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Abstract
We describe the development of a robotic system capable of performing a class of

manufacturing operations. An example of such an operation is commonly found in aircraft assembly -
this demonstrates the immediate applicability of this research.

The system utilizes a unique concept - a pair of mobile robots acting on opposite sides of a thin
wall. The robots interact with one another through the use of magnetic fields that penetrate this wall.
The 'inner' robot is untethered and is controlled by the 'outer' robot. Despite the significant mass of the
outer robot, it operates without the aid of physical external supports.

Full modeling of the system is presented. We include calculations for forces and torques
produced by sets of permanent magnets for any system state. Simplified, tractable versions of this
model for the purpose of control are also described.

The system is designed to execute closed loop fine position control and large scale locomotion.
Experimental results from a functional prototype verify the effectiveness of the design as well as the
robustness of a position controller. Numerical optimal control results have been developed for high
speed point to point trajectory motion.

This 'pair of robots' paradigm could be applicable to a variety of tasks. This work outlines
analysis techniques that are useful for such a system at most scales.
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I. Introduction

1.1. Motivation

1.1.1. Future factory

Dealing with volatility is one of the greatest challenges in the aircraft manufacturing industry [21,241.

Tremendous resources are expended maintaining empty facilities during recessions and building

temporary assembly stations in regions experiencing transient economic growth. This problem

demonstrates a clear need for factories that can quickly and cheaply be constructed and taken down, or

transported. Such a task is difficult because current facilities use large, heavy fixtures such as scaffolding

as an integral part of the manufacturing process.

A future factory concept devised in collaboration with our research sponsor is that of a manufacturing

facility devoid of such bulky components. Such a factory would start as a large empty hangar outfitted

with a sensor array. Raw materials and partially assembled components would be brought in and

assembled into more finished parts such as complete wings. This assembly would be carried out by self-

supported, mobile robotic systems that could be easily transported to any such facility on the globe.

Our aim is the development of a type of robotic system that enables such a paradigm shift in aircraft

manufacturing.

1.1.2. Fastener installation

Fastener installation is an assembly operation that could benefit greatly from automation, and is

therefore an excellent starting point for our efforts towards this future factory. Fasteners are pieces of

hardware used to join two or more components such as sheet metal or flanges. There are on the order

of several hundred thousand fasteners on common aircraft wings. Proper installation of these fasteners
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is a two sided operation - on one side a hole is drilled, deburred, and the fastener inserted, while on the

opposite side the hardware is braced against the drill and a nut or sleeve is attached to the inserted

fastener.

The nature of this operation requires a thin skin of material separating the tooling on either side of the

operation (in our case, the aluminum skin of the airplane wing). In order to maintain structural integrity

of the wing, the fasteners must be precisely located. The tooling that performs this operation must be

capable of undergoing a long stroke - on the order of the size of an airplane wing. Part of the fastener

installation procedure requires a clamping force across the skin. In addition, some of the existing tooling

for this operation is heavy, and must be supported.

As there is a great deal of existing tooling for the tasks in fastener installation (drilling, deburring, etc),

we are interested in providing a robotic platform that enables these tools to perform their tasks in an

autonomous manner. We are interested in positioning, locomotion and load bearing. Our overarching

goal is to design a system that can enable fastener installation within the non-supported, mobile robotic

framework necessitated by the 'mobile factory' paradigm.

1.2. Previous work

Fastener installation is currently performed by hand. A worker crawls inside the wingbox and uses a tool

to slip nuts or sleeves over fasteners, mating with a tool on the outside of the wing. This operation is

uncomfortable and dangerous for the worker. Previous attempts at automation have consisted mainly

of variations on an articulating snake-like robot arm that could enter the wingbox through an access

hole [9,34,35].



Inside
wingbox

skin

Outside
wingbox

I - 1: Snakelike robotic arm



II. Design

11.1. Functional Requirements

This robotic system is motivated by a real need in the aircraft industry. While we are interested in

developing a system with general applicability, it is important to first address the specific needs of the

motivating application.

As previously mentioned, fastener installation is a two sided process. The steps involved in the process

are:

- Position tooling

- Clamp skin to flange

- Drill and countersink hole while removing chips

- Visually inspect the hole

- Insert fastener

- Seat fastener

- Add nut or sleeve to fastener (this depends on which type of fastener is being used)

- Release clamping

This process requires that tooling is present on both the inside and outside of the wingbox.



Outer tooling
operations

U - 1: Flange location

This pair of tools requires some clamping functionality across the skin. For fastener installation,

accuracy on the order of 100 um is needed. Additionally, the tooling should be able to move from hole

to hole, potentially traversing large distances. The holes are located at distances on the order of several

cm. The tooling may be called upon to travel the length of a wing, on the order of up to 30 m. The

system needs to be able to deal with heavy tooling - current systems on the outside of the plane weigh

on the order of 100 kg; 1000 N holding force is required. Whatever positioning system we use must be

capable of overcoming static friction effects caused by 1000 N of magnetic clamping force. Later, we

show that a force of approximately 50 N is required for fine positioning. Finally, the robotic system on

the inside of the wing should be able to operate within a cluttered environment.

It is worth noting that the tooling to perform the fastener installation operation already exists. It only

remains that we develop a system capable of delivering the tooling precisely to some location and

supporting it while it works. This robotic system is in a sense a generic tool delivery system for

operations of this kind. It is also easily able to perform auxiliary tasks, such as clamping.

1.2. Previous Designs



As previously mentioned, there are several groups attempting to automate this process by developing

articulated snake-like robot arms. Our approach differs in that we intend to use a pair of robots that

work together across the skin. These robots would stick to each other through the skin using magnets.

Furthermore, we would like one robot (the master) to manipulate the other (slave). Non contact power

transmission has been shown effective in several other applications [8,10,12,18,38]. This section

describes some of the alternative designs considered within this framework of a pair of mobile robots

utilizing magnets.

11.2.1. Spider robots

Our initial approach was the development of a pair of fully articulated robots acting across the skin as

shown in Fig. 11-2. Each leg would have an electromagnet in order to be able to clamp / release as

desired to facilitation locomotion.

II - 2: Pair of spider robot

Gross position could be achieved by articulation of the legs, but fine positioning with such a system

would likely be difficult. Several schemes for fine positioning were considered, including the addition of



a fine positioning stage to the end effector of the robot. High stiffness, short stroke piezoelectric

actuators could be used to precisely position the tooling as desired.

End effector Piezoelectric
positioning

stage

II - 3: Positioning stage for fine alignment of end effector

Unfortunately, it became quickly apparent that such a system was needlessly complex and would likely

be too heavy to support itself against gravity.

11.2.2. Piezo crawler

Some development was made in the direction of a mobile robot powered by piezo electric actuators.

Fig. 11-4 shows a CAD model and photograph of the finished prototype.

II - 4: Piezo crawler prototype and CAD model



This three legged robot had two actuators per leg. By running these actuators out of phase or

asymmetrically, net work could be created at the output of each leg, as shown in Fig. 11-5.

HiP Knee

t

II - 5: Two degree of freedom foot

We were successful in achieving precise positioning control with this prototype. Unfortunately it would

be unable to handle heavy tooling, and the functionality of the piezoelectric actuators do not scale up

well to deal with forces present in the real system.

11.2.3. Inchworm walker

The next iteration prototype was built to prove that off the shelf permanent magnetic forces would be

sufficient to hold up a heavy duty tool (which in the case of fastener installation can weigh on the order

of 100 kgs). Fig. 11-6 shows the robot.



H - 6: Inchworm walker prototype

The robot was composed of two main sections. Each section had a 'foot' with a series of permanent

magnets on its underside (see figures below). The robot hung upside down, supporting its own weight

due to an attraction force between its magnets and blocks of steel placed inside the wingbox mock-up.

This holding force was induced over an aluminum skin thickness of 1/8" - a common value in airplane

wings.

A lead screw was used to actuate the relative displacement of these feet. By lifting the 'outer' foot,

displacing it forward, and then lowering the foot, the robot effectively took a step forward. This

inchworm locomotion demonstrated a safe, albeit slow, method of locomotion for such a system.



Linear guides Permanent magnets

1 - 7: Inchworm walker outer foot

The inner foot is nested within the outer foot -this allows for the robot to remain stably attached when

either foot is in contact.

-- guides

Magnet
locations

II - 8: Inchworm walker inner foot

Having demonstrated the effectiveness of magnets to hold such a system against gravity, we were

interested in making the mobile robots more nimble.



11.2.4. Multifunctional foot and resulting designs

A multifunctional foot was developed. It has the ability to clamp strongly to a surface or release and roll

with very little friction [27]. Fig. 11-9 shows the concept. A spring loaded magnet has the ability to

engage or release a set of wheels. The position of the magnet is dependent on the pulling force on it

(through the skin) as well as the force the spring exerts. This means that by modulating the attractive

force with an electromagnet only slightly, we can change the state of the foot while still maintaining

substantial normal forces. This allows us greatly modulate frictional properties of the foot (rolling

coefficients of friction are often two orders of magnitude higher than sliding friction coefficients) while

maintaining a relatively constant attractive normal force.

Rolling mode Fixed mode

clearance Caster wheel High friction

H - 9: Multifunctional foot demonstrating clamping and release

Fig. 11-10 shows the CAD drawing and functional prototype foot.
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II - 10: CAD model and iuinctioial prototype of multifunctional foot

This attaching / detaching foot concept allowed spurned the development of several new designs. We

imagined a pair of robots in which two linear motors could control the X Y position of the tooling, while

the feet clamped or unclamped as desired for locomotion.

II - 11: Two DOF linear motor pair of robots

A similar concept was a single pair of feet with rotary motors as the joints. Positioning would be more

difficult with this design, but the robot would be quite simple.



II - 12: Single DOF pivoting foot system

A more complex design utilizing these multifunctional feet involved a series of legs, potentially with

linear springs, allowing us to exploit the dynamics of the system. These dynamics would change

depending on which feet were attached, potentially leading to interesting behavior.

II - 13: Multi-foot swinging robot utilizing compliance



11.2.5. Single degree of freedom system

We settled on a relatively simple, yet robust and easy to control concept, shown in Fig. 11-14, as a

precursor for the final design. In this system, the outer robot is supported by a gantry and has an

electromagnet as well as a series of wire coils. The inner robot has steel plates mating with the outer

electromagnet, as well as permanent magnets that mate with the wire coils.

Magnet banks

Steel plate

Inside
wingbox

Flux lines

skin

Outside
wingbox

Wire coils

II - 14: Architecture of single DOF system

By running a current through the coils, equal and opposite Lorentz forces are induced on the pair of

robots. This allows us to perform fine positioning.

Current through coils-

.induces force on inner robot

II - 15: Lorentz force used for fine positioning



This system also demonstrated clamping functionality, as the steel plates were able to clamp to the

electromagnet through the skin.

Electromagnet clamps to steel plate

II - 16: Clamping ability

Fig. 11-17 shows a CAD model of the system.

permanent magnet banks
I I

,-- steel railselectromagnet

wire coils

II - 17: CAD drawing of prototype

Fig. 11-18 shows the working prototype.

. .. ........ - I
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II - 18: Single DOF functional prototype

This system showed excellent ability to precisely position the inner robot. The outer robot is affixed to a

gantry to support its weight and controlled by a leadscrew. At this point, we were not interested in

servoing the outer robot, as control of the inner robot using the Lorentz force coil from across the skin is

a much more interesting and challenging problem.

Servoing ability p aifr o robots

Reference
Outer robot
Inner robot

tme (s)

II -19: Fine positioning ability of Lorentz force actuators



II.2.6. Unsupported system - asymmetric oscillation

Removing the support gantry used in the previous prototype is extremely advantageous in terms of

flexibility and cost in manufacturing. In order to remove this support, it is important to apply a high

magnetic holding force (normal to the skin) to support the outer robot against gravity. This translates to

a high normal force between the inner robot and the wing skin. Frictional forces scale with normal

forces - if we used a sliding contact (as was the case in the previous iteration), coloumb friction would

make positioning using Lorentz forces difficult (it is difficult to produce Lorentz force of sufficient

magnitude). For this reason, we want the inner and outer robot to be wheeled. A pair of wheeled

robots feels forces due to gravity, magnetic forces, and a force we can apply due to the coil of wire.

F

F

F

m2g9 F

II - 20: Forces on stationary unsupported system

Additionally, as the system moves, it feels forces due to friction. Some of these forces are nonlinear.

V

cN

4 bi

Il - 21: Drag forces on moving system



Initial simulations suggested it was possible to exploit this nonlinear force to get locomotion. By

applying an asymmetric current input (such as a sawtooth wave), net motion of the system was

observed. While this was an interesting result, further exploration in this direction was halted for two

reasons. First, it was not immediately clear how well this could be applied to systems with more than

one degree of freedom. Second, a direct alternative to this scheme exists. In a manufacturing

environment, utilizing straightforward solutions as much as possible is generally preferred.

11.3. Design of choice

II.3.1. General description

Our design of choice utilizes the concept of a pair of mobile robots described in the previous section.

The system should remain fully self-supported; sets of magnets on the inner and outer robots hold the

pair together, through the skin, and create enough attractive force to bear the weight of the heavy duty

tooling. The outer robot is able to traverse the wing skin due to a set of powered wheels. Due to the

attractive force between magnets, the inner robot follows the outer robot as it moves. Fine positioning

of the inner robot is performed using a coil on the outer robot that mates with a magnet on the inner

robot. A current through this coil induces a Lorentz force on the inner robot. Note that this allows for

the inner robot to remain passive (tetherless); only the outer robot is powered. This feature could be

enormously useful for a variety of other applications. The following Pugh chart shows a comparison

between this design and the others considered.

Inchworm Multifunctional Single DOF Asymmetric
Spider robots Piezo crawler walker foot designs system oscillation Final design

load bearing
clamping

gross positioning
fine positioning

simplicit
3 DOF motion

tetherless inner robot

+ + + + + +

- + + + + - +

0 + -+ -0 +
0 + +

0 II + P11 -1: Pugh.car



The system looks like this from the side:

Permanent magnet

ner robot

Passive wheel

Outer robot powered wheels
passive wheels

inner robot

Coils magnets

II - 23: Top view

11.3.2. Architecture

For the system to be self supporting, it is helpful to keep the center of mass of the outer robot within a

polygon defined by the magnet locations. This requires a minimum of 3 Halbach arrays. For safety, we

use 4 arrays.

II - 22: Side view

And like this from the top:



Plan view Magnet banks Coils

chassis COM

U - 24: Effect of number of magnet banks on holding stability

The tooling used in this operation must align in x and y to the desired fastener location; orientation is

not important. In Fig. 11-24, two coils are placed such that their axis of force coincides with the center of

mass of the system. This allows us to have 2 DOF position control of the tool location.

11.3.3. Magnet selection

We select a basic magnetic building block: a halbach array as shown in Fig. 11-25. This configuration (of

three magnets in our case) increases the flux density in one area at the cost of reduced flux density at

another. This is useful as we are interested in concentrating magnetic flux across the skin, while

reducing stray magnetic fields that could interfere with tooling. In addition, analysis of the system is

greatly simplified if we can assume that none of the neighboring magnetic elements interfere with one

another.

Low flux density High flux density

H - 25: Halbach array showing region of flux concentration

Magnet design, while a potentially rewarding direction of research is outside the scope of this work - we

have chosen to stay within the confines of the myriad of off the shelf permanent magnets. This means

36



we have a finite set of magnet sizes / strengths available for selection. We chose to use Neodymium

Iron Boron magnets for several reasons. These rare earth magnets are more robust to impact

demagnetization than Samarium cobalt magnets. They are also cheaper and generally have higher flux

densities. Happily, these magnets are often modeled as linear in the operating region of their BH curve,

which simplifies our analysis. Using permanent magnets instead of electromagnets is preferred as

permanent magnets do not require continuous power input. Also, to generate the types of forces a

small Neodymium magnet is capable of would require an extremely large and heavy electromagnet.

-Al housing

ABS

magnets

H - 26: CAD drawing of magnet bank

3 commercially available 1" (2.54 cm) cube neodymium magnets were arranged into a halbach array as

shown in Fig. 11-25. An aluminum extrusion was used to provide structural support and a 3d printed ABS

piece used to align and position the magnets. A pair of these 'magnet banks' showed attractive force

>70 lbf (318N) at a distance of 1/8" (3.2 mm), a standard wing skin thickness. Four such magnet banks

can easily provide the required 1000 N holding force.

11.3.4. Coil selection

A set of coils is mounted to the outer robot to make with a set of magnets on the inner robot. Running a

current through these coils induces equal and opposite Lorentz forces on the inner and outer robot.
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II - 27: Lorentz force direction for a wire coil in a magnetic field

An initial proof of concept demo was run to see the effectiveness of using a Lorentz force at these

scales.

Il - 28: Lorentz force proof of concept demo



Initial tests showed the ability to induce reasonable forces at high bandwith.

The coils on the outer robot must be able to provide a strong enough Lorentz force to overcome friction.

However, large, heavy coils are undesired. We would like to find the smallest coil size possible that can

induce the required forces for fine positioning.

Without the aid of a three dimensional FEA software package capable of dealing with ferromagnetic

components, such analysis is difficult. We settled for the use of a 2 dimensional package to get an order

of magnitude estimate on required coil size.

The robots are clamped to the skin with a force of 1000 N. Rolling friction coefficients are on the order

of 0.01 - 0.001. For safety, we choose the high value of .01 and add a safety factor of 5. This gives a

rolling friction force of 50 N; we require a coil design that can generate 50 N of lateral force. The force

generated by a coil in a magnetic field is given by:

F = iBl (Ii)

If we consider a volume with a current rather than a single line (in our case, the volume taken by the

coil), we can find the force by:

F = p -f Bdv (11-2)
V

Where p, is current density and f Bdv is the total flux over a volume.
V

The maximum current density is nearly independent of wire gauge. We chose wire gauge of 18 based

on the maximum current our hardware is capable of sourcing (around 10 amps). This corresponds to a

current density of around 9.7e6 A/m. The integral volume of flux is estimated by running an FEA



simulation. The total flux in the coil region is a function of not only the geometry of the wire section,

but a function of the geometry of its flux concentrating core.

cot,

Steel core

II - 29: Image from FEA for fields in coil

Initial FEA tests suggested a halbach array of 1" (2.54 cm) cube magnets would easily provide the

required flux to generate the desired 50 N of force (given reasonable coil and core dimensions) while

this would be unfeasible with 0.5" (12 mm) magnets. This is convenient, as we can use the same

magnet bank array for holding / rough alignment as we do for Lorentz force positioning, helping to

reduce unique part count. Reasonable coil dimensions included a steel core at least 3/8" (9.5 mm) as

well as coil area of about the same size.

11.4. Prototype

A working prototype was built. Caster wheels were used for passive rolling elements, mounted to

standoffs for appropriate spacing. The Halbach arrays were also spaced from the chassis as desired.

Two harmonic drive DC motors were used to control the wheels on the outer robot. These were

mounted to the chassis using 3d printed ABS parts. The powered wheels on the outer robot were off-

the-shelf components with a layer of rubber serving as a contact surface. The chassis for the robots

were waterjet aluminum.



A position sensitive detector (PSD) was mounted to the robots. This device returns the location of the

centroid of light impinging onto its detection surface - it can be used to precisely locate a laser beam.

The aircraft industry is interested in exploring the idea of instrumenting fasteners, for example with

lasers. In practice, these lasers could serve as the alignment reference for our robotic system.

Micro positioning reference:
instrumented fastener

Position sensitive device(PD
laser

II - 30: Use of laser to align robotic system

For the purpose of experiments, a PSD was mounted to both the inner and outer robots, although in

practice if tetherless operation was required, no PSD is needed on the inner robot. An optical sensor at

the fastener could be used to locate the inner robot.

We developed a bi-directional laser with small form factor to use during testing. This component

utilized a half mirror (beam splitter) as well as a regular mirror. Components were assembled and

aligned with a rapid prototyped part.
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II - 31: Bi directional low form factor laser

Labview realtime software was used to control the system. This software was implemented on a

compact RIO (cRIO) that utilized motor driver modules (to drive the motors and read encoder

information as well as to drive the wire coils) as well as an analog input module (to get position

information from the PSDs). The software allowed for the operator to choose between a 'driving' and

an 'auto-alignment' mode.

Fig. 11-32 shows a CAD model of the outer robot.

Halbach arrays Harmomic drive motors

Lorentz coils End effector mockup

II - 32: CAD model of functional prototype

PSD



Fig. 11-33 shows this outer robot suspended upside down by its magnet banks.

1 - 33: Outer robot suspended

Fig. 11-34 shows the inner robot.

II - 34: Inner robot

This prototype was successfully able to demonstrate required functionality for the fastener installation

procedure.



II. Modeling

111.1. Full system model

111.1.1. Assumptions

Fig. Ill-1 shows the inner and outer robots mated with one another across the skin.

III - 1: Inner and outer robots across skin

We treat these robots as rigid bodies, modeled as shown in Fig. 111-2. Note that the inner robot has

contacts with the skin at the front and rear while the outer robot only contacts the skin at the front

wheel. The rear section of the outer robot is constrained along a plane. Additionally, we impose a no-

slip condition at the rear wheel -this results in a nonholonomic constraint for the outer robot.

p Inner robot
rigid body

Center of mass

cons raint

III - 2: Inner and outer robot as rigid bodies



We start by examining a free body diagram of the outer robot. The dynamic equations for the outer

robot are very similar to those for the inner robot. The forces acting on the outer robot are (1) reaction

forces from the skin, (2) magnet forces, (3) torque due to the motor, (4) dissipation terms due to friction

and eddy current damping, (5) gravity and, (6) Lorentz forces due to coils.

The state of the robotic system is given by the following:

i -o

X, = .1' ,X = ."(O11
yi

Oi
A,

0-00

Yd

Outer robot

III - 3: Definition of Xd, Yd and Od

X, and X. are the position of the inner and outer robots respectively, their derivative is velocity. Xd is the

differential position between the robots. For use in dynamic equations, we define Xd =Xi -X 0 .

Dynamics of a rigid body in the plane are given by:



(111-2)

IF = ma,

EF, = ma,

COM = ICOM

The challenge here is in finding the forces on the system. The forces on the outer robot are given as:

2F.=CO(X,X)-

XF-, =Co( XdX)-

D (k)-VRx(Xd) -

Do,(k VR, (XX -

, Lxx(Xd)y Lyx(X )+Fmotorx

i,- L, (Xdiy Lyy(Xd )+Fmotor-

ix . LXO(Xd _'y .L 9 (Xd ) + lo-O

And the forces on the inner robot are given as:

-Fi=Cix(XdX)-Dix(Xd,k)+VR,(Xd + , AxL(Xd)+yLyx(Xd)

F;i =Cy(Xd,)-Di,(Xdk)+VRy(Xd)±x-L,,(Xd)+iyL,,(Xd)

x zi =Co( X,k)-DiO(Xd, )+VR(Xd ) x ,4(LXOd)+y -Ly(Xd)

Explanation of terms. Cox (Xd ,I ) is the rolling friction term. This term is dependent on R, the values

of the reaction forces on the outer robot (which are in turn a function of Xd ). The velocity of a (passive)

wheel is given by

Vwheel VCOM ± X rOM -wheel

where vCOM - io,94)
(111-5)

And the rolling friction force from a wheel traveling at said velocity can be expressed as

-R -C. Vwheel

IVwel 11
(111-6)

Where, for example, the x component of force is found from

Ir = Coo(Xd,k)-Do (k)-VRO(Xd)-

(111-3)

(111-4)



-R -C -IVwheel , (|||_7)
[ vwheel _J 0

Summing these forces over all passive wheels (2 for the outer robot and 4 for the inner robot) gives C.

D0. (X)is the term dealing with eddy current damping. We assume that eddy damping is a linear

function of velocity. Later we justify this assumption.

VR, (X) Is the term for variable reluctance force between paired magnets (the forces between a

magnet on the inner robot and its corresponding magnet on the outer robot). This expression is highly

nonlinear.

Fntor x is the motor force acting on the chassis. Note that due to the low inertia of the wheels relative

to the chassis, the motor is modeled as a pure force source acting on the chassis.

L, (Xd)is the Lorentz force term due to the coils in the system. For our system, the Lorentz force is

only used when the robots are close to one another; in this case we assume the expression Ly (Xd) is

constant. Note the relationship between the expressions for force on the inner and outer robot:

variable reluctance and Lorentz force terms are equal and opposite (as they act between the robots).

Eddy damping and coulomb friction terms are of approximately the same form.

111.1.2. Magnetic forces

We start by modeling the permanent magnets using the magnetic charge model. This is a common

approach to this type of problem [4].



III - 4: Magnetic charge model

This model approximates a permanent magnet by a pair of surfaces (located at the poles of the magnet)

with some density of magnetic charge. For a magnet with magnetization Mi, the surface charge can be

found by looking at the change in. magnetization across a boundary.

(111-8)o-,, = -n -yp (M - M )

Free space has no magnetization, so

(111-9)Usm = PoM

Manufacturers

Magnetization

supply data on a magnet's (BH) max, a measure of the potential energy in a magnet.

at saturation can be related to (BH) through

-(BH) = pMsa
ma 2

(111-10)

We assume the magnet is operating near saturation and use this value to find the magnetic surface

charge. In addition, we assume the surface charge is uniform over the magnet pole surfaces.

An analytical solution for the fields of a trapezoidal permanent magnet assumed to have uniform surface

magnetic charge density is found in [4]. We assume linearity of the neodymium permanent magnets



and apply superposition to find the field due to a pair of halbach arrays. Fig. 111-5 shows the fields due to

a single magnet and those due to a Halbach array.

IH - 5: Fields due to a single magnet (left) and Halbach array (right)

When the field as a function of position is known, it is possible to determine the force and torque on an

arbitrary volume in space using Maxwell's stress tensor. To find the forces on the robots, we chose a

volume surrounding one Halbach array as shown in Fig. 111-6.



Evaluate field at surface
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III - 6: Evaluating field at some surface surrounding one Halbach array

The surface surrounding this volume was discretized and the field was evaluated at each of these

locations. Maxwell's stress tensor about any surface is given as:

P H 2-H H2 -H 2)2

pH 1H 2

pH1H3

E(H 2-H 2 -H)
2 2 1 3)

Where the subscript on the field refers to the magnitude of field intensity in that direction. That is, H, is

the magnitude of field strength in the x direction. The force on any surface is given by the surface

integral:

uH1H3

,uH2H3 (111-11)

2H - H - H)



f, = fTinjdA (111-12)

Where T is the ijth entry of Maxwell's stress tensor and nj is±, giving the direction of the normal from

that surface outwards. For example, to find the force in the y direction on a differential surface element

parallel to the yz plane where the interior of the volume is larger in x than the element, one would

evaluate

-pHH 2dA (111-13)

This method gives us forces and torques as a function of relative displacement and orientation of a pair

of Halbach arrays of any strength (this is essentially a FEA software solution built from scratch). The

resultant force and torque data was fit to a high order polynomial curve. Approximate magnet force

data was taken from the curve fit in practice to speed computation in simulations (as expected,

calculating a value from a polynomial fit turned out to be much faster than generating and discretizing a

surface, evaluating fields, finding the stress tensor and computing a numerical surface integral). Forces

obtained in this method did a reasonably good job of matching the magnitudes of those found

experimentally. They did a very good job of scaling similarly to experimental results.

Experimental magnet force measurements were taken with an Admet machine able to vary

displacement while recording data. A single axis load cell was used to get force information. The setup

used is shown.
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III - 7: Normal force measurement setup

Data was taken for magnet banks of different strengths, as shown. We were unable to take full six axis

force measurements. We instead use these uni-axial force measurements as a way of verifying the

analytical approach we chose.

III - 8: Normal force measurements for two different grades of magnets

This data was matched to that obtained analytically as described in the previous section.

mount



III - 9: Comparison of simulation to experimental results. Assumptions in magnetic charge density were

scaled in simulation to better match experimental data

It should be noted that the data shown in Fig. 111-9 was scaled to match experimental results. Although

the magnets used were grade N50 (according the manufacturer), the data only matched well when we

ran the analysis assuming that the magnets were grade N35. Fortunately, the data scaled very well as a

function of position. In practice, we suggest taking a single force measurement from a pair of magnets,

and using that information to select the 'assumed grade' of the magnet when performing this type of

analysis. We believe that using 'assumed grade' in simulations will yield accurate force and torque data;

this allows the engineer to explore the effects of a variety of magnet configurations and locations in

simulation.

Code used to compute force and torque data can be found in APPENDIX A. Fig. 111-10 shows an example

of restoring force as a function of inner / outer robot misalignment generated by this code.



Inner / outer robot misalignment (m)

III - 10: Restoring force as a function of inner / outer robot misalignment

The simulation shows results as expected. For small relative displacement of the inner and outer robot,

the restoring force is small. This restoring force increases monotonically as the displacement between

the robot pair increases, until some point in which its magnitude begins to drop off. Additionally, for

small misalignment, the restoring force can be linearized. This plot shows the resultant misalignment

force for the case when yd and 0
d are zero. For Yd # 0, we would expect a similarly shaped plot, but

with reduced magnitude.

111.1.3. Eddy damping

Maxwell's equations state that a changing magnetic field through a surface induces a proportional

voltage through a line around that surface.

S- B.dA =-f E -dl
aA S

(111-14)



When that surface is in a conductive medium, this voltage creates a current. This current interacts with

magnetic fields in the system to oppose the original change in magnetic field. When the change in

magnetic field is due to a moving magnet, this is manifested by a force that opposes the motion of the

magnet. This results in a 'damping' force felt by a moving magnet.

Eddy current damping is a significant factor in this system due to the high magnetic fields generated by

the neodymium magnets as well as the proximity to a large conductive surface (the aluminum skin).

This force is often modeled as scaling linearly with respect to velocity. We assume that our system

operates in a regime where this is the case, and tested our assumption with an experiment, described

here.

We used the passive inner robot from the prototype and ran two sets of trials. In the first set of trials

the inner robot was operating on a conductive aluminum skin. In the second set of trials it operated on

a non-conductive acrylic sheet. In all trials the robot was accelerated to some velocity (not consistent

between trials) and released. An accelerometer attached to the robot recorder acceleration data as the

robot slowed; integrating this data gives velocity information.

If eddy current damping did in fact act linearly with respect to velocity, the dynamic equations of motion

of the system are given as:

m, = -bV - cN mx -M- cN(Ill-15)
mv = -bv - cN

Where b is the coefficient of eddy damping, c is the coefficient of rolling friction, and N is the normal

force from the skin (equivalent to mg: the product of the mass of the robot and the acceleration due to

gravity). Solving these equations is straightforward:



v =k exp L -t ----
1mt b

(111-16)

Note that k is a function of the initial conditions. This response is an exponential decay with an offset.

Fig. Ill-11 shows this response graphically.

Exponential decay

Actual response
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III - 11: Expected response for a system with linear coloumb and viscous damping

Five trials of each scenario (with or without eddy current) were run. Fig. 111-12 shows the comparison

between these cases. Clearly there is a significant difference when the robot is operating on a

conductive surface. As expected, in the case without eddy damping, the velocity has a linear profile.

Comparison

- - - - With eddy

Without eddy

time (s)

III - 12: Experimental results with and without eddy currents

v



A nonlinear minimization was used to fit an exponential curve to the leading (non-zero) portion of one

of the trials. Fig. 111-13 shows the results.

Curve fdting using fminsearch

- - - - Curve fit

Experimental data-
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III - 13: Experimental data compared to exponential curve fit

The curve does an excellent job of matching an exponential decay. This suggests that our linear

assumption for eddy currents is reasonable. From this set of data, we were also able to find values of b

and c. Average values found across trials were:

b 6.8

c 0.025

This system is unique in that it has a pair of magnets across a thin wall. This means that eddy currents

produced by magnets from the inner robot could induce forces on magnets on the outer robot.

12- J.t i's is
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III - 14: Eddy currents caused by moving inner magnet induce forces on outer magnet

In order to test the magnitude of this force, another test was performed. A pair of Halbach arrays was

mounted to opposite sides of a sheet. Again, two sets of trials were run. In the first set of trials the

sheet was made of aluminum. In the second set, the sheet was non-conductive acrylic. Position sensors

were mounted to the inner array while the outer array was fixed in place to a force sensor. -By

differentiating position, we were able to find the velocity of the inner Halbach array. We compared the

power spectra of the force measurements to the power spectra of the velocity measurements we were

able to numerically find a transfer function relating the two variables. Fig. 111-15 shows this transfer

function.
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III - 15: Velocity to force transfer function for acrylic and aluminum skin

There appeared to be little discernable difference between the two cases. Based on this result, we

chose to ignore the 'cross skin' eddy current forces in our model.

III.1.4. Reaction forces

Fig. 111-16 shows the outer robot. We start here by defining some dimensions on the robot. Note the

axis a,, a2, a 3



III - 16: Dimensions on outer robot

And we define some dimensions out of plane.

III - 17: Dimensions on outer robot

There is some force on the magnets that can be broken into components:

60



III - 18: Magnet force components

And some torque on the magnets that can also be broken into components:

III - 19: Magnet torques

Now consider the resultant reaction forces at the wheels.



III - 20: Reaction force on outer robot

It is important to determine the reaction forces at the wheels for two reasons.

- When a reaction forces goes to zero, the robot is in danger of falling from the ceiling

- The coloumb friction terms in the planar equations of motion depend on reaction forces

There are 5 unknown reaction forces, the 4 forces in the a3 direction at each wheel, as well as the force

that enforces the no-slip condition. This means we must find 5 independent equations. The reaction

forces in the a,, a2 plane (lateral and longitudinal) at the front wheels are due to rolling friction. They

are deterministic functions of the a3 direction reaction forces and the robot velocity and can be solved

for directly.

The constraint reaction force Ro3,enforces the no slip condition. In reality this force is the sum of the y

direction forces at both rear wheels. Mathematically, however, this representation is equivalent and is

chosen for simplicity in analysis.



Note that the al direction forces on the rear wheels (due to motor torque) act at the axle of the wheel.

This is because the intertia of the wheel is small enough that we neglect it, assuming instead that the

motor torque (and resultant force) acts directly on the robot chassis. Fig. 111-21 shows this relationship

for a wheel with zero inertia.

R 

, 
R

IH - 21: Effect of massless rear wheel assumption

We assume planar motion of the outer robot. This implies the sum of torques about the al and a2 axes

are equal to zero. This allows us to write two equations.

m2Moz A 7M, +m 2Mo2z -m 7 AMo2 A - M2Mo3z ~m 7 Mo3y

-m2Moz -mMo4, + To,+ o21 +x To+oT4,x

4 Rol -mR, +m Rzz -M4Roz -mRo3y -m4 R m Ro4y 0

(111-17)

And

m7Mox -m Molz + mkMo2x +mM o2z + m7 Mo3x +

mMo3z +m7Moex -m Moez + Oi, +rTo2 +ro 3 , +ro4,

+mNRol - m3R 1 +m Fmotor2 + mRo2z + nmF,,to,3 + mRo3 z + M8 Ro4 - m3 Ro4 =0

(111-18)

A third equation comes by setting forces along the z axis equal to 0 (no z axis motion is allowed).



MoiZ +M o2z +M 3z +Mo 4z +R01 +Rozz +Roz +R 4 = mg (1

Our next equation comes from the method of deformations. A common approach in statically

indeterminate systems, the method of deformation assumes some finite stiffness for portions of the

body and distributes forces accordingly. Here we assume the chassis remains infinitely stuff but that

there is some compliance due to Hertz contact stresses in the ball wheel bearings as well as compliance

in the rubber wheels.

We allow for out of plane tilting in this analysis. This does not contradict our previous assertions as we

assume any deformation due to these compliances happens on a much faster time scale than the

previously describe dynamics. From this, we assume the relationships found from the method of

deformation are algebraic, not dynamic.

Outer robot
chassis

PO2

A02

a3

a2 jal

III - 22: Tilt of outer robot using method of deformations

(111-19)

P,

o04

o,3



Fig. 111-22 shows the outer robot chassis. A is the deflection of that corner of the chassis. Deflection is

assumed to be strictly in the a3 direction (based on a small angle assumption). Because the chassis is a

rigid plane, if we are given the location of three points, we can find the fourth. If we assume P3 is at

the origin, we can say.

ao (m5 +m3 )+ A02 (m, - m 4 A
2m6

(111-20)

This gives us a relationship between the differences in vertex locations. This is essentially an expression

for the normal to this plane. To find actual vertex locations, we need to offset by A0C as shown in Fig.

111-23.

I1

kx

HI - 23: Total deflection of outer robot using method of deformations

From this figure we can relate total displacement, stiffness at that corner, and reaction force at that

corner. For a compliant member, F = kA. We plug in and get:



4Ro2z + m Ro4z+ R"z =0
m6k02 M6k03 1o4 kol

(111-21)

This is our 4th equation. To find our last equation, we look at the constraint imposed by the constraint

force. The no slip condition requires that velocity at the rear wheels is only in the al direction. That is,

for some point B located at the rear wheel,

Vbx

VB 0

0
(111-22)

And if we know the velocity of the center of mass, vCOM, we can say

VB ~ VCOM wXrCOM _B (111-23)

Differentiating this with respect to time gives

aB= aCOM +WXrCOMB +WXCOMB (111-24)

This can be written in vector form.

aBx aCOMX 1 [M5 0 0T1M5
aBy aCOMy + 0 X - 6 + 0 X 0 X --r6I

0 0 0 0 - - 0

(111-25)

Consider the term aBy , the acceleration of the point B in the y (a 2 ) direction. Because of the no slip

condition, the instantaneous center of rotation of the system is located on an axis as show in Fig. 111-24.



Instantaneous center of rotation

I - 24: Instantaneous center of rotation showing acceleration of wheel

The point B is instantaneously traveling along a circular (with radius r) trajectory. This means the

2

acceleration in the a2 direction of the point B is . Plugging this in to the acceleration equation above
r

yields:

2

-B =COMy 5 2m6
r

(111-26)

The acceleration of the center of mass in the y direction is a function of all the forces in the y direction.

This expression (and our final equation) is:

o = CVoCx Rol,+ Roy + R4, + Moly + Mo2y + Mo3y + Mo4,

M5 MO

mMol, -m 2Moix -mMo2y -m2Mo 2x -m 1 Mo', +m2Mo3x + 2

n~~m M5 - oCyM6
mM 4 , +m 2Mo 4x +rZ +ro2 + rZo +roz + m3R 1, -m 4RA -2

F -IoC 5
6Fmotor2 -MRo3y 6FMotor3 + mR 0 4 , +mzRo

(111-27)



An analytical solver in MATLAB was used to come up with these expressions. See code in APPENDIX for

more details. As previously mentioned, it is possible to write Ro, R,,, as a deterministic function of

Roi and velocity. It is possible to find a linear relationship between the remaining unknown reaction

forces of the form

Rolz

R02

A Ro3z =b (111-28)

R04

LRo

Where all the components of A and b are known. This can be solved by inverting the A matrix to find

the reaction forces.

A similar method was used to find the reaction forces on the inner robot. The lack of constraint force

makes the analysis simpler. We start again by defining robot dimensions, first in the plane

I - 25: Inner robot dimensions



And next, out of plane

I-- --- -- --- --

III - 26: Inner robot dimensions

Next we define magnet forces

III - 27: Magnet forces and torques on inner robot

And reaction forces



III - 28: Reaction forces inner robot

The planar motion constraint gives the following two equations

n2Mil +nly +n2Mi, +mlMi, - n2Mi3 z +nMi3y -

n2Mz+ nMi4y + r,+ ri3x +i4

±n 4 Rilz + n8Ri, +n4Ri2z +n8Ri2, -n 4 Rin3 +n8 Ri3 , - n4Ri4 +n8 R 4 = 0

And

n7Mi,, - n1Malz -n 7 Mi2 x +n1M 1A -n 7 M+i3x +njM3 -

n7 Mi 4 x -nMi 4 z +rZ, +i2y +i3y + 4 ,

8 lx 3Rn ngRix+nRa -n Ri ±nR, -n R, -nR, =0-n8Ril n3R11 - n8-i2x n3i 2zn8i3x + 3 i3zn8i4x n3R4z

The third equation comes from summing forces in the 83 direction to 0

Ri + RA2z+ R 3 z+R 4z +Milz +Mi 2 z +Mi 3 z +Mi 4 -mig =0

The fourth (and in this case final) equation comes again from the method of deformations. Fig. 111-29

shows the chassis tilted to some angle due to deformation.

(111-29)

(111-30)

(111-31)
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III - 29: Tilt of inner robot using method of deformations

As in the previous case, we generate an equation for the plane of the chassis. We then consider the

offset of each corner as shown in Fig. 111-30. Care should be taken to keep sign conventions correct.

HI - 30: Total deflection of outer robot using method of deformations

This gives us our final equation:



m 4 R 2 z mzR_ R"4' + R = 0  (111-32)
m6ko2  m6ko3  ko4  kol

These four equations constitute a linear set of equations, allowing us to solve for reaction forces in the

same manner as was used in the outer robot. See APPENDIX B for MATLAB code used to solve for these

reaction forces.

Now that all the forces on the system are known, the dynamics of the system are straightforward (as

mentioned previously). A simulation was written in MATLAB (see APPENDIX B). However, due to the

complexity of this system, running simulations was computationally expensive. Several simpler models

are described in the control chapter. These models capture the dynamics of the system relevant to the

particular task, and are tractable enough so that it is possible to generate and test controllers.

111.2. Summary

in summary, the equations of motion of the outer robot are given as

mo, Cal Xd( X )D X(X)VRx (Xd i Lxx(Xd y- Lyx(Xd )+ ±Foto

mayo C(X, -Doy () k-VRY(Xd)- i,- L,(Xa 3- ,(X + Fm (111-33)

IAN = Co ( dX -Do0 (k)VR(XOd)- i 0 x(Xd ) -Ly(Xd+Tmotor 

Where C (Xd,) Is the coulomb friction term, acting as described in section 111.1.1, and is dependent

on reaction forces, which must be found as described in section 111.1.4. Dox (X)Is an eddy current

damping term, acting as described in section 111.1.3. And VR, (Xd) is a variable reluctance term, acting

as described in 111.1.2. The remaining terms are inputs to the system and are dealt with in section IV

(system control).



In the vicinity of Xd =0, this system model can be simplified to:

mok =-c -sign(&ij)-JB --kx i - L,,+ F

moy, =-c-sign(9)-B,9 -k -iy -L), +F,+F,,. (111-34)

100 =-c 9 -sign(d )-BOb9 -kOd +Vmotor0

This is a nearly linearized (excepting the coulomb friction terms) version of the full system model.

Similar equations have been obtained for the inner robot. The use of such equations of motion,

linearized or otherwise, will be explored in section IV.



IV. Control

We start this section by splitting the functionality of the robotic system into two portions: gross motion

and fine positioning. Gross motion refers to system traversal between fasteners. This is generally for

distances > 1 cm. Our goal is rapid, safe traversal. Fine positioning refers to precise alignment of the

robotic system with fasteners. Fine positioning stroke is generally limited to < 1 cm. Our goal in this

situation is small positioning error achieved by a stable closed loop controller.

Because of the differences in functional requirements and system characteristics in these scenarios,

distinct modeling and control approaches are used.

IV.1. Point to point optimal control

IV.1.1. Control strategy

In this section we present results for an optimal trajectory for a simplified system model. We start with

a pair of aligned robots with some desired end location. First, we turn the robot pair to face the desired

endpoint. Next, we move the robot pair in a straight line towards this endpoint, following a pre-

computed optimal trajectory.

IV - 1: Point to point control: robot first aligns with desired endpoint, then drives in a straight line

IV.1.2. Key issues

The goal during this type of locomotion is to minimize time while maintaining 'safe' motion. Safe

motion means the outer robot should not fall -we must monitor reaction forces on the outer robot
74



wheels. Additionally, we are interested in maintaining a no slip condition on the outer robot. Slipping

renders encoder information for position and velocity useless and it makes our model invalid. Often,

the no slip condition is a more conservative metric than the no-fall condition. This is because the no-slip

condition requires reaction force greater than some constant while the no-fall condition requires

reaction forces greater than zero.

In order to find an aggressive yet safe optimal trajectory, we are interested in exploring the full

nonlinear effects of forces such as variable reluctance and rolling friction. To address this, we use a

software program to find a numerically optimal trajectory.

IV.1.3. Simplified modeling and control for point to point optimal control

Due to our control strategy, we can use a greatly simplified version of the full system model. In this

case, the system has only 2 DOF (inner and outer robot position along the axis of motion) and the

dynamic equations of motion only use 4 state variables, making the state vector XdlX>i,,,X

There are two constraints placed on the optimal control problem (1) no slip condition and (2) no fall

condition.

IV - 2: No slip and no fall conditions are dependent on reaction forces at wheels

From Fig. IV-2, these can be expressed as (note sign convention):

0 > R2 ,0>R1 (IV-1)



And

-- <bpR2| (IV-2)r

Boundary conditions on the optimal control problem maintain that the position and velocity of the inner

and outer robot start at zero. At the end of the trajectory, velocity of both robots must be zero and they

must be located at the desired endpoint.

This optimization was performed to minimize time. The fastener installation procedure is highly

repetitive and a bottleneck in the wing manufacturing process, making time savings of critical

importance. Minimizing energy, for example, is not useful as potential energy savings would be dwarfed

by tooling energy expenditure.

Formally, the solution to the optimal control problem is the trajectory u* (t), where

tI

u*(t)= arg mi fldt (IV-3)
U()0

Subject to the dynamics (as described in eqs 111-33)

(idt h xI, I f (xdounar ond it :u) (IV-4)

With the boundary conditions:



(xd {t = 0),2,(t =0),",(t =0),(t =0))

=(0,0,0,0)

(IV-5)

xd (t = t, ),; (t =t, ),'o ( = ty ),, ( =t,

= (0,0,0, xf)

And subject to the constraints (no slip and no fall) as described in eqs IV-1 and IV-2

g(xdxII-,X,u) >0 (IV-6)

Fig. IV-3 shows the results of an optimal trajectory. The software used in computing this trajectory is

the academic version of DIDO.
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IV - 3: Example optimal trajectory for point to point control

In the initial portion of the trajectory, the outer robot stays ahead of the inner robot and pulls it

forward. Near the end of the trajectory, the outer robot drops behind the inner robot in order to slow it

to a stop. This ensures that both robots get to the desired endpoint with zero velocity. This result is

similar to that found in vibration suppression of cranes [36].
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IV - 4: Time evolution of no fall and no slip condition

Fig. IV-4 shows the evolution of the no-slip condition and the reaction forces during this trajectory. Note

that while the robot never comes close to falling, it does skirt the safety margin for the no slip condition.

IV.1.4. Further discussion

In order to better understand this system, we vary its parameters and observe their effect on

performance. In particular we are interested in exploring parameters unique to such a system -

principally in the variation of magnetic forces caused by robot misalignment and eddy current damping.

Finding the numerical optimal trajectory is computationally intensive, so we focus on a simpler

performance metric: ability of the outer robot to accelerate or decelerate.

We start by finding the maximum torque we can apply to the system before either slippage or falling of

the outer robot. Fig. IV-5 shows how the maximum allowable torque varies as a function of relative

displacement of the robots and velocity of the outer robot. Outside of this contour is the zone in which

the outer robot falls.
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IV - 5: Maximum torque applicable before slippage. Outside of the shaded region, the outer robot falls

When the system is grossly misaligned, the outer robot is likely to fall (see (a) and (b) in Fig. IV-5). For

positive velocities the rear wheel tends to fall, while for negative velocities the front wheel tends to fall

(see (c) and (d) in Fig. IV-5). This can be explained by eddy forces on the outer robot as shown in Fig. IV-

6.
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IV - 6: Changes in reaction forces due to velocity



These results can also be found by looking at a special (1 DOF case) of eqs IV-1 and IV-2. Note that to

find the terms in these equations, we must solve for reaction forces as described in section 111.1.4.

At a positive velocity (marked (b) on the figure), eddy damping on the magnets causes a torque on the

system that reduces the magnitude of the reaction force at the rear wheel. The opposite is true when

the system has negative velocity (marked (d)).

At small velocities (such as at (a) and (c)), the system can fail due to large misalignment of the robots

(Xd). The contours are iso-torque lines where these opposing factors (falling due to eddy current

damping vs misalignment) tradeoff.

We are interested in exploring how this behavior is affected by the system parameters, such as eddy

current damping. Consider the case that the skin is thicker and the eddy damping more pronounced, as

well as the case in which the skin in less conductive (reduced eddy damping). Max allowable torque for

these cases is shown in Fig. IV-7.

2x eddy current damping
Max motor torque

xd (m)

0.5x eddy current damping
Max motor torque

.1 (.)
IV - 7: Allowable motor torques for variation in eddy current

For the most part, as eddy current damping increases, viable states of operation shrink.



We observe an interesting phenomenon if we nondimentionalize the velocity and position in the

following manner: a characteristic position dimension is chosen as the displacement required before

falling (assuming zero velocity). This is around 2.3 cm. A characteristic velocity dimension is chosen as

the maximum steady velocity the inner robot can maintain without separation (at this velocity, the

maximum possible variable reluctance realignment force is equal to eddy damping for the inner robot -

it cannot be pulled any faster). This characteristic velocity does not deal with falling or slippage but is a

function of eddy currents. For our system, it is approximately 20 m/s. This comes from solving for the

reaction forces of the system - see section 111.1.4. In this case, we are interested in a 1 DOF simplified

case of the full system model, making solving for these reaction forces less computationally taxing.

Fig. IV-8 shows the results of this plot. Unlike the previous plots, this is invariant with respect to eddy

current coefficient.
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IV - 8: Normalized velocity and displacement

Note that the velocity never reaches 'maximum velocity' as described in the previous paragraph

(reaches a maximum value around 0.6). This suggests that slippage / falling of the outer robot becomes



critical before factors such as separation of the inner and outer robot due to drag forces for our current

design, regardless of eddy current properties. This graph is a useful tool when evaluating a candidate

design for this system and eddy current properties are unknown.

The previous plots show the regions in which it is possible to apply a motor torque without slippage or

falling of. the outer robot. It should be noted, however, that even if it is possible to apply a motor

torque, this torque may not be enough to specify the direction of acceleration. That is, in some cases,

although we apply a motor torque, we can change on the magnitude of acceleration, not the direction.

This is the case when other forces (such as magnet forces) are much larger than the forces we are able

to apply. For example, sufficient misalignment may cause very large restoring forces from the

permanent magnets. Although we may be able to provide a motor torque that opposes this realignment

force, we cannot cancel it completely without wheel slippage.

We would prefer to always be able to control the direction of acceleration - Fig. IV-9 shows the

conditions when this is possible for several values of eddy current damping coefficients.
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IV - 9: Region in which we can control direction of acceleration for two eddy current values



Note that these are subsets of the contours shown in Fig. IV-7.

The case with reduced eddy friction is more controllable at larger velocities as expected and clearly has

a larger area. Interestingly, in the case with reduced eddy currents, it becomes harder to operate at

some regions of large relative displacement and low velocity. This is because the damping effects of the

eddy currents offset the variable reluctance attractive force; with a small net force from the system, it is

easier for us to control acceleration. Note that at zero velocity, the plots are identical (changes in eddy

current damping have no effect at zero velocity).

These results suggest that while higher eddy current damping provides increased stability in a few cases,

in general control of the system is improved by limiting its dissipative effects.

IV.2. Fine positioning

IV.2.1. Control strategy

Here we describe our strategy for achieving precise positioning. First, the outer robot uses its powered

wheels to precisely align itself with the fastener. This is achieved using the straightforward method of

solving the inverse kinematics of a wheeled mobile robot. If the tool is located at position A as shown in

Fig. IV-10, and the desired location is at some other location, we know the direction of velocity we

would like the tool to move. We apply to the system velocity in this direction with a unit magnitude. In

order to apply this velocity to the tool, the wheels must move at some velocity.



IV - 10: Relative velocities for inverse kinematics

Kinematics tell us

VA VB1 +OXrBIA
(IV-7)

VA =VB2 +XrB 2_A

And we know the angular velocity

w=(vB2 VB6)2m (IV-8)

From this we can find necessary wheel velocities to get our desired tool velocity.

VA = V BI + X rB(IV-9)

VA = VB 2 ± (OX rB2 A

Once the outer robot has been accurately positioned, the wheels of the outer robot are locked. While

the wheels are locked, current is applied to the coils on the outer robot. This generates a Lorentz force

on the inner robot. We control the position of the inner robot through modulation of this force.



This Lorentz force strategy for positioning is important because though the outer robot is able to

accurately align with the fastener, factors such as static friction, manufacturing tolerances and skin

thickness aberrations may cause the inner robot to remain misaligned.

IV.2.2. Key issues

While fine positioning, the difference in position between the inner and outer robot remains small (< 5

mm). For this reason we assume normal magnetic forces are adequate to prevent falling or slipping of

the outer robot. This small stroke also allows us to make other assumptions, such as linearizing the

variable reluctance force between the robot pair, and assuming that Lorentz force is not state

dependent. Our goal during this positioning is to eliminate steady state error, so our controller should

contain an integrator.

IV.2.3. Simplified modeling and control for fine positioning

Once the outer robot has aligned to its desired location, the wheels on the outer robot are locked, and

alignment of the inner robot is attempted. We attempt in this stage to hold the position of the outer

robot stead. However, due to compliance in bearings and flexible elements such as rubber wheels, the

outer robot may shift even while the wheels do not move. For this reason, the outer robot is modeled

as a mass-spring system; the far end of the spring is ground fixed. The permanent magnets on the inner

and outer robots create a restoring force between the pair. Linearizing this restoring force allows us to

model it as a spring connecting the inner and outer robot. This linearization was introduced in eq. 111-34.

We simplify this linearization further by ignoring dynamics in the 0 direction (the tool is rotationally

symmetric - only xy positioning is relevant).

Fig. IV-11 shows the model of the robotic system while fine positioning is attempted.
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IV - 11: Fine positioning model

Note that this model is of two uncoupled identical mass spring damper systems (in the x and the y

direction). The coils in the outer robot produce forces F, and F . Our goal is to step the inner robot to

some location (x2 , y2 ) while keeping the inner robot at the origin. Deriving equations of motion for this

system is straightforward:

m,2,=-F, +(-x, ) k +(xv2~-x1 k2 - bli

M2"2 =, F+(X1 -x ) k2 - b2 '2 I-0
mnjy = -F, +(-y)k +(y 2 - Y1)k 2 -b9, (IV-10)

m22= F, +(y 1 - y 2 )k 2 -b 292

Which can be written as:

i= Ax+Bu (IV-11)

From this, the controllability matrix is defined as:



HC=(B AB A2 B A3B A4B A5B A6B A7 B]

This matrix is full rank - the system is controllable.

We are interested in controlling the position of the inner robot, so we consider the transfer function

from input F to output x2. The following figure shows the root locus obtained when implementing PID

control on the inner robot. Note that the system is stable for all gains. For our initial tests, we operated

near the region marked on the chart. Eddy current damping values were taken from experimental

results from section 111.1.3.
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IV - 12: Root locus for inner robot positioning

Fig. IV-13 shows a closer view near the center of the plot

(lv-12)



IV - 13: Close view of root locus

It should be noted that the location of the slow zero near the origin is dependent on the parameters of

the system. In fact, this zero moves into the right half plane if the following expression holds:

mi k, +k2
2 k+ 2  (IV-13)

Fortunately, plugging in typical fastener installation tooling values to this expression gives

m2  k2

A PID controller was implemented on the actual system as shown below.
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IV - 14: Servoing ability of inner robot



The plot shows a robot following a commanded ladder type reference.

For fastener installation, the tooling is required to have 100 pm positioning accuracy. This test

demonstrates this goal is easily achievable. At times oscillations were present. These are believed to be

due to unmodeled dynamics such as mechanical backlash in bearings. In practice, turning the controller

off and then on again often stopped the oscillation. This suggests that a heuristic outer control loop

could be added to the system to temporarily halt the PID loop in the case that unwanted oscillations are

sensed.

IV.2.4. Further discussion

During some fine positioning attempts, motion of the tool was almost imperceptible. This suggests that

the impressive accuracy present may be due to the fact that at least some portion of the positioning

ability of the system is due to compliance in the mechanical elements themselves (stiffness in bearings,

for example). Alignment in this fashion is acceptable for the task.

Although the system is modeled as two uncoupled systems, coupling was detected between the x and y

axis, as shown in Fig. IV-15.
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IV - 15: Coupling between axes, inner robot positioning

Despite this, 2 DOF servo positioning was successful as shown. This shows an instance of the

aforementioned instability, which is fairly straightforward to deal with as described in section IV.2.3.



V. Conclusion

V.1. Summary of contributions

V.1.1. Applicability

This work was motivated by a real and immediate problem - automating fastener installation in aircraft

assembly. This currently manually performed process is a significant bottleneck in aircraft production,

raising the price of airplanes. Automation is a tool that has been used successfully by the automotive

industry (among others) to dramatically lower prices. The work described here allows manufacturers to

automate fastener installation, hopefully providing some of the same benefits to the aircraft industry

that car makers have enjoyed.

Many aircraft makers are interested in changing their manufacturing techniques, building factories that

are composed of mobile robotic systems rather than large heavy ground fixtures. The work described

here fits within this anticipated factory framework.

V.1.2. Novel design

The authors are unaware of other robotic systems featuring the novel design described here - the use of

a pair of robots operating across a thin wall, interacting with one another through the wall. Allowing for

one side of the robot pair to remain passive allows for work in hazardous or hard to access areas. The

support-less nature of the system reduces accessory equipment needed, as well as allows for effectively

infinite stroke. Additionally, this self-supporting nature is possible even for heavy duty tooling. The

system offers a simple way to achieve both fast, large scale positioning and precise alignment when

required. It does all this while fitting into the 'future factory' paradigm many aircraft manufacturers

predict.



V.1.3. Prototype

A functional prototype was built. Most components were found off-the-shelf. Minimal and standard

machining was required, showing the cost effectiveness of utilizing such a robotic system. The

prototype served as an excellent proof-of-concept for a dual robotic self supported partially passive

system capable of performing gross locomotion and fine positioning.

V.1.4. General model

A general model for this system was developed. Parameters such as tooling weight, number of

magnets, locations of wheels, etc, can be altered and the same analysis performed to predict the

behavior of such a system for any application. This is enormously helpful for designers interested in

using a similar architecture at a different scale. Key metrics for system failure were discussed. An FEA

solution to find magnet forces for almost arbitrary placement of rectangular permanent magnets was

presented.

V.1.5. Fine positioning

A control strategy was developed for fine positioning of the robotic system. Based on the features of

this control strategy, a simplified system model capturing relevant dynamics was built. The control

strategy in question was tested in simulation on the system model to verify its effectiveness. Finally,

this controller was successfully implemented on the prototype.

V.1.6. Gross positioning

As in fine positioning, a control strategy was developed for gross positioning of the system. From this

control strategy, a tractable system model containing relevant dynamics was created. Numerical



optimization was performed in the space of this control strategy to find time optimal trajectories that

yielded physical insight into the system dynamics.

V.2. Future work

V.2.1. Hall Effect safety sensors

In practice, the system will run autonomously and should be able to monitor itself to prevent unusual

failure. One of the worst types of failure is separation of the inner and outer robot caused by massive

misalignment. This could happen if the outer robot moves to quickly or the inner robot gets stuck on an

unexpected obstacle, for example. An array of Hall Effect sensors could be placed on the outer robot to

detect the magnetic fields generated by the inner robot. In the case that the magnetic fields are

drastically different than expected, the system could shut down before catastrophic misalignment.

Development and calibration of such a sensor field would be enormously useful. Some work has been

done in this direction and is presented in APPENDIX.

V.2.2. Obstacle avoidance

The interior of the wingbox is littered with obstacles. Designing an add-on to make the inner robot able

to circumvent these obstacles would be useful in practice. Some work in this direction is currently

underway.



A. MATLAB modeling
This section shows the MATLAB code used in modeling the system, first in using the full system model,
and second in using the simplified model.

Full model
The following function gives state evolution of the full system model.

function[stateDot] = robotDynamics(t,state)
%Dnamics of the dual robot system
Manas Menon

%state =xoDot y-oDot x-iDot yliDot theta iDot xd vd thetad]

x oDot = state(1);
y oDot =-state(2);
x iDot = state(3);
y iDot = state(4);
theta iDot = state(5);
xd = state(6);
yd = state(7);
thetad = state(8);

load constants and assign stuff
load allinitlizedData

% find static nagnetic forces and torques, assign stuff
staticMagnetForces = getForcesRobotPair(state);
smf = staticMagnetForces;
tau ol = smf.tau ol;
tau o2 = smf.tau o2;
tau o3 = smf.tau 03;
tau o4 = smf.tau o4;
tau il = smf.tau il;
tau i2 = smf.tau i2;
tau i3 = smf.taui3;
tau i4 = smf.tau i4;

% Ain magnetic forces due to edy currents
eddyForcesOuter = getEddyForcesOuter(state,b);
eddyForcesInner = getEddyForcesInner(state,b);
efo = eddyForcesOuter;
efi = eddyForcesInner;

MNol = smf.Mol + efo.M ol;
M o2 = smf.M o2 + efo.M o2;
Mo3 = smf.M o3 + efo.M o3;
M o4 = smf.M-o4 + efo.M o4;

M il = smf.M il + efi.M il;
M i2 = smf.M i2 + efi.M i2;
M i3 = smf.M i3 + efi.M i3;
M i4 = smf.M i4 + efi.M i4; % ireber tese are in INNER ROBOIT FRAME

nd reac -in frces ead assign stuf.
% uter robot0 C.

tau motor2 = .01;
tau motor3 = .1;
inputs = [taumotor2 tau motor3]; % htere we have a control policy
reactionForcesOuter = getReactionForcesOuter([x oDot y oDot],inputs,..

staticMagnetForces);



Rol = reactionForcesOuter.R ol;
R o2 = reactionForcesOuter.R o2;
R o3 = reactionForcesOuter.R o3;
R o4 = reactionForcesOuter.R o4;
if abs(Ro3(2)) > abs((Ro3(3)+Ro2(3)))*c_r

disp('sliP')
stateDot = 'slip';

end

% inner robot
reactionForcesInner = getReactionForcesInner([xiDot y_iDot thetaiDot],...

staticMagnetForces);

R il = reactionForcesInner.R il;
R i2 = reactionForcesInner.R i2;
R i3 = reactionForcesInner.R i3;
R i4 = reactionForcesInner.Ri4;

% now sum the forces

magnetMomentsOuter = cross(r oml,M ol) + cross(r om2,M o2) +
cross( r_om3,Mo3) + cross(r_om4,Mo4);

magnetMomentsInner = cross( r_iml,Mil) + cross(r_im2,Mi2) +
cross(rim3,Mi3) + cross(rim4,Mi4);

magnetTorquesOuter = subs(tauol + tauo2 + tauo3 + tauo4);
magnetTorquesInner = subs(tauil + taui2 + taui3 + taui4);

reactionMomentsOuter = subs(cross(r owl,R 01) + cross(r ow2,Ro2)
+ cross(r ow3,R o3) + cross(r ow4,R o4)); % force due to motor Inclued

reactionMomentsInner = subs(cross(r iwl,R il) + cross(riw2,Ri2) ...
+ cross(r_iw3,Ri3) + cross(r_iw4,Ri4));

eddyMomentsOuter = [0 0 0];
eddyMomentsInner = [0 0 0];

totalMomentsOuter = magnetMomentsOuter + magnetTorquesOuter + ...

reactionMomentsOuter + eddyMomentsOuter + subs(motorTorques);
totalMomentsInner = magnetMomentsInner + magnetTorquesInner + ...

reactionMomentsInner + eddyMomentsInner;

theta oDotDot = (I/I oC)*totalMomentsOuter(3);
theta-iDotDot = (1/IiC)*totalMomentsInner(3);

magnetForcesOuterx = M ol(1) + Mo2(1) + Mo3(1) + Mo4(1) + Rol(1) +
R o2(l) + R o3(l) + R o4(1);

magnetForcesOutery = M_ol(2) + Mo2(2) + Mo3(2) + Mo4(2) + R_ol(2) +
R o2(2) + R_03(2) + R o4(2);

magnetForcesInnerx = Mil(1) + M_i2(1) + Mi3(1) + Mi4(1) + Ril(1) +
R i2(1) + R i3(1) + R i4(1);

magnetForcesInnery = M il(2) + Mi2(2) + Mi3(2) + Mi4(2) + Ril(2) +
Ri2(2) + Ri3(2) + R i4(2);

now do linear forces
x_oDotDot = magnetForcesOuterx/mo;
y_oDotDot = magnetForcesOutery/m-o;

x iDotDot = magnetForcesInnerx/mi;
y_iDotDot = magnetForcesInnery/m-i;

xdDot = xiDot*cos(thetad) - yiDot*sin(thetad) - xoDot;

ydDot = y-iDot*cos(thetad) + xiDot*sin(thetad) - y_oDot;
% need to find theta oDot;
thetaoDot = subs([0 0 yoDot/-m 6]);
thetadDot = thetaiDot - theta oDot;

now construct the vector of stateDot
stateDot(1) = x oDotDot;
stateDot(2) = y oDotDot;



stateDot(3) = x iDotDot;
stateDot(4) = y iDotDot;
stateDot(5) = theta iDotDot;
stateDot(6) = xd Dot;
stateDot(7) = yd Dot;
stateDot(8) = thetadDot(3);
stateDot = stateDot';

This program used the following functions:

- getForcesRobotPair.m

- getEddyForcesOuter.m

- getEddyForcesinner.m

- getReactionForcesOuter.m

- getReactionForceslnner.m

Code for these functions is shown below

function[forces] = getForcesRobotPair(state)
%this function glets the forces on a rair of robots due to he hialbach

array static forces. it a'lso gets Loruces

%rnanas nenon, 3/29 /02 1

state =x [x-Dot y oDot x iDo y i Dot theta jiDot xd yd thetad;

load alll niti aiZedData

xd = state(6);
yd = state (7);
thetad = state(8);

zd = (m 8 - m 7 + skinThickness + n 8 - n 7); %- distance bet.ween maanets
% fino pos iion of. i nner magets

R = [cos(thetad) -sin(thetad);sin(thetad) cos(thetad)];

c_ol = [r_om1(1:2) 0]; % location of outer magnet 1
c o2 = [r om2(1:2) 0];
c o3 = [r om3(1:2) 0];
c o4 = [r_om4(1:2) 0]; I location of outer magnet 4

c il = [xd yd zd] + [R*r iml (1:-2) '; 0]'; xd and yd come from 'state'
c i2 = [xd yd zd] + [R*r im2(1:2)'; 0]';
c i3 = [xd yd zd] + [R*r im3(1:2)'; 0]';
c i4 = [xd yd zd] + [R*r_im4(1:2) '; 0]'; % location of inner magnet 4

theta ol = atan2 (m_2,m 1) - pi/4;
theta o2 = atan2 (m_2,-m__1) - pi/4;
theta o3 = atan2 (-m_2,-m_1) + pi/ 4 ;
theta o4 = atan2 (-m_1,m_1) + pi/4;

theta il = theta ol + thetad;
theta i2 = theta o2 + thetad;
theta i3 = theta o3 + thetad;
theta i4 = theta o4 + thetad;

% ae cacuTlae force on uoper (irner) robot, so we taeh the necative of



% this force to find the force on the outer (lower) robot
Magnet 1

[Fx Fy Fz Tx Ty Tz) = getApproximateForcesHalbachs(c_ol,
c_il, -1, thetail,J);

M ol = -[Fx Fy Fz];

tau ol = -[Tx Ty Tz];
% Magnet 2
[Fx Fy Fz Tx Ty Tz] = getApproximateForcesHalbachs(c_o2,

c_i2, -1, thetai2,J);
M o2 = -[Fx Fy Fz];

tauo2 = -[Tx Ty Tz];
% Magnet 3
[Fx Fy Fz Tx Ty Tz] = getApproximateForcesHalbachs(c_o3,

c_13, -1, theta_i3,J);
M o3 = -[Fx Fy Fz];

tauo3 = -[Tx Ty Tz];
% Magnet 4
[Fx Fy Fz Tx Ty Tz] = getApproximateForcesHalbachs(c_o4,

c_i4, -1, theta_i4,J);
M o4 = -[Fx Fy Fz];

tau_o4 = -[Tx Ty Tz];

R = [cos(thetad) sin(thetad) 0;
-sin(thetad) cos(thetad) 0;
o O 1];

% now find inner robot
M il = -R*M ol';
tau il = -R*tau ol';
M i2 = -R*M o2';
tau i2 = -R*tau-o2';
M 13 = -R*M o3';
taui3 = -R*tau-o3';
M 14 = -R*M o4';
taui4 = -R*tau o4';

1, theta_ol,...

1, thetao2,...

1, theta_o3,...

1, thetao4,...

forces - remember these are in the inner robot frame

% build output

forces.M il = M il';
forces.M i2 = M i2';
forces.M i3 = M i3';
forces.M i4 = M i4';

forces.M ol = M ol;
forces.M o2 = M o2;
forces.M o3 = M o3;
forces.M o4 = M o4;

forces.tau il = tau il';
forces.tau i2 = tau i2';
forces.tau i3 = tau 13';
forces.tau i4 = tau i4';

forces.tau o1 = tau ol;
forces.tau o2 = tau o2;
forces.tau 03 = tau o3;
forces.tau o4 = tau o4;

This program used the following functions:

- getApproximateForcesHalbachs.m

Code for this is shown below



function[Fx Fy Fz Tx Ty Tz] = getApproximateForcesHalbachs(...
centroid1,thetaZ1,d1,...
centroid2,thetaZ2,d2,J)
this function gets force informaLion for a pair of haIbach arrays from a

%ookua table

load allMagnetData

xDisplacements = allMagnetData.xDisplacements;
yDisplacements = allMagnetData.yDisplacements;
zDisplacements = allMagnetData.zDisplacements;
thetaDisplacements = allMagnetData.thetaDisplacements;

xd = centroid2(l) - centroid1(1);
yd = centroid2(2) - centroid1(2);
zd = centroid2(3) - centroid1(3);
thetad = thetaZ2 - thetaZ1;

[xValue xIndex] = min(abs (xd - xDisplacements));
[yValue yIndex] = min(abs(yd - yDisplacements));
[zValue zIndex] = min(abs(zd - zDisplacements));
[thetaValue thetaIndex] = min(abs(thetad - thetaDisplacements));

vec = allMagnetData.dataMatrix{xIndex(1), yIndex(1),...
zIndex(1),thetaIndex(1)};

Fx = vec(1);
Fy = vec(2);
Fz = vec(3);
Tx = vec(4);
Ty = vec(5);
Tz = vec.(6);

function[eddyForcesOuter] getEddyForcesOuter(state,b);

% for now:
% s t a te = [xaoDot aDo xiDot v iDo otrheta J-Dat xd yd etad]'

em = [-b*state(1) -b*state(2)];
eddyForcesOuter.M ol = [em 0];
eddyForcesOuter.M o2 = [em 0];
eddyForcesOuter.M o3 = [em 0];
eddyForcesOuter.Mo4 = [em 0];
eddyForcesOuter.tau ol = [0 0 0];
eddyForcesOuter.tau o2 = [0 0 0];
eddyForcesOuter.tau 03 = [0 0 0];
eddyForcesOuter.tauo4 = [0 0 0];

function[eddyForcesInner] = getEddyForcesInner(state,b)

% for- now:
st [oot y Doit x yfiar. v tDLhea iDot xc yd -ttad]

em = [-b*state(3) -b*state(4)];
eddyForcesInner.M il = [em 0];
eddyForcesInner.M i2 = [em 0];
eddyForcesInner.M i3 = [em 0];
eddyForcesInner.M i4 = [em 0];
eddyForcesInner.tau il = [0 0 0];
eddyForcesInner.tau i2 = [0 0 0];
eddyForcesInner.tau i3 = [0 0 0];
eddyForcesInner.tau i4 = [0 0 0];



function[reactionForcesOuter] = getReactionForcesOuter(vouterC,inputs,...
staticMagnetForces)

% solves a system of equations to get reaction forces for the outer robot.
think I'l write a script to find the solution to this for the civen

% inputs and then just write it here...

s Manas Menon
% started 3/19/2010, but it'i be som time before I finish

% t's 3/24/2010. Finding the reaction forces has been reduced to solving
% a series of linear equations.

inputs of the followina form:
S v oC = [v oCx v oCy];

inuts = [tau motor2 tau motor3]

load allInitializedData

% ASSIGN INPUTS

velocities
v_oCx = v outerC(l);
v_oCy = v-outerC(2);

Sinpus

tau motor2 = inputs(1);
taumotor3 = inputs(2);
F motor2 = tau motor2/wheelRadius;
Fmotor3 = taumotor3/wheelRadius;

magnet forces
M_ol = staticMagnetForces.Mol;
M_o2 = staticMagnetForces.Mo2;
M_o3 = staticMagnetForces.Mo3;
M_o4 = staticMagnetForces.Mo4;
M olx = M01(1);
M_oly = Mol(2);
M olz = M ol(3);

M o2x = Mo2(1);
M_o2y = M o2(2);
Mo2z = Mo2(3);

M o3x = Mo3(1);
M_o3y = Mo3(2);
Mo3z = Mo3(3);

M o4x = Mo4(1); %
M_o4y = Mo4(2);
Mo4z = M o4(3);

magnet torques
tauol = staticMagnetForces.tauol;
tauo2 = staticMagnetForces.tau o2;
tauo3 = staticMagnetForces.tauo3;
tauo4 = staticMagnetForces.tauo4;
tau olx = tauol(1); %
tauoly = tau ol(2);

tau olz = tau ol(3);

tau o2x = tau o2(1); %
tau o2y = tau o2(2);
tau o2z = tau o2(3);

tau o3x = tau o3(1); %
tauo3y = tau o3(2);
tau o3z = tau o3(3);



tau o4x = tau o4(1);
tau o4y = tau o4(2);
tau o4z = tau o4(3);

% we havze derived A from another program, plug it in here:
eed O Check if the velociy of e p ive eels is 0, and ake a fw

if norm(subs (v outerC)) <.001 %corsidec the s e where the -rbot is -sill
A outer = A outer(1:5,1:5);
b outer = b outer(1:5);
sA outer = subs (A outer);
sb outer = subs(b outer);
rvec = inv(sA outer)*sb outer;
reactionForcesOuter.R olx = 0;
reactionForcesOuter.Roly = 0;
reactionForcesOuter.R o4x = 0;
reactionForcesOuter.R o4y = 0;

else % if the root is moving ,(re common case)
sA outer = subs(A outer);
sb outer = subs(b outer);
rvec = inv(sA-outer)*sb-outer;
reactionForcesOuter.R olx = rvec(6);
reactionForcesOuter.Roly = rvec(7);
reactionForcesOuter.R o4x = rvec(8);
reactionForcesOuter.Ro4y = rvec(9);

end

reactionForcesOuter.R olz = rvec(l);
reactionForcesOuter.R o2z = rvec(2);
reactionForcesOuter.R o3z = rvec(3);
reactionForcesOuter.R o4z = rvec(4);
reactionForcesOuter.R o3y = rvec(5);

reactionForcesOuter.R o1 = [reactionForcesOuter.R olx ...
reactionForcesOuter.R oly reactionForcesOuter.R olz];

reactionForcesOuter.R o2 = [F motor2 ...
0 reactionForcesOuter.R o2z];

reactionForcesOuter.R o3 = [F motor3 ...
reactionForcesOuter.R o3y reactionForcesOuter.Ro3z];

reactionForcesOuter.R o4 = [reactionForcesOuter.R o4x ...
reactionForcesouter.R o4y reactionForcesOuter.Ro4z];

function[reactionForcesInner] = getReactionForcesInner(v innerC,...
staticMagnetForces)

Man-as Menon

i funct0ion scoOves scome i]..near equation.s to find the rcton forces on
he i robot, ti tie rae of the inner ro bot

% n inner,- = v iCx vi Cy v~itea % NOTE: V THETA IS ICUE

load cllinilizedData

% 02 vl iie

V iCx = v innerC(1);
v iCy = v innerC(2);
v iCtheta = v innerC(3);

. m 0agniet fre

M il = staticMagnetForces.Mil;
M i2 = staticMagnetForces.M i2;
M-i3 = staticMagnetForces.Mi3;
M i4 = staticMagnetForces.M i4;
M ilx = M il(1); %
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M ily = 1_il(2);
M ilz = M il(3);
M i2x = M i2(1);
M i2y = M i2(2);
M i2z = M i2(3);
M i3x = M i3(1);
M-i3y = M i3(2);
M i3z = M i3(3);
M i4x = M i4(1);
M-i4y = M i4(2);

M i4z = Mi4(3);

%6 magnet torques
tau_il = staticMagnetForces.tauil;
taui2 = staticMagnetForces.taui2;
taui3 = staticMagnetForces.taui3;
tau i4 = staticMagnetForces.tau i4;
tau ilx = tau il(1);
tauily = tau il(2);
tau ilz = tau il(3);
tau i2x = tau i2(1);
taui2y = tau i2(2);
tau i2z = tau i2(3);
tau i3x = tau i3(1);
tau i3y = tau i3(2);
tau i3z = tau i3(3);
tau i4x = tau i4(1);
taui4y = tau i4(2);
taui4z = taui4(3);

if norm(subs(v innerC))<.001;
reactionForcesInner.R ilx = 0;
reactionForcesInner.R_ily = 0;
reactionForcesInner.R i2x = 0;
reactionForcesInner.R_i

2 y = 0;
reactionForcesInner.R i3x = 0;
reactionForcesInner.R_i3y = 0;
reactionForcesInner.R i4x = 0;
reactionForcesInner.R_i4y = 0;
sA inner = subs(A inner(1:4,1:4));
sbinner = subs(binner(1:4));
rvec = inv(sA inner)*sb inner;

elseif norm(subs(viwl)) <.001
reactionForcesInner.R ilx = 0;
reactionForcesInner.R_ily = 0;
sA inner = subs(A inner([1:4,7:12],[1:4,7:12]));
sbinner = subs(b inner([1:4,7:12]));
rvec = inv(sA inner)*sb inner;
reactionForcesInner.R i2x = rvec(5);
reactionForcesInner.R i2y = rvec(6);
reactionForcesInner.R i3x = rvec(7);
reactionForcesInner.R,_i3y = rvec(8);
reactionForcesInner.R i4x = rvec(9);
reactionForcesInner.R_i4y = rvec(10);

elseif norm(subs(v iw2)) <.001;
reactionForcesInner.R i2x = 0;
reactionForcesInner.R_i2y = 0;
sA inner = subs(A inner([1:6,9:12],[1:6,9:12]));
sbinner = subs(binner([1:6,9:12]));
rvec = inv(sA inner)*sb inner;
reactionForcesInner.R ilx = rvec(5);
reactionForcesInner.R ily = rvec(6);
reactionForcesInner.R i3x = rvec(7);
reactionForcesInner.R i3y = rvec(8);
reactionForcesInner.R i4x = rvec(9);
reactionForcesInner.R i4y = rvec(10);

elseif norm(subs(v iw3)) < .001
reactionForcesInner.R i3x = 0;
reactionForcesInner.Ri3y = 0;
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sA inner = subs(A inner({1:8,11:12],[1:8,11:12]));
sb inner = subs(b inner([1:8,11:12]));
rvec = inv(sA inner)*sb inner;
reactionForcesInner.R ilx = rvec(5);
reactionForcesInner.R ily = rvec(6);
reactionForcesInner.R i2x = rvec(7);
reactionForcesInner.R i2y = rvec(8);
reactionForcesInner.R i4x = rvec(9);
reactionForcesInner.R i4y = rvec(10);

elseif norm(subs(v iw4)) < .001
reactionForcesInner.R i4x = 0;
reactionForcesInner.R_i4y = 0;
sA inner = subs(A inner(1:10,1:10));
sb inner = subs(b inner(1:10));
rvec = inv(sA inner)*sb inner;
reactionForcesInner.R ilx = rvec(5);
reactionForcesInner.R ily = rvec(6);
reactionForcesInner.R i2x = rvec(7);
reactionForcesInner.R i2y = rvec(8);
reactionForcesInner.R i3x = rvec(9);
reactionForcesInner.R i3y = rvec(10);

else
sA inner = subs(A inner);
sb inner = subs (b inner);
rvec = inv(sA inner)*sb inner;
reactionForcesInner.R ilx = rvec(5);
reactionForcesInner.R ily = rvec(6);
reactionForcesInner.R i2x = rvec(7);
reactionForcesInner.R i2y = rvec(8);
reactionForcesInner.R i3x = rvec(9);
reactionForcesInner.R i3y = rvec(10);
reactionForcesInner.R i4x = rvec(11);
reactionForcesInner.R i4y = rvec(12);

end

reactionForcesInner.R ilz
reactionForcesInner.R i2z
reactionForcesInner.R i3z
reactionForcesInner.R i4z

= rvec(1);
= rvec (2);
= rvec(3);
= rvec(4);

reactionForcesInner.R il [reactionForcesInner.R ilx ...

reactionForcesInner.R ily reactionForcesInner.R ilz];
reactionForcesInner.R i2 = [reactionForcesInner.R i2x ...

reactionForcesInner.R i2y reactionForcesInner.R i2z];
reactionForcesInner.R i3 [reactionForcesInner.R i3x ...

reactionForcesInner.R i3y reactionForcesInner.R i3z];
reactionForcesInner.R i4 = [reactionForcesInner.R i4x ...

reactionForcesInner.R i4y reactionForcesInner.R i4z];

Simplified model
Next we show code used in the point to point model of the system. This code assumes the
robot moves along a straight line, has fewer states and is much less complicated. It is also
worth noting that the structure of this code, as well as many file names, have been altered for
simplicity in running DIDO (the numerical trajectory optimization program).

function[XDOT] = dynamics fun(primal)
%ynamics ofthe dual robot system
EvManas Mvenon
4 13/2010

%onof the- program w rie L o ar numeric al optm.zao by IIDO

%st.at1.e = x oDot x mt dxo]'
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% load constants and assign stuff
load allinitializedData

% preallocate
XDOT = zeros(size(primal.states));
for a = 1:size(XDOT,2)

x oDot = primal.states(l,a);
x iDot = primal.states(2,a);
xd = primal.states(3,a);
x_o = primal.states(4,a);

state = {x oDot xiDot xd xo];

look at the state vector at each time (node)
% find static magnetic forces and torques, assign stuff

should be in a form that matches 'primal'
% for each 'node' in primal.nodes (which corresponds to a time), there

should be a value for staticMagnetForcesArray. So the first entry is
staticMagnetForces = getApproximateForcesRobotPair(state,...

p_x,p_z,ptau);
smf = staticMagnetForces;

% find macnetic forces due to eddy currents
eddyForcesOuter = getEddyForcesOuter(state,b);
eddyForcesInner = getEddyForcesInner(state,b);
efo = eddyForcesOuter;
efi = eddyForcesInner;

Mol = smf.Mol + efo.M ol;
Mo2 = smf.M o2 + efo.Mo2;
Mo3 = smf.M o3 + efo.M o3;
M o4 = smf.M o4 + efo.M o4;
totalMagnetForcesOuter.M ol =
totalMagnetForcesOuter.M o2 =
totalMagnetForcesOuter.M o3 =
totalMagnetForcesOuter.M o4 =
totalMagnetForcesOuter.tau_ol
totalMagnetForcesOuter.tau o2
totalMagnetForcesOuter.tauo3
totalMagnetForcesOuter.tauo4

M il = smf.M il + efi.M il;
M i2 = smf.Mi2 + efi.Mi2;
M i3 = smf.M i3 + efi.Mi3;
M i4 = smf.Mi4 + efi.Mi4;
totalMagnetForcesInner.M il =
totalMagnetForcesInner.M i2 =
totalMagnetForcesInner.M i3 =
totalMagnetForcesInner.M i4 =
totalMagnetForcesInner.tau_il
totalMagnetForcesInner.tau i2
totalMagnetForcesInner.tau i3
totalMagnetForcesInner.taui4

M_01;
M_o2;
M_o3;
M_o4;
= smf.tauol;
= smf.tau o2;
= smf.tauo3;
= smf.tauo4;

remember these
Mil;
M_i2;
Mi3;
M i4;
= smf.tauil;
= smf.tau i2;
= smf.tau i3;
= smf.tau i4;

are in INNER ROBOT FRAME

% find reaction forces and assign stuff
% outer robot
t Inputs
taumotor2 = primal.controls(a)/2;
taumotor3 = primal.controls(a)/2;
inputs = (taumotor2 taumotor3];
reactionForcesOuter = getReactionForcesOuter([xoDot 0],inputs,...

totalMagnetForcesOuter);
R ol = reactionForcesOuter.R ol;
Ro2 = reactionForcesOuter.R o2;
Ro3 = reactionForcesOuter.R o3;
R o4 = reactionForcesOuter.R o4;

% inner robot

103



reactionForcesInner = getReactionForcesInner([x iDot 0 0],...
totalMagnetForcesInner);

R il = reactionForcesInner.R il;
R i2 = reactionForcesInner.R i2;
R i3 = reactionForcesInner.R i3;
R i4 = reactionForcesInner.R i4;

Snow sum the for ces
magnetForcesOuterx = Mol(l) + Mo2(1) +
magnetForcesInnerx = M __il(1) + M_i2(1) +
reactionForcesOuterx = R 01(1) + R o2(1)
reactionForcesInnerx = R il(1) + R i2(1)
totalForcesOuterx = magnetForcesOuterx +

M_o3 (1) + M_o4 (1);
M i3 (1) + M i4 (1);
+ R o3 (1) + R o4 (1);
+ R i3 (1) + R i4 (1);
reactionForcesOuterx;

totalForcesInnerx = magnetForcesInnerx + reactionForcesInnerx;

% now do linear forces
x oDotDot = totalForcesOuterx/m o;
x iDotDot = totalForcesInnerx/mi;
xd Dot = x iDot - x oDot;

% 1 rem.inder:

state-=(x o-oL x iDot xd x o '
XDOT(1,a) = x oDotDot;
XDOT(2,a) = x iDotDot;
XDOT(3,a) = xd Dot;

XDOT(4,a) = x oDot;
end

This function calls the following functions:

- getEddyForcesOuter.m

- getEddyForceslnner.m

This code is nearly identical to that shown in the previous section and is not shown here.

Additionally, the function called:

- getApproximateForcesRobotPair.m

- getReactionForcesOuter.m

- getReactionForcesInner.m

This code is shown below.

function approximateForcesRobotPair = getApproximateForcesRobotPair(...
state,p_x,pz,ptau)

% ManasL moo
%4/721

Tis uses the1 DO F robotodel ciity isisweet

xd = state (3);

xForce = polyval(px,xd);
zForce = polyval(p z,xd);
yMoment = polyval(p tau,xd); 6 these are forces n EACH 'UTER ROB'T MAGNET
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afrp.Mol = [xForce 0 zForce];
afrp.Mo2 = [xForce 0 zForce];
afrp.M_o3 = [xForce 0 zForce];
afrp.M_o4 = [xForce 0 zForce];
afrp.M_il = [-xForce 0 -zForce];
afrp.Mi2 = [-xForce 0 -zForce];
afrp.Mi3 = [-xForce 0 -zForce];
afrp.Mi4 = [-xForce 0 -zForce];

afrp.tauol = [0 yMoment 0];
afrp.tauo2 = [0 yMoment 0];
afrp.tauo3 = [0 yMoment 0];
afrp.tau_o4 = [0 yMoment 0];
afrp.tau_il = -[0 yMoment 0];
afrp.taui2 = -[0 yMoment 0];
afrp.tau_i3 = -[0 yMoment 0];
afrp.tau_i4 = -[0 yMoment 01;

approximateForcesRobotPair = afrp;

function[reactionForcesOuter] = getReactionForcesOuter(vouterC,inputs,...
totalMagnetForcesOuter)

% solves a system of equations to get reaction forces for the outer robot.
% think I'll write a script to find the solution to this for the given

pinputs and then just write it here...

% Manas Menon
% started 3/19/2010, but it'll he some time before I finish

t's 3/24/2010. ---indi the reaction forces has been reduced to solving
a series of linear eauat ions.

o uts of the following for.m:
% oC = oCx voCy];

% Puts = [taumoor2 tau motor3]

ASSIGN INPTPS

% v7eloci':ties

v oCx = v outerC(l);

L inputs
taumotor2 = inputs(1);
taumotor3 = inputs(2);

% magnet forces
M_ol = totalMagnetForcesOuter.Mol;
M_o2 = totalMagnetForcesOuter.Mo2;
M_o3 = totalMagnetForcesOuter.M_o3;
M_o4 = totalMagnetForcesOuter.M o4;
M olx = M ol(1); %
M olz = M ol(3);
M o2x = M o2(1); %
M o2z = M o2(3);
M o3x = M o3(1); %
M o3z = M o3(3);
M o4x = M o4(1);
M o4z = M o4(3);

% magnet torques
tauoly = totalMagnetForcesOuter.tau_ol(2);
tauo2y = totalMagnetForcesOuter.tauo2(2);
tauo3y = totalMagnetForcesOuter.tauo3(2);
tau o4y = totalMagnetForcesOuter.tauo4(2);
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% we havre derived A from another rogram, plu It in h
ne ed to check iF the velocity of the passive wheels is 0, and make a few

%chancies if itis

NEED TO CHECK AND MAKE SURE THS I S ACTRATE 0N MY FINAL RUN
wheelRadius = 0.061976;
c = .025;

Fmotor2 = tau motor2/wheelRadius;
Fmotor3 = tau motor3/wheelRadius;
A outer = [ -18059/50000, 1811/5000, 15247/62500;
2,2,0;
1/40*v oCx/abs(v oCx), 0, -1];

b outer =

( -2281/25000*M olx+107/1000*M olz-2281/25000*Mo2x-107/1000*...
M o2z-2281/25000*M o3x-107/1000*M o3z-2281/25000*M o4x+107/1000*...
M_o4z-tau_oly-tauo2y-tauo3y-tauo4y-3/50*Fmotor2-3/50*Fmotor3-...
tau motor2-tau motor3;
-M olz-Mo2z-Mo3z-Mo4z+4263/50;
0]);

CHECK ABOVE IIS LINE TO MAKE SURE A, B AND WHEEL RADIUS AND C...
ARE CORRECT TO FIND CORRECT VALUES, RUN initilizeValues.m

smallV = .001;
if norm(v outerC) <smallV % consider the case where the robot is ~-still

sA outer = (A outer(1:2,1:2));
sb outer = (bouter(1:2));
rvec = inv(sA outer)*sb outer;
reactionForcesOuter.Rolx = -abs(c*rvec(1))/smallV*norm(v outerC);

else ' if the robot is moring (more common case)
sA outer = (A outer);
sb outer = (bouter);
rvec = inv(sA outer)*sb outer;
reactionForcesOuter.R olx = rvec(3);

end

reactionForcesOuter.R olz = rvec(l);
reactionForcesOuter.R o2z = rvec(2);

reactionForcesOuter.R ol = [reactionForcesOuter.R olx ...
0 reactionForcesOuter.R olz];

reactionForcesOuter.R o2 = [F motor2 ...
0 reactionForcesOuter.R o2z];

reactionForcesOuter.R o3 = reactionForcesOuter.R o2;
reactionForcesOuter.R o4 = reactionForcesOuter.R ol;

function[reactionForcesInner] = getReactionForcesInner(v innerC,...
totalMagnetForcesInner)

Manas Menon
%3 329/2 010

% is fction solves some liner equatioos to find th react'n for ces on
% the inner robet , in the fiame of the inner robot

%vnnerr = (v iCx v iCV v iCuheta) % NOTE V THETA IS INCLUDED

SveloItis
v iCx = v innerC(1);
v iCy = 0;

% macintfre
M il = totalMagnetForcesInner.M il;
M i2 = totalMagnetForcesInner.M i2;
M i3 = totalMagnetForcesInner.M i3;
M i4 = totalMagnetForcesInner.M i4;
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M ix = M_ 1(1); %

M ilz = M il(3);

M i2x = Mi2(1);

M i2z = M i2(3);
M i3x = Mi3(1); %

M i3z = M i3(3);
M i4x = Mi4(1);

M i4z = M i4(3);

magnet torques
tauil = totalMagnetForcesInner.tau_il;
taui2 = totalMagnetForcesInner.taui2;
taui3 = totalMagnetForcesInner.taui3;
tau i4 = totalMagnetForcesInner.tau i4;

tauily = tau il(2);
taui2y = tau i2(2);
taui3y = tau i3(2);
taui4y = taui4(2);

CHECK THIS BEFORE RUNNING FINAL VERSION
c = .025;

A inner =...
-18059/50000, 18059/50000,-459/5000, -459/5000;

2, 2, 0, 0;
-1/40*v iCx/abs(v iCx), 0, -1, 0;

0, -1/40*v iCx/abs(v iCx), 0, -1];
b inner =

[1/50*M ilx+107/1000*M ilz+1/50*M i2x-107/1000*Mi2z+1/50*...
M i3x-107/1000*Mi3z+1/50*Mi4x+107/1000*Mi4z-tau_ily-taui2y-...
taui3y-tau i4y;

-M ilz-M i2z-M i3z-M i4z+1421/25;
0;

0];
CHECK ABOUT THIS BEFORE RUNNING FINAL VER1SION

% NEED TO CHECK A INNER, B INNE P,
% unknownsVector = [R il . 12z ; R ilx; R 12x:

smallV = .001;
if norm(v innerC)<smallV;

sA inner = (A inner(1:2,1:2));
sb inner = (b inner(1:2));
rvec = inv(sA inner)*sb inner;
reactionForcesInner.R ilx = -abs(c*rvec(1))/.001*v innerC;
reactionForcesInner.R i2x = -abs(c*rvec(2))/.001*v innerC;

else
sA inner = (A inner);
sb inner = (b inner);
rvec = inv(sA inner)*sb inner;
reactionForcesInner.R ilx = rvec(3);
reactionForcesInner.R i2x = rvec(4);

end

reactionForcesInner.R ilz = rvec(1);
reactionForcesInner.Ri2z = rvec(2);

reactionForcesInner.R il = [reactionForcesInner.R ilx ...
0 reactionForcesInner.R ilz];

reactionForcesInner.R i2 = [reactionForcesInner.Ri2x ...
0 reactionForcesInner.Ri2z];

reactionForcesInner.R i3 = reactionForcesInner.R i2;
reactionForcesInner.R i4 = reactionForcesInner.R il;
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B. MATLAB initialization

Magnet Data
This section shows the MATLAB code used to generate magnet force data. This data is fit to a high order
polynomial curve so that it does not have to be re-generated every time the dynamics simulation needs
force information.

% e nerateDuaiRobctMagnetDatam

.:This function generates data for a bunch of different robotmialnment
% scenari os. -his data will later be fit to a curve for quick access

%sat = x o~o x io d'

clear al-
close all
clc

initializeValues

xDisplacements = -.05 :.001: .05;

cubeDim = 0.0254;
step = cubeDim/10;

dataMatrix = cell(length(xDisplacements));

for xIndex = 1:length(xDisplacements)
xd = xDisplacements(xIndex);
state = [0 0 xd];
[M ol tau l] = getForcesRobotPair(state,cubeDim,step);
magnetDataMatrix(xIndex,:) = [xd Mol(l) Mol(3) tauol(2)]

end

mdm = magnetDataMatrix;

p x = polyfit(mdm(:,l),mdm(:,2),6);
p z = polyfit(mdm(:,),mdm(:,3),6);
p-tau = polyfit (mdm(:,1),mdm(:, 4) , 6);

save (mdm', 'md ')

plot (mdm(:,1),mdm(:,2), ' '
hold on
plot(mdm(:,l),polyval(p x,mdm(:,l)))
title( 'Acci racy of lvoal aproximation tminet forces' ,

'Fontize'28)-
xlabel ('displaeme-net (m) 'Fontsie,28)
ylabel('Forceo (N)', 'Fontsize',28)
legend (AcLual maget force','Plynomial approximation')

This function calls

- getForcesRobotPair

which is shown below

function[Mol tauol] = getForcesRobotPair(state,cubeDim,step)
% tis fuction rets the forces o a pair of robotsu.e to the halbach
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% array static forces. it also gets torques. this function now finds
% ACTUAL FORCES, not estimates, so use this with:
% generateDua lRobotMagnetData .m

also due to symmetry, I've been able to cut this way down

% anas menon, 3/29/2010

% state = ix oDot x iDot xd]';

load allinitializedData

xd = state(3);

zd = (m_8 - m 7 + skinThickness + n_8 - n_7); % z distance between magnets

find position of inner maonets

c ol = [r oml(1:2) 0]; % location of outer magnet I

c_il = [xd 0 zd] + [r_iml(1:2)'; 0]'; % xd and yd come from 'state'

thetaol = atan2(m_2,m_1) - pi/2;

thetail = thetaol;

% we calculate force on upper (inner) robot, so we take the negative of
this force to find the force on the outer (lower) robot

% Magnet 1
[Fx Fy Fz Tx Ty Tz] = getForcesHalbachs(col, thetaol,l,

c il, theta il, -1,J,cubeDim,step);
Mol = -[Fx 0 Fz];
tauol = -[0 Ty 0];

This function calls

- getForcesHalbachs.m

Which is shown below:

function[Fx Fy Fz Tx Ty Tz] = getForcesHalbachs(centroidl,thetaZ,d,...
centroid2,thetaZ2,d2,J,cubeDim,step)

%tis function finds the forces / (and torques?) between a pair of halbach
6 arrays.

% Manas Menon
% /10/2010

if centroidl(3) > centroid2(3)
error('FIRST halbach array must be lower array')

end

mu = 1.26e-6;

First create a surface over which wo will calculate maxwell's stress
% tensor.
[xl x2 yl y2 z1 z2] = getTensorSurface(centroid,thetaZl,centroid2...

,thetaZ2,cubeDim);

discretize the tensor surface - this should return a set of locations as
% well as vectors normal to the surface corresponding to each of these
%lcations

[locations normals] = getEvaluationLocations(xl,x2,yl,y2,z1,z2,step);
temp = ones(size(locations));
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create matrix: full of vectors fror macit COM to evaluation surface
temp(:,l) = temp(:,1)*centroid2(1);
temp(:,2) = temp(:,2)*centroid2(2);
temp(:,3) = temp(:,3)*centroid2(3);
momentArms = locations - temp;
clear temp

find fie d at each of these locations due to BOTH halbach arra-ys

fields = nan(size(locations));
for k = 1:length(fields)

location = locations (k,:);
[Bxl Byl Bzl] = findFieldHalbach(centroidl,cubeDim,J,dl,thetaZl,...

location);
[Bx2 By2 Bz2] = findFieldHalbach(centroid2,cubeDim,J,d2,thetaZ2,...

location);
if sum(isnan([Bxl Byl Bzl Bx2 By2 Bz2]))

disp([Bxl Byl Bzl Bx2 By2 Bz2])
disp(location)
error('nan')

end
fields(k,:) = [Bxl + Bx2,Byl + By2,Bzl + Bz2];

end

% SOME PLOTTING c;'DE HERE TO HELP IN DEBIGGING *
drawHalbach(centroidl,cubeDim,J,dlthetaZl)
drawHalbach(centroid2,cubeDim,J,d2,thetaZ2)
drawTensorSurface(xl,x2,yl,y2,zl,z2)
quiver3(locations(:,l),locations(:,2),locations(:,3),fields(:,l)...

,fields(:,2),fields(:,3))
%quiver3 (localtions( : I) loatons(:2),loc ilons (:,3) , normals:, 1)

normals (:2) ,normals(:,3))

% alculate maxwels zt res tensor

forces = zeros(size(locations));
for i = 1:3

for t = 1:length(fields)
H = fields (t,:)/mu;
n = normals (t,:);
j = find(n - 0);

if i == j;
Hk = H(1)^2 + H(2)^2 + H(3)^2;
forces (t,i) = (H(i)^2 - (1/2)*Hk)*sum(n);

else
forces(t,i) = H(i)*H(j)*sum(n);

end
end

end
forces = forces.*step^2*mu;

now f ind t: orquesc
torques = nan(size(forces));
for t -= 1:length(forces)

torques(t,:) = cross(momentArms(t,:),forces(t,:));
end

ass.iign out

Fx = sum(forces(:,l));
Fy = sum(forces(:,2));

Fz = sum(forces(:,3));
Tx = sum(torques(:,l));
Ty = sum(torques(:,2));
Tz = sum(torques(:,3));

This function calls:

- getTensorSurface.m
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- getEvaluationLocations.m

- findFieldHalbach.m

These are shown below:

-------------------------------------------------------------------------------
function[xl x2 yl y2 zl z2] = getTensorSurface(centroidl,thetaZ,...

centroid2,thetaZ2,cubeDim)

Given 2 halbach arrays, this function generates a rectangular surface

* used to calculate the maxwell stress tensor. Outputs are the locations

* of the surfaces.

% Arrays are assumed to be the sare size

Manas Menon

% 3/10/2010

first put some vectors into a nice usable form

c1(l) = centroid1(1);

c1(2) = centroid1(2);

c1(3) = centroid1(3);

c2(1) = centroid2(1);

c2(2) = centroid2(2);

c2(3) = centroid2(3);

c1 = [c1(1);c1(2)];

c2 = [c2(1);c2(2)];

R1 = [cos(thetaZi) -sin(thetaZi);

sin(thetaZl) cos(thetaZl) ];

R2 = [cos(thetaZ2) -sin(thetaZ2)

sin(thetaZ2) cos(thetaZ2) ];

cd = cubeDim;

cornersx = [-1.5*cd,-1.5*cd,1.5*cd,1.5*cd];

cornersy = [-0.5*cd,0.5*cd,0.5*cd,-0.5*cd];

rotatedCorners = [Ri*[cornersx;cornersy] R2*[cornersx;cornersy]];

finalCorners = rotatedCorners + [cl cl cl cl c2 c2 c2 c2];

maxX = max(finalCorners(1,:));

minX = min(finalCorners(1,:));

maxY = max(finalCorners(2,:));

minY = min(finalCorners(2,:));

% max / min X and Y give the locations of the corners

bottomOfTopArray = max(centroid1(3),centroid2(3)) - cd/2;

topOfBottomArray = min(centroid1(3),centroid2(3)) + cd/2;

if bottomOfTopArray < topOfBottomArray

error('Arrays are intersecting)

end

zi = mean([bottomOfTopArray topOfBottomArray]);

clearance = cd / 2;

z2 = bottomOfTopArray + cd + clearance;

x1 = minX - clearance;

x2 = maxX + clearance;

yi = minY - clearance;

y2 = maxY + clearance;
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function[locations,normalVectors] = getEvaluationLocations(xl,x2,yl,y2,...
zl,z2,step)

% this function gets evalua tion locations as well as normal vectors r a
given tensor surface

% er ate discretizati cn poInts
xVec = [xl + step/2 step x2 - step/2];
yVec = [yl + step/2 step y2 - step/2];
zVec = [zl + step/2 step z2 - step/2];

iializ outLpus
numberOfPoints = length(xVec)*length(yVec)*2 + length(xVec)*length(zVec)*2 ...

+ length(yVec)*length(zVec)*2;

locations = ones(numberOfPoints,3)*NaN;
normalVectors = locations;
% these just in itialize the values, need to fix this

% Bottom surface
k = 1;

for x = xVec

for y = yVec
locations(k,:) = [xy,zl];
normalVectors(k,:) = [0 0 -1];
k = k + 1;

end
end

%"op surface
for x = xVec

for y = yVec
locations(k, :) = [x,y,z2];
normalVectors(k,:) = [0 0 1];
k = k + 1;

end
end

for x = xVec
for z = zVec

locations(k,:) = [x,yl,z];
-normalVectors(k,:) = [0 -1 0];
k = k + 1;

end
end

% ack c surfa ce

for x = xVec

for z = zVec
locations(k,:) = [x,-y2,z];
normalVectors(k,:) = [0 1 0];
k = k + 1;

end
end

fo 'Riht s
for z = zVec

for y = yVec
locations(k,:) = [x2,y,z];
normalVectors(k,:) = [1 0 0];
k = k + 1;

end
end
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for z = zVec
for y = yVec

locations(k,:) = [xl,y,z];
normalVectors(k,:) = [-1 0 01;
k = k + 1;

end
end

if sum(isnan(locations) + isnan(normalVectors))
error (I'something didn''t get assigned')

end

function[Bx By Bz)=findFieldHalbach(centroid,cubeDim,J,direction,thetaZ,location)

% findFieldHalbach.m
Manas Menon

% 3/9/2010

% This program generates the fields due to a halbach array

% The halbach array is composed of cuboidal magnets. The function takes as
% inputs the CENTROID of the magnet ARRAY, the dimension of a CUBE side,

the magnetic charge density J, the direction (1 or -1 - ie is it facing
% up or down) and the angle theta z about the z axis. No rotation is
% allowed about x or y. Field is found at LOCATION

% Two halbach arrays with the same thetaZ and opposite directions are
% 'mated' with one another.

%choose different locations that corresond to each magnet
6 remember to change Bx By Bz as needeed

% generate rotation matrix:
R = [cos(thetaZ) -sin(thetaZ) 0;

sin(thetaZ) cos(thetaZ) 0;
0 0 1];

a = cubeDim/2;

first try one of the magnets
magnetllocation = R*[-3*a;-a;-a];
r = location - centroid - magnetllocation';

% need to out r in the correct frame:
r = inv(R)*r';

% assume for now that this is correct,
dimensions = [cubeDim,cubeDim,cubeDim];
[X1 Y1 Z1] = findFieldSingle(dimensions,r,J);
vtemp = R*[Xl;Yl;Zl];
Xl = vtemp(l);
Yl = vtemp(2);
Zl = vtemp(3);

% now add other 'vertical' magnet
magnet3location = R*[a;-a;-a];
r = location - centroid - magnet3location';

% need to out r in the correct frame:
r = inv(R)*r';

[X3 Y3 Z3] = findFieldSingle(dimensions,r,-J); % note negative J
vtemp = R*[X3; Y3 ;Z3];
X3 = vtemp(l);
Y3 = vtemp(2);
Z3 = vtemp(3);

% now find field due to middle magnet - this is tricky
magnet2location = R*[-a;-a;a];
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r = location - centroid - magnet2location';

Sneea Lo put r in the correcl frame:
RR = inv (O 0 -1;0 1 0;1 0 0]);
r = inv(RR)*inv(R)*r';

[X2 Y2 Z2] = findFieldSingle(dimensions,r,-direction*J);
vtemp = R*RR*[X2;Y2;Z2];
X2 = vtemp(l);
Y2 = vtemp(2);
Z2 = vtemp(3);

Bx = Xl + X3 + X2;
By = Yl + Y3 + Y2;
Bz = Z1 + Z3 + Z2; BAM lT WORKS

This function calls

- findFieldSingle.m

This is shown below:

function [Bx By Bz] = findFieldSingle(dimensions,location,J)

i eldSiqngle.tm
% Manas Mencn

started. 3/3 /2010;

T s pt inds uihe field due to a single r cttagl afr maqnet. It use
formci aLion found in the paper, 'Three-Dimensional Analytical

% Optimization of Permanent Magnets Alternated Strutcire' by F. Bancel and
G. LemWe uie a marnmi charge ma-odel of th stnem where we

%-? ass-ume the miagneti-c sur---fac_-e chargce density IS knownM. .B i.s then f ound .CuFr- a.u au ccc''f uff h 1 t fO-l t.I-c a
%r a fi t i aCd b igr al, so thanks to0

% ancel aid Lemarquaad for sv t

maget is a box with sides length a. (alon x) b (an yc ) and c (along

Sz). TIhe corner -of the uagnet is lc at at -e or iin, -n th follwc.ing
cxp'ressionsa give fieIds a the tion (x,vz) i ach dic-i or B x, By,

% aid B. is the magneLic paole density at he srface of --atie magnet

a = dimensions(1);
b = dimensions(2);
c = dimensions(3);
x = location(1);
y = location(2);
z = location(3);

Bx = NaN;
By = NaN;
Bz = NaN;

while isnan(Bx) l Iisinf(Bx)I|imag(Bx)
Bx = (J/(4*pi))*log(((b-y+sqrt(x^2-2*x*a+y^2+a^2+b^2-2*y*b+z^2-2*z*c+c^2))*...

(-y+sqrt(x^2-2*z*c+z^2+y^2+c^2))*(b-y+sqrt(x^2+b^2-2*y*b+z^2+y^2))* ...
(-y+sqrt(x^2-2*x*a+y^2+a^2+z^2)))/((b-y+sqrt(x^2+b 2-2*y*b+z2+y^2-2*z*c+c^2))*...
(-y+sqrt(x^2-2*x*a+ y 2+a2+c^2+z^2-2*z*c))*(b-y+sqrt (x ̂ 2-2*x*a+y 2+a^2+b2-2*y*b+z2))*...
(-y+sqrt(x^2+z^2+y^2))));

x = x + randn*epsA .5;
y = y + randn*eps^.5;
z = z + randn*eps^.5;
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% disp('wiggle')
end
dl = x + y + z - sum(location);

while isnan(By) I isinf(By)||imag(By)
% used to be: By =(J/(4*pi))*log(((-x+sqrt(x^yb- )*

By = (J/(4*pi))*log(((a-x+sqrt(x^2-2*x*a+y*y+a*a+z*z+b*b+cc-2*y*b-2*z*c))*...
(-x+sqrt(x*x+z*z-2*z*c+y*y+c*c))*(a-x+sqrt(x*x-2*x*a+y*y+a*a+z*z))*...
(-x+sqrt(x*x+z*z+b*b+y*y-2*y*b)))/((a-x+sqrt(x*x-2*x*a+y*y+a*a+z*z-2*z*c+c*c))* ...
(-x+sqrt(x*x+z*z+b*b+y*y-2*y*b+c*c-2*z*c))*(a-x+sqrt(x*x-2*x*a+y*y+a*a+z*z+b*b-2*y*b))*...
(-x+sqrt(x*x+z*z+y*y))));

x = x + randn*eps^.5;
y = y + randn*eps^.5;
z = z + randn*eps^ .5;
Sdisp(wiggle')

end
d2 = x + y + z - sum(location);

while isnan(Bz)||isinf(Bz) limag(Bz)
% used to be-Bz =
;b (-J/ ( *pi)) (atanlxW y/ ( (c-z) *sgr-t(x^ 2^2x^2-2*z*c--c^2')))+atan(((a-x)*y) /((c-z-)*sgrt-(z^2-
2*a*x x ^ 2-2*z*c 2)))+..
Bz = (-J/(4*pi))*(atan(x*y/((c-z)*sqrt(x^2 +y^2+z2-2*z*c+c^2)))+atan(((a-x)*y)/((c-z)*sqrt(aA2-
2*a*x+x 2+y^2+z^2-2*z*c+c^2)))+...

atan((x*(b-y))/((c-z)*sqrt(b ̂ 2-2*b*y+x2+y^2+z^2-2*z*c+c2)))+...
atan((((-a+x)*(-b+y))/((c-z)*sqrt(a 2+b 2-2*a*x+x 2-2*b*y+y^2+z2-2*z*c+c2))))+...
atan(x*y/(z*sqrt (x^2+yA2+z^2)))+atan(((a-x)*y)/(z*sqrt(a^2-2*a*x+x^2+y^2+z^2)))+...
atan((x*(b-y))/(z*sqrt(b 2+x 2-2*b*y+y^2+z2)))+atan(((a-x)*(b-y))/(z*sqrt(a^A2+bA2-2*a*x+xA2-

2*b*y+yA2+zA2))));

% used to be a tan((x*(b-))(z*sgrt(b^2+x^2-2*b/y2+z^2))+atan((a-x) (b-y))(z*sgrt(z^ 2+b^2-
2*a*x-x^2-2*by+v'2+z2))));
x = x + randn*eps^ .5;
y = y + randn*eps^.5;
z = z + randn*eps^ .5;

disp('"wiggle)
end
d3 = x + y + z - sum(location);

if max([ dl,d2,d3])>le6
disp(max([ dl,d2,d3]))

end
------ --------------------------------------------------------------------------------------

Deriving reaction forces
In this section we show the derivation of reaction forces for the inner and outer robot. For the sake of

brevity, we only show the derivation for the full system case - the simplified case is a subset of this.

-------------------------------------------------------------------------------

t aeriveReaction*orces1inner.m

% Manas Menon
% started 3/21/2010

This script is very similar to (but simpler than)
% deriveReactionForces~uter.m - here we don't have to deal with stuff like
1 constrained motion and such. I'I copy paste a lot of code over and tim

up as needed.

% here we are only trying to find 4 reactLon forces, so we only need 4
% equations. We get these equations by takin sum of moments (2) linear
% force in d dici' on (1) and method of deformations (1)

S3/23/200 - update- I realized that in this formulation, like the last
% one, we are going to need to find a few extra reaction forces. Here we
I need to find 8 extra, so we need 8 more equations for a total of 12
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% 3/25/2010 - ano!ther update - those extra equations Can be imrrediately
% substitoud back nto the original 4, so we're back to only 4

clear a.
close all
clc

% magnet f

syms i22 Mi3 M i4 M 1 1 M ily Mv 14ilz M i-x M itv MJ2z M ix ...
M i'3y M 3iz M i- .x M J. i y M i Z

% magnet torques
syms itau il ta it 1 ai au x tau i2x tau 13x tau i4x.

ta' ly tau 12v taU i3v ta i4 tau il tau i z tau 132 ta 14z

% reaction forces
syms Ril R Ti2 R-13 R i4 R.ilx R i2x R.i3x R idx R_ily Rli2y Ri3y ...

R iv .R ilR'i2z R .3z P. iz

% locat-ion vectoGrs
syms r im1 r im2 r im3m -r im r iwi r iw2 r iw3 r 1w4

% dimensions

syms nn 2 n ' 3 nI n 8

% deflections
syms delta Il delta 2" deltai3 deta iL delta ic k ik I k i3 k 14

syms m .g x y z a 1 bi I_ if- IiB thetadotdoti .c

sym v ox s'.
s yms v i Cx v iCy vi -he v vLil -v iw2 -v iw3 v iwz.

%0 ul some vectors here:

M il = [M ilx M ily M ilz];
M__i2 = [Mi2x Mi2y Mi2z];
Mi3 = [Mi3x Mi3y Mi3z];
Mi4 = [Mi4x Mi4y Mi4z];

R il = [R ilx Rily R-ilz];
Ri2 = [R_i2x R i2y R-i2z];
R i3 = [R i3x Ri3y R i3z];
Ri4 = [R-i4x R i4y R i4z];

tau-il = [tau ilx tau ily tau ilz];
taui2 = [taui2x tau i2y taui2z];
tau i3 = [taui3x tau i3y taui3z];
tau i4 = [taui4x tau i4y tau i4z];

INNER ROBOT SPECIFIC
%magnet locations

r imi = [n 1,n 2,-n 7];
r im2 = [-n,n 2,-n 7];
rim3 = [-n 1,-n_2,-n 7];
r im4 = [n_1,-n 2,-n_7];

%8 wheel oc ations
r iwl = [n_3 n_4 -n 8];
r iw2 = [-n_3 n_4 -n-8];
r iw3 = [-n 3 -n-4 -n-8];
r iw4 = [n_3 -n-4 -n-8];

moments
magnetForceTorques = cross(r iml,M -il) + cross(rim2,Mi2) +

cross(r im3,Mi3) + cross(r im4,M i4);
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magnetTorques = tau_il + taui2 + taui3 + taui4;

reactionTorques = cross(r iwl,R il) + cross(r iw2,Ri2) +
cross(riw3,Ri3) + cross(riw4,Ri4);

allTorques = magnetForceTorques + magnetTorques + reactionTorques;
eql = allTorques(l);
eq2 = allTorques(2);

% force in z direction
zForces = Rilz + Ri2z + Ri3z + Ri4z + Milz + Mi2z + M i3z + M i4z ...

- m_i*g;
eq3 = zForces;

% method of deformations INNER ROBOT C
first find the equation for the plane

plane = 'a + b i'y = '
deformationEql = subs(plane,{x,y,z},{0,2*n_4,-deltai2));
deformationEq2 = subs(plane,{x,y,z},{2*n_3,0,-deltai4});

[ai bi] = solve(deformationEql,deformationEq2,a i,b i);

plug reaction forces into deltas - be careful with sign!
% now pick either point 1 or 4. I choose 1!
delta ic = R i3z/k i3;
delta il = R ilz/k il - deltaic;
delta i2 = R i2z/k i2 - deltaic;
delta i4 = R i4z/k i4 - deltaic;

a_I = subs(a_i,{'delta i','deita_i2','delta i4'},...
{deltail,delta i2,deltai4});

b i = subs(bi,{'delta il,'Idelta i92,'deIta i4'},...

(deltail,delta i2,delta i4});
eq4 = a i*(2*n_3) + b i*(2*n_4) + deltail;

% finding lateral and longitudinal forces. First of all we need to find
% l tidnes of the wheels.

v ic = [v iCx v_iCy 0];
w i [0 0 v iCtheta];

v iwl =v ic + cross(w i,r iwl);
v iw2 =v ic + cross(w i,riw2);
v iw3 = v ic + cross(w i,r iw3);
v iw4 =v ic + cross(w i,r iw4);

% we know the fol owi relationshi.ps exist:
% R ix = -c*R ilz*v iwl (1)/ (v iw1(I)2 + v .w1(2) 2) (1/2);
% R *R il z w iwi w) (v wl 2 v 1 (2) 2)^(1/2);

R i2x = -*R i2z*v iw2 (v- iw,'2(1)^2 v w2(2)^2)^ (1/2);
R 1 = R i2z*v iw2)(2)/(v w2(

1) 2 +v iw2(2)^2)^(1/2);

%R 13x = - c R i3z* v iw3(1)/(v iw3(1)^2 + 1 iw3(2)^2)^(/2);
% R i~ =-*R i iw3(2)/ (v _iw3(1)^2 + v (2) 2)^(1/2);

% R iIx = -c*R inz*v iw4 (1)/ (v iw4 (1) ^2 + v iw4(2) ^2)^(1/2);
Ri4y =-R i4z*v iw4(2)/(v' iw4(-)^2 v Iw4 (2)2(1/2);

6 we Can write these as our equations:
eq5 = -c*R ilz*v_iwl(l)/(v_iw1(1)^2 + v iwl(2)^2)^(1/2)-Rilx;
eq6 = -c*R ilz*v_iwl(2)/(v_iw1(1)^2 + v iwl(2)^2)^(1/2)-R-ily;

eq7 = -c*R i2z*v iw2(1)/(viw2(1)^2 + v iw2(2)^2)^(1/2)-R i2x;

eq8 = -c*Ri2z*viw2(2)/(viw2(1)^2 + v iw2(2)^2)^(1/2)-R i2 y;

eq9 = -c*R i3z*viw3(1)/(viw3(1)^2 + viw3(2)^ 2)^(1/2)-Ri3x;
eqlO = -c*R i3z*v_iw3(2)/(viw3(1)^2 + viw3(2)^2)^(1/2)-R-i3y;

eqll = -c*R i4z*v iw4(1)/(viw4(1)^2 + v iw4(2)^2)^(1/2)-Ri4x;
eql2 = -c*R i4z*v iw4(2)/(viw4(1)^2 + v iw4(2)^2)^(1/2)-R i4y;
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now build the A atr ix and b vect to so Ax = b
% x - [R ilz R i2z R i3z P iz]
equationsVector = [eql eq2 eq3 eq4 eq5 eq6 eq7 eq8 eq9 eq1O eql eql2];
unknownsVector = [R ilz; Ri2z; Ri3z; Ri4z; Rilx; Rily; Ri2x; ...

R_i2y; Ri3x; Ri3y; Ri4x; Ri4y];

for i = 1:length(equationsVector)
equationChoice = equationsVector(i);
for j = 1:length(unknownsVector)

unknownChoice = unknownsVector(j);
A(i,j) = diff(equationChoice,unknownChoice);

end
b(i,l) = A(i,:)*unknownsVector - equationChoice;

end
A inner = A;
b inner = b;
clear b

derP've-eaionFo rcesOuterm .

O a scrip to find an expression tno et the reaction forces of the outer
roo . The forces we want are: z axis reaction orces at wheels (4) and

% y axis reaction force that constrains the rotlon (1) which means we need
%5equtations total.

3/23/201, - y've realized we also need Iateral and ongit udinal 1eaction
% fores at wheels - this reouires 4 more equations for 9 equations total

% Manas Melon
% st_-arted 3/,20)/2010_!

clear all
close all
clc

% mragnet forc'es
syms M Y1 M2 M o3 M o 4 M_ o x Mly M .

2 
zM _2x M_o2y M o2z M c3x ...

M o v M 3z M x Moi M oez

% magnet or ques
syms t -au< 1ta La tu3 n oix tau. o2x tau c3x tau 4x.

tau i t oau_o2y tau3y -a- v taul tau2z -.au 3z tau 04z

ra forces
syms R 0 R o2 o3 R o4 R lx R x R e3x R c4x R clv R -2v P 03

Ro1y R ol R z Ro'3z R1< A z

symns F'<x motr2 .Fmtr aumtr Oa motor3

%locatIion.. vectors

syms r om1 r om2 r on' r cm4 r owl rw2 r ow r ow4 r bmlr'bm2 rabmh3 .a. .
rb- r bw r bw2 r bw3 r bw4

syms mi1 m 2 m~ 3 mi 4 m iim 6 m 7m8 mi 9

% neflec tinns
syms dela ol delta o2 delta o3 dielta 4 delta ock 1 k o2 k 3 kr 4

syms m_ o g x yz a o b o T of I oB thetadotdot o v tIx v By voCx v oCy c

Sveloti es

syms x owdot y otwdt thet xewdet v o wl 7 owl v ow2 v ow4

118



% build some vectors here:
M_ol = [MOx M_oly M_olz];
M_o2 = [Mo2x M-o2y M-o2z];
M_o3 = [Mo3x M-o3y Mo3z];
M_o4 = [M_o4x M-o4y Mo4z);

R_ol = [Rolx R oly R_olz];
R o2 = [F motor2 0 R o2z];
R o3 = [F motor3 R o3y R o3z];
R_o4 = [Ro4x R-o4y R-o4z];

tauol = [tauOlx tauoly tauolz];
tauo2 = [tauo2x tauo2y tauo2z];
tauo3 = [tauo3x tauo3y tauo3z];
tauo4 = [tauo4x tauo4y tauo4z];

% OUTER ROBOT SPECIFIC
% magnet locations
r om1 = [m 1,m 2,m 7];
r_om2 = [-m_,m_2,m_7];
r_om3 = [-m T1,-m 2,m 7];
r_om4 = [m1,-m2,m_7];

% wheel locations
r owl = [m_3 m_4 m8];
r_ow2 = [-m 5 m 6 m 9];
r_ow3 = [-m 5 -m 6 m 9];
r_ow4 = [m_3 -m_4 m_8);

from the rear axle
RAvec = [m5,m6,-mn9];

r bml = r om1 + RAvec;
r bm2 = r om2 + RAvec;
r bm3 = r om3 + RAvec;
r bm4 = r om4 + RAvec;

r bwl = r owl + RAvec;
r bw2 = r ow2 + RAvec;
r bw3 = r ow3 + RAvec;
r bw4 = r ow4 + RAvec;

% moment s about COM
magnetForceTorques = cross(r oml,M ol) + cross(r om2,M o2) +

cross(r om3,M o3) + cross(r om4,M o4);

magnetTorques = tauol + tauo2 + tauo3 + tauo4;

reactionTorques = cross(r owl,R ol) + cross(r ow2,R o2) +
cross(row3,Ro3) + cross(row4,Ro4);

%chose the convention that positive motor torque (which is the input)
%lads to pos forcres at the rear axle of the robot.

motorTorques = [0 taumotor2+tau motor3 0];

allTorques = magnetForceTorques + magnetTorques + reactionTorques + ...

motorTorques;

eq1 = allTorques(1);
eq2 = allTorques(2);

%5 force In z direction
zForces = R olz + R o2z + R o3z + R o4z + M olz + M o2z + M o3z + M o4z ...

- m o*g;

eq3 = zForces;

method of deformations OUTER ROOT SPE
first find the equation for the plane

plane = 'a o*x + bor*y = z';
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deformationEql = subs(plane,{x,y,z},{0,2*m 6,delta o2});
deformationEq2 = subs (plane, {x,y,z},{m_3 + m_5,m_6 - m_4,deltao4});
[a o bo] = solve(deformationEql,deformationEq2,ao,bo);

plug reaction forces into deltas - be carefol with sign!
% now pick either point 1 or 4. 1 cOhoose 1!
delta oc = -R a3z/k a3;
delta l = -R olz/k l - delta oc;
delta o2 = -R o2z/k o2 - delta oc;
delta o4 = -R o4z/k o4 - delta oc;
a o = subs (ao, {'dielta ol', 'delta o2,'delra o4'),{delta a1,deltaa2, ...

deltao4));
b o = subs(b o,{'delta ol'delta o2'delta o,'},{delta al,delta o2,...

deltao4l);
eq4 = a o*(m_3+m_5) + b o*(m_6 + m_4) - delta ol;

%, need a few mo equations - noionomic wheel const raints - find
% thetado o firom roaents aroun z axis, taken at center of rear axle

% ranetFrceorquesB = "roass( c1) + cross(r bm2,M4 02) +...
cross (r bm3 3'4 a) + cross(r bm4,M 04)

rcagnet WorquesB tau 1 tau o2 tau ca0 tau o4;

reactonforYqu esB = r ossr bwl, I 1) + cros,(r bw2,R 02)
cross(r bw3,R o3) +cross(r bw4, p 4);

rc~.... ...o...-.c~"r

. allorqunes.B = magnetorce'orquesB3 + magnetorquesB - reacti.onoru.rB +- . ..

motoraorquesB;

% now, given velociLy of COM, we ind tIhe angular ve ocit

v aC = [v oCx v oCy 0];
P = m O*v aC;
temp = v oC + cross([0 0 theta owdot],-RAvec); only care about 2nd te
theta owdot solve (temp (2) ,theta owdot);

% find accl"eratil of center of mass

ax= Rl otor2 + F motor3 + R 4x + Mclx + x + M o3x + . .

% M o 4x,) /m in ;o

ay - (R _oly + Ro3y + R o4y + M oly + M-o2y + Mo3y + Mo4y)/mo;
% ax ay ]

% use thead.t Lto find vbD
vb = v oC + cross([0 0 theta owdot],-RAvec);

% p = Cr:oss; (vb, P);
% thetado =(allorqaesB (3) - spr3) _oB;

% now that we have thetadotdotoe, can tak e tor.es about COM and get
rea cio n Note that we already corputei all tie torques about tIe tOM

% earlier in the script. At trhis point, we are only interested in the 3rd

thetadotdot-o = allTorques(3)/IoC;

eq5 = ay + thetadotdot o*(-m 5) - vb(l)*theta owdot -

theta owdot^2*m6;

% tem-poraryj sect ion to check soie stuff
Lemp = (alTorquesB(3) - v ofy'm o*(v oCx - theta owdo*- 6))/I oB

rrnext, we neied to deal with the lateral and longitodina reaction fares.

- nex. Lind wheel veloci.

w = [0 0 theta owdot];
v owl = v oC + cross (w,r owl);
v ow2 = v oC + cross (w,r ow2);
vow3 = v oC + cross (w,r ow3);
v ow4 = v oC + cross (w,r ow4);
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for each wheel ,elocity, we have the following relationships
% R o4x = c*R o4z*v owl (1)/(v ow4(1)^2 + v ow4(2)^2)^(1/2);
% R o4y = c*R _o4z*v _ow4 (')'/ (v ow4 (l)2 + v ow4 (2)^2)^(1/2);

%Rox*R olz*v owl (1)/(v owl(1)^"2 + v owl (2)^"2)^(1/2);
s R c*R olz*v owl(2)/(v owl(1)^2 + v owl(2)^2)'(1/2);

n wi an write as equations:

eq6 c*R o4z*vow4(1)/(v ow4(1)^2 + vow4(2)^2)^(1/2)- R o4x;
eq7 = c*Ro4z*vow4(2)/(vow4(1)^2 + vow4(2)^2)^(1/2)- R-o4y;

eq8 = c*Rolz*vowl (l)/(vowl (l)^2 + vowl (2)^2)^(l/2)- Rolx;
eq9 = c*R olz*v_owl(2)/(vowl(l)^2 + vowl(2)A 2)^(1/2)- R oly;

we now have a set of LINEAR EQUATIONS -

% now build the A matrix and b vector for Ax - b = 0.

equationsVector = [eq1 eq2 eq3 eq4 eq5 eq6 eq7 eq8 eq9];
unknownsVector = [R olz; Ro2z; Ro3z; Ro4z; Ro3y; Rolx; Roly; ...

R_o4x; Ro4y];

for i = 1:length(equationsVector)
equationChoice = equationsVector(i);
for j = 1:length(unknownsVector)

unknownChoice = unknownsVector(j);
A(i,j) = diff(equationChoice,unknownChoice);

end
b(i,1) = A(i,:)*unknownsVector - equationChoice;

end
A outer = subs (simple (A));
b outer = subs(simple(b));
clear b;

Initialized data
This script describes the parameters of the current system and initialized a lot of values for the

simulations.

i ia i zeVa les m

Manas Menon
S3/26/2010

This progiram inLtalizes all the vaues for the dual robot simulation

clear all
close all
clc

start by getting matrices required to finld the reaction forces
deriveReactionForcesOuter
save outerExpressions
deriveReactionForcesInner
load outerExpressions
% ROBOT CONSTANTS * * *** *

a dimensions
%outer
m_1 = 0.107;
m_2 = 0.107;
m_3 = 0.18059;
m 4 = 0.133;
m_5 = 0.1811;
m-6 = 0.18288;
m_9 = .06;
m 7 = m 9 + 0.03124;
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wheelRadius = 0.061976;
m 8 = m_9 + wheelRadius;

n 1 = m_1;
n 2 = m 2;
n 3 = m 3;
n 4 = m 4;
n 7 = .02;
n 8 = n 7 + 0.0259;

%oute-r
k ol = le6;
k o2 = le5;
k 03 le5;
k o4 = le6;

k il = le6;

k i2 = le6;
k i3 = le6;
k i4 = le6;

% intertia / masses / friction / gravity
BHmax = -48; % MG0e
mu = 1.26e-6;
m o = 8.7;

m i = 5.8; % kg
c = .025;
c r = .5; % coefficiert of static friction at rubbr/ Al surface
b = 6.8; % 8 damping - eddy currents
g = 9.8;
skinThickness = 1/8*2.54/100;
J = (-BHmax*100/(4*pi*10^-3)/mu*4)^(1/2)*mu;

r omi = [m l m_2 m_7];
r om2 = [-m 1 m 2 m 7];
r om3 = [-m1 -m-2 m_7];
rom4 = [m1 -m-2 m 7];

r im1 = [n_1 n_2 -n_7];
r im2 = [-n_1 n_2 -n-7];
r im3 = [-n_1 -n-2 -n_7];
r im4 = [n_1 -n-2 -n-7];

S*******************************************************

Smagriet stuff
load mdm
p-x = polyfit(mdm(:,l),mdm(:-,2),4);
p z = polyfit(mdm(:,1),mdm(:,3),4);
p_tau = polyfit(mdm(:,1),mdm(:,4),4);

Sao a substitution here - should help sp-eed stuff up

A outer = subs(A outer);
b outer = subs (b outer);
A inner = subs(A inner);
b inner = subs (binner);

save allnitizedData
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C. Hall Effect sensors
This section describes a proof of concept experiment run to see the effectiveness of using Hall Effect
sensors for position estimation across the skin. Sensors distributed over the outer robot would use the
magnetic fields to estimate the position of the inner robot. This test was on a one degree of freedom
test bed.

Fig. C-i shows the setup used to test the position sensing ability of this system.

C - 1: Test setup

The magnet / flux guide assembly shown is able to slide back and forth along the steel shaft. Across the
aluminum skin, an array of Hall Effect sensors detects the magnetic field produced by the tooling and
estimates its position. Fig. C-2 shows the critical components of the assembly.

C - 2: Critical components
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Let us call the position of the tooling x, and the output of each sensor f(x). We choose to model the
response of each of these sensors as a different nth degree polynomial in x. For each sensor, we can
write:

y= f (X)=(x" xn-

bil

1] b,2 T
Lb.n-

In order to estimate the coefficients bij of this polynomial, we use a least squares approximation. We

take a series of position measurements, p, and look at their corresponding sensor outputs. The

parameters of the 0 matrix can be estimated in a least squares sense for each sensor using:

0 = PB

Where, if we have taken N data samples, we can find the P and B matrices from the following
expressions.

N-

P = (( (t) PT (t))
It=1

B =I y (t) p(t )
t=1

This results in a polynomial fit to the sampled data. We can use this polynomial fit to estimate the
position of the tooling, based on the data from the sensors. If we estimate that the tooling is located at
some position X^, then we would expect sensor i to have the output

9=i " +bi22" +...+1I

We compare this to the actual readings from the sensors, y1...y,, and look at the squared error. This

error function is:

i(=1 -Yi

We numerically find the minimum values for this error function and from that estimate the location i of
the tooling. In the setup used, we had 6 sensors.
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The benefit of this methodology is that we can achieve almost arbitrarily accurate positioning, by

sampling more data and fitting a larger order polynomial to the data. By fitting 10 points at

approximately 1" intervals we were able to achieve accuracy better than 0.25" for most of the 10" of

stroke of the tooling, as shown in Error! Reference source not found.. The data points used for the fit

were chosen on the inch marks, while the data points used for testing were at the Y2 inch marks.

Position Estimation Accuracy -
-12 o Estimated position

-Actual Position

c10-
0

o8

16-
E o

4-uJ 4
I)

4 6 8
Actual Position (in)

Hall Effect Sensor

10 12

C - 3: Actual position vs Estimated position

Noise from the sensors manifested itself in position estimation noise with magnitude around 0.01." In

addition, position was estimated visually, and is prone to errors due to play in the bearings.
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