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Abstract

We study the use of inverse and robust optimization to address two problems in
transportation: finding the travel times and designing a transportation network. We
assume that users choose the route selfishly and the flow will eventually reach an
equilibrium state (User Equilibrium).

The first part of the thesis demonstrates how inverse and robust optimization can
be used to find the actual travel times given a stable flow on the network and some
noisy information on travel times from different users. We model the users' perception
of travel times using three different sets and solve the robust inverse problem for all
of them. We also extend the idea to find parametric functional forms for travel times
given historical data. Our numerical results illustrate the significant improvement
obtained by our models over a simple fitting model.

The second part of the thesis considers the network design problem under de-
mand uncertainty. We show that for affine travel time functions, the deterministic
problem can be formulated as a mixed integer programming problem with quadratic
objective and linear constraints. For the robust network design problem, we propose
a decomposition scheme: breaking a tri-level programming problem into two smaller
problems and re-iterating until a good solution is obtained. To deal with the ex-
pensive computation required by large networks, we also propose a heuristic robust
simulated annealing approach. The heuristic algorithm is computationally tractable
and provides some encouragingly results in our simulations.
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Thesis Supervisor: Georgia Perakis
Title: William F. Pounds Professor of Operations Research



4



Acknowledgments

I would like to express my heartfelt gratitude to all the people who have helped make
this project an enjoyable and fruitful experience.

First and foremost, I would like to thank my advisors, Prof. Dimitris Bertsimas
and Prof. Georgia Perakis, for their expert guidance. It is my great honor to have an
opportunity to work with two of the best professors in Operations Research today.

I would like to thank Dimitris for his mentorship. His creative ideas and insightful
comments have always guided my research. Moreover, his enthusiasm, belief, and
optimism has taught me a great lesson in life. Since my first day as his student,
Dimitris has been always asking me to be self-confident. Living in a top intellectual
environment in the world, this was not easy at first. However, I have come to realize
that self-reliance and a positive attitude will help me to mature and to succeed in
life.

I am deeply grateful to Georgia for her expertise, kindness and patience. Despite
her busy schedule, she always spares time for me to present my ideas. She also explains
things very carefully and makes sure that I fully understand her. Her invaluable
knowledge in the area of variational inequalities and network equilibrium always helps
me to enhance the horizon of my research and encourages me to explore new ideas
and topics.

I would like to thank SMA program for creating such a wonderful opportunity.
The SMA scholarship brings me to one of the places I have ever dreamed of. I would
to thank Laura Koller for her sincere help in the CDO program.

In addtion, I feel very lucky to have many wonderful friends here, who have
enriched my life and made it more enjoyable than I could ever expected. I would like
to thank Kil Dong Kwak. Not only being a great friend, his persistence has taught
me a lot. I will remember my discussions with Henry Chen and my other classmates.
Besides, I do really enjoy my soccer games with my Redlobster gang and tennis games
with Mr. Venu. I am also very grateful to my friends, who are not here, for their
constant support and encouragement.

Last but not least, I am immensely indebted to my family for their unconditional
love, encouragement and care. You are always the unlimited source of power for me
to overcome any obstacles. I would not be able to come all my way today, without
your strong support. I owe you more than I could express.



6



Contents

1 Introduction 13

1.1 Uncertainty in Transportation Problems............... .. 13

1.2 Contribution of the thesis................... . . . .. 14

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Notations. . .......................... .. 16

2 Review of Robust Optimization 19

2.1 Robust Linear Optimization . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Robust Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . 21

3 User Equilibrium, VI and Optimization Formulations 23

3.1 User Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 VI and optimization formulation . . . . . . . . . . . . . . . . . . . . . 24

4 The Inverse Optimization Problem to Find Travel Times 27

4.1 Introduction ................ . . . . . . . . . . . . . . . . 27

4.2 Formulation................. . . . . . . . . . . . . . . . 28

4.3 Algorithms......... . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 C onclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 A Network Design Problem under User Equilibrium and Demand

Uncertainty 53

5.1 Introduction................. . . . . . . . . . . . . . . .. 53



5.2 Deterministic Network Design Problem . . . . . . . . . . . . . . . . . 56

5.3 Robust Network Design Problem . . . . . . . . . . . . . . . . . . . . 58

5.4 Computational Results.. . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.1 Deterministic Network Desgin problem . . . . . . . . . . . . . 63

5.4.2 Robust Network Design Problem . . . . . . . . . . . . . . . . 70

5.5 C onclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusions 75



List of Figures

4-1 Deterministic solution. Total error = 20. . . . . . . . . . . . . . . . . 42

4-2 Robust solution (a) for Set E1 and box plot (b) for 1000 cases . . . . 43

4-3 Robust solution for Set E2 when B = 50. Total error = 20. . . . . . . 44

4-4 Robust solution (a) for Set E3 and box plot (b) for 1000 cases when

B = 140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4-5 Worst case error (a) and nominal case error (b) with varying uncer-

tainty budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4-6 Number of iteration with varying budget B . . . . . . . . . . . . . . . 45

4-7 Parameter a when L = 20%. ............... . . . . . ... 46

4-8 Parameter b when L = 20% . . . . . . . . . . . . . . . . . . . . . . . 47

4-9 Fitting total squared error with varying uncertainty level(%) . . . . . 47

4-10 Fitting total squared error with varying p(L = 5%)..... . . ... 48

4-11 Fitting parameter a when L=10% . . . . . . . . . . . . . . . . . . . . 48

4-12 Fitting parameter b when L=10% . . . . . . . . . . . . . . . . . . . . 49

4-13 Total squared error with varying uncertainty level L (%) . . . . . . . 49

4-14 Total Fitting Error with varying uncertainty level . . . . . . . . . . . 50

5-1 N etw ork 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5-2 Sioux Falls network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5-3 Total Cost and computation time (sec) with different M. Total Budget

B=20.. ...... .. .. .. .. ... .. .. .. .. .. ... ... 65

5-4 Total Cost and computation time (sec) with total Budget B = 24 . . 66

5-5 Computation time (sec) with varying 0, M = 1600 . . . . . . . . . . . 67



5-6 Total travel time with varying M . . . . . . . . . . . . . . . . . . . . 68

5-7 Computation time (sec) with varying M . . . . . . . . . . . . . . . . 68

5-8 Computation time (sec) with varying 0 . . . . . . . . . . . . . . . . . 69

5-9 Box plot for 500 scenarios when L = 81.82% . . . . . . . . . . . . . . 71

5-10 Box plot for 500 scenarios when L = 52.72% . . . . . . . . . . . . . . 72

5-11 Box plot for 500 scenarios when L = 80% . . . . . . . . . . . . . . . . 73

5-12 Box plot for 500 scenarios when L = 91.6% . . . . . . . . . . . . . . . 73



List of Tables

4.1 Link travel times by the inverse optimization approach when L = 10% 50

4.2 A sample of flow data on a link of the Sioux Fall network . . . . . . . 51

4.3 A sample of flow data on a link of Network 1 . . . . . . . . . . . . . . 51

5.1 OD table for Network 1 . . . . . . . . . . . . . . . . .

5.2 Link travel times for Network 1 . . . . . . . . . . . . .

5.3 Link travel times for Sioux Fall . . . . . . . . . . . . .

5.4 Design vector for Network 1 . . . . . . . . . . . . . . .

5.5 OD Table(case 1) for Sioux Falls . . . . . . . . . . . . .

5.6 OD Table(case 2) for Sioux Falls . . . . . . . . . . . . .

5.7 DNDP solution for Sioux Falls with 3 OD pairs . . . .

5.8 Worst total travel time and nominal travel time with

Sioux Falls with 3 OD pairs . . . . . . . . . . . . . . .

5.9 Solution to RNDP for Sioux Falls with 3 OD pairs . . .

varying L for

5.10 Worst case and nominal case total travel time for Sioux Falls with 6

O D p airs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



12



Chapter 1

Introduction

1.1 Uncertainty in Transportation Problems

Traditionally, transportation problems are studied using only deterministic informa-

tion. For example, in the traffic assigment problem, all travel times are typically

considered to be known accurately and the route choice of the users therefore can be

modeled exactly. In the network design problem, researchers have focused on the case

when the demands for each Origin-Destination (OD) pair of the network are fixed.

However, in practical applications, decision makers and planners are often faced with

uncertainty with respect to such information. Each user may have a different percep-

tion of the travel times of different links. Even if they travel on the same route, the

reported travel times may still differ from one to another. Demands for the network

also vary during different periods of a day, or different days of a week. Besides, the

set of OD pairs may change significantly due to re-location or re-construction in the

community.

In order to deal with such uncertainty, one crude approach is to ignore it and fix

that information at "nominal" value. These "nominal" values may be the means,

medians, or even the smallest or largest values of the given data. This approach;

however, ignores the fact that some changes in the data may significantly affect the

results. For example, in the User Equilibrium model (see Chapter 3), even the smallest

change in travel times may make users not want to travel on a specific route.



Another way to deal with uncertainty is through scenario-based design, or schochas-

tic programming. Stochastic programming considers a discrete representation of the

uncertainty or assigns some probability to the realization of the data. This method

requires a prior knowledge of the nature of the uncertainty, which might not be avail-

able. Besides, stochastic programming might become computationally expensive for

a large number of scenarios. Moreover, the result of this approach may be sensitive

to some realization of the data. In the network design problem with uncertainty in

demands, a good design for a set of scenarios may lead to congestion in some other

realization of the demands.

According to the U.S. Department of Transportation (see [40]),. in 2009, $48.6

billion was spent to rebuild the transportation network in cities and counties. Texas

Transportation Institute estimated that in 2007., the congestion cost to the U.S econ-

omy was $87 billion. Moreover, it wasted 3 billion gallons of gas and 4 billion hours of

time (see [39]). One way to reduce this huge cost is to better deal with the uncertainty

in the planning and designing phases.

In light of the recent developments in optimization, robust optimization stands out

as a good solution to the issues discussed above. Without any assumption about the

distribution, the uncertainty is modeled as some closed convex set. Being formulated

as a minimax or maximin problem, the robust solution is protected against the least

favorable data realization. It is, moreover, still capable of providing results with good

mean and variance over different scenarios from the uncertainty set. Besides, robust

otimization often leads to a computational tractable problem, and it is able to provide

probabilistic bounds on the feasibility of the constraints and the objective values.

1.2 Contribution of the thesis

This thesis aims to employ the principles of robust optimization in order to deal with

the uncertainty in two different problems in transportation: the inverse problem in

order to find travel times and the network design problem.

The Inverse Optimization Problem to find Travel Times:



1. By repeatedly observing the flow of the network, we can obtain some stable

pattern of the traffic flow. We also can obtain prior "nominal" values for the

travel times at the stable flow. Assuming the stable flow is the User Equilibrium

(UE) flow, we propose an inverse optimization problem to find the travel times

that give rise to the flow under the UE principle, and that are closest to our

prior information.

2. We model the uncertainty in the prior travel times using three different sets.

We propose algorithms to solve the robust inverse problems for each of them.

3. We propose an algorithm using historical data to find the parametric functional

forms for travel times.

The Network Design Problem (NDP) under User Equilibrium and De-

mand Uncertainty:

1. We revisit the mixed integer quadratic programming with linear constraints

to solve the Deterministic Network Design Problem (DNDP) under UE with

asymmetric affine travel time functions. We consider the discrete NDP where

designers want to consider whether or not to build a link.

2. We model the uncertainty in demands as a polyhedron and propose a decom-

position algorithm to solve the Robust Network Design Problem (RNDP).

3. We propose a heuristic algorithm using Robust Simulated Annealing to solve

the RNDP for large networks.

1.3 Structure of the thesis

This thesis is structured as follows.

Chapter 2 gives a brief review of robust optimization. Chapter 3 revisits the

User Equilibrium Principle, and introduces the Variational Inequality (VI) as well

as different optimziation formulations for the UE problem. Chapter 4 developes the

inverse problem to find travel times. We also test our algorithms using simulated

data in this chapter. Chapter 5 is devoted to the Network Design Problem. Section



5.2 formulates the exact, mixed integer programming model for the DNDP. Section

5.3 proposes algorithms to solve the R.NDP with a polyhedron demand set. Finally,

Chapter 6 concludes the thesis.

1.4 Notations

For the ease of the readers, we would like to introduce the notations that will be used

throughout the thesis.

Consider a direct transportation network G(V.A) , where V and A are the sets of

nodes and links. 'We use the following notation:

" P"': set of all paths connects OD pair w

" P = UwEwP": Set of all paths

" hp: Flow on a path p E P

" h: path flow vector

* gp(h): Travel time of path p given the path flow

" g(h): vector of travel time on all paths

fyj : the flow from on a link from node i to node j due to the OD pair wt'

* fC E RAI : the link flow vector to the network due to the OD pair iw

* f = Z, fW : the link flow vector to the whole network

* ci(f): travel time on link from node i to node j.
* c(f): vector of travel time on all links.

Let N be the link-node incident matrix (Nid= 1 and NAy -1 if a link kth start at

node i and end at node j) and let W be the set of OD pairs and for w < |W|. Let

dU, be the amount of flow to be routed from the orgin s, to destination node tl,.



Define the demand vector dw E RIVI such that:

dw if i' = s

d = -dw if i = tw

0 otherwise

A feasible flow f satisfies the equation: NfW = dw

The total travel time of all users of the network TC = g(h)Th = c(f)Tf

Vw
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Chapter 2

Review of Robust Optimization

2.1 Robust Linear Optimization

Robust optimization addresses the problem of data uncertainty by guaranteeing feasi-

bility and optimizing the objective in the least favorable realization of the problem's

data. With the uncertainty in parameters modeled lying in some convex, closed

uncertainty sets (polyhedron, box, ellipsoid, etc..), the robust optimization problem

usually takes the form of a minimax or maximin problem.

The first model in robust Linear Programming (LP) was proposed by Soyster

[47]. In that model, all the parameters are set to satisfy the worst possible case. This

method, however, produces a very conservative result. In addition, the model is only

applicable to column-wise uncertainty. Consequently, the over-conservativeness was

adrressed by Ben-Tal and Nemirovski [10, 11, 12], and El Ghaoui et al. [241. They

formulated the robust counterpart of the LP problem with an ellipsoidal uncertainy set

as a quadratic conic programming problem. Their methods consider the polyhydral

uncertainty set as a special case of the ellipsoidal set. The results are less conservative

than Soyster's approach.

More recently, Bertsimas and Sim [16] proposed an approach based on duality

trasformation to handle linear column-wise uncertainty set. While in approaches in

[12, 24], the robust counterpart is more computationally expensive than the nominal

problem, in the Bertsimas and Sim's approach, the robust counterpart is still a lin-



ear programming problem. Furthermore, both formulations yeild the same level of

conservatism.

Bertsimas et al. [15] further extended this approach by considering an LP problem:

min c'x
X

s.t: Ax < b

x (E P

A c pA

(2.1)

with a more general uncertainty set:

PA = {A c Rmxn ||] (vec(A) - vec(A)) I F}

They proved that if P' is defined by r LP constraints and b (E R' then the robust

LP problem equals a deterministic LP with n + ml variables and m 2n + m + ml + r

constraints.

Ben-Tal et al. [9] also introduced the concept of adjustability in robust optimiza-

tion. They considered the problem:

min c'x (2.3)
x,y

s.t: Ax + By < b

A E Znx"' B C Z", m E Z"

where x are non-adjustable variables and y are adjustable variables. The Ajustable

Robust Counterpart (ARC) is:

min c'x
X

(2.4)

V (=[A,B,b] ly Ax+By < b

The ARC approach, however, can be computationally intractable.

(2.2)

In order to



resolve this problem, they proposed an Affine Adjustable Robust Counterpart ap-

proach, where the adjustable variable y is modeled as: y = yo + W(. Then, the

robust counterpart can be formulated in a tractable form.

2.2 Robust Simulated Annealing

Bertsimas and Nohadani [14] considered the problem:

min g(x) = min max f (x + Ax) (2.5)
x x AxEU

The objective function f can be non-convex and even not given in explicit form.

The variable x is continous. In order to solve the problem, [14] proposed a Robust

Simulated Annealing approach., which is essentially similar to the normal Simulated

Annealing method except for the following changes:

* At each iteration, we need to assembly a set M (Xk) of local maxima for the

problem maxAXEv f(xk + Ax)

" The objective function is now the energy function of the set M (Xk):

W(xk) = log ei*) (2.6)
REM/\(xk)

where 3 is the inverse temperature.

Note that we have limnoo W(xk) = maxEM(Xk) f(k)'

With a proper cooling schedule and neighbour selection, [14] showed that the

Robust Simulated Annealing method is able to converge to a global optimum. In

Chapter 5, we will apply this algorithm to our discrete network design problem.
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Chapter 3

User Equilibrium, VI and

Optimization Formulations

3.1 User Equilibrium

For any transportation problem, it is essential to know how traffic will flow. In our

work, we assume the flow will stabilize according to the User Equilibrium principle,

or Wardrop Equilibrium principle (see [50]).

If users know exactly the travel times on each path, they choose the path that

selfishly optimizes their own travel times. Then, when equilibrium is reached, any

path carrying strictly positive flow between a given OD pair is a minimum travel time

path for that OD pair. This implies that:

gp,(h) = gpj(h) Vpi, pj E Pw s.t hp,, hpj > 0 (3.1)

9p, (h) > gpj (h) Vpj, pj E P" s.t hp, = 0, hpj > 0. (3.2)

With such a flow, no user can reduce his travel time by changing his path. The

following theorem in the literature states the existence and uniqueness of the User

Equilibrium flow:



Definition A vector function c : X -+ R" is monotone on X C R' if it satisfies:

(c(fi) - c(f 2 ))T(fi - f2 ) > 0 Vfi, f2 E X and fi # f2 (3.3)

Moreover, if the inequality is strict, then the vector function is strictly monotone.

Theorem 3.1 [22]: Consider a network G(V, A) with continuous cost function c(f).

There exists a user equilibirum flow for this network. This flow is unique if c(f) is

strictly monotone function.

This thesis adopts this principle to model the flow on a given network.

3.2 VI and optimization formulation

It is well known in the literature that we can find the User Equilibrium flow by solving

the following VI problem:

Theorem 3.2 [20]: Given a network G(V, A) and a set of OD pairs with fixed de-

mands. The UE flow h satisfies:

g(h) T (h - h) > 0 (3.4)

V feasible flow h: E h, = d,.
pCPIV

When the travel time is symmetric (the Hessian matrix of the travel time vector

is symmetric) and separable, we can think of the VI formulation as the first order

optimality condition for a minimization problem over a simplex set. Therefore, the

following theorem applies:

Theorem 3.3 With symmetric, separable path travel times, the equilibrium flow is



the solution to the following optimization problem:

hP

min Yj gp(s) ds (3.5)
h P 0

s.t: h, = dw.

However, in reality, the travel time of each link and path is affected by the flow

on other links and paths. Thus, we typically cannot make use of Theorem 3.3 in

practice. In such case, we can employ the result by Aghassi, Bertsimas and Perakis

[2] to formulate a general VI problem with asymmetric travel times as an optimization

problem. The following theorem summarizes their result:

Theorem 3.4 [2] Given a network G(V, A) with travel time function c(f) on all links,

the User Equilibrium flow is the solution to the following problem:

|WI

in c(f)Tf - dwT Aw (3.6)
"',A W=1

s.t: Nfw = dw Vw

NT AW < c(f) Vw

'W1

fW > 0, f f

W=1

[2] shows that the optimal value of problem (3.6) is 0.

Theorem 3.4 implies that when c(f)Tf is a convex function and c(f) is a concave

function, we can find the UE flow using a convex optimization problem.

If the travel time function is affine, i.e., c(f) = Gf + c., we can have the following

corollary:

Corollary 3.5 With affine travel time functions, the UE flow can be found by solving

the following quadratic objective, linearly constrained problem:

W1 IWI IWI
min (G fW + cO)T fW - dwT Aw (3.7)

W=1 W=1 W=1



s. t: NfW = d' Vw

NT Aw<Gl[fW+co Vw
W=1

fW > 0.

The problem in Corollary 3.5 can be solved easily using commercial solvers. In Chap-

ter 5, we will use this formulation to find the UE flow given the network design and

fixed demands.



Chapter 4

The Inverse Optimization Problem

to Find Travel Times

4.1 Introduction

Any transportation problem is strongly influenced by the travel times underlying

the transportation network. In traffic assignment problems, the behavior of users is

decided by their perception of travel times of different routes to their destinations. In

the network design and routing problem, planners aim to minimize the total travel

time of all users by controlling the flows and structures of the network. Therefore,

understanding the relationship between the flow and the travel times is critical.

In the literature, there are many papers trying to model this relationship. Amongst

those papers, researchers approach the problem in two different ways. One of them

uses an analytical approach, modelling travel times as outputs of a dynamic flow

model. Kachani and Perakis [25], Perakis and Roels [43] proposed a first and second

order model using the hydro-dynamic model in Lighthill and Withham [28]. Using

partial differential equation for wave propagation, those models describe the travel

times better during the peak period. The second approach, which is a more tradi-

tional approach, models the travel times as some explicit functions of the traffic flow.

Some of the commonly used functions are the Bureau of the Public Roads (BPR)

function (see [38]), exponential travel times (see [35]) and polynomial-type functions



(see [4, 5]). These functions are normally determined through statistical analysis.

Even though they might neither be able to model the dynamic behavior of the traffic

flow, nor be able to describe the peak period, they are simple and can describe fairly

well the travel times when the flow does not reach the congested threshold of the net-

work. Thus, they are widely used to study the traffic assigment and design problem

in practice.

In line with the second approach, this chapter proposes a statistical, data-driven

method to find travel times, given a stable flow and data on users' perception of the

travel times. In real life, we can always observe some stable pattern of the flow, which

can be modeled according to the User Equilibrium Principle.

The first part of this chapter proposes an inverse optimization problem to find

the actual travel times at a stable flow. Given that the data are subjected to noise

and uncertainty (users may have different perceptions, or we may have incorrect

measurements of travel times), we model them in three different sets. We solve the

robust inverse optimization problem for those sets. The second part of this chapter is

a data mining problem. Given data on the historical flow, we try to find parametric

functions to model the travel times.

4.2 Formulation

Non-parametric travel times

Deterministic problem

From day to day observations, we can observe some stable patterns of the flow f on a

network. Moreover, some prior approximation of the travel times -c for each link can

also be obtained by surveying different users.

We assume each user chooses the route selfishly to minimize his own travel time.

Then, the stable flow f is the User Equilibrium flow, satisfying the following VI for-

mulation:



c(f) T (f - f) > 0 (4.1)

s.t: NfW = dW Vw

fW > 0.

Due to uncertainty, i might not be the actual travel time at flow f. We are interested

in determining the value for the travel times c at the UE flow f, which represents the

travel time at UE flow f and is closest to our initial approximation c.

Using the idea of inverse optimization by Ahuja and Orlin [3], we can formulate the

following problem to find the actual travel times.

DInv: min ||c - C|| (4.2)
c(f)

st: f is UE flow with corresonding to c

In this section, we will use the L' norm ( c - 1 I Ek Ck - Ekl) in our formulation

of the inverse problem.

Robust problem

Problem (4.2) considers only a nominal approximation -. In reality, each user will

have a slightly different perception of the travel times. Besides, our data may be

limited, and E may not be reliable.

We assume the prior travel times can be modeled as: Ck -- Ck + Ek where E -

(Ei,..., EIAi) belongs to an uncertainty set E. The robust version of this inverse

optimization problem, thus, will become:

RInv: minmax||c-li-cj| (4.3)
C E

st: f is the UE flow with corresonding to c

c E.

There are several forms for set E. We will study the following uncertainty sets:



" Set 1: Ei={EJlli e ui Vi}.

* Set 2: E2 = {EjEi > 0 Vi,.Ee E B}.

" Set 3: E3 ={cl < ei < u Vi, j ei < B}.

Parametric functions for travel times

In the previous part of this section, we try to find the travel times at a specific flow f.

Assume the demands between each OD pair for the network varies through time, and

we can obtain a set of historical stable flows fi, f2 ... , fH corresponding to different

demands.

We can therefore, solve H instances of the non-parametric travel time problem to

obtain H different travel time vectors c(fi), c(f 2 ),. c(fH)-

By solving a data mining problem on each link: fitting a curve to H data points, we

then can obtain a parametric function for the travel times.

4.3 Algorithms

Non-parametric travel times

a) Deterministic problem

Parallel links: In this case we assume that there are N parralel links (|AI = N),

one OD pair. We present the case of a single OD pair for the sake of simplicity of

exposition (the case of multiple O-D pairs is very similar).

From the UE condition, let I = {ilf, > 0} then Vi E I c(f) = A and Vi E Ic c(f) >

A. fi denotes the flow on link ith (i- L . N)

If we consider the L' norm, (4.2) becomes:

minl |:A - eBil + E |c; - eil (4.4)
igl iE1c

st: ci > A > 0 Vi E IC.

(4.4) can be solved by the following algorithm:

Algorithm A :



1. Let I' = {ijfi > 0} (I' = I initially).

2. Sort I' in an ascending order in term of 6j, let A* =LIy+ .

3. Pick j = arg minie pc c.

4. If B > A*: Let c* = A*Vi E I' and c* = ci otherwise.

solution.

5. Else let I' =I' U j. Repeat step 2.

We have the following theorem:

Theorem 4.1 Algorithm A converges to the optimal solution of Problem (4.4).

Proof We first convert the problem into a linear optimization problem:

min 8

st: 0; > A - iBy Vi E I

Oi 2 -A + i

O6 > -ci + Bi

ci > A > 0

(4.5)

Vi E I

Vi E IC

Vi IC

0> > 0 Vi.

Without loss of generality, let I ={1, 2, .., 11}

From duality and complimentary slackness, A* and c* represent the optimal solution

if and only if:

Then, c* denotes the

6j > cj - ci Vi E IC



1 > z+ + z Vi (4.6)

0 > (-zt + zT) - S i (4.7)
i=1 i=11|+1

0 > -z ± + Z + 7i Vi |Il + 1, ... I, AI (4.8)

(c# - A*) = 0 Vi = Il + 1, ... , |Al (4.9)

0 = A* - dj| Vi Il + 1, ... ,Al (4.10)

0* = O c - j| Vi Il + 1 ... JA (4.11)

z+(6* - A* + d)=0 Vi = 1, . .. , 111 (4.12)

z -(6* + A* - Et)= 0 Vi = III + 1, . .. ,|JAI (4.13)

z+(6 - c* + di) 0 Vi = II + 1, ... , |AI (4.14)

-(* + c* - Ci) =0 Vi = |IlI + 1,- . . JAIl (4.15)

zj, zj. > 0, 7i 0. (4.16)

Because the number of links is finite, the algorithm finds a solution in a finite number

of steps and it produces a final set I'. Note that I C I'.

For i E I' :

-If A - ci > 0, let z+ = 1, z = 0.

-If A - ai < 0, let z+ = 0, z = 1.

-If A - e = 0: If II' odd, let z+ = Z- = 0, else let z+ = 1, z-- = 0.

For i E I'C (we have c* = ci): Let z = 1, z- =0.

Those choices will satisfy the complimentary slackness conditions (4.12)-(4.15).

If i c I'\I(c* = A* > as) and z- = 1, let ah = 1. Else let 'h = 0. Those choices of rj

satisfy (4.8) and (4.9).

(4.6) follows as at most one of the z and z- can be 1.

With the above choices, the sum in the RHS of (4.7) will have L] components

equal to 1, [i] components equal to -1, and all other components equal to 0 . (4.7)

satisfies with a strict equality.



Therefore, the algorithm produces an optimal solution of problem (4.4). OI

General network: Consider a general network G(V, A) with a set of OD pairs W.

The notations used below were defined in chapter 1. We will solve the inverse problem

in order to find the travel time on each link.

We have the following lemma:

Lemma 4.2 For a general network with the UE flow f, the link travel times satisfy

the following conditions:

cj (f) = A - Af, if fj > 0, (4.17)

cij (f) > Aw - A,, if f = 0.

Proof For |W| = 1:

The UE flow satisfy the VI condition:

f = arg min c(f)T f
f

st: Nf = d

fi. ;> 0 V (i, j)EA.

From duality of the above linear optimization problem, we have that:

c(f) - NTA - 10 = 0

fij Oig = 0; > 0 V(i, j) E A.

Note that a column of matrix N only has entry 1 at row ith and entry -1 at row jth.

Thus we can rewrite the above condition as:

ces(f) = Ai - Aj, if fi3 > 0,

ci(f) > A2 - Aj, if fij = 0.

For |W > 1, we have that c(f)Tf = E c(f)TfW. O



With the above lemma, we have the following theorem:

Theorem 4.3 The inverse UE problem (4.2) can be rewritten as a linear optimiza-

tion problem; that is:

min E cis
C (ij)EC-A

st: ci 3 = AT - Aw

c'j - AT - A3

- cii (4.18)

if f > 0

if f'j = 0

ciy > 0.

Problem (4.18) can be converted into a linear optimization problem by introducing

new variables and new linear constraints to represent the absolute value function.

b) Robust problem:

This part considers a general network with different uncertainty sets.

Set EI:

The robust inverse problem is:

min max |ci - cig - eCj
C,A C

st: lij < e2 < Ui

cii = AT - A',

cij > AT - A,2J j~

(4.19)

V(i,j) E A

if fi" > 0,

if f21j = 0.

The inner problem is separable. Let tij = cij - eiij and consider the following problem:

Advk -max |tk - Ck| (4.20)

st: lk k - Uk.

Here, we use k to denote the k Ih component in the vector. The solution to the above

problem is:



* If "/ l2 > tk then e* = cA,

* If "< +Ik tk then E* = Uk.

We have that Adv =k - "klk -+ 2. Therefore, we have the following theorem:

Theorem 4.4 Problem (4.19) is equivalent to:

min ci - j
CE

(ij) (E

st: c i = A"" - AT,

c > A" - All,"

ui +!- li
2

if fl& > 0

if fl = 0.

2--l
2

Note that if "i +-'l = 0 V(i, j) C A, the solution to robust problem (4.21) is the same2

as the solution to the deterministic problem (4.18).

Set E2:

The robust problem in this case becomes:

in max cij - Bij - egy
c) e

(4.22)

st: Zuy < B,
ic

(cij = Au' - A11

Cj > 0 V(i, j) E A

if f7g > 0,

c j > A" - Au if fjy=0.

Consider the inner problem:

Ado(t) =maxZ[ti -cg (4.23)

st: Cgy < B, egy > 0.
(ij)EA

This is a convex maximization problem. The maximum is obtained at an extreme

point of the set.

The extreme points of the feasible set in problem (4.23) are:

(4.21)



Thus,

(4.24)Adv(t ) = max(t1 +|t2| + t h e + ftl |,|wt- B| + |t2| + + |t| .

. ... ,|t1|I+ |t2| + . . . + \tIA - B |).

(4.24) and (4.22) lead to the following theorem:

Theorem 4.5 The robust inverse UE problem (4.22) can be rewritten as the following

linear optimization problem:

min 0 (4.25)
c,O,A

st: 0 > |cij - Eij|
(ij)EA

0 ;> |ci - Big - BI +

cii = AT - A',

ci > Aw - A,

(A\(i,j)
Cpq - |pq V(i,j) eA

if f& > 0,

if fi = 0.

We have that:

max(|ti|, ti - B|) =

|ti| + B,

B -|ti|,

\ti|,

if tj < 0,

if 0 < ti < B/2,

if B/2 < ti.

Therefore:

(4.26)

(0, 0, . .. , 0), (B, 0, 0, . . . , 0), . . . , (0, 0,. . ., B)



B + E Itjl, if 3i : tj < 0,7

Ad (t) , if B/2 <; ti Vi, (4.27)

E |ti| + (B - 2|tminl), otherwise.

(4.27) shows that if only one link in the network satisfies tij = cij - cij < 0, then

problem (4.22) is:

minE ci - diy + B (4.28)
C A

st: ci AT - A' ,If fjg > 0,

c > A7 - Af, if fg=0.

This gives us the same solution as the deterministic problem (4.18). In general net-

work, where we have a huge number of links, this is very likely to happen.

Set E3 :

The robust inverse problem in this case is:

min max Ciu - 'ig - eig| (4.29)
C,A C

st: Ei. < B
(ij)EA

ci3 = AT - A', if f > 0,

c > Aw - A7, if fg =0.

In this case the inner problem is not separatable, and it is difficult to enumerate all

the extreme points of this set. [18] showed that the norm maximization problem over

a linear set is an NP hard problem. Therefore, we are unable to rewrite the min max

problem as one-stage optimization problem.

However, the two stage optimization algorithm proposed by Bienstock and Ozbay [17]

can be used to solve problem (4.29). Instead of considering the whole set E, we only



consider a discrete set E, of all vectors e of interest. The decision problem, which is

the outer minimization problem, solves the min max problem restricted to our sample

set E, to find a solution vector c* and to obtain a lower bound for (4.29). Then, after

fixing c = c*, we solve the inner maximization problem (adversary problem) over

the whole uncertainty set E to find the worst uncertainty vector E* and to obtain an

upper bound for (4.29). We then add c* to E, and re-iterate until the lower bound

is close enough to the upper bound. The whole algorithm can also be considered as

one form of Bender's decomposition [13].

Initally let E, - 0.

Decision (outer) problem:

De =min 0 (4.30)
c,A,6

st: 0 > ||c - C||1

0 > |c - E 1  W E E,

c = AT - Af, if fg > 0,

cis ;> Aw - A, i f fg = 0.

Let lb = De. Let c* be the solution of above problem, then:

Adversary (inner) problem:

Adv = max ( ck -ck - ek| (4.31)
k

st: YEk < B
k

1k Ck Uk-

In (4.31), we use the index k to denote the kth component of the vector instead of

using a pair (i, j) for each arc.

Let ub = min(ub, Adv). We stop when ub - lb is small enough.

The decision problem is a linear optimization problem. However, problem (4.31) is



a non-separable convex maximization problem over a convex set. In the rest of this

section, we will solve problem (4.31).

Let t = c* - c. Consider the adversary problem:

Adv(t) =-max ( |t, - e (4.32)
k

st: ZCk < B
k

1k Ek < Uk-

Lemma 4.6 There exists an optimal solution E* with the following properties:

(a) e* can have at most one component such that lk < Ek < uk. When we have such

a component, Ek ek = B. All other components have to be either at the upper

bound or the lower bound.

(b) If lk < e6* < Uk then e* > tk.

Proof The problem is a convex maximization problem over a convex set. Therefore,

an optimal solution exists at an extreme point. Since extreme points of the feasible

set satisfies part (a), the theorem follows.

If lk < ek < uk and t > E* then |tk - eI = tk - e* < tk - lk tk - lk|. We can set

E* = lk and increase the objective. Thus, * ;> tk if lk < C* < uk. Part (b) follows. E

Let B, = B - E lk, rk = |Uk - tk| -|lk - tk| and Wk = uk - 1 k, the following theorem

applies:

Theorem 4.7 The optimal solution of (4.32) can be found by solving the following

mixed integer optimization problem:



maxE rkxk + Yk (4.33)
x,z,y

k

s. t: Y3 WkXk < Bs (4.34)
k

Xk + Zk < 1 (4.35)

Zzk_1 (4.36)
k

k Mzk (4.37)

Yk lk +B - wx - tk - lk - tk|+ M(1 - Zk) (4.38)

lk + B, - WPXP - tk -M(1 - Zk) (4.39)

lk + B, - WpXp P Uk + M(1 - Zk) (4.40)

Xk, Zk E {0, 1}.

Let x*, y z* to be the solution of the above mixed integer optimization problem, The

solution to problem (4.32) is: E* = lk + wkx*- + z(B, - E wpx*) Vk.

Proof In the above formulation, Xk denotes whether Ek at the lower bound or upper

bound. Zk denotes whether ek lies in the interior of two bounds, i.e 1k < ek < Uk.

From Lemma 4.6a, we have that:

Ek k + WkXk + Zk(B - wpx) (4.41)

When Zk = 0 Vk, condition (4.34) makes sure we do not violate the budget.

When we have a component lies in the interior of two bounds, ie: lk < ek < Uk

for some k, conditions (4.35) and (4.36) guarantee that we only have at most one

component. Conditions (4.39) and (4.40) guarantee tk ek Uk for such component

(Lemma 4.6b). Condition (4.34) and the way we represent the solution in (4.41) make

sure that we have Ek Ek - B in this case.

We use the point such that ek = lk Vk as the level of reference for the objective function



in (4.32). The objective function in (4.33) calculates the gain of other extreme points

with respect to that reference point.

'rk =jUk - tkI - Ik - tk denotes the gain with respect to the reference point when

Ek Uk-

yA denotes the gain if the component k"h lies in the interior of the bounds, ie: lk <

Ek <Uk . Because at optimality, we have that ek > tk (Lemma 4.6b), thus:

Yk = 6k - tk - tk - k

= ek - tk - tk - ik|

lk + WkXk + k(BS- WX,) -t- |tk - lk|

We can rewrite it in linear form using conditions (4.37) and (4.38) for a sufficiently

big number M. Those conditions make sure yA = 0 when Zk = 0 and yA has the

appropriate value when Zk = 1.

Therefore, by solving the mixed integer optimization problem, we can find the ex-

treme points with the largest objective value, which is the solution to our adversary

problem. E

Note that from above theorem, if we disregard all the extreme points that has a

component lk < Ek < Uk, the problem is a knapsack problem with real weights and

rewards (an NP hard problem). Besides, our simulation shows that we can choose a

relatively large constant M without affecting the running time of the solver (CPLEX).

Parametric functions for travel times

The rest of this section shows how we generate the data and solve the problem to

find patrametric functions for the travel times. Because we don't have the required

data for this model, we will instead use the following algorithm to simulate the data

f1, f2 ,. . . , fH and the corresponding prior information on travel time C1, 2, ... , CH:

1. Assume a parametric form for the real travel time (for example, a separable

linear form: cr (f) = af + b)



2. Randomly generate H different demands for the network. Solve the UE problem

with each demand and the above parametric function to obtain fi, f 2, ... , fH-

3. Let ik = Cr(fk) + Ek with ek is a uncertainty vector (k = 1,.. . , H).

Then, we can solve H instances of the non-parametric travel time problem to obtain

H different travel time vectors c(f 1 ), c(f 2 ), . .. , C(fH) -

By solving a data mining problem on each link: fitting a curve to H data points, we

then can obtain a parametric function for the travel time.

4.4 Computational Results

In this section, we will apply the above algorithm to the classic Sioux Falls network.

This is a test network is well-known in the literature. The Sioux Falls network has

24 nodes, 76 arcs (see Figure 5-2 for more details).

Non-parametric travel times

Deterministic problem

Figure 4-1 shows the solution to the deterministic problem and the corresponding

prior travel time on each link. The total error, or the L1 distance from the solution

to the prior information (I|c* - |11), is very small.

Robust problem

180

160

140 0 Deterministic
Solution

120

100 + Prior information

80
6060 0 4 0

40 *
20 OT

0 10 2 3 n 0 0 70 80

0 10 20 30 40 50 60 70 80
Link number

Figure 4-1: Deterministic solution. Total error = 20.



-Set E1:

Consider the case when u = -0.05i and 1 = O.16 (Note that when 1 + u = 0, the

deterministic and robust solutions are the same).

180 160

160 9 150

140 0 Robust Solution 140
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100 + Prior information
Ei ~20

80 110
60 0 80 41 110

40 . 8 100

8 10 20 3050 60 7 80 90
20 8 8

880 8880~
0 ~48
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10 20 30Link number

Deterministic SolutionR MoTust Solution

(a) (b)

Figure 4-2: Robust solution (a) for Set E1 and box plot (b) for 1000 cases

Figure 4-2a shows the result for the robust problem. We also sample 1000 points

E E E1 from the uncertainty set and plot the box-plot for the total errors of sampled

scenarios (||c* - i - el|1) for the deterministic and robust solutions respectively in

figure 4-2b. For the deterministic solution, with some uncertainty in the prior travel

times, total errors of sampled scenarios increase significantly compared to the nominal

total error (||c* - ||1) (from 20 to around 130). The robust solution shows significant

improvement in this case compared to the deterministic solution.

-Set E 2:

Figure 4-3 shows the solution for the uncertainty set E2 .

Interestingly, all of our simulation results for the Sioux Falls network suggest that the

result for the robust problem is the same as the result for the deterministic problem.

Only for networks with a small number of links, we can observe the differences between

the two solutions.

-Set E3 :

The stopping criteria for the decomposition algorithm is ub - lb < 0.5%lb.

Figure 4-4 shows the solution and the box-plot for 1000 samples when B = 140.

Clearly, the robust solution provides a better mean and variance for the sampled

J-
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Figure 4-3: Robust solution for Set E2 when B = 50. Total error = 20.
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Figure 4-4: Robust solution (a) for Set E 3 and box plot (b) for 1000 cases when
B = 140

Figure 4-5 shows the total error of the worst case and the nominal total error for

the deterministic and robust solutions and when the uncertainty budget change. The

worst case total error for the deterministic solution increases as the budget increases.

On the other hand, the worst case total error for the robust solution increases with a

decreasing rate and stables after a while. The nominal error for the robust solution

decreases and then stables for the robust solution. This is an attractive property of

the robust solution.

Figure 4-6 gives the number of iterations needed for our decomposition algorithm.
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For this network, the dimension of the uncertainty set is 76. In order to solve the

problem to optimality, we need to visit all extreme points of this uncertainty set.

However, the decomposition algorithm stops after visiting only around 400 extreme

points. This is rather efficient for large-scale problems.
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Figure 4-6: Number of iteration with varying budget B

Parametric travel times

In this section, we use 50 historical data points (H = 50).

Linear separable travel times :

-+-Robust

-I-Deterministic

290

280

270

o 260

250

240

230

220

-4-Robust

-- Determini stic

150

Uncertainty Budget

200 200

435

430

425

420

415

410

405

400

395

390

100

.. ........................................



In this part, to run our simulation, we assume the travel times have the form: c (f) =

aZ fi+b. (see Table 5.3). We generate the uncertainty vector E such that: leij < Lce.

L can be thought of as an uncertainty level.

Figures 4-7 and 4-8 show how to fit parameters a and b for each link when L = 20%.

Apparently, the linear term a is fitted closely to the real value. However, there

are some differences in fitting the constant term b. This is understandable, as one

property of UE is that if we shift the whole travel times on all paths by the same

constant, the UE flow does not change.

We also compare the results of our method with the results when we directly fit

18 o Real Value

16 + Inverse Fit 0

14 Direct Fit 66

12

1 0

8 0 4b

6+ +

4 V) 0d)000 66b

0~
0 10 20 30 40 50 60 70 80

Link number

Figure 4-7: Parameter a when L 20%

a curve to the given data. Figure 4-9 shows the total squared error of the fitted

travel times and real travel times cr over all H given flow (ji c* - c!l||) against

the uncertainty level we added to the real travel times. It shows that by solving

the inverse optimization before carrying out the fitting process, we can improve the

accuracy.

BPR travel times:

In this case, the actual travel time function for the simulation will be: e = a f ± +b .

The coefficients are taken from [8]. From the data, we will try to fit a parametric

- - - - - - fi- 0 0 M M@WM
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Figure 4-8: Parameter b when L 20%
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Figure 4-9: Fitting total squared error with varying uncertainty level(%)

travel time with the BPR general form:

ci- = ai3 fP + bij (4.42)

where a2j, bij, and p are unknown parameters.

First, we will fix p. Then, a linear regression will be employed in order to find aij, bij

and the total squared error to the given data. The value of p with the smallest total

4 ...............................................................



error will be chosen. By scanning p in [0.5 5], step size 0.5, the result in Figure 4-10
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Figure 4-10: Fitting total squared error with varying p(L = 5%)

shows that p = 4 is the best value.

Figures 4-11 and 4-12 show the parameter a and

10%. It shows that we can recover pretty well

algorithm.
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Figure 4-11: Fitting parameter a when L=10%

Figure 4-13 shows the total squared error of the fitted travel times and real travel

times cr over all H given flow with varying uncertainty level. It shows that when the

uncertainty level is small, the direct fitting and the inverse fitting is quite similar.

However, when the uncertainty level gets bigger, the inverse algorithm provides much
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better results.

Figure 4-13: Total squared error with varying uncertainty level L (%)

Asymmetric travel times

We further apply our approach to a network (Network 1) with asymmetric travel

times (see Figure 5-1 and Table 5.2). Table 4.1 shows the functional travel times

found by the inverse optimization method. We can recover quite well the linear terms

in most of the links.

In this case, we cannot recover the correct travel times for some of the links. When

the uncertainty level increases, it is really hard to recover the underlying travel time
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c1(f) 5.17fi + 2.88f2 + 10.44 c15(f) = 9.83f15 + 2.66f14 + 1.314
c2 (f) - 3.42f2 + 1.21fi + 36.64 c16(f) = 8.16f16 + 6.35f12 + 8.27
c3 (f) = 3.67f3 + 1.05f4 + 0 c17 (f) = 6.41f17 + 0.01fi5 + 44.71
c4(f) = 9.23f4 + 0.02f5 + 0 cis(f) = 6.31f18 + 3.38f16 + 0
c5 (f) = 6.39f 5 + 3.98f6 + 65.16 c1 9 (f) = 9.53f19 + 1.74f17 + 27.54
C6 (f 6 7f6+ 3f7 + 38.92 C20 (f) = 7.45f2o + 0.01f21 + 32.67
c7 (f) 9.64f7 + 0.01f8 + 45.72 c21(f) = 3.45f21 + 1.29f22 + 47.41
cs(f) 7.33fs + 0.56f9 + 156.41 c22 (f) = 6.27f22 + 1.45f23 + 26.39
c9 (f) 3.82fg + 2 .04 fio + 109.78 c23 (f) = 10.91f23 + 1.42f24 + 0
cio(f) = 3.52fio + 2.11f12 + 70.80 c24 (f 8.10f24 + 1.38f25 + 7.29
c1l(f) 4.84fii + 3.95f12 + 95.92 c25(f) 9.74f25 + 2.11f26 + 37.97
c1 2 (f) 6.11f12 + 3.21f13 + 85.95 c2 6 (f) = 12.05f26 + 2.58f27 + 66.41
c13(f) =8.07f13 + 2.08fi8 + 65.11 c2 7 (f) 7.28f27 + 3.87f28 + 56.05
c14 (f) = 4.41f14 + 3.24f15 + 102.85 c2 s(f) 6.67f28 + 2.04f27 + 107.94

Table 4.1: Link travel times by the inverse optimization approach when L = 10%

functions (in contrast, in our simulations with the Sioux Falls network, even when

the uncertainty level is around 20%, we still can recover the parametric form quite

accurately).

Figure 4-14: Total Fitting Error with varying uncertainty level

Figure 4-14 shows the total errors for the inverse fitting and the direct fitting with

different uncertainty levels. It shows that the total fitting error diverges for both
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1 7.5485 11 3.82478 21 3.84297 31 7.22923 41 8.94077
2 2.30665 12 8.78401 22 7.14774 32 4.51 42 5.99369
3 0.485115 13 5.52063 23 1.92086 33 7.36483 43 8.64232
4 2.63142 14 5.60239 24 3.09926 34 6.47613 44 5.60672
5 9.72079 15 2.01232 25 5.93617 35 7.23411 45 2.56693
6 5.84619 16 2.01421 26 3.83302 36 2.41407 46 0.0274235
7 2.15589 17 6.9382 27 1.8068 37 5.22737 47 2.48626
8 4.98802 18 3.80901 28 5.75866 38 8.00048 48 2.40043
9 3.80157 19 7.15673 29 3.36697 39 7.66997 49 5.08181
10 3.12428 20 6.34602 30 5.27685 40 6.19081 50 8.77143

Table 4.2: A sample of flow data on a link of the Sioux Fall network

1 4.58269 11 3.01202 21 2.99963 31 4.25552 41 3.98166
2 3.57032 12 3.17436 22 4.2842 32 3.45696 42 3.05507
3 3.53377 13 3.71733 23 2.75233 33 3.85384 43 4.48105
4 3.43239 14 3.22236 24 4.02023 34 3.41401 44 4.16973
5 3.68555 15 3.07308 25 3.27738 35 4.5044 45 3.9536
6 4.04595 16 4.33606 26 3.25645 36 3.90714 46 3.85052
7 2.62363 17 3.21006 27 3.35584 37 3.80329 47 3.02087
8 4.51399 18 4.0764 28 3.58138 38 3.52565 48 3.7795
9 4.23625 19 4.19781 29 3.32201 39 3.6257 49 4.08467
10 3.31667 20 3.5865 30 4.00193 40 3.80842 50 3.88628

Table 4.3: A sample of flow data on a link of Network 1

methods when the uncertainty level increases.

Looking at the data in detail, we find an interesting behavior for this network. When

we vary the demands in the network, the UE flow on some of the links of Network 1

does not change a lot (because it has a limited number of paths), while the flow of

the Sioux Falls varies more. Thus, when we employ the least square method to fit

the data, the fitting results are not so good for Network 1.

4.5 Conclusions

This chapter studies the application of inverse and robust optimization in finding the

travel times assuming the flow is a User Equilibrium flow. We propose algorithms to



solve the robust inverse problem under uncertainty in the data that we have on the

travel times. Our numerical results show that the robust algorithms provide better

results for our problems. We also formulate a data mining problem to find parametric

functions for travel times using historical data. Using computer-generated data, we

illustrate that by first solving inverse problems for travel times, the fitting results can

be much better than by directly using the given data.



Chapter 5

A Network Design Problem under

User Equilibrium and Demand

Uncertainty

5.1 Introduction

The Network Desgin Problem (NDP) (see, for example, [32]) has been a long re-

searched area. Most of the studies consider the case where designers know the de-

mands accurately, and are able to control the network as well as the traffic flow. This

assumption, however, may not be relevent in practice as users will tend to choose the

route themselves. Unfortunately, NDP under User Equilibrium behavior and demand

uncertainty, is not well developed.

In general, the Deterministic Network Design Problem (DNDP) under UE is a

bi-level programming problem. The outer level searches for the optimal setting of

the network that minimizes the total travel time of all users at the equilibrium flow,

while the inner level finds the UE flow at a specific setting. The NDP under UE is a

hard problem to solve, especially when the outer problem is an integer programming

problem (since one considers whether or not to build a link in the network).

The first paper studying the discrete NDP under UE was published by LeBlanc



[27]. He proposed a branch and bound algorithm, in which for each branch, we

need to solve the UE problem for that specific design to obtain the upper bound,

and a system optimization problem (where controllers have full control of the flow),

to find the lower bound. However, this method is only applicable to a very small

number of discrete varibles (the paper reported a case with only 5 discrete variables).

Furthermore, the lower bound is not tight. (In [42], Perakis provided a formulation

to calculate this bound compared to the UE total travel time.

Poorzahedy and Turnquist [45] proposed a method where instead of using the

total travel time as the objective for the outer problem, they used the "average total

cost" >j fOh g,(s)ds. For symmetric separable travel time functions, this method

makes the outer objective and inner objective the same. Then, they reduced the

problem into a one-stage optimization problem. However, the objective is just a

crude approximation.

There are several papers using heuristic algorithms. For example, [51] tried to

apply genetic algorithms, while [44] employed simulated ant system. However, in all

these papers, they only reported an NDP with a small number of discrete variables

(around 10). The approaches they used to solve the inner UE problem are not efficient.

Recently, Gao et al. [23] described a heuristic, approximation algortihm to solve

the discrete network design problem using the BPR cost function (see (4.42). It ex-

tended the idea of Lagragrian duality gap and shadow prices to discrete variables in

order to find a new solution in the next iteration. The algorithm does not guaran-

tee global convergence. They reported a result for a network with only 6 discrete

variables. Zhang et al. [52] formulated the discrete NDP as an optimization problem

with complementary constraints and proposed an active set algorithm to solve it. The

algorithm makes use of KKT multipliers to adjust the discrete variables of the net-

work. However, this approach is an approximation method, and the complimentary

formulation is not computationally efficient for large networks.

In order to overcome the difficulites caused by integer varibles, some papers only

consider the continuous NDP problem where they try to increase the capacity of

the links. Those papers use the BPR travel time, where the capacity affects the



link travel times. Abdulaal and LeBlanc [1] used non-convex line search in the Hook-

Jeeves' heuristic algorithm to find the direction of improvement for the network. This

approach was reported to be computational expensive. LeBlanc and Boyce [26] also

proposed a bilevel optimization approach to solve the continuous NDP.

Marcotte [33] proposed an iterative approach. Initially, the system optimization

problem is found. Then, the algorithm determines a path which violates the VI for-

mulation the most and adds some constraints to the system optimization problem.

However, as in his formulation, the NDP under UE will have many finite non-convex

constraints. Because of the non-convexity, the algorithm is not computationally effi-

cient. In his another paper [34], he proposed a heuristic approach. At each iteration,

first, the capacity is fixed and the algorithm solves for the UE flow. Then, the flow

is fixed, and the algorithm finds the optimal capacity. With this decomposition ap-

proach, the bi-level problem is reduced to solving iteratively two simpler optimization

problems.

The literature for the NDP under uncertainty in demands is also very limited.

Without considering the UE principle, Riis and Andersen [46], Lisser et al.. [29] and

Andrade et al. [6], modeled demand uncertainty via probability distribution and

solved the NDP with the system optimal flow. Ord6nez and Zhao [41], as well as

Atamturk and Zhang [7] proposed robust optimization models to find the best link

capacities for the system optimal flow. Mudchanatongsuk et al. [36] considered the

discrete network design problem under demand and travel time uncertainty when

planners have full control of the flow.

To study the effect of demand uncertainty on the UE flow, there are several papers

[21, 48, 49] working on sensitivity analysis. However, those papers only assume an

infinitesimal change in demands, which does not change the current path choice.

To the best of our knowledge, there is only one paper dealing with discrete NDP

under UE and demand uncertainty. In their paper, Lou et al. [30] proposed an

iterative cutting plane scheme to solve the problem. In each iteration, they solved

two subproblems: a relaxed discrete NDP with a subset of demand scenarios, and a

problem generating the worst case scenario. They solve each problem using the active



set algorithm in [52]. The reported test network only consists of 11 discrete variables.

5.2 Deterministic Network Design Problem

Given a network G(V, A) where A is the set of possible links. We assume the demands

for the network are fixed and the travel times are affine functions. Due to some

constraints, we cannot build all possible links. In the network design problem, we are

interested in finding a set of links to build in order to minimize the total travel time

on the network subject to UE constraints.

Let y E {O, 1}|AI be our decision vector. y = 1 if link ith is built and y = 0

otherwise. Assume at most B links (budget-type constraint) can be built. Then, the

deterministic network design problem (DNDP) is:

min c(f) T f (5.1)
yle'y<B

where f is the UE flow for the network G(V, A, y).

From Theorem 3.4, f can be solved by:

w
f arg (in c(f)Tf - dTAw (5.2)

' "'w w=1

s.t: Nfw = dW Vw (5.3)
w

Sfw < Ky (5.4)
w=1

NTAW < c(f) + M(1 - y) Vw (5.5)

fw > 0, f = fw. (5.6)
W

M and K are some sufficiently big numbers. We add constraint (5.4) to make sure

the flow on links that are not built is equal to 0. The additional part in constraint

(5.5) makes sure that it only applies to built links.

When f exits, the optimal value of (5.2) is 0. Therefore, we can solve the DNDP by



following theorem [31].

Theorem 5.1 For some sufficiently big 0, the Deterministic Network Design Problem

is equivalent to the following mixed integer optimization problem:

w w
min c(f)Tf + 0(c(f)T Z f - dWTAw) (5.7)

w=1 w=1

s. t: Nfw = dW Vw

W

S fW < Ky
w=1

NTAw < c(f) + M(1 - y) Vw

fW > 0, f = EfW

w

e'y < B.

Proof For simplicity, assuming |W| = 1 (when |W| > 1, the proof is similar).

We have c(f)Tf - dTA = c(f)Tf - (Nf)TA = (c(f) - NTA)Tf

If yA 0 then fk = 0, (ck(f) - (NT A)k)fk = 0.

If Yk > 0 then from constraint (5.5) we have (ck(f) - (NTA)k)fA > 0

Thus, c(f)Tf - dTA > 0. With sufficiently big 0, the optimal solution f to (5.7) will

satisfy: c(i)Ti - dTA 0, i.e, f is the UE flow to G(V, A, y). The objective is then

only the total cost of the network under the equilibrium flow.

Therefore, the DNDP is correctly formulated as problem (5.1). E

In Theorem 5.1 we need to choose appropriate constants 0, K, and M. We solve the

mixed integer optimization with CPLEX, and the algorithm of the solver for mixed

integer optimization problem is branch and bound.

- We have f 3 < Ew d. Therefore, we can choose K = Zlw d. Choosing a

bigger K does not really affect the speed of the whole algorithm.

- We can start with some 0, and increase 0 until the optimal value converges. Choos-

ing a bigger 0 actually does not increase the running time significantly. Thus, we can



start with a relatively large value of 0.

- Choosing M however, not only affects the running time, but also affects the cor-

rectness of the algorithm. Constraint (5.5) can be rewritten as follows (where (i, j)
denotes a link connecting node i to node j):

Ai - Aj < cij(f) + M(1 - yij).

If yij = 0 then Ai - Aj < ci(f) + M. Assuming there exists a node k such that Yik 1

and Ykj = 1, then:

Ai - Ak cik(f)

Ak - Aj < Ckj(f).

Thus, Ai - Aj < cik + Ckj. An appropriate value of M has to satisfy M > Cik - Ckj.

When there is a longer path connecting nodes i and j, M has to be even larger.

With small M, we might not be able to obtain the equilibrium flow while solving the

mixed integer optimization problem. Unfortunately, a bigger M can slow down the

algorithm significantly (from several minutes to hours to run the DNDP, due to more

complicated branching).

Therefore, we have to start with some small value of M, and slowly increase it until

the optimal value does not decrease anymore.

5.3 Robust Network Design Problem

In reality, the demands for the network are not known accurately. People may vary

their choice of origin destination day by day. Moreover, the network we build will need

to serve the community for several years until we can make any adjustment. During

that period, the demands for each OD pair may change significantly. Therefore, we

need to find a design that is robust against all those changes.

Let d E RIWI denote a vector consistings of all demands in the network.

Assumming the number of users does not change significantly. The demands thus can



be modeled as a set:

E {d| dw = TD, Dmi" dw < D max}. (5.8)

Let G(V, A, y, d) be the network built with design vector y with fixed demand vector

d (A and V are the sets of possible links and nodes). The robust network design

problem (RNDP) is:

min max c(f)Tf (5.9)
yle'y<B dGE

where f is the UE flow for the network G(V, A, y, d).

For affine travel times, f is uniquely defined for G(V, A, y, d).

This is a tri-level optimization problem, which is very complicated to solve directly.

Given a design vector y, let consider the inner maximization problem:

T(y)= max TC(y, d) (5.10)

where TC(y, d) = c()Tf

IWI
and f(y, d) = arg min c(f)Tf - dwT Aw (5.11)

' "'w w=1

s.t :Nfw = dw Vw

W
yfw < Ky

W=1

N T Aw < c(f) + M(1 - y) Vw

W=1

With affine travel time functions, TC(y, d) is a quadratic function with respect to

f. The region defined by constraints of problem (5.11) is a convex region and E is

a convex set. Therefore, in order to find T(y), we can test all extreme points of E.

However for a realistic network, the number of OD pairs may be very big. Thus,

instead of finding all extreme points, we can use local search with multiple starting



points to find a local maximum.

Algorithm B :

" Start with an extreme point d of E. Solving (5.11) and find TC(y, d).

" Generate a neighbour extreme point dn of d. If TC(y. d) < TC(y. dn) then set

d = dn

" Repeat until we cannot find any improved neighbour.

We can use multiple starting points to improve the quality of the algorithm and to

obtain a set of local imininia.An extreme point d for the uncertainty set we consider

will have at least IW- 1 components equal to either D [ax or D"'[" and satisfy equal-

ity (5.8).

For fixed y and d, solving problem (5.11) is very fast regardless of value of Ml. With

Algorithm B we can find near optimal points for the inner maximization problem.

In order to solve the RNDP. we can use a decomposition approach. Consider only a

discrete set E, C E. Solve the minimax problem for E, to get a lower bound and a

decision vector y. Fix y, then solve (5.10) to get new demand scenarios for Es and

an upper bound to the problem:

Decision problem:

Let d1 , d2 ...... d1E 1 E E. With each demand vector, let fi, f2 , ... , f|Es| be the

corresponding flow. The decision problem solves

min r; (5.12)

60



'WI

s.t :71 > c(fi)Tfi + O(c(fi)Tfi - S d T A)
W=1

'WI

77 > c(f 2 )Tf 2 + 9(c(f 2 )Tf 2 - dwTA)
W=1

Nfw = dw Vw

5fv < Ky
m=1

NT Aw < c(fi) + M(1 - y) Vw

IWI
f;>, f>01 = f

W=1

e'y < B.

Adversary problem:

Let y* be the solution to the decision problem. Use Algorithm B to find near optimal

points to T(y*) in (5.10). Add those points to E,. Reiterate.

As we could not solve problem (5.10) to optimality, we cannot get an upper bound.

Thus, the algorithm stops when after several iterations, we cannot obtain any better

solution.

With affine travel times, the decision problem is a mixed integer optimization

problem, with a linear objective problem and convex quadratic constraints. The re-

sulting flow will be the UE flow, and rj is the worst case objective in E,. However, in

computational experiment, we have found that problem (5.12) is not efficiently solv-

able. Thus, in what follows, we develop a heuristic algorithm using Robust Simulated

Annealing (RSA) [14] to solve the RNDP problem.

RSA algorithm for RNDP:

Step 1: Initialization.



" Solve the DNDP using mixed integer optimization to get a starting design yo.

* Set iteration index k = 0., acceptance number h = 0 and annealing index n = 0.

* Use Algorithm B to assembly a set M(yo) of local maxima demand vectors.

" Set the initial inverse temperature

1
mnaxaEM(yo) TC(yo, d) (5.13)

* Compute the energy function of M(yo) as:

WV(Yo) - log EC (oTC(yod) (5.14)
dEM(yo)

Step 2: Trial design at iteration k:

" Generate a neighbour design vector yt.

" Assemble M (yt).

" Using (5.14), calculate W(yt)

" Caculate the acceptance probability: P(yk -+ Yt) = min(1, e/(V(Yk)-w"(Yt)))

Step 3: Generate a random number R E [0, 1]

" If P > R: Let Yk±1 = Yt, increase h. Else let Yk±1 = Yk

* If k mod 100 = 0 then: Increase n. Let #3 = (1+ )"30. Recalculate W(yk+1)

" Back to step 2 and re-iterate

We can choose a small e (from 0.02 to 0.05). The algorithm stops when the inverse

temperature gets big enough. Also note that lima3 +o W(yk) = maxd-M(Yk) TC(yk, d)

In the above algorithm, the choice of a neighbour yt is important to the algorithm.

We need to make sure that all possible designs can be visited. In our work, we

generate yt using following steps:

o Randomly choose 2 components i and j of vector Yk such that Yk,i = 1 and

Ykj =0



I We can either flip both of them. or one of them with equal probability. Always

make sure that at most B links are built.

" The new neighbour will thus, has at most two components different from the

current design vector.

This is somewhat similar to the 2-OPT neighbour in the travelling salesman problem.

As a result, we make sure that all possible designs could be visited.

5.4 Computational Results

5.4.1 Deterministic Network Desgin problem

In this case, we use 2 test networks. The first network (Network 1) is from [37] with

20 nodes. 28 links. The second network is Sioux Falls, a big network with 76 links,

28 nodes. Sioux Falls network is a model representing a real transporation network.

This is a fairly large network. There are around 2000 paths connecting each OD pair.

Network 1:

1 2 3 4 5 6 7 a 9
2 3 5 6 ? to

10 11 12 13 14 I5 16 17 18 19

20 21 22 23 24 25 26 27 2

Figure 5-1: Network 1

First, we fix 0 = 1000 and vary Al (we choose the same value for all links). We solve

the mixed integer optimization problem and obtain the optimal design y* and f*.

Then, we find the UE flow f for the network designed with y* (As noted above, f and

f* may not be the same for a small Ml). Figures 5-3 and 5-4 show that for small

l, f and f* are not the same (the total travel times are different). Note that when

B = 20 and l = 600 - 1000, the solution to the mixed integer optimization happens

to be the optimal design under UE, but the flow found by mixed integer optimization



Table 5.1: OD table for Network 1

c1(f) = 5fi + 2f2 + 50 c15(f) = 9fi5 + 2fi4 + 20
c2 (f) = 4f 2 + fi + 20 c16 (f) = 8f16 + 5f12 + 30
c3 (f) = 3f3 + f4 + 35 c17 (f) = 7f17 + 2fi5 + 45
c4 (f) = 6f4 + 3f5 + 40 c18 (f) = 5f18+ f16 + 30
c5 (f) 6f5 + 4f6 + 60 cio(f) = 8fig + 3f17 + 60

C6(f) 7f6 + 3f7 + 50 c20 (f) = 6f2o + f21 + 30
c7(f) 8f7 + 2f8 + 40 c21 (f) = 4f21 + f22 + 40
c8(f) = 5f8 + 2f9 + 65 c22 (f) = 6f22 + f23 + 50
cg(f) 6f9 + 2fio + 70 c23 (f f23 + 2f24 + 35
cio(f) 4fo+ f12 + 80 c24 (f) 8f24 + f25+40

cI(f) 7f + 4f12+65 c2 5 (f) 9f25+3f26+45

c12 (f) = 8f12 + 2fis + 70 c26 (f) 7f26 + 8f27 + 30

C13 (f) 7f13 + 3f18 + 60 C27 (f) 8f27 + 3f28 + 50
c14 (f) = 6fi4 + 3fi + 50 c2 8 (f) 7f28 + 3f27 + 65

Table 5.2: Link travel times for Network 1

is not the UE flow. Only when M = 1800, the mixed integer optimization obtains

the correct design and the correct flow.

Figure 5-4 shows that after M is big enough that we are able to get a correct solu-

tion from the mixed integer optimization, when we increase M, the computation time

increases. We will observe the same behavior if we extend the range of M in figure 5-3.

Next, we examine the effect of 0 with fix M. Figure 5-5 shows that 0 does not

strongly affect the computation time (the difference in computation time between

0 = 100 and 0 = 1000 is not much). We thus can pick 0 suffciently big to ensure the

No.] OD pair [Demand
1 (1,19) 60
2 (1,20) 50
3 (2,13) 100
4 (2,17) 100
5 (2,20) 100
6 (3,14) 50
7 (4,20) 100
8 (6,19) 100



Figure 5-2: Sioux Falls network
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c1(fi) 6fi + 6 c27(f 27) = 3f27 + 5 c53(f53 ) = 6f53 + 2
c2(f2) 2f2 + 4 C28(f28) 4f28 + 6 c54(f54 ) =4f54 + 2

c3(fh) = 6f3 + 6 c29(f 29) = 2f29 + 4 c55 (f55 ) = 2f55 + 3
c4(f4) 2f4 + 5 c30(f 30 ) = 6f3o + 8 c56 (f56 ) =16f56 + 4
c5(fA) 2f5 + 4 c31(f31) = 3f31 + 6 c57(f5 7) = 2f57 + 3
C6( 6) = 2f6 + 4 c32 (f32) 3f32 + 5 c58 (f58 ) 6f5s8 + 2
c7(f7) = 4f7 + 4 c33 (f 33 ) = 4f33 + 6 c59 (f59 )= 4f59 + 4
c8(f8) = 2f8 + 4 c34 (f 34 ) = 3f34 + 5 C60(f6O) = 16f6o + 4
c9(f9) = 2fs + 2 c35(f35) = 4f35 + 4 c61(f61) = 4f61 + 4
cio(fio) = 3fio + 6 c36 ( 36 ) - 4f36 + 6 c62 (f6 2 ) = 4f62 + 6
cu(fn) = 2fi + 2 c37 (f 37 ) = 14f37 + 3 c63(f63 ) = 6f63 + 5
c12 (f 12) = 10fi2 + 4 c38 (f38 ) 14f38 + 3 c64 (f6 4) = 4f64 + 6

c13 (f 13 ) = 2f13 + 5 c39 (f39 ) - 4f39 + 4 c65(f65 ) = 8f65 2

c14 (f1 4 ) = 2f14 + 5 c4o(f 40 ) = 3f4o + 4 c66(f66 ) - 4f66 + 3

c1 (f15) = 10f15 + 4 c41(f41 ) = 4f41 + 5 c67(f67 ) 2f67+ 3

c1 (f16) 2f16 + 2 c42 (f 4 2 ) = 2f42 + 4 c68(f6 s) = 6f68 + 5

c17 (f 17 ) = 2f 17 + 3 c43 (f4 3 ) = 4f43 + 6 c69 (f6 9 ) = 8f69 + 2
c18 (fis) = 4f18 + 2 c44 (f 4 4 ) = 4f44 + 5 c70(f7o) - 2f7o + 4
c19(f19) = 2f19 + 2 C4 5 (f4 5) 2f45 + 3 C71(f71) = 2f71 + 4
c20(f20) = 2 f2o + 3 c4 6(f 46) = 2f46 + 3 c72 (f 72 ) -- 2f72 + 4

c21(f21) = 4f21 + 10 c4 7(f 47) - 2f47 + 5 c73(f 73)= 2f73 + 2

C22(f22) =2f22 + 5 c48(f 48) -- 2f48+ 4 c74 (f74)= 4f74 + 4

C23(f23)= 2f23 + 5 c4 9 (f 49 ) - 2f49 + 2 cy(f5) = 4f75 3

C24 (f24) 424 + 10 c5o(f5o) = 2f5o + 3 c76 (f76) = 2f76 + 2

c25(f 25 ) = 2f25 + 3 c51(f51) = 6f51 + 8
C26(f 26) 2f26 + 3 c52(f 52) 2f52 + 2

Table 5.3: Link travel times for Sioux Fall
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Figure 5-4: Total Cost and computation time (sec) with total Budget B = 24

correctness of the algorithm.
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Figure 5-5: Computation time (sec) with varying 0, M = 1600

The optimal design vectors y* for each case are listed in table 5.4.

Sioux Falls Network with 6 OD pairs:

B Links are not built
20 1,9,11,13,15,16,17,19
24 1,12,15,17

Table 5.4: Design vector for Network 1

In this case, we use a simplified OD pair table with only 6 OD pairs. The OD pairs

and demands are listed in Table 5.5.

For this network, we let 0 = 20. The budget in this case is set to B = 60. This is a

'Table 5.5: OD Table(case 1) for Sioux Falls

huge design problem, as in total we have (6) (around 1039) different possible designs.
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E
o 0.6

0.4 -- B=20
0.2

-U-B=24

0 20 40 60 80 100 120

0

No. I OD pair I Demand
1 (1,20) 25
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4 (24,1) 20
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6 (20,7) 15
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Figure 5-6: Total travel time with varying M

Figure 5-7: Computation time (sec) with varying M

Figures 5-6 and 5-7 give us the similar conclusion as we have from the previous test

network. For small M, the mixed integer optimization will have incorrect solutions.

The computation time also increases very fast as M increases.
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Figure 5-8: Computation time (sec) with varying 6

Figure 5-8 reports the computation time for fix M with different values of 0. The

computation time actually fluctuates as 0 increases.

Sioux Falls and Braess paradox:

We consider Sioux Falls with only 3 OD pairs. The demands and OD table are listed

in Table 5.6. The total budget is B - 70. We choose to report this case because the

DNDP is subjected to Braess paradox [19]: under UE, building extra links does not

decrease the total travel time of the network. As shown in Table 5.7, we only need

68 links for the optimal design.

No. OD pair Demand
1 (1,20) 20
2 (24,1) 25
5 (7,20) 15

Table 5.6: OD Table(case 2)

12000
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q 6000
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2000
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for Sioux Falls



Y1 1 Y1 1 Y21 1 Y31 1 Y41 1 Y5i 1 Y61 1 Y71 1
Y2 1 Y12 1 Y22 1 Y32 1 Y42 1 Y52 1 Y62 0 Y72 1

3 1 Y13 1 Y23 1 33 1 43 1 Y53 1 Y63 0 Y73 0
Y4 1 Y14 1 Y24 1 Y34 1 Y44 0 Y54 1 Y64 1 Y74 1
Y5 1 Y5 1 Y25 1 Y35 1 Y45 1 Y 1 Y65 1 Y75 1
Y6 1 Y6 1 Y26 1 Y36 1 Y46 1 Y56 1 Y66 0 Y76 1
Y7 1 Y17 1 Y27 0 Y37 1 Y47 1 Y57 0 Y67 1

Y8 Y18 I Y28 1 Y38 Y48 1 Y58 1 Y68 1
Y9 Y19 1 Y29 1 39 1 49 I 1 59 1 Y69 1

Y1 1 Y20 0 Y30 1 Y40 1 Y5a 1 Y6o 1 Y7o 0

Table 5.7: DNDP solution for Sioux Falls with 3 OD pairs

5.4.2 Robust Network Design Problem

In this section, we denote the uncertainty level as: L = T(D DV)

L can be large in reality, even it can approach 100% (for example: the demands

during weekdays and weekend).

In what follows, we will test the robust simulated annealing for RNDP with different

uncertainty levels.

Sioux Falls with 3-GD pairs:

Table 5.8 shows the worst total travel time (found by Algorithm B) and nominal

travel time (with the demands from Table 5.6). For the first two cases, the robust

solutions are the same as the deterministic solution. However, when L = 52.72% and

L = 81.82%, the robust solutions are different from the deterministic solution. They

have better worst total travel time. Note that in both of these two cases, we construct

a total of 70 links (see Table 5.9) while the deterministic solution only builds 68 links.

We also sample 500 demand scenarios from the uncertainty set. With each of them,

we find the total travel time under UE for the network designed by the robust and

deterministic solution.

Figures 5-9 and 5-10 show the box plot when L = 52.72% and L = 81.82%. They show

that the robust solutions have better worst case travel times, means and variances.

The robust simulated annealing performs well in those two cases.



Table 5.8: Worst total travel time and nominal travel time with varying L for Sioux
Falls with 3 OD pairs

L(%) Links are not built
52.72 15,27,44,62,63,70
81.82 15,51,62,63,69,70

Table 5.9: Solution to RNDP for Sioux Falls with 3 OD pairs

x10,

- 1.15
-

F- 1.1

F-1.05

1
Robust Solution

2

Deterministic Solution

Figure 5-9: Box plot for 500 scenarios when L = 81.82%

Sioux Falls with 6-OD pairs:

In this case, we let B = 70.

For L from 20% to 60%. the robust solution is the same as the deterministic solution.

Table 5.10 shows the solutions when L = 80% and L = 91.6%. It also shows the

worst total travel times and the nominal total travel times.

Worst total travel time Nominal total travel time
L(%) Robust Deterministic Robust Deterministic
34.55 10526.6 10526.6 9795.12 9795.12
41.18 10526.6 10526.6 9795.12 9795.12
52.72 11823.7 11869.5 9804.19 9795.12
81.82 12929.4 12959.1 9839.56 9795.12

+

..................... .. ........ ................................................................... - n -- -
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Figure 5-10: Box plot for 500 scenarios when L = 52.72%

Worst total travel time Nominal total travel time Links are not built
L(%) Robust Deterministic Robust Deterministic Robust solution

80 39053.8 39084.3 33838.1 33010.4 20,30,32,50,55,70
91.6 40998.9 41062.8 33104.2 33010.4 21,24,30,51,70,72

Table 5.10: Worst case and nominal case total travel time for Sioux Falls with 6 OD
pairs

We also sample 500 demand scenarios from the uncertainty set, calculate the total

travel time under the UE flow for each of them and plot the box plot in figures 5-

11 and 5-12. Our robust solutions have better worst total travel times than the

deterministic solution. Unfortunately, when L = 80%, the performance of the robust

solution on the sample scenarios is worse than the deterministic one (because the RSA

algorithm aims to find the best design for worst case scenario). When L = 91.6%,

they perform almost the same.

5.5 Conclusions

The first part of this chapter revisits the exact mixed integer programming approach

for the DNDP. We carefully study the effect of the choice of M and 0 in the model.
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Figure 5-11: Box plot for 500 scenarios when L 80%
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The second part of this chapter studies the RNDP. For the RNDP, we propose a

decompostion method and a heuristic method to solve the RNDP where the demands

lie within a polyhedron. Our numerical examples use the Sioux Falls network to

show that the robust simulated annealing method is able to solve the RNDP for

large networks with many integer variables. However, there are still many rooms for

improvement. First, our algorithm to find the worst demand scenario for the inner

max problem is not an exact one. Second, it is important to improve the computation

time for the decision problem in our decomposition algorithm, so we can use it to

deal with real network design problems.



Chapter 6

Conclusions

This thesis offers a robust optimization approach to two different equilibrium-related

problems in transportation.

The first part of the thesis proposes a novel inverse optimization method to find

link travel times given the stable flow and a prior perception on the travel times.

Under the L norm objective fucntion, the inverse problem is a linear programming

problem and can be solved easily. Using the robust optimization paradigm, we pro-

pose 3 distribution-free models for the uncertainty in the prior information on the

travel times. We show that for the first two models, the robust problem can be solved

deterministically. The first box-uncertainty model can be considered as a determin-

istic inverse problem with modified prior travel times. The second model is also a

linear optimization problem with additional |AI constraints. For the third model, the

minimax problem is a hard problem. We propose an algorithm based on Bender's

decomposition scheme. Instead of solving one big problem, we iteratively solve two

simpler problem: one LP programming problem and one mixed integer LP problem.

Both problems can be solved efficiently using CPLEX solver. We test our algorithm

for the Sioux Falls network and illustrate that the decomposition algorithm converges

after 400 iterations, which is very fast compared to the number of links on the net-

work. We further extend the idea, using inverse optimziation for the historical stable

flow to find the parametric forms of the travel times. Using simulated data, we show

that by solving the inverse optimization problem before fitting the parameters, the



fitting functions are more robust against the noise level in the prior data.

The second part of the thesis considers a binary choice network design problem

under the User Equilibrium flow and uncertainty in demands. For the deterministic

problem, we show that the problem can be formulated as a mixed-integer program-

ming problem with a quadratic objective function and linear constraints. We give

some insights and study the parameter choices of the formulation so that it can be

solved efficiently and correctly using the CPLEX solver. For the robust problem,

we model the uncertainty in demands using a linear set. We propose a decompo-

sition algorithm, solving the robust problem iteratively through solving two smaller

problems: a mixed integer programming problem with convex quadratic constraints

and a convex maximization problem. Unfortunately, both of these problems are NP

hard, and are not efficiently solvable for large network problem. For large network

problems, we offer a heuristic approach using robust simulated annealing. Using a LP

solver to find the UE flow given the design and demands of the network, the robust

simulated annealing can give good performance for practical design problems. We

illustrate our approach using the Nagurney's network and the Sioux Falls network.

The two problems addressed in this thesis are not well developed in the literature.

Thus, there are still many interesting issues to address in consequent research.

First of all, the user choice is modeled based on Wardrop's principle. The principle

assumes users know the travel information of the network accurately. This, however,

is not a good assumption. Thus, it might be interesting to consider a stochastic or

robust model rather than deterministic user equilibrium.

For the robust inverse problem, we only consider the uncertainty in the prior

travel times. In a further study, we would like to consider the uncertainty in the

flow. Besides, this robust inverse problem can be further extended to model users'

behavior given the historical data and prior travel times. Users can be based on

the information they have to make their route choices. This might lead to a new

equilibrium behavior.

For the network design problem, we could not solve the inner problem to opti-

mality. For a network with many OD pairs, it is critical to have a good algorithm



to find the worst demand scenario. This is one of the major points for future devel-

opement. Besides, despite the fact that the robust simulated annealing approach is

able to provide some good results, it is really sensitive to the choice of parameters

and does not always converge to a good solution. Thus, it will be preferable to have

a deterministic solution for big network problems, where we can evaluate how good

our solution is.
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