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Abstract

The moduli space of curves has proven itself a central object in algebraic geometry.
The past decade has seen substantial progress in understanding its geometry. This
has been spurred by a flurry of ideas from geometry (algebraic, symplectic, and differ-
ential), topology, combinatorics, and physics. One way of understanding its birational
geometry is by describing its cones of ample and effective divisors and the dual notion
of the Mori cone (the closed cone of curves).

This thesis aims at giving a brief introduction to the moduli space of n-pointed
stable curves of genus g, Mg,n, and some intuition into it and its structure. We do
so by surveying what is currently known about the ample and the effective cones of
Mg9,n, and the problem of determining the closed cone of curves NE 1 (M 9,,).

The emphasis in this exposition lies on a partial resolution of the Fulton-Faber
conjecture (the F-conjecture). Recently, some positive results were announced and
the conjecture was shown to be true in a select few cases. Conjecturally, the ample
cone has a very simple description as the dual cone spanned by the F-curves. Faber
curves (or F-curves) are irreducible components of the locus in Mg,n that parameterize
curves with 3g - 4 + n nodes. There are only finitely many classes of F-curves. The
conjecture has been verified for the moduli space of curves of small genus. The
conjecture predicts that for large g, despite being of general type, Mg behaves from
the point of view of Mori theory just like a Fano variety. Specifically, this means that
the Mori cone of curves is polyhedral, and generated by rational curves. It would
be pleasantly surprising if the conjecture holds true for all cases. In the case of the
effective cone of divisors the situation is more complicated.

F-conjecture. A divisor on Mg,n is ample (nef) if and only if it intersects positively
(nonnegatively) all 1-dimensional strata or the F-curves . In other words, every ex-
tremal ray of the Mori cone of effective curves NE1(Mg,n) is generated by a one
dimensional stratum.

The main results presented here are:
(i) the Mori cone NE1(Mg,n) is generated by F-curves when g ; 8, n = 1 or g
6, n = 2.



(ii) the F-conjecture is true for Mg for g < 24.
(iii) the F-conjecture holds if and only if it holds for g = 0.

Thesis Supervisor: James McKernan
Title: Norbert Wiener Professor of Mathematics
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Chapter 1

Moduli Space of Curves

1.1 Introduction

This section is dedicated to the statements of basic definitions and some well known

theorems. The first subsection introduces various cones of interest. The next subsec-

tion is a fast-paced journey through the moduli space of stable curves. The subsection

after that introduces various (naturally occurring) divisor classes and some of the re-

lations between these classes.

1.1.1 Basic facts and Notations

In this section, we review some basic terminology and facts. Let X be a normal,

Q-factorial variety or more generally a scheme.

Definition 1.1.1. A prime divisor is an irreducible and reduced subscheme of X of

codimension one. A Weil divisor on X is a formal linear combination D = >i diDi of

prime divisors where di G Z. A Q-divisor is a formal linear combination D = >i diDi

of prime divisors where di E Q. D is called effective if di > 0 for every i. Two divisors

D1, D2 are linearly equivalent, written D1 ~ D2, if D1 - D2 is principal.

A Cartier divisor is a global section of the sheaf K*/O* [20]. A Q-divisor D

is Q-Cartier if for some m E Z, the multiple mD is a Cartier divisor. Since X is



normal, a Q-Cartier divisor is a Q-Weil divisor [20]. The next definition gives a

weaker equivalence relation on divisors, which will be of more interest to us.

Definition 1.1.2. Two divisors D1, D2 are called numerically equivalent, written

D1 =nmn D2, if the intersection numbers D1 -C = D2 -C are equal for every irreducible

curve C C X. Two curves Ci, C2 in X are called numerically equivalent if D - C1

D - C2 for every codimension one subvariety D c X.

Numerical equivalence naturally extends to Q-Cartier or R-Cartier divisors. The

intersection pairing (shown below) gives a duality between curves and divisors.

Definition 1.1.3. The Niron-Severi space of divisors, N 1 (X)R is the vector space of

numerical equivalence classes of R-divisors. Dually, N 1 (X)R denotes the vector space

of curves up to numerical equivalence.

The Neron-Severi spaces are finite-dimensional real vector spaces. The dimension

dimR(N 1(X)R) =: p(X) of N1 (X)R is called the Picard number of X. The vector

spaces N 1 (X)R and N1 (X)R are dual under the intersection pairing:

N'(X) x N1(X)a -> R, (A,7) A - 7E R.

The vector spaces N 1 (X) and N (X) contain several natural cones that control the

birational geometry of X. (We'll drop the subscript, as we always consider them as

real vector spaces.)

Definition 1.1.4. A line bundle L on X is called very ample if there exists a closed

embedding X C P of X into some projective space P - PN such that L = OpN (1)X.

A line bundle L is called ample if a positive multiple of L is very ample. A divisor D

on X is ample if the line bundle associated to it is ample.

The Nakai-Moishezon criterion says that a divisor D on a projective variety is am-

ple if and only if Ddim(v) -V > 0 for every irreducible, positive dimensional subvariety

V of X. In particular, being ample is a numerical property. The tensor product of two

ample line bundles is again ample. Moreover, the tensor product of any line bundle



with a suffciently high multiple of an ample line bundle is ample. Consequently, the

classes of ample divisors form an open convex cone called the ample cone, Ample(X),

in the Neron-Severi space.

Definition 1.1.5. A divisor D is called nef if D - C > 0 for every irreducible curve

C C X.

The property of being nef is a numerical property. Since the sum of two nef

divisors is nef, the set of nef divisors on X forms a closed convex cone in N 1 (X)

called the nef cone of X. The nef cone, Nef(X), contains the ample cone. In fact, a

theorem due to Kleiman characterizes the ample cone as the interior of the nef cone

and the nef cone as the closure of the ample cone.

Definition 1.1.6. A line bundle L on X is called big if its litaka dimension' is equal

to the dimension of X. A divisor D is big if the associated line bundle is so.

A smooth, projective variety X is called of general type if and only if its canonical

divisor Kx is big. A singular variety is called of general type if a desingularization is

of general type.

A characterization of big divisors, that is often useful, is as those divisors that are

numerically equivalent to the sum of an ample and an effective divisor [27]. From the

previous definitions, it is clear that the property of being big is a numerical property

as well. Since the sum of two big divisors is again big, the set of big divisors forms

an open, convex cone called the big cone in the Neron-Severi space. The closure

of the big cone consists of all divisor classes that are limits of divisor classes that

are effective. This closed convex cone is called the pseudo-effective cone, NE (X)

(sometimes also denoted by Eff(X)).

Definition 1.1.7. The closed cone of curves or Mor cone, N E 1 (X) in N,(X) is the

closure of the cone of classes that can be represented by non-negative linear combina-

tions of classes of effective curves.

'Refer to [27] for the definition of Iitaka dimension.



Under the intersection pairing, the closed cone of curves is dual to the nef cone.

For surfaces, the nef cone and the pseudo-effective cone are dual to each other under

the intersection pairing.

Definition 1.1.8. An irreducible curve C on a projective variety X is called a mov-

able or moving curve if C is a member of an algebraic family of irreducible curves

which covers a dense subset of X.

The cone of moving curves of a projective variety X is defined as the closure of the

convex cone in N1 (X) which is spanned by numerical equivalence classes of moving

curves. A moving curve has non-negative intersection with every irreducible divisor,

a property that'll often be used in the proofs presented in Chapters 2 and 3.

Theorem 1.1.9 ([28]). The cone of moving curves is dual to the pseudo-effective

cone.

A Kx-negative extremal ray of the Mori cone, which has a fibration as corre-

sponding extremal contraction, is spanned by the class of a rational moving curve.

1.1.2 The moduli space of curves

In this section, we recall some of the basic facts about the Deligne-Mumford moduli

space of stable curves. Fix non-negative integers g and n such that 2g - 2 + n > 0.

Definition 1.1.10. An n-pointed, genus g stable curve (C,p1,...,pn) is a reduced,

connected, projective, nodal curve C of arithmetic genus g together with n distinct,

ordered, smooth points pi C C such that the canonical bundle, wc(iC1 pi), is ample.

The stability condition mentioned above is equivalent to requiring that on the

normalization of C, every rational component has at least three distinguished points 2.

Following standard notation, we denote by Mg,n the moduli space of stable n-

pointed genus g curves, and by Mg the moduli space of stable genus g curves with

2 A distinguished point of the normalization of C is any point that lies over a marked point pi or
a node of C.



no marked points. More generally, if P is a set with n elements, we denote by MgP

the moduli space of stable genus g curves whose marked points are indexed by P.

Let S be a scheme of finite type over a field. The moduli functor

MI,, : {Schemes/S} -+ {Sets}

associates to an S-scheme of finite type X, the set of isomorphism classes of families

f : Y -+ X flat over X with n sections s 1 ,... , sn : X -+ Y such that for every closed

point x E X, (f- 1 (x), si(x), _.., sn(x)) is an n-pointed genus g stable curve.

Theorem 1.1.11. (Deligne, Mumford, Knudsen) The functor .M,, is coarsely rep-

resented by an irreducible, normal, Q-factorial projective variety Mg,n of dimension

3g - 3 + n with only quotient singularities.

The locus of stable curves that have a node has codimension one in Mg. This locus

has [g/21 + 1 irreducible components, each of codimension one. These components

are called boundary divisors, since their union constitutes the boundary of Mg, that

is, Mg - Mg. The locus of curves that have a non-separating node (i.e., a node p

such that C - p is connected) forms an irreducible component denoted by Air,. The

locus of curves that have a separating node p such that C - p has two components

one of genus i and one of genus g - i, where 1 < i < [g/2J, also forms an irreducible

component denoted by Ai.

There is a stratification of Mg,,, called the topological stratification, where the

strata are indexed by the dual graphs. To each graph of a stable curve, we associate

the subset of curves, a stratum in Mg,n with that dual graph.

Definition 1.1.12. The dual graph of a stable curve C is a decorated graph such that

1. The vertices are in one-to-one correspondence with the irreducible components

of C. Each vertex is marked by a non-negative integer equal to the geometric

genus of the corresponding component.

2. For every node of C there is an edge connecting the corresponding vertices.



3. For every marked point pi, there is a half-edge emanating from the vertex cor-

responding to the component containing pi.

There are only finitely many graphs that can occur as the dual graphs correspond-

ing to n-pointed genus g stable curves. The codimension of a stratum is the number

of nodes of a curve contained in the stratum (equivalently, the number of edges in the

dual graph). In particular, the strata consisting of curves with 3g - 4+ n nodes form

curves in Mg,, called F-curves (in honor of Faber and Fulton). Every ample divisor

has positive degree on each F-curve.

We next describe some natural maps between these moduli spaces of curves.

Definition 1.1.13 (Forgetful morphism). Given any n-pointed genus g curve (where

(g, n) $ (0,3), (1, 1),n > 0), we can forget the n th point, to obtain an (n - 1)-pointed

nodal curve of genus g: Mg,n -> M9,n_1

The curve in the image may not be stable, but it can be 'stabilized' by contracting

all components that are 2-pointed genus 0 curves. The universal curve3 over M,n is

given by the forgetful map: Mg,n+1 -> M 9 ,n.

Definition 1.1.14 (Gluing morphism). The following two maps are usually called

gluing maps. Given an (n1 + 1)-pointed curve of genus g1 , and an (n2 + 1)-pointed

curve of genus g2, we can glue the first curve to the second along the last point of

each, resulting in an (n1 + n 2)-pointed curve of genus g1 + 92. This gives a map

Mgi,n1+1 X Mg2,n2+1 -+ Mg 1 +9 2 ,n1 +n 2 -

Similarly, we could take a single (n + 2)-pointed curve of genus g, and glue its last

two points together to get an n-pointed curve of genus g + 1. This gives a map

Mg,n+2 -+ Mg+1 ,n-

3Universal family of n-pointed genus g curves.



1.1.3 Basic divisor classes of Mg,n

Let's begin with the moduli space Mg of ordinary smooth curves which comes equipped

with one obvious line bundle. The universal curve 7r : Cg -+ Mg comes equipped with

a relative dualizing sheaf WCg/Mg which we can naively think of as the bundle whose

restriction to each fiber C is the canonical bundle. Taking the direct image of this

bundle gives a bundle of rank g on Mg whose fiber over [C] is just H0 (C, Kc).

Definition 1.1.15. We call this bundle the Hodge bundle and denote it by A. We

set Ai = ci(A), where 1 < i < g, and call the divisor class A = A1 the Hodge class.4

Also there is a second way to use w to produce classes on Mg. Instead of first

pushing down to Mg and then taking the Chern class, we can reverse the order of these

operations. Define -y = c1 (w) which is a divisor class on C and then set Ki = 7r,72

(the squaring produces a class in codimension 2 on C which then pushes down to

one of codimension 1 in Mg).

Definition 1.1.16. The Mumford-Morita-Miller K-class is defined as K = r1.

More generally, we can define the -classes as ni = 7r, y+1 for i > 0, where ri has

codimension i.

Last but not the least, we have boundary divisors as defined in the previous

subsection. We will adopt the usual convention that the divisor class defined by a

boundary divisor A (possibly with decoration) is denoted by J (similarly decorated).

Theorem 1.1.17 ([16]). The Picard group Pic(Mg) 0 Q is generated by A and the

classes of the boundary divisors, 6i,, 1i,... , 6 g/23j-

Let the total boundary class be denoted by J = ir, i + ... + 6 Lg/2j.

Theorem 1.1.18. The canonical divisor class of the coarse moduli scheme M9 is

given by

[K.g] = 13A - 26 - 61 .

4 ci(V) denotes the ith Chern class of the vector bundle V.



Theorem 1.1.19. The divisor class A is big and nef.

Note that A itself is not ample, but since it is big it is the sum of an ample and

an effective divisor. Consequently, to show that the canonical bundle Kjg is big, it

suffices to express it as a sum of A and an effective divisor. This is one approach to

show that the projective variety Mg is of general type.

Now, let's switch our attention to divisor classes on M ,n. Let's consider the

forgetful morphism ir :Mg,n+1 -+ Mg,n, also called the universal curve over Mg,n.

The forgetful map 7r is endowed with canonical sections o : Mg,n+1 M,± indexed

by n. The section oi attaches to any n-pointed curve (C, pi, ... , pn) a copy of P' by

identifying pi and 0 c P 1, and labeling the points 1 and oo by pi and Pn+1. Let Ei,

the image of og, be the corresponding divisor in Mg,n+. The relative dualizing sheaf

w, yields the following definition.

Definition 1.1.20. The Hodge class and K-class of Mg,n are obtained by setting

A = ci(7r*w,) and r = r*(c(w,(Z Es)) 2 )
i<n

A new set of classes, the tautological classes, 4pi for 1 < i < n, is defined as

= oC (c(=)

Next, we define the boundary divisors on Mg,n, along the same lines as that on

M9. Before proceeding a couple of remarks are in order. First, the locus Airr is empty

if g = 0. Second, when n > 0, the Ai can be further decomposed. A deformation

which preserves the node must also preserve the partition of N, where N = {1,. . . , n},

into two subsets corresponding to which side of the node each marked point lies on.

For 0 < i < g and P C N, we denote by Ai,p the locus of curves C with a node

which divides C into a component of genus i containing the points indexed by P

and a component of genus g - i containing the points indexed by N\P. Of course,

Ai,P = Ag-i,N\P- Often, we think of 4#i as an anti-boundary and define 0,{oi = -$4.



Theorem 1.1.21 ([1]). Pic(MI,,,) is generated by the basic classes A, 6i, rr, oSP
and $' for all g and n. For g > 3, the only relations on these classes are6 :

1. , = 12A +0 - 6, where b = $j, and J = 6
i,, + 6 iP.

i>O,P

2. The symmetries Si,p = 6
9 _i,N\P-

Theorem 1.1.22 ([291). The canonical divisor class of Mg,n is given by,

[K },r, = 13A +$V - 26 - Y,61,P.
P

In genus 0, the locus 6 ir, is empty (a curve with a non-disconnecting node has

positive genus) as is the class A (in fact the bundle A is zero). In Mo,4 , the three points

of the boundary (which correspond to 60,{1,2} = 60,{3,4}, 60,{1,3} = 60,{2,4}, 60,{1,4} =

6O,{2,3}) are all linearly equivalent. Pulling these back to Mo,, , we get the four

point relations: for any subset Q = {i,j, k, l} of {1,. . . , n} of order 4, the class

q := Z JoP depends, as the notation suggests, only on Q and not on the
i~jEP,k,lgP

choice of the pair of elements i and j. Keel [23] proves that all relations in genus 0

are consequences of these.

For future reference, its worth noting a few relations expressing the classes r, and

?4P in terms of boundary classes . The basic case is Mo,3 (a point) where all these

classes are 0. Pulling back these relations from Mo,3 to Mo,, gives the relations:

* K = S oo,P for any q, r in {1, ... n}
q,rP

0 KIZPI(n - |P|) 0,
n -1

P

@; = 5 So,p for any q, r in {1, . . , n} distinct from s.

sEP,q,rP

5Switching notation from divisor A to its divisor class 3.
'In smaller genera, there are some extra relations.



1.2 The Big Picture

For a complex projective variety X, one way of understanding its birational geometry

is by describing its cones of ample (Ample(X)) and effective divisors (NE(X))

Ample(X) C NE1 (X) c N1 (X).

The closure in N 1 (X) of Ample(X) is the cone Nef(X) of numerically effective divi-

sors. The interior of the closure NE (X) is the cone of big divisors on X. Loosely

speaking, one can think of the nef cone as parameterizing regular contractions7 from

X to other projective varieties, whereas the effective cone accounts for rational con-

tractions of X. For arbitrary varieties of dimension > 3 there is little connection

between Nef(X) and NE(X). For surfaces though, there is the Zariski decompo-

sition which provides a unique way of writing an effective divisor as a combination

of a nef and a negative part [271, and this relates the two cones. Most questions

in higher dimensional geometry can be phrased in terms of the ample and effective

cones. For instance, a smooth projective variety X is of general type precisely when

Kx E int(NE (X)), that is, Kx is big.

We often wish to explore the relationship between the canonical class Kx of a

smooth projective variety X and rational curves on X. The Cone and Contraction

theorems [26 are our main tools in understanding this relationship. The importance

of the extremal rays8 in the Kx-negative part of the cone of curves is that they can

be contracted. If R is an extremal ray of the cone of curves satisfying Kx -R < 0,

then there exists a morphism contR : X -* Y such that any curve whose class lies in

the ray R is contracted. Furthermore, the class of any curve contracted by contR lies

in the ray R. A variant of this idea is used in the proof of the MF-conjecture. The

Contraction Theorem provides a very important way of constructing new birational

models of X. Unfortunately, we do not understand the Kx-positive part of the cone

of curves. Even the Kx-negative part of the cone can be very complicated.

7morphisms with geometrically connected fibers to projective varieties.
8An extremal ray of a cone is a ray that cannot be expressed as a conic (non-negative) combination

of any ray directions in the cone distinct from it.



The question of describing the ample and the effective cone of Mg has a long

and rich history. Moduli spaces of curves with their inductive structure given by the

boundary stratification are good test cases for many problems coming from higher

dimensional birational geometry. We briefly review how the landscape looks like as

of today. These are very deep results, and we make no attempt here to present an

insight into these. Historical references can be found in [11].

" For genus, g 14, Mg is unirational, cf. [34].

" For g = 15, Mg is rationally connected, and its Kodaira dimension, r,(Mi5 )

-oo, cf. [4].

" For g = 16, Mg is uniruled, and K(M 16 ) = -oo, cf. [5].

" For 17 < g 21, its an open question whether r,(Mg) = -oo.

" For g = 22, Mg is of general type, cf. [11].

" For g = 23, only partial results are known, ri(M 23 ) > 2, cf. [8].

" For g > 24, Mg is of general type, cf. [17].
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Chapter 2

Effective, Mori and nef cones

In this chapter, we deal in depth with various cones of interest. The first section is

dedicated to the effective cone of Mg,. The next section presents the main theorems

and some state of art results regarding the Mori and nef cones of Mg,, leading to

the grand finale: reducing the F-conjecture to the more tractable MF-conjecture. We

now state the F-conjecture in its various equivalent forms. For sake of brevity, and

as per contemporary notation, we will denote the F-conjecture on the moduli space

Mg,n by F1 (Mg,n).

F-Conjecture 2.0.1 (Fi(Mg,n)). A divisor on Mg,n is ample (nef) if and only if it

has positive (nonnegative) intersection with all 1-dimensional strata or the F-curves.

Put differently, any effective curve in Mg,n is numerically equivalent to an effective

combination of 1-strata. In other words, every extremal ray of the Mori cone of

effective curves NE 1 (M,,)) is generated by a one dimensional stratum.

2.1 Effective cone

In this section, we'll first study the effective cone of Mo,n/Sn. The moduli space of

n-pointed genus g curves admits a natural action of the symmetric group Sn, where

the symmetric group acts by permuting the marked points. The Neron-Severi space

of Mo,n/Sn is generated by the classes of the boundary divisors A2 , A3 ,..., AtL/2j.



Theorem 2.1.1. (Keel-McKernan, [22]). The effective cone of Mo,n/Sn is the cone

spanned by the classes of the boundary divisors Ai for 2 < i < [n/2].

Proof. Let D be an effective prime divisor different from a boundary divisor. We

would like to show that the class of D is a non-negative linear combination of boundary

divisors. Write D =nm n Z$2 ai. We show that ai 2 0 by induction on Z.

Let C2 be the curve obtained in MO,n/Sn by fixing n -1 points on P1 and varying

the n'h point on P1. A 2 - C2 = n - 1 (there is one intersection each time the nh

point crosses one of the other fixed n - 1 points) and Ai - C2 = 0 for i > 2 (C2 is

disjoint from the other Ai's). Moreover, C2 is a moving curve. Since the closed cone

of moving curves is dual to the pseudo-effective cone, we conclude that a 2 2 0.

Now suppose a3 > 0 for 2 < j < i < [n/2J. Fix a P with i distinct fixed points

pi.... , pi-1 and q, (call this curve C). Fix another P1 with n - i + 1 fixed points

pi, . . . , pn and one variable point q2 (call this curve Ci'). Glue the two P's along q, and

q2. Let Ci be the curve in Mo,/Sn obtained by letting q2 vary. Then A2 -Ci = n - i +1

(one intersection each time q2 crosses one of the n-i-+l fixed points pi,. . . , pn). Curves

with class C cover the boundary divisor Ai_1. Note that C lies in Ai_1. Consider

the family over Ci as Cj x Cf. The section corresponding to q, has self-intersection 0

(since q, is fixed on Ci). Now consider the family Ci' x C" r P1 x P1 blown up at the

points where the constant sections corresponding to the pj, where i < j 5 n, meet the

diagonal section corresponding to q2 and hence the proper transform of that section

has self-intersection 2 - (n - i+1). Hence, Ai-1 -Ci = 2 - (n - i+1) = -n+i+1 < 0,

and Aj - C, = 0 for j $ i - 1, i (Ci is disjoint from the other Aj's). Since D is an

irreducible divisor different from the boundary divisors, we conclude that a general

curve with class Ci cannot be contained in D. Hence, D - Ci > 0. It follows that

ai 2  0 concluding the induction step. E

In contrast to MO,n/Sn, the effective cone of MO,n seems to be very complicated.

Already for MO,6 the boundary divisors do not generate the effective cone. It is known

that the effective cone of MO,5 is the cone spanned by the boundary divisors. There

are several ways of generating effective divisors on MO,n. First, there are natural



gluing maps

: MQ,2, - Mn

obtained by gluing the points marked P2i-1,P2i to obtain an n-nodal genus n curve.

One can pull-back effective divisors that do not contain the image of 9 to obtain

effective divisors on M 0,2n. There are several other such gluing maps that one may

consider. For example, one may attach a fixed one-pointed elliptic curve at each of

the marked points to obtain a map

Pulling back effective divisors not containing the image of 9' produces effective divisors

on Mo,.. Next, given an effective divisor in Mo,nk, one may pull-back this divisor

via the forgetful maps

7Tii,...,ik : MO,n -+ Mo,nk

to obtain effective divisors in MO,.. More interestingly, by appropriately choosing

the forgetful morphisms, one may construct birational morphisms from MO,n to a

product of MO, 's. Again by choosing the numerics carefully, one sometimes obtains

divisorial contractions [3]. The exceptional divisor in that case is an extremal ray of

the effective cone.

As already mentioned, the effective cone of MO, 6 is not generated by the boundary

divisors. In fact, Keel and Vermeire [33] constructed an effective divisor that is not

in the non-negative span of the boundary. The idea is to look at the locus of curves

that are invariant under the element (ii, i2 )(i 3 , i4)(i5 , i6 ) E S6 . Since there are 15 such

triplets of pairs, there are 15 such divisors. An alternative way to think about it would

be to consider the gluing map; 9 M0 ,6 -+ M 3 and considering the divisor obtained

by taking the closure of the preimage under 9 of the locus of hyperelliptic curves.

Again there are (6) different possible identifications of pairs of points giving 15 such

different divisor classes. Hassett and Tschinkel [21] later proved that the effective

cone of MO,6 is generated by the boundary divisors and the 15 Keel-Vermeire divisors



whose constructions were sketched above. We do not yet know the effective cone of

Mo,, for n > 6. It is not even known whether the effective cone of Mo,, has finitely

many extremal rays.

Definition 2.1.2. Suppose that the group of line bundles Pic(X) is a finitely generated

abelian group. We may pick a set of divisors D1,... , Dk so that the line bundles

0x(D1),...,0x(Dk) generate Pic(X). The Cox ring of X, denoted by Cox(X) is

given by R(X, D1, ... ,D) = H0 (X, Ox(D)) where D= Z_'miDi.
mEZk

A Mori dream space is a Q-factorial', projective variety X with Pic(X) 0 R =

N'(X) and whose Cox ring is finitely generated. They satisfy many other nice prop-

erties. For example, on a Mori dream space, one can run Mori's program for every

divisor. The nef cone of a Mori dream space is generated by finitely many semi-

ample divisors2 . The effective cone of a Mori dream space is polyhedral. One of

the big open problems is to prove that the cones of ample and effective divisors are

polyhedral cones, which is implied by the following conjecture.

Conjecture 2.1.3. Mo,, is a Mori dream space for all n.

Compared to Mori and nef cones, our knowledge of the effective cone of Mo," is

even more limited. Each time one constructs an effective divisor ([13], [9] and others)

one determines part of the effective cone. Approaching from the other way around,

one can bound the cone of effective divisors by constructing moving curves. Each

time one constructs a moving curve ([19}, [61, [30] and others), the effective cone has

to lie on one side of the hyperplane in N' (Mo,,) determined by that moving curve

(using the duality of the cone of moving curves and the effective cone). One thus

obtains a cone containing the effective cone. The former approach approximates the

effective cone from the inside, and the later from the outside.

Theorem 2.1.4. The effective cone of M 2 is generated by the boundary divisors oirr
and 61.

'A variety is called Q-factorial if every Q-divisor is Q-Cartier.
2A divisor D is semi-ample if the corresponding line bundle is so, and a line bundle L is semi-

ample if LOm is globally generated for some m > 0. In other words a divisor such that the linear
system of some positive multiple is base-point free.



Proof. Since in genus 2, the divisors 6 ,,, 61 and A satisfy the linear relation

10A = 6ir, + 261,

the Neron-Severi space has dimension two. We need to determine the two rays bound-

ing the effective cone. Write the class of an effective divisor D as a6 ir, + b61. We

would like to show that a, b > 0. We can assume that D is an irreducible divisor that

does not contain any of the boundary divisors. Take a general pencil of (2, 3) curves

in PV x P1. This pencil induces a moving curve C in M 2. Since none of the curves

in this pencil is reducible and 20 members of the family are singular, we conclude

D -C = 20a > 0. Hence, a > 0. Let B be the curve in M 2 obtained by taking a fixed

elliptic curve E with a fixed point p E E and identifying a variable point q E E with

p to form a genus two nodal curve. Note that B is a moving curve in the boundary

divisor Air,. (Refer to [18] for the self-intersection calculations.) Since

irrB=-2, 6 1 -B=1

we conclude that -2a + b > 0. Hence b > 2a > 0. E

It can be shown that D is ample if and only if 12a > b > 2a > 0. Hence we

conclude that the effective cone properly contains the ample cone which is bounded

by the rays 6irr + 261 and 126irr + 61.

Theorem 2.1.5. [31] The effective cone of M3 is generated by the classes of the

divisor of hyperelliptic curves Dhy, and the boundary divisors 6 irr and 61.

Proof. The class of Dhy, is given by [Dhyp] = 18A - 2 6irr - 661. Let D be a prime

divisor that is not a boundary divisors or Dhy,. As usual, express the class of the

divisor D as a[Dhy,] + bo6ir, + b161. Take a general pencil of quartic curves in p2.

This pencil induces a moving curve C1 in the moduli space which is disjoint from Ai

and Dhy,, and has intersection number 6 irr - C1 = 27 (note also that A -C1 = 3). It

follows that bo > 0. Fix a genus 2 curve A and a pointed genus one curve (E, p). Let



C2 be the curve in moduli space induced by attaching (E, p) to A at a variable point

q C A. We have the intersection numbers

A - C 2 = 0, 6irr - C2=0, Dhy, - C2 =12, 61- C2= -2.

Since the class of C2 is a moving curve class in A1 , we conclude that 12a - 2bi > 0.

Next fix a genus 2 curve A and a point p c A. Let C3 be the curve induced in the

moduli space by the one-parameter family of nodal genus 3 curves obtained by gluing

p to a variable point q E A. The intersection numbers of C3 are

A -C3 = 0, irr - C3=-4, Dhy, - C3= 2, 61 - C3 = 1.

Since C3 is a moving curve class in Airr, we have that 2a - 4bo + b1 2 0. Rewriting,

we get 2a + b1  4bo 2 0. Since a > b1 , we conclude that a has to be non-negative.

Finally, to see that b1 is non-negative, restrict the class of D to Dhyp. Dhy, is ample in

the Satake compactification of Mg. Hence, Dhy, intersects D in an effective divisor.

So we conclude that b1 > 0. D

2.2 Mori and nef cones

This section reviews what is known and what is conjectured about the cone of nef

divisors on Mg,, and its dual, the Mori cone. As we saw in section 1.2, it is quite

hard to compute these cones for a general projective variety. But it seems possible

to do so for the moduli space of curves because of the following developments. The

first is a conjectural geometric description of the extremal rays of the Mori cone, the

F-Conjecture 2.0.1. The second is that the form of the F-conjecture allows us to make

the inductive structure of the set of all these spaces, as expressed in the forgetful and

gluing maps, a powerful tool. Essentially, the general case on Mg,n can be reduced

to statements in genus 0. Unfortunately, settling the conjecture on Mo," seems quite

hard as well.

The F-Conjecture is motivated by a question originally asked by Fulton only in



the case g = 0 and whose analogue for n = 0 was later considered by Faber, whence

the name. For our convenience, let's make a few working definitions.

Definition 2.2.1. The Faber cone of curves is the subcone of the Mori cone spanned

by the curve strata (F-curves). The Faber cone of divisors is the dual of the Faber

cone of curves. A Faber curve or Faber divisor is one that lies in the corresponding

cone.

We will make use of the standard product decomposition for strata as a finite

image of products of various Mi,,'s [24]. We describe this decomposition by the

following finite, proper, surjective gluing maps, where the first one acts by attaching

curves coming from the two factors along p and q respectively (N denotes the set

{1,...,n} and SC N):

Ai,s := Mi,SUp X Mg-i,(N\S)Uq --+ Ai,s C M,

and the second identifies points p and q of a curve

Airr := Mg-1,NUpUq --+ Air, C Mg,n.

Lemma 2.2.2. [15] The pullback to Ai,s of any line bundle is numerically equivalent

to a tensor product of unique line bundles from the two factors. The given line bundle

is nef on Ai,S iff each of the line bundles on the factors is nef. Dually, let C be any

curve on the product, and Ci, C9_ be its images on the two factors (with multiplicity

for the pushforward of cycles) which we also view as curves in Mg,, by the usual

device of gluing on a fixed curve. Then, C and Ci + Cg-i are numerically equivalent.

Also, it follows that every curve in Mg,n is numerically equivalent to an effective

combination of curves whose moving subcurves are all generically irreducible.

Surprisingly enough, it is quite easy to describe the curve strata of Mg,n, up to

numerical equivalence, and to compute the degrees of the standard divisor classes

on them. The following gives a listing of numerical possibilities for 1-dimensional

strata, giving explicit representatives for each numerical equivalence class. The parts



in 2.2.4 and 2.2.3 correspond, that is, for each family X listed in parts (2-6) of 2.2.3,

the inequality that expresses the condition that a divisor D, as given in 2.2.4, meets

X non-negatively is given in the corresponding part of 2.2.4.

Theorem 2.2.3. Let X C M ,, be a 1-dimensional stratum. Then X is either

1. For g > 1, a family of elliptic tails, that is the image of the map M1 ,1

Mg,n, obtained by attaching a fixed n + 1-pointed curve of genus g - 1 to the

moving pointed elliptic curve. Any two families of elliptic tails are numerically

equivalent. Let's call such a family E. Except for E, all the following curve

strata are numerically equivalent to families of rational curves, the image of

MO -- + M,n defined by one of the attaching procedures below.

2. For g > 3, attach a fixed n + 4 pointed curve of genus g - 3.

3. For g ;> 2, I c N, 0 < i < g - 2, i+II > 0, attach a fixed I + 1-pointed curve

of genus i and a fixed Ic + 3-pointed curve of genus g - 2 - i.

4. For g > 2, I c N, 0 < i < g - 2, attach a fixed I + 2-pointed curve of genus i

and a fixed IC + 2-pointed curve of genus g - 2 - i.

5. For g > 1, i, j > 0,I, J c N, I n J = 0, i + j : g - 1 and i +|II, j+IJ > 0,
attach a fixed I+1-pointed curve of genus i, a fixed J+ 1-pointed curve of genus

j and a fixed (I + J)c + 2-pointed curve of genus g - 1 - i - j.

6. Forg > 0, i, j,kl > 0 i +j+k+l = g, I,J,K,L a partition of N, and

i +III, j +JI, k +IKI, l +ILI > 0, attach I + 1, J + 1, K + 1 and L + 1-pointed

curves of genus i, j, k, I respectively.

From the above description, we see that all 1-dimensional strata except for E are

numerically equivalent to families of rational curves, meaning that all its irreducible

components are rational. As we will soon see, strata defined by 2.2.3.6 play distinctly

different roles, both geometrically and combinatorially, from those defined by 2.2.3.1-

2.2.3.5. Every moving component of a curve strata of type (2.2.3.6) is smooth and

rational.



The next result describes the Faber cone of divisors as an intersection of half

spaces. Following the notation set earlier, 60,{i = -0j.

Theorem 2.2.4. Fix a divisor D on Mg,n and express its class as aA - birr6irr -

Z bi,1,, with the convention that 6ir, = 0 if g = 0. Here IT,n = {(i, 1)10 i

[g/2J, I C {1,... ,n}, Il > 1 for i = 0}. bi,j is defined to be bgi,ic for i > [g/2J.

Consider the inequalities

1. a - 12birr + b1,0 > 0.

2. birr > 0.

3. bi 1 0 for 0 < i < g - 2.

4. 2birr bi+ 1 ,1 for 0 < i < g - 2.

5. bij + bj,j ! bi+j,uj for i, j > 0, i + j g - 1, I n J =0.

6. bi,1+bj,j+bk,K+b,L bi+j,IuJ+bi+k,IuK+bi+l,IuL for i, j, k, I > 0, i+]j+k+l =9

and I, J, K, L a partition of N.

Then D is a Faber divisor if and only if

* when g > 3, all of (1 - 6) hold.

* when g = 2, (1) and (3 - 6) hold.

* when g = 1, (1) and (5 - 6) hold.

* when g = 0, (6) holds.

The proof of the above theorem is evident from Theorem 2.2.3, and the duality of

the Neron-Severi spaces of divisors and curves (as shown by the intersection pairing

in the previous chapter).

We now give a brief description of the curve strata 2.2.3.1 - 2.2.3.6. As seen earlier,

the closure of every stratum is the finite image of a product of spaces Mg,,, 's. Only

MO,3 is 0-dimensional, and only Mo,4 and M 1,1 are 1-dimensional, so we must have



one factor of the latter type and several of the former. This still leaves an enormous

number of combinatorial possibilities for the dual graph but we can effectively ignore

these by viewing curve strata B as test curves in which a moving component (either

Mo,4 or M 1 1 ) is attached to a fixed curve (the various Mo,3's). Applying Lemma

2.2.2, we see that the numerical equivalence class of B is unchanged if we replace the

fixed curve by any smoothing of it at the set of nodes not on the moving component.

Thus, in the M 1,1-case where the moving component C has genus 1, we can assume

that the fixed component is a smooth curve of genus g - 1 and we have n additional

marked points on the fixed curve. Thus, M 1,1-case corresponds to a family of elliptic

tails (see 2.2.3.1) and gives the first inequality 2.2.4.1. In the MO,4-case, things are a

bit more complicated. Now the numerical type of the stratum depends on the genus of

each connected component and the marked points lying on each connected component

of the fixed curve and the number of points at which each is attached to the moving

component. The connected components of the fixed curve thus determine one of

the 5 partitions of the 4 marked points. The partitions {4}, {3, 1}, {2, 2}, {2, 1, 1}

and {1, 1, 1, 1} give rise to the 1-dimensional strata 2.2.3.2 - 2.2.3.6 respectively, and

the corresponding inequalities in 2.2.4. For details, see [15]. As shown above it is

straightforward to list all F-curves on a given Mg,n. For instance, F-curves on Mo,n

are in 1 : 1 correspondence with partitions (ni, n2 , n3 , n4) of n, the corresponding

F-curve being the image of the gluing map which takes a rational 4-pointed curve

(C,p1,p2,p3,p4) to a rational n-pointed curve obtained by attaching a fixed rational

(ni + 1)-pointed curve at the point pi.

Next, we review partial results in the direction of proving that Faber divisors are

nef. We begin with an important technical result.

Theorem 2.2.5. If g > 2 or g = 1, n > 2, a divisor D in Pic(Mg,n) is nef if and

only if its restriction to A, the boundary of M9 ,n, is nef.

Using this, the F-conjecture for general g reduces to the genus 0-case (see section

3.1). Mo,9 ±n/Sg is the quotient of Mo,g+n by the action of Sg on the last g marked

points. A point of Mo,g+n/Sg has n ordinary ordered marked points and g unordered



marked points. We get a map fgn : MO,g+n/Sg - Fg,n c Mg,n, by attaching a fixed

pointed curve of genus 1 at each of the g unordered points and the map fg,n is the

normalization of the image F9,. As per current usage, we call Fg,n the flag locus and

call curves whose moduli points lie in it flag curves. The flag locus contains curve

strata of type (2.2.3.6). They are the only strata in genus 0, and there is a face of

NE 1 (Mo,n) that contains exactly these strata. Next, we state the most important

theorem which is the key to all the results presented here.

Theorem 2.2.6 ([15]). A divisor D on Mg,n is nef iff D has non-negative intersection

with all curve (1-dimensional) strata and its restriction to F,n is nef. Conversely,

every nef line bundle on Mo,+n/S, is the pullback of a nef line bundle on Mg,n. In

particular, F1 (M 0,,+n/Sg) is equivalent to F1 (Mg,n).

Using the proof of Theorem 2.2.6, one can produce a nef divisor class D on Mg,n

which has degree 0 on all curve strata of type (2.2.3.6) and has strictly positive degree

on all other curve strata. In fact D is trivial on F9,. This shows that the Mori cone

of Fg,n is a face of the Mori cone of Mg,. Next, we state the following strengthening

of Theorem 2.2.6.

Theorem 2.2.7 ([15]). Let g > 1, and let N c NE 1 (Mg,n) be the subcone generated

by the curve strata of types (2.2.3.1 - 2.2.3.5) as defined in genus g. Then N is the

subcone generated by curves C C Mg,n whose associated family of curves has no mov-

ing smooth rational components. Equivalently, N E 1 (Mg,n) = N + NE 1 ( M 0 ,/+nSg)-

Let us say, by slight abuse of notation, that a curve in Mg,n is rational if all

the components of its normalization are rational. These form a locus Rg,n C Mg,n

which is the closure of the locus of irreducible g-nodal curves and is the image of

the quotient of Mo,2g+n by the group G C S29 of permutations commuting with the

product (12)(34) .. .(2g-1, 2g) of g transpositions by the map rg,n, which identifies the

corresponding pairs of marked points (and again normalizes Rg,n). In other words, the

map rg,n : Mo,2 +nl/G -- Rg,n is the normalization of the image Rg,n. By degenerating

all the fixed components, we can find representatives of all the curve strata (2.2.3.2-

2.2.3.6) lying inside R9 ,n. Hence,



Corollary 2.2.8. A divisor D on Mg,, is nef iff its restriction to Rg, U E is nef,

where E is as described in 2.2.3.1.

The arguments above show that the Mori cone is generated by E together with

curves in Rg,.. Using the fact that the nef cone is dual to the Mori cone, the above

corollary follows easily. However, there is no converse here, nor do the curve classes

in Rg,n form a face of NE 1 (Mg,n).

The reductions above make it natural to ask how one might attack F1 (MO,n). A

natural question to ask would be:

Question 2.2.9. Is every Faber divisor D on Mo,, an effective sum of boundary

divisors?

This would imply the F-conjecture for Mo,n and hence for every M, by an

induction on the inductive structure of the set of all spaces Mg,n. Indeed, a positive

answer would reduce the problem of showing that a Faber divisor D is nef on MO,n to a

simpler problem of showing that D is nef on every boundary component Ao,s = Ao,sc.

Each Ao,s is the finite image of a product of Mo,i's with i < n. Also, D would restrict

to a Faber divisor D' on each factor of the above product which by induction on n

would be nef. Since a given line bundle is nef on a boundary component iff each of

the line bundles on the factors is nef (Lemma 2.2.2), D itself would be nef. Moreover,

this question is purely combinatorial and can be restated as whether one explicit

polyhedral cone is contained in another. The combinatorial formulation is as follows:

Question 2.2.10. Let V be the Q-vector space that is spanned by symbols 6s for each

subset S C {1,... ,n} subject to the relations

1. 6s = 6sc for all S.

2. 6s = 0 for S| < 1.

3. for each 4 element subset {i,j,k,l} C {1,...,n}, S = 6s.
i,jES;k,ESC i,kES;i,lESc

(These relations come from the four point relations described in the first chap-

ter.)



Let N C V be the set of elements E bsJs satisfying bjuj+bIuK+bIuL > bI$bJ+bK+bL,

for each partition of {1,. .. , n} into 4 disjoint subsets I, J, K, L, and let A c V be the

affine hull of Js. Then, is N c A?

2.3 MF-conjecture

In this section, we show that the F-Conjecture can be reduced to what has been

termed the MF-Conjecture (informally called the Modified Fulton conjecture) which

asserts that F-divisors on Mo,, are the sum of the canonical divisor and an effective

divisor.

MF-Conjecture 2.3.1. Every F-divisor on Mo,n is of the form cKV + E where

c > 0 and E is an effective sum of boundary classes.

Reducing the F-conjecture to 2.3.1 provides a better numerical criterion and algo-

rithm to verify whether a divisor is nef, as shown later in the section. This is because

showing that a divisor class is in the convex hull of boundary classes is more difficult

than showing it is in the convex hull of boundary classes and the canonical divisor.

We say that the MF-conjecture behaves better numerically as it makes a considerably

weaker combinatorial assertion than that posed in the Question 2.2.10, and yet we

have the following wonderful theorem.

Theorem 2.3.2 ([14]). If the MF-Conjecture is true on MO,N for N < g + n, then

the F-conjecture is true on Mg,n. In particular, if the MF-conjecture is true then the

F-conjecture is true.

Two key ingredients are needed to explain how the MF-Conjecture implies the

F-conjecture. Their proofs are presented in the next chapter.

The first is that if the F-conjecture is true on Mo,g+n then it is true onM,,s

More precisely, let f : Mo,,+n > Mg,n be the morphism associated to the map given

by attaching pointed elliptic tails at each of the first g marked points.

Theorem 2.3.3 (Bridge theorem). A divisor D on Mg,n is nef if and only if



1. D is an F-divisor, and

2. f*D is a nef divisor on MO,g+n-

The second key theorem is as follows.

Theorem 2.3.4 (Ray theorem). If R is an extremal ray of the cone of curves of

MO,N and if (KW0,N + G) -R < 0 where G is any effective sum of boundary divisors

for which A - G is also effective, then R is spanned by an F-curve.

The symbol A denotes the sum of boundary classes. So the condition mentioned

above is that G = Es asAs such that 0 < as < 1 for all S. The above theorem

is an extension of the work by Keel and McKernan [221 which states that if R is an

extremal ray of NE1(MO,N) and if R - (KVON + G) < 0 for G = Es asAs such that

0 < as < 1, then R is spanned by an F-curve.

Proof of Theorem 2.3.2. Suppose that whenever one has an F-divisor D on MON,

there exists a constant c > 0 for which D = cK0,N + E, where E is an effective sum

of boundary classes. We will show that this assumption implies that the F-conjecture

is true on Mg,n. By Theorem 2.3.3, in order to prove the F-conjecture on Mg,n, it

is enough to show that any F-divisor on MO,g+n is nef. Hence if we show that our

assumption implies that D is nef, then the theorem is proved. By definition, if D

intersects non-negatively all the extremal rays of the cone of curves, then D is nef.

Suppose R is an extremal ray of the cone of curves. The first thing to note is that

since D is an F-divisor, and if R is spanned by an F-curve, then D intersects R

non-negatively. We will prove that there are no other kinds of extremal rays. We do

this by induction on the number of marked points. As base case we take N = 7 since

the F-conjecture is true for N < 7 [22].

(The cone of curves is the closure of NE1 (MO,N) in the real vector space N1 (MO,N)-

So every extremal ray R is either spanned by an irreducible curve or is the limit of

rays spanned by irreducible curves.)

Suppose that R is a D-negative extremal ray of the cone of curves of MO,N, for



N > 7, that isn't spanned by an F-curve. In other words, suppose that

D.R= (cKV0 ,N +E) R< 0.

Choose d such that 0 < d < c and d < 1. Set G = E and E' = -E. Then

D = cKVO,N +E = c((KOYN + G) + E'). Since D is F-divisor, D -R < 0 implies that

R is not a Faber ray, that is R is not spanned by a F-curve. By Theorem 2.3.4, we

have (KV0,N + G) -R > 0. Hence, E' -R < 0. In particular, we have E - R < 0.

Let's say R is spanned by a curve B. Since E is an effective sum of boundary

classes and E -R < 0, the curve B must lie in one of the boundary components in

the support of E. To get a contradiction, it is enough to show that D is nef when

restricted to a boundary divisor in the support of E. Pick AT in the support of E

such that AT - R < 0. Its easy to see that such a boundary divisor can be found,

otherwise E -R would be non-negative. Restricting D to AT results in pulling D back

to a space Mo,,, for n < N along a gluing morphism. Applying Lemma 2.2.2, the

pullback of an F-divisor along a gluing morphism is an F-divisor. One can repeat this

argument until ending up in Mo,, for n < 7, and we are done. Before proceeding with

the case when R is a limit of curves, let's state the following lemma (communicated

by James McKernan).

Lemma 2.3.5 (Extremal ray lemma). Let X be a smooth projective variety and let

Y be a smooth prime divisor. Let i : Y -+ X be the natural inclusion morphism.

If R is an extremal ray of the closed cone of curves of X such that Y - R < 0 then

there is an extremal ray S of the closed cone of curves of Y such that i.S = R, where

i, : NE 1 (Y) -- N E 1 (X) is the natural map.

Proof. Pick a sequence of irreducible curves C1, C2,... such that the rays R+[Ci)

approach the ray R. By continuity, possibly passing to a tail of this sequence, we

may assume that Y - Ci < 0. As Y and C1, C2,... are irreducible, it follows that

C c Y. Let S, = R+[Cz] C NE1 (Y). Possibly passing to a subsequence, we may

assume that Si converges to a ray S. We have, iSi = Ri, so that by continuity

iS = R.



Suppose that oz and # E NE1 (Y) such that a + 3 E S. If we set -y = i~oa and

6 = i,0, then -y + 6 E R, and y E NE1 (X) and 6 E NE1 (X) so that -y and 6 E R. It

follows that F = i; 1R is a non-empty face of NE1 (Y), so that we may always find

S C F an extremal ray. 0

Coming back to our proof, let's say the extremal ray R is a limit of curves. Since

E is an effective sum of boundary classes, pick a prime divisor AT in its support,

such that AT -R < 0. Now applying Lemma 2.3.5, we obtain an extremal ray S in

NE1(AT). Since, S is a limiting ray on the boundary, it is spanned by a F-curve (by

induction hypothesis). Also, restricting D to AT results in pulling D back along a

gluing morphism. Hence DIAT is an F-divisor and intersects S non-negatively. Hence

the contradiction.

Theorem 2.3.6 ([14}). The F-conjecture is true on Mo,g/Sg for g < 24.

Remark: The above result is counter-intuitive since for g > 22, the Kodaira Dimen-

sion of Mg is positive (in fact, for g = 22 and g 2 24, the moduli space is of general

type).

Corollary 2.3.7. The F-conjecture is true on Mg for g < 24.

Proof. The corollary follows from Theorem 2.2.6. In particular, F1 (Mg) is equivalent

to F1 (Mo,g/S).

Corollary 2.3.8. The F-conjecture is true on M,,n for g < 8, n = 1; g = 6, n = 2

Proof. In either of the cases g + n < 24. Hence, applying Theorem 2.2.6, the result

easily follows. E



Chapter 3

Bridge and Ray theorems: proofs

In the following pages, we sketch proofs of Theorems 2.3.3 and 2.3.4, the key ingre-

dients involved in reducing the F-conjecture to the MF-conjecture.

3.1 Bridge theorem: proof

In this section, we sketch a proof of Theorem 2.3.3, which follows from Theorem 2.2.6.

Theorem 2.2.6 not only states the former theorem, but also its converse. So, now all

we need to do is prove Theorem 2.2.6 (or its strengthening Theorem 2.2.7). The

proof is combinatorially intensive and uses various relations amongst divisor classes

on Mg,,. We omit these symbolic manipulations. The proof presented here is along

the lines of [15].

We begin with a proof of Theorem 2.2.5. Assume g > 3. Fix the class of a divisor

D on M,,, as aA - birr6 irr - Zr, beo, We claim:

Lemma 3.1.1. If g > 1 and D meets all curve strata of types (2.2.3.1 - 2.2.3.5), that

are relevant for g, non-negatively, then D - B > 0 for any curve B not lying in A. If

g = 1, then such a D is linearly equivalent to an effective sum of boundary divisors.

First, we deal with g = 1. In this case, using the relations between divisor classes,

we can assume a and all the boj} (coefficients of V'i) are all 0. Then applying the

inequalities 2.2.4.5 inductively, it follows that boj > 0 for any I and hence that D is



equivalent to an effective sum of boundary divisors.

Now assume g 2 2 and define the class of an associated divisor D' on Mg by aA -

birr6irr - _Zl 3iS, where 0i = maxIcN biI. Observe that, because we defined #i's to
be maxima, if the coefficients of D satisfy any one of the sets of inequalities of types

(2.2.4.1 - 2.2.4.5), then the coefficients of D' satisfy the corresponding inequalities

for Mg. Using the relation V#i = wi + Ei, 60,i, we can express D as eEN b0,{iwi +

lr*D'+ E where 7r is the forgetful map to Mg. wi on Mg,n stands for the pullback of

the relative dualizing sheaf of the universal curve M, 1 --+ Mg by the projection given

by dropping all but the ith point, and E is the effective sum of boundary divisors

given by

E= 3 (i b0, - bo, 1 
60,1 + (1i -bi,6,.

IcN,|I|,JIc|;>2 \ iE I /(i,1) Elg,n,i>0

Note that the sum defining E is effective. The non-negativity of the coefficient of

60,1 in E follows from an induction using the inequalities 2.2.4.5, and that of Sij for

i > 0 from the definition of D'. It can be shown that D' is nef outside A [15} and

each wi is nef [241. Hence, all three terms in the expression of D meet a curve C C A

non-negatively. This proves the lemma.

From this Corollary 2.2.8 follows by an easy induction. We must show that the

class of any divisor D satisfying the inequalities of types (2.2.4.1 - 2.2.4.5) must

meet non-negatively any curve B whose moving components are not rational and we

proceed by simultaneous induction on g and n. When g = 0 or g = 1, n = 1 there is

nothing to prove, so we may suppose g 2 2 or g = 1, n > 2. By Lemma 3.1.1, if B

lies outside A, D -B > 0. Hence we may assume that B lies in A. First suppose the

component containing B is some Aij. Applying induction using Lemma 2.2.2, this

induces a decomposition of both B and D and it suffices to show that D' - B' > 0.

But D' is again a Faber divisor and B' again has no rational moving component. If

B C Air,, we apply the same argument to the normalization at one of the irreducible

nodes. Finally, suppose that D is also nef restricted to Rg,n. We can repeat the

induction as above, maintaining this extra hypothesis. The argument holds as we



may assume that D' is nef on Riu. (where i ; g, I C {1, ... , n}), since we may

choose the fixed curve B", that we attach, to have all components rational without

changing its numerical equivalence class.

Next, lets sketch the proof of the reduction to the flag locus, Theorem 2.2.6. Here

the key technical result is

Lemma 3.1.2. If D is a Q-Cartier divisor satisfying the hypotheses of Lemma 3.1.1

and let X be a stratum of Rg,n whose generic member is a stable curve with no

disconnecting nodes, then DIx is linearly equivalent to an effective sum of boundary

divisors and nef divisors.

Corollary 3.1.3. If D is a divisor on Mg,, meeting non-negatively all curve strata

of types (2.2.3.1 - 2.2.3.5) and B is a curve on Mg,n whose general member has no

moving component that is smooth and rational, then D -B > 0.

The corollary follows by induction as in the above argument proving Corollary

2.2.8 above. Applying Lemma 2.2.2, we may assume that the general member of B is

irreducible and applying Corollary 2.2.8 that all components are rational. Then the

above lemma applied to the smallest stratum S whose closure contains B (so that

B does not lie in the boundary of S) expresses D as a sum of classes that meet B

effectively. Applying Lemma 2.2.2 again, the corollary yields Theorem 2.2.7.

The proof of Lemma 3.1.2 proceeds in two steps. As in the proof of Lemma 3.1.1,

we can express D as EiEN bo,{j}wi + 7r*D' + G where 7r is the forgetful map to Mg.

G is now an effective sum of boundary divisors parameterizing degenerations with

a disconnecting node. (If g = 1, G is empty and D' is a multiple of 6 ir,) Thus, it

suffices to prove the lemma replacing D by D' and X by its image under 7r and we

may assume n = 0. The image of X is a point if g = 1, and is either a point or a

curve stratum of type (2.2.3.4) if g = 2 (since there are, generically, no disconnecting

nodes). So we can assume that g > 3.

Let C be the stable curve corresponding to a general point of X and let C' be

a component of C. By hypothesis, C' comes from a point in the open stratum of

some MO,k by a gluing map. The k marked points come equipped with a partition P



whose parts are the pairs of points lying over nodes of C' and the subsets lying on

the intersection of C' with each connected component of C\C'. At least two points

lie in each such subset, since there are no disconnecting nodes. Observe that each

boundary class og on M. will pull back on MO,k to an effective sum of classes ooj
where I is a union of parts of P, which we'll denote by I >- P. The coefficient bir, of

6ir, in D must be non-negative by inequality 2.2.4.2. If it is 0, applying inequalities

2.2.4.3 and 2.2.4.4 we are done. If it is positive, we may rescale D so that bir, = 1.

Recall that Sir, + 12A = , + Ej>0 6i and that A is trivial on Mo,k. Thus, we see

that D pulls back to K + E1 _ ajo5, with each a, ;> -1, which is an effective sum of

boundary divisors (follows from [151, Lemma 4.4). Hence the lemma.

To get the converse of Theorem 2.2.6, consider the class of the divisor D on Mgn

as

aA - birr6irr - (g + n - (i + II))(i + I|)6j,j.
(i,I)

It can be shown that the intersection of D with any stratum of type (2.2.3.6) is 0.

These strata are exactly those inherited from Mo,g+n. Since, by [23}, the strata of

Mo,g+n generate its Chow group, this shows that D has trivial pullback to Mog+n

and hence to Mo,,+n/Sg. If we now require that a > 12birr - (g + n - 1), then D

meets strata defined by 2.2.3.1 positively, and if we also require that bir, > (-") 2 ,

then it meets strata defined by 2.2.3.2 - 2.2.3.5 positively. By the forward direction

of Theorem 2.2.6, such a D is nef.

To see that every nef bundle on Mo,g+n/Sg comes from one on Mg,,, first note that,

by computations of Faber in [7}, the pullback map f*,n : Pic(Mg,n) -- Pic(Mo,g+n/Sg)

is surjective and, by construction, D has trivial pullback. Given a class G E Pic(Mogn/Sg),

choose a class E on M, and such that G = fg,(E). If G is nef then, for large m,

E + mD will meet any effective curve not pulled back from Mo,g+n/Sg positively

(because D does) and hence must itself be nef. Hence the converse in Theorem 2.2.6

holds.



3.2 Ray theorem: proof

Here, we sketch a proof of Theorem 2.3.4. The sketch here follows the original plan

of Keel and McKernan [221 as modified by Farkas and Gibney [12]. The key step in

the proof is to show that R lives on some boundary component. Suppose not. Then

As-R > 0 for every S C {1, . .. , n} and K] -R < 0. Now r' is an ample divisor class

with support the full boundary A (as shown by the relations amongst divisor classes

in the first chapter). By an application of the Cone and Contraction theorems [261,

the ray R must be spanned by a contractible curve C not lying in A. The associated

contraction f : Mo, -+ X must be finite on A and the relative Picard number of f

is one. Moreover, by [23} each As has anti-nef normal bundle, that is As -A ; 0 for

any curve A c As.

Now we claim that the exceptional locus of f must be the curve C. Given this

we reach a contradiction if n > 7. Applying Theorem 1.14 in [25], we estimate the

dimension of the space of deformations of C inside Hilb(Mo,n) as (-(K-H0  - C) +

n - 6) > 1. It shows that C moves in Mo,n. Deformations of C must also lie in the

exceptional locus of f. This contradicts the fact that the exceptional locus of f is a

curve. Of the remaining cases, n = 4 and n = 5 are trivial and n = 6 is handled in

[12] by a direct verification that the Faber and Mori cones coincide. (Recall that the

Faber cone is the cone spanned by F-divisors.)

To see the claim, we follow the lines of Proposition 2.5 in [22]. For a proof by

contradiction, assume instead that some irreducible surface E gets mapped by f onto

a curve or point. Since A = Es As has ample support and fiA is finite, I:= An E is

non-empty and each As n I = As n E is an effective Q-Cartier divisor of E which is

either empty or a union of components of I. Furthermore, fli is finite and f contracts

E to an irreducible curve U C f(E). Now choose an irreducible component B of I

lying in a maximal number of As. Since the As have anti-nef normal bundles and A

has ample support, there must be a Aj not containing B and such that Aj -B > 0.

If B' is a component of Aj n E(= Aj n I), by maximality of B, there must be a As

containing B and B' ( As. Now As and Aj both meet fibers of f. So choosing a



suitable -y > 0, we must have As--7Aj pulled back from X. Now let V : (As-YAJ)|E-

Our choices mean that V - B < 0 and V -B' > 0. But V is pulled back from U, and

B, B' are multi-sections of f so this is a contradiction. Thus we have proved the

claim.

Going back to our proof, we now know that R lives on some boundary component.

Let's first define a gluing map, 0 : MO,TUI --> M0 ,,, which acts by choosing a fixed

curve in MO,(N\T)Um, where N = {1,... , n}, and gluing the point pm on the fixed

curve to the point pi on the moving curve in MO,TU1. Now since we know that R

is pulled back along 0 and is contained in some boundary divisor AT, we replace G

(assumed to be an effective sum of boundary divisors, ie. G = Es asAs, such that

0 < as 1) by the divisor G' := G + (1 - aT)AT. Note that G' is an effective sum

of boundary divisors as well, with 0 < a' < 1. Since AT has anti-nef normal bundle,

(K ,n + G') -R is again non-positive. Pulling back divisors, we get 9*(G') = G" - *1

where G" is also an effective sum of boundary divisors, with 0 < a" < 1. By

adjunction 6*(Kj.,i) = Kj. T,1 + V)1. So 6*(KO, + G') = KVOTut + G" . Thus

(KV' T+ G") - R < 0, that is, we have exactly the initial situation on a lower

dimensional moduli space and we can now conclude by induction that R is an extremal

ray.
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