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ABSTRACT:
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Next generation precision machines will require ever more rigid elements to achieve the

required machining tolerances. The presented work focuses on the application of ultra

stiff servo-controllable kinematic couplihgs and hydrostatic bearings to minimize the

structural loop of multi-axis precision grinding machines while reducing complexity.

The fundamental importance of these ultra stiff, adjustable machine elements is

demonstrated in the design of a grinding machine for 450mm diameter silicon wafers. A

new generation of silicon wafer grinding machines is needed to back-grind large (450mm

diameter) wafers from the production thickness of up to 1 mm down to less than 50pm so

as to reduce the cost of Si-wafer based components.

The grinding process needs to be done in about 90 sec (fine-grinding, e.g. -200 micron)

to 160 sec (coarse grinding, e.g. -600 micron). After completion of the fine grinding

process the wafer must be flat to 0.1 pm/o45mm and parallel to 0.6pm/450mm diameter.

The surface roughness must be less than Rymax 0.1 pm and Ra 0.01 pm.



Even though the required machining forces are <10N, the machine must be extremely

rigid in order to achieve the necessary surface quality with a reasonable grinding feed-

rate. Assuming a feed-rate of 5m/min and a total allowable error motion of 5nm, a

stiffness of >1 N/nm is required, which is many times stiffer than a typical machine tool

(0.1 to 0.3 N/nm).

In cooperation with industry, this work had the aim of creating a new machine design

philosophy, with an example application that focuses on nano-adjustable kinematic

coupling and feedback controlled water hydrostatic bearing technology. This new design

philosophy is needed to enable the design of a relatively small footprint, compact

precision machines.

In particular, a ball screw preloaded height adjustable kinematic coupling and a

magnetically preloaded hydrostatic thrust bearing were designed and built. The

adjustable kinematic coupling allows for up to 8mm of vertical height adjust and 7N/nm

stiffness at 26 kN preload. By varying the preload on the coupling by +/- 10%, in-process

nm to micron height and tilt adjustment at >95% of the nominal stiffness is possible.

Under the assumption of a constant flow supply, the hydrostatic bearing achieves a

theoretical stiffness of 1 N/ nm at a 20 micron bearing gap and 7000 N combined

gravitational and magnetic preload. In practice, the stiffness is limited by the pressure

flow characteristics of the supplying pumps. To increase the bearing stiffness to a

required 4N/ nm, various control loops have been developed and tested.
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1 Introduction

To manage cost of increasingly complex semiconductor devices (Integrated Circuits,lCs),

such as on chip systems or photovoltaic cells, manufacturing productivity must be

increased.

Figure 1 and Figure 2 show the manufacturing productivity as measured in dies per

wafer for different target IC sizes as well as different wafer diameters. A generally

accepted rule of thumb is that doubling the wafer area reduces unit cost by 20% to 30%.
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Figure 1: manufacturing productivity for different wafer sizes, 200mm 2 IC
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Figure 2: manufacturing productivity for different IC sizes, 450mm wafer

Increasing the wafer diameter, while maintaining roughly constant manufacturing cycle

times, requires stiffer and therefore more accurate manufacturing equipment, Figure 3.

Figure 3: required machine stiffness for accurate grinding of Si-wafers

Since the beginning of microelectronics high purity silicon wafers have been the raw

materials for computer chips, photovoltaic cells and other microelectronic devices. In

1965 Fairchild Semiconductor presented the first Integrated Circuit on a Silicon substrate.
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Depending on the application, different wafer materials such as Gallium Phosphide

(GaP), Lithium Tantalate (LiTa) and many others are also available [1]. However, in

industry use, the size of non-silicon wafers is typically limited to about 100mm in

diameter due to the finite mechanical strength of the respective material at a required

wafer thickness. Generally, the wafer must withstand gravitational loading without

cracking during handling [2].

Silicon wafers are formed of up to 99.9999% pure, nearly defect-free, mono-crystalline

material. Different crystal growth processes such as the Czochralski process, where a

seed crystal is slowly pulled out of a melt, are used to form a cylindrical ingot of highly

pure silicon. In consequent manufacturing steps the wafer is cut from the ingot using a

wire saw, lapped or ground to its final thickness, etched/cleaned and polished. Other

manufacturing steps include edge profiling, and marking of the crystal grid orientation

(Miller index) on the raw wafer.

While in 1990 the diameter of high purity silicon wafers was limited to 200mm, nowadays

300mm is standard and companies are working on machines to manufacture and handle

450mm wafers. According to the International Roadmap for Semiconductors (ITRS) the

first 450mm wafer machines are expected to come to the market by 2012. By 2019 the

International Roadmap for Semiconductors (ITRS) indicates that the wafer diameter will

continue to grow to 675mm. However due to the remaining, unsolved technical hurdles,

the high investment cost related to equipping a 450mm silicon wafer factory and the

ongoing economic crisis, the introduction of 450mm silicon wafers might get delayed

until 2017 or even 2019. Some of the technical hurdles that will need to be overcome

include vibrational problems, gravitational bending, achieving of the required flatness

and surface quality as well as defect free production and handling of 450mm ingots,



which will be three times heavier than the 300mm ingots and take up to four times longer

to cool and twice as long to process. In short: 450mm wafers will require fundamental

research and development efforts that go beyond just evolving and refining 300mm

technology.

Past experience with the step from 200mm wafers, that could be manufactured in barely

automated factories to 300mm wafers, that require full automation, taught companies,

that despite the cost savings related to a bigger wafer diameter, it can take a long time to

break-even with an initial investment. For instance the industrial use of 300mm wafers

started in 2000 and reduced the price per die by about 30%-40%, but by the end of 2005

the more complicated and more expensive 300mm technology only had a 20%

worldwide market share.

As mentioned previously, the driving force behind the trend for bigger wafers is the need

to manage cost of larger system-on-a-chip devices and to decrease cost e.g. of

photovoltaic cells - one key element to a more sustainable energy future. By increasing

the wafer diameter substantial savings in the unit (die) cost are possible as the output

per wafer process step (batch process) almost increases with the square of the wafer

diameter. Furthermore with larger wafers relatively less surface area remains unused

along the edges of the wafer. Not taking into account the surface area cost of defects as

well as alignment or test features on the wafer, the idealized die per wafer count can be

approximated by the following formula.



rc2 (1-d
DPW=f;d 2zcI

4S ,25

DPW - Dies per Wafer

d - wafer diameter, [mm]

S - target IC size, [mm 2]

Besides the previously discussed points, the ITRS indicates that the wafer

manufacturing process will have to be altered as conventional lapping can not fulfill the

sub-surface damage requirements for wafer diameters over 300mm. Therefore future

generations of silicon wafers are expected to be manufactured in a process chain with

less manufacturing steps (no lapping), which puts more stringent requirements on future

silicon wafer grinding machines. In order to not exceed the maximum allowed thickness

of the sub surface damage layer (SSD), an increase in wafer diameter either requires a

slower grinding feed-rate or a stiffer machine. According to [3, 4] "wafer grinding is not

just an ordinary surface finish". Next to the reduction of sub-surface damages (SSD)

resulting of disturbances of the silicon crystal grid or cracks the total thickness variation

(TTV) and the overall thickness range of the wafer are important quality indicator. TTV is

a measure of flatness and presently should be below 1 pm for the finished wafer.

[5, 6] identify face grinding as the most promising approach to achieve the above

mentioned requirements. Face grinding describes a process where a rotating cup wheel

whose axis is usually displaced relative to the work piece's (wafer) axis of rotation feeds

axially into the rotating wafer which is attached to a vacuum chuck in order to prevent

the introduction of stress, Figure 4. The benefit of this grinding method lies in an

inherently constant grinding force due to the continuous contact between the cup wheel

and the wafer.



Face tangential grinding

Reciprocation grinding Creep feed grinding Face plunge grinding Rotational grinding

Figure 4: Face grinding schematic illustration as of [7]

Chapter 2 of this thesis presents machine requirements for the grinding of 450mm silicon

wafers including a mathematical derivation of the required machine loop stiffness. It is

shown that in order to successfully grind Si-wafers, while maintaining present

manufacturing cycle times, future grinding machines must exceed a loop stiffness of

1000N/pm.

Chapter 3 introduces hydrostatic bearings as one key element to achieving the required

loop stiffness. It is shown that the required element stiffness of >4000N/pm for a

hydrostatic thrust bearing can only be reached by either applying an extremely high

preload while running the bearing at the smallest possible gap (~1 Opm) or by using

feedback to control the bearing gap.

Chapter 4 describes the design and testing of a multi-pocket, magnetically preloaded

hydrostatic thrust bearing, which was designed to reach an open loop, axial stiffness of

>1000N/pm at a 20pm bearing gap. After examining a dynamic model of the bearing,

different control algorithms to boost the axial stiffness to the required >4000N/pm are

presented. Tests of a full scale prototype bearing, supplied by low cost, $50 gear pumps

revealed an achievable closed loop bandwidth of 10Hz with the main limiting factor being



the pressure dependence of the supply flow and the pressure ripple caused by each

gear tooth.

Chapter 5 consists of a journal publication that presents the design and testing of an

adjustable kinematic coupling for use in machine tools with high required loop stiffness.

Testing of a prototype has confirmed a theoretical stiffness of >7N/nm. Friction in the

chosen "harmonic drive + ball screw" preload mechanism and the Hertz interface limited

the adjustment resolution of the coupling. Suggestions for improvement of the presented

coupling have been made.

Chapter 6 presents concepts for 450mm silicon wafer grinding machines and explains

the decisions that lead to the final machine design, consisting of a radial and axial

hydrostatic bearing work spindle, a wheel spindle with an electromagnetic thrust bearing

and self compensating hydrostatic radial bearing, a simple yet extremely stiff machine

structure and a new adjustable kinematic coupling for use in machine tools with high

required loop stiffness. The electromagnetic wheel spindle was design in cooperation

with a Professor Xiaodong Lu's research group at the University of British Columbia. For

detailed description of the wheel spindle the reader is directed to Matthew Paone's

master thesis (University of British Columbia).

Chapter 7 summarizes what has been achieved and what remains to be done to move

from a real scale prototype to a manufacturing level machine.

2 Silicon Wafer Grinding Requirements

Figure 5 illustrates the original ITRS target schedule for wafer manufacturing. The

introduction of 450mm wafers was originally expected for 2012, but due to a multitude of



unsolved technical problems as well

expect an introduction no earlier than

as the on-going economic crisis, some estimates

2017 or even 2019.

emitter base
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Figure 5: Silicon wafer diameter according to roadmap, [8]

Chapter 1 explains why the trend to bigger wafer diameters, as shown in Figure 5, is

desirable from a manufacturing process efficiency as well as cost perspective. This

chapter will focus on deriving the machine requirements for grinding larger diameter

silicon wafers.

In face grinding of silicon wafer the grinding wheel is usually advanced axially into the

wafer at a controlled feed-rate. If the grinding machine and wheel were infinitely stiff, the

position of the grinding wheel relative to the original wafer surface would always be

known accurately. However, given finite machine stiffness, the grinding process



accuracy can hardly be known exactly. Consequently to stay below a maximum

allowable error motion the machine must be of a minimum required stiffness. The

following, simplified, mathematical model provides an estimate for the required machine

stiffness to achieve a sufficient surface quality at an acceptable feed-rate.



(2-1)

(2-2)

(2-3)

d 2

4

P = E0 q

F- - P -Eoffd2ftangential - d s ~ 2w d 2

Fn l = Fangential
normal = 2

a = od 2 2f

4AdS

a an -8 (

Fnormal

km

l_ 1
1.3

E=7GJ

asssume: dW=ds=450mm

(2-4)

(2-5)

(2-6)

(2-7)

(2-8)

(2-9)

(2-10)

(2-11)

(2-12)

km >( -1)kg (2-13)

(2-14)
k >(a- 1)EOdW (a 1)*1035 N

m , 4AdS (5 pm

q - material removal rate

Ftangentia - tangential grinding force (relative to wafer surface)



Fnormai - normal grinding force (relative to wafer surface)

ds - wheel diameter

dw - wafer diameter

Ws - wheel speed

w - wafer speed

f - axial federate

P - grinding power

Eo - specific grinding energy

A - process constant

a - depth of cut

kg - process stiffness

km - required machine stiffness

an - nominal depth of cut per revolution of wafer

a - actual depth of cut per revolution of wafer

6 - depth of cut error

Typically precision wafer grinding requires error motions as small as 5 to 25nm [9].

Equation (2-14) indicates that a maximum depth of cut error of 5nm and loop stiffness of

1000N/pm, result in a maximum depth of cut per revolution of 10nm. At a typical work

table speed of 500rpm this would correspond to a rather low feed-rate of 5pm/min. A

25nm maximum depth of cut error would result in a depth of cut of 50nm and thus a

feed-rate of 25pm/min.

allowable total error motion [nm, m] 5 5.OOE-09

wheel diameter [mm, m] 500 0.500

wafer diameter [mm, m] 450 0.450



specific grinding energy [GJ/mA3, J/mA3] 7 7.OOE+09

Lambda Ftangential/Fnormal 0.77

work spindle speed [rpm, rad/sec] 400 41.89

wheel spindle speed [rpm, rad/sec] 2500 261.80

machine stiffness [N/pm, N/m] 1000 1.OOE+09

process stiffness [N/pm, N/m] 921 9.21 E+08

max depth of cut per rev [nm/rev, rn/rev] 10.43 1.04E-08

feed-rate [pm/min, m/sec] 4.17 6.95E-08

tangential grinding force [N] 1.18

normal grinding force [N] 1.54

machine stiffness * error motion [N] 5

Figure 6: error motion based maximum feed-rate calculation

The main uncertainty in this simplified model lies in the value that has been chosen for

the specific grinding energy. Process parameter research indicates that the specific

grinding energy can be significantly higher depending on process parameters as well as

the choice of the grinding wheel material [10]. However, uncertainty in the specific

grinding energy would only cause even more stringent stiffness requirements or lower

feed-rates and thus not significantly alter the conclusion of this estimate. It should be

clear that in order to grind 450mm wafers, a machine of significant stiffness

( 1 OOON/pm) and extremely low error motions in the direction of material removal will be

needed.

In order to determine component requirements with respect to stiffness and error motion,

a closer look must be taken at the structural loop of the machine. Generally a face

grinding machine will require at least two rotational and one translational axis of motion.

Typically these are rotation of the wafer (work spindle), rotation of the grinding wheel



(wheel spindle) and material removal (typically integrated in wheel spindle). In

conventional machines, such as proposed by [3], additional axes are added to move the

wafer / work spindle between the grinding station and a wafer handling station or to

move the wheel spindle into a position that is adequate for exchanging the grinding

wheel.

This thesis proposes a novel, fundamentally three axes (two rotational + one

translational + two axis tilt adjust to position the grinding wheel) machine design that

reduces the length of the structural loop to the bare minimum. In order to meet

requirements that compete with a minimum structural loop, such as space for

exchanging the grinding wheel (industry specification is 300mm between the wheel and

the work table surface), the machine needs to have two configurations:

- grinding configuration: minimum structural loop, maximum stiffness

- work preparation configuration: sufficient space for wafer handling and wheel

exchange, no critical stiffness

A structural interface element is needed to switch between the two configurations with

high repeatability while maximizing stiffness in the grinding configuration. In addition,

according to industry requirements the interface element must have 8mm of height

adjustability to compensate for wear in the grinding wheel.

When in the grinding configuration the machine essentially consists of four elements that

are mechanically in series. Each of these elements is assigned a component stiffness,

which must be high enough to achieve the required overall machine stiffness, Figure 7.



Component stiffness [N/nm] [N/nm]

Work spindle 4 4

Machine structure 3 5

Machine interface 7 7

Wheel spindle 4 3

Total [N/nm] 1024 1080

Figure 7: two versions of potential component stiffness budget

Furthermore the work and wheel spindle are assigned a maximum allowable error

motion, such that even in a worst case scenario the allowable maximum error motion of

(5-25nm) is not exceeded, e.g. Figure 8.

Allowable error motion Nm

Work spindle 10

Machine structure 0

Machine interface 5

Wheel spindle 10

Total [nm] 25

Figure 8: component error motion budget

In addition to minimum stiffness and maximum error motion the following industry

requirements also had to be met:

Work spindle:

- rotational speed of 10 to 500 rpm

- torque of 63Nm

- 500 mm table diameter

- 450mm wafer diameter



Wheel spindle:

- rotational speed of 2500rpm

- 45Nm torque, 11 kW net spindle power

- two axes tilt adjust (+/-250pm over 500mm)

- +/-2mm of axial stroke

- Rapid feed-rate of 150mm/min

- Feed-rate 1 to 999 pm/min

- 500mm cup wheel for grinding

- Work spindle to wheel spindle axis offset of 249mm

Interface Element:

- can be opened by 300mm (wheel spindle to work spindle face to face distance)

to exchange the grinding wheel

- 10mm of height adjustability in grinding configuration to compensate for wear in

the grinding wheel.

Finished Wafer Requirements:

- total thickness variation (TTV) 50.5pm per 1 00wafers

- wafer to wafer variation (WTW) 1 pm per 1 00wafers

- Flatness : 0.1 pm / 20mm

- Parallelism: 0.6 pm /450mm



3 Bearings as a Key Element for the Design of Ultra

Stiff Machine Tools

After having outlined the essential requirements for 450mm wafer grinding in the

previous chapters, this chapter focuses on the bearing technology that is needed for the

design of precision machine tools with a loop stiffness exceeding 1 0OON/pm.

All bearings can be grouped in contact and non-contact bearings. Contact bearings can

be split up in sliding and rolling contact bearings. Non-contact bearings are electro-

magnetic and fluid bearings. Fluid bearings can be split up in aerostatic, aerodynamic,

hydrostatic and hydrodynamic bearings.

In many applications contact bearings perform through their relatively low cost, good

stiffness, reasonably low friction and high load capacity. Compared to sliding contact

bearings, rolling element bearings have lower frictional losses, less wear and thus

require less maintenance. Often those benefits come at the price of slightly bigger error

motions and a higher price. However, in precision applications where error motions must

be limited to a couple pm or sub pm, rolling element bearings and sliding element

bearings are usually not suitable.

Generally, a higher precision and a longer useful bearing life time can be achieved using

non-contact rather than contact bearings. Non contact bearings can be grouped in fluid

bearings and electro-magnetic bearings (electro-magnetic levitation). Electro-magnetic

levitation bearings have been a common choice for precision applications such as semi

conductor manufacturing equipment or atomic measuring machines. Often electro-

magnetic bearings are designed for high precision which usually comes at the price low



force output and consequently low dynamic stiffness at the order of several hundreds

N/pm [11, 12, 13, 14, 15].

Non-contact fluid film bearings combine many of the benefits of electro-magnetic

bearings and rolling element bearings. The fluid film of these bearings averages surface

inaccuracies and thus reduces error motions. Furthermore the absence of mechanical

contact eliminates wear and reduces required maintenance. Another important

advantage for the use of non-contact bearings in semi-conductor equipment can be -

depending on the used fluid - the absence of hydrocarbon based lubricants or wear-

particles that would both be a potential source of process contamination.

Hydrodynamic and aerodynamic bearings require relative motion between the two

bearing surfaces to support any load. This can result in significant friction at low relative

velocities as well as during start-up and shut-down. Functioning independently of relative

motion, hydrostatic and aerostatic bearings usually achieve a higher stiffness and load

carrying capacity than hydrodynamic bearings. In a few cases hydrostatic and

hydrodynamic effects can be combined in the design of a hybrid fluid bearing.

Due to the compressibility of air (gases) aerostatic bearings generally require a

significantly higher preload to achieve the same stiffness as a comparable hydrostatic

bearing. Furthermore, due to the finite stiffness of air (gases) aerostatic bearings can

store potential energy that can be converted back into kinetic energy which can lead to

oscillations (hammering). Hydrostatic bearings act as a gap modulated resistance that

shows spring like behavior due to its gap dependency. However, by definition of a

resistance, hydrostatic bearings can not store energy but only dissipate it. Therefore, if

the dynamics of the supply system (pump, tubing, valves) are neglected, hydrostatic

bearings can not oscillate.



However, the advantages of hydrostatic bearings compared to aerostatic bearings come

at the price of some friction through fluid shear. Even though the friction of hydrostatic

bearings is still extremely low compared to contact bearings, at high speeds, it can be

high enough to cause significant warming of the bearing fluid and resulting thermal

errors in the motion stage.

To summarize: compared to other bearings, hydrostatic bearings excel through high

stiffness, damping, load capacity, precision of motion and the absence of wear. In

applications that require a "clean" environment, such as semiconductor processing, a

properly designed hydrostatic bearing can be supplied with a generally available fluid

such as process coolant, grinding fluid or de-ionized water.

The physics of hydrostatic bearings are well understood and the design of hydrostatic

bearings is subject to diverse publications and literature [16,17]. Extensive engineering

literature also describes sophisticated restrictor and valve designs to increase the

bearing stiffness ("infinite stiffness devices"). However, most literature neglects the

dynamic interaction of the bearing with its supply system.

The only downside of non-contact fluid bearings in precision applications is that fluid

shear can lead to significant temperature increase of the bearing fluid and it can be

necessary to provide cooling in order to avoid thermal errors.

The following chapters qualitatively describe the functional principle of hydrostatic

bearings, present a static and dynamic model of a single pocket bearing and its supply

system, define requirements for the fluid supply system, evaluate different supply

options and finally present strategies to control the bearing gap and/or increase the

bearing stiffness.



3.1 Functional Principle of Hydrostatic Bearings

Generally speaking a hydrostatic bearing works similarly to an air hockey table. In the

case of a hydrostatic bearing the "puck" floats on an ideally incompressible bearing fluid

(e.g. water) instead of on air, and the puck is a part of a machine tool.

Hydrostatic bearings support loads by pressuring a bearing fluid such as oil or water into

a bearing pocket. The bearing fluid is then pushed out of the pocket through a narrow

gap (hydrostatic gap) between the stationary table and the movable carriage that carries

the load. Depending on the gap height and the volume flow rate pressure is build up

inside the pocket. This pressure carries the carriage and the load on top of the carriage.

Unless the maximum load capacity of the bearing is exceeded, the carriage floats on a

thin film of fluid. The maximum load capacity of the bearing mainly depends on the size

(area) of the pocket and the supply system.

W/2 Q W/2

Th R=/h3

Aeff

p

Figure 9: Schematic illustration of a hydrostatic bearing pocket



There are two different supply systems for hydrostatic bearings: constant pressure and

constant flow. In the case of a constant pressure supply a restrictive element such as an

orifice or a capillary is put in between the bearing and a constant pressure reservoir. If

the bearing load increases, the bearing gap decreases and less fluid flows out of the

bearing. Thus the pressure drop over the restrictor decreases and a higher pressure

becomes available in the bearing. A constant flow bearing is usually supplied by a

positive displacement pump. Ideally the flow of a positive displacement pump is

proportional to the pump speed and pressure independent. If the load increases the gap

decreases and so does the outflow resistance of the bearing. Thus the pressure in the

bearing increases. Alternatively servo-valves can be used to maintain a nearly constant

flow over a limited pressure range.

In comparison, a constant flow supply is stiffer and more efficient than a constant

pressure supply as no pumping power gets lost in a restrictor. Furthermore, over time

restrictive elements, as needed for a constant pressure supply, can clog with particles or

biological growth. In addition a constant flow supply has the advantage that the flow in

each bearing pocket can be adjusted independently and thus it is possible to

compensate for unevenly applied loads, dynamic load changes or surface tolerances in

the sliding rails. If the flow in each pocket is controlled such that it changes proportionally

to a change in pressure in the corresponding pocket, theoretically infinite static stiffness

can be achieved. Also it is possible to improve the dynamic response of the bearing to

load changes by controlling the flow through each bearing pocket. This is explained in

more depth in chapter 3.6, 3.7 and 4.

Some of the problems of a direct flow (or constant flow) supply versus a constant

pressure supply are:



- each bearing pocket needs its own pump

- pressure independent flow is needed

- pressure and flow fluctuations caused by the pump must be kept to a minimum

In conclusion to the previous paragraphs, a constant flow supply appears as the better

choice due to its higher efficiency / stiffness at given pumping power as well as the

absence of a restrictive element that can wear or clog. The next chapter will discuss

some of the difficulties that need to be taken into account when designing a constant

flow bearing.

Independent of the supply system the bearing has to be preloaded to achieve

bidirectional stiffness. The main purpose of the bearing pocket (the inner region of the

bearing) is to create an area of uniform pressure to support load and to lift off the

bearing from rest. The bearing lands and the bearing gap define the outflow resistance

of the bearing. Furthermore the bearing lands determine the inherent "squeeze film

damping" of the bearing. Squeeze film damping is the dissipation of energy through

viscous flow (shear of the fluid) in the bearing gap. The bearing will only provide

significant damping if the supporting structure (table) is much stiffer than the bearing

itself.

3.2 Requirements for the Fluid Supply System

In order to not exceed a maximum allowable error motion, it is necessary to reduce

pressure and flow fluctuations that originate from the supply system of the bearing. In

constant pressure supplied bearings accumulators are used to dampen pressure and

flow fluctuations that originate from the pump and thus to maintain a constant supply



pressure. Generally it is much harder to supply a bearing with a truly constant flow.

Therefore, especially for a constant flow supplied bearing, the effect of flow and resulting

pressure variations on the bearing performance needs to be taken into account when

choosing a pump.

Starting from the design equations for hydrostatic bearings the maximum allowable flow

and pressure ripples can be calculated:
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Qout, AQout - pocket out flow, flow ripple

p, Ap - pocket pressure, pressure ripple

W - bearing preload per pocket

Aeff - effective pocket area

R - pocket outflow resistance

y - pocket resistance factor

h - bearing gap

e - acceptable error motion

The flow and pressure ripples of a pump depend on the pump type as well as the

specific design. For instance in gear pumps, details such as tooth shape, number of



teeth on the driving and driven gear as well as mechanical tolerances can significantly

influence the flow ripple [18].

If flow ripple is of concern, the bearing can be designed for a higher flow rate by

decreasing the land width. However a smaller land width and resulting higher required

flow rate also linearly increase the required pumping power while decreasing the

dissipated friction power by the same factor. The designer needs to confirm that the total

dissipated power consisting of pumping power and friction power, which will ultimately

be converted into heat and increase the temperature of the bearing fluid, stays below an

acceptable limit.

Alternatively the bearing gap can be changed. For a given bearing increasing the gap by

a factor x will require a flow increase of x3 and therefore reduce the resulting gap

vibration by x 2 (assuming that the flow ripple remains unchanged). However increasing

the gap by x will also decrease the stiffness the same amount.

Another point that needs to be taken into account, especially when choosing a constant

flow supply, is the pressure flow characteristic of the pump. Any change in pump flow

due to bearing load variations will influence the apparent bearing stiffness (see eqn.

(3.2-6)). Therefore, in order to achieve optimum bearing stiffness, either a pump that can

produce a pressure independent flow over a required pressure range must be chosen or

the pump speed must be changed depending on the bearing pressure. Alternatively the

flow can be measured and controlled. However, especially if the bearing was designed

for a low supply flow, flow measurement and control can be difficult and expensive.



3.3 Pump Options for Constant Flow Supplied Bearings

The previous chapter pointed out the importance of pressure independent flow for the

performance of a constant flow supplied bearing. Due to their pressure flow

characteristics centrifugal pumps and other non-positive displacement or variable

displacement pumps are not suitable to directly supply a hydrostatic bearing. Their use

is limited to constant pressure supplied bearings, where the main task of the pump is to

maintain a constant pressure inside an accumulator and where a relief or servo valve

regulates the supply pressure.

In theory positive displacement pumps produce a pressure independent flow by

capturing a defined amount of low pressure fluid and forcing it to the high pressure side

of the pump. Generally positive displacement pumps can be grouped in reciprocating

and rotary pumps. Examples of positive displacement pumps are:



gear pumps

- diaphragm pumps

- peristaltic pumps

- piston pumps

- progressing cavity pumps

- screw pumps

- lobe pumps

- vane pumps

- regenerative (peripheral pumps)

Any positive displacement pump is plagued by internal leakage (back flow to the low

pressure side) and thus can only produce a somewhat pressure dependent flow.

In addition most positive displacement pumps, by principle have a higher flow and

pressure ripple than variable displacement pumps.

The following table shows a qualitative comparison of positive displacement pumps with

respect to flow range, flow stiffness (pressure dependence of flow), flow ripple and

pressure range. It is to be noted that the characteristics of different pump designs of the

same category can vary tremendously. The following table can therefore only give a

vague, qualitative overview.



Flow range [/min] Flow Flow ripple Pressure

stiffness range

Gear pumps Very low to high volume Medium Medium Medium

Diaphragm pumps Very low to high volume High High High

Peristaltic pumps Very low to low Medium Low Low

Piston pumps Very low to high High High Very high

Progressing cavity Low to high Medium Close to zero High

pumps

Screw pumps Low to very high High Close to zero Very high

Lobe pumps Low to high Low High Medium

Vane pump Low to medium Low High Medium

Regenerative Medium to high Medium Low High

(peripheral) pump

Figure 10: qualitative positive displacement pump comparison

Other than most piston pumps with a fast, reciprocating piston and a relatively small

displacement per piston stroke, slow moving, high volume, double-acting piston pumps

present a promising option to eliminate pressure ripple as well as pressure dependency

of the output flow over at least the duration of one piston stroke. Chapter 3.4 presents

the design of such a high volume piston pump.

In order to compensate for the previously mentioned back leakage and to achieve

optimum bearing stiffness and load capacity, some kind of flow control has to be

implemented to maintain a truly constant flow. In theory the flow can even be controlled

such that a constant bearing gap and thus infinite static stiffness can be maintained over

a limited pressure range. In the case of constant pressure supplied bearings this flow

control can be done by servo valves. With a direct supply (constant flow) the pump



speed has to be changed to compensate for load variations. The following chapter

describes methods to control the flow in a direct supply system for optimized bearing

performance without using additional hardware in the supply line such as servo valves.

3.4 Design of a High Volume Piston Pump

To test the concept of a high volume piston pump with respect to pump internal leakage,

pressure flow characteristics and smoothness of flow a commercially available, double

acting Bimba air cylinder, with 2ft of stroke and 3.14in 2 piston area, was used to pump

water. Figure 11 shows the design of a bench level prototype.



Figure 11: high volume double acting piston pump bench level prototype

A wire potentiometer was mounted between the stationary structure and the moving

piston to measure piston motion.
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In a first leakage test the piston was extended by about 20" and loaded with 60lbs of

weights corresponding to a pressure of 20psi. Putting the weights on caused an initial

displacement of about 0.8mm. This displacement was caused by compression of

trapped air and deformation of the structure. Three days later the piston still had not

moved any further (within 4/1 00in accuracy): I.e. over a time period of three days and at

a pressure of 20psi the piston had leaked less than 0.007oz or 0.2ml. This is orders of

magnitude better than could have been expected from any gear pump. It can be

concluded that a high volume piston that is equipped with a sufficiently powerful, closed

loop control positioning system can provide significantly higher flow stiffness i.e.

pressure independent flow than alternative gear pumps.

One downside of using a double-acting piston is that the direction of motion has to be

reversed once the piston has reached its end of travel. In this moment the outflow of the

piston stops. If the piston is used to supply a hydrostatic bearing this would be

unacceptable during the machining process. However, if the piston is dimensioned

appropriately the reversal of direction can be timed with a break in the machining

process (e.g. tool change). To reduce machine downtime it is important to switch the

piston direction as fast as possible. With conventional electronically actuated valves or

mechanical check valves switching times below 1 sec can be achieved.

If continuous flow is absolutely required two double acting pistons can be used to supply

the bearing. One piston would follow a sine 2 motion while the other piston would follow a

cosine2 motion. Consequently when one piston is close to its switching point, its

contribution to the total flow would be relatively low (close to zero) while the other piston

produces maximum flow. To eliminate remaining pressure and flow fluctuations that



result of valve switching, filtering elements such as accumulators or other types of fluid

borne noise silencers (Helmholtz resonators, expansion chambers, ...) can be used.

Figure 12 shows a first order estimate of relevant design requirements for a high volume

piston pumps to supply a precision hydrostatic bearing.



pressure
flow
piston diameter
Piston area
expected piston friction
required piston force
required piston speed
required actuator power
time to empty piston
required piston stroke
piston volume

nominal bearing gap
bearing preload
mechanical stiffness of bearing
load step
mechanical deflection

allowable flow variation as % of mechanical deflection
allowable gap change due to flow variation
allowable flow change

allowable piston area percentage error
piston area upper limit (+xxx%)
piston area lower limit (-xxx%)
piston diameter upper limit
niztnn dinmatnr InwAr limit

allowable piston velocity percentage error
upper piston velocity limit
lower piston velocity limit
max.piston velocity tolerance upper.limit)
max. piston velocity tolerance (lower limit)
max. piston velocity tolerance range

control bandwidth
linear encoder resolution
rotary encoder resolution
max. allowable rotary to linear transmission ratio

Figure 12: hydrostatic bearing, high volume
requirements
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3.5 Preload Options for Hydrostatic Bearings

In most bearing applications some sort of preload is used to improve motion accuracy or

increase bearing stiffness. In contact bearings preload improves motion accuracy by

elastic averaging over many load carrying rollers. The stiffness of contact bearings is

improved by increasing preload on the (Hertz) contact interfaces of the bearing. The

stiffness of non-contact, fluidic thrust bearings is directly linked to the bearing preload.

Furthermore preload allows a fluid bearing to be bidirectional (as the fluid only provides

repulsive force).

The stiffness of hydrostatic bearings scales proportional to the applied preload and

inversely proportional to the bearing gap. Therefore, in order to achieve optimal stiffness

the preload needs to be maximized while the bearing gap must be kept as small as

possible. However, usually the smallest possible bearing gap is limited by manufacturing

tolerances to 5 to 10pm. Therefore, often the most cost efficient way to increase the

bearing stiffness is to increase the preload. The designer can choose from four preload

options:

- gravity

- hydraulic

- pneumatic

- mechanical (springs)

- magnetic

Increasing bearing preload by gravity goes along with increasing the weight and volume

of the floating machine component and is therefore relatively easy to do. In the case of a

grinding machine the floating machine component is the rotating work table. However



the inertia of a moving machine component increases with its weight, which can require

a bigger and therefore more expensive motor. Furthermore increasing the weight or

volume of a component can complicate mounting a machine. Increasing the volume also

makes the machine less compact and therefore ultimately can affect the overall machine

stiffness. Other cost increases are related to the weight specific cost of the used material

or the shipping cost of a bigger and heavier component.

The most common hydraulic preload for hydrostatic bearings are opposed pad bearings.

The downsides of an opposed pad bearing design are increased space requirements as

well as additional, costly precision surfaces. Compared to a single-pad-bearing,

opposed-pad designs can easily double the cost of a bearing and its fluid supply system.

Similar to a hydrostatic, opposed pad design, aerostatic bearings can be used to preload

a hydrostatic bearing.

Mechanical preload via springs usually requires contact between the moving

components. If there is relative motion between the components an additional bearing

interface becomes necessary (similar to an aerostatic or hydrostatic opposed pad

design).

Another option to easily achieve preload forces of several thousand Newton is by using

permanent or electro magnets. Permanent magnetic materials are extremely corrosive

and therefore have to be coated if they are to be exposed to a corrosive medium such as

can be the case in water hydrostatic bearings. Most magnetic steels also need to be

protected, as they are not completely corrosion resistant, even if they should be labeled

"stainless steel".

Electro magnets can be of concern because of the heat that they can produce.



If permanent magnets or electro magnets are used to preload a moving part eddy

currents and related power losses (eddy current brake) must be taken into consideration.

Chapter 4.1 presents a permanent magnetic preload system for hydrostatic thrust

bearings, illustrates encountered problems and proposes an improved design.

3.6 Dynamic Model of a Hydrostatic Thrust Bearing

The simplest way to model the reaction of a hydrostatic bearing to a load change is to

consider it as a spring with a finite stiffness in parallel to a damper and preloaded by a

mass. However, this model is not quite accurate since the bearing is essentially a

resistance that is modulated by the hydrostatic gap. Obviously the bearings' reaction to a

load change is a displacement. If the bearing is supplied with fluid from a positive

displacement pump where the pump flow is proportional to the pump speed it is possible

to increase the stiffness of the bearing by changing the pump speed depending on the

pocket pressure or the bearing gap. As it is possible to change the bearing gap by

changing the flow an increase in load (decrease of the gap) can be compensated by an

increase in flow (increase of the gap). Theoretically it is possible to reach infinite

stiffness by increasing the flow proportionally to the increase in pressure (as described

above). However the pressure-flow characteristics of the pump, in the case of very slow

load changes and the dynamics of the entire system in the case of dynamic load

changes, limit the achievable stiffness.

The hydrostatic bearing gap can either be controlled by directly measuring the bearing

gap or based on a model of the bearing, the flow (speed of a positive displacement

pump) and the pressure in the bearing gap. Both, pump speed and pressure are easy to

measure. Combined with a stiff machine frame (structure) such a feed-back controlled



hydrostatic bearing can significantly contribute to increase the accuracy of present wafer

manufacturing equipment.

In the presented model the following simplifying assumptions have been taken:

- Fluid is incompressible

- No mechanical deformation of the supporting structure

- Laminar flow through the hydrostatic gap

- Density of fluid is zero (weightless fluid)

- Constant flow supply (under static load)

No limitation on pump speed or pressure. Therefore the simulation results have to be

double-checked in regards to speed limits and pressure limits of the pump.

Under the assumption of constant flow the behavior of the bearing is dominated by its

outflow resistance that is inversely proportional to the third power of the gap. The

simplest model can be derived by linearizing this resistance as follows:



p _ y (3.6-1)

Qout h

1 (3.6-2)
h =(3outY) 3

P

2 (3.6-3)
h =( routY p oY

3 p p2
P~Po

1 h0  (3.6-4)
3 Po

According to the above equations the linearized outflow resistance acts like a spring.

This coincides with the general observation that a hydrostatic bearing shows spring like

behavior. The calculated stiffness is as found in diverse literature. However, this

simplified model can not be correct since a modulated resistance (i.e. the outflow

resistance) is an energy dissipator and thus should not be modeled as energy storage

as in Figure 13. In this model R describes the previously mentioned squeeze film

damping.

C:1/k

F:Se R:b

1:m

Figure 13: Bond graph model of a single pocket hydrostatic bearing, linearized
outflow resistance



A better model of the bearing is shown in Figure 14.
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Figure 15: Model of a single pocket hydrostatic bearing

This model may seem complete. However, the reader should wonder why the inertia is

in differential causality, since according to the bond graph it could as well be in integral

causality. In theory integral causality is preferable due to more accurate computation.

However, in this case it is not possible to run a simulation with the inertia in integral

Ih



causality. This can be visualized as follows: If the bearing is at rest and the gap is zero

the outflow resistance is infinite. Consequently a step in flow will cause infinite pressure

in the bearing and infinite acceleration of the bearing. In order to fix this problem the

simulation can only be run starting from a nonzero bearing gap. Apparently this can not

be a good model, since it only works in differential causality or for nonzero initial gaps.

Furthermore, this model can not be accurate since there is no elasticity. However, it is

not realistic to have a fluid supply system without elasticity in the tubing or the fluid itself

(bulk elasticity). Also the pump will exhibit a pressure dependent leakage flow where

fluid flows back from the high pressure side to the low pressure side. This can be

confirmed by measuring the flow per revolution of the bearing for different pressures.

If the elasticity of the tubing is being included in the model a simulation of the model can

be run in all integral causality. The elasticity of the tubing can be estimated as follows:
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D - inner diameter of tubing

p - pocket pressure

t - thickness of tubing

AV - volume change

a - normal stress in tubing

E - young's modulus

E - strain
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With the elasticity of the tubing included the behavior of the bearing can be described by:
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Q peak = p (3.6-14)

Rleak

p =k, ftdt+Po (3.6-15)

Fb - damping force

A - area under bearing pocket (slightly bigger than Aerf)

m - supported mass

Qin - flow into the bearing pocket

QOUt - flow out of the bearing pocket through the bearing gap

Qi - flow that expands the tubing

Qieak - leakage flow that does not pass through the bearing gap

In order to achieve a model that can simulate the lift-off of the bearing the support has to

be included in the model. This can be done by an activated junction structure.
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Figure 16: Complete Model of a single pocket hydrostatic bearing

Lastly, to achieve a complete model of a hydrostatic bearing the motor dynamics of the

pump have to be included.

3.7 Feedback Control of Hydrostatic Bearings

The basic thought of infinite stiffness control is to make the flow out of the bearing

proportional to the pressure in the bearing pocket and thus maintain an ideally constant

outflow resistance. As the resistance is inversely proportional to the gap cubed a

constant outflow resistance of the pocket is equivalent to a constant gap. Therefore the

bearing gap can either be controlled by direct gap measurement or indirectly via the

outflow resistance by measuring the bearing flow and pressure. In both cases the pump



speed / bearing flow is adjusted such that a desired bearing gap is maintained or

achieved independently of the bearing load.

3.7.1 Increased Hydrostatic Bearing Stiffness through

Model Based Pressure Feedback Control

In order to determine the outflow resistance both flow and pressure have to be

measured. In the static case, when the gap is not changing, this can be done based on

the pump speed and a pressure sensor downstream of the pump as well as an accurate

pump model. If the dynamics of the bearing are neglected, a constant gap can be

maintained by simply increasing the flow proportional to the pressure change. The

proportionality constant in this case is the desired outflow resistance.
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In the case of dynamic load changes the flow produced by the pump is not anymore

equal to the flow out of the bearing. Some flow gets stored in the expansion of the tubing

or in the bearing itself, as it moves to another height i.e. bearing gap. Even though the

control law presented above will still work, it will not be ideal to control dynamic load



changes. The bearing gap can be controlled better by using a model based observer

where Ro is the desired resistance.

Figure 17: model based pressure feedback control

Figure 18 shows a single pocket thrust bearing test setup that was successfully used as

a proof of concept for the proposed pressure control.

Figure 18: Test setup loaded with 90N

Figure 19, Figure 20 and Figure 21 show the response of the bearing to load changes in

open loop and pressure feedback controlled closed loop.
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Figure 19: response of the test bearing to 45N load increases
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Figure 20: response of the pressure feedback controlled test bearing to 45N load
increases
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Figure 21: response to the pressure feedback controlled test bearing to a 355N
load decrease
The results of the presented experiments can be summarized as follows:

Predicted Open Loop Stiffness: 83 N/micron

- Actual Open Loop Stiffness: 73 N/micron

With pressure feedback, sensor noise and resolution limits the accuracy of the stiffness

measurement:

- Stiffness (worst case from sensor noise): 590 N/micron

- Stiffness (averaging sensor noise): 1200 N/micron

The gap control can significantly increase the stiffness of the bearing and infinite stiffness

over a limited pressure range seems to be feasible. Therefore, if the gap is controlled the

bearing can be run at a relatively lower nominal gap which results in a higher stiffness

independent of the control. Furthermore the gap control can be used in order to adjust the



bearing gap. In the case of a machine tool where a translational carriage is being

supported by several hydrostatic bearing pads, the gap control can thus be used to

compensate for waviness in the two bearing surfaces.

3.7.2 Increased Hydrostatic Bearing Stiffness through

Gap Feedback Control

ref gap + gap Pump rpm bbearing gap
controller control loop baig - -

gap
measurement

Figure 22: gap feedback algorithm

The bond graph model of Figure 16 illustrates the dynamics between the bearing gap

(output) on the one hand and the bearing load as well as supply flow (inputs) on the

other hand. The core thought of controlling the bearing gap via direct gap feedback is to

measure the gap and change the flow such that a desired gap is achieved and

maintained even in the presence of load variations.

Because the outflow resistance of the bearing is inversely proportional to the bearing

gap cubed, the bearing's dynamic response to load or flow changes is highly nonlinear.

Adding the pressure dependence of the supply flow (leakage and pressure flow

characteristic of the supplying pump) as well as the elasticity of the tubing results in a

rather complex dynamic system. Local linearization can be used to describe the bearing

dynamics around an operating point (h=ho). However care must be taken, as will be

shown in the following paragraphs.
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Qin - p--Ash (3.7.2-4)
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m 3 m b mh h3 b b h 3
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Aeg ffAgy
linearize Qin A 4F0 -Qin 4 h = 2 F0

h h0 F

3 FOh

ms2h+(A +b)sh+ 3F0 h = F + 2F
h0

Eqn. (3.7.2-9) describes the bearing as a single input, second order system.

Consequently the flow input got lost in the linearization. Furthermore the bearing appears

to be able to oscillate if the damping was sufficiently low. However, the only energy
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Gout = Qin - ~ - s P Ash
RI kt

pAeff + F = ms2h+bsh

kt Aeff

(3.7.2-5)

(3.7.2-6)

(3.7.2-7)

(3.7.2-8)

(3.7.2-9)



storing element in the real physical system is the mass and hence oscillation without

another energy storing element (e.g. elastic tubing) seems counter-intuitive. The outflow

resistance appears as a spring in the linearized system, but in reality it is an energy

dissipater.

Based on the nonlinear eqn. (3.7.2-5) and (3.7.2-6) the bearing's response to flow

changes appears similar to a linear third order system. With infinitely stiff tubing (kto)

the nonlinear "pseudo third order system" becomes a nonlinear "pseudo second order

system".

It appears that even with infinitely stiff tubing, the bearing might be able to oscillate, but

never go unstable or limit cycle. Again - if the tubing is infinitely stiff - there is only be one

energy storing element and hence oscillation seems counter-intuitive. With finitely stiff

tubing another energy storing element is added and the bearing might even become

unstable (e.g. low tubing stiffness, high mass, low squeeze film damping and high

leakage resistance).

A low leakage resistance, nominal gap and bearing area, paired with a high supported

mass (inertia) and high required flow, describe a bearing that is extremely sensitive to

load or flow changes. Through simulation of the nonlinear bearing dynamics it could

indeed be proven that even under the assumption of infinitely stiff tubing a hydrostatic

bearing can oscillate if the supply system is included in the model. Figure 23 shows the

corresponding simulink diagram where Rieak describes pump internal leakage from the

high pressure side back to the low pressure side of the pump. Figure 24, Figure 25 and

Figure 26 show the corresponding flow step input, the resulting pressure and gap

oscillation.



Figure 23: simulink model of hydrostatic bearing including pump internal leakage
(backflow)
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Figure 24: flow, double step input
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Figure 25: resulting pressure fluctuation of bearing with pump internal leakage
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Figure 26: resulting gap fluctuation of bearing with pump internal leakage
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If the tubing is of a finite stiffness the bearing system obtains a second energy storage

and consequently it is intuitive for the bearing to oscillate depending on the tubing

stiffness and system damping. Figure 27 shows the simulink model of the bearing

including pump internal leakage as well as elastic tubing. Figure 28 and Figure 29

illustrate the pressure and gap oscillation that results of a flow step input as in Figure 24.



Figure 27: simulink model of hydrostatic bearing including pump internal leakage
and elastic tubing
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Figure 28: pressure response to flow step, model includes pump internal leakage
and elastic tubing
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Figure 29: gap response to flow step, model includes pump internal leakage and

elastic tubing

With sufficiently soft tubing the bearing can even limit cycle (Figure 30 and Figure 31)

and in theory go unstable. In practice instability is not possible as long as the bearing

gap can never become negative (infinitely stiff supporting structure with infinite damping).
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Figure 30: pressure response to flow step, model includes pump internal leakage
and soft, elastic tubing
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Figure 31: gap response to flow step, model includes pump internal leakage and
soft, elastic tubing

However, if the supporting structure is not stiff enough and has low damping even

instability becomes possible.

Despite its nonlinearity and the previously described potential for oscillation most

appropriately designed hydrostatic bearings are over-damped and can, depending on

the used pump and the pump dynamics, easily be controlled by a simple PI controller.

Chapter 4 presents the results of gap feedback in the context of a magnetically

preloaded, direct supply, multi-pocket water hydrostatic thrust bearing. With the given

bearing and supply system gap feedback enabled a control bandwidth of 10Hz. The

major limiting factor in the control of this test bearing was the relatively cheap supply



system (high pump internal leakage). Chapter 3.4 presents a pump design that should

overcome this limitation.

4 A Magnetically Preloaded, Direct Supply, Multi-Pocket

Water-Hydrostatic Thrust Bearing

450mm silicon wafer grinding requires extremely stiff thrust bearings in the wheel spindle

as well as the work spindle. To achieve a machine loop stiffness of 1kN/pm, the axial

stiffness of every component must be well beyond 1kN/pm. Figure 7 suggests 3 to

4kN/pm for the work spindle thrust bearings. In order to achieve this stiffness at a

bearing gap of >10pm either a minimum preload of 1OkN or feedback control of the

bearing gap is needed. Chapter 3.5 discusses different preload options. For space and

cost reasons a combination of up to 4500N gravity and 6000N magnetic preload has

been chosen for the presented thrust bearing. To further boost the stiffness to the

required level, different feedback control algorithms, as discussed in chapter 3.7 have

been tested.

4.1 A Permanent Magnet Preload Assembly

Chapter 3.5 introduced various preload methods for mechanical bearings and other

applications. This chapter describes a permanent magnet assembly to preload rotating

machine parts (e.g. a hydrostatic bearing) without mechanical contact. The presented

magnetic preload device has been designed in cooperation with Professor Xiaodong Lu

and Irfan Usman from the University of British Columbia.



The device consists of an axis-symmetric permanent magnet ring that has been

magnetized in the axial direction and an axis-symmetric flux circuit that includes the

preloaded, rotating machine part, Figure 32.

Rotating
machine part

Non Permanent Non magnetic
magnetic magnet gap e.g. Magnetic
material hydrostatic flux

hparinn nqn

Figure 32: preload magnet assembly with simplified visualization of magnetic flux

The axial symmetry and axial magnetization minimize the flux change in the rotating

machine part and therefore theoretically eliminate eddy-currents. Deviations from an

ideal axially magnetized, axis symmetric design will create eddy currents. Examples of

such deviations are:

- an uneven gap between the rotating machine part and the permanent magnet

assembly due to bearing tilt or manufacturing tolerances

- a non-homogeneous, not perfectly axis-symmetric magnetization of the

permanent magnet ring.



Eddy currents that are introduced in an area increment AA at a distance R from the axis

of rotation, due to tilt by an angle e of the rotating part relative to the permanent magnet

ring, are directly related to the flux change in the area increment:

# a g (4.1-1)- = - -- AAat ag at
-= coR sin(at)sin(8)
at

g = go - R cos(cat)sin(O)

CD - magnetic flux

B - magnetic flux density

g - air gap

AA - area increment

w - rotational speed

0 - tilt angle

t - time

(4.1-2)

(4.1-3)

Consequently for small E eddy current generation grows linearly with tilt.

Generally a passive low eddy current, permanent magnet preload minimizes heat

generation.

All parts that are within the magnetic circuit are made of soft magnetic materials such as

pure iron, low carbon steel (e.g. 1010, 1018, 1020, 1117) or magnetic stainless steel (e.g.

AISI 430).

In order to maximize preload high energy density NdFeB magnets have been used for

the magnet ring. Figure 33 compares several typical magnet materials.



Magnet material Br, [T] Hei, [kA/m] (BH)max, Tc, [degree C]

[kJ/m3]

Nd2Fe14B 1.0-1.4 750-2000 200-440 310-400

(sintered)

Nd2Fe14B 0.6-0.7 600-1200 60-100 310-400

(bonded)

SmCo5  0.8-1.1 600-2000 120-200 720

Sm(Co, Fe, Cu, 0.9-1.15 450-1300 150-240 800

Zr)7 (sintered)

AINiCo (sintered) 0.6-1.4 275 10-88 700-860

Sr-ferrite 0.2-0.4 100-300 10-40 450

(sintered)

Figure 33: magnet material comparison [19]

Ideally the magnet ring is made of one solid piece of magnet material that is magnetized

axially and then mounted in the magnet assembly. However, in order to facilitate

manufacturing and reduce cost the magnet ring was built of several smaller not

magnetized segments. Subsequently this subassembly has been magnetized axially.

In order to prevent corrosion the magnet ring has been galvanized. However in corrosive

environments galvanization will not suffice and further measures (non conductive coating,

special magnet powder mix) must be taken. Experience has shown that it is highly

recommendable to purchase magnets for use in corrosive environments from a

technically experienced vendor [20].

Given that most magnetic materials are not very corrosion resistant (e.g. AISI 340)

corrosion of all parts in the magnetic circuit in isolation and in combination with other



parts of a different material and thus with a different electro-negativity must be

considered.

Figure 34 shows the permanent magnet preload assembly and the used materials.

Item Number Material Name

1 Stainless Steel 430 Outer Shield

2 Stainless Steel 430 Reinforcement Ring

3 N44SH Magnet Ring

4 Stainless Steel 430 Inner Protection Ring

Figure 34: permanent magnet preload assembly

The following analytical model describes how the preload force can be approximately

calculated for a core with relative permeability of pr and magnet remanence Br. Bg1 and

Bg2 are found via application of Ampere's law along curve c and Gauss' law that requires

continuous flux along curve c.



I -A2

Figure 35: analytical model for preload force estimate
Hg1(h+g)+Hc1Lc1+Hg2 g+Hc2 (h+L 2 )=H h (4.1-4)

h++BA1 g+BA, A1 L A1_h+ L 2  rh (4.1-5)Bgl(h+g)+Bg 1 A-+g-'Ll+g
A2  Aci Bc g Ac2 Uc2 Jr

assume: A1 ~ Aci ~ Ac2; c1 ~Uc2 ~Pr; Lc1 ~L 2 W (4.1-6)

Bg- Br h (4.1-7)
g1 r(g h+A 1  2w + hPr (g+h+-g+-)

A2  Pr
B Br h A1  (4.1-8)

g2 Pr (g+h+ A1 g+ 2w+h) A2
A2  Pr

Bgi12 Bg2 2  (4.1-9)
F=-AA1+ A2

2p0 2puO

H - field strength

Lc - path length in core material

A - cross sectional area

M - permeability



4.1.1 Hydrostatic Thrust Bearing Experimental Setup

Figure 36: test setup for magnetically and gravity preloaded multi-pocket
hydrostatic thrust bearing

Figure 36 shows the thrust bearing test setup that was used to determine the

performance of a direct flow supplied, magnetically and gravity preloaded, multi-pocket

thrust bearing. The radial bearing consists of a cartridge with two self centering

"hydrobushings" as shown in Figure 37 [21].

Figure 37: self centering "hydrobushing" cartridge

Each hydrobushing consists of several pockets which are supplied by separate supply

grooves that start at a collection groove and spirals over an angle of ideally 1800 along

the circumference of the bushing to the corresponding pocket.



Pocket with
damping
lands

Supply
groove

Collection
groove

Figure 38: hydrobushing.cross section

If the shaft is displaced it automatically narrows the fluid supply to the collection grooves

on the bushing side that it displaces to. At the same time it opens up the supply on the

other side. Since the supply lines spiral over an angle of ideally 1800 around the

circumference of the bushing, the pockets that counteract the displacement receive an

increased fluid supply (increasing pressure) and a restoring (self-centering) force results.

Figure 39 shows the design spreadsheet that was used for dimensioning the

hydrobushings. The efficiency (as defined by real radial stiffness / max. theoretically

possible radial stiffness) is dependent on the spacing of the supply grooves and the

angle by which they spiral around the circumference of the bushing. Experience has

shown that for most bushings efficiencies between 15% and 25% are appropriate. For

critical application FEA or a resistance network calculation should be used to more

accurately estimate the efficiency.



n
diameter
efficiency
bushmgjength

supply spiral height
gap
pocket length
Aeff
PS
k per bushing

2
m mm] 012 120.00

% 25.00P
0.17 __167.00'

0.04 40.001
0.00 15.00

Lp0.11 __ 109 50

ImA2, mmA2) 0.01_ 688009
[N/m^2l 15000000
[N/m, N/micron] 516006593.4 516.01

mu [Nsec/m^2] 0.00089
land width 0.0175

0.381

Ro 1.18E+11I

[m 3/sec, I/min] 1.27643E-05

Ao

A
omega
shear power per bushing [W]
pumplng power per bushing [W]
Hp/Hfr

radial load capacity per bushing [N]

0.77

5.65E-06 1

2.26 - - -
0.12 120.
0.01~

261.80 2500
925.68

19.15

0.02

4927.5

Figure 39: hydrobushing design spreadsheet

The axial bearing is built of an eight pocket hydrostatic thrust bearing which is preloaded

with about 7.85kN of magnetic and gravity preload. The magnetic preload system is

described in 4.1. Figure 40 shows the basic geometry of a rectangular hydrostatic

bearing pocket.

flow per bushing



direction of motion rpu land
au

outer radius can be

bu neglected -> rectangular
4 outer shape

h - nominal gap between bearing pad land and sliding surface

Figure 40: hydrostatic bearing rectangular pocket geometry

The actual, not quite rectangular pocket geometry can be approximated by a roughly

equivalent rectangle, Figure 41.



Inputs (N. mm) in BOLD, Outpas in RED
... ..... .............. .1

Bearing pads

number of pads n S
outer diameter of plate Do(m, mm) 0.50 496 .
inner pad radius ri(m,mm) 0.11 112
outer pad radius ro*n, mm) 0.23 234.0
pocket angle phi phi(rad, degree) 0,58 33.0

land width lu(m, mm) 0.01 14
pocket radius rpu (m, mm) 0.01 5
effective bearing area Aeffuam^2, m^2) 18520 0.018520
Nomial gap h (microns, m) 20 0.000020
Gap at maxmum load (microns) 10

Preload

Weight 950
Preload by Magnets (N) 6000

Total preload force Fmm(N) 6950.00

Viscosity mu (Nsecim^2) 0.00089
Density rho (kg/m3) 997
specific heat (joulekgram C) 4186
apparent bulk modulus of lubricant (here wate, approxim Kla (Nim^2) 2000000

System performance summary

Stiffness
Vertical (N/micron) 1043
Tilt (-rm/microrad)

Lead capaity
Minimum gap, h (microns) 10
Vertical (N) 41569

Verticalload capacitypumping power (NW) 162752
Pitch (N-m)

fuid Supply
Total (n pads) Q (1pm, ^3/s) 0.3271 5A44E-06
Minimum pressure (atm, kPa, psi) 047 47 7
Minimum pump power (n pads) (W) 0.26
Max pressure (at kPa, psi) 20.73 2,073 300
Maximum pump power I(W) 1 11.29

Maximum relocity (with no pre-feed)
Avg. flow velocity out of pocket (m/s) 0.01
Max. velocity (p at leading edge becomes atmosphezicj (mIs) 34.981

4

- - - t-

Figure 41: design spreadsheet for single sided hydrostatic thrust bearings

The bearing gap was measured by three capacitance probes that were mounted over

the floating bearing plate via cantilevers as shown in Figure 42.



Figure 42: hydrostatic bearing test setup with capacitance probes for bearing gap
measurement

Each of the eight thrust bearing pockets is supplied with water by a low cost miniature

gear pump as shown in Figure 43.

Figure 43: Greylor, low cost miniature gear pump

To accurately predict the stiffness of the bearing the pressure flow characteristics of the

pumps need to be taken into account. The pressure flow characteristics of the used gear

pump are shown in Figure 44 to Figure 46. The flow of the used gear pump is dependent



on the pressure (Figure 44) as well as on the pump speed (Figure 45). Figure 46 shows

the dependence of the flow per revolution on the pressure for different pump speeds.
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Figure 44: pressure flow dependence of the Greylor gear pump
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Figure 45: dependence of flow per revolution and pump speed
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Figure 46: dependence of flow per revolution and pressure

Eqn. (4.1.1-7) describes a linearized, static, analytical model to predict the performance

of a hydrostatic bearing.



R-p -W (4.1.1-1)R = -- W
QOut AQOut

R y (4.1.1-2)

h 3

h =3 yAQout 
(4.1.1-3)

W

h1 h (4.1.1-4)
aW 3W

a I 1 h (4.1.1-5)
aQout 3 QOut

ah aho (4.1.1-6)
h~ho+-- AW + ou

aW=w0  aQout Q

1 AW 1 AQout (4.1.1-7)

3 WO 3 Qout 0

The constant flow compliance (1/stiffness) of the bearing is described by the second

term on the right side of eqn. (4.1.1-7). The third term describes the reaction of the

bearing to flow changes. The static reaction of the bearing is therefore composed of the

superposition of the constant flow response of the bearing and the reaction to a load

induced flow change based on the pressure flow dependency of the used pumps.

If the bearing load is kept constant, flow change and gap change should be directly

related.

Qout _ 3 (4-1.1-8)

Ideally the flow change should equal the change in pump speed which in a closed loop

system corresponds to the change in control voltage (speed reference). For a given gap



change, Figure 47 and Figure 48 compare the necessary change in pump speed, the

theoretical, expected flow change and the measured flow change. In Figure 47 all eight

bearing pockets were in use. To preclude possible coupling effects between neighboring

pockets, only four pockets were used in Figure 48 and the two neighbors of each of the

four used pockets were shorted to atmospheric pressure. Generally, relatively small

changes in pump speed create relatively high changes in flow. However, the measured

flow changes were too small to explain the measured gap changes. The measured gap

changes were confirmed by various measurements with different sensors (capacitance

probes, eddy current probes, dial indicators). The discrepancy between flow change and

pump speed change can be explained by the speed dependent flow per revolution of the

used gear pumps. Apparently relatively small speed changes can create significantly

higher flow changes. The difference between measured and expected flow change for a

given gap change can only be explained by a gap offset. I.e. even when the bearing is

not operated (pumps are not running) and the measured gap is zero (by definition), the

outflow resistance is still finite or in other words there is still an effective bearing gap.

Such a bearing gap offset would result if the two bearing surfaces were not sufficiently

flat, such that there is an effective bearing gap even when the pumps are not running

and the plates are sitting on top of one-another (in direct contact).



150%

Figure 47: gap and flow change, starting at 20pm, all eight pumps/pockets in use

Figure 48: gap and flow change, starting at 6pm, only four pumps/pockets in use,
every other pocket was shorted to zero pressure -> no interaction between
pockets, no coupling
Figure 49 and

Figure 50 depict the same data as Figure 47 and Figure 48 with an additional gap offset

of 25pm.

Qout _ h+ 25 )3 (4-1-1-9)
QOut 0  ho + 25

With a gap offset of 25pm the measured and predicted flow increases coincide.

100% M control voltage change
M theoretical flow change
0 measured flow change

50% ---

0%
23 25 27 30
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Figure 49: gap and flow change, starting at 20+25=45pm, all eight pumps/pockets
in use
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15(P/o

50%/ -

32 35 40 45 50

Figure 50: gap and flow change, starting at 6+25=31pm, only four pumps/pockets
in use, every other pocket was shorted to zero pressure -> no interaction between
pockets, no coupling

Figure 51 shows the open loop response to of the hydrostatic thrust bearing four 68N

load increases and four load decreases.
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Figure 51: open loop response of eight pocket hydrostatic thrust bearing with 7kN

preload to 68N load steps

Due to tilt of the floating bearing plate relative to the stationary part the three probes

show a different measured gap. The overall stiffness of the bearing is approximately

200N/pm. The constant flow bearing stiffness at 20pum bearing gap and a preload of 7kN

would be expected to be 1 .2kN/pm - about five times higher. With 7kN preload and at a

bearing gap of 20pm the constant flow compliance of the bearing would cause a

displacement of O.23pm. With an effective bearing area of 0.01 85m2 and a load

increase of 272N, the remaining 1 .07pm correspond to a pressure dependent flow

decrease of about 8%/psi. If an a gap offset of 25pm is included in the calculation a load

induced flow decrease of 2%/psi would be sufficient to explain the low measured



stiffness. Figure 52 and Figure 53 shows a more detailed model that explains the

comparatively low measured stiffness.

A ___ .r 1......... ....
effect of bearing tilt when the bearing is run in open loop mode is not included in this
calculation. However, bearing tilt (as observed in various measurements) might explain the
small difference between the theoretical "resulting apparent stiffness" and the measured
stiffness

effective bearing area.
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Figure 52: hydrostatic bearing compliance budget with zero gap offset
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effect of bearing tilt when the bearing is run in open loop mode is not included in this
calculation. However, bearing tilt (as observed in various measurements) might explain the
small difference between the theoretical "resulting apparent stiffness" and the measured
stiffness

effective bearing area [m^2] 0.018521

measured open loop stiffness
load increase [N] 272
gap change [micronL 1.3
stiffness [N/micron] 209.23*

constant flow stiffness ---
preload [NJ 78

gap [micron] 20
surface tolerance [micron] 2
effective gap [io 45
stiffness [N/micronll 523.33.
resulting displacement

flow stiffness
remaining displacement [micron] 0.78
nominal gap [micron] 45
required flow change [%/aJ 003w ....... ,.

required flow change [%/Pai] . %

Figure 53: hydrostatic bearing compliance budget with 25pm gap offset

In order to boost the stiffness better pumps (real constant flow), feedback control or both

are necessary. Chapter 3.7 introduced model based pressure feedback and direct gap

feedback as two strategies to control the bearing gap. Due to the poor pump

performance (flow per revolution depends on pump speed as well as pressure) a model

based pressure feedback loop could not significantly improve the dynamic performance

of the bearing. The main problem was that a sufficiently accurate pump model to

estimate the flow based on the pump speed and pocket pressure could not be

established. Another problem was that the bearing had more pockets (eight) than

necessary (three). Consequently, a balanced bearing could be achieved by infinitely

many combinations of pump speeds and pump flows. E.g. all pumps are producing the

same flow and support the same load or only three pumps carry the entire load while the



other pumps are not running/producing any pressure. Therefore a controller had to be

found that automatically finds a solution that evenly distributes the required pumping

power over all eight pumps. Ultimately this could be achieved by adjusting the speed of

one pump, based on the pressure in the pocket that is supplied by this pump as well as

the pressure of the two neighboring pockets (weighted average control). However, due

to the previously mentioned pump performance limitations a sufficiently good dynamic

control of the bearing gap in the presence of load changes could not be achieved.



Figure 54: model based pressure feedback control, block diagram

93



0

E9

0 2 40 60 80 100 120
time, [sec]

Figure 55: model based pressure feedback control, 68N load steps

Even though pump performance also limits the achievable bandwidth and influences the

noise level of a gap feedback controlled bearing, gap feedback does not suffer from

model inaccuracies and therefore provides an easy way to increase the static and

dynamic stiffness of a hydrostatic bearing. Even though the bearing is a nonlinear

dynamic system (see chapter 3.7), its dynamic behavior for small gap changes is

roughly linear. Figure 56 shows the open loop response of the hydrostatic thrust bearing

with the average velocity reference voltage of all eight pumps as input and the average

bearing gap as measured by the three capacitance probes as output.
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Figure 56: open loop frequency response of hydrostatic thrust bearing (bearing
gap/average pump speed reference voltage)

Based on the frequency response a simple PI controller was developed. Figure 57

shows the algorithm that was used to control the speed of the eight pumps based on the

measurement of the three capacitance probes. Each sensor controls the pocket that has

the highest impact on the sensor output and its two immediate neighbors. The two

neighbors receive the control input of the main pocket multiplied with a pocket gain. The

pocket gain that is linked to each pocket is proportional to the impact that each pocket

has on the corresponding sensor i.e. the higher the impact, the higher the gain. If one

pocket influences several sensors, ideally all sensors should be linked back to the

pocket via a controller and a pocket gain. The sum of all pocket gains that are

-. ... .

- - - . . . .. . .



associated with one pocket should never be bigger than a predetermined value that

corresponds to a pocket that only influences one sensor.

refn.1 (rpm) .rpm . hn.1 (pM)
M+ controller -- pump _beaning

pocket
Zgain n-1

ref n (rpm) rpm - nh (gM)
+ controller - pump _ beaning P.

Docket | -_,href (pM)

refn.1

Figure 57: gap feedback control algorithm, one sensor controls multiple pockets

Figure 58 shows the response of the thrust bearing to four 68N load increases followed

by four 68N load decreases.
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Figure 58: gap feedback control of the hydrostatic thrust bearing, 68N load steps

One performance limitation in the recorded step response is the noise level of +/-0.1pm
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Figure 59: bearing noise frequency spectrum

To prevent significant error motion through pressure fluctuation either specially designed

filters or accumulators can be added in the supply line. However, any of these elements

will further complicate the dynamic response of the bearing or lower the bearing stiffness.

A better approach would be to use a pump that by design has sufficiently low pressure

fluctuations, see Chapter 3.3.



4.2 Conclusion and Outlook

The design of a magnetically and gravity preloaded, multi-pocket hydrostatic thrust

bearing was presented. The static stiffness of the bearing was significantly below the

theoretical bearing stiffness. A pressure dependent fluid supply (pumps) as well as

insufficiently flat bearing surfaces could be identified as the core reasons for the lower

than expected stiffness.

Different control algorithms were tested to increase the stiffness and improve the

dynamic behavior of the thrust bearing. Gap feedback turned out to be a very promising

approach to control the bearing gap. Due to the pressure dependent and time changing

performance of the used low cost gear pumps model based pressure feedback could not

yield performance improvements.

Pump induced gap vibrations were another undesired problem that was caused by the

used gear pump.

The design of a better performing, pressure independent, constant flow and low flow

fluctuation supply pump will be subject to future work. Most likely this pump is going to

be built of a large volume piston.

After remachining the bearing plate and with a more appropriate constant flow pump, the

theory described in this chapter should form the basis for a functioning model based

pressure feedback control of the bearing.

Last but not least the material combination of rare earth permanent magnet material and

stainless steel bearing plate needs to be examined closer. To prevent slow corrosion of

the permanent magnets and steel plate the two parts might have to be separated



electrically by the use of appropriate coatings. Alternatively the steel plate can be

replaced by a ceramic plate with a steel insert that is well sealed of the bearing fluid and

electrically isolated such that there is no conductive connection between the steel insert

and the permanent magnets.

5 Height Adjustable Kinematic Couplings as a Novel

Element in the Design of Stiff Machine Tools with a

Tight Structural Loop

A machine's achievable manufacturing speed, accuracy and repeatability are often

limited by the stiffness of its structural loop. Increasing the machine stiffness by making it

bigger is costly and often violates space constraints for footprint of the machine.

Therefore it is generally desirable to keep the length of the structural loop at a minimum.

However, compact machine designs can create a challenge for requirements such as

access to the machine, tool, work-piece, or for maintenance or work-piece handling

aspects.

This chapter presents a design method and kinematic coupling element to achieve a

compact structural loop that can be opened, closed, and adjusted between machining

cycles, yet accurately aligned and locked and fine adjusted during machining cycles. For

this, machine elements that combine high stiffness, high repeatability, and adjustability

are needed. In instrument applications that also require high repeatability, it is common

to use a kinematic coupling with up to six degrees of freedom [22, 23, 24, 25, 26]. Very

high rigidity kinematic couplings can be used to minimize the structural loop of multi-axis

precision grinding machines while reducing machine cost and complexity.
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Kinematic couplings are exact constraint interfaces that provide only as many

constraints as degrees of freedom that need to be restrained. As an exact constraint

device, high load and stiffness capable kinematic couplings inherently provide

repeatable opening and closing. Repeatability of (+/-0.25pm) has been reported in

instrument applications [27, 28, 29, 30, 31]. The stiffness of the coupling scales with the

applied preload A1/3 and therefore contact stresses grow faster than the achievable

stiffness. Consequently in order to maximize the coupling stiffness, especially in high

cycle applications, corrosion free, high strength contact materials (ceramics) should be

used. We have noted that to obtain very high stiffness, very high preload forces are

required and thus by providing the ability to servo control the preload force, we can take

advantage of the simple relation F=k*A; by servo controlling the preload force, small

controllable elastic deformations of the coupling can in theory be used to adjust height

and tilt of the coupling with nanometer resolution.

The presented height and tilt adjustable three-V-groove canoe-ball kinematic coupling

design allows for repeatable opening and closing of the coupling interface as well as

nano-, micro- and macro- height and tilt adjustability. This coupling was created to

enable machine tools to attain an extremely tight structural loop. Repeatable opening

and closing of the coupling allows access to an otherwise very compact and possibly

difficult to access machining area. Macro (mm) height adjust of the coupling allows for

different tool geometries. Micro and nano (pm, nm) adjustments enable tool wear

compensation as well as micro/nano positioning of the tool relative to the work-piece.

Preload is achieved using ballscrews that pass through the center of the coupling, and

load washers enable servo control of the preload force. At a preload of 26kN the

coupling achieves a stiffness of 7N/nm at the coupling interface. By varying the preload
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on the coupling by +/- 10%, in-process nm to pm height and tilt adjustment at >95% of

the nominal stiffness is possible.

When under light or no preload each canoe-ball interface can be adjusted over a range

of 10mm using a wedge mechanism, which, controlled by a separate screw actuator,

changes the effective width of the V-groove.

While static friction between the elements prevents back-driving the system and thus

helps to maintain high stiffness without having to power the screw, mm height

adjustment is only possible under significantly decreased preload, and thus stiffness,

and is considered a set-up change operation.

Furthermore the preload ballscrews can be long and hence when reversed, they can

open the machine up by separating the coupling elements and thus raising one part of

the machine with respect to the other to gain free access to the workspace.

5.1 Kinematic Wedge Couplings

By combining a conventional kinematic coupling with a wedge mechanism, an ultra stiff

coupling with 8mm of height adjustment has been realized as shown in Figure 61. The

mechanism consists of three male, ceramic "canoe balls", with effective Hertzian contact

radii of 500 mm, that each make point contact with each of two tapered wedge-shaped

ceramic blocks.
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Figure 60: male canoe ball vee

The two wedges slide within a stainless steel female tapered V. Moving the two wedges

relative to the V and hence also the canoe ball changes the effective width of the V and

consequently the vertical position of the canoe ball also changes. The wedges also act

as a non-back-driveable transmission element between their axial motion and the

vertical motion of the canoe ball. The entire mechanism is shown in Figure 60.

inserts

for horizontal positioning of wedge inserts

Figure 61: height adjustable kinematic coupling

By varying the preload of the coupling by up to +/- 10% it is also possible to use the

large but finite stiffness of the kinematic couplings for in-process nm-resolution height

and tilt adjustment at >95% of the nominal stiffness. The presented coupling was
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designed for a nominal preload of 30kN and a nominal stiffness of 6.8kN/pm, using the

spreadsheet shown in Figure 62.

Metric units only! Enters nuaers in BOLD esults in RE terial ro erti
Standard 120 degree equal size groove coupling? (contact forc es are inclined at 45 to the XY User defned material ahiwnium
plane. For non standard designs, enter geonetrv after results section) TRE Hldstress
System gemetry (XY plane is -assumed to contain the ball centers) plastie 3.451+07
Dbeq (mm)= 0 Equivalent diameter ball to contact the groove at the saame points C 62 Steel 1.721E+09
Rbminor(mm)= 500 "Ball" minorradius CARBIDE 3.50E+10
Rbmajor (mm)= 500 "Ball' major radius user defined 2.761+08
Raroove (mm) = L00E+10 Groove radius (negative for a trough) Eastic modulus
Costheta TRUE Is ball maiorradius along groove axis? lastic 2.07E+09

i Deoupling (mm)= 1000 Coupling diameter RC KG 62 Steel 2.04E+11
-TFpreload (N)= -30,000.00 Preload force over each ball CARBIDE 4.15E+11

Xerr (mm)= 0.0 X location of error reporting user defined 6.80E+10
err (mm)= 0.0 Y location of error reporting Poisson ratio

Zen (mm) = 0.0 Z location of error reporting plastic 0.20
Auto select material values (enter odher_4 to the right) RC 62 Steel 0.29

atlabball= 3 Enter 1 for plastic, 2 for steel. 3 for carbide, for user defined, 5 CARBIDE 0.21
Matlabgroove = 3 where each ball and groove is defined individually user defined 0.29

:in. yield strength ?a, si) 3.50E+10 5.072A 464
L argest contact ellipse major diameter(mm) 6.663

t Larmest contact ellipse major diameter m) 6.653
Larzest contact stress ratio 0.016 Hertz shear stress'tensile vield/2
PsSapplied force (
R S deflection atF micron: _.000

RS stiffness /nucron) 6 ___832 2 277_____

Figure 62: kinematic coupling design spreadsheet

For the sake of simplicity the load displacement behavior of the coupling can be locally

linearized. Based on this linear model a decrease of the coupling preload from 30kN to

27kN predicts a displacement of 0.4pm. The measured load displacement behaviour of

the coupling at different preloads is discussed later.

Combining a kinematic coupling and a wedge mechanism enables mm height

adjustment during set-up, prior to machining to accommodate for gross tool or work

piece thickness variations. The slope angle of the wedge should be chosen shallow

enough to prevent sliding of the wedge when the preload is applied (self-locking friction).

In the current design the slope angle has been chosen at 4.04* such that a 1:10

horizontal to vertical displacement transmission ratio was achieved i.e. 80mm of
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horizontal travel yields 8mm of height adjustment. The coefficient of friction of silicon

carbide on itself is 0.7. tan(4.04*)<0.7 2 -> therefore the height adjust of the coupling is

self-locking under preload.

Due to static friction between the wedges and the steel vee as well as between the

wedges and the canoe ball, accurate coarse control of the coupling height via a wedge

mechanism is only possible under low (close to zero) preload. Therefore the stiffness of

the coupling interface during mm-level height adjustment is essentially on the order of

the preload mechanism's stiffness. However, this is acceptable as the coupling is not

meant for in process mm height adjustments.

Depending on the horizontal to vertical motion transmission ratio, most of the load that

resists motion of the wedges is caused by friction. This load will result in an axial error in

the (horizontal) positioning of the wedge inserts and correspondingly a friction and

preload dependent height error in the coupling. Consequently, for a given acceptable

height error, during mm-level height adjustment, the coupling preload should not exceed

a critical value.

_F FxL (5.1-1)
xk AE

T TXL 
(5.1-2)

k9  GJ

6xt =6 + pOX60 (5.1-3)

9, =5x Sr, (5.1-4)

2 NIST Property Data Summaries, Sintered Silicon Carbide,
http://www.ceramics.nist.gov/srd/summary/scdscs.htm
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F (5.1-5)
F, = ? +Clp 1 + 2 )F,

T= Fxpox (5.1-6)

x - axial error in positioning of wedge inserts

6E - torsional error in positioning of wedge inserts

6xi - total axial error in positioning of wedge inserts

6y - resulting coupling height error due to wedge motion

kx -axial stiffness of wedge positioning screw

ke- torsional stiffness of wedge positioning screw

F, -preload force

Fx -axial force acting on wedge positioning screw

Tx - torque acting on wedge positioning screw

pEx - lead of wedge positioning screw

rxy - horizontal to vertical motion transmission ratio

L - length of wedge positioning screw

A - cross-sectional area of wedge positioning screw

E - young's modulus of wedge positioning screw

G - shear modulus of wedge positioning screw

J - second moment of area of wedge positioning screw

The coupling height is changed by repositioning the wedge inserts while the preload is

controlled through a preload mechanism. When the wedges are repositioned to increase

the coupling height, the preload mechanism has to open in order to maintain a constant

preload. If the total axial error in the positioning of the wedge inserts under preload is big

enough, slipping of the wedges can cause a sudden increase in preload and coupling
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height. This can complicate or even prevent an accurate height adjustment of the

coupling under preload.

When the wedges are repositioned to decrease the coupling height, the preload

mechanism has to close in order to maintain a constant preload. If the total axial error in

the positioning of the wedge inserts is big enough, a sudden breaking of friction can

cause a sudden decrease in preload and coupling height, before the preload control can

react.

Following this train of thought, a maximum acceptable wedge positioning error can be

defined based on an acceptable preload variation. The preload variation causes a height

tracking error at the Hertz contact interface. This tracking error is not to be confused with

the previously mentioned resulting coupling height error due to the wedge motion. Other

criteria might require a lower acceptable error.

AFP (5.1-7)

k

AF, (5.1-8)

ke

kg - stiffness of preload mechanism e.g. preload screw

ko - Hertz contact pair stiffness =1/3 of coupling stiffness

AFP - acceptable preload variation during positioning of the wedge inserts due

to stick slip

6h- height tracking error due to deformation at Hertz contact interface

Consequently, a low axial stiffness of the preload mechanism, a high stiffness of the

wedge positioning mechanism and a high coupling stiffness are actually desirable with

respect to height changes of the coupling under preload. The total stiffness of the

107



kinematic coupling is determined by summing the stiffness of the preload mechanism

and the Hertz contacts, where the Hertz contact stiffness usually clearly dominates the

stiffness of the preload mechanism. Therefore, if the coupling has been dimensioned

properly, lowering the stiffness of the preload mechanism does not significantly impact

the overall coupling stiffness.

In the case of non-back drivable preload mechanisms any change in preload due to

wedge motion, requires active compensation by repositioning the mechanism. E,g, in the

case of a DC motor actuated, non-back drivable preload mechanism, an increase in

preload due to wedge motion requires a temporary reversal of the motor current in order

to reposition the mechanism and thus maintain a constant preload. With a back drivable

mechanism the preload can usually be controlled independent of position. A back

drivable mechanism can be repositioned by the moving wedges, while a near constant

preload is maintained (neglecting friction in the mechanism). In the case of a DC motor

actuated, back drivable preload mechanism, an increase in preload due to wedge motion

does not require a drastic change in the motor current. Obviously, from a controls point

of view, a non-back drivable mechanism is the more difficult choice. On the other hand a

non-back-drivable mechanism can passively maintain a certain preload whereas a back

drivable mechanism requires permanent actuation.

5.2 Experimental System

The test system for the height adjustable wedge kinematic coupling as shown in Figure

63 uses only one height adjustable contact pair. The other two contact pairs are not

height adjustable. The height adjustable contact pair is preloaded by a three phase

electric motor and a ball screw that is actuated through a non-back driveable harmonic
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drive (1:100 transmission ratio). The non-adjustable contact pairs are manually

preloaded via a lead screw. The test system was built at the scale of a grinding machine

in which the adjustable kinematic coupling is to be used. When the coupling interface is

tilted the preload screws will be slightly bent. This bending changes the preload at the

contact pairs. In order to prevent significant bending in the structure the test setup had to

be designed such that the stiffness of its structure dominates the stiffness of the preload

screws - as is the case in the real machine. The preload force on the adjustable contact

pair was measured by four force transducers 3 that were positioned in between the

ballscrew nut and the test setup structure. The preload was determined by adding the

forces measured by each transducer - transducers act as parallel springs. The

deformation at the two contact points was calculated based on a measurement taken by

two Lion Precision capacitance probes as well as based on the preload screw encoder

read-out. The probes were mounted to the female steel vee, while the probe target was

mounted to the male vee. Two probes are needed in order to compensate for Abbe

effects and to determine the real deformation at the contact points rather than the

displacement between the probes and the target, as illustrated in Figure 64.

3 Futek CSG 110
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preload mechanism (AC motor, harmonic drive, ball screw)

four parallel load washers

kinematic coupling contact pair

capacitance probe target, mounted to male vee

capacitance probes, mounted to female vee

Figure 63: adjustable kinematic coupling test system

probel probe2

1. i

40nun 130mm

Figure 64: kinematic coupling sensor placement
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m=(d 2 -d1 )/40 (5.2-1)

dcontact =d 2 +m*130 (5.2-2)

m - slope

d1 - distance to target as measured by probe 1

d2 distance to target as measured by probe 2

dcontact - deformation at contact point

The preload-ball-screw-encoder was used to monitor the coupling height over a range of

motion that exceeded the range of the capacitance probes. However, this method was

limited to a height resolution of 3pm.

5.3 Measurement Results: Repeatability

In order to determine its repeatability, the coupling was opened, closed and preloaded

up to ten times. When the coupling was "opened" the canoe ball had no contact with the

female vee. This experiment was repeated at different preloads. In all cases a

repeatability of better 1 micron was achieved. Figure 65 shows the results of the

measurement for preloads of 2kN and 1OkN.
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Figure 65: Closing-Repeatability of tested contact pair

5.4 Measurement Results: Adjustability

In order to measure the horizontal to vertical motion transmission ratio of the height

adjustment, the position of the wedges and the preload were controlled in closed loop.

The coupling contact pair was opened, the wedge was positioned horizontally, the

coupling contact pair was closed again and a defined preload was applied. Then the

resulting height was measured by:

the encoder of the preload ball screw. The horizontal motion of the wedge was about

10mm.

the capacitance probes. The horizontal motion of the wedge was about 275pm.

Figure 66 shows the 10:1 horizontal to vertical motion transmission ratio as measured at

nine points, over >10mm of horizontal motion under different preloads. Figure 67 shows

the height error as compared to the theoretical height given by a 10:1 transmission ratio.

The average height errors as well as the min to max spread, as indicated by the error
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bars, are below the resolution limit of the preload screw encoder (3pm) and therefore as

expected.

Figure 66: horizontal to vertical

Figure 67: coupling height error
(average, max and min error)

motion wedge transmission ratio

in wedge transmission ratio measurement

Figure 68 shows the 10:1 horizontal to vertical motion transmission ratio as measured at

eight points, over >250pm of horizontal motion under a preload of 1 OkN. Figure 69

shows the height error as compared to the theoretical height given by a 10:1
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transmission ratio. The height errors were slightly more than +/-1 pm and thus close to

the repeatability of the coupling as shown in Figure 65.

horizortal to vertical motion transnission ratio

35.00

3 30.00

0 25.00

C3 20.00 - 10kN
C
- 15.00 --- y=O. 1*x

10.00

5.00

0.00-

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00

horizntal wedge position, [pm]

Figure 68: horizontal to vertical. motion wedge transmission ratio

coupling heiht error
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Figure 69: coupling height error in wedge transmission ratio measurement

5.5 Measurement Results: Stiffness

Figure 64Figure 71The load displacement behavior of the tested coupling contact pair

was measured by applying a sinusoidal load variation centered at 18kN, 22kN and 26kN
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applied preload. The displacement at the contact points was measured using the two

capacitance probes. Based on the capacitance probe's measurements the displacement

at the contact points was calculated according to the formula given in Figure 64.

For more accurate evaluation of the coupling stiffness as well as easier visualization the

load displacement data, as shown in Figure 70, was filtered using a Butterworth low

pass filter. This explains why the data does not follow a sinusoid at the beginning and

end of the data array. The sinusoidal raw data is plotted in Figure 71. To illustrate

repeatability of the measurement Figure 70 and Figure 71 each show three load and

three displacement measurements Figure 70 and Figure 71 each show three load and

three displacement measurements. Figure 70 and Figure 71 demonstrate how the

coupling can be used as micro height and tilt positioning device. Centered at 26kN, the

preload was varied by +/- 4kN or roughly 15% which resulted in a micro height

adjustment range of +/-1.7pm.
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26kN preload, 4kN sine load change
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Figure 70: filtered load and displacement behaviour of tested kinematic coupling
contact pair, 26kN
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Figure 71: raw data of load and displacement behaviour of tested kinematic
coupling contact pair, 26kN

Figure 72 to Figure 75 illustrate the load and displacement behaviour of the coupling at

18kN and 22kN preload. At lower preload the coupling stiffness is reduced and therefore

a wider range of height adjustability range becomes possible. At an average preload of

1 8kN, +/-4kN or 22.2% load variation, results in +/-2.3pm of height adjustment. With a

preload range of 1 4kN to 3OkN per contact pair each contact pair's height can be

adjusted by up to 8.2pm while maintaining a minimum stiffness of 1 .6kN/pm per contact

pair or 4.7kN/pm coupling stiffness. Theoretically, by extending the preload range from

6kN to 35kN per contact pair, a height adjustment of up to 14.4pm at the price of a

coupling stiffness of 24kN/pm can be achieved. Further reducing the lower preload limit

will increase the range of adjustability, however by also lowering the lowest coupling
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stiffness. For this coupling the preload should not be increased beyond 35kN per contact

pair. Accidental loading of the coupling with 40kN per contact pair caused structural

failure of the SiC ceramic canoe ball; thus illustrating the care with which these types of

elements must be used.

35
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1.5

0.5

0

-0.5

-2

-3

-3.5

18kN preload, 4kN sine load change

30
time, sec

Figure 72: filtered load and displacement behaviour of tested kinematic coupling
contact pair, 18kN
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Figure 74: filtered load and displacement behaviour of tested kinematic coupling
contact pair, 22kN
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Figure 75: raw data of load and displacement behaviour of tested kinematic
coupling contact pair, 22kN

The load-displacement behavior of the coupling as measured in the previously described

experiment is plotted in Figure 76 to Figure 78. In order to eliminate the effects of the

Butterworth low pass filtering the data has been truncated to a little more than one load-

sinus-period taken out of the centre of the data array. It is important to note that with

increasing preload the load displacement curve becomes a hysteresis loop. This shows

an increasing effect of friction that results of the male vee getting more and more

deformed, and pushed into/clamped in the female vee. When the coupling is used in

micro positioning mode this friction-effect might cause problems in the dynamic control

of the coupling height. Depending on the applied preload the width of the hysteresis loop
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might limit the accuracy of the coupling height adjust to less than 0.1 and up to 0.4pm.

However, this remains to be examined in future research.

$18

D 17

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
displacement, [micron]

Figure 76: load displacement curve of tested kinematic coupling contact pair,
18kN; raw data and filtered data
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Figure 77: load displacement curve of tested kinematic coupling contact pair,
22kN; raw data and filtered data
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Figure 78: load displacement curve of tested kinematic coupling contact pair,
26kN; raw data and filtered data

At 26kN preload per contact pair a stiffness of 2.37kN/pm was measured. For three

equal contact pairs this amounts to 7.1 kN/pm at the coupling interface. The designed

nominal allowable preload per contact pair is 35kN. Therefore, the following scaling law

predicts a theoretical maximum stiffness of up to 7.8kN/pm - this theoretical, scaled

stiffness remains to be confirmed by tests 4.

4 A servo error occurred and the silicon carbide canoe broke when subjected to an unintentional loading with 40kN
per coupling pair.
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1 (5.5-1)

k = k0( WO)3-

ko - measured stiffness

Wo - preload at measured stiffness

W - theoretical preload

k - scaled stiffness at preload W

Figure 79 shows the measured and theoretical stiffness of one contact pair at 18kN,

22kN and 26kN preload. The measured coupling stiffness is within 96% to 109% of the

predicted stiffness. The theoretical stiffness was computed based on a Silicon Carbide

Young's modulus of 415kPa and a Poisson Ratio of 0.21. The measured stiffness is

generally higher than the predicted stiffness. Furthermore the prediction error increases

with increasing preload. Friction - as shown in Figure 76 to Figure 78 is assumed to be

the main contributor to the prediction error. The effect of friction on the performance of

kinematic couplings has been examined by Layton Hale [32].
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Figure 79: measured versus theoretical stiffness per contact pair

5.6 Conclusion and Outlook

A more compact, closed structural loop machine can be designed using an adjustable

kinematic coupling 5, where the distance between the mating elements can be changed

by a servo-controlled wedge element. This kinematic coupling mechanism provides

increased stiffness as compared to a large, open structural loop machine tool with

multiple stacked axes that can each move by a small amount.

The adjustable kinematic coupling mechanism that has been presented achieves a

stiffness exceeding 7kN/pm. The wedge kinematic coupling design in combination with

preload control enables fine in-process height adjustment with a range of up to 8.2pm at

each contact pair while maintaining a coupling stiffness (three contact pairs) of

4.7kN/pm. At this point the height adjustment resolution is limited to +-1 pm - primarily

due to noise in the preload control which was caused by friction in the preload

5 AKC appears to be an appropriate TLA for this new type of kinematic coupling, but this TLA is already used by the
American Kennel Club, and hence suggestions for an appropriate TLA for the adjustable kinematic coupling would be
welcomed.
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mechanism and at the Hertz contact interface. Theoretically up to 14pm of height

adjustability at each contact pair can be achieved while maintaining a stiffness of

>4kN/pm. It was shown that especially at high preloads ( 1 8kN per contact pair) friction

between the canoe balls and the vees is a significant factor in the coupling performance.

The impact of friction on this coupling remains to be examined in more detail.

For lower stiffness applications, friction based limitations on the coupling performance

with respect to positioning resolution and accuracy can be entirely eliminated by using

aerostatic or hydrostatic kinematic couplings [33]. Figure 80 illustrates one concept for

such an aerostatic, adjustable kinematic coupling with an aerostatic bearing at each

surface interface. For increased stiffness the bearings at interfaces that don't experience

any relative motion at a given point of time can be shut off. E.g. when the wedges don't

need to be repositioned, the aerostatic bearing between the wedges and the female vee

can be switched off.

Ian soet to accommodate

aerostatc pads with one
spherical and one flat surface

aeostatic wede

Figure 80: adjustable, aerostatic kinematic coupling contact pair

If a preload mechanism that goes through the center of the male vee is used - such as

the ball screw in the presented design - mounting or removing the male vee is only
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possible when the preload mechanism is removed. Depending on the machine design

this can require taking apart the entire machine (i.e. remove upper half that is supported

by the coupling). A split male vee design similar to the one shown in Figure 81 can solve

this small but potentially undesirable problem.

Figure 81: four part canoe ball vee

6 Case Study: A Prototype Machine Concept for

Grinding 450mm Silicon Wafers

Chapter 2 deribes the stiffness and error motion requirements for grinding 450mm

Silicon Wafers. Chapter 3, 4 and 5 describe hydrostatic bearings and an adjustable

kinematic coupling as key elements to the design of machines with an extremely high

static and dynamic stiffness. This chapter presents the design of a prototype 450mm

Silicon Wafer grinder. Besides a required static stiffness of 1000N/pm, the machine

design had to provide:
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Work spindle:

- rotational speed of 10 to 500 rpm

- torque of 63Nm

- 500 mm table diameter

- 450mm wafer diameter

Wheel spindle:

- rotational speed of 2500rpm

- 45Nm torque, 11 kW net spindle power

- two axes tilt adjust (+/-250pm over 500mm)

- +/-2mm of in process axial stroke

- 8mm of axial adjust to compensate for different wheel geometries or wheel wear

- Rapid feed-rate of 150mm/min

- Feed-rate 1 to 999 pm/min

- 500mm cup wheel for grinding

- Work spindle to wheel spindle axis offset of 249mm

Furthermore it was necessary for the wheel spindle to be able to rise by 300mm relative

to the work spindle for wheel changes. There was no error motion or dynamic stiffness

requirement for this first generation machine prototype. However, future generation
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prototypes will have to meet additional requirements with respect to maximum allowable

error motion and minimum required dynamic stiffness, see chapter 2.

Figure 82 to Figure 85 show four face grinding machine concepts. In most of the

presented designs the work and wheel spindle are interchangeable. Most of the

machines are shown as cantilever based concepts. Other structural concepts (such as

bridge type machines) that result in the same motions (degrees of freedom) are not

considered separately. In the first and third design the work spindle has no translational

degree of freedom. When the tool or the machine part needs to be taken out of the

machine the wheel spindle can be moved out of the way. An equivalent design can be

implemented with the wheel spindle being movable and the work spindle being fixed. A

common design that is similar to Figure 82 are "double-sided large area grinders", where

the wafer is supported between two coaxially mounted grinding wheels, Figure 83.

"Double-sided large area grinders", have delivered promising results with respect to

achievable surface quality and are therefore considered one of the most promising future

silicon wafer grinding machine designs [3].
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Figure 83: Double-sided large area grinder

Figure 84 is similar to what is known as "chuck based single-side grinding machine",

where the grinding wheel axis of rotation and the work table axis of rotation are offset by

about half a wafer diameter. Chuck based machine designs are to be optimized with

respect to achievable total thickness variation and sub surface damage values.
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Figure 84: vertical single axis machine design

Figure 85 shows a two axis machine design, where the work spindle can be moved out

of the way for tool or part changes. In this design the wheel spindle only requires short

stroke motion that is big enough to process the part. However, another axis of motion is

required in order to move the work spindle out of the grinding zone.
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Figure 85: horizontal two axis machine design

All of the presented machine designs share the disadvantage of using large motion

bearings as part of the machine's structural loop. In order to maximize machine stiffness,

minimize error motions while grinding and reduce the cost of the machine, it is desirable

to lock all non essential axis of motion during the grinding process i.e. while grinding only

the wheel spindle and work spindle rotation as well as the feed axis should be engaged

as part of the machine's structural loop. To disengage/lock all non essential axis of

motion a repeatable and stiff locking mechanism or interface is needed. To compensate

for wear e.g. in the grinding wheel, this interface needs to be adjustable to some degree.

Height adjustable kinematic couplings as described in chapter 5 provide such an

interface. With kinematic couplings the machine design of Figure 84 converts into the

machine design depicted in Figure 86 and Figure 87.
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The machine concept of Figure 86 and Figure 87 reduces the number of moving

components and thus potential error sources to a minimum while also allowing for an

extremely compact structural loop and thus optimal stiffness. The closed machine
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configuration only requires rotation of the wheel spindle and work spindle as well as

short stroke axial feeding of the grinding wheel to process the part.

Chapter 3 compares different bearing choices with respect to their use in high required

stiffness machinery. Generally speaking, appropriately dimensioned hydrostatic bearings

are the top bearing choice where high stiffness, small error motions (smoothness of

motion) and minimum wear / process contamination are required. However, a

hydrostatic bearing can not provide mm-range axial motion, as it is mandatory for a

grinding wheel spindle. A magnetically levitated axial bearing provides high precision

which usually comes at the price of low force output and consequently low dynamic

stiffness at the order of several hundreds N/pm. Special care must be taken with respect

to the dynamic stiffness of electro magnetic spindles to make them useable for future

Silicon Wafer grinding machines successful.

The requirements listed at the beginning of this chapter were resolved in a highly

compact design (short structural loop) that comprises a fully hydrostatic work spindle

with an actively controlled thrust bearing and self compensating hydrostatic radial

bearings, an electro-magnetically levitated as well as vertically adjustable wheel spindle

(electro magnetic thrust bearing) with self compensating hydrostatic radial bearings and

an height adjustable kinematic coupling interface to repeatably open and close the

machine by 300mm with the required 8mm of vertical adjust in the closed configuration.

Figure 88 shows the machine without the wheel spindle in its open configuration. Figure

89 shows the machine including the wheel spindle in its closed configuration. Figure 90

illustrates the machine in a simplified exploded view.
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Figure 88: grinding machine prototype without wheel spindle in open
configuration
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Figure 89: grinding machine prototype with wheel spindle in closed configuration
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Figure 90: grinding machine prototype exploded view

6.1 Wheel Spindle

The wheel spindle was uses an electro-magnetic levitation bearing with +/-2mm of total

axial travel and two self compensating hydrostatic radial bearings that are similar to the

radial bearings described in chapter 4.1.1. The heat produced by the winding of the

electro-magnetic levitation bearing is controlled through a water cooling circuit that runs

through the spindle housing.

Figure 91, Figure 92 depict the wheel spindle.
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Figure 91: magnetic levitation wheel spindle
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Figure 92: cross section of magnetic levitation wheel spindle

The wheel spindle was designed in close cooperation with the Professur Xiaodong Lu's

mechatronics research group at the University of British Columbia.
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For more details the reader is referred to Matthew Paone's master thesis, which is

available at the University of British Columbia as well as the work done by Professor

Xiaodong Lu (University of British Columbia).

6.2 Work spindle

Chapter 4 gives a detailed description of the work spindle. The machine prototype uses

an identical spindle consisting of an eight pocket hydrostatic thrust bearing with

aluminum oxide and stainless steel bearing plates. This material combination prevents

cold welding if the bearing should run dry - which should never happen. A combination

of permanent magnets and gravity provide over 7000N of bearing preload and therefore

a constant flow stiffness of about 1 00ON/pm at a bearing gap of 20pm. The work table is

centered by two self-compensating hydrostatic radial bearings.

6.3 Structure

The machine structure is composed of the bottom and top triangle as well as the

structural parts of the kinematic coupling. To maximize stiffness and minimize

manufacturing cost all structural parts have been designed as casting parts. This is

rather common for big machinery. Each triangle accommodates either the wheel or the

work spindle. The two structural triangles are clamped together via the kinematic

coupling interface. The three preload screws of the kinematic coupling are positioned at

the corners of the structural triangles. A cross section of the bottom triangle which

accommodates the work spindle is shown in Figure 93. Figure 94 shows an FEA of the

bottom triangle under 100ON load. Figure 95 shows a cross section of the top triangle,

which holds the wheel spindle. An FEA of the top triangle under 1 OON load is depicted
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in Figure 96. In order to meet the stiffness requirement of Figure 7, the top and bottom

triangle were designed for 6.5N/nm.

Figure 97 illustrates the kinematic coupling spacer (see chapter 5) and Figure 98 shows

an FEA of the spacer. The stiffness of this part is well beyond 15N/nm. In addition three

kinematic coupling contact pairs and thus spacers are in parallel which triples the overall

stiffness of the spacer elements. Consequently the spacer elements are stiff enough to

not significantly decrease the overall machine stiffness.

Figure 93: Bottom triangle cross-section
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Figure 94: Bottom triangle displacement FEA under 1000N load

Figure 95: Top triangle cross-section
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4.838e-005
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Figure 96: Top triangle displacement FEA under 1000N of load

Figure 97: kinematic coupling spacer
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Figure 98: kinematic coupling spacer FEA under 1000N of load

6.4 Solution for Wheel Change

Chapter 5 describes a height adjustable kinematic coupling for use in machine tools with

high required stiffness and small error motions. As mentioned at the beginning of

chapter 6 a high machine stiffness and small error motions usually coincide with a tight

structural loop and few moving components. The machine concept shown in Figure 86

and Figure 87 enables a very compact machine design with a minimum number of

moving components.

The kinematic coupling can be opened and closed with high repeatability. In the open

configuration the coupling stiffness is made up of the stiffness of the preload mechanism

and there is plenty of room for exchanging the grinding wheel or handling the part

(wafer). When the coupling is engaged and the machine is working the high kinematic
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coupling stiffness (Hertz contact stiffness + preload mechanism stiffness) allows for a

very high machining accuracy.

6.5 Conclusions and Outlook

A 450mm Silicon Wafer grinding machine prototype was successfully developed and

built. All components of the machine are operational and were tested on the component

level. However, it was not yet possible to run the entire machine as a system while test

grinding a Silicon Wafer.

While reducing mechanical complexity the proposed design enables an extremely

compact machine with a loop stiffness that is two to three times higher than the loop

stiffness of common present tool machines.

7 Future Work

In the previous chapters feedback controlled hydrostatic bearings and adjustable

kinematic couplings were described as essential elements for the design of future

precision machine tools with high required loop stiffness. It was shown how a high

machine stiffness is one necessary key to grinding of 450mm diameter Silicon wafers. In

Chapter 6 a 450mm Silicon Wafer grinding machine prototype, which incorporates

hydrostatic bearings and adjustable kinematic couplings as core functional elements,

was presented. The testing of the functional groups of this machine prototype as well as

their integration in the machine prototype have proven the potential of the proposed

design, but have also revealed several weaknesses on the component level. Future

work to eliminate these weaknesses will be essential to make the overall machine

design successful. The following paragraphs list suggestions for future improvements.
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7.1 Hydrostatic Thrust Bearing

The main limiting factor on the open and closed loop, static and dynamic performance,

stiffness and load carrying capacity of the presented magnetically preloaded multi-

pocket thrust bearing was the relatively supply system. The used low cost gear pumps

were not able to produce a sufficiently pressure independent flow. It was shown that the

pump flow per revolution does not only change with applied pressure but also with pump

speed. These pump limitations are the main reason for a lower than expected stiffness

and load carrying capacity. Furthermore the pump internal leakage (from the high

pressure side back to the low pressure side limits the bandwidth of the feedback

controlled bearing to load or flow changes.

In order to overcome these limitations it will be necessary to use a pump with an ideally

pressure and pump speed independent output flow per revolution or linear displacement

increment (real fixed displacement). A pump design that seems rather promising in this

respect is a double-acting, large volume piston pump that can supply the bearing over a

given duration before it needs to switch direction. The combination of two or more out of

phase double-acting piston could even allow continuous operation of the bearing as long

as the pressure fluctuations caused by valve switching can be minimized sufficiently.

Alternatively a high flow bearing could be design that can be supplied by a much

stronger pump. Consequently load changes would not affect the supply flow by the

same % as in the case of a minimum flow bearing. However, this solution can bring up

other interesting challenges in the dynamic behavior and control of the bearing.

Besides a constant, pressure and pump speed independent flow per displacement

increment an ideal pump should also keep pressure and flow fluctuations to a minimum.
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Depending on the bearing damping, the stiffness of the used tubing as well as the inertia

of the supported machine parts (floating parts) pressure fluctuations that exceed a

certain limit frequency will not affect the bearing anymore (low pass filtering

characteristics of bearing and supply system).

In addition to challenges that are related to the supply system, a closer look might have

to be taken at the magnetic preload system. Small magnetization tolerances between

the magnet elements of the preload magnet ring cause slight eddy currents in the

supported steel part. A more uniform magnetization of the magnet ring should eliminate

this problem. Furthermore it was noticed that the magnet as well as the supported steel

part tend to slowly corrode over time (if tap water is used as bearing fluid). The real

machine uses de-ionized water and therefore corrosion might not occur. However, a

closer look at possible material combination (rare earth magnet + magnetic stainless

steel) with respect to differences in material electro-negativity should be taken.

Furthermore high quality magnet powders (lowest possible Neodymium part) as well as

coatings are very promising approaches to corrosion prevention.

7.2 Dynamic stiffness of electro magnetic wheel spindle

First tests of the electro-magnetic wheel-spindle at the University of British Columbia

have been very promising with respect to accuracy and range of the required +/-2mm of

axial adjustment as well as control bandwidth. However, future grinding tests might show

the need for a higher dynamic stiffness.
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7.3 Kinematic coupling preload control

The adjustable kinematic coupling provides a slightly higher stiffness than was predicted

and required. In future designs it might be worthwhile to explore designs that allow for in

process (under preload) pm and potentially mm height adjustment. In order to achieve

this, it will be necessary to minimize friction at the coupling interface as well as in the

preload system.

For applications with a lower required coupling stiffness, an exact constraint aerostatic

bearing design can be used to replace the current canoe-ball / vee wedge design.

In order to achieve height adjust under preload, in addition to being low friction and

potentially back-drivable, the preload mechanism should also have a rather low stiffness.

A low stiffness of the preload mechanism will not substantially decrease the stiffness of

the coupling. For this reason a servo-valve controlled, pneumatic piston might be an

ideal preload solution for kinematic couplings that also need to be adjustable under load.
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Appendix A: Other Machine Designs

built-in motor

glass-ceramic spindle

wheel adapter

grinding wheel
workpiece

ceramic table surface
rotary table

Figure A 1: Focus on thermal stability, glass-ceramic (Zerodur@) spindle,
hydrostatic oil bearings for high stiffness and damping, [34]
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Four Bents Design (Four Trigonal Braces)

Grinding wheel Twin double V guideways

Deionized water type
hydraulic grinding spindle

Silicon wafer Base column

Saddle

Trigonal Prism type
Pentahedral Structure

(ABE Frame)Be

Deionized water type
Linear actuator - Bed and base colums are cast

as one component

Figure A 2: 2300mm diameter Si-Wafers, 5nm step positioning resolution of feed
axis, hydrostatic actuator, hydrostatic bearings, [35]
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Figure A 3: hydrostatic or aerostatic nm positioning device, [36]
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work spindh;
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Figure A 4: 300mm Si-wafers, 1 nm resolution in x and z spindles, aerostatic
bearings driven by lapped lead screws, feed axis can either be driven by low
friction air cylinder or lead screw, [37, 38]
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Figure A 6: pin jointed, internally damped space frame machine design, [39]
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