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ABSTRACT

The behavior and interrelations between the main shipping forward curves are

analyzed using multivariate statistics after removing the volatility distortions dictated by

the Samuelson hypothesis. Principal Components Analysis and Canonical Correlation

analysis were used to demonstrate how the task of explaining the various shipping

forward curves can be simplified substantially and how very high correlations can be

achieved between shipping forward curves. The conditions under which correlations are

higher are discussed as well as the various applications of these results using case studies.

Applications include trading from a hedge fund perspective, cross hedging any physical

exposure in illiquid markets and portfolio optimization. Conditioning as a tool is also

examined to demonstrate how more reliable correlation results can be obtained for cross-

hedging or other purposes, and how the best trading opportunities can be unveiled

conditional on recently observed data. Tanker valuations are carried out using the

adjusted forward curves with the RAFL ship valuation model. The results are very close

to transaction prices for relatively modem vessels while deviations in older ships are

explained with regards to phase out regulations and other factors. The ship value

volatility and consequently the valuations of typical options are substantial and increase

as a percentage of the ship value with age. These results have to be considered seriously

in shipping transactions that include optionalities which are very common.

Thesis Supervisor: Paul D. Sclavounos
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Abbreviations

BCI: Baltic Capesize Index

BOD: Board of Directors

BPI: Baltic Panamax Index

CAPE: Capesize Bulk Carrier (~175,000dwt)

CCA: Canonical Correlation Analysis

FFA: Forward Freight Agreements

MR: Medium Range Tanker

PCA: Principal Components Analysis

PMX: Panamax Bulk Carrier (-75,000dwt)

RAFL: Risk Adjusted Forward Looking Ship Valuation Model

S&P: Sale and Purchase

SVD: Singular Value Decomposition

TC: Tanker - Clean (Products)

4TCA: 4-Route Time Charter Average

TCE: Time Charter Equivalent

TD: Tanker - Dirty (Crude Oil)

VLCC:Very Large Crude Oil Carrier (~200,000dwt - 300,000dwt)

WS: Worldscale



1. Introduction

The purpose of this thesis is to analyze the behavior and interrelations between

the main shipping forward curves and then use them for tanker valuations. Five high

liquidity dry bulk and tanker routes were chosen as summarized in Table 1.1.

ROUTE DESCRIPTION

BCI TCA: Average time charter earnings on the four main Cape routes

BPI TCA: Average time charter earnings on the four main Panamax routes

TD5: Suezmax - Crude Oil from West Africa to East US Coast

TD3: VLCC - Crude Oil from Saudi Arabia to Japan

TC2: MR Product Carrier - Clean Product from Rotterdam to New York

Table 1.1: Chosen Shipping Forward Curve Routes

The Baltic publishes indices for these routes on a daily basis and futures are

traded on these indices either over the counter or through clearing houses. Contracts of

various tenors are traded daily that span out to 2 - 5 years. Note that these are Asian

futures that settle over a period as opposed to a particular date. Data was collected on

contracts of the various tenors on the above routes. This data is in the form of time series

of daily futures prices from February 1 0 th 2005 to July 2 9 th 2010.

The traded futures have fixed maturity dates, so the time to maturity decreases

with time. It is well known that the volatility of futures prices increases as we approach

maturity by virtue of the Samuelson hypothesis i.e. due to reasons including the increased

information for the immediate future [Samuelson 1965]. We want to exclude this effect

so we can analyze the data and its volatility more effectively. The first step of the

analysis, therefore, is to create new time series of prices for contracts with a continuously

rolling tenor, meaning that the time to maturity is kept constant.

Using the continuously rolling contracts, Principal Components Analysis (PCA)

will be carried out to identify the number of factors required to explain an adequate

amount of the variance of these forward curves. Canonical Correlation Analysis (CCA)



will then be applied to determine the maximum possible correlation between those

forward curves and how that can be achieved. Finally, tanker valuations will be carried

out using the rolling contracts with the Risk Adjusted Forward Looking (RAFL) ship

valuation model which was originally developed by [Hadjiyiannis 2010] for the valuation

of Capesize bulk carriers.



2. Canonical Correlation Analysis (CCA)

Using CCA, we can determine the maximum possible correlation between two

sets of variables and the way that can be achieved. In our case, we will be maximizing the

possible correlation between various shipping forward curves. The two sets of variables

in this case are two portfolios of futures contracts with various tenors. The applications of

this analysis are discussed in Section 6. They include cross hedging in markets where a

illiquidity prevents a "perfect" hedge, trading from a hedge fund perspective etc. What

follows is a brief mathematical explanation of canonical correlation analysis and the way

it can be applied to our particular problem.

Consider 2 sets of variables e.g. one set of futures for Capesize bulk carriers,

(C,, C2 ,---- C,) and one set of futures for Suezmax Tankers (S,, S2 ,--- S,). Denote the

number of variables in the two datasets as p, and p2 respectively, where p, p2 and

assume these variables are measured about their means. The data for each variable is

recorded as a time series over a period of "n" days. The data matrix can be written in a

vertically partitioned form where [C] is (n x p,) and [S] is (n x P2)

[X] C (2.1)
I[S])

The Covariance matrix is also partitioned as follows: [ E]l= 1 (2.2)
[Y-1] [Y-22]1

We want to find the maximum possible correlation between a portfolio of Cape

futures ii with weights d and a portfolio of Suezmax futures i with weights pi.

i = a1C, + a2C2 +.....+ aC, = da [C] (2.3)

=,S,2S2 +-.+ ,Sn = f [S] (2.4)



For simplicity, we standardize both linear combinations to unit variance:

var(i)=E(i2) =E(dT [C][C]T d) =i T [y]=1

var()= E (i;2) = E (T [S][S]T ) [12 ] 1

Since the variables are zero centered, we have: E (

Therefore, the Correlation between u and v is given by:

E({ii) = E(dT [C][S]T i) = T

(2.5)

(2.6)

(2.7)

(2.8)

Equation 2.8 is to be maximized subject to the constraint that ii and j are unit

vectors (Equations 2.5 and 2.6). We use the Lagrangian expression,

T [E ] -1)- p(4 [X-1 -_) (2.9)

where A and p are Lagrangian multipliers. Note that subject to constraints (2.5) and

(2.6), yV is equal to the correlation (Equation 2.8). We maximize yf by differentiating

with respect to vectors d and p , and setting the derivatives simultaneously equal to zero:

a =[ Z 12] -2[Z]dT =0 (2.10)
a

=[E12]T d- p[E22j 0ap

Combining with constraints 2.5 and 2.6 (unit variance), we get:

(2.11)

y i =5[I-11 - I (



TCV =d[Z]J-2(1)=0 (2.12)
ad

T O/= j [E-1 ]Td S-p(1) = 0 (2.13)
a~d

Combining (2.12) and (2.13) yields:

A = p = iiT [YE-1|2j(2.14)

From equation (2.8) and (2.14), we see that the Lagrangian multiplier k is equal to

the correlation between the two data sets. Since[ 12 ]T =[21], we can rewrite (2.10) and

(2.11) directly in matrix form as follows:

A[Y2[11] [2]fa 0 (2.16)
[Yx2 1]1 A[ 22Jkj3J =

The combined vector in Equation 2.16 contains the portfolio weights of the two

data sets (e.g. Capes and Suezmax Tankers) and is of length p + P2 . Denote this as vector

- and the partitioned matrix preceding it, matrix[A]. Rewriting Equation 2.16, we have:

[A] = 0 (2.17)

Note that this is not a classical Eigenvalue problem because [A] is a block matrix

in which the X values also lie off the diagonal. Equation 2.17 has to be solved for

the p,+ P 2 possible non-trivial pairs of ) and i . The largest real value of X is the

maximum attainable correlation between the two data sets and the corresponding

portfolio weights are defined by Equation 2.17 for a given X. There are two ways to

proceed from this point to solve Equation 2.17.



Method 1.

By further manipulation, we can reduce Equation 2.16 into a classical Eigenvalue

problem and then solve for the Eigenvalues and Eigenvectors. We start by breaking

Equation 2.16 back into equation form:

-A [El 1"+ [E2 = 0

z21 ~ A- 22] = 0

(2.18)

(2.19)

We then Multiply Equation 2.18 by the inverse of matrix [E,] and Equation 2.19

by the inverse of matrix [YE1] to get:

-A [ I] 5+( E-:|1 E1 =0

(E 21 -A[7]f= 0

(2.20)

(2.21)

Equations 2.20 and 2.21 can now again be written in partitioned block matrix

form as follows:

LI[12] 0
_. )-A . =0

(2.22)
0

EzNIz2 2

Note that the block matrix multiplied by k is simply the identity matrix, while the

joint vector following it is vector fv. Naming the new block matrix on the left [B], we are

left with:

-> [B - AI] (= 0 (2.23)[B] i- -A[I] i-= 0



This is a simple Eigenvalue problem with the Eigenvalues lying only on the

diagonal. Therefore, it can simply be solved on MATLAB for the Eigenvalue /

Eigenvector pairs. We are interested in maximizing the correlation between the two data

sets so we chose the pair involving the highest real Eigenvalue.

Note that[E21 ] = [ 1 2 ] T, but [EI] is unrelated to[E2 2 ], since the two matrices are

each wholly derived from two separate sets of variables. That means that matrix [B] is

not symmetric, even though its Eigenvalues are real.

Method 2.

For non-trivial solutions of Equation 2.17, we set the determinant of matrix [A]

equal to zero to get a polynomial of order p, + P2 which is then solved for p, + P2 values

of k. We select the highest value of k which is the maximum correlation. Call this A* and

the corresponding vector of portfolio weights i*. In equation terms:

Solve directly for k:

Maximum correlation:

Substitute A* into (Eq. 2.17):

-A [Y-1 ] [Y-12]

* X121 - -[-22] -o

A* = MAX(-2 I 21.. 'An)

2A*[Eij]

[Y-12]

This is simply Equation 2.16, but now with a known value of k. In other words,

all the elements of matrix [C] are known. The only unknown in Equation 2.26 is the

vector _*. This cannot simply be solved as a system of simultaneous equations using

singular value decomposition (SVD) because by definition, two of the equations are

(2.24)

(2.25)

(2.26), Y-12 " * = [C ] *0



interdependent (we don't know which). There are infinite solutions since vector w* can

take any magnitude. However, also by definition, matrix [C] will have an Eigenvalue

which is equal to zero and we can use that as follows:

Solve the Eigenvalue Problem for matrix[C], to get Eigenvalues "k" and

Eigenvectors e:

Eigenvalues (k) from:

Eigenvectors ( ) from:

[C] -k[J]I -2* [F ] -k [ 12 ]

[Y-] - *[=0-

([C] -k [I]) =

[11

(2.27)

, 2 j = 0 (2.28)
-A* [22|-k,

By definition, the eigenvector corresponding to k=0 satisfies the equation:

[C]2 =
2 = 0 (2.29)

Note that Equation 2.29 is the same as Equation 2.26. In other words:

w* =e2 (2.25)

So, all we have to do to find the vector of portfolio weights v* after finding *, is

solve the Eigenvalue problem for matrix [C] and select the Eigenvector that corresponds

to the zero Eigenvalue.



3. Principal Components Analysis (PCA)

PCA will be carried out in order to identify the number of principal components

necessary to explain an adequate portion of the variance of the main shipping forward

curves. PCA is analogous to a canonical correlation of the data set with itself. In simple

terms, PCA maximizes the variance of the data set. The Eigenvalues of the covariance

matrix correspond to the maximum variance while the eigenvectors correspond to the

portfolio of variables that achieves that variance.

A brief mathematical explanation along the lines of the canonical correlation

analysis goes as follows. We start with a set of p zero-centered variables e.g. a set of

futures series for Capesize bulk carriers, (C,,C 2 ,----, C,). Now [X] has p components

and the covariance matrix [Z]. We want to find a weight vector d which maximizes the

variance of the portfolio, subject to the constraint:

dra =1 (3.1)

The variance of the portfolio is given by:

E (iT [X])2 = E(diT [X] [X]T i) = i& (3.2)

Again, we introduce a Lagrangian multiplier A:

iT = y']S -i A(ii'5 - 1) (3.3)

Note that the Lagrangian expression reduces to Equation 3.2, subject to constraint

3.1. Next, we maximize the variance by differentiating the Lagrangian expression with

respect to vector a and setting the derivative equal to zero:



/ = 2 [ZL ] d - 2 Ad = 0 (3.4)
a

Multiplying Equation 3.4 by a", and combining with Equation (3.1) we get:

a T [E ] d = Aa i = A (3.5)

From 3.2 and 3.5, we see that the Lagrangian multiplier A is equal to the variance

of the portfolio, in much the same way as it was equal to the correlation between the

datasets in the CCA. This time, however, the analysis is much simpler as Equation 3.4,

directly reduces into an Eigenvalue problem described by Equation 3.6.

(z - AI) = 0 (3.6)

More can be read about PCA and Canonical Correlations in [Basilevsky 1994]

and [Anderson 2003]. The Singular Value Decomposition (SVD) of the covariance

matrix [E] takes the form:

[y] = [U]T [A][U] = [V][V]T, where [V] = [U][A]112 (3.7)

[U] is the matrix containing the Eigenvectors of [Z] and [A] is the diagonal

matrix containing its Eigenvalues. Equation 3.7 tells us that the volatility of an

independent statistical factor, as it affects the ith price series is equal to the square root of

the Eigenvalue corresponding to that factor, multiplied by the ith element of the

corresponding Eigenvector.

Since the factors are independent Gaussian random variables, we know that that

the total variance is equal to the sum of the variance by each factor. So the variance

explained by each factor is simply the Eigenvalue corresponding to that factor, divided by

the sum of the Eigenvalues. The shape of the corresponding Eigenvector then tells us

how that factor affects the contracts of various tenors.



4. Data Analysis and Procedure

4.1 Procedure Overview

The first big part of the analysis is the calculation of the covariance matrices that

will be used in both the canonical correlation and principal components analysis. This can

be broken down into five steps.

The raw data is in the form of time series of futures prices with various tenors.

The expiration period of these futures is defined by the trading date and a set of rules that

vary between trading houses and over time. The first step of the analysis is to determine

the precise expiration dates of all the fixed futures contracts for each day throughout the

time series. The expiration periods are months, quarters or years, but they are always

fixed meaning that they always start on the first trading day of the first month of the

expiration period.

The next step is to create a new set of futures price series for fictitious contracts

that have a continuously rolling tenor i.e. a constant time to maturity. This will remove

the effect of volatility increasing as maturity is approached (Samuelson hypothesis).

For the dry bulk routes, futures prices are quoted $/day whereas for tanker routes,

they are quoted in worldscale. Worldscale is a percentage of a flat rate which is quoted in

$/ton and is updated every year for each route. In order to carry out the canonical

correlation analysis between bulk carrier and tanker routes, we have to convert the

tankers time series from worldscale to time charter equivalent (TCE). We do that using

the specifics of each route (miles, port fees etc) and time varying quantities including

each year's flat rate and bunker prices.

The next step is to zero-center the original data for the "trended" volatility, and to

zero-center the log differences of the data for the "de-trended" volatility.

Finally, we combine the series to produce covariance matrices for each individual

dataset and for each dataset pair. These will then be used directly in the PCA, or

combined with others to form the block matrices that are used in the CCA.



4.2 Creation of Continuously Rolling Contracts

The objective of this section is to use the prices of fixed maturity contracts in

order to determine the prices of contracts with continuously rolling maturity dates (rolling

contracts). This has to be carried out for each day in the time series. Taking the CAPE

4TCA for example, on a given business day there are futures prices quoted for the next

month (M+1), the month after that, the next quarter (Q+1) and the next 5 quarters after

that (Q+2 to Q+5), the next year (Y+I1) and the 4 years after that (Y+2 to Y+5). We want

to use those prices to determine the prices for the first quarter starting today (RI), the

quarter beginning exactly one quarter from today (R2) etc. Note that on any given day,

the maturity periods of the rolling quarters will overlap with those of fixed periods. In

other words, the rolling contracts are combinations of fixed contracts.

There are various methods that can be used to solve this. One of the most intuitive

is to assign a price to each future day based on the fixed contracts and then take the

average across the days that lie in the rolling quarter in order to get the price of the rolling

quarter. That is essentially taking a weighted average. A more robust and efficient

method involves linear interpolation between fixed contracts. This is summarized in the

following three steps:

Step 1:

First we determine the precise maturity dates of the fixed contracts. The days on

which the roll-over occurs (definition of M+1, Q+1, Y+1 etc. on any given date) differs

between clearing houses and has also changed on several occasions in the past. The data

on tanker futures is from IMAREX and the data on dry bulk futures is from the Baltic

Exchange. Tables 4.1 to 4.5 summarize the roll over rules for both throughout the period

over which the data was collected.

Note that fixed contracts always start on the 1st day of the month. M+2 is always

the whole month after M+1, Q+2 is the whole quarter after Q+1, Y+2 is the whole year

after Y+1, M+3 is the whole month after M+2 etc. This means that the roll over rules for

all the contracts can be defined by those for M+1, Q+1 and Y+1.



IMAREX - MONTHLY CONTRACT ROLL OVER

Dates Day of Month M+1 Definition

Since Jul-01-08 All Next month

Feb-01-07 - Jun-30-08 Up until 20 Next month

Feb-01-07 - Jun-30-08 After 20 Month after next

Before Feb-01-07 Up until 15 Next month

Before Feb-01-07 After 15 Month after next

Table 4.1: Roll Over Rules for Monthly Contracts of IMAREX

IMAREX - QUARTERLY AND YEARLY CONTRACT ROLL OVER

Dates Month Q+1 Definition Y+1 Definition

All 1, 4, 7, 10 Next Quarter Next Year

All 2,3,5,6,8,9,11,12 Quarter after next Next Year

Table 4.2: Roll Over Rules for Quarterly and Yearly Contracts of IMAREX

BALTIC - MONTHLY CONTRACT ROLL OVER

Dates Day of Month M+1 Definition

Since Jan-01-2007 Last business day of month Month after the next

Since Jan-01-2007 Before last business day of month Next month

Before Jan-01-2007 All Next Month

Table 4.3: Roll Over Rules for Monthly Contracts of the Baltic Exchange

BALTIC - QUARTERLY CONTRACT ROLL OVER

Dates Day of Month Q+1 Definition

Since Jan-01-2007 Last business day of Quarter Quarter after the next

Since Jan-01-2007 Before last business day of Quarter Next Quarter

Before Jan-01-2007 All Next Quarter

Table 4.4: Roll Over Rules for Quarterly Contracts of the Baltic Exchange



BALTIC - YEARLY CONTRACT ROLL OVER

Dates Day of Month Q+1 Definition

Since Jan-01-2007 Last business day of Year Year after the next

Since Jan-01-2007 Before last business day of Year Next Year

Before Jan-01-2007 All Next Year

Table 4.5: Roll Over Rules for Yearly Contracts of the Baltic Exchange

Step 2:

In Step 1 we defined the precise expiration period for each futures contract on

every day of the time series. Next, we define the mid-point of expiration for each contract

on each day of the time series. That is simply taking the date that lies in the middle

between the starting and ending dates of the expiration period. We assign the prices of the

futures contracts to their mid-point of expiration date. On each given day we will have

values for various future dates. These points will be from monthly, quarterly and yearly

contracts. Then we join these points to create a futures curve using linear interpolation.

Other functions could be used here but linear interpolation is simple and robust.

Step 3:

The next step is to determine the mid-point of expiration date for the rolling

contracts that we want to price. For example, the mid-point of expiration date for the first

rolling quarter (R1) will be exactly half a quarter from today. Then the mid-point of

expiration for R2 will be one quarter after that and so on. Having defined the mid-point

of expiration dates for the rolling quarters in each day of the time series, we go back to

Step 2, and interpolate for the corresponding futures prices.

Note that it is important to only interpolate - not extrapolate, particularly when

using linear interpolation, because the gradient of the forward curve can be quite steep at

some points leading to extreme results by extrapolation. Following this procedure, we

create time series for the rolling contract futures prices spanning over the same time

frame as the initial data. That is from Feb-10-2005 to July 29 2010 for 10 rolling quarters

in all datasets, and from March-10-2008 to July-29-2010 for 22 rolling quarters for the

dry bulk futures.



4.3 From Worldscale to Time Charter Equivalent

As explained earlier, tanker futures are quoted in worldscale, which is a

percentage of a flat rate. The flat rate is a nominal value of $/ton, updated every year to

reflect changes in bunker costs and other expenses. The annual updating of the flat rate is

not reflected in our time series of futures that are quoted in worldscale. Therefore, it

would make no sense to carry out a CCA between tanker futures quoted in worldscale

and dry bulk carrier futures which are quoted in $/day. We must first convert everything

to time charter equivalent ($/day) for the comparison to make sense. To convert from

worldscale (WS) to time charter equivalent (TCE) we use Equation 4.1.

TCE =- FWT (l-C)-Bb--P-0 4.1
d 100

TCE: Time Charter Equivalent ($/day)

d: Total Return Voyage Days

F: Flat Rate ($/ton)

W: World Scale

T: Cargo Transported (tons)

C: Commissions (%)

B: Total Bunker Consumption (tons)

b: Bunker Price ($/ton)

P: Port Costs in Load and Discharge Ports ($)

0: Other Costs ($)

All the parameters are defined for the return voyage. In other words, when

calculating duration, consumption and other parameters for each route, we assume that

the ship will load at the origin, sail to the destination, discharge, and then return in ballast

to where it started.



The parameters in Equation 4.1 are different for each route and also vary over

time. For each route, the prevailing worldscale rate (W) changes daily, the bunker price

(b) and the flat rate (F) change annually, and the remaining parameters remain constant.

Table 4.6 provides a summary of the constant parameters for the selected tanker routes.

TD3 TD5 TC2

Loading Port Ras Tanura Bonny (O.S.) Rotterdam

Discharge Port Chiba Philadelphia New York

D (days) 45.14 36.47 25.2

T (tons) 260,000 130,000 37,000

C 2.5% 2.5% 2.5%

B (tons) 3832.8 1864.9 705.6

P ($) 167,900 85,100 87,195

O ($) 1,000 1,000 1,000

Table 4.6 Constant Parameters for Worldscale to Time Charter Equivalent Conversions

[Data from Clarksons 20101

Table 4.7 shows the bunker prices (b) at the assumed bunkering ports

various routes every year. Note that bunker prices for future years are based on

prices for bunkers at the relevant ports.

for the

futures

Table 4.7 Bunker Costs for the Selected Tanker Routes Since 2005 [Data from Clarksons 20101

TD3 TD5 TC2

Bunker Port Fujairah Rotterdam Rotterdam

2005 256,590 233,979 233,979

2006 310,881 293,040 293,040

2007 373,746 345,065 345,065

2008 509,354 471,909 471,909

2009 372,777 353,810 353,810

2010 467,354 447,450 447,450

2011 452,340 432,310 432,310



The flat rate of each year is based on the relevant costs for that route during the

previous year until October. For example, the flat rate for the year 2011 will be based on

bunker prices and other costs until October 2010. Therefore, as we approach October, our

prediction of the next year's flat rate becomes more accurate. The flat rate is

predominantly determined by bunker prices while other factors have a much smaller

impact. Bunker futures are therefore also used to aid the predictions carried out before

October. Table 4.8 shows the flat rates (F) each year for the selected trade routes.

TD3 TD5 TC2

2005 13,4 10,4 7,56

2006 15,16 11,79 8,52

2007 17,72 13,93 9,97

2008 18,08 14,19 10,2

2009 25 19,63 13,78

2010 18,72 14,68 10,53

2011 22,3 17,51 12,42

Table 4.8 Flat Rates for the Selected Tanker Routes Since 2005 [Data from Clarksons 20101

The major uncertainty in WS-TCE conversions of futures prices stems from the

fact that the applied flat rate is the one prevalent upon expiration, which is often unknown

at the time of contract. Therefore, an assumption is required to carry out the conversion.

One could use the prevailing flat rate at the time of contract but that essentially assumes a

constant flat rate until expiration. That is very crude since, as shown in Table 4.8, the flat

rate has varied since 2005 by almost a factor of 2.

A more relevant assumption is that the actual flat rate was known in advance at

the time of the contract. That means we convert futures contract prices to TCE in

retrospect with the flat rates prevalent upon expiration. For contracts that are yet to

expire, we can use current flat rate forecasts. This assumption is based on the fact that

brokers provide a good estimate of the flat rate when closing a futures contract. These

estimates are based on bunker prices and bunker futures prices, and have historically been

very accurate.



4.4 The Covariance Matrix

Using the analysis described thus far, futures price series were created for 10

rolling quarters from Feb-10-2005 to July 29 2010 (1,383 trading days) in $/day for all 5

routes and in world scale for the 3 tanker routes. Futures price series were also created for

22 rolling quarters from March-10-2008 to July-29-2010 (605 trading days) for Capes

and Panamaxes (distinguished by "22R") in $/day. That is a total of 10 datasets, 8 of

which are (10x1383), and two of which are (22x605).

Next, we have to determine the covariance matrix for each individual dataset, and

also between dataset pairs in order to create the block matrices required for the CCA.

Note that each block matrix is composed of four covariance matrices. These are the two

covariance matrices of the two individual datasets, a covariance matrix between the two

datasets, and its transpose.

The analysis will be carried out using two different measures of volatility, so we

will start by creating two sets of covariance matrices. The first set of covariance matrices

derives from the de-trended daily log-differences of the futures price series. We call this

the "de-trended volatility". The second set of covariance matrices is based on the measure

of volatility by the standard deviation which, for lack of a better name, we call the

"trended volatility".

One analogy that can be used to visualize the difference of the two volatility

measures is that of short waves riding a long wave. The trended volatility is related to the

departures of the free surface from the mean value of the long wave, whereas the de-

trended volatility is related to the departures of the free surface of the short waves from

their own mean which defines the long wave.



Covariance Matrices with "De-Trended Volatility"

To calculate the covariance matrix using the de-trended volatility, we have to first

calculate the Gramian matrix. Denote the price for the rolling contract "r" on day "t" as

"Prt ". For the 8 datasets with 10 rolling quarters, index "r" ranges from 1 to 10 (R= 10),

and index "t" ranges from 1 to 1,383 (T=1,383). For the datasets with 22 rolling

contracts, index "r" ranges from 1 to 22 (R=22) and index "t" ranges from 1 to 605

(T=605). Equation 4.2 shows the definition of the natural logarithm which allows us to

express deviations relative to the current price level, while Equations 4.3 and 4.4 are the

relevant logarithm properties.

In(x) = d 4.2
x

lnP)lnp (al P2- 
4.3

ln(P2 ~ ~ P ) )n(I

ln(P 2)+ln(p1 ) ln(P2 x P1 ) 4.4

Using the logarithm properties expressed in Equations 4.3 and 4.4, the elements

of the Gramian matrix [X]are simply defined as per Equation 4.5.

xJ = in ''' - In 4.5
p,,) T -1I pr

Note that as we go from the futures price data matrix to the Gramian matrix, the

range of index "t" decreases by 1, so there are T- 1 elements in each column. There are a

total of 10 Gramian matrices, 8 of which are (10x1382), and two of which are (22x604).

In Equation 4.5, the second term which is being subtracted is simply the mean value of

the first term across the whole time series "r" by virtue of the logarithmic properties

expressed in Equations 4.3 and 4.4.



Once we have the Gramian matrices, the covariance matrix between two datasets

is simply the Gramian matrix of the first, multiplied by the transpose of the Gramian

matrix of the second. Thereby, the block matrix between datasets "1" and "2" is given by

Equation 4.6

[x]= rY [I] [ 12)=([XLX,]T [X,][X2 4.6
IZ21 [221) [X2JX,]T [X2][X2 ]

Note that matrices [1 ] and [Z 22] of Equation 4.6, are simply the covariance

matrices of datasets "1" and "2" which are used in the PCA while the whole block matrix

of Equation 4.6 is used in the CCA between the two datasets.

Covariance Matrices with "Trended Volatility"

To get the covariance matrix using trended volatility, we use the standard

definitions of variance and covariance between the datasets.

* = (p,, 4 -p -iii ( - pi1 ,p ,, -Izpj 4.7

When calculating covariance matrix[Yn], both "i" and "j" are from dataset 1.

When calculating covariance matrix 1 12]' the series "i" is from dataset "1" and the series

"j" is from dataset "2". The covariance matrices are then used in the PCA and are

appropriately combined to form the block matrices used in the CCA.



4.5 PCA and CCA

We have a total of 10 datasets, 8 of which are (10x1383), and two of which are

(22x605). CCA will be carried out between the three tanker routes in $/day (3

combinations), in worldscale (3 combinations), between the two dry bulk routes with 10

rolling quarters and the three tanker routes in $/day (6 combination), and between the two

dry bulk routes with 10 and 22 rolling quarters (2 combinations). This gives a total of 10

single dataset covariance matrices for the PCA and 14 block matrices for CCA. The

analysis will be carried out using both "de-trended" and "trended" volatility, resulting in

a total of 20 covariance matrices for PCA and 28 block matrices for CCA.

The final step is to apply the analysis described in Sections 2 and 3 using the 20

covariance matrices and the 28 block matrices developed thus far. I used and recommend

MATLAB, which is reliable, because solutions in other programs such as MAPLE are

unstable when solving the polynomials for sets of 22 variables. This is hard to notice until

you get correlations exceeding 1. MATLAB yields high precision results which are

identical using Method 1 and Method 2 (for both the maximum correlation A* and the

corresponding portfolio weights v* ).



5. Results and Discussion

5.1 Principal Component Analysis Results

Principal Components Analysis, as described in Section 3 was carried out on the

10 individual datasets using both de-trended and trended volatility. The first result of

PCA is the screen test. This is a visual display of the Eigenvalues which enables us to

identify their relative importance and how many we should focus on. As an example,

Figure 5.1 shows the screen test for the Panamax with 10 rolling quarters using the de-

trended volatility.

Eigenvalue Screen Test
12

10 - --- - - -- - - - --

0 0

1 2 3 4 5 6 7 8 9 10

Principal Component

Fig 5.1: Eigenvalue Screen Test for Panamax with De-Trended Volatility

Here we see a sharp decline after the first eigenvalue which means that a single

independent statistical factor is very dominant in explaining the variations of this forward

curve. Based on this graph, we might decide to focus on the first two or three components

since the eigenvalues quickly become insignificant beyond that. In fact, the first



component alone explains approximately 82% of the volatility while the first 3 explain

over 93%.

The second result is a plot of the eigenvectors which tells us the weights of the

principal components across the various contracts. Figure 5.2 shows the principal

component weights of the first three factors for the Panamax with 10 rolling quarters

using the de-trended volatility.

Principal Component Weights

1 2 3 4 5 6 7 8 9 10

Rolling Quarter

Fig 5.2: Principal Component Weights for Panamax with De-Trended Volatility

The shapes of the Eigenvector curves indicate how changes or shocks from each

factor affect the various contracts and consequently the shape of the forward curve. In

this example, we see a different effect by each of the first three principal components:

PC 1: Curve Shift

The first principal component has negative weights for all tenors (the whole curve

is negative). This corresponds to a shift of the whole forward curve since a positive shock

of the first factor will induce a negative shift in all contracts. The shift is not parallel

since the shorter maturity contracts are more volatile and will fluctuate more than the

longer maturity contracts.



PC2: Curve Tilt

The second principal component has negative weights for the short tenors (rolling

quarters 1 to 5) and positive weights for the long tenors (rolling quarters 6 to 10). This

corresponds to a tilt of the forward curve since a positive shock of the second factor will

shift the prompt contracts down and the distant contracts up.

PC3: Change in Curvature

The third principal component has negative weights for the intermediate contracts

(rolling quarters 3 to 6) and positive weights for the prompt and distant contracts. This

corresponds to a change in the curvature of the forward curve since a positive shock in

the third factor will shift short and distant contracts up while shifting intermediate

contracts down.

The PCA graphs for the Panamax using de-trended volatility were used here for

illustrative purposes. The full set of graphs for all routes using both de-trended and

trended volatility can be found in Appendices A and B respectively.

The independent statistical factors described by the eigenvalues and eigenvectors

are individual or combinations of real world parameters such as macroeconomic factors

that affect the forward curve. This analysis shows us how much volatility is explained by

these independent factors. The next step would be to trace relevant macroeconomic

factors that are likely to affect the forward curves, and relate them to the independent

statistical factors. We can also compare the eigenvectors in highly correlated markets to

identify common statistical factors which affect different sectors.

In Section 5.2 we will see that the Panamax and Cape have highly correlated

forward curves. Fig 5.3 shows the principal component weights for the Cape with 10

rolling quarters using de-trended volatility. By comparing Fig 5.2 and 5.3, we see that the

first and most important principal component has a very similar shape. It corresponds to a

negative curve shift with a decreasing impact as contract tenor increases. Further analysis

could identify the corresponding real world factor(s) and confirm if it is indeed the same



for Panamaxes and Capes. If that is the case, one could potentially explain approximately

72% and 82% of the Cape and Panamax forward curve variations just by tracing this

factor.
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Fig 5.3: Principal Component Weights for Cape with De-Trended Volatility

The cumulative percentage of total volatility explained by the first 5 components

was calculated for all routes. The results using de-trended and trended volatility are

presented in Tables 5.1 and 5.2 respectively.

PCA Results Using De-Trended Volatility

CAPE PMX CAPE PMX TC-2 TD3 TD5 TC2 TD3 TD5

(22R) (22R) (WS) (WS) (WS)

PCI 77.06% 87.65% 71.98% 81.63% 37.39% 46.76% 30.00% 58.04% 67.87% 55.75%

PC2 93.26% 93.29% 86.86% 88.76% 52.59% 60.36% 45.92% 78.17% 82.58% 74.42%

PC3 96.22% 95.63% 92.42% 93.01% 64.68% 70.93% 58.82% 87.46% 90.08% 85.96%

PC4 97.53% 97.19% 95.33% 96.14% 74.29% 79.49% 70.13% 92.31% 94.25% 91.94%

PC5 98.48% 98.39% 97.77% 97.91% 83.45% 86.05% 80.61% 95.30% 96.55% 95.20%

Table 5 1 Cuimultive~ Percentage of De--Trended Volatility Explainied by the First 5 Principal Components.k: %IP-ipt -n ~- ine naiiy xlie yteFrt5PicplC moet



PCA Results Using Trended Volatility

CAPE PMX CAPE PMX TC-2 TD3 TD5 TC2 TD3 TD5

(22R) (22R) (WS) (WS) (WS)

PC1 99.19% 99.39% 98.99% 99.14% 61.33% 62.25% 48.30% 86.19% 78.31% 75.36%

PC2 99.62% 99.66% 99.46% 99.61% 78.39% 74.52% 68.56% 93.71% 88.09% 85.53%

PC3 99.78% 99.81% 99.76% 99.84% 88.94% 84.13% 82.92% 97.35% 94.04% 93.45%

PC4 99.90% 99.94% 99.88% 99.91% 92.25% 90.10% 88.47% 99.23% 98.24% 98.34%

PC5 99.96% 99.96% 99.94% 99.95% 94.82% 94.22% 93.04% 99.70% 99.29% 99.28%

Table 5.2 Cumulative Percentage of Trended Volatility Explained by the First 5 Principal Components

Tables 5.1 and 5.2 tell us how much of the volatility in the forward curve is

explained by the dominant independent statistical factors or alternatively, how many

independent statistical factors are needed to adequately explain the variations in the

forward curve. Unlike for other indices such as electricity prices, Tables 5.1 and 5.2

indicate that only a few principal components are required for the main shipping forward

curves. This means that the task of explaining the variations and predicting the forward

curves can potentially be simplified to a great extent.

By comparing Tables 5.1 and 5.2 we see that more volatility is explained by the

first few factors when using trended volatility as opposed to de-trended volatility. That

may be because trend variations may be captured better by a few components than

variations about the trend, and these trend variations may account for a significant portion

of the total variation.

We also see that more volatility is explained by the first few factors in dry bulk

carriers relative to tankers, in datasets of 22 rolling contracts relative to those with 10

rolling contracts, and in those where the analysis has been carried out with prices in

Worldscale (WS) as opposed to time charter equivalent (TCE).

[Sclavounos & Ellefsen 2009] carried out PCA analysis on the TD3 over the

period Apr-4-2005 to Feb-6-2009 using monthly rolling futures contracts with tenors

ranging from 2 to 5 months. The analysis was carried out using the Worldscale prices and

the de-trended measure of volatility. Table 5.3 shows a comparison of our relative results.



Table 5.3 Comparison of TD3 De-Trended Volatility by First 4 Factors with rSclavounos & Ellefsen 20091

The results of [Sclavounos & Ellefsen 2009] show a higher percentage of

volatility explained by the first factor and consequently all the cumulative results are

higher. The difference may be partly explained by the fact that in this route, contracts

beyond the first few months are significantly less liquid. Our analysis consists of 10

rolling quarters as opposed to rolling months 2 to 5.

Comparison of Results with Previous Findings

TD3 (WS) TD3 [Sclavounos & Ellefsen 2009]

PC1 78.31% 86%

PC2 88.09% 95%

PC3 94.04% 98%

PC4 98.24% 100%



5.2 Canonical Correlation Results

CCA as described in Section 2 was carried out on the 14 dataset pairs using both

de-trended and trended volatility (on a total of 28 block matrices). The main results of

CCA are the maximum correlation between the dataset pairs and the corresponding

portfolio which achieves the maximum correlation. The maximum correlation by each

dataset pair using de-trended and trended volatility is shown in Tables 5.4 and 5.5

respectively.

ROUTES SHIPS UNITS RELATION MAXIMUM

CORRELATION

TD5-TC2 Suezmax - Product $/day Same 99.85%

TD5-TD3 Suezmax - VLCC $/day Same 99.46%

TD3-TC2 VLCC - Product $/day Same 99.17%

CAPE-PMX (22R) Cape - Panamax $/day Same 98.16%

CAPE-PMX Cape - Panamax $/day Same 96.02%

TD5-TD3(ws) Suezmax - VLCC WS Same 84.58%

TD3-TC2(ws) VLCC - Product WS Same 76.95%

TD5-TC2(ws) Suezmax - Product WS Same 75.35%

CAPE-TC2 Cape - Product $/day Cross 28.22%

CAPE-TD5 Cape - Suezmax $/day Cross 27.68%

TD5-PMX Suezmax - Panamax $/day Cross 25.79%

TC2-PMX Product - Panamax $/day Cross 24.91%

TD3-PMX VLCC - Panamax $/day Cross 24.62%

CAPE-TD3 Cape - VLCC $/day Cross 22.10%

Table 5.4: Maximum Correlation of Dataset Pairs Using De-Trended Volatility

The first column contains the names of the dataset pairs which are ranked in both

tables by maximum correlation. The second column denotes the two ship types of the



dataset pair. The data for bulk carriers is always in $/day so the third column is only used

to distinguish between the tanker datasets in which the data is in Worldscale and those

where the TCE has first been calculated ($/day). Note that the units must always match

between the two datasets of a given pair. In the fourth column, if the datasets of the pair

are both from tankers or both from bulk carriers, that is indicated by "same". If one is

from tankers and the other from bulk carriers, that is denoted as "cross".

For all dataset pairs except "CAPE-PMX (22R)", the data consists of 10 rolling

quarters between Feb-10-2005 and Jul-29-2010. For "CAPE-PMX (22R)", the data

consists of 22 Rolling quarters between March-10-2008 and July-29-2010.

ROUTES SHIPS UNITS SECTORS MAXIMUM

CORRELATION

TD5-TC2 Suezmax - Product $/day Same 99.96 %

CAPE-PMX (22R) Cape - Panamax $/day Same 99.93 %

TD5-TD3 Suezmax - VLCC $/day Same 99.89%

TD3-TC2 VLCC - Product $/day Same 99.87 %

CAPE-PMX Cape - Panamax $/day Same 99.68 %

TD5-TD3 (WS) Suezmax - VLCC WS Same 98.94 %

TD5-TC2 (WS) Suezmax - Product WS Same 97.52 %

TD3-TC2 (WS) VLCC - Product WS Same 96.83 %

CAPE-TD3 CAPE - VLCC $/day Cross 92.59 %

TD3-PMX Panamax - VLCC $/day Cross 90.90 %

TD5-PMX Panamax - Suezmax $/day Cross 86.42 %

CAPE-TD5 Cape - Suezmax $/day Cross 86.01 %

TC2-PMX Panamax - Product $/day Cross 81.97 %

CAPE-TC2 Cape - Product $/day Cross 81.88 %

Table 5.5: Maximum Correlation of Dataset Pairs Using Trended Volatility

Some general conclusions can be derived by examining and comparing Tables 5.4

and 5.5 as summarized in Table 5.6 and discussed below.



MAIN CONCLUSIONS FROM TABLES 5.4 & 5.5

Conclusion 1 Very high maximum correlations achieved overall

Conclusion 2 Higher correlations with trended as opposed to de-trended volatility

Conclusion 3 Higher correlations within same sector than across sectors

Conclusion 4 Tankers are more correlated than bulk carriers

Conclusion 5 Higher correlation with time charter equivalent than with Worldscale

Conclusion 6 Higher correlations achieved when more rolling quarters are used

Table 5.6: Summary of Main CCA Conclusions on Maximum Correlation of Dataset Pairs

Conclusion 1.

A surprisingly high maximum correlation can be achieved between most datasets,

the highest being 99.96%. This is highlighted when considering the corresponding

correlations of the physical (spot) markets. [Stopford 2009] calculates the correlation

between average monthly earnings of various major shipping market segments over the

period 1990 and 2002.

The comparison with our results may not be perfect because in some instances our

chosen routes are not 100% representatives of average earnings, because our analysis

uses daily as opposed to monthly time increments, and because we are focusing on

different time periods. Nevertheless, the comparison provides a good idea of the

relationship between the spot market correlations and maximum possible correlations of

the forward curves achieved with CCA.

Note that the relevant results to compare to [Stopford 2009] are only those in

$/day (not Worldscale), and those calculated using the trended definition of volatility.

Table 5.7 provides a list of the ship type pairs for which we and [Stopford 2009] both

have results. They have been ranked by "spot correlation" as calculated by [Stopford

2009]. The fourth column shows our corresponding results from Tables 5.5 for



comparison with the third column of spot market correlations. The far right column lists

the corresponding results from Table 5.4 for illustrative purposes.

ROUTES SHIPS SPOT CANONICAL CANONICAL

CORREL. CORREL. CORREL.

(TRENDED) (DE-TRENDED)

CAPE-PMX (22R) Cape - Panamax 84% 99.93 % 98.16%

CAPE-PMX Cape - Panamax 84% 99.68 % 96.02%

TD3-TC2 VLCC - Product 59% 99.87 % 99.17%

CAPE-TD3 CAPE - VLCC 30% 92.59% 22.10%

CAPE-TC2 Cape - Product 27% 81.88 % 28.22%

TC2-PMX Panamax - Product 17% 81.97% 24.91%

TD3-PMX Panamax - VLCC 7% 90.90 % 24.62%

Table 5.7: CCA Maximum Forward Curve Correlations and Spot Market Correlations by rStopford 20091

Across the 6 ship type pairs, the maximum correlation by CCA using 10 rolling

quarters, is on average higher than the correlation of the physical (spot) markets, by 54%

when using trended volatility and by 12% when using de-trended volatility.

Conclusion 2.

A higher correlation is achieved between the same dataset pairs when using

trended volatility than when using de-trended volatility. This is evident by comparing the

results of Table 5.4 (de-trended) with the corresponding results of Table 5.5 (trended).

The maximum correlation when using trended as opposed to de-trended volatility is

higher in all 14 dataset pairs. The range of correlations jumps from 22.1% - 99.85% to

81.88% - 99.96%.

Table 5.8 groups the various dataset pairs according to sector, data units and

number of rolling quarters (all are 10 except when noted as "22R"). It then gives the



average maximum correlation within each group when calculated using de-trended and

trended volatility.

Group of Database Pairs Average Max Correlation Average Max Correlation

(De-Trended Volatility) (Trended Volatility)

Tanker-Tanker (TCE) 99.50% 99.91%

Bulk-Bulk (22 R) 98.16% 99.93%

Bulk-Bulk 96.02% 99.68%

Tanker-Tanker (WS) 78.96% 97.76%

Bulk-Tanker 25.56% 86.63%

Table 5.8: Maximum Correlation of Dataset Pairs Using Trended Volatility

Here we see the same result again. However, focusing on the bottom two rows,

we also notice that the difference is significantly greater when doing the analysis in

Worldscale and particularly when correlating across sectors (tankers with bulk carriers).

We can attempt to explain this by recalling the wave analogy of trended and de-

trended volatility. The long wave is captured only by the trended volatility whereas the

de-trended volatility only looks at the short waves riding the long wave. The fact that

higher correlations are consistently achieved with trended volatility is a strong indication

that the trends may be strongly correlated.

It seems that when comparing across sectors (tankers with bulk carriers), a

significant part of the correlation is in the trends and is only captured when looking at the

long wave. For example, CCA with trended volatility may better capture the effects of

global economic factors such as the sub-prime crisis which sends the whole economy

(both sectors) on a downward trend. CCA with de-trended volatility, on the other hand,

may be impacted more by "daily" sector-specific factors such as an oil price spike or an

iron ore port congestion which only impacts one of the two sectors and hence reduces the

overall correlation.



Conclusion 3.

Higher maximum correlations are achieved when the ship types in the dataset pair

are either both tankers or both bulk carriers, than if there is one from each. That is

because intuitively, there is a higher earnings correlation between any two tanker or bulk

carrier routes or sizes since they are serving similar markets. When comparing the Cape

market (mainly 170,000t batches of iron ore and coal), with that of the TC2 (37,000t

batches of clean products such as gasoline), there is relatively little in common and they

respond to different shocks. In Table 5.7 we see that also spot market correlations by

[Stopford 2009] are higher within the same sectors relative to correlations of tanker-bulk

carrier pairs.

Conclusion 4.

Tankers are more correlated than bulk carriers. Note that we must only consider

pairs with 10 rolling quarters for consistency in this comparison. The results may be

explained by the fact that tankers carry more similar cargos. VLCCs and Suezmaxes for

example both transport crude oil while the market for transportation of clean products

may also be closely linked. Panamaxes on the other hand transport much more grain and

also other cargos besides iron ore and coal which are the predominant Cape cargos.

Conclusion 5.

A higher correlation is achieved between the tanker routes when the analysis is

performed using $/day as opposed to Worldscale, in other words after the TCE has been

calculated. That is simply because by converting to TCE, the noise due to the annual flat-

rate changes is eliminated. The futures prices in $/day are more reflective of reality

because our assumption that the applicable flat rate was known in advance at the time of

the contract is not a bad one to make.



Conclusion 6.

The last conclusion is that the maximum correlation increases when we add more

contracts. Even though a shorter time period is considered, the maximum correlation

between the Cape and Panamax is significantly higher with 22 rolling quarters than with

10 rolling quarters. This is true when using both trended and de-trended volatility. The

reason is that a larger portfolio of assets (22 as opposed to 10 in each portfolio) provides

much more flexibility. One should note that the range of solutions when using fewer

rolling quarters is a subset of the range of solutions with more rolling quarters, so the

maximum correlation can only increase by adding contracts.

Another interesting result is the minimum correlation attainable within each

dataset or the range of possible correlations. While one may want to maximize the

correlation for hedging or trading purposes, one may also be interested in minimizing the

correlation for diversification. The real positive eigenvalues of the covariance matrix

indicate possible correlations that can be achieved between the two datasets. Fig 5.4

shows the possible correlations between the Cape and Panamax forward curves using 22

rolling quarters with de-trended and trended volatility.
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Fig 5.4: Possible Correlations between Cape and Panamax Forward Curves with 22 Rolling Quarters



The analytical results containing all the possible correlations for each dataset pair,

using the de-trended and trended volatility can be found in Appendix C and Appendix D

respectively.

One can also achieve correlations between any two eigenvalues by combining the

portfolios given by the two corresponding eigenvectors. However, the minimum and

maximum eigenvalues define the possible range of correlation that can be achieved. In

the example presented by 5.4, the possible correlation range is 4.44% to 98.16% using

de-trended volatility, and 1.56% to 99.93% using trended volatility. Only the lowest and

highest eigenvalues are relevant because any correlation in between can be achieved by

combining their corresponding portfolios.

Tables 5.9 and 5.10 show the possible range of correlations between the Cape and

Panamax forward markets and how that changes when going from 10 to 22 rolling

quarters. Table 5.9 shows the results with de-trended volatility and Table 5.10 has the

results with trended volatility.

Table 5.9: Cape-PMX Correlation Range with 10 and 22 Rolling Quarters using De-Trended Volatility

CAPE-PMX CAPE-PMX(22R)

MINIMUM 48.62% 1.56%

MAXIMUM 99.68% 99.93%

RANGE 51.06% 98.37%

Table 5.10: Cape-PMX Correlation Range with 10 and 22 Rolling Quarters using Trended Volatility

In both tables, we see that when going from 10 to 22 rolling contracts, the

minimum correlation shifts down and the maximum correlation shifts up, thereby

expanding the correlation range. That is again because the range of solutions with 10

rolling quarters is a subset of the range of solutions with 22 rolling quarters.

CAPE-PMX CAPE-PMX(R22)

MINIMUM 6.40% 4.44%

MAXIMUM 96.02% 98.16%

RANGE 89.62% 93.72%



Figures 5.5 and 5.6 show the minimum and maximum possible correlation for

each dataset pair, using de-trended and trended volatility respectively. In both graphs, the

dataset pairs are presented from highest to lowest maximum correlation excluding the

single dataset pair with 22 rolling quarters which is on the far right.

Possible Correlation Range (De-Trended Vol)
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Fig 5.5: Minimum and Maximum Correlation for all Dataset Pairs using De-Trended Volatility
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Fig 5.6: Minimum and Maximum Correlation for all Dataset Pairs using Trended Volatility

Earlier we saw that the maximum volatility increases when going from de-trended

to trended volatility for the same dataset pair. Here we see that in the vast majority of

cases, the minimum possible correlation also shifts up significantly. This indicates that



the inclusion of the trend (long wave) sets a limit to how low the correlation can be. This

is a problem similar to that faced in portfolio optimization where diversification is limited

by factors affecting the global economy and all sectors in the same way.

Figures 5.7 and 5.8 provide a visual representation of the portfolio that maximizes

the correlation between the Cape and Panamax forward curves using 22 rolling quarters.

Fig 5.7 uses de-trended volatility while Fig 5.8 uses trended volatility.

CAPE-PMX(22R) Correlation Maximizing Portfolio (De-Trended Vol)
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Fig 5.7: Correlation Maximizing Portfolio for CAPE-PMX De-Trended Volatility
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Fig 5.8: Minimum and Maximum Correlation for all Dataset Pairs using Trended Volatility



We see that in the vast majority of cases, to maximize the correlation, we have to

go long and short on the same quarters in both datasets. Also, the same quarters are

involved when maximizing the correlation between the two dataset using de-trended or

trended volatility. Note that the scale on the ordinate axis is irrelevant and that all the

signs can also be reversed (going short where long and vice versa) without affecting the

correlation. The correlation maximizing portfolios for the remaining dataset pairs, using

de-trended and trended volatility, can be found in Appendices E and F respectively.



6. Application Case Studies

6.1 Trading Opportunities from a Hedge-fund Perspective

If we have information additional to that of the market, about correlations

between various portfolios, one of the most obvious applications is to use it directly in

trading. First we start by identifying the highest correlation pairs. In our analysis we

identified pairs with correlations approaching 100%. The next step is to trace the value of

the two portfolios over time. We would expect the ratio of the two portfolio's values to

remain approximately constant over time, with some departures about the equilibrium.

That is because the correlation between the two is high but not perfect.

Alternatively, we create a new portfolio which is a long position of one of the two

individual portfolios and a short position on the other. This combined portfolio should

have a value that is approximately constant over time with small deviations from its

equilibrium. These deviations present trading opportunities which can be exploited based

on the assumption that the combined portfolio is mean reverting (i.e. that the correlation

between the two datasets is indeed high). We simply buy when the combined portfolio's

value is significantly below equilibrium and sell when it is significantly higher.

It is important to trance the portfolios' values carefully over a significant time

period and look out for changes in the market because the combined portfolio's

equilibrium level or the correlation between the two individual portfolios may change.

Note that friction costs i.e. trading commissions will reduce potential profits and may

make only significant deviations worthwhile. Also, as more and more parties identify the

equilibrium and enter into the same trades, the deviations will become fewer and smaller.

One of the most powerful tools of multivariate statistics, described in [Anderson

2003], is the ability to condition the parameters determined from PCA and CCA on

recently observed values. Solving the CCA conditionally on observed values, for

example, can give us much better estimates of the correlations between datasets in the

near future. Conditioning on recently observed values also allows us to solve for the



portfolio which currently deviates maximally from its equilibrium, thereby presenting the

best trading opportunity.

Depending on our trading horizon, we can define the recent period as say, one

month whereas the unconditioned parameters are derived from say 5-year data series. The

unconditioned parameters are those that we calculated in our PCA / CCA and are denoted

with upper case letters while the corresponding lower case letters are assigned to the

parameters from the recent period.

Consider a uniformly distributed (across the rolling contracts) portfolio of

Suezmax futures X,, and the recent prices of other futures x2 . The conditional

distribution of X,, given x2 , is normal with a mean value and a covariance matrix given

by Equations 6.1 and 6.2 respectively.

[S]C =E([X]I[x2])=[(SX[ ][ 2 Y [ 2 -[5 2  6.1

[Ei]c =E [X,](SicJ[X]-(Xic | = 6.2

In order to carry out conditional PCA and CCA, we simply condition the initial

covariance matrix, using Equation 6.2. An interesting observation is that the conditioned

covariance matrix of X, does not depend at all onx 2 but only on our choice of contracts

that we use for the conditioning.

Note that Equation 6.1 results in a deterministic drift which is simply a linear

function of the observed values x 2 . This, for example, could be the expected drift in a

uniformly distributed portfolio of Suezmax futures, conditional on the observed values of

other futures relative to their long term mean values.

Say that we are interested in a portfolio of Suezmax futures with weights d, such

that the drift is maximized. The new portfolio, X,, has a covariance matrix 'T based on

the conditional expected values of its elements. Following an approach analogous to that

of CCA, the maximization of the drift relative to the portfolio variance, results in the



vector equation of Equation 6.3 where [-22 ] is the observable conditional covariance

matrix (using the recent values x 2 )-

i 12 [I22]-1 Io-22 ]f 12Jy22 1 -eW = 0 6.3

K is the largest value which satisfies I[Th2 12 I]' - ]I2 1]2 I ]- - XT= 0 .

The solution of Equation 6.3 gives us the portfolio of Suezmax contracts that

deviates maximally from its equilibrium, conditional on the observed values of other

futures prices. Note that vector x 2 which contains the conditional observed values can

take any size, so we are free to include whichever and as many futures as we consider

relevant and adequate.



6.2 Cross Hedging Any Physical Exposure in Illiquid Markets

Suppose we have a VLCC on the spot market, and we want to hedge its earnings

for the next 10 quarters. Our exposure to the physical market is evenly distributed across

the various tenors. If the futures market for VLCC earnings is liquid, we can use that

directly to get a "perfect" hedge. If it is illiquid, we may turn to Suezmax futures or

another more liquid market, in order to cross hedge. The problem is almost the same as

the one solved in Sections 2 and 5.1. The only difference is that now, vector i which

contains the weights of the VLCC portfolio, is predefined to be a vector full of ones.

Consider another case. Suppose we have a Suezmax Tanker that is on a charter

ending a year from now, and then enters into a follow-up charter half a year later. That

leaves us with an exposure to the physical market for rolling quarters R5 and R6, which

we may want to hedge. Again, if there is no liquidity for those tenors, we may turn to say,

the PMX forward curve. The problem is again the same but with vector d (now

corresponding to Suezmax futures weights) full of zeros except for the 5 th and 6 th element

which are equal to one. In other words, we are looking for the maximum correlation

between a unit each of R5 and R6 in the Suezmax forward curve with any combination of

PMX futures of any tenor.

There are countless examples of physical exposures that one may wish to hedge

using a different forward curve. The problem that needs to be solved in each case is

essentially the same. By eliminating the zeros, we reduce the size of the portfolio

vector d which contains the physical exposures that have to be hedged. Then we are left

with a canonical correlation problem, with different size vectors d and p8. Note that in

order for the matrix multiplications to be possible, the vectors must be arranged so that

p1  P 2 i.e. the smaller vector corresponding to the physical exposure should be d, and

the full vector of the chosen liquid market should be p . The eigenvalue problem has to be

solved subject to the constraint that all the elements in d are equal to each other if we

have an equal physical exposure to each of the contracts. The resulting iT'v matrix will



then have to be normalized with respect to the first element being equal to 1 (or any

required value).

To solve the problem, we use the fact that portfolios, and hence results, can

simply be superimposed. Instead of solving the CCA problem for a reduced size portfolio

vector i (containing p, elements) with the constraint that its elements must be equal to

each other, we break it down into p, problems with vectors i having only 1 element. In

other words, we correlate each element of vector ii with vector # separately and then

combine the results. Each CCA will result in a w *matrix of 1+ p, elements. We then

normalize all these matrices such that their first element is equal to 1. Then, we exclude

the first elements (those equal to 1) so we are left with the optimized p vectors and we

superimpose those to get the portfolio that has maximum correlation with the initial

vector i that is full of ones.

By breaking down the initial i vector into single element vectors, then carrying

out CCA with each element, and then superimposing the results, we can find the

maximum correlation for any combination of physical exposures. If for example we have

double the exposure in one of the quarters, then we normalize the corresponding w-* such

that its first element is equal to two before superimposing, and so on.

Note that one should use the relevant covariance matrices (using trended or de-

trended volatility) depending on whether they wish to hedge the forward curve including

its trend or just the volatility about the trend. The second case for example may apply if

one is already naturally hedged against trend fluctuations. For example, a global

recession may impact ones revenues (the spot market) but also ones costs and interest

payments in the same direction which means that they are already naturally hedged to

some extent against global recessions. Under that scenario, an attempt to hedge the trend

may leave them exposed, so it may be best to only hedge volatility about the trend using

the de-trended volatility covariance matrices.



6.3 Temporal vs. Sectoral Separation for CCA

In some cases, there may be liquidity for only a part of a certain forward curve. In

tankers, for example, there is usually higher liquidity for the prompt quarters. If there is

illiquidity for the contracts corresponding to the physical exposure that we wish to hedge,

we may choose to cross-hedge with a different forward curve or we may wish to cross

hedge with contracts of different tenors within the same forward curve. To do that, we

simply divide our vector d into two sub-vectors and perform CCA on those two. This is

called temporal separation of the forward curve as opposed to sectoral separation that was

discussed previously.

Suppose we want to hedge a specific quarter using contracts for other quarters of

the same forward curve. The covariance matrix tells us directly the correlations between

that quarter and each of the other quarters. By performing CCA between that quarter and

the remaining p, -1 rolling quarters of vector d, we can identify the maximum

correlation possible using a portfolio that consists of the whole remaining forward curve.

We may also choose to include only a part of the remaining forward curve e.g. all the

liquid contracts at the time when we are looking to hedge.

We could also go beyond that and combine temporal and sectoral separation for

CCA. For example, if we wish to hedge our physical exposure to R9 of TD3 (VLCC), we

can carry out CCA with vector d having a single element (TD3-R9) and with vector #

including all liquid contracts of the other forward curves including the TD3 curve (e.g.

the more prompt TD3 quarters which may be more liquid). Then, we normalize the

resulting vector i- such that its first element is unity. This gives us the portfolio of all

the liquid contracts of shipping forward curves that we have chosen to include, that

maximizes the correlation with R9 of TD3.

Note that again, we can carry out the analysis for each individual rolling quarter

that we wish to hedge and then superimpose the results to get our complete portfolio. If

for example our physical exposure is for both R9 and R1O of the TD3, we carry out the

same analysis separately for each, and then combine the resulting portfolios.



6.4 Portfolio Optimization and Effective Diversification

Note, that the reverse problem of the one we have been solving can also be very

useful. In order to diversify from a particular physical or derivative exposure, we should

be solving for the minimum as opposed to the maximum correlation. In section 5.2, we

looked at the possible range and the minimum correlations between various datasets. We

saw that there is a limit to how low the correlation can be, particularly when including the

trends. This limits our ability to diversify.

Say we have only one Panamax on the physical (spot) market for the next 2 years

and we want to diversify within the shipping markets. Instead of physically diversifying,

which would potentially involve buying or chartering in a different ship, we could use

forward curves in a manner that is both more practical and much more effective.

Our physical exposure is evenly distributed across the next 8 rolling quarters.

First, using CCA, we identify the combinations of other contracts that minimize the

correlation with each of the 8 PMX rolling contracts. Then we create 8 portfolios, each of

which diversifies our exposure to a different quarter. Then we combine these 8 portfolios,

to achieve the maximum possible diversification within the chosen markets.

Note that a much lower correlation could potentially be achieved, offering better

diversification, than simply investing in an additional ship of a different type. This is

particularly true if we construct our vector # with contracts of various forward curves.



6.5 Other Applications

There are potentially countless applications for CCA using shipping forward

curves. Some of the main examples such as hedging and trading, as well us the

circumstances under which they would be particularly useful have been discussed. Other

examples include cross hedging a physical exposure using another market due to lower

friction costs including not only liquidity but perhaps lower commissions. Another

application is the hedging of certain positions on the paper market when it is difficult to

close them due to illiquidity, or the diversification of a portfolio of derivatives as well as

physical exposures.



7. RAFL-Valuation of Tankers with Rolling Contracts

7.1 Introduction

The Risk Adjusted Forward Looking ship valuation model (RAFL) is a state of

the art valuation model which combines both technical and financial aspects in a

fundamental valuation based on risk-adjusted discounting of expected cash flows. A

forward view of the main parameters is obtained from derivatives and financial securities

that include shipping futures, FFAs, options, interest rate swaps and inflation protected

bonds. The inherent risk of cracks is treated as a fictitious credit risk, derived from a

reliability model, and is incorporated into the discount rate along with other risk

premiums. Other inputs include repair costs and off-hire time, which are calculated with

respect to ship age using a database of repairs, while the records of public and private

companies are used along with surveys to estimate operating expenses.

The model produces valuations for Capesize bulk carriers that have been found to

be in very close alignment with recent transaction prices across all ship ages. It also

estimates the volatility of the ship value and uses it to price optionalities that are often

included in ship transactions. For detailed information about the RAFL model and for a

full application to the segment of Capesize bulk carriers, one should refer to

[Hadjiyiannis 2010]. A complete application of the model requires a lot of detailed work

including the analysis of a large database of cracks. In this section, we shall make some

assumptions and apply a slightly simplified version of the model, using the rolling

contracts that we developed, to produce valuations of generic double-hull Suezmax

tankers as of the beginning of 2010.



7.2 Brief Overview of RAFL Ship Valuation Model

The RAFL model calculates the ship value by summing the risk adjusted expected

monthly cash flows throughout the ship's 27.5-year life, as described by Equation 7.1

Ship Value --AgeoRev OpEx - RepCostn -P(fail)FailCost

(1+i.)~
7.1

The numerator terms are the revenues, the operating expenses, the repair costs and

the expected failure costs, all of which are functions of ship age and time. The discount

rate in the denominator is calculated by equations 7.2 to 7.5.

i(t) =(1+rrAcc(t))e2St Q) -1 7.2

rACC (t)= (1 - WD )re + D ( rD --(t 7.3

S,(t) f (r)dr+± f (r)dr+( dr 7.4
t18 036 36t

re (t)= r, (t)+jALMRP+ZRP 7.5

The discount rate i(t) is a function of leverage WD (debt/asset value), the cost of

equity re , cost of debt r 9, inflation I(t) and the hazard function A(t). The hazard

function throughout the ship's life is calculated by the customized ship reliability model

developed in [Hadjiyiannis 2010]. Using the relevant parameters calculated by the

analysis of a large database of hull cracks and casualty incidents, the hazard function for

each repair interval "R" is given by Equation 7.6. The full analysis was applied to

Capesize bulk carriers and the resulting hazard function is shown in Fig. 7.1.
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7.3 Applying the RAFL Model to Suezmax Tankers

7.3.1 Overview

The calculation of the numerator and denominator parameters as a function of

time involves the analysis of forward looking parameters at the time of the valuation,

including the risk free rate, inflation etc. Since we are carrying out the valuations for the

beginning of 2010, which is the same as for the valuations of Capes in [Hadjiyiannis

2010], all we need to do is make the key relevant adjustments to those valuations as

opposed to carrying out the complete analysis from scratch.

Starting from the numerator, the revenues initially given by the futures of Capes,

will now be replaced by the rolling contracts for the TD5 which were developed earlier.

That is because the TD5 is indeed very indicative of average earnings for Suezmax

Tankers (it is used by the Baltic to quote average daily earnings).

The operating expenses and repair costs are a function of ship age and time. The

base values and the variation with respect to age will be replaced by figures

representative of typical Suezmax tankers. However, the function with respect to time,

which depends on macroeconomic parameters such as inflation, will be kept the same.

The monthly probability of failure throughout the ship's life is approximated by

the hazard function which will be scaled accordingly following a literature review

presented in Section 7.3.2. It should be noted that the initial calculation of the hazard

function for Capes involved the collection and analysis of a lot of data including ~30,000

cracks from 240 ships. The cost of failures, however, is significantly higher for the

Suezmax, both because the repairs are more difficult to carry out and because of the risk

of pollution, so these figures have to be adjusted accordingly.

Regarding the discount rate, the hazard function will simply be scaled as

explained previously. The cost of debt and the leverage as a function of age and time will

be kept the same as for Capes. The cost of equity will be adjusted by changing the

relevant betas and risk premiums while leaving the risk free rate as a function of time

unchanged (this was derived from the term structure of interest rates).



7.3.2 Tanker vs. Bulk Carrier Reliability

The purpose here is to compare the structural reliability of a typical double hull

Suezmax tanker to that of a typical single hull Capesize bulk carrier. An important thing

to consider is the impact of fatigue and corrosion as the ship ages since that will be

different for the two ship types.

On a high level, we would expect the tanker to be stronger due to the absence of

hatches. The double hull also gives it a greater moment of inertia about the neutral axis,

which means that a given bending moment corresponds to a lower maximum bending

stress at the outermost fibers. High loading rates of up to 16,000tons per hour, occasional

impact by 30ton grabs during discharge, and alternating voyages between abrasive iron

ore and corrosive coal cargos, result in severe fatigue and hull degradation for the bulk

carrier with respect to age. Lastly, due to the potential environmental impact of oil

pollution, one would expect that tankers are built to better specifications and are required

to adhere to higher maintenance standards.

Various methods have been developed to model corrosion and fatigue in ageing

vessels as well as their impact on hull strength and reliability. One of the most systematic

and complete approaches is developed in [Paik et al 2003]. They examine the time

dependent ultimate longitudinal strength reliability of a 170,000dwt bulk carrier, a

105,000dwt double hull tanker and a 254,000dwt single hull tanker type FPSO unit under

vertical bending moments, accounting for corrosion, fatigue cracking and denting

damage. Their method is based on a calculation of strength "reduction factors" for each

structural member due to fatigue, corrosion and denting. The reduction factors are then

used to relate the current ultimate strength to the original (intact) ultimate strength of

each member. The fatigue crack, general / pitting corrosion and local denting damage

reduction factors are calculated by Equations 7.7 to 7.9 respectively.

R = CurrentStrength _ 0 (A - Aj _ A0 - A 7.7
OriginalStrength ou A0 A0
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A, is the original plate area, A, is the plate area no longer contributing to

longitudinal strength due to the presence of the crack, A, is the area involved by pit

corrosion at the smallest cross section, d is the dent depth, t is the plate thickness and C,,

C2 and C3 are empirically determined regression coefficients.

To calculate the extent of corrosion, they assume a model of the form

tr = C, (T -T - T )c2 , where tr is the corrosion depth, T is time (life of the component),

T is the coating life, T is the transition time between coating failure and corrosion

initiation, and C1 , C2 are coefficients determined by statistical analysis [Paik and

Thayamballi 2002].

Fatigue cracking is modeled using the Paris-Erdogan Law,

a = A (AK) = A (YA oZr , where a is the crack length, N is the number of stress
8N

cycles, A and n are material properties, and K is the stress intensity defined by the

applied stress G and the geometric factor Y. This is a more rigorous approach than the

cumulative damage models conventionally used in the industry which are usually based

on S-N curves (a plot of the number of cycles to failure against stress level), combined

with Miner's rule (D= D, 1, where D, is the fatigue damage of each load). Recent

examples of those include the Joint Tanker Project (JTP) and Joint bulker project (JBP)

analysis procedures described by [Lotsberg 2006].

Limitations of the approach of [Paik et al 2003] include the fact that the Paris-

Erdogan law, in its original form, is known to produce over-conservative results in

complicated structures such as ships [Hadjiyiannis 2010], while as discussed by [Ok et al

2007], the effects of different pitting locations and pitting lengths, which were not



considered in this study, may contribute significantly to strength reduction. [Amlashi and

Moan 2005] explore the effects of pitting corrosion in more detail. The great benefit of

the approach of [Paik et al 2003] is the easy combination of the various effects. The total

reduction factor for each component is simply the product of the individual reduction

factors (R's).

Using this model, they go on to calculate the time varying reliability index and

probability of failure under various scenarios for the three ship types. They also

incorporate the effect of repairs which are scheduled based on the IACS requirement that

the longitudinal strength should remain above 90% of its original value. Some key

parameters of the bulk carrier and double hull tanker are summarized in Table 7.1.

PARAMETER SYMBOL BULK CARRIER D.HULL TANKER

(170,OOODWT) (105,OOODWT)

Cross Sectional Area Ax (m2) 5.652 5.318

Height of Neutral Axis hNA (i) 11.188 9.188

Neutral Axis to Depth hNA/D 42% 43%

Moment of Inertia I (Mi) 694.3 359.5

Deck Section Modulus ZD (mW) 44.354 29.679

Bottom Section Modulus ZB (M) 62.058 39.126

Table 7.1 Key Parameters of Double Hull Tanker and Bulk Carrier Considered by [Paik et al 20031

The reliability index and probability of failure stays flat for the first 5 years before

corrosion, fatigue and damages begin to have an effect. Then there is a gradual increase

with sudden spikes during repairs. For both the bulk carrier and the double hull tanker,

the probability of failure is initially about 0.01 and then fluctuates between 0.02 and 0.05

throughout the ship's life. Using a similar approach, [Wang et. Al 2003] calculates the

reliability index of an oil tanker under various corrosion levels as shown in Fig. 7.2
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Fig. 7.2 Annual Reliability Index of Hull Girder Strength of an Oil Tanker for different Corrosion Levels

[Wang et al 20031

[Husein and Guedes Soares 2009] carry out a reliability analysis for a Suezmax

Tanker and Handymax bulk carrier under various loading conditions. They use a

stochastic model for both the still water and wave induced bending moments and evaluate

the corresponding stresses after also calculating the effective position of the neutral axis

in the non-linear elasto-plastic domain. The reliability analysis is performed using the

computer program COMREL [Gollwitzer et al 1988], and the limit state equation

corresponds to hull girder failure under vertical bending moment [Guedes Soares et al

1996, IACS 2006]. The reliability index for the tanker in the fully loaded sagging

condition was 2.95 while for the bulk carrier it is summarized in Table 7.2.

RELIABILITY INDEX FOR HANDYMAX BULK CARRIER

Loading Condition Sagging Hogging

Alternate Loading 1.429 2.562

Homogeneous 2.867 3.885

Ballast 1.182 2.32

Table 7.2 Reliability Index for the Handymax Bulk Carrier Under Various Loading Conditions

[Husein and Guedes Soares 2009]



While the reliability index is acceptable for the tanker in the fully loaded

condition (the only one considered) and for the bulk carrier in homogeneous loading and

in all hogging states, it is very low for the bulk carrier in the sagging condition during

ballast and alternate loading. This could be related to the hatch openings and stress

concentrations discussed earlier. [Husein and Guedes Soares 2009] suggest increasing the

thickness of the deck plating as a design modification to solve the problem.

[Bai 2006] applied reliability assessment to a double hull tanker to get the time

dependent reliability index and probability of failure considering age related degradations

including corrosion and fatigue. The results are shown in Fig. 7.3. We see the probability

of failure reaching 7% immediately before the repairs.

CIE,.

Ship atga (year s)

Fig 7.3. Time Dependent Reliability Index of a Double Hull Tanker Considering the Repair Scheme,

Corrosion and Fatigue Cracks [Bai 20061

[Debek & Konieczny 2006] carry out safety analysis on a Panamax bulk carrier

using Comrel combined with the Adaptive Mote Carlo Method. The ultimate strength

calculations were performed with the ALPS/HULL program. They calculate the

probability of failure under each loading condition and in total using the 20-year Gumbel

distribution and predicting values for the 1-year distribution.



BALLAST HOMOGEN ALTERNATE TOTAL

Fraction of Ship Life (15% at harbor) 35% 25% 25% 100%

Hull Failure Probability - 20 Years 0.0487% 14% 4.25% 18.3%

B -20 years 3.3 1.08 1.72 0.91

Hull Failure Prob. - 1 Year (predicted) 0.00462% 1.26% 0.398% 1.61%

B - 20 years (predicted) 3.92 2.24 2.66 2.14

Table 7.3 Reliability Results for Ultimate Hull Strength Calculated with Comrel for 20-years and predicted

for 1-year rDebek & Konieczny 20061

They also generate results for the 1-year safety index that can be directly

compared with those of [Guedes Soares et al 1996] for Single and double hull tankers.

D.HULL TANKER S.HULL TANKER PANAMAX BULK CARRIER

Sagging 2.74 3.39 2.24 (Homogeneous Loading)

Hogging 2.97 3.46 2.66 (Alternate Loading)

Table 7.4. Comparison of Safety Index (1-Year Gumbel P) Values for Single/Double Hull Tankers

[Guedes Soares et al 19961 and for a Panamax Bulk Carrier [Debek & Konieczny 20061

Note that p=3.7 (based on a 1-year Gumbel distribution) is normally considered

the appropriate target safety index value for a new ship. That is higher than all the above

values. Again we see that the tanker is a more reliable structure than the bulk carrier,

even though none of them achieve the p=3.7 level.

Now that we have seen predictions and calculations of hull reliability and

probability of failure it is interesting to see if there is agreement with casualty data.

[IACS 2001] presents casualty statistics compiled over the 20-year period 1978-1998.

The annual probability of hatch cover failure (for ILLC 66 Initial design) is predicted by

structural reliability analysis at 0.0935% and estimated from casualty data at 0.029%-

0.14%. This result shows some consistency. Table 7.4 provides a summary of the main

results for bulk carriers.



TOTAL SERIOUS FATALITIES FATALITIES/

LOSSES CASUALTIES SHIP-YEAR

General Water Ingress 72 115 850 0.0115

Shell Failure 62 98 572 0.0078

Deck Fittings Failure 3 7 44 0.000598

Hatch Cover Failure 9 11 246 0.00334

Table 7.5. Risk Contributions in Bulk Carriers 1978-1998 [IACS 20011

0.017 fatalities per ship year occurred over the 20 years on average in bulk

carriers over 20,000dwt. Approximately 73 percent of those were due to hull damage

(46% shell failure, 19% hatch cover failure and 8% other). Fig 7.4 compares the risk of

fatality to the crew across various ship types based on the database of casualties.
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Fig 7.4. Risk of fatality to crew rIACS 20011

Comparing the Oil Tanker with the Bulk Carrier (incl. Ore), we see that tankers

are in general safer as is also predicted by the structural analysis of the publications

discussed earlier. One thing to keep in mind is that double hull tankers have not been

around for very long and this is even more important when examining pre-2000 data as in

[IACS 2001]. The double hull was designed to increase safety but also has some

drawbacks and according to the results of [Guedes Soares et al 1996] presented in Table

7.3, we can't draw definite conclusions. We will also have to wait in order to accumulate

sufficient casualty data to draw reliable statistical conclusions.



7.3.3 The Hazard Function and Expected Failure Costs

Based on Section 7.3.3 and on discussions with experienced industry people, we

can make an assumption about the hazard function and expected failure costs of a

Suezmax tanker relative to those of a Capesize bulk carrier. Note that the RAFL model

assumes three types of failures that occur with different probabilities. These are small

emergency repairs, large emergency repairs and total loss.

We shall estimate that the hazard function i.e. the likelihood of failure is about

one third for the Suezmax tanker while the failure costs about three times as high

compared to the Cape. As discussed in Setcion 7.3.3, the hazard function is significantly

lower because tankers are inherently stronger, they suffer less damage during cargo

operations, and they have stricter regulations both in design and maintenance due to the

possibility of oil pollution.

Failure costs, on the other hand, are significantly higher because repairs are more

difficult and expensive due to the lack of hatch openings and the limitations on cutting

and welding around areas with flammable gasses, while expected sinking costs are much

higher due to the possibility of oil pollution. Note that the expected loss of hire and loss

of ship value in the event of failure is incorporated via the hazard function into the

discount rate in the denominator.

Since the scaling multiplier of the probability of failure cancels out with that of

the cost of failure, the whole numerator term of expected failure costs is left unchanged.

However, the hazard function also appears in the discount rate of the denominator where

the scaling factor will have an effect.



7.3.4 The Discount Rate

The RAFL model valuation includes an estimation of the cost of equity for

various market participants and then a weighted average calculation based on the

percentage of the fleet owned by each group of participants. The build-up method is

applied to each group starting from CAPM returns and adding various risk premiums

such as size premium, liquidity premium, control premium, patient capital premium and

non-diversification premium (using the total beta as opposed to market beta for private

companies whose owners are heavily invested in them).

To simplify the analysis, we shall carry out the valuation from the perspective of a

typical public shipping company that operates tankers. For our list of comparables, we

select listed companies predominantly involved in the operation of tankers and

particularly Suezmaxes. The list is presented in Table 7.6.

TICKER MARKET DEBT/ REV CASH/ EXCESS ASSET OP. ASSET

NAME BETA ASSETS (M) REV CASH (M) BETA BETA

TNP 0.79 58.93 444.93 66.57% 135.54 0.44 0.47

GMR 0.85 70.48 350.52 15.02% 0 0.39 0.39

FRO 1.23 74.02 1,133.29 7.29% 0 0.47 0.47

OSG 1.45 43.88 1,093.62 43.41% 107.29 0.90 0.93

TK 0.93 54.71 2,172.05 19.45% 0 0.53 0.53

VLCCF 1.02 32.13 67.34 11.82% 0 0.76 0.76

TOP 1.63 61.16 107.98 0.00% 0 0.76 0.76

CPLP 0.85 69.59 123.48 2.87% 0 0.40 0.40

MEAN 686.65 20.80% 0.59

Table 7.6 List of Comparable Tanker / Suemax Public Companies

[Data from Googlefinance 20101



The Asset beta is calculated using Equation 7.10 with the typical debt beta of 0.2.

We then adjust for excess cash (defined as excess over the value which yields the average

Cash/Revenues) using Equation 7.11, to get the operating asset beta.

D D
PA = -P + 1 A E 7.10

A

A - ExcCash

Since the valuation is from the perspective of a non-family owned public

company with well diversified investors and high liquidity, we do not concern ourselves

with patient capital, the total beta, control premiums and illiquidity premiums. The only

CAPM adjustment is the size premium, using the famous Duff & Phelps relationships. In

particular, we will use the Duff & Phelps relation between size premium over CAPM,

and the log of the revenues, shown in Equation 7.12 [Pratt & Grabowsky 2008].

SP = 8.817 -1.55log(REV) 7.12

Since this is the only CAPM adjustment for the cost of equity, the sum of mean

risk premiums is given by Equation 7.13 with the average annual revenues from our list

of comparables ($686.65M).

IRP = 8.817 -- 1.55log(686.65) = 4.42% 7.13

Next, we have to re-lever the beta with the ship's leverage being a function of

time, and assume a market risk premium for which we will use the typical value of 5.2%.

After substituting back into Equation 7.5, our cost of equity takes the form:

PO -w (t)p- 0.59 -0.2wD Wt
rE +fA D D jMRP+Z RP = r(t)+ )5.2%+4.42%

7.14



We then substitute Equation 7.14 into Equation 7.3 to get the inflation adjusted

weighted average cost of capital as shown in Equation 7.15.

rcc (t)= (1 - w (t){r (t)+ 0.59-0.2w )j 5.2%+ 4.42% +w ()i() 7.15

The risk free rate r1 (t) is obtained from the term structure of T-Bills as of the

beginning of 2010, the cost of debt rD(t) has a constant 2.5% spread overr,.(t), and

inflation I(t) is obtained from the term structures of TIPS and T-BILLS. We maintain

the same assumptions regarding leverage wD(t) as for Capes. The debt linearly decreases

from 70% to zero at the age of 17 for a new ship and at the age of 18.5 years for a 5-year

old ship. For 10 or 15-year old vessels, the debt decreases from 60% to zero at 20 years.

Older vessels are financed solely by equity.

Next, we incorporate the crack risk by solving Equation 7.4 using the scaled

hazard function, and then we substitute into Equation 7.2 for the time varying discount

rate. Table 7.7 summarizes the range in cost of equity and discount rate for the various

ships throughout their life. Figure 7.5 shows the discount rate and discount factor

throughout the new ship's life as an example.

SHIP AGE NEW 5 YEAR 10YEAR 15YEAR 20YEAR

Max Cost of Equity 12.6% 12.60 12.10 12.10 12.10

Min Cost of Equity 11.83% 11.83 10.78 10.13 7.87

Max Discount Rate 9.65% 9.55 9.42 9.18 9.15

Min Discount Rate 4.47% 4.47 4.86 4.87 6.42

Table 7.7 Range of Cost of Equity and Discount Rate for RAFL Valuations of Suezmax Tankers



Discount Rate and Discount Factor for New Suezmax
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Fig 7.5 Discount Rate and Discount Factor Throughout the life of a New Suezmax

Excluding the 20-year old ship, the cost of equity range is between 10.13% and

12.6% while the discount rate range is between 4.47% and 9.65%. These values are

considerably lower than for the valuation of Capes, predominantly because of the

relatively low adjusted beta values of Tanker operating companies (0.59 compared to

1.34 for Capes). For the 20-year old Suezmax, the low cost of equity during the first

years is mainly due to the low leverage (an all equity acquisition is assumed), combined

with the low short term interest rates in January 2010 (0.38% for the first year).



7.3.5 Rolling Contracts and Projected Revenues

For the revenue projections, we start with the baseline revenues for a modern

Suezmax, based on the rolling quarters of the earlier analysis. The value is held constant

beyond the 10 rolling quarters. This introduces some inaccuracy relative to the Cape

valuation because the liquid futures for Capes span out to 5 years as opposed to only 2.5,

giving more reliable revenue projections. As for Capes, in order to get more stable values

and eliminate uncertainty due to daily fluctuations, we take the average prices of the

rolling contracts between November 2009 and February 2010 (centered about the

beginning of the year). The results are summarized in Table 7.8

Table 7.8 Base Rate for Modem Suezmax Tanker as of the Beginn ng of 2010

The forward curve is in backwardation for the first two quarters and then in

contango thereafter. The results are not much different if we select a different period

centered about the beginning of the year (e.g. 1 month before and after). Note also that

Period Base Rate

(Rolling Quarter) (Modern Suezmax)

RI $26.192

R2 $22.777

R3 $23.181

R4 $25.351

R5 $28.670

R6 $28.965

R7 $28.985

R8 $29.027

R9 $29.069

RIO $29.111

Continuation $29.111



the curve is almost flat from R5 onwards, so the continuation value beyond RIO is not a

bad assumption.

The adjustment for ship age has to be slightly different than that for Capes.

Experience suggests that tankers up to 10 years old are considered modem and have

approximately the same earnings. However, the decline with age for older ships is more

pronounced than in Capes due to the risk of pollution and reputational consequences.

Therefore, we assume that a Suezmax has the same earnings until the age of 10,

and 70% of the earnings of a new ship when at the age of 20 (as opposed to 80% for

Capes). A regression of modern and 15 year old Suezmax earnings between January 2008

and July 2010, using data from [Clarksons 2010], suggests that a 15-year old Suezmax

earns 87.5% as much as the modern Suezmax under 1-year time charters and 87.6%

under 3-year time charters.

Based on the above, earnings are kept equal to the base values of Table 7.8 until

the age of 10 years; they linearly decrease to 87.5% by the age of 15 years (2.5% less per

year), 70% by the age of 20 years (3.5% less per year) and then continue decreasing at

the same rate until the end of the ship's life at 27.5 years when it is earning 45.5% as

much as a new ship. Note also that, as for Capes, a 5% commission on revenues is

deducted to give net earnings.

Sensitivity analysis in [Hadjiyiannis 2010] suggested that the residual value is not

a very important parameter, particularly for newer ships. Here it is assumed to be the

same as for Capes ($5.5M when the ship is 27.5 years old) because the Suezmax has a

typical lightship of 18,000t as opposed to 22,000t for Capes, but the scrap price for

tankers in $/ton is usually slightly higher to make up for the difference. The scrap value

of a Suezmax as reported by [Clarksons 2010], averaged at 4.96m between January 1976

and July 2010 with an upward trend, so our long term assumption is in the ballpark.



7.3.6 Operating & Repair Costs

Operating and repair costs vary with both age and time. Regular inflation has been

accounted for in the discount rate so repair costs in the numerator are only a function of

age. However, real inflation (over US inflation) of operating costs has to be accounted for

in the other numerator term. The same real inflation of operating expenses is assumed as

for Capes. That is 0.72 1%, linearly declining to zero over 30 years.

The variation of dry-dock and operating costs with respect to age is also assumed

to take the same form as for Capes for which a detailed analysis had been carried out,

since there are many similarities including class rules and repair scheduling. The base

rates, however, have to be adjusted. This means that there will be a scaling of the Cape

costs to match those of the Suezmax. For this purpose, we will consult the results of

[Moore Stephens 2010], which are based on the analysis of large data samples.

According to [Moore Stephens 2010], average Cape and Suezmax dry-dock costs

for the year 2009 were $1,909,589 and $1,757,652 respectively, while the average repair

time was 29 and 28 days respectively. The difference in repair time is very small so the

off-hire time due to repairs is left the same as for Capes. Note that the expected off-hire

time due to failures is different for the two ship types and that is treated separately

through the hazard function. Based on the average repair costs, Cape dry-dock costs are

scaled by a factor of 0.92 to get the corresponding values for the Suezmax.

Based on [Moore Stephens 2010], Suezmax operating costs are composed of

approximately 50% crew costs, 12% stores, 13% regular repairs and maintenance (non

dry-dock), 10% insurance and 15% administration costs. Table 7.9 summarizes the

average Cape and Suezmax daily operating costs for the years 2007, 2008 and 2009.



YEAR SUEZMAX AVERAGE CAPE AVERAGE SUEZMAX / CAPE

OP. COSTS ($/DAY) OP. COSTS ($/DAY) AVERAGE OP. COSTS

2009 9,309 7,512 1.239

2008 8,014 6,459 1.241

2007 7,316 6,082 1.203

Table 7.9 Cape and Suezmax Mean Operating Costs for Past 3 Years - Data from [Moore Stephens 20101

Note that operating costs increased between 2008 and 2009 by 16.3% for Capes

and by 16.2% for Suezmaxes which is almost identical. Based on the results of Table 7.9,

the Suezmax base operating costs as a function of ship age are obtained by scaling the

corresponding values for Capes by the average ratio of 1.23.



7.3.7 Value Volatility and Pricing of Optionalities

Following the analysis in [Hadjiyiannis 2010] which is based on portfolio theory,

the annualized percentage volatility of the ship value boils down to the following simple

approximation:

Cshipvai ~7 PV(Rev,)PV(Revj1 Cov(Rev,, Rev) 7.16
ShipVal i=___ 1

The indices "i" and "j" denote the periods of the rolling contracts. Since the price

of the 1 0 th rolling quarter is also assigned to the continuation value, the present value of

the revenues for i=10 and j=10 include those from the beginning of the 1 0 th rolling

quarter up until the end of the ship's life (excluding the scrap value which is assigned

zero volatility along with all costs).

The covariance between two assets is calculated as the percent variance of the two

assets multiplied by the correlation between them. In [Hadjiyiannis 2010], the calculation

is performed using Black-Implied volatilities from option prices. Here, we can use the

covariance matrix developed earlier for the TD5 rolling contracts.

Having calculated the annualized percentage volatility of the ship's value, the

Black-Scholes formula allows us to calculate the values of at-the-money call and put

options with 1 week, 2 week, 2 month and 6 month tenors. This is for the pricing of

optionalities such as purchase "subject to board of directors' (BOD) approval". The value

of zero-dividend calls and puts is given by Equation 7.17 (Black-Scholes) and Equation

7.18 (put-call parity) respectively.

In I n
PV(K) J_ PV(K) _aITC=N 2 S - P V(K) 7.17



P=C-S+PV(K) 7.18

"PV" and "N" denote "present value" and "normal distribution" respectively. "S"

is the price of the underlying and "K" is the strike price, both of which are set equal to the

current ship value since we are only concerned with at-the-money options. Sensitivity of

the option values "F " with respect to the various parameters is given by the Greeks

which are defined in Equations 7.19 to 7.23.

aF0 h = a (7.19)
8Sh ipValI

I'= a (7.20)
S2 ShipVal

aF
9 = (7.21)ar

aF
8=- (7.22)

aF
A = a(7.23)

auo

Note that the option valuations have to be carried out using the risk free rate

corresponding to their tenors. The term structure of T-Bills, which are used as a proxy to

the risk free rate, was upward sloping at the beginning of 2010 with 1-week, 2-month and

1-year rates at 0.11%, 0.15% and 0.38% respectively.



7.3.8 Results

The RAFL valuation model was used with the adjustments and assumptions

discussed in Sections 7.3.3 to 7.3.7. The resulting Suezmax values as of the beginning of

2010 are summarized along with their annualized volatilities in Table 7.10.

SHIP AGE RAFL VALUATION RAFL VOLATILITY

New $73.43M 27.34%

5-Year $61.04M 28.96%

10-Year $43.56M 31.25%

15-Year $26.20M 36.17%

20-Year $12.39M 44.91%

Table 7.10 RAFL Suezmax Valuations for Beginning of 2010

Table 7.11 presents a summary of the reported Suezmax sale and purchase (S&P)

transactions during the months of December 2009 and January 2010. Only the first entry

was reported in December while the rest were in January.

SHIP NAME DWT BLT PRICE NOTES

Viking Crux 145,200 1991 $7.97M Auction, SS-Due / Out of Class

Romea Champion 154,970 1992 $16.5M For Conversion

Tropic Brilliance 154,970 1992 $16.5M For Conversion

African Ruby 150,173 1994 $15M

Tango 150,096 2008 $68M

Waltz 150,096 2008 $68M

South Sea 150,001 2005 $61M

Navigator 149,996 2006 $63M

Brillante Virtuoso 149,601 1992 $12.5M

Table 7.11 Suezmax Transactions in Dec. 2009 and Jan 2010 [Cotzias 2009, Cotzias 20101



Figure 7.6 shows a plot of the RAFL valuations as of Dec'09/Jan'10 along with

the S&P transaction prices of Dec'09 and Jan'10. The assumed long term scrap value is

shown in black at the age of 27.5 years.
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Fig 7.6 RAFL Suezmax Valuations and Actual Suezmax Transactions for Dec 2009 - Jan 2010

The RAFL valuations are remarkably similar to transaction prices, particularly for

relatively modem ships. The RAFL model, however, produces valuations that are higher

than some of the older vessel transaction prices. That may be for design and regulatory

factors concerning older vessels that have not been factored into the model. The model

makes no design or regulation distinction with respect to ship's age i.e. it predicts the

value of a modern vessel as it ages. Currently older ships, however, may be single hull,

meaning that they are about to be phased out, or they may be of the early double hull

designs which are in some cases only have an extended phase out date.

For the reasons discussed above, a 27.5 year lifetime may not be a good

assumption for the older vessels. Furthermore, their earnings may equal a smaller fraction

of those of a new ship than the fraction assumed. Some of these ships are sold for

conversion to other ship types so their price is governed by other factors. For example,

the oldest vessel in the S&P transactions (the only one reported in December), which lies

significantly below the RAFL valuation, was sold at an auction being out of class, with

its special survey due. The cost to make this ship operational, either as a tanker or as a



converted ship, would have to be added to the transaction price, to make the comparison

with the RAFL valuation more relevant.

Figure 7.7 shows the annualized ship value volatility calculated by the RAFL

model as a function of the ship's age and Figure 7.8 shows the calculated Call option

values. Since we are only dealing with zero-dividend, at-the-money options, call and put

options are almost identical in value. The complete set of tabulated values along with the

Greeks can be found in Appendix G.
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Fig 7.7 RAFL Suezmax Volatilities for Dec 2009 - Jan 2010 Valuations
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The ship value volatilities are significantly lower than the corresponding

volatilities of Cape values but they follow the same trend with respect to ship age. This

result is consistent with the lower adjusted beta value of 0.59 for the tanker companies

relative to 1.34 for Capes.

The option prices for Suezmax tankers also follow the same pattern as for Capes

but with lower values due to the lower volatility. As shown by Fig 7.8, the newer the ship

and the shorter the option tenor, the lower the option value as a percentage of the ship

value. Here again, option values are still very significant, running in the hundreds of

thousands or millions of dollars, and therefore have to be considered seriously during

transactions that involve optionalities such as the "subject to BOD approval".



8. Conclusions

Price series of the main liquid shipping forward curves have been analyzed in

detail. The analysis began with the creation of price series for continuously rolling

contracts in order to remove the effect of approaching maturity on the volatility dictated

by the Samuelson hypothesis.

PCA was then carried out on these forward curves to demonstrate that a

significant amount of their variation can be analyzed by a few principal components. The

effect of the independent statistical factors was discussed, and it was shown that the task

of explaining and predicting the various shipping forward curves can potentially be

simplified substantially.

CCA was carried out, demonstrating that shipping curves are highly correlated

when using both "trended" and "de-trended" volatility. The circumstances and the

markets in which correlation is higher were identified and discussed. The results of this

analysis can be used for a variety of purposes including trading from a hedge fund

perspective, cross hedging any physical exposure in illiquid markets, portfolio

optimization etc. These have been discussed in detail using several case studies.

Conditioning, which is one of the most powerful tools of multivariate statistics, is

also examined in order to expand the information content of the unconditional PCA/CCA

analysis for obtaining deterministic drifts and for demonstrating how the best trading

opportunities can be unveiled conditional on recently observed data.

The RAFL ship valuation model was adjusted for its application to tankers and

used with the rolling contract prices of Suezmax tankers. The resulting valuations were

very close to transaction prices of the corresponding period for relatively modem vessels.

Small deviations in older ships have been explained with regards to phase out regulations

and other factors. The ship value volatility is smaller than for Capes but increases

similarly with ship age. The option values for typical tenors are very significant, running

in the hundreds of thousands or millions of dollars, and they increase as a percentage of

the ship value with age. These results have to be considered seriously when optionalities

are involved in shipping transactions.



9. Appendices

Appendix A - PCA Screen-Tests and Eigenvectors (De-Trended
Vol.)
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Appendix B - PCA Screen-Tests and Eigenvectors (Trended Vol.)

CAPE (22R)

X 1Eigenvalue Screen Test
14 __1

2 4 6 8 10 12 14 16 18 20 22

Principal Component

Principal Component Weights

I1I1III

-I - --. - -- - PC 2

-------PC--3
1 -A-- - -

2 4 6 8 10 12

Rolling Quarter
14 16 18 20 22

a>
8

0Y)
M

------------



Eigenvalue Screen Test
I I

-- ------ --

I I

- - - - - - - -

- I-I

16 8L 2

Principal Component

Principal Component Weights

2 4 6 8 10 12 14 16 18 20 22

Rolling Quarter

PMX (22R)

x10

CL 2~--

-ill

0.5

0

U) -0.2

-0.4

-0.6

I - - - - - - - - - - - - - - -

- -- - - - - - - - -

-~ - - - - - - -- - -- PC 1 ~

- PC2
- - - - -

- - - - - - - - ---- PC23

n F;



6

5

4

3

2

1 2 3

Eigenvalue Screen Test

- - -

- - - - - - - -

- A

5 7

Principal Component

I10

-v -

8 9 10

Principal Component Weights

I

5 6 7

Rolling Quarter

CAPE



x c
2.5

2 9 -25 - - - - - -- - - - - --

1.5 ---- -- --- -

0. ------ --- ---

0

Eigenvalue Screen
- 1

-I

Test

- -

1 2 3 4 5 6

Principal Component
7 8 9

Principal Component Weights

5 6

Rolling Quarter

PMX

L-

0

C
() -0.2
0>M

a M



Eigenvalue Screen Test
- -F

8 -

- -

1-8

-

2 3 4 5 6

Principal Component
7 8 9

Principal Component Weights

Rolling Quarter

TC2

x 108
3 r-

2.5

2-

1.5

0.5

0

I -t

0 -t

B

III

- - --



-- - - - -- - - - r -

3 4 5 6

Principal Component

Principal Component Weights

Rolling Quarter

TD3

Eigenvalue Screen Testx 1
2.5

212

1.5 - -- - - -

0.5-

0
1 2

-I
7 8 9 10

- - - - - - --- -



x 10 8
7 -

a)

4 1

0-
1 2

Eigenvalue Screen Test
- --- -

- - - - - - - - - - - - - - - - - - - - - -- - - - - - - --

- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

1 0

3 4 5 6 7 8 9 10

Principal Component

Principal Component Weights

4 5 6

Rolling Quarter

TD5

0

C
() -0.2
0)
w~



TC2 (WS)

Eigenvalue Screen Test
18000-

16000

14000- - -

12000-

10000

8000F-- --

6000-- -

4000 -- -- -- ---

2000---- - -

0
1 2

-- r---- - - - - - - - - - -- - - - - - - - - - - - - - - - - -

- - - - -S - - - - -

- - - - - - - - - - - - - - - - --- - - - - - - -

- -- - - - -- - -- --- - - - - - - - - - - -- - - - - -

3 4 5 6 7 8 9 10

Principal Component

Principal Component Weights
0.6 --

0.4k- - ------------ ------- - -I- -I--- -

0.2- 1 - - - - - - -- - - - - - - - - - -- - -.. . .. .I .. . . ..I - - - - -

0.---- - - - ------------------ -- -------- -

-0.2 --- ---------------------

-0.4 -- o- - -- -n- -- - - Q u a ----- PC 2

-0.6 - - - - - - - - - - - - - -- ------ - PC 3;

-0.8-
1 2 3 4 5 6 7 8 9 10

Rolling Quarter



TD3 (WS)

Eigenvalue Screen Test

I I

I I

I I

I I I

I I

I I

I I

I I

9 I I

0 I

9 I

2 3 4 5

I I

I I

I I

I I

- ~I. -

I I

I I

I I I

I I
----------------------

I I

I I I

I I

6 7 8 9

Principal Component

Principal Component Weights

I I#

-71 - - - + - - - - - -|- - - - - - + - - - - - -----

. - - - - - -- - -- - - - - - - - - -----

PC1I
----- PC 2

3 4 5 6 7 8 9 1C

Rolling Quarter

21500

01000



TD5 (WS)

Eigenvalue Screen Test
4000

3500- ---- -- ---- r -----

3000- ------------- -- - ---- - - - ---- - --- -

2500 -- - -- -- - -- - -- - -- - - - - - - - - - - - --- - - - ----------- - -- ---

20- - -- - --- - ----- - - -- -- -- --- - - -- - -- -- --
.- 2500 - --- -- ' -- -- - - - - - - - --------------

1000 - ---- - -- - --- - --- -- 7-r-- -- - - -- - -- T- -- -- - -- --- - -T----- - - -- --

500-- - --- --- -------- - -- - ------ - - - - - - - - ----

0
1 2 3 4 5 6 7 8 9 10

Principal Component

Principal Component Weights
0.8,-

0.62 \ - - -- - - - -- - - --- - - - - - - --- - - - - - - --------- --------- - -- --

0.2 - - - - - - - - - - - -

0 0.2-- - - --- ----- -- - - -

I I 1 -

% %

5 6

Rolling Quarter



Appendix C - CCA Eigenvalues / Possible Correlation Range (De-Trended Vol.)

TD5- TD5- TD3- CAPE- TD5- TD3- TD5- CAPE- CAPE- TD5- TC2- TD3- CAPE-
TC2 TD3 TC2 PMX TD3(ws) TC2(ws) TC2(ws) TC2 TD5 PMX PMX PMX TD3

0.21254 0.49691 0.18695 0.06399 0.30116 0.04279 0.05268 0.00015 0.00279 0.00087 0.00541 0.00102 0.00286
-0.21254 -0.49691 -0.18695 -0.06399 -0.30116 -0.04279 -0.05268 -0.00015 -0.00279 -0.00087 -0.00541 -0.00102 -0.00286
0.38924 0.56908 0.35862 0.45918 0.32258 0.08401 0.09492 0.01464 0.01232 0.02230 0.01061 0.01843 0.00822

-0.38924 -0.56908 -0.35862 -0.45918 -0.32258 -0.08401 -0.09492 -0.01464 -0.01232 -0.02230 -0.01061 -0.01843 -0.00822
0.51528 0.65628 0.48708 0.55240 0.35871 0.13373 0.12661 0.02525 0.02078 0.03255 0.01858 0.02176 0.03469

-0.51528 -0.65628 -0.48708 -0.55240 -0.35871 -0.13373 -0.12661 -0.02525 -0.02078 -0.03255 -0.01858 -0.02176 -0.03469
0.70247 0.75245 0.63680 0.57107 0.41625 0.15688 0.15321 0.04428 0.04299 0.04366 0.03046 0.03618 0.04525

-0.70247 -0.75245 -0.63680 -0.57107 -0.41625 -0.15688 -0.15321 -0.04428 -0.04299 -0.04366 -0.03046 -0.03618 -0.04525
0.79773 0.82409 0.73720 0.59723 0.43435 0.21981 0.22332 0.05736 0.06062 0.05794 0.06748 0.05322 0.06408

-0.79773 -0.82409 -0.73720 -0.59723 -0.43435 -0.21981 -0.22332 -0.05736 -0.06062 -0.05794 -0.06748 -0.05322 -0.06408
0.88533 0.87120 0.82620 0.63952 0.49557 0.30924 0.28400 0.07803 0.07460 0.05935 0.08048 0.07799 0.07816

-0.88533 -0.87120 -0.82620 -0.63952 -0.49557 -0.30924 -0.28400 -0.07803 -0.07460 -0.05935 -0.08048 -0.07799 -0.07816
0.90360 0.88692 0.86213 0.68968 0.53108 0.33019 0.37662 0.10475 0.09565 0.10175 0.10288 0.10832 0.08858

-0.90360 -0.88692 -0.86213 -0.68968 -0.53108 -0.33019 -0.37662 -0.10475 -0.09565 -0.10175 -0.10288 -0.10832 -0.08858
0.94216 0.94768 0.92596 0.78470 0.64765 0.37660 0.43561 0.11351 0.11039 0.11590 0.11573 0.14418 0.13992

-0.94216 -0.94768 -0.92596 -0.78470 -0.64765 -0.37660 -0.43561 -0.11351 -0.11039 -0.11590 -0.11573 -0.14418 -0.13992
0.99642 0.98257 0.97996 0.91274 0.70012 0.52243 0.59554 0.20925 0.23677 0.22635 0.23711 0.24329 0.20044

-0.99642 -0.98257 -0.97996 -0.91274 -0.70012 -0.52243 -0.59554 -0.20925 -0.23677 -0.22635 -0.23711 -0.24329 -0.20044
0.99849 0.99465 0.99173 0.96020 0.84580 0.76946 0.75353 0.28224 0.27683 0.25795 0.24909 0.24624 0.22100

-0.99849 -0.99465 -0.99173 -0.96020 -0.84580 -0.76946 -0.75353 -0.28224 -0.27683 -0.25795 -0.24909 -0.24624 -0.22100
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Appendix D - CCA Eigenvalues / Possible Correlation Range (Trended Vol.)

TD5- TD5- TD3- CAPE- TD5- TD5- TD3- CAPE- TD3- TD5- CAPE- TC2- CAPE-
TC2 TD3 TC2 PMX TD3(ws) TC2(ws) TC2(ws) TD3 PMX PMX TD5 PMX TC2

0.50553 0.72862 0.41464 0.48618 0.55352 0.39199 0.26551 0.01641 0.02403 0.01688 0.00174 0.00098 0.00015

-0.50553 -0.72862 -0.41464 -0.48618 -0.55352 -0.39199 -0.26551 -0.01641 -0.02403 -0.01688 -0.00174 -0.00098 -0.00015

0.84684 0.86714 0.67527 0.59803 0.66490 0.60343 0.54828 0.10869 0.06992 0.06590 0.06808 0.03050 0.07661

-0.84684 -0.86714 -0.67527 -0.59803 -0.66490 -0.60343 -0.54828 -0.10869 -0.06992 -0.06590 -0.06808 -0.03050 -0.07661

0.92262 0.88388 0.75322 0.74909 0.78475 0.69900 0.58136 0.16391 0.12824 0.10023 0.14852 0.06888 0.13280

-0.92262 -0.88388 -0.75322 -0.74909 -0.78475 -0.69900 -0.58136 -0.16391 -0.12824 -0.10023 -0.14852 -0.06888 -0.13280

0.94623 0.95140 0.91359 0.85880 0.79844 0.80667 0.77530 0.22516 0.25693 0.23103 0.21438 0.25936 0.25331

-0.94623 -0.95140 -0.91359 -0.85880 -0.79844 -0.80667 -0.77530 -0.22516 -0.25693 -0.23103 -0.21438 -0.25936 -0.25331

0.95809 0.98429 0.92670 0.86774 0.90370 0.84058 0.79303 0.29983 0.28737 0.30169 0.33798 0.32017 0.37927

-0.95809 -0.98429 -0.92670 -0.86774 -0.90370 -0.84058 -0.79303 -0.29983 -0.28737 -0.30169 -0.33798 -0.32017 -0.37927

0.96668 0.98557 0.94392 0.89021 0.93307 0.88256 0.82306 0.38649 0.35840 0.36634 0.37188 0.39352 0.40131

-0.96668 -0.98557 -0.94392 -0.89021 -0.93307 -0.88256 -0.82306 -0.38649 -0.35840 -0.36634 -0.37188 -0.39352 -0.40131

0.99491 0.99521 0.99103 0.91056 0.94770 0.91975 0.87813 0.53333 0.48436 0.37496 0.57400 0.44800 0.58398

-0.99491 -0.99521 -0.99103 -0.91056 -0.94770 -0.91975 -0.87813 -0.53333 -0.48436 -0.37496 -0.57400 -0.44800 -0.58398

0.99576 0.99606 0.99615 0.99384 0.97745 0.94927 0.92766 0.67297 0.62982 0.64760 0.66830 0.61088 0.64675

-0.99576 -0.99606 -0.99615 -0.99384 -0.97745 -0.94927 -0.92766 -0.67297 -0.62982 -0.64760 -0.66830 -0.61088 -0.64675

0.99917 0.99830 0.99832 0.99560 0.98515 0.97379 0.94011 0.75933 0.68518 0.68762 0.72336 0.69164 0.66274

-0.99917 -0.99830 -0.99832 -0.99560 -0.98515 -0.97379 -0.94011 -0.75933 -0.68518 -0.68762 -0.72336 -0.69164 -0.66274

0.99964 0.99889 0.99874 0.99679 0.98937 0.97525 0.96832 0.92589 0.90895 0.86424 0.86009 0.81974 0.81879

-0.99964 -0.99889 -0.99874 -0.99679 -0.98937 -0.97525 -0.96832 -0.92589 -0.90895 -0.86424 -0.86009 -0.81974 -0.81879
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Appendix E - CCA Correlation Maximizing Portfolios (De-Trended Vol.)

TD5- TD5- TD3- CAPE- TD5- TD3- TD5- CAPE- CAPE- TD5- TC2- TD3- CAPE-
TC2 TD3 TC2 PMX TD3(ws) TC2(ws) TC2(ws) TC2 TD5 PMX PMX PMX TD3

R1 -0.0002 0.0002 -0.0014 0.0000 0.0001 -0.0006 0.0011 0.0023 -0.0176 0.0031 -0.0038 -0.0067 0.0057
R2 -0.0002 -0.0108 0.0020 -0.0003 -0.0019 0.0007 0.0054 -0.0181 0.0128 -0.0181 0.0154 0.0245 -0.1072

R3 -0.0040 0.0068 0.0021 0.0003 0.0014 -0.0019 -0.0055 -0.0094 -0.0081 0.0076 -0.0098 -0.0169 -0.0617
R4 0.0121 -0.0054 -0.0169 -0.0001 -0.0062 -0.0037 0.0031 0.0623 0.0728 0.0249 0.0048 -0.0075 0.3016

R5 -0.0061 0.0048 0.0313 0.0000 0.0029 -0.0040 0.0067 -0.0588 -0.1058 -0.0034 -0.0115 -0.0191 -0.2058
R6 -0.0290 -0.0460 -0.0265 0.0000 -0.0461 -0.0253 0.0291 0.1435 0.3859 -0.0466 0.0345 0.0738 0.1405

R7 0.1588 0.0620 0.0146 0.1806 0.0552 0.0015 0.0071 -0.3990 -0.0260 0.0065 -0.0070 -0.0159 0.3779
R8 -0.3692 0.1047 0.1197 -0.4765 0.2934 0.2897 -0.3139 0.6375 -0.7869 0.0232 0.0018 -0.0109 -0.7754
R9 0.5073 -0.6286 -0.4474 0.4147 -0.5036 -0.4515 0.3291 -0.5915 0.3908 -0.0068 -0.0090 -0.0060 0.0684

R10 -0.2856 0.4922 0.3549 -0.1185 0.2000 0.1926 -0.0456 0.2198 0.0613 -0.0118 0.0050 0.0026 0.2436

R1 -0.0001 -0.0021 -0.0030 0.0000 -0.0001 0.0011 -0.0003 -0.0066 -0.0091 0.0131 0.0027 -0.0103 -0.0058

R2 -0.0023 -0.0008 -0.0049 -0.0004 -0.0003 -0.0015 0.0049 0.0038 -0.0151 0.0044 -0.0082 -0.0222 0.0070

R3 0.0049 0.0052 0.0018 0.0005 -0.0001 -0.0019 -0.0010 -0.0187 -0.0459 0.0282 -0.0195 -0.0605 -0.0629
R4 0.0057 -0.0131 0.0002 -0.0002 -0.0105 -0.0060 0.0078 0.0716 0.2113 -0.0867 0.0791 0.2253 0.0646

R5 -0.0022 0.0287 0.0011 0.0001 0.0002 -0.0070 0.0135 -0.0212 -0.0713 0.0324 -0.0464 -0.1110 -0.0424

R6 -0.0345 -0.0453 -0.0079 0.0000 -0.0509 -0.0206 0.0322 0.0285 0.0151 0.0446 0.0092 -0.0145 0.1005
R7 0.1557 0.0538 0.0132 0.1965 0.0438 -0.0045 0.0079 -0.0040 0.0018 -0.1325 -0.1979 -0.0206 -0.0312
R8 -0.3635 0.0707 0.1763 -0.5271 0.3632 0.4322 -0.5208 -0.0186 -0.0462 -0.3107 0.6061 0.4113 -0.0105
R9 0.5110 -0.4432 -0.6377 0.4680 -0.6290 -0.6522 0.6870 -0.0165 -0.0542 0.8280 -0.7073 -0.7730 -0.0379

R10 -0.2825 0.3715 0.4684 -0.1372 0.2879 0.2485 -0.2135 0.0215 0.0121 -0.4299 0.2869 0.3976 0.0314

102



Appendix F - CCA Correlation Maximizing Portfolios (Trended Vol.)

TD5- TD5- TD3- CAPE- TD5- TD5- TD3- CAPE- TD3- TD5- CAPE- TC2- CAPE-
TC2 TD3 TC2 PMX TD3(ws) TC2(ws) TC2(ws) TD3 PMX PMX TD5 PMX TC2

R1 -0.0025 -0.0018 0.0063 0.0000 -0.0571 0.0335 0.0022 -0.0029 -0.0011 0.0018 -0.0079 0.0010 -0.0028

R2 0.0080 -0.0411 -0.0193 0.0002 0.0437 -0.0234 -0.0076 0.0085 0.0003 -0.0006 0.0148 0.0030 0.0110

R3 -0.0092 0.0715 0.0083 -0.0005 0.2129 -0.1864 0.0192 0.0302 0.0008 -0.0006 0.0288 0.0025 0.0090

R4 -0.0017 -0.0105 0.0112 0.0006 0.2932 -0.0361 0.0130 -0.0135 0.0011 -0.0036 0.0028 -0.0049 0.0078

R5 0.0016 0.0446 -0.0071 -0.0002 -0.1833 -0.0127 -0.0140 0.0065 0.0007 -0.0046 -0.0009 -0.0045 -0.0047

R6 -0.0053 0.0952 0.0224 -0.0001 -0.1393 -0.0237 -0.0182 0.0036 0.0027 -0.0059 0.0007 -0.0075 -0.0011

R7 0.0388 -0.0680 0.0439 0.1658 0.0297 -0.1384 -0.1021 -0.5457 0.0005 -0.0013 -0.2980 -0.0026 0.0793

R8 -0.1162 -0.0490 -0.0936 -0.1050 -0.0426 0.2895 0.3869 0.5630 0.0011 -0.0014 0.6974 -0.0021 0.2538

R9 0.3715 -0.5870 -0.2217 -0.2871 -0.1192 -0.6997 -0.6446 0.4086 0.0022 -0.0031 -0.6259 -0.0002 -0.8358

R10 -0.2709 0.5656 0.2453 0.2264 0.0395 0.4259 0.3602 -0.4658 0.0022 -0.0007 0.1779 0.0011 0.4796

R1 0.0003 0.0042 -0.0049 0.0000 -0.0632 -0.0038 0.0029 -0.0015 -0.0077 0.0219 -0.0027 0.0132 -0.0038

R2 0.0132 -0.0268 -0.0636 0.0005 0.0701 0.0145 -0.0055 -0.0003 0.0058 -0.0230 0.0011 -0.0250 -0.0009

R3 -0.0193 0.0534 0.0003 -0.0011 0.2111 -0.1268 0.0115 0.0010 0.0183 -0.0316 -0.0038 -0.0174 -0.0121

R4 -0.0108 -0.0206 0.0839 0.0011 0.3534 -0.0317 0.0038 0.0034 -0.0143 0.0095 0.0097 0.0007 0.0118

R5 -0.0139 0.0427 -0.0153 -0.0003 -0.2250 0.0678 -0.0064 0.0032 0.0061 -0.0033 0.0109 -0.0012 0.0103

R6 0.0034 0.0431 0.0699 -0.0002 -0.1841 -0.0356 -0.0194 0.0046 0.0056 0.0003 0.0077 0.0060 0.0063

R7 0.0744 -0.0377 0.1156 0.3590 0.2315 -0.2482 -0.0483 0.0021 -0.4614 0.4552 0.0017 -0.0428 0.0002

R8 -0.2201 -0.0452 -0.2419 -0.2213 -0.1968 0.3118 0.2139 0.0021 0.3954 -0.8302 0.0025 -0.3253 0.0029

R9 0.6843 -0.3960 -0.5925 -0.6348 -0.5439 -0.0738 -0.4180 0.0039 0.5870 0.2969 0.0033 0.8374 0.0011

R10 -0.5003 0.3775 0.6630 0.4971 0.3756 0.0088 0.2647 0.0044 -0.5342 0.1153 0.0002 -0.4357 -0.0029
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Appendix G - RAFL Suezmax Option Valuations with Greeks

New Ship

Tenor 1 week 2 week 2 months 6 months

Call $1.111.434 $1.572.148 $3.276.987 $5.719.366
Put $1.109.881 $1.569.042 $3.258.639 $5.580.116
Call delta: 0,50778538 0,511009487 0,523146058 0,542402257

Put delta: -0,4922146 -0,488990513 -0,476853942 -0,457597743

Gamma: 1,4326E-07 1,01282E-07 4,85908E-08 2,79423E-08

Call rho: 695664,538 1382714,74 5856152,776 17054246,71

Put rho: -716394,82 -1441344,244 -6378895,769 -19590448

Call theta: -28913251 -20452273,36 -9845868,667 -5761100,366
Put theta: -28832503 -20371527,48 -9735794,503 -5482864,926

Vega: 4061544,04 5742796,898 11939005,52 20596725,89

5-Year Old:

Tenor 1 week 2 week 2 months 6 months
Call $978.677 $1.384.329 $2.885.062 $5.032.042

Put $977.386 $1.381.747 $2.869.810 $4.916.283
Call delta: 0,508221307 0,511625855 0,524414057 0,544457485

Put delta: -0,491778693 -0,488374145 -0,475585943 -0,455542515

Gamma: 1,62683E-07 1,1501 E-07 5,5169E-08 3,17133E-08
Call rho: 577767,0173 1147925,076 4854321,472 14101214,55

Put rho: -596082,0742 -1199723,458 -5316710,347 -16361627,88
Call theta: -25458315,8 -18007389,51 -8665863,266 -5063433,666
Put theta: -25391190,09 -17940265,22 -8574358,289 -4832135,727
Vega: 3376299,466 4773794,588 9923045,744 17112442,47
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10-Year Old:

Tenor 1 week 2 week 2 months 6 months

Call $753.491 $1.065.772 $2.220.720 $3.870.052

Put $752.570 $1.063.930 $2.209.836 $3.787.449

Call delta: 0,508838762 0,512498868 0,526212119 0,547394673

Put delta: -0,491161238 -0,487501132 -0,473787881 -0,452605327

Gamma: 2,11283E-07 1,49363E-07 7,16319E-08 4,11534E-08

Call rho: 411738,1411 817597,2464 3449983,134 9986615,666

Put rho: -425893,284 -857630,1756 -3807828,742 -11750960,57

Call theta: -19599169,09 -13862036,03 -6667817,913 -3888734,14

Put theta: -19551269,74 -13814137,69 -6602522,089 -3723685,308

Vega: 2409169,064 3406243,329 7078824,664 12200603,68

15-Year Old:

Tenor I week 2 week 2 months 6 months

Call $524.470 $741.789 $1.545.039 $2.688.287

Put $523.916 $740.681 $1.538.493 $2.638.605

Call delta: 0,510172588 0,514384644 0,530101834 0,553814529

Put delta: -0,489827412 -0,485615356 -0,469898166 -0,446185471

Gamma: 3,03487E-07 2,14528E-07 1,02829E-07 5,89955E-08

Call rho: 246945,8444 489777,445 2057121,25 5910355,852

Put rho: -256856,9495 -517806,834 -2308170,919 -7163952,62

Call theta: -13640221,41 -9645979,002 -4635382,044 -2693685,577

Put theta: -13611411,81 -9617170,014 -4596109,14 -2594415,11

Vega: 1448906,219 2048396,652 4254699,622 7323063,115

20-Year Old:

Tenor I week 2 week 2 months 6 months

Call $307.864 $435.387 $906.263 $1.573.125

Put $307.602 $434.863 $903.168 $1.549.631

Call delta: 0,512555042 0,51775257 0,537058572 0,565426682

Put delta: -0,487444958 -0,48224743 -0,462941428 -0,434573318

Gamma: 5,16842E-07 3,6528E-07 1,74891 E-07 1,00044E-07

Call rho: 116196,8899 229965,691 957902,6392 2716004,931

Put rho: -122050,2444 -246518,5 -1106433,57 -3466804,224

Call theta: -8005082,815 -5659524,12 -2715162,115 -1568869,083

Put theta: -7991458,825 -5645900,41 -2696590,053 -1521924,317

Vega: 685067,6707 968352,184 2009072,001 3447798,562
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