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Abstract

This thesis addresses the problem of logical topology design for optical backbone net-
works subject to traffic following a Gaussian distribution. The network design prob-
lem is broken into three tasks: traffic routing, capacity allocation, and link placement.
The routing and capacity allocation problems are formulated as a convex mathemat-
ical program. To extend this formulation to discrete optimization problems, such as
the link placement sub-problem, it is reformulated as a mixed integer linear program
(MILP) by extending tools from robust optimization to Gaussian variables. Bounds
are presented to relate capacity allocation to the probability of traffic overflow on a
link. Lastly, the link placement subproblem is formulated as an MILP and network
topologies for deterministic traffic are compared with those for stochastic traffic.

Additionally, this thesis presents a scheme in which a dedicated backup network
is designed to provide protection from random link failures. Upon a link failure in the
primary network, traffic is rerouted through a preplanned path in the backup net-
work. We introduce a novel approach for dealing with random link failures, in which
probabilistic survivability guarantees are provided to limit capacity over-provisioning.
We show that the optimal backup routing strategy in this respect depends on the re-
liability of the primary network. Specifically, as primary links become less likely
to fail, the optimal backup networks employ more resource sharing amongst backup
paths. We apply results from the field of robust optimization to formulate an ILP for
the design and capacity provisioning of these backup networks. We then propose a
simulated annealing heuristic to solve this problem for large-scale networks, and we
present simulation results to verify our analysis on optimal backup networks.
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Chapter

Introduction

All-optical networks utilizing wavelength division multiplexing (WDM) are desirable

for nationwide or global backbone networks. In such a network, nodes are connected

by optical fibers with an enormous bandwidth. This bandwidth is broken down into

multiple channels on different wavelengths, each operating at a bit rates of exceeding

10 Gbit/sec [11]. These high-speed networks are well-suited to handle the large infor-

mation flow required in next-generation backbone networks, as internet traffic flow is

doubling every year [24].

1.1 Optical Networks

The physical topology of the optical network is the collection of nodes and the fiber-

optic links that connect those nodes. Nodes are equipped with wavelength routers

to send packets from one wavelength on an incoming fiber to some wavelength on an

outgoing fiber, without converting the packets from the optical domain to the electri-

cal domain. By configuring these routers, a path is created traversing a wavelength

over one or more fiber links, from one end-node to another. These transparent virtual

links are referred to as lightpaths. To connect lightpaths to one another, nodes also

contain an electronic switch to convert the information flow to the electronic domain,

process it, and return it to the optical domain. Multiple lightpaths can traverse the

same physical link, but these lightpaths must operate on separate wavelengths to keep



the traffic flows independent.

In addition to the physical topology, a logical topology is made up of the in-

terconnection of nodes with opto-electronic switches and lightpaths. In the logical

topology, each link corresponds to a lightpath possibly spanning multiple physical

fibers. Traffic through the WDM network is routed over the logical topology, due to

the ease of transmitting traffic over lightpaths. The size of the logical topology is

restricted by the limited processing capability of electronic switches, as only a few

lightpaths can be set up to arrive and/or terminate at a node [18]. Aside from this

logical degree constraint, there is a limit on the number of wavelengths on each op-

tical fiber, dictated by the bandwidth of the cable and the desired bit rate of the

channel. Consequently, a fully-connected logical mesh is generally infeasible, and a

partially connected topology must be designed such that the traffic can still be routed

effectively through the network.

1.2 Logical Topology Design for Stochastic Demands

The problem of designing a logical topology over an existing physical topology has

been studied extensively [17, 18, 29]. The objective is to place logical links on the

physical topology, assign capacity to these links, and route the traffic over the logical

topology. The physical topology is known a priori, as is a matrix describing the long-

term average traffic flow between any node-pair in the network. Capacity is assigned

to the logical links such that the traffic routed on each link will not exceed its capacity.

Networks are commonly designed to either minimize the maximum link capacity in

the network or the total capacity used over all links in the network. Minimizing

the maximum link capacity is equivalent to minimizing the network congestion, or

balancing the traffic load throughout the network. This approach mitigates the effect

of bottlenecks on network performance. Additionally, minimizing total capacity may

result in solutions with one or more heavily capacitated links relative to others, and

the network may not have the resources to support such configurations. For these

reasons, the primary focus is minimizing the maximum link capacity; however, most



of the formulations throughout this thesis can be readily extended to the case of

minimizing total capacity.

Some authors use alternate objective functions for the design formulation [181.

For example, one can consider a solution achieving a minimal number of hops for

the paths used to route demands, since at each hop, an opto-electronic conversion of

the packet flow is required, which can lead to delays. However, the minimization of

the average weighted number of hops leads to solutions with minimal average traffic

flowing on each link, and is therefore strongly related to minimizing the maximum

congestion level. Alternatively, formulations can minimize average packet delay in

the network. Since wide area networks are considered, propagation delay dominates

queuing delay unless the link load is very close to the limit enforced by the channel

capacity. Minimizing propagation delay is a shortest-path routing solution, where

minimizing queuing delay is achieved indirectly by minimizing congestion, as both

solutions will result in low average link traffic. Consequently, we focus on minimizing

network congestion.

1.2.1 Logical Topology Design Formulation

The logical topology design problem is formulated as a mixed-integer linear program

(MILP). Let A be the traffic matrix, so that (A),d = Asd is the traffic demand from

node s to node d. The demand Asd is a deterministic quantity representing the average

(mean) long term traffic flow between two nodes. Let Cij represent the capacity

allocated to link (i, j), and A be the traffic from s to d that traverses link (s, d).

Additionally, let bij be binary design variables which will be equal to 1 if and only if

a directed link is to be placed from node i to node j. The MILP for network design

can be formulated as follows:



Minimize: Cmax (1.1)

Subject to: Ci> E AMI V(i,j) (1.2)
sd rs i f S:

>1 N'- As' -Asd, if d i V Zd~ (1.3)

0, otherwise

C < Cmax Vi,j (1.4)

A<bijAsd Vs, d, i,j (1.5)

bij Ai Vj (1.6)

b j= A, Vi (1.7)

Asd 2 0 Vs, d, i,1 (1.8)

b j E { 0, 1} Vi, j (1.9)

The MILP presented above minimizes the maximum link capacity, but (1.1) could

be replaced with >ij Cij to minimize total capacity instead. Constraint (1.2) allocates

capacity to support the total traffic on each link. Equation (1.3) is a general flow

conservation constraint, enforcing the flow into each node be equal to the flow out of

that node, with exceptions for the source and destinations of a demand. Constraint

(1.5) restricts traffic to only flow between nodes where links have been placed. The

link placements themselves are restricted by (1.6) and (1.7), where A and A, are

bounds on the logical node degree.

For simplicity, the wavelength restrictions on each physical link are ignored in this

formulation, as we assume that there are sufficiently many wavelengths available on

each physical fiber [29]. Additionally, wavelength converters allow lightpaths to be

constructed over different wavelengths on different fibers. Thus, the physical topology



does not appear in this formulation, since there are no delay constraints or wavelength

constraints.

This formulation allows traffic between any source-destination pair to be bifur-

cated among different paths in the network. Consequently, there is no limitation on

the number of paths a demand can take. Additionally, at most one lightpath can be

placed between any two nodes in the network.

The MILP formulated can be solved using commercially available solvers such as

CPLEX; however, this problem is known to be difficult to solve for large networks.

Computation time depends on the design constraints used and the number of these

constraints. Heuristics are commonly used in order to solve this MILP for larger

networks [18, 29].

1.2.2 Motivation for Stochastic Demands

The design problem above relies on the availability of the traffic matrix A, contain-

ing the average traffic flow between each node pair. However, these traffic matrices

are commonly unavailable since direct measurements are impractical. Estimation

techniques are used to obtain this data from link load measurements, and the traffic

intensities coming from these estimations are prone to errors. Additionally, the design

problem is typically solved during the network configuration stage, where the exact

traffic information is unavailable.

Traffic demands are also becoming harder to predict, and tend to change with

time. As new services utilizing optical backbone networks are created and removed,

demands between nodes fluctuate. Consequently, a network design based off of a

traffic matrix estimated from today's link measurements may not be suitable to carry

demand in the future. Furthermore, network failures and service disruptions also

cause variations in traffic demands.

Due to the uncertain nature of the network traffic, network links must be provi-

sioned with sufficient capacity to support the possible traffic fluctuations. Demands

are represented as random variables rather than deterministic quantities to capture

the traffic variability. When treating node demands as random variables, there is a



significant probability that the capacity allocated will be underutilized. Furthermore,

traffic loads may have a very large or no upper bound, and it becomes impractical to

allocate capacity to support all the possible traffic realizations. Therefore, we provide

a framework in which link capacity is allocated such that traffic is supported with

some high probability, rather than complete certainty.

The volatility of random variables is described by their standard deviations. A

demand with a high standard deviation requires a large capacity to support, but it is

likely that the capacity will be underutilized. Consequently, the demands should be

routed to minimize the traffic variability. As an example, consider two independent

and identically distributed (i.i.d) random variables X and Y with E[X] = E[Y] =

p and var(X) = var(Y) = oa. Now, consider the sum, Z = X + Y. The new

random variable Z has expectation 2p and standard deviation uv/2 < 2o. As a

result, assigning capacity to support X and Y separately requires more capacity than

required to support the sum Z.

This suggests a fundamental difference between routing deterministic traffic and

stochastic traffic. Furthermore, this difference in the routing sub-problem suggests

that the optimal link placements for stochastic traffic will differ from those for de-

terministic demands. In this work, we reformulate the entire logical topology design

problem to place links, allocate capacity, and route traffic to support stochastic traffic

with high probability and the lowest possible cost.

1.2.3 Robust Optimization

A natural technique to apply to optimization problems with data variability is robust

optimization. Robust optimization is a method of finding a solution to a problem

that best fits all possible realizations of data subject to uncertainty [9]. The first

approach to robust optimization was taken by Soyster [32]. This work proposes a

linear program to construct a solution that is feasible for all possible realizations of

a bounded demand. These models produce solutions that are very conservative. In

the robust optimization literature, conservatism refers to a solution that is unnec-

essarily robust. Ben-Tal and Nemirovski [3] address the issue of over-conservatism



in robust optimization formulations by proposing less-conservative solutions to lin-

ear problems with ellipsoidal uncertainties. This approach relies on nonlinear, but

convex, formulations which do not extend easily to discrete optimization problems.

Lastly, Bertsimas and Sim [4] propose a linear formulation with an adjustable level

of robustness. The optimization parameters are uncertain, but have some unknown

symmetric distribution taking values entirely in a finite interval. For each constraint

i, a parameter Fi is introduced. If fewer than a predefined number of coefficients

Fi change, the solution is guaranteed to be feasible. On the other hand, if more

coefficients change, the solution is still feasible with high probability. Bertsimas and

Sim provide tight probability bounds on symmetric, bounded random variables in

order to quantize this probability. By changing the value of ri, the authors can trade

off between the level of robustness and conservatism.

1.2.4 Our Contributions

In this work, we formulate and analyze the problem of logical topology design un-

der Gaussian-distributed traffic. First, we use tools from stochastic programming

to formulate a second order cone programming problem to solve the routing and

capacity allocation sub-problems over a given network. Then an approach using ded-

icated support for each demand is proposed, which is shown to be linear, but much

more conservative than the stochastic programming approach. We then extend the

work of Bertsimas and Sim in [4] to Gaussian random variables, by formulating a

robust optimization problem and developing new bounds on the probability of capac-

ity constraint violation. This leads to MILP formulation to route traffic and allocate

capacity, for which we propose heuristics to solve.

To complete the topology design problem, we then consider the link-placement

sub-problem in addition to the routing and capacity allocation sub-problems. Using

the robust optimization techniques described above, we formulate the design problem

as a MILP and propose heuristic algorithms to solve it. Lastly, we explore some

properties of network design under stochastic traffic demands, and how the problem

differs from its deterministic counterpart.



1.2.5 Previous Work

Several other authors have examined the problem of routing and capacity allocation

with traffic uncertainty. Most works in this area use a bounded model for the traffic

distribution [2, 15]. These models are referred to as polyhedral models, in which the

traffic from different sources is bounded and satisfies various linear constraints. A

specific example is the "hose" model, which bounds the sum of demands originating

and ending at a given node.

Additionally, [15] presents a traffic model in which the demand between each node

pair is restricted to an interval. In this case, the results of [4] are used to create a

robust optimization formulation for routing and capacity allocation. We extend this

work by considering Gaussian traffic, which is unbounded in nature. Additionally, we

explore the problem of link placement in addition to routing and capacity allocation

for stochastic traffic which was neglected in these works.

Some authors have formulated related network design problems for Gaussian traf-

fic. The authors in [10] implement a tabu-search heuristic to design networks based on

normally distributed demands, but do not attempt to formulate the problem mathe-

matically. In contrast, [22] formulate an offline traffic engineering problem based off of

Gaussian traffic. They argue that the objective should be a weighted combination of

maximizing revenue while minimizing risk. Here, risk is the potentially underutilized

capacity that is provisioned to the network. By including this in the objective, they

prevent over-provisioning of capacity. In our work, we instead consider a fixed prob-

ability of traffic exceeding the provisioned capacity on each link. This is an alternate

of reducing over-provisioning in the presence of stochastic traffic.

The works in [21, 35] are most relevant to our work. In [21], the network routing

and allocation problems are formulated assuming stochastic demands by changing

probabilistic constraints to linear, deterministic constraints. While this work also

considers a probability of constraint violation, the method proposed results in over-

provisioning capacity. On the other hand, [35] formulates the optimal stochastic

formulation for gaussian traffic routing and allocation; however, their formulation



is non-linear which prevents this approach from being applied to discrete optimiza-

tion problems, such as link placement. Our work compares both these formulations

and uses tools from robust optimization to formulate a linear problem that is less-

conservative as the formulation in [21].

The link placement sub problem with stochastic traffic has only been explored

in a few other works. In [16, 39], a design and routing scheme is proposed that is

insensitive to the traffic matrix. The backbone network is designed to perform equally

well for all valid traffic matrices, as it is too hard to predict the exact value of the

traffic demands. In [39], the approach is referred to as Valiant Load-balancing (VLB).

The VLB approach establishes a fully-connected logical network, then routes traffic

evenly across all two-hop paths. Based on some upper bounds on the traffic matrix,

capacity is then allocated to each logical link such that any realization of the traffic

matrix can be supported.

These approaches completely ignore the distribution of the random demands, re-

sulting in over-provisioning capacity. In our work, by allowing a small probability

that the traffic cannot be supported, we can support unbounded traffic without sig-

nificant over-provisioning. We argue that characteristics of the distribution of traffic

should be taken into account to optimally determine the correct routing strategy.

1.3 Backup Network Design for Survivability Against

Random Network Failures

Today's backbone networks are designed to operate at very high data rates, now

exceeding 10 Gbit/s [11]. Consequently, any link failure can lead to catastrophic

data loss. In order to ensure fast recovery from failures, protection resources must be

allocated prior to any network failures.



1.3.1 Spare Capacity Allocation

A widely used approach for recovery from a link failure is preplanned link restoration

[20], where a backup path between the end nodes of a link is chosen for every link

during the network configuration stage. In the event of a link failure, the disrupted

traffic can be rerouted onto its backup path. Preplanned methods of link restoration

offer benefits over other methods in terms of speed and simplicity of failure recovery,

as no additional dynamic routing is necessary at the time of a failure [40]. In addi-

tion to designing a backup path for each link, preplanned link restoration requires

provisioning of sufficient spare capacity along each backup path to carry the load of

failed links. Backup paths can share spare capacity and network resources to reduce

the total cost of protection.

Spare capacity allocation for link-based protection has been studied extensively

in the context of single-link failures [11, 19, 28, 37]. The objective of these works

is to allocate sufficient protection resources to recover from any single link failure.

Recently, the authors in [1] proposed the use of a dedicated backup network to protect

against a single failure on the primary network. Upon such a failure, the load on the

failed link is routed on a predetermined path on the backup network. The authors

provide an Integer Linear Program (ILP) to design an optimal backup network with

minimal cost. They show that the cost of the optimal backup network is small relative

to that of a large primary network. Specifically, they show that the ratio between the

total backup capacity and the total primary capacity tends to zero as the network

size grows large for certain classes of networks.

1.3.2 Robustness to Multiple Failures

Communication networks can suffer from multiple simultaneous failures, for exam-

ple, if a second link fails before a first failed link is repaired. Furthermore, natural

disasters or large scale attacks can destroy several links in the vicinity of such events.

Preplanning backup paths for combinations of multiple failures can be complex and

impractical, and can lead to significant capacity over-provisioning. Consequently, new



approaches must be considered to offer protection against multiple failures.

Several authors have extended the results of survivability for single link failures

to dual-link failures [20, 8, 12. The work in [14] considers protecting against up to

three link failures. Most of these works require the primary network to have multiple

disjoint paths between node pairs to survive multiple failures. However, this assump-

tion is too restrictive when considering a large number of failures. Additionally, [13]

provides a spare capacity allocation approach based on a specific set of failure events,

and restricted backup path lengths. In all of these works, large amounts of spare

capacity are required if many links can fail simultaneously.

Survivability amidst multiple failures has also been addressed in the form of a

Shared Risk Link Group (SRLG) [26]. An SRLG is a set of links sharing a common

network resource, such that a failure of that resource could lead to a failure of all

links in the SRLG. Many authors have proposed routing strategies for path-based

protection against SRLG failures [5, 23, 25, 36]. These works assume that links in a

SRLG all fail simultaneously and deterministically. However, this line of work does

not extend to independent, random failures.

1.3.3 Our Contributions

We introduce a new framework for providing protection from multiple random link

failures involving probabilistic survivability guarantees. Since large-scale attacks and

natural disasters can result in multiple links failing randomly, providing protection

from any single failure is insufficient, and networks designed for protection against

single-link failures often cannot protect against multiple failures. The straight-forward

approach of offering guaranteed protection against any random failure scenario is to

allocate capacity such that every failure event is protected. However, this approach is

impractical as it requires enormous amounts of capacity to protect against potentially

unlikely events. By allocating capacity to offer protection with high probability, the

total cost of protection is greatly reduced.

Motivated by [1] and the simplicity of their approach, we extend the use of a

dedicated backup network to deal with multiple random link failures. We show that



a dedicated backup network is a low-cost method of providing protection against

random failures, relative to large primary networks. Additionally, we show that the

structure of the minimum-cost backup network changes with the reliability of the

primary network. Specifically, optimal backup networks for primary networks with a

low link-failure probability employ a high level of link sharing amongst backup paths.

On the other hand, optimal backup networks for primary networks with a high link-

failure probability emphasize shorter backup paths, and less capacity sharing.

To design a backup network under random link failures, we develop a robust

optimization approach to spare capacity provisioning. Robust optimization finds a

solution that is robust to uncertainty in the optimization parameters [3, 4, 32]. In

[4], Bertsimas and Sim propose a novel linear formulation with an adjustable level of

robustness. These techniques have been successfully applied to network flow problems

[9]. We apply these results to design backup networks robust to the uncertainty in

link failures, leading to an ILP formulation for backup capacity provisioning. We also

present a simulated annealing approach to solve the ILP for large-scale networks.



Chapter2

Network Design for Stochastic Traffic

As mentioned in Chapter 1, the network topology must be robust to traffic varia-

tions. Our approach is to model the traffic demands as random variables with known

distributions. We reformulate the mixed-integer linear program for logical topology

design presented in 1.2.1 for random demands as a stochastic optimization problem.

2.1 Stochastic Traffic Matrix

The problem of inferring source-destination traffic intensities from aggregated link

traffic measurements is referred to as network tomography. In the network tomog-

raphy literature, demands between node-pairs have been described using a Gaussian

distribution [7]. Intuitively, many independent sources contribute to each demand,

and by the Central Limit Theorem, the resulting distribution of the traffic can be

approximated by a Gaussian distribution. Therefore, each entry of the traffic matrix

is modeled as an independent Gaussian random variable with mean psd and variance

2
~sd'

-s .A(Pud, Uld) (2.1)

The traffic from a source to a destination should be nonnegative in order to accu-

rately model traffic flow intensity; however, the probability density function (PDF)

of a Gaussian random variable is not restricted to positive values. Demands can be

modeled as truncated normal random variables instead, truncated at zero . This



would be necessary for demands with a small mean and high variance. In this work,

it is assumed that asd is small relative to the mean such that the event that Asd is

negative is negligible.

2.2 Stochastic Programming Formulation

Since the demands between each node pair are represented as random variables and

the exact traffic cannot be specified, new routing variables are introduced to replaced

the Aff's in the formulation of Section 1.2.1. Let a d represent the fraction of the

traffic flow from s to d traversing link (i, J). In other words,

A d=a dA sd (2.2)

where 0 < aK < 1 V(s, d), (ij). The MILP in section 1.2.1 is rewritten using

equation 2.2 as shown below.

Minimize: Cmax

Subject to: Cj ;> asdAsd V(i, j) (2.3)
sd

1, if S = i

Za - a," -1, if d = i Vs,d,i (2.4)

0, otherwise

Cij Cmax Vi,j

a bi3  Vs, d, i, j (2.5)

Zbij Ai Vj

Z i 2b Ao Vi'

a > 0 Vs,d, i, j

b , E {0, 1} Vi, j



Notice the random variables Asd appear only in the capacity constraint in (2.3).

Since the Asd are unbounded, a finite capacity Cij cannot be specified such that (2.3) is

satisfied with probability 1. Therefore, we instead consider a probabilistic alternative:

P ( af Asd > Ci) < e V(i,j) (2.6)
sd

In the above equation, c represents the probability of capacity constraint viola-

tion. This occurs when the link traffic exceeds the capacity allocated to that link. To

incorporate this constraint into a mathematical formulation, it needs to be converted

from a probabilistic constraint to a deterministic one. Since for each (s, d), Asd is an

independent Gaussian random variable, the link traffic, a weighted sum of indepen-

dent Gaussians, is also Gaussian with mean Esd aifrys and variance Esd(af'usd)2 . It

is then straightforward to convert (2.6) to a deterministic constraint in terms of the

CDF of a normal random variable, <b(.

P(Y as A sd > Cij < E V(i, j)
sd

/C0- Z~ a I psd .N
1- sd) ) <E V(z,3) (2.7)

Ci. > a ap + 1(1 - E) Z(aiuSd)2 V(i,j) (2.8)
sd sd

Equation (2.8) is a non-linear, convex constraint for the capacity needed to support

some routing of the traffic with a given probability 6.

The deterministic formulation for topology design in Section 1.2.1 is an MILP,

solvable by many commercially available optimization tools. However, replacing the

constraint in (2.3) with inequality (2.8) introduces a non-linearity to the optimization

problem. Mixed integer convex programming problems are not necessarily solvable,

particularly by today's commercially available solvers. Therefore, it is preferable to

have a linear approximation to (2.8) such that integer constraints can be added.

Therefore, we initially assume that the link placement problem has already been



solved. Denote the set of links with bij 1 as £. The convex optimization formulation

for routing and capacity allocation is as follows.

Minimize: Cmax

cii > Zaffsd 1(1--
sd

J 3

1,

1-1,

10,

c) Z (asusd)2 V(ij) c L

sd

if s -i

if d = i Vs,d,i

otherwise

C- < Cmax

af ;d> 0

V(i,.j) c L

Vs, d, (i, j) E:

The above formulation is a second order cone programming problem (SOCP) that

can be solved by convex and quadratic optimizers (e.g. LOQO). However, as the

network size grows large, this optimization becomes difficult. For example, running

formulation (2.9) on the network in Figure 2-4 requires a computation time that in-

creases exponentially with the number of demands, as shown in Figure 2-1. Moreover,

as stated previously, this convex formulation is not useful for discrete optimization

problems, such as link placement.

2.3 Conservative Linear Formulation

In order to obtain a more tractable formulation, as well as one that can be extended

to integer optimization problems, the mathematical program in (2.9) should be for-

mulated as a linear program (LP). Suppose a tighter capacity constraint is used

P(A sd> Cad) < V(s, d). (2.10)

Constraint (2.10) restricts the probability that each demand exceeds its assigned

Subject to:

(2.9)



Number of Random Demands

Figure 2-1: Processing Time for formulation (2.9) using the LOQO nonlinear optimization
solver

capacity. By assigning dedicated capacity to each demand, statistical multiplexing

gains are unachievable and capacity is over-provisioned. The probabilistic constraint

in (2.10) can be converted to a deterministic constraint Cd 2 pd + ~1(1 -

and link capacity constraint follows as

Ci 2 Z af'(psud + (1 -)O) V(ij) E L.

Constraint (2.11) leads to an LP formulation for routing and capacity allocation.

Minimize:

Subject To:

Cmax

Ci .>
sd

a sd
ij

aid , + <D-(1

asd
Ljia,

1,

= --1,

0,

e) aff dsd V(i,j) EL
sd

if s = i

if d i Vs, d,

otherwise

V(i, j) E E

Vs, d, (i, j) E E

(2.11)

(2.12)

C) <

aff 2

Cmax

0

P rocessing time to solve Convex Formulation



si di
K (1- a)

Figure 2-2: Example network, with i.i.d. demands Asidi, As2d2 ~ (p, o-)

The capacity allocated in (2.12) is always greater than or equal to the capacity provi-

sioned in the solution to (2.9). Borrowing terminology from optimization literature,

formulation (2.12) is referred to as conservative, because it allocates more than the

minimum required capacity to maintain the probability of constraint violation. How-

ever, the linearity of (2.12) enables extension to discrete optimization problems.

2.3.1 Illustrative Examples

The dedicated capacity provisioning scheme is wasteful in terms of the maximum

capacity on any link in the network. This over-provisioning can be reduced by adding

post processing to recalculate the link capacities using the convex constraint (2.8);

however, routing decisions are made using the sub-optimal linear capacity constraint.

We study an illustrative example to compare the two routing strategies.

Consider the network shown in Figure 2-2. Traffic demands exist from source si

to destination di and from s2 to d2, and are independently and identically distributed

according to Nyp, o.2 ). Due to symmetry, both demands have the same fraction

of traffic (a) routed on the shared link. Clearly, the optimal solution allocates equal

capacity on all links. Using the linear capacity constraint in (2.11), we can analytically

solve for the optimal routing fraction a. Let k = <I>1(1 - c).

CL =(1- i (1 - a)k- = 2op + 2ak~ (2.13)

a (2.14)
3



si __1 > (1 link 1

link 2
S2 Qd 2

link n

Figure 2-3: Example network, with i.i.d. demands Asid4 ~ t, C-). Each (s, d) node pair
has the option to send traffic over any of the links.

Additionally, the same can be done for the non-linear capacity constraint in (2.8).

CNL = (1 - G),p + (1 - a)ko- = 2cp + V2ko (2.15)

a + kc (2.16)
3p + (1 + v )ko-

In contrast to the optimal routing for stochastic traffic, the linear formulation routes

traffic as if it were deterministic. Conversely, for traffic with positive variance, more

than 1/3 of the traffic is routed over the shared link, since the traffic on the shared

link has a smaller standard deviation than the dedicated link traffic. As the ratio -

increases, a larger fraction of traffic is routed on the shared link.

As a second example, consider the network in Figure 2-3 with n demands, each

going from si to di. An optimal routing for the dedicated capacity provisioning

formulation in (2.11) is to send the traffic from si to di entirely over link i. Other

solutions exist for this formulation, but we will focus on this routing for comparison.

Using this strategy, the maximum link capacity on any of the links is y + ko.

The solution to the convex formulation routes demand equally over each link. In

this case, the capacity on each link is
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Figure 2-4: 14 Node NSFNET backbone network (1991)

n n 2

C = +k k 2 (2.17)
i=1 i=o

ko-= ky u (2.18)

In the large ko- regime, the stochastic formulation results in a max capacity that is

a fraction 1/ n_ of that required by the linear formulation. In the limiting case as n

grows large, the required link capacity is the mean yt of a traffic demand, whereas a

capacity of p + ku is required on each link for the linear approach.

As a last example, we consider the real-world NSFNET shown in Figure 2-4. De-

mands, which satisfy Asidi ~ N(p, o2), exist between random source and destination

pairs. All links on the NSFNET graph are assumed to be bidirectional. For each

random set of N demands, both the LP of (2.12) and the optimal convex optimiza-

tion of (2.9) are solved, and the results are plotted in figure 2-5. As can be seen,

the optimal routing and capacity allocation offers a savings of 30% in maximum link

capacity over the linear approach.



Figure 2-5: Optimal values of the NLP in (2.9) and the LP in (2.12) for the NSFNET in
Figure 2-4. The x-axis shows the number of random demands generated for the network.
The LP was solved using CPLEX, and the non-linear program (NLP) was solved using
LOQO

2.4 Robust Optimization

In Section 2.2, a convex optimization problem was formulated to compute the opti-

mal routing and capacity allocation over a network to support Gaussian-distributed

demands with a given probability of error. To extend the formulation to discrete

optimization problems, a conservative LP formulation was proposed. While this for-

mulation is linear, it is wasteful in terms of allocated capacity. Results from robust

optimization can be used to formulate an LP for routing and capacity allocation with

less capacity over-provisioning.

2.4.1 The Bertsimas and Sim Formulation

As explained in Section 1.2.3, Bertsimas and Sim propose a linear programming

approach to robust optimization with an adjustable level of robustness [4]. They

assume the demands Asd are symmetric random variables bounded within [A d-

sd ) sd + Xsd], where Xsd = E[Asd]. For each (i, j), a parameter I'j is introduced

taking a value between 0 and nij, the number of demands traversing link (i, J). Their

Number of Random Demands



approach is to assign capacity to protect against any scenario where Fii of the demands

exceed their mean, by adding capacity to support the worst-case realization of those

random variables. The other demands are assumed not to exceed their mean, and

are therefore allocated a capacity of Asd. This approach has the property that if more

than Fi demands exceed their mean, the robust solution is still feasible with high

probability. Consequently, varying the parameter Fi adjusts the robustness of the

formulation. For Fii close to 0, little capacity is allocated and the probability this

capacity is insufficient to support the traffic is high. Conversely, setting Pij large

results in over-provisioned link capacity.

We apply the Bertsimas and Sim approach to our problem. Initially, assume

demands are drawn from a truncated normal distribution, i.e. the traffic AM between

demand pair (s, d) satisfies Ag ~ Nf(zlz <; pAa + kusd; Asd, U 2d) for some constant k,

and has a PDF

1 O(Z-Itsd)

2\ O' sd O'sd
f s (Z; psd, Osd) z<isd + ksd (2.19)

where #() and <D() are the PDF and CDF of a standard normal random variable

respectively.

We formulate a non-linear program according to [4]. Let D be the set of all

demands. Let Sij C D be a subset of demands restricted to be of size [Fij], and

let tij E D \ Si3 be another demand that is not in Sij. On each link (i, J), sufficient

capacity is allocated to support afpsd for each demand, as well as the Fij largest

values of asdkUsd. In the case where Lij is not an integer, the fraction (P23 - [Fis]) of

a jkut. is also supported. The formulation is presented below.



min. Cmax

s. Ci > E ( pdaad,+

sdD

max
S u~e}|eeD,~altrejtge\Se(s,d)ESij

aj

Cij < Cmax

a 2 0 Vi

J

1,ifS i

if d

ko-,da' + (FIf - [FiJ)kort, a'2j

V(s,d),i

otherwise

V(i, j)

, j, s, d

(2.20)

Formulation (2.20) is not linear, but can be reformulated as an LP by following the

procedure used in [4]. For a vector aij, consider the function

O#j (aij , rii) = max
Sijultij}|Sij(ED,lSijl=[rPijj,tijED\Sij

(s,d)ESij

kcrsda , + (- ,F iJ])ko-,( a.,

(2.21)

which is the capacity allocated to link (i, j) to support the traffic uncertainty. #ij (a, Fi)

can be written as the solution of the following LP:

Oij (aij, Fij) = maximize

subject to

kdasdOsdk id j ij

sd

Osd <]Bij<;ig
sd

0 < ij < 1

(2.22)

V(s, d)

The maximizing value of 9 ij for this LP is found by selecting the [FriJ largest values

of kcsdaf, and setting the corresponding OJ.5 variables to 1. The next largest value

V(i,j)



of kuodaff is set to Fij - [FijJ. This selection corresponds directly to the selection of

Sij and tij in (2.21) respectively.

Consider the Lagrangian formed by relaxing the two sets of constraints, and adding

a dual variable zij for the first constraint and p'd for the individual 0 < o Kd 1

constraints. The resulting function is

L(ij, zig, pij) = kosdaso~d + zij (Fi - BOs) + E ps'(1 - osd)
sd sd sd (223)

= (k sda d - z - )_ sd + z i j + sdps

sd sd

The dual problem is minz 3 , >o maxo>_o L(Oij, zij, pij). Furthermore, the term kUsda -

z- -pis in (2.23) must be non-positive so the dual problem is feasible. Thus, the solu-

tion of the inner optimization is achieved when 0 sd - 0. Consequently, the following

is the dual to (2.22).

minimize zij]Fij + Zp
sd

subject to zij > kudal' V(s, d) (2.24)

zig ;> 0

p ;> 0 V(s, d)

By the strong duality theory, there is zero duality gap between Problems (2.22) and

(2.24). Consequently, 3ij (aij, Fij) is equal to the optimal objective function value of

(2.24).

Since the minimization of Cmax in (2.20) requires the indirect minimization of

Oij (aij, Fij), (2.24) can be substituted into (2.20) as follows.



Minimize: Cmax

Subject To: C> as + E psd + zi rij Vi,j
sd sd

z ± p > ko-das Vi,j, (sd)

1, ifs i
sd sdd Za - a= -1, ifd~i Vs,d, i (2.25)

J J

0, otherwise

Ci < Cmax V(i,j)

zi 2 >0 Vij

sd > 0 Vi j, s,d

a4 0 Vi, j,s,d

Formulation (2.25) is an LP to implement robust optimization, parameterized by Fij.

Next, we determine the values of Fij required to meet the constraint in (2.6).

2.4.2 Probability Bounds

The formulation in (2.25) solves the routing and capacity allocation subproblems for

truncated normal random variables with a "small" probability of capacity constraint

violation. Bertsimas provides an upper bound on that probability as a function of

Fii. We modify this bound for truncated Gaussians to relate E to rii for each link.

This bound is shown below through the following theorem.

Theorem 1. Let As be the traffic from source s to destination d. Further, let Asd

be a continuous random variable with density Nf(A sd A' Ad + kusd; lpsd, 0-2 Let

0 K asd < 1 and Ci > 0 satisfy

C>s max ( kUsda' + (Fi - LFiJ)kot, a'

sd ED Sigu tij}|Sij 6D,|Si|=[r j j t ED\SI L (s,d)cSi2
(2.26)



Let ni be the number of demands routed over link (i, j). Then, the probability that

link (i, J) overflows is bounded by

P A a ' > Cii) <exp( i) - (2.27)

Lemma 1. Let X be a continuous random variable with PDF Nr(xIa < x < b; y, U2).

Let Y = cX + d for c > 0. Y is then distributed with density N(xlac + d < x <

bc + d; cp + d,(co-)2 ).

Proof. X has PDF fx(x; y, .2, a, b) where #() and <b() are the

PDF and CDF of a standard normal random variable respectively. Since Y is a linear

function of X, we can write the density of Y as fy(y) = jfx(!; y, o. 2 a b) By

plugging in the definition of fx(),

L0(y-d-cp

fr (Y) = O "" " (2.28)

Define pY' cp + d and -' A Co

fy (y) = c 0d o(cd-p') (2.29)

=AN(xlac+d < x < bc+ d; cp+ d,(co-) 2 ) (2.30)

l

Proof of Theorem 1. Define

z - (2.31)
Hsd

F di r By Lemma 1, zd has a PDF given by Af(zjz < k; 0,1),
and rsd has a PDF given by A(r/jr/ < 1; 0, 1/k 2).



From (2.31) and the definition of r/sd,

aif A > Csd
sd

=P (

sd sd sd> )
af psd + Ea,osdzs > C 5d

sd

a ssd -|- a osd kr/ > Cij /1 d±Z Lj s" 1

Since Cj satisfies (2.26),

C) < P (Zalkasdr sd > ( sa3 ka'sd + (Fij - [Fij )a ? ko-
(s,d)E(Si3

(2.34)

a sdaUdr/" >diicTdr E
(s,d)E Sij

aSsd + (Pij - [Fgj)a ' ort,

(2.35)

Moving terms with demands (s, d) E Sij to the right of the inequality,

5 aisd (1 - r; sd)

(s,d) eSij

+ (Fjj - Lri-j)a'ot) (2.36)

Let r = argminr'EsI U taj ar'or'. Since rsd 1,

< P a
(s,d)(Sj j

=P( a
(s,d)(Sjj

= P (Z r;sd sd

(sd)

asd7 sd > a'a,

o-adrl4 +

y >

ES
(s,d)ESij

(E se

(s, d) ESij

(1 - Tsd) + ,, -

d > a'orrJ'P)

where

sd 1,

a"f =, a2 j s

if (s, d) E Si U to

if (s, d) g Sij U ti
(2.40)

(2.32)

(2.33)

z:sd

S:
(s,d)OSig

a sd sdr/"s >aiiTdr

[Fr3 )) ) (2.37)

(2.38)

(2.39)

sd



Since r is chosen to be an element of Sij U tij, then a' o, > ado-Sd

Therefore, -YU defined in (2.40) is always less than or equal to 1.

Lemma is needed to complete the proof.

Lemma 2.

exp (

V(s, d) Si.

An additional

D(k -t/k).() (k)f (2.41)

Proof. Let Y ~ N(0, a),

Msd(t) = E[e't|Y < 1]
1

-/0

et"fy (y)dy
<b(k)

1

= <(k)
-00

ev/ e 2 dy

= <(k) 2 1
-00

1

4 (k) 2w

1

k [
<b(k) 2w71

-00

exp(

exp(

exp 2k2

2 -

( 2
exp (

2ty) dy

2ty +t 2 ) t2_
V--- + - dy

02 k 2k2)

k 2 t)2
2 k2 dy

201

<D (k)

This can be reduced in terms of the standard normal CDF.

t
2

e 2k
2 / 1

(D(k)k

t2 (<b(k - t)
eWk 1( (k)

- ~Q~o ~~D)(2.49 (2.49)

(2.50)

T

This lemma can be used to complete the proof. Starting with the bound in (2.39),

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)k _k_ dy
v27

E [etnsd] = Msd(t) =



p y /sas > rij

(sd)

= t Y sdsd > tw23)
(s,d)

- P (exp

E[e t E (sd)7

=F[ etri,
Msd(tz",s)

= 0 etrij
sd

e 2k

=Iij 4r(k

By Markov's Inequality.

By independence.

By Lemma 2

d )2

S e 2tr2

sd

Vt > 0

Vt > 0, )y > 0.

exp (5 Esd (j)
etF i

< exp (2k2 - )ri Since 0 < js < 1

Find t to maximize exponent:

d (ri - tr
t = Wk2

-ij F1 0 (2.60)

(2.61)

( rsd) > exp (trij)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

Since <D(k) > <b(k - 2)

(2.56)

(2.57)

(2.58)

(2.59)



Plug in t into bound:

nt r Tk 4 
_i~ ~k 2

P( 7ffld >F exP 2 k2  k4 Pki) (2.62)
(sd) i

=exp - .k (2.63)
2nij

The variable nij is upper bounded by the number of demands in the network, but

specifying nij separately for each link results in a tighter bound. This is addressed in

Section 2.4.4.

Theorem 1 yields a bound on the probability of constraint violation that is inde-

pendent of the traffic distribution. Given a desired probability of overflow on a link

E, the value of the parameter Fij for that link can be computed by

-2ndg log e
kij = k . (2.64)

Since capacity is assigned to a link as a linear function of Fi,, capacity grows with

noj. This is similar to the optimal convex capacity constraint from (2.8). Therefore,

statistical multiplexing of traffic is beneficial for reducing capacity provisioning in this

formulation.

Figure 2-6 plots the bound in Theorem 1 as a function of Fij for nigj 20 and

different values of k. For example, if k = 2, allocating capacity to allow for an

E = 0.05 probability of error requires Fij = 5.75. By accepting this small probability

of constraint violation, the capacity required is reduced by almost a factor of 4 as

compared to the approach in Section 2.3. As the value of k increases, the traffic

distributions are truncated further from the mean, and smaller values of Fij are

required.
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Figure 2-6: Upper bound on probability of link overflow as a function of the parameter Fj

2.4.3 Robust Approach for Gaussian Demands

In Sections 2.4.1 and 2.4.2, a robust optimization formulation and associated proba-

bility bounds on constraint violation were developed specific to truncated Gaussian

demands. In this section, we extend this to unbounded Gaussian demands. The

LP presented in (2.25) requires no modification; however, the probability bound in

Theorem 1 depends on the distribution of the random demands.

Recall that the demands As' are upper bounded at p1 d + ko-sd. In the capacity

constraint in (2.20), Fjj corresponds to the number of demands that need to be

protected, and a capacity of kosdad must be allocated to account for the worst case

realization for each of those demands. In equation (2.64), k and Fij are inversely

proportional, implying that as k increases, fewer demands need protection.

If {Xk, k > 0} is an independent sequence of continuous random variables, with Xk

distributed according to a truncated gaussian described by (2.19), then the sequence

of Xk converges in distribution to a normal random variable with mean y and variance

2
a .

The proof of Theorem 1 holds for all finite values of k. As k becomes large, FiP

eventually satisfies 0 < Fij < 1. This follows directly from equation (2.64), as c is



fixed and nij is upper bounded by the total number of demands. Since Fij is less than

one, Sij in (2.21) is the empty set, and equation (2.21) can be rewritten as

Fikmax{uSda'}. (2.65)
sd

The maximization in equation (2.21) is now over one s-d pair representing tij. Com-

bining (2.64) and (2.65) yields a new equation for #ij, independent of both k and

Fzj.

Oij(aij) = max{Sdag} V-2nij logc6 (2.66)
sd 2

Formulation (2.20) is rewritten as the following LP.

Minimize: Cmax

Subject To: Ci > E pdas + zij V/-2ni3 log c V(i, j)
sdED

1, if s = i

a = -1, if d = i V(s, d), i (2.67)

0, otherwise

zj > osdaad V(s, d)

C < Cma V(i,j)

a > 0 Vi, j,s,d

the variable zij has been introduced to represent the maximum value of asdods. Also,

the nij must be optimization parameters in order for (2.67) to be an LP.

The solution to this formulation differs from the solutions to (2.9) and (2.12).

Link capacity in (2.67) is a function of the largest variance of the demands, rather

than the variances of all the demands. Let the vectors y and o be the mean and

standard deviation of the traffic, where an element of each vector corresponds to a

specific demand. Additionally, let aij be the vector with elements asd. Then, the



capacity constraint (2.8) can be rewritten as

Cj ;> ||(aij,p)||1 + ki(aij,Uo)||2. (2.68)

In equation (2.68), k = <D-'(1 - c) and (-) represents a vector inner product. Addi-

tionally, ||-||,is the p-norm satisfying ||x|p (IE 1 lx |P)1' . The capacity constraint

in (2.66) can be expressed in the same way.

Cj ;> ||(ai , p)|1 + cN/aijI(aiI, a)||. (2.69)

The constant c equals V210g e and || - || is the infinity (maximum) norm. For the

purpose of comparison, ignore the constants k and c, and the first term in each

equation. The optimal formulation chooses a routing vector aij with a minimal 2-

norm, while the new robust formulation minimizes V'n-j |(aij , o-) 1.
To clarify, consider the following hypothetical scenario. Assume there are six i.i.d

flows (A through F) that can be routed over a link. Method 1 is to route all of flow A,

and half of flow B over the link under analysis. Method 2 is to route all of flow A, and

10% of flows B through F over that link. If all the flows have the same distribution

A ~ A(p, o2 ), then according to (2.8), a capacity of 1.5p + 1.12ko is required on that

link for the first method, and 1.5p + 1.025ko- is required for the second. However,

according to (2.67), a capacity of 1.5p + v2co- is required for the first method, and

1. 5pt + /5co is required for the second. In this example, the optimal routing decisions

are different between the two formulations and the optimal.

2.4.4 Implementation

Subtleties in the formulation in (2.67) prevent a straightforward implementation.

The parameters nij must be specified a priori; however, these parameters depend on

the optimal values of the variables as. The solution remains feasible if the ni are

replaced with an upper bound (i.e. the total number of demands in the network), but

a loose bound results in capacity over-provisioning. A better solution is obtainable

by restricting the paths on which each demand can be routed through the network,



as it allows for a tighter upper bound on nio.

MILP Formulation for Optimal Routing

Integer constraints can be used to compute nij directly and avoid the need for extra

path restrictions. Let flPf be a binary variable satisfying fPd > a f Thus, fP' equals

1 if a'd > 0, and 0 otherwise. Let = 1 if there are m demands traversing link

(i, J), and 0 otherwise. These variables satisfy

D

fi = EZmx V(i,j) (2.70)
sd m=0

where D is the total number of demands in the network. By combining this constraint

with one forcing only one of {xA, x1 , ... , xD} to be equal to one for each link (i,j),

the variables xz specify the number of flows on each link. Therefore, the capacity

constraint of (2.67) can be rewritten as

D

Ces 2 p4da + z V -2log e E xM V/6 V(i, j). (2.71)
sdED m=0

Equation (2.71) is nonlinear, since zij and z' are both optimization variables.

However, (2.71) can be linearized by introducing a variable ym to represent the prod-

uct zijxm with the following constraints.

yjz +M(x - 1) V(i, j), m (2.72)

y < Mx' V(i, j),m (2.73)

yM > 0 V(i, j),m (2.74)

In the above equations, M is a large number such that M > maxd 0sd When

0, then opzij = 0, and constraints (2.73) and (2.74) force y' to be 0. On the

other hand, if xz = 1, constraint (2.72) will force yj > zij, which at the optimal



Minimize: Cmax

Subject To:
D

C> [ pslsd + v-2loge my m

sdeD m=O

1,

a7' - ap = - ,

3 0,

C < Cmax V(i,j)
fd > a j V(i, j), (s, d)

D

5fs =mxm V(
sd m=O

D

og = V(ij

m=O

y1 j 2 c-sdaf + M(xi3  1)

y < MxM V(i, j), m
yM 2 0  V(i, j), m
aii >0 Vi,j,s,d

fd, or E {0, 1} V(s, d

if s i

ifd i V
otherwise

i , j)

V(s, d), (i, j), m

), (ij),m

solution will be satisfied with equality. The complete MILP to solve the routing

problem is formulated in Problem (2.75).

While this MILP computes the exact values of nij through the variables x', the

addition of the integer variables makes this program computationally intractable.

Therefore, one can investigate sub-optimal design heuristics to solve (2.75) for larger

networks.

The proposed heuristics are based on estimating the values nio, evaluating that

guess, and then revising it iteratively. The optimal routing according to (2.67) changes

based on the estimate of ni.., as routing traffic over links with a high nij requires more

capacity, so less traffic will be routed on these links. Therefore, nii is considered a

link cost.

V(i,j)

(sI d),iZ

(2.75)



Increasing Cost Algorithm

The first algorithm is the Increasing Cost Algorithm (ICA). All the link costs initial-

ize to 1, the optimization problem in (2.67) is solved, and the number of demands

traversing each link is counted. If there are more demands routed on a link than the

cost of that link, the cost is increased by one. Then, the algorithm repeats with the

new link costs. ICA terminates when each link has a higher cost than the number

of demands routed on the link, at which point link capacities are computed by di-

rectly applying (2.8). This iterative scheme is guaranteed to converge in at most N 2

iterations, where N is the number of links.

The cost on any link can increase during each iteration, but can never decrease.

In the early iterations, a link may be labeled as having a high cost, thus preventing

ICA from optimally routing traffic. However, each iteration only requires an LP to

be solved, implying that the entire algorithm can be run in polynomial time. This is

a significant improvement over the MILP in (2.75) and even the convex optimization

formulation in (2.9). These timing results are shown in Figure 2-7.

--- Optimal NLP

5000 - -

000

0 20 40 60 80 100 120 140 160 1:0

Figure 2-7: Comparison of processing time of different schemes for the NSFNET in Figure
2-4, as a function of the number of random demands. The MILP timing has been omitted
as it is several orders of magnitude greater than the scale of this plot.



Adaptive Cost Algorithm

We propose a second heuristic, the Adaptive Cost Algorithm (ACA), in which link

costs can be decreased if they have been set too high. At each iteration k, the cost is

updated according to nij(k + 1) = nij(k) - -y(k)(nij(k)- Edfisjd), where fsd equals

1 if and only if link (i, j) carries demand pair (s, d). Also, -y(k) is a step size as a

function of the current iteration. The step size monotonically decreases to zero with

k slowly so that the algorithm arrives at a near-optimal solution. In this work, we

use -(k) - .

ACA terminates when the mean squared error between the old cost and the

new cost falls below a positive constant. ACA is guaranteed to converge since

limk,, -y(k) = 0. In order to ensure that the best solution is returned, we calcu-

late the value of Cmax at each iteration based on the current routing and equation

(2.8), and return the best routing upon convergence.

2.4.5 Simulation Results

The ACA and ICA heuristics are compared to the optimal formulation in (2.9) and the

overly conservative formulation in (2.12), shown in Figure 2-8 for routing traffic and

allocating capacity over the NSFNET. In this simulation, demands are distributed as

N(100, 352) and exist between randomly chosen node pairs. Both the ACA and ICA

algorithms achieve approximately the same maximum link capacity for each random

number of demands, and yield a savings of approximately 15% over the conservative

formulation. However, neither heuristic performs as well as the optimal formula-

tion, which yields 25% to 30% savings. Despite their sub-optimalities, the robust

optimization heuristics offer substantially better performance than the conservative

approximation.

The routing decisions made by solving each formulation differ due to the capacity

constraints. Next, we analyze what fraction of the difference between the maximum

link capacity results from the routing choices between the formulations. Consider

modifying each of the previous network routing and capacity allocation strategies to
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Figure 2-8: Comparison of different routing algorithms applied to the NSFNET in 2-4.
Demands are normally distributed with p = 100 and o = 35, and are between randomly
generated node pairs. the number of these random demands is shown on the x-axis. Results
are averaged over 5 trials.

recompute the capacity on each link using the constraint in (2.8) after the routed

has been computed, preventing unnecessary over-provisioning. These modified ap-

proaches are compared to the optimal routing solution for NSFNET in Figure 2-9.

The optimal non-linear formulation only provides a savings of 5% over the modified

LP approach. Additionally, the modified LP approach outperforms the modified ICA

algorithm by 5%.

An explanation for the poor performance of the modified ICA algorithm com-

pared to the surprisingly good performance of the modified LP approach is that the

NSFNET does not support enough opportunities for traffic from different sources to

share link resources. To test this claim, we consider another network shown in Figure

2-10. We run the same simulation, with we randomly generated, normally distributed

demands with p = 100, o = 35, and compare the results of our different approaches.

Figure 2-11a shows the results of comparing the original ICA approach with the

conservative linear formulation in (2.12) and the optimal solution in (2.9). The maxi-
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Figure 2-9: Comparison of the modified
Each algorithm is given the same set of
p = 100 and a = 35.

approaches to the
random demands,

optimal approach for NSFNET.
each normally distributed with
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Figure 2-10: Example
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this network are bidirectional.

for splitting traffic over



mum link capacity for the optimal solution offers a 30% savings over that required by

the linear approach. In this example, the ICA heuristic performs substantially better

than the LP approach, yielding a capacity savings of 25% for the most congested link.

We also consider the modified LP and modified ICA approaches described above. The

results of comparing these to the nonlinear optimal solution are shown in 2-11b. In

this example, the modified ICA approach performs equally as well as the optimal

approach. Both these approaches achieve a max-link capacity savings of 10% to 15%

over the linear approach with the optimal capacity allocation modification. This gain

is a result of the resource sharing opportunities made available by the network, which

were unavailable when routing over NSFNET.

2.5 Network Design

In Section 2.2, the routing and capacity allocation problems were formulated to sup-

port a traffic matrix with Gaussian demands. Due to the non-linearity of that formu-

lation, the link placement problem has been omitted, as it requires integer variables.

Integer and linear formulations were proposed in Section 2.3 and 2.4. The remaining

task is to understand how the design problem changes when accounting for stochas-

tic traffic, and to extend the robust optimization formulations to include the link

placement sub-problem.

2.5.1 Network Design Theory for Stochastic Traffic

Consider a network made up of three nodes. Suppose we have i.i.d. traffic (AN(10, o))

from node 1 to node 2 and node 1 to node 3. We want to design a network and route

the traffic over such a network such that max link capacity is minimized, and the link

placement is restricted to a limit of four links, assuming no parallel links. If traffic is

deterministic (o-= 0), the optimal link placement only requires a link from 1 to 2 and

1 to 3 while the other two links can be placed arbitrarily. Thus, an optimal network

topology for this example is shown in Figure 2-12a. With this link placement, the

traffic can be sent on the one hop path to its destination. The required capacity is
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Figure 2-11: Solutions to the routing and capacity allocation problems for the network in

2-10. Demands are all distributed as H(100, 352) and are between randomly chosen node

pairs. The number of these demands are shown on the x-axis. Each graph is averaged over

5 simulations.
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Figure 2-12: Possible designs for a three-node network with four
links, when there are two i.i.d demands from nodes 1 to 2 and 1 to 3

Cmax = 10.

Now consider the stochastic traffic case, by letting o = 1. The optimal topology

is shown in Figure 2-12b. On this topology, half of each demand can be sent on each

link, and a lower Cmax is achievable than on the network in Figure 2-12a. To be

precise, the solution to (2.9) is Cmax = 10 + . If the first topology is used to

route the stochastic traffic instead, it would be sent directly to the destination, and

Cmax = 10 + <D-1(1 -- E).

Consider the effect of routing deterministic traffic over the optimal topology for

stochastic traffic in Figure 2-12b. If the traffic is split over both paths to each des-

tination, the required capacity is Cmax = 10, the same as if the traffic was directly

sent over the single hop paths. As this example suggests, there are possibly many

topologies to optimally route deterministic traffic, but fewer optimal topologies for

stochastic traffic. Furthermore, in this example the optimal topology for stochastic

demands is also an optimal topology for deterministic demands.

We have shown, that an optimal topology for deterministic traffic may not be

optimal for stochastic traffic. However, the inverse is true in this example. Further,

as the variance of the traffic in the above example increases, the optimal topology

remains the same. These observations are generalized in the following conjecture.

Conjecture 1. Given a set of nodes and a traffic matrix where the demand between

each node pair is normally distributed with mean Ad and standard deviation 0'd > 0,



there exists a topology T* that is optimal for all values of -.

Conjecture 1 suggests that an optimal topology for stochastic traffic of some posi-

tive variance will be optimal for traffic of any variance, including deterministic traffic.

However, there may exist other optimal topologies for deterministic traffic as well.

Hence, of the topologies that are optimal for deterministic traffic, a subset of them

will be optimal for Gaussian traffic, of any variance. This remark is summarized

below.

Remark. Let T be the set of optimal topologies for deterministic traffic and let T,

be the set of optimal topologies for stochastic traffic with standard deviation o > 0.

Then, T, is the same for all o > 0, and T, C T

This claim will not be proven, but there is strong intuitive evidence to suggest

its validity. Recall from Section 2.3.1 that for stochastic traffic, there is an increased

interest in combining small fractions of traffic from different sources. We refer to

this as resource-sharing. The amount of traffic combined on each link varies with o,

but the number of demands routed over a link remains constant as o changes. Note

that if the traffic is deterministic, then resource-sharing is not beneficial. A topology

that is optimal for traffic demands with positive variance will place links in such a

way that the amount of resource sharing available is maximized. A weaker version of

Conjecture 1 is proven through the following theorem.

Theorem 2. Given a set of nodes and a traffic matrix where the demand between each

node pair is normally distributed with mean p4d and standard deviation -, E 00 > 0

such that for any - satisfying 0 < o- < ao, the optimal topology designed for that - is

also optimal for deterministic traffic.

Proof. Let To and T, be the optimal topologies for deterministic traffic and Gaussian

traffic with variance o,2 respectively. Further, let C, be the optimal maximum link

capacity in routing traffic with demand variance o2 over topology T. For example,

CTO is the solution for routing deterministic traffic over the topology that is optimal

for deterministic traffic. Throughout this proof, we will use r = <D- 1 (1 - e), given a

design parameter 6. We will prove our claim by contradiction.



Suppose T. is worse than To in terms of routing deterministic traffic. That is,

CTO' < CT.O (2.76)

The difference between these two solutions A is defined as

A = C - CTO > 0. (2.77)

Let a'f and b be the optimal routing for traffic with variance o.2 and deterministic

traffic on topology To respectively. Then by the capacity constraint in (2.8),

CTO;= af pd + KO- (af)2

sd sd

< E bjp[d + Ko- Z(bsd)2
sd sd

where (i, j) is a link achieving max capacity when stochastic traffic is optimally routed

over To, and (k, 1) is a link achieving max capacity when deterministic traffic is opti-

mally routed over To. Therefore,

Cogo <C0 + Ko (bd)2
sd

< CToO + 0 o-v 5- max+K

(2.79)

(2.80)

where D is a constant representing the maximum value of ESd(bsd)2 for any feasible

routing.

Consider the following optimization problem for routing deterministic traffic over

any fixed topology T.

(2.78)



Minimize:

Subject To: Cmax > 13 a>jpd V(i, j) EE
sd

1, if S i (2.81)

a - ajf= - 1, i f d i Vs7 d)i
3 3

0, otherwise

> 2 0 V(s, d), (i, j)

The Lagrangian of problem (2.81) is

L(v, 6, Cmax, a) = Cmax + Y:v (>3 Ipsdad - Cmax)
ij sd

+ sd(sd - hid(asd)) (2.82)
s,d,i

where vi, > 0 and id are dual variables, h d(asd) = E a - E, aj and

1, if S = i

#sd= - ifd=i (2.83)

0, otherwise

First, we minimize over the primary variables.

g(v, 0) inf Cmax + v%( sdag - Cmax)
Cmax,aQ sd

+ E Qsd[fsd - h d(asd)] (2.84)
s,d,i

Now, the dual problem can be written as

Cmax



d* =Maximize: g(V, 0)

Subject To: (2.85)

0 "d free Vi,(sd)

By the min-max theorem and by strong duality for linear programs, there is zero

duality gap between the dual and primal problems.

C*, (0) = d*(0)= min max L(v, 0, Cm, a)
CMax,asd VOOmxj

(2.86)

= min Cmax
Cm.,a

+vi (0)(y sda ' - Cma x)

+ Z 0 (0) [Osd -

s,d,i

h sd(a sd)] (2.87)

Consider the point (C*a(a), a*(o)), which is the optimal routing and max link ca-

pacity under traffic with variance ao2 over the fixed topology T. (C*ax(o-), a*(o-)) is

obviously feasible and since it is potentially sub-optimal for the deterministic problem,

it satisfies

C*ax (0) < C*ax (0-) + (0) ( psdad (0-)
sd

+( Z0;"(0)3id - hsd(a*sdu
s,d,i

Since the routing above is feasible, /38d = hd (a*sd(o)) for all i, (s, d). Furthermore,

for each link (i, J), the point (C,*.(o-), a*(o-)) satisfies

(2.89)C*x (o) > E psda*,d(o-) + Ka Z(a*,d(,))2

sd sd

By combining (2.89) with (2.88), we get the following inequality.

- C* (a))

(2.88)

vij > 0 V(ij)



Cnax(0) ; Cnax(a) - Ko Y Vi (0)
ij

(2.90)ij
sd

(2.91)C*ax(U) Cnx(O) + U vj(O) Z(ad(o))2

ij sd

The above result holds for all topologies, so we consider the specific topology T,. Let

X = E, vf* (0) Ed (a*d (o)2, then equation (2.91) becomes

(2.92)

(2.93)

where equation (2.93) results from the assumption in (2.77). Assume A + o-X

so-\I, which is valid if

or < = -. (2.94)
r,(,- - X)

Note that oo 2 0 since 0 < X < v'15 . Therefore, assuming o < oo implies

C a;" > CIOa0 + so-

> C o' (2.95)

Equation (2.95) follows from equation (2.80), and is a contradiction, since T, is op-

timal for stochastic traffic. Therefore, the assumption made in (2.76) is false and

Cmogx > C 0. However, since To is optimal for deterministic traffic,

Cox C;0. (2.96)

The above theorem can be generalized to the case where the variance on each link

CU;" > C ; + Io-X

= C o + A + so-X



is different with a similar "small" o- assumption necessary on the vector o. While

this particular proof doesn't hold for general large values of sigma, the intuition for

Conjecture 1 suggests that it is valid.

2.5.2 Network Design Implementation

There are techniques for computing the optimal topology for stochastic traffic, pro-

vided the network size is small. For large networks, near-optimal formulations and

heuristics are required.

MILP Formulations

First, we modify the existing linear and integer formulations to include additional

variables and constraints for link placement. Let bi= 1 if a link exists between

nodes i and j, and bij = 0 otherwise. The complete formulation is given in formulation

(2.97). Node degree constraints are added, where A, and Aj are the out-degree and in-

degree respectively. These constraints can be replaced with a constraint limiting the

maximum number of links, or potentially other design restrictions. This formulation

however is intractable for even networks of a moderate size, due to the large number

of integer variables and constraints.

To improve this approach, we add the design variables and constraints to the

iterative heuristics developed in Section 2.4.4 instead of the MILP. Recall that each

iteration of ICA and ACA required solving an LP. By adding the same constraints to

those LPs as we added to the formulation in (2.97) for link placement, the iterative

schemes can be adapted to solve the link placement problem as well. These iterative

algorithms are quicker to execute than the formulation in (2.97), but each iteration

now consists of an ILP, and is thus still intractable for large networks.

Optimal Techniques for Network Design

Since the formulation in (2.9) calculates the optimal routing and capacity assignment

for any given topology, we can exhaustively search through every possible topology



Minimize Cmax

Czy tsd ai. +
sdcD

sd
a j

D

-2 log E myg
m=O

1,

10,
aji

if s=i

if d i

otherwise

V(i,j)

V(s, d),i

V(ij)

fP" > a VSi '~I (s, d)

bij > asd V(i, j) , (s, d)
D

f EmxM V(i, j)
sd m=O

V(i, j)

V(s,d), (i,j),m

V(i, j), m

yM > 0 V(i, j),m

fd, x b- E {0, 1}

Ybij = Ai V)

V(s, d), (i, j), m

3

Subject To:

Cij < Cmax

x =1

m=O

(2.97)

yi < Mx'

af > 0 Vi, j, s, d

ym>Osda sd + M(x'M - 1)



for that with the smallest max link capacity. Every possible permutation of links that

meet the design requirements must be enumerated, and the convex routing formula-

tion in (2.9) is applied to each. This is obviously inefficient, but returns the optimal

topology.

For example, consider an i.i.d. set of 11 demands over a five node network, where

each demand is normally distributed with mean 100 and variance oa2 . Numbering the

nodes from 1 to 5, assume traffic demands exists between the following node pairs:

D {(1, 2),(1, 3), (2, 1),(2,3),(2, 4),(2, 5),(3,2),(3, 4), (3, 5), (4, 1), (4,5)}. The de-

sign constraint is that no more than 10 links may be used, with no parallel links. The

topologies that are found to be optimal when o 0 are shown in Table 2.1. Then,

the same technique is used for the traffic when o = 10 and o- = 30. In both stochastic

cases, there is only one optimal topology, namely topology 4 in Table 2.1.

[Topology Number Links
1 (1,2),(1,3),(2,1),(2,4),(2,5),(3,2),(3,4),(3,5),(4,1),(4,3)

2 (1,2),(1,3),(2,1),(2,4),(2,5),(3,2),(3,4),(4,1),(4,3),(4,5)

3 (1, 3),7(1,74), (2,71),(2,3),7(2, 5),(3, 2), (3,4), (3,5), (4,1),(4,2)
4 (1,2),(1,3),(2,1),(2,3),(2,4),(3,2),(3,4),(3,5),(4,1),(4,5)

5 (1,2),(1,3),(2,1),(2,4),(2,5),(3,1),(3,2),(3,4),(4,3),(4,5)

6 (1,2),(1,4),(2,1),(2,3),(2,5),(3,2),(3,4),(3,5),(4,1),(4,3)
7 (1,2),(1,3),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(4,1),(4,5)
8 (1,2),(1,3),(2,1),(2,3),(2,4),(2,5),(3,2),(3,4),(4,1),(4,5)

Table 2.1: Optimal topologies for deterministic traffic for the demands in D

The optimal stochastic topology is the same for o = 10 and o- 30 and is a

subset of the optimal deterministic topologies, which agrees with Conjecture 1. By

assuming that the optimal topologies for stochastic traffic is always a subset of the

optimal topologies for deterministic traffic, we can propose a new method of finding

the optimal stochastic topologies.

Initially, the optimal deterministic topology is found for the set of nodes and

demands provided, using existing methods such as the MILP in Section 1.2.1. Once

this topology is found, represented by variables bl, the following constraint is added

to the deterministic problem.



bi + I (1- bij) > 1 (2.98)
(ij)|Ibi =0} {(ij)|Ib =1}

This constraint enforces any feasible solution of the current optimization problem

(bij) to differ from the solution already obtained (b()) by at least one link. If the

solution to the modified MILP has the same objective function as the solution to the

original problem, then the new topology is also an optimal topology for deterministic

traffic. This is repeated by adding an additional constraint with every topology

found, until the objective value of the modified program is larger than the optimal

solution, implying that all the optimal deterministic topologies have been found. By

assumption, we can exhaustively search all the deterministically optimal topologies

using the formulation in (2.9) for the optimal stochastic topologies.

This approach is limited by the execution time of the MILP, which can be high

for large networks. Additionally, networks can have thousands of optimal topologies

for deterministic traffic.

Simulated Annealing

Simulated annealing (SA) is a random search heuristic which can be used to find near

optimal solutions to optimization problems. The algorithm begins with an arbitrary

feasible solution, and a cost computed with respect to an objective function. Then,

a random perturbation is applied to the solution, and the cost is reevaluated. The

new solution is probabilistically accepted based on the relationship between the two

costs. A positive probability of moving to a worse solution avoids the problem of

being trapped in a local minima.

Simulated annealing (SA) can be used in this context to compute the link place-

ments. We assume there is a constraint on the maximum number of links. From any

feasible network topology, the optimization problem in (2.9) is solved to find Cm.

Then, a random perturbation is applied to the topology. Specifically, a link (i, j) in

the topology and a link (k, 1) not in the topology are randomly chosen uniformly from

all the links in their respective sets, and link (k, 1) is added to the topology while link



(i, j) is removed.

For the new topology, the problem in (2.9) is solved, where the value of the

objective function at the solution is C'ax- If C ax< Cmax, the new topology allows

for a smaller maximum link capacity and is accepted unconditionally. If the new

topology is worse, it is accepted with probability q, where

q = exp Cmax - Cmax (2.99)

The probability of acceptance is a function of the difference between solutions,

so that topologies that are much worse are less likely to be accepted than topologies

which are only slightly worse. The parameter T is referred to as the temperature, bor-

rowing terminology from physics literature. Initially, the temperature of the system

is large, such that worse topologies are still likely to be accepted. As the algorithm

progresses, temperature is lowered slowly, so less "bad" topologies will be accepted.

Specifically, SA iterates for a fixed number of perturbations to simulate reaching

a steady state, and then temperature is modified according to T' = pT for some

0 < p < 1. The algorithm is stopped when the probability of escape from some

topology is small enough that new topologies are no longer considered.

The SA algorithm should not depend on the initial topology used to begin the

search, since SA has measures to protect itself from local minima. Therefore, M links

are randomly chosen initially, where M corresponds to the design requirement on

the maximum number of links. If the initial links can not support the demands, the

topology is labeled as infeasible. As long as the topology is infeasible, a new topology

is accepted with probability 1.

2.5.3 Network Design Simulation Results

In the previous sections, we have shown that there exist optimal topologies for stochas-

tic traffic that are potentially different from optimal topologies for deterministic traf-

fic. We would like to quantize this difference.

As an example, consider a six node network with the i.i.d demands between the
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Figure 2-13: Illustration of demands throughout a six-node cluster. A directed edge rep-
resents a demand in that direction. All demands are i.i.d.

set of node pairs shown in Figure 2-13. Our goal will be to place up to 15 links be-

tween these six nodes, such that the traffic can be optimally routed. Traffic demands

are normally distributed with mean 100 and variance or2. The optimal topology is

found by first locating the set of optimal topologies for deterministic traffic, and then

pruning that set for the optimal stochastic topology for a = 35. The two optimal

stochastic topologies result in Cmax = 123.89. These two topologies were chosen from

a set of 264 deterministically optimal topologies. Note that each ILP for determinis-

tic design takes between 2 and 3 seconds to solve, whereas each convex optimization

takes between 1.5 and 2 seconds. The two optimal topologies are shown in Figure

2-14.

1 3

4 5 6 4 5 6

(a) Topology 1 (b) Topology 2

Figure 2-14: The two optimal topologies with 15 links for the demand pattern in 2-13.

By finding the optimal topologies rather than an arbitrary deterministically op-

timal topology, we save on max link capacity. The stochastically optimal topologies

save 8% of the max link capacity that would be necessary for the worst case choice

of deterministic topology. On average, the stochastic topologies save 5% of the max

link capacity. We can expect to see larger numbers for bigger networks although this
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Figure 2-15: Resulting 32-link network (solid) for i.i.d A(100, 352) demands following
NSFNET (dotted). The network is designed for E = 0.01, using Simulated Annealing for
the link placement, and ICA for the capacity allocation and routing.

is difficult to verify due to the difficulty of solving large ILP's. Lastly, it is worth-

while noting how the ICA with the integer modification performs for this problem.

The resulting topology has Cmax = 142.74. This is substantially worse than optimal,

including any deterministically optimal network.

For larger networks, the approach of finding all optimal topologies for determin-

istic traffic, then searching through those topologies for that which is optimal for

stochastic traffic is computationally intensive. In order to design networks for these

instances, the simulated annealing approach is used to calculate the link placements,

and the routing and capacity allocation problems can be solved using the ICA heuris-

tic developed in Section 3.3.3.

Consider the NSFNET in Figure 2-4. Assume each bidirectional link corresponds

to a demand normally distributed with mean 100 and standard deviation 35. The

goal of this simulation is to place 32 links on a 14 node network to best route those

demands. This can be thought of as redesigning the NSFNET backbone with fewer

directed links. The resulting network is shown in Figure 2-15, and requires a maximum

link capacity of 456.162. Note that this network may not be optimal, due to the sub-

optimalities of the simulated annealing approach and the ICA heuristic.



2.6 Conclusions

The logical topology design problem for stochastic traffic is fundamentally different

than the traditional problem for deterministic traffic. We have presented several for-

mulations for the routing of stochastic traffic and provisioning of capacity in optical

networks. The optimal formulation is non-linear, preventing it from being used in dis-

crete optimization problems. Therefore, we extended the results of [4] to unbounded,

Gaussian random variables to obtain an ILP for the complete design problem.

The ILPs presented in this work are intractable for networks of moderate size, and

so the accuracy of the results for large networks depends on the quality of heuristics.

We presented routing heuristics that perform well for certain classes of networks (with

high degrees of resource sharing available), but not others. However, the heuristics

performed poorly when extended to the link placement sub-problem. Therefore, it

would be interesting to develop more accurate heuristics for the design problem.

This would allow the difference between stochastic and deterministic designs to be

accurately measured, and assess the need for separate network designs considering

stochastic traffic.
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Chapter3

Backup Network Design for Survivability

Against Random Network Failures

This chapter presents a framework for providing protection from random link failures

as explained in 1.3. We consider the problem of designing a dedicated backup network

to provide protection for a primary network subject to independent failures. We

present an ILP for the design of such networks using tools from robust optimization,

and study their dependence on the primary network reliability.

3.1 Failure Model and Problem Statement

Consider a primary network made up of a set of nodes V and a set of directed links

L connecting these nodes. We assume throughout that the links are directed, as the

undirected case is a specific instance of the directed link case.

Each link (s, d) E L has a given primary link capacity Crd, and a positive proba-

bility of failure p, independent of all other links. Let the random variables Xsd equal

1 if link (s, d) fails and 0 otherwise. This probabilistic failure model represents a

snapshot of a network where links fail and are repaired according to some Markovian

process. Hence, p represents the steady-state probability that a physical link is in a

failed state. This model has been adopted by several previous works [30, 33, 37, 38].

A backup network is constructed over the same set of nodes V and a new set of



links EB, by routing a backup path for each primary link over the backup network

and allocating capacity to every backup link. We assume that EB can consist only of

links (i, j) if there is a primary link connecting nodes i and j. An example backup

network is shown in Figure 3-1. Furthermore, the backup links are designed such

that failures can only occur in the primary network. For each primary link (s, d) E E,

a path on the backup network is chosen such that in the event that (s, d) fails, the

traffic load on (s, d) is rerouted over the backup path. Let bsd = 1 if link (s, d) E L

uses backup link (i,j) E EB in its backup path. Hence, bsd = {bV(ij) E 13}

represents the backup path for the primary link (s, d) E E.

2

5 4

Figure 3-1: Example backup network shown as solid directed links over dotted bidirectional
primary network.

A capacity CP is allocated to each backup link (i, j) E EB such that (i, j) can

support the increased load due to a random failure scenario with probability 1 - E,

where e > 0 is a design parameter. Naturally, as c becomes smaller, more capacity

is required on the backup network. Throughout this work we only consider the case

where p ;> , since no backup capacity is required for p < c.

Each primary link has exactly one path in the backup network for protection, and

the links in this path can be shared amongst backup paths for multiple primary links.

The goal is to construct a minimal cost dedicated backup network as follows:

Minimize:

CB (3.1)
(ij)ELB



Subject To:

Xsab 'CP > C < E V(i, j) E LB (3.2)
(s,d)EE

1, ifs=i

b - Zb -1, ifd ti V(sd) c E,iy s (3.3)
b s

0, o.w.

ijE {0, 1} V(s, d) E L, (i, j) E LB (3.4)

The constraint in (3.3) is a standard flow conservation constraint for the routing

of a single backup path for each primary link. The probabilistic constraint (3.2)

is the capacity constraint, restricting the probability that the load on (i, J) due to

failures exceeds the backup capacity provisioned on (i, J). This survivability metric,

which considers the reliability of each backup link independently, is referred to as the

backup-link survivability metric.

3.1.1 Probabilistic Survivability Metrics

There are a number of possible survivability metrics that can be considered in this

setting; the choice of which will impact the network design. Backup-link surviv-

ability considers the reliability of each backup link independently. This metric was

introduced in (3.2) and will be the focus of this thesis.

Alternatively, one can consider survivability from a primary link perspective. In

particular, a primary link (s, d) is unprotected if its capacity cannot be routed from i

to j using either the primary or the backup networks due to a failure and insufficient

backup capacity. The primary-link reliability constraint is written as

P ((s, d) unprotected) = P ((s, d) unprotectedIX,,d= 1) P(Xd 1) < (3.5)



Assume that if the capacity of backup link (i, J) is insufficient, none of the primary

links using that link in their backup paths can be protected.

P ((s, d) unprotected) = p-P ( U {(i, j) has insufficient capacity}|XSd -)
(i~J)E{(ij)ELsjb =1

(3.6)

Using the union bound,

p S bdP ({(i,j) has insufficient capacty}|XS 1) (3.7)
(ij)EB

= - b P ( xkbCd)>C-Ci) (3.8)
(ij)ELB (k,l)EE\(s,d)

Thus, the primary-link survivability constraint can be reduced to the same form as

the backup link constraint in (3.2).

One can also consider a survivability constraint on the entire backup network,

rather than on each backup link independently.

P(backup network fails) = P( U f(i,j overflows}) (3.9)
(ij)EfB

S5 P({(ij) overflows}) (3.10)
(ij)ELB

Equation (3.10) uses the union bound to express the network-wide survivability con-

straint in terms of the backup-link survivability. Thus, satisfying the backup link

constraint with probability ' for each backup link is sufficient to satisfy a backup-

network constraint with probability c. Consequently, networks designed using the

backup network constraint will utilize more resource sharing amongst backup paths,

as large backup networks lead to an increased cost.

Lastly, the survivability constraint can be used to ensure the reliability of the

entire primary network. It is straightforward to relate primary-network survivability

to primary-link survivability.



P(primary network is unprotected) P U {(s, d) is unprotected} (3.11)
(s,d)EE

< P({(s, d) is unprotected}) (3.12)
(s,d)c

The primary network constraint can be satisfied using constraints of the form of (3.5)

for each primary link. Further, those primary link constraints can be written in terms

of constraints of the form of (3.2).

Each survivability constraint results in a possibly different optimal backup network

for a given probability of link failure. The backup-network constraint will lead to

backup networks with fewer backup links, where the primary-link approach results

in networks with shorter backup paths. However, since each type of constraint can

be written in the form of (3.2), an approach for backup network path routing and

capacity allocation that satisfies the capacity constraint in (3.2) can be used to satisfy

the three other types of reliability constraints. Therefore, the focus in this thesis is

restricted to the backup-link constraint in (3.2).

3.2 Uniform-Load Primary Networks

Any primary network can be represented by a fully connected graph, with Cfd = 0

for links that are not in the primary network. However, in order to form an intuitive

understanding of the general problem, we first explore the backup-network design

problem for the special case where each primary link has unit capacity, i.e. Cd =

1 V(s, d) E L. The capacity required on each backup link is dictated by the reliability

constraint in (3.2). Let nij be the number of primary links for which backup link (i, j)

is part of the backup path. In other words,

nij = b (3.13)
(s,d)EE

Let Yij be a random variable representing the number of failed primary links using



(i, J) as part of their backup paths, i.e.,

Yi = Y bdXsd. (3.14)
(s,d)Er

Since each Xsd is an i.i.d bernoulli random variable with parameter p, Yij is a binomial

random variable with parameters nij and p. Furthermore, as all the primary links

have unit capacity, equation (3.2) can be rewritten as

P ( Xsdb CP>C$ =P > C (3.15)

= YS ( j"iJ)p(-)"l-" V(i, j) E LB (3.16)
yLCM3j+1 )

Equation (3.16) uses the cumulative distribution function (CDF) of the binomial

distribution. For each link (i, j), let G(nij, p, e) be the minimum value of CP satisfying

(3.16). Clearly, the capacity required on a backup link increases with the number of

primary links it protects, and it decreases as the probability of failure decreases.

Additionally, as c decreases, more capacity is required on each backup link.

The value of G(nij , p, c) can be computed numerically by iterating through the

possible values of CP until (3.16) is satisfied. However, the iterative scheme may be

computationally difficult for large networks, as the sums of combinations can become

large. Therefore, we can bound the probability in (3.16) as

P(Y >) ni (1 - p n))njr r (3.17)
(nij - IF ) -

for nijp < F < nig. This bound follows from direct application of the Chernoff bound.

The bound in (3.17) can be compared with the actual distribution function of the

binomial random variable to assess its tightness, as shown in Figure 3-2. The bound

is slightly loose, but allows an easier computation of G(nij, p, E). This computation

must still be numerical, as this bound does not yield an analytical expression for F.

Additional bounds exist for binomial tails from which G(nij, p, e) can be expressed



analytically, but these are generally too loose for our purposes, especially in the small

p regime.

Binoal (n=20, p=
0

.1) Probablity Bound Performa

Figure 3-2: Comparing the bound in (3.17) to the actual distribution of the binomial tail.
This is for a binomial random variable with parameters n = 20 and p = 0.1. Note that the
bound is only valid for F > 2.

3.2.1 Impact of Link Failure Probability

2

1..--...3.

6 .- 4

5

(a) Cycle Protection

2

1 .. 3 1

6 4 6

5

(b) Two-hop Protection (c) One-hop Protection

Figure 3-3: Sample backup network link placement to protect a 6-node, fully-connected
primary network. The dotted lines represent the primary network, and the solid lines
represent the backup links.

To gain intuition about the optimal backup network design, we compare three

backup routing schemes, shown in Figure 3-3, and show that backup network per-



formance depends on the link failure probability. In the cycle protection scheme of

Figure 3-3a, each primary link (s, d) has a backup path lying in a single Hamilto-

nian cycle through the network. This is the minimum-cost backup network providing

protection against a single link failure [1]. Each backup link in this cycle requires

unit capacity to protect against a single link failure, resulting in a total cost of N

for an N-node network. Due to network symmetry, each backup link protects half

of the primary links. Therefore, in order to use this scheme to provide protection

from a random number of failures with high probability, a total backup capacity of

C~taiz =N - G(N(N-1) , p, ) is required, where G(n, p, c) is the smallest value of C

satisfying (3.16).

For large values of p, this capacity is N 2 (N-1) since G(nij, p, c) = nij for p close to

1. This capacity can be reduced by considering the scheme in Figure 3-3c, where the

backup network is a mirror of the primary network, and the backup path for (s, d)

is the one-hop path from s to d. Since each backup link offers protection to a single

primary link, the total capacity required is Ctta N(N - 1) - G(1, p, e). For all

values of p > c, Ctai = N(N - 1). Thus, the mirror scheme requires a factor of N

less capacity than the cycle scheme for primary networks with a high probability of

link failure.

While the one-hop protection scheme is optimal in the high-p regime, other schemes

are more capacity-efficient for smaller values of p. Consider the two-hop scheme in

Figure 3-3b, where node 1 serves as a relay node for every backup path. The primary

links from node 2 to every other node share the backup link (2, 1), and similarly the

primary links from all nodes to node 2 share the backup link (1, 2). Extending this

to an N-node network, each backup link protects N - 1 primaries, and there are

2(N - 1) backup links. Thus, CBtai= 2(N - 1) - G(N - 1,p, E).

The three aforementioned routing schemes are compared in Figure 3-4 for a fully

connected network with 50 nodes and varying probability of link failure. The cycle-

protection scheme, which is optimal in the single failure scenario, requires excessive

capacity when considering multiple failures. For values of p close to e, the two-hop

routing strategy outperforms the other two strategies. Once p exceeds roughly 0.4,



there is no longer a benefit to sharing backup resources, and the one-hop starts to

outperform the two-hop schemes. Hence, it is clear that the optimal backup network

topology depends on the reliability of the primary network. This is further analyzed

in Section 3.3 where the problem is formulated for general primary link capacities.

< 1 I C Comparin of Backup Routing for N=50

3 ------ -yd P14350

-A--5 OneHp Protedion
- -- Two-Hop Proledion

3-

2.5

0.5 -

005 0.1 015 02 025 03 03 04 045 0.5
Probabity of Link Falure

Figure 3-4: Comparison of three protection schemes for an N -50 fully-connected network
with unit load.

To illustrate the difference between the backup-link and backup network reliability

constraints, Figure 3-5 compares the three routing schemes and the required capacity

to satisfy the backup-network constraint of (3.10) with probability e = 0.05. By

comparing Figures 3-4 and 3-5, we see that for any given p, more capacity is required

to meet the network-wide constraint than the link-based constraint. For example,

when p = 0.3, the two-hop strategy outperforms the one-hop strategy under the

backup-link constraint, and vice-versa under the backup-network constraint.

3.2.2 Scaling Properties of Backup Network Capacity

Consider the cost of the backup network with respect to that of the primary network.

Let p be defined as

(J)GB C;
P - (3.18)
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Figure 3-5: Comparison of three protection schemes for an N -- 50 fully-connected network
with unit load and backup-network survivability constraint.

I.e., p is the ratio of the total capacity of the optimal backup network to that of the

primary network. In [1], the authors show that this ratio tends to 0 asymptotically

as the network size gets very large for specific networks and single-failure protection.

For fully-connected, uniform-load networks, the optimal backup network under single-

failure protection is shown in Figure 3-3a, and for this topology

N 1
P = N -- 1(3.19)

N(N - 1) N - 1

Conversely, for protection against random failures, the ratio in (3.18) can be upper

bounded using the following proposition.

Proposition 1. Assuming a fully-connected primary network with unit-capacity on

each link and probability of link failure p, the ratio between the total capacity of the

optimal backup network and that of the primary network can be upper bounded as the

primary network size grows large by the following:

p < 2p (3.20)

Proof. The optimal total backup capacity is bounded by that of the two-hop scheme



considered in Figure 3-3b.

= (i, )cB Ci 2(N - 1)G(N - 1, p, E) (3.21)

(ij)G CS ~ N(N - 1)

Consider the behavior of G(n, p, e) when n is large. Recall that G(n, p, C) is the

required number of primary links out of n that need to be protected to ensure a

probability of error of c. Fix a 6 > 0, and by the weak law of large numbers (WLLN),

lim [P(! Xm-p>6)I=0 V6 > 0 (3.22)

-->lim [P Xm > n(p + 6) )] 0 V6 > 0 (3.23)
m=O

Therefore, as n gets large, G(n, p, c) = n(p + 6) is sufficient to meet the probability

requirements (for any positive E). In the limit of large n, the inequality in (3.21)

reduces to

E(i~j)EL CP 2(N - 1)Np
p = _, < = ( -1 2p (3.24)

(ij)eL CJ - N(N - 1)

Therefore, the size of the backup network is a small fraction of the size of the

primary network, since p is usually small. Consequently, a backup network designed

using the backup-link survivability constraint is a low-cost method of providing pro-

tection against random failures in addition to single-link failures. This result is con-

sistent with [1], in that as the primary network size grows large, p approaches zero

under the single-failure model.

3.3 General-Load Networks

Next, we develop a formulation for general primary link loads. First, we apply the

robust optimization results from [4] to formulate a non-linear program for backup



capacity provisioning, and develop an equivalent integer linear formulation in terms of

new parameters Fi. We show that the choice of these parameters affects the amount

of capacity provisioned, and hence the probability of insufficient backup capacity.

Then, we add constraints to directly compute these parameters, yielding a solution

satisfying the probabilistic constraint in (3.2).

3.3.1 Robust Optimization Formulation

In the case of uniform link loads, capacity is allocated to the backup network by

computing G(nij, p, 6) for each link (i, J). The backup capacity provisioned is the

number of primary link failures protected against, as a function of nij, p, and c.

However, this approach does not apply directly to non-uniform primary link loads,

as different links will require different capacities to provide protection. In order to

mathematically formulate the problem for general link loads, we will use techniques

from the field of robust optimization.

Robust optimization finds a solution to a problem that best fits all possible realiza-

tions of the data, when that data is subject to uncertainty. In [4], the authors propose

a novel formulation with an adjustable level of conservatism for such problems. Their

approach is to introduce an optimization parameter F, and provide sufficient capac-

ity to support all scenarios in which any F of the demands exceed their mean. The

solution is guaranteed to be robust for those scenarios, and is shown to be robust for

all other scenarios with high probability, determined by F.

A similar approach can be applied to the problem of backup network design for

general link loads, where the uncertainty is in the number of primary links that fail.

Consider allocating capacity on link (i, j) to protect against any scenario where up

to Fri of the primary links utilizing (i, J) for protection fail. Clearly, for the specific

case of uniform loads, the required backup capacity C' is just Fij, and as shown

in the previous section, Fij is given by G(nij, p, e) under the constraint in (3.2). To

extend this idea, let Lij be the set of primary links protected by backup link (i, J),
i.e. Li={(s, d)|bs = 1}. Let Sij be a set of Fig primary links in Lig with the largest

capacities. Thus, for any (s, d) E Sij, we have



C -Csl', V(s', d') C Lij \ Si. (

The backup capacity required to protect against any Fri primary link failures is

given by

C ='S.

(s,d)ESij

(3.26)

In a complete form, this constraint can be expressed as

C B> max
U SIJSc gL,iS 3ig=r E

(s,d)ESij

(3.27)

The value of Fij determines the probability of protection. While rij should be

chosen such that (3.2) is satisfied, for now we fix the value of rij for each link. The

capacity constraint in (3.27) replaces the probabilistic constraint in (3.2), leading to

the following non-linear optimization problem.

Minimize:

CB

(ij) ErLa

Subject To:

C! 2 max C'
Sig Sig r,|ig lFig (s,d)ESij1F { S Z~

1, sdif s i

bij -b ifd=i
3 3

0,o.w.

bc {O, 1} V(i, j) E E

bij' V(i, j)

The above is non-linear due to the backup capacity constraint. The problem in

(3.28) can be rewritten as a linear program (LP) using duality techniques similar to

[4]. For a fixed b and Fij, the backup capacity of link (i, j) can be written as

V(s, d) C Li E V
(3.28)

(3.25)

Cfd ij V(i, j).



13ij (bij Fi ) = max { Cdb },
SijSijCL,Sig=Fri (s,d)ESij

which is the solution to the following LP.

OiF (bij, fij) = maximize

subject to

~sdzsd
Cdbij zj

(s,d)EE

(s,d)EE

o K zf 1 K 1

Assuming the number of primary links (s, d) satisfying b = 1 is larger than or

equal to Fij, the LP will choose the Fij of them with the largest capacities, by setting

zfd - 1 for those links (s, d). This corresponds to choosing the set Sij in (3.26). If

there are fewer than Fri primary links (s, d) satisfying bsd = 1, then for each of these

links l = 1 and the other (s, d) chosen to make = 1 are irrelevant.

Let vij be the dual variable for the first constraint in (3.30), and let Osf be the dual

variables for the second set of constraints. The dual problem of (3.30) is formulated

below.

minimize vijij + E oi

(s,d)EL

subject to vj4 + Bij > Cdbsd V(s, d) c L

vij ;> 0

O ;> 0 V(s, d) E E

(3.31)

Since there is zero duality gap between problem (3.30) and its dual (3.31), then the

optimal value of the objective function in (3.31) is equal to /i3 (bij f i). Additionally,

since problem (3.28) minimizes #ij(bij, Fij) for each (i, j), problem (3.31) can be

substituted into (3.28) to arrive at the following formulation.

(3.29)

(3.30)

V(s, d) E E



E C
(i,j)E1B

C3 ;> v'v -+ E 6 sd

(s,d)EC

vij + Bsd > Cfdbj s

V(i,j) E LB

V(s, d) E L, (i, j) E LB

E b - Ebj j
3 3

b c {0, 1}

vi, sd >0

1, ifs=i

= -1, ifd=i

0, otherwise

V(i, j) E LB

V(s, d) E L, (ij) EL

(3.32)

V(sd) E L,iE V

If fewer than Fij links in Lij fail, the capacity allocated in (3.27) will be sufficient.

Therefore, the probability of insufficient backup capacity can be upper bounded using

the tail probability of a binomial random variable.

P Xsdbi Cd > C) < PYiy>Fig (3.33)
(s,d)EE ji 

( i i

The capacity allocated in (3.26) is sufficient to meet the reliability constraint

in (3.33) with probability e if ]ij = G(nij, p, E). However, nij is an optimization

variable, on which Fi depends. Thus, the remaining task is to modify (3.32) to

directly compute the value of Fij for each link using an ILP formulation.

3.3.2 Complete Formulation

Since PFij cannot be computed analytically, we create a table a priori in which the

mth entry 1(m) equals G(m, p, E), computed numerically. We develop an ILP that

leads to the direct computation of nij in order to index the table.

To compute nij, let ' =1 if nij = m, and 0 otherwise. The following constraints

are introduced.

Minimize

Subject to



N(N-1)

x = V(7, j) ELE (3.34)
m=0

Constraint (3.34) enforces x' to be equal to 1 for only one value of m for each backup

link.
N(N-1)

b = m -x V(i, j) EIEB (3.35)
(s,d)EC m=0

Constraint (3.35) ensures that the number of primary links utilizing a backup link

(i, j) is equal to the value of m for which =1. Consequently, ij7 can be represented

by the following.

N(N-1)

F j = G(nij, p, E) = (m)x, (3.36)
m=0

The capacity constraint of (3.32) is rewritten as

N(N-1)

C B> F(m)vijXo + E osd (3.37)
m=0 (s,d)EL

Since the product vijx} is non-linear, another set of optimization variables is

added to represent this product in linear form. Let y7 be a nonnegative variable

satisfying the following constraints:

y, 2 v j + K(xm - 1) V(ij),m (3.38)

yN < Kxg V(i, j), m (3.39)

yM > 0 V(i, j), m (3.40)

In the above equations, K is a large number such that K > maxsd Cid. When

zg = 0, then xmvij = 0, and constraints (3.39) and (3.40) force yj to 0. On the

other hand, if x = 1, constraint (3.38) will force yp > vij, which at the optimal

solution will be satisfied with equality. These constraints lead to an ILP formulation

for backup network design, given in (3.41).



The following is an ILP formulation for the design of a dedicated backup network

to protect against random failures.

Minimize:

Subject To:

ygl(m)+ 5 9iJ

(s,d)c

V(i, j) E LB

Vj+ osd sd~b
Ni Cdbij

N(N-1)

m
M=O

z =1

V(sd) E L,(i,9j) ELB

V(iJ) E EB

N(N-1)

(bdi S I:
(s,d)EL

m-x m V(i,j) E LB
m=O

yWj 2 vi + K(xm - 1)

y < Kxm V(ij)

b - bj=

V(i,j) E LB, m

c LB, m

-1,

0,

if s =i

if d i

o.w.

V(s,d) C L,i E V

bx {0, 1}

Osd > 0, v>y 0, y > 023 ij

V(i,j) C EB,m

V(s, d) C L, (i, j) E LB, m

This formulation calculates the backup paths and capacity allocation for a dedicated

backup network satisfying the survivability constraint in (3.2).

(i CB
(i,j)(EEB

N(N-1)

CS m E
m=0

(3.41)



3.3.3 Simulated Annealing

The ILP in (3.41) can be directly solved for small instances, but becomes intractable

for large networks. There are a number of heuristic approaches to solving ILPs, such

as randomized rounding [27], tabu search [31], and simulated annealing [6]. Here,

we employ a simulated annealing approach to estimate the backup path routing in

(3.41).

Simulated annealing (SA) is a random search heuristic which can be used to

find near optimal solutions to optimization problems. The algorithm begins with an

arbitrary feasible solution, and a cost computed with respect to an objective function.

Then, a random perturbation is applied to the solution, and the cost is reevaluated.

The new solution is probabilistically accepted based on the relationship between the

two costs. A positive probability of moving to a worse solution avoids the problem of

being trapped in a local minima. SA has been used previously on network survivability

problems [34].

For a fixed backup path routing, the computation of the optimal backup capacity

CP is straightforward. Therefore, we use simulated annealing to estimate the backup

path routing. For the problem in (3.41), the solution at each SA iteration is the

backup path for each primary link, and the cost is the total backup capacity, computed

using (3.27). Perturbations are applied to this solution by randomly recomputing the

backup path for a randomly chosen primary link. The current network with cost

CBs is modified by changing a single backup path, and the network cost CBl is

recomputed. The new backup network is accepted with probability max(q, 1) where

q t exp C T . (3.42)

Hence, better solutions are unconditionally accepted and worse solutions are ac-

cepted with probability q. The parameter T in equation (3.42) represents the "tem-

perature" of the system. At high temperatures, there is a high probability of accepting

a solution with a larger cost than the current solution. This prevents the algorithm

from getting trapped in a local minima. The temperature decreases after a number
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Figure 3-6: Optimal backup networks shown as solid links over dotted primary networks
for different probabilities of link failure. Designed using c = 0.01.

of iterations depending on the network size by T' = pT, for 0 < p < 1. SA cannot

escape local minima if p is too small, but high values of p result in long computation

times. Eventually, T becomes small enough that the probability of accepting a worse

solution approaches zero. At this point, the algorithm terminates and returns the

resulting backup network.

The number of total iterations required to converge to an optimal solution, which

is a function of the starting value of T, the value of p, and the number of iterations

before reducing T, depends on the network size. However, this increase in processing

time is polynomial, and consequently, solving large networks is tractable using this

approach.

3.4 Simulation Results

Consider a five-node, fully-connected topology where each primary link has unit-

capacity. Due to the small size of this network, the ILP in (3.41) can be solved

to compute the optimal backup topologies for different values of p. These backup

networks are shown in Figure 3-6. For small values of p, the backup topology consists

of few links, whereas for large values of p, the backup network resembles the primary

network. Table 3.1 summarizes the results of the backup networks for different values

of p, using all of the design heuristics discussed. Cycle protection, two-hop protection,



and one-hop protection refer to the strategies analyzed in Section 3.2. The optimal

column refers to the solution returned by solving the ILP in (3.41) using CPLEX,

and the SA column refers to an approach where simulated annealing is used to solve

the ILP.

Strategy =p-0.025 p= 0.05] p=0.075 p=0.1 [p= 0.25]
optimal 7 10 13 16 20

cycle 10 15 15 20 30
two-hop 8 16 16 16 24
one-hop 20 20 20 20 20

SA 7 11 13 16 20

Table 3.1: Backup network capacity required for topologies designed using different strate-
gies. e = 0.01 in each design.

The table shows that for p = 0.1, the two-hop protection scheme is optimal, and

for p = 0.25, the one-hop protection scheme is optimal. Furthermore, the simulated

annealing heuristic performs very close to optimal for different values of p. Since the

optimal topology depends on the probability of link failure, it is therefore necessary

to use a different backup routing scheme depending on the link failure probabilities.

The heuristics can be extended to larger networks, but the ILP in (3.41) cannot

be solved directly for large networks. Thus, we use the SA approach to solve the ILP

for backup network design for large primary networks.

Consider the NSFNET primary network shown in Figure 2-4. Each link is bidi-

rectional, with unit capacity in each direction. Our goal is to construct a backup

network consisting of links (i, J) E LB, where i and j are connected by a link in

the NSFNET. The survivability constraint in (3.2) must be satisfied with probability

c = 0.05. The SA algorithm, shown to be near-optimal for smaller networks, is used

to compute the backup network for this larger example. The resulting backup net-

works for probability of link failure p = 0.075 and p = 0.10 are shown in Figures 3-7

and 3-8 respectively.

In the backup network of Figure 3-7, a total capacity of 24 is required. Most

backup links protect up to 5 primary links. In the case of Figure 3-8, where the

probability of link failure is higher, a total capacity of 28 is needed. The backup
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Figure 3-7: Backup network (solid) shown for the NSFNET (dotted) with the restriction
that the backup network must be a subset of the primary network. The primary network
here assumes a probability of link failure of 0.075, and the backup network is designed for
c = 0.05.

Figure 3-8: Backup network (solid) shown for the NSFNET (dotted) with the restriction
that the backup network must be a subset of the primary network. The primary network
here assumes a probability of link failure of 0.1, and the backup network is designed for
c= 0.05.

links in this example protect an average of 3 primary links. If the probability of

link failure increases to p = 0.25, the resulting backup topology is a mirror of the

primary topology, requiring a capacity of 42. As p increases, the number of backup

links rises, and similarly the number of primary links being protected by each backup

link falls, until the network follows the one-hop protection scheme. These results are

summarized in Table 3.2.



Link Failure Probability U(i,)ELB C I Average ni,

p = 0.06 22 4.87
p = 0.075 24 4.42
p = 0.085 27 3.59
p= 0.10 28 3
p =0.175 34 1.88
p =0.25 42 1

Table 3.2: Comparison of backup networks for NSFNET with different probabilities of
primary link failure. Networks were designed using E = 0.05. Average nij refers to the
average number of primary links being protected by a backup link.

3.5 Conclusions

Dedicated backup networks are a low-cost and efficient method for providing protec-

tion against multiple (random) failures. In the event of a failure, the load on the

failed link can be automatically rerouted over a predetermined path in the backup

network, providing fast recovery from network failures. We formulated the backup

network design problem as an ILP for primary networks with general link capacities

and independent, identically distributed probabilities of link failure. For primary net-

works with rare failures, backup networks are shown to use fewer links, with more

resource sharing among backup paths. Conversely, when the primary network has a

high probability of link failure, the backup network consists of shorter backup paths.

For larger primary networks, a simulated annealing approach was presented to solve

the backup network design ILP. This approach has been shown to perform near opti-

mally in designing dedicated backup networks. The SA algorithm can be adjusted to

trade-off between computation time and accuracy, with computation time increasing

polynomially with the network size.

Throughout this work, it has been assumed that the backup network is free from

failures. This assumption holds if the backup links are physically designed such

that they are more robust to failures. It would be interesting to extend the approach

presented in this paper to a failure model in which the backup links are also susceptible

to failure.



Bibliography

[1] M. Banner and A. Orda. Designing low-capacity backup networks for fast restora-

tion. In Proc. of INFOCOM. IEEE, 2010.

[2] W. Ben-Ameur and H. Kerivin. Routing of uncertain traffic demands. Optimiza-

tion and Engineering, 6(3):283-313, 2005.

[3] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs.

Operations Research Letters, 25(1):1-14, 1999.

[4] D. Bertsimas and M. Sim. The price of robustness. Operations Research, pages

35-53, 2004.

[5] R. Bhandari. Survivable Networks: Algorithms for Diverse Routing. Kluwer

Academic, 1999.

[6] SP Brooks and BJT Morgan. Optimization using simulated annealing. The

Statistician, 44(2):241-257, 1995.

[7] J. Cao, D. Davis, S.V. Wiel, and B. Yu. Time-varying network tomography:

Router link data. Journal of the American Statistical Association, 95(452), 2000.

[8] H. Choi, S. Subramaniam, and H.A. Choi. On double-link failure recovery in

wdm optical networks. In IEEE INFOCOM, volume 2, pages 808-816. Citeseer,
2002.

[9] S. Gast and A. Keimer. Robust optimization in network flows. 2009.

[10] A. Grosso, E. Leonardi, M. Mellia, and A. Nucci. Logical topologies design

over wdm wavelength routed networks robust to traffic uncertainties. IEEE

Communications Letters, 5(4):172-174, 2001.

[11] W.D. Grover. Mesh-based survivable networks: options and strategies for optical,
MPLS, SONET, and ATM Networking. prentice hall, 2004.

[12] L. Guo, H. Yu, and L. Li. Segment shared protection for survivable meshed wdm

optical networks. Optics communications, 251(4-6):328-338, 2005.



[13] M. Herzberg, S.J. Bye, and A. Utano. The hop-limit approach for spare-capacity
assignment in survivable networks. IEEE/A CM Transactions on Networking
(TON), 3(6):784, 1995.

[14] B.G. Jozsa, D. Orincsay, and A. Kern. Surviving multiple network failures using
shared backup path protection. In Proc. ISCC, volume 1, pages 1333-1340, 2003.

[15] O.E. Karasan, M. Pinar, and H. Yaman. Robust dwdm routing and provisioning
under polyhedral demand uncertainty. In Proc. of INOC, pages 242-249, 2005.

[16] M. Kodialam, TV Lakshman, and S. Sengupta. Efficient and robust routing of
highly variable traffic. In Third Workshop on Hot Topics in Networks (HotNets-
III). Citeseer, 2004.

[17] R.M. Krishnaswamy and K.N. Sivarajan. Design of logical topologies: a linear
formulation for wavelength-routed optical networks with no wavelength changers.
IEEE/ACM Transactions on Networking (TON), 9(2):186-198, 2001.

[18] E. Leonardi, M. Mellia, and M.A. Marsan. Algorithms for the logical topology
design in wdm all-optical networks. Optical Networks Magazine, 1(1):35-46,
2000.

[19] Y. Liu, D. Tipper, and P. Siripongwutikorn. Approximating optimal spare ca-
pacity allocation by successive survivable routing. IEEE/ACM Trans. Netw.,
13(1):198-211, 2005.

[20] S.S. Lumetta et al. Capacity versus robustness: a tradeoff for link restoration in
mesh networks. Journal of Lightwave Technology, 18(12):1765, 2000.

[21] K. Meesublak. Network design under demand uncertainty. In Proc. of the Asia-
Pacific Advanced Network Meeting, 2008.

[22] D. Mitra and Q. Wang. Stochastic traffic engineering for demand uncertainty
and risk-aware network revenue management. IEEE/ACM Transactions on Net-
working (TON), 13(2):233, 2005.

[23] E. Modiano and Aradhana Narula-Tam. Survivable lightpath routing - a new
approach to the design of wdm-based networks. IEEE Journal on Selected Areas
in Communications, 20(4):800-809, May 2002.

[24] A.M. Odlyzko. Internet traffic growth: Sources and implications. In Proc. SPIE,
volume 5247, pages 1-15. Citeseer, 2003.

[25] E. Oki, N. Matsuura, K. Shiomoto, and N. Yamanaka. A disjoint path selection
scheme with shared risk link groups in gmpls networks. IEEE Communications
Letters, 6(9):406-408, Sep. 2002.

[26] D. Papadimitriou et al. Inference of shared risk link groups. Internet Draft.



[27] P. Raghavan and C.D. Tompson. Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7(4):365-374, 1987.

[28] S. Ramamurthy, Laxman Sahasrabuddhe, and Biswanath Mukherjee. Survivable
wdm mesh networks. volume 21, pages 870-883, 2003.

[29] R. Ramaswami and K.N. Sivarajan. Design of logical topologies for wavelength-
routed all-optical networks. In IEEE INFOCOM, pages 1316-1316. INSTITUTE
OF ELECTRICAL ENGINEERS INC (IEEE), 1995.

[30] J. Segovia, E. Calle, P. Vila, J. Marzo, and J. Tapolcai. Topology-focused avail-
ability analysis of basic protection schemes in optical transport networks. Journal
of Optical Networking, 7:351-+, 2008.

[31] C.C. Shyur, T.C. Lu, and U.P. Wen. Applying tabu search to spare capacity plan-
ning for network restoration. Computers & Operations Research, 26(12):1175-
1194, 1999.

[32] AL Soyster. Convex programming with set-inclusive constraints and applications
to inexact linear programming. Operations research, 21(5):1154-1157, 1973.

[33] M. Tornatore, G. Maier, and A. Pattavina. Availability design of optical trans-

port networks. IEEE Journal on Selected Areas in Communications, 23(8):1520-
1532, Aug. 2005.

[34] B. Van Caenegem, W. Van Parys, F. De Turck, and PM Demeester. Dimension-
ing of survivable wdm networks. IEEE Journal on Selected Areas in Communi-
cations, 16(7):1146-1157, 1998.

[35] I. Widjaja, I. Saniee, A. Elwalid, and D. Mitra. Online traffic engineering with
design-based routing. In ITC Specialist Workshop.

[36] D. Xu, Y. Xiong, C. Qiao, and G. Li. Trap avoidance and protection schemes in
networks with shared risk link groups. IEEE/OSA Journal of Lightwave Tech-
nology, 21(11):2683-2693, Nov. 2003.

[37] J. Zhang and B. Mukherjee. A review of fault management in wdm mesh net-
works: Basic concepts and research challenges. IEEE Network, pages 41-48,
Mar. 2004.

[38] J. Zhang, K. Zhu, H. Zang, and B. Mukherjee. Service provisioning to provide
per-connection-based availability guarantee in wdm mesh networks. In OFC,
Atlanta, GA, Mar. 2003.

[39] R. Zhang-Shen and N. McKeown. Designing a predictable internet backbone
network. In HotNets III, 2004.

[40] D. Zhou and S. Subramaniam. Survivability in optical networks. IEEE network,
14(6):16--23, 2000.


