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Abstract

We describe the development of a robotic system capable of performing a class of
manufacturing operations. An example of such an operation is commonly found in aircraft assembly -
this demonstrates the immediate applicability of this research.

The system utilizes a unigue concept — a pair of mobile robots actihg on opposite sides of a thin
wall. The robots interact with one another through the use of magnetic fields that penetrate this wall.
The ‘inner’ robot is untethered and is controlled by the ‘outer’ robot. Despite the significant mass of the
outer robot, it operates without the aid of physical external supports.

Full modeling of the system is presented. We include calculations for forces and torques
produced by sets of permanent magnets for any system state. Simplified, tractable versions of this
model for the purpose of control are also described.

The system is designed to execute closed loop fine position control and large scale locomotion.
Experimental results from a functional prototype verify the effectiveness of the design as well as the
robustness of a position controller. Numerical optimal control results have been developed for high
speed point to point trajectory motion.

This ‘pair of robots’ paradigm could be applicable to a variety of tasks. This work outlines
analysis technigues that are useful for such a system at most scales.
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I. Introduction

I.1. Motivation

I.1.1. Future factory

Dealing with volatility is one of the greatest challenges in the aircraft manufacturing industry [21,24].
Tremendous resources are expended maintaining empty facilities during recessions and building
temporary assembly stations in regions experiencing transient economic growth. This problem
demonstrates a clear need for factories that can‘quickly and cheaply be constructed and taken down, or
transported. Such a task is difficult because current facilities use large, heavy fixtures such as scaffolding

as an integral part of the manufacturing process.

A future factory concept devised in collaboration with our research sponsor is that of a manufacturing
facility devoid of such bulky components. Such a factory would start as a large empty hangar outfitted
with a sensor array. Raw materials and partially assembled components would be brought in and
assembled into more finished parts such as complete wings. This assembly would be carried out by self-
supported, mobile robotic systems that could be easily transported to any such facility on the globe.
Our aim is the development of a type of robotic system that enables such a paradigm shift in aircraft

manufacturing.

1.1.2. Fastener installation

Fastener installation is an assembly operation that could benefit greatly from automation, and is
therefore an excellent starting point for our efforts towards this future factory. Fasteners are pieces of
hardware used to join two or more components such as sheet metal or flanges. There are on the order

of several hundred thousand fasteners on common aircraft wings. Proper installation of these fasteners
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is a two sided operation — on one side a hole is drilled, deburred, and the fastener inserted, while on the
opposite side the hardware is braced against the drill and a nut or sleeve is attached to the inserted

fastener.

The nature of this operation requires a thin skin of material separating the tooling on either side of the
operation (in our case, the aluminum skin of the airplane wing). In order to maintain structural integrity
of the wing, the fasteners must be precisely located. The tooling that performs this operation must be
capable of undergoing a long stroke — on the order of the size of an airplane wing. Part of the fastener
installation procedure requires a clarﬁping force across the skin. In addition, some of the existiné tooling

for this operation is heavy, and must be supported.

As there is a great deal of existing tooling for the tasks in fastener installation (drilling, deburring, etc),
we are interested in providing a robotic platform that enables these tools to perform their tasks in an
autonomous manner. We are interested in positioning, locomotion and load bearing. Our overarching
goal is to design a system that can enable fastener installation within the non-supported, mobile robotic

framework necessitated by the ‘mobile factory’ paradigm.

I.2. Previous work

Fastener installation is currently performed by hand. A worker crawls inside the wingbox and uses a tool
to slip nuts or sleeves over fasteners, mating with a tool on the outside of the wing. This operation is
uncomfortable and dangerous for the worker. Previous attempts at automation have consisted mainly
of variations on an articulating snake-like robot arm that could enter the wingbox through an access

hole [9,34,35].
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I - 1: Snakelike robotic arm

Inside
wingbox

Outside
wingbox

19



I1. Design

I1.1. Functional Requirements

This robotic system is motivated by a real need in the aircraft industry. While we are interested in
developing a system with general applicability, it is important to first address the specific needs of the

motivating application.

As previously mentioned, fastener installation is a two sided process. The steps involved in the process

are:
- Position tooling
- Clamp skin to flange
- Drill and countersink hole while removing chips
- Visually inspect the hole
- Insert fastener
- Seat fastener
- Add nut or sleeve to fastener (this depends on which type of fastener is being used)
- Release clamping

This process requires that tooling is present on both the inside and outside of the wingbox.
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Inner tooling
operations

II - 1: Flange location

This pair of tools requires some clamping functionality across the skin. For fastener installation,
accuracy on the order of 100 um is needed. Additionally, the tooling should be able to move from hole
to hole, potentially traversing large distances. The holes are located at distances on the order of several
cm. The tooling may be called upon to travel the length of a wing, on the order of up to 30 m. The
system needs to be able to deal with heavy tooling — current systems on the outside of the plane weigh
on the order of 100 kg; 1000 N holding force is required. Whatever positioning system we use must be
capable of overcoming static friction effects caused by 1000 N of magnetic clamping force. Later, we
show that a force of approximately 50 N is required for fine positioning. Finally, the robotic system on

the inside of the wing should be able to operate within a cluttered environment.

It is worth noting that the tooling to perform the fastener installation operation already exists. It only
remains that we develop a system capable of delivering the tooling precisely to some location and
supporting it while it works. This robotic system is in a sense a generic tool delivery system for

operations of this kind. It is also easily able to perform auxiliary tasks, such as clamping.

11.2. Previous Designs
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As previously mentioned, there are several groups attempting to automate this process by developing
articulated snake-like robot arms. Our approach differs in that we intend to use a pair of robots that

work together across the skin. These robots would stick to each other through the skin using magnets

Furthermore, we would like one robot (the master) to manipulate the other (slave). Non contact power

transmission has been shown effective in several other applications [8,10,12,18,38]. This section
describes some of the alternative designs considered within this framework of a pair of mobile robots

utilizing magnets.

I11.2.1. Spider robots

Our initial approach was the development of a pair of fully articulated robots acting across the skin as
shown in Fig. II-2. Each leg would have an electromagnet in order to be able to clamp / release as

desired to facilitation locomotion.

1I - 2: Pair of spider robot

Gross position could be achieved by articulation of the legs, but fine positioning with such a system

would likely be difficult. Several schemes for fine positioning were considered, including the addition of
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a fine positioning stage to the end effector of the robot. High stiffness, short stroke piezoelectric

actuators could be used to precisely position the tooling as desired.

End effector 3 Piezoelectric
=~ positioning
stage

1I - 3: Positioning stage for fine alignment of end effector

Unfortunately, it became quickly apparent that such a system was needlessly complex and would likely

be too heavy to support itself against gravity.

11.2.2. Piezo crawler

Some development was made in the direction of a mobile robot powered by piezo electric actuators.

Fig. Il-4 shows a CAD model and photograph of the finished prototype.

1I - 4: Piezo crawler prototype and CAD model
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This three legged robot had two actuators per leg. By running these actuators out of phase or

asymmetrically, net work could be created at the output of each leg, as shown in Fig. II-5.

II - 5: Two degree of freedom foot

We were successful in achieving precise positioning control with this brototype. Unfortunately it would
be unable to handle heavy tooling, and the functionality of the piezoelectric actuators do not scale up

well to deal with forces present in the real system.

I1.2.3. Inchworm walker

The next iteration prototype was built to prove that off the shelf permanent magnetic forces would be
sufficient to hold up a heavy duty tool (which in the case of fastener installation can weigh on the order

of 100 kgs). Fig. II-6 shows the robot.
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II - 6: Inchworm walker prototype

The robot was composed of two main sections. Each section had a ‘foot’ with a series of permanent
magnets on its underside (see figures below). The robot hung upside down, supporting its own weight
due to an attraction force between its magnets and blocks of steel placed inside the wingbox mock-up.
This holding force was induced over an aluminum skin thickness of 1/8” — a common value in airplane

wings.

A lead screw was used to actuate the relative displacement of these feet. By lifting the ‘outer’ foot,
displacing it forward, and then lowering the foot, the robot effectively took a step forward. This

inchworm locomotion demonstrated a safe, albeit slow, method of locomotion for such a system.
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Linear guides Permanent magnets

I ’ II - 7: Inchworm walker outer foot

The inner foot is nested within the outer foot — this allows for the robot to remain stably attached when

either foot is in contact.

guides

Magnet
locations

II - 8: Inchworm walker inner foot

Having demonstrated the effectiveness of magnets to hold such a system against gravity, we were

interested in making the mobile robots more nimble.
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11.2.4. Multifunctional foot and resulting designs

A multifunctional foot was developed. It has the ability to clamp strongly to a surface or release and roll
with very little friction [27]. Fig. I-9 shows the concept. A spring loaded magnet has the ability to
engage or release a set of wheels. The position of the magnet is dependent on the pulling force on it
(through the skin) as well as the force the spring exerts. This means that by modulating the attractive
force with an electromagnet only slightly, we can change the state of the foot while still maintaining
substantial normal forces. This allows us greatly modulate frictional properties of the foot (rolling
coefficients of friction are often two orders of magnitude higher than sliding friction coefficie'nts) while

maintaining a relatively constant attractive normal force.

Rolling mode Fixed mode

lever

/

pivot

A A

clearance  Caster wheel High friction

1I - 9: Multifunctional foot demonstrating clamping and release

Fig. 11-10 shows the CAD drawing and functional prototype foot.
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Magnet

Wheel

11 - 10: CAD model and funictional prototype of multifunctional foot

This attaching / detaching foot concept allowed spurned the development of several new designs. We
imagined a pair of robots in which two linear motors could control the X Y position of the tooling, while

the feet clamped or unclamped as desired for locomotion.

II - 11: Two DOF linear motor pair of robots

A similar concept was a single pair of feet with rotary motors as the joints. Positioning would be more

difficult with this design, but the robot would be quite simple.
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1I - 12: Single DOF pivoting foot system

A more complex design utilizing these multifunctional feet involved a series of legs, potentially with
linear springs, allowing us to exploit the dynamics of the system. These dynamics would change

depending on which feet were attached, potentially leading to interesting behavior.

II - 13: Multi-foot swinging robot utilizing compliance
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I1.2.5. Single degree of freedom system

We settled on a relatively simple, yet robust and easy to control concept, shown in Fig. 11-14, as a
precursor for the final design. In this system, the outer robot is supported by a gantry and has an
electromagnet as well as a series of wire coils. The inner robot has steel plates mating with the outer

electromagnet, as well as permanent magnets that mate with the wire coils.

Magnet banks Inside
wingbox

Steel plate

Flux lines

T—Wire coils

II - 14: Architecture of single DOF system

By running a current through the coils, equal and opposite Lorentz forces are induced on the pair of

robots. This allows us to perform fine positioning.

Current through coils...

...induces force on inner robot

II - 15: Lorentz force used for fine positioning
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This system also demonstrated clamping functionality, as the steel plates were able to clamp to the

electromagnet through the skin.

Electromagnet clamps to steel plate

II - 16: Clamping ability
Fig. 11-17 shows a CAD model of the system.
permanent magnet banks

electromagnet = steel rails

wire coils

II - 17: CAD drawing of prototype

Fig. 11-18 shows the working prototype.
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permanent magnet banks

electromagnet

wire coils

II - 18: Single DOF functional prototype

This system showed excellent ability to precisely position the inner robot. The outer robot is affixed to a
gantry to support its weight and controlled by a leadscrew. At this point, we were not interested in

servoing the outer robot, as control of the inner robot using the Lorentz force coil from across the skin is

- a much more interesting and challenging problem.

Servoing ability - pair of robots
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II - 19: Fine positioning ability of Lorentz force actuators
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I1.2.6. Unsupported system - asymmetric oscillation

Removing the support gantry used in the previous prototype is extremely advantageous in terms of
flexibility and cost in manufacturing. In order to remove this support, it is important to apply a high
magnetic holding force (normal to the skin) to support the outer robot against gravity. This translates to
a high normal force between the inner robot and the wing skin. Frictional forces scale with normal
forces — if we used a sliding contact (as was the case in the previous iteration), coloumb friction would
make positioning using Lorentz forces difficult (it is difficult to produce Lorentz force of sufficient
magnitude). For this reason, we want the inner and outer robot to be wheeled. A pair of wheeled

robots feels forces due to gravity, magnetic forces, and a force we can apply due to the coil of wire.

. nagl ‘F'"
[~ ] ¢

T

II - 20: Forces on stationary unsupported system

Additionally, as the system moves, it feels forces due to friction. Some of these forces are nonlinear.

Vv
-
{ 2

R

€ bx

II - 21: Drag forces on moving system
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Initial simulations suggested it was possible to exploit this nonlinear force to get locomotion. By
applying an asymmetric current input (such as a sawtooth wave), net motion of the system was
observed. While this was an interesting result, further exploration in this direction was halted for two
reasons. First, it was not immediately clear how well this could be applied to systems with more than
one degree of freedom. Sécond, a direct alternative to this scheme exists. In a manufacturing

environment, utilizing straightforward solutions as much as possible is generally preferred.

I1.3. Design of choice

I1.3.1. General description

Our design of choice utilizes the concept of a pair of mobile robots described in the previous section.
The system should remain fully self-supported; sets of magnets on the inner and outer robots hold the
pair together, through the skin, and create enough attractive force to bear the weight of the heavy duty
tooling. The outer robot is able to traverse the wing skin due to a set of powered wheels. Due to the
attractive force between magnets, the inner robot follows the outer robot as it moves. Fine positioning
of the inner robot is performed using a coil on the outer robot that mates with a magnet on the inner
robot. A current through this coil induces a Lorentz force on the inner robot. Note that this allows for
the inner robot to remain passive (tetherless); only the outer robot is powered. This feature could be
enormously useful for a variety of other applications. The following Pugh chart shows a comparison

between this design and the others considered.

Inchworm  Multifunctional  Single DOF Asymmetric
Spider robots  Piezo crawler walker foot designs system osciflation Final design
load bearind + - + + + + +
clampind + - + + + + +
gross positioning’ + + + + + 0 +
fine positionin 0 + + 0 + + +
simplicity - + + 0 + - +
3 DOF motion 0 + - + - 0 +
tetherless inner roboy 4 0 + + + + +

II - 1: Pugh chart 34



The system looks like this from the side:

Inner robot

Permanent magnet Passive wheel

! rib PN :;i:::::',-’ il’ -

\/Z\ ™\ Wire coil
Powered wheel Quter robot

II - 22: Side view

i

And like this from the top:

owered wheels
Outer robot P Inner robot

passive wheels

Coils magnets

II - 23: Top view
I1.3.2. Architecture

For the system to be self supporting, it is helpful to keep the center of mass of the outer robot within a

polygon defined by the magnet locations. This requires a minimum of 3 Halbach arrays. For safety, we

use 4 arrays.
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II - 24: Effect of number of magnet banks on holding stability

The tooling used in this operation must align in x and y to the desired fastener location; orientation is
not important. In Fig. I-24, two coils are placed such that their axis of force coincidés with the center of

mass of the system. This allows us to have 2 DOF position control of the tool location.

I1.3.3. Magnet selection

We select a basic magnetic building block: a halbach array as shown in Fig. 11-25. This configuration (of
three magnets in our case) increases the flux density in one area at thercost of reduced flux density at
another. This is useful as we are interested in concentrating magnetic flux across the skin, while
reducing stray magnetic fields that could interfere with tooling. In addition, analysis of the system is

greatly simplified if we can assume that none of the neighboring magnetic elements interfere with one

another.

Low flux density /‘ﬁf&ﬁ High flux density

13t
igt

o
]

_________

11 - 25: Halbach array showing region of flux concentration

Magnet design, while a potentially rewarding direction of research is outside the scope of this work —we

have chosen to stay within the confines of the myriad of off the shelf permanent magnets. This means
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we have a finite set of magnet sizes / strengths available for selection. We chose to use Neodymium
Iron Boron magnets for several reasons. These rare earth magnets are more robust to impact
demagnetization than Samarium cobalt magnets. They are also cheaper and generally have higher flux
densities. Happily, these magnets are often modeled as linear in the operating region of their BH curve,
which simplifies our analysis. Using permanent magnets instead of electromagnets is preferred as
permanent magnets do not require continuous power input. Also, to generate the types of forces a

small Neodymium magnet is capable of would require an extremely large and heavy electromagnet.

_~ Al housing

— ABS —_|

i

~ magnets —

II - 26: CAD drawing of magnet bank

3 commercially available 1” (2.54 cm) cube neodymium magnets were arranged into a halbach array as
shown in Fig. 11-25. An aluminum extrusion was used to provide structural support and a 3d printed ABS
piece used to align and position the magnets. A pair of these ‘magnet banks’ showed attractive force
>70 Ibf (318N) at a distance of 1/8” (3.2 mm), a standard wing skin thickness. Four such magnet banks

can easily provide the required 1000 N holding force.

11.3.4. Coil selection

A set of coils is mounted to the outer robot to make with a set of magnets on the inner robot. Running a

current through these coils induces equal and opposite Lorentz forces on the inner and outer robot.
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Magnet

Induced force

Flux lines
Current carrying wire

11 - 27: Lorentz force direction for a wire coil in a magnetic field

An initial proof of concept demo was run to see the effectiveness of using a Lorentz force at these

scales.

11 - 28: Lorentz force proof of concept demo
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Initial tests showed the ability to induce reasonable forces at high bandwith.

The coils on the outer robot must be able to provide a strong enough Lorentz force to overcome friction.
However, large, heavy coils are undesired. We would like to find the smallest coil size possible that can

induce the required forces for fine positioning.

Without the aid of a three dimensional FEA software package capable of dealing with ferromagnetic
components, such analysis is difficult. We settled for the use of a 2 dimensional package to get an order

of magnitude estimate on required coil size.

The robots are clamped to the skin with a force of 1000 N. Rolling friction coefficients are on the order
of 0.01 — 0.001. For safety, we choose the high value of .01 and add a safety factor of 5. This gives a
rolling friction force of 50 N; we require a coil design that can generate 50 N of lateral force. The force

generated by a coil in a magnetic field is given by:
F =iBl (n-1)

If we consider a volume with a current rather than a single line (in our case, the volume taken by the

coil), we can find the force by:

F=p, -j‘de‘ (I1-2)
\'4

Where p, is current density and dev is the total flux over a volume.
\4

The maximum current density is nearly independent of wire gauge. We chose wire gauge of 18 based
on the maximum current our hardware is capable of sourcing (around 10 amps). This corresponds to a

current density of around 9.7e6 A/m. The integral volume of flux is estimated by running an FEA
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simulation. The total flux in the coil region is a function of not only the geometry of the wire section,

but a function of the geometry of its flux concentrating core.

——

magnets

coil

Steel core

1I - 29: Image from FEA for fields in coil

Initial FEA tests suggested a halbach array of 1” (2.54 cm) cube magnets would easily provide the
required flux to generate the desired 50 N of force (given reasonable coil and core dimensions) while
this would be unfeasible with 0.5” (12 mm) magnets.. This is convenient, as we can use the same
magnet bank array for holding / rough alignment as we do for Lorentz force positioning, helping to
red.uce unique part count. Reasonable coil dimensions included a steel core at least 3/8” (9.5 mm) as

well as coil area of about the same size.

I1.4. Prototype

A working prototype was built. Caster wheels were used for passive rolling elements, mounted to
standoffs for appropriate spacing. The Halbach arrays were also spaced from the chassis as desired.
Two harmonic drive DC motors were used to control the wheels on fhe outer robot. These were
mounted to the chassis using 3d printed ABS parts. The powered wheels on the outer robot were off-
the-shelf components with a layer of rubber serving as a contact surface. The chassis for the robots

were waterjet aluminum.

40



A position sensitive detector (PSD) was mounted to the robots. This device returns the location of the
centroid of light impinging onto its detection surface — it can be used to precisely locate a laser beam.
The aircraft industry is interested in exploring the idea of instrumenting fasteners, for example with

lasers. In practice, these lasers could serve as the alignment reference for our robotic system.

Micro positioning reference:
instrumented fastener

Position sensitive device (PSD)

i‘“ laser

II - 30: Use of laser to align robotic system

For the purpose of experiments, a PSD was mounted to both the inner and outer robots, although in
practice if tetherless operation was required, no PSD is needed on the inner robot. An optical sensor at

the fastener could be used to locate the inner robot.

We developed a bi-directional laser with small form factor to use during testing. This component
utilized a half mirror (beam splitter) as well as a regular mirror. Components were assembled and

aligned with a rapid prototyped part.
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Beam splitter

mirror

II - 31: Bi directional low form factor laser

Labview realtime software was used to control the system. This software was implemented on a
compact RIO (cRIO) tha_t- utilized motor driver modules (to drive the motors and readl encoder
information as well as to drive the wire coils) as well as én analog input module (to get position
information from fhe PSDs). The software allowed for the operator to choose between a ‘driving’ and

an ‘auto-alignment’ mode.

Fig. 1I-32 shows a CAD model of the outer robot.

PSD Halbach arrays Harmomic drive motors

Lorentz coils End effector mockup

II - 32: CAD model of functional prototype
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Fig. 11-33 shows this outer robot suspended upside down by its magnet banks.

II - 33: Outer robot suspended

Fig. 11-34 shows the inner robot.

1I - 34: Inner robot

This prototype was successfully able to demonstrate required functionality for the fastener installation

procedure.
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III. Modeling
I11.1. Full system model

I11.1.1. Assumptions

Fig. Ill-1 shows the inner and outer robots mated with one another across the skin.

LI TR 1 I 5 3

1y v o SLLA!

S

L =i 1

111 - 1: Inner and outer robots across skin

We treat these robots as rigid bodies, modeled as shown in Fig. lll-2. Note that the inner robot has
contacts with the skin at the front and rear while the outer robot only contacts the skin at the front
wheel. The rear section of the outer robot is constrained along a plane. Additionally, we impose a no-

slip condition at the rear wheel — this results in a nonholonomic constraint for the outer robot.

Center of mass

111 - 2: Inner and outer robot as rigid bodies
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We start by examining a free body diagram of the outer robot. The dynamic equations for the outer
robot are very similar to those for the inner robot. The forces acting on the outer robot are (1) reaction
forces from the skin, (2) magnet forces, (3) torque due to the motor, (4) dissipation terms due to friction

and eddy current damping, (5) gravity and, (6) Lorentz forces due to coils.

The state of the robotic system is given by the following:

i 'i‘a
X, = y X, = }.]” (11-1)
Y Y,
6, o,
_gi_ _BUJ

Vi

v

Quter robot

III - 3: Definition of x,, yq and 04

Xi and X, are the position of the inner and outer robots respectively, their derivative is velocity. X, is the

differential position between the robots. For use in dynamic equations, we define X, =X, =X .

Dynamics of a rigid body in the plane are given by:
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2F, =ma,
ZFy =ma, (n-2)
Xt =1

coM COMw

The challenge here is in finding the forces on the system. The forces on the outer robot are given as:

2F, = C,i(X 0 X) =D, (X)-VR, (X, )— Lo (X)L (X )+ Frr
XF, =C, (Xd’X)_Doy (X) VR (X ) ”(Xd) y (X )+ moror_y  (113)
2r,=C, (Xd’X)_DOB(X) VR, (X ) ix'Lxe (Xd)_ iy -Ly, (X ) Eimotor_6

And the forces on the inner robot are given as:

. (X X)+ VR, (X,)+i, - L, (X, )+i, L, (X,)
,y(Xd,X)+VR (X,)+i, L, (X, )+i,-L(X,) (n-a)

27, = C (X X) =D, (X ,n X)+ VR, (X, ) +i, - Ly (X, ) +i, - Lo (X,)

Explanation of terms. C (Xd,X) is the rolling friction term. This term is dependent on R , the values

of the reaction forces on the outer robot (which are in turn a function of X, ). The velocity of a (passive)

wheel is given by

Viheet = Veom T OX o _wheel

L (111-5)
where v, =(%,,7,)
And the rolling friction force from a wheel traveling at said velocity can be expressed as
-R-C- wheel (|”-6)

”vwheel
Where, for example, the x component of force is found from
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I:_R.C.M . (m-7)

"vwheel

S O -

Summing these forces over all passive wheels (2 for the outer robot and 4 for the inner robot) gives C.

DX(X)is the term dealing with eddy current damping. We assume that eddy damping is a linear

[©)

function of velocity. Later we justify this assumption.

VR, (X) Is the term for variable reluctance force between paired magnets (the forces between a

magnet on the inner robot and its corresponding magnet on the outer robot). This expression is highly

nonlinear.

F is the motor force acting on the chassis. Note that due to the low inertia of the wheels relative

motor _x

to the chassis, the motor is modeled as a pure force source acting on the chassis.

L, (Xd)is the Lorentz force term due to the coils in the system. For our system, the Lorentz force is

only used when the robots are close to one another; in this case we assume the expression L (Xd) is

constant. Note the relationship between the expressions for force on the inner and outer robot:
variable reluctance and Lorentz force terms are equal and opposite (as they act between the robots).

Eddy damping and coulomb friction terms are of approximately the same form.

I11.1.2. Magnetic forces

We start by modeling the permanent magnets using the magnetic charge model. This is a common

approach to this type of problem [4].
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II1 - 4: Magnetic charge model

This model approximates a permanent magnet by a pair of surfaces (located at the poles of the magnet)
with some density of magnetic charge. For a magnet with magnetization M, the surface charge can be

found by looking at the change in mégnetization across a boundary.

Oy =14, (M;,—M,) (11-8)
Fr_ee space has normagnetization, S0

o, =M (111-9)

Manufacturers supply data on a magnet’s(BH) , a measure of the potential energy in a magnet.

max

Magnetization at saturation can be related to (BH )max through

-(BH),,, = 1“0{%] (11I-10)

We assume the magnet is operating near saturation and use this value to find the magnetic surface

charge. In addition, we assume the surface charge is uniform over the magnet pole surfaces.

An analytical solution for the fields of a trapezoidal permanent magnet assumed to have uniform surface

magnetic charge density is found in [4]. We assume linearity of the neodymium permanent magnets
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and apply superposition to find the field due to a pair of halbach arrays. Fig. I1I-5 shows the fields due to

a single magnet and those due to a Halbach array.

III - 5: Fields due to a single magnet (left) and Halbach array (right)

When the field as a function of position is known, it is possible to determine the force and torque on an
arbitrary volume in space using Maxwell’s stress tensor. To find the forces on the robots, we chose a

volume surrounding one Halbach array as shown in Fig. 111-6.
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Evaluate field at surface

Cube dim
2.5¢cm

111 - 6: Evaluating field at some surface surrounding one Halbach array

The surface surrounding this volume was discretized and the field was evaluated at each of these

locations. Maxwell’s stress tensor about any surface is given as:

%(HE—HQZ_HBZ) HHH, uH H,
uH H, %(H}Hf —Hj) uH,H, (1-11)
uH H, HH,H, %(Hf_sz_le)

Where the subscript on the field refers to the magnitude of field intensity in that direction. That s, H,is
the magnitude of field strength in the x direction. The force on any surface is given by the surface

integral:
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f,=[T;n,a4 (1-12)

vy

Where Ti,- is the ij entry of Maxwell’s stress tensor and n;is +1, giving the direction of the normal from

that surface outwards. For example, to find the force in the y direction on a differential surface element
parallel to the yz plane where the interior of the volume is larger in x than the element, one would

evaluate
—,quszA v (1n-13)

This method gives us forces and torques as a function of relative displacement and orientation of a pair
of Halbach arrays of any strength (this is essentially a FEA software solution built from scratch). The
v resultant force and torque data was fit to a high order pQIynomiaI curve. Approximate magnet force
data was taken from the curve fit in practice to speed computation in simulations (as expected,
calculating a value from a polynomial fit turned out to be much faster than generating and discretizing a
surface, evaluating fields, finding the stress tensor and computing a numerical surface integral). Forces
obtained in this method did a reasonably good job of matching the magnitudes of those found

experimentally. They did a very good job of scaling similarly to experimental results.

Experimental magnet force measurements were taken with an Admet machine able to vary
displacement while recording data. A single axis load cell was used to get force information. The setup

used is shown.
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III - 7: Normal force measurement setup

Data was taken for magnet banks of different strengths, as shown. We were unable to take full six axis
force measurements. We instead use these uni-axial force measurements as a way of verifying the

analytical approach we chose.

III - 8: Normal force measurements for two different grades of magnets

This data was matched to that obtained analytically as described in the previous section.
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I1I - 9: Comparison of simulation to experimental results. Assumptions in magnetic charge density were

scaled in simulation to better match experimental data

It should be noted that the data shown in Fig. I1-9 was scaled to match experimental results. Although
the magnets used were grade N50 (according the manufacturer), the data only matched well when we
ran the analysis assuming that the magnets were grade N35. Fortunately, the data scaled very well as a
function of position. In practice, we suggest taking a single force measurement from a pair of magnets,
and using that information to select the ‘assumed grade’ of the magnet when performing this type of
analysis. We believe that using ‘assumed grade’ in simulations will yield accurate force and torque data;
this allows the engineer to explore the effects of a variety of magnet configurations and locations in

simulation.

Code used to compute force and torque data can be found in APPENDIX A. Fig. 111-10 shows an example

of restoring force as a function of inner / outer robot misalignment generated by this code.
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III - 10: Restoring force as a function of inner / outer robot misalignment
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The simulation shows results as expected. For small relative displacement of the inner and outer robot,

the restoring force is small. This restoring force increases monotonically as the displacement between

the robot pair increases, until some point in which its magnitude begins to drop off. Additionally, for

small misalignment, the restoring force can be linearized. This plot shows the resultant misalignment

force for the case when y, and @, are zero. For y, #0, we would expect a similarly shaped plot, but

with reduced magnitude.

I11.1.3. Eddy damping

Maxwell’s equations state that a changing magnetic field through a surface induces a proportional

voltage through a line around that surface.

9(B.da-
ot

—jE-dz
A
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When that surface is in a conductive medium, this voltage creates a current. This current interacts with
magnetic fields in the system to oppose the original change in magnetic field. When the change in
magnetic field is due to a moving magnet, this is manifested by a force that opposes the motion of the

magnet. This results in a ‘damping’ force felt by a moving magnet.

Eddy current damping is a significant factor in this system due to the high magnetic fields generated by
the neodymium magnets as well as the proximity to a large conductive surface (the aluminum skin).
This force is often modeled as scaling linearly with respect to velocity. We assume that our system
operates in a regime where this is the case, and fested our assumption with an experiment, described

here.

We used the passive inner robot from the prototype and ran two sets of trials. In the first set of trials
the inner robot was operating on a conductive aluminum skin. In the second set of trials it operated on
a non-conductive acrylic sheet. In all trials the robot was accelerated to some velocity {not consistent
between trials) and released. An accelerometer attached to the robot recorder acceleration data as the

robot slowed; integrating this data gives velocity information.

If eddy current damping did in fact act linearly with respect to velocity, the dynamic equations of motion

of the system are given as:

mi=—-bx—cN
. (n-15)
my =—-by—cN

Where b is the coefficient of eddy damping, ¢ is the coefficient of rolling friction, and N is the normal
force from the skin (equivalent to mg: the product of the mass of the robot and the acceleration due to

gravity). Solving these equations is straightforward:
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v=kexp[—£z‘}—ﬂ (11-16)

Note that k is a function of the initial conditions. This response is an exponential decay with an offset.

b

m

Fig. IlI-11 shows this response graphically.

v

Exponential decay

. | Actual response

III - 11: Expected response for a system with linear colonumb and viscous damping

Five trials of each scenario (with or without eddy current) were run. Fig. lll-12 shows the comparison

between these cases. Clearly there is a significant difference when the robot is operating on a

conductive surface. As expected, in the case without eddy damping, the velocity has a linear profile.

Comparisan

- = = = With eddy
—— Without eddy

“‘tirmre {8) '

III - 12: Experimental results with and without eddy currents
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A nonlinear minimization was used to fit an exponential curve to the leading (non-zero) portion of one

of the trials. Fig. lll-13 shows the results.

Curve fitting using fminsearch
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III - 13: Experimental data compared to exponential curve fit

The curve does an excellent job of matching an exponential decay. This suggests that our linear
assumption for eddy currents is reasonable. From this set of data, we were also able to find values of b

and c. Average values found across trials were:

b~6.38
c~0.025

This system is unique in that it has a pair of magnets across a thin wall. This means that eddy currents

produced by magnets from the inner robot could induce forces on magnets on the outer robot.
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1II - 14: Eddy currents caused by moving inner magnet induce forces on outer magnet

.In order to test the magnitude of this force, another test was performed. A pair of Halbach arrays was
mounted to opposite sides of a sheet. Again, two sets of trials were run. In the first set of trials the
sheet was made of aluminum. In the second set, the sheet was non-conductive acrylic. Position sensors
were mounted to the inner array while the outer array was fixed in place to a force sensor. By
differentiating position, we were able to find .the velocity of the inner Halbach array. We compared the
power spectra of the force measurements to the power spectra of the velocity measurements we were
able to numerically find a transfer function relating the two variables. Fig. lll-15 shows this transfer

function.
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III - 15: Velocity to force transfer function for acrylic and aluminum skin

There appeared to be little discernable difference between the two cases. Based on this result, we

chose to ignore the ‘cross skin’ eddy current forces in our model.
I11.1.4. Reaction forces

Fig. 11l-16 shows the outer robot. We start here by defining some dimensions on the robot. Note the

axis o, a,, a,
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III - 16: Dimensions on outer robot

And we define some dimensions out of plane.

III - 17: Dimensions on outer robot

There is some force on the magnets that can be broken into components:
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II1 - 18: Magnet force components

And some torque on the magnets that can also be broken into components:

III - 19: Magnet torques

Now consider the resultant reaction forces at the wheels.
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reactions iny

T - 20: Reaction force on outer robot

It is important to determine the reaction forces at the wheels for two reasons.
- When a reaction forces goes to zero, the robot is in danger of falling from the ceiling
- The coloumb friction terms in the planar equations of motion depend on reaction forces

There are 5 unknown reaction forces, the 4 forces in the «, direction at each wheel, as well as the force

that enforces the no-slip condition. This means we must find 5 independent equations. The reaction

forces in the ¢,,, plane (lateral and longitudinal) at the front wheels are due to rolling friction. They

are deterministic functions of the &, direction reaction forces and the robot velocity and can be solved

for directly.

The constraint reaction force R, 5, enforces the no slip condition. In reality this force is the sum of the y

direction forces at both rear wheels. Mathematically, however, this representation is equivalent and is

chosen for simplicity in analysis.
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Note that the ¢, direction forces on the rear wheels (due to motor torque) act at the axle of the wheel.

This is because the intertia of the wheel is small enough that we neglect it, assuming instead that the

motor torque (and resultant force) acts directly on the robot chassis. Fig. 111-21 shows this relationship

for a wheel with zero inertia.

III - 21: Effect of massless rear wheel assumption

We assume planar motion of the outer robot. This implies the sum of torques about the ¢, and «, axes

are equal to zero. This allows us to write two equations.

szolz - m‘.'Mol}' * m2M02z i m'.'MaZy _mZMOSZ —rn‘?MoS)'
_m2M04z - rn’}'}‘JM)‘ + Talx + Ton * Ton + T04x (” |'17)
+m,R -mR,, —myR; —-mR, —mR, =0

1z — MR

i +m,R

02z
And
mTMol.r . ?nlMolz + rn7M02x + nile}Zz e Pn’lﬂdtﬁx +
’nlMa:’lz + ,n'.’Madx - ’n’anftz & zn{)ly + T()Zy * T()B)‘ + To4)' (”I—lg)
+n13Ralx _rn’_iRolz + ’n‘)Fmoer + m3R02z + ’nQF;norod + n?’jRDSz + mSRad-x - m3‘Ro4z = 0

A third equation comes by setting forces along the z axis equal to 0 (no z axis motion is allowed).
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Molz +M022 +M032 +Mo4z +Ra]z +R02z +R03z +Ro4z = mog “”'19)

Our next equation comes from the method of deformations. A common approach in statically
indeterminate systems, the method of deformation assumes some finite stiffness for portions of the
body and distributes forces accordingly. Here we assume the chassis remains infinitely stuff but that
there is some compliance due to Hertz contact stresses in the ball wheel b.earings as well as compliance

in the rubber wheels.

We allow for out of plane tilting in this analysis. This does not contradict our previous assertions as we
assume any deformation due to these compliances happens on a much faster time scale than the
previously describe dynamics. From this, we assume the relationships found from the method of

“deformation are algebraic, not dynamic.

Quter robot |
chassis '

III - 22: Tilt of outer robot using method of deformations
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Fig. 11-22 shows the outer robot chassis. A ,is the deflection of that corner of the chassis. Deflection is
assumed to be strictly in the &, direction (based on a small angle assumption). Because the chassis is a
rigid plane, if we are given the location of three points, we can find the fourth. If we assume P, is at

the origin, we can say.

A
a, (mq +na)+2—;;(m6—m4)=Aa4 (111-20)

This gives us a relationship between the differences in vertex locations. This is essentially an expression

for the normal to this plane. To find actual vertex locations, we need to offset by A as shown in Fig.

11-23.

III - 23: Total deflection of outer robot using method of deformations

From this figure we can relate total displacement, stiffness at that corner, and reaction force at that

corner. Foracompliant member, F =kA. We plug in and get:
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olz _ 0 (I”-Zl)

This is our 4™ equation. To find our last equation, we look at the constraint imposed by the constraint

force. The no slip condition requires that velocity at the rear wheels is only in the ¢, direction. That is,

for some point B located at the rear wheel,
vy =| 0 (1-22)

And if we know the velocity of the center of mass, v, , we can say

Ve =Veou TWXTcoy s ' (1-23)
Differentiating this with respect to time gives

Ay = ooy +WXTegy g +WXTeoy g (1-24)

This can be written in vector form.

Qg Acomx 0 —mi; 0 0 —Ms
ag, | =| Acopy |+ 0 (x| —mg |+]| 0 |x[| O |x|—m, (11-25)
0 0 0 0 el \|é 0

Consider the term a,_, the acceleration of the point Bin the y (¢, ) direction. Because of the no slip
By 2

condition, the instantaneous center of rotation of the system is located on an axis as show in Fig. I11-24.
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* Instantaneous center of rotation
]

I1I - 24: Instantaneous center of rotation showing acceleration of wheel

The point B is instantaneously traveling along a circular (with radius r) trajectory. This means the

2

acceleration in the ¢, direction of the point B is—2 . Plugging this in to the acceleration equation above
r _

yields:

s |

Acomy — 9m5 —6°m, (111-26)

The acceleration of the center of mass in the y direction is a function of all the forces in the y direction.

This expression (and our final equation) is:

O = vaCyvoCx + Roly +Ra3y * Ro4y +M01y +M02y +M03y +Ma4y -
ms mo
rn'iMoly _m2Molx_nllM02}- _szoZX_rnlMaBy +m’2Mo3x + 2 (”['27)
m g
5 oCy "6
rnlMo4y + m2M04x +Tolz + z-1922 +7'-a3z * z-041 +m3Raly _m4Ralx - I__ 2 m2
oC it

mgF

motor?2

- mSRchy * mﬁFmomr3 + m3Ro4y + m4Ro4x
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An analytical solver in MATLAB was used to come up with these expressions. See code in APPENDIX for

more details. As previously mentioned, it is possible to write R, , R, as a deterministic function of

R, and velocity. Itis possible to find a linear relationship between the remaining unknown reaction

forces of the form

AlR; |=b (111-28)

Where all the components of A and b are known. This can be solved by inverting the A matrix to find

the reaction forces.

A similar method was used to find the reaction forces on the inner robot. The lack of constraint force

makes the analysis simpler. We start again by defining robot dimensions, first in the plane

III - 25: Inner robot dimensions
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And next, out of plane

—— -
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III - 26: Inner robot dimensions

Next we define magnet forces

111 - 27: Magnet forces and torques on inner robot

And reaction forces
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III - 28: Reaction forces inner robot

The planar motion constraint gives the following two equations

And

M, +m M, +n,M,, +mM,, —n,M, + M, —

MMy, + 1My 4T T, + T, + Ty,

ilx i

(11-29)
+m, R, + nsR,, +n, Ry, + R, —nR, + Ry, —m Ry, +meR,, =0

idy —

-mM,, —-nM,, —n,M, + mM,, —n,M +n M, —
MM, —mM,,, +17,, T Ty T Ty T T3, (11-30)

MRy, —mR,, —nR, + MR, —ngR;, + Ry —ngR,, . -mR, =0

The third equation comes from summing forces in the p; direction to 0

Ry, +Ry, +R; + R, +My, +M,, My +M, —mg=0 (n-31)

The fourth (and in this case final) equation comes again from the method of deformations. Fig. 111-29

shows the chassis tilted to some angle due to deformation.
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I1I - 29: Tilt of inner robot using method of deformations

As in the previous case, we generate an equation for the plane of the chassis. We then consider the

offset of each corner as shown in Fig. 111-30. Care should be taken to keep sign conventions correct.

111 - 30: Total deflection of outer robot using method of deformations

This gives us our final equation:
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_MRp, MRy Rey  Raui (1-32)
mek, mk, ko k,

These four equations constitute a linear set of equations, allowing us to solve for reaction forces in the
same manner as was used in the outer robot. See APPENDIX B for MATLAB code used to solve for these

reaction forces.

Now that all the forces on the system are known, the dynamics of the system are straightforward (as
mentioned previously). A simulation was written in MATLAB (see APPENDIX B). However, due to the
complexity of this system, running simulations was computationally expensive. Several simpler models
are described in the control chapter. These models capture the dynamics of the system relevant to the

particular task, and are tractable enough so that it is possible to generate and test controllers.

I11.2. Summary

In summary, the equations of motion of the outer robot are given as

moxo =Co ( ) motor _x

D,
m,3, =C, (X, X)=D,, (X)-VR, (X,)~ i,-Ly(Xs)—i, L, (X)) + Fror , (1133)
Ioéo :Co9 (Xd’X) D (X)_VRQ (Xd)— ix.Lxﬁ (Xd)— y y0 (X )+ motor g

P XX

(X)-VR,(X,)- i, L (X,)-i, L, (X,)+F,
(

Where C (Xd , X) Is the coulomb friction term, acting as described in section 111.1.1, and is dependent
on reaction forces, which must be found as described in section 111.1.4. D, (X) Is an eddy current

damping term, acting as described in section I11.1.3. And VR, (Xd ) is a variable reluctance term, acting

as described in 111.1.2. The remaining terms are inputs to the system and are dealt with in section IV

(system control).
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In the vicinity of X, =0, this system model can be simplified to:

moxo =—C- Slgn (xo ) - Bx'xo - kxxd - lx ’ Lxx + Fmotor_x

m, 3y, =—c-sign(y,)-B,¥, =k, ¥, =i, Ly, + Fpppr_, (111-34)
1,6, =—c,sign (90 ) ~B,0, —k,0,+1

motor _6

This is a nearly linearized (excepting the coulomb friction terms) version of the full system model.
Similar equations have been obtained for the inner robot. The use of such equations of motion,

linearized or otherwise, will be explored in section IV.
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IV. Control

We start this section by splitting the functionality of the robotic system into two portions: gross motion
and fine positioning. Gross motion refers to system traversal between fasteners. This is generally for
distances > 1 cm. Our goal is rapid, safe traversal. Fine positioning refers to precise alignment of the
robotic system with fasteners. Fine positioning stroke is generally limited to < 1 cm. Our goal in this

situation is small positioning error achieved by a stable closed loop controller.

Because of the differences in functional requirements and system characteristics in these scenarios,

distinct modeling and control approaches are used.

IV.1. Point to point optimal control

1V.1.1. Control strategy

In this section we present results for an optimal trajectory for a simplified system model. We start with
a pair of aligned robots with some desired end location. First, we turn the robot pair to face the desired
endpoint. Next, we move the robot pair in a straight line towards this endpoint, following a pre-

computed optimal trajectory.

& ")
e
{ag o

IV - 1: Point to point control: robot first aligns with desired endpoint, then drives in a straight line

IV.1.2. Key issues

The goal during this type of locomotion is to minimize time while maintaining ‘safe’ motion. Safe

motion means the outer robot should not fall ~-we must monitor reaction forces on the outer robot
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wheels. Additionally, we are interested in maintaining a no slip condition on the outer robot. Slipping
renders encoder information for position and velocity useless and it makes our model invalid. Often,
the no slip condition is a more conservative metric than the no-fall condition. This is because the no-slip
condition requires reaction force greater than some constant while the no-fall condition requires

reaction forces greater than zero.

In order to find an aggressive yet safe optimal trajectory, we are interested in exploring the full
nonlinear effects of forces such as variable reluctance and rolling friction. To address this, we use a

software program to find a numerically optimal trajectory.

1V.1.3. Simplified modeling and control for point to point optimal control

Due to our control strategy, we can use a greatly simplified version of the full system model. In this

case, the system has only 2 DOF (inner and outer robot position along the axis of motion) and the

dynamic equations of motion only use 4 state variables, making the state vector Koy Ky X

o2

X,

There are two constraints placed on the optimal control problem (1) no slip condition and (2) no fall

condition.

IV - 2: No slip and no fall conditions are dependent on reaction forces at wheels

From Fig. IV-2, these can be expressed as (note sign convention):

0=R,.0>R (IV-1)
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And

<|uR)| (1v-2)

T
r

Boundary conditions on the optimal control problem maintain that the position and velocity of the inner
and outer robot start at zero. At the end of the trajectory, velocity of both robots must be zero and they

must be located at the desired endpoint.

This optimization was performed to minimize time. The fastener installation procedure is highly
repetitive and a bottleneck in the wing manufacturing process, making time savings of critical
importance. Minimizing energy, for example, is not useful as potential energy savings would be dwarfed

by tooling energy expenditure.

Formally, the solution to the optimal control problem is the trajectory u (t) , Where

I
' (r) =argmin ! 1dt (IV-3)

Subject to the dynamics (as described in egs i1-33)
(%%, %,,%, ) = f (x4, %, %,,%,,1) (Iv-4)

With the boundary conditions:
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(x,(t=0),%(r=0),%,(t=0),x,(1=0))

=(0,0,0,0)
(IV-5)
(xd (1=t ).a(r=1,).5%, (=1, ).x, (¢ =tf))
=(0.0,0,x,)
And subject to the constraints (no slip and no fall) as described in eqs IV-1 and IV-2
8 (2%, %, %,,0) >0 (IV-6)

Fig. IV-3 shows the results of an optimal trajectory. The software used in computing this trajectory is
the academic version of DIDO.
Robpl trajectc_;ries

ot crossover —— .~
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IV - 3: Example optimal trajectory for point to point control

In the initial portion of the trajectory, the outer robot stays ahead of the inner robot and pulls it
forward. Near the end of the trajectory, the outer robot drops behind the inner robot in order to slow it
to a stop. This ensures that both robots get to the desired endpoint with zero velocity. This result is

similar to that found in vibration suppression of cranes [36].
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IV - 4: Time evalution of no fall and no slip condition '

Fig. IV-4 shows the evolution of the no-slip condition and the reaction forces during this trajectory. Note

that while the robot never comes close to falling, it does skirt the safety margin for the no slip condition.

IV.1.4. Further discussion_

In order to better understand this system, we vary its parameters and observe their effect on
performance. In particular we are interested in exploring parameters unique to such a system -
principally in the variation of magnetic forces caused by robot misalignment and eddy current damping.

Finding the numerical optimal trajectory is computationally intensive, so we focus on a simpler

performance metric: ability of the outer robot to accelerate or decelerate.

We start by finding the maximum torque we can apply to the system before either slippage or falling of
the outer robot. Fig. IV-5 shows how the maximum allowable torque varies as a function of relative
displacement of the robots and velocity of the outer robot. Outside of this contour is the zone in which

the outer robot falls.
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IV - 5: Maximum torque applicable before slippage. Outside of the shaded region, the outer robot falls

When the system is grossly misaligned, the outer robot is likely to fall (see (a) and (b) in Fig. IV-5). For
positive velocities the rear wheel tends to fall, while for negative velocities the front wheel tends to fall

(see (c) and (d) in Fig. IV-5). This can be explained by eddy forces on the outer robot as shown in Fig. IV-

6.
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IV - 6: Changes in reaction forces due to velocity
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These results can also be found by looking at a special (1 DOF case) of egs IV-1 and IV-2. Note that to

find the terms in these equations, we must solve for reaction forces as described in section 111.1.4.

At a positive velocity (marked (b) on the figure), eddy damping on the magnets causes a torque on the
system that reduces the magnitude of the reaction force at the rear wheel. The opposite is true when

the system has negative velocity (marked (d)).

At small velocities (such as at (a) and (c)), the system can fail due to large misalignment of the robots
(xg). The contours are iso-torque lines where these opposing factors (falling due to eddy current

damping vs misalignment) tradeoff.

We are interested in exploring how this behavior is affected by the system parameters, such as eddy
current damping. Consider the case that the skin is thicker and the eddy damping more pronounced, as
well as the case in which the skin in less conductive (reduced eddy damping). Max allowable torque for

these cases is shown in Fig. IV-7.

2x eddy current damping 0.5x eddy current damping

Max motor torque

Max motor torque

velocity (m/s)
velocity (m/s)
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IV -7: Allowable motor torques for variation in eddy current

For the most part, as eddy current damping increases, viable states of operation shrink.
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We observe an interesting phenomenon if we nondimentionalize the velocity and position in the
following manner: a characteristic position dimension is chosen as the displacement required before
falling (assuming zero velocity). This is around 2.3 cm. A characteristic velocity dimension is chosen as
the maximum steady velocity the inner robot can maintain without separation (at this velocity, the
maximum possible variable reluctance realignment force is equal to eddy damping for the inner robot —
it cannot be pulled any faster). This characteristic velocity does not deal with falling or slippage but is a
function of eddy currents. For our system, it is approximately 20 m/s. This comes from solving for the
reaction forces of the 5§stem — see section IIl.1.4. In this case, we are interested in a 1 DOF simplified

case of the full system model, making solving for these reaction forces less computationally taxing.

Fig. IV-8 shows the results of this plot. Unlike the previous plots, this is invariant with respect to eddy

current coefficient.
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IV - 8: Normalized velocity and displacement

Note that the velocity never reaches ‘maximum velocity’ as described in the previous paragraph

(reaches a maximum value around 0.6). This suggests that slippage / falling of the outer robot becomes
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critical before factors such as separation of the inner and outer robot due to drag forces for our current
design, regardless of eddy current properties. This graph is a useful tool when evaluating a candidate

design for this system and eddy current properties are unknown.

The previous plots show the regions in which it is possible to apply a motor torque without slippage or
falling of the outer robot. It should be noted, however, that even if it is possible to apply a motor
torque, this torque may not be enough to specify the direction of acceleration. That is, in some cases,
although we apply a motor torque, we can change on the magnitude of acceleration, not the direction.
This is the case when other forces (such as mag.net forces) are much larger than the forces we are able
to apply. For example, sufficient misalignment may cause very large restoring forces from the
permanent magnets. Although we may be able to provide a motor torque that opposes this realignment

force, we cannot cancel it completely without wheel slippage.

We would prefer to always be able to control the direction of acceleration - Fig. IV-9 shows the

conditions when this is possible for several values of eddy current damping coefficients.

2x eddy current damping 0.5x eddy current damping

Bi-directional accel region

Bi-directional accal region

S —

velocity (m/s)
velocity (m/s)

o " .
R/ T 01

IV - 9: Region in which we can control direction of acceleration for two eddy current values
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Note that these are subsets of the contours shown in Fig. IV-7.

The case with reduced eddy friction is more controllable at larger velocities as expected and clearly has
a larger area. Interestingly, in the case with reduced eddy currents, it becomes harder to operate at
some regions of large relative displacement and low velocity. This is because the damping effects of the
eddy currents offset the variable reluctance attractive force; with a small net force from the system, it is
easier for us to control acceleration. Note that at zero velocity, the plots are identical (changes in eddy

current damping have no effect at zero velocity).

These results suggest that while higher eddy current damping provides increased stability in a few cases,

in general control of the system is improved by limiting its dissipative effects.

IV.2. Fine positioning

IV.2.1. Control strategy

Here we describe our strategy for achieving precise positioning. First, the outer robot uses its powered
wheels to precisely align itself with the fastener. This is achieved using the straightforward method of
solving the inverse kinematics of a wheeled mobile robot. If the tool is located at position A as shown in
Fig. IV-10, and the desired location is at some other location, we know the direction of velocity we
would like the tool to move. We apply to the system velocity in this direction with a unit magnitude. In

order to apply this velocity to the tool, the wheels must move at some velocity.
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IV - 10: Relative velocities for inverse kinematics

Kinematics tell us

V,y =Vp +@Xr,

B1_A
(IV-7)
Vo= Vgt OXTp, 4
And we know the angular velocity
@ =(vy, —Vy ) 2mg (IV-8)
From this we can find necessary wheel velocities to get our desired tool velocity.
Vy =V T OXTy ,
(IvV-9)

V, =Vpy, F@WX Tga A

Once the outer robot has been accurately positioned, the wheels of the outer robot are locked. While
the wheels are locked, current is applied to the coils on the outer robot. This generates a Lorentz force

on the inner robot. We control the position of the inner robot through modulation of this force.
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This Lorentz force strategy for positioning is important because though the outer robot is able to
accurately align with the fastener, factors such as static friction, manufacturing tolerances and skin

thickness aberrations may cause the inner robot to remain misaligned.

1V.2.2. Key issues

While fine positioning, the difference in position between the inner and outer robot remains small (< 5
mm). For this reason we assume normal magnetic forces are adequate to prevent falling or slipping of
.th'e outer robot. This small stroke also allows us to make other assumptions, such as linearizing the
variable reluctance force between the robot pair, and assuming that Lorentz force is not state
dependent. Our goal during this positioning is to eliminate steady state error, so our controller should

contain an integrator.

1V.2.3. Simplified modeling and control for fine positioning

Once the outer robot has aligned to its desired location, the wheels on the outer robot are locked, and
alignment of the inner robot is attempted. We attempt in this stage to hold the position of the outer
robot stead. However, due to compliance in bearings and flexible elements such as rubber wheels, the
outer robot may shift even while the wheels do not move. For this reason, the outer robot is modeled
as a mass-spring system; the far end of the spring is ground fixed. The permanent magnets on the inner
and outer robots create a restoring force between the pair. Linearizing this restoring force allows us to
model it as a spring connecting the inner and outer robot. This linearization was introduced in eq. l1I-34.
We simplify this linearization further by ignoring dynamics in the @ direction (the tool is rotationally

symmetric — only xy positioning is relevant).

Fig. IV-11 shows the model of the robotic system while fine positioning is attempted.
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Model & conventions

Y2

N

IV - 11: Fine positioning model

Note that this model is of two uncoupled identical mass spring damper systems ('in the x and the y

direction). The coils in the outer robot produce forces F and F, . Our goal is to step the inner robot to

some location (xz, yz)while keeping the inner robot at the origin. Deriving equations of motion for this

system is straightforward:

¥y =~F, +(~x )k +(%,-x )k, —b%

myx, = F, + (xl _xz) k, —b,%,

) , (IV-10)
m, =—F, +(=y )k +(y,—» )k, —b3,
m,y, = Fy +(y1 _yz)kg _b2y2
Which can be written as:
x=Ax+Bu : (Iv-11)

From this, the controllability matrix is defined as:
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H. =[B AB AB A'B A'B A’B A°B A'B] (Iv-12)
This matrix is full rank — the system is controllable.

We. are interested in controlling the position of the inner robot, so we consider the transfer function
from input F to output x,. The following figure shows the root locus obtained when implementing PID
control on the inner robot. Note that the system is stable for all gains. For our initial tests, we operated
near the region marked on the chart. Eddy current damping values were taken from experimental

results from section 111.1.3.

With controller. Root Locus: Input 1, Output2

150,
m1: 8.7 .
0l M58 Gain: 10 3
k1: 100000
k2: 7000
» 50 kpf 10
2 kd: 1
é ki: 10
Faag
© 0 -
£
o
©
o i
= 50
PID control
-100 inner robot
5000 80 80 40 20 0 20

Real Axis

IV - 12: Root locus for inner robot positioning

Fig. IV-13 shows a closer view near the center of the plot
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IV - 13: Close view of root locus

It should be noted that the location of the slow zero near the origin is dependent on the parameters of

the system. In fact, this zero moves into the right half plane if the following expression holds:

k, +k
o P K5 (IV-13)
e k,
Fortunately, plugging in typical fastener installation tooling values to this expression gives
k +k
102 25 (IV-14)
m, k,

A PID controller was implemented on the actual system as shown below.

Position (mm)

4 5 10
Time (s)

IV - 14: Servoing ability of inner robot
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The plot shows a robot following a commanded ladder type reference.

For fastener installation, the tooling is required to have 100 pm positioning accuracy. This test
demonstrates this goal is easily achievable. At times oscillations were present. These are believed to be
due to unmodeled dynamics such as mechanical backlash in bearings. In practice, turning the controller
off and then on again often stopped the oscillation. This suggests that a heuristic outer control loop
could be added to the system to temporarily halt the PID loop in the case that unwanted oscillations are

sensed. .

1V.2.4. Further discussion

During some fine positioning attempts, motion of the tool was almost imperceptible. This suggests that
the impressive accuracy present may be due to the fact that at least some portion of the positioning
ability of the system is due to compliance in the mechanical elements themselves (stiffness in bearings,

for example). Alignment in this fashion is acceptable for the task.

Although the system is modeled as two uncoupled systems, coupling was detected between the x and y

axis, as shown in Fig. IV-15.

89



2DOF servo testing
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IV - 15: Coupling between axes, inner robot positioning

Despite this, 2 DOF servo positioning was successful as shown. This shows an instance of the

aforementioned instability, which is fairly straightforward to deal with as described in section 1V.2.3.



V. Conclusion
V.1. Summary of contributions

V.1.1. Applicability

This work was motivated by a real and immediate problem — automating fastener installation in aircraft
assembly. This currently manually performed process is a significant bottleneck in aircraft production,
raising the price of airplanes. Automation isv a tool that has been used sﬁccessfully by the automotive
industry (among others) to dramatically lower prices. The work described here allows manufacturers to
automate fastener installation, hopefully providing some of the same benefits to the aircraft industry

that car makers have enjoyed.

Many aircraft makers are interested in changing their manufacturing techniques, building factories that
are composed of mobile robotic systems rather than large heavy ground fixtures. The work described

here fits within this anticipated factory framework.

V.1.2. Novel design

The authors are unaware of other robotic systems featuring the novel design described here - the use of
a pair of robots operating across a thin wall, interacting with one another through the wall. Allowing for
one side of the robot pair to remain passive allows for work in hazardous or hard to access areas. The
support-less nature of the system reduces accessory equipment needed, as well as allows for effectively
infinite stroke. Additionally, this self-supporting nature is possible even for heavy duty tooling. The
system offers a simple way to achieve both fast, large scale positioning and precise alignment when
required. 1t does all this while fitting into the ‘future factory’ paradigm many aircraft manufacturers

predict.
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V.1.3. Prototype

A functional prototype was built. Most components were found off-the-shelf. Minimal and standard
machining was required, showing the cost effectiveness of utilizing such a robotic system. The
prototype served as an excellent proof-of-concept for a dual robotic self supported partially passive

system capable of performing gross locomotion and fine positioning.

V.1.4. General model

A general model for this system was developed. Parameters such as tooling weight, numbef of
magnets, locations of wheels, etc, can be altered and the same analysis performed to predict the
behavior of such a system for any application. This is énormously helpful for designers interested in
using a similar architecture at a different scale. Key metrics for system failure were discussed. An FEA
solution to find magnet forces for almost arbitrary placement of rectangular permanent magnets was

presented.

V.1.5. Fine positioning

A control strategy was developed for fine positioning of the robotic system. Based on the features of
this control strategy, a simplified system model capturing relevant dynamics was built. The control
strategy in question was tested in simulation on the system model to verify its effectiveness. Finally,

this controller was successfully implemented on the prototype.

V.1.6. Gross positioning

As in fine positioning, a control strategy was developed for gross positioning of the system. From this

control strategy, a tractable system model containing relevant dynamics was created. Numerical
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optimization was performed in the space of this control strategy to find time optimal trajectories that

yielded physical insight into the system dynamics.

V.2. Future work

V.2.1. Hall Effect safety sensors

In practice, the system will run autonomously and should be able to monitor itself to prevent unusual
failure. One of the worst types of failure is separation of the inner and outer robot caused by massive
misalignment. This could happen if the outer robot moves to quickly or the inner robot gets stuck on an
unexpected obstacle, for example. An array of Hall Effect sensors could be placed on the outer robot to
detect the magnetic fields generated by the inner robot. In the case that the magnetic fields are
drastically different than expected, the system could shut down before catastrophic misalignment.
Development and calibration of such a sensor field would be enormou‘sly useful. Some work has been

done in this direction and is presented in APPENDIX.

V.2.2. Obstacle avoidance

The interior of the wingbox is littered with obstacles. Designing an add-on to make the inner robot able
to circumvent these obstacles would be useful in practice. Some work in this direction is currently

underway.
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A. MATLAB modeling

This section shows the MATLAB code used in modeling the system, first in using the full system model,
and second in using the simplified model.

Full model
The following function gives state evolution of the full system model.

function[stateDot] = robotDynamics(t,state)
% Dynamics cof the dual robot system

% Manas 108

% 3/29/2010

¥ state = [x _oDot y oDot x_iDot y iDot theta iDot xd yd ¢

x_oDot = state(l);
y_oDot =-state(2);
x_iDot = state(3);
y_iDot = state(4);
theta_ iDot = state(5);
xd = state(6);

yd = state(7);

thetad = state(8);

lcad const

load all

ants and assign st

alizedData +

% find static magnetic forces and torgques, assign stuff
staticMagnetForces = getForcesRobotPair (state);
smf = staticMagnetForces;

tau ol = smf.tau ol;

tau_o2 = smf.tau oZ;

tau_o3 = smf.tau o3;

tau_o4 = smf.tau_ o4;

tau_il = smf.tau_il;

tau_i2 = smf.tau_i2;

tau i3 = smf.tau_i3;

tau_id4 = smf.tau_ i4;

% find magnetic forces & to eddy currents
eddyForcesOuter = getEddyForcesOuter (state,b);
eddyForcesInner = getEddyForcesInner (state,b);
efo = eddyForcesOuter;

efi = eddyForcesInner;

M ol = smf.M ol + efo.M ol;
M 02 = smf.M 02 + efo.M 02;
M o3 = smf.M 03 + efo.M 03;
+

M 04 = smf.M o4 efo.M o4;

M il = smf.M il + efi.M il;

M i2 = smf.M 12 + efi.M i2;

M i3 = smf.M i3 + efi.M i3;

M i4 = smf.M i4 + efi.M ROBOT FRAME
forces

tau motor2 = .01;

tau _motor3 = .1;

inputs = [tau _motor2 tau motor3); % here we have & control icy

reactionForcesOuter = getReactionForcesOuter ([x_oDot y_oDot],inputs, ...
staticMagnetForces) ;
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R_ol = reactionForcesOuter.R_ol;

R_o2 = reactionForcesOuter.R o2;

R_o3 = reactionForcesOuter.R_o03;

R_o4 = reactionForcesOuter.R_o4;

if abs(R_03(2)) > abs((R_03(3)+R_02(3)))*c_r
disp('siip')

stateDot = 'slip';

end

inner rocbot

reactionForcesInner = getReactionForcesInner([x_iDot y_iDot theta iDot],...

staticMagnetForces);

R_il = reactionForcesInner.R_il;
R_i12 = reactionForcesInner.R_i2;
R_13 = reactionForcesInner.R_i3;
R_i4 = reactionForcesInner.R_i4;

]

% now sum the forces

magnetMomentsQuter = éross(r#oml,M_ol) + cross(r_om2,M 02) +

cross(r_om3,M o3) + cross(r_om4,M o4d);

magnetMomentsInner = cross(r_iml,M il) + cross(r_im2,M i2) +

cross(r_im3,M i3) + cross(r_im4,M _i4);

magnetTorquesCOuter = subs(tau_ol + tau 02 + tau o3 + tau_od);
magnetTorquesInner = subs(tau il + tau_i2 + tau_i3 + tau_i4);

reactionMomentsOuter = subs(cross(r_owl,R ol)
+ cross(r_ow3,R_03) + cross(r_owd,R _o04));
reactionMomentsInner = subs(cross(r_iwl,R_il)
+ cross(r_iw3,R_i3) + cross(r_iw4,R_1i4));

eddyMomentsQuter [0 O 0];
eddyMomentsInner = [0 0 0];

+ cross(r_ow2,R_02)
force due to motor included
+ cross(r_iw2,R_i2)

totalMomentsOuter = magnetMcmentsOuter + magnetTorgquesOuter +

reactionMomentsOuter + eddyMomentsOuter +

subs (motorTorques) ;

totalMomentsInner = magnetMomentsInner + magnetTorquesInner +

reactionMomentsInner + eddyMomentsInner;

% theta oDotDot = (1/I_oC)*totalMementsOuter(3

theta iDotDot = (1/I_iC)*totalMomentsInner (3);

yi

magnetForcesOuterx = M ol (1) + M 02(1) + M 03(1) + M o04(1) + R ol(1) +

R 02(1) + R_03(1) + R 04(1);

magnetForcesOutery = M _0l(2) + M 02(2) + M 03(2) + M 04(2) + R _01(2) +

R 02(2) + R_03(2) + R_o4(2);

magnetForcesInnerx = Mﬂil(l) + M i2(1) + M _i3(1) + M_i4(1) + R_i1(1) +

R_i2(1) + R_i3(1) + R_i4(1);

magnetForcesInnery = M _il1(2) + M_12(2) + M_13(2) + M 14(2) + R_11(2) +

R i2(2) + R_i3(2) + R_i4(2);

now do linear forces
®_oDotDot = magnetForcesOuterx/m_o;
y_oDotDot = magnetForcesOutery/m_o;

x_iDotDot = magnetForcesInnerx/m_i;
y_iDotDot = magnetForcesInnery/m i;

xd_Dot
yd Dot = y_
% need to find theta oDot;

theta_oDot = subs([0 0 y_oDot/-m_6]);
thetadDot = theta_iDot - theta_ oDot;

% newW cons the vector of st
stateDot (1) x_oDotDot;
stateDot (2) = y oDotDot;

x_iDot*cos (thetad) - y_iDot*sin(thetad) - x_oDot;
y iDot*cos (thetad) + x_iDot*sin(thetad) - y_oDot;
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stateDot (3) = x_iDotDot;
stateDot (4) = y_iDotDot;
stateDot (5) = theta_iDotDot;
stateDot (6) = xd_Dot;
stateDot (7} = yd Dot;
stateDot (8) = thetadDot (3);
stateDot = stateDot';

This program used the following functions:

- getForcesRobotPair.m

- getEddyForcesOuter.m

- getEddyForcesinner.m

- getReactionForcesOuter.m
- getReactionForcesinner.m

Code for these functions is shown below

function[forces] = getForcesRobotPair (state)
% is T ion ts the forces on a palr of robots due to

1¢ fox it also gets torgues

% manas menon, 3/29/2010C

% state = [x_oDot y_oDot X iDot y ibot theta iDot xd yd thetadl';
load al tializedData

xd = state(6);
yd = state(7);
thetad = state(8);

zd = (m_8 - m_7 + skinThickness + n_8 - n_7); % z distance between magneis
find position of inner magnets
= [cos(thetad) -sin(thetad);sin(thetad) cos(thetad)];

%
R

c ol = [r_oml(1l:2) 0]; % location of cuter magnet I
c o2 = [r om2(1:2) 0];
c_o3 = [r_om3(1:2) 0C];
c_ o4 = [r_omd4(1:2) 0]; % location of

h
Q

uter magnet

c_il = [xd yd zd] + [R*r_iml(1:2)'; 0]';
c_i2 = [xd yd zd] + [R*r_im2(1:2)'; 0]1';
c i3 = [xd yd zd] + [R*r_im3(1:2)'; 0]1"';
c i4 = [xd yd zd] + [R*r_im4(1:2)'; 0]1'; % location of inner magnet 4

theta ol = atan2(m 2,m 1) - pi/4;
theta o2 = atan2(m_2,-m_1) - pi/4;
theta o3 = atan2(-m_2,-m_1) + pi/4;
theta o4 = atan2(-m_1,m 1) + pi/4;

theta il = theta ol + thetad;
theta_i2 = theta o2 + thetad;
theta_ i3 = theta_o3 + thetad;
theta_i4 = theta o4 + thetad;

4 1

e calculate force on upper

1er) robot, s0 we take the negative of
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% this force tc find the force on the cuter (lower) robot

% Magnet 1

[FX Fy Fz Tx Ty Tz] = getApproximateForcesHalbachs(c_ol, 1, theta_ ol,...
c_il, -1, theta_ il,J);

M ol = -[Fx Fy Fz];

tau_ol = -[Tx Ty Tz];

% Magnet 2

[Fx Fy Fz Tx Ty Tz] = getApproximateForcesHalbachs(c_o2, 1, theta o2, ...
¢ i2, -1, theta i2,J);

M o2 = -[Fx Fy Fz];

tau_o2 = -[Tx Ty Tz];

% Magnet 3

[Fx Fy Fz Tx Ty Tz] = getApproximateForcesHalbachs(c_o3, 1, theta_o3, ...
c_i3, -1, theta i3,J);

M o3 = -[Fx Fy Fzl;

tau_o3 = -[Tx Ty Tz];

% Magnet 4

[Fx Fy Fz Tx Ty Tz] = getApproximateForcesHalbachs(c_o4, 1, theta o4,...
c id; =1; theta_i4,J);:

M o4 = -[Fx Fy Fz];

tau_o4 = -[Tx Ty Tz];

R = [cos(thetad) sin(thetad) 0;
-sin(thetad) cos (thetad) 0;

001];
% now find inner robot forces - remember these are in the inner robot frame
M. il = -R*M ol';

tau_il = -R*tau_ol';
M i2 = -R*M 02';

tau_i2 = -R*tau_o2';
M i3 = -R*M_03';
tau_i3 = -R*tau_o3';
M i4 = -R*M o4';
tau_i4 = -R*tau_o4';

. build output

forces.M il = M il';
forces.M i2 = M _i2';
forces.M i3 = M i3';
forces.M i4 = M i4';

[

forces.M ol = M _ol;
forces.M o2 M o2;
forces.M 03 = M 03;
forces.M 04 = M o4;

forces.tau_il = tau il';
forces.tau i2 = tau_i2';
forces.tau i3 = tau_ i3';
forces.tau_i4 = tau_id';

forces.tau_ol = tau_ol;
forces.tau_o2 = tau_o2;
forces.tau_o3 = tau_o3;
forces.tau o4 = tau_o4;

This program used the following functions:
- getApproximateForcesHalbachs.m

Code for this is shown below
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function[Fx Fy Fz Tx Ty Tz] = getApproximateForcesHalbachs(...

centroidl, thetaZl,dl, ...

centroid2, thetaZ?2,d2,J)
I tion gets force informaticn for a pair of halbach arrays from a
ble

load aliMagnetData

xDisplacements = allMagnetData.xDisplacements;
yDisplacements = allMagnetData.yDisplacements;
zDisplacements = allMagnetData.zDisplacements;
thetaDisplacements = allMagnetData.thetaDisplacements;

xd = centroid2(l) - centroidl(l);
yd = centroid2(2) - centroidl(2);
zd = centroid2(3) - centroidl(3);
thetad = thetaZ2 - thetaZl;

[®xValue xIndex] = min(abs(xd - xDisplacements));
[yValue yIndex] min (abs(yd - yDisplacements));
[zValue zIndex] = min(abs(zd - zDisplacements));
[thetaValue thetalndex] = min(abs(thetad - thetaDisplacements));

vec = allMagnetData.dataMatrix{xIndex(l), yIndex(l),...
zIndex (1), thetaIndex (1) };

Fr = vec(l); )

Fy = vec(2);

Fz = vec(3);

Tx = vec(4);

Ty = vec(5);

Tz = vec(6);

functicn[eddyForcesOuter] = getEddyForcesOuter (state,b);

iz_oDot y _oDbeot x _iDot y_iDeot theta iDot xd vd thetadl';

de e

em = [-b*state(l) -b*state(2)];
eddyForcesOuter.M ol = [em 0];

eddyForcesOuter.M 02 = [em 0];

eddyForcesOuter.M o3 = [em 0];

eddyForcesOuter.M o4 = [em 0];

eddyForcesOuter.tau ol = [0 0 0];
eddyForcesOuter.tau:OZ = [0 O 0];
eddyForcesCuter.tau o3 = [0 0 0];
eddyForcesOuter.tau_o4 = [0 0 0];
function[eddyForcesInner] = getEddyForcesInner (state,b)

ot y_obot x_iDot y ibDot theta iDot xd yd th

em = [-b*state(3) -b*state(4)];
eddyForcesInner.M il = [em 0];
eddyForcesInner.M i2 = [em 0];’
eddyForcesInner.M i3 = [em 0];
eddyForcesInner.M i4 = [em 0];
eddyForcesInner.tau_il = [0 0 0];
eddyForcesInner.tau_i2 = [0 0 0];

eddyForcesInner.tau_i3 [0 0 0];
eddyForcesInner.tau_i4 = [0 0 0];



function[reactionForcesOuter] = getReactionForcesOuter (v_outerC, inputs, ...
staticMagnetForces)

sclves a system of eguations
I think I'll write a script
% inputs and then Jjust w e

% Manas Menon
% started 3/19/2010, but it

A =

to get x
o £ind t

e it here...

‘1l be some

% inputs of the fecllowing fcrm:

% v_oC
% input

S

= [v_oCx v_oCyl;

= [tau _motor2 tau motorl]

load allInitializedbData

% input

S

NPUTS

v_outerC(1l);
v_outerC(2);

tau_motor2 = inputs(1l);
tau_motor3 = inputs(2);

F_motor2 =
F_motor3 =

% magnet forces
staticMagnetForces.M ol;
staticMagnetForces.M 02;
staticMagnetForces.M o3;
staticMagnetForces.M o4;

M ol =
M o2 =
M o3 =
Mod =
M olx
M oly
M olz

M o2x =
M o2y
M o2z

I

M o3x =
M o3y
M o3z =

I

M o4x
M ody
M odz =

% magne
tau_ol

L

tau_o2 =

tau_o3
tau_o4
tau_olx
tau_oly
tau_olz

tau_o2x
tau_ o2y

tau_o2z =

tau_o3x
tau_o3y
tau o3z

M ol(l); %
M ol(2);
M 0l(3);

M 02(1); %
M 02(2);
M 02(3);

M 03(1); %
M _03(2);
M 03(3);

M 04(1l); %
M 04 (2);
M 04(3);

torgues

staticMagnetForces
staticMagnetForces
staticMagnetForces

staticMagnetForces
= tau ol(l); %
= tau_ol(2);
= tau o0l (3);

= tau_o2(1l); %
= tau_o02(2);
tau o2 (3);

= tau 03(1); %
= tau_o03(2);
= tau_o03(3);

tau_motor2/wheelRadius;
tau_motor3/wheelRadius;

.tau_ol;
.tau_o2;
.tau_o3;
.tau_o4;

solution

time before

/2010. Finding the reactiocn forces has
of linear eguaticns.

ion forces for

to this

outer robot.
r the given

the

I finish

been reduced to solving
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tau odx = tau o4 (1l); %

tau_ody = tau_o4(2);

tau_odz = tau_o4(3);

A from ano

if the veloc

G s

if norm(subs(v_outerC)) <.00
A outer = A outer(l:5,1:5
b_outer = b _outer(l:5);
sA _outer = subs (A outer);
sb_outer = subs(b_outer);
rvec = inv(sA outer)*sb o
reactionForcesOuter.R olx

reactionForcesQuter.R oly =

reactionForcesQuter.R_c4dx
reactionForcesOuter.R_ocdy

else % if the rcbot is movin

sA outer = subs (A outer);
sb_outer = subs (b_outer);
rvec = inv(sA_outer)*sb o

reactionForcesQuter.R olx =

reactionForcesOuter.R _oly

reactionForcesOuter.R _o4dx

reactionForcesOuter.R_ocdy
end

reactionForcesOuter.R olz =
reactionForcesOuter.R:OZZ =
reactionForcesOuter.R o3z =
reactionForcesOuter.R odz =
reactionForcesOuter.R o3y =

ther program,

e
ity of t els is 0, and make a few

13 robot is ~still

Y

ute

|
coocon
PR TIETES

=
w©
0

=

OMMON case)

i=]

uter;

rvec (&) ;
rvec(7);
rvec (8);
= rvec(9);

rvec(l);
rvec(2);
rvec(3);
rvec(4);
rvec(5);

reactionForcesOuter.R_ol = [reactionForcesOuter.R olx ...
reactionForcesOuter.R_oly reactionForcesOuter.R olz];
reactionForcesOuter.R 02 = [F motor2 ...
0 reactionForcesOuter.R _o2z];
reactionForcesQuter.R 03 = [F_motor3 ...
reactionForcesOuter.R o3y reactionForcesOuter.R o3z];
reactionForcesQuter.R o4 = [reactionForcesOuter.R odx ...
reactionForcesOuter.R ody reactionForcesOuter.R_odz];

function|[reactionForcesInner] = getReactionForcesInner(v_innerc,...
staticMagnetForces)

s¢lves so to find the reaction forces on

% ct, in the
% v_innerC = (v_iCx v_iCy v_iCtheta) % NOTE V_THETA IS INCLUDED
load alix alizedData

% wvelocd
v_iCx = v_innerC(l);
v_iCy = v_innerC(2);
v_iCtheta = v_innerC(3);

% magnet £«
M il = staticMagnetForces.M il;
M i2 = staticMagnetForces.M i2;
M i3 = staticMagnetForces.M 1i3;
M i4 = staticMagnetForces.M i4;
M ilx = M il(1); %
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M ily = M i1(2);
M ilz = M_il(3);
M i2x = M_i2(1); %
M_i2y = M_i2(2);
M_i2z = M_i2(3);
M i3x = M_13(1);
M i3y = M_i3(2);
M i3z = M_i3(3);
M_idx = M_i4(1); %
M_idy = M_i4(2);
M idz = M_14(3);

% magnet torques

tau il = staticMagnetForces.tau_il;
tau_i2 = staticMagnetForces.tau_i2;
tau_i3 = staticMagnetForces.tau_i3;
tau_i4 = staticMagnetForces.tau_id;
tau_ilx = tau_1i1(1); #

tau_ily = tau_il(2);

tau_ilz = tau_1i1(3);

tau_i2x = tau_i2(1); %

tau_i2y = tau_i2(2);

tau_i2z = tau_i2(3);

tau_i3x = tau_i3(1l); %

tau_i3y = tau_i3(2);

tau_i3z = tau_i3(3);

tau_idx = tau_i4(1);

tau_idy = tau i4(2);

tau_idz = tau_i4(3);

if norm(subs (v_innerC))<.001;
reactionForcesInner.R ilx = 0;
reactionForcesInner.R ily = 0;
reactionForcesInner.R_i2x = 0;
reactionForcesInner.R_i2y = 0;
reactionForcesInner.R_i3x = 0;
reactionForcesInner.R_i3y = 0;
reactionForcesInner.R_idx = 0;
reactionForcesInner.R_idy = 0;
sA_inner = subs(A inner(l:4,1:4));
sb_inner = subs(b_inner(1:4));
rvec = inv(sA_inner)*sb inner;

elseif norm(subs(v_iwl)) <.001
reactionForcesInner.R_ilx = 0;
reactionForcesInner.R ily = 0;

sA_inner = subs(A_inner([1:4,7:12],
sb_inner = subs(b_inner([1:4,7:12])

rvec = inv(sA_inner)*sb_inner;

[1
)i

reactionForcesInner.R_i2x = rvec(5);
reactionForcesInner.R_i2y = rvec(6);
reactionForcesInner.R_i3x = rvec(7);
reactionForcesInner.R_i3y = rvec(8);
reactionForcesInner.R_idx = rvec(9);
reactionForcesInner.R _idy = rvec(10);-

elseif norm(subs (v_iw2)) <.001;
reactionForcesInner.R_i2x [0}
reactionForcesInner.R_i2y = 0;

sA_inner = subs (A_inner([1:6,9:12], [1
sb_inner = subs(b_inner([1:6,9:12]));

rvec = inv(sA_inner)*sb inner;

reactionForcesInner.R_ilx = rvec(5);
reactionForcesInner.R_ily = rvec(6);
reactionForcesInner.R_i3x = rvec(7);
reactionForcesInner.R_i3y = rvec(8);
reactionForcesInner.R_idx = rvec(9);
reactionForcesInner.R_idy = rvec(10);

elseif norm(subs(v_iw3)) < .001
reactionForcesInner.R_i3x = 0;
reactionForcesInner.R_i3y = 0;

:4,7:121));

16,9:121)):



sA_inner = subs(A inner([1:8,11:12],([1:8,11:12]));
sb_inner = subs(b_inner([1:8,11:12]));
rvec = inv(sA inner)*sb_inner;
reactionForcesInner.R_ilx = rvec(5);
reactionForcesInner.R ily = rvec(6);
reactionForcesInner.R _i2x = rvec(7);
reactionForcesInner.R i2y = rvec(8);
reactionForcesInner.R_i4x = rvec(9);
reactionForcesInner.R_idy = rvec(l10);
elseif norm(subs(v_iw4)) < .001
reactionForcesInner.R_idx = 0;
reactionForcesInner.R _idy = 0;
sA_inner = subs(A inner(1:10¢,1:10));
sb_inner = subs(b _inner(1:10));
rvec = inv(sA_inner) *sb_inner;
reactionFercesInner.R_ilx = rvec(5);
reactionForcesInner.R_ily = rvec(6);
reactionForcesInner.R_i2x = rvec(7);
reactionForcesInner.R_i2y = rvec(8);
reactionForcesInner.R_i3x = rvec(9);
reactionForcesInner.R_i3y = rvec(10);
else :
sA_inner = subs(A_inner);
sb_inner = subs(b_inner);
rvec = inv(sA_inner)*sb_inner;
reactionForcesInner.R ilx = rvec(5);
reactionForcesInner.R_ily = rvec(6);
reactionForcesInner.R _i2x = rvec(7);
reactionForcesInner.R_i2y = rvec(8);
reactionForcesInner.R _i3x = rvec(9);
reactionForcesInner.R i3y = rvec(10);
reactionForcesInner.R _idx = rvec(11l);
reactionForcesInner.R_i4y = rvec(l2);

end

reactionForcesInner.R ilz = rvec(l);
reactionForcesInner.R_i2z = rvec(2);
reactionForcesInner.R i3z = rvec(3);

reactionForcesInner.R idz = rvec(4);

reactionForcesInner.R_il = [reactionForcesInner.R_ilx
reactionForcesInner.R ily reactionForcesInner.R ilz];
reactionForcesInner.R_i2 = [reactionForcesInner.R _i2x
reactionForcesInner.R_i2y reactionForcesInner.R_i2z];
reactionForcesInner.R i3 = [reactionForcesInner.R i3x
reactionForcesInnEr.R_i3y reactionForcesInnerTR_iBz];
reactionForcesInner.R_i4 = [reactionForcesInner.R_i4x

reactionForcesInner.R_i4y reactionForcesInner.R_idz];

Simplified model

Next we show code used in the point to point model of the system. This code assumes the
robot moves along a straight line, has fewer states and is much less complicated. It is also
worth noting that the structure of this code, as well as many file names, have been altered for
simplicity in running DIDO (the numerical trajectory optimization program).

of the program written for numerical optimization b

% state = [z oDOt ¥ iDot xd X o]°';
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% load constants and assign stuff
load allinitializedData

% preallocate
XDOT = zeros(size(primal.states));
for a = l:size (XDOT, 2)

x_oDot = primal.states(l,a);
x_iDot = primal.states(2,a);
xd = primal.states(3,a);
X o = primal.states(4,a);

state = [x_oDot x_iDot xd x o];

% look at the state vector at each time (node)
find static magnetic forces and torgues, assign stuff
should be in a form that 1es 'primal'

%
Q_.
% for each 'node' in pris
2

.nocdes (W} corresponds te a time), there
should be a value for staticMagnetForcesArray. So the first entry is
staticMagnetForces = getApproximateForcesRobotPair (state,...
P_xX,p_z,p_tau);
smf = staticMagnetForces;
% find magnetic forces due to eddy currents
eddyForcesOQuter = getEddyForcesOuter (state,b);
eddyForcesInner = getEddyForcesInner (state,b);
efo = eddyForcesOuter;
efi = eddyForcesInner;
M ol = smf.M ol + efo.M ol;
M 02 = smf.M 02 + efo.M 02;
M 03 = smf.M 03 + efo.M 03;
M o4 = smf.M o4 + efo.M o4;
totalMagnetForcesQuter.M ol = M _ol;
totalMagnetForcesOuter.M 02 = M 02;
totalMagnetForcesOuter.M o3 = M 03;
totalMagnetForcesOuter.M o4 = M o4;
totalMagnetForcesOuter.tau ol = smf.tau ol;
totalMagnetForcesOuter.tau o2 = smf.tau 02;
totalMagnetForcesOuter.tau o3 = smf.tau o3;
totalMagnetForcesOuter.tau_od4 = smf.tau_o4;
M il = smf.M il + efi.M il;
M i2 = smf.M i2 + efi.M 1i2;
M i3 = smf.M i3 + efi.M i3;
M i4 = smf.M i4 + efi.M id; % remember these are in INNER ROBOT FRAME

totalMagnetForcesInner.M il = M il;
totalMagnetForcesInner.M i2 = M i2;
totalMagnetForcesInner.M i3 = M _i3;
totalMagnetForcesInner.M i4 = M i4;
totalMagnetForcesInner.tau_il = smf.tau_il;
totalMagnetForceslInner.tau i2 = smf.tau i2;
totalMagnetForcesInner.tau_i3 = smf.tau_i3;
totalMagnetForcesInner.tau i4 = smf.tau_i4;

forces and assign stuff

% inputs
tau_motor2 = primal.controls(a)/2;
tau_motor3 = primal.controls(a)/2;
inputs = [tau_motor2 tau_motor3];

reactionForcesOuter = getReactionForcesOQuter ([x_oDot 0], inputs,...

totalMagnetForcesOuter) ;
R o0l = reactionForcesOuter.R ol;
R_02 = reactionForcesOuter.R o02;
R_03 = reactionForcesOuter.R _o3;
R_04 = reactionForcesOuter.R o4;

inner robot
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reactionForcesInner = getReactionForcesInner ([x_iDot 0 0],...
totalMagnetForcesInner);
R i1 = reactionForcesInner.R 11;

R _i2 = reactionForcesInner.R i2;
R 13 = reactionForcesInner.R_i3;
R _i4 = reactionForcesInner.R_1i4;

n

% now sum the force
magnetForcesOuterx M ol(l) + M 02(1) + M 03(1) + M oc4(1);
magnetForcesInnerx = M_i1(1) + M _i2(1) + M i3(1) + M i4(1);
reactionForcesOuterx = R _0ol(l) + R 02(1) + R_03(1) + R_o4(1l);
reactionForcesInnerx = R _il(1l) + R_12(1) + R _i3(1) + R _i4(1);
totalForcesOQuterx = magnetForcesOuterx + reacticnForcesOuterx;

LI

totalForcesinnerx = magnetForcesInnerx + reactionForcesInnerx;

% now do linear forces

x_oDotDot = totalForcesOuterx/m _o;
x_iDotDot = totalForcesInnerx/m_i;
xd Dot = x_iDot - x_oDot;

% reminder:

% state = ix oDot x iDot xd x ol';
XDOT (1,a) = x_oDotDot;

XDOT (2,a) = x_iDotDot;

XDOT (3,a) = =d_Dot;
XDOT (4,a) = x _oDot;
end

This function calls the following functions:

- getkEddyForcesOuter.m
- getEddyForcesinner.m

This code is nearly identical to that shown in the previous section and is not shown here.
Additionally, the function called:

- getApproximateForcesRobotPair.m
- getReactionForcesOuter.m
- getReactionForceslnner.m

This code is shown below.

function approximateForcesRobotPair = getApproximateForcesRobotPair(...
state,p_x,p_z,p_tau)

% Manas Menon

% 4/7/2010

% This uses the 1 DOF robot model, tractability is sweet

state = {x oDot ® iDot xd x o]';

o

xd = state(3);
xForce = polyval(p_x,xd);

zForce = polyval(p_z,xd):
yMoment = polyval (p tau,xd); % these are forces on BACH OUTER ROBOT MAGNET
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afrp.M ol = [xForce 0 zForce];

afrp.M 02 = [xXForce 0 zForce];
afrp.M o3 = [xForce 0 zForcel;
afrp.M o4 = [xForce 0 zForce];

afrp.M il = [-xForce 0 -zForce];
afrp.M _i2 = [-xForce 0 -zForce];
afrp.M i3 = [-xForce 0 -zForce];
afrp.M i4 = [-xForce 0 -zForce];

afrp.tau_ocl = [0 yMoment 0];
afrp.tau_o2 = [0 yMoment 0];
afrp.tau_o3 = [0 yMoment 0];
afrp.tau o4 = [0 yMoment 0];
afrp.tau_il = -[0 yMoment 0];
afrp.tau_i2 = -[0 yMoment 0];
afrp.tau_i3 = -[0 yMoment 0];

afrp.tau_i4 = -[0 yMoment 0];

approximateForcesRobotPair = afrp;

function[reactionForcesOuter] = getReactionForcesQuter (v_outerC, inputs, ...

totalMagnetForcesOuter)

clves a system of eguaticns to get rea
think I'll write a script to find the s
inputs and then just write it here...

this

% Manas Menon
% started 3/19/201

L]

, but it'll be some time before I finish

It's 3/24/2010.

% el

v_oCx

% inputs
tau_motor2 = inputs(l);
tau_motor3 inputs (2);

% magnet forces

M ol = totalMagnetForcesOuter.M ol;
M 02 = totalMagnetForcesOuter.M 02;
M o3 totalMagnetForcesOuter.M_o3;
M 04 = totalMagnetForcesOuter.M o4;
M olx = M ol(1);

M olz = M_ol(3);

M o2x = M 02(1); %

M 02z = M 02(3);

M o3x = M o3(1); %

M 03z = M 03(3);

M odx = M 04 (1);

M odz = M 04(3);

]

% magnet torques

tau_oly = totalMagnetForcesQuter.tau ol(2);
tau_o2y totalMagnetForcesOuter.tau o2(2);
tau_o3y = totalMagnetForcesOuter.tau o3(2);
tau_ody = totalMagnetForcesOuter.tau_ o4 (2);

s for the outer robot.
(o]

for the given

n reduced to solving
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% we have
% need to

% changes

er program, plug it in here:
ity of the passive wheels is 0, and make a few

AND MAKE SURE THIS IS ACC

ON MY FINAL RUN

wheelRadius

.061976;

e = /0257
F_motor2 = tau _motor2/wheelRadius;
F_motor3 = tau_motor3/wheelRadius;
A outer = [ -18059/50000, 1811/5000, 15247/62500;
2,2:0; !

1/40*v_oCx/abs (v_oCx), 0, -11;
b_outer =

([ -2281/25000*M olx+107/1000*M 012-2281/25000*M 02x-107/1000*. ..

M 022z-2281/25000*M 03x-107/1000*M_032z-2281/25000*M 04x+107/1000%...
M _od4z-tau oly-tau o2y-tau o3y-tau_ody-3/50*F motor2-3/50*F motor3-...
tau_motor2-tau _motor3;

-M _olz-M_o2z-M_o03z-M 04z+4263/50;

01);
2539 CHECK AND WHEEL RADIUS AND C...
% & % ARE i initializeValues.m

smallv = .001;
if norm(v_outerC) <smallV % consider the case where the rcbot is ~still

sA outer = (A ocuter(1:2,1:2));

sb_outer = (b_outer(l:2));

rvec = inv(sA_outer)*sb_outer;

reactionForcesOuter.R_olx = -abs(c*rvec(l))/smallV*norm(v_outerC) ;
else % if the robof is moving (more common case)

sA outer = (A _outer);

sb_outer = (b_outer);

rvec = inv(sA outer) *sb_outer;
reactionForcesOuter.R _olx = rvec(3);

end

reactionForcesOuter.R_olz = rvec(l);

reactionForcesOuter.R 02z = rvec(2);

reactionForcesOuter.R ol = [reactionForcesOuter.R olx
0 reactionForcesOuter.R olz];

reactionForcesOuter.R_o2 = [F_motor?

0 reactionForcesOuter.R o2z];
reacticonForcesOuter.R 03 = reactionForcesOuter.R_o2;
reactionForcesOuter.R 04 = reactionForcesOuter.R ol;

I

function[reactionForcesInner]
totalMagnetForcesInner)

getReactionForcesInner (v_innerC, ...

Manas Menen
3/25/2010

<

n sclves some
robot, in the

% v_innerC = (v_iCx v_iCy v_iCtheta) % NOTE V T

%

magnet forc:
M il = totalMagnetForcesInner.M il;

M i2 = totalMagnetForcesInner.M iZ2;
M i3 = totalMagnetForcesInner.M 1i3;
M i4 = totalMagnetForcesInner.M i4;
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M ilx = M_il1(1);

o

M ilz = M_i1(3);
M i2x = M 12(1); %

M_i2z = M_i2(3);
M_i3x = M_i3(1);

o

M i3z = M_i3(3);
M idx = M_i4(1); %

M idz

M 14(3);

% magnet torques

tau_il = totalMagnetForcesInner.tau_il;
tau_i2 = totalMagnetForceslInner.tau iZ2;
tau_i3 = totalMagnetForcesInner.tau_i3;
tau_i4 = totalMagnetForcesInner.tau_i4;

tau_ily = tau_il(2);
tau_i2y = tau_12(2);
tau_i3y = tau_i3(2);
tau_idy = tau_id(2);

% CHECK THIS BEFORE RUNNING FINAL VERSION
c = .025;
A inner =...
[ -18059/50000, 18059/50000,-459/5000, -459/5000;
2y 2, 0, 0;
-1/40*v_iCx/abs (v_iCx), o, =1, 0;
0, -1/40*v_iCx/abs(v_iCx), 0, -11;
b_inner = ...

[1/50*M_i1x+107/1000*M ilz+1/50*M i2x-107/1000*M i2z+1/50*...
M i3x-107/1000*M _i3z+1/50*M i4x+107/1000*M idz-tau_ily-tau_i2y-...
tau_i3y-tau_idy;

-M_ilz-M i2z-M i3z-M 142+1421/25;

smallv = .001;
if norm(v_innerC)<smallV;

sA_inner = (A _inner(1:2,1:2));

sb_inner = (b_inner(l:2));

rvec = inv(sA_inner)*sb_inner;

reactionForcesInner.R_ilx = -abs(c*rvec(l))/.001*v_innerC;

reactionForcesInner.R_i2x = -abs(c*rvec(2))/.001*v_innerC;
else

sA_inner = (A_inner);

sb_inner = (b_inner);

rvec = inv(sA_inner)*sb_inner;

reactionForcesInner.R_ilx = rvec(3);
reactionForcesInner.R_i2x = rvec(4);
end

reactionForcesInner.R_ilz = rvec(l);
reactionForcesInner.R i2z = rvec(2);

reactionForcesInner.R_il = [reactionForcesInner.R_ilx
0 reactionForcesInner.R ilz];
reactionForcesInner.R i2 = [reactionForcesInner.R _i2x

0 reactionForcesInner.R iZ2z];
reactionForcesInner.R_i3 = reactionForcesInner.R i2;
reactionForcesInner.R _i4 = reactionForcesInner.R il;
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B. MATLAB initialization

Magnet Data

This section shows the MATLAB code used to generate magnet force data. This data is fit to a high order
polynomial curve so that it does not have to be re-generated every time the dynamics simulation needs
force information.

% Tk function generates data for a bunch of d
% scenarics. This data will later be fit to a

ix_obDot x_iDot xd]';

close all
ol

initializeValues
xDisplacements = -.05 :.001: .05;

cubeDim = 0.0254;
step = cubeDim/10;

dataMatrix = cell(length(xDisplacements));

for xIndex = 1l:length(xDisplacements)
xd = xDisplacements (xIndex);
state = [0 0 xd];
[M_ol tau_ol] = getForcesRobotPair (state,cubeDim,step);
maEnetDataMatrix(xIndex,:} = [®xd M ol(l) M cl(3) tau ol(2)]

end

mdm = magnetDataMatrix;

p_x = polyfit (mdm(:,1),mdm(:,2),6);

p z = polyfit (mdm(:,1),mdm(:,3),6);

p _tau = polyfit(mdm(:,1),mdm(:,4),6)};

save ('mdm', 'mdm')

plot (mdm(:,1),mdm(:,2), " 's")

hold on

plot(mdm(:,1),polyval (p_x,mdm(:,1)))
title('Accuracy of pelynomial approximaticn Lo magnet forces',...
',28)

acement (m)','Fontsize',28)

', 28)

', "Polynomial apg

xlabel ('disp
ylabel ('Force (N)',®
legend ('Actual

This function calls -

- getForcesRobotPair

which is shown below

function[M_ol tau_ol] = getForcesRobotPair (state,cubeDim,step)

% this function gets the forces on a pailr of robots due to the halbach



array static force it alsc gets torgues. this function now finds
ACTUAL FORCES, ot estimates, so use this with:
generatebDualRobotMagnetData.m

o0 o o

o

alsc due te symmetry, I1'wve been able to cut this way down

20

manas menon, 3/29/2010
% state = [x oDot x _iDot xdl*';

itializedData

xd = state(3);

zd = (m_8 - m_7 + skinThickness + n_8 - n_7); * z distance between magnets
% find position of inner magnets

c_ol [r_oml(1:2) 0]; % location of ocuter magnet 1

c i1 = [xd 0 zd] + [r_iml(1:2)'; 0]'; % xd and yd come from 'state!
theta_ol = atan2(m_2,m_1) - pi/2;
theta_il = theta_ol;

% we calculate force on upper (inner) robot, so we take the negative of
this force te find the force on the cuter (lower) rchot

ol

% Magnet 1

[Fx Fy Fz Tx Ty Tz] = getForcesHalbachs(c_ol, theta ol,1,
c_1il, theta_il, -1,J,cubeDim,step};

Mol = -[Fx 0 Fz];

tau_ol = -[0 Ty 0];

This function calls
- getForcesHalbachs.m

Which is shown below:

function[Fx Fy Fz Tx Ty Tz] = getForcesHalbachs (centroidl, thetaZzl,dl,
centroid2, thetaz2,d2,J, cubeDim, step)

b

% this function finds the forces / (and torques?) between a pair of halbach

% arrays.

% Manas Menocn
% 3/10/2010

if centroidl(3) > centroid2(3)
error ("FIRST halbach array must be lower array')
end

mu = 1.26e-6;

% First create a surface over which we will calcul

% tensor.

[x1 x2 yl y2 z1 z2] = getTensorSurface(centroidl,thetaZl,centroid2...
,thetaZ2, cubeDim) ;

te maxwell's stress

shot

<e Correspon

retize the tensor surface -
as vectors normal to the

m

[locatlons normals] = getEvaluationlLocations(xl,x2,yl,y2,21,z2,step);
temp = ones(size(locations));
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% create T ix full of wvectors from magnet COM to evaluat
temp(:,1) temp(:,1)*centroid2 (1) ;

temp(:,2) = temp(:,2)*centroid2(2);

temp(:,3) temp(:,3) *centroid2(3);

momentArms = locations - temp;

clear temp

% find field at each of these locations due to BOTH halbach arrays
fields = nan(size(locations));
for k = 1l:length(fields)
location = locations(k,:);
[Bxl Byl Bzl] = findFieldHalbach (centroidl,cubeDim,J,dl,thetazl, ...
location) ;
[Bx2 By2 Bz2] = findFieldHalbach (centroid?2, cubeDim, J,d2, thetaZ2, ...
locatioen) ;
if sum(isnan([Bxl Byl Bzl Bx2 ByZ2 BzZ]))
disp([Bxl Byl Bzl Bx2 By2 Bz2])
disp(location)
error ('nan')
end '
fields (k,:) = [Bxl + Bx2,Byl + By2,Bzl + Bz2];
end

% SOME PLOTTING CODE HERE T0 HELP IN DEBUGGING *¥*®dkiakdidxiddiddidrx ik itd

drawHalbach (centroidl, cubeDim, J,dl, thetaZl)

drawHalbach (centroid2, cubeDim, J,d2, thetaZ2)

drawTenscorSurface (x1,x2,y1,vy2,21,22)

guiver3 (locations(:,1),locations(:,2),locations(:,3),fields(:,1)...

,fields(:,2),fields(:,3))
ver3d(locations (:,1),locations (:
,normals (:,2),nor 2

R A TR AT AR T A KT A AT A AT AATAAFT AN FTAAFTAN T AR T AN T A AT AR T AT A AT AN T A AT AR F A AT A AT R A+ & k&

% ogu Long{:, 3, normals{s,1Y ...

k1

.

% calculate maxwell's stress tensoer
forces = zeros(size(locations));
for i = 1:3
for t = l:length(fields)
H = fields(t,:)/mu;
n = normals{t,:);
j = find(n ~= 0);
if i == j;
Hk = H(1)"2 + H(2)"2 + H(3)"2;
forces (t,1) = (H(1)"2 - (1/2)*Hk)*sum(n);
else
forces (t,1i) = H(i)*H(]J)*sum(n);
end
end
end
forces = forces.*step”2*mu;

% now find torques
torques = nan(size(forces));
for t = l:length(forces)
torques (t,:) = cross(momentArms(t,:),forces(t,:)};
end

% assign ocutputs

Fx = sum(forces(:,1))

Fy = sum(forces(:,2))

Fz = sum(forces(:,3));
)
)
)

-

Tx = sum(torques(:,1
Ty = sum(torgues(:,2
Tz = sum(torques(:,3

This function calls:

- getTensorSurface.m
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getEvaluationLocations.m
findFieldHalbach.m

These are shown below:

function[xl x2 yl y2 zl z2] = getTensorSurface (centroidl, thetaZl, ...
centroid2, thetaZz2, cubeDim)

% Given 2 halbach arrays, this function generates a rectangular

% used to calculate the ma

% of

1 stress tensor. Outputs are the

the surfaces.

% Arrays are assumed tc be the same size

% Manas Menon

% 3/1

0/2010

% first put

cl(1)
cl(2)
cl(3)
e21(1)
c2(2)
c2(3)

el
c2

Rl

R2 =

some vectors intc a nice usable form

= centroidl (1);
= centroidl (2);
= centroidl (3);
= centroid2(1);
= centroid?2 (2);
= centroid2 (3);

[c1(1);

cl(2)];

[e2(1);c2(2)]);

[cos (thetaZl) -sin(thetaZl);
sin(thetaZl) cos(thetaZl) 1];

[cos (thetaZ2) -sin(thetaz2) ;
sin(thetaZ2) cos(thetaz?) ];

cd = cubeDim;

surface

locations

cornersx = [-1.5*cd,-1.5%cd,1.5*%cd,1.5*cd];

cornersy = [-0.5*cd,0.5*cd,0.5*%cd,-0.5*cd];

rotatedCorners = [R1*[cornersx;cornersy] R2*[cornersx;cornersyl];
finalCorners = rotatedCorners + [cl cl cl ¢l c2 c2 c2 c2];

maxX = max (finalCorners(l,:));

minX = min (finalCorners(l,:));

maxY = max (finalCorners(2,:));

minY = min(finalCorners(2,:));

% max / min X and Y give the locations of the corners
bottomOfTopArray = max (centroidl (3) ,centroid2(3)) - cd/2;

topOfBottomArray = min(centroidl(3),centroid2(3)) + cd/2;

if bottomOfTopArray < topOfBottomArray
error ('Arrays are intersecting')

mean ( [bottomOfTopArray topOfBottomArrayl);

cd / 2;

bottomOfTopArray + cd + clearance;

end
z1l =
clearance =
z2 =
x1l = minX -
X2 = maxX +
yl = minY -
y2 = max¥ +

clearance;
clearance;
clearance;
clearance;
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function[locations, normalVectors] = getEvaluationLocations (x1,x2,y1,v2,...
zl,z2,step)

b
o4
"
U

as well as normal vectors

create discretizaticn points

xVec = [x1 + step/2 : step : x2 - step/2];
yVec = [yl + step/2 : step : y2 - step/2];
zVec = [zl + step/2 : step : z2 - step/2];

n outpuits
numberOfPoints = length(xVec)*length(yVec)*2 + length(xVec)*length (zVec)*2
+ length(yVec) *length(zVec)*2;

locations = ones (numberOfPoints,3) *NaN;
normalVectors = locations;
% these just initialize the values, need toc fix this

Bottom surface

it
for x = xVec
for y = yVec

locations(k,:) = [x,v,zl];
normalVectors(k,:) = [0 0 -1];
k=k + 1;
end
end
% » surface

for x = xVec
for y = yVec

locations(k,:) = [x,y,22];
normalVectors(k,:) = [0 0 1];
k=% + 1;
end
end
% Front urface
for x = xVec
for z = zVec
locations(k,:) = [x,vl,z];
‘normalVectors (k,:) = [0 -1 0];
k=%k+ 1;
end

end

% Back sur
for x = xVec
for z = zVec
locations(k,:) = [x,v2,2];
normalVectors(k,:) = [0 1 0];
k=%k + 1;
end
end

% 'Right' surface
for z = zVec

fer vy = yVec

locations(k,:) = [x2,y,z];
normalVectors(k,:) = [1 0 0];
k=%k + 1;
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for z = zVec
for y = yVec
locations(k,:) = [x1l,y,2];
normalVectors(k,:) = [-1 0 0];
k=% + 1;
end
end

if sum(isnan(locations) + isnan(normalVectors))
error ('something didn''t get assigned')
end

function[Bx By Bz]=findFieldHalbach (centroid, cubeDim, J,direction, thetaZ, location)
findFieldHalbach.m

Manas Menon

3/98/2010

tof e of

% This program generates the fields due to a halbach array

. The halbach array is composed of cuboidal magnets. The function takes as
% inputs the CENTROID of the magnet ARRARY, the dimension of a CUBE side,
% the magnetic charge density J, the direction (1 or -1 - ie is it facing

% up or down) and the angle theta z about the z axis. ©No rotation is
% allowed about % or y. Field is found at LOCATION

% Two halbach arrays wi
% 'mated' wit

the same thetaZ and opposite directions are
cne ancther.

% choose different locations that correspond to each magnet
% remember tc change Bx By Bz as needed

% generate rctation matrix:

R = [cos(thetaZ) -sin(thetaZ) O0;
sin(thetaZ) cos(thetaZ) O0;
00 1];

a = cubeDim/2;

% first try one of the magnets
magnetllocation = R*[-3*a;-a;-al;

r = location - centroid - magnetlleocation';
% need to put r in the correct frame:

r = inv(R) *r';

% assume for now that this is correct,
dimensions = [cubeDim,cubeDim,cubeDim];

[X1 Y1 21] = findFieldSingle (dimensions,r,J):
vtemp = R*[X1;Y1;Z1];

X1 = vtemp(l);

Y1l vtemp (2) ;

zZ1 vtemp (3) ;

% now add other 'vertical' magnet
magnet3location = R*[a;-a;-al;

r = location - centroid - magnet3location’;
need to put r in the correct frame:

r = inv(R)*r';

o

[X3 Y3 Z3] = findFieldSingle (dimensions,r,-J); % ncte negative J
vtemp = R*[X3; Y3 ;Z3];

X3 = vtemp(l);

¥3 vtemp (2) ;

Z3 vtemp (3) ;

I

% now find field due to middle magnet - this is tricky
magnet2location = R*[-a;-a;al;
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r = location - centroid - magnet2location';
% need to put r in the correct frame:

RR = inv ([0 0 -1;0 1 0;1 0 01);

r = inv(RR)*inv(R) *r';

[X2 Y2 Z2] = findFieldSingle(dimensions,r,~direction*J);
vtemp = R*RR* [X2;Y2;Z2];

X2 = vtemp(l);

Y2 = vtemp(2);

Z2 = vtemp(3);

Bx = X1 + X3 + X2;

By = Y1 + ¥3 + ¥2;

Bz = zl + Z3 + Z2; WORKS

This function calls

- findFieldSingle.m

This is shown below:

function [Bx By Bz] = findFieldSingle(dimensions, location,J)

find¥FieldSingle.m

3 magnet. it

in the paper, [ D4 : 1 Analytical

. Magnets Alt tur by F. Bancel
i [ the system where we

then found

yrward
for solv

magnet is a box with sides length a
corner of the magnet is 1
give fields at
J is the magnetic pcle a of the magnet

ng y) and c
and

= dimensions(1);
= dimensions(2);
dimensions (3);
location(l);
location(2);
= location(3);

]

N X OO0
It

Bx = NaN;
By = NaN;
Bz = NaN;

while isnan (Bx) ||isinf (Bx) | |imag (Bx)

Bx = (J/(4*pi))*log{((b-y+sqrt (x"2-2*x*a+ty"2+a”2+b"2-2*y*b+z"2-2%z*c+c"2))*. ..
(-yt+sqgrt (x*2-2%z*c+z°2+y~2+c”2) } * (b-y+sgrt (x*2+b"2-2*y*b+2*24+y*2) ) *. ..
(-ytsgrt (x"2-2*x*aty"2+a~2+z72)) )/ ( (b-y+sqrt (x"2+b"2-2%y*b+z 24y"2-2%z*c+c"2) ) * ...
(-y+sqrt (x"2-2*x*a+y"2+a~2+c"2+z"2-2%z*c) ) * (b-y+sqrt (x"2-2*x*a+y"2+a"2+b"2-2*y*b+z"2)) *. ..
(=y+sart (x"2+2°2+y"2))) ) ;

¥ = ® + randn¥*eps”®.5;

y + randn*eps”.5;

z = z + randn*eps”.5;

<
I
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% disp('wiggle')
end
dl = x + y + z - sum(location);

while isnan (By) | |isinf (By) | |imag (By)
% % used to be: By =(J/(4*pi))*log(((a-x+sqrt (x"2-2*x*at+y*y+a*atx*x+b*brcre-2*y*b-2*z%c))*..
By = (J/(4*pi))*log(((a-x+sgrt (x*2-2*x*a+y*y+a*a+z*z+b*bt+c*c-2*y*b-2*z*c))*...
(-x+sqrt (x*x+z*z-2*z*cty*y+c*c) ) * (a-x+sqrt (x*x-2*x*aty*y+a*atz*z))*...
(-x+sqrt(x*x+z*z+b*b+y*y—2*y*b)})/((a—x+sqrt(x*x—2*x*a+y*y+a*a+z*z-2*z*c+c*c))*...
(—x+sqrt(x*x+z*z+b*b+y*y—2*y*b+c*c-2*z*c))*(a—x+sqrt(x*x—2*x*a+y*y+a*a+z*z+b*b—2*y*b))*...
(-x+sqrt(x*x+z*z+y*y))));

X = X + randn*eps”.5;

y = y + randn*eps”.5;

z = z + randn*eps”.5;

% disp('wiggle')

end

d2 = x +y + z - sum(location);

while isnan(Bz) ||isinf (Bz) | |imag (Bz)
% used to be Bz =
% (—J/(%*pi))*{atan(x*yi({c-z)*sqrt{x‘2+yA2+x”2-2*z*c+c“2)))+atan(((a—xj*y}!{(c—:)*sqrtiz“Z*
2ratuix 2+y 24zt 2-2% 2¥cten2) ) )+ .
Bz = (-J/(4*pi))* (atan(x*y/ ((c-z)*sqrt (x"2+y"2+2°2-2%z*c+c”2))) +atan(((a-x)*y)/ ((c-z) *sqrt(a"2-
2X a4 24yt 2427 2-2%2*ctcN2)) ) F. ok
atan ( (x* (b-y)) / ((c-2) *sgrt (b"2-2*b*y+x"2+y"2+2"2-2*z*c+c"2) )} +...
atan((((-a+x)* (-b+y))/ ((c-z) *sqgrt (a”~2+b"2-2*a*x+x"2-2*b*y+y"2+z"2-2*z*c+c*2))) ) +...
atan (x*y/ (z*sqrt (x"2+y~2+2°2)) ) +atan(((a-x)*y)/ (z*¥sqrt (a”*2-2%a*x+x"2+y"2+2"2)) ) +...
atan((x*(b—y))/{z*sqrt{b‘2+x“2—2*b*y+y“2+z“2)))+atan(((a—x}*(b—y))/(z*sqrt(a*2+b‘2—2*a*x+x“2—
2*b*y+y"2+2°2))) ) ;
% used to be atan((x*rb-y;)/(z*sq:t(b‘2+xA2~2*b*y+y’2¢z“2)})+atan(({afx)*(b—y))i(z*sqri(z‘?%b“E—
2¥a*xixr2-2*pry+y2+2°2))) ) ;
= X + randn*eps”.5;
= y + randn¥*eps”.5;
= z + randn*eps”.5;
s disp('wiggle')
end
d3 =x +y + z - sum(location);

ol -

if max([ dl1,d2,d3])>1leé6
disp(max ([ d1,d2,d3]))

Deriving reaction forces
In this section we show the derivation of reaction forces for the inner and outer robot. For the sake of
brevity, we only show the derivation for the full system case — the simplified case is a subset of this.

% deriveReact

(

% Manas Menon
2

started

with stuff

code over and {

50 we only

3 / need 4
mn of moments (2) linear

(1}

% 3/23/2010 - update - I
going to

g extra,
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itra equations can be immediately
i, 30 we're back to cnly 4

% magnet forces
L M iz M

M i3z M_i4

23 M 14 M 1lx M ily M ilz M i2x M i2y M i2z M i3x ...
¥ M idy M isz

tau i2x tau_i3x

iz tau iZ2z tau

syms R_il R_12 R i3 R_i4 R_ilx R_12x R_i3x R_i4x R _ily R i2y R i3y ...

R i4y R ilz R iZz R i3z R idz

% location wvectors
i r im3 ¥ imd r iwl r iw2 r iw3 r iwd

"% dimensions
syms n 1n2n3nédn?n8

% velocities

id some vectors

= [M i3x M i3y M i3z];
= [M id4x M id4y M idz];

M il = [M ilx M ily M ilz];
M i2 = [M i2x M_i2y M _i2z];
M i3

4

R_il = [R_ilx R ily R ilz];
R i2 = [R_i2x R i2y R i2z];
R i3 = [R_i3x R_i3y R i3z];
R i4 = [R_i4x R_idy R_idz];

tau_il = [tau_ilx tau ily tau_ilz];:
tau_i2 = [tau_i2x tau i2y tau_i2z];
tau_i3 = [tau_i3x tau_ i3y tau_i3z];
tau_id4 = [tau_idx tau idy tau idz];

% INNER ROBOT SPECIFIC

% magnet locations

r iml = [n_1,n_2,-n_7];

r im2 = [-n_1,n_2,-n _7];
r_im3 = [-n_1,-n_2,-n_7];
r im4d = [n_1,-n 2,-n_7];

% moments

magnetForceTorques = cross(r_iml,M il) + cross(r_im2,M i2) + ...
cross(r_im3,M i3) + cross(r_imd4,M i4);
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magnetTorques = tau_il + tau i2 + tau_i3 + tau_i4;

reactionTorques = cross(r_iwl,R_il) + cross(r_iw2,R_1i2) +
cross(r_iw3,R_i3) + cross(r_iw4,R_i4);

allTorques = magnetForceTorques + magnetTorques + reactionTorques;
eql = allTorques(1);
eq2 = allTorques(2);

% force in z direction

zForces = R_ilz + R_i2z + R_i3z + R_ idz + M_ilz + M i2z + M_i3z + M_ idz
= m_i*q.

eq3 = zForces;

% method of deformaticns INNER ROBOT SPECIFIC

% first find the equa:io" for e

plane = 'a i*x + i*y = 2';

deformationEql = subs(plane,{x,y,z],{O,Z*n_4,—deltaﬂ12));

deformationEg2 = subs(plane,{x,y,z},{2*n 3,0,-delta_i4});

[a_i b_ii = solve (deformationEql,deformationEg2,a_i,b_1i);

% plug reaction forces into deltas - be careful with sign!
% now pick either point 1 or 4. I choose 1!
delta_ic = R_i3z/k_1i3;

delta_il = R_ilz/k il - delta ic;

delta_i2 = R_i2z/k_1i2 - delta_ic;

delta_i4 = R_i4z/k_i4 - delta_ic;

a_i = subs(a_i,{'delta il','delta _12%; 'delta 14"}, .0
{delta_il,delta_1i2, ,delta _id});

b i = subs(b_i,{'delta il' 'ﬂpl ta_i2','delta i4'},
{delta_il,delta iZ2, delta4i4});

‘eqgd4 = a_i*(2*n_3) + b_i*(2*n_4) + delta_il;

hﬁ
b
e
0
ot
o
]
Hh
[
i}
(5}

ngitudinal fcrces.
f 'hi. w'r;eels.
v_ic = [v_ 1Cx v_iCy 01;
w i = [0 0 v_iCthetal;

v_iwl = v_ic + cross(w_i,r_iwl);
v_iw2 = v_ic + cross(w_i,r_iw2);
v_iw3 = v_ic + cross(w_i,r_iw3);

+ cross(w_i,r iwd);

[

v iwd = v ic

= —c*R_iZ2z*v

= ~c*R_iZz*v_iw2(2)/ (v

% R_i13x = -c*R_i3z*v_iw3(1)/(v_iw3(1)"2 + v iw3(2)"2)"{1/2);

% R i3y = -c*R_i3z*v_iw3(2)/(v_iw3(1)"2 + v_iw3(2)"2)"(1/2);

% R_i4x = -c*R_idz*v_iwd(1}/(v_iwd(l)"2 + v (V0 e pedi W R o

& R_i4y = -o*R_idz*v_iwd (2)/ (v_iwd(1)7"2 + v _ (2YR2 (L 2

% we can write these as cur equations:

eq5 = —c*R_ilz*v_iwl(1l)/(v_iwl(1)"2 + v_iwl(2)"2)"~(1/2)-R_ilx;

eq6 = -c*R_ilz*v_iwl(2)/(v_iwl(1)*2 + v_iwl(2)~2)"(1/2)-R_ily;

eq? —c*R_i2z*v_iw2(1l)/(v_iw2(1)"2 + v _iw2(2)*2)~(1/2)-R_i2x;
egB = -c*R_i2z*v_iw2(2)/(v_iw2(1)"2 + v_ Tiw2(2)~2) "~ (1/2)-R_i2y;

eq9 = -c*R_i3z*v_iw3(1)/(v_iw3(1)"2 + v_iw3(2)"2)"(1/2)-R_1i3x;
eql0 = -c*R_i3z*v_iw3(2)/(v_iw3(1)"2 + v_iw3(2)"2)"(1/2)-R_i3y;

eqll = -c*R_idz*v_iwd (1)/(v_iwd(1)"2 + v_iwd (2)"2)"(1/2)-R_idx;
eql2 = -c*R_idz*v_iw4(2)/(v_iwd(1)"2 + v_iwd (2)"2)"(1/2)-R_1i4y;
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Q.
w

ir and b vector to sclve Ax = b

now build the A m
i1 2 z R idz]

¥ = [R ilz R_iZz R

equationsVector = [e&l eq2—eq3 eqd eg5 egbt eq7 eq8 eqg% eqll eqll eql2?];
unknownsVector = [R_ilz; R i2z; R_13z; R _14z; R ilx; R _ily; R i2x; ...

R _i2y; R i3x; R i3y; R_idx; R_idy];

for i = 1l:1length{equationsVector)

equationChoice = equationsVector (i);
for j = 1l:length(unknownsVector)
unknownChoice = unknownsvVector (j);
A(i,j) = diff (equationChoice,unknownChoice);
end
b(i,1) = A(i,:)*unknownsVector - equationChoice;

end

A inner = A
b _inner = b
clear b

oe

e gp

op

%

syms tau 0%

syms R 0l R ci

]
’

get the r onn forces of the outer

rTCes w axis reac forces at wheelis (4) an
¥ axls reaction force that constrains the motion (1) which means we nes
5 equations fotal

Q.

L

1al reaction
uwations total

started 3/20/2

cd M elx M o

M ody M oz

tau_oZ tau_o3

au_olx tau_oZx tau o3x tau c4dx ...
a

tau_cly _ody tau_olz tau o2z tau_o3z tau_odz

reacti
lx R_o02x R_©3x% R o4x R cly R o2y R 03y ...

inputs

syms F_motorZ F_mofor3 tau motcr2 tau motox3

%

a.

syms 1

Q

E-]

syms x_owdot y cwdot

loca vecteo

&
syms r oml r omZ r om3 r om4 r owl r owZ ¥ ow3 r owd r bml r bm2 xr bm3 ...

ol

r bm4 rﬁgwl r_bw2 r_bw3 r bwd

dime

5100
4

02 delta 03 delta o4 delta oc k o

v_By v_oCx v oCy ¢

velocities

v_owl v_owd v_owd



id some vectcrs here:
= [M olx M oly M olz];
M 02 = [M_o2x M o2y M o2z];
M 03 = [M_03x M o3y M o03z];
M 04 = [M od4x M_ody M odz];

R ol = [R olx R _oly R _olz];
R 02 = [F_motor2 0 R_o2z];
R_03 = [F_motor3 R_o3y R_03z]:
R 04 = [R_o4x R o4y R o4z];

tau_ol = [tau_olx tau_oly tau_olz];
tau_o2 = [tau_o2x tau_oly tau_o2z];
tau_o3 = [tau_o3x tau_o3y tau o3z];

tau_o4 = [tau_o4x tau_ody tau_odz];

% CUTER ROBOT SPECIFIC
% magnet locations

~oml = [m_1,m 2,m 7];
rom2 = [-m 1l,m2,m7];
rom3 = [-m_1l,-m 2,m_7];
romd = [m 1,-m 2,m 7];

H

% wheel lccations

r owl = [m 3 m 4 m_8];
r ow2 = [-m_5m 6 m 9];
r owd = [-m 5 -m_& m_9];
r owd = [m 3 -m 4 m_8];
% from the rear axle
RAvec = [m_5,m _6,-m 9];
r bml = r oml + RAvec;
r bm2 = r_om2 + RAvec;
r bm3 = r om3 + RAvec;
r bm4 = r om4 + RAvVec;

r_ bwl = r owl + RAvec;

r bw2 = r ow2 + RAvec;

r_ bw3 = r ow3 + RAvec;

r bwd = r owd + RAvec;

% moments about COM

magnetForceTorques = cross(r_oml,M ol) + cross(r_om2,M 02) +
cross(r_om3,M o3) + cross(r_omi4,M o4);

magnetTorques = tau_ol + tau o2 + tau o3 + tau_od4;

reactionTorques = cross(r_owl,R ol) + cross(r_ow2,R_o02) +
cross(r_ow3,R_03) + cross(r owd4,R_04);

% r torque {which is the input)

e r e of the robot.

motor3 0];

he conv

% leads to posit s at
motorTorques = [0 tau motor2+tau

allTorques = magnetForceTorques + magnetTorques + reactionTorques +

motorTorques;
eql = allTorques(l);
eq2 = allTorques(2);

% force in z direction

zForces = R _olz + R 02z + R 03z + R_odz + M olz + M o2z + M o3z + M odz
s mﬁO*g;

eq3 = zForces;

% method cof defermati
% first find the equatioc
plane = 'a o*x + b _o*y =
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deformationEqgl = subs(plane, {x,y,z},{0,2*m_6,delta 02});
deformationEg2 = subs(plane,{X,y,2},{m 3 + m 5,m 6 - m_4,delta_o4});
[a_o b_o] = solve(deformationEql,deformaticnEq2,a_o,b o);

% plug reaction feorces into deltas

% now pick either point 1 or 4. I

delta_oc = -R_o03z/k_o03;

delta ol = -R_olz/k ol - delta_oc;

delta_c2 = -R_o02z/k_o2 - delta_oc;

delta o4 = -R odz/k o4 - delta_oc;

a_ o = subs(a_o,{'delta_ol', 'delta_o2','delta o4'}, {delta ol,delta 02,...
delta _o4});

b o = subs(b o, {'de lta_ol','delta_o2','delfa_o4'},{delta_ol,delta o02,...
delta_o4});

eq4 = a_o*(m_3+m_5) + b _o*(m_6 + m_4) - delta_ol;

% need a few more eguations - holonomic wheel constraints - find

% thetadotdot o from moments around 1is, taken at center of rear axle
% magnetForceTeorgquesB = cress(r b + cross({r_bmZ,M o2) + ...
% cross(r_bm3,M 03) + crdsb(r 3m4 h . 04);

g ;

% magnetTorguesB = tau_ol + tau_oZ + tau_o3 + tau_o4;

%

% reactionTorguesiB = cross(r_bwl,R ol) + cross{r_bwZ,R 02) + ...

% cross{r_bw3,R 03) + cross(r_bwi,R od);

%

% motorTorguesB = motorTorgues;

%

allTorg = magnetForceTorquesB + magnetTorguesB + reactionTorguesB +
motorTorgquesB;

now, given velocity of COM, we
v_oC = [v_oCx v_oCy 0];

P = m o*v_oC;

temp = v_oC + cross ([0 0 theta owdot],-RAvec); % only care about 2nd term

e angular velocity

theta_owdot = solve(temp(2),theta_owdot);
% f£ind ac m of center of mass
% ax = (R + motor2 + F_motoxr3 + R od4x + M olx + M _02x + M o3x + ...

% L‘ogx?fmio;
ay = (R oly + R 03y + R ody + M oly + M 02y + M o3y + M ody)/m o;
% a = [ax ay 0};

s& thetadot to find vb
vb = v_oC + cross([0 0 theta owdot],-RAvec);
% cp = T cross (vb,P) ;

er in th@ 5¢ri pt
% component.

thetadotdot_o = allTorques(3)/I_oC;

eg5 = ay + thetadotdot_o* (-m_5) - vb(l)*theta owdot - ...
theta owdot™2*m_6;

worary section to check some stuff
TorguesB(3) - v_oCy*m o*(v_oCx - theta owdot*-m_6))/I _oB

we need te d reaction forces

ext find wheel x
w = [0 0 theta_owdot];
v_owl = v_oC + cross(w,r_owl);
v_ow2 = v_oC + cross{w,r_ow2);
v_ow3 = v_oC + cross{w,r_ow3);
v_owd = v_oC + cross(w,r_owd);
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% h wheel velocity, we have the following relationships
% c*R _odz*v _owd (1) /(v owd(1)"2 + v_owd(2)"2)"{1/2);

% C*Q:eﬂz*f:owﬁ(2)f(v:ow4(l}‘2 . v:ow4t2)“2!*{1/2);

%

% = ¢*R_olz*v_owl(l)/(v_owl(1})"2Z + wv_owl(2)*2)"(1/2);

% = c*R_olz*v_owl(Z)/(v_owi(l)"2 + v_owl{2)"2}"~(1/2);

% can write as equations:

eq6 = c*R_odz*v_owd (1) /(v_owd (1)"2 + v_owd (2)"2)"(1/2)- R_odx;
eq7 = c*R_odz*v_owd(2)/(v_owd (1)"2 + v_owd(2)"2)"(1/2)- R_ody;

eq8 = c*R_olz*v_owl(1l)/(v_owl(1l)"2 + v_owl(2)"2)"(1/2)- R _olx;
eq9 = c*R_olz*v_owl(2)/(v_owl(1)"2 + wv_owl(2)"2)"(1/2)- R _oly;

am

% we now have a set of LINEAR EQUAT

NS -

% now build the A matrix and b vectcr for Ax - b = 0.

equationsVector = [eql eg2 eq3 eg4 eq5 egb eq7 eq8 eqg?];

unknownsVector = [R_olz; R_o2z; R _o3z; R odz; R o3y; R olx; R _oly:
R _04x; R_o04yl;

for 1 = 1l:length(equationsVector)
equationChoice = equationsVector (i);
for j = l:length(unknownsVector)
unknownChoice = unknownsVector(j);
A(i,j) = diff (equationChoice,unknownChoice);
end
b(i,1) = A(i,:)*unknownsVector - equationChoice;
end
A outer = subs(simple(A));
b_outer = subs(simple(b));
clear b;

Initialized data

This script describes the parameters of the current system and initialized a lot of values for the

simulations.

janas Men
3/26/2010

T 3/£0/ 0

simulaticn

% This preogram initializes all the values for

clear all
close all
clc

% start by getting matrices regquired to find the reaction forces
deriveReactionForcesOuter

save outerExpressions

deriveReactionForcesInner

load outer i

e o of
&

m_1

m 2 ;

m 3 = 0.18059;

m4 = 0.133;

m 5 = 0.1811;

m 6 = 0.18288;

m 9 = .06;

m7=m29 + 0.03124;
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wheelRadius = 0.061976;
m_8 = m_9 + wheelRadius;

% innexr

=m 1;

= m:2;

m_3;

m_4;

025

n_7 + 0.0259;

1]

n 1l
n 2
n 3 =
n 4
n 7
n 8

[}

W g

% inner

k il = leé;

k_i2 = le6; -

k_i3 = le6;

k_i4 = leb;

% intertia / masse
BHmax = -48; % MGO
mu = 1.26e-6;
mo=8.7;

s / friction / gravity
e

mi=5.8; % kg

c = .025; . .

¢ r= ,57 % coeffici of static friction at rubber / Al surface
b = 6.8; armping - eddy rrents

g = 9.8;

skinThickness = 1/8%*2.54/100;

J = (-BHmax*100/ (4*pi*10°-3)/mu*4)"(1/2)*mu;

[ ;

[ 1m2m7];
rom3 = [-m_1 -m 2 m _7};
romd = [m 1 -m 2 m7];
% inner
r iml = [n_ 1 n 2 -n 7];

r im2 = [-n_1 n_2 -n_7];
r im3 = [=n 1l -0 2 -0 77
r imd = [n_1 -n_2 -n_7];

Si_ R AR A AR I AR A AR AR R AU KRT AR ARSI AAARL AT AR L LR A AR A bRk Fokkok ko ko ok ko ok ok % % o o e ok o o b ok o e e

% magnet stuff

load mdm °

p_x = polyfit(mdm(:,1),mdm(:,2),4);
p_z = polyfit(mdm(:,1),mdm(:,3),4);
p_tau = polyfit(mdm(:,1),mdm(:,4),4);

% do a substitution here - should help speed stuff up

A outer = subs(A_outer);
b outer = subs(b outer);
A inner = subs (A inner);
b_inner = subs(b_inner);
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C. Hall Effect sensors

This section describes a proof of concept experiment run to see the effectiveness of using Hall Effect
sensors for position estimation across the skin. Sensors distributed over the outer robot would use the
magnetic fields to estimate the position of the inner robot. This test was on a one degree of freedom

test bed.

Fig. C-1 shows the setup used to test the position sensing ability of this system.

C - 1: Test setup

The magnet / flux guide assembly shown is able to slide back and forth along the steel shaft. Across the
aluminum skin, an array of Hall Effect sensors detects the magnetic field produced by the tooling and
estimates its position. Fig. C-2 shows the critical components of the assembly.

C - 2: Critical components
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Let us call the position of the tooling x, and the output of each sensor f(x). We choose to model the
response of each of these sensors as a different n™ degree polynomial in x. For each sensor, we can
write:

In order to estimate the coefficients b; of this polynomial, we use a least squares approximation. We

. take a series of position measurerhents, @, and look at their corresponding sensor outputs. The

parameters of the & matrix can be estimated in a least squares sense for each sensor using:
6 =PB

Where, if we have taken N data samples, we can find the P and B matrices from the following
expressions.

This results in a polynomial fit to the sampled data. We can use this polynomial fit to estimate the
position of the tooling, based on the data from the sensors. If we estimate that the tooling is located at
some position X, then we would expect sensor i to have the output

P, =b, X" +b, 2" +...+1

We compare this to the actual readings from the sensors, y,...y,, and look at the squared error. This

error function is:

We numerically find the minimum values for this error function and from that estimate the location x of
the tooling. In the setup used, we had 6 sensors.
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The benefit of this methodology is that we can achieve almost arbitrarily accurate positioning, by
sampling more data and fitting a larger order polynomial to the data. By fitting 10 points at
approximately 1 intervals we were able to achieve accuracy better than 0.25” for most of the 10” of
stroke of the tooling, as shown in Error! Reference source not found.. The data points used for the fit
were chosen on the inch marks, while the data points used for testing were at the %2 inch marks.

Position Estimation Accuracy - Hall Effect Sensor

,J 2 O Estimated position| - ‘
— Actual Position

(0.2 o

SE

Estimated Position (in
N

!

10 12

N

6 .8
Actual Position (in)

C - 3: Actual position vs Estimated position

Noise from the sensors manifested itself in position estimation noise with magnitude around 0.01.” In

addition, position was estimated visually, and is prone to errors due to play in the bearings.
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