
Distributed Naming in a Factored Operating

System

by

Nathan Beckmann

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

OCT 5 2010

LIBRARIES

B.S. Computer Science, University of California, Los Angeles (2008)
B.S. Mathematics, University of California, Los Angeles (2008)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010 ARCHNES

© Nathan Beckmann, MMX. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author
Departm2

Certified by......

of Efctrical Engineering and Computer Science
S ptember 3, 2010

.....
Anant Agarwal

Professor
Thesis Supervisor

A ccepted by
Terry Orlando

Chairman, Department Committee on Graduate Theses

Distributed Naming in a Factored Operating System

by

Nathan Beckmann

Submitted to the Department of Electrical Engineering and Computer Science
on September 3, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

A factored operating system (fos) is a new operating system design for manycore and
cloud computers. In fos, OS services are separated from application code and run
on distinct cores. Furthermore, each service is split into a fleet, or parallel set of
cooperating processes that communicate using messages.

Applications discover OS services through a distributed, dynamic name service.
Each core runs a thin microkernel, and applications link in a user-space library called
libfos that translates service requests into messages. The name service facilitates
message delivery by looking up service locations and load balancing within service
fleets. libfos caches service locations in a private cache to accelerate message delivery,
and invalid entries are detected and invalidated by the microkernel.

As messaging is the primary communication medium in fos, the name service
plays a foundational role in the system. It enables key concepts of fos's design, such
as fleets, communication locality, elasticity, and spatial scheduling. It is also one of
the first complex services implemented in fos, and its implementation provides insight
into issues one encounters while developing a distributed fos service.

This thesis describes the design and implementation of the naming system in fos,
including the naming and messaging system within each application and the dis-
tributed name service itself. Scaling numbers for the name service are presented for
various workloads, as well as end-to-end performance numbers for two benchmarks.
These numbers indicate good scaling of the name service with expected usage pat-
terns, and superior messaging performance of the new naming system when compared
with its prior implementation. The thesis concludes with research directions for future
work.

Thesis Supervisor: Anant Agarwal
Title: Professor

4

Acknowledgments

I would like to thank Prof. Agarwal for being an excellent advisor and my colleagues

on the fos project for discussing ideas and providing the system in which this research

was conducted. In particular, I would like to thank Harshad Kasture for discussing

numerous bootstrapping issues and design decisions, and Charles Gruenwald III for

discussing usage of the name service.

I would like to thank my girlfriend, Deirdre Connolly, as well as my family, Ed,

Shelley, and Jessica, for providing love and support. Finally, I would like to thank

Leela Cat for providing a much-needed distraction.

6

Contents

1 Introduction 13

2 Overview of fos 17

2.1 System architecture . 17

2.2 Messaging . 19

2.3 F leets . 21

2.3.1 Elasticity .. 23

2.3.2 Scheduling . 23

2.4 Implementation . 24

3 Motivation for a Name Service 27

4 Design 29

4.1 Application Interface . 29

4.2 Messaging . 34

4.2.1 Mailbox Structure . 34

4.2.2 Name Service . 36

4.2.3 User-space Name Cache . 37

4.2.4 Message Delivery . 38

4.3 Name Service . 40

4.4 Distributed State . 44

4.4.1 Programming Model . 45

4.4.2 Code Flow . 47

4.4.3 Concrete Example . 52

4.4.4 Management. 53

4.4.5 Summary . 55

5 Implementation 57

5.1 Scop e . 57

5.2 Bootstrapping . 59

5.3 Development Issues . 62

5.4 Experiences . 65

6 Results 67

6.1 Methodology . 67

6.2 Micro-benchmarks . 68

6.3 End-to-End . 72

6.4 Discussion . 74

7 Future Work 77

7.1 Expectations versus Reality . 77

7.2 Local Sub-domains . 77

7.3 Fairness in Conflict Resolution . 78

7.4 Bootstrapping Cloud Computers.. 79

8 Related Work 81

8.1 Full System . 81

8.2 Naming and Distributed Data . 83

9 Conclusion 85

List of Figures

1-1 Introduction to name service . 14

2-1 System overview . 18

2-2 Messaging system . 20

4-1 Two-phase commit code listing 47

4-2 Arbiter code listing . 49

4-3 Insert code listing . 52

6-1 Lookup results . 68

6-2 Registration results . 69

6-3 Registration results under contention 71

6-4 Messaging performance . 72

6-5 File system results . 73

10

List of Tables

4.1 M essaging API . 30

4.2 Nam e service API. 35

4.3 Name service management API . 41

4.4 Distributed data store API. 42

4.5 Microkernel name registration API 43

4.6 Distributed data store management API 45

4.7 Modify lock API........ 54

12

Chapter 1

Introduction

fos is a new research operating system targeted at manycore processors and cloud

computers. These two emerging areas have introduced unprecedented hardware par-

allelism to the OS. In multicore, research chips from major manufacturers already

have 32 or 48 cores, and embedded vendors currently offer general-purpose processors

with 64 or 100 cores. Within a decade, chips will be available with hundreds of cores,

and research prototypes will have thousands. Similarly, the cloud has brought large

numbers of cores within a single logical system. However, current cloud solutions

create artificial barriers in the management of these systems by introducing a virtual

machine layer. fos eliminates these barriers by using a single OS image across multiple

computers in a cloud.

Traditional, monolithic OSes were designed in an era of uniprocessors, and their

design reflects this. These OSes time multiplex OS processing with application code

via a system call interface. This design is extremely efficient with processor time,

but it neglects other factors which are increasingly important in multicore; e.g., data

locality (cache behavior), unnecessary data sharing, and performance degradation

due to lock contention within a single service. Massive parallelization efforts have

begun in the monolithic OS community, but it remains unlikely that monolithic OSes

represent the optimal design for manycore and cloud computers.

fos addresses these scalability challenges by factoring the operating system into

individual services, each of which run independently of each other on separate physical

5~ File System Fleet

File System)O (D Server #1

Name Server

File System
Server #2

. ------------- I

Figure 1-1: Using the name service to access a file system. Application requests
are translated through libfos into messages, whose routing is facilitated by the name
service.

cores. Additionally, fos splits each service into a fleet of cooperating processes, which

in aggregate implement the service. For example, in a fos system there will be a name

service fleet, a scheduling service fleet, a file system fleet, etc.. Factoring the OS into

fleets provides a natural framework in which to address scalability, as each service

is now an independent entity. In summary, fos is a collection of distributed systems

which collectively implement a traditional OS interface.

fos services interact with applications and each other exclusively through messages

(in particular, they do not share memory). This is done to clearly expose sharing of

data, which can often become scalability bottleneck, as well as to provide a com-

munication mechanism that can be implemented on a variety of architectures. This

is important in order to support cloud computers, embedded non-shared-memory

systems, and future architectures where global shared memory may prove inviable.

Applications link in a user-space library, libfos, that translates requests to services

into messages. libfos maintains a cache of service locations that are discovered via

a dynamic, distributed name service. Figure 1-1 shows the name service in action.

....................

The system contains an application, a name service fleet with a single member, and

a file system fleet with two members. The application makes a request to the file

system, which is translated into a message in libfos. libfos messages the name service

to resolve a member of the file system fleet, and the name server responds with a

specific member of the fleet. This member is subsequently messaged and responds to

complete the request.

As messaging is the primary communication medium in fos, the name service plays

a foundational role in the system. Its performance is paramount, as the service is often

on the critical path to message delivery. Furthermore, the name service enables some

of the main ideas in fos: service fleets, by load balancing among several members of

a fleet; spatial scheduling, or layout of processes within the system; and elasticity, or

dynamically growing and shrinking fleets to reflect the current environment. Finally,

the name service simplifies the construction of some services (e.g., network stack) by

allowing them to offload some of their distributed state into the naming system.

This thesis discusses the design and implementation of the naming system in fos.

This includes both the name service itself and the naming/messaging library in libfos.

In order to give high performance, it is necessary for applications to privately cache

responses from the name service. However, since the name space is being constantly

updated, these cached entries will become invalid. Therefore, there must exist error

detection and recovery mechanisms to guarantee correct behavior. This design spans

the messaging library and the name service, and both must enter into a contract in

order to yield a functional system.

The name service is also one of the first complex services implemented in fos,

and certainly the service that has the most distributed state. The experience of its

implementation therefore gives insight into developing distributed OS services. The

implementation involved several bootstrapping issues unique to the name service, but

many of the difficulties were generally applicable.

The major contributions of contained herein are as follows:

o This thesis presents the complete design of the naming system, including the

name service fleet and messaging in libfos. It demonstrates how the name service

enables fleets and simplifies their construction.

" This thesis presents the design of the first distributed key-value store in fos, and

experiences gained from its development.

" This thesis serves as evidence that fleets are a viable design for foundational OS

services, and that their performance and scalability can exceed naive, monolithic

implementations.

This thesis is organized as follows: Chapter 2 overviews the design of fos to give

context for later discussion. Chapter 3 motivates the name service in light of fos's

design. Chapter 4 covers the design of the name service, including its external in-

terface and internal algorithms and data structures. Chapter 5 discusses experience

gained while implementing the name service. Chapter 6 presents results for the name

service. Chapter 7 discusses future research directions. Chapter 8 discusses related

work, and Chapter 9 concludes.

Chapter 2

Overview of fos

fos addresses OS scalability by implementing OS services as independent distributed

systems running on separate cores from applications. fos employs a microkernel de-

sign in order to factor traditional OS services into user-space, where they are further

split into fleets. A user-space library, libfos, provides messaging functionality for

both applications and services and transparently multiplexes different message deliv-

ery mechanisms behind a unified messaging API. This chapter gives an overview of

fos's system architecture that enables this goal. The central concepts in designing

fos services are discussed next, and the state of the current fos implementation con-

cludes. This chapter is a review of the fos project and represents the work of many

contributors. Details can be found in [26, 27].

2.1 System architecture

Figure 2-1 shows a high-level depiction of a manycore fos system. Several applications

are running, and OS services run on distinct cores from the applications. The OS

is split into individual services, each of which is further parallelized into a fleet of

cooperating servers. Fleet members are distributed throughout the chip to minimize

communication costs with applications. For example, consider the file system fleet

(shown as FS in the figure). This fleet has four members which are dispersed over

the chip. The fleet members must collaborate in order to provide the interface of a

PAFile system

pF libfos

U ' microkernel

Name Server

libfos

K 1 1microkernel

Application 5

File System Server, fleet member libfos
Block Device Driver
Process Management server, fleet member
Name server, fleet member
Network Interface

E] Page allocator, fleet member
Applications

Figure 2-1: A depiction of a typical manycore fos system.

single file system to applications.

For the remainder of the thesis, "fleet member" and "server" both refer to pro-

cesses that implement an OS service, as opposed to an "application," and "process"

is used when discussion applies equally to servers and applications.

Within a single core, each application or service runs atop a minimal microkernel

as shown in Figure 2-1. This microkernel provides protection (e.g., of page tables) via

a capability system and a basic messaging delivery mechanism. The microkernel must

also handle hardware interrupts, faults, and certain bootstrapping operations. This

thesis improves upon previously published work in fos [26, 27] by factoring naming

out of the microkernel into libfos.

Whenever possible, functionality is moved into user-space in order to exploit fos's

service model. For example, the handling of network packets is exported to the

network interface service. The microkernel receives interrupts from the network card

and messages the network interface service with the raw data, where processing takes

.....................

place. The process management service also handles many tasks that are typically

found in the kernel, even in microkernel designs, such as setting up the page table of

a new process.

Applications interact with fos via a library layer, libfos. libfos consists of two

parts: (i) common code that is needed by all applications and services, such as mes-

saging and naming; and (ii) library components from each OS service that provide

local functionality for applications (e.g., caching) and translate requests into messages

to the service. OS services themselves are implemented atop libfos, but do not com-

monly exercise the library components of other services. However, because the OS is

implemented as essentially unprivileged, user-space processes, services can make full

use of other components of the OS if needed. For example, the process management

service uses the file system to load programs off disk, and all services use the name

service identically to implement messaging.1

2.2 Messaging

The name service is intimately related to fos's messaging system, and the behavior of

the name service is heavily influenced by the guarantees that the messaging system

provides. Therefore, it will be discribed in some depth to give proper context for later

discussion.

fos uses messages as the primary communication medium between applications

and the OS as well as within fleets themselves. Although fos supports shared memory

for applications, OS services interact exclusively through messages. This is done for

several reasons: Although perhaps more difficult to implement, messaging explicitly

shows what data must be shared, and therefore it can lead to better encapsulation

and early consideration of scalability bottlenecks. More importantly, messaging can

be implemented on a wide variety of architectures and systems. In particular, for

multiple-machine fos systems (e.g., cloud computers) shared memory is unavailable,

and one is forced to use a message-passing model. Embedded systems are often

'Including, to a large extent, the name service itself (Section 5.2).

implemented without shared memory support, and it also may be the case that global

shared memory proves unscalable in large multicores. Message-passing provides the

greatest flexibility in the underlying hardware.

fos's messaging system uses a mailbox-based application program interface (API).

A service (or application) creates a mailbox on which it can receive messages. These

mailboxes are registered with the name service using a hierarchical name space much

like a UNIX path or web address. For example, the file system may register its

mailbox as /sys/f s. In order to send to a service, the sender must have the name2 of

its mailbox and an associated capability. These capabilities are created upon mailbox

creation, or can be manually created and added by request. The messaging API then

contacts the name service and microkernel as necessary to complete message delivery.

Application fos server

libc POSIX 2b libc POSIX

4. -Userland Messaging (URPC) 4.0 -Userland Messaging (URMt)
-0P User-Space Naming Cache (UNC 04 se-Sggeg.Nagning Q~che

Microkernel -uk Naming Cachecoene ain ah

Core 1 Core 2

Figure 2-2: fos's messaging system. This figure shows the paths followed by a message
sent within a multicore. Two paths are possible, either through the microkernel or
through an optimized user-space channel.

As shown in Figure 6-4, fos currently supports two implementations of the mes-

saging system within a multicore. These delivery mechanisms are transparently mul-

tiplexed behind the messaging API, so an application need not concern itself with the

physical placement of services with which it communicates. For performance reasons,

however, this may be important. Therefore, a key focus of fos is proper allocation of
2For performance, the system actually uses hashes of the textual name, termed an alias.

............ - ------ ---- - :::: :: :..- -- .

cores to OS services and placement of services to minimize communication costs.

The default delivery mechanism uses the microkernel to deliver messages from the

sender directly into the receiver's mailbox. This mechanism traps into the microker-

nel, which checks the capabilities by reading from the destination's address space,

and delivers the message by copying the data into the mailbox's receive buffer.

For shared memory machines, an optimized path exists that avoids the overhead

of trapping into the microkernel. In this mechanism, a page is shared between the

sending and receiving processes, called a channel. This page is treated as a circular

queue, and messages are sent by copying data into the page. Messages are received

by copying data out of the queue into a buffer. The second copy is necessary to

free space for further messages and guarantee that the message isn't modified by

the sender after delivery. This mechanism requires a channel to be established by

the microkernel. Upon creation, appropriate capability checks are performed. If the

capabilities of the mailbox are modified, then all channels must be unmapped to give

proper behavior. Although creating the channel is a fairly expensive operation, the

steady-state performance of messaging is greatly improved.

A third delivery mechanism exists for multi-machine fos systems. This uses a sep-

arate proxy service and network connections (TCP/IP) to deliver messages between

machines. By bridging messaging across machines, fos can transparently span mul-

tiple machines under a single OS.3 This aspect of fos is not the focus of this thesis,

however, but is discussed further in [27].

2.3 Fleets

An OS service in fos is constructed as a fleet: a cooperative set of processes which, in

aggregate, provide a single service. For example, within a single fos system, there will

be a name service fleet, a page allocation fleet, a file system fleet, etc.. Because of the

message-passing architecture of fos, services are effectively implemented as distributed

systems. Fleets are the main contribution of fos over previous microkernel operating

3So long as applications use messaging and do not rely upon shared memory.

system designs, and we believe they are the key to scaling services to hundreds or

thousands of cores. These ideas are discussed at length in [26], but this section briefly

discuss the main ideas. This discussion describes the high-level goals, and the next

chapter demonstrates how the name service enables each concept in this section.

In order for this design to function well in a multicore environment, the right ser-

vices must be available when and where they are needed. There must be mechanisms

to change fleet size dynamically to meet changing demand in the system. In fos, this

is termed elasticity. Furthermore, once cores are divided among fleets, they must be

spatially scheduled in the best manner to minimize communication overheads.

Because of the scale of future multicores and the cloud, it is necessary to parallelize

within each OS service; factoring the OS into separate services alone is insufficient.

Many important workloads in the cloud (e.g., memcached, Apache) spend the majority

of their time in the OS even on present multicores [7]. As core count increases, the

demand on the service will increase proportionally.

Therefore fleets are designed with scalability foremost in mind. Services must

scale from relatively few cores to hundreds or thousands. This is necessary in order

to span differently-sized multicores and the cloud, where essentially arbitrarily large

amounts of resources can be under management. As such, all services are designed

from square one to be parallel as well as scalable. This often leads to fundamentally

different design decisions than a simple sequential approach to the service.

In order to simplify handling simultaneous transactions, fleets are written using a

light-weight cooperative threading model. This threading model provides a dispatcher

that integrates with the messaging system to provide threads for each transaction

processed by the service, and the ability to sleep until a response message arrives

for remote procedure call (RPC) semantics. This model also enables lock-less de-

sign, as unlike kernel-level threading, threads are never preempted by other threads.

fos also provides an RPC generation tool that parses standard C header files and

generates marshalling routines to enable function-oriented code. This model allows

non-conflicting transactions to be pipelined in the service to maximize utilization.

Fleets are also self-aware, meaning they monitor their own behavior and the envi-

ronment, and adapt their behavior accordingly. Although some external actions will

control behavior, such as the allocation of cores to the service and the spatial layout

of processes, fleets have many actions they can perform internally to adapt behavior.

For example, active transactions can be migrated to under-utilized members or mem-

bers that would have lesser communication cost. Additionally, if the scheduler has

allocated a fleet fewer cores than it has members (i.e., some members are being time-

multiplexed on a single core), the fleet can shrink its size in order to avoid context

switches.

2.3.1 Elasticity

In addition to handling peak demand, OS services must scale to match changing

demand. Demand on the OS is rarely constant. Changes are due to phases in appli-

cation behavior, new applications being run, or changes in dynamic workload (e.g.a

web server).

Fleets are elastic, meaning they grow and shrink in order to match demand in

the environment. This requires support from fleets themselves in order to add and

remove members dynamically, including migrating state of active transactions.

Elasticity is closely related to resource allocation, specifically the allocation of

cores to services and applications. A scheduling service makes decisions based on per-

formance metrics (service utilization, message patterns, application heartbeats [16],

etc.) on how to allocate cores in the system. Fleets then grow or shrink to meet their

allocation.

2.3.2 Scheduling

Closely related to elasticity is spatial scheduling. The scheduling service in fos decides

the spatial layout of processes in order to maximize utilization and minimize commu-

nication costs. Due to the increasing heterogeneity in communication costs within a

multicore and the disparity of intra- and inter-machine communication, placing pro-

cesses in a way that maximizes locality is important to performance. Early results

have shown that a modest heterogeneity of 48% can lead to end-to-end performance

difference of 20% for some OS benchmarks [26]. Future multicores and the cloud have

much higher heterogeneity, and therefore good scheduling is extremely important.

The scheduling problem in fos relates to spatial layout of processes, but fos does

support basic time multiplexing. The microkernel on each core provides a simple

process scheduler. This is useful for placing low-utilization, non-performance-critical

services on a single core to maximize core availability. It is also much less expensive to

migrate processes onto a single core than to transfer state between processes. There-

fore, a "cheap" way to scale fleet size is to change the number of cores allocated to

the service (i. e., forcing time multiplexing) without changing the number of processes

in the fleet. Depending on the granularity with which layout is updated, this could

be an important tool to prevent thrashing fleet size while still controlling the layout

effectively. It is also possible that some services will require a member to stay active

(say, because of a pending transaction) and will not be able to shrink on demand.

Scheduling can be divided into two (possibly interdependent) problems: allocation

and layout. The allocation is problem is how many cores to allocate each service/ap-

plication. The layout problem is how to place processes in the system to optimize

performance, power, etc.. This is currently an active area of research in fos.

2.4 Implementation

An implementation of fos is under development and currently boots on x86 multicores.

The implementation runs as a paravirtualized OS under Xen [4] in order to facilitate

its goals as a cloud OS, as the cloud management platforms Eucalyptus [20] and

Amazon EC2 [13] only support Xen virtual machine images. Running under Xen has

the additional advantage of limiting the need to develop hardware drivers, which is a

challenge for any research OS.

Several services have been implemented: network stack, file system, process man-

agement, page allocator, proxy service, etc.. Of these, the network stack, name

service, and page allocator are implemented as proper fleets that demonstrate good

scalability. A read-only file system fleet has been implemented to prototype ideas in

fleet design and gather initial numbers.

The current implementation contains a port of libc from OpenBSD, with support

for file descriptors, socket interface, etc.. Some full-featured applications have been

run, in particular a video transcoder that uses ffmpeg and exercises the file system

and network stack. The present limiting factor on applications is support for kernel-

level multi-threading, on which many applications rely. This is on the road map to

be implemented in the near future.

26

Chapter 3

Motivation for a Name Service

This section discusses the name service and demonstrates the foundational role it

plays in the fos ecosystem.

Messaging is the main communication medium in fos, and the name service plays

a crucial role in the messaging system. For this reason alone, the name service is a

central component of fos. The name service finds the closest fleet member for a given

service when the service is requested. It does this by routing messages from their

symbolic name to a destination mailbox. Using a level of indirection for mailboxes

provides an important convenience to users of the messaging system. This allows the

high-level purpose of the mailbox (i.e., the associated service) to be exposed and the

location to reflect the dynamic placement of the mailbox.

The name service plays many other roles in fos that heighten its importance.

It provides a mechanism for registering fleets in the name space, whereby multiple

fleet members can be registered under a single name. To take a simple example, a file

system fleet with two members could register the names /sys/f s/1 and /sys/f s/2 for

the individual members, and each of these names would be registered under /sys/f s,

the "global" file system name. When a message is sent to /sys/f s, the name service

will return one of the fleet members, say /sys/f s/i, and the message will be sent

accordingly (see example in Figure 1-1). Mappings from one name to another (e.g.,

/sys/f s to /sys/f s/i) are termed indirect, as the name mapping resolves to another

name rather than a mailbox. Likewise, name-to-mailbox mappings are termed direct.

This functionality is important to disguise from applications the precise number of

servers active in a fleet. This allows for transparent growing and shrinking of fleets,

enabling elasticity.

In servicing requests to these names, the name service effectively load balances the

fleet. The name service implements load balancing policy, but it does not determine

policy. Load balancing policy is specified by a service providing a mailbox which

responds to requests for load balancing information. Alternately, the name service

provides a default load balancing policy that favors names with lower communication

cost.

This should not be taken to claim that indirect aliases offer a completely generic

load balancing framework. Later in this thesis, I discuss instances where this policy

must be circumvented, and fos's approach to these problems. However, in many cases

this simple form of load balancing is sufficient, and furthermore gives equivalent

performance to static mapping that is aware of each fleet member [26]. At worst,

name service load balancing provides a good way to balance the initial request to a

service among members before the final load balancing decision takes place.

The name service also plays an important role in scheduling (layout). The primary

mechanism for scheduling is process migration, whereby processes are migrated to

minimize global communication cost. This can result in changing the location of a

mailbox, particularly when processes are migrated between machines.1 Consequently,

the name mapping must change to reflect the new location. The name service provides

explicit support for migration by allowing a name to become "inactive" during the

period of migration, so that messages sent to the name do not result in a fatal error.

The name service therefore plays a crucial role in scheduling, by providing the essential

level of indirection to enable process migration.

The name service plays a key role in many areas of fos, including the main active

research areas in general OS design: resource allocation (elasticity) and scheduling

(spatial layout).

'When mailbox locations must change depends on the scheme used for mailbox locations. On
shared memory machines, intra-machine migration need not change the mailbox location. More
discussion follows later in this thesis.

Chapter 4

Design

This section discusses the design of the name service and messaging system as it

relates to the name service. It begins with a high-level discussion of the messaging

interface and the different expected usage scenarios. Next, the design of the messaging

system is discussed imagining the name service as a black box. This section concludes

with the internals of the name service, and in particular a detailed discussion of the

distributed data store which stores the name space itself.

4.1 Application Interface

The main customer of the name service is the messaging system within fos, and some

of the design choices in the name service affect the usage of the messaging system

itself. The primary function of the messaging system is allowing applications and

services to send and receive messages. This is done by a libfos component that is

present in all processes. To send messages, libfos contacts the name service to resolve

the destination mailbox. libfos must also contact the name service to register and

unregister mailboxes, as well as a few other operations that are useful in particular

cases.

Table 4.1 shows the relevant portion of the messaging API. The API includes

routines which explicitly modify the name space by registering or unregistering mail-

boxes, as well as operations to read state from the name service and resolve mappings.

Routine Description
GetCanonicalAlias Returns a "canonical" alias for the mailbox. This is a

meaningless name that is unique to the mailbox. If no
canonical alias has been created, then one is requested
from the name service. This is intended to avoid un-
necessary clutter in the name space.

AliasRegisterDirect Register a direct mapping (name-to-mailbox) with the
name service. Requires direct access (pointer) the mail-
box itself, as well as appropriate capabilities.

AliasRegisterIndirect Register an indirect mapping (name-to-name) with the
name service. Requires capabilities to modify the name
space, but does not require direct access to a mailbox.

ReserveNamespace Reserve a sub-domain of the global name space. See
discussion on capabilities.

UnregisterDirect The inverse of the corresponding registration opera-
UnregisterIndirect tions.
ReleaseNamespace

AliasResolve Query the name service to resolve (dereference) a map-
ping and return the result. If the input name is a direct
mapping, this will return the input parameter, but for
indirect mapping this returns one of the names to which
the name is mapped.

Send Sends a message to a given name using a given capabil-
ity. The messaging library implicitly queries the name
service for the location of the referenced mailbox, and
does appropriate checks on capabilities.

Table 4.1: Selected subset of the fos messaging API. These operations either explicitly
or implicitly involve the name system.

Other operations implicitly involve the name service, for example sending a message,

which performs an implicit lookup through the name service. Note that in the API,

names are referred to as "aliases," because the messaging system actually deals with

hashes of mailbox names.

The bulk of the operations in Table 4.1 involve modifications to the name space,

which are guarded by capabilities. The name space itself is split into sub-domains,

just as a UNIX file system is split into folders. For example, the name /sys/f s/1 has

sub-domains of /sys/f s/1/*, /sys/f s/*, /sys/*, and /*.' The last name is referred

to as the root of the name space. In order to modify a portion of the name space,
1 /path/to/name/* is the way that sub-domains are represented within fos.

one must have the capability to modify at least one of its sub-domains. Therefore

a process in possession of the root capability has complete ownership of the name

space. These operations are essentially forwarded to the name service directly, and

bookkeeping is done within the mailbox structure itself if the operation succeeds (next

section).

The operations that explicitly modify the name space are the registration and

unregistration operations. These are used to register services in the name space, and

there are two versions: RegisterDirect and RegisterIndirect. RegisterDirect

creates a direct mapping, and is used to register individual fleet members or services

that only have a single member. It requires that the process that owns the mailbox

makes the request. This is done in order to guarantee permissions to create the

mapping and to bootstrap the registration process. 2 RegisterIndirect registers an

indirect mapping, and is used to register the global name for a service fleet. It is a

versatile mechanism that can also be used to assist in building some services, as will

be shown later. It does not require any special capabilities for the destination name.

This does not introduce a security problem because capabilities are required to modify

the name space (so an adversary can not modify sub-domains of the name space that

it does not own), and the registration process does not create additional capabilities to

send messages. To clarify, one must draw a distinction between capabilities that allow

modifications to the name space and capabilities that allow one to send messages to

a mailbox. RegisterIndirect does not create any message-sending capabilities, so

it does not allow any communication to take place that could not happen regardless.

Finally, ReserveNamespace creates a capability for a sub-domain of the name space

and claims the sub-domain in the name service.

The remaining operation, GetCanonicalAlias, makes implicit modifications to

the name space. GetCanonicalAlias provides an arbitrary, "canonical" name for

the mailbox. This is useful for local mailboxes that are owned by libfos and used

to receive responses from services. These mailboxes don't represent a meaningful

2An alternative would be to use the mailbox location to bootstrap, but the mailbox location
structure is never exposed in the messaging API, and this approach would require additional capa-
bilities.

service, so they don't need a meaningful name; they just need a way to be addressed

by the messaging system so that a response can be sent. If the canonical alias has not

been created, then the name service is queried to generate a new name. This name

is cached in the mailbox structure and subsequent operations incur no cost.

The last two operations involve reading the name space, and it is expected (and

indeed observed) that these constitute the majority of traffic to the name service.

These operations are AliasResolve and Send. The purpose of Send and its relation

to naming are rather obvious: in order to deliver a message, the messaging system

must resolve the name to a mailbox. When the destination name is a direct map-

ping, then the messaging system simply resolves the name to its mailbox location and

sends the message. When an indirect mapping is passed in, the messaging system

will resolve the name to one of the mailboxes that it eventually points to, but there

are no guarantees as to which mailbox the message will go to. In particular, there

is no guarantee that the same mailbox will receive consecutive messages, nor that

different mailboxes will receive consecutive messages. At a higher level, this means

that Send may send requests to different servers, which can interrupt stateful trans-

actions. Additionally, consecutive requests may go to the same server, so Send alone

does not provide fine-grain load balancing. This behavior allows maximum flexibility

in the name service and messaging system, but can cause problems for certain types

of services.

In order to illustrate this issue, consider a file system. fos's current prototype

file system implements a parallel read-only fleet. This fleet is parallelized in the

most naive fashion possible - simply by spawning multiple copies of the service and

registering them under a single name. There is no sharing of state between the fleet

members, and therefore if a request to a file that is opened on one member arrives at

a different member, then the request will fail. There must be some way to guarantee

that subsequent messages arrive at the same fleet member. This is an example where

name server load balancing, although desirable for the initial open() request, must

be circumvented for the remainder of the transaction.

This is where AliasResolve comes in. This routine resolves (dereferences) a map-

ping so that the final, direct mapping can be cached by the application for subsequent

message sends. The libfos file system component performs an AliasResolve on the

global file system name, and caches the result for future requests with that file. In the

example of the prototype file system, the cached result is refreshed only if no files are

open, although this could be optimized to have separate caches for each open file.3

The name service can also be used to track distributed state and greatly simplify

the implementation of some services. This is in some sense related to the prior

example, but in this case the state is being cached within the name space itself. In

this model, each transaction registers a new name to track which fleet member is

responsible for it. The prime example of this behavior is the network stack service,

which registers a new indirect mapping in the name space for each active connection

(e.g., /sys/netstack/connections/12345678). The final portion of the name is a

unique identifier for the transaction - in this case, a hash of the source IP, source

port, destination IP, and destination port. This mapping points to the mailbox of

the fleet member who is responsible for the connection.

This behavior is desirable in order to simplify the implementation of the network

interface service, the service which receives raw data packets from the wire. The

network interface service is responsible for routing packets to the correct network

stack, but is not part of the network stack fleet proper. Consequently, it does not

immediately know which member of the network stack fleet was assigned a connection

when the connection is established. It can, however, easily compute the name that is

associated with the connection by inspecting the packet.

Prior to using the name service, the network interface service had to maintain a

shared, distributed structure with the network stack fleet to track the active connec-

tions. This task alone greatly complicated the network interface service, especially

since there was no way to predict which member of the network interface service

would service the next packet from the wire. By moving the complexity of shared

state into the name service, the network interface service can focus on its assigned

3The file system name cache is distinct from the messaging name cache, although both reside in
libfos. The file system cache only deals with open files, and which file system server is responsible
for each. It implemented completely independently of the messaging system.

task, and its implementation is greatly simplified.

These examples demonstrate two contrasting uses of the name service. The key

difference is that in the file system, the originator of requests is a member of the

fos ecosystem and can cache name service lookups directly, whereas the network

interface service receives messages in an opaque manner from the wire. One can

imagine the file system using the same method of registering names for each open

file, however this is unnecessarily complex because libfos can cache the name lookup

itself. Significantly, the method employed by the network interface service changes the

expected usage of the name service to favor more registrations and unregistrations.

There are likely as-yet-undiscovered opportunities to offload distributed state into the

name service that may exacerbate this issue. For a service that is optimized for read-

only workloads (as the name service currently is), this poses challenges. However,

there are some promising directions of investigation to mitigate or eliminate this

problem (Chapter 7).

4.2 Messaging

As far as naming is concerned, the messaging system consists of four parts: the mail-

box structure, the name service external API, the user-space name cache within libfos,

and the message delivery mechanisms. This section discusses the responsibilities as-

signed to each component in order to create a functional, high-performance messaging

implementation.

4.2.1 Mailbox Structure

The mailbox structure is discussed first, as this structure is used by the remaining

components and can be discussed in isolation. Mailboxes are generally created in order

to provide a service, as in a file system registering its mailbox as /sys/f s. Mailboxes

can also be created for internal fleet traffic, as the name server does to manage

updates to the name space (discussed later in this chapter). Lastly, as mentioned

in the discussion of GetCanonicalAlias, mailboxes can be created within libfos as

Operation Description

Lookup Read the information stored for a given name.

Register Register a new name. Requires capabilities to modify the
name space, information to be registered, an optional load

balancer, and some flags. Returns a capability to unregister
this name.

Unregister Unregister a name. Requires capability for that name re-
turned by Register.

RegisterTemporary Allocate a meaningless, unique name and register the given

destination under this name. Returns the name and associ-
ated capabilities.

Reserve Reserve a sub-domain of the name space. Requires capabil-
ities for a parent domain and returns a new capability for
the sub-domain.

Table 4.2: The public interface of the name service.

essentially anonymous structures that are used to receive messages from services.

A new mailbox structure is instantiated for each mailbox created, and this struc-

ture is always registered with the microkernel. The mailbox structure contains buffers

for different message delivery mechanisms and the location of the mailbox. In order

to validate message sends, it also contains a list of valid capabilities for the mail-

box and a list of valid names for the mailbox. The delivery buffers are specific to

each of the intra-machine delivery mechanisms: microkernel and user-space channels.

These fields are platform-specific, and on x86 they are implemented as shared memory

regions. For microkernel messaging, the message queue is allocated upon mailbox cre-

ation and guarded by locks. An overview of user-space channels was given previously,

and details are outside the scope of this thesis.

When a mailbox is created, it is registered with the microkernel. The microkernel

keeps a table of all mailboxes in the system in order to validate message sends and

channel creations. The microkernel fills in the location field when the mailbox is

registered and inserts the mailbox into its table.

4.2.2 Name Service

In the context of this discussion, the name service is treated as a black box and plays

a simple role. The public interface of the name service is given in Table 4.2. Lookup

queries the name service for information that is stored for a given name. This is

used by Send and AliasResolve to read the global name space. If Lookup succeeds,

it returns a structure that contains: the type of mapping (direct or indirect), the

destination mapped to (mailbox location or another name), and an expiration time

for the result. The expiration time is included so that the user-space name cache

will refresh the name at regular intervals. This is good practice in order to load

balance more effectively and to preemptively detect stale mappings for infrequently-

used names that may have changed. The expiration interval is set to be fairly large

in order to incur minimal overhead.

Register writes a new name to the name space. This collapses the direct and

indirect operations in the messaging API. This operation either registers a new name,

if it has not been previously registered, or updates a previous registration, say in the

case of adding a new destination to an indirect mapping. If the name has been

registered for a direct mapping, then Register will fail. It requires capabilities for

modifying the name space, and if a name is being updated then the capability for the

name must be presented as well. For example, imagine one tries to register /sys/f s

to point to /sys/f s/2, and it already points to /sys/f s/1. Then one must present

capabilities for both /sys/fs/* (or a parent sub-domain) and /sys/fs.

Register also accepts an optional load balancer parameter. This parameter is

a name and capability for a mailbox that will respond to queries for load balancing

names. If this load balancer is not provided, then the name service defaults to a

load balancing policy that serves names in approximate inverse proportion to the

communication costs.4

Unregister is the inverse operation of Register and deletes a specific name-to-

destination mapping. In the case of an indirect mapping with multiple destinations,

4 Some heuristics are used to avoid crossing discrete jumps in communication cost, so that local
fleet members are favored.

a single Unregister operation will not delete the name entirely.

Register and Unregister also accept flags that can activate or de-activate an

existing registration. This is useful during process migration to temporarily disable

a registration without causing fatal errors in the messaging system, as the name will

re-appear eventually and the Send should not fail.

RegisterTemporary is used in the registration of canonical names, and simply

registers a unique but meaningless name to a given destination and returns the name.

Finally, Reserve is the corresponding operation to ReserveNamespace in the mes-

saging API, and simply claims a sub-domain of the name space. It is listed separately

from Register because it requires far fewer parameters. Unregister is also respon-

sible for removing sub-domain reservations.

This API is given presently for descriptive purposes in the discussion of the messag-

ing system. The next section (Section 4.3) discusses the design behind this interface.

4.2.3 User-space Name Cache

Every fos process contains a user-space name cache in libfos. This cache is private to

the process and accelerates message delivery by eliminating a round-trip delay to the

name service in order to send messages. Some caching of name lookups is necessary

for messaging performance, and having a per-process cache offers advantages over a

global cache. A per-process (or per-thread) cache improves load balancing over a

global cache by having multiple, different responses cached for a given name. It is

also potentially faster than a global cache by keeping all data within the process's

hardware cache. This comes at the cost at missing more frequently in the name cache,

as names are not shared between processes. However, since the name cache does not

need to evict names due to capacity or conflicts, the only misses occur because invalid

entries or names that have never been accessed. Because most applications have a

well-defined, limited set of names they access, this overhead is negligible.

The name cache stores responses to Lookups from the name service. Additionally,

the name cache stores whether any channels have been created for a particular name.

This latter function necessarily occurs in the address space of the process, as the sole

purpose of user-space channels is to avoid overhead of trapping into the microkernel.

The name cache is filled on Send and AliasResolve as needed, or whose entries

have expired. When a Send occurs on an indirect mapping, then multiple Lookups to

the name service may be required to resolve the name to a final mailbox location.

The main design principle is that the name cache only pulls from the name service.

Stated another way, the name service never pushes updates or invalidations to the

name cache. This greatly simplifies and optimizes the implementation of the name

service, as it limits the distributed state under management by the name service to

the name service fleet itself.

The approach taken by the messaging system is to optimistically assume that all

cache entries are valid. What this requires for correctness is that the message delivery

mechanisms provide error detection and recovery mechanisms. The delivery mecha-

nism must detect when a cache entry becomes invalid and, if possible, successfully

deliver the message.

4.2.4 Message Delivery

This section discusses the error detection and recovery for microkernel and user-space

message delivery. Error detection is tailored to each delivery mechanism, but each

mechanism share common themes. The basic idea is that the system must guarantee

whenever a message is sent that (i) the destination mailbox is registered under the

name to which the message was sent, and (ii) the capability is valid for the mailbox.

Error recovery is provided by the messaging library in a delivery-agnostic manner.

Complexities arise from the distributed nature of the name caches and the semantics

of indirect mappings. To illustrate this, consider the following scenarios:

An application wishes to make a request to the file system. It has previously

interacted with the file system, and at that time /sys/fs resolved to /sys/fs/2,

and this result is cached by the application in libfos. However, the fleet member

registered as /sys/f s/2 still exists but has unregistered the indirect mapping, so

that in the global name space /sys/f s no longer maps to /sys/f s/2. When the

application goes to make a request to /sys/f s, it will resolve in its private name

cache to /sys/f s/2. When the message is sent, then /sys/f s/2 points to a valid

mailbox which is registered under this name, and the application has a valid capability

for said mailbox, so the delivery succeeds. This is an error, because /sys/f s is no

longer a valid name for the mailbox, and probably with good cause (fault detected,

member is over-saturated, it is being migrated, etc.).

Another scenario involves user-space channels. Suppose an application sends mes-

sages to a mailbox and a user-space channel is created between the application and

this mailbox. The channel is cached in the name cache of the application under the

name of the mailbox. At some point, the owner of the mailbox invalidates the ca-

pability that the application is using to send messages. Without error detection, the

application can continue to deliver messages to the mailbox, even though this has

circumvented the security mechanisms.

These are examples of invalid operations that could plausibly succeed in imple-

mentations of the messaging system (indeed, they would have succeeded in previous

incarnations of fos messaging). The former represents a semantic error, and the latter

a security flaw. The former is not a security flaw, because as the mailbox is still reg-

istered as /sys/f s/2, an application could send to this name if they so desired. The

solution in the first case is that the messaging system in the application must state

its destination as /sys/f s, not /sys/f s/2, and the delivery mechanism must check

that this is a valid name for the mailbox. The solution to the latter is that either

capabilities must be checked when the message is received (the sender does not have

reasonable access to the valid capabilities), or the channel must be destroyed when

the capability is invalidated.

These solutions are the reasons that the mailbox structure contains a list of valid

names and capabilities. Because the microkernel contains a table of all mailboxes, it

has the wherewithal to validate names and capabilities, and it provides the routines to

do so. Next, I discuss the specific error detection schemes for each delivery mechanism.

Microkernel. The interface to microkernel messaging is a single system call, UkSend.

This function takes the destination name, destination mailbox location, capability,

and the data to send. This system call performs all error checks by confirming that

the name and capability are valid for the mailbox at the given location. The messag-

ing library must pass the original, intended destination as the destination name. That

is, in the first example above, the messaging library must call UkSend with /sys/f s

as the destination, not /sys/fs/2.

User-space. user-space messaging performs name and capability checks upon chan-

nel creation. Channel creation occurs through system calls, and these routines per-

form the same checks as does UkSend. When a capability or name is removed from a

mailbox, then another system call allows a channel to be shot down. This guarantees

that any time a channel is active, the name and capability it was created under are

valid for the mailbox. This addresses the second example, because the channel is

destroyed when the capability is removed. Finally, when a channel is created it must

be stored in the name cache with the intended destination (e.g., /sys/f s), not the

resolved mailbox (e.g., /sys/f s/2).

These methods provide error detection. The messaging library provides error

recovery by refreshing the name cache via the name service. If the Lookup fails, then

the name has been unregistered and the Send fails. Otherwise, the name cache is

updated, and another send is attempted. If this second attempt fails, then the Send

fails because subsequent refreshes of the name cache will result in the same behavior.

4.3 Name Service

The name service is divided into two components: the logic of the naming system,

and the distributed data store that manages the global name table. The distributed

data store consumed the bulk of the design effort, and for that reason merits its own

section. This section discusses the design of the naming system logic, and the support

required from the microkernel. In addition to the API given in Table 4.2, the name

service supports management routines that are given in Table 4.3.

These four operations manage the name service fleet and are hopefully self-explanatory.

Operation Description

Start Starts the name service by spawning a name server. Only suc-
ceeds if it has not already been called. Returns the capability
for root (/*) of the name space and a capability for protected

operations within the name service.

Stop Stops the name service. Requires the capability returned from

Start.
GrowFleet Increases the size of the name service fleet. Requires the capa-

bility returned from Start.

ShrinkFleet Decreases the size of the name service fleet (but not below a
single member). Requires the capability returned from Start.

Table 4.3: The management interface for the name service.

Start initializes the name service and returns capabilities for the root of the name

space and a capability that protects other management tasks. Start will only succeed

the first time it is called, and therefore it (and the other management operations) are

not used by libfos within a typical application. Rather, Start is called at system boot

as the first service started because messaging forms the foundation for all services in

fos. Similarly, Stop is called on system shutdown. GrowFleet and ShrinkFleet are

currently called in an ad hoc manner within the name service or in stress tests, but

ultimately these will be called by a separate elasticity service that determines core

allocation.

The name service is implemented in a completely distributed manner. No mem-

ber of the name service is distinguished in any way, except for initialization that is

performed by the first member spawned. In order to implement the API used by

the messaging system (Table 4.2), the name service interacts with a distributed data

store that contains the global name space. Its interface is given in Table 4.4. The

data store runs as an independent entity within the name service, and registers its

own mailbox to handle updates. Updates are processed in separate threads, as the

name service runs on top of the dispatcher.

All of the operations in Table 4.4 accept a name (key) and an entry (value). For

Insert and Update, the value is the new data that should be in the store. For Delete,

the value is required to confirm the version of the data that the name service was

Operation Description

Insert Inserts a new entry into the data store.
Update Updates an existing entry with new data.
Delete Deletes an entry from the data store.
Get Retrieves data from the data store.

Table 4.4: Interface to the distributed data store that manages the global name space.

operating on. Get accepts a pointer to a value structure to fill in. Entries in the data

store contain: the entry type (direct, indirect, or a reservation5); the capability that

protects modifications to the entry; and lastly, the destination mapped to the alias

(a mailbox location, or a list of names).

Next, the implementation of operations in Table 4.2 are discussed, including the

support provided by the microkernel.

Lookup. This is the simplest of the operations. It performs a Get on the data store,

and checks the type of the returned entry. If the entry is a direct mapping, then it

returns the mailbox location; if it is an indirect mapping, it randomly selects one of

the destination names and returns it; if it is a reservation then the name service treats

it as though the entry was not present (messages can't be sent to sub-domains). For

indirect aliases, random selection occurs using weights specified by the load balancer

(if present for this name) or a default scheme that favors local names.

All of the remaining operations modify the name space in some fashion. Because

of the distributed nature of the data store, it can return an error code that signifies

an inconsistent state. In these cases, the name service must restart the transaction.

This is accomplished by rewinding all changes in the current operation and recursing.

Register. Registration modifies the name space by adding new entries or modifying

existing ones. This corresponds to Insert and Update operations on the data store.

The registration process begins by checking the data store (via Get) to see if the

name exists. If so, then it checks the type of the entry and flags that were passed.

5For reservations of sub-domains such as /sys/*.

UkAddAlias Adds a name to a mailbox. Takes the location of the mailbox
to modify, as well as the name to add. This is protected by a
microkernel capability (different from previously discussed ca-
pabilities).

UkRemoveAlias Removes a name from a mailbox. Takes same parameters as
UkAddAlias.

Table 4.5: Microkernel support for indirect mappings.

For direct mappings, Register can update the entry by re-activating it if appropriate

flags are passed. For indirect mappings, Register updates the entry by adding a new

destination name. Otherwise, a new entry is created and inserted into the data store.

In order to allow for proper error detection, the name service must update a

mailbox when a new name is mapped for it. For example, if /sys/fs is registered to

point to /sys/f s/2, then /sys/f s/2's mailbox must add /sys/f s as a valid name.

This is complicated by the fact that the mailbox does not lie in the address space of

the name service, and potentially not in the address space of the requesting process

either. So whereas direct mappings can simply add the name to the mailbox structure

in libfos of the requesting process, indirect mappings require another mechanism.

This support is provided by the microkernel, in an API given in Table 4.5. These

system calls provide direct access to the name list for every mailbox. For security,

these operations are protected by a unique capability that is passed to the name

service when it registers with the microkernel (see Chapter 5).

I should briefly note that with indirect mappings it is possible to form arbitrary

mapping graphs6 , and in particular one can form cycles. This can not be allowed,

and the name service must ensure that the name space is always a directed acyclic

graph. A complete implementation can check this using standard graph algorithms,

e.g.breadth-first search, to avoid cycles. A similar procedure must be followed to add

names to each mailbox that is affected by a registration, and likewise for unregistra-

tion. However, the current implementation avoids this issue by placing a restriction

on indirect mappings that they must always point to a direct mapping (i. e., the name

6Treating names as vertices and indirect mappings as edges.

DescriptionOperation

graph contains two levels only). This restriction has so far posed no limitations on

the use of the naming system, and it can be removed as necessary.

The remaining operations are straightforward.

RegisterTemporary. This operation is built atop Register, and simply loops through

a set of meaningless names (currently in the /tmp/* sub-domain) until one is success-

fully registered.

Reserve. This is a simpler form of Register that deals with sub-domain registra-

tions only. It is a separate operation because its input parameters are few and its

logic much simpler: it attempts to register the sub-domain as a new entry, and fails

if the name is already registered.

Unregister. The discussion of Register applies equally here, except instead of

inserting new entries into the data store, Unregister deletes them. Unregister is

the inverse operation of both Register and Reserve.

4.4 Distributed State

The distributed data store is the most complicated component of the name service,

and it consumed the bulk of the design and implementation effort. The interface was

given in Table 4.4, and additional management operations are given in Table 4.6.

Except for bootstrapping issues which will be discussed at length in the next chapter,

this data store is generic and could be used to store any key-value mapping. This

section discusses the design of the data store, starting with the framework for reach-

ing consensus, with a specific operation given as an example, and concluding with

management operations.

The expected usage of the name service heavily favors reads. It is difficult to make

precise statements, as fos cannot currently run a full suite of large-scale applications,

but intuitively it is clear that most applications and services will register relatively

Operation Description

Init Initialization operations. Initialization is separated into two op-

Register erations for bootstrapping reasons.

Shutdown Inverse of initialization operations.
Unregister
ReserveIndex Allocate the next available index for a member of the name

service fleet.

Join An initialization routine that instructs the data store to query
an active fleet member and "join" the distributed data store.

Takes the name and capability to message in order to join.

Leave The inverse operation to Join.

Table 4.6: Management interface to the distributed data store.

few names during initialization, and run in steady state with rare updates. As pre-

viously discussed, the network service is a possible exception, but even in this case

many messages will be sent using a given name (i.e., TCP connection) before it is

unregistered.

Therefore the data store was designed as a fully replicated data structure, with

a consensus protocol used to arbitrate modifications. This design optimizes Get

operations, as they can always proceed locally and guarantee that the latest copy

of entry is available. Modifications are expensive, however, and require responses

from every fleet member to complete.

The challenge was developing the general framework for reaching consensus on

decisions. The unique parts of each operation are relatively uninteresting, as each

ultimately amount to performing an operation on a local hash table. Therefore this

discussion focuses on the general ideas used in the design, and the later detailed

example will show how a particular operation is performed.

4.4.1 Programming Model

In order to contextualize the discussion, the programming model used for fos services

must be discussed in greater detail. fos services are written on top of a dispatcher,

which is a cooperative thread scheduler that spawns new threads to handle incoming

requests. Threads can sleep themselves and wait for responses to arrive, which are

identified by unique tokens. This means that a single thread of execution has full,

uncontended control of the service, but when it makes requests to the other services,

it will sleep for an unspecified time and will return to a system with modified state.

The threading library also provides condition variables that can be used to sleep and

wake threads, bypassing the dispatcher.

The dispatcher allows multiple mailboxes to be registered, with a static priority

scheme for each mailbox. This allows one to implement different classes of requests,

but more importantly for present discussion, it allows libraries to register their own

mailboxes without conflicting message types with the application.

Within the name service, the data store uses this feature to register an internal

mailbox. All updates to the data store go to these internal mailboxes, and "data store

threads" are spawned which compete with "name service threads". This allows all

distributed complexity to be pushed into the data store, and the name service works

as though accessing a local hash table. 7

Another important issue when writing a distributed system is the guarantees

provided by the messaging system with respect to delivery, re-ordering, and so on.

fos guarantees successful message delivery when Send returns a success code, so this

is a non-issue. The messaging system also guarantees single-stream ordering, but

there are no guarantees on global ordering. A stream is a sending process (i.e., an

application) and a destination mailbox (i.e., a fleet member). Therefore, requests

to a service from a single process will not be re-ordered, but collaboration between

multiple servers may be sensitive to re-ordering. This can simplify the logic of services

and isolate complications arising from re-ordering to the distributed data structures.

Indeed, this is the case within the name service.

7 In prototyping this service, a sequential, non-distributed version of the data store was imple-
mented. The code implementing the main name service API was unchanged when moving to the
distributed data store. (Some name service management routines were modified.)

err = requestCommitLocally(in-entry)

if err != SUCCESS:

return BADOPERATIONERROR

broadcastRequest()

err = collectResponsesAndCommit()

if err == SUCCESS:

commitLocally(in-entry)
else:

rollbackLocally(in-entry)

return SUCCESS

(a) Local

err = requestCommitLocally(in-entry)

if err == SUCCESS:

sendResponse(SUCCESS)

else:
sendResponse(CONFLICTERROR)

return

err = waitForConfirmation()

if err == SUCCESS:

commitLocally(in-entry)

else:
rollbackLocally(in-entry)

(b) Remote

Figure 4-1: Two-phase commit code flow for a modification to the data store.

4.4.2 Code Flow

The following discussion gradually builds the framework for making modifications to

the data store. In each listing, the code is divided into local and remote portions,

where the local portion is the code that initiates the request and the remote portion

is the code that handles the update on other fleet members. The code listings assume

that each routine takes two parameters, inalias and in-entry. Modifications to the

local table are made by passing in-entry, and in-alias is used to reference which

name is being changed.

Conflict detection. The distributed data store uses a two-phase commit protocol

to detect conflicts. Figure 4-1 shows the pseudocode for this version. The idea of this

protocol is to split committing a transaction into two phases: request and complete.

The request phase checks that no other transactions are pending, and marks the entry

as pending. Completing a transaction involves updating the local table and removing

the pending marker. In order for a transaction to finish, it must receive confirmation

from all other fleet members. 8

In this version, the local code requests a commit (lines 1-4), and aborts if it fails.

8This can be optimized to wait for fewer responses, but it is asymptotically equivalent and
complexities arise from needing to terminate the threads that are spawned to handle the initial
request.

Then the request is broadcasted as before (line 6), and the local thread goes to sleep

until all other fleet members have responded (line 8).

Control is now transferred to the remote handlers. They being by attempting the

same reservation as the local side, and if this succeeds then they send a message to

the requester indicating so (lines 1-4). If this request fails, then the thread sends a

error code indicating conflict and terminates the handler (lines 5-7). At this point,

the remote side goes to sleep waiting for a response (line 9) and control is returned

to the local side.

The local side resumes when all responses have been collected (line 8). Before

returning from collectResponsesAndCommit, this checks the responses and confirms

that all were SUCCESS. If so, then the routine responds to each handler telling it to

complete the transaction. Otherwise, it responds to those handlers that responded

successfully (the others have terminated), telling them to abort the transaction. The

transactions now complete in parallel. Either the transaction completes, if it is suc-

cessful, or the request is rolled back, if unsuccessful.

This avoids inconsistency in the data store because one error response will be

received, at a minimum, if there are conflicting transactions. In particular, the original

requesters for the conflicting transactions will respond with an error, as they have

already requested a transaction to the same entry (lines 6-7 remote). Furthermore,

any conflicting operations must arise from simultaneous transactions, because the

local code will terminate a request if another transaction is pending (lines 3-4 local).

Conflict resolution. Two-phase commit provides a way to avoid inconsistent states,

but it does not provide a good way to guarantee progress. Because all operations are

rolled back when a conflict is detected, they will likely conflict again in the near

future.

One solution is random back-off, where each conflicting operation sleeps for a

random period of time before restarting. This is a probabilistic method that will

eventually lead to progress, but since updates can involve large communication cost

(particularly in multi-machine instances) and there can be many fleet members, the

arbiter = getArbiter(in-name)

if arbiter.isPending():

return CONFLICTERROR

else:

arbiter. claim()

err = requestCommitLocally(in-entry)

if err != SUCCESS:

arbiter. clear ()
return BADOPERATIONERROR

broadcastRequest ()

err = collectResponsesAndCommit()

if err == SUCCESS:

commitLocally(in-entry)

else :
if arbiter.isOwnedBy(me):

rollbackLocally(in-entry)

arbiter.clear()

return SUCCESS

(a) Local

1 arbiter = getArbiter(in-name)

2
3 if arbiter. hasPriority (in-originator):

4 arbiter. claim()
5 else:

6 sendResponse (CONFLICT..ERROR)

7 return

8

9 err = requestCommitLocally(in-entry)

L0

[1 if err !=SUCCESS:

[2 forceCommitLocally(in-entry)
13

[4 sendResponse(SUCCESS)

15

16 err waitForConfirmation(

17

18 if arbiter.iswnedBy(in.originator):

19

20 if err == SUCCESS:

21 commitLocally(inentry)

22 else:

23 rollbackLocally(in-.entry)
24

25 arbiter.clear()

(b) Remote

Figure 4-2: Use of arbiters to protect modifications to an entry in the data store.

sleep time would have to be quite large to work well.

A better solution is to provide a conflict resolution scheme that guarantees one of

the conflicting operations will complete. This is done via a distributed arbiter that

controls access to entries. Each entry in the table is guarded by a different arbiter,

and arbiters are distributed among fleet members so that one arbiter resides with

each copy of the entry. In order for an operation to complete, all arbiters for that

entry must agree that the operation has priority and should complete. Depending on

the ordering of messages during conflicting operations, it is possible that a some of

the arbiters will validate an operation that should not complete, but this is harmless

so long as at least one arbiter aborts it.

In order to modify an entry, the originator of the operation must "own" the arbiter.

A server owns an arbiter when the arbiter grants priority to that server's request, but

ownership may be revoked before the operation completes if a subsequent request has

higher priority. Ownership is granted via a claim operation. One can test if an oper-

ation is pending via isPending. In order to arbitrate among conflicting operations,

the arbiter provides hasPriority, which takes the identifier for the originator of the

operation and determines if that operation has priority over the pending one.

The idea is that the arbiters will reach a consensus on which pending request has

priority, and that request will preempt the others even if they have already requested

a commit. The requests that are aborted remotely will return an error code to the

originator. This will lead to a consistent state, as the same request (and only that

request) will complete on each node.

Pseudocode is given in Figure 4-2. As before, discussion begins with the local code.

First, the arbiter for the entry is found and it is queried to see if any requests are

pending. In order to maintain the invariant that at least one error code is returned,

requests cannot be preempted on the local node. To illustrate the problem, consider

this example: the data store has two active members, A and B. Assume that requests

from B always have priority. A makes a request, and B confirms it. Now B begins a

conflicting transaction. If B preempts the pending transaction, then it will succeed

because B has priority. The request from A should fail, but A will return SUCCESS

because it received a confirmation from B. This leads to a state where A's request

returned SUCCESS, but it was actually preempted by B's request in the data store.

The problem arises because B has preempted a request that it already confirmed

with another fleet member. The solution is that a request cannot be originated

on a node that has a pending operation, because the pending operation cannot be

preempted safely. The local code implements this by checking the arbiter to see if any

requests are pending (lines 3-6). If so, then a conflict is detected and the operation

aborts.

Next, local code proceeds as in the two-phase commit protocol to broadcast the

request and collect responses (lines 8-14). The only change is that the arbiter is

always cleared when the operation terminates (line 11).

Control transfers to the remote code, which begins by querying the appropriate

arbiter to see if this request has priority (lines 1-7). hasPriority first checks if any

requests are pending - if not, then the request automatically has priority. If there is a

pending request, then a simple scheme based on the identifiers (i. e., mailbox names) of

the request originators is used. Currently, the request with the lexigraphically lowest

name is given priority. If the request is given priority, then it claims the arbiter and

proceeds. Otherwise, it sends an error code response and terminates.

Next, the remote code attempts to request a commit locally (line 9). The difference

between previous code listings is that if this request fails, then the pending request

is preempted. Because the current operation still has priority, it must force the

request (lines 11-12). In some cases nothing needs to be done - the details depend

on the operation. The remote code sends SUCCESS to the originator and waits for a

confirmation, as before (lines 14-16).

The local code completes in the same manner as before. Local code resumes

when collectResponsesAndCommit returns, and if all responses were SUCCESS then

it completes the operation. Otherwise, it has been preempted and it rolls back the

request. However, it first checks if the arbiter is still owned by the thread to prevent

interfering with the preempting operation.

When the remote threads resume, they also check that the arbiter is still owned by

the originator of the request. In this case, the check must guard both completion and

roll back. This is because there is no global ordering, it is possible for a later request

to complete, and the earlier request should not overwrite the result. An example

requires three members, say A, B, and C. Suppose A initiates a modification, and

all members respond successfully. A and B complete the operation, but C does not

receive the complete message (yet). B then initiates a subsequent modification and

A and C confirm and complete the operation. This is possible because the messaging

system does not enforce ordering of messages from different sources, so the messages

from B arrive at C before those from A. Now, when C receives the complete message

from A, it should not modify its local copy.

One last optimization maximizes useful work done by the name service. This

is motivated by the observation that if a request is aborted, then it should not be

immediately restarted because this will lead to another conflict and abortion. This is

avoided in the arbiters using condition variables. Threads that do not have priority

arbiter = getArbiter(in-name)

if arbiter.isPending():

return CONFLICTERROR

else :
arbiter. claim()

mark entry invalid

in-entry.version = -1

request

err = localInsert(in-name, in_

if err != SUCCESS:

arbiter.clear()

return BADOPERATIONERROR

broadcastRequest()

e

err = collectResponsesAndCommit

if err == SUCCESS:

complete

in-entry.version = 0

else:

if arbiter.isOwnedBy(me):

roll back

localDelete (in-name)

arbiter.clear()

return SUCCESS

1

2

3

4

5

6

7
8

9

10

11

ntry)12
13

14

15

16

17

18

19
() 20

21

22

23

24

25

26

27

28

29

30

31

32

(a) Local

Figure 4-3: Code for performing

arbiter = getArbiter(in-name)

if arbiter.hasPriority(in-originator):

arbiter. claim ()
else:

sendResponse (CONFLICTERROR)

return

mark entry invalid

in-entry.version = -1

request

err = localInsert(in-name, in-entry)

if err != SUCCESS:

force

localUpdate(inname, in-entry)

sendResponse(SUCCESS)

err = waitForConfirmation()

if arbiter.isOwnedBy(in.originator):

if err == SUCCESS:

complete

inentry.version = 0

else:

roll back

localDelete(in.name)

arbiter . clear ()

(b) Remote

a distributed Insert in the data store.

are put to sleep in isPending and hasPriority, and these operations only return

when the arbiter is cleared and becomes available.

4.4.3 Concrete Example

Insert provides a concrete example of a distributed modification operation. Figure 4-

3 shows pseudocode for this operation, showing how each of the general request, force,

or complete operations are implemented.

The data store keeps a monotonically-increasing version number associated with

each entry. Each modification to the data store increments the version number.

Previously, this was used to track conflicting operations, but the arbiters subsumed

this responsibility and provide other benefits (conflict resolution, condition variables,

etc.). A negative version number indicates an invalid entry in the local table, and

Get will treat such entries as though they were not present.

Thus, to request an insertion in the table, one inserts an entry with a negative

version number (line 9 local, line 10 remote). Similarly, in order to complete an

insertion, one sets the version number to zero (line 24 local, line 27 remote). Roll

back is done by deleting the entry from the local table (line 28 local, line 30 remote).

Finally, forcing an update (preempting a pending Insert) means overwriting the

pending entry (line 17 remote).

It may seem that this method of forcing a request could overwrite a valid entry in

the local table. But consider the state of the data store when a forced request takes

place. This can only happen when an Insert is pending on the thread performing

the forced request. If a prior Insert had successfully completed, then the originator

of the pending Insert would have had to confirm it. This means that, at a minimum,

an invalid entry would exist in that member's local table, and the pending Insert

would fail locally (line 12 local).

4.4.4 Management

Management of the data store consists of initialization and shutdown of the data store,

and changing the number of active members in the data store. The interface was

given in Table 4.6. Initialization and shutdown are fairly uninteresting. Initialization

empties the local hash table, creates the internal mailbox, registers this mailbox with

the name service, and registers request handlers with the dispatcher. This involves

bootstrapping that is the subject of the next chapter. Shutdown simply does the

inverse. Consequently, the remainder of the section discusses managing the members

of the data store.

The number of members in the data store are managed via Join and Leave. When

a new member joins the data store, state must be transferred to the member. This

involves downloading the contents of the data store from an existing member. A

single member is designated to do this. Additionally, all existing members must be

notified of the existence of the new member. Leave is simpler because the data store

Operation Description
modifyLock Grab the modify lock when a new modification begins. In-

creases the count of pending modifications. Will sleep while
a thread holds the blocking lock.

modifyRelease Release the modify lock when a modification completes. De-
creases the count of pending modifications, and may grant
the blocking lock.

blockingLock Grab the blocking lock, which prevents anyone from grab-
bing the modify lock. Only returns when all pending mod-
ifications have completed.

blockingRelease Release the blocking lock, waking all threads that are wait-
ing on the modify lock.

Table 4.7: The interface to control modifications to the data while a Join is in
progress.

is fully replicated on each member, so no state must be transferred. Instead, the

member notifies its peers that it is leaving, and it can safely terminate.

Join complications arise when handling new or pending requests during the down-

load process. It would be easy for an inconsistent state to be reached if modifications

occurred while state was transferred. Therefore, the data store currently blocks all

modifications during a Join.

This choice is not fundamental to the data store design, and could be optimized to

allow modifications to take place during Join. However, it is expected that Joins will

be rare and fairly short-lived. This decision appears to create no practical limitations

in actual use of the name service.

Blocking is done by requiring all modifications to acquire a "modify lock" when

they begin, and release this lock when they finish. The interface is given in Table 4.7.

Join acquires this lock in a "blocking" mode when it wishes to begin state transfer.

In order for Join to proceed, all pending modifications must complete. blockingLock

sets a flag that blocks new modifications, but does not grant the lock until all pending

modifications have completed. Likewise, only the local code portion acquires the

modify lock, because remote portions must execute in order to complete pending

transactions. Stated another way, local code represents new transactions, whereas

remote code represents pending transactions that must complete. When a thread

attempts to acquire the modify lock when the blocking flag is set, it is put to sleep.

When the blocking lock is released, these threads are woken, and normal operation

resumes.

To summarize in concrete terms, Join changes the code flow from Figure 4-2

so that all modifications begin locally with modifyLocko. This can potentially

put them to sleep if a Join is in progress until it completes. Local code calls

modifyRelease () when it returns. Remote code is unchanged.

4.4.5 Summary

The data store implements a general-purpose, fully-replicated key-value store. It

isolates the complexity of distribution to an encapsulated component of the name

service. As a result, the code for the name service reads as though it were using a

local table for storage.

One of fos's research goals is to explore programming models for distributed ser-

vices and applications. We recognize distributed state as a major issue, and therefore

we want to provide a library of distributed data structures. This library should iso-

late distributed complexity from the user and give the illusion of local access for

distributed data. Although far from proof, the name service gives encouraging ev-

idence that this goal can be achieved. However, this is but one example, and it

remains to be shown that a general-purpose library can accommodate a variety of

usage patterns with good performance.

56

Chapter 5

Implementation

The implementation of the distributed name service was a major effort that touched

many areas of fos. It exposed issues in several support libraries and the messaging

system itself. It is also the first service to require a distributed key-value store.

Finally, because the name service plays a foundational role in the messaging system,

it exposed numerous bootstrapping issues. This section discusses these themes and

the experiences gained.

5.1 Scope

Before this effort began, naming was performed within the microkernel as part of the

messaging system. There was no separate name service fleet or user-space name cache.

This greatly simplified the implementation for a number of reasons: (i) the name space

could be stored in a single shared-memory table within the microkernel, eliminating

issues arising from distribution; (ii) all bootstrapping problems were avoided because

the name service was accessed via system calls instead of messages; (iii) naming and

messaging were contained in a single component, so it was possible to avoid some

issues such as imperfect load balancing due to private name caches; and (iv) because

of the lack of name caches throughout the system, there was no need to consider

error detection or recovery for each delivery mechanism. The name service presented

in this thesis began with a simple, straightforward design, but as each of the above

problems became apparent, the design expanded and became more complicated.

There were problems with the microkernel implementation. This implementation

is highly architecture-specific and relies on global shared memory, something fos ex-

plicitly wants to avoid. One could argue that such a central task as naming could be

optimized for the architecture, but it also posed real functional issues. In a cloud com-

puter, there is no global shared memory. Therefore, the name space was fragmented

among the microkernels on each machine. This was "solved" by having the proxy

service, which sends messages between machines, maintain a routing table of which

machine each name lived on. Then, if a name did not exist within the microkernel's

name table, the message was forwarded to the proxy service for delivery.

This wasn't a real solution, however. It incurred performance overhead by at-

tempting to send locally before sending to the proxy service, and created unnecessary

traffic on the proxy service for Sends to invalid names. Furthermore, the proxy's

routing table had no conflict detection or recovery mechanism. Most importantly, it

violated the global consistency of the name space by creating a two-level hierarchy of

names: those within the machine were preferentially served by the name service. fos

claims to provide a single system image in the cloud, and this naming implementa-

tion did not meet this promise. For example, the network interface services on each

machine were all registered as /sys/netif with a direct mapping, which is invalid.

Thus, if a process migrated to a new machine, it would begin communicating with

the wrong network interface service.

These problems motivated an improved implementation of the name service. In

particular, we were beginning to discuss scheduling (layout) and needed to implement

process migration. As the above example shows, the name service needed to be

improved to allow this. Rather than patch the existing implementation, I decided to

test fleet design concepts by implementing a proper name service fleet.

Most parts of this design were implemented from scratch. The microkernel messag-

ing interface was reworked: mailbox locations were added to Send, and the majority

of the messaging system calls were removed and handled in user-space through the

name service fleet. Several new system calls were added, such as UkAddAlias and

those discussed in the next section. The microkernel mailbox table was written from

scratch; in some ways, this replaced the shared-memory name table, but in a smaller,

more well-defined role.

The messaging library was heavily modified in order to properly use the name

service and provide necessary error detection and recovery. The name cache was

written from scratch to implement naming outside of the microkernel and correctly

interface with the name service. Another name cache existed under simultaneous

development, which cached user-space message channels. These implementations were

merged to provide the final name cache.

Other support libraries were significantly modified. In particular, the threading

and dispatch libraries were modified to provide new APIs, improve existing imple-

mentation, or fix bugs. Numerous bugs in the RPC generation tool were found and

corrected, and countless minor bugs were found in various places in the system.

Most significantly, the name service itself was written from scratch with very little

shared code from the microkernel implementation. In summary, this thesis represents

a large effort that affected many of the building blocks of fos.

5.2 Bootstrapping

Moving the name service out of the microkernel exposed numerous bootstrapping

issues. For example, how can one communicate with the name service if messaging

relies on the name service? How does a new process register its first mailbox (who

can the name service respond to)? These problems interfere in many small ways with

normal operation. This section contains a few examples, and I begin with one that

was elegantly avoided by the RPC generation tool.

Name service on libfos. The name service was written using the tools and li-

braries for other services. This involved a dependency cycle between the messaging

library and the name service, but it was necessary because re-implementing the li-

braries would be prohibitively difficult. The dependency cycle was that the messaging

library messages the name service to resolve names. Thus, when the name service

sent a message, it would message itself to resolve the name, which resulted in another

message to itself to resolve the name, and so on ad nauseum.

The cycle was broken using the RPC generation tool and C linkage semantics.

This tool takes a library function, say int f oo (char * a) and generates a remote

procedure call. Most importantly for this discussion, the RPC has the same signa-

ture as the original function, say int rpc-foo (char * a). Therefore the interface

between the messaging library and the name service is actually a set of RPC routines.

Most applications and services link with the library generated by the RPC tool that

marshalls parameters and messages the name service. However, the name service

links with a separate library that is a thin wrapper for the local routines. Thus,

where most services would message the name service, the name service itself will call

into its local routines. This lets the name service use the messaging library exactly

as a regular application would.

Curiously, this means that even though the name service has a full copy of the

name space in its local memory, it maintains its own name cache within the messaging

library that may be inconsistent with the global name space.1

Messaging the name service. How does an application communicate with the

name service? To illustrate the problem, consider sending a message with an empty

name cache. First, the application will miss in its cache and attempt to message

the name service to fill the entry. Then it will miss in its name cache when looking

for /sys/name (the name service mailbox name), and enter into an infinite loop of

refreshing its cache.

This dependency cycle is broken through a system call, UkNameServiceLookup.

The microkernel maintains a list of the active name servers on the local machine,

and each microkernel (i.e., machine) in a fos system must have a name service regis-

tered. This system call takes no parameters and returns the mailbox location for the

name service, bootstrapping the lookup process. There are corresponding operations

'This could avoided by using the same tricks to link in a custom name cache that accessed the
global store directly, but currently the name cache is encapsulated within the messaging library.

that are performed during name service initialization, UkNameServiceRegister and

UkNameServiceUnregister.

Curiously, this means that /sys/name is never actually registered in the dis-

tributed data store, as each name server is registered with the microkernel and lookups

to /sys/name are redirected to UkNameServiceLookup.

Sending first message. In order for a process to send its first message, it must be

able to perform a lookup in the name service because its name cache will be empty.

The previous solution allows the process to message the name service, but how can

the name service respond? In order to respond via the messaging library, the process

must have a mailbox with a registered name. But registration requires a message to

the name service, so we have a dependency cycle.

This dependency is broken by having the messaging library register an internal

mailbox first, and by adding a system call, UkUncheckedSend. This system call uses

microkernel messaging to send a message directly to a mailbox, bypassing the name

and capability checks. This allows the name service to message a mailbox that does

not have a name. This is obviously a security hole, so this system call is guarded by

a special capability that is only given to the name service. The name service receives

this capability when its first member registers, and it passes the capability to new

members as they are spawned. Because the name service must be started first in any

interesting instantiation of fos, this gives good security.

This problem also plays into process migration. Because UkUncheckedSend uses

a mailbox location directly, and there is no error recovery scheme, a process cannot

be migrated while its first registration is pending. Whether this creates any practical

limitation on scheduling remains to be seen.

Starting the name service. Earlier it was mentioned that the distributed data

store's initialization is split into two routines, Initialize and Register. This is

because of a bootstrapping problem in starting the name service. Until the name

service starts, obviously there is no name service running. In order for the name

service to start, it must initialize the distributed data store, and the distributed data

store must to initialize its internal mailbox to receive updates. But the initialization of

this mailbox involves registering it with the name service, and we have a dependency

cycle.

This is solved by splitting initialization of the data store. Initialize empties the

local hash table and readies it for entries, along with other tasks except for registering

its internal mailbox. The name service then claims root /* and performs its remaining

initialization, calling Register when the name service is operational.

Along a similar vein, when the name service grows by adding a member, this

member must communicate with the existing members to join the fleet. Because

the name service uses its local hash table to fill its name cache, it is essentially an

isolated name space until it joins the main fleet. Therefore, it must be passed the

name, capability, and location for the fleet member that will help it join the fleet so

that it can message this member.

Although these problems may not seem disastrous, in fact these problems required

significant re-workings of the design to solve. In the author's biased opinion, the

current design solves each issue elegantly, but this was the result of several crises and

not the "natural" design that was originally conceived.

5.3 Development Issues

The name service stresses the fos system in unprecedented ways, and is the first

service sensitive to global message ordering. In terms of messages alone, every modi-

fication to the distributed data store requires communication to and from each fleet

member, creating complicated message patterns and extensive traffic. Given this, it is

no surprise that several unexpected problems were encountered during development.

This section discusses a few issues to give a flavor for the development experience.

Bear in mind that when pursuing these bugs, limited tools were available. fos is a

research OS, and full debugger support is not available as in Linux. To make matters

worse, these bugs are sensitive to timing, so using the console to debug would often

perturb the test enough to avoid the bug, or expose a new failure mode. And on top of

that, some issues would cause the machine to terminate abruptly, and output buffers

would not be flushed. This would lead to misleading traces of program behavior and

many wasted hours.

The traces themselves, even when completely accurate, were difficult to parse.

Messages from a single server correspond to different threads processing different

transactions, and multiple servers are active simultaneously. This created a very

difficult debugging environment, and given the subtlety of some bugs, it was at times

a nightmare.

Send deadlock. While running tests that would perform many simultaneous regis-

trations, a pair of name service fleet members would suddenly "disappear" and cease

responding to messages. This bug could be solved easily because fos has the capabil-

ity to give a back trace of all active processes, which can be activated interactively

by the user. Therefore deadlocks can usually be solved quickly, because one can tell

where a process is stuck. (Of course, any debugger in a commercial OS could give

the same information.)

The deadlock was occurring because the user-space messaging code would block

if a message was partially sent and the channel became full. (If the channel was

full before the message is sent, then it would return an error code, and the system

behaved correctly.) If two name servers sent each other messages simultaneously, it

was possible for them to block. The channels would never drain, and no progress

would be made. This is a classic example of send deadlock in a system with arbitrary

communication and finite buffers.

The solution to this problem was to return an error code if no space was available

in the channel, but this will not work for large messages. A complete solution would

send as much of the message as possible and return after a period of time if no progress

is being made. Before returning, the channel would be marked as "claimed" so that

other messages to do not interleave with the partially-sent message.

Single stream re-ordering. During similar tests, the distributed data store would

often arrive at an inconsistent state. By examining several traces, it was determined

that messages within a single stream had been re-ordered. An inspection of the

messaging system provided no hints as to how this could occur. Eventually, it became

clear that the dispatch library was responsible.

The problem was that the dispatch library deferred the processing of responses,

but immediately handled new requests. Explanation of this behavior requires an un-

derstanding of the internals of the dispatch library. When no threads were runnable,

the dispatch library spawned a new thread to process pending messages. If a re-

sponse was received, then it was buffered and all waiting threads were signalled. The

message-processing thread continued without yielding to the woken threads to process

further messages. However, if a request was received, the message-processing thread

called the appropriate handler immediately.

Thus, if a response and request were pending in the message queue, then the

request would always be handled before the response. If the response arrived before

the request, this violated the expected behavior, and led to an apparent message

re-ordering.

Two solutions were possible: to defer handling of new requests, or to immediately

handle responses. It was simpler to implement deferring of new requests, but this

could quickly lead to an explosion of waiting threads if the service was over-saturated.

It is better to immediately handle the message in order to apply appropriate back

pressure through the system. This required additional support from the threading

library, and significant modification of the dispatch library itself.

Global re-ordering. Message ordering guarantees were first explicitly discussed as

a result of the name service fleet. Microkernel messaging guarantees global ordering

in a single-machine fos instance, as all messages go to a single buffer that is guarded

by a lock. User-space messaging is a relatively new addition, and previous services

were insensitive to global ordering regardless, so the issue of re-ordering had not been

problematic for any services. When stress testing the name service fleet with con-

tending registrations, global re-ordering was observed that led to inconsistent states

in the data store.

Global re-ordering occurs when using user-space messaging. Each process sends

messages on a separate channel, and the messaging library receives messages one

channel at a time. This guarantees single-stream ordering, but messages can arrive

re-ordered globally when the channels happen to be checked in the "wrong" order.

The solution to this required more liberal use of arbiters. Previously, arbiters had

been used only when conflict was detected (using version numbers). It was possible

that a valid modification could complete on some fleet members before a preceding

modification, which led to inconsistencies when the preceding modification completed

(see example in Section 4.4.2). In order to detect these kinds of behavior, arbiters

were used to protect even uncontended operations.

5.4 Experiences

This thesis serves as an important proof-of-concept for fleet design. Previously, the

microkernel had implemented naming via a global, shared-memory table. If fleets

are indeed the correct approach for scalable OS services, then it seems inappropriate

for the most basic service (viz., naming) to be implemented in a traditional, mono-

lithic fashion. Furthermore, implementing the name service as a fleet should not

require herculean effort or result in significant performance degradation. As the re-

sults show (next chapter), the new naming and messaging system actually improved

performance. The verdict is less clear in terms of development effort, however.

It is not necessarily a goal of fos to provide the easiest implementation experience

compared with other OS designs,2 but developing an OS service should not be pro-

hibitively difficult. The name service fleet required several orders of magnitude more

effort than the shared memory, "monolithic" implementation. This effort was largely

spent in solving bootstrapping issues, implementing the distributed data store, and

2 Although we are interested in making this experience as pleasant as possible through program-
ming models and libraries.

painful debugging.

The bootstrapping issues are almost certainly unique to the name service, and one

would not expect other services to encounter them. Although each service will have

its share of complications, they will not need to bootstrap the underlying messaging

system.

Every service will, however, need to manage its distributed state. The difficulty

this presents is highly dependent on the service in question. Some services, e.g.page

allocator, can split distributed state among members with modest sharing. Others,

e.g.device drivers, may not be distributed at all. For still others, e.g.network stack,

state can be owned by a single fleet member, but a distributed table is needed to

lookup which member is the owner. And finally some will, like the name service,

have highly shared state that requires global consistency. It is unclear what patterns

will emerge in shared state. fos would like to provide a library of data structures that

solves the common case, but more experience is needed to see if this vision will come

to fruition.

Debugging is a challenge that all distributed services will need to solve. Hopefully

the distributed data structure library will isolate issues such as message re-ordering,

but when bugs inevitably occur, debugging will be required. Debugging of both

distributed systems and research OSes is hard, and two wrongs definitely do not

make a right. The good news is that because fos runs under Xen, tools are available

to pause the entire machine and inspect its state. Unfortunately, these tools were

not available during development of the name service. Furthermore, the most painful

bugs encountered were those in the support libraries. These bugs are solved, so other

development will not be affected.

This suggests that while development of the name service was difficult, future

fleets will forge an easier path.

Chapter 6

Results

This section presents results for the name service fleet. This includes benchmarks

for particular operations in the name service, and end-to-end performance numbers

from messaging and file system benchmarks. Discussion begins with methodology

and then covers results from each experiment in turn.

6.1 Methodology

These results were gathered from fos instances running as Xen 4.0 paravirtualized

machines. Two implementations are compared: the implementation described in this

thesis, and the prior microkernel, "monolithic" implementation. Both implementa-

tions contain the same basic messaging delivery mechanisms, but there are significant

differences in the code base (Section 5.1). Instances were run on a 48-core machine

with quad 12-core AMD 6168 processors and 64 GB of RAM. Due to Xen configura-

tion issues, fos instances are currently limited to 32 cores.

Results show overall system throughput (requests / time) for different system

configurations. The number of clients making requests to the service are shown on

the x-axis, and system throughput is shown on the y-axis. Different plots are shown

for each configuration, usually different fleet sizes.

6.2 Micro-benchmarks

These results examine the performance and scaling of individual operations of the

name service. The name service was designed envisioning a read-mostly workload,

and thus used a fully-replicated data store. These results reflect this decision, as

Lookup has the best raw performance and scaling.

1200-
2 -U-

8 1000-
4 -

S 800 8

600

400

2000

5 10 15 20

Number of clients

Figure 6-1: Lookup performance in the name service fleet. Legend indicates size of
name service fleet. Performance scales well with number of clients until fleet saturates.
Peak service rate scales well with fleet size.

Lookup. Figure 6-1 shows results for a Lookup-focused micro-benchmark. This

benchmark spawns a name service fleet (size indicated in legend) and different num-

bers of clients. Each client performs Lookups as quickly as possible. These Lookups

are done using the name service RPC routines directly to avoid the user-space name

cache. As such, this load is much higher than the name service would experience in

actual operation.

Results demonstrate excellent scaling of name service performance as the fleet size

increases and the number of clients increases. For this benchmark, results are not

shown for the microkernel naming implementation, because this has no notion of a

Lookup separate from a Send.

..
.............................

Comparing these results to messaging results (below), it seems that Lookup per-

formance follows the same trends. This is expected because Lookup always resolves lo-

cally, and therefore only involves one message round-trip. This indicates that Lookup

performance is limited by messaging throughput.1

30-

0k

20-
if 2

0

0.
5 10 15 20

Number of clients

Figure 6-2: Register performance in the name service fleet. Legend indicates size of
name service fleet. Performance converges for all fleet sizes as the number of clients
increases. For few clients, larger fleets have worse performance. Throughput is far
worse than for Lookup.

Register. Figure 6-2 shows results for a Register-focused micro-benchmark. This

benchmark spawns a name service fleet (size indicated in legend) and different num-

bers of clients. Each client Registers and Unregisters a unique mailbox as quickly

as possible. This test uses the messaging API to perform registration, so it includes

overhead of updating the mailbox structure, etc.. Each client registers a separate

name, so there is ample parallelism available.

Results show no scaling of throughput as the number of clients or fleet size in-

creases. This is expected due to the implementation of the data store; each Register

requires global consensus, so the work required to complete a registration scales with

the size of the fleet. Likewise, the latency of Register increases as the fleet grows,

'The difference in absolute performance from messaging results is explained by the larger size of
messages in a Lookup.

_ :: :-:: MV*-- M ffifflm lalammr.905 W% HR , " - :::.-::

and this is indicated in the throughput with a single client, where performance is best

for a single name server and decreases as servers are added. Throughput for all fleet

sizes converges as the number of clients increases. This is because the service becomes

fully saturated, and every fleet member is fully utilized. Work scales proportionally

with fleet size, thus a fully saturated fleet maintains the same performance as a fleet

with a single server.

Note that each request in this test corresponds to two updates to the name table.

Therefore, to compare with Figure 6-1, performance should be scaled by a factor of

two. When this is done, performance of registration is comparable to that of lookups

with a single fleet member (roughly 70 for Register versus roughly 150 for Lookup).

This comparison is valid because increasing fleet size does not improve throughput.

One might expect Register to exhibit worse performance in this case for several

reasons. First, this benchmark uses the message APIs instead of the name service

directly. This was done to give a honest assessment of messaging system performance,

which is not possible to do for Lookups because the name cache blocks repeated

requests to the name service. However, the messaging APIs add extra overhead that

is not present when accessing the name service directly. Secondly, Register involves

larger messages than Lookup. So communication costs alone reduce throughput.

Finally, the name service has to perform much more work to handle a Register than

a Lookup. Given these considerations, the observed difference is reasonable.

For this benchmark, results are not shown for the microkernel naming implemen-

tation, because this does not support Unregister. 2

Register (contended). Figure 6-3 shows results for a Register-focused micro-

benchmark with contention. This benchmark is identical to the previous, except now

the registrations use the same name. Each client enters a tight loop that requests

Register as quickly as possible until it succeeds, and then immediately Unregisters

it. This is different from prior benchmarks because most requests detect contention

and fail immediately. Because each client is in a tight loop, requests therefore come

2As noted previously, this was an incomplete implementation of the naming system.

25
2-U-

20 4

S8--

15

10

0
5 10 15 20

Number of clients

Figure 6-3: Register performance under contention in the name service fleet. Leg-
end indicates size of name service fleet. Throughput at a single client is same as
uncontended (as expected), but performance does not improve with more clients. For
small fleets, performance degradation occurs as clients are added.

much more quickly. This benchmark stresses an unlikely usage scenario, as the pri-

mary purpose of conflict resolution is not high performance but correctness. Thus this

benchmark shows two things: how the service performs under very high contention,

and more importantly, that the service functions correctly and makes some progress

when under contention.

Performance for a single client is identical to the previous case, but performance

does not improve as clients are added, and for one- and two-member fleets, per-

formance degrades severely. I believe this performance degradation is due to over-

saturation of the messaging system, which triggers back off in Send that seriously

degrades performance. This is unique to this micro-benchmark because of the behav-

ior described above, where requests come in much more quickly than in uncontended

registration. Thus degradation is most severe with a single-member fleet, in which

the single mailbox suffers the most contention. Performance degradation is less for

larger fleet sizes.

Another factor limiting performance is the semantics of contending registrations.

Only one registration can succeed at a time, so there is no opportunity for pipelining

..............

of requests. This means that, at best, throughput would be flat as the number of

clients increased. This is observed for fleets with four and eight members, where

messaging degradation is not observed.

6.3 End-to-End

This section shows results for larger performance tests. Because fos currently lacks

the infrastructure to run standardized OS benchmarks, this section uses hand-coded

benchmarks for fos's messaging and file systems. These are higher-level benchmarks

than those presented in the last section. However, as will be seen, these results are

difficult to attribute to the naming system directly.

3500

3000

2500

2000

1500

1000

500

0
5 10 15 20

Number of clients

Figure 6-4: Messaging performance comparing the name service fleet design and the
prior microkernel naming design. Results are shown for round-trips of small mes-
sages, with one and eight servers servicing requests. Legend indicates the design and
number of servers (e.g., "Uk (8)" is microkernel with 8 servers). Results demonstrate
significantly improved messaging performance in the name service fleet design.

Messaging. Figure 6-4 shows results for the messaging system. This benchmark

stresses the messaging system on small message round-trip throughput. Each client

sends messages to a fleet of "echo servers," which immediately reply. The echo server

fleet contains one or eight servers. Results are shown for the prior, microkernel

naming implementation and the name service fleet implementation. This benchmark

is constructed to avoid the name service, because each client contacts the name service

only during initialization to fill its name cache.

Results show consistently improved performance for the new messaging system.

Both the microkernel and fleet implementations use user-space messaging, which em-

ploys some form of a user-space name cache in each implementations. Because the

name service is not critical to performance in this benchmark, more analysis is needed

to determine where the disparity comes from.

These results demonstrate two things. First, moving naming out of the micro-

kernel does not reduce messaging performance. On the contrary, a significant im-

provement is observed. Second, because messaging performance alone is significantly

different from the prior implementation, it is difficult to attribute performance differ-

ences in other benchmarks to the name service. This is discussed further at the end

of the chapter.

S Fleet (1)

Fl- eet (8) -e
120

.0 Uk (1)
100

-Uk (8)

80

. 60

40

20

0 .
5 10 15 20

Number of clients

Figure 6-5: Results for the file system micro-benchmark.

File system. Figure 6-5 shows results for a file system micro-benchmark. This

micro-benchmark contains a block device server, a read-only file system fleet, and

several clients. Each client makes requests that open a unique file, read one kilobyte,

...

and close the file. Each time a file is opened, the name mapping is refreshed through

the name service. These results show comparable performance for the file system up

to eight clients. The fleet implementation shows slightly worse performance because

it explicitly messages the name service to load balance, whereas the microkernel im-

plementation uses system calls. After eight clients, the microkernel implementation

suffers serious performance degradation. This degradation is not observed in the new

name service fleet implementation. It is not clear where this comes from, but it is

unlikely to be due to the name service itself, rather due to the messaging implemen-

tation, which hits a performance bottleneck when the number of clients exceeds the

number of servers.

6.4 Discussion

These results demonstrate that the name service scales well under expected usage

patterns. Lookup performance scales well, and closely follows the trends of the un-

derlying messaging system. The messaging system itself has improved performance

when compared to its prior implementation. However, because of the many changes

in the system, it is difficult to pinpoint end-to-end differences to a particular source.

More importantly, it is unclear how the name service will affect system perfor-

mance. As the messaging benchmark shows, best performance is achieved by avoiding

the name service entirely. Indeed, this is the sole purpose of the name caches. So it

may be the case that the name service is under-utilized in a real fos system, and plays

largely a functional role. However, there are usage scenarios that would increase de-

mand on the name service. If a service wants to refine its load balancing, then it may

explicitly refresh its local cache to balance requests among multiple fleet members.

On the other hand, there are usage scenarios that would increase the number of

registrations. One example that was previously discussed is the interface between

the network stack and the network interface service. Because name caching reduces

Lookup traffic, these registrations may constitute a significant portion of the name

service's workload. Optimizations to the data store may be necessary to provide good

performance under these conditions.

76

Chapter 7

Future Work

There are many areas of research in the name service that merit more exploration.

This chapter discusses a few that are under active consideration. Future development

in fos will certainly expose new uses and challenges for the name service, and these

will be addressed as needed.

7.1 Expectations versus Reality

The most critical issue was discussed at the end of the last chapter (Section 6.4). We

must determine if the expected use of the name service matches its use in practice.

The simple fact is that we currently do not know how the name service will be used.

This will be determined only once fos runs a full set of benchmarks, with services that

make intelligent use of the name service. Then it will be possible to determine the

usage patterns in practice and whether the name service is a performance bottleneck.

7.2 Local Sub-domains

There is some reason to believe that the name service will not serve Lookups in as

high proportion originally believed. That is, performance of Register may be equally

important in actual use. If experience bears this out, then the distributed data store

will need modifications in order to perform well. In particular, Register should not

always require global consensus. There a few ways that this can be done.

One approach is to partition the name space among members as done in a tra-

ditional distributed hash table. This would optimize performance of Register at

the cost of Lookup performance, as some (most) Lookups would require messaging

another fleet member to serve the request. It isn't clear that this is a good tradeoff.

The favored approach is to implement "software cache coherence," so that names

that are widely used are cached by all fleet members, and those that are not are stored

on a subset of fleet members. This optimizes Lookups for widely-used names, and

optimizes Register performance to avoid global operations for local names. This is

beneficial because the use case that increases Register traffic is the network stack

and network interface, where a new name is registered for each connection. In this

example, the name is only used by the network component local to that machine, not

globally.

In this approach, a sub-domain of the name space would be owned by an indi-

vidual fleet member or a subset of the fleet. Registers of names in this sub-domain

would only contact the owners. For example, network stack connections could all be

registered under /sys/netstack/connections/<machine id>/*. This sub-domain

would be owned by the name server on the machine, and modifications to the name

space would involve a single message round-trip. To keep global consistency, this

sub-domain would be registered globally and indicate which fleet members were the

owners. An important area of research in this design would be when to change own-

ership of a sub-domain, and whether this should be managed implicitly by the name

service or exposed via the messaging API.

7.3 Fairness in Conflict Resolution

The current implementation of conflict resolution uses a static priority scheme that is

unfair. Contention is arbitrated using the name of the fleet member that originated

the request. This means that the fleet member with the overall highest priority will

tend to complete more requests than other members. This could be resolved using a

dynamic priority scheme, perhaps based on the version of the entry being modified.

7.4 Bootstrapping Cloud Computers

fos currently does not support correct bootstrapping of a cloud computer, i.e.an in-

stance with multiple machines. The problem is that the current proxy implementation

implements a two-level name space (Section 5.1). In order to properly add a new ma-

chine to an existing fos instance, the basic system services (naming, network stack,

and proxy) must register with valid names in the global name space. Currently, all

of these basic services use the same names on each machine.

The valid names will be dynamic, so they must be passed over a network con-

nection after the machine has booted. The services must then re-register under the

correct names, and then the machine would be ready to join the fos instance. Addi-

tionally, the responsibilities of the proxy service have been reduced, and a new proxy

service implementation is needed that correctly uses the naming system and provides

correct messaging guarantees.

80

Chapter 8

Related Work

This section discusses the related work for the fos system as a whole, and naming and

distributed data in particular.

8.1 Full System

There are several classes of systems which have similarities to fos: traditional micro-

kernels, distributed OSes, and cloud computing infrastructure.

Traditional microkernels include Mach [2] and L4 [18]. fos is designed as a micro-

kernel and extends the microkernel design ideas. However, it is differentiated from

previous microkernels in that instead of simply exploiting parallelism between servers

which provide different functions, this work seeks to distribute and parallelize within

a server for a single high-level function. fos also exploits the "spatial-ness" of mas-

sively multicore processors by spatially distributing servers which provide a common

OS function.

Like Tornado [12] and K42 [3], fos explores how to parallelize microkernel-based OS

data structures. They are differentiated from fos in that they require SMP and NUMA

shared memory machines instead of loosely coupled single-chip massively multicore

machines and clouds of multicores. Also, fos targets a much larger scale of machine

than Tornado/K42. The recent Corey [7] OS shares the spatial awareness aspect of

fos, but does not address parallelization within a system server and focuses on smaller

configuration systems. fos is tackling many of the same problems as Barrelfish [5] but

fos is focusing more on how to parallelize the system servers as well as addresses the

scalability on chip and in the cloud. Also, in this work we show the scalability of our

system servers which was not demonstrated in previous Barrelfish [5] work.

The structure of how fos can proxy messages between different machines is similar

to how Mach [2] implemented network proxies with the Network Message Server.

Also, Helios's [19] notion of satellite kernels is similar to how fos can have one server

make a function call to a server on a different machine.

Disco [8] and Cellular Disco [15] run multiple cooperating virtual machines on

a single multiprocessor system. fos's spatial distribution of fleet resources is similar

to the way that different VM system services communicate within Cellular Disco.

Disco and Cellular Disco argue leveraging traditional OSes as an advantage, but

this approach likely does not reach the highest level of scalability as a purpose built

scalable OS such as fos will. Also, the fixed boundaries imposed by VM boundaries

can impair dynamic resource allocation.

fos bears much similarity to distributed OSes such as Amoeba [25], Sprite [21],

and Clouds [11]. One major difference is that fos communication costs are much lower

when executing on a single massive multicore, and the communication reliability is

much higher. Also, when fos is executing on the cloud, the trust model and fault

model is different than previous distributed OSes where much of the computation

took place on student's desktop machines.

The manner in which fos parallelizes system services into fleets of cooperating

servers is inspired by distributed Internet services. For instance, load balancing is one

technique taken from clustered web servers. fos also takes inspiration from distributed

services such as distributed file systems such as AFS [23], OceanStore [17] and the

Google File System [14].

fos differs from existing cloud computing solutions in several aspects. Cloud (IaaS)

systems, such as Amazon's Elastic compute cloud (EC2) [1] and VMWare's VCloud,

provide computing resources in the form of virtual machine (VM) instances and Linux

kernel images. fos builds on top of these virtual machines to provide a single system

image across an IaaS system. With the traditional VM approach, applications have

poor control over the co-location of the communicating applications/VMs. Further-

more, IaaS systems do not provide a uniform programming model for communication

or allocation of resources. Cloud aggregators such as RightScale [22] provide auto-

matic cloud management and load balancing tools, but they are application-specific,

whereas fos provides these features in an application agnostic manner.

8.2 Naming and Distributed Data

The name service was inspired by universal resource identifiers (URIs) in the world

wide web, and the domain name system (DNS) in particular. This is a hierarchical

naming system that provides access to services, so functionally it is similar to fos's

name service. Likewise, DNS can map a single name to multiple different locations (IP

addresses), which is similar to fos's indirect mappings. Unlike fos, however, DNS does

not need strong consistency and can lazily respond to additions and deletions. The

authoritative name server in DNS is similar to the local sub-domain idea discussed

in Section 7.2.

Some previous operating systems have included a name service. Helios [19] in-

cludes a network service that maps a global name space. The Helios microkernel

manages name resolution and a name cache, which is similar to fos. fos has moved

these components out of the microkernel, which involves a different security model.

Additionally, usage is slightly different, as the Helios name space is divided into sub-

domains for each processor, whereas the fos name space exposes services on multiple

processors under a single name, and is completely agnostic to the placement of the

services within the system. Barrelfish includes a name service, but the details of its

design and usage are not published.

The data store used in the name service is related to numerous prior projects. The

idea of a distributed key-value store has been explored in distributed hash tables,

such as Bit Torrent [10] and Chord [24]. The name space is not implemented in

a partitioned DHT, however, and its design is more similar to that of Barrelfish's

replication. Two-phase commit is a common technique in database systems [6], also

used in Barrelfish. The arbiter objects are similar conceptually to distributed lock

managers [9] that synchronize access to shared resources, except in fos the arbiter

guards completion of a specific operation and is not exposed via a lock interface.

Chapter 9

Conclusion

This thesis presented the design of the name service within fos. It showed the crucial

role that the name service plays in central concepts of fos, namely fleets, elasticity, and

spatial scheduling. The design for the naming and messaging system was discussed,

showing how a complete system could be constructed with good performance and

minimal complexity. Additionally, the detailed design of the distributed data store

that holds the global name space was presented. The name service is the first service

with complicated distributed state, and its development gave experience that can be

applied to future services. Results were presented showing the excellent scalability

of name service under expected usage and a significant improvement in messaging

throughput in the new design. Finally, the success of this effort gives affirmative

evidence of the viability of fleet design in general.

86

Bibliography

[1] Amazon Elastic Compute Cloud (Amazon EC2), 2009.
http://aws.amazon.com/ec2/.

[2] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. Mach: A new kernel foundation for UNIX
development. In Proceedings of the USENIX Summer Conference, pages 93-113,
June 1986.

[3] J. Appavoo, M. Auslander, M. Burtico, D. M. da Silva, 0. Krieger, M. F. Mergen,
M. Ostrowski, B. Rosenburg, R. W. Wisniewski, and J. Xenidis. K42: an open-
source linux-compatible scalable operating system kernel. IBM Systems Journal,
44(2):427-440, 2005.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualiza-
tion. In SOSP '03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 164-177, New York, NY, USA, 2003. ACM.

[5] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schiipbach, and Akhilesh Sing-
hania. The multikernel: a new OS architecture for scalable multicore systems.
In SOSP '09: Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 29-44, 2009.

[6] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison Wesley Publishing Com-
pany, 1987.

[7] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek,
Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai Yang Zhang,
and Zheng Zhang. Corey: An operating system for many cores. In Proceedings
of the Symposium on Operating Systems Design and Implementation, December
2008.

[8] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running com-
modity operating systems on scalable multiprocessors. In Proceedings of the
ACM Symposium on Operating System Principles, pages 143-156, 1997.

[9] Mike Burrows. The chubby lock service for loosely-coupled distributed systems.
In OSDI'06: Seventh Symposium on Operating System Design and Implementa-
tion, 2006.

[10] Bram Cohen. Incentives build robustness in bittorrent, 2003.

[11] P. Dasgupta, R.C. Chen, S. Menon, M. Pearson, R. Ananthanarayanan, U. Ra-
machandran, M. Ahamad, R. J. LeBlanc, W. Applebe, J. M. Bernabeu-Auban,
P.W. Hutto, M.Y.A. Khalidi, and C. J. Wileknloh. The design and implementa-
tion of the Clouds distributed operating system. USENIX Computing Systems
Journal, 3(1):11-46, 1990.

[12] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. Tornado:
Maximizing locality and concurrency in a shared memory multiprocessor operat-
ing system. In Proceedings of the Symposium on Operating Systems Design and
Implementation, pages 87-100, February 1999.

[13] Simson L. Garnkel. An evaluation of amazons grid computing services: Ec2,
s3 and sqs. Technical Report TR-08-07, Center for Research on Computation
and Society, School for Engineering and Applied Sciences, Harvard University,
August 2007.

[14] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file sys-
tem. In Proceedings of the ACM Symposium on Operating System Principles,
October 2003.

[15] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum. Cel-
lular Disco: Resource management using virtual clusters on shared-memory mul-
tiprocessors. In Proceedings of the ACM Symposium on Operating System Prin-
ciples, pages 154-169, 1999.

[16] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and
Anant Agarwal. Application heartbeats for software performance and health. In
PPoPP '10: Proceedings of the 15th ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 347-348, New York, NY, USA, 2010.
ACM.

[17] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, West-
ley Weimer, Chris Wells, and Ben Zhao. Oceanstore: An architecture for global-
scale persistent storage. In Proceedings of the Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 190-201, Novem-
ber 2000.

[18] Jochen Liedtke. On microkernel construction. In Proceedings of the A CM Sym-
posium on Operating System Principles, pages 237-250, December 1995.

[19] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and
Galen Hunt. Helios: heterogeneous multiprocessing with satellite kernels. In
SOSP '09: Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pages 221-234, New York, NY, USA, 2009. ACM.

[20] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Lamia Yous-
eff, and Dmitri Zagorodnov. The eucalyptus open-source cloud-computing sys-
tem. In Proceedings of 9th IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 09), Shanghai, China, 2009.

[21] John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N. Nel-
son, and Brent B. Welch. The Sprite network operating system. IEEE Computer,
21(2):23-36, February 1988.

[22] Rightscale home page. http://www.rightscale.com/.

[23] Mahadev Satyanarayanan. Scalable, secure, and highly available distributed file
access. IEEE Computer, 23(5):9-18,20-21, May 1990.

[24] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
pages 149-160, 2001.

[25] Andrew S. Tanenbaum, Sape J. Mullender, and Robbert van Renesse. Using
sparse capabilities in a distributed operating system. In Proceedings of the In-
ternational Conference on Distributed Computing Systems, pages 558-563, May
1986.

[26] David Wentzlaff, Charles Gruenwald III, Nathan Beckmann, Kevin Modzelewski,
Adam Belay, Harshad Kasture, Lamia Youseff, Jason Miller, and Anant Agarwal.
Fleets: Scalable services in a factored operation system, 2010.

[27] David Wentzlaff, Charles Gruenwald III, Nathan Beckmann, Kevin Modzelewski,
Adam Belay, Lamia Youseff, Jason Miller, and Anant Agarwal. An operating sys-
tem for multicore and clouds: Mechanisms and implementation. In Proceedings
of the ACM Symposium on Cloud Computing (SOCC), June 2010.

