Multilayer Network Modeling of Change Propagation
for Engineering Change Management

by
Michael C. Pasqual

B.S.E., Electrical Engineering
Princeton University, 2005

Submitted to the Engineering Systems Division and the
Department of Aeronautics and Astronautics
in Partial Fulfillment of the Requirements for the Degrees of

Master of Science in Technology and Policy
and
Master of Science in Aeronautics and Astronautics

at the
Massachusetts Institute of Technology
June 2010

MASSACHUSETTS INSTITUTE

OF TECH-IDLODY

OCT 18 201D

LIBRARIES

ARCHIVES

© 2010 Massachusetts Institute of Technology. All rights reserved.
The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis in whole or in part in any medium now known or

hereafter created.

Signature of Author....... e
Engineering Systems Division
, May 7, 2010

&
Certifiedby........................ S
v Olivier L. de Weck

Associate Professor of Aeronautics and Astronautics and Engineering Systems
Associate Director, Engineering Systems Division

é / :

Thesis Supervisor

Acceptedby PP
/ Eytan H. Modiano
Associate Professor of Aeronautics and Astronautics
™ Chair, Com/r)nittee on Graduate Students
v*?'/
Acceptedby T

ré { Dava J. Newman
Professor of Aeronautics and Astronautics and Engineering Systems
Director, Technology and Policy Program

This page has been intentionally left blank.

Disclaimer

This work is sponsored by the Department of the Air Force under Air Force Contract
#FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are
those of the author and are not necessarily endorsed by the United States Government.

This page has been intentionally left blank.

Multilayer Network Modeling of Change Propagation
for Engineering Change Management

by
Michael C. Pasqual

Submitted to the Engineering Systems Division and the
Department of Aeronautics and Astronautics on May 7, 2010
in Partial Fulfillment of the Requirements for the Degrees of

Master of Science in Technology and Policy
and
Master of Science in Aeronautics and Astronautics

ABSTRACT

Engineering change management is a critical and challenging process within product
development. One pervasive source of difficulty for this process is the phenomenon of
change propagation, by which a change to one part or element of a design requires
additional changes throughout the product. Research efforts to understand and manage
change propagation have largely drawn on network analysis. This thesis builds upon past
research by introducing a multilayer network model that incorporates three proposed
layers, or domains, that contribute to change propagation: namely, the product layer,
change layer, and social layer. Each layer contains a distinct network of nodes and intra-
layer edges, but also connects to the other two layers through inter-layer dependencies.
The model facilitates extensive quantitative analysis of change propagation using a
repository of single-layer, double-layer, and triple-layer tools and metrics. A case study
of a large technical program, which managed over 41,000 change requests in eight years,
is employed to demonstrate the practical utility of the model. Most significantly, the case
study explores the program’s social layer and discovers a real-world correspondence
between an engineer’s organizational role and the propagation effects of his or her work,
as measured by the newly proposed Engineer Change Propagation Index (Engineer-CPI).
The case study also reveals that parent-child propagation often spanned more than one,
but never more than three, system interfaces, thus confirming the possibility of indirect
propagation. Finally, the study finds that propagation always stopped after five, and
rarely more than four, generations of descendants. In all, the multilayer network model’s
holistic approach has significant policy implications for engineering change management
in industry.

Thesis Supervisor: Olivier L. de Weck
Title: Associate Professor of Aeronautics and Astronautics and Engineering Systems

This page has been intentionally left blank.

Acknowledgements

My time at MIT would not have been nearly as successful, exciting, or enjoyable without
the help and support of the following people.

First, I would like to thank Oli (de Weck) for accepting me into the Strategic Engineering
Research Group and handing me a research topic that has fascinated me from the very
beginning. Oli’s guidance, enthusiasm, and encouragement were invaluable throughout
this research endeavor.

I would also like to thank Monica Giffin and Gergana Bounova for their willingness to
share their expertise and experience with me.

I must additionally thank the Group 38 Office at MIT Lincoln Laboratory for their
financial, intellectual, and technical support.

I would also like to thank my beautiful and loving fiancée Marianne for supporting me in
every way throughout my MIT career. I owe the same love and gratitude to her mother,
father, and sister, also known as my Boston family.

Last but not least, I would like to thank my mother, father, and two brothers for their
loving support throughout graduate school and my entire life before MIT. I owe all of
my life’s successes, past, present, and future, to their constant love, guidance, and
encouragement.

This page has been intentionally left blank.

Table of Contents

ACKNOWIEAZEMENLS ..ottt 7
Table Of CONENLS ...cvvreeeivreeerirreeeeeereeeeeisiittcesiteetsrteeesbaesaseaneesssansessraasasans 9
LiSt Of FIGUIES ..euveveeeeieiiienicniencnicincietentee ettt 11
| R) i 21 o) (OO OIPP R 13
LiSt Of ACTONYIMS....vieveirrerrerreerieneiiesienieiiesstestrsr e s e e sesse s s e sas s sasaessesasseens 15
| QR 113 (o e LT a3 5T) o W OO 17
1.1. Research FramewWOrKccccoocciiiiiniiniiiiniiiiiiiniiiireein et 19
1.2. DOCUMENT OVETVIEW ...eovverirenrinreeiienteieisesiesissiisesssssesssesnesessesssssassassssssasssssensenes 23
2. Background and MOtiVatiON..........covueiueiniininnieeienie et 25
2.1. Engineering Change Management...........cccoouieirinieiienienencnteienccncnneeceeenns 25
2.2. Change Propagation.........ccociviiiiiiiiinieniineeestet et 28
2.3. Network Analysis of Change Propagation............cceeveieiienieniniincenieiinienieneienes 31
2.4. Multilayer Network Approaches...........cceouveereieiniiiininisiisieieeceeceeiecnees 35
2.5, Filling the GaPcccroereeieiriiiiniiiiicieieiereer ettt 38
3. A Multilayer Network Model of Change Propagationc.cccoeuennnene. 41
3.1, MOAEL SETUP .euviviiuieierenieeieeteeetet ettt ettt bbb ns 41
3.2, Intra-1ayer EAEScoccevivviiiiiiiiiiiiiiiiiiicicccit et 44
3.3. Inter-layer EAZescceovevievminininiiiiiiiiiiii s 46
4. Tool and Metric Developmentcocuevreiiiiiiiieiiniiiiiiiieceee e 49
4.1. A Comprehensive Paradigmcccccoiiiiiiiiiiiniiniiiiiieece e 49
4.2. Project X: A Hypothetical AppliCation...........cooevieuieimiimiiesiiniiieieceeeeeenen 51
4.3. Single-1ayer ANalySiS......c.ccoceeveriiinriiiiiiiiiiiiiniiiiiiesc e 53
4.4. Double-layer ANAlYSIScccceereriririiniiiinciiiieeie e 65
4.5. Triple-layer ANalysisccccocecviiiiiiiiiiiniiniiiiciciire s 82
4.6. Summary of REPOSItOTY ...c..cocuriiiiiiiiiiiiiiiiiiiciici e 89
5. CaSE STUAY ...eeeiiriiieiieieeieeete ettt sttt 95
5.1 THE CaSC..curireiiiriieriereeetreteeeierte sttt ettt a e sa e s ae b b e saa bbb aas 95

5.3. Model CONSIIUCTIONcueeuiriiriiieieieniererieeteeteestestessesae e essesseteeseeseeseensensessessesses 99
5.4. Analysis and INterpretationceeeeueeuiereeicieiceeereceeeeee e 103
5.5. Summary of Case StudY.......c.cccoeviruriirireinenenteieeserete ettt aeaea 124
6. Management Policy Implications...........ccceeeeereecieneesieecieeicceereere e, 127
6.1. Industry’s Struggle with Change Propagationccceceeeevevveereereeeeereereenvennne. 127
6.2. Policy for Handling Change Propagationcceceeveeieienienreereeeeeenieeeeeeneen 130
7. CONCIUSION. ...ceiiiiiiiiirtirieerit e s e e e e te e reeesteeeteeereesseeeeneesreesaesenaeeennnens 137
7.1. Summary of Research FINAINGScccevvevervriiiiiinieniininececeeeeseeeere e 137
7.2, FUture WOTKooiiiiiiiiitetetee ettt a et ereens 139
RETEIENCES ..ottt et re e eare e 141
Appendix: Raw Data......ccccoeoviiiiiiiiiiiieniccrccciecsecesee e e s 145

10

List of Figures

Figure 1. Multilayer Network Model of Change Propagation............ccceeveieviniiniiinininns 19
Figure 2. Tllustration of Change Propagation...........ccceveeeeeenncniniinniinniii 29
Figure 3. EXample DSM ..ot 32
Figure 4. Example Propagation DSM.........cccccoiviiiiniiniiiiin, 34
Figure 5. Generic ESM Layout.........ccoouiiiieiniiinineeinccttcnn s 36
Figure 6. Example DMMccccooviiiiiiiiiiiiiei s 37
Figure 7. Research Venn Diagram..........coooiiieiniiiiiininiiiencsiececseeeecsnssssieienes 39
Figure 8. Triangle Formation of the Multilayer Network Modelcccoeviiiininnnne. 42
Figure 9. Linear Formation of the Multilayer Network Modelccoceeiiiincnnnnen. 43
Figure 10. Example Change Layercccoeiniimininiinniiccccccs 45
Figure 11. Multilayer Network Drawing of Project X........cooveiiiniiniiinninnciininnenene. 52
Figure 12. DSMS fOr Project X.......coiiiieriiieiiiniieeesie it 54
Figure 13. Likelihood, Impact, and Risk Matrices for Project Xccccoveveniiinennencncen 56
Figure 14. CPM Visualization for Project Xcoooviiimiiniinincnccccnn 57
Figure 15. Change Magnitude and the Amount of Propagation.........c..eccccoeveeeevccnennnen. 64
Figure 16. DMMS for Project X.......oooviiniiininiieiiiee e 66
Figure 17. Propagation DSM for Project X ..o 68
Figure 18. Change Propagation Frequency Matrix for Project X......c.cocoeevennicnnennnee. 68
Figure 19. Product/Propagation DSM Overlay for Project X........ocoooveinecincnnncnnne. 70
Figure 20. Alignment Matrix for Project X ... 72
Figure 21. Engineer Propagation DSM for Project X......ccooioiniiiiniiniiniiinenccneniens 74
Figure 22. ESM for Project X ...ttt 83
Figure 23. Decomposed ESM for Project Xccoooioiiiiiiniiiiniicncie 83
Figure 24. Spring Embedded Drawing of ESM for Project X........cooooiiniiinininnincee 84
Figure 25. Product/Propagation/Social DSM Overlay for Project X.......cccocooeiniiiinninns 86
Figure 26. System Network from Case Study ..o 96
Figure 27. Spring Embedded Drawing of System Network from Case Study 96
Figure 28. Multilayer Network of 11-CR from Case Studycoccovenineiineinnicnncnnes 101
Figure 29. Multilayer Network of 87-CR from Case Studycccocvvenirienenniinniiniinnnes 102

11

Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

Distribution of Engineer-CPIs from Case Study........ccccoecervevreererreeereenenne. 105
Role-based Distributions of Engineer-CPI from Case Study........................ 106
Assignment-based Distributions of Engineer-CPIs from Case Study........... 108
Distribution of PARs from Case Studycccceevvvevreevieeiieciecteeereecrecveeveene 112
#Proposals vs. PAR from Case Studycccccccevvevirernienenenieiesieneeeeiennns 113
Distribution of Rpagr from Case Study........ccceeeveecirinierieneeeeieceereee s 115
Product DSM and Propagation DSM from Case Studycccevverveverennnns 117
Product/Propagation DSM Overlay from Case Study.........cccceovevrerireieinnnnns 117
Distribution of Propagation Directness from Case Studyccceeveereennenne. 118
Examples of Direct and Indirect Propagation from Case Study.................... 119
#Generations Histogram from Case Studycccocevvevcieneneniinieeneniesineinennens 121

Examples of 4- and 5-Generation Propagation Chains from Case Study 122
Total Propagation Activity vs. Degree for Case Studyc.ccecevvvverieinnnens 123

12

List of Tables

Table 1. Layer NOMENCIAtULEc.coiiviiriniiiiietiinteeteeeet et 41
Table 2. Intra/Inter-edges of the Multilayer Network Model ... 48
Table 3. Preview of Repository of Multilayer Network Tools and Metricsccceueucee 51
Table 4. Single-1aYer TOOIS....cc.ccviviririiiiiniiiiire e 53
Table 5. 1-Motif Distribution for Project X.......ccccceeveiviniiininiiniiniinieeeeneeeeneeieeeenes 58
Table 6. 2-Motif Distributions for Project Xc.cccccvviiiiiniiniininninnenninienenneenneeeenes 59
Table 7. Single-layer MEtriCs......ccovuiviriniiiiiiiieiee s 60
Table 8. Graph Properties for Project X ... 62
Table 9. Double-1ayer TOOISccccereirieriiiiiiiiiiniiieie et 65
Table 10. Double-1ayer MEtriCSccevuiiririiiiiiiiniiniietineceeiesie st 75
Table 11. Propagation Behavior and Propagation DireCtnesscocooevvevivinencnicninnencns 76
Table 12. Propagation Directness for Project X ... 76
Table 13. Component-CPIs for Project X........ccocvivniiiniiniiininiieeincinciceceens 78
Table 14. Engineer-CPIs for Project X ... 80
Table 15. CAls and CRIs for Project Xcccccoiiiniiiiiiniiiiireeieieeeeie e 81
Table 16. Triple-layer TOOIScocoriiiiiiiiiiiiiii e 82
Table 17. Triple-layer MEtriCsccvviviiiiiniiiiiiiniieteeeesee st 87
Table 18. Component and Engineer Degree Ranking Comparison for Project X............. 88
Table 19. Categorized Repository of Multilayer Network Tools and Metrics. 92
Table 20. Data Requirements for Multilayer Network Tools and Metricscovveennernnn. 93
Table 21. Sample Change Request RECOTd.........oouiiiiiiiiiniiiiicee 97
Table 22. Data Availability for Case Studyccocevevviiniiiiiiiiiieiiciii e 99
Table 23. Distribution of Stand-alone Change Networks from Case Study................... 100
Table 24. Propagation Behavior of Representative Engineers from Case Study 108
Table 25. PAR/#Proposals Quadrant Distributions from Case Studyccccevvenennnnees 113
Table 26. Summary of Investigation of Employee Performance..........ccoccooeveeeiniinnnnns 126
Table 27. Summary of Investigation of Propagation Characteristicscccuevueeenens 126

13

This page has been intentionally left blank.

14

List of Acronyms

CAD Computer-aided Design

CAI Change Acceptance Index

CCB Configuration Control Board

CPI Change Propagation Index

CPFM Change Propagation Frequency Matrix
CPM Change Prediction Method

CR Change request

CRI Change Request Index

DSM Design Structure Matrix

DMM Domain Mapping Matrix

ECM Engineering Change Management
ESM Engineering Systems Matrix

IPT Integrated Program Team

IT Information Technology

NASA National Aeronautics and Space Administration
PAR Proposal Acceptance Rate

PD Propagation Directness

PDM Product Data Management

SAP System Adjustable Parameter

15

This page has been intentionally left blank.

16

1. Introduction

The design of a complex product is rarely, if ever, straightforward or permanent. In fact,
an organization is bound to make design changes throughout the development and
subsequent operation of almost any product. Some changes are required to fix problems
that are discovered with a baseline design. Others are necessary when a product must
evolve to satisfy new requirements levied by the customer or market [13]. As such,
changes theoretically present opportunities for an organization to innovate and please
customers. However, in practice, changes can consume considerable time, money, and
resources [18]. Although industry has come to accept change as a reality of product
development, the management of change is hardly trivial, especially for large and
complex products or systems. Indeed, engineering change management must balance the
costs, benefits, and risks of making design changes, in light of their implications for

schedule, budget, and product quality [16, 18].

One pervasive source of difficulty for engineering change management is the
phenomenon of change propagation, by which a change to one part or element of a design
spreads, or propagates, throughout the product [17, 32]. For instance, when designing a
dining room table, an increase in the tabletop length may require a stronger type of wood
to withstand the increased load; in other words, the first change (i.e., a longer tabletop)
may give rise to an additional change (i.e., a different type of wood). Likewise, when
designing an Earth-observing satellite, an increase in orbital altitude may require an
increase in aperture diameter to maintain resolution, which may require a longer focal
length or smaller pixels to maintain image quality [33]. Finally, when designing a
software system, a new algorithm in one function may require a new input from a second

function, which may require additional memory allocation for a new calculation.

Change propagation, as in these examples, occurs by virtue of the complex dependencies
among the parts of modern products and systems. As a result, an organization must
account for possible propagation effects when evaluating and implementing a change to a

single part of a product. The topic of change propagation has received considerable

17

research attention over the last decade. The highlights of the literature include qualitative
and quantitative efforts to characterize [13, 14, 16, 17, 32], predict [6], and prevent [31]

change propagation, primarily through the use of network analysis.

Building on these efforts, this thesis develops a novel multilayer network model of
change propagation, and seeks to determine and demonstrate its utility. Multilayer
network models have been employed in broader research on product development and
project management. However, to the author’s knowledge, no previous research on

change propagation has, at least explicitly, taken a multilayer network approach.

The multilayer network model developed by this thesis is composed of three layers, or
domains, that contribute to the phenomenon of change propagation: namely, the product
layer, change layer, and social layer. An illustration of the model appears in Figure 1.
Each layer contains a distinct network of nodes and intra-layer edges. The product layer
consists of components connected through technical interfaces, depending on how the
components interact in the product. The change layer consists of change requests
connected through change propagation relationships, depending on how some changes
give rise to others. Finally, the social layer consists of engineers connected through
communication links, depending on the intended or actual communication between
engineers. As represented by the inter-layer edges, engineers in the social layer work on

changes in the change layer which affect components in the product layer.

Figure 1 shows a generic illustration of the multilayer network model. This thesis
additionally develops a baseline repository of tools and metrics to help make sense of the
model’s complexity. As such, the multilayer network model lends itself to extensive
quantitative analysis of change propagation and engineering change management for

practical use in both academia and industry.

18

Social Layer
Change
+«— Requests
Change Layer
Changes Aﬁe&
Cnmponents{
.'; 4.‘ +— Components
(s v
Product Layer

Figure 1. Multilayer Network Model of Change Propagation

1.1. Research Framework

The research framework for this thesis was constructed according to the guidelines
outlined by de Neufville [9] and Kirchain [20]. In all, this thesis develops a multilayer
network model of change propagation and investigates its practical utility through a case
study of a real-world engineering project. Although the research framework is presented
quite neatly here, the actual research undertaking was both iterative and recursive en

route to a feasible research question, hypothesis, method, and logic. Indeed, this thesis is

L

the result of repeated literature review, model development, data collection, and trial and

error analysis.

1.1.1. Research Question

The topic of change propagation presents a range of worthwhile research questions to
investigate. Among these are questions regarding the characterization, prediction,
prevention, and control of change propagation. For instance, are there fundamental
characteristics of change propagation than an organization can exploit? How can an
organization predict change propagation in various types of products and systems?
Moreover, how can an organization prevent or control change propagation through
modular or flexible designs? These types of questions have been addressed in previous
research, which has produced promising, but limited, answers. This thesis does not
attempt to provide complete answers to these questions either; the development of robust
methods for dealing with change propagation will require repeated experimentation in
real-world situations. Instead, this thesis takes a step back to consider a fresh perspective
with which to view the research field: namely, a multilayer network model of change

propagation. In kind, this thesis investigates the following primary research question:

o What insights can be gained from a multilayer network model of change
propagation?
Two secondary questions follow (or propagate) from this primary one:

e What are potential tools and metrics for analyzing a multilayer network model of

change propagation?

e How can these tools and metrics inform future engineering change management
policy in terms of design strategy, change request evaluation, and human

resource management ?

Overall, the answers to these questions will help determine the value of multilayer
network modeling for understanding change propagation and informing engineering

change management.

20

1.1.2. Hypothesis

The overarching hypothesis of this thesis is that a multilayer network model facilitates
extensive quantitative analysis of change propagation using a repository of tools and
metrics. These tools and metrics can be single-layer, double-layer, or triple-layer in
origin. Furthermore, the model unites previous research on change propagation in a
comprehensive paradigm. Finally, the model uniquely allows quantitative analysis of the
previously overlooked, but significant, social layer of change propagation. Overall, a
multilayer network model provides holistic framework with significant policy

implications for engineering change management’s handling of change propagation.

1.1.3. Research Method

Similar to other literature on change propagation [6, 13, 32], this thesis employs a case
study to answer the research questions and test the corresponding hypotheses. More
specifically, the case study here serves as a demonstration [9] of the practical utility of

multilayer network modeling.

The case under investigation is a technical program whose purpose was to develop a
large-scale sensor system, ultimately composed of legacy hardware and newly written
software subsystems. The author received a dataset extracted from the program’s
configuration management records that contained detailed information about more than
41,000 changes proposed over a period of eight years. Additionally, one of the
program’s lead systems engineers was interviewed to put the results, analysis, and
interpretation in context. Giffin et al. investigated the same program in [16] and [17], and

her results and conclusions are cited throughout the case study and thesis.

To demonstrate the multilayer network model’s practical utility, the case study applies
the model to investigate two topics of significant interest to academia and industry. The
first and most pioneering topic revolves around the social layer’s effects on change
propagation. Some newly developed tools and metrics reveal critical aspects of an

engineer’s performance in the proposal and implementation of changes. The other major

21

topic of investigation involves the general characterization of change propagation.
Specifically, the issues of indirect propagation, propagation extent, and component
centrality are scrutinized closely with an array of multilayer tools and metrics. The
results of these quantitative analyses confirm and offer counterexamples to many

qualitative conclusions about change propagation in previous literature.

1.1.4. Logic

The choice of a case study as a research method is justified given Yin’s [35] well known
analysis of case studies as a research strategy. Following Yin’s dissection of the
appropriate setting for case study research, this thesis largely performs an exploratory
case study. The case study here is exploratory in that it primarily attempts to answer
“what” questions: namely, “what insights can be gained from a multilayer network
model?” The study seeks to explore the multilayer network model’s utility by elucidating
interesting issues concerning change propagation. Nevertheless, in demonstrating the
utility of the model, the case study also touches on a few “why” questions regarding
change propagation as a phenomenon. Consequently, the case study sometimes borders

on being explanatory as well.

Furthermore, the case here is what Yin calls a revelatory case, because the type of data
acquired for this case study is rarely available to general researchers in the field. As
explained later, research on change propagation has traditionally suffered from a lack of
substantive data to quantitatively analyze. By contrast, the dataset here is unique in its
richness. For example, the dataset indicates which engineer proposed, evaluated, or
implemented each change request, which, for the first time, allows the construction of a

social layer and subsequent quantitative analysis.

Because the case study here is of a single case, the generalization of results might be
considered tenuous. However, Yin [35] explains that case studies rely on analytical
generalization, rather than statistical generalization. As such, a single case can be used to

advance a theory, similarly to how scientific experiments are touted to do the same. The

22

“theory” asserted by this thesis is that a multilayer network model provides valuable

insights into change propagation through the use of various tools and metrics. The case

study here substantiates that theory. Moreover, the findings are compared to previous

research for additional corroboration. Of course, more case studies in the future could

strengthen the arguments here even further. In kind, one thrust of this thesis is to assess

the data collection and data mining necessary for future researchers and industry to

construct and utilize the multilayer network model.

1.2.

Document Overview

The remaining chapters of this document are structured as follows:

Chapter 2 (Background and Motivation) gives essential background information
on several relevant topics, including engineering change management, change
propagation, and network analysis. The chapter is basically a motivational

literature review.

Chapter 3 (A Multilayer Network Model of Change Propagation) develops a

novel multilayer network model of change propagation.

Chapter 4 (Tool and Metric Development) presents a baseline repository of tools
and metrics for use with the multilayer network model. The repository consists of
single-layer, double-layer, and triple-layer tools and metrics, including a few
newly developed methods for analyzing the social layer. A hypothetical
application called Project X is carried throughout the discussion to illustrate the

repository’s theoretical utility.

Chapter 5 (Case Study) demonstrates the practical utility of the multilayer
network model through a case study of a real-world engineering project.
Specifically, the model is applied to investigate general characteristics of change

propagation, as well as the social layer’s effects on propagation phenomena.

23

e Chapter 6 (Management Policy Implications) discusses the policy implications of
the multilayer network model and general change propagation research for

engineering change management.

e Chapter 7 (Conclusion) closes the thesis with a summary of the research findings

and recommendations for future work.

24

2. Background and Motivation

This chapter presents background material on the subject matter at the heart of this thesis,
and provides motivation for the ensuing model development and case study. The two
overlapping topics discussed here are engineering change management and network
analysis. Engineering change management is shown to be a challenging element of
product development and project management, particularly because of the phenomenon
of change propagation. Change propagation contributes significantly to the time, money,
and resources required to make changes to a complex design. Research efforts to
quantitatively investigate change propagation have chiefly employed network analysis.
However, no study of change propagation has deliberately explored the utility of a
multilayer network model to capture the dependencies within and among multiple layers
(or domains) of an engineer project. The use of multilayer networks models in similar

contexts suggests that such an approach is viable for the study of change propagation.

This thesis builds upon past research by developing a novel multilayer network model
that integrates the product, change, and social layers of change propagation. In addition
to providing a comprehensive paradigm for investigating change propagation and
unifying past research, this new model uniquely illuminates the impact of the previously
overlooked social layer of change propagation. As such, this thesis fills a significant gap

in the published literature.

2.1. Engineering Change Management

Engineering change management (ECM) has been defined as the process by which an
organization proposes, evaluates, implements, and audits changes to the design of a
product (or technical system) [18]. In other words, ECM deals with the evolution of a
design, which is routinely changed to satisfy dynamic customer requirements, correct
design problems, and converge on a good engineering solution. ECM is a critical
component of the more cited discipline of configuration management, which more

generally includes the monitoring, verification, and accurate documentation of the design

25

process (NASA/SP-2007-6105 R1) [23]. However, this thesis will concentrate on ECM
because of its specific emphasis on the change process. It’s also important to distinguish
ECM from business change management, by which a company changes the structure and
operation of its teams and employees. Indeed, ECM is more concerned with technical
changes, as opposed to organizational ones (though certainly some underlying principles

likely apply to both).

Engineering change management is undoubtedly a critical element of product
development and project management. Any organization involved in the design or
manufacture of complex products must perform ECM. Moreover, the literature on ECM
reports that the vast majority of engineering firms have a formal review and decision
making process in place for handling potential changes to their designs [18]. For
example, the National Aeronautics and Space Administration (NASA) performs ECM
through a Configuration Control Board (CCB), composed of organization and team
representatives who collectively make decisions regarding change proposals.
Furthermore, as a testament to the importance of ECM, NASA considers ECM (within
configuration management) to be one of the crosscutting technical management processes
at the core of its systems engineering engine [23]. Overall, the aerospace, automobile,
electronics, and software industries agree that ECM is necessary to deal with the

inevitable desire and need for design changes [6, 18, 32, 34].

Changes are basically inevitable during product development [25]. Giffin et al. [17] and
Suh and de Weck [31] emphasize that most products are adaptations of predecessor
products, such that redesign efforts are inherent in the design process. Still, even de novo
(or clean sheet) designs are bound to undergo changes. In either scenario, an
organization might want or need to change some aspect of a design for a variety of
reasons. Change requests may originate externally or internally (Eckert et al. [14] would
call these initiating and emergent changes, respectively). External changes requests arise
from outside the design process, as from users, customers, contractors, suppliers, and
other stakeholders. The classic external change is a change in product requirements often

levied by the customer or derived from business and marketing decisions. Meanwhile,

26

internal change requests arise from within the design process, as from the designers
themselves. Internal changes include rework and fixes that are expected as part of any

iterative and recursive design process [12, 23].

Furthermore, change requests might arise at any stage in the engineering project lifecycle.
During the design stage, many changes naturally occur as a design matures from
conceptual to detailed Later during manufacturing, testing, and integration, more
changes might become necessary if problems are discovered with a baseline design.
Likewise, during operation of the product by the customer, additional changes may prove
desirable as users develop new needs and explore unanticipated operational environments
[16]. Moreover, throughout the project lifecycle, customer requirements and
expectations are bound to evolve and continually press the developing organization to
change the purpose and performance of the product. As a result, the baseline design of a
product may persistently and progressively change in order to satisfy stakeholders and

successfully complete product development.

Change is both a blessing and a curse in the engineering industry. This dichotomy makes
ECM an especially challenging task. On the one hand, change drives innovation and
allows an organization to improve its products and please its customers. Without change,
an organization would not be able to stay competitive in its market [18, 34]. On the other
hand, changes are not free. In fact, they require considerable time, money, and resources.
Terwiesch and Loch [32] report that changes can absorb nearly half of a firm’s
engineering capacity and lead to similar proportions of manufacturing costs. In
aggregate, the ECM process can consume weeks, months, and perhaps a year within the
product development timeframe. In the same vein, Clarkson et al. [6] found that in the
case of helicopter design, a single change can cost up to US$80,000. Consequently,
organizations often view changes as evil and annoying, often resulting in the pessimistic
attitude that changes should always be avoided where possible. Nevertheless, changes
are expected, and an organization must balance the benefits, costs, and risks of making

changes through effective ECM.

27

Researchers have investigated why changes can be so abundant, costly, and challenging,
and hence why effective ECM is so necessary. Terwiesch and Loch [32] summarize
some of the core reasons identified in the literature. =~ Some researchers blame
administrative inefficiencies in the processing of change requests. Others conclude that
many changes are actually unnecessary if only organizations would realize a better initial
design. Unfortunately, many engineers make little effort up front in their design
decisions because they know their first designs are likely not permanent. In effect, the
inevitability of change can become a self-fulfilling prophesy. These problems are
exacerbated and nuanced by the workload capacity and varying skill and experience of
individual engineers. Almost all researchers and interviewees from industry emphasize
that changes made late in the development cycle are especially costly because of the
increased amount of rework, documentation, retooling (for manufacturing), and
renegotiating (with customers) that ensues. Finally, a significant and pervasive reason for
the high cost of change is the occurrence of change propagation [6, 19, 32], which is the

topic of the following section and the focus of this thesis.

2.2. Change Propagation

Change propagation is a phenomenon that contributes significantly to the negative
impact of change during the design process. Borrowing language from Giffin et al. [17],
change propagation is the “process by which a change to one part or element of an
existing system [or product] configuration or design results in one or more additional
changes to the system, when those changes would not have otherwise been required.” In
other words, change propagation occurs when making a single change ultimately requires
the implementation of multiple changes, in order to achieve the objective of the overall
redesign. When a change to one component (or subsystem) triggers another change in
another component, that change is said to have propagated from one component to the

other.

Change propagation can turn a single change into multiple changes through repeated and

recursive acts of parent-child propagation. Parent-child propagation refers to the act of

28

one change (the parent) yielding an immediate descendant change (the child). Figure 2
illustrates an initiating change that led to four generations of descendants through
recursive parent-child propagation. Propagation over this many generations has been
reported in the literature [6] and will be demonstrated again in Chapter 5’s case study. In
Figure 2, a parent-child relationship is represented by an arrow going from the parent
change to the child change. The bidirectional arrows indicate sibling relationships
between child changes of the same parent change. Later in this thesis, these parent-child
and sibling-sibling arrows will become the intra-layer edges in the change layer of a

multilayer network model.

«— Parent

 Child

Propagation

‘\\
Siblings

v

Figure 2. Illustration of Change Propagation

The snowball effect [32] of change can cause a seemingly simple change to cost much
more than originally expected or, more drastically, to avalanche beyond control or
feasibility. Consequently, over the last decade, much research has focused on

characterizing, predicting, and controlling change propagation as a central ingredient to

effective ECM.

The consensus among researchers is that change propagation occurs primarily because of
the complexity of modern products and systems [6, 11, 13, 31, 32]. Complex systems,
such as automobiles, airplanes, computers, and electronic devices, consist of many
(sometime tens of thousands) interconnected and interdependent electro-mechanical,
software, and human components and subsystems. One can easily imagine how the
alteration of one component could propagate changes to others. After all, a system is a

collection of interacting parts whose integrated value is greater than the sum of the values

29

of the individual parts [23]. As such, the parts of a system are highly interdependent and
the potential for change propagation is inherent. For example, Clarkson et al. [6]
explains that a change made to the rotor of a helicopter would necessitate significant
redesign of the entire aircraft, because of the functional dependence of the rest of the
aircraft on the rotor. Because of the threat of change propagation like this, an
organization’s ECM process must account for possible propagation effects when

evaluating and implementing a change to a single part of a product.

Eckert et al. [14] explained that different parts of a design exhibit different propagation
behavior at different times. That is, components can act as absorbers, carriers,
multipliers, or constants. Absorbers tend to internalize changes without causing many
changes to other components, while multipliers give rise to more changes than they
absorb. Meanwhile, carriers absorb and cause a roughly equal number of changes.
Finally, constants do not contribute to any propagation effects; that is, they are only
affected by isolated changes. According to Eckert et al., the propagation behavior of a
component depends on the status of its tolerance margin. An initial design usually gives
each component a certain margin for change so that it may absorb changes in the future.
However, as theses margin are consumed by future changes, components transform from
absorbers, into carriers, and eventually into multipliers. The conclusion is that ECM
must be aware of these diminishing tolerance margins to predict the propagation behavior

of components at any time in the design process.

Most of this discussion of change propagation has been qualitative. Indeed, research on
change propagation has suffered from a lack of available data to corroborate hypotheses
more quantitatively. Giffin [16] explains the reasons for this misfortune. One is the
failure of organizations to resurrect ECM records once a project is complete, both by
habit and for fear of embarrassment. Furthermore, ECM records, especially for large or
long engineering projects, may be too cumbersome to efficiently extract the data needed
for analysis. As a substitute for full data records, several researchers [6, 12, 13, 18, 32]
have conducted interviews to acquire details about an organization’s experiences with

change propagation. Limited progress has been achieved using the interview approach

30

combined with some data mining. By contrast, the quantitative thrust of this thesis

enjoyed a uniquely rich dataset to be explored in Chapter 5’s case study.

Despite having limited data, the literature still provides some notable quantitative
progress in the field. As discussed in the next section, efforts to quantitatively
characterize, predict, and control change propagation have mostly drawn on network
analysis. This thesis builds on previous network approaches in a novel way through a

multilayer network model of change propagation.

2.3. Network Analysis of Change Propagation

A network, or graph, is a set of nodes connected by edges. Literature on product
development and project management has revolved around three broad categories of
networks: products, processes, and social networks (similar to the network
categorizations in [4, 24]). These categories are obvious candidates for network
modeling and analysis. After all, a product is a network of hardware and software
components that interact to perform a higher level function. Meanwhile process
networks are composed of individual tasks and activities that depend on each other in
some way. Finally, social networks consist of people who are connected via their
relationships and communication with one another as leaders, subordinates, teammates,
and friends. As reviewed by Newman [24], the study of networks has been prolific in a
variety of research settings, including physics, engineering, biology, and the social
sciences. Work in these areas has produced a tremendous bank of tools and metrics for
understanding network behavior. Many of the tools and metrics discussed in this section
will be further illustrated in Chapter 4’s development of a tool and metric repository for

the multilayer network model.

One of the primary network analysis tools created for product development and project
management is the Design Structure Matrix (DSM) [48]. A DSM is essentially a matrix
representation of a directed network, sometimes referred to as an adjacency matrix in

graph theory [5], or an N-squared \p) diagram in systems engineering [23]. ADSM s a

31

square matrix with a row (m) and column (n) for each node of the network. Element (m,
n) indicates the number of a directed interfaces going from component n to component m.
In graph theory, the number of interfaces incident upon (i.e., touching) a particular node
is called the node’s degree [5]. Since the DSM represents a directed network, one can
further specify a node’s in-degree and out-degree, according to how many interfaces are
directed in and out of the node, respectively. For undirected networks (i.e., all interfaces
go in both directions), the DSM would be symmetric, and each node’s in-degree and out-

degree would be equal.

Figure 3 displays a hypothetical network composed of four nodes, along with its DSM
representation. Black dots appear along the diagonal of the DSM because each node is
not considered to be connected to itself (though self-loops can have meaning in broader
graph theory). The off-diagonal elements of the DSM count the directed edges starting in
the “out” nodes and ending in the “in” nodes. In this example, node #2 has an in-degree
of three, with interfaces coming from nodes #1, #3, and #4, and an out-degree of one,
with an interface going to node #1. The reader should note that the convention for which
matrix axes are “in”” and “out” has alternated in the literature; Figure 3 and the rest of this

thesis uses the rows for “in” nodes and the columns for “out” nodes.

(D—f2) o
1.2 3 &

1 e 1
F—® R
E |t
Network Representation 3l 1 .
4 11 e

DSM Representation

Figure 3. Example DSM
Larger and more complex networks (compared to Figure 3) are naturally more

challenging to develop and understand. Fortunately, the DSM provides engineers and

project managers a succinct way to represent and analyze the structure of otherwise

32

overwhelmingly complex networks. As outlined by Browning [4], the DSM has been
used to investigate both static networks (e.g., products and organizations) and time-based
networks (e.g., processes). For static networks, clustering algorithms can order the rows
and columns of the DSM to identify clusters of tightly coupled nodes, otherwise known
as modules or subsystems in product design. Meanwhile, for time-based networks,
sequencing algorithms can order the nodes (e.g., tasks) to minimize feedback and find
opportunities for parallel processing. Overall, the DSM, together with its adaptations [4,
10], has become a cornerstone of product development and project management in both

industry and academia.

Research on change propagation has benefited from network analysis. The DSM of a
product design has obvious implications for the prediction of change propagation. After
all, the interfaces captured by the DSM indicate how individual components depend on
each other, and consequently how a change to one component might affect other
components. Keller, et al. [21] and Clarkson et al. [6] developed the Change Prediction
Method (CPM), which uses the DSM as a basis for predicting the occurrence of change
propagation. The crux of CPM is that changes are assumed to propagate from one
component to another along the dependencies shown in the DSM. By tracing all possible
propagation paths, CPM creates a matrix showing the likelihood and impact of
propagation between all components. Clarkson et al. achieved notable success with CPM
in predicting change propagation in a few real-world scenarios at Westland Helicopters (a
UK company). Chapter 6 will discuss the ability to predict propagation as an essential

element of ECM policy for handling change propagation.

A related network analysis tool, called the Propagation DSM, has been developed to
further characterize change propagation. Giffin et al. [17] actually names this tool the
“Change DSM,” but this thesis substitutes the word “propagation” for “change” to help
distinguish it from the DSM of a change network. The Propagation DSM is a matrix that
tallies instances of change propagation from one component to another over some time
period in the design process. The matrix is square with a row (m) and column (n) for

each product component. Element (m, n) of the Propagation DSM counts the number of

33

times a parent change in the instigating component n spawned a child change in the
affected component m. Figure 4 shows a hypothetical example of Propagation DSM.
The matrix indicates, for example, that one change propagated from component #4 to
component #2 and two changes propagated from component #3 to component #4 (but not
necessarily from the same parent change in node #3). Overall, the Propagation DSM
provides a succinct way to represent and analyze the location of propagation within a

product design.

Instigating Component
1 2 3 4
- 1 g s
[
5 : : :
g2
§ e s
ga 2 |
g4 12

Figure 4. Example Propagation DSM

In fact, a significant metric from the literature, known as the Change Propagation Index
(CPY), is readily calculated from the Propagation DSM. As developed by Suh and de
Weck [31] and refined by Giffin et al. [17], the CPI describes a single component’s
propagation behavior by comparing the numbers of changes that propagated in and out of
that component. Most significantly, the normalized CPI spectrum (-1 to +1), quantifies
the propagation behavior of a component as a multiplier (CPI > 0), carrier (CPI = 0), or
absorber (CPI < 0). The exact calculation and interpretation of the CPI will be presented
later in this thesis. Moreover, the CPI concept will be extended to assess the performance

of engineers who implement changes to a product design.

One final example of network analysis in the literature is the change motif analysis
conducted by Giffin et al. [17]. This study investigated the occurrence of certain motifs,
or building blocks, within large change networks from a real-world engineering project

(actually, the same program from Chapter 5’s case study). The analysis suggested that

34

the distribution of motifs could help explain propagation patterns in a complex system

design.

Despite the promising findings about change propagation through network analysis to
date, other research suggests that something is lacking in the usual approach toward
change propagation. That is, the literature on product development and project
management has stressed the need to consider multiple network layers, or domains, of an
engineering project, including a product, process, and social layer (identical to the
network categories described earlier). To date, change propagation research has not, at
least explicitly, taken a multilayer network approach. To be fair, one should
acknowledge that tools and metrics like the Propagation DSM and CPI are essentially
double-layer approaches, since they do integrate both the product layer and change (i.e.,
process) layer. Still, other contributions like Clarkson’s CPM and Giffin’s change motif
analysis only stem from single-layer models of the design and change layers,
respectively. Furthermore, a glaring weakness in the change propagation literature is the
failure to substantially consider the social layer in any quantitative way. This
shortcoming is surprising since many researches have emphasized the importance of

teamwork, individual skills, and system awareness in the ECM process [6, 13, 18].

This thesis proposes a novel multilayer network model of change propagation, which not
only explores the social layer for the first time, but also unites past single-, double-, and
triple-layer analyses in a new and comprehensive paradigm. But before developing the
model in Chapter 3, it’s insightful to take a cue from other multilayer network approaches

in the related literature.

2.4. Multilayer Network Approaches

The concept that an engineering project involves multiple layers, or domains, has been
proposed and utilized in the literature on product development and project management.
This thesis prefers to use the term “layer” instead of “domain” because it is convenient to

draw a multi-domain network with the domains in a vertically layered fashion. Chapter 3

35

will further discuss the visualization of the multilayer network model in this regard.
Nevertheless, the premise of a multilayer approach is that a project’s performance
depends significantly on the interactions within and between layers. The literature
review below will temporarily use the term “domain” to be consistent with the original

authors.

Bartolomei [1] offers one of the clearest justifications for a multi-domain approach in his
development of the Engineering Systems Matrix (ESM). The ESM augments the single-
domain DSM to incorporate nodes from multiple domains. The ESM’s domains include
technical, functional, process, social, and environmental domains. The result is an
adjacency matrix containing edges between nodes of the same domain, as well as edges
connecting nodes of different domains. Figure 5 shows the generic layout of an ESM.
Intra-domain edges would appear in the black boxes and inter-domain edges in the off-

diagonal white boxes.

Tech. Function Process Social Envir.

Tech.

...............................

Process Function

A A A

Social

..............................

Envir.

Figure 5. Generic ESM Layout

Bartolomei argues that the ESM is the only framework in the literature that facilitates
quantitative analysis of multiple domains and their interactions (including variations over

time). Furthermore, he suggests that a combination of single- and multi-domain analysis

36

can provide considerable insight into the management and performance of engineering ‘
projects. Because his framework is relatively new, Bartolomei urges the research
community to develop appropriate tools and metrics, especially inter-domain ones, to
fully reap the benefits of multi-domain network models. This thesis takes on
Bartolomei’s challenge in the context of change propagation, a research subject which

has lacked such a holistic framework.

While perhaps not achieving the comprehensiveness promoted by Bartolomei, others
have conducted multilayer network analysis in notable ways. For example, Danilovic
and Browning [8] develop yet another variation of the DSM known as a Domain
Mapping Matrix (DMM). A DMM, as the name implies, maps different domains onto
one another with respect to inter-domain dependencies. A DMM is generally rectangular
with M rows for one domain and N columns for the other. Non-zero elements in the
DMM count the dependencies between the nodes of the two domains. Figure 6 shows a
hypothetical example of a DMM between Domains A and B, which have five and three
nodes, respectively. The DMM indicates that node #2 in Domain B depends on nodes #1,
#2, and #5 in Domain A. Danilovic and Browning argue that organizations can use the
DMM to capture, analyze, and act on the relationships and constraints among the

different domains of product development.

Domain A

1 2 3 4 5
1 1
[+ JE S e e
£
E21 1 1
[}
Q ,,,
3 1

Figure 6. Example DMM

Finally, several studies by Eppinger, Sosa, and Morelli have championed a multi-domain
model most analogous to the one proposed in this thesis. Eppinger [12] applies a multi-

domain model, including product, process, and organization domains, to the general

37

challenge of product development. Eppinger primarily investigated whether interactions
within each domain tend to follow a common, predictable pattern. For example, he and
Sosa et al. [27] focused on potential patterns between the product domain and the
organization domain. In an industry case study, they found that interfaces between
product components were likely to correspond with communication between the teams
designing those connected components. In other words, product interfaces were usually
matched by communication interfaces. Likewise, in a case study with Morelli et al. [22],
Eppinger found similar patterns between the process domain and the organization
domain. Namely, dependencies between tasks tended to predict communication between
the individuals performing those interdependent tasks. Eppinger et al.’s work suggests
that project managers can improve performance by addressing the mismatches among the

patterns of interactions within each domain.

Thus, the stage is set for further analysis of engineering endeavors using a multi-domain,
or multilayer, network approach. This thesis continues this effort in the context of

change propagation.

2.5. Filling the Gap

To summarize this chapter, the Venn diagram in Figure 7 shows where most of the
authors cited above might be placed in the relevant research landscape. The diagram’s
two overlapping circles contain research on engineering change management (on the left)
and network analysis (on the right). The ECM circle is further decomposed (by the gray
dotted line) into general research and change propagation research. Meanwhile, the
network analysis circle is divided into single-layer models (e.g., the DSM) and multilayer
models. This thesis, labeled ‘“Pasqual (2010),” sits at the intersection of research on
change propagation and multilayer network analysis. As such, a gap in the literature is

addressed by this research.

38

Engineering Change
Management Network Analysis

Single Layer (DSM)

Steward Eppinger et al.
(1981) (1994)

(1997) Zanker

Browning
(2001)

Giffin, et al.
{2009)

Pikosz & Terwiesch

Malmgqvist & Loch Multilayer

(1998) (1999) o : Eppinger Sosa,
asqua Eppinger, &
— Jarrat, (2010) (2001) pFl:om?Ies
9 Eckert, & (2000, 2007)
Mak Clarkson
(1999) (2005) Danilovic & Bartolomei
Browning (2007)

(2007)

Figure 7. Research Venn Diagram

Here’s what the research landscape looks like in Figure 7. During the 1990s, general
research on engineering change management, such as by Wright [34], Pikosz and
Malmgvist [25], and Huang and Mak [18], focused on how ECM was performed and why
it was so challenging. Eventually, the phenomenon of change propagation was
pinpointed, most notably by Terwiesch and Loch [32] in 1999, as a major reason for the
pervasiveness and high cost of design changes. From there, qualitative studies via
industry interviews (e.g., Eckert et al. [14] and Jarratt et al. [19]) explored real-world
organizations’ experiences with propagation effects. Clarkson et al. [6] and Giffin [16]
conducted more quantitative analysis to predict and characterize change propagation
through the use of network analysis throughout the 2000s. These network analyses ware
largely single-layer (and some double-layer) in origin, borrowing from DSM research by
Steward [30], Eppinger et al. [11], and Browning [4]. Meanwhile, work by Sosa et al.
[27, 28], Eppinger [12], Danilovic and Browning [8], and Bartolomei [1] recognized the
need for a multilayer approach to product development, and achieved notable success.

However, change propagation research has never shared in that progress.

39

There in lies a void in the literature. To the author’s knowledge, researchers of change
propagation have never, at least explicitly, taken a multilayer network approach. Thus,
this thesis (Pasqual, 2010) fills a significant gap in the literature on change propagation
and ECM. To this end, the next chapter develops a novel multilayer network model,
followed by the development of a baseline repository of tools and metrics for subsequent

analysis.

40

3. A Multilayer Network Model
of Change Propagation

This chapter develops a novel multilayer network model of change propagation. The
model captures the interactions within and between three proposed layers of change
propagation, which include a product layer, change layer, and social layer. Intra-layer
edges connect (a) components within the product layer, (b) change requests within the
change layer, and (c) engineers within the social layer. Meanwhile, inter-layer edges
connect nodes across layers to represent how (a) engineers work on changes, (b) changes
affect components, and (c) engineers are in charge of designing components. The
multilayer network model lends itself to extensive analysis using an array of tools and

metrics.

3.1. Model Setup

In general, a multilayer network model of change propagation acknowledges the
existence of multiple layers, or domains, contributing to propagation phenomena. The
specific model proposed here is composed of three primary layers: namely the product
layer, change layer, and social layer. 1f desirable, additional layers, such as the
environmental and functional domains suggested by Bartolomei [1], could also be
incorporated into this model in the future. Nevertheless, the product, change, and social
layers introduced here are analogous to previous multilayer (or multi-domain) approaches
[12], as outlined in Table 1. These three layers should provide a good stepping stone for

further analysis.

Table 1. Layer Nomenclature

Name of Layer Used in this Thesis | Analogous Names Used in the Literature
Product Product [8, 12]; technical [1]
Change Change [17]; process [1, 8, 12]
Social Social [1]; organization [1, 8, 12]

41

The multilayer network model captures the interactions within and across the three layers
of change propagation. Each layer forms an individual network composed of nodes of
the same type that are connected by intra-layer edges. Meanwhile, the layers themselves
are linked by inter-layer edges that connect nodes from different layers. As such, the
model bears some resemblance to the concept of a multipartite (or r-partite) network in
graph theory [10]. Strictly speaking, a multipartite network is a network of multiple
types of nodes with edges that only run between different node types. The multilayer
network model here deviates from the multipartite definition by also including intra-layer
edges (i.e., edges running between identical node types). Th.us, the multilayer network

model has multipartite roots, but does not ignore intra-layer dependencies.

Figure 8 illustrates the generic multilayer network model in a friangle formation. The
triangle formation, similar to that in [12], displays all the intra-layer and inter-layer edges

at once.

Engineers
77 NA
; Communication
Engineers .° ™ Engineers in
Change Work on Charge of
Requests ~, Changes Components ~ Components

Change Layer Product Layer

Figure 8. Triangle Formation of the Multilayer Network Model

42

By contrast, an alternative linear formation of the multilayer network model is shown in

Figure 9.

Social Layer
Engineers Work on
Eh?\"lges\\ Change
ra ’ «— Requests
Change er Propagation

Relationships

v

Changes Affect
Components

Figure 9. Linear Formation of the Multilayer Network Model

The linear formation purposely removes the product-to-social edges and aligns the layers
vertically. While the linear formation is not a complete visual representation, it still has a
few advantages. Firstly, it highlights the “layered” nature of the model, which is the
original reason why the term “multilayer” was chosen over “multi-domain.” Moreover,

the linear formation gives a more intuitive impression of the engineering change

43

management process. That is, engineers in the social layer act on components in the
product layer via changes in the change layer. One last advantage of the linear formation
is that it provides a less jumbled visualization for larger numbers of components,
changes, and engineers. The linear formation will be used to visualize real-world data in
Chapter 5’s case study. Nevertheless, other formations and adaptations might prove
useful for different purposes. The development of effective visualization techniques for
the model is a great area for future work. The interpretation of all the nodes and edges in
the multilayer network model, as labeled in Figure 8 and Figure 9, will now be described

in detail.

3.2. Intra-layer Edges

Each layer of the multilayer network model forms a distinct, directed network composed

of nodes connected by intra-layer edges.

e The product layer’s network consists of nodes representing hardware components,
software components, and possibly documentation too. At a higher level of
abstraction, the nodes might also represent modules or subsystems. The intra-
layer edges of the network represent various types of technical interfaces among
the components and subsystems. Some interfaces are physical connections (e.g.,
bolted or welded together). Others might be channels for the flow of energy (e.g.,
electrical power and heat), mass (e.g., fuel and coolant), and information (e.g.,
software inputs and outputs) [31]. More generally, from a design perspective, an
interface could also represent an important functional dependency or technical
constraint, such as physical laws that relate design variables to a desired
performance level (e.g., electrical current depends on resistance and voltage
through Ohm’s law, V = IR). In general, physical connections will correspond to
bidirectional edges, whereas flow channels and technical constraints might be
unidirectional. For example, the product layer for an automobile would contain
nodes representing the fuel line and the fuel tank, among tens of thousands of

other parts. These two nodes in particular would be connected by a bidirectional

44

edge representing their physical connection and a unidirectional edge representing

the flow of mass (i.e., fuel) out of the fuel tank and into the fuel line.

The change layer’s network is an example of a process network. Each node here
represents a single change. More accurately, each node is a change request (CR),
or a proposal for a single change, which emphasizes the reality that each “request”
could be accepted or rejected. Still, for simplicity, the remainder of this document

will use the term “change” to denote the nodes of the change layer.

The intra-layer edges of the network represent propagation relationships between
changes. A parent-child relationship appears as a unidirectional edge going from
the parent change to the child change. By contrast, a sibling relationship looks
like a bidirectional edge that connects children of the same parent change, or two
changes related in another significant way. For example, Figure 10 shows a
simple example of a change layer with one parent, two children, and their

associated directed edges.

Parent

Chitd Child

\ /

Siblings
Figure 10. Example Change Layer

It’s important to note that the change layer is not time-based like most other
process networks in which the nodes have sequential dependencies. However, an
organization could schedule the implementation of change activities using a

traditional process network, once sequential dependencies are determined.

The social layer’s network consists of nodes representing people. Each node

could be an organizations, team, sub-team, or even more granularly, an individual

45

engineer or employee. The intra-layer edges can represent various relationships
between people, and can be unidirectional or bidirectional. For example, the
edges might be based on an organization’s hierarchical structure, such that they
correspond to some chain of command. Another approach is to have the edges
represent theoretical or actual communication between groups and individuals.
Morelli et al. [22] describes three types of communication that can occur between
people involved in product development: coordination-type, knowledge-type, and
inspiration-type. =~ Coordination-type communication describes information
transfer performed by people to complete a task. Meanwhile, knowledge-type
communication involves cooperative learning that does not necessarily relate to a
specific task. Finally, inspiration-type communication encompasses motivational
interactions, usually with a manager. For any type of edge in the social layer, the
direction of communication might be significant for certain analyses. Indeed, a
distinction between the provider and receiver of information could make a

difference.

A possible augmentation to these intra-layer edge definitions is a measure of edge
strength. After all, a strong connection between nodes might exhibit different behavior
than a weaker connection. For example, Sosa et al. [27] uses a five-point scale to denote
the criticality of interactions among product components, according to whether the
interaction is required (+2), desired (+1), indifferent (0), undesired (-1), or detrimental
(-2) to the functionality of the product. Their case study of the development of a
commercial aircraft engine found that strong technical interfaces in the engine, compared
to weaker ones, more often elicited communication in the corresponding organization
domain. Consequently, edge strength could be a reasonable nuance to consider, if an

objective and consistent quantification scheme is employed.

3.3. Inter-layer Edges

The other half of the multilayer network model consists of the inter-layer edges that

essentially link the layers together. Unlike the intra-layer edges, the inter-layer edges are

46

nominally undirected (or essentially, bidirectional). However, the concept of a directed

inter-layer edge might have meaning in another context. Overall, inter-layer edges

represent the critical dependencies between the layers of the model.

A product-to-change edge connects a component (or subsystem) in the product
layer with a change in the change layer. The edge identifies the component
affected by that change. For example, if change #1 involves a redesign of
component #6, then an edge would appear between node #1 in the change layer

and node #6 in the product layer.

A product-to-social edge connects a component (or subsystem) in the product
layer with an engineer (or team) in the social layer. The edge identifies the
engineer who is in charge of designing, redesigning, or sourcing that component.
For example, if engineer #3 is assigned to component #2, then an edge would
appear between node #3 in the social layer and node #2 in the product layer. In
some scenarios, such as the cases studied by Eppinger [12], a one-to-one mapping
exists between the product and social layers. In other words, engineer n focuses
on component #n. Such a mapping facilitates easier analysis and interpretation.
However, other scenarios might have engineers focusing on various overlapping

areas of the product at once.

A change-to-social edge connects a change in the change layer with an engineer
(or team) in the social layer. The edge identifies the engineer who worked on the
change, by proposing, evaluating, or implementing the change request. For
example, if engineer #6 implemented change #9, then an edge would appear
between node #6 in the social layer and node #9 in the change layer. Again,
sometimes there can be a one-to-one mapping between the changes (or tasks) and
the engineers. That is, engineer n works on all changes that affect component 7.
However, the program in Chapter 5’s case study notably had individual engineers

working on multiple changes involving multiple areas of the system.

47

To summarize the layer definitions presented above, Table 2 shows the meanings of all
the edges in the multilayer network model. Each box in Table 2 describes the edges
occurring between the nodes of the layers in the corresponding row and column. The
boxes along the diagonal hold the intra-layer edges, while the off-diagonal boxes hold the
inter-layer edges. The language in the off-diagonal boxes is meant to reflect the
symmetry (or undirected nature) of the inter-layer edges. By contrast, the intra-layer

edges generally have an associated direction.

Table 2. Intra/Inter-edges of the Multilayer Network Model

Product Change Social
Technical interfaces
(physical, energy, Changes affect Engineers assigned to
Product mass, information, components components
constraints)
Propagation Engineers work on
Components affected . .
Change by chanees relationships (parents, changes
Y & children, and siblings)
. Components assigned Changes worked on Communication or
Social to engineers by engineers hierarchical structure

Most significantly, the multilayer network model provides a platform for extensive
development of tools and metrics for analyzing change propagation. A baseline

repository of tools and metrics is the subject of the next chapter.

48

4. Tool and Metric Development

This chapter presents a baseline repository of tools and metrics applicable to the
multilayer network model of change propagation. Such tools and metrics can be neatly
categorized as being single-layer, double-layer, or triple-layer in origin. Interestingly, as
discussed in Chapter 2, a number of relevant tools and metrics have already been
developed in the literature, although they were not always explicitly classified in a
multilayer context. The multilayer network model unites these previous methods in a
comprehensive paradigm for investigating change propagation. Still, further tool and
metric development is needed. In fact, this chapter introduces several new tools and
metrics, particularly for analyzing the model’s social layer. To help illustrate the
repository of tools and metrics presented here, a hypothetical application is carried
throughout this discussion. The reader may occasionally wish to consult Table 19 (page
92) for a summary of the repository. Additionally, Table 20 (page 93) outlines the data

required to exercise each tool and metric in practice.

4.1. A Comprehensive Paradigm

The multilayer network model creates a platform for an array of potential tools and
metrics for investigating change propagation and engineering change management. Tools
here refer to specific methods for analyzing or visualizing the nodes and edges of the
model. Meanwhile, metrics are qualitative and quantitative measures for characterizing
the nodes and edges, individually or together. Since any use of the multilayer network
model will focus on one layer or multiple layers simultaneously, it’s useful to categorize

each tool or metric as being single-layer, double-layer, or triple-layer in origin.

Fortunately, the development of these tools and metrics has actually already begun in the
literature. After all, although an explicit multilayer network model of change propagation
is new, the network analyses from past research on change propagation (and beyond) are
easily incorporated into the model. Indeed, it’s possible to cast all the tools and metrics

cited in Chapter 2 as being single-layer, double-layer, or triple-layer in origin. Some of

49

these tools and metrics, such as Clarkson et al.’s CPM [6] and Suh and de Weck’s CPI
[31], were deliberately created for analyzing change propagation. Others are grounded in
general product development and project management, where the overall research goal is
to improve efficiency and product quality. Of course, engineering change management is
a primary facet of efficiency and quality in industry. As such, generic product
development tools, such as Danilovic and Browning’s DMM, have important
implications for engineering change management and the handling of change
propagation. Consequently, the multilayer network model serves as a comprehensive

paradigm that puts past research in a common context.

Still, there are notable gaps in the repository, particularly for quantitative analysis of the
social layer. This thesis cultivates several new tools and metrics for this very purpose.
Among these are the Engineer-CPI and Proposal Acceptance Rate, which quantify an

engineer’s performance as implementers and proposes of change, respectively.

The following sections develop and critically evaluate a baseline repository of tools and
metrics, both old and new. The discussion is divided into three separate sections focusing
on single-layer, double-layer, and triple-layer analyses. As previewed in Table 3, each
type of analysis enjoys a useful set of tools and metrics. The tools and metrics that are

Gy

marked with a are being proposed for the first time by this thesis.

Each tool or metric will be assessed in light of its implications for change propagation
and engineering change management. To help illustrate the theoretical value of the
repository, a hypothetical application called Project X is introduced shortly and carried
throughout the remainder of the discussion. Additionally, occasional examples from the

literature and Chapter 5’s case study are cited for practical corroboration.

50

Table 3. Preview of Repository of Multilayer Network Tools and Metrics

Tools and Metrics Section
Tools
e DSM [4, 11, 30] 4.3.1.1
e CPM [6, 21] 4.3.1.2
Single-layer e Change Motifs [17] 43.1.3
Metrics
e Graph properties [5, 10, 24] 43.2.1
¢ Node attributes [17] 4.3.2.2
Tools
e DMM [8] 44.1.1
e Propagation DSM [17] 44.1.2
e CPFM [17] 4413
¢ Product/Propagation DSM Overlay [17] 4414
e Alignment Matrix [28] 44.1.5
Double-layer ¢ Engineer Propagation DSM* 4.4.1.6
Metrics
¢ Propagation Directness* 442.1
e Component-CPI [17, 31] 4422
¢ Engineer-CPI* 4.4.2.3
e CAI/CRI[17] 4424
¢ Proposal Acceptance Rate [16] 4425
Tools
¢ ESM [1] 4.5.1.1
Triple-layer ¢ Product/Propagation/Social DSM Overlay* 45.1.2
Metrics
e Graph properties [1, 5, 10, 24] 4.5.2.1

* Proposed first by this thesis

4.2. Project X: A Hypothetical Application

To guide this discussion, a simple hypothetical application of the multilayer network
model is introduced now. The imagined project, generically named Project X, involves
six (6) engineers who worked on eight (8) changes to a product of six (6) components.
For simplicity, a one-to-one mapping is assumed between the product layer and social
layer, such that engineer n is in charge of component n, and works on all changes

affecting component n. Figure 11 draws the corresponding multilayer network of Project

51

X in a linear formation. The linear formation unfortunately does not show the product-
to-social edges, but the one-to-mapping between the product and social layers makes

these missing edges easy to ascertain mentally, given the node labels.

ProjectX

Legend

A Engineer
Accepted CR

g Rejected CR

D Component

Social Layer

Change Layer

Product Layer

Figure 11. Multilayer Network Drawing of Project X

There are a few other features to note about Project X in Figure 11. The nodes of the
product, change, and social layers represent components (squares), changes (circles), and
engineers (triangles), respectively, and the intra-layer edges represent technical
interfaces, propagation relationships, and communication, respectively. The inter-layer
edges represent how changes affect components and engineers work on changes. A
change node is colored black if the change was accepted, and has an “X” if it was
rejected. For simplicity, the product layer and social layer have bidirectional intra-layer
edges; that is, technical interfaces (between components) and communication (between
engineers) are all two-way. The inter-layer edges are drawn without arrows because they

are nominally undirected (i.e., bidirectional).

The Project X example was fabricated to exhibit an array of behaviors that can be

analyzed using the repository presented next. In fact, all the tools and metrics presented

52

here were developed by this thesis or in the literature to help investigate these exact
behaviors as discovered in real-world case studies. Project X combines all these
behaviors in a single hypothetical example. The example is simple enough that the
reader should mentally be able to do all the calculations by referring back to Figure 11’s
drawing. Thus, the application is for theoretical demonstration only. The case study in
Chapter 5 will demonstrate the practical utility of the multilayer network model in a real-

world engineering project.

4.3. Single-layer Analysis

Single-layer analysis considers each layer of the multilayer network model by itself.
Although the inter-layer dependencies are ignored, single-layer tools and metrics can
highlight intra-layer characteristics of great significance for engineering change

management.

4.3.1. Single Layer Tools

Single-layer tools will be discussed first. Table 4 lists some notable single-layer tools

with their respective layers of focus and literature references.

Table 4. Single-layer Tools

Tool Layers | Reference
Design Structure Matrix (DSM) Any 4,11, 30
Change Prediction Model (CPM) | Product 6,21
Change Motif Analysis Change 17

All of these tools were introduced in Chapter 2. The DSM is broadly applicable to any
layer of the multilayer network model, while CPM and change motif analysis are tailored

to the product and change layers, respectively.

53

4.3.1.1. Design Structure Matrix

The most recognized single-layer tool is the Design Structure Matrix (DSM), a
fundamental tool for product development and project management in both industry and
academia [11, 12, 30]. As explained in Chapter 2, clustering and sequencing algorithms
exist to manipulate the rows and columns of the DSM to inform better engineering and
management decisions. These decisions can help minimize unnecessary future changes

and stem change propagation.

To illustrate this point, Figure 12 displays the Product DSM, Change DSM, and Social
DSM of Project X. The DSMs in Figure 12 immediately reveal the overall structure of

each layer in terms of clusters, as outlined in the solid boxes.

Out Component Parent/Sibling Info Provider
1.2 3 4 5 6 1234586738
e 11 P 1je: § 1
! H 2 1 o 1| 1 ! 2
23] o1 i g
84 1|11 83
A Ay]
s5 |1 o1 %4 1o 1
=6 1 i1l e 2 R S A I R S
(3] - ; £ :
o T e 1 S bl Tl B
8 1 i1l e 6 1: e
Product DSM Change DSM Social DSM

Figure 12. DSMs for Project X

For example, the product layer clearly has two subsystems, one composed of components
#1, #2, and #3, and the other composed of components #4, #5, and #6. The subsystems
are connected via an interface between components #3 and #4. An organization could
use the product DSM to improve the product architecture in anticipation of the challenges
of testing, building, integrating, and evolving a product. Forward-thinking in the design
process can reduce the amount of redesign and retooling needed in the future. For
example, an organization could create a platform for a line of products (e.g.,
automobiles). The platform would be impervious to change (i.e., a reflector), thus
minimizing changes and change propagation during future product variations and

customization [31].

54

The change layer contains three clusters that correspond to distinct families of changes.
One family was parented by change #1, another by change #2, and the last by change #3.
The clusters overlap because all three families are part of the same propagation chain, or
extended family, initiated by change #1. It is also important to note that the change
layer’s DSM is asymmetric for parent-child relationships (e.g., changes #1 and #2) and

symmetric for sibling relationships (e.g., changes #2 and #3).

Finally, the social layer in Figure 12 has two distinct clusters of communication. A
project manager might use the existence of communication clusters as a justification for
reorganizing teams or co-locating engineers who must interact frequently. These
strategies enable and improve communication that is vital to engineering change
management. Eckert et al. [14] suggests that insufficient communication is a primary

cause of redesigns throughout product development.

In all, the DSMs convey a lot of information in a relatively compact form. Project X was
only a small example of the DSM’s utility in the multilayer network model. The power
of the DSM and clustering algorithms can be even more critical in larger projects
involving hundreds or thousands of intricately connected components, changes, and

engineers.

4.3.1.2. Change Prediction Model

Keller, et al. [21] and Clarkson et al. [6] developed another single-layer tool called the
Change Prediction Model (CPM). This tool focuses specifically on the product layer
alone, although the change layer obviously provides motivation. CPM uses the DSM to
identify propagation paths between components, under the assumption that changes
propagate along the technical interfaces of a product. The tool uses combinatorics to
calculate the likelihood (L;,) that a change in component a will lead to a change in
component b, derived from all possible propagation paths between a and b. CPM then
calculates, in reverse order, the impact (I,) and risk (R, s, the product of L, and 1,) of

such an event occurring. The final product of the prediction tool is a risk matrix with

55

rectangles of width L,; and height 1, in each cell of the DSM, representing the risk of
propagation from one component to another (after all paths are considered). As such, tall
and fat rectangles imply more risk than short and skinny rectangles.

Continuing with the Project X example, Figure 13 shows a fabricated set of likelihood,
impact, and risk matrices. These matrices are analogous to the ones presented in [6].
The matrices illustrate that a change in one component could ultimately lead to a change
in a nonadjacent component, because of progressive parent-child propagation along some
path in the underlying DSM. This is clear from the fact that every off-diagonal cell of the
risk matrix contains a black rectangle, even though interfaces do not exist between every
pair of components. Figure 13 also highlights one shortcoming of the CPM tool, which is
that self-propagation, or propagation from component a back to component a through
some path, is not allowed; this explains why the diagonals are all empty. However, the

tool could probably be augmented to account for this possibility.

Instigating Instigating Instigating
1 2 3 4 5 6 1 2 3 4 5 6
1} - io0si024i012 0.18 024 1 - (030074019 069 0.18
2i042! « 090 0.04 049 049 2f037) - lo7sioosiossiors
- I e P ° o i
% 3l034090; + (011 078 039 8 3toas 04s! - 1031051 051
£ 4/024:040i010] - [0.94 (096 E 41082 079 {064 - [0.310.53
g : : foeeneend 1 SRS S S i § -
§ro.58 0.06:i0.25i035 - (002 51035004 088055 - (059
6l0.040.17 {0.650.73 0.65 - 6l0.21:0.30:047:0.23 084 -
Likelihood impact

Figure 13. Likelihood, Impact, and Risk Matrices for Project X

Another weakness, though subtle and imperceptible here, is that CPM appears to only
allow for direct propagation. That is, CPM assumes that parent-child propagation can
only occur between adjacent components. However, as the case study in Chapter 5 will
demonstrate, changes can propagate to a child component with no direct interface with
the parent component. This unexpected phenomenon might be called indirect
propagation. The terminology here can be confusing, because CPM does explicitly
account for what Clarkson et al. [6] calls “indirect dependencies,” by which changes

eventually affect non-adjacent components, but only through recursive parent-child

56

propagation between adjacent components. Thus, Clarkson et al.’s indirect dependencies
actually constitute grandparent-grandchild (great-grandparent-great-grandchild, etc.)
relationships between non-adjacent components. This clearly differs from the new notion
of indirect propagation suggested now by which non-adjacent components have parent-

child relationships.

Beside risk matrices, another significant feature of the full CPM tool is a set of
visualization techniques for viewing potential propagation paths [21]. Admittedly, the
DSM and the risk matrices do not give a clear picture of the possible propagation paths
between components in the product layer. CPM’s visualization techniques overcome this
weakness by drawing the product layer’s network more explicitly. These techniques
generally place a focal component at the center of a plot, and then position the other
components at radial distances according to some network relationship with the focal
component. Organizations can use CPM techniques, as complements to the traditional
DSM approach, to better visualize how a change to one component might affect the rest
of the product or system. One variation of the CPM technique is shown in Figure 14 for

Project X.

Figure 14. CPM Visualization for Project X

In Figure 14, the focal component is component #1. All other components are positioned
on concentric circles corresponding to their minimum paths from component #1 in the
product layer. For example, component #4 is on the second innermost circle because a
minimum of two interfaces separate components #4 and #1 in the product. The black
lines trace the actual paths taken from component #1 to all other components. The reader

should refer to [21] for more sophisticated examples of CPM visualization techniques.

57

4.3.1.3. Change Motifs

While CPM focused on the product layer, Giffin et al. [17] performed motif analysis on
the change layer. The premise here is that change networks can be decomposed into
motifs, or distinct building blocks of nodes (changes) and edges (propagation
relationships). Different classes of motifs involve different numbers of changes and
different kinds of propagation relationships. One class of motifs, called a 1-motif,
contains a single change that has an approval status of accepted, rejected, or pending;
these three 1-motifs are designated the symbols CII, CI0, or CO0, respectively.
Meanwhile, 2-motifs contain two changes that form a parent-child or sibling-sibling
relationship, where each change still has an individual approval status. The nine possible
parent-child 2-motifs are designated the symbol PXY, where P indicates that it is a
parent-child relationship, X denotes the approval status of the parent change with 0
(pending), 1 (rejected), or 2 (approved), and Y denotes the approval status of the child
change in the same way. Similarly, the six possible sibling-sibling 2-motifs are
designated the symbol SXY, where S indicates that it is a sibling-sibling relationship, X
denotes the approval status of one sibling, and Y denotes the approval status of the other.
Only six sibling-sibling 2-motifs are recognized because of the symmetry of the
relationship; that is, S10 and SO1 are considered the same motif, and likewise for SO2 and
S20, and S12 and S21. In all, the change layer’s network is essentially a collection of 1-

motifs and 2-motifs; Giffin et al. also considers the presence of 3-motifs.

Applying this concept to Project X, Table 5 shows the frequency distribution of 1-motifs,
and Table 6 shows the frequency distributions of parent-child 2-motifs and sibling-sibling

2-motifs.

Table 5. 1-Motif Distribution for Project X

1-Motif | Count
Co00 0
C10 2 (25%)
Cl11 6 (75%)

58

Table 6. 2-Motif Distributions for Project X

Parent-Child 2 Count Sibling-Sibling 2 Count
P00 0 S00 0
PO1 0 SO1 (and S10) 0
P02 0 S02 (and S20) 0
P10 0 S11 0
P11 0 S12 (and S21) 3 (60%)
P12 0 S22 2 (40%)
P20 0
P21 2 (29%)
P22 5 (71%)

Motif distributions reveal what types of propagation patterns are dominant in a project.
Furthermore, the real-world explanation behind the patterns can teach an organization
more about its engineering change management process. For example, Project X’s most
popular 1-motif was an accepted change (C11), meaning the organization accepted 75%
of all change requests. The most prevalent parent-child 2-motif was the scenario where
the parent and child changes were both accepted (P22). That is, when the organization
identified the need for propagation, it was justified 71% of the time. The other 29% of
child changes were ultimately rejected. Finally, the sibling-sibling 2-motifs shed light on
the breadth of propagation; each motif represents an instance of one parent spawning two
children. Giffin [16] supposes that the “one sibling accepted, one sibling rejected” motif
(S12 or S21) might be a case of substitution. In other words, the organization rejects one
sibling in favor of another, in order to achieve the overall objective of their mutual parent
change. For example, Project X might have rejected change #8 in favor of its sibling,
change #7. The exact explanation lies in the lower-level details of the change records. In
all, a better understanding of propagation patterns might require broad motif analysis

followed by more meticulous investigation of specific instances of propagation.

In summary, the set of single-layer tools just illustrated enables engineers and project
managers to analyze the individual layers of the multilayer network model The DSM, in
particular, is applicable to all layers, as clustering algorithms can identify subsystems in

the product layer, propagation families (and larger chains) in the change layer, and

59

groups of interactions in the social layer. Meanwhile, CPM and change motif analysis
were tailored specifically to the product layer and change layer, respectively.

Complementing these single-layer tools is an array of single-layer metrics described next.

4.3.2. Single-layer Metrics

Some potential single-layer metrics are listed in Table 7.

Table 7. Single-layer Metrics

Metric Layers Reference
Graph properties Any 5,10, 24
Node attributes Any New

These metrics have been employed in the literature on change propagation and
engineering change management, but without any formal development. This discussion

hopes to officially establish their utility for future research.

4.3.2.1. Graph Properties

Graph theory provides a number of properties generally applicable to any layer of the
multilayer network model. Graph properties are graph invariant, such that their
calculations depend only on the structure of the graph, or network, and not the specific
drawing, representation, or context of that structure [10]. Nevertheless, the following

graph properties can have interesting implications within each layer:

e A path between two nodes in a network is a sequence of nodes that can be
traversed to get from one node to the other. The shortest path between two nodes
is called a geodesic path. The length of the longest geodesic path between any

two nodes in a network is called the network’s diameter [10].

The concept of paths has significant meaning for the different layers of the

multilayer network model. As emphasized by CPM, paths in the product layer

60

reveal how a change to one component might propagate to another component. In
the social layer, paths relate to the degrees of freedom among engineers in their
communication patterns or the chain of command. Finally, paths in the change
layer reflect the amount of propagation that occurred. For instance, the geodesic
path length between an initiating change and a descendent change equals the
number of generations between them. The number of generations propagated by
an initiating change can be referred to as propagation extent. The literature
reports that propagation extent usually peaks at four generations; interestingly, the
program in Chapter 5’s case study experienced a few situations with five

generations of extent.

A network’s clustering coefficient is the fraction of triples in the network that are
also triangles (defined one way, [24]). A triple is a set of three nodes in which at
least one node is connected to both other nodes. Meanwhile, a triangle is a triple
in which all three nodes are connected to both other nodes. The clustering
coefficient is a measure of how much a network’s nodes tend to cluster together.
In the product layer, the clustering coefficient roughly reflects a product’s
modularity. Integrative products, which have relatively high clustering
coefficients, may be more susceptible to change propagation, since their

components are more interdependent [31].

Centrality is a gauge of the importance of a node in a network. One measure of a
node’s centrality is its degree, or the number of edges incident upon it. Another
centrality measure is betweenness, which is the number of times a node appears in
all the geodesic paths between all the other nodes [24]. Centrality has
implications for the behavior characteristics of nodes in the social and product
layers. For instance, in the social layer, centrality reflects the significance or role
of an individual engineer. A manager, team lead, or liaison will likely have a
higher centrality than a specialist. In the product layer, a component’s centrality

may reflect its potential propagation behavior. Namely, components with higher

61

centrality might be more involved in change propagation, as parents or children.

In fact, Chapter 5’s case study demonstrates this correlation quantitatively.

A few of these graph properties are calculated for the product and social layers of Project
X in Table 8. The centralities are the most interesting. For example, component #3 has
the highest centrality in terms of degree (6) and betweenness (12). Not surprisingly,
component #3 was also involved in the most propagation, as a parent three times and a
child once. Similarly, engineer #3 has the highest centrality and was also involved in the
most propagation as the implementer of a change spawning three child changes. Judging
by their relative centralities, component #3 and engineer #3 sit at influential positions in

their respective layers.

Table 8. Graph Properties for Project X

Layer | Diameter | Clustering Node# > Node# >
Coeff. Total Degree Betweenness
1 >4 1>0
2 >4 7>0
326 7> 12
Product 3 0.33 46 73 12
52>4 72>0
6 > 4 72>0
1 >4 1 >0
2 >4 220
Social 4 0.2 32> 6 32> 12
4 > 4 4 > 12
5>4 52>0
6 > 2 6 >0

The list of graph properties does not end here, and the author is certainly not privy to
them all. Newman [24] gives a comprehensive review of graph theory and graph
properties in the context of real-world network applications. Many of the reviewed
concepts, including cliques, network resilience, and mixing patterns, are likely also

applicable to the multilayer network model.

62

4.3.2.2. Node Attributes

Single-layer analysis could also explore the effects of different node attributes. “Node
attributes” refer to qualitative or quantitative measures of a node, other than nodal graph
properties. The attributes of a node might influence its contributions to change

propagation phenomena.

A major node attribute in the product layer is component class. Classes of components
include hardware, software, and documentation. Depending on the situation, different
component classes might exhibit different change propagation behavior. For example, in
Chapter 5’s case study, the requirements document was naturally a strong multiplier,
because this component essentially recorded changes to system requirements, which
(almost) always led to redesigns among the various technical parts of the system. By
contrast, certain software algorithms behaved as constants, because altering these
algorithms was cost and time prohibitive. Similarly, the hardware segment of the system
was mostly held constant, due to the insertion of a buffer component that shielded the
hardware from significant change. In all, the class of a component can affect its change

propagation behavior.

Likewise, the change layer’s nodes also possess attributes worth investigating. For
instance, the magnitude of a change in terms of time and resources consumed, obviously
might affect propagation behavior. The program in Chapter 5°s case study measured
change magnitude on a scale of O to 5, depending on, for example, the number of lines of
code being added or altered. Over the course of the program, change magnitude seems to
have influenced the amount of ensuing propagation, in terms of the number of children
and the total number of descendants (i.e., children, grandchildren, great-grandchildren,
etc.). Figure 15 plots the average number of both quantities as a function of change
magnitude. The curves indicate a direct relationship between change magnitude and the
number of resulting children or descendants. The averages plotted by the solid curves
only consider change requests (CRs) that had at least one child. Meanwhile, the dotted
curves consider all CRs, whether they had children or not. The values for the dotted

curve are quite small (<1), because 87% of all changes had zero children (and, hence,

63

zero descendants). Interestingly, Figure 15 also shows a spike in the curves when change
magnitude is zero (0). A closer look at the data (tapping into the product layer
momentarily) reveals that nearly half (44%) of the O-magnitude changes were
requirements changes. As mentioned previously, the requirements document behaved as
a strong multiplier, which apparently skewed the averages for 0-magnitude changes

upward (both by factors of 2, relative to the averages without them).

2 3
=g=CRs wi/Children =9=CRs w/Children
*®*All CRs o 2.5/("® All CRs
5 1.5 E
3 -
F Q
a 1 1.8
o g
> .1
<os " 4 .
P L * < 05. .-"."'
of..'u'--l'.'. 0 .. 'l?-l-. ot))
0 1 2 3 4 5 0 1 2 3 4 5
Change Magnitude Change Magnitude

Figure 15. Change Magnitude and the Amount of Propagation

Another node attribute in the change layer is the approval status of each change. The
approval status refers to whether a change request is accepted, rejected, or pending.
Giffin et al. [17] found that approval status had a relationship with change magnitude.
More specifically, half the 0-magnitude changes were ultimately rejected, but the
majority of all 1- to 5-magitude changes were accepted. Furthermore, Giffin found that
lower magnitude changes were more common, regardless of their ultimate approval
status. Thus, these example analyses demonstrate the significance of two node attributes
in the change layer: magnitude and approval status. Others attributes of interest would

be process time and total cost per change.

Finally, investigations of the social layer might consider an engineer’s organizational
role as an important node attribute. The role of an engineer (e.g., specialists, team lead,
systems engineer, or manager) will likely impact his or her responsibilities in the
engineering change management process. The case study in Chapter 5 will quantitatively

elaborate on this interesting relationship further.

64

In summary, several tools and metrics facilitate single-layer analysis of the multilayer
network model. Some of these tools and metrics are applicable to any layer, such as the
DSM and graph properties. Others are tailored to specific layers, including CPM
(product layer), change motif analysis (change layer), and node attributes (layer-specific).
Many of these single-layer methods also factor into double-layer analyses, as described

next.

4.4. Double-layer Analysis

Double-layer analysis considers two layers simultaneously by taking account of the inter-
layer edges in the multilayer network model. Past research on change propagation has
produced some extremely promising double-layer tools and metrics. Additionally,
general research on product development and project management has developed a few

others with specific implications for engineering change management.

4.4.1. Double-layer Tools

Double-layer tools generally attempt to capture or visualize the interactions between two

layers. Table 9 outlines the double-layer tools discussed next.

Table 9. Double-layer Tools

Tool Layers Reference
Domain Mapping Matrix (DMM) Any pair 8
Propagation DSM Product & Change 17
Change Propagation Frequency Matrix (CPFM) | Product & Change 17
Product/Propagation DSM Overlay Product & Change 17
Alignment Matrix Product & Social 28
Engineer Propagation DSM Social & Change New

Many of these double-layer tools, such as the DMM, Propagation DSM, and Alignment
Matrix, were introduced in Chapter 2. Others, like the CPFM and Product/Propagation

DSM overlay, have been previously utilized, but not formally developed, in the literature.

65

The last double-layer tool listed in Table 9, named the Engineer Propagation DSM, is a

tool proposed for the first time by this thesis to help explore the social layer involved in

change propagation.

4.4.1.1. Domain Mapping Matrix

The Domain Mapping Matrix (DMM) is a variation of the DSM that represents inter-
layer edges, as opposed to the intra-layer edges in the traditional DSM. The DMM is a
rectangular (but possibly square) matrix that counts the number of dependencies between
nodes of two different layers. Danilovic and Browning [8] argue that the DMM can help
an organization make better decisions in light of these inter-layer dependencies.
Returning to the Project X example, Figure 16 shows the three DMMs that map the

product, change, and social layers in pairs of two.

Change Engineer Engineer
12345678 1 2 3 4 5 6 1.2 3 4 5 6
1S 10 i @ 1 g 1 1
SR T S A A A A A N R : 2 1
28 i1 2 I s fac s ST S S
E o F i o3 !
£3 1 1 £3 24 7
I o o o 8 for | 5,
g4 1 E4 : 5 A -
S : 8. ; 6 1
5 P 5 P
.......................... - : 7 i i1
6 1.1 6 | g i i i i 1
Product-to-Change Product-to-Social Change-to-Social

Figure 16. DMM:s for Project X

The DMMs for Project X are not terribly interesting, because each inter-layer edge is
relatively one-to-one. This is most clear in the product-to-social DMM, which essentially
translates to “engineer n is in charge of component n.” Meanwhile, in the product-to-
change DMM, each individual change only affects one component. Finally, in the
change-to-social DMM, each change is implemented by only one engineer.

Consequently, these DMMs are not good candidates for meaningful clustering.

66

However, in more complex cases, the DMM might reveal more coupling among layers,
and hence, opportunities to restructure an organization’s teams or operation. For
example, Danilovic and Browning explain how a multi-project business might cluster a
project-to-organization DMM to identify ways to coordinate its projects with its
organization’s technical competencies. Likewise, the program in Chapter 5°s case study
restructured its organization based on similar logic. In the middle of system
development, the program created integrated program teams (IPTs), each of which united
the designers, testers, and integrators for a particular software segment. Before this
restructuring, these people were disadvantageously dispersed in the organization.
Interestingly, this strategic move led to an onslaught of change requests, because the
multidisciplinary IPTs fostered better communication between people dealing with the
same parts of the system. The IPTs unsurprisingly discovered a large number of
problems with initial design decisions. Thus, DMM-type strategies can have significant

implications for engineering change management.

4.4.1.2. Propagation DSM

The next double-layer tool, the Propagation DSM, is yet another augmentation of the
DSM for representing propagation relationships among product components. It’s
important not to confuse the Propagation DSM (formerly called the “Change DSM” in
[17]) with the change layer’s DSM, since the axes and underlying concepts are
completely different. A Propagation DSM is a matrix that counts instances of parent-
child propagation from one component to another over some time period in the design

process. As such, it taps into both the product layer and change layer.

The Propagation DSM is a square matrix with a row (m) and column (n) for each product
component. Element (m, n) of the Propagation DSM counts the number of times a parent
change in the instigating component n spawned a child change in the affected component
m. In the original definition by Giffin et al. [17], only accepted child changes are

counted in the Propagation DSM, regardless of the approval status of the parent change.

67

The Propagation DSM is especially useful in calculating a double-layer metric called the

Component Change Propagation Index (CPI), described as a double-layer metric soon.

Figure 17 displays the Propagation DSM for Project X. The matrix indicates, for
instance, that a change originating in component #3 caused one accepted child change

each in components #2, #4, and #5.

Instigating Component

...........

Affected Component
D N Hh W N -

Figure 17. Propagation DSM for Project X

4.4.1.3. Change Propagation Frequency Matrix

A useful derivative of the Propagation DSM is another tool called the Change
Propagation Frequency Matrix (CPFM) [17]. The CPFM divides each column (n) of the
Propagation DSM by the total number of changes that occurred in component n. As a
result, element (m, n) of the CPFM gives the frequency (0 to 1) with which a parent
change in component 7 led to a child change in component m. The CPFM for Project X
has been generated in Figure 18. The CPFM shows, for example, that half of all changes

to component #3 caused changes to components #2, #4, and #5 as well.

Instigating Component
1 2 3 4 5 6
w1
8. [
€2 1051 !
g -
§ 3 .00 i i
pegy’ | 05i |
IR
& o]
<6 1.0

Figure 18. Change Propagation Frequency Matrix for Project X

68

The CPFM might give some indication of the strength of dependencies among product
components. Mechanical systems, for example, frequently propagate changes because of
the strong interdependence of their physical parts. Indeed, Eckert et al. [14] reports that
in a helicopter design, a change to the engine almost always causes a change to the bare
fuselage, the transmission, the avionics, and the engine auxiliaries, among others. By
contrast, modular software systems may be less prone to change propagation. For
example, the software-dominated system in Chapter 5’s case study usually exhibited a

low propagation frequency of less than 10% between all subsystems [17].

The frequency of change propagation might also increase over time. If the CPFM was
tracked over the course of product development, an organization might notice the effects
of diminishing tolerance margins. Eckert et al. argues that each product component has
some margin for change. However, once that that margin is depleted, the component is
subject to propagating changes elsewhere. As such, a time-stamped CPFM would reflect

this margin depletion through time, if other factors were held constant.

4.4.1.4. Product/Propagation DSM Overlay

Another useful perspective comes from overlaying the Propagation DSM with the
Product DSM (i.e., the DSM of the product layer). Such an overlay reveals where
propagation was predicted versus where it actually occurred. The reasoning here is that
the Product DSM captures all the connections among the components of a product.
Consequently, the Product DSM predicts where parent-child propagation could occur,
assuming it can only occur between adjacent components. Meanwhile, the Propagation
DSM shows where parent-child propagation actually occurred. Thus, the overlay of these
matrices compares theory with practice. Giffin et al. performed an equivalent overlay in

[17], but did not formalize the tool in any detail.
As an example, Figure 19 performs the overlay for Project X. Although the Product

DSM, strictly speaking, does not denote self-connections (i.e., ones on the diagonal), the

overlay here assumes self-propagation is predictable.

69

Instigating Component
1

PP | Predicted & Propagated

"""" : op (BNIEA Predicted & Not Propagated

. Not Predicted & Propagated

. Not Predicted & Not Propagated

Affected Component
(-] A _l'd L

Figure 19. Product/Propagation DSM Overlay for Project X

The overlay exposes four types of behavior, each with several possible explanations:

Predicted and Propagated (PP) means that the Product DSM predicted
propagation by virtue of the components’ connectivity, and that propagation did
actually occur as predicted. This behavior, called direct propagation, is relatively
tolerable, because propagation, while still non-ideal, occurred as expected.

Project X experienced this situation in 16 out of 36 pairs of components.

Predicted and Not Propagated (PN) means that the Product DSM predicted
propagation, but that propagation did not occur. This behavior is advantageous,
because somehow direct propagation was avoided despite component adjacencies.

Project X enjoyed this situation in four out of 36 component pairs.

This thesis suggests that explanations for the avoidance of direct propagation
might come from all three layers. Some reasoning could lie in the product layer.
For instance, the product might have been designed cleverly in the areas that did
not propagate. Eckert et al. [14] would argue that these areas simply had ample
tolerance margins relative to the amount of change they experienced.
Furthermore, the change layer may reveal that propagation did not occur because
the changes were low magnitude and therefore less likely to propagate. Most
interestingly, the social layer may offer some explanation in terms of an
engineer’s competence and communication with others. Namely, maybe the

engineers working on these non-propagating changes were uniquely talented or

70

highly aware of neighboring component dependencies. As a result, they were
able to find clever redesign solutions that avoided propagation. Similarly,
perhaps good communication between interdependent engineers yielded solutions

that absorbed these changes rather than multiplying them.

e Not Predicted and Propagated (NP) means that the product DSM did not predict
propagation, yet propagation still occurred. This behavior, called indirect
propagation, contradicts the conventional belief that parent-child propagation can
only occur between adjacent components. Project X experienced indirect
propagation once between component #3 and component #5. One explanation for
this behavior is that the Product DSM is incomplete (i.e., missing technical
interfaces), such that the indirect propagation is actually just direct propagation in
disguise. The program in Chapter 5’s case study experienced an alarming amount
of indirect propagation, despite having an accurate DSM. The case study explores

this phenomenon further and finds some context-based explanations.

e Not Predicted and Not Propagated (NN) means that the product DSM did not
predict propagation and propagation did not occur. This behavior is expected
and the least interesting. Project X experienced this situation in 15 out of 36 pairs

of components.

Given any of these behavior types (PP, PN, NP, and NN), an organization can benefit
from investigating their causes in more depth. When propagation did occur, whether
predicted or not (i.e., PP or NP), the organization might find ways to improve its
operation to avoid propagation in the future. When propagation did not occur (i.e., PN or
NN), the organization should evaluate the reasons for its success, and formally adopt or
encourage any good practices. Overall, the Product/Propagation DSM overlay can
facilitate a useful self-assessment exercise to inform better engineering change
management. The concepts of direct and indirect propagation will be illustrated further

by the newly proposed double-metric, Propagation Directness.

71

4.4.1.5. Alignment Matrix

The Alignment Matrix is a double-layer tool developed by Sosa et al. [28] that looks for
patterns between the product layer and social layer. Inconsistencies between product
interfaces and communication links have significant implications for engineering change

management.

The Alignment Matrix performs an overlay of the Product DSM and the Social DSM.
The premise is that if components a and b are connected in the Product DSM, then
communication should exist between engineers a and b in the Social DSM. The
Alignment Matrix discovers discrepancies between the two DSMs for further analysis.
One weakness of the Alignment Matrix is that it is only applicable when there is a one-to-
one mapping between the product and the organization. If a one-to-one mapping does
not exist, as may be the case for large and complex development projects [27], use of the
Alignment Matrix is not as straightforward. However, Eppinger [12] and Morelli et al.
[22] have found successful workarounds in similar situations. The Project X example
was fabricated to have a one-to-one mapping (i.e., six engineers neatly assigned to six

components), and its Alignment Matrix appears in Figure 20.

Component/Engineer
1 2 3 4 5 6

i 1

o |

g9

57 [] s

= :

w3 : p—

L - J - | Unidentified Interface
S 4 : : ! 1=

E_ 5 » . Unattended Interface
.

Figure 20. Alignment Matrix for Project X

In general, the Alignment Matrix exposes two types of mismatches, unidentified
interfaces and unattended interfaces, between the Product and Social DSMs [28]. An
unidentified interface is a communication link lacking a corresponding product interface.

Unidentified interfaces are usually welcome surprises. That is, the fact that engineers

72

communicated unexpectedly might expose an unforeseen, but critical, product interface.

Project X had no unidentified interfaces.

By contrast, unattended interfaces can pose problems for engineering change
management and product development efforts. An unattended interface is a technical
interface in the product layer which is missing a corresponding communication link in the
organization layer. Project X had one unattended interface between components #4 and
#6, in both directions. Unattended interfaces can be detrimental when critical product
interfaces go unnoticed from the lack of communication. The missing communication
can lead to poor initial designs that need changing later. Thus, product and social layer
inconsistencies can have implications for engineering change management. In fact, Sosa
et al. gives the example of a Pratt & Whitney project in which an unattended interface
resulted in the company having to disassemble, redesign, and rebuild several test engines.
The program in Chapter 5’s case study likely had a similar experience when they
established integrated program teams (IPTs, referring back to the DMM discussion on
page 66). It’s reasonable to suppose that the IPTs discovered previously unattended

interfaces that now necessitated a large number of design changes.

Overall, an organization can use the Alignment Matrix to check the consistency between
its product and communication structure, and improve its operation by addressing the
mismatches. The benefit for engineering change management is that future changes are

prevented through collaborative design decisions.

4.4.1.6. Engineer Propagation DSM

The last double-layer tool, the Engineer Propagation DSM, is an invention of this thesis.
The Engineer Propagation DSM is an extension of the original Propagation DSM that
now taps into the change layer and the social layer, rather than the change layer and

product layer.

73

The Engineer Propagation DSM is a square matrix with a row (m) and column (n) for
each engineer. Element (m, n) of the Engineer Propagation DSM counts the number of
times a parent change implemented by the instigating engineer n spawned a child change
implemented by the affected engineer m. Only accepted child changes are counted in the

Engineer Propagation DSM, just as in the Propagation DSM.

Figure 21 shows the Engineer Propagation DSM for Project X. The matrix indicates, for
instance, that engineer #3 implemented a parent change that caused three child changes

implemented by engineers #2, #4, and #5.

Instigating Engineer
1 2 3 4 5 6

Figure 21. Engineer Propagation DSM for Project X

The greatest use of the Engineer Propagation DSM is for calculating the Engineering
Change Propagation Index (Engineer-CPI), which is a new double-layer metric

introduced shortly.

4.4.2. Double-layer Metrics

A number of promising double-layer metrics have been developed and suggested in the
literature. All of them are specific to research on change propagation and engineering
change management. Table 10 lists these metrics along with the two layers they each

draw upon.

74

Table 10. Double-layer Metrics

Metric Layers Reference

Propagation Directness Product & Change New

Component Change Propagation Index Product & Change 17,31

(Component-CPI)
Engineer Change Propagation Index

Social & Change New
(Engineer-CPI)
Change Acceptance/Reflection Index Product & Change 17
(CALCRI)
Proposal Acceptance Rate (PAR) Social & Change 17

Among these double-layer metrics are two new ones introduced by this thesis. The first
is Propagation Directness, which reflects whether propagation is direct or indirect. The
second is the Engineer-CPI, used to characterize the propagation effects of an engineer’s

work.

4.4.2.1. Propagation Directness

Propagation Directness is a double-layer metric proposed for the first time by this thesis.
Propagation Directness, PD, is defined as the number of product interfaces spanned by an

instance of parent-child propagation.

PD can be calculated using the Propagation DSM and geodesic paths (a graph property)
in the Product DSM. Specifically, if the Propagation DSM indicates that a change
propagated from component n to component m, then the PD of that propagation is equal

to the geodesic (shortest) path from component n to m in the Product DSM.

Propagation Directness reflects whether propagation is direct or indirect. Direct
propagation implies PD < 1, because direct propagation occurs when a child change
arises in a component that is adjacent (PD = 1) or identical (PD = 0) to the component
affected by the parent change. By contrast, indirect propagation has PD > 1, because a
child change arises in a component nonadjacent to the component affected by the parent

change. As mentioned earlier (page 69), direct and indirect propagation correspond with

75

the PP and NP behavior types, respectively, that may be exposed when overlaying the
Product DSM with the Propagation DSM. The relationship between these concepts is

summarized in Table 11.

Table 11. Propagation Behavior and Propagation Directness

Behavior Type | Alternative Name | Propagation Directness (PD)

PP Direct Propagation <1

NP Indirect Propagation >1

Returning to the Project X application, Table 12 calculates the Propagation Directness of
each of the five occurrences of parent-child propagation in which the child change was
accepted. Indirect propagation only occurred once from component #3 to component #5;
these two components are separated by two interfaces in the product (PD = 2). All other

parent-child propagation in Project X was direct (PD = 1).

Table 12. Propagation Directness for Project X

Parent Child Parent Child Propagation
Change Change | Component | Component | Directness (PD)
1 1 3 2 1
1 2 3 1
1 3 3 5 2
2 4 2 1 1
3 7 5 6 1

Propagation directness has obvious implications for the successful prediction of change
propagation. Conventional wisdom says that Propagation Directness should always be
PD < 1; in other words, all propagation should be direct propagation. Accordingly, the
CPM suite [6] notably only allows for direct propagation, but emphasizes that recursive
direct propagation can form propagation chains spanning several product interfaces.
However, the program in Chapter 5’s case study experienced a considerable amount of
indirect propagation, in which Propagation Directness was usually PD = 2, and

occasionally PD = 3.

76

4.4.2.2. Component Change Propagation Index

The Component Change Propagation Index (Component-CPI, formerly just “CPI”)
quantifies a product component’s change propagation behavior. As defined by Suh and
de Weck [31] and refined by Giffin et al. [17], the index is a number between -1 and +1,

calculated as follows:

Equation 1 cpi(j) = LD =Cul)
Cou (N+C,(J)
In Equation 1, the Component-CPI equation, Cix(j) and C,.(j) are the numbers of changes
that propagated in and out of component j, respectively. More simply, Cin(j) and Cou(7)
are the in-degree and out-degree, respectively, of the Propagation DSM, a double-layer

tool described earlier.

The Component-CPI’s quantitative spectrum corresponds helpfully with the qualitative
behavior spectrum proposed by Eckert et al. [14]. That is, a positive CPI indicates that a
component is a multiplier, because it caused more changes to other components than it
internalized (C,. > Cix). Meanwhile, a negative CPI describes an absorber because the
component internalized more changes than it caused (Ci, > Cou). At the extremes, a CPI
of +1 indicates a perfect multiplier, and CPI of -1 indicates a perfect absorber. A CPI of
zero represents a carrier, which causes and internalizes an equal number of changes (Ci, =
Cou). Finally, if a component did not cause or internalize any changes (Ci, = Cour = 0), it

is a constant, and its CPI is undefined.

Suh and de Weck [31] use the Component-CPI as a basis for embedding flexibility in a
design. For instance, they recommend that multipliers (and sometimes carriers) are prime
targets for flexibility in anticipation of potentially costly propagation behavior by these
components. Flexibility will be addressed further as a prevention strategy in Chapter 6’s

discussion of the management policy implications of change propagation research.

77

To illustrate the Component-CPI spectrum, Table 13 classifies each component in Project
X according to its CPI. The calculations only consider child changes that were ultimately
accepted. The critical components for Project X seem to be component #3 (the only
multiplier) and its neighbors, components #2 and #4 (both carriers). By contrast,
components #5 and #6 were perfect absorbers, and component #1 was a constant and

didn’t contribute to any propagation.

Table 13. Component-CPIs for Project X

Component # | Coyt | Cin | CPI Behavior
1 0 0 - Constant
2 1 1 0 Carrier
3 3 1 0.5 Multiplier
4 1 1 0 Carrier
5 0 1 -1 Absorber
6 0 1 -1 Absorber

4.4.2.3. Engineer Change Propagation Index

To begin quantifying the social layer’s contribution to change propagation, this thesis
now proposes a new double-layer metric called the Engineer Change Propagation Index
(Engineer-CPI). The Engineer-CPI extends the Component-CPI concept to the
performance of the engineers who implement changes. The Engineer-CPI is a number

between -1 and +1, calculated analogously to the Component-CPI:

E,.()-E,()

Equation 2 CPI(j)= - -
Eom (]) + Ein (J)

In Equation 2, E,(j) is the number of changes that propagated from changes
implemented by engineer j. E;,(j) is the number of changes implemented by engineer j
that propagated from changes implemented by other engineers. More simply, E;,(j) and
Eou(j) are the in-degree and out-degree, respectively, of the Engineer Propagation DSM,

the new double-layer tool introduced earlier. The Engineer-CPI quantifies an engineer’s

78

behavior with respect to the propagation effects of his (or her) implementation of

changes.

The Engineer-CPI spectrum can be interpreted similarly to the Component-CPI spectrum;
namely, positive, negative, zero, and undefined Engineer-CPIs correspond with
multipliers, absorbers, carriers, and constants, respectively. This thesis argues further
that the Engineer-CPI spectrum should also map onto the spectrum of organizational
roles. That is, an engineer’s CPI should theoretically correspond with his or her job
description. Managers and systems engineers should be multipliers (Ey.: > Ein) because
they initiate high-level changes that potentially require many lower-level changes to be
completed. For example, a manager might coordinate with customers and consequently
change the requirements for a product to satisfy. Similarly, a systems engineer might
recognize a high-level problem (e.g., given unsatisfactory test results) and consequently
initiate corrective action that propagates through the product. By contrast, specialists
should behave like absorbers (Ei, > E,,;), because they perform changes in detailed areas
of the product where there is little chance of further propagation. Specialists essentially
implement changes at the end of propagation chains. Meanwhile, team leaders might
correspond with carriers (E;, = E,y), since they make some high-level changes but are
also involved with low-level changes in the product. Finally, constants (E;, = Eo,: = 0) do
not seem to have an obvious corresponding organizational role. If an engineer is a
constant, that means he or she only implements isolated changes, which have no parent
change and no children changes. An interpretation of this behavior might be a good topic

for future research.

To illustrate the Engineer-CPI spectrum, Table 14 classifies each engineer in Project X,
according to its Engineer-CPI. The calculations only consider child changes that were
ultimately accepted. The engineers of Project X exhibit the full spectrum of

performance.

79

Table 14. Engineer-CPlIs for Project X

Engineer # | Eoy¢ | Em | CPI | Performance Organizational Role
1 0 0 - Constant ?
2 1 1 0 Absorber Team Leader
3 3 1 0.5 Multiplier Manager/Systems Engineer
4 1 1 0 Carrier Team Leader
5 0 1 -1 Absorber Specialist
6 0 1 -1 Absorber Specialist

The Engineer-CP1 is a reflection of several factors contributing to the propagation effects
of an engineer’s implementation of changes. As described above, one of those factors
may be an engineer’s organizational role. Other performance factors could include an
engineer’s technical competence and the context of his assignments. Chapter 5’s case

study explores these compounding factors by analyzing real-world data.

4.4.2.4. Change Acceptance and Reflection Index

As proposed by Giffin et al. [17], the Change Acceptance Index (CAl) is the fraction of
proposed changes ultimately accepted by a product component. The CAI of component j

is calculated as follows:

Total # of Changes Accepted by Component j

Equation 3 CAI(j)= — -
Total # of Changes Originally Proposed for Component j

The related Change Reflection Index (CRI) of component j is calculated similarly:

Total # of Changes Rejected by Component j

Equation 4 CRI(j) = — .
Total # of Changes Originally Proposed for Component j

At any given time during product development, the CAI and CRI of a component may

not sum to one, because of pending change requests.

The CAI (and CRI) measures a component’s openness (and stubbornness) to

accommodate change. For example, Table 15 lists the CAls and CRIs of the components

80

in Project X. Components #2, #3, #4, and #5 are perfect acceptors of change with CAls =
1, while component #1 is a perfect change reflector with CRI = 1. Meanwhile,

component #6 accepts and reflects changes equally (CAI = CRI=0.5).

Table 15. CAls and CRIs for Project X

Component # | # Accepted | # Rejected | CAI | CRI
1 0 1 0 1
2 1 0 1 0
3 2 0 1 0
4 1 0 1 0
5 1 0 1 0
6 1 1 0.5 0.5

4.4.2.5. Proposal Acceptance Rate

The Engineer-CPI measures the propagation effects of an engineer’s performance as an
implementer of change. Another double-layer metric, called the Proposal Acceptance
Rate (PAR), measures an engineer’s performance as a proposer of change. Such a metric

was suggested by Giffin [16], but not developed in detail.

When an engineer proposes a change request, the request is ultimately accepted or
rejected. The PAR is essentially an engineer’s rate of acceptance as a proposer of

changes. The PAR of engineer j can be intuitively calculated as follows:

. . L
Equation 5 PAR(j) = Total # of Changes Proposed by Engineer j and Implemented

Total # of Changes Proposed by Engineer j

An engineer’s PAR can reflect his or her skill, attitude, and expertise. A high PAR might
mean the engineer is innovative, while a low PAR might imply he or she tends to have
bad ideas. However, other rationalizations for the PAR of a particular engineer could
exist. For instance, a truly innovative engineer could still have a low PAR if the
organization or product is sluggish or stubborn to make changes. Conversely, a less

creative engineer could still have a high PAR if the organization or product is especially

81

receptive of change. The case study in Chapter 5 will explore these competing

explanations in a real-world scenario.

4.5. Triple-layer Analysis

Triple-layer analysis is the most complex since it considers all three layers of the

multilayer network model simultaneously.

4.5.1. Triple-layer Tools

To the author’s knowledge, research on engineering change management, product
development, and project management has not produced many triple-layer tools or
metrics. Bartolomei [1] appears to be an exception in his attempt to analyze three or
more layers simultaneously using the ESM. Additionally, this thesis proposes another
triple-layer tool that checks the consistency between the Product DSM, Propagation
DSM, and Social DSM. For completeness, these two tools are listed in Table 16.

Table 16. Triple-layer Tools

Tool Layers | Reference
Engineer Systems Matrix (ESM) All 1
Product/Propagation/Social DSM Overlay All New

4.5.1.1. Engineer Systems Matrix

As introduced in Chapter 2, Bartolomei’s [1] Engineering Systems Matrix (ESM) is a
DSM augmented to include nodes from multiple domains and edges within and across
those domains. The multilayer network model has three layers, or domains, for the ESM
to encompass. For example, the ESM for Project X is shown in Figure 22, where the

locations of the product, change, and social layers have been bracketed.

82

Product Chaﬂge Social

R ~ R—

1234561234567812345%
e | | ® e

~

o

Proguct

-

Change
™ A
mmauu*uﬂo;-‘h?namm‘buua

Social

-

Figure 22. ESM for Project X

An obvious but important feature to note is that the ESM can be decomposed into DSMs
on the diagonal and DMMs off the diagonal. Figure 23 illustrates this decomposition for

Project X.
Product Cha*nge Sogial

- I ~ ~

™~

bbb Product-to- *
- Product DSM “= Change = :
N S S e R DMM =

Change-to- Change-to-

Product “|*F Change DSM * Social

Proguct

-

~

Change
.
DMB LN ADNDUN LGN ID U B WBN

T ! pmm

~

Social

DMM -

i Soclal-to- 7 st AT S S
Change Social DSM -

-

Figure 23. Decomposed ESM for Project X

83

The ESM representation highlights that the multilayer network essentially forms a single
grand network with multiple types of nodes and edges (similar to a multipartite graph).
Accordingly, Figure 24 draws the grand network using a spring embedding algorithm that
treats all nodes and edge equally, regardless of type. All the edges are drawn without
arrows for simplicity, although the change layer’s intra-layer edges are, in fact,
unidirectional. The spring embedding algorithm [15] works by imagining each directed
edge is a spring pushing or pulling on its two incident nodes. The algorithm then
positions the nodes such that the network’s imaginary potential spring energy is

minimized.

Legend

A Engineer
Accepted CR
Rejected CR

D Component

Figure 24. Spring Embedded Drawing of ESM for Project X

The network drawing gives some visual confirmation of the importance of individual
nodes in the grand network. Relative to the ESM representation, the drawing makes it is
easier to appreciate the centrality of each node in the grand network. As explained
previously, centrality is a measure of the influence or importance of a node in terms of its
degree or betweenness. Centrality and other graph properties of the grand network will
be calculated and discussed as triple-layer metrics shortly. For now, it is qualitatively
evident that changes #1 and #3 and component #3 are at least some of the most influential

nodes in the grand network. This observation will prove to be quantitatively true as well.

84

Bartolomei employs similar reasoning to rank the stakeholders of a project by viewing
the ESM as a single grand network. Overall, the ESM can remind analysts that all the
components, changes, and engineers in the multilayer network are all part of one broader

system of interactions.

4.5.1.2. Product/Propagation/Social DSM Overlay

This thesis now introduces a novel tool that checks the consistency among all three layers
of the multilayer network model. The tool overlays three DSMs: the Product DSM, the
Propagation DSM, and the Social DSM. Earlier it was shown that an organization could
overlay the first two of these DSMs to compare where change propagation was predicted
against where it actually occurred. That overlay was a double-layer tool. The triple-layer
tool proposed here brings in the Social DSM for more clarification. The overlay of all
three DSMs should reveal where propagation was predicted, where propagation actually

occurred, and where communication existed between the engineers in charge.

The overlay assumes that a one-to-one mapping exist between the product layer, change
layer, and social layer. That is, engineer n is in charge of component n, and makes all the
changes affecting component n. Project X was fabricated to meet this criterion.
However, other engineering endeavors could very well have engineers working on
changes outside of their immediate jurisdiction. Such a situation would complicate the
applicability of this tool. In these situations, a few workarounds might be possible. One
workaround may be to consider a higher level of abstraction (e.g., subsystems instead of
components, subsystem changes instead of component changes, and teams instead of
engineers) in which the mapping between the Product, Propagation, and Social DSM
might be more straightforward. For example, if engineers m and n each sporadically
work on both components m and n, a one-to-one mapping between engineers and
components does not exist. However, engineers m and n and components m and n could
be viewed as one subsystem and one team, respectively, such that a one-to-one-mapping
would exist between subsystem mn and team mn. Another workaround is to only

consider one propagation chain, or set of change descendants, at a time; that way, it is

85

more likely that the people (or teams) involved with the changes are each focusing on
only one part of the product. Hence, the one-to-one mapping would be restored for this
smaller set of changes, even if certain people were temporarily working outside of their

primary jurisdictions.

To illustrate the theoretical power of the overlay, Figure 25 shows its application to

Project X.

PPC| Predicted & Propagated w/ Communication

Instigating Component

PNC | Predicted & Not Propagated w/ Communication

Not Predicted & Propagated w/ Communication

| Not Predicted & Not Propagated w/ Communication

- Predicted & Propagated w/ No Communication

Affected Component

- Predicted & Not Propagated w/ No Communication

- Not Predicted & Propagated w/ No Communication

- Not Predicted & Not Propagated w/ No Communication

Figure 25. Product/Propagation/Social DSM Overlay for Project X

The overlay exposes eight types of behavior. Each behavior is distinguished by whether
propagation was predicted, whether it occurred, and whether communication existed
between the engineers involved. It’s excessive to list the eight combinations again here,
as Figure 25 does this already. The most remarkable element of each behavior is whether
or not communication existed (from the Social DSM). If communication did exist and
propagation was avoided, then good communication might have contributed to this
success. However, if communication existed and propagation still occurred, then the
communication might have been ineffective. An organization may want to scrutinize
whether better communication could have prevented the propagation, or if the
propagation was unavoidable even with mutual consultation. Moreover, the overlay
reveals whether propagation was predictable in the first place (from the Product DSM).

If propagation was predictable, communication should definitely have occurred to

86

address possible propagation effects. If propagation was not predictable, an organization
may want to initiate a new communication link to attend to the unrealized interface.
Many of these concepts are reminiscent of the Product/Propagation DSM overlay and

Sosa et al.’s Alignment Matrix [28].

4.5.2. Triple-layer Metrics

As listed in Table 17, the only triple-layer metrics to be discussed here are graph

properties.

Table 17. Triple-layer Metrics

Metric Layers | Reference
Graph Properties All 1,5, 10,24

The development of more triple-layer network metrics (double-, triple-, and more) is a

great area for future research.

4.5.2.1. Graph Properties

Just as graph properties were applicable to any single-layer, they can also help describe
the grand network formed by all three layers. In the context of the grand network, all
nodes and edges are treated equally. Consequently, the graph properties of individual
nodes take on new meaning in the grand network relative to their properties in their
respective single-layers. For example, Bartolomei [1] compared the centrality of
stakeholders in the social domain with their centralities in the ESM. He found that some
stakeholders who were highly central in the social domain maintained their influence in
the ESM context. Meanwhile, one stakeholder actually ascending in the centrality
rankings, suggesting that his significance within the grand scheme is greater than in the

smaller social domain.

A similar test can be conducted for the grand network of Project X. Table 18 compares

the degree ranking of each node in its respective single-layer with its degree ranking in

87

the grand network, as pictured in Figure 24. The ranking of engineers essentially
remained the same between the social layer and the grand network. Engineer #6
increased his relative degree, primarily because he implemented two changes and most
other engineers only implemented one. Similarly, in the ranking of product components,
component #6 (underlined in Table 18) increased its ranking considerably because it was

affected by two changes, while most other components were only affected by one.

Table 18. Component and Engineer Degree Ranking Comparison for Project X

Degree in Degree in
Layer | Rank | Node# | Single Layer | Rank | Node# Grand
Layer Network
1 3 6 1 3 12
2 4 6 2 4 10
Product i é j Product i % 180
5 5 4 5 2 8
6 6 4 6 5 8
1 3 6 1 3 12
2 1 4 2 1 8
. 3 2 4 . 3 2 8
Social 4 4 4 Social 4 4 3
5 5 4 5 5 8
6 6 2 6 6 8

Overall, graph properties of the grand network, such as centrality, can provide useful
insights into the relative influence of items in the grand scheme of engineering change
management. For instance, an organization could look for components of high centrality
in the grand network to find critical spots in the product. A highly central component is
likely the subject of extensive change. The organization may consider redesigning or
buffering that component so that it does not consume so much time, money, and
resources in the future. Similarly, an engineer of high centrality in the grand network is
likely a systems engineer, high performer, or go-to man in the organization. By contrast,
an engineer of low centrality might be a specialist, an underperformer, or someone who is
underutilized. In summary, graph properties can be useful measures in the multilayer
network model. The discussion here has focused on centrality, but other graph properties

may be equally or more insightful.

88

4.6. Summary of Repository

This chapter developed a baseline repository of tools and metrics for investigating the
multilayer network model of change propagation. The repository enables single-layer,
double-layer, and triple-layer analyses. Furthermore, examples from the hypothetical
Project X application, previous literature, and observations from Chapter 5°s case study

illustrated the potential use of each tool and metric.

Table 19 summarizes the repository by clearly categorizing each tool and metric
according to the specific layer or layers it targets. The displayed matrix has a row and
column for each layer of the model. As such, the items located along the diagonal are
single-layer tools and metrics for the corresponding individual layer. The items in the
upper-right triangle are double-layer tools and metrics for the corresponding pairs of
layers. Finally, the items in the lower left triangle are triple-layer tools and metrics for all
three layers at once. The tools and metrics proposed for the first time by this thesis are

marked with a “*.”

Table 20 complements Table 19 by specifying the data required to exercise any of these
tools and metrics in practice. The displayed matrix has a row for each tool or metric and
a column for each type of intra-layer and inter-layer edge. Check marks (v') denote
which edge data would be required to use each tool and metric. For example, to construct
a DSM for a given layer, an organization would need to know the intra-ledges for that
layer. To construct a Propagation DSM, an organization would need to know the intra-
ledges of the change layer (i.e., propagation relationships) and the product-to-change
inter-layer edges (i.e., which changes affect which components). Intuitively, the reader
should note that all the single-layer tools and metrics only require intra-layer edges,
because only one layer is targeted at a time. By contrast, the double-layer and triple-layer
tools all tap into the inter-layer edges as well, because they focus on multiple layers
simultaneously. Finally, the reader should also note that node attributes (page 63) are
purposely missing from Table 20 because they do not require data on edges; rather, they

require data on the nodes themselves. Overall, Table 20 shows what specific data should

89

be captured by an organization’s configuration management system, if the organization
(or a researcher) wishes to utilize the multilayer network model and associated tools and

metrics.

As highlighted by Table 20, an inherent aspect of the multilayer network model is data
collection and mining. Different amounts and types of data are available at different
stages of product development. As such, the multilayer network model and the
repository of tools and metrics can be employed in three settings: before, during, and
after product development. Before product development, complete data on the nodes and
edges will not exist, because all the components, change requests, engineers, and their
relationships will not have manifested themselves yet. In kind, the utility of the
multilayer network is limited to prediction and preparatory work. For example, an
organization could use a preliminary Product DSM to analyze potential propagation
paths. Likewise, an organization may establish teams and communication links (i.e., a
Social DSM) in anticipation of the needs of product development and engineering change
management. Later, during product development, data can be collected through
configuration management, which allows the construction of a multilayer network model
with whatever fidelity and completeness that the organization wishes. Analysis of the
model during product development can be used to guide change impact analysis (e.g.,
with CPM), organization structuring (e.g., with the DMM and Alignment Matrix), design
strategy (e.g., with the DSM, Propagation DSM, Component-CPI, CAl, etc.) and human
resource management (e.g., with the Engineer-CPl). Finally, after product development,
analysis of the multilayer network turns into a lessons-learned effort. At this stage, an
organization can use all the data collected over the course of product development to
assess its performance in retrospect. Moreover, the data then becomes useful for
academic research to further characterize industry’s experience with change propagation.
Further assessment of the practical applications of the multilayer network model can be
found in Chapter 6’s discussion of the policy implications for engineering change

management.

90

The Project X application carried throughout this chapter was hypothetical, so the power
of the multilayer network model (and tools and metrics) has only been established in
theory. The next chapter will demonstrate its practical utility through a case study of a
real-world engineering project, specifically the design and construction of a large scale

sensor system.

91

Table 19. Categorized Repository of Multilayer Network Tools and Metrics

Product Change Social
Tools: Tools: Tools:
e DSM [4, 11, 30] e DMM [8] e DMM (8]
e CPM [6, 21] e Propagation DSM [17] e Alignment Matrix [28]
e CPFM [17] - |

Product | Metrics:
e Graph properties [5, 10, 24] | Metrics:

e Node attributes, e.g., e Component-CPI [17, 31]
o Component class [17] e CAI/CRI[17] :
¢ Propagation Directness™*

Tools: Tools: | oy
e DSM [30] e DMM [8] e
e Change motifs [17] ' Engineer Propagation DSM*

Metrics: Metrics: _

e Graph properties [5, 10, 24] | e Engineer-CPI*

e Node attributes, e.g., e Proposal Acceptance Rate [16]
o Approval status [17] S o
o Magnitude [17]

Change

Tools:
e DSM [30]

etrics:
Graph properties [5, 10, 24]
e Node attributes, e.g.,

o Organizational role*

Social

* Proposed first by this thesis

Single-Layer Double-Layer

Table 20. Data Requirements for Multilayer Network Tools and Metrics

Intra-Layer Edges

Inter-Layer Edges

Product

Change

Social

Product-
to-Change

Product-
to-Social

Change-
to-Social

Single-
Layer

Tools

DSM*

v

v

v

CPM

v

Change Motif

v

Metrics

Graph properties*

(+ approval status)
v

Double-
Layer

Tools

DMM*

Propagation DSM

CPFM :

Product/Propagation DSM
Overlay

SN

ANRNRNEN

Alignment Matrix

Engineer Propagation
DSM

Metrics

Propagation Directness

Component-CPI

CAI/CRI

NSNS

Engineer-CPI

NN N

* These tools only require one of the checked (v') edge categories in their respective rows, per implementation. All other
tools/metrics require all the checked edge categories in their respective rows, per implementation.

93

This page has been intentionally left blank.

5. Case Study

This chapter conducts a case study of a real-world engineering project to demonstrate the
practical utility of Chapter 3’s multilayer network model of change propagation. The
case study investigates the development of a large scale sensor system through a rich
dataset extracted from the host program’s configuration management records.
Furthermore, a lead systems engineer from the program was interviewed to help interpret

the results of the study.

To demonstrate the multilayer network model’s utility, the case study addresses two
topics of significant interest to academia and industry. Both topics are investigated using
the tools and metrics from Chapter 4’s baseline repository. The first and most novel topic
revolves around the social layer’s effect on change propagation. The Employee-CPI and
Proposal Acceptance Rate (PAR) are used to evaluate an engineer’s performance as an
implementer and proposer of change, respectively. The second topic involves the
general characterization of change propagation. Of particular interest here are the issues
of indirect propagation, propagation extent, and component centrality. Overall, the
results of the case study suggest that the multilayer network model is a valuable paradigm

for future applications in academia and industry.

5.1. The Case

The case under investigation here is that of a large technical program whose purpose was
to develop a large scale sensor system. The system consisted of globally distributed
hardware and software segments. The hardware segments were largely reused from a
pre-existing system, but the software segments essentially required full development.
The entire endeavor was very complex and involved multiple stakeholders and

distributed users and operators.

The system can be decomposed into 46 areas, or coherent segments of software,

hardware, and different levels of associated documentation. These “areas” are roughly

95

analogous to subsystems. A network drawing of the system, borrowed from [16] and
[17], appears in Figure 26. Figure 27 draws the same network using a spring embedding

algorithm, which gives a slightly clearer representation.

3 | —| 13 I 35] 20 7 42
e
y

% 27 % 24 19 2

2 %) 2% 25 17

31 12 3% 45 23 P
4 34 | 40 8 |
1 2 3 37 4

4 5 3 7 20 43

8) 10 Iy

14 15 18 18

Figure 26. System Network from Case Study
(from [16])

7

Figure 27. Spring Embedded Drawing of System Network from Case Study

96

Because the system here was dominated by software areas, most of the interfaces shown
in Figure 26 and Figure 27 involve information and data transfer. Unfortunately, the
identity of each area and interface is confidential. However, the mere location of the
interfaces is far more important for research on change propagation than their detailed
nature. Some additional facts about the system were provided through interviews with
one of the program’s lead systems engineers. Moreover, the author received a rich
dataset that facilitated extensive quantitative analysis of the program’s experiences with

change propagation.

5.2. The Data

The data for this case study was extracted from the program‘s configuration management
records. Details about the data extraction methodology can be found in Giffin et al.’s
previous analysis of the same program [16, 17]. The full extracted dataset contains
detailed information about 41,551 change requests generated by the program over an
eight year time period. Each change request (CR) has a separate record, as shown in

Table 21.

Table 21. Sample Change Request Record

(from [17])
ID Number 12345
Date Created & Last Updated MAR-YS5, JAN-Y6
Area Affected 19
Change Magnitude 3
Parent ID 8648
Children ID(s) 15678, 16789
Sibling ID(s) 9728
Submitter eng231
Assignee(s) eng008 eng231 eng018
Associated Individuals admin001 eng271
Stage Originated, Defect Reason | [blank], [blank]
Severity [blank]
Completed? 1

97

The meaning of each piece of information in Table 21 is as follows:

e Identification Number — the CR’s unique tracking number assigned in
chronological order

e Date Created - the month and year that the CR was entered in the change
management system

e Data Last Updated — the month and year that the CR’s record was last updated.

e Area - the system area (1 of 46) affected by the CR

e Change Magnitude - the expected effort required to evaluate and implement the
CR on a scale of 0 to 5 (or -1 if no information was present), based on the
number of source lines of code (Total SLOC) affected or Total Hours required

e Parent ID — the ID number of the CR’s parent change request, if any

e Children ID(s) — the ID number of the CR’s children change requests, if any

e Sibling ID(s) — the ID numbers of the CR’s siblings, which include children of
the same parent or CRs related in some other significant way.

e Submitter — the individual who entered the CR into the change management
system.

e Assignees — the individual(s) who formally possessed responsibility for the CR at
some point, either as an evaluator or implementer

e Stage Originated, Defect Reason, & Severity — an indication of whether the CR
originated from a documented customer request; this field was often left blank

e Completed? — the approval status of the CR, which could be accepted (1),
rejected (-1), or still pending (0)

Such a rich dataset is historically rare in related research. Most quantitative
investigations of change propagation have largely relied on interviews and surveys of
engineers from industry [e.g., 6, 18, 25, 32]. The dataset here offers a unique opportunity

for extensive quantitative analysis.

98

5.3. Model Construction

Hidden in the raw data is a terribly complex multilayer network. In all, the dataset
identifies 46 system areas, 41,551 change requests, and 501 engineers and administrators
who constitute the nodes of the product layer, change layer, and social layer, respectively.
However, knowledge of the intra-layer and inter-layer edges is not complete. Of the
intra-layer edges, only those in the product layer and change layer are currently known.
The product layer’s intra-layers can be gleaned from the network drawing in Figure 26,
and the change layer’s intra-layer edges can be extracted from the propagation
relationships (i.e., parent, children, and siblings) recorded for each change request, as in
Table 21. Unfortunately, data were unobtainable on the social layer’s intra-layers edges
(i.e., communication links between engineers). Previous research has procured data on
actual communication links by interviewing people at an organization [22, 28]. Such
interviews were infeasible for this case study due to the program’s large size and the

unavailability of relevant people to interview since the end of system development.

Of the inter-layer edges, only the product-to-change and change-to-social inter-layer
edges are known. These edges are ascertained from the area and engineers specified for
each change request. Data on the product-to-social inter-layer edges (i.e., which
engineers were in charge of which areas) were unavailable; however, the lead systems
engineer interviewed for this case study may eventually be able to extract such data from
other records. In summary, nearly all the pieces of the multilayer network are available

for this case study, as outlined in Table 22.

Table 22. Data Availability for Case Study

Social

| Engineers in charge of

Areas assi gned to nr
engineers

: ommunication or
| organizational structure

Available Edges Unavailable Edges

99

Despite some missing pieces, sufficient data are still available to exercise most of the
baseline repository of tools and metrics presented in Chapter 4. According to the data
requirements matrix in Table 20 (page 93), the only tools and metrics that cannot be
exercised are the Social DSM, the Product-to-Social DMM, the Alignment Matrix, and
all triple-layer analyses. Fortunately, that still leaves some of the newest and most

promising tools and metrics within the case study’s reach.

Before delving into the data further, visualizing the multilayer network might be an
instructive preliminary step. Unfortunately, the enormous number of nodes and edges
here makes it infeasible to draw the entire multilayer network. However, for illustrative
purposes, it is still enlightening to draw the multilayer network for a small subset of
change requests within the change layer. After all, the program’s 41,551 change requests
do not form one big connected layer; in fact, the dataset contains more than 29,000 stand-
alone change networks. Table 23 shows the size distribution of these stand-alone

networks.

Table 23. Distribution of Stand-alone Change Networks from Case Study

Number of Nodes in Stand-alone Count
Change Network

1 26,125 (88%)

210 86 3,458 (12%)

87 1

170 1
1

1

445
2,566

Table 23 reveals that the large majority (88%) of stand-alone networks consists of a
single isolation change request. The dataset’s four largest stand-alone change networks
contain 2,566, 445, 170, and 87 change requests each. It’s important to realize that these
relatively giant networks do not stem from one initiating change followed by a chain of
repeated and recursive parent-child propagation; for example, the network of 2,566
change requests does not consist of one change followed by 2,555 descendants. Rather,
such large change networks (as well as many of the smaller ones) were formed by several

propagation chains coalescing together through non-traditional sibling relationships in

100

which two changes were related in some way but do not have a mutual parent. Thus, to
create these networks, separate chains of descendants were declared to be related, despite

the lack of traditional propagation relationships between them.

For example, Figure 28 draws the multilayer network associated with a stand-alone
change network called “11-CR,” which consists of 11 change requests evaluated and
implemented by nine engineers and affecting only three system areas. The layers are
drawn in a linear formation, and all the node labels correspond exactly with those in the
raw dataset. The same 11-CR network was illustrated by Giffin et al. in [17], but not as

part of a multilayer network.

Legend
A Engineer
. Accepted CR
® Rejected CR
@ Pending cr
[] Unaffected Area
. Affected Area

Social Layer

Change Layer

Product Layer

Figure 28. Multilayer Network of 11-CR from Case Study

The multilayer network drawing for 11-CR can be interpreted as follows. The product
layer contains 46 areas connected by technical interfaces, but only Areas #3, #10, #14,
and #17 were affected by any changes. The change layer contains 11 change requests

connected through propagation relationships with arrows drawn to indicate their

101

directions. For instance, change #32496 yielded three child changes (#32497, #32573,
#32852). According to the legend, change #32496 was rejected, but all three of its
children were accepted. Change #32496 is also a sibling of change #32821, despite them
not having a mutual parent; in fact, neither change has a parent. Still, the dataset
indicates that they are siblings because they were related in some other way. The social
layer contains nine engineers, but no intra-layer edges are shown among them because
data on their communication links were not available. Though it may be hard to
determine visually, the inter-layer edges indicate, for example, that engineer #302

implemented change #32497 which affected Area #10.

For a larger example, Figure 29 draws the multilayer network for “87-CR,” a stand-alone
network of 87 change requests evaluated and implemented by 50 engineers and affecting

12 system areas. The node labels and edge arrows have been removed for simplicity.

Legend
A Engineer
Social Layer . Accepted CR
(X) Rejected CR
@ Pending cr
l:] Unaffected Area
‘ " Affected Area
Change Layer
Product Layer

Figure 29. Multilayer Network of 87-CR from Case Study

Figure 28 and Figure 29 give an impression of the complexity of multilayer networks in
practice. The raw data for 11-CR and 87-CR (i.e., the record for each change request)

can be found in the Appendix. Ideally, better visualization techniques might draw these

102

networks with more clarity. Nevertheless, this shortcoming does not prevent the case

study from analyzing the data behind the pictures.

5.4. Analysis and Interpretation

The following sections will investigate two topics of significant interest to academia and
industry. The first topic revolves around the social layer’s effects on change propagation.
The case study employs the Engineer-CPI and the Proposal Acceptance Rate to
characterize the performance of engineers as implementers and proposers of change,
respectively. The second topic focuses on the general characterization of change
propagation in terms of the product layer and change layer. Specifically, the issues of
indirect propagation, propagation extent, and component centrality are scrutinized closely

with the Product DSM, Change DSM, Propagation DSM, and graph properties.

It’s important to remember that this case study is more exploratory than explanatory.
That is, the case study seeks to explore the multilayer network model’s utility by
elucidating interesting issues in the field of engineering change management. However,
in doing so, the author does hope to at least suggest answers to some explanatory
questions regarding the phenomenon of change propagation. The case study begins with

an investigation of the social layer.

5.4.1. Engineer Performance

Over the eight year time period recorded in the dataset, 501 individual engineers and
administrators were identified as implementers and proposers of changes. These
employees make up the social layer of the multilayer network. The following
investigation focuses on the social layer’s effects on change propagation and engineering
change management. Past research has lacked any quantitative analysis of the people
within the engineering change management process. Indeed, this case study introduces a

quantitative treatment of the social layer. Table 26 (page 126) summarizes the results.

103

The first round of analysis focuses on engineers as implementers of change. Specifically,
the Engineer-CPI is used to quantify the propagation effects of an engineer’s work. The
results suggest that an organization can use the Engineer-CPI, in light of an engineer’s
organizational role and the context of his (or her) assignments, to evaluate employee
performance. Secondly, this investigation considers the performance of engineers as
proposers of changes. Specifically, the Proposal Acceptance Rate is used to quantify an
engineer’s innovativeness and systems awareness. Overall, the multilayer network model
shows promise as a paradigm for analyzing the social layer’s influence on change

propagation and engineering change management.

5.4.1.1. Engineers as Implementers of Change

One element of an engineer’s work is the implementation of changes. To assess an
engineer’s performance in this regard, this case study uses the Engineer-CPI. The data
for this case demonstrate the significance of several factors that contribute to the
Engineer-CP1. Specifically, the Engineer-CPI is shown to correspond roughly with an
engineer’s organizational role. However, deviations from this correspondence suggest
that other factors are also at play. For instance, the Engineer-CPI also appears to depend
on the Component-CPIs of his assigned areas. Furthermore, based on previous literature
and interview input, it is also postulated that the Engineer-CPI is a reflection of an

engineer’s technical competence and an organization’s human resource management.

5.4.1.1.1. Engineer-CPI

The Engineer-CPI is a double-layer metric introduced by this thesis to quantify the
propagation effects of an engineer’s implementation of changes. As calculated by
Equation 2 (page 78), the Engineer-CPI compares the number of changes propagating in
and out of an engineer’s work to determine whether his behavior multiplies (CPI > 0),

absorbs (CPI < 0), or carries (CPI = 0) changes.

104

Applying the metric to this case study, Figure 30 shows the distribution of Engineer-CPIs
calculated for all of the program’s 501 engineers. The histogram spans the entire
spectrum ranging from perfect absorbers to perfect multipliers (i.e., -1 to +1). The bars
do not sum to 501, because nearly half of the engineers (226) actually behaved like
constants (i.e., CPI undefined) who were only involved with isolated changes, and hence,

did not contribute to any change propagation.

; Team Systems
Specialists | oags Engineers
—) — —>

-0.5 0 0.5
Engineer-CPI

Figure 30. Distribution of Engineer-CPIs from Case Study

5.4.1.1.2. Effects of Organizational Role

It was argued in Chapter 4 that the Engineer-CPI should correspond to the organizational
role of an engineer. Namely, as indicated in Figure 30, managers and systems engineers
should behave like multipliers (CPI > 0), team leads should behave like carriers (CPI =
0), and specialists should behave like absorbers (CPI < 0). The rationale here is that
systems engineers implement high level changes that usually propagate to lower level
components; hence, they tend to be change multipliers. Meanwhile, specialists
implement changes in the small components of a system that are unlikely to propagate
any further; hence, these people tend to be change absorbers. The data from this case

confirms this intuition.
To determine the effects of an engineer’s organizational role on his Engineer-CPI, the
engineers in this program were divided into two classes: coders and testers/integrators.

Coders were the specialists who actually made changes to lines of code within the

105

system’s software areas. By contrast, testers and integrators were more like systems
engineers who tested and integrated the system areas together. Data on the exact class of
each engineer was regrettably unavailable to the author. However, it was still possible to
roughly classify each engineer according to a heuristic recommended by the lead systems
engineer interviewed in this study. The heuristic classified an engineer as a “coder” if
60% or more of his work focused on core technology in the system (as opposed to
support structure, testing tools, etc.). Otherwise, the engineer was classified as a

“tester/integrator.”

Figure 31 shows the distribution of Engineer-CPIs for each class of engineer. The
distributions offer some evidence that the Engineer-CPI indeed corresponds with an
engineer’s organizational role. As expected, the coders’ distribution is heavy on the
absorber end of the spectrum. In fact, 74% of coders had negative CPIs. By contrast, the
testers/integrators’ distribution is heavy on the multiplier end of the spectrum, with 53%
having positive CPIs. The average coder’s CPI was -0.16 (weak absorber), while the

average tester/integrator’s CPI was 0.2 (weak multiplier).

Coders Testers/integrators

Count

91 0.5 0 0.5 91 -0.5 0 0.5
Engineer-CPI Engineer-CP|

Figure 31. Role-based Distributions of Engineer-CPI from Case Study

Thus, this case study offers some verification of the correspondence between the
Engineer-CPI and organizational roles. Namely, the coders (or specialists) tended to be
absorbers, while the testers and integrators (or “systems” engineers) tended to be
multipliers. Stronger proof of this theory would require data on the exact role of each

engineer in the program.

106

Of course, the organizational roles did not completely dictate the Engineer-CPIs. In fact,
Figure 31 reveals that 26% of coders were actually multipliers instead of absorbers, and
47% of testers/integrators were actually absorbers instead of multipliers. These
discrepancies suggest that some other factors must be at play. Consequently, this case
study also considered the context of an engineer’s work, particularly the Component-

CPIs of his assigned areas, and its effect on his Engineer-CPL.

5.4.1.1.3. Effects of Component-CPI

The context of an engineer’s work may also influence his Engineer-CPIL. For instance, an
obvious consideration would be the propagation behavior of the areas to which an
engineer was assigned to implement changes. The rationale here is that some engineers
may be assigned to parts of the product that are inherently multipliers or inherently
absorbers, as measured by their Component-CPIs. As a result, these engineers may have
little control over the propagation effects of their work. The engineers who work on
multipliers (Component-CPI > 0) will likely appear as multipliers themselves (Engineer-
CPI > 0). By contrast, the engineers who work on absorbers (Component-CPI < 0) will
likely appear as absorbers themselves (Engineer-CPI < 0). Overall, the inherent
propagation behavior of a system area may dictate an engineer’s CPI more than his

organizational role or other factors.

To determine the effect of Component-CPIs on the Engineer-CPI, the engineers in this
program were divided in two groups: those with absorber assignments and those with
multiplier assignments. An engineer was said to have “absorber assignments” if the
average Component-CPI of his assigned areas was negative (i.e., an absorber).
Conversely, an engineer was said to have “multiplier assignments” if the average

Component-CPI of his assigned areas was positive (i.e., a multiplier).
Figure 32 shows the distribution of Engineer-CPIs for each group of engineers. The

distributions offer some evidence that the Engineer-CPI indeed depends on the

Component-CPI of an engineer’s assigned areas. In fact, 67% of engineers with absorber

107

assignments had negative CPIs (i.e., were absorbers), and 75% of engineers with
multiplier assignments had positive CPIs (i.e., were multipliers). The average CPI for

each group was -0.12 (very weak absorber) and 0.44 (moderate multiplier), respectively.

Absorber Assignments Multiplier Assignments
- 40
30
g Ex
8 8
10
91 -0.5 0 0.5 1 91 0.5 0 0.5 1
Engineer-CPI Engineer-CPI

Figure 32. Assignment-based Distributions of Engineer-CPIs from Case Study

Thus, an engineer’s CPI appears to be somewhat dictated by the propagation behavior, or
Component-CPIs, of his assigned areas. That is, those engineers who work on multipliers

and absorbers tend to be multipliers and absorbers themselves, respectively.

Nevertheless, there were some discrepancies. In fact, 25% of engineers with multiplier
assignments were still absorbers, and 33% of engineers with absorber assignments were
still multipliers. Delving a little deeper, Table 24 shows the Engineer-CPI of two

representative engineers, along with the average Component-CPIs of their assigned areas.

Table 24. Propagation Behavior of Representative Engineers from Case Study

Average E =
Engineer # | Component-CPI out n Engineer-CP1
of Assigned Areas (#changes out) | (#changes in)
304 -0.23 8 1 0.78
63 0.31 0 > o

Each engineer in Table 24 exhibits a different propagation behavior relative to the
propagation behavior of his assigned areas. For example, engineer #304 behaved like a
strong multiplier (CPI = 0.78), yet his average assigned area was a weak absorber (CPI =

-0.23). Meanwhile, engineer #63 behaved like a perfect absorber (CPI = -1), but his

108

average assigned area was a weak multiplier (CPI = 0.31). As such, some engineers
performed independently of the context of their work, while the majority of others,
according to the distributions in Figure 32, performed as their average assigned areas

dictate.

It should be noted that in the case of a perfect one-to-one mapping between engineers and
areas (i.e., engineer n only implements changes in area n), an engineer's CPI will
automatically equal the Component-CPI of his assigned area (i.e., Engineer-CPl, =
Component-CPL,). Therefore, any comparison between the two would be redundant. In
that case, it may be more appropriate to compare the Engineer-CPI with some other
expectation of performance. Nevertheless, in this case study’s program, most engineers
worked on various areas throughout the system. Consequently, many different engineers
contributed to each area’s Component-CPI, and the Engineer-CPI of an individual

engineer can differ from the behavior of his assigned areas.

Thus, neither the organization role nor the context of an engineer’s work tell the entire
story of his ultimate Engineer-CPI. In kind, this case study postulates that an engineer’s

technical competence may also be an influential factor.

5.4.1.1.4. Effects of Technical Competence

When the Engineer-CPI does not match an engineer’s organization role or the context of
his assignments, the engineer’s technical competence may be making the difference.
Qualitative observations throughout the literature have emphasized the impact of
technical competence in the engineering change management process. Huang and Mak
[18] observed that engineering firms consider individual skills to be extremely important
factors in the processing of change requests. Other literature suggests that organizations
who design complex products often suffer from poor system awareness among their
engineers. Clarkson et al. [6] found that designers at Westland Helicopters often did not
understand how their decisions affected the rest of the helicopter under development.

They further discovered that even the chief engineers interviewed did not have a detailed

109

comprehension of the entire helicopter design. Moreover, Jarratt et al. [19] concludes
that mistakes due to inexperience, a lack of systems knowledge, communication
breakdown, and even forgetfulness, are primary causes of change propagation. In fact,
managers at a UK engine manufacturer [19] maintained that an understanding of possible
change propagation “comes down to the experience of individuals.” Therefore, it is
reasonable to suppose that an engineer’s technical competence will impact the

propagation effects of his work.

An engineer’s technical competence may explain some of the discrepancies discovered
above with respect to organizational role and Component-CPIs. Unfavorable
discrepancies (e.g., specialists who behave like multipliers) may be evidence of an
engineer’s incompetence or inexperience in his current position. These engineers are
propagating more changes than are warranted by their job descriptions. By contrast,
favorable discrepancies (e.g., systems engineers who behave like absorbers) may signify
an employee’s extraordinary skill as a change absorber. These highly competent
engineers are able to find design solutions that cause less propagation than normally
expected. Overall, the Engineer-CPI might help distinguish which employees need more
training (e.g., an overview of the entire product) to guide their future design and redesign
decisions. Likewise, the Engineer-CPI might help identify the best performers who
should be assigned the most important tasks in the future. Qualitatively, the lead systems
engineer interviewed in this case study agreed with the premise that technical competence
might affect the probability of propagation. It was also explained that certain engineers
in the program were considered go-to people, by virtue of their assessed skill and
expertise, when a significant change request needed to be evaluated or implemented.
Verification of the effects of technical competence on propagation behavior would
require detailed data on the justification for individual changes, and whether viable

alternative solutions existed that would have resulted in more or less propagation.

110

5.4.1.1.5. Effects of Human Resource Management

In the same way, the Engineer-CPI might also reflect the effectiveness of an
organization’s human resource management. For instance, if an employee is performing
worse than anticipated, perhaps the organization has sloppily or unknowingly assigned
him to tasks outside of his organizational role or expertise. Moreover, perhaps the
employee is being overworked; Terwiesch and Loch [32] observed that oftentimes an
overstretched engineer could have a backlog of one month’s worth of work. Conversely,
if an employee is performing better than expected, perhaps the organization exercised
great managerial judgment; the organization has found the perfect niche for that worker.
As such, the Engineer-CPI may translate to a management imperative. Implications for

management policy will be discussed further in Chapter 6.

In summary, the Engineer-CPI is a complicated measure of an engineer’s performance as
an implementer of changes. The data for this case study indicates that the Engineer-CPI
is partially dependent on an engineer’s organizational role and the context of his
assignments. Coders and engineers who worked on absorbers in the system tended to
behave like absorbers themselves. Meanwhile, tester, integrators, and engineers who
worked on multipliers in the system tended to behave like multipliers themselves.
Nevertheless, these two factors did not completely determine the Engineer-CPI. The
literature suggests that an engineer’s technical competence, in addition to the
organization’s human resource management, also affects the propagation effects of an
engineer’s work. More rigorous statistical analysis and additional data would be required

to tease out the contributions of all these factors in more detail.

5.4.1.2. Engineers as Proposers of Change

The other element of an engineer’s work is the proposal of change requests. To measure
an engineer’s performance in this regard, this investigation employs the Proposal
Acceptance Rate (PAR). As demonstrated by the data in this case study, the PAR can be

combined with an engineer’s proposal count to assess his performance on a two-

111

dimensional scale. For more clarity, an organization can also compare the PAR with the

CAlIs of the areas targeted by the proposed changes.

5.4.1.2.1. Proposal Acceptance Rate

When an engineer proposes a change request, the request will ultimately be accepted or
rejected. That is, an evaluation process determines if the change’s benefits outweigh its
costs from a systems perspective. The PAR measures an engineer’s rate of acceptance as
a proposer of change. Applying the metric to this program, Figure 33 shows a histogram
of all the engineers’ PARs. The average PAR is 71%.

200

05
PAR

Figure 33. Distribution of PARs from Case Study

The PAR alone does not tell the entire story. An organization cannot necessarily
distinguish its performers based on an engineer’s PAR alone. Another factor to consider
is the number of change requests proposed by each engineer. The evaluation of a change
request requires time and effort. Consequently, even rejected change requests take their
toll on an organization. In other words, an organization does not want to waste time
evaluating a needlessly large amount of change requests. As such, this thesis proposes a
two-dimensional scale for judging the performance of engineers as proposers of change.
The scale’s two dimensions are an engineer’s PAR and the number of change requests he
proposed. Figure 34 plots the position of the 382 engineers who proposed any changes

on this two-dimensional scale.

112

#Proposals
w
o (=]
S o

N
[«
(=]

100}

0 025 05 075 1
PAR

Figure 34. #Proposals vs. PAR from Case Study

Following the advice of the lead systems engineer interviewed for this case study, Figure
34 is additionally broken into four quadrants, A, B, C, and D. The quadrant boundaries
are located at the average PAR and average proposal count of all 382 data points. Table
25 shows the number of engineers in each quadrant of the two-dimensional scale in

Figure 34.

Table 25. PAR/#Proposals Quadrant Distributions from Case Study
Quadrant Count

A 85 (22%)
B 151 (40%)
C 123 (32%)
D 23 (6%)

All 382 (100%)

Each quadrant has different implications for an engineer’s performance, depending on his

PAR and proposal count relative to the average engineer:

e Quadrant A contains engineers with high PARs and high numbers of proposals.

These engineers might be termed “high performers.”

113

® Quadrant B contains engineers with high PARs but low numbers of proposals.
These engineers likely have great ideas and good systems awareness, since their
change requests are usually accepted. However, for some reason, they propose
a relatively low number of change requests. The reason for the low proposal
count may lie in the engineer’s organizational role, personality, or some other

factor.

® Quadrant C contains engineers with low PARs and low numbers of proposals.

These engineers are relatively passive with little success as proposers of change.

® Quadrant D contains engineers with low PARs but high numbers of proposals.
There are two possible explanations for this troubling behavior. One is that the
engineer tends to have lots of bad ideas. The alternative explanation is that the
engineer is actually quite innovative, but the organization or product is stubborn

or sluggish to change.

5.4.1.2.2. Effects of CAI

Other factors may also contribute to an engineer’s performance as a proposer of change.
For instance, an organization could compare an engineer’s PAR with the Change
Acceptance Rate (CAI) of the areas targeted by his proposals. The rational here is that
some change proposals are inherently more or less likely to be accepted by virtue of the
targeted area’s CAI As such, this thesis proposes an additional metric for assessing an
employee’s performance. The metric, Rpag, is the ratio of an engineer’s PAR to the
average CAI of the areas targeted by his change proposals. The ratio is calculated as
follows, where N is the number of proposed change requests, and CAlI, is the CAI of the
area targeted by the nth proposal:

Equation 6 Rppr = TE

114

Using Equation 6, Figure 35 displays a histogram of Rpag values for all the engineers in
the program. The majority (78%) of engineers have an Rpag = 1, which would indicate
that most engineers’ PARs match closely with the CAls of their targeted areas. A closer
look at the data reveals that this result is an artifact of most engineers always proposing
change requests in the same area. Consequently, the PARs and associated CAls are
essentially equal (Rpag = 1). Still, 15% of engineers had Rpag > 1. These engineers were
able to achieve PARs higher than the average CAI of their targeted areas. These
engineers may be particularly innovative since their ideas were accepted by relatively
reflective areas in the system. By contrast, the 10% of engineers with Rpar < 1 struggled
to get changes accepted by relatively receptive areas. These engineers may not be quite

as innovative or systems savvy.

350 —
300
250

£ 200

=1

8 150
100

50

o(')1234567

Ratio

Figure 35. Distribution of Rpsg from Case Study

In summary, this investigation considered engineers as proposers of change. The data in
the case suggests that a two-dimensional scale, based on an engineer’s PAR and proposal
count, can be used to evaluate an engineer’s performance. Furthermore, the PAR can be
normalized by the CAIs of the engineer’s targeted areas, via the Rpag metric, to better

understand the significance of his performance relative to his targeted components.

5.4.2. Propagution Characteristics

The second topic for this case study is the general characterization of change propagation.

The focus now shifts from the social layer to the product layer and change layer. The

115

following investigation progresses through a line of inquiry regarding the nature and

cause of change propagation. Table 27 (page 126) summarizes the results.

This investigation employs multilayer network tools and metrics to characterize change
propagation in a holistic fashion. The first issue considered is the phenomenon of
indirect propagation, whereby parent-child propagation occurs between nonadjacent
system areas. Another issue explored is propagation extent, in terms of the number of
generations flowing from initiating changes. Finally, propagation behavior is considered
with respect to component centrality (a graph property). Overall, multilayer network
tools and metrics are used to quantitatively confirm and offer counterexamples to many

qualitative conclusions about change propagation in previous literature.

5.4.2.1. Indirect Propagation

Conventional wisdom about change propagation assumes that only direct propagation is
possible; that is, a parent change in one component can only yield child changes in itself
or adjacent components. This assumption forms the basis of Clarkson et al.’s CPM [6].
However, the program here experienced considerable indirect propagation, whereby child
changes occurred in nonadjacent areas. This investigation uses the Product/Propagation
DSM overlay and the Propagation Directness metric, in addition to some interview input,

to gain insight into this non-intuitive phenomenon.

Figure 36 shows the program’s Product DSM and Propagation DSM. Given the large
range of values in the traditional Propagation DSM (bottom left), a binary version
(bottom right) is included to give a better visual sense of where propagation actually
occurred. An instance of parent-child propagation only appears in the Propagation DSM
if the child change was ultimately accepted, regardless of the approval status of the parent
change. Meanwhile, Figure 37 overlays the Product DSM with the Propagation DSM.
An equivalent overlay was performed for this program by Giffin et al. in [16, 17], but

without deeper investigation.

116

Affected Area

Out Area

Instigating Area Instigating Area

16)|

-
oM

Affected Area
.

46!

Affected Area

Binary Product DSM
Figure 36. Product DSM and Propagation DSM from Case Study

Propagation DSM

Instigating Area

PP | Predicted & Propagated (9%)

Predicted & Not Propagated (15%)

- Not Predicted & Propagated (9%)

- Not Predicted & Not Propagated (66%)

Figure 37. Product/Propagation DSM Overlay from Case Study

117

The overlay in Figure 37 exposes all four types of parent-child propagation behavior.
Overall, 15%, 9%, 9%, and 16% of all pairs of components exhibited PP, PN, NP, and
NN behavior, respectively. These behavior types were discussed theoretically in Chapter

4 (page 69), and now this program has demonstrated them in practice.

Where propagation did occur (PP and NP), it is meaningful to calculate the effective
Propagation Directness (page 75). Propagation Directness (PD), a double-layer metric,
refers to the number of product interfaces spanned by an instance of parent-child
propagation. Figure 38 displays the distribution of Propagation Directness values,
considering every instance of parent-child propagation in the program in which the child
change was accepted (regardless of the parent change’s approval status). The distribution
reveals that 78% of all parent-child propagation in the program was direct (PD < 1),
while a surprising 22% was indirect (PD > 1). The vast majority of indirect propagation
occurred across two interfaces (PD = 2) and a handful (3) occurred across three interfaces
(PD = 3). It should be noted that the maximum possible Propagation Directness for this
system was three because the product layer’s network has a diameter of three; that is, the

maximum geodesic path between any two areas is three.

Direct Indirect

2000 L2

1500

1000

Count

500

W ()

0 1 2
Propagation Directnes

Figure 38. Distribution of Propagation Directness from Case Study

To further demonstrate the range of Propagation Directness experienced by the program,
Figure 39 illustrates a few examples of parent-child propagation from the dataset. In
each illustration, the change layer contains the parent change and child change connected

by a directed intra-layer edge. Meanwhile, inter-layer edges connect these changes to the

118

affected areas in the product layer. For PD > 1, the product layer also contains any
unaffected areas on the shortest path between the two affected areas. All nodes are
labeled as they appear in the raw data. For simplicity, the social layer is not included in
these drawings, although the social layer’s impact on Propagation Directness is

something to consider in the future.

Legend
. Accepted CR
(X) Rejected CR
[] unaffected Area
. Affected Area

Example A Example B Example C Example D

12457 16407 | 40648 40664 35492 35945 8217 8243
Change Layer

Product Layer

PD=0 PD=1 PD=2 PD=3

Figure 39. Examples of Direct and Indirect Propagation from Case Study

Each example in Figure 39 has a different Propagation Directness value, which should be
clear from the number of product interfaces spanned by the propagation. In Example A,
self-propagation (PD = 0) occurred in Area #8; interestingly, the parent change in this
example was ultimately rejected. Next, Example B shows direct propagation between
adjacent areas (PD = 1); a change to Area #l, which contains requirements
documentation, caused a change in Area #10, a core technology area. Example C
exhibits indirect propagation; Areas #3 and Areas #19 are separated by two interfaces
(PD = 2) with Area #1 in between them. It should be noted that several geodesic (length-
2) paths exist between Areas #3 and #19, besides the one through Area #1. Finally,
Example D shows one of only three scenarios in the entire dataset with PD = 3. It's

important to remember that in Examples C and D, the intermediate areas (connecting the

119

two affected areas) were unaffected by any change, which is the non-intuitive feature of

indirect propagation.

The phenomenon of indirect propagation contradicts conventional wisdom on change
propagation. As such, one might conclude that if indirect propagation appears to have
occurred, then the Product DSM must be missing some interfaces that actually exist; in
other words, any observed indirect propagation is really direct propagation in disguise. If
this explanation is true, then the Product DSM in this case study would shockingly be
missing 192 interfaces. However, a lead systems engineer from the program explained
that indirect propagation is a legitimate artifact of software system development.
Apparently, engineers in this program would frequently violate the intended structure of
the system in order to achieve a quick solution for a redesign. These ill-advised
maneuvers were sometimes necessary during time crunches to meet development
milestones (e.g., PDR, CDR, etc.). For example, one area of the system contained
System Adjustable Parameters (SAPs). A SAP is a system variable kept in a loadable
file, rather than in the software code itself. Many areas of the system were nominally
disconnected from the SAP file. Still, on occasion, a hasty redesign effort would change
the SAP file (e.g., adding an SAP), despite the lack of an interface between the SAP file
and the parent area. Thus, indirect propagation, though sloppy, can and does occur
during product development. Additional case studies are necessary to determine if
indirect propagation is a common artifact among software systems only, or hardware

systems as well.

5.4.2.2. Propagation Extent

Propagation extent is another interesting issue in the literature on change propagation.
Eckert et al.’s [14] study of Westland Helicopters found that a change rarely occurs by
itself, but usually propagates no more than four generations. These rules of thumb were
based on interviews of several chief engineers and designers at the company.
Fortunately, the case study in this thesis has the data available to quantitatively

corroborate or challenge these rules of thumb about the extent of change propagation.

120

Analyzing propagation extent requires analysis of the change layer. The change layer for
this program contains over 41,000 changes, too many to reasonably display the Change
DSM (i.e., the DSM of the change layer) here. Still, the Change DSM is useful for
tracing the descendants of each change, because each parent-child relationship is
represented by an edge. Figure 40 shows the distribution of the number of generations
flowing from each un-parented change. An un-parented change is an individual change
that is not the child of another change, and may or may not have any child changes of its
own. In other words, each count in Figure 40 corresponds with a distinct propagation
chain, whether it contains one isolated change or a line of descendants. In all, the
program generated 36,184 un-parented changes. The reader should note that Figure 40

uses a log scale on the vertical axis.

o 1 2 3 4 §
#Generations Propagated

Figure 40. #Generations Histogram from Case Study

The histogram only partially conforms to Eckert et al.’s rules of thumb. On the one hand,
change propagation in the system almost always (99.99%) halted after four generations,
just as Eckert et al. found with Westland Helicopters. There was only a handful (5) of
changes that yielded five generations of changes, which was the maximum number of
generations experienced; in other words, change propagation always vanished after five
generations. Examples of propagation chains from the dataset with four and five
generations of descendants are illustrated in Figure 41. All the node labels correspond

exactly with those in the raw dataset.

121

4 Generations 5 Generations

of Descendants of Descendants
Legend
11922 @ Acceptedcr 2262
(X) Rejected cR

13670 27413
16585
16704
24101 16234
26906 18461 18484

18465 18471

18644 19965

Figure 41. Examples of 4- and 5-Generation Propagation Chains from Case Study

On the other hand, Figure 40’s results differ from Eckert’s finding that a change rarely
occurs alone. In fact, isolated changes were actually the norm for this system; 91% of
un-parented changes (33,152 out of 36,184) did not have any children (i.e., zero
generations propagated). A deeper look into the context of each change would elucidate
these statistics more. For instance, the large majority (80%) of changes in this program
were low magnitude (0 or 1 on a scale of 0 to 5), which may explain the generally low

probability of propagation.
Overall, propagation extent likely stands as an extremely context-dependent feature of

change propagation. This case study, at least, confirms that propagation vanishes after

five generations of descendants, and rarely exceeds four generations.

122

5.4.2.3. Effect of Area Centrality

The consensus among researchers is that change propagation occurs primarily by virtue
of the intricate dependencies among the components of modern products and systems [6,
11, 13, 31, 32]. One way to reinforce this intuition is by testing the effects of a

component’s centrality on propagation behavior.

Centrality is a graph property introduced earlier as a single-layer metric. A node’s
centrality is a gauge of its importance in a network, and can be measured by a node’s
degree or betweenness (among other metrics). A natural question to ask is whether a
component’s centrality in the product layer affects its propagation behavior. Intuition

says that it likely does, since connectivity is the root cause of propagation.

To check this intuition in the case study, the degree (C) of each system area in the
product layer was compared to its total propagation activity (TPA). An area’s TPA is
defined here as the number of times the area was affected by a parent change or child

change. Figure 42 plots all 46 systems areas as (C, TPA) pairs.

2000 : . . « ‘
2 1500 ‘
% Requirements
< Documentation
a .
9 1000 Linear Fit
a L \
% 500, o . _,,——“' High Degree,
- Y “—‘
:“,. R / Low TPA
% 10 20 3b-eeee ab
Degree

Figure 42. Total Propagation Activity vs. Degree for Case Study

In Figure 42, the data points appear to trend upward and to the right. A line has been
fitted to the data (in a least-squares sense) that indicates a direct relationship between the
two variables. In fact, the Pearson correlation coefficient between C and TPA is 6crca =
0.4. Such a coefficient suggests a small to medium positive correlation. However, the

data also suggest that system areas with high degrees do not always trigger a large

123

amount of total propagation activity; a few outliers (as circled in Figure 42) have high
degrees but relatively low TPA. There was also one significant outlier above the fitted
line (also circled); this data point corresponds with Area #1 (requirements
documentation) which levied constraints on most of the other systems and inherently
participated in a relatively large amount of change propagation. In general, the single-
layer metric of centrality has been used to quantitatively reinforce a conventional theory

in the literature; namely, component connectivity can lead to change propagation.

3.5. Summary of Case Study

In summary, this chapter performed a case study of a real-world engineering project. The
case under investigation was that of a technical program that developed a large scale
sensor system dominated by software segments. A rich dataset extracted from the
program’s configuration management records facilitated extensive quantitative analysis
using Chapter 3’s multilayer network model and Chapter 4’s baseline repository of tools

and metrics.

The case study elucidated two major topics of interest to the research community and
industry. One topic dealt with the socials layer’s effects on propagation behavior and
implications for engineering change management. The quantitative analysis here was a
pioneering effort and illustrated the potential of the Engineer-CPI and Proposal
Acceptance Rate as metrics for employee performance in the implementation and

proposal of changes, respectively.

The second topic revolved around the general characterization of change propagation.
Issues here included indirect propagation, propagation extent, and the effect of
component centrality on propagation behavior. The system in this study experienced a
significant amount of indirect propagation, but this behavior is potentially linked to
complex software development. Propagation in general was infrequent and yielded a
maximum of five generations of descendants (but almost always four or less). Finally,

the centrality of a system area had a positive correlation with its total propagation

124

activity. However, high centrality does not guarantee the occurrence of change
propagation. The major findings of all these analyses are summarized in Table 26 and
Table 27.

This concludes the case study for this thesis. Overall, the multilayer network model was
demonstrated to be a useful paradigm for investigating change propagation and
engineering change management. The next chapter broadens this discussion and
considers the implications of the multilayer network model and general change

propagation research for management policy.

125

Table 26. Summary of Investigation of Employee Performance

Multilayer Tools and

Topic Metrics Utilized Major Finding
. . The Engineer-CPI appears to correspond with an engineer’s
e Engineer Propagation T .
. organizational role and the Component-CPI of his (or her)
Engineers as DSM

Implementers of Change

¢ Engineer-CPI
Component-CPI

assigned areas. Discrepancies between the Engineer-CPI and
these factors may be due to an engineer’s technical competence
or an organization’s human resource management.

Engineers as
Proposers of Change

Proposal Acceptance Rate
e CAI

An engineer’s performance can be effectively classified on a
two-dimensional, according to his PAR and number of change
he or she proposes. Normalizing the PAR by the CAls of his
targeted areas can help put an engineer’s performance in context.

Table 27. Summary of Investigation of Propagation Characteristics

Topic

Multilayer Tools and Metrics
Utilized

Major Finding

Indirect Propagation

¢ Product/Propagation DSM
Overlay
e Propagation Directness

Indirect propagation is possible, at least in software-dominated
systems. Of all the parent-child propagation that occurred in
the system, 78% was direct and 22% was indirect.

Propagation Extent

e Change DSM
e Paths (graph property)

The vast majority of changes did not lead to any propagation in
the system. All propagation vanished after five generations,
and almost always after four.

Effects of Node
Centrality

e Propagation-DSM
¢ Centrality (graph property)

The degree (or centrality) of system area is positively
correlated with its total propagation activity (as a parent or
child), but a high degree alone is not sufficient to trigger
significant propagation activity.

6. Management Policy Implications

This chapter discusses the policy implications of the multilayer network model and
general change propagation research for engineering change management (ECM).
Change propagation has been identified as a pervasive source of cost and difficulty in the
ECM process. As such, the ideal ECM policy would have all design and redesign
decisions carefully take into account potential propagation effects. However, meeting
this policy objective is extremely challenging. According to several studies in the
literature, engineering firms appear to be generally inconsistent at anticipating change
propagation. These studies further suggest that organizations struggle to understand
change propagation because no hard and fast methods exist for assessing the full impact
of every individual change. As discussed throughout this thesis, the research community
is responding to this shortcoming with the development of much needed theories, tools,
and metrics. Overall, the literature suggests a three-pronged policy for dealing with
change propagation: prevention, prediction, and control. The multilayer network model
further emphasizes that the execution of this policy should consider the effects of all three
layers (product, change, and social) on change propagation behavior. As such, the
multilayer network model provides a holistic framework for practical use in the

engineering industry and academia.

6.1. Industry’s Struggle with Change Propagation

Change propagation is undoubtedly a real-world problem that warrants the careful
attention of an engineering firm. In fact, the best ECM policies in the engineering
industry recognize the need to account for change propagation in all significant design
and redesign decisions. The Aberdeen Group, a company that conducts data-driven
business research, found that engineering firms who exercise formal change impact
analysis as part of their ECM process tend to perform better (in terms of achieving
schedule, budget, and product quality goals) than companies who fail to do so [3].
Relative to lower performers, these “Best-in-Class” firms were more likely to consider

the impact of individual changes on items such as other product components,

manufacturing tooling, related documentation, and product requirements. Formal change
impact analysis allows an engineering firm to keep tabs on their products’ satisfaction of
schedule, budget, and quality constraints, in light of propagation effects. As such, an
appreciation of change propagation can make a significant difference in the success of an

engineering firm.

However, the engineering industry as a whole still finds the threat of change propagation
to be intractable. A 2006 study by the Aberdeen Group [2] found that less than two-
thirds of surveyed engineering firms could “identify which items [in a product] are
actually affected by changing another item.” The same study reported that only 11% of
engineering firms could generate a “precise list of impacted items...taking into account
item interfaces.” Clarkson et al. [6] highlighted similar weaknesses in their investigation
of Westland Helicopters’ ECM performance. The company’s chief engineers estimated
that as much as 50% of all changes were unexpected by the people involved in helicopter
development. In other words, despite the company’s efforts to anticipate change
propagation, a lot of propagation still came as a surprise. In kind, Jarratt et al. [19]
explored why some propagation is foreseeable, while other propagation is not.
Interviewees at a UK engine manufacturer explained that unexpected propagation is
usually the result of “stupid mistakes.” That is, when small details are foolishly
overlooked, the potential for propagation goes unnoticed. Interestingly, by contrast, high
magnitude changes yield fewer surprises because these changes naturally receive more
thorough attention. Overall, it seems that the engineering industry does not have a good
handle on change propagation. In the end, unanticipated change propagation may lead to
schedule slips, budget overruns, and decreased product quality. It should come as no
surprise that change activities tend to drive the schedule, budget, and quality of product

development [29].

The literature suggests that the engineering industry struggles with change propagation
because no hard and fast methods exist for assessing the full impact of every individual
change. Indeed, the extent of change propagation may fluctuate significantly with the

context of the product or system being developed. As a result, companies cannot apply

128

the same experienced-based rules of thumb to all types of products. For example,
Chapter 5’s case study demonstrated that a software-dominated system can exhibit much
less propagation than the electro-mechanical systems studied in the literature (e.g.,
helicopters in [6]). Furthermore, an organization cannot always use the same rules of
thumb for different areas within the same product. Jarratt et al. [19] found that engineers
were able to develop standard (and successful) procedures for handling changes when the
affected components were simple and well understood. However, no analogous
standards existed for other aspects of the product. For instance, interviewees admitted
they could not always predict the propagation effects associated with a combustion
engine’s vibration behavior. Indeed, the emergent properties of a complex system, like
vibration dynamics, are likely the hardest propagation effects to predict in advance. In
all, the engineering industry has yet to master rigid and infallible methods for predicting

the full impact of any given change.

In the Information Age, it may seem surprising that industry cannot quickly and
proficiently conduct change impact analysis. Apparently, however, even the powerful
information technology (IT) of today cannot overcome the complexities of change
propagation. IT that is tailored to ECM is widely available in the industry. For instance,
Product Data Management (PDM) systems contain software for tracking and managing
data on a particular product, including design details in the form of Computer-aided
Design (CAD) drawings, cost data, and other specifications important for sourcing or
manufacturing parts. PDM software enables engineering throughout an organization, no
matter how fragmented, to share information with one another during product
development. Theoretically, this type of communication infrastructure should assist an

engineering firm in performing change impact analysis.

Nevertheless, in practice, IT does not solve everything. Change propagation remains a
significant problem in industry, as indicated by the Aberdeen Group’s 2006 study
mentioned earlier [2]. The reason why IT cannot completely solve the challenges of
change propagation may lie in the complexity of modern products and systems. In many

cases, the dependencies among product components and subsystems are still too intricate

129

to understand by engineers and teams working on different parts of a product. For
example, Eckert et al. [14] explains that mere access to another team’s documentation
(e.g., via a PDM system) is not a perfect ECM solution; different teams use different
design representations and conventions which can be too esoteric for outsiders to
interpret correctly. As a result, one team cannot easily determine the consequences of its
actions for another part of the product without significant expertise, experience, and
verbal communication. Furthermore, IT cannot compensate for all human error or the
mysteries of emergent system properties, both of which Jarratt et al. [19] have
highlighted as major causes of change propagation. Ultimately, the engineering industry
is in need of better ECM solutions for handling change propagation, technological or

otherwise [26].

6.2. Policy for Handling Change Propagation

This thesis is part of an ongoing effort in the research community to address the
engineering industry’s struggle with change propagation. Previous research suggests a
three-pronged ECM policy, or strategy, for dealing with change propagation: namely,
prevention, prediction, and control. The multilayer network model further emphasizes
that the execution of this policy should consider the influence of all three layers (product,
change, and social) on change propagation behavior. Specifically, the prevention of
change propagation can be accomplished through flexible design in the product layer and
communication in the social layer. The prediction of change propagation requires
analysis of the product layer for tactical purposes and a fundamental understanding of the
change layer for more strategic considerations. Finally, the control of change
propagation especially hinges on the management of the social layer. Overall, the
multilayer network model offers a holistic framework for informing engineering change

management policy.

130

6.2.1. Prevention

The first way an organization might reduce the negative effects of change propagation is
to avoid it from occurring altogether. Change propagation can be prevented through
effective management of both the product layer and social layer. Within the product
layer, an organization can embed flexibility in a design to avoid change propagation
wherever it appears economically viable. Within the social layer, an organization can
foster necessary communication between teams and engineers who are designing

interdependent parts of the product.

The product layer is an obvious setting for preventing change propagation. Suh and de
Weck [31] provide guidelines for reducing propagation by embedding flexibility into a
design. They draw on the Component-CPI for quantitative insight into where flexibility
is needed in the product. One approach is to eliminate propagation at the source by
converting multipliers (CPI > 0) into absorbers (CPI < 0). Another approach is to address
the carriers (CPI = 0) that lie in the middle of dangerous propagation paths. Flexibility
can be embedded into these critical areas of the product in several ways. As suggested by
Eckert et al. [14], a “buffer” component could be inserted along a propagation path to
absorb propagated changes rather than carrying them forward. For example, in the
program from Chapter 5’s case study, a buffer component shielded hardware segments
from almost any propagation. A designer might also split a monolithic component into
smaller components to increase its flexibility and decrease it potential to propagate [16].
All prevention strategies must strike a balance between the upfront investment required
for embedding flexibility and the expected cost of propagation effects in the future [31].
As such, it is not necessarily economically viable to eliminate change propagation
completely. Sometimes, the cost of flexibility might outweigh the expected cost of

propagation.

Preventing propagation is also possible through management of the social layer.
Communication among teams and engineers during product development is essential,
especially among those who are designing interdependent parts of the product. Sosa et al.

[28] reiterate that technical interfaces in the product layer (or domain) should be matched

131

by communication interactions in the social layer. Consistency between the product and
social layer is a critical means of preventing change propagation. As mention earlier,
Pratt & Whitney suffered the consequences of an unattended interface when they had to
disassemble, redesign, and rebuild several test engines. In light of the number of parts
affected (i.e., change propagation), the redesign was estimated to add 1% to 2% total cost
to the entire development program. Jarratt et al. [19] report a similar experience with a
UK engine manufacturer, in which engineers had to redesign a gear-train twice because
the first attempt triggered too much change propagation. A communication breakdown
apparently caused this incident. The lesson here is that communication in the social layer
is critical in the prevention of design mistakes that may ultimately lead to otherwise

unnecessary change propagation.

6.2.2. Prediction

The next element of the three-pronged ECM policy is the prediction of change
propagation. A prediction capability is at the heart of change impact analysis. The ability
to predict change propagation has both tactical and strategic implications. Tactical
prediction is useful in the short term, such as when an organization assesses the impact of
individual change requests. Tactical prediction draws on analysis of the product layer
through tools like CPM. Meanwhile, strategic prediction has long-term utility, such as
life-cycle cost estimation during the earliest stages of product development. Strategic
prediction requires a fundamental characterization of propagation behavior in the change

layer.

The tactical prediction of change propagation is crucial for day-to-day ECM. Whenever
an organization receives or generates a change request, its total impact should be
evaluated in light of all potential propagation effects. According to the Aberdeen Group
[2], a tactical prediction capability is exactly what the industry is lacking; the vast
majority (89%) of engineering firms cannot produce a precise list of parts at risk of
propagation from a given change request. Keller et al. [21] and Clarkson et al.’s [6] CPM

is the most remarkable tool created for the tactical prediction of change propagation. Of

132

course, other tactical prediction tools have been developed in the literature as well,
including Cohen et al.’s Change Favorable Representation (C-FAR) [7] and Rutka et al.’s
Change Propagation Analysis (CPA) [26]. Like CPM, both C-FAR and CPA hinge on a
model of the dependencies among components to predict where changes may propagate.
Still, CPM is unique among these and other prediction tools in that it is time efficient,
allows for multiple propagation steps, and has been applied to a real-world complex
product (i.e., a helicopter) with promising results [6]. Nevertheless, CPM does not allow
for indirect propagation. As Chapter 5’s case study demonstrated, indirect propagation
may be an important aspect of software development. CPM’s shortcoming here is
reminiscent of Jarratt et al.’s [19] observation that no hard and fast rules exist for
predicting propagation for all type of changes, products, or systems. Robust tools for
tactical prediction likely must be tailored to the context of the product development

underway.

Meanwhile, the strategic prediction capability can serve longer-term needs, especially in
the estimation of life-cycle costs. NASA [23] defines life-cycle cost as “the total cost of
the direct, indirect, recurring, nonrecurring, and other related expenses incurred...in the
design, development, verification, production, operation, maintenance, support, and
disposal of a project.” As such, part of a project’s life-cycle cost is the cost of change
activity, including change propagation. A strategic prediction capability would enable an
organization to estimate the total expected cost of change activity before a project begins
in earnest. One general way to estimate costs is by analogy, as prescribed by NASA
during the early stages of product development [23]. An analogy approach starts with
the cost of analogous projects and makes adjustments depending on differences between
the current project and the analogous one. In kind, a strategic prediction capability might
look at the change behavior of analogous projects to estimate the total amount of change
activity expected for an upcoming project. For example, Chapter 5’s case study produced
a statistical distribution of the number of generations propagated by all initiating changes
(Figure 40, page 121). In preparation for developing an analogous software system, an
organization could use these statistics to help estimate the expected cost of change

activity. Accurate assessment of total change activity and life-cycle cost has significant

133

implications for general project management and the acquisition of technology and
systems by the government and military. Strategic prediction tools for cost estimation

constitute an excellent subject for future research.

6.2.3. Control

The final element of the three-pronged ECM policy is the control of change propagation.
Once a change request has been accepted, its successful implementation must account for
all the anticipated and unanticipated propagation effects. As such, an organization might
still be able to control the amount of change propagation that occurs. The control of
change propagation has received some qualitative attention in the literature, most notably
by Eckert et al. [14]. Meanwhile, this thesis has uniquely highlighted the importance of
the social layer on propagation phenomena. An organization can employ quantitative
analysis of the social layer to inform human resource management for controlling change

propagation.

Eckert et al. [14] describes two distinct strategies for controlling change propagation (or
“handling change” in [14]). One strategy is forwards redesign, by which an organization
begins with a problem, considers alternative solutions in terms of propagation effects, and
executes the planned solution with refinements if necessary. The other strategy is
backwards redesign, by which an organization starts with a problem but “jumps” quickly
to a solution and makes modifications as necessary with the same solution-first
philosophy. The forwards redesign strategy is more careful and deliberate about its
implementation plan. By contrast, the backwards redesign strategy seeks a quick
solution; this strategy, though greedy on the surface, is not necessarily ill-advised. In
fact, sometimes a backwards redesign is the best strategy, especially for familiar changes
(e.g., software patches) or when an organization is up against a deadline. Of course, the
risk here is that a quick solution may ultimately trigger more propagation than would
have been necessary with a more careful process. Eckert et al. explain that an
organization will likely practice a combination of forwards and backwards redesign

strategies, depending on the familiarity and urgency of the change request.

134

Chapter 5’s case study suggests that human resource management is another critical
element of controlling change propagation. The program in the case study had a minority
of engineers whose propagation behavior did not correspond with their organizational
roles (roughly defined) or the propagation behavior of their assigned system areas. These
results suggest that the engineers’ technical competences or the organization’s human
resource management was making a difference. This thesis proposed the Engineer-CPI
as a quantitative metric for evaluating where managerial attention may be warranted.
Where unfavorable performance is found, the solution may be additional training, new
communication protocols, or better workload distribution. Where favorable performance
is found, an organization should promote any identified good practices in the future.
Either way, quantitative consideration of the social layer may translate to important

management imperatives to help control change propagation.

In summary, the research community is responding to the engineering industry’s need for
better ways to deal with change propagation. The literature suggests that industry adopt a
three-pronged ECM policy that simultaneously fosters the prevention, prediction, and
control of change propagation. Within this three-pronged strategy, the multilayer

network model emphasizes a holistic, multilayer perspective.

135

This page has been intentionally left blank.

136

7. Conclusion

This chapter concludes the thesis with a summary of the research findings and
recommendations for future work. This thesis proposed a novel multilayer network
model of change propagation and established a baseline repository of single-layer,
double-layer, and triple-layer tools and metrics. A case study of a real-world engineering
project demonstrated the practical utility of the model. However, further research is
necessary to prove the model’s general applicability. A few notable avenues for future
work include the development of better visualization techniques, additional probing of

the social layer, and the development of prescriptive strategic prediction tools.

7.1. Summary of Research Findings
This thesis sought to answer the following primary research question:

e What insights can be gained from a multilayer network model of change

propagation?
Two secondary research questions were also posed:

e What are potential tools and metrics for analyzing a multilayer network model of

change propagation?

e How can these tools and metrics inform future engineering change management
policy in terms of design strategy, change request evaluation, and human

resource management?

In response to the first two questions, this thesis argued that a multilayer network model
of change propagation facilitates extensive quantitative analysis of change propagation
using a repository of tools and metrics. The multilayer network model proposed in
Chapter 3 is composed of three layers, or domains, that contribute to the phenomenon of
change propagation: namely, the product layer, change layer, and social layer.
Engineers in the social layer work on changes in the change layer that affect components

in the product layer. The baseline repository of tools and metrics developed in Chapter 4

137

enables single-layer, double-layer, and triple-layer analyses of the model. By
incorporating a number of methods from the literature, the multilayer network model
unites previous research on change propagation in a comprehensive paradigm. Finally,
the model uniquely allows quantitative analysis of the previously overlooked, but

significant, social layer of change propagation.

To demonstrate the hypothesized practical utility of the model, Chapter 5 conducted a
case study of a real-world engineering project. The case study elucidated two major
topics of significant interest to the research community and industry. One topic dealt
with the socials layer’s effects on propagation behavior and implications for engineering
change management. The quantitative analysis here was a pioneering effort and
illustrated the potential of the Engineer-CPI and Proposal Acceptance Rate as metrics for
the employee performance in the implementation and proposal of changes, respectively.
The Engineer-CPI was shown to correspond roughly with an engineer’s organizational
role. However, deviations from this correspondence suggested that other factors were
also at play. For instance, the Engineer-CPI also appeared to depend on the Component-
CPIs of his assigned areas. Furthermore, based on previous literature and interview
input, it was also suggested that the Engineer-CPI might be a reflection of an engineer’s

technical competence and an organization’s human resource management.

The case study’s second topic revolved around the general characterization of change
propagation. Issues here included indirect propagation, propagation extent, and the effect
of component centrality on propagation behavior. The system in this study experienced a
significant amount of indirect propagation, but this non-intuitive behavior is potentially
linked to complex software development. Almost all indirect propagation spanned two
product interfaces, but never more than three. Propagation in general was infrequent,
which differs from the literature’s experience with electro-mechanical systems. Initiating
changes yielded a maximum of five generations of descendants (but almost always four
or less), which is more consistent with previous research. Finally, the centrality of a
system area had a positive correlation with its total propagation activity. However, high

centrality did not guarantee the occurrence of change propagation.

138

To address the last research question, Chapter 6 considered the policy implications of the
multilayer network model and general change propagation research. A comprehensive
study by the Aberdeen Group [2] and several other case studies indicated that the
engineering industry continues to struggle with change propagation during product
development. The literature points to the industry’s lack of hard and fast methods for
effectively handling change propagation. The research community, including this thesis,
has responded with an array of much needed tools and metrics. Although these methods
have been minimally tested, they suggest a three-pronged policy, or strategy, for dealing
with change propagation: namely, prevention, prediction, and control. The multilayer
network model emphasizes a holistic perspective for ECM policy. Indeed, the
prevention, prediction, and control of change propagation can draw on all three layers of

the multilayer network model.

7.2. Future Work

This thesis creates several avenues for future work, including the following:

e Better visualization techniques for the multilayer network model are needed.
Computers are obviously still able to process the underlying data without any
visualization. However, a clearer drawing may reveal patterns and other insights

more readily recognized by the human brain.

A few options exist for better visualization techniques. One is to treat the
multilayer network model as a single grand network using a spring embedding
algorithm (as in Figure 24, page 84). This option will likely yield a less jumbled
drawing, but the viewer will lose sight of the intended layered structure of the
model. Another option is to keep the layered structure, but reposition the nodes in
each layer using an augmented spring embedding algorithm. This option may
confront a trade between the clarity of intra-layer edges and the clarity of inter-

layer edges. The dataset from this case study provides an array of small and large

139

change networks to test various multilayer network visualization techniques in the

future.

This thesis has only scratched the surface of the social layer. Many questions
remain about the social layer’s contribution to propagation phenomena. For
instance, it may be insightful to consider an engineer’s CPI over time; perhaps his
(or her) propagation behavior is correlated with his workload (i.e., the number of

change requests assigned to him) or milestones during product development.

It would also be worthwhile to consider the communication patterns among
engineers in the social layer. The major question here is whether communication
between engineers who are in charge of interdependent components is a viable

way to prevent or reduce change or change propagation.

One of the chief questions underlying all change propagation research regards the
predictability of change and change propagation. As discussed in Chapter 6,
prediction capabilities can be both tactical and strategic. Tactical prediction has
received the most attention in the literature. However, strategic prediction, by
which an organization uses heuristic relationships to help predict the expected

change activity for a new project, may also be a valuable endeavor.

140

References

1. Bartolomei, J. (2007). Qualitative Knowledge Construction for Engineering Systems:
Extending the Design Structure Matrix Methodology in Scope and Procedure. PhD
Thesis, Engineering Systems Division.

2. Brown, J. (2006). Managing Product Relationships: Enabling Iteration and Innovation
in Design. Aberdeen Group, Boston, USA.

3. Brown, J., and Boucher, M. (2007). Engineering Change Management 2.0: Better
Business Decisions from Intelligent Change Management. Aberdeen Group, Boston,
USA.

4. Browning, T. R. (2001). “Applying the Design Structure Matrix to System
Decomposition and Integration Problems: a Review and New Directions.” IEEE
Transactions on Engineering Management 48(3): 292-306.

5. Clark, J. and Holton, D.A. (2005). A First Look at Graph Theory. World Scientific.

6. Clarkson P.J., Simons, C., and Eckert, C. (2004). “Predicting Change Propagation in
Complex Design.” Transactions of ASME 126: 788-797.

7. Cohen, T., Navathe, S.B., and Fulton, R.E. (2000). “C-FAR, Change Favorable
Representation.” Computer Aided Design 32: 321-338.

8. Danilovic, M. and Browning, T.R. (2007). “Managing Complex Product Development
Projects with Design Structure Matrices and Domain Mapping Matrices.” International
Journal of Management 25: 300-314.

9. de Neufville, R. (1998). “Thesis Definition and Preparation: Some General
Guideline.” Internal Publication. Engineering Systems Division, MIT.

10. Diestel, Reinhard. (2006). Graph Theory. 3™ Edition. Springer.
11. Eppinger, S. Whitney, D., Smith, R., and Gebala, D. (1994). “A Model-based
Method for Organizing Tasks in Product Development.” Research in Engineering Design

6(1): 1-21.

12. Eppinger, S. D. (2001). “Patterns of Product Development Interactions.” ESD
Internal Symposium, Cambridge MA, MIT Engineering Systems Division.

13. Earl, C., Eckert, C., and Clarkson, J. (2005). “Design Change and Complexity.” pnd
Workshop on Complexity in Design and Engineering.

141

14. Eckert C., Clarkson P. and Zanker W. (2003). “Change and Customization in
Complex Engineering Domains”, Research in Engineering Design 15: 1-21.

15. Freeman, L.C. (2000). “Visualizing Social Networks.” Journal of Social Structure 1.

16. Giffin, M. (2007). Change Propagation in Large Technical Systems. S.M. Thesis.
System Design and Management Program, MIT.

17. Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., and Clarkson, J. (2009).
“Change Propagation Analysis in Complex Technical Systems.” Journal of Mechanical
Design: 131 (8), 081010.

18. Huang, G.Q. (1999). “Current Practices of Engineering Change Management in UK
Manufacturing Industries.” International Journal of Operations and Production
Management 19(1): 21.

19. Jarratt T., Eckert C. and Clarkson J. (2005). “Pitfalls of Engineering Change: Change
Practice during Complex Product Design.” Advances in Design: 413-424.

20. Kirchain, R. (2010). “Course Introduction.” ESD.80: Seminary in Technology and
Policy Research. Spring 2010. MIT.

21. Keller, R., E%er, T., Eckert, C.M., and Clarkson, P.J. (2005). “Visualizing Change
Propagation.” 15" International Conference on Engineering Design: 62-63.

22. Morelli, M.D., Eppinger, S.D., and Gulati, R.K. (1995). “Predicting Technical
Communication in Product Development Organizations.” IEEE Transactions on
Engineering Management 42(2): 215-222.

23. NASA/SP-2007-6105 R1. (2007).. NASA Systems Engineering Handbook.

24. Newman, J. (2003). “The Structure and Function of Complex Networks.” Society of
Industrial and Applied Mathematics 42(2): 167-256.

25. Pikosz P., Malmgqvist J. (1998). “A Comparative Study of Engineering Change
Management in Three Swedish Companies.” Proceedings of the DETC98 ASME Design
Engineering Technical Conference: 78-85.

26. Rutka, A., Guenov, M., Lemmens, Y., Schmidt-Schaffer, T., Coleman, P., and
Riviere, A. (2006). “Methods for Engineering Change Propagation Analysis.” 25"
International Congress of the Aeronautical Sciences. 9.3.3.

27. Sosa, M.E., Eppinger, S.D., and Rowles C.M. (2000). “Understanding the Effects of

Product Architecture on Technical Communication in Product Development
Organizations.” MIT Sloan School of Management Working Paper. No 4130.

142

28. Sosa, M.E., Eppinger, S.D., and Rowles, C.M. (2007). “Are Your Engineers Talking
to One Another When They Should?” Harvard Business Review: 133-142.

29. Sterman, J.D. (2000). Business Dynamics: Systems Thinking and Modeling for a
Complex World. McGraw-Hill/Irwin.

30. Steward, D.V. (1981). “The Design Structure System: a Method for Managing the
Design of Complex Systems.” IEEE Transaction on Engineering Management 28(3): 71-
74.

31. Suh, E.S., and de Weck, O.L. (2007). “Flexible Product Platforms: Framework and
Case Study.” Research in Engineering Design 18 (2): 67-89.

32. Terwiesch, C and Loch, C. (1999). “Managing the Process of Engineering Change
Orders: the Case of the Climate Control System in Automobile Development.” Journal of
Production Innovation and Management 16: 160-172.

33. Wertz, J.R., and Larson, W.J. (1999). Space Mission Analysis and Design (3rd
Edition). El Segundo, CA: Microcosm Press.

34. Wright, L.C. (1997). “A Review of Research into Engineering Change Management:
implications for product design.” Design Studies 18: 33-42.

35. Yin, R. (2009). Case Study Research: Design and Methods. 4™ Edition. SAGE
Publications, Inc.

143

This page has been intentionally left blank.

144

Appendix: Raw Data

The following pages contain the raw data for the change requests comprising 11-CR and
87-CR, as drawn in Figure 28 (page 101) and Figure 29 (page 102), respectively. The
“Assignees” column for each change request (CR) may have the same engineer (e.g.,
eng001) listed multiple times, which indicates that the engineer was assigned to that CR
multiple times over the course of the CR’s evaluation and implementation or rejection.

Empty cells indicate that no data were available.

145

11-CR

Month Month
ID Created Last Area | Magnitude | Parent | Children | Siblings | Submitter | Assignees | Complete?
Updated
32496 91 92 10 2 36814 32821 eng302 eng234 -1
32573,
32497 91 98 10 1 32496 32852, eng302 eng302 1
36814
32497,
32573 91 98 17 3 32496 32852, eng302 eng302 |
35724
32821 | 91 92 14 0 32496 | eng23l | el -1
engl83
32822 91 92 10 1 32821 36055 eng231 engl83 1
32497,
32573, eng302
32852 91 105 17 3 32496 35724, eng302 g | ’ 1
37008, eng310
37635
35390 94 95 17 2 37635 eng301 eng275 1
35724 | 95 97 3 0 V0% | engl72 | eng3sg 1
36814 96 105 10 1 32852 32497 eng302 engl22 1
) engl5
37008 3 | 32852 eng296 0
37635 | 97 99 17 3 ?,’52%95% eng301 | eng3l10 1

87-CR

Month Month
ID C Last Area | Magnitude | Parent | Children | Siblings | Submitter Assignees Complete?
reated
Updated
engqual eng015
eng015 eng015
8000 61 75 3 0 12156 eng015 | eng015 eng015 1
engqual engqua
engqual
8000,
12156 68 114 3 0 13320, eng178 | eng015 eng015 -1
22946
13320 23 -1 12156 engi178
eng013
eng013 eng013
22850 81 86 1 0 22946 eng013 eng013 eng013 1
eng013
31235,
20046 | 81 99 3 0 22850 ;g}fg: eng015 1
30548
eng022 eng022
gggig’ eng022 eng041
23024 81 87 1 0 23992’ 23922 eng204 | eng041 eng022 1
2716§ eng022 eng022
eng022
eng276 eng260
23821, eng276 eng276
23729 82 88 3 1 23922 24980, eng302 | eng276 eng276 1
29731 eng276 eng276
eng276 eng276

147

23729, eng013 eng013 ;
23821 82 95 1 23922 24781 eng013 eng013 eng013 1
eng008 eng008
24781
’ eng041 eng008
23831 82 86 1 23925 ig;;% eng008 eng008 eng008 1
eng008 eng008
23024, engqual eng276)
23922 82 95 3 23821 23729 57169 eng041 eng276 engqual 1
eng183 eng183
gigg}' eng183 eng183
23925 82 88 14 23831 o5 476’ eng041 | eng183 eng183 1
25515 eng183 eng183
eng183
23945, eng121 engi21
23942 82 113 19 23024 23992, eng106 | eng121 engi21 -1
27169 engi21 engi21
o e
23945 82 110 5 23024 igg%% eng106 eng177 eng177 -1
eng177 engl177
engl177 engl177
23942, eng177 engt77
23992 82 113 5 23024 23945, eng079 | eng177 engl177 -1
27169 eng177 engl177
engi177
eng234 engqual
eng222 eng222
eng234 eng234
24659 83 88 10 25053 24926 eng183 eng234 eng234 1
eng234 eng234
eng234

148

Sgggé’ eng021 eng021
25515’ eng021 eng021
24781 83 88 4 23925 23821’ eng183 | eng021 eng021 1
25481’ eng021 eng021
20826 eng021
eng234 eng222
25463, eng234 eng234
24659, eng234 eng234
24926 | 83 88 10 24027 | gpoos | englss en3234 en3234 1
25481 eng234 eng234
eng234
eng183 eng183
24926, eng183 eng183
24927 83 88 14 24926 25463 eng183 eng183 eng183 1
eng183
eng302 eng310
eng310 eng310
eng310 eng310
eng310 eng310
24980 83 88 3 23729 eng178 eng275 eng302 1
eng302 eng302
eng302 eng302
eng302 eng302
eng234 eng234
25053 83 95 10 24659 24926 eng073 eng234 eng234 -1
eng234 eng234
25463 84 88 10 24927 24926 eng122 | eng234 eng234 1
eng234 eng234

149

eng183 eng183
23831, eng183 eng183
25476 84 88 19 2 23925 24781, eng183 | eng183 eng183 1
25515 eng183 eng183
eng183
eng183 eng183
24926, eng183 engi183
25481 84 88 10 1 24781 eng183 eng183 eng183 1
eng183 eng183
| |t O
25515 84 88 20 2 23925 24781, eng183 18 1 1
25476 eng183 eng183
eng183 eng183
eng275 eng302)
26117 85 85 3 0 22946 eng318 eng275 eng275 1
26331 3 -1 26333 eng168 eng168
29711, eng244 eng244
26333 85 90 3 2 26331 29226, eng244 | eng244 eng244 -1
27023 eng244 eng244
27023 86 95 3 0 26333 eng301 -1
eng248
eng248 eng248
28213, eng248 eng248
27027 86 91 19 3 28695 58846 eng248 eng248 eng248 1
eng248 eng248
eng248 eng248
23942,
23945, eng121 engi21
27169 86 113 19 1 23024 23992, engl177 eng121 engi21 1
23922

150

28007,

eng176 eng176
eng176 eng176

27585 86 91 19 4 30143 eng087 eng176 eng176 1
engi76
27952 company?2
27592 86 98 1 0 31966 eng343 | eng005 eng005 0
company2
eng030 eng030
eng030 eng030
27627 86 91 19 3 28878 eng030 engoso eng030 1
eng030 eng030
eng176 eng176
27656 | 86 87 19 0 28528 | 28428 | eng087 engwe engwe -1
31966 28601, company?2
27952 87 98 1 0 3196f 30501, eng087 | eng005 eng005 0
27592 company?2
eng301 eng168
27585 eng301 eng301
28007 87 91 3 2 28215 eng301 | eng301 eng301 1
eng301 eng301
eng301
28067,
28428, eng013 eng013
28531, eng013 eng013
28009 87 90 1 0 30148 28821, eng013 eng013 eng013 1
30465, eng013
30548
28009, eng176 eng176
28067 3 3 28186 eng176
eng087 eng087
28788, eng087 eng087
28122 | 87 91 19 2 28153 | o700 | engl76 eng%? engos7 1

eng087 eng087

151

28153

87

89

28122

29711,
28213,
28878

eng244

eng244
eng244
eng244
eng244
eng244

eng168
eng244
eng244
eng244

28162

35

28601

eng087

eng087

28166

28567

eng251

28186

87

91

19

28529

28067

eng176

eng176
eng176
engl176
engi176

eng176
eng176
eng176
eng176

28187

87

o1

19

28213

eng176

eng176
eng176
eng176
eng176

eng176
eng176
eng176
eng176

28213

87

91

28187

28007,
28153,
27027

eng301

eng301
eng301
eng301
eng301
eng301

eng301
eng301
eng301
eng301
eng301

28428

87

91

19

28531,
28821

27656,
28009

eng299

eng176
eng176
eng176
engi176

eng176
eng176
eng176
engi176

28528

87

91

27656

eng168

eng294
eng294
eng294
eng294

eng294
eng294
eng294

28529

87

89

28186

29711

eng168

eng244
eng244
eng244

eng244
eng244
eng244

152

eng294 eng294
eng294 eng294

28821
’ eng294 eng294
28531 87 91 3 2 28428 22%%(;98, eng168 eng294 eng294 1
eng294 eng294
eng294
eng013 eng013
29538, eng013 eng013
28567 | 87 90 1 0 09547 | 28166 | eng087 | 10613 engo13 !
eng013
27952, company?2
28601 87 98 1 0 31972 28162, eng087 | eng005 eng005 0
31973 company?2
eng309
eng309 eng309
28695 | 87 92 19 0 27027 eng309 eng309 eng309 1
eng309
eng013
29226
’ eng013 eng013
28696 | 87 92 1 0 22%27% eng013 | (13013 eng013 1
eng013
28788 3 -1 28122 eng294 eng294
28790 3 -1 28122 eng294 eng294
28531 eng244 eng244
’ eng244 eng244)
28821 | 87 95 3 0 28428 %‘;‘;‘:‘3’ eng168 | n9o44 engods 1

eng244 eng244

153

28846

87

92

19

29399

27027

eng321

eng321
eng321
eng321
eng321
eng321
eng321

eng321
eng321
eng321
eng321
eng321
eng321

28878

87

92

27627

28531,
28153

eng244

eng244
eng244
eng244
eng244

eng244
eng244
eng244
eng244

29226

88

92

28696

29731

29227,
29744,
26333,
30126,
32289

eng106

eng301
eng301
eng301
eng301
eng301
eng301

eng301
eng301
eng301
eng301
eng301

29227

88

92

28696

29226,
29744

eng106

eng299
eng251
eng299
eng299
eng299

eng311
eng299
eng299
eng299
eng299

29353

88

98

19

29826

eng264

eng195
eng195
eng195
eng195
eng195
eng195

engi21
eng195
eng195
eng195
eng195

29399

88

95

19

28846

eng140

eng176
eng176

eng176

154

29538

88

92

30344,

28567 | 30614

29547

eng106

eng176
eng176
eng176
eng176
engl176

eng087
eng176
eng176
eng176

29547

88

92

28567

29538,
29711

eng106

eng043
eng275
eng244
eng043
eng043
eng043
eng043
eng043

eng275
eng244
eng244
eng043
eng043
eng043
eng043

29711

88

92

30548

26333,
28153,
28529,
28821,
29547,
30148

eng244

eng244
eng244
eng244
eng244
eng244

eng244
eng244
eng244
eng244
eng244

29731

88

92

29226

23729

eng376

eng301
eng301
eng301
eng301
eng301
eng301

eng275
eng301
eng301
eng301
eng301
eng301

29744

88

91

19

28696

29226,
29227

eng299

eng299
eng299
eng299
eng299

eng299
eng299
eng299
eng299

155

29826

88

92

24781,
29353

eng275

eng264
eng264
eng264
eng264
eng264

eng264
eng264
eng264
eng264
eng264

30126

88

92

29226

eng301

eng301
eng301
eng301
eng301
eng301
eng301

eng301
eng301
eng301
eng301

30143

88

92

19

27585

eng030

eng030
eng030
eng030
eng030

eng030
eng030
eng030
eng030

30148

88

95

28009

29711

eng106

eng244
eng244

eng244

30344

89

92

19

29538

30614

eng176

eng176
eng176
eng176
eng176
engi176

eng176
eng176
eng176
eng176

30465

61

11

28009

eng421
eng421

eng421

30466

68

11

30503

eng013

eng013

30501

98

30503

27952

eng013

company2

eng005

eng005

company2

30503

81

92

30501

30466,
30548

eng013

eng013
eng013

eng013

eng013
eng013

156

30548

81

92

29711

28009,
30503,
30771,
22946,
31471

eng296

eng296
eng296
eng296
eng296
eng296
eng296
eng296
eng296

eng296
eng296
eng296
eng296
eng296
eng296
eng296

30614

81

92

14

29538

30344

eng017

eng017
eng017
eng017
eng017

eng017
eng017

30771

82

92

30548

eng013

eng013
eng013
eng013

eng013
eng013

31235

82

92

22946

eng019

eng043
eng043
eng043

eng043
eng043

31471

82

92

3]

30548

eng140

eng244
eng244
eng244

eng244
eng244
eng244

31966

82

96

19

27952 | 32645

31967,
27592,
31972

eng087

eng251
eng176
eng251
eng251
eng251
eng251

eng087
eng176
eng251
eng251
eng251

31967

82

96

19

27952

31966,
31973

eng087

eng251
eng251
eng251
eng251
eng251
eng251

eng087
eng251
eng251
eng251
eng251

157

31972

82

95

19

28601

31966

eng087

eng251
eng251

eng251

31973

82

95

19

28601,
31967

eng087

eng251
eng251

eng251

32289

82

92

29226

eng296

eng296
eng296
eng296
eng296
eng296
eng296

eng296
eng296
eng296
eng296

32645

83

96

14

31966

eng261

eng261
eng261
eng261
eng261
eng261

eng261
eng261
eng261
eng261
eng261

158

