Eq. 3.4-1 is

represented as the following.

PH{{W+D(-sinV)2 _ {W - R(1- sin V)} 2

4
(3.4-6)



27[W - R(1- sin V/)] s5fdiscre
= LV 4 isrt4

For the expression for the incrental sagging angle S6discrete the two Eqs. 3.4-1 and

3.4-5 are compared and then rearranged.

2 si fl 3
discretesin0stripe

W - R(1-sing)
SD+ R( 1- sin Vf)

2

4 + D+ R(1-sing) I
r W - R(1 - sin y))

Lastly, by substituting the Eq. 3.4-6 into Eq. 3.4-2, we have calculated PH for

the discrete hoodoo case and then compared with the reference pressure of an ethanol

droplet to derive the final form of H*.

[sin2(5) - C Hi2sin2(36 /2) """pj~cs8~ Ri

[D + R(1 - sinVf)] 2 W - R(-sinyf)
~ D +R(1- sing)

I±4 1+ D+R(1-singf)
r (W -R(1 -singV))

- (3.4-8)

The last part is the derivation of T* using the similar steps based on the Eq. s4-10

in the literature. Note that R is not ignored here again because of the same reason in the

derivation of Eq. 3.4-1.

P -2{D + R(1 - sin V)}L = y,, -2L - sin(0E- Vmin (3.4-8)

Similar to Eq. 3.4-2, the terms in Eq. 3.4-8 are rearranged.

P_ Y (LV si 0 min)

D + R(1 - sin Vf)

Compared with the reference pressure, T* for the striped hoodoo with

considerable R is calculated.

(3.4-9)

(3.4-7)

H =



T* -" cap sin(OE - min)

Pref 2 [D +R(1 -sin y)] (3.4-10)

Finally, we have extended the discussion of T* for the discrete hoodoo possessing

round cap shape (top view) by substituting the Eq. 3.4-7 and employing the similar

method used in Eq. 3.4-8.

T casin(6E - Vfm)
T = ca -m2

[D +R(- sinV)][ D-R(1-singf) 4 + D+R(1-singf) )I
[D+R(1-singf)- r (W-R(1-singf))I - (.-1-- ' (3.4-11)

The following formulae are the simplified H* and T* by substituting the

conditions for millihoodoos.

3 1capH T* t cap sin(&E ~fmin)
H =- - )2 , T* = - )2 (3.4-12)

2DW -1+ -1 W -1 - -1
Ix W W

3.5 Quantitative analysis

The Figure 3.7 is the overall result using the rederived H* and T*. Note that in

our experiment, W is fixed, therefore H* depends on H and D whereas T* is affected by

D only. First of all, horizontal axis indicates spacing D of millihoodoo and vertical axis

indicates height H. On this red line, all the points have identical H* value of 1.25 which

is the average value of this range and in this light red area, H* value is smaller than

1.25. This means H* failure would occur. Next on this blue line, all the points have

identical T* value of 1 which is the average value of this range and in this light blue



area T* failure would occur due to the larger spacing. Therefore, only white region

possessing large H and small D represents Cassie-Baxter state.

As shown in the Figure 3.7, these specific values are near 1 and in good

agreement with experimental results, no failure, H* failure, T* failure and failure by H*

or T*. Actually, these specific values are also verified by using simulation models in

the next section.

PH*- g rHL rn

0.9 900 ~

-- .95 Robust - r=0.95
o No Fail Composite O No Fal

BY' yw State M B H"
S sy Region
*HWor P - QWo

0.4 I.~1420 -- t--

0.2 ,290

0.2 220

0.13 0.2 0.27 0.35 130 200 270 350
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Figure 3.7 The overall results of millihoodoo experiment with theoretical prediction

based on the generalized dimensionless robustness parameters. (a) standard hoodoo

geometry. (b) re-entrant geometry with negative texture angle (Y/= -90') possessing the

identical values of height (H) and spacing (2D).



Chapter 4

4. Simulation of Static Wetting Phenomena

In this chapter, the input routines (or source codes) for modeling a liquid droplet

on hoodoos at multiple length scales are explained in detail. Developed by using finite

element method based simulation software the Surface Evolver, the millihoodoo and

nanohoodoo models compute the equilibrium state shape of liquid droplets. In addition,

they provide the verification of two failure modes at different length scales and a priori

evaluation of robustness of the Cassie-Baxter composite state of droplets on re-entrant

structures.

4.1 Hoodoo structure

Input routines that describe a droplet sitting on four identical hoodoo structures

were coded by using the Surface Evolver grammar in text (.txt) file format. For the

development of the simulation model, mathematical symmetry around an axis was used

because the droplet is placed at the center of a square array of four hoodoos. Using the

mirror and transform commands, the liquid drop and re-entrant structure are represented

by only one eighth of the entire geometry, thereby saving computation resources

(Figure 4.1).



Milihoodoo (texture scale - droplet scale)

Figure 4.1 The liquid-air-solid composite system including four millihoodoos.

constraint xmirror-con
formula: x=0

constraint ymirror-con
formula: y=2*(Ww+Dd)

viewtransform generators 1
1 0 0 0 / 1/8 clockwise
0100
0010
0001

view transform 1
1 0 0 0 // 1/8 clockwise
0100
0010
0001

(The full source code of transform command is omitted here. See Appendix.)

Mirroring and
transforming

Symmetry

Top view

. ...... .....



The geometry including the part of a hoodoo and a droplet defined in the

Surface Evolver is composed of three parts. First, the bottom of the solid is produced by

only three points (or vertices referred as points in the Surface Evolver command

system) and then connected by lines (or edges). To capture T* failure mode using the

bottom view, no opaque color was used for the bottom facet. In other cases, the bottom

facet (or face) is filled with red color to clearly show the bottom solid for making some

movies and helping understand the structure of the liquid-air-solid composite system.

vertices
2 0 0 0 constraints diagmirror con xmirrorcon
3 2*(Ww+Dd) 2*(Ww+Dd) 0 constraints diagmirrorcon ymirrorcon
4 0 2*(Ww+Dd) 0 constraints ymirrorcon xmirrorcon

edges
520 2 3 constraints diagmirrorcon
530 3 4 constraints ymirrorcon
540 4 2 constraints xmirror con

Figure 4.2 Bottom facets for the millihoodoo model (red).

...........



Second, the pillar of hoodoo structure is created using a simple formula

describing a cylinder. The constraints including surface tension were imposed only on

the sidewall that is colored by red. The height (H) of the hoodoo structure is adjusted in

each simulation indirectly by using several "bottom surfaces," which help to measure

the critical height of the hoodoo structure in the case of failure.

parameter Hh = 0.800 *0.001 // millimeter
parameter Hh top = 0.928 *0.001 // millimeter
parameter Hhbottom = 0.672 *0.001 // millimeter
parameter Hh2 = (0.672-0.1) *0.001 // millimeter
parameter Hh3 = (0.672-0.2) *0.001 // millimeter
parameter Hh4 = (0.672-0.3) *0.001 // millimeter

constraint pillar-con
formula: (x-Ww-Dd)^2+(y-Ww-Dd)^2=((Ww-Rr)/2)^2

(The source code of vertices and other components are omitted here. See
Appendix.)

Figure 4.3 Pillar facets for the millihoodoo model (red).

. .. ........ - , - -........



Third, the cap of hoodoo structure is composed of three surfaces: top flat surface,

side donut surface, and bottom flat surface. The surfaces that are contacted with a liquid

droplet is identified as wetted area and colored as blue, whereas the other area is

assumed to be dry and colored by red. All the surfaces are designed as smooth surfaces

and the edges of each surface are connected by specific constraints; therefore the liquid-

air-solid contact line can move along the surfaces in order for the composite system to

be in an equilibrium position as other constraints like the volume of a liquid droplet are

set. Finally, the droplet was placed at the center of the square array of four hoodoos as a

polyhedron and given blue color.

constraint torus__con //clockwise(1/4)
formula: (((x)A2+(y)A2)AO.5-(Ww-Rr))A2+(z-Hh)A2=RrA2

constraint topcon
formula: z=Hh+Tt

constraint bottom con
formula: z=Hh-Tt2

faces
1 1 2 3 constraints topcon tension
tens*0.5*(1 -cos(angle*pi/1 80)) color blue

11 11 12 13 -2 constraints topcon
tension tens*0.5*(1-cos(angle*pi/180)) color blue

21 21 22 23 -12 constraints torus con
tension tens*0.5*(1 -cos(angle*pi/1 80)) color blue

31 31 32 33 -22 constraints torus con
tension tens*0.5*(1 -cos(angle*pi/1 80)) color blue

41 501 502 503 -32 constraints tension tens color blue

101 -103 -102 -101 constraints bottom con
tension tens*0.5*(1+cos(angle*pi/180)) color red



111 102 -113 -112 -111 constraints bottom con
tension tens*0. 5*(1 +cos(ang le*pi/1 80)) color red

121 112 -123 -122 -121 constraints torus con
tension tens*0.5*(1+cos(angle*pi/180)) color red

131 122 -133 -32 -131 constraints torus con
tension tens*0.5*(1 +cos(angle*pi/1 80)) color red

(The source code of vertices and other components are omitted here. See
Appendix.)

Figure 4.4 Top facets for the millihoodoo model (blue and red).

The polyhedron structure of the droplet evolves into a distorted sphere shape

that is constrained by the gravity acting on the mass of the droplet or pressure

difference across the liquid-air interface, at each iteration. When the sixth decimal place

in the value of energy (second column in Figure 4.5) reached constant number, the

iteration process was stopped because the change of the droplet shape by more iteration



is negligible. The equilibrium contact angle is preserved locally and determined by the

constraints of surface tension at each interface: liquid-air, liquid-solid, and solid-air

interface. To simulate the quasi-static and isothermal evaporation of an ethanol droplet,

we investigated the behavior of a series of droplets, by decreasing the volume of the

droplet until they reached one of the failure modes.

bodies
1 -1 -11 -21 -31 -41 pressure 0.2*press

gogo := {
body[l].pressure := press; g 30; hessianseek; hessianseek; V; V; }

Oa r

1. area: 6.13493368865825e-87
Vertex averaging done.
Vertex averaging done.

38. area: 6.13496563887374e-87
29. area: 6.13496452899295e-87
28. area: 6.1349635743292e-87
27. area: 6.13496251996782e-87
26. area: 6.13496153888682e-87
25. area: 6.13496858641848e-87
24. area: 6.13495952323437e-87
23. area: 6.13495858156312e-87
22. area: 6.13495752183399e-87
21. area: 6.13495658593587e-87
28. area: 6.13495553848459e-87
19. area: 6.13495451771173e-87
18. area: 6.13495354686497e-87
17. area: 6.13495253472918e-87
16. area: 6.13495156599773e-87
15. area: 6.13495855486383e-87
14. area: 6.1349495887268-87
13. area: 6.13494857616477e-87
2. area: 6.13494761838498e-87

I

energy: 2.21972168%5418e-87 scale: 8.88156369

energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:
energy:

2.21972189874232e-87
2.21972188430423e-87
2.21972187787877e-87
2.21972187145583e-87
2.21972186583455e-87
2.21972185861329e-87
2.21972185219181e-87
2.21972±845769286-87
2.21972183934532e-87
2.21972183291948e-87
2.21972182649131e-87
2.21972182886833e-87
2.21972181362635e-87
2.21972188718867e-87
2.21972188074717e-87
2.21972179438119e-87
2.21972178785861e-87
2.21972178139477e-87
2.21972177493358e-87

scale:
sca le:
scal e:
scale:
scale:
scale:
scale:
sca le:
scale:
sca le:
sca le:
scale:
sca le:
sea le:
scale:
sca 1e:
sca 1e:
sca 1e:
scale:

14.9645
1U.8536
14.8887
11.8622
14.8492
11.8784
14.8224
11.8955
14.7968
1.9126

14.7719
11.9296
14.7475
11.9465
14.7234
11.%31
14.6999
11.9796
14.6767

Figure 4.5 Snapshot of the terminal window for Surface Evolver (Mac OSTM version).

The iteration routine using the Surface Evolver offers some advantages and

disadvantages. First of all, the sectioned geometry shows the cross-sectional view of the

resulting shape of droplets as well as saves computational resource. Moreover, the



averaged size of each facet is also controllable, leading to more accurate calculation.

On the contrary, there are some limitations in describing advancing and receding

contact angles because the motion of contact line is not considered in this routine.

Therefore, to simulate dynamic wetting phenomena, further advanced modeling should

be applied into this routine in the future work. The entire source of code is attached in

the appendix.

4.2 Comparison with experimental results

The simulation results were compared with the experimental results of Chapter

3, assuming the identical physicochemical properties of the droplets-air-millihoodoos

composite system and substituting the gravitational acceleration of 9.8m/s2.

Each point in the Figure 3.7 is verified and categorized into two failure modes by

observing the equilibrium shape of the liquid droplets in the simulation. The cross-

sectional side view to display the lowest point of liquid-air interface and the bottom view

to observe the liquid-air-solid composite contact lines are checked after a sufficient

number of iteration. The results are generally in good agreement with the millihoodoo

experiment. Some discrepancy may be from the different surface roughness; because of

the low accuracy of three-dimensional printing technology used in the experiment, the

micrometric roughness produces continuous small re-entrant structure on the side of

millihoodoos and therefore influences the robustness of the composite state of droplets.



Figure 4.6 The cross-sectional view of a droplet and millihoodoos (a snapshot in the

middle of the calculation for an equilibrium state).

4.3 Application of the simulation model at the

nanometric scale

The core part of the iteration routine can also be applied to the prediction of the

two failure modes or a priori evaluation of the robustness of the Cassie-Baxter composite

state at the nanometric scale. As shown in the Figure 4.7, four nanohoodoos which are

arranged in a square array support a part of liquid-air interface of a droplet. Note that

there are more than billions of nanohoodoos under a millimetric liquid droplet because

the texture scale is much smaller than the droplet scale.

...... .. ................ .



Figure 4.7 The oblique view of liquid-air-solid composite system including four

nanohoodoos and a part of liquid-air interface.

The main difference in the source code for nanohoodoo (compared to that for

millihoodoo) is the way to impose pressure difference across the liquid-air interface.

Whereas the volume of the droplet and the density of liquid lead to the pressure

difference by gravitational field, substituting the value of pressure of liquid against air

results in the distorted liquid-air interface. This method is clearly more cost-efficient than

describing an enormous liquid droplet with billions of nanohoodoos. The other physico-

chemical properties of composite system are kept as the millihoodoo model and thus the

following two major results are considered to predict wetting phenomena at the

nanometric scale.

The two failure modes are verified at the nanometric scale, which was predicted

by the robustness analysis in the literature. First, this nanohoodoo model clearly showed

two different modes which is schematically shown in the Figure 4.8. Moreover, the

critical pressure and kinds of failure calculated by using the nanohoodoo model were

consistent with the order of magnitude of breakthrough pressure obtained from the



microhoodoo experiment when the scale of design parameters is adjusted to become the

value used in the PNAS paper.

Figure 4.8 Schematic overview of two failure mechanisms and criteria - the texture angle

(0y) and height of the lowest point of liquid (h).

................



Front view (AP = APcrz/2)

Oblique view (AP = 0 Pa) Oblique view (AP = AP,./2)

Bottom view (AP = 0 Pa) Bottom view (AP = APrit)

Figure 4.9 Movie frames showing two kinds of failure mechanisms (nanohoodoo case).

The consistency of these hoodoo models with milli/microhoodoo experiments

supports our final goal in this section: the development of reliable apriori evaluation of

robustness of the composite state droplet on nanohoodoos. As shown in the Figure 4.10,

the proposed nanohoodoo design can support an ethanol droplet upto the breakthrough

pressure of about 26 kPa. It should be noted that the texture angle (0/) at the liquid-air-

solid contact line reaches zero degrees, which is equal to the minimum value of the

Front view (AP = 0 Pa)



hoodoo structure and means T* failure, before the lowest part of liquid-air interface

contacts the bottom solid (h = 0).

Ethanol

Physicochemical properties

P = 789 kg/m 3,
YL = 22.27mNm, OE60

1000 " . .

60 -

C 500
i 30 !

0 10 20 26 0 10 20 26

AP (kPa) AP (kPa)

Figure 4.10 Calculation of the texture angle (/) and height of the lowest point of liquid

(h) with respect to pressure difference across the liquid-air interface of a millimetric

droplet on nanohoodoos.

At last, it is important to emphasize the meaning of the breakthrough pressure of

26 kPa. This value is more than five hundred fold compared with the breakthrough

pressure of microhoodoo surfaces. Considering the fact that the pressure under 10 cm of

water is about 1 kPa, the microhoodoo surface (Pbreakthrough = APcrit - 100 Pa) is not

practical for our daily life. However, the result of simulation model opens a pathway to

significantly improve the robustness of composite state on non-wettable surfaces and

expand application of liquid repelling solid surfaces under harsh circumstance including

rain drop impact.

.. ....... .... .. ............. .... . ............. ... ........... ...
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Rdro
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Figure 4.11 Increase in the robustness of Cassie-Baxter composite state on a nanohoodoo

surface compared to a microhoodoo surface. The white scale bars in the three small

images indicate 1mm.



Chapter 5

5. Dynamic Robustness

To investigate the robustness of the Cassie-Baxter state liquid droplets that

impact on textured surfaces, water droplets were dropped on transparent

superhydrophobic nanopost surfaces by the gravity. In addition to the observation of

side and bottom view of the drop impact utilizing a beam splitter, the impact forces

were measured using a piezoelectric film pressure sensor at the impact velocity ranging

from 0.99 m/s to 1.47 m/s. Based on the experimental results, the modified coefficient

of the water hammer pressure is proposed.

Figure 5.1 Schematic drawing image of a square array of posts and SEM image of

nanoposts made of PFPE.

Before discussing the method to calculate the maximum impact pressure and its

experimental verification, some of important arguments should be noted. According to



the experiments of Rioboo et al., there are six possible outcomes of drop impact as shown

in Figure 5.2. In this work, the last two rows - partial rebound and complete rebound -

are focused for the verification of our theoretical approach.

Deposition

Prompt splash

U Corona splash

Receding break-up

Partial rebound

Complete rebound

Figure 5.2 Morphology of drop impact on a dry surface [51, 69].

In addition, Rioboo et al. and Yarin pointed out that the dimensionless groups

Weber number (We), Reynolds number (Re), and Ohnesorge number (Oh) can not

accurately describe the six different outcomes in Figure 5.2, although the non-

dimensionalized numbers play an essential role for the analysis of motion of droplets on

flat surfaces. This is because the dimensionless groups do not have information about the

El



wettability and roughness of solid surface, which is closely related to the behavior of

droplets.

We =pDV 2  inertial effect (5-1)
a surface tension effect

Re =pDV inertial effect (5-2)
y viscous effect

Oh = = W (5-3)
(paD 2 Re

where Vo and D denote the drop diameter and impact velocity, respectively, p, a and y

liquid density, surface tension and viscosity, respectively.

Instead of the non-dimensional groups, they provided the following Table 5.1,

containing the trends of six different outcome indicated by variation of physical

parameters. To the extent that this chapter is about dynamic robustness, we will focus on

the impact pressure issue rather than the motion of droplets described by the

dimensionless groups.



Table 5.1 Summary of the effect of each parameter on each of the six scenarios [51, 69].

Ra, R, and 0ree indicate the roughness amplitude, wave length, and wettability

characteristic (receding angle), respectively.

Prompt Corona Receding Partial Complete
Increase of Deposition splash splash breakup rebound rebound
Vo 4 t t t t
D 4 t

0 ~ __ __ 4 4 t t t

_ _ _ _t 4,4, t
Ra 4 ,_ _ _

Orec _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

5.1 Failure modes and dynamic surface tension

For the consideration of transition from the Cassie-Baxter state to the Wenzel

state of a droplet that contacts on the static solid surface with an impact velocity, we

assume dynamic failure mechanism is not far different from the static failure mechanism

in terms of force balance or maximum pressure difference. The breakthrough pressure

should be calculated from the force balance between the surface tension (considering

advancing contact angle instead of equilibrium contact angle) and pressure difference

across the liquid-air interface, leading to a distorted interface. According to the literature,

the dynamic surface tension does not deviate from the 10% of 72 mN/m (Figure 5.3).

Thus, the pressure generated by the drop impact can be evaluated to investigate the

conditions for the transition using a constant surface tension.
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5.2 Breakthrough pressure formula for a square array

of posts

In their work on water drop impact on superhydrophobic surfaces, Deng et al.

developed the breakthrough pressure formula using their own notation [57]. They

applied this static breakthrough pressure concept to the dynamic situation and attained

consistent experimental results. Lee et al. also exploited the equation for calculating

breakthrough pressure to mention the robustness issue in the analysis of drag reduction

[64].

4 0 12 6 20 24 28

EXPOSURE TIME . t (MSEC)

Figure 5.3 Dynamic surface tension of water [70].

..................



These two representative breakthrough pressure formulae were consistent with

the breakthrough pressure formula derived from the dimensionless robustness design

parameters except that H* failure did not appear in those formulae. This is because the

researchers assumed that their post structure has high aspect ratio (i.e., the ratio

between the height and width of the post) and just considered T* failure mode (Figure

5.4) [57, 64]. Here are the equations for the critical height of posts to avoid H* failure

and for the breakthrough pressure when T* failure occurs.

Hrt- D(1 - sin 0ad,)0.7H,= =cs~d 0~.27D
OS- OSas

pbreakthrough = 2 L -CSed

D(1 +J )

(5.2-1)

(5.2-2)

Figure 5.4 Two failure modes of the Cassie-Baxter state droplet on post structure.

AP when h- 0
H =

Pef

AP when q -6,
T*a

P
ref



5.3 Water hammer pressure

The calculation of water hammer pressure is a more accurate method to compute

the maximum dynamic pressure when a water droplet impacts on a solid surface, than the

calculation of the Bernoulli pressure. In some recent papers, researchers have used the

Bernoulli pressure for calculating the critical impact pressure or velocity for complete

rebound but the water hammer pressure has been verified by many experimental studies

[46, 55, 56, 65, 71]. Deng et al. exploited the water hammer pressure to find the transition

condition by comparing it with the intrinsic breakthrough pressure of textured surfaces

[57]. They showed that a water droplet completely rebounds off the solid surface after the

collision if the water hammer pressure determined by physico-chemical property of the

descending water droplet is less than the breakthrough pressure. However, when the drop

impact experiment results in the literature (Vimpact - 1 m/s) were compared with the

breakthrough pressure of a textured surface based on the static case, the order of

magnitude of the water hammer pressure is much higher than the breakthrough pressure,

although the water droplets completely rebound. Table 5.2 presents the impact velocity

and water hammer pressure calculated assuming the coefficient a = 0.2, which was

proposed by Engel [53, 54].



Table 5.2 Impact velocities and water hammer pressures.

height (cm) impact velocity (m/s) Water hammer pressure (kPa)
1 0.44 132.82
3 0.77 230.04
5 0.99 296.98
7 1.17 351.40
9 1.33 398.45

11 1.47 440.50
13 1.60 478.87
15 1.71 514.39
17 1.83 547.61

In the literature, many complete rebound cases were reported using the

superhydrophobic textured surfaces possessing post structure [57, 65]. The researchers

calculated that breakthrough pressure was on the order of 1000 Pa and verified this value

experimentally, for example, the evaporation of liquid droplet. However, those

superhydrophobic textured surfaces could resist the pressure (~ 100 kPa, according to the

Table 5.2) by the water droplet that was dropped at the height of several centimeters

despite of the breakthrough pressure of several kPa.

We have thought that these discrepancy stems from they adopted the value of

water hammer pressure coefficient a from the previous research papers without

experimental verification. In the following section, we compared the static breakthrough

pressure formulae that were derived in some papers. Then the calculation of impact

pressure from the impact force measured on the flat surface utilizing the high-speed

camera images.



5.4 Drop impact experiment

To verify that the breakthrough pressure formula is also effective in the dynamic

contact between water droplets and textured surfaces, the following experiment was

designed based on the description in the literature [55, 56]. The impact force was

measured using a data acquasition (DAQ) system that was composed of a piezoelectric

film (DT2-052K, LEADER Electronics Co.), a DAQ device, and a computer (LabVIEW).

This experiment is based on the recent research paper on the measurement of the impact

force on hydrophilic flat smooth surfaces [71].

Before water was dropped, the piezoelectric film was calibrated using the simple

dynamics equation describing the collision of a rigid ball on a rigid flat surface. In this

experiment, the piezoelectric film was attached on the beam splitter that was used for the

observation of both side and bottom view. A data acquisition (DAQ) device (National

Instruments, USB-6021) collected the voltage information from the piezoelectric film and

the LabVIEW 2009 in the computer that was connected to the DAQ device processed the

signal. A small stainless steel ball (m = 1.022 g, r = 3.01 mm) was dropped onto the

piezoelectric film at different height to measure the responding voltage (Vo) induced by a

wide range of impact force (Fimp). Since we used the same piezoelectric film as the film

used in the paper, the resultant calibration equation was similar.

F;m= 8.58V, (5.4-1)



A nearly constant volume ( V= 8.58 mL) of water (p = 998 kg/m 3, c = 1500 m/s,

mwatedrop =8.58 x 10--kg) was released from the syringe tip that was placed above the

transparent superhydrophobic nanopost surfaces at different heights with no initial

velocity. First, the beam splitter was used to see the bottom view as well as the side view

(Figure 5.5). Along with the verification of the circular shape and the complete rebound

(i.e., the Cassie-Baxter state) of the spreading water droplet on the superhydrophobic

surfaces, both the piezoelectric film and high-speed camera were used to record the

voltage signal as well as the motion of the water droplet in the side view.
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Figure 5.5 Sequential high-speed camera images of the drop impact on superhydrophobic

surfaces with the impact velocity of 1.17m/s and the We of 19.0.
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Figure 5.6 Impact force vs. time at various impact velocities.



As shown in Figure 5.6, the temporal distribution of the impact force on the

superhydrophobic surface is different from that of the impact force on the hydrophilic

surface. The peak impact force on the hydrophilic surface is slightly (10 to 20 percent)

higher and faster than the other case. On the hydrophilic surface, the horizontal edge

velocity of the water droplet is slow because the drag force acting on the water droplet is

stronger than on the textured superhydrophobic surface that possesses a large portion of

liquid-air interface as well as the liquid-solid interface. Therefore, most of the momentum

is converted into the force in the vertical direction within a shorter time than the

superhydrophobic case and it is detected as the impact force by the piezoelectric film.

The shorter time duration of the impact force of the hydrophilic surface case can be

explained in the similar way.

Although the values of peak impact force are not much different in the two

different surface cases, the peak impact pressure might not be similar to each other

because the pressure is computed considering the actual area that the force acts on. In

other words, the peak point in the temporal distribution of impact pressure does not have

to be coincident with that of impact force. However, more deliberate analysis based on

the high-speed camera images and other novel method to detect the spatial distribution of

impact pressure is necessary because the impact pressure simply calculated from the

apparent area does not represent the local maximum pressure that is highly relevant to the

breakthrough pressure.

Here, the simple impact pressure calculation at the peak impact force is provided

for the estimation of the order of magnitude of the water hammer impact pressure at the



impact velocity around 1 m/s (Table 5.3). The area used for the impact pressure

calculation was computed from the diameter in the high-speed camera images at the peak

impact force point. We also assumed that the impact pressure on the superhydrophobic

textured surface was uniformly distributes on the area under the spreading water droplet

and identical to the case of the chemically homogeneous smooth flat surface.

Table 5.3 Impact pressure at the peak impact force point at different impact velocities and

on hydrophilic(HP) surface and superhydrophobic (SH) surface.

Impact velocity Impact velocity Impact velocity
= 1.17m/s = 1.33m/s = 1.47m/s

HP SH HP SH HP SH
Impact 10.4

Pressure 11.7 8.19 12.6 9.48 13.4 (T*
(kPa) failure)

The impact pressure at the peak impact force point increases when the impact

velocity ascends as expected. The difference of impact pressure between the hydrophilic

surface case and the superhydrophobic surface case increased because the area in the

superhydrophobic surface case was greater than the other case. Interestingly, the Cassie-

Baxter state transitioned to the Wenzel state at the impact pressure of around 10 kPa

whereas the breakthrough pressure of this superhydrophobic surface is about 40 kPa. This

implies (1) that the local impact pressure may be greater than the breakthrough pressure

and (2) that the water hammer pressure coefficient a should be around 0.07 at the impact

velocity of around 1 m/s, as a consequence of comparison Table 5.3 with Table 5.2.



Chapter 6

6. Conclusion

6.1 Summary and evaluation of thesis objectives

To enhance the robustness of omniphobicity for practical applications, we have

explored the role of breakthrough pressure of liquid droplets on omniphobic surfaces and

fabrication process in the millimetric and nanometric scale based on three-dimensional

printing and various MEMS technology. The breakthrough pressure was investigated

further using the software tool Surface Evolver, to better understand the distorted liquid-

air interfaces and failure modes of liquid droplets, with the aim of developing a novel a

priori way for calculating robustness of the oniphobicity. In addition, based on the

Surface Evolver simulation results implying five hundred fold increase of breakthrough

pressure on the nanometric scale, we have focused on the design and fabrication of

nanometric texture. The low cost silicon-based replica molding fabrication process was

developed as well as a measurement tool for evaluating the robustness of

superoleophobic surfaces against dynamic impact by droplets.



6.2 Future work

Transparent solid surfaces non-wetted with water have recently been highlighted in

many studies for a wide range of practical applications including goggles, windshields, and

display panels of electronic devices [72]. To increase the ability to maintain the

hydrophobicity, which provides self-cleaning effect, the size of texture should be reduced

down to submicron scale for daily use. However, regularly arranged polymer-based post

texture for satisfying the hydrophobic condition are expected to cause interference

problems depending on the period of post arrangement when the submicron period of

post structure is near the wavelength of light [73].
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Figure 6.1 Two approaches to achieve anti-reflection and self-cleaning - coating only

(left) vs. micro/nanometric surface texture as well as coating (right) [74].

New solutions for challenging problems associated with both solid surface

contamination and optics are necessary. For example, dirty displays of cell phones and

laptops decrease legibility although the display itself has a high resolution and the

necessity of clean displays increases with the advent of touch screen technology. In

addition, both the sedimentation of dust and limited unidirectional anti-reflective coating

causes a decrease in the efficiency of solar cells. To solve these problems, the integration

of different fields related to the nature of the problems should be focused: (1) physico-

chemical interaction in adhesion process between different phases and (2) optical

principle for the design and fabrication of the functional surfaces. To prevent adhesion

.1 ........ ... ..... . ............ ..... .

Current Coating Approach



and facilitate separation between solid surfaces and contamination particles, our primary

goal is to discover how to employ various nano-texture and surface coating for each

specific problem. To delve into the governing mechanisms, we will build on my

fundamental knowledge by studying physical chemistry and interfacial fluid mechanics.

Furthermore, the study of optics, in addition to my research experience in MEMS, will

help to realize one of final objectives: the development of self-cleaning transparent multi-

directional anti-reflective surfaces with low cost.



Appendix

// Basic parameters. MKS system is used.

parameter Ww
parameter Dd

= 0.720
= 0.320

*0.001
*0.001

// millimeter
// millimeter

parameter
parameter
parameter
parameter
parameter
parameter

parameter Rr

parameter Tt
parameter Tt2

parameter DH

Hh = 0.800 *0.001
Hh top = 0.928 *0.001
Hhbottom = 0.672 *0.001
Hh2 = (0.672-0.1) *0.00
Hh3 = (0.672-0.2) *0.00
Hh4 = (0.672-0.3) *0.00

= 0.128 *0.001

= 0.127
= 0.06

*0.001
*0.001

= 3 *0.001

// millimeter
// millimeter

// millimeter
1 // millimeter
1 // millimeter
1 // millimeter

// millimeter

// millimeter
// millimeter

//2, 3 millimeter, Droplet Height

parameter volume 1
parameter density 1

parameter angle
parameter tens

= 10/8
= 789

= 60

= 0.02227

*0.000000001 //0.5, 2 microliter
// kg/(mA3)

// contact angle in degrees
// mN/m

/SCALE tens fixed
scale limit 1/tens
//0.0005

constraint torus__con //clockwise(1 /4)
formula: (((x-Ww-Dd)^2+(y-Ww-Dd)^2)^0.5-(Ww-Rr))^2+(z-Hh)^2=Rr^2

constraint topcon
formula: z=Hh+Tt

constraint bottom con
formula: z=Hh-Tt2



constraint pillar con
formula: (x-Ww-Dd)^2+(y-Ww-Dd)^2=((Ww-Rr)/2)^2

constraint plate I-con
formula: z=O

constraint xmirror con
formula: x=0

constraint ymirror con
formula: y=2*(Ww+Dd)

constraint diagmirrorcon
formula: x-y

constraint Hh2 con
formula: z=Hh2

constraint Hh3 con
formula: z=Hh3

constraint Hh4 con
formula: z=Hh4

viewtransform-generators 8

0 0 0 // 1/8 clockwise
100
01 0
001

0 00 / 1/8 clockwise, 2/4 ccw
100
010
001

0 0 0 // 1/8 clockwise
-1 0 0 //3/4 ccw
010
001

1 0 0 0 // 1/8 clockwise
0 -1 0 0 //4/4 ccw
0010



0001

0 1 0 0 // 1/8 clockwise
1000
0010
0001

0 -1 0 0 // 1/8 clockwise
1000
0010
0001

0 1 0 0 // 1/8 clockwise
-1000
0010
000 1

0 -1 0 0 // 1/8 clockwise
-1000
0010
0001

view-transforms 8

10 0 0 // 1/8 clockwise
0100
0010
000 1

-1 0 00 // 1/8 clockwise, 2/4 ccw
0100
0010
0001

-1 0 0 0 // 1/8 clockwise
0 -1 0 0 //3/4 ccw
0010
0001

1 0 0 //1/8 clockwise
0 -1 0 0// 4/4 ccw
0010
0001



00
00
1 0
01

0 -1 0 0
1000
0010
000 1

0 100
-1000
0010
0001

0 -1 0 0
-1000
0010
0001

vertices

// 1/8 clockwise

// 1/8 clockwise

// 1/8 clockwise

// 1/8 clockwise

1 Ww+Dd Ww+Dd Hh+Tt constraints diagmirror con topcon

2 0 0 0 constraints diagmirrorcon xmirrorcon
3 2*(Ww+Dd) 2*(Ww+Dd) 0 constraints diagmirrorcon ymirror-con
4 0 2*(Ww+Dd) 0 constraints ymirrorcon xmirrorcon

11 Ww+Dd+0.5*(0.7*Ww) Ww+Dd+0.5*(0.7*Ww) Hh+Tt constraints diagmirror-con
topcon
12 Ww+Dd Ww+Dd+0.5*(Ww) Hh+Tt constraints topcon
13 Ww+Dd-0.5*(0.4*Ww) Ww+Dd+0.5*(0.9*Ww) Hh+Tt constraints topcon
14 Ww+Dd-0.5*(0.7*Ww) Ww+Dd+0.5*(0.7*Ww) Hh+Tt constraints topcon
15 Ww+Dd-0.5*(0.9*Ww) Ww+Dd+0.5*(0.4*Ww) Hh+Tt constraints topcon
16 Ww+Dd-0.5*(Ww) Ww+Dd Hh+Tt constraints topcon
17 Ww+Dd-0.5*(0.7*Ww) Ww+Dd-0.5*(0.7*Ww) Hh+Tt constraints diagmirror con
topcon

21 Ww+Dd+0.7*(0.7*Ww) Ww+Dd+0.7*(0.7*Ww) Hh+Tt constraints diagmirror con
topcon toruscon
22 Ww+Dd Ww+Dd+0.7*(Ww) Hh+Tt constraints topcon toruscon
23 Ww+Dd-0.7*(0.4*Ww) Ww+Dd+0.7*(0.9*Ww) Hh+Tt constraints topcon
torus-con



24 Ww+Dd-0.7*(0.7*Ww) Ww+Dd+0.7*(0.7*Ww) Hh+Tt constraints top-con
torus-con
25 Ww+Dd-0.7*(0.9*Ww) Ww+Dd+0.7*(0.4*Ww) Hh+Tt constraints top-con
torus-con
26 Ww+Dd-0.7*(Ww) Ww+Dd Hh+Tt constraints top con toruscon
27 Ww+Dd-0.7*(0.7*Ww) Ww+Dd-0.7*(0.7*Ww) Hh+Tt constraints diagmirror con
topcon toruscon

31 Ww+Dd+0.9*0.7*Ww Ww+Dd+0.9*(0.7*Ww) Hh+Tt constraints diagmirror-con
torus con
32 Ww+Dd Ww+Dd+0.9*(Ww) Hh+Tt constraints toruscon
33 Ww+Dd-0.9*0.4*Ww Ww+Dd+0.9*(0.9*Ww) Hh+Tt constraints toruscon
34 Ww+Dd-0.9*0.7*Ww Ww+Dd+0.9*(0.7*Ww) Hh+Tt constraints toruscon
35 Ww+Dd-0.9*0.9*Ww Ww+Dd+0.9*(0.4*Ww) Hh+Tt constraints toruscon
36 Ww+Dd-0.9*Ww Ww+Dd Hh+Tt constraints toruscon
37 Ww+Dd-0.9*0.7*Ww Ww+Dd-0.9*(0.7*Ww) Hh+Tt constraints diagmirrorcon
torus-con

41 Ww+Dd+0.7*(Ww) Ww+Dd+0.7*(Ww) Hh constraints diagmirrorcon toruscon
42 Ww+Dd Ww+Dd+(Ww) Hh constraints toruscon
43 Ww+Dd-0.4*(Ww) Ww+Dd+0.9*(Ww) Hh constraints toruscon
44 Ww+Dd-0.7*(Ww) Ww+Dd+0.7*(Ww) Hh constraints toruscon
45 Ww+Dd-0.9*(Ww) Ww+Dd+0.4*(Ww) Hh constraints toruscon
46 Ww+Dd-(Ww) Ww+Dd Hh constraints toruscon
47 Ww+Dd-0.7*(Ww) Ww+Dd-0.7*(Ww) Hh constraints diagmirrorcon toruscon

101 Ww+Dd Ww+Dd Hh-Tt2 constraints diagmirrorcon bottomcon

111 Ww+Dd+0.5*(0.7*Ww) Ww+Dd+0.5*(0.7*Ww) Hh-Tt2 constraints
diagmirrorcon bottom-con pillarcon
112 Ww+Dd Ww+Dd+0.5*(Ww) Hh-Tt2 constraints bottom con pillarcon
113 Ww+Dd-0.5*(0.4*Ww) Ww+Dd+0.5*(0.9*Ww) Hh-Tt2 constraints bottomcon
pillar con
114 Ww+Dd-0.5*(0.7*Ww) Ww+Dd+0.5*(0.7*Ww) Hh-Tt2 constraints bottomcon
pillar con
115 Ww+Dd-0.5*(0.9*Ww) Ww+Dd+0.5*(0.4*Ww) Hh-Tt2 constraints bottomcon
pillar con
116 Ww+Dd-0.5*(Ww) Ww+Dd Hh-Tt2 constraints bottom con pillarcon
117 Ww+Dd-0.5*(0.7*Ww) Ww+Dd-0.5*(0.7*Ww) Hh-Tt2 constraints
diagmirrorcon bottom-con pillarcon

121 Ww+Dd+0.7*(0.7*Ww) Ww+Dd+0.7*(0.7*Ww) Hh-Tt2 constraints
diagmirrorcon bottomcon toruscon
122 Ww+Dd Ww+Dd+0.7*(Ww) Hh-Tt2 constraints bottom-con torus-con



123 Ww+Dd-0.7*(0.4*Ww) Ww+Dd+0.7*(0.9*Ww) Hh-Tt2 constraints bottomcon
torus con
124 Ww+Dd-0.7*(0.7*Ww) Ww+Dd+0.7*(0.7*Ww) Hh-Tt2 constraints bottomcon
torus con
125 Ww+Dd-0.7*(0.9*Ww) Ww+Dd+0.7*(0.4*Ww) Hh-Tt2 constraints bottom-con
torus con
126 Ww+Dd-0.7*(Ww) Ww+Dd Hh-Tt2 constraints bottom con torus-con
127 Ww+Dd-0.7*(0.7*Ww) Ww+Dd-0.7*(0.7*Ww) Hh-Tt2 constraints
diagmirrorcon bottomcon toruscon

131 Ww+Dd+0.9*0.7*Ww Ww+Dd+0.9*0.7*Ww Hh-Tt2 constraints diagmirror-con
torus con
132 Ww+Dd Ww+Dd+0.9*Ww Hh-Tt2 constraints torus con
133 Ww+Dd-0.9*0.4*Ww Ww+Dd+0.9*0.9*Ww Hh-Tt2 constraints torus con
134 Ww+Dd-0.9*0.7*Ww Ww+Dd+0.9*0.7*Ww Hh-Tt2 constraints torus con
135 Ww+Dd-0.9*0.9*Ww Ww+Dd+0.9*0.4*Ww Hh-Tt2 constraints torus-con
136 Ww+Dd-0.9*Ww Ww+Dd Hh-Tt2 constraints torus con
137 Ww+Dd-0.9*0.7*Ww Ww+Dd-0.9*0.7*Ww Hh-Tt2 constraints diagmirrorcon
torus-con

501 0 0 DH constraints diagmirrorcon xmirrorcon
502 Ww+Dd Ww+Dd DH constraints diagmirror con
503 0 Ww+Dd DH constraints xmirror-con

551 0 0 Hh-Tt2 constraints diagmirrorcon xmirrorcon
553 0 Ww+Dd Hh-Tt2 constraints xmirror con

611 Ww+Dd+0.5*(0.7*Ww) Ww+Dd+0.5*(0.7*Ww) Hh/2 constraints diagmirrorcon
pillar con
612 Ww+Dd Ww+Dd+0.5*(Ww) Hh/2 constraints pillar con
613 Ww+Dd-0.5*(0.4*Ww) Ww+Dd+0.5*(0.9*Ww) Hh/2 constraints pillar con
614 Ww+Dd-0.5*(0.7*Ww) Ww+Dd+0.5*(0.7*Ww) Hh/2 constraints pillar con
615 Ww+Dd-0.5*(0.9*Ww) Ww+Dd+0.5*(0.4*Ww) Hh/2 constraints pillar-con
616 Ww+Dd-0.5*(Ww) Ww+Dd Hh/2 constraints pillar con
617 Ww+Dd-0.5*(0.7*Ww) Ww+Dd-0.5*(0.7*Ww) Hh/2 constraints diagmirrorcon
pillar_con

711 Ww+Dd+0.5*(0.7*Ww) Ww+Dd+0.5*(0.7*Ww) 0 constraints diagmirrorcon
plate 1_con pillar con
712 Ww+Dd Ww+Dd+0.5*(Ww) 0 constraints platel con pillar-con
713 Ww+Dd-0.5*(0.4*Ww) Ww+Dd+0.5*(0.9*Ww) 0 constraints plate1_con
pillar__con
714 Ww+Dd-0.5*(0.7*Ww) Ww+Dd+0.5*(0.7*Ww) 0 constraints platelcon
pillar-con



715 Ww+Dd-0.5*(0.9*Ww) Ww+Dd+0.5*(0.4*Ww) 0 constraints platelcon
pillar con
716 Ww+Dd-0.5*(Ww) Ww+Dd 0 constraints plate 1_con pillar-con
717 Ww+Dd-0.5*(0.7*Ww) Ww+Dd-0.5*(0.7*Ww) 0 constraints diagmirror con
plate Icon pillar-con

edges

1 1 11 constraints diagmirror con topcon
2 1 12 constraints topcon
3 1 13 constraints top con
4 1 14 constraints topcon
5 1 15 constraints topcon
6 1 16 constraints topcon
7 1 17 constraints diagmirror-con topcon

11 11 21 constraints diagmirror con top_con
12 12 22 constraints topcon
13 13 23 constraints topcon
14 14 24 constraints topcon
15 15 25 constraints topcon
16 16 26 constraints topcon
17 17 27 constraints diagmirror-con top_con

21 21 31 constraints diagmirrorcon torus-con
22 22 32 constraints torus con
23 23 33 constraints torus con
24 24 34 constraints torus con
25 25 35 constraints torus con
26 26 36 constraints torus con
27 27 37 constraints diagmirrorcon toruscon

31 31 41 constraints diagmirrorcon torus-con
32 32 42 constraints torus con
33 33 43 constraints torus con
34 34 44 constraints torus con
35 35 45 constraints torus con
36 36 46 constraints torus con
37 37 47 constraints diagmirrorcon toruscon

101 101 111 constraints diagmirrorcon bottomcon
102 101 112 constraints bottom con
103 101 113 constraints bottom con



104 101 114 constraints bottom con
105 101 115 constraints bottom con
106 101 116 constraints bottom-con
107 101 117 constraints diagmirror_con bottomcon

111 111 121 constraints diagmirrorcon bottomcon
112 112 122 constraints bottom con
113 113 123 constraints bottom con
114 114 124 constraints bottom con
115 115 125 constraints bottom con
116 116 126 constraints bottom con
117 117 127 constraints diagmirrorcon bottomcon

121 121 131 constraints diagmirrorcon toruscon
122 122 132 constraints torus con
123 123 133 constraints torus con
124 124 134 constraints torus con
125 125 135 constraints torus con
126 126 136 constraints torus con
127 127 137 constraints diagmirrorcon toruscon

131 131 41 constraints diagmirrorcon torus-con
132 132 42 constraints torus con
133 133 43 constraints torus con
134 134 44 constraints torus con
135 135 45 constraints torus con
136 136 46 constraints torus con
137 137 47 constraints diagmirrorcon torus con

211 11 12 constraints topcon
212 12 13 constraints topcon
213 13 14 constraints topcon
214 14 15 constraints topcon
215 15 16 constraints topcon
216 16 17 constraints topcon

221 21 22 constraints topcon toruscon
222 22 23 constraints topcon toruscon
223 23 24 constraints topcon toruscon
224 24 25 constraints topcon toruscon
225 25 26 constraints topcon toruscon
226 26 27 constraints topcon toruscon

231 31 32 constraints torus con
232 32 33 constraints torus-con

100



34 constraints torus con
35 constraints torus con
36 constraints torus con
37 constraints torus-con

42 constraints torus con
43 constraints torus con
44 constraints torus con
45 constraints torus con
46 constraints torus con
47 constraints torus con

111
112
113
114
115
116

121
122
123
124
125
126

131
132
133
134

112
113
114
115
116
117

122
123
124
125
126
127

132
133
134
135

constraints
constraints
constraints
constraints
constraints
constraints

constraints
constraints
constraints
constraints
constraints
constraints

constraints
constraints
constraints
constraints

bottom con pillarcon
bottom con pillarcon
bottom con pillarcon
bottom con pillarcon
bottom con pillarcon
bottom-con pillarcon

bottom con torus con
bottom con torus con
bottom con torus-con
bottom-con torus-con
bottom con torus con
bottom-con torus-con

torus con
torus con
torus-con
torus-con

335 135 136 constraints torus con
336 136 137 constraints torus-con

501 502 constraints diagmirrorcon
502 503
503 501 constraints xmirror con

504 502 11 constraints diagmirrorcon
505 503 553 constraints xmirror-con

520 2 3 constraints diagmirrorcon
530 3 4 constraints ymirrorcon
540 4 2 constraints xmirror-con

551 551 47 constraints diagmirrorcon

101

233
234
235
236

241 41
242 42
243 43
244 44
245 45
246 46

311
312
313
314
315
316

321
322
323
324
325
326

331
332
333
334

501
502
503



552 45 553
553 553 551 constraints xmirror-con

constraints
constraints
constraints
constraints
constraints
constraints

pillarcon
pillarcon
pillarcon
pillarcon
pillar_ con
pillarcon

611 constraints diagmirrorcon pillar-con
612 constraints pillarcon
613 constraints pillarcon
614 constraints pillarcon
615 constraints pillarcon
616 constraints pillarcon
617 constraints diagmirrorcon pillar-con

611
612
613
614
615
616

621
622
623
624
625
626
627

711
712
713
714
715
716

constraints
constraints
constraints
constraints
constraints
constraints
constraints

diagmirrorcon pillar-con
pillar _con
pillar con
pillar con
pillar con
pillar con
diagmirrorcon pillarcon

constraints topcon tension tens*0.5*(
constraints topcon tension tens*0.5*(
constraints topcon tension tens*0.5*(
constraints topcon tension tens*0.5*(
constraints topcon tension tens*0.5*(
constraints topcon tension tens*0.5*(

1-cos(angle*pi/180))
1-cos(angle*pi/180))
1-cos(angle*pi/180))
1-cos(angle*pi/180))
1-cos(angle*pi/180))
1-cos(angle*pi/180))

102

611 612
612 613
613 614
614 615
615 616
616 617

constraints pillar con plate 1_con
constraints pillarcon plate 1_con
constraints pillar con plate 1_con
constraints pillar-con plate 1_con
constraints pillar con plate 1_con
constraints pillar-con plate 1_con

111
112
113
114
115
116
117

711
712
713
714
715
716

712
713
714
715
716
717

711
712
713
714
715
716
717

721 611
722 612
723 613
724 614
725 615
726 616
727 617

faces

211
212
213
214
215
216

color
color
color
color
color
color

blue
blue
blue
blue
blue
blue



11 11221 -12 -211
12 12 222 -13 -212
13 13 223 -14 -213
14 14 224 -15 -214
15 15 225 -16 -215
16 16 226 -17 -216

21 21 231 -22 -221
red
22 22 232 -23 -222
red
23 23 233 -24 -223
red
24 24 234 -25 -224
red
25 25 235 -26 -225
blue
26 26 236 -27 -226
blue

3131241 -32 -231
red
32 32 242 -33 -232
red
33 33 243 -34 -233
red
34 34 244 -35 -234
red
35 35 245 -36 -235
blue
36 36 246 -37 -236
blue

101
red
102
red
103
red
104
red
105
red
106
red

constraints top con tension tens*0.5*(1 +cos(angle*pi/1 80)) color red
constraints top con tension tens*0.5 *(1 +cos(angle*pi/1 80)) color red
constraints topcon tension tens* 0.5 *(1 +cos(angle*pi/1 80)) color red
constraints topcon tension tens*0.5*(1 +cos(angle*pi/1 80)) color red
constraints topcon tension tens*0.5*(1-cos(angle*pi/1 80)) color blue
constraints top-con tension tens* 0.5 *(1 -cos(angle*pi/1 80)) color blue

constraints toruscon tension tens*0.5*(1+cos(angle*pi/180)) color

constraints toruscon tension tens* 0.5 *(1 +cos(angle*pi/180)) color

constraints toruscon tension tens* 0.5 *( 1 +cos(angle*pi/180)) color

constraints toruscon tension tens* 0.5 *(1 +cos(angle*pi/1 80)) color

constraints toruscon tension tens*0.5*(1-cos(angle*pi/180)) color

constraints toruscon tension tens*0.5*(1-cos(angle*pi/180)) color

constraints toruscon tension tens* 0.5 *( 1 +cos(angle*pi/1 80)) color

constraints toruscon tension tens* 0.5 *(1 +cos(angle*pi/180)) color

constraints toruscon tension tens*0.5*(1+cos(angle*pi/1 80)) color

constraints toruscon tension tens*0.5*(1 +cos(angle*pi/180)) color

constraints toruscon tension tens* 0.5 *(1 -cos(angle*pi/1 80)) color

constraints toruscon tension tens* 0.5 *( 1 -cos(angle*pi/180)) color

101 311 -102 constraints bottomcon tension tens*0.5*(1 +cos(angle*pi/180)) color

102 312 -103 constraints bottomcon tension tens*0.5*(1+cos(angle*pi/180)) color

103 313 -104 constraints bottomcon tension tens*0.5*(1+cos(angle*pi/180)) color

104 314 -105 constraints bottomcon tension tens*0.5*(1+cos(angle*pi/180)) color

105 315 -106 constraints bottomcon tension tens*0.5*(1+cos(angle*pi/180)) color

106 316 -107 constraints bottomcon tension tens*0.5*(1+cos(angle*pi/1 80)) color

103



111 111 321 -112
color red
112 112 322 -113
color red
113 113 323 -114
color red
114 114 324 -115
color red
115 115 325 -116
color red
116 116 326 -117
color red

121 121 331 -122
color red
122 122 332 -123
color red
123 123 333 -124
color red
124 124 334 -125
color red
125 125 335 -126
color red
126 126 336 -127
color red

131 131 241 -132
color red
132 132 242 -133
color red
133 133 243 -134
color red

-3 11 constraints

-312 constraints

-313 constraints

-314 constraints

-315 constraints

-316 constraints

-321

-322

-323

-324

-325

-326

-331

-332

-333

constraints

constraints

constraints

constraints

constraints

constraints

bottomcon tension tens* 0.5 *(1 +cos(angle*pi/180))

bottomcon tension tens* 0.5 *(1 +cos(angle*pi/180))

bottomcon tension tens* 0.5 *(1 +cos(angle*pi/180))

bottomcon tension tens* 0.5 * (1 +cos(angle*pi/180))

bottomcon tension tens* 0.5 *(1 +cos(angle*pi/180))

bottomcon tension tens*0.5*(1 +cos(angle*pi/1 80))

toruscon tension tens* 0.5 *(1 +cos(angle*pi/180))

toruscon tension tens* 0.5 *(1 +cos(angle*pi/180))

toruscon tension tens*0.5 *(1 +cos(angle*pi/1 80))

toruscon tension tens*0.5 *(1 +cos(angle*pi/180))

toruscon tension tens* 0.5 *(1 +cos(angle*pi/180))

toruscon tension tens*0.5 *(1 +cos(angle*pi/180))

constraints toruscon tension tens* 0.5 *( 1 +cos(angle*pi/180))

constraints toruscon tension tens*0. 5 *(1 +cos(angle*pi/180))

constraints toruscon tension tens*0.5*( 1 +cos(angle*pi/180))

134 134 244 -135 -334 constraints toruscon tension tens*0.5*(1+cos(angle*pi/180))
color red
135 135 245 -136 -335 constraints toruscon tension tens*0.5*(1+cos(angle*pi/1 80))
color red
136 136 246 -137 -336 constraints toruscon tension tens*0.5*(1+cos(angle*pi/180))
color red

501 501 502 503 tension tens color blue
502 504 211 212 213 214 15 25 35 552 -505 -502 tension tens color blue
520 520 530 540 no refine color red
551 551 -246 -245 552 553 tension tens color blue
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611 611 -622 -311 621 constraints pillarcon tension tens*0.5*(1+cos(angle*pi/180))
color red
612 612 -623 -312 622 constraints pillar_con tension tens*0.5*(1+cos(angle*pi/180))
color red
613 613 -624 -313 623 constraints pillarcon tension tens*0.5*(1I+cos(angle*pi/1 80))
color red
614 614 -625 -314 624 constraints pillar_con tension tens*0.5*(1+cos(angle*pi/1 80))
color red
615 615 -626 -315 625 constraints pillarcon tension tens*0.5*(1+cos(angle*pi/1 80))
color red
616 616 -627 -316 626 constraints pillarcon tension tens*0.5*(1+cos(angle*pi/180))
color red

711 711 -722 -611 721 constraints pillarcon tension tens*0.5*(1+cos(angle*pi/180))
color red
712 712 -723 -612 722 constraints pillar_con tension tens*0.5*(1+cos(angle*pi/180))
color red
713 713 -724 -613 723 constraints pillarcon tension tens*0.5*(1+cos(angle*pi/180))
color red
714 714 -725 -614 724 constraints pillarcon tension tens*0.5*(1+cos(angle*pi/1 80))
color red
715 715 -726 -615 725 constraints pillar_con tension tens*0.5*(1+cos(angle*pi/180))
color red
716 716 -727 -616 726 constraints pillarcon tension tens*0.5*(1+cos(angle*pi/180))
color red

bodies

1 501 502 -1 -2 -3 -4 -5 -6 -15 -16 -25 -26 -35 -36 -551 volume volumel density densityl

read

// typical evolution
gogo := {
set background white;

show facet where color!= yellow;
// show edge where original==14 or valence != 2;

r; r; g 20; r; u; t 0.00003; g 20; hessian _seek; hessianseek; V; V; V;
g 20; G 9.8; hessianseek; hessian seek;V; V;
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g 20; G 9.8; hessianseek; hessianseek;V; V;
g 20; G 9.8; hessianseek; hessianseek;V; V;
g 20; G 9.8; hessianseek; hessianseek;V; V;
g 20; G 9.8; hessianseek; hessianseek;V; V;
g 20; G 9.8; hessianseek; hessianseek;V; V;

g 10;
hessian seek;

g 20;
hessianseek;
hessianseek;

printf "Angle: %3.Of Reference point: %f\n Reference point: %f\n Lowest
point: %f\n",angle,min(vertex[1 5],z),min(vertex[17],z),min(vertex where not fixed,z);

}
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