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Abstract

This thesis investigates the problem of cooperative navigation of autonomous marine
vehicles using range-only acoustic measurements. We consider the use of a single
maneuvering autonomous surface vehicle (ASV) to aid the navigation of one or more
submerged autonomous underwater vehicles (AUVs), using acoustic range measure-
ments combined with position measurements for the ASV when data packets are
transmitted. The AUV combines the data from the surface vehicle with its proprio-
ceptive sensor measurements to compute its trajectory. We present an experimental
demonstration of this approach, using an extended Kalman filter (EKF) for state
estimation.

We analyze the observability properties of the cooperative ASV/AUV localization
problem and present experimental results comparing several different state estimators.
Using the weak observability theorem for nonlinear systems, we demonstrate that this
cooperative localization problem is best attacked using nonlinear least squares (NLS)
optimization. We investigate the convergence of NLS applied to the cooperative
ASV/AUV localization problem. Though we show that the localization problem is
non-convex, we propose an algorithm that under certain assumptions (the accumu-
lative dead reckoning variance is much bigger than the variance of the range mea-
surements, and that range measurement errors are bounded) achieves convergence
by choosing initial conditions that lie in convex areas. We present experimental re-
sults for this approach and compare it to alternative state estimators, demonstrating
superior performance.
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Chapter 1

Introduction

This thesis investigates the problem of cooperative navigation of autonomous marine

vehicles using range-only acoustic measurements. We consider the use of a single

maneuvering autonomous surface vehicle (ASV) to aid the navigation of one or more

submerged autonomous underwater vehicles (AUVs), using acoustic range measure-

ments combined with position measurements for the ASV when data packets are

transmitted. In this chapter we provide a brief review of the previous literature on

AUV navigation cooperative localization, and then provide an overview of the struc-

ture of the remainder of the thesis.

1.1 AUV Navigation

AUVs are important in many marine applications, such as ocean mapping and ex-

ploration, ship inspection and environmental research. Accurate AUV localization is

an important enabler for AUV navigation and autonomy. There are many different

approaches to AUV navigation, including the use of inertial/Doppler velocity log sys-

tems [41], acoustic transponders [17, 21], and simultaneous localization and mapping

(SLAM) techniques [29, 12].

While many terrestrial robots navigate using the Global Positioning System (GPS),

this solution is not available underwater due to the fact that electromagnetic energy

cannot propagate appreciable distances in the water. Of course, many AUVs surface



to obtain GPS fixes, but this is undesirable for many missions. Thus, a key require-

ment for many AUV tasks is to achieve a bounded error without reliance on surfacing

for GPS measurements.

Knowledge of an underwater vehicle's position can be obtained by dead-reckoning

(DR), using an Inertial Navigation System (INS) and a Doppler Velocity Log (DVL) [41].

The vehicle's position is computed or propagated by incorporating the velocity mea-

surements with the vehicle's heading measurements from a magnetic compass. For

example, see Hegrenas et al. [18] for recent paper that combines DVL measurements

and with a model of the vehicle's dynamics in a Kalman filter framework to improve

position estimation.

Regardless of sensor accuracy, the localization error grows continuously. This was

the motivation for other researchers to solve the problem by using DR navigation and

having the vehicle surfaces to get a GPS fix when its uncertainty is not small enough

to be able to navigate and to operate. However this procedure wastes both time and

energy, and incurs a risk of collision with vehicles at the surface.

Another method for AUV navigation is to employ SLAM techniques [29, 12, 37].

SLAM techniques will encounter difficulties in environments where are no feature on

the seabed. In addition, the sensors used for SLAM approaches (such as forward

looking sonars) can be quite expensive.

Currently, probably the most popular way of localizing an underwater vehicle is

using long baseline (LBL) navigation [17, 21]. In this approach, two or more transpon-

ders (beacons) are installed on the sea bed or in the water column at known positions,

indicating the operation area. When an underwater vehicle needs to navigate in this

area to perform a task, it then sends an acoustic signal to alert and inform beacons

that it needs to be guided to be navigated and localized. When a beacon receives

a ping from an AUV, it then generates and sends a message to the vehicle with its

unique beacon ID number. The position is then determined by knowing the beacon's

locations and by measuring the message's travel time. Finally the relative range dis-

tances between vehicles are obtained by multiplying the message traveling time by the

speed of sound in water. Estimation of the AUV position can be obtained by integrat-



Figure 1-1: Long baseline localization.

ing all the range measurements gathered and applying them to a state estimator [40].

Through integrating these range measurements with velocity measurements from a

DVL or INS, a better estimate of the vehicle's position can be obtained [19, 1].

Another variation of acoustic beacon-based navigation systems is Ultra-Short Base

Line (USBL) navigation [30]. In USBL, multiple hydrophones are used to enable both

the range and angle between the AUV and the beacon to be measured. Applications

of USBL can be found in Mandt ct al. [27] and Rigby et al. [33].

1.2 Cooperative AUV Localization

The cooperative localization of multiple AUVs has been previously investigated by

quite a few researchers, including Vaganay et al. [36] and Bahr et al. [5]. In this

work, multiple AUVs equipped with acoustic modems help one another to navigate by

sharing position information and acoustic range measurements. The original concept,

named Moving Long Baseline (MLBL), envisioned two types of AUVs: a Search-

Classify-Map (SCM) vehicles, whose task was oceanographic mapping [36] and a

Comm-Nav-Aid (CNA) vehicles, whose task was to aid the SCM vehicle's navigation.

The system design called for the CNA vehicles to be equipped with high-performance

inertial/Doppler systems, and also for the CNA vehicles to surface frequently for GPS

.................



Figure 1-2: The autonomous kayaks we consider in this thesis: MIT SCOUT au-

tonoinous kayaks.

fixes, whereas the SCM vehicles would have low-cost proprioceptive sensors.

So as to simplify the problem at this stage, the CNA role has been taken by an

autonomous surface vehicle (ASV) with continuous access to GPS. Using an acoustic

modeni for the ranging, the surface vehicle sends its GPS location estimate with each

transmission. If the AUV receives such a message it combines the information with its

own dead-reckoning within an estimation framework to improve its position estimate.

The approach can either make use of round-trip acoustic ranging, or if the vehicles

have synchronized clocks, using one-way acoustic travel time measurements.

Previous work on cooperative localization has relied on the use of two or more

CNA vehicles, spaced sufficiently far apart to establish a wide baseline, hence the

name MLBL [36]. In more recent work., we have pursued the same goal using only

a single surface vehicle [13] and exploiting its mnotion to achieve similar performance

as when two ore more CNAs are used. In this thesis we analyze the observability of

this configuration for marine cooperative localization and show that a single surface

vehicle can localize the AUV, if its motion is chosen appropriately.

Moving forward from the use of two surface vehicles to aid one AUV [6], in this

thesis we investigate the problem of cooperative localization using a single ASV and

_ ..... .........................................................



one or more AUVs. Our work is closely related to the work of Eustice et al., who

have investigated the localization of a submerged AUV using one-way acoustic travel

time measurements between the AUV and a manned surface vessel [11, 39, 381. In

both approaches, GPS data and acoustic range measurements from a surface vehicle

are fused onboard an AUV to compute the AUV's trajectory. Eustice and Webster's

work has primarily targeted the use of higher cost AUVs for which a Doppler Velocity

Log is available.

There are a number of estimation algorithms which can be used to solve this

problem, including the Extended Kalman Filter (EKF), Particle Filtering (PF), and

Nonlinear Least Squares (NLS) optimization methods [11]. Also modern nonlinear

theories such as contraction theory [26] have motivated some researchers to investigate

AUV navigation and control using nonlinear observers that take into account vehicle

dynamics [25]. This approach has not yet been applied to this problem.

Cooperative AUV localization is a special category of a more general field of co-

operative autonomy. The cooperative localization for ground vehicles has been exten-

sively studied by Roumeliotis and colleagues [31], assuming reliable communications.

In the AUV setting, we are encumbered by low bandwidth communications with high

latency.

Gadre has provided a solution to the underwater localization problem by using

range measurements from a single beacon at known fixed position [15],[16],[28]. His

approach takes into account water currents. He has also provided an observability

analysis of the LBL problem that we will discuss later, the observability analysis and

taking into account the water currents are the main contributions of his work.

LBL and USBL systems give good position accuracy (with an accuracy on the

order of several meters), however the operation area of the robots is restricted to

few square kilometers (at most 10km 2 ). Our goal in this work is to be able to

localize an AUV (without GPS access) using noisy velocity measurements, while

receiving relative range measurements from one autonomous surface vehicle (ASV)

with access to GPS. The ASV travels along with the underwater vehicle, and therefore

the operation of the vehicles is not restricted to a predefined area, as with LBL. The



Vehicles communicate with one another using acoustic modems [14].

1.3 Outline of the Thesis

The structure of the thesis is as follow. Chapter 2 defines the cooperative localization

problem, providing an observability analysis that shows that a non-linear observer

is better suited than linear techniques for this problem. Chapter 3 reviews several

recursive state estimation approaches that previous researchers have used to address

this problem. Motivated from the observability analysis presented in the Chapter 2,

in Chapter 4, we propose a solution to the MLBL problem using NLS. A convergence

analysis for this algorithm is provided. In Chapter 5, we present the experimental

results for the thesis, comparing the different state estimators that we investigated.

Finally, Chapter 6 concludes the thesis by summarizing our contributions and making

suggestions for future research.



Chapter 2

Cooperative ASV/AUV

Localization Problem Using a

Single Surface Vehicle

This chapter defines the cooperative localization problem. We begin by providing a

mathematical description of the cooperative ASV/AUV localization problem. More

specifically we give the equations of motion for an underwater vehicle, and will de-

scribe the measurements taken to help the vehicle localize itself. We see that without

relative measurements from a known position, the system covariance increases con-

tinuously without bound. Subsequently, we provide an observability analysis of the

system. We prove that if the vehicle obtains range measurements from a known po-

sition, the system will be observable, and therefore an observer can be applied to

solve the problem. Finally, we study the problem of choosing the ASV's trajectory

to reduce system uncertainty in each direction.

2.1 Problem Definition

In marine robotics, the cooperative ASV/AUV localization problem has been devel-

oped as follows [13]: acoustic modems are installed on one or more surface vehicles

and one or more AUVs. The surface vehicle moves in formation with the AUV



and continuously broadcasts messages that contain its GPS location and associated

timestamp. If the AUV receives one of these messages, and assuming synchronous

timing on each vehicle [10], the range between the two vehicles can be computed. The

AUV then combines this information with its own dead-reckoning filter, in a Bayesian

framework, to estimate its position.

The AUV is equipped with sensors that can measure its velocity in the forward,

im, and starboard directions, 7bm, and a compass that measures its absolute heading,

6 m at each time increment, m. A pressure sensor measures the vehicle depth precisely,

which allows the 3-D problem to be simplified to 2-D. The vehicle position X1 = [x1

y1T is propagated by the equations below.

X1,[m+1] = Xl,[m] + Am(mcos m - , msin 6m)

Y1,[m+11 = Y1,[m] + Am(imsin6m + rmcos 6m) (2.1)

This propagation will operate with a frequency of 5Hz, thus Am = 0.2 sec.

The expectation of a random variable xi is defined as its average value over a large

number of experiments (pt, or E[x1 ]). In the estimation problem, to know the mean

of a random variable is not enough; we also need to know its variance and minimize

it. The variance of a random variable is given by:

Var(x1 ) = o E[(i - )2] E[x] - (2.2)

In our case we have a vector of two random variables X1 = [x1 y1 ]T; then we can

define the covariance matrix as:

Px1 = E[(X - pxt )(X - puI )T) (2.3)

The velocity measurements are considered to be observations of a combination of

a deterministic value and a stochastic part with zero mean Gaussian noise (nf, n



and n6).

Vm = m + no

Wm = ibm+ nb (2.4)

m = O6 + n6

Furthermore, if the vehicle heading is a deterministic variable then the analysis can

be simplified. As we will show later in this work, the heading can be treated as a

deterministic variable if we combine its effect with the effect of the velocity's variance.1

In this case, the system equations are equivalent to the equations below:

X1,[m+1] = X1,[m] + rAm(beq,mcos6. - eq,m sin )

Yi,[m+1) = Yi,[m] + Am(eq,m sin m + Weq,m cos Om) (2.5)

From the above equations we can see that the states are random variables with

variance that increases continuously as the time (t) increases:

o (t) = lo_0 + (o0Vq cos2 0 d + ae sin Odt

07 (t) = 0 + (C7 cos 2 0 d + oU2 sin 2 Od)t 2  (2.6)

Accordingly, as the vehicle's dead-reckoning is propagated, the localization error and

uncertainty will grow. As mentioned above, a range measurement from the surface

vehicle will occasionally be received (with frequency of at most 0.1Hz, thus Ai = 10

sec) and will be used to bound this uncertainty. The surface vehicle trajectory at each

such time i is denoted by X 2,[i] = [X2,[i], Y2,[]]T, and the associated range measurement

by h3D,[i]. Assuming accurate depth information, this range measurement is converted

'This is the case when the variance of the vehicle's heading is much smaller than the variance
of the velocity sensors; we consider this a reasonable assumption when the vehicle is not equipped
with a DVL or an INS system.



into a horizontal range, h[i]. The measurement function is given by:

h[ = (i] - x 2 [1)2 + (y1[] - y2[])2 + n, (2.7)

Where n, is the range measurements noise which is consider to be zero mean Gaussian

noise.

Figure 2-1 illustrates this framework. Note that the heading is not considered

in the observability analysis in the next section as it is directly observable. While

further details of the cooperative ASV/AUV localization problem can be found in

[6, 13], in this thesis we will focus on the observability and convexity of the problem.

h
X --y1

Figure 2-1: An AUV navigates using measurements of its heading, 0, and velocities,
o and w, however its uncertainty grows overtime (blue circle). Occasionally a surface
vehicle provides the AUV with a range measurement (black circle), information that
the AUV uses to reduce its uncertainty (red).

.................. .......... ........... ............................ . ............. .. .. ................. ................ .....................



2.2 Observability Analysis

2.2.1 Introduction

Observability is an important property of the system. If the system described in

Equations 2.1 and 2.7 is observable, the vehicle's position can be observed by com-

bining the dead-reckoning measurements with the range measurements. Observability

depends on the relative motion between the two vehicles. If the system is not observ-

able, then there is no way the vehicle's position can be computed, regardless of the

estimation algorithm used.

It is important to state that the observability of a linear system does not depend

on the estimator used to recover the states; however, by linearizing a non-linear

system, important information maybe discarded. Therefore, one can identify cases in

which the actual non-linear system is observable and at the same time the linearized

system is unobservable. The cooperative ASV/AUV localization problem is one of

these cases.

Some notable previous work has considered the observability of the cooperative

ASV/AUV localization problem. Gadre [16] performed an observability analysis for a

similar system with a stationary ranging beacon. The approach taken linearized the

system leading to important information being lost in the process. Gadre asserted

that an AUV receiving range measurements from known locations can recover its

states if the direction from which these measurements are taken varies over time.

However given that the vehicles may not be particularly mobile (due to performance

or mission constraints), a non-linear method which maximizes observability at all

times would be beneficial. More recently, Antonelli et al. [2] examined locally weak

observability of the cooperative ASV/AUV localization problem, presenting results

for an EKF used for cooperative localization, with simulations using two surface craft.

In both of these cases of previous research, linearization is performed, thereby

assuming that the system is a linear time variant system. In doing so, important in-

formation is lost. The resulting linearized system will be unobservable if the direction



CNA Path

AU V path

Figure 2-2: The vehicle receives range measurements that come from the same direc-
tion. In this case the linearized system is unobservable.

from which the range measurements are taken from do not vary over time, as shown

in Figure 2-2.

To recover this property, consider Figure 2-3. In Figure 2-3(a) we can see the effect

of linearizing a range measurement. In Figure 2-3(b) the AUV has just received one

range measurement from the ASV. Subsequently, both vehicles move to new positions

and the ASV provides the AUV with another measurement, however we use dead-

reckoning measurements and therefore we can treat the AUV as stationary. Looking

at Figure 2-3(b), we can see that if the range measurements come from different

directions, then the vehicle position can be recover by solving for the intersection of

the linearized ranges, and therefore the system is observable; this agrees with Gadres

results.

In Figure 2-3(c), the AUV has just received a range measurement from the ASV,

and then the ASV moves to another location and provides the AUV with another

range measurement from a different but co-linear location. According to Gadre's

results, this system is unobservable. However, if a linearization has not been carried

out, the system would be observable, as the AUV position could be computed by

solving for the intersection. Note that computing this solution with might still be

very challenging, as with significant measurenment uncertainty the problem will be

ill-conditioned: we discuss this issue in more detail below.

............... .......... .............



a D C

Figure 2-3: Linearization effects on the observability.

2.2.2 Observability Analysis Using the Weak Observability

Theorem

The scenario that we have just discussed motivates us to study the observability of

the actual non-linear system. In this section, we will use non-linear observability

theory to prove that the system is locally weak observable. Again, we assume that

the vehicle heading can be measured directly, and hence it will not be considered,

leaving a second order system in x1 and yi.

For a nonlinear estimator, such as a particle filter, of a non-linear measurement

function, I, one can observe the system if the gradient of the Lie derivative matrix,

G, is a full rank matrix, according to the weak observability theorem [34, 20]. The

observability matrix is given by

dL (hj1) ... dLO (hr)

dL(1) ... dL' (h,,)
Obs = d(G) = (2.8)

dL)- (h1) ... dL)- (hmn)

where Lf- 1(hm) is the Lie derivative of the measurement m in dimension n.

While our dynamical system is a third order system, as discussed above, we assume

we have access to a direct estimate of the vehicle heading. For this reason, we will

simplify the observability analysis to a second order system in xi and yi, and thus

."Mn_ IN' 11 1111 11111- 1 0 MOMMM I



n = 2. The continuous system equivalent is given by:

Xi = f (X1 , u)

fi
f2]

cos 0 + z sin 6

' sin 0 - z cos 0

For range-only measurements, with m = 1, the non-linear measurement function is

given by

h = hi- X 2 )T(X 1 - 2) = i-- x2) 2 + (y -- y2)2 (2.11)

the Lie derivatives are as follows

Lo(h)

Lj(h) = (x1-Y2 Y1 -2)

(2.12)

(2.13)

(2.14)

which gives

h

(X -X 2 )fI+(YI-y 2 )f 2h

Our specific observability matrix is formed from the derivative of G with respect to

the AUV state vector X1

= d(G)=d(
Lo(h)

L'(h)

(X1-£2)
h

(Y1-Y2)2f1-(XI-X2)(Y1-Y2)f2

(Yi -Y2)
h

-(1 -X2)(y1y-2)f1+(X1X-2)2f2

h3

where

(2.9)

(2.10)

Obs

(2.15)



This system is observable if the observability matrix is full rank. Thus, if

det(Obs) = Yi - Y2) + f 2 (X1 - Y2) $ 0 (2.16)

Looking at the observability matrix, we can see that it is full rank and therefore

the system is always observable. Some of the trivial cases that Gadre identified the

system to be unobservable, [161, now using non-linear theory, have been shown to be

observable as long as the ASV-to-AUV range changes. In summary, the observability

with a linear estimator is guaranteed by the relative motion between the vehicles, but

can be improved upon by the use of a nonlinear estimator as well as ASV motion

planning.

2.3 Surface Vehicle Trajectory

According to the above analysis the system is observable and therefore an observer can

be applied to solve the problem. Even if the system is observable this does not mean

that it will converge. The convergence depends on the system dynamics, the noise

characteristics, frequency of the measurements and the positions that the relative

measurements are taken from. Each time the vehicle receives DR measurements

its uncertainty grows in each direction. In addition, each time the vehicle receives a

range measurement its uncertainty reduces in only the radial direction since the other

directions are unobservable directions.

The system becomes unobservable if the determinant of the observability matrix is

equal to zero. There are also cases for which the system is almost unobservable. One

of these cases occurs when the observability matrix is "ill-conditioned ", meaning that

the range measurements are not informative enough to localize the vehicle. This can

motivate us to design ASV trajectories that will maximize the condition number of the

observability matrix. This can be done by running search algorithms that compute

the trajectory of the ASV that maximizes the determinant of the observability matrix.

In the above analysis, we did not refer to terms like uncertainty. The analysis



above also made no assumptions on noise characteristics. Another way to analyze

this problem is through uncertainty analysis. This problem was stated and solved by

Zhou et al., considering the Kalman filtering framework [43]. This work demonstrated

that in order to minimize uncertainty in each direction, we need to provide the vehicle

at each step with range measurements in the direction of the larger eigenvalue of the

covariance matrix. Simple intuition agrees with this and states that all the sequential

range measurements should be orthogonal to each other, since we want to gather as

much information as we can in each step.

Greedy optimization algorithms can be applied to plan the surface vehicle's tra-

jectory. A typical structure of such an algorithm has a discretization step in which

the reachable space is computed for several time steps into the future. An EKF al-

gorithm is then used to compute the covariance resulting if the surface vehicle were

at one of these points. This is done for all points. Then the surface vehicle is moved

to the point giving the smallest covariance. An approach of this nature can be found

in [4].

To illustrate some of the benefits to be achieved by planning the ASV trajectory,

we present simulation results of such an approach in Figure 2-4. In this figure, the

surface vehicle's position is computed in such a way that the range measurements

are to be taken from the direction of the largest eigenvalues of the covariance matrix.

The covariance matrix is computed using particle filtering, giving better results than

would be achieved with an EKF.

2.4 Summary

This chapter has presented a problem statement for ASV/AUV cooperative localiza-

tion, and investigated the problem using nonlinear observability theory. In the next

chapter, we apply two recursive state estimators - extended Kalman filtering and

particle filtering - to this problem.
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Chapter 3

Recursive Approaches:

Localization With Extended

Kalman Filter and Particle Filter

In this chapter, recursive approaches to the localization problem will be discussed. At

first we will describe the localization problem as a Bayesian estimation problem. We

will also show that under linearity assumptions the problem can be solved recursively

in an optimal way; this is the case of Kalman filter. When these assumptions do not

hold, then a non-linear method is required. Two of the most commonly used methods

are the extended Kalman filter (EKF) and particle filtering. In the EKF, linearization

is carried out, leading to the lose of mportant information that can lead to divergence.

On the other hand, the performance of particle filtering, which is clearly a non-linear

approach, depends on the number of particles used; generally, with a sufficiently high

number of particles, it gives better results than the EKF, but is computationally more

expensive. More details on the EKF and particle filtering can be found in [35], [32]

and [3].



3.1 Probabilistic Framework

The localization problem is typically considered as a Bayesian estimation problem.

The real vehicle states are the actual position coordinates, although in our case we

need to work in the belief space. The belief space is taken to be the joint probability

density function of the vehicle position X1 = [xi, y 1]T over all locations in the vehicle

environment E. The belief space is given by Equation (3.1):

Bel(X1,k ) -- PX1,k IMO, M1 ... Mk) (3.1)

where ne, m1...mk are all the measurements gathered by the vehicle up to that time.

All the measurements taken by the robot have to be incorporated under probability

laws in order to give correct vehicle position estimates. To make the analysis easier

we break the "belief" at each time k into two different beliefs relative to the prior

belief (Bel-(X1,k)) and to the posterior belief (Bel+(Xl,k))

Bel~(X1,k) = P(X1,k I Zi, Z2...Zk--1, Ui, U2 ... Uk-1) (3-2

Bel+(X1,k) = (X1,k I Z1i, Z2 ... ze Z71, i 2.- -U) (3.3)

According to [35], using the total probability theorem we can rewrite Equation

(3.2):

Bel~(X1,k) = J F(X1,JXi,k_1, Zi, Z2...Zk-1, U1, U2...k-1) *

P(X1,k-I 1 z1, Z2- -. -zk-1, Ul, U2- -. -Uk-1) d(X1,k-1) (3.4)

Looking carefully at Equation (3.4) we can say that the second term is the poste-

rior belief of the previous iteration. Using this, Equation (3.4) results in

Bel-(X1,k) = P(Xl,k|X1,k1, Zi...Zk-1, U1 , U2...Uk-1) *

Bel+(X1,k_1) d(X1,k-1) (3.5)



According to the Markov assumption, the current knowledge of a state depends only

on the previous state and the current observations. Using the Markov assumption,

the prior belief is simplified to:

Bel-(Xl,k) - J P(X 1, |X1,k1, uk_1)Bel+(X1,k_1) d(X1,k1) (3.6)

The above Equation (3.6) gives the prior belief of the robot being in the position

X1,k, taking into account its previous position X1,k_1 and the current velocity mea-

surement. This can be developed to be the prediction step in the Kalman Filter. Up

to this point it seems that we have not taken into account any range measurements

directly; however, all range measurements up to the previous step have already been

taken into account in the computation of the posterior belief in the previous step

Bel+(Xlk 1).

To incorporate a new range measurement we need to use Bayes' rule. According

to Bayes' rule, the posterior belief is equal to the probability of observing the range

measurement Zk given that the vehicle is in the state X1,k and all the other measure-

ments taken up to now times the prior of the state are equal to X1,k, deviated by the

probability of observing Zk given all the information gathered up to now. According

to Bayes' rule we have:

Be+( l P(ZklA 1,k, z1-- .. zk-1, Ul --- Uk-1)P X1,k lzi... zk_1,il... Uk_1) (37
P(zkIzi..zk_1, Ui ... Uk_1)

Using Equation (3.2) we can rewrite Equation (3.7) as

Bl+Xlk -Pzk lX1,k, Zi ... zk_1, Ui ...uk _1)Bel1(X1,k)(38

P(zlzi..zk_1, UI...Ukk_1)

Using Markov's assumption we get:

Bel+(Xl,k) = P(zk Xlk)Bel (Xlk) (3.9)
P(zbzil..z1, i... u-1)

Given that all the beliefs are actually probability density functions, it is obviously



correct that:

J Bel+(X1,k)d(X1,k) =1 (3.10)

Using this and some algebra we finally end up with:

Bl+Xlk= P(zkl31,k)Bel~(X1,k) (-1
f' (P(z JXik)Bel-(X1,k))d(X1,k)

Equation (3.11) can be used to derive the update steps of the Kalman Filter. Until

now we have made no assumptions (Linearity, Gaussian or zero mean noise). If we

have an evaluation model that gives P(zk X1,k_1, Uk-) and a sensor (or perceptual

model) model P(zkjXi,k), we can solve the problem. The problem can be as easy or

as difficult as solving the integrations in Equations (3.6) and (3.11).

One way to solve these integrals is to discretize the space. This can be done by

methods like particle filtering and grid methods, and is something like solving these

integrals using arithmetic methods. These methods have no problem dealing with

non-linear non-Gaussian pdfs, but are computationally expensive.

Analytical solutions can be given under certain assumptions. In the case of linear

Gaussian distributions, a recursive closed form solution exists. This solution is given

by the Kalman filter, which minimizes the least-squared error.

3.2 Extended Kalman Filter Localization

3.2.1 Kalman Filter

As we have shown earlier, the state belief can be split into the prior belief Bel- and

the posterior belief Bel+. Equations (3.6) and (3.11) give the prior belief and the

posterior belief in a way that they can be computed recursively. These two equations

under certain assumptions can be developed to be the prediction and the update steps

of the Kalman filter.

As stated previously, in the case that both the prior and the posterior remain



Gaussian probability density functions, then the solution of the problem can be given

recursively by the Kalman filter equations. For that to hold, there are certain as-

sumptions that the system needs to have regarding system dynamics and the sensor's

measurement noise model. We consider the linear Markov process system given by

Equations (3.12) and (3.13).

Xi,m = AXi,mi + bWm-1 + Nmi (3.12)

hm = HXi,m + n, (3.13)

where hm e R' and where n is the number of observations taken (range measure-

ments in the non-linear case). Control inputs in our case are the velocity measure-

ments and the vehicle heading modeled as random Gaussian variables with mean C

and covariance Q. In addition, Nm, nr and the noise involved in the control inputs are

random variables introducing noise in the system with the following characteristics:

(1) Gaussian; (2) zero mean; and (3) uncorrelated to each other and to themselves.

The prediction step is given by Equation (3.6). Since we assume that the previous

posterior remains Gaussian at all times, we can say that to be able to solve the

localization problem we need to be able to track the mean and the error covariance

of the Gaussian density function. Similarly, in order to derive the update step, we

should be able to solve the integrations involved in Equation (3.11), or we should

be able to track the mean and the covariance of the posterior belief given that the

distributions will always be Gaussians. One easy way to do this is to use Bayes' rule.

The actual work done in the update step is to incorporate everything we know until

now and incorporate it with the current measurement. A necessary condition of doing

this is to have a model to describe the stochastic characteristics of the measurements.

Under linearity and the above assumptions, the Kalman filter is proven to be

the observer that minimizes the least square error of all the measurements gathered

up the current time. In the Kalman filter derivation we have just described, the

optimality of the Kalman filter is not shown. The optimality of the Kalman filter

comes from the fact that the prior and the posterior remain Gaussian, and in that



case the Kalman filter is the same as the maximum likelihood estimator, which is

essentially the probabilistic point of view of the least-squares estimator.

In the initial derivation of the Kalman filter, Kalman derives the Kalman filter

gains by trying to minimize the trace of the posterior covariance matrix. In this

problem the objective function is a positively defined quantity in a contractive form,

and it is proven that there is only one minimum. Here we do not present the initial

derivation because we want to analyze the probabilistic aspect of the problem.

Table 3.1 summarizes the well-known Kalman filter equations [7]. The prediction

step is given by the first two lines where the posterior state estimate and the error

covariance are computed by propagating the previous posterior estimates of the state

and the covariance and incorporating the control inputs u based on the noise free

system dynamics. In the prediction step, the determinant of the covariance matrix

increases because we add a positively defined matrix (b;m-ibT + Qm-1) to the initial

covariance.

The update step is shown in the last three lines of Table 3.1. In the update

step, the state is corrected according to the set of measurements just received. The

correction of the state depends on the Kalman gain K and the difference between the

measurement hm and the predicted measurement hm. This difference is called the

innovation (hm) and is given by:

hm hm - hm (3.14)

In the equation above the measurement is given by Equation (3.13), and the predicted

measurement is given by the expected value of the measurement given by the equation:

hm = HXi,m + E[nr] (3.15)

It is important to note that if the innovation is nearly equal to zero, the update

step will have only a small effect on the state estimate; however, it will shrink the

error covariance. If the innovation is nearly zero, it means that what the system

expects to see is close to what it observes, and therefore there is no reason to change



Table 3.1: Kalman filter equations.

Xm = A+ Prediction

P- = AP- AT + bL'm-ibT + Qn-i Prediction

Km = P-mHT (HP-mHT + Rm)-1  Gain

X+ X (+ Km(hm - HX ) Update

-P = (I - KmH)Pa Update

the state estimates. However, the covariance will shrink because now the system is

more certain about its estimate, since the expected and predicted observations are

the same.

Of course, the innovation will not always be nearly equal to zero. In general,

the Kalman filter chooses the gain K to achieve the right balance in weighting the

prediction and the innovation. Effectively, the Kalman filter makes a decision on

tuning the gain matrix K by looking at and comparing the prior estimated uncertainty

and the uncertainty in the observations.

In the case that the measurement noise is small, then the filter makes a decision

based mostly on the observation. On the other hand, if the measurement noise is

large, then the filter will trust the prediction step more. This can be seen by taking

the limits of the Kalman gain when the measurement uncertainty is zero and when

the prior covariance is zero.

lim Km = 0 (3.16)
P--+o

lim Km = H-' (3.17)
R-O

3.2.2 Extended Kalman Filter

We have seen that in the case of linear Gaussian systems the optimal solution is

given by the Kalman filter. The Gaussian assumption is reasonable due to the cen-

tral limit theorem, although the linear assumption is not valid in the general case. In

the case that the system is not linear , then linearization can be performed to com-



pute Jacobian matrices, and the estimation problem can be solved using the EKF

algorithm [7].

In our case, the system's equation are clearly non-linear and are given by:

Xi,m

hm

Xi,[m+1]

Yi,[m+1]

h[m]

Sf (Xi,m-I, Wm-1)

- M(Xi,m, nr)

(3.18)

(3.19)

= X,[m] + Am(m cos m m sin m)

=Ylm] + Am(9m fsin m + Wm cos Om)

= V(Xl,[m] - X2 ,[m]) 2 + (Yi,[n] - Y2,[m]) 2 + nr

(3.20)

In the equations above, the control inputs are the velocity measurements in the for-

ward and the starboard directions plus the vehicle heading taken from the compass.

It is imperative to say that in the system above, the process noise N is considered to

be zero (N = 0), although the control inputs are noisy measurements responsible for

the process noise in the system.

Lk = [V, W, T (3.21)

With all these assumptions the Jacobians are given by:

(3.22)

B is the input Jacobian

B = Am ( -sin

cos 0

cos

sin 0

-(bsin +0 cosO)

(J cos 0 - t sin 0)
(3.23)



Table 3.2: Extended Kalman filter equations

XIm = f(Xim-1,JCm-1)
P- = FP,_1 FT + Bom_1BT + Qr-1
Km = P -HT (H P-H T + R)-1

k -m +Kk(hm - h(-))

Pm+ = (I - KmH)P

Prediction
Prediction
Gain
Update
Update

where H is the output Jacobian defined by:

(x1-2)
2 +(y1 -2)

2  
(xi-x2)

2 +(y1-y2)
2

V XX Y2Y1XX2 Y2

The above Jacobians are computed

The EKF algorithm is shown in

is given by:

Q =

In addition the range measurement covariance

R = .

using the latest estimated states for each time.

Table 3.2 [7]. In this table, the input covariance

0
0
2

matrix is given by

(3.25)

(3.26)

3.3 Particle Filtering

3.3.1 Introduction

The Bayesian estimation localization problem is given by Equations (3.6) and (3.11),

which provide the optimal solution. In the case that the integrations in these equa-

tions cannot be solved, then we can derive suboptimal solutions. With the assumption

of linear models and Gaussian errors, the optimal solution can be given by Kalman

filter equations.

(3.24)



In the general case in which the linear Gaussian assumptions do not hold, there

are many suboptimal solutions that approximate the solution to the equations (3.11)

and (3.11), and therefore approximate the optimal solution to the localization prob-

lem. Examples include the EKF (discussed above) and the unscented Kalman filter

(UKF) [22].

Particle filtering provides an alternative method for considering the Bayesian esti-

mation problem, without resorting to the assumptions of the EKF or UKF. According

to [3], the particle filter is a sequential Monte Carlo method based on point-mass rep-

resentation of probability densities that can be applied to any state space problem.

The first reference to a particle filter goes back to 1940 [42]; however, the first ap-

plication of the method was performed in the 1980s due to the computational power

they demand.

Assuming that the state space is discrete and consists of a finite number of states,

then the integrations become summations and the optimal solution for the equations

can be given by grid-based methods. According to grid-based methods, the posterior

probability is computed for all the states using one particle per state that tracks the

posterior probability of the state to be the position which takes into account the

process stochastic characteristics and the measurement stochastic characteristics.

Generally, in a real application, the state space is continuous and non-linear, and

therefore, the optimal solution to the Bayesian estimation cannot be computed. In

addition, the fact that we have to compute the probability of the vehicle being in

each state makes grid-based methods computationally too expensive. Another way

to get around this problem is to use a set of (N,) random samples associated with

weights; then the estimates can be obtained using these samples and these weights.

Consequently, the particles are considered to be samples of the true posterior

distribution, and every single particle i is a hypothesis of where the true state is.

At each time the posterior distribution is represented by a set of N, particles and



weights:

x1,k = [X{1]X[2 . .y.X[] (3.27)

Wkl 1]2] INS]
W [W k [Wkl j... WkN1 (3.28)

If all the weights sum up to one then we can say the posterior joint density for all

the history of the states up to time k is approximated by Equation (3.29):

N,

P(X1,O:k Zl:k, Ul:k-1 W(X,0:k - ) (3.29)

where 6 in the above expression is the Dirac delta function. The above expression

gives the joint probability of all the history of the states; however, we are interested in

the posterior probability density function of the current state given all the information

gathered up to then. Using Bayes' rule

P(XlO:kIZ:k, t:k-1) = P(ZkX1,0:k, z1:k-1, ul:k-1)P(X1,O:kz1:k--1, Ul:k-1) (3.30)
P(zk lz1:k_1, ui:k_1)

Using Markov assumptions

P(X1,sinzl:,i:k_1) -- asupin nkiptto, we have
P(zk Izi:k _1, Ui:k-_1)

_P(zk 1I,k)P(X1,k X1,0:k-_, il:k-_, il:k 1)P(X1,0:k _1|z1:k_1,ui:k _1) (-1
P(zk4z1:k_1, Ui k _1)

Using again Markov assumptions and simple intuition, we have

P(X1,k l,0:k-1, zi:k_1, ui:k _1) = P(X1,k lX1,k-1,ui:k _1) (3.32)

P(X1,0:k_1|z1:k_1, Ui:k _1) = P(X1,0:k-1|z1:k_1, il:k-2) (3.33)



Using Equations (3.31), (3.32) and (3.33) we finally have

P(X1,o:kJz1:k, ui:k_1) --

P(zk|X1,k)P(X1,k|X1,k_1,i :k-1)P(X1,O:k_1|Zi:k-1, Ul:k-2) (334)

P(zklzi:k_1, ui:k _1)

It is more convenient to use only the numerator of Equation (3.34)

P(X1,O:k1Z1:k, U1:k-1) Oc P(zkJX1,k)P(X1,kXi,k_1, U1:k1)

P(X1,0:k-1 Iz1:k-1, ul:k -2) (3.35)

Equation (3.34) gives the joint probability density function of all the history of

the states up to now. It is given as a function of the most recent range and velocity

measurements and the history. The measurements (ranges) are taken into account

through the weights.

The weights can be computed using the importance sampling principle. According

to the importance sampling principle: we assume that P(X) is a pdf that the real

samples are supposed to be generated from. This pdf is difficult to compute, and

therefore it is difficult to generate samples from it. Due to this fact, we assume that

the real samples are generated by another pdf 7r(X) which is analogous to P(X) and

is easy to generate samples from. Following Arulampalam et al. [3], we assume that

samples of the real samples are generated by the importance density q(.). Then the

weights are given by:

W2 w (X) (3.36)
q(Xi)

Applying Equation (3.36) in our case, we have:

Wk 00 q(Xi OkJZ1:k, Uk1) (3.37)
k q(x i' a ig-1)



Table 3.3: Summary of particle filtering

[,k, w = PF([Xk 1' I _1
for i= 1 : N,
Draw X' from q(X1X 1, zI, uk-1) P(Xl,klXii, Uk-1)

Wk -~ WkP(zklk X 1 , Ukl1)

It is convenient to factor the importance density as shown in Equation (3.38)

q(X1,o:k Iz, k i -1))- q(Xk|Xo:k, zi:k, Ui:k 1 ))(q(X1,o:k 1IZ1:k_1, U1:k-2)) (3.38)

The importance density should be chosen in a clever way. One way to choose it

is to try to minimize the variance of the weights [3]. One simple case is to use

q(Xlk X 1, zk, uk_1) = P(X 1 ,k XIk 1 , Uk-1) (3.39)

Using the above Equations we end up with:

N,

P(Xl,k Zl1:k, U1:k 1) ~~ w (X1,k - ) (3.40)
i=1

m c w 2P(zk Xi) (3.41)

In Equations (3.40) and (3.41), we cannot see the dependence of the system on

the velocity noise directly. However, the velocity measurement noise comes to play

through the generation of particles, since the particles are sampled at each time from

the P(Xl,k|Xl,k_1, Ukl). The above equations can represent the particle filtering

algorithm. We give the results in the Table 3.3.

It is proven that the algorithm above results in almost all particles with nearly

zero weights (zero after rounding off), and one particle with a weight close to one.

This is called the degeneracy problem. One way to measure the presence of that

problem is to examine the number given by Equation (3.42). Small Neff numbers

mean the degeneracy problem exists.



Neff 1 (3.42)
i=1 (WO62

There are two ways to solve the problem; one way is to choose in a clever way the

importance density, and the other one is to perform resampling when this number

drops below a pre-defined threshold. The method we have adopted for the importance

density provides good performance and is convenient to implement. There are a few

ways to do resampling; one of the most frequently used ways is to erase the particles

whose weights fall below a threshold and to increase the number of particles whose

weights are above the threshold. To make the algorithm more robust, we can replace

some of the low weight particles with some random particles.

3.3.2 Application of PF to the Localization Problem

The algorithm is constituted by 4 steps; these steps are the initialization, the pre-

diction, the update and resampling. In the initialization step we compute the initial

cloud of particles and the initial weights. The initial cloud of particles is drawn by a

Gaussian pdf with a mean of the GPS reading and a variance the GPS variance. All

weights are considered to be the same and normalized to sum up to one.

In the prediction step, all the particles are propagated according to the process

model. Each particle is computed using control inputs (velocities) drawn from a nor-

mal distribution with a mean of the associated measurement and standard deviation

equal to 0.5 m/s.

xim = X1,m-1 + (Vmi cos 0 - wm-1 sin 0),Am (3.43)

yi]m = Y1,m-1 + (wi- 1 cos 0 + vm-1 sin 0)Am, (3.44)

Then the predicted position of the vehicle can be given by the weighted mean of all

the particles. The way that the estimated position is generated using the particles

and the weights is really important. There are a few ways in which this can be done,



and each of them gives good results for different problems. The three more commonly

used ways are:

* the weighted mean is chosen (this is good for unimodal distributions);

* the best particle (the one with the largest likelihood) is chosen; or,

e the mean of the best group of particles is chosen.

In our case the distributions are typically not multimodal; therefore good performance

has been achieved using the weighted mean given by Equations (3.45) and(3.46)

1'i 1N , (3.45)

NSW i -li]-

Q- N- E mai (3.46)

The update step takes into account the range measurements. Using the stochas-

tic characteristics of the sensor we update the weights. The idea is simple - the

survival of the fittest. Particles that are close to the range measurement receive

larger weights and particles that are farther from the range measurement are as-

signed smaller weights. This can be done using the likelihood density defined by

Equation (3.47)

L N = P(zm - hj Xim-1, um-1) (3.47)

where hm is the range measurement and f] is the predicted range measurement for

each particle defined as:

l = m (X - X 2,m)T(X ~ - X 2 ,m) (3.48)

The likelihood is taken to be a Gaussian pdf with mean equal to the innovation and

variance equal to the variance of the range measurements; therefore, the likelihood of



each weight is computed through Equation (3.49)

1 -(hm, h ) 2

L _ = R e 2R (3.49)

Having the new likelihood for each particle, we can compute the new weights and the

new estimated positions using the weighted mean described in Equations (3.45) and

(3.46). The new weights are given by:

W1 = w_ L M (3.50)

As we said earlier, if we keep doing predictions and continuously updating, then some

particles will drift far apart and will end up with zero weights. If a particle obtains

a zero weight (after round off), then it can never obtain a nonzero weight even if

the range measurements are close to these particles. In order to prevent that from

happening, we conduct resampling. Resampling is the operation by which we delete

all the particles and their weights and draw new particles. The new particles have

all the same weights equal to 1/N, and they are drawn in the way described in the

paragraph above. Resampling should be done only when the effective sample size,

defined by the Equation (3.42) reaches a threshold. This threshold is a function of

the number of particles used. For a large number of particles this threshold is set to

be low. On the other hand, the fact that we do not have a lot of range measurements

forces us to keep this threshold as a large number.

3.4 Summary

This chapter has reviewed the two basic recursive state estimators - the EKF and

particle filtering - that we have considered for the cooperative localization prob-

lem. Before describing the performance of these approaches with real experiments,

in the next chapter we will first describe an alternative approach based on nonlinear

optimization.



Chapter 4

Non-Linear Least Squares

An alternative to the recursive state estimators discussed in the previous chapter is

to perform an incremental batch optimization which computes the trajectory that

minimizes the least square error of the complete proposed state trajectory relative to

the measurements. In the Gaussian (linear or non-linear) case, this is equivalent to

the Maximum Likelihood Estimator (MLE).

4.1 Least Squares Formulation

To consider the MLE estimator, all the vehicle position measurements should be

included in the optimization. Given that velocity measurements are taken approxi-

mately 50 times more frequently than the range measurements; it is common to group

all the velocity measurements between two sequential range measurements (h[i_1], h[ij)

into one cumulative dead-reckoning measurement (zoi] = [AXi], AYi]]T). This allows

us to reduce the number of states in the optimization to a reasonable number.

Figure 4-1 shows a series of poses of the AUV and the surface vehicle. At time

t = 0, both the surface vehicle and the AUV have a certain initial location estimate

with a known uncertainty. At some time later, t = 1, the AUV has moved to another

location and receives a range measurement from the surface vehicle, h[1]. Between

these times the AUV computes a cumulative dead-reckoning vector using forward and

starboard velocity measurements as well as compass heading estimates. This vector



will be denoted zog,[).

After n such periods, our aim is to compute the trajectory, Xl,[ ], that mini-

mizes the least squares error of all cumulative dead-reckoning measurements, Z0 in] ,

the range measurements, h 1i and surface vehicle GPS locations, X2,[:n), up to the

current time.

I x2,[1] x2,[2] ,nCNA

h, hh
2]

AUV

So,[2] X
' o,[n ] X

1,[n]
t=O t=1 t=2 t=n-1 t=n

Figure 4-1: Least Squares framework for a series of poses.

The trajectory corresponding to the least squares error can be found by minimizing

(XI[1:nj )* argmin(C(x1 [l])) (4.1)

with the following cost function

C - Z(j (X1i3 - X2[])Il - hil) E[](j(X 1,[] - X2[i])Il - h[j]) +
i=

Z (A 1 ,[ Ai) X ,[i_1] - z0[j)'jo (71,[i] -- X1i,[__1] -- Z0 ,[ )
i=1

where the covariance of the odoietry measurements are

( 2 0

... .. ......



and the range range measurement is

Er 2 = f (4.3)

Before describing our implementation of the NLS estimator for cooperative local-

ization, in the next section we first discuss the issue of convergence.

4.2 Convexity Analysis

One important property for this optimization is convexity - that is if an objective

function is convex then it has a single global minimum (or maximum) that can be

found by using any optimization method that follows the gradient of the function.

One way to determine convexity is through a study of the Hessian matrix of the

cost function. If the Hessian matrix is a positive definite matrix, then the objective

function is a convex function.

Convexity of a non-linear least squares problem is a very difficult problem to be

solved and in the general case convexity is almost impossible to be proven; however by

making some reasonable assumptions the convex area of the non-linear least square

problem that includes the global minima can be identified.

We now describe and justify the assumptions we have made in our approach for

analyzing the convexity of NLS for this problem. First, we make a major assumption -

in contrast to the previous chapters, in which standard Gaussian errors are assumed,

we will now assume that we have bounded non-Gaussian zero mean random noise

on the range and the cumulative dead-reckoning measurements. In this case, the

following equations will hold.

hreai - Er < hr,1 < hreai + er (4.4)

1XI,reaI I - Co < ||XI|| < ||XI,realI| + Co (4.5)

These conditions are essential for the remainder of the analysis in this chapter.

Next, we also assume that the cumulative dead-reckoning variance is much bigger



than the range measurements variance. This assumption is reasonable in the case

we use inexpensive dead reckoning sensors, as in the current work. We also assume

non-Gaussian isotropic zero mean bounded random noise on the cumulative dead-

reckoning measurements. The variance in the x direction is the same as the y direction

for a short period of dead reckoning as the measurement variances which were used

to form them, 2 = a, are derived from the same sensor and are significantly more

uncertain that the heading uncertainty oj2. This leads to a circular uncertainty for

each dead-reckoning portion (see Equation 2.5). We also assume that the dead-

reckoning noise is also bounded noise by a circle of radius co.

4.2.1 Convexity Analysis for an n-Pose System

The Hessian matrix (H) is defined as the square matrix of the second-order partial

derivatives of the objective function. First we shall decompose the Hessian into two

different matrices: the contribution of the dead-reckoning measurements (Ho) and

the contribution of the range measurements (H,). Thus the Hessian becomes

H = Hr + Ho (4.6)

where

Ho -

A + A2

0

-A2

0

0

A + A2

0

-A 2

-A2

0

A2 + A3

0

0
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0

0

-A3

0

0

0

0

-A 3

0

0

0

0

and

1
Ai2

0,o[i]
(4.7)
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using

h[p] = ((Xi,[p] - X 2 ,[i] )2 + (yi,[i] Y2,[i] )2)

A necessary and sufficient condition for the system to be convex is given by

(X1, [n])T((Hr + Ho)(X1,[1:n]) > 0 (4.8)

The function can be decomposed into two terms: the first term is due to the dead

reckoning contribution

K = (X11,[:n])T(Hr)(Xl,[l:n])

A 0,1( +- +

Ao,i+1 ( + X+ 2 -2ixi+1 +

y1 + y2+1 - 2 yiyi+1)

while

Hr=

(4.9)



and the second which is due to the range measurement

M = (X1,[l:n])T(H 0 ) (Xl,[l:n]) (4.10)
n

(Aix' + Biy' + 2Fixiyi)
i=1

Using the inequality x +x2+1 > 2xixi+1 , it can be seen that K (the dead-reckoning

contribution to the objective function) is always positive. However, the entire Hessian

is not positive definite since M (the range contribution) is not positive.

4.2.2 Convexity for a Single Pose

If a system of n poses is not convex that means that we cannot be certain that any

optimization method will converge to the global minimum. Instead we aim to solve

the problem by calculating a region of attraction (a convex area in the objective

function) that includes the global minimum. To do this for a system of n poses is

a multi-dimensional search problem. Instead of solving for all n poses at once, we

propose to solve the problem sequentially. By doing so, we can simplify the problem

in such as way as to include only one pose optimization per iteration and then we

will generalize the results for the whole problem.

First we consider the case in which we have only one set of range measurements

and one dead-reckoning vector. The Hessian of this subsystem of one pose is given

by:

A +A= A 1  (4.11)
F1 B1 + A,

For the Hessian to be positive definite, det(Hgj) needs to be positive

det(H[l]) = (A1 + o-j)(Bi + a- ) - F2 (4.12)

We will consider the conditions or region for which this holds. Substituting for A1,

B1 and F1, we conclude that the region for which the Hessian is positive definite if



characterized by the inequality below

2 + 2 y _' '_( 4 .1 3 )

((Xi - X2)2 + (yi - Y2) 2 ) (4.13)

Assuming that the range measurements are bounded by circle of radius cr, hreal - Er <

hr,1 < hreai + Er, the worst case scenario is:

hr,I = hreai + Er (4.14)

Combining these equations we can compute the area for which det(Hgj) is positive,

and the Hessian is positive definite. This area is given by

(x1 -. x2 )2 + (yi - y2)2 > hreal + Cr (4.15)
V(X7 7X 2 Y) > I+ ( U ) 2(.5

0o0,1

Given a circular bound of radius 60,1 on dead reckoning measurements, the following

holds

hreal - C0,1 < \'(xi -x2)2 + (y1 - y2) 2 < hreai + Co,1

Taking again the worst case scenario

hreai > 60,1(1 + A)+Cr (4.16)
A

where:

A = ( 0r,) 2  (4.17)
0o,1

We assert that if these two assumptions hold and the dead-reckoning vector is chosen

as the initial condition, det(H[l]) is positive and the resultant objective function is

convex.

Consider the above equation: if the range measurement variance is small com-

pared to the dead reckoning measurement variance, then the convex area will become

smaller as the estimation is based mostly on the range measurements (as the range



measurements cause the non-convex objective function behavior). In the limit, when

the variance of the range measurements goes to zero, Equation 4.16 will never hold.

On the other hand when the variance of the dead reckoning goes to zero, Equation

4.16 will almost always hold.

Figure 4-2 visualizes a side view of the contribution of dead-reckoning and range

to the NLS objective function in Equation 4.2. The range contribution is non-convex,

and the dead-reckoning contribution is convex. When dead-reckoning has small vari-

ance, as is shown for Figure 4-2 in the left , the total cost is also convex and the

system is guaranteed to converge. However when dead-reckoning has large variance,

the objective function may include regions where the contribution of range measure-

ments to NLS is non-convex. This can possibly lead to the overall objective function

being non-convex and thus the NLS algorithm may fail to converge to the global

mlminum.

Accurate dead reckoning Not accurate dead reckoning

Range R Range

DR 3(y
* 0 ,

- DR

Convex Area Non Convex Area

Figure 4-2: The objective function is the combination of range and dead-reckoning
contributions. For the case shown on the left, an accurate dead-reckoning system will
ensure that NLS optimization converges to the global minimum; for the case shown

on the right, inaccurate dead- reckon ing can lead to convergence in a local minimum
only.

..................



4.2.3 Generalization to the Full System

If we consider only one pose and Equation 4.16 holds, then the dead-reckoning places

the system in a convex area. By generalizing this single-pose solution, we hope to

solve this same problem for n poses in sequential fashion by arguing that the objective

function of the subsystem has the same characteristics as the objective function of the

entire system if solved. If this is so the same condition holds for all the subsystems.

Consider the case in which we have sequentially optimized up to n - 1 poses

and a new set of range and dead-reckoning measurements has been received. In this

case the objective function is a contribution of n range measurement terms and n

dead-reckoning terms

C = Cr,1:n + Co,1:n
n-

Z(Cr,i + Co,i) + Cr,n + Co,n
i=1

Since we have optimized up to the n - 1 pose, the terms K.7 (C,i + C0 ,i) have

minimum value Cr,min + Co,min. If now we include in the optimization the nth pose,

then we may be able to find a different solution that gives smaller Co,min since there

is a weak coupling of the dead-reckoning between the poses. Nonetheless, the range

measurements will penalize the objective function as there is no coupling between the

poses and at the same time the range measurement variance is much smaller than

the dead-reckoning variance. By induction, we can show that by solving the problem

sequentially, the objective function will have the same characteristics (topology) as

that of a simple subsystem.

We have derived Equation 4.16 assuming that the vehicle's initial position is

known. If the vehicle's initial position is unknown, then Equation 4.16 is invalid.

However, if the vehicle's initial position is unknown but bounded, then Equation 4.16

is valid if the dead-reckoning bound is increased to account for the uncertainty of the

previous position. Then the condition for the second subsystem to be convex will



now become

hreal

Co,*

C',*(1 + A) + er
(4.18)

(4.19)= 6,1 + (HEi - cI||) 2

where ei is the dead-reckoning error vector and ci is the correction after the opti-

mization. After a few poses the condition will be

hreal
co,*(1 + A) + Er (4.20)

= 60,1 + (l eI + E2...En - (Cl + C2 + ... + n)|1)2

Assuming zero mean noise, the errors ci and the corrections ci are

with zero means with an expected sum of zero

+ c)) = 0

random variables

(4.21)

and

E(cO,) = E(co,1 )

= E(Eco,1)

Based on the argument presented above, we propose the following algorithm to

solve the problem:

1. Form an optimization problem that minimizes the least squares error for all the

measurements taken up to the current time

2. Use as the initial condition to the optimization the previous optimal solution

plus the extra pose from the current odometry measurement

3. Minimize the cost function using any gradient method'

1Conjugate gradient methods are preferred, as their "banana-shape" qualities best fit our pre-



4. If a new range measurement is received, compute the cumulative dead-reckoning

vector, increase the number of poses, and repeat.

Assuming bounded noise and that condition in Equation 4.16 holds, then the opti-

mization algorithm will always start within the convex area that includes the global

minimum.

In the above analysis we considered bounded noise. It is obvious that in the

case that the noise is not bounded, we cannot guarantee convergence. This the case

of a system with Gaussian noise (the Gaussian noise is by definition unbounded);

however by considering an no bound on the range and odometry measurements, and

by choosing not to use a measurement that lies outside of the bounds (outlier rejection

based on the vehicle's predicted location), it may be possible to assure convergence

to the global minima. In the Gaussian case, assuming no bound on the range and

odometry measurements, the convergence criterion is given by the following equation:

23

hreai > n 12 U± , + 0a0 1 ) (4.22)

It is important to notice that, in the Gaussian linear case a unique solution exists

and is given by the well known Kalman filter. According to our results, Equation

4.16 (in the general case) and Equation 4.22 (in the Gaussian case), the existence of

a unique solution depends on noise characteristics. The only case that the unique

solution existence is independent on the noise characteristics (both in the Gaussian

and in the general case) is the case that the range measurements tend to infinity. If

the range measurements tends to infinity they appear to be straight lines, resulting

in a linear system; this agrees with Kalman's results.

4.3 Summary

This chapter has presented an NLS approach to cooperative localization, with a con-

vexity analysis based on the assumption of bounded measurement errors. Next, the

ferred objective function.



following chapter will present our experimental results comparing the different esti-

mators that we have discussed.



Chapter 5

Experiments and Results

The approaches that we have described in the previous chapters have been tested and

evaluated in several experiments in the Charles River, using robotic kayaks, acoustic

modems, and a small low-cost AUV. In this chapter we describe the hardware used

in the experiments and we present results obtained using the EKF, PF and NLS

estimators. As expected, the NLS algorithm outperforms the other methods.

5.1 Hardware

5.1.1 Robotic Platforms

Our algorithms were tested on in two different types of experiments, using real acous-

tic range data. In the first experiment, we used one robotic kayak in the ASV role and

a second one simulating the AUV. In the second experiment we used a robotic kayak

and an OceanServer Iver2 underwater vehicle. In Figure 5-1, we can see a robotic

kayak and the underwater vehicle used in the second experiment; similar experimental

results can be found in Fallon et al. [13].

All vehicles used in the experiments run MOOS-IvP [8], giving them the capability

to make decisions autonomously. The kayaks are equipped with GPS to be able to

know their locations. A proportional-derivative path controller runs on each kayak,

providing motion along desired trajectories. The controller takes as feedback the



Figure 5-1: The autonomous vehicles we consider in this thesis: (a) MIT SCOUT
autonomous kayaks; (b) the OceanServer Iver2 AUV.

vehicle's position through the GPS to close the control loop. The kayak's forward

velocity is in the range of 2-3 m/s for these experiments.

5.1.2 Acoustic Communications and WHOI Micro-modems

Two different methods are used to communicate with the kayaks: wireless ethernet

and underwater acoustic modems. Wireless ethernet is used to control and monitor

the experiment and the acoustic modems are used by the kayaks for ranging and to

transmit data packets to one another. In this way, we duplicate the real scenario of

using underwater vehicles, in a more convenient testbed.



In the acoustic communication community, researchers have developed two pri-

mary modulation techniques, Frequency Shift Keying (FSK) and Phase Shift Keying

(PSK) [24]. Both techniques present advantages and disadvantages. The main ad-

vantages of FSK modulation is that it provides robust performance in a noisy envi-

ronment. However, the main disadvantage of the FSK is that in an ideal case we can

only transmit 0.5 sym/Hz; meaning, the efficiency is low. In comparison, the main

advantage of the PSK approach is that the efficiency is higher. In an ideal case we

can transmit 1 sym/Hz. The main disadvantage of PSK, however, is that in order to

decode a message we need to run estimation algorithms to track the acoustic channel.

This makes PSK modulation more sensitive to noise and the effects of multipath.

In both cases, the amount of data broadcast is limited by the available acoustic

bandwidth. The bandwidth is defined as the range of frequencies we can transmit a

signal at for which the power of the signal remains above 3 db. Since the bandwidth

depends on the dynamics of the transmission and the environment, there is nothing

we can do about it. For our application we use the FSK mode because we operate

in a noisy environment, and we wish to maximize the probability of receiving the

message. In our case the bandwidth is about 12 kHz and the carrier frequency is

20 Khz. A detailed description of the WHOI micro-modem can be found in [14]. A

photo of the main processor board of the micro-modem is shown in Figure 5-2.

The communication cycle proceeds as follows:

9 The surface vehicle transmits a ping to the underwater vehicle to inform that

it is ready to transmit a data packet.

* The underwater vehicle is ready to receive data.

* Surface vehicle sends a 32 byte packet containing its position, its covariance and

several other pieces of information.

9 If the underwater vehicle receives the packet, it computes the relative range

measurement and then it uses the information gathered to estimate its position.

As stated earlier, we use the micro-modems not only to broadcast information



Figure 5-2: The WHOI micro-modem.

but also to measure relative range measurements between the surface vehicle and

the underwater vehicle. We assume that all vehicles are time-synchronized with one

another. Therefore, we can compute the travel time of the acoustic transmission, and

multiply this time by the sound velocity in the water to estimate the range between

the two vehicles.

From the experiniental data, the errors in the range measurements appear to be

well modeled with a zero-mean Gaussian distribution. In the figure below we can

see a plot of the error E = h - h The "'real" range measurement for compari-

son is estimated by GPS. In an estimation problem we need to know the stochastic

characteristics of the sensor used in the experiments.

Here we try to characterize the modems with respect to the ranges they give. We

use two sets of experiments. In the first experiment, the range measurements can

be taken to be Gaussian with a mean equal to -0.07m and standard deviation equal

to 5mn. In the second experiment, the range measurements can also be taken to be

Gaussian with a mean equal to 0.45n and standard deviation equal to 4.27m. We

can see their characteristics in Figure 5-3.
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Figure 5-3: Modem characterization: Gaussian fitting.

5.2 Experimental Results

5.2.1 Experiments Description

A set of experiments was carried out in the Charles River near MIT to demonstrate

the cooperative ASV/AUV localization problem and to evaluate our algorithm. In

Figure 5-4 we can see a top view of the operational area of the robots in the Charles

River, indicated by a yellow box. The operating region had an area of several square

kilometers. Figure 5-5 shows one of the kayaks in the Charles River operating area.

In these experiments, the underwater vehicle moved in a box pattern and the surface

vehicle was following behind in a zig-zag pattern.

The range measurements are characterized by a Gaussian with o'. = 5m. The

vehicle heading uncertainty was taken to be o = 30. As the vehicles did not have ve-

locity sensors differential GPS measurements were used to produce simulated velocity

measurements. We envisage our solution to be used with a low cost AUV (such as the

OceanServer Iver2 shown in Figure 5-1) with imprecise actuation sensors. Modeling

this scenario, we choose the forward and starboard velocity measurement variances

to be oj, = u = 0.5m/s.

In this experiment, we present both vehicles navigating autonomously and running

an online EKF MLBL algorithm. Figure 5-6 shows how the simulated AUV moved

in a box pattern, while the surface vehicle followed a zig-zag pattern behind it. (Its



Figure 5-4: The operational area for the experiments, in the Charles River near MIT.

Figure 5-5: An autonomous kayak performing a mission at our test site.



path is not shown here). The supporting vehicle's path was chosen so as to maximize

the observability of the system.

X [m]
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Figure 5-6: Comparison of different localization methods.

5.2.2 Experimental Results Using Two Kayaks

In this subsection, we present experimental results for the cooperative localization

problem using two kayaks. We give results with several different state estimators - the

EKF, particle filtering, and NLS. The results demonstrate the superior performance

of the NLS estimator.

In Figure 5-6 and Table 5.1 we can see a comparison between our proposed NLS

algorithm and the commonly used EKF and particle filter. Two mean error values

are presented for the NLS. One is the mean error for the entire optimization over the

full trajectory (NLS) which would not have been available to the AUV for mission

planning as it requires the full set of measurements - including future measurements

to be calculated. The second is the mean error of each NLS estimate at the time it



was first calculated. We term this the current point non-linear least squares (CPNLS)

estimate.

Our results show that the NLS and CPNLS outperform the EKF, as expected.

The CPNLS estimate only marginally outperforms the particle filter, but as discussed

earlier, the CPNLS is a more desirable non-stochastic system for this applications.

Admittedly, the number of states included in NLS optimization increases continuously,

and as a result the required computation increases accordingly. Post processing the

data we gathered, we verified that the NLS localization algorithm runs in real-time

for missions of length O(1hr). In future work will consider efficient incremental

implementations of the NLS such as iSAM [231.

Table 5.1: Comparison of different localization methods.

In Figure 5-7, we present the localization error for the NLS solution for this

experiment (upper figure), the eigenvalues of the observability matrix (center figures)

and in the lower figure the convexity criterion in Equation 4.16 expressed as a ratio

G(i) hrea,[] (5.1)

3 + + oi)

If this criterion is smaller than one, then convexity is not guaranteed. We can see

that typically, the convexity criterion holds and the error is bounded and related to

the sensor variance. On occasion, however, the localization error increases when the

eigenvalues of the observability matrix are small, and hence the criterion is below

unity. The eigenvalues of the observability matrix provide a way to see if a range

measurement is informative enough to recover the vehicle's position. Examining the

eigenvalues, we can see that one of the two eigenvalues dominates. The first eigenvalue

Method Mean Error
EKF 18.84m
PF 13.65m

CPNLS 13.12m
NLS (post) 8.94m



is in the range from 50 to 100, and the second eigenvalue is in the range from 0 to

10. This is due to the configuration of the experiment.

Since the first eigenvalue dominates then if the first eigenvalue becomes small then

the error increases, this can be seen in the Figure 5-7.
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Figure 5-7: The effect of convexity and observability on the localization error for the

experiment shown in Figure 5-6.
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5.2.3 Experimental Results Using a Kayak and an OceanServer

Iver2 AUV

In a second fully realistic experiment, the OceanServer Iver2 AUV carried out a

predefined lawnmower pattern running at a depth of 2.4m, while the SCOUT kayak

operated as the CNA vehicle by periodically transmitting its GPS position to the

AUV via the WHOI modem. Operating the MLBL EKF algorithm entirely online,

the OceanServer Iver2 AUV transmitted its own position estimates to the ASV. The

ASV then used the estimate to plan locations from which to transmit. Figure 5-

8 illustrates the path taken by the underwater vehicle. The test lasted 9 minutes

and in total the AUV traveled approximately 500 meters. The AUV surfaced at the

end of the experiment and received a GPS fix at (-202, -242), as shown with a red

cross in Figure 5-8. At that time the vehicle's onboard filter (green line and green

cross) estimated its position to be (-258,-276), while the NLS cooperative localization

filter (black line and black cross) produced an estimated position of (-205,-235) and

the EKF cooperative localization filter (blue cross) estimated a position of (-260 -

253). Our results demonstrate that by using a surface vehicle aiding an AUV, the

localization error is reduced. In addition, we have shown that the NLS algorithm

outperforms the EKF for localization.

5.3 Summary

This chapter has presented the experimental implementation of cooperative local-

ization using three estimators - the EKF, particle filtering, and NLS. Results were

presented for two different experiments, demonstrating the viability of the cooperative

ASV/AUV localization concept.
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Chapter 6

Conclusions and Future Work

6.1 Contributions

In this work, we studied the cooperative ASV/AUV localization problem assuming

inexpensive sensors. This work was a continuation of previous work that utilized

two surface vehicles to aid a submerged AUV. In our work, we took the next log-

ical step of using only one surface vehicle, which makes the state estimation much

more challenging, due to the issues of observability and convergence. Using the weak

observability theorem for non-linear systems, we have shown that the ASV/AUV

cooperative localization problem is best addressed using a non-linear observer.

Though we show that the localization problem is non-convex, we have proposed

an algorithm that under certain assumptions achieves convergence by choosing initial

conditions that lie in convex areas. Our algorithm recursively optimizes the AUV's

path for each new dead-reckoning and range pair, using the NLS solution from the

previous iteration, subject to a convergence criterion that depends on the relationship

between the accuracy of the proprioceptive on-board sensors and the exteroceptive

ranging sensor. We have demonstrated the performance of the approach with real data

for experiments with one AUV and one autonomous surface craft. We also compare

our approach to alternative state estimators, demonstrating superior performance.



6.2 Future Work

One potential alternative for future work is to reparameterize the cooperative localiza-

tion framework in an alternative linear coordinate space, thus simplifying the required

state estimation [9]. In the absence of such a reformulation, nonlinear optimization

methods present the state of the art for this problem. Since it is infeasible to operate

a typical NLS optimization indefinitely, as the number of states continually increases,

future work will consider methods for on-line incremental optimization [23], followed

by a full offline batch optimization after the mission.

Another potential idea for future work is to consider the localization problem

for a group of AUVs that share information with each other and exchange relative

range measurements. In this case, the problem becomes more challenging due to the

correlation of the vehicles' positions with each other. For this case, a useful strategy

will be to exchange range measurements between all the vehicles and try to keep the

rate that the covariance increases bounded and small. Assuming that some of the

vehicles are equipped with expensive DVLs, then the position covariance for these

vehicles will grow slowly. In the case that the covariance of all the vehicles becomes

large, then one one or more vehicles can go to the surface to receive GPS fixes, thereby

minimizing their covariances and at the same time providing the other vehicles with

corrected position information.

An additional problem for future work is to add sensing of the external environ-

ment, both above and below the water. Our current and future work is pursuing

the objective of cooperative mapping by marine vehicles in Singapore, as part of the

CENSAM project of the Singapore MIT Research Alliance. Figures 6-1 and 6-2 show

some of the experimental assets (multiple SCOUT kayaks and an IVER2 AUV) that

we have available for this effort. Our ultimate goal is to combine new SLAM algo-

rithms with the cooperative localization techniques presented in this thesis, providing

a complete solution for autonomous mapping of complex marine environments using

multiple autonomous vehicles.



Figure 6-1: Kayaks on a ship ready to go for an experiment.

Figure 6-2: Kayaks and and OceanServer Iver2 navigating in Singapore.
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Appendix A

Heading Variance Assumption

Consider the equation of motions of a vehicle

X = XtI + (v cos(O) - w sin(6))At

Yt Yt_1 + (w cos(O) + v sin(O))At

(A.1)

(A.2)

For simplicity, we move to the continuous domain:

V = v cos(0) - w sin(0)

VY = w cos(O) + v sin()

(A.3)

(A.4)

where v and w are the forward and starboard velocities respectively. These velocities

are considered to be random variables and can be written as a combination of a

deterministic part and a noise part:

V = VM+nV

W = wm + nw

(A.5)

(A.6)

Adding the continuous system equations gives

Vx + Vy = cos(6)[v + w] + sin(6)[v - w] ( A.7)



We can also assume that the heading is a random variable, which is a combination of

a deterministic part and a noise part:

0 = Om + no (A.8)

Consider the Taylor series expansion of cos(0) and sin(0) around 0m

cos(0) ~ cos(Om + no) ~ cos Om - (sin Om) no + o(E3 ) (A.9)

sin(0) Sin(Om + no) sin 0, + (cos 0m)no + o(E 3 ) (A.10)

Substituting 0, v and w into the above equation yields

Vx+V = cos()[v+w]+sin(0)[v-w]

= [cos 0m - (sin6m)no + o(E3 )] * [vm + wm + nv + nw|

+ [Sinm + (cosOm)no + o(E)] * [vm - wm + nv - n.] (A.11)

Some algebraic simplification gives

Vx Vy = cos(Om)* [vm +wm+ nv + nw +vmno - wmno + non - nonw]

+ sin(Om) * [vm - wm + nv - nw - vmno - wmno - nonv - nonw]

fi [vm + wm + nv + nw + vmno - wmno + nonv - nonw]

f2 = [vm - wm + nv - nw - vmno - wmno - nonv - nonw]

(A.12)

(A.13)

(A.14)

and substituting gives

V + V = cos(0m) * fi + Sin(m) * f2 + o(E) 

Defining

(A. 15)



Now we consider a different system with the same kinematics. This system has

heading variance equal to zero, and noisy velocity inputs in the forward and starboard

directions (V, W). For the new system we have:

V,new + V,new = cos(O)[V + t] + sin(0)[v - w] (A.16)

Since we want the two systems to behave the same way, we set their velocities to be

equal:

V,new + Vynew

Vx + Vy

cos(0)[ [V + v] + sin(0)[f) - w]

cos(Om) * fi + sin(Om) * f2 + o(E 3)

One solution to the above equation is given by the solution of the two equations

below:

(A. 19)

(A.20)

There is only one solution for the system above, given by

= V-Cw

V = (fi + f2)/2

w = (fi - f2)/2

where fi, f2 has been computed in the first part of this proof, so

= ((f1 + f2)/2 = [vm +w. + nW + nw +vmno - wmo+nonv - nonw]

+ [Vm - wm + nv - nw - vmno - wmno - nonv - nonw])/2

W = ((f1 + f2)/2 = [vm + wm + nv + nw +vmno - wmno + nonv - nonw]

- [vm - wm + nv - nw - vmno - wmno - nonv - nonw] )/2

(A.17)

(A.18)

A.21)

A.22)

A.23)

A.24)



We finally have:

V = vr + nv - wmn - nonw (A.25)

w = wm + nw + vmfno + nonv (A.26)

Finally, assuming zero mean sensor noises, we have:

Var()=i) Var(v) + (wm)2 * Var(O) + Var(O) * Var(w) (A.27)

Var(wv) = Var(W) + (vm)2 *Var(O) + Var(O) *Var(w) (A.28)

E[v] =vm (A.29)

E[w] = wm (A.30)
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