
Use-Driven Concept Formation
by

Jennifer M. Roberts

S.M., Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (2006)

B.S., Electrical Engineering, and B.S., Computer Science,
University of Maryland, College Park (2004)

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

OCT 3 5 2010

SLIBRARIES

ARCHIVES

September 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

A uthor

Department of Electrical Engineering
and Computer Science

"n"rN-aber 3, 2010

Certified by...
Patrick H. Winston

Ford Professor of Artificial Intelligence and Computer Science
Thesis Supervisor

Certified by

Randall Davis
Professor

Accepted by......... . . .

Thesis Supervisor

..................
Terry P. Orlando

Chairman, Department Committee on Graduate Theses

2

Use-Driven Concept Formation

by

Jennifer M. Roberts

Submitted to the Department of Electrical Engineering
and Computer Science

on September 3, 2010, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

Abstract

When faced with a complex task, humans often identify domain-specific concepts
that make the task more tractable. In this thesis, I investigate the formation of
domain-specific concepts of this sort. I propose a set of principles for formulating
domain-specific concepts, including a new inductive bias that I call the equivalence
class principle. I then use the domain of two-player, perfect-information games to
test and refine those principles. I show how the principles can be applied in a semi-
automated fashion to identify strategically-important visual concepts, discover high-
level structure in a game's state space, create human-interpretable descriptions of
tactics, and uncover both offensive and defensive strategies within five deterministic,
perfect-information games that have up to forty-two million states apiece.

I introduce a visualization technique for networks that discovers a new strategy for
exploiting an opponent's mistakes in lose tic-tac-toe; discovers the optimal defensive
strategies in five and six men's morris; discovers the optimal offensive strategies in
pong hau k'i, tic-tac-toe, and lose tic-tac-toe; simplifies state spaces by up to two
orders of magnitude; and creates a hierarchical depiction of a game's state space that
allows the user to explore the space at multiple levels of granularity. I also introduce
the equivalence class principle, an inductive bias that identifies concepts by building
connections between two representations in the same domain. I demonstrate how
this principle can be used to rediscover visual concepts that would help a person
learn to play a game, propose a procedure for using such concepts to create succinct,
human-interpretable descriptions of offensive and defensive tactics, and show that
these tactics can compress important information in the five men's morris state space
by two orders of magnitude.

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Artificial Intelligence and Computer Science

Thesis Supervisor: Randall Davis
Title: Professor

4

Acknowledgments

First, I would like to thank my two advisors Patrick Winston and Randy Davis.

Patrick gave me the freedom to pursue my interests and encouraged me to explore

my ideas and see where they led. He also taught me how to showcase my work at all

stages of development. Patrick has an aptitude for not only identifying the parts of

a narrative that I had been spending the most time refining, but also for proposing a

cohesive framework for outlining my work, providing the appropriate level of detail,

and highlighting my contributions.

Randy is exceptional at asking probing questions that helped me to refine my

research approach, identify the theoretical underpinning of my work, and challenge

my background assumptions. He has a rare ability to critically dissect a piece of work

in a way that is both encouraging and insightful. My discussions with Randy truly

helped me to develop scientifically.

I would also like to thank my committee members, Susan Epstein and Sanjoy

Mahajan. Susan's research served as a foundation for much of my work. She has

helped to refine my work on games, coined the term "use-driven concepts," and

offered numerous pointers on how to write about scientific work in a clear, strong,

cohesive manner. Sanjoy provided a unique perspective on learning and encouraged

me to study sets of representations in a more principled manner.

I would like to thank the Fannie and John Hertz Foundation, the National Science

Foundation, the Google Anita Borg Scholarship program, and the Marilyn Pierce

EECS Departmental Fellowship committee for their generous financial support. These

organizations allowed me to pursue research on topics that I found both interesting

and rewarding. I would especially like to thank Tom Weaver and everyone else at

the Fannie and John Hertz Foundation for the excellent mentorship programs that

they have initiated since I entered the program. Their professional development and

networking opportunities gave me a much broader perspective on the many ways

in which we can contribute to society as scientists. Members of the Anita Borg

Scholarship program also introduced me to a remarkable, empowering community of

female researchers.

Mark Finlayson has been a good officemate and lent me the hardware for my ex-

periments on five and six men's morris. Jake Beal has been an excellent collaborator,

and I have enjoyed our thought-provoking discussions on computational models, cog-

nitive science, and the future of cognitively-inspired artificial intelligence. My friends

from the Graduate Student's Association (Paul, Nicole, Stephen, and others) helped

me to improve the student experience within the EECS department and made my

time in graduate school much more enjoyable. Nicole, Vanessa, Jonathan, Mireille,

and David made MIT feel more like home, and I love that I can always count on

Laurie to provide a positive outlook, regardless of the situation.

Most of all, I would like to thank my husband, Chen. Chen has been remarkably

supportive through this whole process, acting as my chief confident, research collab-

orator, editor, cheerleader, and best friend. He has helped me through every step of

the process. I would also like to thank my mom, dad, and sister, Becca, who have

been amazingly supportive and encouraging and expressed supreme confidence in my

ability to accomplish large amounts of work in short periods of time.

Contents

1 Principles of Concept Formation

1.1 Principles for Forming Use-Driven Concepts

1.1.1 Principles for Identifying Use-Driven Concepts in Networks

1.1.2 The Equivalence Class Principle for Forming Concepts Using

Sets of Representations.....

1.2 Using the Modes of Use-Driven Concept Formation to Analyze Games

1.3 Significance..... .

1.4 Using Games to Test and Refine the Modes of Use-Driven Concept

Form ation .

2 Related Work

2.1 Inductive Biases...

2.2 Computer-Aided Discovery

2.3 Concept Formation .

2.4 Games........

2.4.1 Solving Games

2.4.2 Extracting Information from Endgame Databases

2.4.3 Identifying Move Sequences

2.4.4 Identifying Patterns in Game State Spaces and on

33

. 33

.. 35

. 38

. 39

. 39

. 40

.. . . 41

Game Boards 43

3 Pattern Grouping Algorithms

3.1 Four Pattern Grouping Algorithms that

Expose Visual Concepts and Simplify Game State Spaces

3.1.1 One-Move-to-a-Goal Grouping Algorithm 46

3.1.2 Fork Grouping Algorithm....... 51

3.1.3 Avoidance Grouping Algorithm 54

3.1.4 Draw Tree Grouping Algorithm 57

3.2 Combining the Pattern Grouping

Algorithms.... 60

3.3 Benefits of Hierarchical Grouping . 65

4 Pattern Grouping Algorithms for Identifying Offensive Strategies 69

4.1 A Human Subject Simplifies the Pong Hau K'i State Space to Discover

Offensive and Defensive Moves . 70

4.2 Using Pattern Grouping Algorithms to Expose High-Level Structure

in Pong Hau K'i................ 73

4.2.1 Collapsing Paths to a Win . 73

4.2.2 Collapsing Forced Move Sequences 74

4.2.3 Collapsing Move Sequences that Exhibit the Same

M otion Pattern . 74

4.2.4 Grouping Collapsed Subtrees Based on Symmetry 77

4.2.5 Interpreting the Simplified State Space Diagram 77

5 Extracting Strategic Information from Tic-Tac-Toe and Lose Tic-

Tac-Toe 79

5.1 Segmentation Exposes Optimal Opening Moves, Strategies, Structure

at Multiple Levels of Granularity, and Computational Differences be-

tween Games.... 83

5.2 The Equivalence Class Principle Exposes Visual Concepts 93

6 Extracting Strategic Information from Five Men's Morris and Six

Men's Morris 105

6.1 Segmentation of the Morris State Spaces Exposes High-Level Structure

and Optimal Defensive Strategies . 107

6.2 Equivalence Class Principle Exposes Visual Concepts and Symmetries 110

6.2.1 Selecting a Set of Collapsed Subtrees for Further

A nalysis . 110

6.2.2 Preliminary Analysis of the Forced Avoidance Collapsed Sub-

trees Reveals Inside-Out Symmetry 111

6.2.3 Procedure for Identifying Visual Concepts and Using Them to

Redescribe Tactics........ 114

6.2.4 Analysis: Using Visual Concepts to Identify Tactical Categories 116

6.2.5 Discussion... 119

7 Contributions and Future Work 127

7.1 Areas for Future Exploration . 127

7.1.1 Creating a Multi-Representational Learning Algorithm 128

7.1.2 Modeling Human Learning . 128

7.1.3 Performing Game Analysis..... 129

7.1.4 Applying the Approach to Other Types of Networks 132

7.2 Contributions................... 132

A Using Pattern Grouping Algorithms to Expose Concepts in the State

Space 139

B Symbiotic Sets of Representations 149

B.1 Characterizing the Space of Representations......... 150

B.2 Related Work on Sets of Representations....... 153

B.3 Characterizing What Makes Sets of Representations Powerful 154

Bibliography 161

10

List of Figures

1-1 State space diagrams expose solutions to complex problems. 19

1-2 State space simplification example......... 20

1-3 Equivalence class principle: Creating classes in a visual representation. 24

1-4 Equivalence class principle: Finding correlates in an alternate repre-

sentation.............. 24

1-5 Equivalence class concept formation involves these three steps. 25

1-6 Visual concepts rediscovered using the equivalence class principle. . 29

3-1 A subtree of the tic-tac-toe state space. 47

3-2 The one-move-to-a-goal grouping algorithm. 49

3-3 Results obtained when the one-move-to-a-goal grouping algorithm is

applied to a subtree of tic-tac-toe. 49

3-4 The fork grouping algorithm. 52

3-5 Results obtained when the fork grouping algorithm is applied to a

subtree of tic-tac-toe...... 53

3-6 The avoidance grouping algorithm. 55

3-7 Results obtained when the avoidance grouping algorithm is applied to

a subtree of tic-tac-toe... 56

3-8 The draw tree grouping algorithm. 58

3-9 Results obtained when the draw tree grouping algorithm is applied to

a subtree of tic-tac-toe.. 59

3-10 A user interface for visualizing state space segmentations. 66

4-1 Pong hau k'i beginning and end states.......... 70

4-2 Pong hau k'i state space 71

4-3 A collapsed version of the pong hau k'i state space created by a human

subject.............................. 72

4-4 Pong hau k'i state space after applying the one-move-to-a-goal pattern

grouping algorithm . 73

4-5 An example of a forced move sequence and the results obtained by

using the forced move sequence pattern grouping algorithm to collapse

the pong hau k'i state space. 75

4-6 An example of two motion patterns and the results obtained by using

the motion pattern grouping algorithm to collapse the pong hau k'i

state space. 76

4-7 A reproduction of the simplification from Figure 4-6 in which the nodes

are grouped based on symmetry. 77

5-1 Symmetric state sets in tic-tac-toe. 83

5-2 Tic-tac-toe segmentation results. 85

5-3 Lose tic-tac-toe segmentation results.. 88

5-4 An enlarged version of Figure 5-3j. 90

5-5 Vertices and edges in the tic-tac-toe state spaces as a function of the

number of grouping operations applied. 91

5-6 Selective application of the pattern grouping algorithms reveals difficult-

to-discover lose tic-tac-toe strategies........ 92

5-7 Common strategic concepts in tic-tac-toe.......... 94

6-1 Board used to play five and six men's morris. 106

6-2 Vertices and edges in the morris game state spaces as a function of the

number of grouping operations applied. 108

6-3 Number of forced avoidance collapsed subtree, organized by type. . . 112

6-4 Inside-out symmetry................. 113

6-5 Numbered morris board used to define absolute action sequences. . . 114

6-6 Offensive and defensive tactics for a subcategory of forced avoidances. 120

6-7 A visual pattern that is easy to identify, given the concepts of a mill

and a one-from-a-mill........... 122

A-i A portion of the tic-tac-toe state space that contains instances of forks. 142

A-2 A portion of the tic-tac-toe state space after applying the fork pattern

grouping algorithm . 143

A-3 Collapsing children that share the same label inspires the forced avoid-

ance pattern grouping algorithm. 144

A-4 Applying the fork and forced avoidance pattern grouping algorithms

exposes draw trees. 145

A-5 Collapsing draw trees within the state spaces diagrams from Figure A-

4 creates the diagrams shown here. These diagrams highlight decision

points that affect the outcome of the game. 146

A-6 Generalizing the one-move-to-a-goal pattern grouping algorithm. . . . 147

A-7 Collapsing instances of the one-move-to-a-fork pattern reveals forced

avoidances that allow a player to create a fork in one move. This is an

important concept in tic-tac-toe.... 147

B-i Three examples of a representation with a production rule format

translating into a representation with a tree format. These translations

rely on one-to-one correspondences between attributes of the formats

and do not depend on domain-specific information.... 157

B-2 The Dienes block representation provides a mechanism for translating

between objects in the real world and the base-ten representation for

number. 158

B-3 Translating between block diagrams and equations enables the creation

of functionally equivalent block diagrams. 159

14

List of Tables

3.1 Visual concepts exposed by the one-move-to-a-goal algorithm. 50

3.2 Visual concepts exposed by the fork grouping algorithm. 54

3.3 Visual concepts exposed by the avoidance grouping algorithm. 57

3.4 The draw tree grouping algorithm does not reveal visual concepts in

the tic-tac-toe subtree...... 59

3.5 The default sequence of pattern grouping algorithms. 61

3.6 Labels applied to collapsed subtrees. 64

5.1 The sequence of grouping algorithms used to analyze the tic-tac-toe

gam es. 81

5.2 Labels applied to the state space collapsed subtrees in the tic-tac-toe

gam es. 82

5.3 Visual concepts identified by the fork grouping algorithm 94

5.4 Visual concepts for states that are two moves from a win or loss. . . . 97

5.5 Visual concepts for collapsed subtrees that fork to a win or loss in two

m oves. 98

5.6 Avoidances of two-move paths to a win or loss........... . . . 99

5.7 Three-move paths to a win or loss.............. 100

5.8 Avoidances of three-move paths to a win or loss. 101

5.9 In tic-tac-toe, draw tree roots generally do not exhibit visual patterns. 102

5.10 Examples of strategic concepts in lose tic-tac-toe. 103

6.1 The sequence of pattern grouping algorithms used to analyze the morris

gam es. 107

6.2 A comparison of the number of endgame states in the original state

space versus the number reachable via perfect play. 109

6.3 Number of five men's morris forced avoidance collapsed subtrees that

are reachable during perfect play. 113

6.4 Absolute action sequences. 115

6.5 Visual concepts for sliding move strategies. 117

6.6 Number of tactical categories identified for three types of forced avoid-

ances. 123

Chapter 1

Principles of Concept Formation

Theories of the known ... may be equivalent in all their predictions and

are hence scientifically indistinguishable. However, they are not psycho-

logically identical when trying to move from that base into the unknown.

- Richard Feynman, Nobel Lecture, 1965

Domain-specific concepts often make complex tasks more tractable. For example,

light can be viewed as a wave or as a particle, and each of these two concepts make it

easier for people to solve a class of physics problems. While viewing light as a wave

is an oversimplification that does not accurately describe the true nature of light, the

concept of a wave is still useful within that domain because it often enables someone

to predict how light will interact with its surroundings.

In this thesis, I explore techniques for identifying use-driven concepts, which

are human-interpretable, domain-specific concepts that make a complex task more

tractable. Ultimately, I would like to create computational tools that start with only

domain-general knowledge, use that domain-general knowledge to study a novel do-

main, and identify concepts that would enable a person to perform tasks within the

domain of interest. Toward that end, I explore two types of concept formation, one

that involves identifying conceptual patterns in networks and one that involves build-

ing connections between two representations in order to identify use-driven concepts.

The representations that I am interested in provide two perspectives on the same

domain in the way that a Cartesian plot and an equation provide two perspectives

within mathematics. In this chapter, I propose a principles for forming use-driven

concepts, and throughout the rest of the thesis, I use the domain of two-player,

perfect-information games to test and refine those principles.

The primary contribution of this work is a semi-automated process for identifying

use-driven concepts by building connections between two representations that describe

the same domain. Sets of representations within the same domain not only provide

different perspectives, but also provide a mechanism for identifying domain-specific

concepts. Assuming that you have two representations that give different perspectives

on the same set of entities, the computer can classify the entities using features from

the first representation. When the entities in the second representation are grouped

based on their classification in the first representation, members of the induced classes

often exhibit a pattern that humans can detect. This process highlights features in the

second representation that correlate with the classification boundaries from the first

representation and provides an inductive bias called the equivalence class principle

for identifying noteworthy features in the second representation. Patterns exposed

by the classification in the second representation form a set of use-driven concepts.

The equivalence class principle relies on having a pair of representations that

describe the same set of entities. Its ability to expose connections between the rep-

resentations depends on the extent to which they provide different perspectives on

the same information. When information that is explicitly encoded in the first rep-

resentation is at least implicitly encoded in the second, or when both representations

implicitly encode the same information in different ways, the equivalence class prin-

ciple can highlight connections between the representations.

Often, important features in the second representation form patterns that humans

find perceptually salient. The degree to which such patterns are perceptually salient

may depend on how explicitly the second representation encodes the features of in-

terest. While implicitly-encoded features may still be detectable, recognizing them

Figure 1-1: A network representation of the famous farmer, goose, and fox problem.
In this problem, the farmer must take his fox, goose, and grain from one side of
the river to the other in a boat that only holds himself and one other item. While
crossing the river, he cannot leave the fox and the goose alone or the goose and grain
alone because, given the opportunity, the fox will eat the goose and the goose will eat
the grain. Although most people think the problem has one solution, this network
diagram reveals two. (Adapted from Winston, 1993.)

will generally require more processing.

In the next section, I provide an example of how the equivalence class principle

can reveal mathematical concepts, while in the remainder of the thesis, I demonstrate

how it can reveal game-related concepts. More specifically, I use the principle to

identify use-driven visual concepts that provide a mechanism for succinctly describing

winning sequences of moves. Developing a fully-automated algorithm for applying the

equivalence class principle would lead to a new type of machine learning algorithm.

The second major contribution of this work is a general-purpose approach for

simplifying networks. Networks such as the one pictured in Figure 1-1 can provide

deep insight into the nature of complex problems. However, even when they have

small numbers of nodes, networks such as the one pictured in Figure 1-2a become

difficult for humans to interpret. A good layout may reveal symmetries, as in Figure 1-

2b, but the high-level structure necessary for understanding the topology and the

nature of the problem still remains hidden.

My network simplification algorithms identify patterns and high-level structure

in networks, resulting in simplifications such as the one in Figure 1-2c. The algo-

rithms proceed by identifying subnetworks that share the same topology and or share

White
wins BR 5

BR 4

GR6 :-- R

WGR7

lose~ l ose OR1 R12

GR 13

BR2 Black
wins

(b) (c)

Figure 1-2: (a) State space of pong hau k'i, a game with 56 states (Zaslavsky, 1982).
See Chapter 4 for a full description of the game. Each game state consists of a board
configuration paired with an indication of which player moves next. Dotted outlines
and arrows indicate when white moves next, and solid outlines and arrows indicate
when black moves next. (b) A symmetric layout of the same state space. The four
circled moves near the center of the diagram are important offensive moves, while
the rest of the circled moves are important defensive moves. (c) A simplification
of the state space diagram for pong hau k'i. Non-leaf nodes represent loops in the
graph. This diagram highlights the high-level structure of the game, exposing the key
offensive moves. The key offensive moves for black move from cycle G9 to cycle G1O
or from cycle G13 to cycle G12. Once in cycle G1O or G12, black can win as soon as
white mistakenly moves to BRO or BR2. The key offensive moves for white follow a
similar pattern.

patterns involving both topology and node attributes, where a node attribute might

indicate whether a state in a game is a win or a loss. When a pattern is identified, it is

replaced by a single node, converting the pattern into a labeled entity that can then

become part of a more complex pattern. This grouping mechanism hierarchically

organizes the network in a way that emphasizes high level structure, exposes portions

of the network containing nodes that have not been grouped into a pattern, reveals

high-level patterns that would not otherwise be visible, and provides a mechanism

for visualizing a network at multiple levels of granularity. Selectively grouping some

patterns and not others can highlight different types of structure within the graph.

When the grouping mechanisms expose high-level patterns that have meaning within

the domain of interest, these patterns become new domain-specific concepts.

1.1 Principles for Forming Use-Driven

Concepts

As noted, use-driven concepts are human-interpretable, domain-specific concepts that

make complex tasks more tractable. In this thesis, I explore two modes of use-

driven concept formation, one that forms concepts within networks, and one that

forms concepts within a broader set of representations. In this section, I describe

the principles behind each type of concept formation and describe how broadly the

principles may be applied. In the next section, I describe how to use these principles

to analyze games.

1.1.1 Principles for Identifying Use-Driven Concepts in

Networks

Concepts in networks are represented as subgraphs that share node and edge at-

tributes. For example, in a game state graph, a subtree with leaves that are all draw

states represents a set of paths that lead to a draw. A draw tree is an example of an

annotated topological pattern (ATP), a set of constraints on a subgraph's topology

and on its node and edge attributes that define a pattern in a network. Complex con-

cepts can be identified by hierarchically grouping instances of ATPs to incrementally

build upon known information.

To facilitate pattern recognition and formation, each instance of an ATP within

a network is collapsed into a labeled node, called a collapsed subgraph.1 Collapsed

subgraphs can then become part of higher-order ATPs. When collapsed subgraphs

with different topologies receive the same label, this collapsing procedure can abstract

away unnecessary information and, with proper visualization tools, make it easier

for people to identify high-level patterns. The iterative collapsing procedure also

organizes concepts hierarchically in a manner that facilitates visualization at multiple

levels of granularity.

Within this work, ATPs generally build upon previously-acquired knowledge by

incorporating both collapsed subgraphs and regular nodes. This ensures that complex

ATPs build on simpler ones in a straightforward manner, thus using simple concepts to

create complex concepts. Pattern formation could also proceed in a less compositional

fashion, but in the majority of this thesis, I focus on a compositional mode of pattern

formation.

1.1.2 The Equivalence Class Principle for Forming

Concepts Using Sets of Representations

... [D]ifferent views suggest different kinds of modifications which might be

made and hence are not equivalent in the hypotheses one generates from

them in one's attempt to understand what is not yet understood.

- Richard Feynman, Nobel Lecture, 1965

While the last section described a mode of concept formation intended for net-

work representations, this section describes a principle that can be used to form

'The idea for collapsing subgraphs into nodes comes from a case study in which a human subject
collapsed pairs of states within a state space (Epstein & Keibel, 2002; Epstein, 2005).

concepts within any set of representations that describe the same group of entities

in different ways. Multiple representations within the same domain not only provide

different viewpoints of the same entities, but also provide a mechanism for identifying

important domain-specific concepts. In this section, I illustrate this principle using

examples from mathematics, and throughout the rest of the thesis, I show how it can

be applied to the domain of games.

In mathematics, equations and Cartesian plots provide two different perspectives

on lines and curves. Given a large number of plots such as the ones shown in Fig-

ure 1-3, one way to classify the plots is based on shape. While shape provides a

perceptually-salient cue for separating the ellipses from the hyperbolas, the corre-

sponding equations in Figure 1-4 seem relatively similar to one another. Equations

of this sort could be classified based on a number of features, such as the number of

minus signs, the magnitude of the x2 term coefficients, or the set of coefficients in the

equation, but no feature necessarily seems more compelling than any other.

Within a multi-representational setting, the equivalence class principle, which was

introduced in the last section, provides a mechanism for deciding which features are

important. The principle states that features in one representation are important

when they correlate with classification boundaries in another representation. Apply-

ing this principle to the equations in Figure 1-4, equations (a), (d), and (f) fall into

one class because they all describe ellipses and equations (b), (c), and (e) fall into

another class because they all describe hyperbolas. When a large number of equations

are grouped in this way, the sign agreement between the x2 and y2 terms becomes

one of the few features that correlates with the classification boundary. This exposes

the fact that an equation of this form corresponds to an ellipse when the signs of

the squared terms are the same, and it corresponds to a hyperbola when the signs

of the squared terms are different. The fact that the sign agreement of the squared

terms can predict whether a plot is an ellipse or a hyperbola makes this feature an

important concept within this domain.

Using the equivalence class principle to identify important concepts involves the

5 -5 -5 -

4 -4 -4 -

3 3 3

2 2 2

5 0 5 -5 0 5 -5 0 5

(a) (b) (c)

5 5 5

4 4 -4-

3 3 -3-

2 2 2-

- 0 0

-5 0 5 -5 0 5 -5 0 5

(d) (e) (f)

Figure 1-3: Visually, these plots form two classes, ellipses and hyperbolas.

x2-2x+1+ -- + = (a)
4 2 4

z 2-2x+1I- Y+ Y- =1I (b)4 2 4
4x 2 +24x+36-4y 2 +8y-4= 1 (c)

x2 x 1
_ +- -+ +y2 - 2y+1=1 (d)16 8 16

-64X2 + 256x - 256 + 4y 2 - 8 y + 4 = 1 (e)

2 - 4x+4+ + -+ = 1(f)9 3 4

Figure 1-4: Equations for the plots shown in Figure 1-3. Considered in isolation,
these equations provide no obvious criteria for classification. The equations could be
classified based on whether or not they contain fractions, the number of coefficients
with positive terms, or magnitude of the largest coefficient. Considered in conjunction
with the Cartesian plots, however, correspondences between the equations and plots
reveal that equations with x2 and y2 terms that share the same sign correspond to
ellipses, and equations where these two signs differ correspond to hyperbola.

Equivalence Class Concept Formation

1. Classification: Classify entities in representation one.

2. Exemplar-Based Concept Formation: Create exemplar-based
concept descriptions in representation 2 by using the representa-
tion one classification to group entities in representation two.

3. Concept Redescription: Identify patterns within the sets of
exemplars and use those patterns to concisely redescribe the con-
cepts.

Figure 1-5: Equivalence class concept formation involves these three steps.

three steps delineated in Figure 1-5.2 First, entities are classified in one representation,

the way that the ellipses and hyperbolas were classified in the Cartesian plane. Then,

entities within a second representation are grouped based on their classification in the

first representation to form exemplar-based concept descriptions. This corresponds to

grouping the equations based on the classification of their plot, and using a large set

of ellipse equations to form an exemplar-based description of the concept "equation

of an ellipse." The final step involves analyzing the exemplar-based description of

the concept to extract important features and succinctly redescribe the exemplars.

This corresponds to taking a large number of ellipse equations and developing an

redescribed definition such as "an equation with x2 and y2 terms that share the same

sign."

1.2 Using the Modes of Use-Driven Concept

Formation to Analyze Games

To apply the concept formation principles to games, I use two game-related represen-

tations: a state space representation and a visual representation of the board. In the

state space representation, a state consists of a board configuration and an indication

2The terms used to describe the different types of concepts are adapted from exemplar theory
(Murphy, 2002) and the theory of representational redescription (Karmiloff-Smith, 1995).

of which player plays next. The board configuration stores the positions of all of the

pieces on the board, but these positions need not be stored in a way that facilitates

visual pattern recognition. The visual representation consists of a picture of the board

with the pieces in a particular configuration, often paired with an indication of which

player plays next. A picture of the board that corresponds to a particular state is

called a board diagram.

When applied to a game's state space, the technique for analyzing networks from

Section 1.1.1 can be applied interactively or non-interactively to serve different pur-

poses. Recall that an annotated topological pattern is a subgraph in the state space

that exhibits a topological pattern and contains nodes and edges with labels that

meet certain criteria. A pattern grouping algorithm searches a state space, identifies

instances of either a particular annotated topological pattern or a set of related anno-

tated topological patterns, and collapses each instance into a labeled node. Collapsed

nodes of this type are called collapsed subgraphs or collapsed subtrees, depending on

their topology. The label that a collapsed subgraph receives depends on the anno-

tated topological pattern it exhibits and depends on the labels attached to nodes

in its subgraph. Collapsed subgraphs with the same label form a class of collapsed

subgraphs. The pattern grouping algorithms can identify instances of game-general

concepts such as forced move sequences and paths that lead to a draw.

The pattern grouping algorithms can support an interactive mode of computer-

aided discovery, whereby the computer applies a set of pattern grouping algorithms,

provides the user with a hierarchical visualization of the collapsed state space, and

allows the user to define new annotated topological patterns. The new annotated

topological patterns can be seen as complex, task-specific concepts. Using a new

pattern grouping algorithm to collapse the user-defined annotated topological pattern

will reveal another level of structure within the state space. The user can then proceed

to iteratively develop additional annotated topological patterns and pattern grouping

algorithms. This mode of interactive computer-aided discovery is explored briefly in

Chapter 3 and more thoroughly in Appendix A.

The pattern grouping algorithms also support a non-interactive mode of computer-

aided discovery, which I use throughout the majority of the thesis. In this mode, the

algorithms collapse instances of annotated topological patterns that correspond to a

set of game-general concepts, thus identifying which game-general concepts can be

used to analyze the game of interest.

When used non-interactively, the pattern grouping algorithms serve two purposes.

First, they hierarchically organize a game's state space in a way that exposes high-level

structure and strategies. For example, in Chapter 5, I show how the pattern grouping

algorithms rediscover X's best strategy, i.e., X's best long-term plan, in tic-tac-toe.

Using this strategy, X opens by placing a mark in a corner square. In Chapter 3,

I introduce a set of pattern grouping algorithms that can theoretically identify the

optimal defensive strategy within any two-player perfect-information draw game by

highlighting all states in which a player can select moves that either continue to force

a draw or potentially lead to a win for the opponent.3 In Chapters 4 through 6, I

describe how these algorithms have identified the optimal defensive strategies in pong

hau k'i (56 states), tic-tac-toe (765 states), lose tic-tac-toe (765 states), five men's

morris (18,000 states), and six men's morris (42,000 states). 4

In addition to exposing high-level structure and strategies in games, the pattern

grouping algorithms perform the first step, i.e., the classification step, of the equiv-

alence class concept formation process. This first step involves identifying a class

of states within a game's state space. The second step involves using the equiv-

alence class principle to build connections between the state space representation

and the visual representation in order to create an exemplar-based description of a

strategically-significant visual concept. The third step involves extracting a succinct

description of the visual concept.

For example, the first step might extract all states within the state space that are

one move away from a win, the second step would collect board diagrams that fit this

description, and the third step would entail extracting and succinctly describing the

visual pattern shared by the set of board diagrams. This visual pattern becomes a

31f a player can force a win or a loss from the initial state, this set of algorithms would detect
the paths from the initial state to the win or loss states.

4For a full description of these games, please refer to Chapters 4 through 6.

use-driven visual concept because it can be used to predict when a player is one move

away from a win and used to concisely describe a winning tactic, i.e., a short-term

plan that leads to a win. In this work, the computer performs the first two steps and I

perform the last step, so the current implementation is an example of computer-aided

concept discovery.

By using the pattern grouping algorithms combined with the equivalence class

principle, general knowledge about two-player, perfect-information games can be used

to identify strategies, tactics, and visual concepts. Again, visual concepts, such as

those shown in Figure 1-6, are strategically-important visual patterns that have been

identified via the equivalence class principle and can be used to concisely describe

tactics. For example, the visual concept in Figure 1-6d can describe a tactic in which

white slides its center piece up and down to capture a black piece on each turn and thus

win the game. In Chapter 6, I describe how using visual concepts to concisely describe

tactics in a human-interpretable manner can compress the important information in

a game's state space by two orders of magnitude.

1.3 Significance

In this thesis, I test the claim that multiple representations in the same domain

provide a mechanism for identifying important domain-specific concepts by creating

connections between representations. The equivalence class principle is the inductive

bias that makes this process possible. Theoretically, the equivalence class principle

should enable connections to be formed when two representations encode the same

information in different ways, and should fail to detect patterns when the two rep-

resentations describe disjoint pieces of information. By using the equivalence class

principle to search for patterns in five deterministic, two-player, perfect-information

games, I provide evidence to support these claims. In the final chapter, I describe

how the equivalence class principle can be used to develop a new type of machine

learning algorithm.

Using the equivalence class principle to analyze games is analogous to searching

(a) The board used to play five and six men's morris. During the first phase of the games,
players place pieces on the locations marked with small dots. After each player places either
five or six pieces on the board (depending on the game), players take turns sliding pieces to
adjacent dots. When a player blocks all of her opponent's sliding moves or captures all but
two of her opponent's pieces (see (b)), the player wins.

(b) Mill: A mill consists of three pieces in a row. When a player forms a mill, she can capture
one of her opponent's pieces. If she captures all but two of her opponent's pieces, she wins
the game.

(c) One-from-a-mill: A piece configuration in which a player can slide a piece into a mill on
her next turn.

(d) Trapezoidal double mill: A piece configuration in which a player can slide the center piece
up and down to capture one of her opponent's pieces on each turn.

Figure 1-6: (a) The board used to play five and six men's morris. For a complete
description of the rules, please see Chapter 6. (b-d) Examples of visual concepts
rediscovered by applying the equivalence class principle to five men's morris.

for patterns in game databases. Gasser (1996) used brute-force methods to solve nine

men's morris, a variation on two of the games that I analyze in this thesis, but his

work does not provide human-interpretable descriptions of optimal tactics. In this

thesis, I exploit a method for developing human-interpretable descriptions of tactics,

building on the action sequence descriptions developed by Lock and Epstein (2004).

While the preliminary efforts that I describe in this thesis do not determine how much

of the five men's morris state space can be described in a human-interpretable fashion,

they provide evidence that human-interpretable descriptions comprised of use-driven

concepts can compress portions of the space by several orders of magnitude. Although

the procedure for performing this compression is not fully automated, the last chapter

describes a procedure for gradually automating the process.

1.4 Using Games to Test and Refine the Modes of

Use-Driven Concept Formation

In the rest of the thesis, I apply the principles outlined in this chapter to five games

of increasing complexity and show how the principles can be used to identify struc-

ture in a game's state space and to discover visual concepts, strategies, and tactics.

In Chapter 3, I briefly describe how the pattern grouping algorithms can support

an interactive mode of computer-aided discovery that enables the identification of

new state space concepts, and in Appendix A, I explain how I used this interactive

mode to develop pattern grouping algorithms that identify game-general concepts. In

the remainder of the thesis, I describe work that applies the pattern grouping algo-

rithms non-interactively to hierarchically organize a game's state space and to create

exemplar-based descriptions of visual concepts.

In Chapter 2, I explain how my work relates to other research in machine learning,

computer-aided discovery, concept formation, and game analysis. In Chapter 3, I

describe a set of pattern grouping algorithms that can be applied to any deterministic,

perfect-information, two-player game. I use examples from tic-tac-toe to explain

how these algorithms simplify a state space and create exemplar-based concepts. In

Chapter 4, I describe additional pattern grouping algorithms that simplify cyclic state

spaces with a high number of forced moves and demonstrate how these algorithms

discover optimal offensive and defensive strategies within a simple 56-state game

called pong hau k'i.

In the rest of the chapters, I summarize the results obtained when the algorithms

described in Chapter 3 are applied to tic-tac-toe, lose tic-tac-toe, five men's mor-

ris, and six men's morris. Using these algorithms, I show why playing tic-tac-toe

requires less computational effort than playing lose tic-tac-toe, discover a difficult-

to-find offensive strategy for lose tic-tac-toe, outline optimal defensive strategies for

five and six men's morris, reveal visual concepts in tic-tac-toe and five men's morris,

and show how human-interpretable tactics expressed in terms of visual concepts can

compress state space information by several orders of magnitude. I outline the results

for the tic-tac-toe games and the morris games in Chapters 5 and 6, respectively. In

Chapter 7, I conclude with a discussion of future work and contributions.

In Appendix A, I describe how I developed some of the pattern grouping algo-

rithms from Chapter 3. In Appendix B, I describe some of my previous work on

sets of representations, work that inspired me to focus on the equivalence class prin-

ciple. In this appendix, I propose three computational properties that make sets of

interconnected representations powerful.

32

Chapter 2

Related Work

In this chapter, I describe how the work in this thesis relates to work in machine

learning, computer-aided discovery, concept formation, and game analysis.

2.1 Inductive Biases

A well known result in machine learning called the No Free Lunch Theorem states that

no learning algorithm can succeed in all contexts. Even when an algorithm performs

well in some contexts, there will always be another context where the algorithm

performs no better than chance (Wolpert, 1996; Wolpert & Macready, 1997). Mitchell

introduced the term "inductive bias" to describe the assumptions that cause a learning

algorithm to favor one interpretation of a data set over another (T. M. Mitchell, 1980).

Occam's razor is one of the most famous inductive biases, stating that the simplest

explanation for a phenomenon should always be favored. Bayesian model comparison

uses Occam's razor as its inductive bias (MacKay, 2003), while other machine learn-

ing algorithms favor other types of biases. For example, nearest neighbors clustering

algorithms build on the assumption that data points that are close to one another in a

feature space belong to the same group, support vector machines build on the assump-

tion that the maximum margin classifier provides the best separation between data

clusters, and inductive logic programming builds on the assumption that descriptions

of a group of entities can be expressed in first order logic and such descriptions can

be built using inverse resolution. Other machine learning paradigms, such as neural

networks, have inductive biases that are harder to clearly define. Cognitive scientists

have discovered a number of inductive biases used by humans, such as the shape bias

for word learning (Landau, Smith, & Jones, 1988) and the assumption that objects

tend to follow smooth trajectories for naive physics (Spelke, 1990) (see Kemp, 2007

for a review).

This thesis explores an inductive bias for learning in a multi-representational con-

text. The only other paradigm for multi-representational learning that I am aware of

is cross-modal clustering (Coen, 2005). Cross-modal clustering detects correlations

between two feature spaces that describe the same events. For example, a cross-modal

clustering model of how songbirds learn to sing creates connections between a motor

feature space and an auditory feature space (Coen, 2007). Cross-modal clustering

has also been used to learn to recognize vowel sounds using a visual feature space

that captures lip position and an auditory feature space that stores information about

formants (Coen, 2006). This approach uses two feature spaces to learn how to distin-

guish between and recognize entities such as vowels or sequences of notes. In contrast,

my approach uses entities that have already been classified in one representation to

expose patterns in another representation.

While inductive biases are usually encoded into a machine learning algorithm,

the one tested in this thesis has not yet been encoded in that way. In this thesis, I

simply test whether the inductive bias known as the equivalence class principle can be

used to expose concepts. Ultimately, the equivalence class principle could be used to

build a machine learning algorithm that works like a clustering algorithm in reverse.

Instead of starting with data in a feature space, identifying clusters, and learning

decision boundaries that separate the clusters, the reverse clustering algorithm would

start with a set of decision boundaries and learn which features correlate with that

decision boundary. More specifically, a classification in one representation would

create decision boundaries in a second representation. The learning algorithm would

then identify features in the second representation that could predict the position of

the decision boundary within the first representation.

If the algorithm cannot find features that correlate with the decision boundary, it

either means that (1) the decision boundary does not create a meaningful separation of

the data in the second representation or (2) the algorithm is considering the wrong set

of features. In general, distinguishing between these two cases would be non-trivial.

The first alternative would mean that the equivalence class principle does not apply in

the situation of interest. Based on the No Free Lunch Theorem, the principle should

fail to yield meaningful results at least some of the time. The second alternative

would mean that the learning algorithm's hypothesis space does not contain the

correct hypotheses.

2.2 Computer-Aided Discovery

While computer-aided discovery has probably occurred in one form or another since

the beginning of artificial intelligence, in this section, I describe examples of computer-

aided discovery in which computers help humans develop concepts, models, or theories

(see Langley, 1998 for a review). My focus will be on describing the types of interac-

tions between humans and computers that enable the discovery process. This review

is not meant to be exhaustive. Instead, I present several examples of computer-aided

discovery to explore the types of human-computer interactions that occur within these

systems.

Early efforts to perform discovery using computers attempted to recreate histori-

cal scientific results in mathematics (Lenat, 1977), physics (Langley, 1981), chemistry

(Zytkow & Simon, 1986), and biology (Kulkarni & Simon, 1990). While researchers

at that time hoped to create systems that worked completely without human inter-

vention, in reality humans aided the discovery process. For example, Lenat's program

AM (Lenat, 1977) derived concepts from discrete mathematics. In addition to having

heuristic algorithms that automatically directed the discovery process, Lenat also pe-

riodically influenced which lines of inquiry the computer pursued by indicating which

concepts seemed interesting (or coincided with known discoveries). In much of this

work, the human intervention is not well-documented or not applied in a principled

manner.

Humans can interact with a computer-aided discovery system during the pre-

processing stage, the post-processing stage, and/or interactively during application

of the discovery algorithms. Most systems require some type of human interaction

during the pre-processing stage, such as tuning the data to the learning algorithm,

removing noise from the data, constraining the output representation, or tuning the

hypothesis space.

Bayesian methods require humans to tune the hypothesis space, which constrains

what the algorithm can learn and often ensures that a search through the space

remains tractable. For example, in a study that trained a Bayesian network to use

mammographic data to estimate breast cancer risk, the researchers constrained the

network model to search for dependencies between approximately thirty-five features

and limited the number and type of dependencies that the discovery algorithm could

form. The network discovered a dependency between breast cancer risk and mass

stability that experts had not previously detected and accessed breast cancer risk

more accurately than the human radiologists (Burnside et al., 2009).

During the pre-processing stage, many systems allow researchers to provide back-

ground knowledge that guides the discovery process. For example, Progol, an induc-

tive logic programming system, allows users to provide background knowledge that

the program uses to constrain its search. This system has successfully identified parts

of a molecule that cause genetic mutations (King et al., 1996).

Most systems also allow researchers to tune the data to guide discovery. For

example, researchers supply GRAFFITI, a system that creates conjectures in discrete

mathematics and graph theory, with a diverse set of graphs, so that the system

generates conjectures that generalize to many situations (Fajtlowicz, 1988). This has

allowed the program to identify conjectures that have led to a number of proofs, at

least one of which was important enough to include in a math journal (Langley, 1998).

The computer-aided discovery work in this thesis requires essentially no pre-

processing of the data, because it uses a game's rules to build a state space and

then uses the state space to classify visual data. As mentioned in the last section, the

classified visual data could be used as input to a machine learning algorithm. In this

way, much of my work pre-processes data into classes so that a human or learning

algorithm can then search for patterns within the classes. The pre-processing stage

of my computer-aided discovery work only requires that a human supply background

information that contains the rules of the game, a procedure for using those rules to

build the game's state space, and a procedure for distinguishing between win, lose,

and draw states.

The DaViCCAND system, a system for learning quantitative models from data,

allows user to interactively guide search by giving the users multiple points at which

they can select variables for analysis, focus analysis on certain regions of data, use

qualitative descriptions to identify important subsets of data, and identify points

as outliers. DaViCCAND has successfully been used to develop better quantitative

models for removing impurities from slag, a process necessary for creating iron and

steel (F. Mitchellet al., 1997).

MECHEM, a system for formulating reaction pathways for complex chemical re-

actions, also allows users to interactively affect its search process, this time by letting

users periodically suggest which pieces of background knowledge MECHEM should

take into consideration (Valds-Prez, 1995). At the end of its analysis, MECHEM

provides users with a set of possible pathways, and users perform post-processing by

analyzing the results and running experiments to determine which of MECHEM's

outputs are genuine. Thus, MECHEM provides humans with a constrained search

space, and humans perform the final stage of analysis, which so far has resulted in at

least three publications in chemistry journals (Langley, 1998).

Throughout the majority of the thesis, the computer provided a constrained search

space, and I identified visual concepts and tactics during the post-processing stage.

Switching to an interactive mode of computer-aided discovery would allow the com-

puter to perform a larger portion of the analysis, an idea that I explore in more detail

in chapters 6 and 7. Appendix A also describes how the pattern grouping algorithms

can be used interactively to identify concepts in networks.

2.3 Concept Formation

A good deal of research in cognitive science has been devoted toward ascertaining

the nature of concepts and how they are represented within the human mind. While

I do not address the issue of how the human mind represents concepts in this the-

sis, examining various attempts to characterize the nature of concepts will help to

ground our exploration of use-driven concepts. Unless otherwise noted, the informa-

tion described in this section comes from the first few chapters and the last chapter

of Murphy (2002).

Cognitive science researchers have developed four theories of concepts, the first

of which has essentially been disproven. The first theory states that concepts con-

sist of definitions that clearly differentiate between entities that are examples of the

concept and entities that are not. This formulation of concepts has proven to be

too brittle to account for most empirical results. The three theories of concepts still

under consideration are the prototype theory, the exemplar theory, and the theory

theory. Prototype theorists have proposed several approaches for representing con-

cepts, including weighted feature-based representations and schema or frame-based

representations. Supporters of the exemplar theory argue that concepts are simply

represented by a set of examples. Proponents of the theory theory argue that con-

cepts are stored in conjunction with general knowledge about the world, but do not

seem to support any particular representation for concepts.

In this thesis, the term concept will generally refer to ideas that can be used

to express human-interpretable descriptions of positions and tactics. Throughout the

thesis, I loosely adopt ideas from exemplar theory and the theory theory. In chapters 5

and 6, I use an exemplar version of concepts to extract useful visual concepts. In

Chapter 6, I outline a procedure for identifying use-driven visual concepts by searching

for concepts that can be used to succinctly describe a set of tactics. This procedure

implicitly builds on the idea that concepts can only be understood when considered

in relation to domain knowledge. However, the cognitive theory most relevant to

this work is Karmiloff-Smith's theory of representational redesciption. This theory

suggests that learning involves iteratively redescribing information into more and

more reusable units (Karmiloff-Smith, 1995). An automated version of the procedure

for identifying use-driven visual concepts could provide a new computational model

for representational redescription.

2.4 Games

In this section, I describe four thrusts in game research relevant to this thesis: game

solving, extracting information from endgame databases, identifying tactical move

sequences, and identifying patterns within a game's state space or board diagrams.

2.4.1 Solving Games

To date, researchers have solved a number of two-player perfect information games

with state spaces of varying complexity, the most noteworthy being connect four with

1014 states (Allis, 1988; Allen, 1989), awari with 1012 states (Romein & Bal, 2003),

qubic (4x4x4 tic-tac-toe) with 1030 states (Allis, 1994), go moku with 10105 states

(Allis, 1994), nine men's morris with 1010 states (Gasser, 1996), and checkers with

1021 states (Schaeffer et al., 2007). Qubic and go moku rely on knowledge-based

methods that filter out bad moves to reduce the complexity of the search space,

an approach that only works in games where bad moves can be filtered out easily

(Allis, van den Herik, & Herschberg, 1991). Connect four was solved both by using

knowledge about potential threats (Allis, 1988) and by applying a brute-force search

(Allen, 1989).

Brute force is by far the most popular approach taken by researchers. It has been

used to solve all but two of the games listed above (all except for qubic and go muku).

These solutions rely on either a full delineation of the state space or a combination of

retrograde analysis and forward search. Retrograde analysis searches backwards from

end states to build an endgame database that stores the game theoretical value of

each state, i.e., whether the state is a win, lose, or draw when players play perfectly.

These endgame databases also store the number of moves necessary to reach the

nearest win, lose, or draw state. Because storing databases for the entire state space

is not always possible due to space constraints, a forward search is used to determine

the game-theoretical value of the start state by searching from the start state to states

in the endgame databases. Van den Herik et al (2002) contains a thorough review of

game solving approaches and successes.

2.4.2 Extracting Information from Endgame Databases

To solve nine men's morris, Gasser (1996) created endgame databases with 1010 states.

Although he extracted statistical information about how frequently certain classes

of states lead to a win and the longest paths leading to a win, he concluded that

identifying "interesting positions" and determining which states were likely occur in

real games was a daunting task. He also made no efforts to identify tactical patterns.

Five and six men's morris, the two games analyzed in Chapter 6, are variations on

nine men's morris. In this thesis, I address how to identify important positions,

propose a method for determining which states are likely to occur during a normal

game, and extract tactical patterns from the five men's morris state space.

Retrograde analysis has also been used to build endgame databases for other

games, such as chinese chess (e.g., Fang, Hsu, & Hsu, 2002) and chess (e.g., Thompson,

1996), games with 1048 states and 1046 states, respectively (van den Herik, Uiterwijk,

& van Rijswijck, 2002). Furnkranz (2001) reviews efforts to extract information from

chess endgame databases. Early efforts focused on learning to classify whether a

position was won, but did not produce human-interpretable results. Other efforts

semi-autonomously acquired rules for classifying states, but required extensive inter-

action from experts, relying on them to decompose the endgame into subproblems, to

refine the rules created by the computer, or minimally to indicate which computer-

generated concepts were meaningful. Unlike work that focuses on classifying states,

the work in this thesis uses classification in the state space to identify offensive and

defensive tactics.

Bain and Srinivasan (1995) used inductive logic programming to classify states

based on the number of moves necessary to achieve a win, which in theory would

encode enough information for optimal play. While they created accurate classifiers

for states in the KRK endgame that led to wins in less than six moves, these classifiers

required too many rules for a human to interpret. The classifiers were also unable to

distinguish between states that led to wins in six or more moves, so the approached

failed to learn an optimal KRK strategy. In contrast, human players often use simple

but suboptimal strategies to win the KRK endgame (Fiirnkranz, 2001).

Sadikov and Bratko (2006) developed a method for separating chess endgames

into stages that are characterized by different sets of goals. They sought to create

a human-interpretable description of the strategy used in each stage using decision

trees. Their approach was successful in identifying long term strategies, but could not

compete with forward search as an approach for short-term planning. The authors

noted that strategies identified were often too vague.

Guid et al. (2006) developed an interactive computer-aided system that helps

experts develop human-interpretable subgoals and rules for playing endgames and

tested it using the challenging KBNK endgame. Within the system, the expert and

the computer interactively create a list of subgoals that lead to a win and develop

rules that describe when and how to achieve each subgoal. In addition to proposing

rules, the computer uses search to determine when a rule allows suboptimal play (play

that does not follow the shortest path to a win) and asks the expert to determine

whether the suboptimal routes still make sufficient progress toward the ultimate goal.

Instead of identifying stages within an endgame or lists of subgoals for winning

a game, I use game databases to identify visual concepts and sets of offensive and

defensive tactics that lead to wins or block an opponent's path to a win. While

the tactics that I identify are optimal, my emphasis has been on developing human-

interpretable descriptions of optimal tactics.

2.4.3 Identifying Move Sequences

Macro operators can facilitate problem solving and planning efforts by consolidating

frequently-used sequences of basic operations. Early efforts to learn macro operators

centered around problems that used an evaluation function to facilitate search. A

good macro operator would smooth out the search space by creating operations that

allowed the search algorithm "jump" over valleys in the search space. Researchers

explored heuristics for creating helpful macro operators, such as identifying sequences

of operations that led from one peak in the search space to another (Iba, 1989) or

identifying sequences of operations that led from a peak to an even better evaluation

function value (Finkelstein & Markovitch, 1998).

Korf (1985) created methods for identifying macro operators in problems, such

as the Rubik's cube and the Towers of Hannoi, where an evaluation function can-

not accurately predict the distance to the goal. Korf's approach involves learning

macros that temporarily dismantle subgoals, provided that the macros reassemble all

dismantled subgoals and achieve an additional subgoal by the time they finish exe-

cuting. McGovern (2002) explored macro operator construction in a reinforcement

learning environment using Markov decision processes, and Lock and Epstein (2004)

developed an approach for learning macros for two-player perfect- information games

by observing expert play.

Unlike the efforts described above, in this thesis, macro building does not involve

an evaluation function, subgoals, or reinforcement learning. Instead, the pattern

grouping algorithms that I describe in Chapter 3 identify and classify all action se-

quences (i.e., macros) of interest. Lock and Epstein developed methods for consoli-

dating related action sequences, and I build on their work by using visual concepts

to further compress sets of action sequences.

As with many pattern learning endeavors, macro learning suffers from the utility

problem, namely that it is difficult to determine which macros will improve problem

solving capabilities (Minton, 1990; Finkelstein & Markovitch, 1998). In the evaluation

function setting, adding macros connects distant parts of the search space, but also

increases the number of operations that must be considered at each step, so adding an

arbitrarily high number of macros will actually impede search progress. My methods

address the utility problem by identifying only the action sequences that lead directly

from states reachable via perfect play to goal states. This automatically causes macro

formation efforts to focus on the most useful action sequences. In this case, macro

descriptions that compress the largest amount of information are the most useful.

2.4.4 Identifying Patterns in Game State Spaces and on Game

Boards

In this thesis, I identify patterns in a game's state space and on the game board. In a

case study, a human subject solved the game of pong hau k'i by consolidating nodes

in the game's state space when they shared the same configuration of pieces on the

game board (Epstein & Keibel, 2002; Epstein, 2005). Essentially, the human subject

collapsed states with the same board diagram into a single node, regardless of who

moved next. Using this compressed version of the state space, the subject identified

offensive and defensive moves.

My pattern grouping algorithms expand on the idea of compressing nodes in a

game's state space. The pattern grouping algorithms introduced in Chapter 4 com-

press the pong hau k'i state space in a way that makes it easier to extract important

offensive and defensive moves. The pattern grouping algorithms introduced in Chap-

ter 3 can identify deep forks by iteratively collapsing topological patterns in a game's

state space, which relates to other efforts for identifying forks in games (e.g., Allis,

1992; Epstein, 1991; Yee, Saxena, Utgoff, & Barto, 1990; Collins, 1987; Minton, 1984).

Human subject experiments show that experts appear to use pattern recognition

to select moves (see Gobet & Charness, 2006 for a review). Lock and Epstein (2004)

define context as a visual pattern on a game board for identifying when to use an action

sequence. They create contexts by labeling every location on a board as occupied by

black, occupied by white, open, or unrestricted. Buro (1999, 2003) uses conjunctions

of simple boolean features to automatically generate complex patterns, and these

patterns enable his Othello game-playing program to win against any human player.

Kaneko, Yamaguchi, and Kawai (2003) have expanded upon Buro's method in order to

automatically generate complex patterns from logical formula. Levinson and Snyder

(1991) used graphs to encode patterns in chess and capture tactical relationships

between pieces.

While many state-of-the-art Go programs rely on human-generated patterns, ef-

forts have also been made to automatically generate patterns (e.g., Kojima, Ueda,

& Nagano, 1997; Kojima, 1998; Kojima, Ueda, & Nagano, 2000; Sei & Kawashima,

1998; Stoutamire, 1991) (see Muller, 2002 for a review). Cazenave (2001) uses a visual

pattern paired with a set of conditions to describe a set of positions in Go. My work

builds on Cazenave's patterns with external conditions by using visual concepts and

sets of conditions to describe the context in which action sequences can be applied.

The process through which I create these redescribed contexts builds on Lock and

Epstein's absolute contexts (Lock & Epstein, 2004).

Chapter 3

Pattern Grouping Algorithms

In this chapter, I introduce pattern grouping algorithms that serve two purposes.

First, they perform the classification step of the equivalence class concept formation

process by identifying instances of annotated topological patterns within a game's

state space. As noted in Chapter 1, an annotated topological pattern is a subgraph

or set of subgraphs that satisfies both topological constraints and constraints on the

subgraph's node and edge attributes. The pattern grouping algorithms introduced

in this chapter locate instances of annotated topological patterns that correspond to

game-general concepts.

In addition to performing the first step of the equivalence class concept forma-

tion process, these pattern grouping algorithms hierarchically organize a game's state

space by collapsing instances of annotated topological patterns. The collapsing op-

eration results in depictions of a game's state space that expose high-level structure.

Applying multiple pattern grouping algorithms in succession results in a set of state

space diagrams at varying levels of granularity.

In this chapter, I describe the four pattern grouping algorithms that I use to

analyze the tic-tac-toe games and morris games in Chapters 5 and 6, respectively. In

Chapter 4, I describe several more algorithms designed specifically for the game of

pong hau k'i. In the first section of this chapter, I introduce basic versions of the

four pattern grouping algorithms. I explore how each algorithm simplifies a small

state space, works in conjunction with the equivalence class principle to expose visual

concepts, and highlights additional annotated topological patterns. In Section 3.2,

I explain how the algorithms from the first section can be generalized and applied

recursively to process all parts of a game's state space that lead to a win, lose, or

draw state. I also describe the relative order in which the pattern grouping algorithms

must be applied. In Section 3, I discuss the benefits of hierarchical pattern grouping

algorithms.

3.1 Four Pattern Grouping Algorithms that

Expose Visual Concepts and Simplify Game

State Spaces

In this section, I introduce the four pattern grouping algorithms that I use through-

out the majority of the thesis by demonstrating how these algorithms simplify the

portion of the tic-tac-toe state space shown in Figure 3-1, i.e., the portion of the
xox

state space beginning with the state -- , where X moves next. When introducing

each algorithm, I describe the algorithm, show how it simplifies the state space, and

describe variations that I use throughout the thesis. I also show how some of the

algorithms expose annotated topological patterns.

3.1.1 One-Move-to-a-Goal Grouping Algorithm

The first pattern grouping algorithm identifies regions of the state space in which

a player can win in one move. Applying this algorithm reveals which states and

moves remain reachable if both players take winning moves whenever they have the

opportunity. This corresponds to assuming that each player can calculate only the

outcome of his or her next move (i.e., has one-step lookahead) and that both players

play perfectly given this limited computational ability. Identifying regions of this sort

may reveal a visual concept that allows a player to recognize when she can win in one

move. Variations on this pattern grouping algorithm can reveal regions of the graph

Los Loe Ls

Figure 3-1: A subtree of the tic-tac-toe state space with 85 vertices and 143 edges. States are labeled from X's perspective, so a
"win" state correspond to a win for X, while a "lose" state correspond to a win for 0. Solid outlines and arrows indicate states

where X moves next, while dotted outlines and arrows indicate states where 0 moves next.

that lead to other types of goals.

The most basic version of the algorithm proceeds by selecting a state where one

player wins and where the winning player made the last move. In tic-tac-toe, this

includes all states in which X has three in a row and X moved last, or 0 has three in

a row and 0 moved last. Given a win state, the algorithm selects the parent of the

winning state and all states that descend exclusively from the parent, as shown in

Figure 3-2b. Figure 3-2c shows how the algorithm then collapses the selected states

into a single leaf node, called a collapsed subtree. The collapsed subtree stores the

selected subtree so that paths to the win state are retained for later use. Making the

collapsed subtree a leaf node removes paths that become unreachable when players

take any winning move available to them. It also highlights the fact that the collapsed

subtree can be treated as an end state based on this limited perfect-play assumption.

Applying this algorithm to the state space in Figure 3-1 results in the simplified state

space shown in Figure 3-3.

Examining the roots of all collapsed subtrees, i.e., all subtree roots, that lead to

winning and losing states reveals two visual concepts. These visual concepts involve

lines that share a set of attributes and can be used to recognize states that are one

move from a win. Namely, X can win in one move when the board contains a line with

two X's and a blank spot, and 0 can win in one move when the board contains a line

with two O's and a blank spot. Table 3.1 shows how these patterns are obtained using

the equivalence class principle. While the visual concepts identified in this example

seem simple, throughout the rest of the thesis, I will show how this technique can

reveal more complex concepts.

I use several variations of the one-move-to-a-goal algorithm to analyze the tic-

tac-toe and morris games, and I have identified additional variations could be used

to analyze other games. For example, variations on the one-move-to-a-goal grouping

algorithm can identify paths leading to other types of goals and states several moves

away from a goal. Within these variations, the goal-setter is the player who wants to

achieve the goal of interest. In our previous example, X was the goal-setter and X's

goal was to win in one move. The general form of this pattern grouping algorithm

Win

Win Win Win

Figure 3-2: (a) The algorithm starts by selecting a win or lose state. In this example,
it selects a state in which X wins. (b) The algorithm then selects the win (or lose)
state's parent, P, and all descendants of P with parents that all descend from P.
(c) The algorithm collapses the selected subtree and converts it to a leaf node. The
new leaf node retains all of P's incoming connections. If the win or lose state has a
parent that does not descend from P, a copy of the win or lose state should be left in
the graph. This allows subsequent applications of the one-move-to-a-goal grouping
algorithm to collapse any additional paths to this state. This operation can be seen
as pruning the tree while retaining a copy of the path to the win state.

Figure 3-3: The state space from Figure 3-1 after the one-move-to-goal grouping
algorithm has collapsed all regions that lead to a win for X or 0. Collapsed subtrees
leading to a win for X are labeled "win," while collapsed subtrees leading to a win for
0 are labeled "lose." Applying this grouping operation reduces the number of vertices
in the state space from 85 to 58, and the number of edges from 143 to 69.

Annotation Exemplar-Based Concept Redescribed Concept
One move to a Boards that contain a line

x x x xox xox
win for X, X oo ox o o0 x ox with two X's and a blank
moves next X 0 0 spot.

X X X X X X X X X
ox o x

OX X 0 0 0

O0 0 GOX 00 0 0 ox
x xo xxo
x x xox xox xox xox

oxoxx ox oxo ox
xoxoxox xoxX X X X X X00 oxx 0 0oxx 00 #xxo

One move to a Boards that contain a line
xxxox xox xox xox

win for 0,0 +o o o 0 0 0 x with two O's and a blank
moves next x x xox x x x spot.

00 0 ox 0 0 0

Table 3.1: A simple example that uses the equivalence class principle to identify visual
concepts. The first column contains labels for the collapsed subtrees identified by the
one-move-to-a-goal grouping algorithm. The second column contains the subtree roots
that received the label from column one. The set of subtree roots form an exemplar-
based description of a visual concept. The third column contains redescribed versions
of the visual concepts from the center column.

starts by identifying a state or collapsed subtree that achieves a goal of interest, be

it a piece capture, a win, a state where the player could win in three moves, or a

particular configuration of the pieces on the board. It then locates regions in the

state space where the goal-setter can make a single move that reaches the goal of

interest.

Although the procedure depicted in Figure 3-2 selects and stores all nodes that

descend exclusively from the goal node's parent, an alternate variation can select

and store only the parent and the set of children that achieve the goal of interest.

Any nodes that become unreachable after the parent and its goal-achieving children

have been collapsed are subsequently removed from the graph, thus pruning the state

space. Because this variation is more tractable for cyclic state spaces, I use it when

analyzing the morris games.

While the labels used in Table 3.1 distinguish only between collapsed subtrees

that lead to a win for X and collapsed subtrees that lead to a win for 0, variations on

this algorithm can distinguish between collapsed subtrees where the root is a decision

point or a fixed-choice point. A subtree root is a decision-point root when the goal-

setter has some moves that lead to its goal and some moves that do not. The subtree

highlighted in Figure 3-2b has a decision-point root because only a subset of the root's

children lead to the goal. In contrast, a fixed-choice root corresponds to situations
oxo

000*

where all of the goal-setter's moves lead to the goal. The tic-tac-toe state x x o is an

example of a fixed choice root because X's only available move leads to a win. I use

the fixed choice vs. decision point variation when analyzing both the tic-tac-toe and

morris games in subsequent chapters.

The simplified state space shown in Figure 3-3 reveals two strategically-important

annotated topological patterns that will be explored in the next two sections. First,

the simplified state space contains several subtrees that consist of a root with a set

of leaf children that all have the same label. The state space contains another set

of subtrees where all but one of the children are leaf nodes that share the same la-

bel. These annotated topological patterns correspond to forks and forced avoidances,

respectively.

3.1.2 Fork Grouping Algorithm

The fork grouping algorithm captures collapsed subtrees where the opponent moves

next, i.e., the player opposing the goal-setter moves next, and all of the opponent's

moves lead to a goal that the opponent would prefer to avoid. In tic-tac-toe, this

corresponds to states where 0 moves next and all of O's moves lead to a win for X,

or X moves next and all of X's moves lead to a win for 0. Using this algorithm to

collapse subtrees in Figure 3-3 results in a simplified state space that more succinctly

highlights which paths lead to a win or a loss when each player takes a winning move

whenever one is available. Applying the equivalence class principle reveals visual

concepts that allow X or 0 to win on their next turn regardless of which move their

opponent makes in the meantime. This algorithm can also be generalized to identify

forks that lead to other goals such as piece captures and paths that lead to a goal in

I It

Win

Win Win Win Win Win Win Win Win

(a) (b) (c)

Figure 3-4: (a) The algorithm starts by selecting a win or lose state or a collapsed
subtree that leads to a win or a loss with perfect play. In this example, it selects
a collapsed subtree that leads to a win for X in one move. (b) The algorithm then
selects the collapsed subtree's parent, P, and all of P's children. All of the children
must lead to the same goal (here a win for X) and the parent must be a state where
the opponent moves next in order for the subtree to be a fork. (c) The algorithm
collapses the selected subtree and converts it to a leaf node. The new leaf node retains
all of P's incoming connections.

an arbitrary number of moves.

This algorithm starts by identifying a state or collapsed subtree that results in a

win and is reached via a move made by the opponent, i.e., the player that could lose

the game by selecting the move in question (see Figure 3-4a for an example). Because

the one-move-to-a-goal algorithm creates collapsed subtrees that fit this description,

the fork grouping algorithm is often applied directly after the one-move-to-a-goal

algorithm. The fork grouping algorithm proceeds by first selecting a state or collapsed

subtree that meets this description. Then, it selects the collapsed subtrees's parent,

P, (a state where the opponent plays next), and examines P's children's labels to

determine whether all of its children achieve the same goal. If all the children do

achieve the same goal, as in Figure 3-4b, the subtree corresponds to a fork and

the parent and children are selected, otherwise, the pattern grouping algorithm does

nothing. If the subtree is a fork, the tree is replaced by a leaf node, and the leaf

node retains the parent's incoming connections, as shown in Figure 3-4c. Again, this

leaf node stores a copy of the subtree so that all paths from the parent node to a

goal state can be reconstructed. Figure 3-5 shows how the fork grouping algorithm

simplifies the state space from Figure 3-3.

As in the last section, the subtree roots exhibit two visual concepts that can be

Win

Draw Draw

Figure 3-5: The state space from Figure 3-3 after the fork grouping algorithm has
collapsed all regions where X and 0 cannot prevent their opponent from winning.
Again, collapsed subtrees that result in a win for X, given perfect play, are labeled
"win," while collapsed subtrees that result in a win for 0, given perfect play, are
labeled "lose." Applying this grouping operation reduces the number of vertices in
the state space from 58 to 46, and the number of edges from 69 to 54.

used describe states that lead to a win: (1) X can win in one move regardless of

what 0 does when the board contains two intersecting lines with two X's and a blank

spot; (2) 0 can win in one move regardless of what X does when the board contains

two intersecting lines with two O's and a blank spot. In this case, the roots shown

in Table 3.2 may not seem like enough evidence to create the redescribed concepts

described in the third column, but running this algorithm on the whole state space

identifies a larger number of roots that all conform to the patterns described in the

table. This example is simply intended to illustrate how the equivalence class principle

can extract states that exhibit a strategically-significant visual concept. The principle

will be applied more broadly in subsequent chapters.

Variations on the fork grouping algorithm can identify forks to other goals such as

piece captures and forks to paths that lead to wins and losses after several moves of

perfect play. The pattern grouping algorithm can distinguish between subtrees with

multiple children (called forks) and subtrees with one child (called forced moves).

The variation I use to analyze the tic-tac-toe and morris games distinguishes between

Annotation Exemplar-Based Concept Redescribed Concept
Fork to a win for Boards containing two
X in one move, 0 o o o x o x o lines that both contain
moves next X OXX X two Xs and a blank spot

and intersect at an X.
Fork to a win for Boards containing two
0 in one move, X a a lines that both contain
moves next two Os and a blank spot

and intersect at an 0.

Table 3.2: Another example showing how the equivalence class principle can identify
strategically-significant visual concepts, this time using the fork grouping algorithm.
The first column lists the labels applied by the fork grouping algorithm, the second
column lists the roots of the subtrees that received the labels, and the third column
contains a succinct description of the visual concept. Running this algorithm on the
whole state space provides more evidence that the third column description is correct.

forks and forced moves and identifies collapsed subtrees that lead to wins and losses

after many moves of perfect play.

3.1.3 Avoidance Grouping Algorithm

The avoidance grouping algorithm collects regions where the goal-setter's opponent

can prevent the her from achieving her goal. This algorithm effectively removes

paths from the state space that the opponent would prefer not to take. Running this

algorithm after the ones described in the previous sections results in the state space

that would be obtained if each player could predict only the outcome of both her

next move and her opponent's next move, and both players play perfectly given this

limited computational ability.

Like the fork grouping algorithm, this algorithm starts by identifying a state or

collapsed subtree that results in a win and is reached via a move made by the oppo-

nent. Because the one-move-to-a-goal grouping algorithm described in Section 3.1.1

creates collapsed subtrees of this type, both the fork and the avoidance grouping algo-

rithms are generally applied after the one-move-to-a-goal grouping algorithm. Again,

the avoidance algorithm starts by selecting a state or collapsed subtree that leads to

a win. In this case, the algorithm selects only the parent (a state where the opponent

Win WVin Win Win Win Win

(a) (b) (c)

Figure 3-6: (a) The algorithm starts by selecting either a win or lose state or a
collapsed subtree that leads to a win or a loss with perfect play. In this example, it
selects a collapsed subtree that leads to a win for X in one move. (b) The algorithm
then selects the collapsed subtree's parent, P, and all of P's children that lead to a
win for X in one move. (c) The algorithm collapses the selected subtree and stores it
in a node that retains all of P's other incoming and outgoing connections.

moves next) and a subset of the children: the subset of children that achieve a goal

that the opponent wishes to avoid. The selected set of nodes are then stored within a

new node that retains all of the parents other connections. Intuitively, this collapses

the unwanted child nodes into the parent node and retains only the child nodes that

the opponent would choose to move to, thus using the process depicted in Figure 3-6

to prune the tree. Applying this algorithm to the state space in Figure 3-5 results in

the state space shown in Figure 3-7.

Applying the equivalence class principle again reveals strategically-important vi-

sual concepts, in this case lines containing two X's and a blank spot, where 0 must

fill the blank spot on its next move to prevent X from winning. Table 3.3 shows the

labels and roots collected using this algorithm.

This grouping algorithm can detect both forced avoidanices and multi-choice avoid-

anices. When the opponent only has one move that prevents the goal-setter from

achieving his or her goal, the subtree root is called a forced avoidance. However,

when the opponent has multiple moves that avoid the unwanted goal, the subtree

root is instead referred to as a multi-choice avoidance.

After applying the three pattern grouping algorithms described so far to obtain

the state space shown in Figure 3-7, the vast majority of the paths through the state

space lead to draw states. This suggests that collapsing subtrees in which all paths

Lose

Draw Draw

Figure 3-7: The state space from Figure 3-5 after the avoidance grouping algorithm
has hidden all moves that X and 0 would not select because they lead to a win
for their opponent. The collapsed subtrees are depicted using a tic-tac-toe board in

which the suboptimal moves are marked with a dash. States where X moves next
have a solid outline, while states where 0 moves next have a dotted one. The nodes
labeled "win" and "lose" are forks identified by the fork grouping algorithm from the

last section, where win indicates a win for X and lose indicates a loss for X. Applying

this grouping operation reduces the number of vertices in the state space from 46 to

30, and the number of edges from 54 to 37.

Annotation Exemplar-Based Con- Redescribed Concept
cept

Forced avoidance of Boards with a line con-
xx xox xox xox

a 1-move win for X, ox ox o x ox taining two Xs and a
0 moves next 0 # X blank spot, where 0

x+ -x 0 -0 must fill the blank spot.ox x xo

X O X

Forced avoidance of Boards with a line con-
XOX XOX

a 1-move win for 0, o oo taining two Os and a
X moves next 0 + blank spot, where X

must fill the blank spot.

Table 3.3: The avoidance algorithm also identifies strategically-significant visual con-
cepts when used in conjunction with the equivalence class principle. The first column
contains labels applied by the avoidance grouping algorithm, the second column con-
tains subtree roots, and the third column contains succinct visual concept descrip-
tions. The label "forced avoidance" indicates that the opponent has only one move
that will keep the goal-setter from winning. Running this algorithm on the whole
state space confirms the accuracy of the third column generalizations.

lead to the same result would further simplify the space.

3.1.4 Draw Tree Grouping Algorithm

The final pattern grouping algorithm collapses trees that lead to draw states. Because

the avoidance grouping algorithm effectively removes paths in the state space that

players are unlikely to take, the avoidance grouping algorithm often creates new draw

trees within the state space. As the trees are identified, the draw tree algorithm

determines how many moves of perfect play are necessary for the paths in the tree

to lead to a draw. This number depends directly on the number of moves of perfect

play, i.e., the amount of lookahead, required to form the avoidance collapsed subtrees

within a particular draw tree.

The algorithm proceeds by identifying a draw state and searching up the tree to

identify the highest root node whose descendants are all interior nodes or draw states

(see Figure 3-8). The algorithm collapses the selected tree and labels it as a path to a

draw state. Searching from the leaves up the tree allows the algorithm to more easily

Win Win :IMW

* ~ P : Winfg i

---- --- - raw

icx :0X r-----6P T

Draw Draw Draw Draw Dranw Draw

(a) (b) (c)

Figure 3-8: (a) The algorithm starts by selecting a draw state. (b) The algorithm
then recursively searches up the tree until it identifies the largest subtree in which
all paths lead to a draw state. (c) The algorithm collapses the selected subtree into
a leaf node that retains the root's incoming connections. During the collapse, any
nodes in the subtree that have ancestors that do not descend from the root node are
not removed from the graph.

process extremely large state spaces.

As the algorithm searches up the tree, it examines all avoidance collapsed subtrees

to see how many of the goal-setter's moves the opponent must anticipate in order for

the avoidance collapsed subtrees to be created. In this case, all of the avoidance

collapsed subtrees require 1-move lookahead, because the opponent only needs to

anticipate one of the goal-setter's moves in order to keep the goal-setter from winning.

Applying this algorithm results in the simplified state space shown in Figure 3-

9, but does not appear to reveal any strategically-significant visual concepts. Thus,

this grouping algorithm makes the state space easier to analyze without identifying

any visual concepts that predict whether a state leads to a draw. Table 3.4 lists

the subtree roots obtained by applying the equivalence class principle. The lack of a

salient patterns suggests that the equivalence class principle may not always facilitate

the creation of visual concepts, but if the principle reveals visual concepts a significant

portion of the time, it is still a valuable tool.

Win Draw X

| GR 501 R52

S Draw OK Draw Lose

[--R_- OGR4R G 4A
Win Draw Win Draw

Figure 3-9: The state space from Figure 3-7 after the draw tree grouping algorithm
has collapsed paths leading to draw trees. Applying this grouping operation reduces
the number of vertices from 30 to 15, and the number of edges from 37 to 14.

Annotation Exemplar-Based Concept Redescribed Con-
cept

Path to a draw with No obvious visual
xx xx xx xox xox1-move lookahead ox o 0 X x 00 pattern

0x xo ox x

Table 3.4: The roots identified by the draw tree grouping algorithm do not reveal any
obvious visual concepts that distinguish them from other states in the original state
space. Because all of the states considered in this section contain XOX on the top row
and the 0 in the leftmost square of the second row, the presence of this pattern does
not distinguish the exemplars from other states in the state space from Figure 3-1.

3.2 Combining the Pattern Grouping

Algorithms

The pattern grouping algorithms introduced in the last section lend themselves to a

particular order of application. Recall that each of the pattern grouping algorithms

collapses instances of a particular annotated topological pattern. If an algorithm

cannot find instances of its topological pattern, the algorithm does nothing. To avoid

extraneous applications of the algorithms, a pattern grouping algorithm should only

be applied when instances of its annotated topological pattern are likely to be in the

state space.

The pattern grouping algorithms from the last section often collapse subtrees

in a way that creates new instances of another algorithm's annotated topological

pattern. This suggests an optimal order for applying the algorithms. For instance,

the one-move-to-a-goal algorithm collapses subtrees that form the leaves of forks

and avoidances. The fork grouping algorithm then creates collapsed subtrees that

become leaves in the one-move-to-a-goal subtrees. These relationships occur because

the players take turns and the one-move-to-a-goal grouping algorithm looks for roots

where the goal-setter moves next, while the fork and avoidance pattern look for roots

where the opponent moves next. Similarly, the avoidance grouping algorithm creates

instances of draw trees by collapsing paths that players will probably avoid.

In this section, I describe the default sequence of pattern grouping algorithms,

and in Chapters 5 and 6, I describe the variations on this sequence used to analyze

the tic-tac-toe games and morris games, respectively. The default sequence collapses

all parts of a game's state space that lead to a win, lose, or draw state when the

players have unlimited computational capabilities and play perfectly. This effect can

be achieved by recursively applying the pattern grouping algorithms from the last

section.

Each recursive step consists of three stages, a stage that collapses subtrees in

which the goal-setter moves next (using the one-move-to-a-goal grouping algorithm),

a stage that collapses subtrees in which the opponent moves next (using the fork

Table 3.5: The one-move-to-goal, fork and avoidance, and draw tree grouping algo-
rithms are applied cyclically until an application of the one-move-to-a-goal pattern
grouping algorithm fails to detect any paths that lead to a win. This occurs when
the entire state space has been reduced to a single collapsed draw tree or all paths to
wins have been absorbed into avoidance nodes. See Chapters 5 and 6 for examples.

and avoidance grouping algorithms), and a stage that collapses subtrees that lead

to draw states (using the draw tree grouping algorithm). Each stage processes parts

of the state space that lead to a win, lose, or draw state, given that the players

have limited computational abilities and they play perfectly given the information

available to them. As the algorithm proceeds, the players' computational abilities

increase incrementally until the players have enough information to play perfectly.

Throughout the recursion, the labels used to annotate collapsed subtrees change to

reflect this increase in computational abilities. Table 3.5 shows the list of pattern

grouping algorithms and labels.

Initially, the segmentation algorithm starts with the set of win, lose, and draw

Step Algorithm(s) Sample Annotation
la One-move-to-a-goal One move to a win,

goal-setter moves next

lb Fork and Avoidance Fork to or avoidance
of a 1-move win, oppo-
nent moves next

ic Draw Draw tree with 1-move
lookahead

2a One-move-to-a-goal Two moves to a win,
goal-setter moves next

2b Fork and Avoidance Fork to or avoidance
of a 2-move win, oppo-
nent moves next

2c Draw Draw tree with 2-move
lookahead

Na One-move-to-a-goal N moves to a win,
goal-setter moves next

Nb Fork and Avoidance Fork to or avoidance of
an N-move win, oppo-
nent moves next

Nc Draw Draw tree with N-
move lookahead

states. During the first step of recursion, the one-move-to-a-goal algorithm from

Section 3.1.1 collapses all subtrees that lead to a win or lose state in one move. The

collapsed subtrees created during this stage become starting points for the pattern

grouping algorithms applied during the next stage. The fork and avoidance algorithms

from Sections 3.1.2 and 3.1.3 use the new set of start points to identify all forks that

lead to a win or loss in one move and all regions where a player can avoid a one-move

win or loss. The draw tree grouping algorithm from Section 3.1.4 then starts with

the draw states and collapses any tree that leads to these states. Draw states that

remain in the tree and any draw trees created during this step are stored to become

starting points for the next application of the draw tree algorithm. Collapsed subtrees

created during this step of recursion receive one of the following labels: one move to

a win/loss with a decision point root, one move to a win/loss with a fixed-choice

root, fork to a win/loss in one move, forced move to a win/loss in one move, forced

avoidance of a one-move win/loss, multi-choice avoidance of a one-move win/loss, or

draw trees with one-move lookahead.

During the second step of recursion, the one-move-to-a-goal algorithm again pro-

cesses subtrees in which the goal-setter makes the next move, but this time it uses the

fork and forced move collapsed subtrees created during the previous step as starting

points. Thus, the algorithm now identifies subtrees that lead to a goal, assuming that

the goal-setter makes two perfect moves. These collapsed subtrees serve as starting

points for the second application of the fork and avoidance grouping algorithms, and

the draw states and collapsed subtrees from the previous iteration serve as starting

points for the second application of the draw tree grouping algorithm. This recursive

step creates collapsed subtrees with the following labels: two moves to a win/loss

with a decision point/fixed-choice/forced-avoidance root, fork to a win/loss in two

moves, fork with a forced avoidance root to a win/loss in two moves, forced move

to a win/loss in two moves, forced avoidance of a two-move win/loss, multi-choice

avoidance of a two-move win/loss, or draw trees with two-move lookahead.

In general, the fork and forced move collapsed subtrees created during the N -

1st step serve as a starting point for the Nh application of the one-move-to-a-goal

algorithm, while the N-moves-to-a-goal collapsed subtrees serve as a starting point for

the Nth application of the fork and avoidance grouping algorithms. All draw states

and draw trees that remain in the simplified state space serve as starting points for the

Nh application of the draw tree grouping operation. The recursion concludes when no

more one-move-to-a-goal collapsed subtrees can be formed. At this point, all N-moves-

to-a-goal collapsed subtrees have been absorbed by avoidance collapsed subtrees and

the states that remain in the simplified state space are avoidance collapsed subtrees,

draw states, draw trees, and states that do not lead to a win, lose, or draw state due

to loops in the state space.

The collapsed subtrees created by the Nh application of the one-move-to-a-goal

grouping algorithm are labeled as N-move-to-a-goal collapsed subtrees. The Nh

application of the fork grouping algorithm creates forks to a goal in N moves or

forced moves to a goal in N moves, while the Nth application of the avoidance grouping

algorithm creates forced avoidances of N-move goals and multi-choice avoidances of

N-move goals. Table 3.6 shows the detailed labels created by the one-move-to-a-goal,

fork, and avoidance pattern grouping algorithms. In general, a collapsed subtree's

label contains information about the subtree's root and the number of moves from

the root to the goal.

The level and type of detail used to differentiate between different types of col-

lapsed subtrees is an experimental parameter designed to separate board diagrams

in a way that enables the equivalence class principle to highlight visual concepts.

For example, distinguishing between forced avoidances and multi-choice avoidances

in the tic-tac-toe games emphasizes the fact that tic-tac-toe contains a large number

of forced avoidances, while lose tic-tac-toe contains a similarly large number of multi-

choice avoidances. A forced avoidance in tic-tac-toe has strategic significance because

it allows a player to create two marks in a row and thus force her opponent to make

a move that blocks her from getting three in a row. This ability makes it possible to

force a win more quickly in tic-tac-toe than in lose tic-tac-toe. If tic-tac-toe did not

have such a large number of forced avoidances, the separation between forced and

multi-choice avoidances might not be as meaningful. Ideally, the set of annotations

Algorithm Annotation Group Type
One-move- N-move path to a goal Decision point root (subtree where
to-a-goal with a group Type root, only some children lead to the goal)

goal-setter moves next
Fixed choice root (subtree where all
children lead to the goal and the root
is not a forced avoidance collapsed
subtree)

Forced avoidance root (subtree with
one ungrouped child where the sub-
tree root is a forced avoidance col-
lapsed subtree)

Fork Group Type to a N- Fork (subtree with more than one
move win, opponent child where all children lead to a goal
moves next that the opponent cannot avoid)

Forced move (subtree with only one
child where the root is not a forced
avoidance collapsed subtree)

Fork with a forced avoidance root

(subtree with one ungrouped child
where the subtree root is a forced
avoidance collapsed subtree)

Avoidance Group Type of a N- Forced avoidance (avoidance col-
move win, opponent lapsed subtree where the opponent
moves next has only one move that does not lead

to the other player's goal)

Multi-choice avoidance (avoidance
collapsed subtree where the oppo-
nent has more than one move that
does not lead to the other player's
goal)

Table 3.6: The one-move-to-goal, fork, and avoidance grouping algorithms label col-
lapsed subtrees in different ways based on the type of root in the subtree and how
many children the subtree has. In general, the labels capture whether players have
more than one option and whether players options are limited by needing to avoid
paths to a win for their opponent.

should be tuned to create the clearest separation of visual concepts.

By examining uncollapsed nodes during different steps of the recursive process,

one can explore the parts of a state space that remain reachable when players have

only limited computational abilities. For example, applying the first four steps of

the recursive process reveals the parts of the state space that remain reachable when

each player can anticipate the next four of her opponent's moves and plays perfectly,

given four-move lookahead. Because human players rarely achieve perfect play in

a real game, analyzing the portions of a state space reachable via computationally-

limited play provides a mechanism for identifying visual concepts and tactics that

might become important in a real game.

3.3 Benefits of Hierarchical Grouping

The pattern grouping algorithms create a hierarchical organization of a state space

by iteratively collapsing subtrees. When the one-move-to-a-goal grouping algorithm

runs the first time, it creates a node that stores a subtree that contains paths to a

win or lose state. This node is then stored as part of another subtree in a fork or

avoidance node. The fork or avoidance node may be stored inside of another subtree

the next time the one-move-to-a-goal grouping algorithm runs. These nested subtrees

break the state space into manageably-sized segments that can be explored at multiple

levels of granularity.

Figure 3-10 shows how a node in the simplified state space constructed in Sec-
x ox

tion 3.1 stores all six paths leading from x to a win state (along with a path to

a loss that can only be reached if X makes a mistake). Analyzing trees such as this

one can yield insight into what moves a player must make to reach a win state and

why a fork leads to a win regardless of what the opponent does. In Chapter 6, I show

how the action sequences stored within these subtrees can be used to extract tactical

patterns that lead to goals.

The hierarchial organization created by the pattern grouping algorithms provides

a mechanism for visually exploring large state spaces. Meaningful sections of the state

Group Connectivity Graph

Win Win Win Win

Second Level Subgroups Inside GR 36

Figure 3-10: The nodes of the segmented state space store sections of the original state
space. The node highlighted in the left panel (GR 36) contains the subtrees shown in

the top right panel. When the leaf nodes in the top right panel are expanded, they

create the subtree shown in the bottom right panel. The node highlighted in the top

right panel (BR 18) expands into the highlighted subtree in the bottom right panel.

Because the one-move-to-goal grouping algorithm from Section 3.1.1 only collapses

child nodes that lead to a win or loss and child nodes that will be disconnected from

the graph, the subtree in the bottom right panel only contains a subset of its root

node's descendants.

Win Draw Win Draw

4 1 0

space can be explored in isolation at whatever level of granularity makes sense, given

the size of the state space. In theory, the segmented state space structure created by

the pattern grouping algorithms could easily form the basis for a system that allows

the user to explore complex state spaces by zooming in and out of areas of interest.

68

Chapter 4

Pattern Grouping Algorithms for

Identifying Offensive Strategies

The pattern grouping algorithms in the previous chapter analyze portions of a state

space that lead to a win, lose, or draw state. In this chapter, I describe several pattern

grouping algorithms that can be used to analyze parts of a state space where players

can force a draw in simple games that do not have draw states. In these games,

players force a draw by circling around the parts of the state space where neither

player can force a win.

Pong hau k'i, an ancient game from eastern Asia, is a fifty-six state game that

meets this description (Zaslavsky, 1982; Bell, 1979). In this stand alone chapter, I

describe a human case study involving pong hau k'i that inspired the pattern grouping

algorithm approach that I use throughout the thesis. I also describe how I expanded

on the results of the human case study to create pattern grouping algorithms that

highlight offensive and defensive moves in pong hau k'i.

Pong hau k'i is played on the board shown in Figure 4-1. Play starts in the state

shown in Figure 4-la, and black moves first. During each turn, a player slides one of

her pieces to an adjacent node. Play continues until one of the players can no longer

make a sliding move. Thus, the goal of the game is to block the opponent's pieces so

that the opponent cannot slide to an adjacent node. An example of a winning state

for black is shown in Figure 4-1b.

Figure 4-1: Two examples of pong hau k'i states. The pong hau k'i game board has
five nodes where players can place pieces. On each turn, a player slides one of his or
her pieces to an adjacent node, and play ends when one of the players has no legal
move. (a) The starting state. Black moves first. (b) An end state in which black
wins. White cannot slide either of its pieces because black blocks all adjacent nodes.

Figure 4-2a shows the entire state space for pong hau k'i. Even with only fifty-six

states, this state space diagram is difficult for humans to interpret. While the layout

in 4-2b reveals symmetry, it still hides the structure necessary for telling which moves

are important. In this chapter, I describe how to create the simplified diagram in 4-

2c, which makes it easy for a human to identify the strategically-significant offensive

and defensive moves.

4.1 A Human Subject Simplifies the Pong Hau K'i

State Space to Discover Offensive and

Defensive Moves
A human subject, given only the rules of game and instructed to learn how to play,

created the simplified state space diagram shown in Figure 4-3 (Epstein & Keibel,

2002; Epstein, 2005). The subject created this simplified diagram by collapsing any

states with the same board diagram into a single node. Thus, each node in the

simplified state space diagram represents two states, one in which black moves next

and one in which white moves next. Due to this compression, the arrows in the

state space diagram are bidirectional, and only certain paths through the state space

are legal in a real game. In a real game, players must alternate turns, so legal paths

alternate between solid and dotted arrows, which represent black's and white's moves,

respectively.

--- ----j---

(a)

(b)in

losee

(b)

White
wins BR 5

BR 4

GR 6 GR 1

GR 7 ._

OR 13 1GR 12

OR 9 GRi10

Black

(c)

Figure 4-2: This figure is a reproduction of Figure 1-2. (a) The state space of pong
hau k'i. Each game state consists of a board configuration paired with an indication
of which player moves next. Dotted outlines and arrows indicate when white moves
next, and solid outlines and arrows indicate when black moves next. (b) A symmetric
layout of the same state space. The four circled moves near the center of the diagram
are important offensive moves, while the rest of the circled moves are important
defensive moves. (c) A simplification of the state space diagram for pong hau k'i.
Non-leaf nodes represent loops in the graph. This diagram highlights the high-level
structure of the game, exposing the key offensive moves.

Figure 4-3: A reproduction of the collapsed pong hau k'i state space diagram created

by the human subject. With the exception of the win and lose states, each node
represents two states, one in which black moves next and one in which white moves

next. Arrows with white heads represent moves made by white, while arrows with

black heads represent moves made by black. Legal paths through the state space

iterate between following a black arrow and following a white arrow. "Win" indicates

a win for black and "lose" indicates a win for white. Strategically-important moves

are highlighted using arrows that are not connected to graph. Players must avoid the

highlighted moves on the right and left to keep from losing the game. Players must

avoid the highlighted moves in the center of the diagram to keep from transitioning
from offense to defense. (Adapted from Epstein, 2005.)

This simplified state space allowed the human subject to discover the important

offensive and defensive moves within pong hau k'i. The discovery of offensive moves

is particularly noteworthy because the existence of an offensive strategy for this game

was hitherto unknown by members of the community. Prior to the subject's discovery,

it appeared that the best a player could do would be simply to avoid losing the game.

Figure 4-3 highlights the key offensive and defensive moves discovered by the subject,

but using this diagram to identify the offensive moves is non-trivial.

4.2 Using Pattern Grouping Algorithms to Expose

High-Level Structure in Pong Hau K'i

The approach used by the subject in the case study can be expanded upon to create

a simplified diagram that highlights the offensive and defensive moves in pong hau

k'i. In each of the following subsections, I describe a pattern grouping algorithm that

performs part of this simplification.

4.2.1 Collapsing Paths to a Win

The first pattern grouping algorithm applied to pong hau k'i is the one-move-to-a-goal

pattern grouping algorithm from Section 3.1.1. The resulting state space diagram is

shown in Figure 4-4. Instead of running the avoidance grouping algorithm next, these

leaf nodes are simply ignored during subsequent steps of the state space simplification

process. The avoidance pattern grouping algorithm would collapse the leaf nodes into

their parents, thus hiding the positions of the win and lose states. Instead, these leaf

Lose Win

Figure 4-4: Pong hau k'i state space after applying the one-move-to-a-goal pattern
grouping algorithm.

nodes are ignored when the remaining pattern grouping algorithms are applied, but

they are left in the simplified state space diagram to make it easy to see the location

of the win and lose states.

4.2.2 Collapsing Forced Move Sequences

After applying the one-move-to-a-goal pattern grouping algorithm, I applied a pattern

grouping algorithm that identifies and collapses forced move sequences within the non-

leaf portions of the state space. A forced move sequence is a sequence of moves where

each player has only one move that they can select. Again, because leaves in the state

space are ignored, a node with two children, one that is a leaf and one that is not, is

treated as if it had only the non-leaf child during this stage of processing. A forced

move sequence is collapsed into a single node that retains the incoming connections of

the first state in the sequence and the outgoing connections of the last state. Figure 4-

5 shows an example of a forced move sequence and shows the simplified state space

obtained using this algorithm.

4.2.3 Collapsing Move Sequences that Exhibit the Same

Motion Pattern

Most of the forced move sequences identified by the algorithm in the last section ex-

hibit a visual motion pattern similar to the ones shown in Figure 4-6. Two sequences

of moves, such as the sequences in 4-6a and 4-6b, exhibit the same motion pattern

when the pieces slide along the same segments of the board in the same order, re-

gardless of which piece makes which move. The pattern grouping algorithm in this

section collapses adjacent nodes that exhibit the same motion pattern by starting with

a forced move sequence node, extracting the node's motion pattern, and searching

adjacent areas of the state space to find other nodes or groups of nodes that exhibit

the same pattern. When a set of nodes exhibiting the same motion pattern is iden-

tified, it is collapsed into a single collapsed subgraph that retains all of the collapsed

subgraph's incoming and outgoing connections. When a state is part of multiple mo-

2 B

Figure 4-5: (a) An example of a forced move sequence. The three highlighted edges
and three highlighted nodes are all part of the forced moving sequence, which consists
of a subgraph with an incoming edge. When the forced sequence is collapsed, all three
nodes and three edges are stored within the collapsed subgraph. The state space
retains a copy of edge 1 to connect the collapsed subgraph to edge l's source. The
collapsed subgraph is also connected to all of node C's incoming and outgoing edges,
except for the incoming edges that is part of the forced sequence. (b) The pong hau
k'i state space after the forced move sequence pattern grouping algorithm has been
applied.

(a)

(b)

(c)

Figure 4-6: (a and b) Examples of two motion sequences that exhibit the same motion

pattern. (c) The pong hau k'i state space after applying the motion pattern grouping
algorithm.

tion patterns, multiple collapsed subgraphs retain copies of the state. Applying this

algorithm to the state space diagram in Figure 4-5b results in the simplified state

space diagram shown in Figure 4-6c.

Each of the newly formed collapsed subgraphs stores a loop from the original

state space in which two of the pieces repeatedly chase one another around either the

leftmost or the rightmost triangle of the board, while the remaining two pieces stay

in a particular stationary configuration on the opposite side of the board. Because

the players can chase one another around each of the two triangles in a clockwise and

Figure 4-7: A reproduction of the simplification from Figure 4-6 in which the nodes
are grouped based on symmetry.

counterclockwise direction, and because the remaining two pieces can be in one of

two configurations during each of these chasing sequences, the state space contains

eight different instances of this type of pattern. Each of the eight collapsed subgraphs

encapsulate one such instance.

4.2.4 Grouping Collapsed Subtrees Based on Symmetry

The state space diagram from Figure 4-6 can be further simplified by noting symme-

try within the board diagrams and within the topological structure of the collapsed

subgraphs in the simplified diagram. Figure 4-7 groups collapsed subgraphs that

correspond to symmetric parts of the original state space. For each pair, the col-

lapsed subgraph represented by the first node can be obtained from its partner by

horizontally reflecting each board diagram within the second collapsed subgraph.

4.2.5 Interpreting the Simplified State Space Diagram

The simplified state space diagram shown in Figure 4-7 exposes optimal offensive and

defensive moves. Because the leaf nodes at the bottom of the diagram (BRO and BR2)

correspond to wins for black, white wants to avoid the two moves that lead to those

nodes. At the same time, black wants to remain as close to BRO and BR2 as possible,

so black ideally wants to remain in GR1O and GR12 to maximize the likelihood that

white will accidentally move to BRO or BR2. This means that black can occasionally

move to GR9 and GR13 and back to GR1O and GR12 to add variety to the game,

but black should not move from GR9 and GR13 to GR6 and GR7, because doing so

will move black from an offensive position to a defensive position. White's optimal

strategy follows the same logic.

The pattern grouping algorithms that I introduced in this chapter highlight im-

portant offensive and defensive moves in pong hau k'i. While the drawn part of the

state space could have been parsed in a different manner to highlight different loops

in the state space, my technique identifies loops that exhibit a simple visual pattern

that humans would theoretically find easy to remember. Thus, this technique pro-

vides a mechanism for finding structure in the drawn portion of a simple state space

by exploiting salient patterns in a visual representation of the board.

Applying the equivalence class principle to the key offensive and defensive moves

reveals that all important moves involve a piece moving across the bottom edge of

the board. This can be seen by reexamining Figure 4-3. If for example, white slides

a piece along the bottom edge of the board into position where its pieces form a

vertical line, white will lose before its next turn, provided that black plays correctly.

If white slides a piece along the bottom edge of the board while black's pieces both

remain positioned at the top of the board, white will move from offensive to defensive.

The only other moves in which white moves along the bottom edge of the board are

unlikely to occur in a real game. Thus, using the equivalence class principle to extract

visual patterns yields the succinct description of the optimal offensive and defensive

strategies: players should avoid moving pieces along the bottom edge of the board.

Chapter 5

Extracting Strategic Information

from Tic-Tac-Toe and Lose

Tic-Tac-Toe

When applied to tic-tac-toe and lose tic-tac-toe, two 765-state games, the sequence of

pattern grouping algorithms from Section 3.2 reveals optimal strategies and computa-

tional differences between the games. Combined with the equivalence class principle,

these algorithms uncover strategically-important visual concepts that can be used

to describe tactics. In this chapter, I present these results and highlight computa-

tional evidence that lose tic-tac-toe is more difficult than tic-tac-toe, show how the

algorithms discovered a new strategy for exploiting mistakes in lose tic-tac-toe, and

demonstrate how the visual concepts identified using the equivalence class principle

can be used to create human-interpretable descriptions of winning tactics.

In the rest of this section, I introduce the tic-tac-toe games and describe the

sequence of algorithms that I use to analyze these games. Lose tic-tac-toe is a variation

on the well-known game of tic-tac-toe in which players lose when they get three in

a row instead of winning when they get three in a row. Thus, the object of lose

tic-tac-toe is to force your opponent to get three in a row. X moves first in both

games.

In contrast to most games where players make winning moves, in lose tic-tac-toe

players can make moves that cause them to lose. This affects the sequence of grouping

algorithms used to simplify the lose tic-tac-toe state space. In tic-tac-toe, the parent

of a state where X wins is a state where X moves next. Thus, the one-move-to-a-goal

algorithm will find instances of its annotated topological pattern within the tic-tac-

toe state space. In contrast, the parent of a state where X wins in lose tic-tac-toe is

a state where 0 moves next. This follows because 0 must make a losing move and

create three Os in a row in order for X to win. Because of this, the one-move-to-a-goal

grouping algorithm will not find any instances of its annotated topological pattern

within the original lose tic-tac-toe state space, but the fork and avoidance grouping

algorithms will find instances of their respective patterns.

Thus, in lose tic-tac-toe, the first algorithm must detect situations where a player

should avoid making a move that will cause her to lose. Because of this, I apply

the fork and avoidance grouping algorithms first, followed by the draw tree group-

ing algorithm, to create a shortened first recursive step. Table 5.1 summarizes the

sequence of grouping algorithms used to analyze the tic-tac-toe games. Table 5.2 (a

reproduction of Table 3.6) shows how the collapsed subtrees are labeled.

The draw tree grouping algorithm could be run before any of the other grouping

algorithms to identify paths that lead to a draw regardless of whether the players play

intelligently. This application of the draw tree grouping algorithm would occur before

the first application of the one-move-to-a-goal algorithm in tic-tac-toe and before the

first application of the fork and avoidance algorithms in lose tic-tac-toe. However,

preliminary analysis indicated that only two draw trees of this sort exist, providing

only a minimal compression of the state space, so this grouping has been omitted

from the rest of the analysis.

While tic-tac-toe and lose tic-tac-toe both technically have 5478 states, where a

state is defined as a configuration of X and 0 marks on the board paired with an

indication of who moves next, only 765 of these states are symmetrically distinct. In

this chapter, I use sets of symmetrically-identical states when performing the state

space analysis, so each state pictured in the state space diagrams actually represents

all reflections and rotations of the pictured state. This creates an artifact in the state

Grouping Number Algorithm(s) Sample Annotation
1 Fork and Avoidance* Fork to or avoidance

of a 0-move win, oppo-
nent moves next

2 Draw* Draw tree with 0-move
lookahead

3 One-move-to-goal One move to a win,
goal-setter moves next

4 Fork and Avoidance Fork to or avoidance
of a 1-move win, oppo-
nent moves next

5 Draw Draw tree with 1-move
lookahead

6 One-move-to-goal Two moves to a win,
goal-setter moves next

7 Fork and Avoidance Fork to or avoidance
of a 2-move win, oppo-
nent moves next

8 Draw Draw tree with 2-move
lookahead

3N One-move-to-goal N moves to a win,
goal-setter moves next

3N + 1 Fork and Avoidance Fork to or avoidance of
an N-move win, oppo-
nent moves next

3N + 2 Draw Draw tree with N-
move lookahead

Table 5.1: *The first two
one-move-to-goal, fork and
one-move-to-goal collapsed

grouping operations only apply to lose tic-tac-toe. The
avoidance, and draw grouping cycle repeats until no more
subtrees can be created.

Algorithm Annotation Group Type
One-move- N-move path to a goal Decision point root (subtree where
to-a-goal with a grouptype root, only some children lead to the goal)

goal-setter moves next
Fixed choice root (subtree where all
children lead to the goal and the root
is not a forced avoidance collapsed
subtree)

Forced avoidance root (subtree with
one ungrouped child where the sub-
tree root is a forced avoidance col-
lapsed subtree)

Fork Grouptype to a N- Fork (subtree with more than one
move win, opponent child where all children lead to a goal
moves next that the opponent cannot avoid)

Forced move (subtree with only one
child where the root is not a forced
avoidance collapsed subtree)

Fork with a forced avoidance root

(subtree with one ungrouped child
where the subtree root is a forced
avoidance collapsed subtree)

Avoidance Grouptype of a N- Forced avoidance (avoidance col-
move win, opponent lapsed subtree where the opponent
moves next has only one move that does not lead

to the other player's goal)

Multi-choice avoidance (avoidance
collapsed subtree where the oppo-
nent has more than one move that
does not lead to the other player's
goal)

Table 5.2: The one-move-to-goal, fork, and avoidance grouping algorithms label col-
lapsed subtrees in different ways based on the type of root in the subtree and how
many children the subtree has. In general, the labels capture whether players have
more than one option and whether players options are limited by needing to avoid
paths to a win for their opponent.

Figure 5-1: Each state in the state spaces represents all reflections and rotations of a
board configuration. The board configurations used to represent the sets along a path
may differ in orientation, resulting paths through the state space where the board
appears to flip. I have made efforts to reduce the occurrence of this artifact.

space diagrams, shown in Figure 5-1, which causes boards to appear to flip along

certain paths through the state space.

In the rest of the chapter, I explore the results obtained when the sequence of

algorithms described above are applied to tic-tac-toe and lose tic-tac-toe. In the

next section, I show how the algorithms collapse the tic-tac-toe and lose tic-tac-

toe state spaces in a manner that highlights computational differences between the

games and discovers optimal strategies. Humans find lose tic-tac-toe more difficult

than tic-tac-toe (Ratterman & Epstein, 1995; Cohen, 1972), and the segmentation

results presented in the next section suggest several reasons why. In the final section,

I show how the equivalence class principle enables the computer-aided discovery of

strategically-important visual concepts.

5.1 Segmentation Exposes Optimal Opening Moves,

Strategies, Structure at Multiple Levels of

Granularity, and Computational Differences

between Games

Figure 5-2 shows how the pattern grouping algorithms reveal structure in the tic-

tac-toe state space at multiple levels of granularity. Ultimately, tic-tac-toe reduces

to a single collapsed subtree that leads to a draw, but in general, players must have

3-move lookahead in order to force a draw. Figure 5-2h shows a simplification of

the state space that contains collapsed subtrees that lead to a draw, given two-

move lookahead, and collapsed subtrees that lead to win or lose states, given 3-move

lookahead. Figures 5-2h and 5-2i indicate that X's best strategy is to move into a

corner, because unless 0 moves into the center, X can force a win in three moves. X

can also win by initially moving to the center if 0 moves to a side. Otherwise, X can

force a draw. Assuming both players can only anticipate their opponent's next two

moves, 0 only has a chance of winning if X initially moves to a side. From there, O's

best bet is to move to a corner. If players wish to force a draw, Figures 5-2h and 5-2i

show that forcing a draw requires less lookahead if X moves into a corner or into the

center than if X moves to a side.

Lose tic-tac-toe also reduces to a single collapsed subtree that leads to a draw

(see Figure 5-3), but lose tic-tac-toe requires five extra grouping operations to do so

(two in the beginning and three at the end). Figure 5-5 shows a comparison of the

grouping speeds. The first two operations applied to tic-tac-toe, the one-move-to-a-

win and the one-move fork and avoidance operations, cut the number of edges in the

state space in half and in half again, and the one-move fork and avoidance operation

drastically reduces the number of vertices in the graph. This indicates that most

losses in tic-tac-toe can be avoided by a simple one-move lookahead, while avoiding

a loss in lose tic-tac-toe generally requires more computational effort.

The extra grouping operations required for lose tic-tac-toe indicate that paths to

a win or lose state are longer than in tic-tac-toe. In lose tic-tac-toe, players must

always fill in every spot on the board to force their opponent to lose, while in tic-

tac-toe, players can force a win or a loss more quickly, sometimes after only seven

marks have been placed on the board. This suggests that lose tic-tac-toe requires

more computational resources to play well, which agrees with empirical observations

that people have more difficulty playing lose tic-tac-toe than tic-tac-toe (Ratterman

& Epstein, 1995; Cohen, 1972).

The lose tic-tac-toe segmentation also shows that lose tic-tac-toe poses a partic-

ular challenge for the player who plays X. The simplified state space in Figure 5-3j

(enlarged in Figure 5-4) shows collapsed subtrees that lead to win and lose states in

(a) Original State Space

(b) After Grouping: One-move paths to a win or loss, goal-setter moves next

(c) After Grouping: One-move forks and avoidances, opponent moves next

~r-i~~--

(d) After Grouping: Draw trees with one-move lookahead

.1. ~ __ _ _ _ -L-

(e) After Grouping: Two-move paths to a win or loss, goal-setter moves next

(f) After Grouping: Two-move forks and avoidances, opponent moves next

(g) After Grouping: Draw trees with two-move lookahead

Figure 5-2: Tic-tac-toe segmentation results.

Win Win Draw Win WinWin Win

Draw Draw Draw r-- Draw Lose Draw Draw Draw --- Draw Draw Lose

Draw Win Draw Win Draw Win Draw Draw

(h) After Grouping: Three-move paths to a win or loss,

Draw Draw Draw Draw Draw

GR686
Draw Draw Draw Draw Draw

(i) After Grouping: Three-move forks and avoidances, opponent moves next

GR 718
Draw

(j) After Grouping: Draw trees with three-move lookahead

Figure 5-2: Tic-tac-toe segmentation results (continued). Collapsed subtrees labeled
win are a win for X, and collapsed subtrees labeled lose are a win for 0. Boards with
a horizontal line through certain positions are avoidance collapsed subtrees, where
the horizontal lines indicate the moves that must be avoided to keep the opponent
from winning. States where X moves next have a solid outline, while states where 0
moves next have a dotted outline.

Lose Lose

goal-setter moves next

Draw

three moves and collapsed subtrees that lead to draws, given two-move lookahead.

The vast majority of paths lead to a win for 0, because essentially all of the leaf

nodes in the bottom row of the tree are a lose for X. More specifically, thirty-one of

the leaf nodes are collapsed subtrees that lead to a win for 0 in three moves (the

leaves on the bottom row of the tree that are labeled lose), while five of the leaves

are collapsed subtrees that lead to a draw, given two-move lookahead, (the remaining

leaves in the bottom row of the tree), and one leaf is a collapsed subtree that leads

to a win for X (the only collapsed subtree in the third row of the tree). In contrast

to Figure 5-2h, the corresponding segmentation for tic-tac-toe, the ratio of paths to

wins versus losses shows that it is much harder for X to win lose tic-tac-toe than it

is for 0 to win tic-tac-toe.

Selective application of the grouping algorithms exposes a difficult-to-discover

winning strategy for X and strategy that allows X to exploit O's mistakes. The

segmentation shown in Figure 5-6 shows a winning strategy for X that humans often

fail to discover (Ratterman & Epstein, 1995), in which X reflects O's moves through

the center. This segmentation also reveals a strategy for exploiting O's mistakes in

which X forms a 2x2 square of X's. Despite computational and human subject studies

of lose tic-tac-toe, the strategy for exploiting O's mistakes had not been discovered by

other researchers (Ratterman & Epstein, 1995; Epstein, June 18, 2010). This example

demonstrates that the segmentation approach can reveal strategies that would be

difficult for a human to discover on her own.

(a) Original State Space

(b) After Grouping: Forks and avoidances of losing moves, opponent moves next

(c) After Grouping: Draw trees with single-avoidance lookahead

(d) After Grouping: One-move paths to a win or loss, goal-setter moves next

(e) After Grouping: One-move forks and avoidances, opponent moves next

(f) After Grouping: Draw trees with one-move lookahead

(g) After Grouping: Two-move paths to a win or loss, goal-setter moves next

(h) After Grouping: Two-move forks and avoidances, opponent moves next

(i) After Grouping: Draw trees with two-move lookahead

3~~ ~~ ~ ---- --- j . ~T.-

(j) After Grouping: Three-move paths to a win or loss, goal-setter moves next

Figure 5-3: Lose tic-tac-toe segmentation results.

88

Lose

Draw Draw Draw Draw Draw

(k) After Grouping: Three-move forks and avoidances, opponent moves next

G 4 O6|R0 7

Lose Lose Draw Draw

Draw # -

GR 1 6||G LO 107|R10
Draw Lose Lose Draw Draw

(1) After Grouping: Draw trees with three-move lookahead

Lose Draw Lose

(m) After Grouping: Four-
move paths to a win or loss,
goal-setter moves next

Draw

(n) After Grouping: Four-
move forks and avoidances, op-
ponent moves next

G108
Draw

(o) After Grouping: Draw
trees with four-move lookahead

Figure 5-3: Lose tic-tac-toe segmentation results (continued). (a-h) Compared with
Figure 5-2 (a-b), the lose tic-tac-toe state space requires six more grouping operations
before the state space visibly looks cleaner. Note that the first two grouping opera-
tions apply only to lose tic-tac-toe. Simplifications (k-m) no longer contain subtrees
that lead to a win for X, indicating that if 0 has three-move lookahead, 0 can force a
win or a draw. Again, collapsed subtrees labeled win are a win for X (where a win for
X means that 0 has gotten three in a row), and collapsed subtrees labeled lose are a
win for 0 (where X has gotten three in a row). Subfigure j is enlarged and discussed
in Figure 5-4.

Lose Lose Lose Lose Lose Lose Lose Lose Lose Lose Lose Lose Lose Lose Lose Lose Draw Draw Lose Lose Lose Lose Lose Lose Lose Draw Lose Lose Lose Lose Draw Lose Draw Lose Lose Lose

Figure 5-4: An enlarged version of Figure 5-3j. This shows all paths through the state space assuming that each player can

anticipate the next three of their opponents moves (i.e., has three-move lookahead), and plans accordingly. Note that when

x ox
players have three-move lookahead, X can only win via one path, and this path that involves reaching the state -- . From

this state, X can win the game regardless of where 0 moves next.

Vertices in the Segmented Graph

Tic-Tac-
Toe

- - -Lose Tic-
Tac-Toe

5 10

Grouping Operation Number

Edges in the Segmented Graph

Tic-Tac-
Toe

- - -- Lose Tic-
Tac-Toe

5 10

Grouping Operation Number

Figure 5-5: The number of vertices and edges in the segmented state space after each
grouping operation. The grouping operation number corresponds to the numbers
listed in Table 5.1. Operations three and four correspond to the one-move-to-a-win
step and the one-move fork and avoidance operations step, respectively.

800

700

600

500

400

300

200

100

0

2000

a.
1500

"0

1000

E
50

(D 500
C,,

tt

4t

|GR 1011|-
Draw ~- O

Win

A-

|GR10
Draw

, no-:R 00
1 F

Draw

----- ---- ---- W in
Win Draw Draw

Figure 5-6: Selective application of the pattern grouping algorithms reveals an optimal
lose tic-tac-toe strategy in which X reflects O's moves through the center and a
strategy that allows X to exploit O's mistakes by forming a 2x2 square of X's. I
created this figure by applying the first five grouping operations listed in Table 5.1
and then modifying all subsequent applications of the one-move-to-a-goal grouping
algorithm to collapse only paths to a win for 0, leaving paths to a win for X untouched.

92

Draw

-I

:A I

5.2 The Equivalence Class Principle Exposes

Visual Concepts

Applying the equivalence class principle to tic-tac-toe exposes visual concepts that

can be used to succinctly describe optimal tactics. For instance, collapsed subtrees

labeled "one move to a win for X, X moves next" all have at least one line with two X's

and a blank spot, where X must fill the blank spot to win. Thus, the visual concept

"line with two X's and a blank" can be used to succinctly describe the optimal tactic

for the 206 states labeled as "one move to a win for X, X moves next" by the pattern

grouping algorithm.1 This collapsed subtree will be referred to as a {X,X,-} win,

when X moves next, and a {0,0,-} win, when 0 moves next, where the {} notation

denotes an unordered set of marks and the '-' denotes a blank spot.

The same visual concept can also describe the collapsed subtrees labeled "forced

avoidance of a one-move win for X, 0 moves next." The 74 instances of this collapsed

subtree feature exactly one line with two X's and a blank spot, but this time 0 must

block the blank spot to keep X from winning. This concept will be referred to as a

{X,X,-} avoidance.

Table 5.3 shows how the equivalence class principle starts to expose more com-

plex concepts as the distance from the winning and losing states increases. In these

collapsed subtrees, X creates two {X,X,-} lines or 0 creates two {O,0,-} lines so

that their opponent cannot block both lines in one turn. Then, X or 0 completes

whichever line has not been blocked during their next move. This type of fork will

be referred to as a {-,X,X,X,-} or {-,0,0,0,-} fork. More complex tactics build on

the one-move-to-a-win, avoidance, and fork concepts described above, so the names

assigned to these three types of concepts are summarized in Figure 5-7.

Tables 5.4 to 5.9 show all of the exemplar-based concepts collected by the grouping

algorithms. Most one-move-to-a-goal, fork, and avoidance collapsed subtrees yield

iTic-tac-toe may contain more than 206 unique states that contain a line with two X's and a
blank spot, but the grouping algorithm only labels states that it believes may be reachable via
computationally-limited perfect play at processing time. Thus, if a path through the state space
passes through several states where X can win in one move, the states further along the path may
not be reachable if X takes the first opportunity it has to win.

Annotation Exemplar-Based Concept Redescribed Concept
Fork to a one- Two lines that both con-XX XXI X O
move win for o o XX xx tain two X's and a blank

o oX 0 oX oX, 0 moves 00 0 +XO spot and intersect at an
next O XX 0 OXX XX X. On its next turn, X

X o X X oX Xj must complete one of the
o oXF " -7 lines.

1-5x0 x x24 xx- xx
XX0 X X XOX XX

Xo o a 0
X X X ,1

XX X X XIX XI0 OX XO
X O X 0 0 0 0
XXOX X X X X 4 X

o o X o
2 xo xo 4 7- 0o x

X 0 xxo Xoo xXX
X oxX O XXO X 0 X XXX OX X tOo xo

For toa ne-Tw liestha bthoon

XXO O0 XX XXO XO
move win for xxo 0 xo xo o tain two O's and a blank
0, X moves 0 e 00spot and intersect at an

xIxo ox oIxo xxo xxo
next -- 1 oox -xox 00 x 0. On its next turn, 0

ixi x x 00
Xx Xox XXX o X o must complete one of the

00 x P 0 X - lines.

Table 5.3: Using the equivalence class principle to identify strategically-important
concepts for collapsed subtrees with the label "fork to a one-move win." The second
column contains all subtree roots identified by the fork grouping algorithm. Each
board diagram represents all rotations and reflections of the board shown.

XO 0 X _Xx
Gox 0

ox X_ 0

(a) {X,X,-} Win

xo ox x _ 00
_ x 0 OoX Xx o j X
x x Xx _ o x lx xo

(b) {X,X,-} Avoidance (c) {-,X,X,X,-} Fork

Figure 5-7: Labels for some common tic-tac-toe concepts. (a) Roots from one-move-
to-a-win subtrees where X moves next. (b) Roots from forced avoidances of a one-
move win for X, where 0 moves next. (c) Roots from forks leading to a one-move
win for X, where 0 moves next. These concepts will be referred to as {X,X,-} wins,
{X,X,-} avoidances, and {-,X,X,X,-} forks, respectively.

visual concepts that provide succinct explanations of winning tactics. These visual

concepts can be used to define visual routines such as "find the {X,X,-} line and fill the

blank spot during your next turn." As the number of moves from the goal increases,

the concepts become more and more complex, and the distinctions between collapsed

subtree types, such as separating forced avoidances from multi-choice avoidances and

separating forced avoidance roots from decision point roots and fixed choice roots,

often provide insight into how the collapsed subtrees lead to a win or a loss.

Sometimes the concepts become complex enough and the number of exemplars

becomes small enough that the exemplars are better described as special cases. This

increase in visual complexity correlates with an increase in the computational pro-

cessing required to identify the corresponding set of states in the state space. In

other words, states further from a win require more processing to identify, indicating

that information about how far such states are from a win is more implicitly encoded

within the state space, and this implicit encoding in the state space correlates with

the presence of more complex visual concepts within the board diagram.

While some collapsed subtrees, such as most of the ones listed in Tables 5-2i and

5.9, do not yield obvious visual patterns, more often than not, the collapsed subtrees

created via the equivalence class principle do aid in the construction of visual concepts

that can be used to describe what move a player should make next. This supports

the hypothesis that the equivalence class principle is a useful inductive bias.

The pattern grouping algorithms and the equivalence class principle also aid in

the identification of optimal tactics for lose tic-tac-toe. Figure 5.10 shows examples of

roots and concepts obtained when the same analysis is performed on lose tic-tac-toe.

The fact that the technique generalizes to lose tic-tac-toe provides further support

for the equivalence class principle.

In addition to tactically-significant concepts, the pattern grouping algorithms and

equivalence class principle reveal interesting tic-tac-toe trivia. For instance, only two

symmetrically-distinct states (listed in row two of Table 5.9) lead to a draw regardless

of how the players play. Similarly, only one symmetrically-distinct tic-tac-toe state

leads to a win for 0 in three moves (see row three of Table 5.7) regardless of O's next

move, but this state is unlikely to occur in an actual game.

To use the tactics described in the tables, one must be sure to recognize when a

state matches more than one concept. For example, when it is X's turn in tic-tac-toe

and X has the opportunity to create a {-,X,XX,-} fork, X must make sure that the

board does not also contain a {0,0,-} line that it must block by moving to a different

position. Players must always pay attention to the visual concept on the board that

corresponds to the shortest path to a goal and responds to that concept.

In this chapter, I have shown that the pattern grouping algorithms and equivalence

class principle enable the computer-aided rediscovery of tactics and related visual

concepts in tic-tac-toe and lose tic-tac-toe. In the next chapter, I show how the

algorithms reveal visual concepts and tactics in games with tens of millions of states.

Annotation Exemplar-Based Concept Redescribed Concept
Two moves to Two {-,-,X} lines that in-

xoxo xoo oxo xo
a win for X, o ox 0 x x x tersect at a blank spot. X
decision point X must fill the intersection
root, X moves 0 X 0 t point on its next turn to

0 0+ 0 OX
next x 0 x O create a {-,X,X,X,-} fork.

x xo x 0- xO 0 x 0 1 0 _

xI 1 0 00 X O OXo o x 0oXX X

Two moves to Two {-,-,X} lines and a
0 5X0a win for X, o + 0 x x {0,0,-} line that inter-

forced avoid- 0 sect at a blank spot. XX X 0 X 0 OIX 0
ance root, X X 0 o x X 0 Ox must fill the intersection
moves next X X 0 0 point on its next turn to

X 0 - -0 ox block O from winning and

to create a {-,X,X,X,-}
fork.

Two moves to Two {-,-,O} lines that in-
x x xxo xxo xxo

a win for 0, xox xxo 0 x x tersect at a blank spot. 0
decision point 0 0 0 0 must fill the intersection
root, 0 moves point on its next turn to
next create a {-,0,0,0,-} fork.

Two moves to Two {-,-,0} lines and a
a win for 0, 0 0 x {XX,-} line that inter-
forced avoid- X XO 04 sect at a blank spot. 0xOx xx0 xx0 xx0
ance root, 0 0 0+ 0 must fill the intersection
moves next point on its next turn to

block X from winning and
to create a {-,0,0,0,-}
fork.

Table 5.4: Visual concepts for states that are two moves from a win or loss.

Annotation Exemplar-Based Concept Redescribed Concept
Fork to a 2 Two sets of intersecting
move win for {-,-,X} lines. Regardless
X, 0 moves of where 0 moves, X can
next create a {-,X,X,X,-} fork

on the next turn.
Fork with a A {X,X,-} line that forces
forced avoid- xO0 0 X x 0 to move to a position
ance root I 1 7 X that allows X to create
to a 2 move 5 X 0 X a {-,X,X,X,-} fork during

win for X, 0 its next turn.
moves next 0

Fork with a A {0,0,-} line that forces
forced avoid- x o 0 00 X to move to a position
ance root 0 + that allows 0 to create
to a 2 move a {-,0,0,0,-} fork during
win for 0, X its next turn.
moves next

Table 5.5: Visual concepts for collapsed subtrees that fork to a win or loss in two
moves.

Annotation Exemplar-Based Concept Redescribed Concept
Forced avoid- X has at least one set of
ance of a two- X intersecting {-,-,X} lines
move win for that could be used to
X, 0 moves form a {-,X,X,X,-} fork.
next 0 has one {-,-,0} with

one blank spot at a posi-
tion that will not enable
X {-,X,X,X,-} fork. 0
must form a {0,0,-} line
that forces X to move to
a position that does not
form a {-,X,X,X,-} fork.

Multi-choice X has at least one set of
avoidance of x - x intersecting {-,-,X} lines
a two-move X X X that could be used to
win for X, 0 X x ox x x T0 form a {-,X,XX,-} fork.
moves next x O X x 0 must either create a

-{0,0,-} line that forces
x _ o x I __ x_ X_ _ I_ _ X to move to a position

- #o -- -- - Ix where it cannot create a
{-,X,X,X,-} fork or, if X
only has one set of in-
tersecting {-,-,X} lines, 0
must block the position
that allows X to create a
{-,X,X,X,-} fork.

Multi-choice Same as above, with X
ox ox xxo ox x

avoidance of x+ x o x ox blocking 0 from creating
a two-move 0 0 a {-,X,X,X,-}. Visually,
win for 0, X these states either con-
moves next tain horizontal or verti-

cal line with the sequence
"XXO" or a two X's that
are not part of a {X,X,-}
line.

Table 5.6: Avoidances of two-move paths to a win or loss. The second column contains
all subtree roots found by the avoidance grouping algorithm, but the algorithm only
identifies roots that are reachable, given that each player can anticipate its opponent's
next two moves and plays perfectly based on this limited computational ability.

Annotation Exemplar-Based Redescribed Concept
Concept

3 moves to a X has a {-,-,X} line that can be used to
win for X, X --x - force 0 into a position where X can create
moves next I a {-,X,X,X,-} fork on its next move.

3 moves to a 0 has a {-,-,0} line that can be used to
win for 0,0 : x force X into a position where X cannot in-
moves next terfere with 0 creating a {-,0,0,0,-} fork

on O's next move.
3 moves to OXO on a horizontal or vertical line
a win for 0 through the center. Wherever 0 moves on
regardless its next turn, 0 will be able to create a
of O's next {-,0,0,0,-} fork in two turns.
move, 0
moves next
Forced avoid- A {0,0,-} line forces X to move to a posi-
ance leads x 0 x tion where it can create a {-,XXX,-} fork
to a 3 move on its next move without interference from
win for XO X 0.0 cannot interfere either because X cre-
moves next ates a {X,X,-} line that forces O's next

move, or because X moves to a position
that creates two sets of intersecting {-,-,X}
lines (which creates two positions where X
can form a {-,X,X,X,-} fork.

Forced avoid- A {X,X,-} line forces 0 to create a {0,0,-}
ance leads 0X that forces X to create another {X,X,-} line
to a 3 move that forces 0 to create a {-,0,0,0,-} fork.
win for 0, 0
moves next

Table 5.7: Three-move paths to a win or loss. Again, each board pictured represents
the set of boards that can be obtained via rotations and reflections. Thus, the single
board pictured on the third row represents the boards with XOX in either a horizontal
or vertical line through the center.

100

Annotation Exemplar-Based Concept Redescribed Concept
Avoidance No obvious pattern, just
of a 3-move - x - -- - o the set of states where
win for X, 0 0 can avoid creating the
moves next states in Table 5.7.
Avoidance No obvious pattern, just
of a 3-move - the set of states where
win for 0, X X can avoid creating the
moves next states in Table 5.7.

Table 5.8: Avoidances of three-move paths to a win or loss. The board with only an
X in the top corner is the only collapsed subtree that is a forced avoidance, because
0 can only move in the center if it wants to force a draw. At this level, it becomes
more feasible to remember optimal move patterns for particular states. For example,
if X moves in the center, 0 must move to a corner to force a draw. Figure 5-2i,
the segmented state space diagram obtained after grouping avoidances of three-move
paths, shows the optimal moves for each state in column 2.

101

Annotation Exemplar-Based Concept Redescribed Concept
Draw states No lines with three in

xxo x xxo
oox xoxx a row.
xxo xlx xoo

Draw tree, Boards that block all
no looka- o x but one line with an
head XO OXOX and O.
Draw tree, No obvious pattern.

xx O X OX xO X x
one move x o x ox o 0
lookahead X 0 xo o 0

xx ox xoo xox xoxxxo ox
o xox xx x
o o xo 0 X X 0

XOO X 0 XX 00 X 0 XIOX OIXxo x o xx oo xx o o ox
x 0 0 x_ _ _

xxo xo xo xo xlx xo xx
oox oxx x x_ oox 0

W o 0ox X0X

x x xxo xxo xxo xo xx xo
x 0xo ox ox

ox oo x x o ox
xo xxo xoo xx xx ox xxo

x x oxx o oo xo 00
xo xoo x xo x

xox x o xxo o xo xx xxo
o ox ox xx xx ox

xo xo o a a ox

xx x x xxo xo x xxo ox
o aI xO oxI x xx

xox xxo x axx xxo xx x
ox o x o o x ox ox
ox o ox o xoo xo

xox xxo x x

00O 0 0 0 t

x x o oxo

Draw tree, No obvious pattern
x axo ox xox x xo xtwo move x a a x o x

lookahead x
x X x X X OX X

OX ox x x X |O x a
_ x x o _x

Table 5.9: While many of the one-move-to-goal, fork, and avoidance collapsed subtrees
exposed strategically-important visual concepts, the roots of the draw trees generally
do not exhibit an obvious pattern. The draw states in the first row are included for
reference. The states in the second row always lead to a draw because players must
take turns filling the last open line.

102

Annotation Exemplar-Based Redescribed Concept
Concept

Forced avoid- Only one blank spot on the board that
ance of an W 0 is not part of a {X,X,-} line. X must
immediate x 0 move into the blank spot to avoid los-
win for 0, X + XX ing.
moves next
One move to a Only one blank spot on the board that
win for 0,0 X o is not part of a {X,X,-} line. 0 must
moves next X 0 move into this spot to force X to make

o OX OX a losing move.
XX

X O

Forced avoid- Boards contain three blank spots. One
ance of a one- xx x that is part of a {XX,-} line, one that

0 00 +O
move win for 0 o is part of an {OO,-} line, and one that
0, X moves -OX 0 XX is at the intersection of two {XO,-}
next a x x x x lines. X must move into the intersec-

X01 01X x6 tion of the {X,O,-} lines to avoid losing
on its next turn.

Two moves to Boards contain four blank spots.
win for 0, 0 2 +x Three of the blank spots are either in

moves next i a {XX,-} line and a {X,-,-} line that
intersect at an X or at the three inter-

xo ox x sections of three {X,-,-l lines. Thus,
X can only fill one blank spot without

creating a {-,X,X,X,-} fork from tic-
tac-toe. 0 must block this blank spot
to force X to create a {-,X,XX,- fork.

Table 5.10: Examples of strategic collapsed subtrees and concepts in lose tic-tac-toe.
Unlike the tic-tac-toe tables, some of the rows in this table contain only a subset of
the exemplar-based concepts identified by the grouping algorithms to give the reader
a sense of what concepts the grouping algorithms expose.

103

104

Chapter 6

Extracting Strategic Information

from Five Men's Morris and Six

Men's Morris

To test their generality, I have applied the pattern grouping algorithms to two games

with moderately large state spaces: five men's morris, with 1.8 x 107 states, and six

men's morris, with 4.2 x 107 states. For both games, the pattern grouping algorithms

identify strategically-important sets of states, identify the optimal defensive strategy,

and identify the subset of the original state space that is reachable during perfect play.

The pattern grouping algorithms reveal that both games are draw games because

players can avoid parts of the state space that allow their opponent to win, causing

the players to circle around in a reduced portion of the state space. By applying

the equivalence class principle, I also rediscovered visual concepts and used them

to succinctly describe both offensive and defensive tactics, providing a compressed

representation of information from the state space.

Five and six men's morris are two variations on the same game, and both are

played on the board shown in Figure 6-1. In the first phase of play, players place one

piece on the board during each turn until each player has placed either five pieces

for five men's morris or six pieces for six men's morris. I assume that black plays

first. After pieces have been placed, players start sliding pieces to any adjacent empty

105

Figure 6-1: Board used to play five and six men's morris. Pieces are played on the
locations marked with small dots.

intersection. During either phase of the game, if a player positions three of her pieces

along the same line, thus creating what is referred to as a mill, the player can remove

one of her opponent's pieces. If her opponent's pieces also form a mill, she must

remove her opponent's pieces that are not in the mill before removing a piece that

will break her opponent's mill. A player wins by either removing all but two of her

opponent's pieces from the board or by blocking her opponent's pieces so that her

opponent cannot make any sliding moves.

A popular variation of the game allows players to "fly" or jump their pieces to any

open position on the board when they only have three pieces left, but I have not used

this variation. Morris game enthusiasts also disagree about whether a player should

remove one or two of her opponent's pieces when the player creates two mills at once

(this can happen when a player places a piece in one of the corners). In this analysis,

I assume that players only remove one piece, regardless of whether they form a single

or a double mill.

Unlike the tic-tac-toe games, the morris games do not have any draw end states,

so the draw grouping algorithm cannot be applied to these games.1 Because of this,

I used the modified grouping algorithm sequence shown in Table 6.1. Essentially,

every recursive step simply skips the draw tree grouping phase. Because the morris

games can be won via a piece capture or via blocking all of the opponent's pieces,

the pattern grouping algorithms label paths to a win based on what type of win the

paths lead to. Like the tic-tac-toe games, the morris games do exhibit symmetry, but

in this case, grouping all symmetric states becomes confusing during the sliding move

phase of the game. Thus, the pattern grouping algorithms have been applied to the

'If players agreed on a move limit, the states could be modified to incorporate the number of
moves made so far. Then, the draw grouping algorithm could be applied to the modified state space.

106

Grouping Number Algorithm(s) Sample Annotation
1 One-move-to-goal One move to a win,

goal-setter moves next
2 Fork and Avoidance Fork to or avoidance

of a 1-move win,
opponent moves next

3 One-move-to-goal Two moves to a win,
goal-setter moves next

4 Fork and Avoidance Fork to or avoidance
of a 2-move win,
opponent moves next

2N - 1 One-move-to-goal N moves to a win,
goal-setter moves next

2N Fork and Avoidance Fork to or avoidance
of an N-move win,
opponent moves next

Table 6.1: The sequence of pattern grouping algorithms used to analyze the mor-
ris games. Grouping continues until all top-level collapsed subtrees are avoidance
collapsed subtrees (see Section 3.2 for more details).

complete state space instead of a version that accounts for symmetry.

6.1 Segmentation of the Morris State Spaces

Exposes High-Level Structure and Optimal

Defensive Strategies

Figure 6-2 shows how the state spaces collapse as the pattern grouping algorithms

are applied. Segmentation causes the number of states to decrease by more than an

order of magnitude for both games, reducing five men's morris from 18 million states

to 1 million states and reducing six men's morris from 42 million states to 2 million

states. The states that remain in the state space are all reachable via perfect play,

and as long as players remain in this part of the state space, the players can force a

draw.

Only certain types of states are reachable via perfect play (see Table 6.2 for a

summary). For instance, the vast majority of 3v3 sliding move states, i.e., sliding

107

Number of States in the
Segmented Graph

-4

2 5

0 10 20 30 40

Number of Grouping Operations

(a)

Number of Edges in the
Segmented Graph

3

4

2 5

I- -

Number of Grouping Operations

Five Men's
Morris

Six Men's
Morris

Types of States
Removed

1 - 3v3, 3v5, 5v3

2 - 4v4, 4v5, 5v4

3 - 3v3, 3v6, 6v3

4 - 4v4, 4v6, 6v4

5 - 5v5, 5v6, 6v5

- Five Men's
Morris

Six Men's
Morris

Types of States
Removed

1 - 3v3, 3v5, 5v3

2 - 4v4, 4v5, 5v4

3 - 3v3, 3v6, 6v3

4 - 4v4, 4v6, 6v4

5 - 5v5, 5v6, 6v5

Figure 6-2: The number of states and edges in the segmented state space after each
pattern grouping operation. The arrows highlight pattern grouping operations where
a large number of states become unreachable, given a certain level of computationally-
limited perfect play. The boxes to the right show what types of endgame states
become unreachable, where AvB indicates the number of black pieces on the board
(A) versus the number of white pieces on the board (B). Other types of states may
become unreachable at these points as well, but not in significant quantities.

108

300

r E. 250
U

200

'o 150
SE

o1 100

50

0

Number of Reachable Endgame States

Five Men's Morris Six Men's Morris
State Type Initial Final Initial Final
3vN, Nv3, 6.6M 0 10M 0

4v4 ____

4v5, 5v4 5.4M 36K 5.8M 31K
5v5 3.0M 520K 4.0M 7.4K

4v6, 6v4 - - 6.3M 0

5v6, 6v5 - - 6.9M 130K

6v6 - - 1.8M 440K

Table 6.2: A comparison of the number of endgame states in the original state space
versus the number reachable via perfect play. AvB refers to the number of pieces on
the board, where A is the number of black pieces and B is the number of white pieces.
Most states where a player has four or fewer pieces on the board are not reachable
during perfect play. For the state types that do remain reachable, the number of
reachable states is one to three orders of magnitude smaller than the number of
states in the original state space.

move states with three black pieces and three white pieces on the board, become

unreachable early in the segmentation process, indicating that most of these states are

not reachable when players have even limited lookahead capabilities. This suggests

why the flying-move variation of the games is popular. Without flying, most 3v3

states will never occur in a normal game, but with flying, it becomes more difficult

for a player to force a win from a 3v3 state, so more of the 3v3 state space becomes

reachable during a normal game, making the game more challenging.

The final segmentations contain only unprocessed states, forced avoidance col-

lapsed subtrees, and multi-choice avoidance collapsed subtrees. The avoidance col-

lapsed subtrees show what moves players need to make to force a draw, providing

players with the perfect defensive strategy. In five men's morris, players must avoid

paths that lead to a win in anywhere from 1 through 17 moves. Most short paths

lead to a blocked move win, while longer paths lead to a win via piece capture. Of

the paths that force a win via piece capture, the longest one requires 15 moves. In

six men's morris, players must avoid even longer paths, paths that lead to wins after

up to 21 moves of perfect play.

109

6.2 Equivalence Class Principle Exposes Visual

Concepts and Symmetries

6.2.1 Selecting a Set of Collapsed Subtrees for Further

Analysis

To test whether the equivalence class principle exposes strategically-useful concepts,

I selected a subset of the avoidance subtrees identified within five men's morris. The

final segmentation of the state space contains 839,912 avoidance subtrees, which can

be subdivided based on whether the avoidance is forced or multi-choice, what kind of

win is being avoided, which player would win, and the number of moves to the win.

Based on the kind of win, the collapsed subtrees can be separated into three groups:

collapsed subtrees that contain only paths that lead to a piece capture win, collapsed

subtrees that contain only paths that lead to a blocked move win, and collapsed

subtrees that contain both types of paths. Figure 6-3 shows how the number of

collapsed subtrees depend on win type, avoidance type, winner, and number of moves

to the win. The collapsed subtrees can be separated into 119 groups based on these

four features.

The analysis in the remainder of this chapter will focus on forced avoidance col-

lapsed subtrees that lead to piece capture wins for white. This subset, which contains

49,704 collapsed subtrees (6% of the subtrees), was selected for the following reasons.

As shown in Figure 6-3, most of the blocked move collapsed subtrees have relatively

short paths to a win, while the collapsed subtrees containing piece capture wins or

both types of wins display a larger range of path lengths. As explained shortly, the

tactics used to achieve or avoid a win play an important part in the analysis of the

collapsed subtrees. Because the tactics displayed within collapsed subtrees that con-

tain both types of wins probably depend on the tactics used in subtrees with only

piece capture wins, the piece capture wins were selected for the first stage of analysis.

The decision to focus on white versus black was fairly arbitrary, because in the slid-

ing move portion of the game, the tactics for both sides should be the same. Based

110

on the analysis of the tic-tac-toe games, multi-choice avoidances often exhibit the

same tactics as forced choice avoidances, so the forced choice avoidances were chosen

for simplicity. Analyzing the single move necessary to thwart a win is simpler than

analyzing the set of moves necessary to achieve the same purpose.

6.2.2 Preliminary Analysis of the Forced Avoidance Collapsed

Subtrees Reveals Inside-Out Symmetry

The remainder of this analysis focuses on the 49,704 collapsed subtrees that describe

forced avoidances of piece capture wins for white. Because these collapsed subtrees

come from the final segmentation of the five men's morris state space, each subtree

root is a state that is reachable during perfect play. Analyzing how well this set of

roots exposes strategically-significant concepts in the visual space will provide data

on how well the equivalence class principle applies to the morris games when used in

conjunction with the pattern grouping algorithms from Section 3.1.

These collapsed subtrees can be separated into 12 categories based on the number

of moves white must make to win, which ranges from 3 to 14. Examining the roots

for the forced avoidances of 13- and 14-move paths shows that the morris games

exhibit a special type of symmetry called inside-out symmetry (see Figure 6-4). The

inside and outside squares of the board can switch positions without affecting the

outcome of the game, because the abilities to form mills, to slide pieces, and to

block an opponent's moves are not affected by this transformation. By accounting

for rotational and reflectional symmetry, the number of distinct collapsed subtrees

can generally be reduced by a factor of eight. Accounting for inside-out symmetry

reduces the number of subtrees by an additional factor of two, yielding the collapsed

subtree counts shown in Table 6.3.

111

* Forced avoidance of a
win for black

O Forced avoidance of a
win for white

0 Multi-choice avoidance
of a win for black

* Multi-choice avoidance
of a win for white

* Forced avoidance of a
win for black

O Forced avoidance of a
win for white

C2 Multi-choice avoidance
of a win for black

S Multi-choice avoidance
of a win for white

* Forced avoidance of a
win for black

O Forced avoidance of a
win for white

P Multi-choice avoidance
of a win for black

0 Multi-choice avoidance
of a win for white

4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Moves to a Win

(c)

Figure 6-3: Number of forced avoidance collapsed subtrees, organized by category.
The presence of a path length on the x axis indicates that at least one of the bars has
a non-zero value.

112

Avoidances of Blocked Move Wins

350

300

250

200

150

100

50

0
2 3 4 5

Number of Moves to a Win

(a)

Avoidances of Piece Capture Wins

30000

2 25000

20000
L

- 15000
0
'g 10000

-0 5000E
z n

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Moves to a Win

(b)

Avoidance Subtrees Containing Both Types of Wins

70000

60000

50000

40000

30000

20000

10000

0

Figure 6-4: The roots of all sixteen of the collapsed subtrees with the label "forced
avoidance of a 14-move piece-capture win for white" have board diagrams that are
rotationally or reflectively symmetric to the board diagrams pictured above. These
two board diagrams display a special type of symmetry called "inside-out" symmetry,
which applies to the morris games. The first board can be transformed into the second
by flipping the inside and outside squares.

Path Number of Number of Subtrees, Number of Subtrees,
Length Subtrees Accounting for Accounting for

Simple Symmetry All Symmetries
3 1,008 128 64
4 6,088 762 381
5 20,464 2,564 1,282
6 8,496 1,064 532
7 7,248 906 453
8 3,696 464 232
9 1,776 224 112
10 416 52 26
11 368 46 23
12 96 12 6
13 32 4 2
14 16 2 1

Total 49,704 6,228 3,114

Table 6.3: Number of collapsed subtrees for each of the 12 types of forced avoidances
where black must avoid a piece capture win for white. Path length indicates the
number of moves white must make to win. Simple symmetry refers to all rotations
and reflections, while all symmetry accounts for inside-out transformations as well.

113

1 2 3

4 56

7 -8 9 - 10

L11 12 131

14 15 16

Figure 6-5: Numbered morris board used to define absolute action sequences.

6.2.3 Procedure for Identifying Visual Concepts and Using

Them to Redescribe Tactics

Ideally, the forced avoidance categories would separate the collapsed subtrees based on

both the tactic white uses to force a win and the tactic black uses to block white from

winning. To test whether this occurs, I developed the following procedure for using

visual concepts to succinctly describe tactics and visual patterns on board diagrams.

Here, a visual pattern refers to one visual concept or a combination of visual concepts

on a board, such as a white mill and a black one-from-a-mill on the same board.

This procedure involves developing redescribed action sequences, which are action

sequences expressed in terms of visual concepts.

Redescribed action sequences build on absolute action sequences, a type of action

sequence introduced in Lock and Epstein (2004). An absolute action sequence is

defined using the board numbering scheme shown in Figure 6-5. Table 6.4 shows

two absolute action sequences that lead to piece captures for white. When an action

sequence describes a path where white can force a win, every opportunity for black

to move will fit the description "B anywhere." To eliminate this redundancy, I will

use <> brackets to denote full action sequences, which list both black's and white's

moves, and <<>> brackets to denote abbreviated action sequences, which list only

white's moves, with the implicit assumption that a "B anywhere" move should be

inserted between each pair of white moves in the sequence.

Instead of defining moves relative to locations on the board, redescribed action

sequences define them relative to visual concepts, such as mills or double mills. One

redescribed action sequence can describe a set of absolute action sequences. The

redescribed action sequence <W slides out of its mill, B anywhere, W slides back into

114

Absolute Action Abbreviated Absolute
Context Sequence Action Sequence

<W slides 6 to 5, B anywhere, <<W slides 6 to 5, W slides 5 to
W slides 5 to 6 and captures 6 and captures 11>>
11>

<W slides 15 to 12, B <<W slides 15 to 12, W slides 12
anywhere, W slides 12 to 15 to 15 and captures 1>>
and captures 1>

Table 6.4: Two examples of absolute action sequences. The first column describes the
context, or start state, and the next two columns describe the same action sequence
using the full and abbreviated notations, respectively. Each action sequence results
in white capturing one of black's pieces.

its mill and captures the B blocking its one-from an L-shaped mill> uses concepts

from Table 6.5 to describe both of the absolute action sequences from Table 6.4 (as

well as a number of other absolute action sequences).

Redescribed action sequences can be used to identify tactics within forced avoid-

ance collapsed subtrees by applying the following procedure. Starting with a set of

N-move forced avoidance subtrees, identify all N-move paths that lead to a win for

white and express them as absolute action sequences. Identify the visual concepts

that can be used to compress the set of absolute action sequences into one or more re-

described action sequences. Use the visual concepts to redescribe the absolute action

sequences to obtain a compressed version of the tactics white uses to win. Repeat

this procedure to obtain redescribed action sequences for the moves black makes to

prevent white from winning.

The redescribed action sequences are used to classify the board diagrams that

correspond to collapsed subtree roots. (The term root board diagram will be used to

refer to the board diagram of a collapsed subtree root.) Each root board diagram is

paired with the redescribed action sequences used within its collapsed subtree. More

specifically, each root board diagram is paired with two redescribed action sequences:

one that depicts white's winning tactic and one that depicts black's avoidance tactic.

115

Root board diagrams that share the same set of tactics belong to the same tactical

category. Visual patterns shared by the root board diagrams in a tactical category

can be described using the visual concepts from the redescribed action sequences,

creating what is called the redescribed context for the action sequences.

Identifying the visual concepts used to form the redescribed action sequences is

the least refined step of this process. Often, the board diagrams for the subtree roots

(obtained using the equivalence class principle) contain visual patterns that form the

basis for these concepts. The players' moves relative to fixed pieces on the board also

provide visual cues. The issue of identifying these visual concepts will be addressed

again in the discussion section.

6.2.4 Analysis: Using Visual Concepts to Identify Tactical

Categories

The analysis in this section attempts to quantify how well the 3-move, 4-move, and

5-move forced avoidance categories from Table 6.3 expose tactics and their associated

visual concepts. Under ideal conditions, the forced avoidance categories would sepa-

rate the collapsed subtrees based on both the tactic white uses to force a win and the

tactic black uses to keep white from winning. In other words, each forced avoidance

category would ideally correspond to a single tactical category. In actuality, each

forced avoidance category contains multiple tactical categories.

As a step toward separating the tactical categories, I ran scripts to classify the

root board diagrams based on two features: how many pieces have been placed on

the board, which determines whether the next move will be a sliding move or a

placing move, and how many pieces remain in play. By separating them based on

these two features, the scripts classified the root board diagrams into forced avoidance

subcategories.

I identified tactical categories by applying the procedure outlined in the last sec-

tion to each of the forced avoidance subcategories. I analyzed the 3-move forced

avoidances first, and then proceeded to the 4-move and 5-move forced avoidances in

116

Visual Examples Use
Concept
Mill Three in a row. White takes one

of black's pieces when the mill is
formed. White can then slide a
piece out of and back into the mill
to take another one of black's pieces
after two moves.

Trapezoidal White can slide its center piece up
double mill and down to create a new mill each

move. Thus, white can use this
piece formation to remove one of
black's pieces each move.

L-shaped Another way to create two mills
double mill with five pieces. This structure

gives white more flexibility in mov-
ing pieces in and out of mills be-
cause it is harder for black to block
this than for black to block a single
mill.

One-from-a- White can slide into a mill in one
mill move.

Black White can move in and out of its
blocking a complete mill to remove the black
one-from an piece that is blocking its one-from-
L-shaped a-mill. Then, white can create an-
double mill other mill in one move.
Blocked mill White cannot move in and out of

its mill because all adjacent posi-
tions are occupied. Any positions
that are occupied by a white piece
have an adjacent black piece that
can reblock the position if the white
piece decides to move.

Table 6.5: Visual concepts for sliding move strategies.

117

that order. As the number of moves increased, the action sequence redescription pro-

cess became more time consuming, so I only identified tactical categories for the 3, 4,

and 5-move sets. These sets account for approximately half of the forced avoidance

collapsed subtrees that lead to a piece capture win for white.

As expected, I found that many of the tactics used in the 4-move and 5-move

collapsed subtrees build on tactics from the 3-move collapsed subtrees. Table 6.5

shows some of the visual concepts that reoccur in many of the redescribed action

sequences and describes how they are used during the endgame when pieces slide

from one position to another.

Overall, the forced avoidance subcategories made the action sequence redescrip-

tion process more manageable to perform by hand, because the subcategories divide

the root board diagrams into smaller groups. For the most part, each forced avoidance

subcategory contains less than 100 members (accounting for all types of symmetry),

although a few subcategories contain 200 or 300 members and one contains 1065 mem-

bers. These statistics can be compared with the original forced avoidance category

sizes from Table 6.3.

Although a forced avoidance subcategory occasionally corresponds to a single tac-

tical category, forced avoidance subcategories are more likely to contain several tacti-

cal categories with one or two dominant ones. For instance, of the 20 symmetrically-

distinct 4-piece versus 5-piece 3-move forced avoidances shown in Figure 6-6a, 15 of

them belong to a dominant tactical category, while the remaining 5 are split between

2 smaller tactical categories with 3 and 2 members, respectively. Similarly, even the

very large set of 1065 root board diagrams, in which both players have placed 4 pieces

and all pieces remain in play, has a dominant tactical category that contains 1042

of the root board diagrams, while the remaining 23 board diagrams exhibit 5 less

common sets of redescribed action sequences and thus belong to 5 smaller categories.

The redescribed action sequences for the root diagrams from Figure 6-6a, which

form the 3 tactical categories with 15, 3, and 2 members apiece, are depicted pictori-

ally in Figures 6-6b and 6-6c. The top rows describe the dominant tactical categories,

while the bottom rows describe the two-member tactical category. The dominant

118

tactical category applies to board diagrams from Figure 6-6a that contain a blocked

one-from an L-shaped mill, where black can block white's intact mill in one move.

This is the redescribed context for the dominant tactical category. The redescribed

action sequence for white's path to a win is <<W slides out of its mill, W slides back

into its mill and captures the B blocking its one-from an L-shaped mill, W slides into

its L-shaped mill and captures any piece to win the game>>, and the redescribed

action sequence for black's avoidance move is <<B slides to a position that blocks

W's mill>>.

Occasionally, a forced avoidance subcategory will contain exactly one tactical

category. For instance, the 32 5-piece versus 4-piece 5-move forced avoidances shown

in Figure 6-7 all share the same pair of redescribed action sequences. This example

describes an interesting strategy in which black can at least temporarily force a draw

by refusing to close its mill. As long as black refuses to close its black one-from-a-mill,

black prevents white from taking advantage of its white mill, essentially creating a

stalemate.

Table 6.6 summarizes the number of tactical categories identified using the 3-, 4-,

and 5-move forced avoidance categories. In total, the 27,560 collapsed subtrees form

35 tactical categories, each defined by a different pair of redescribed action sequences,

one describing white's path to a win and one describing black's tactic for avoiding

white's win. As shown in the previous examples, the root board diagrams in each

tactical category share a visual pattern that can be summarized using the concepts

from the redescribed action sequences.

6.2.5 Discussion

Gasser created and analyzed endgame databases for nine men's morris, a complex

version of five and six men's morris, and showed that nine men's morris is a draw

(Gasser, 1996, 1991). It should be noted that Gasser analyzed a version of the game

that allowed flying, while I did not. Gasser performed a statistical analysis on the

databases and examined some of the longest paths to a win. In his analysis, he

remarked that "it is not clear how the realistic positions can be filtered from the

119

(a) Symmetrically-distinct root board diagrams for the 4-piece versus 5-piece
subcategory of forced avoidances that could lead to 3-move wins for white. Black
makes the next sliding move, and if black makes a mistake, white can win.

Abbreviated Redescribed Action Sequence
Visual Concept that Leads to a Win for White
Black blocking
a one-from-an-
L-shaped

double mill

Black blocking
a trapezoidal |
double mill

Two-from-an-

L-shaped
double mill

(b) Offensive tactics that white can use to win the game, assuming that black makes a
mistake. Each tactic shows only white's moves and highlights how white slides its pieces
in and out of instantiations of the visual concepts in the first column. In each case, white
captures two black pieces by creating mills during the second and third moves. Black's
pieces can be placed anywhere in the hidden part of the board, as long as they are not
positioned in a way that would enable black to win in three moves or less.

Figure 6-6: Offensive and defensive tactics for a subcategory of forced avoidances.

120

4V: A0

7

Alk

U

Ask

Visual Concept Examples of Black's Description of the Black's
Defensive Tactic Forced Avoidance

Black blocking a Black has one move that will
one-from-an-L- block white's mill.
shaped double
mill

Black blocking a Black has one move that will
trapezoidal block white's double mill.
double mill -+

Two-from-an-L- Black has one move that
shaped double stops white from creating a
mill mill and eventually forming

an L-shaped double mill.

(c) Black's defensive tactics.

Figure 6-6: Offensive and defensive tactics for a subcategory of forced avoidances
of 3-move wins for white (continued). (a) The set of 4-piece versus 5-piece forced
avoidances where white can win in three moves if black makes a mistake. Black
makes the next sliding move. (b-c) White's three offensive tactics and black's three
defensive tactics, respectively. Using (row, column) coordinates to label the root
board diagrams from part (a), diagrams (1, 4), (2, 2), and (4,1) pair with the tactics
shown in the second rows of Tables (b) and (c), diagrams (2,3) and (4,4) pair with the
tactics shown in the third rows, and all other diagrams pair with the tactics shown
in the top rows.

121

(a) Board diagrams for the subtree roots of all 5-move forced avoidances with
5 black pieces on the board and 4 white pieces on the board. Black makes the
next sliding move.

Figure 6-7: A visual pattern that is easy to identify, given the concepts of a mill and
a one-from-a-mill.

122

0

'0

0

Ak
U

qWW

Idk
low

0

C

(b) An example of an incorrect move for black. Black should not
break its mill.

(c) An example of the correct move for black. Here, black selects
a move that leaves its mill intact.

Figure 6-7: An example of a visual pattern in the subtree root board diagrams that
is easy to identify, given the mill and one-from-a-mill concepts. (a) All of these board
diagrams contain a one-from-a-mill for white and a mill for black. Given the concepts
of a mill and a one-from-a-mill, this pattern is easy to extract, even though the action
sequence leading to a win for white is not obvious. (b) If black starts in one of the
states shown in (a) and makes a move that breaks its mill, white can win the game.
In this example, white can close its one-from-a-mill during its next turn and capture
black's piece at location 12. Then, white can use its mill to capture two more of
black's pieces and win the game. (c) Black's optimal avoidance tactic is to keep its
mill intact. The resulting state is a forced avoidance for white. If white closes its
one-from-a-mill while black's mill is still intact, black can win the game. All of the
states in (a) are forced avoidances of a 5-move win for white because black has only
one move that does not require breaking its mill.

Path Number of Number of Number of
Length Avoidances Symmetrically Unique Tactical

Avoidances Categories
3 1008 64 5
4 6088 381 11
5 20464 1282 19

Total 27560 1727 35

Table 6.6: The number of tactical categories identified for each type of forced avoid-
ance. In theory, all important information about the members of a tactical category
can be stored using redescribed action sequences and redescribed contexts. This would
allow the 27,560 collapsed subtrees to be compressed into 35 trios of redescribed con-
texts, redescribed offensive tactics, and redescribed defensive tactics.

123

rest," noted the difficulty of extracting "interesting" positions from the databases,

and observed that some optimal play "is clearly beyond human ability." The analysis

in this chapter addresses each of these points.

The pattern grouping algorithms provide a mechanism for distinguishing between

realistic and unrealistic positions. For example, forcing a win from an arbitrary three-

piece versus three-piece state appears to be a daunting task, but in a realistic game,

none of these states will ever be reached. The pattern grouping algorithms remove

all of these states from the collapsed state space, because once the players reach a

three-versus-three state, the game can be won within a move or two. Thus, given even

limited lookahead, most three-versus-three states will never occur in a real game.

Gasser analyzed a variation that allowed flying, so more of the three-versus-three

states are probably reachable for his version of the game, but the pattern grouping

algorithms would still provide a mechanism for distinguishing between realistic and

unrealistic states. Realistic states can be filtered by assuming various levels of look-

ahead. The analysis in this chapter focuses on perfect play with unlimited lookahead,

but the pattern grouping algorithms can be used to identify reachable states for any

level of lookahead. The likelihood that a state will appear in a real game probably

also depends on whether the state appears to move toward a subgoal, such as closing

a mill, but filtering states based on whether they are reachable using a realistic degree

of lookahead provides an important step toward distinguishing between realistic and

unrealistic positions.

This thesis also addresses the issue of identifying "interesting" positions. In this

work, an interesting position is one that exhibits instances of visual concepts that

can be used to redescribe tactics and remains reachable during perfect play or almost

perfect play. Interesting positions are positions within human-interpretable action

sequences. These positions not only describe short-term tactics, but may also provide

insight into long-term strategies. For instance, the 5-move forced avoidance tactic

from Figure 6-7 shows how black can temporarily force a draw by not breaking its

mill, while white can continue forcing a draw by not closing its mill. Gasser (1993)

noted that forcing a draw in nine men's morris involved cyclical play in which the

124

players could not or would not close a mill, so the 5-move forced avoidance may have

revealed a more general strategy for forcing a draw.

Gasser notes that some optimal paths within the nine men's morris state space

defy human interpretation. While I do not dispute that some optimal play may be

beyond human ability, a significant portion of play may still fall well within the realm

of human comprehension. Gasser analyzes many of the longest optimal paths to a

win. While these paths may in fact be too difficult for humans to interpret, the

analysis of five men's morris suggests that most paths are short to medium in length.

The long paths may simply be anomalies.

In five men's morris, all of the short paths analyzed exhibited a human-interpretable

tactic. The 1,727 symmetrically-distinct board diagrams associated with 3-, 4-, and

5-move forced avoidances account for more than half of all forced avoidances that lead

to a piece capture win for white. Each of these board diagrams fall into one of only

35 tactical categories, thus exhibiting one of only 35 redescribed-context-offensive-

tactic-and-defensive-tactic trios. This suggests that a significant portion of the state

space does fall within the realm of human comprehension.

In theory, the redescribed action sequences that define tactical categories could

be used to compress the information in an endgame database. Assuming that the

redescribed action sequences and their redescribed context could be expressed pro-

grammatically, visual pattern recognition procedures could identify when a tactical

action sequence might apply. When a board diagram appears to match the redescribed

context for a particular set of redescribed action sequences, the redescribed action se-

quences can be applied to quickly verify the match. In the event that a board diagram

matches multiple redescribed action sequences, the sequence that leads to a win or

loss in the smallest number of moves would take precedence. Encoding game database

information in this manner would have the added benefit that states reachable via

imperfect play would often lend themselves to the same set of tactics identified by

analyzing positions reachable via perfect play.

Storing endgame databases in terms of offensive and defensive action sequences

and contexts could compress the databases by several orders of magnitude. Even

125

accounting for symmetry, the number of tactical categories is several orders of mag-

nitude smaller than the number of collapsed subtrees within the 3-, 4-, and 5-move

forced avoidance categories. While all avoidance categories may not compress to the

same degree, the preliminary results suggest that the overall compression rate would

still be significant. In addition, analyses of lose tic-tac-toe and tic-tac-toe suggest

that forced avoidance tactics are often special cases of multi-choice avoidance tactics,

so many of the multi-choice avoidance categories may share one of the 35 sets of

redescribed action sequences identified already.

The major limitation of my approach is the amount of human effort required to

identify use-driven concepts and redescribed action sequences. As the number of

moves to a win increases, classifying collapsed subtrees based on the optimal winning

and forced avoidance tactics becomes more difficult. One way to address this issue

would be to intersperse the tactical category identification in the visual space with

the application of the pattern grouping algorithms in the state space. This would

allow the pattern grouping algorithms to label N+1-move collapsed subtrees based

on the tactical action sequences exhibited by their N-move components, which should

lead to a better initial separation of the N+1-move tactical categories. Then, analysis

in the visual space would would further subdivide the N+1-move collapsed subtrees

as needed based on visual concepts and redescribed action sequences. Thus, grouping

in the state space would induce classifications in the visual space and vice versa.

Interspersing the tactical category identification with the application of the pat-

tern grouping algorithms provides one step toward automating this approach. Other

steps include semi-automated algorithms for converting absolute action sequences into

redescribed action sequences and a generative algorithm for identifying useful visual

concepts.

The results presented in this chapter suggest that the pattern grouping algorithms

and equivalence class principle do a reasonable job of exposing visual concepts in the

morris games. Preliminary analysis of the other collapsed subtree categories from

both five and six men's morris supports this conclusion. A thorough analysis of this

result will be deferred until the final chapter.

126

Chapter 7

Contributions and Future Work

In this thesis, I have provided evidence that the equivalence class principle can be an

effective mechanism for multi-representational concept formation. Based on the semi-

automated analysis of five two-player games with state spaces varying in size from

fifty-six states to forty-two million states, the pattern grouping algorithms from Chap-

ters 3 and 4 expose high-level state-space structure and optimal strategies. Together,

the equivalence class principle and pattern grouping algorithms enable the discovery

of use-driven visual concepts, offensive tactics, and defensive tactics in games such as

tic-tac-toe and five men's morris. When used in conjuction with the equivalence class

principle and pattern grouping algorithms, the action sequence redescription proce-

dure outlined in Chapter 6 provides a mechanism for creating human-interpretable

descriptions of tactics. In this chapter, I first explore how my work can be extended

and then discuss my contributions and the underlying theoretical questions that I

have addressed.

7.1 Areas for Future Exploration

In this section, I describe how my work could be extended to create a general-purpose

machine learning algorithm, model human learning, automatically extract human-

interpretable tactics from game databases, and expose pattern in various types of

networks.

127

7.1.1 Creating a Multi-Representational Learning Algorithm

While I have explored how the equivalence class principle can expose concepts in

games, ascertaining the principle's strengths and limitations will require experimen-

tation in other domains. In future work, the equivalence class principle could be

used to create a general-purpose algorithm by combining unsupervised and super-

vised learning algorithms. For example, given two representations that describe the

same set of entities, one with data that could be classified using an unsupervised

learning algorithm and one with data that could not, the equivalence class principle

would feed the output of the unsupervised learning algorithm into a supervised learn-

ing algorithm. The unsupervised learning algorithm would classify entities in the first

representation. Then, an application of the equivalence class principle would generate

labeled classes in the second representation. A supervised learning algorithm would

then use the labeled data to create a classifier and, ideally, identify features in the

second representation that correlate with important features in the first representa-

tion. The unsupervised learning algorithm applied to the first representation could

be replaced by a semi-supervised learning algorithm, depending on the data and the

information available. Testing this approach in a variety of domains would help estab-

lish the conditions necessary for the equivalent class principle to create connections

between representations.

7.1.2 Modeling Human Learning

My motivation for studying the equivalence class principle came from developing a

taxonomy of representations and examining how people use multiple representations

to learn and perform complex tasks (see Ainsworth, 1999 and de Jong et al., 1998 for

reviews on this topic). This effort yielded the insight that when a domain contains

multiple representations, the ability to translate between the representations serves

several important purposes. Translation between representations facilitates multi-

representational problem solving, during which each representation supports opera-

tions that would be difficult if not impossible to perform in another representation

128

(Boshuizen & (Tabachneck-)Schiff, 1998). Translation also disambiguates concepts

and facilitates learning in unfamiliar domains (Ainsworth, 1999). (See Appendix B

for more information.)

Translation requires building connections between the representations. The equiv-

alence class principle provides a theory that suggests how humans might form these

connections. Testing whether the equivalence class principle is a valid model for hu-

man learning would require developing a full computational model that incorporates

the principle, developing a human-subject experiment that involves building connec-

tions between a pair of representations, and showing that the computational model

could produce output that matches human subject data.

The procedure for redescribing action sequences from Chapter 6 could also serve as

the foundation for a computational model of human learning. If this procedure could

be automated, it could become one of the first computational models inspired by

Karmiloff-Smith's theory of representational redescription (Karmiloff-Smith, 1995).

Again, human-subject experiments would be necessary to establish the model's va-

lidity.

7.1.3 Performing Game Analysis

Increasing the Level of Automation

In addition to serving as a testbed for refining the principles of concept formation, the

domain of two-player perfect information games provided a rich set of domain-specific

research challenges. As I mentioned in Chapter 2, researchers have made numerous

attempts to extract human-interpretable strategic information from game databases.

In this thesis, I presented a new approach for performing this task, but this approach

has the obvious limitation of requiring too much human effort to extract use-driven

visual concepts and use them to succinctly describe offensive and defensive tactics.

The next obvious step would be to support an interactive mode of computer-aided

discovery to increase the amount of analysis performed by the computer. Expressing

tactical patterns as redescribed action sequences is the most time consuming part of

129

the process. Right now, the computer applies all of the pattern grouping algorithms

at once and then passes the output to the user for visual analysis. This means that

although the user may have developed a redescribed action sequence description for

a 5-move path to a win, when the user encounters a 6-move path that builds on the

5-move path, the user must discover this relationship. Because the redescription of

the 6-move action sequence often uses the same visual concepts as the redescribed 5-

move action sequence, making such dependencies readily available would dramatically

speed up the user's discovery process.

An interactive mode of applying the pattern grouping algorithms would allow

the user to label collapsed subtrees based on their tactical category and provide an

additional degree of automation. Once the user assigns a tactical category to the

Nth-iteration of collapsed subtrees, the next iteration of pattern grouping algorithms

would label the N + 1st set of collapsed subtrees not only based on their attributes

in the state space, but also based on the tactical categories attributed to their leaves.

Then, applying the equivalence class principle to the output of the N + 1st pattern

grouping iteration would classify visual diagrams not just based on the number of

moves to the goal, but also based on the tactical categories of the constituent Nth-

iteration action sequences. This would make it easier for the user to redescribe the

action sequences and assign tactical categories to the N + 1st set of board diagrams.

This amounts to iteratively using patterns in the state space representation to classify

board diagrams in the visual representation, and then using patterns in the visual

representation to further classify states in the state space representation.

Once the N + 1st iteration of collapsed subtrees have been labeled with NIh-

iteration tactical categories, building an algorithm to generate redescribed action

sequences and thus assign tactical categories to the N + 1" set of subtrees will be

more straightforward. Automating this part of the process would involve providing

the learning algorithm with a hypothesis space of visual concepts that could be used

to redescribe a set of absolute action sequences. This hypothesis space could be

produced using a generative function that creates different piece configurations and

weights the piece configurations based on attributes such as size and similarity to

130

concepts already known to be useful within the game of interest. Given a set of

absolute action sequences, the algorithm would search for the redescription that could

consolidate the largest number of absolute action sequences. Given an Nth-iteration

redescribed action sequence, creating an N + 1-iteration redescribed action sequence

would only require redescribing one additional move, thus partitioning the search for

an N + 1"-iteration redescribed action sequence into N+1 one-move subproblems. If

necessary, the results could periodically be validated by the user.

Identifying Offensive Strategies in Complex Games

For five and six men's morris, the current pattern grouping algorithms only analyze

parts of the state space that lead to a win or loss with perfect play. Because the

remaining parts of the state space contain loops, presumably each player should have

a strategy that allows them to force a draw. The work on pong hau k'i suggested one

approach for identifying offensive strategies that force a draw while remaining in a

portion of the state space where the opponent is likely to make a mistake that would

cause them to lose. Because of the number of cycles in the morris state spaces, the

approach that worked for pong hau k'i is unlikely to succeed in the morris games.

Developing pattern grouping algorithms that parse the drawn portion of complex state

spaces would be a useful next step. Ideally, such an algorithm would reveal action

sequences that would allow a player to force a draw by repeating a short sequence of

moves regardless of the opponent's response. Developing pattern grouping algorithms

that could extract redescribed action sequences that lead to regions of the state space

near where the opponent can lose would be useful as well.

Analyzing Games with Larger State Spaces

As mentioned in Chapter 2 and 6, extracting human-interpretable information in

game databases is a challenging task. The results for five and six men's morris suggest

that my approach has merit, particularly if it can be automated further. Testing

the pattern grouping algorithms and the equivalence class principle on complicated

chess endgames, such as the KQKR and KBBKN endgames, would further clarify the

131

strength and weaknesses of this approach. Humans have attempted to analyze these

endgames, sometimes with only limited degrees of success, so it would be interesting

to see whether my approach could be used to identify human-interpretable tactical

patterns (Nunn, 1995, 1994; Roycroft, 1988).

The pattern grouping algorithms described in Section 3.1 could also be applied

to games with larger state spaces by separating the state spaces into sections and

collapsing the sections one at a time to iteratively perform retrograde analysis. Using

the goal-related pattern grouping algorithms to search for paths to other goals, such

as piece captures or favorable positions, would also allow my approach to be applied

to more complex games. If the action redescription procedure from Chapter 6 could

be used to compress information in endgame databases it would allow larger endgame

databases to be created.

7.1.4 Applying the Approach to Other Types of Networks

In this thesis, I introduce a set of pattern grouping algorithms specifically designed

to analyze state spaces. Developing additional pattern grouping algorithms for other

types of networks, such as social networks, may yield insights in other domains. The

interactive computer-aided mode of discovery described in Appendix A could be used

to develop these algorithms.

7.2 Contributions

Because I have used the domain of games to test and refine principles of use-driven

concept formation, I have made contributions both within the domain of games and

within the realm of concept formation. Within the domain of games, I developed a

semi-automated approach for extracting human-interpretable descriptions of offensive

and defensive tactics from game databases. This approach introduces a set of pattern

grouping algorithms that identify game-general concepts and expose high-level struc-

ture in game state spaces. By applying them to five two-player games with fifty-six

states through forty-two million states apiece, I provided preliminary evidence that

132

the pattern grouping algorithms can segment game state spaces in a manner that

extracts important strategic information and exposes visual concepts when used in

conjunction with the equivalence class principle.

In a detailed case study of five men's morris, I introduced a procedure for iden-

tifying use-driven visual concepts and using them to concisely describe tactics. The

procedure for creating the concise descriptions of tactics, called redescribed action

sequences, builds on Lock and Epstein's work on action sequences and Cazenave's

work on patterns with external conditions (Lock & Epstein, 2004; Cazenave, 2001).

By applying the procedure to five men's morris, I provided preliminary evidence that

this approach can express strategic information in a human-interpretable form and

compress the space required for storing information about optimal play by several

orders of magnitude. Chapter 6 explores these game-related contributions in more

detail.

Within the realm of concept formation, I introduced two semi-automated ap-

proaches for identifying use-driven concepts: a semi-automated process for exposing

high-level conceptual patterns in networks (see appendix A) and a semi-automated

process for using classes in one representation to expose concepts in another. In coor-

dination with the latter approach, I proposed the equivalence class principle as a new

inductive bias for learning in a multi-representational context and used the domain

of two player games to provide evidence that this mechanism can facilitate concept

formation.

To test and refine the equivalence class principle, I used it to extract use-driven

visual concepts in five two-player perfect information games. Because I developed and

refined the pattern grouping algorithms while analyzing three of the games, pong hau

k'i, tic-tac-toe, and to a lesser extent lose tic-tac-toe, the morris games provide the

true test of whether the equivalence class principle exposes use-driven visual concepts.

In five men's morris, application of the equivalence class principle and pattern

grouping algorithms exposed inside-out symmetry and enabled the compression of

1,727 symmetrically-distinct states into thirty-five groups, each of which exhibited

a different set of tactics and contexts. This compression relied on a procedure for

133

redescribing action sequences in terms of use-driven visual concepts, using pattern

grouping algorithms to extract offensive and defensive action sequences, and subdi-

viding the pattern grouping algorithm output based on the number of pieces on the

board and whether a state belonged to the opening or endgame. In other words,

extracting the use-driven concepts required task-specific processing. Regardless, ap-

plication of the principle did separate game states in a meaningful way that enabled

the identification of use-driven concepts and tactics, albeit with a certain level of

human processing.

If the equivalence class principle had no merit, one would expect that no level of

processing or no consistent procedure for processing would extract useful concepts.

Thus, the evidence supports the conclusion that the equivalence class principle has

merit. This leads to questions about the conditions under which the equivalence class

principle fails, the conditions under which it succeeds, and the level of processing

required for the equivalence class principle to yield meaningful results.

Tic-tac-toe provides examples of when the equivalence class principle fails to ex-

pose visual concepts. For instance, most draw tree roots do not exhibit a visual

pattern. This may be because the roots for paths to wins exhibit visually-salient

patterns, and the draw tree roots are simply states that do not exhibit patterns with

strategic significance. Alternatively, the draw tree roots might exhibit a set of mean-

ingful patterns, just as the forced avoidance roots within a single five men's morris

category exhibit multiple sets of tactics. If this were true, more processing would be

required to identify the set of meaningful patterns.

The avoidances of three-move paths to a win in tic-tac-toe share a common pattern

in that 0 can place its mark in a position that creates the context associated with

a three-move path to a win, but using visual concepts to describe this pattern starts

to become convoluted. The members of this category can more easily be described

as a set of special cases. In essence, the board diagrams in this category encode

enough information to distinguish them from other tic-tac-toe states, but making

this distinction requires processing. The amount of processing required to distinguish

between different types of states may simply increase as the length to the goal in-

134

creases, regardless of the game. This observation might hold in five men's morris as

well, suggesting that the extraction of tactical information from visual features may

require more processing for states that are further away from goals. Regardless, it

suggests that classes of states obtained using the equivalence class principle require

varying levels of processing.

Outside of the domain of games, determining a priori how well the equivalence

class principle will perform in a particular situation may be like trying to determine

a priori whether Occam's razor will hold. Although Occam's razor has guided sci-

entists for centuries, numerous well-documented cases exist in which Occam's razor

stalled scientific progress by leading scientists to favor the wrong models (Gernert,

2007; Knowles, 1990). The inability to predict when an inductive bias such as the

equivalence class principle or Occam's razor will hold may in fact be a more general

feature of inductive biases.

Because the equivalence class principle exploits situations in which two representa-

tions express the same information in different ways, the only means for determining

whether the principle applies may be to test whether the principle reveals easily de-

tectable correlations. However, the efficacy of the equivalence class principle depends

not only on whether two representations encode the same information in different

ways, but also on how implicitly or explicitly the representations encode that infor-

mation. When the equivalence class principle fails to produce easily detectable con-

nections between representations, it is unclear how to determine whether the failure

is due to a lack of shared information or due to implicit encoding of the information.

One case in which implicit encoding may be the issue is the notoriously difficult

KBBKN endgame. To give the reader a sense of its difficulty, a chess endgame

expert spent a year studying this endgame database to determine whether he could

teach himself the endgame (Roycroft, 1988). At the end of the year, he still did not

understand it well enough to successfully execute a winning strategy from all winning

positions.

Chess board diagrams for the KBBKN endgame implicitly encode the paths to

a win but may not do so in a manner that facilitates application of the equivalence

135

class principle. With the rules of the game and enough processing power, the board

diagrams contain enough information to calculate the optimal path to a win via

brute-force search, so the board diagrams do implicitly store this information. How-

ever, when information is encoded this implicitly, the equivalence class principle may

not be able to extract information that provides a computational advantage over a

brute-force search in the endgame database. If, however, the board diagrams encode

information about the paths to a win in a way that requires less processing than a

brute-force search in the state space, using the equivalence class principle could re-

veal use-driven concepts that would provide computational savings. While identifying

and using such a set of use-driven concepts might require less computational effort

than a full brute-force search, identifying the use-driven concepts might still require

significant computational effort.

This thesis provides an initial exploration into the strengths and limitations of the

equivalence class principle. It provides evidence that the principle can reveal offensive

and defensive tactics and strategically-important use-driven concepts in a variety of

games. Identifying use-driven concepts currently requires a human to analyze sets

of board diagrams and action sequences, but the equivalence class principle provides

consistent enough results to warrant further study. Applying it to more games and

to a more diverse set of domains will ultimately reveal its power and limitations.

Use-driven concepts were introduced in the first chapter as concepts that make

problems in complex domains more tractable. The domain of game analysis provides

a task-specific characterization of what it means to be a valuable use-driven concept.

In this case, the task of interest is concisely storing tactical information and any

concept that helps to perform that task is a use-driven concept. More specifically, a

use-driven concept provides a vocabulary for concisely summarizing action sequences

and the contexts in which those action sequences apply. The most valuable use-driven

concepts provide the highest levels of compression. While a use-driven concept's

ability to compress important domain-specific information is probably an effective

criteria for ascertaining a concept's value in a variety of situations, the exploration of

use-driven concept formation in a diverse set of domains will most likely result in a

136

set of criteria for identifying valuable use-driven concepts.

137

138

Appendix A

Using Pattern Grouping

Algorithms to Expose Concepts in

the State Space

In this appendix, I describe an alternate use case for the pattern grouping algorithms

in which the user interactively performs computer-aided discovery. To employ this

mode of interactive computer-aided discovery, the user first identifies a frequently-

occurring topological pattern in a network and specifies a set of attributes that nodes

and edges in the pattern must possess. The computer then collapses and labels all

instance of the user-specified pattern, creating a simplified network. After that, the

user can identify another frequently-occurring topological pattern in the simplified

network, and the computer can in turn collapse instances of that pattern within the

simplified network. When the topological patterns identified through this interactive

process have meaning in the domain of interest, the process can be seen as identifying

concepts. For example, I used this technique to identify two concepts that play an

important role in tic-tac-toe: forced avoidances and forced avoidances that lead to a

fork to a win.

This type of interactive computer-aided discovery has not been thoroughly studied,

but I used it to develop the pattern grouping algorithms and labels described in section

3.1. The discussion in this appendix has been included because one could easily apply

139

this mode of interactive computer-aided discovery to other types of networks, and it

seems interesting enough to warrant more study. A more thorough examination of

this use case falls outside of the scope of this thesis.

I developed the pattern grouping algorithms in section 3.1 by iteratively applying

early versions of the pattern grouping algorithms to small subtrees of the tic-tac-

toe state space and examining those subtrees for topological patterns. Through this

process, I created specialized versions of the algorithms from section 3.1. Applying the

specialized versions to lose tic-tac-toe yielded insights that inspired the generalized

versions of the pattern grouping algorithms that I used throughout the thesis. In the

remainder of the appendix, I describe this progression and highlight the rediscovery

of the forced avoidance concept and the concept of a forced avoidance that leads to

a fork to a win.

To begin the computer-aided discovery process, I started with the one-move-to-a-

goal grouping algorithm from Section 3.1.1, which I had previously developed while

analyzing pong hau k'i. I applied this algorithm to a portion of the tic-tac-toe state

space to obtain the simplified state space diagram shown in Figure A-1. This simpli-

fied diagram contains several instances of forks to a win. Based on this observation,

I wrote the first version of the fork pattern grouping algorithm from Section 3.1.2.1

Collapsing the forks in Figure A-I yields the simplified diagram shown in Figure A-

2. When I examined this diagram, I noticed that many nodes contain multiple children

with the same label. To create a cleaner version of the state space diagram, I grouped

these children into a single node to obtain the diagram shown in Figure A-3. Grouping

the children in this manner highlights the fact that a player often has only one move

that keeps her opponent from winning. In other words, grouping the children in this

manner highlights the concept of 'a forced avoidance. Based on this observation, I

wrote a specialized version of the avoidance pattern grouping algorithm that only

'In the interest of keeping the figures readable, I will sometimes show slightly smaller portions
of the simplified tic-tac-toe state space than what I considered when creating the algorithms. For
example, when I show a diagram that contains a subtree with a root that has four marks on the
board, I may have also considered a subtree with a root that has three marks on the board. Larger
portions of the state space simply contain more instances of the highlighted topological patterns of
interest.

140

recognizes forced avoidances. Applying this algorithm to the diagram in Figure A-

3 results in the diagram shown in Figure A-4a. Collapsing forced avoidances also

makes it possible to consider larger portions of the state space at once, as shown in

Figure A-4b.

In the simplified state space diagrams from Figure A-4, most uncollapsed nodes

lead to draw states. To create a cleaner picture of these state spaces, I created the

draw tree pattern grouping algorithm from Section 3.1.4. Applying this algorithm to

the diagrams in Figure A-4 yields the diagrams in Figure A-5.

After creating the draw tree pattern grouping algorithm, I generalized the one-

move-to-a-goal grouping algorithm to collapse parts of the state space that are one

move away from a fork to a win. For example, I collapsed instances in which X moves

next and X can create a fork to a win during its next turn. Figure A-6 shows examples

of the one-move-to-a-fork pattern. Creating this pattern grouping algorithm was the

first step toward creating the fully generalized N-move-to-a-goal grouping algorithm

described in Section 3.2.

By collapsing instances of the one-move-to-a-fork pattern, I created the simplified

state space diagram shown in Figure A-7, which exposes forced avoidances that en-

able a player to create a fork. Not having paid much attention to tic-tac-toe before

embarking on this project, I was surprised by the importance of this concept within

tic-tac-toe. The forced avoidance to a fork enables players to force a win in three

moves, and it often enables X to force a win by creating a forced avoidance during

its second move of the game.

After creating a pattern grouping algorithm that collapsed forced avoidances that

lead to a fork in one move, I generalized the fork and one-move-to-a-goal algorithms

so that they could be applied recursively. Thus, I created the initial version of the

recursive algorithms described in Section 3.2. In this version, only the N-move-to-

a-goal and fork grouping algorithms were applied recursively. The draw tree and

forced avoidance grouping algorithms were applied once between the first and second

repetition of the other two algorithms.

After applying this sequence of algorithms to lose tic-tac-toe, it became apparent

141

Lose '~~-- ~ -E~-o"e Ls -'Lose I

S Wn n N n

Draw Draw

Figure A-1: A portion of the tic-tac-toe state space that contains forks that lead to a win for X. Here, nodes labeled "win" are

paths that lead to a win for X in one move and nodes labeled "lose" are paths that lead to a win for 0 in one move. This view

of the state space inspired the fork pattern grouping algorithm.

Figure A-2: A subtree of the tic-tac-toe state space after the fork pattern grouping algorithm has been applied. Forks to a win
for X are labeled "X Fork" and forks to a win for 0 are labeled "0 Fork." This version of the state space exposes nodes that
have multiple children with the same label, which inspired another pattern grouping algorithm.

Draw Draw

Figure A-3: Collapsing children that share the same "win" or "lose" label exposes

the forced avoidance pattern. Here, a node's outline indicates which player moves

next. A solid outline indicates that X moves next, and a dotted outline indicates

that 0 moves next. The label "win" again indicates that X wins, while the label

"lose" indicates that X loses. In this diagram, a forced avoidance consists of a parent

node with two child nodes: one (highlighted) child node that leads to a loss for the

player who moves next and one child node that does not lead to a loss for that player.

Instances of this pattern inspired the forced avoidance pattern grouping algorithm.

144

Draw Draw

------- - --kF rk
Fork Fok-- Fr

XFo- -- - - - N F rk-k F or -- --

Draw Draw Draw

(b)

Figure A-4: (a) The state space from Figure A-3 after the forced avoidances have
been collapsed. Here, forced avoidances are depicted as tic-tac-toe boards where the
incorrect moves are marked with a small horizontal line. (b) Collapsing the forced
avoidances makes it possible to view larger parts of the state space at once. In
both subfigures, the majority of the uncollapsed nodes lead to draw states. These
depictions of the state space inspired the draw tree pattern grouping algorithm.

145

--- - - ---- -

------ --

X Fork Draw X Fork

Draw

X Fork Draw X Fork

Draw 0 Fork Draw 0 Fork Draw

Draw X Fork X Fork

(b)

Figure A-5: Collapsing draw trees within the state spaces diagrams from Figure A-4

creates the diagrams shown here. These diagrams highlight decision points that affect

the outcome of the game.

146

X Fork

X Fork

Draw 0 Fork Draw 0 Fork Draw

Draw X Fork X Fork

Figure A-6: Each highlighted set of nodes displays a situation in which X-can create a
fork to a win during its next move. This observation inspired the one-move-to-a-fork
pattern grouping algorithm. This algorithm collapses subtrees in which a player can
select at least one move that enables her to force a win.

Draw X Fork X Fork
inOne inOne

X Fork X Fork
in One in One

Draw X Fork Draw X Fork
in One in One

Figure A-7: Collapsing
avoidances that allow a
concept in tic-tac-toe.

Draw Fork
in One

(Fork
in One

Draw X Fork
in One

instances of the one-move-to-a-fork pattern reveals forced
player to create a fork in one move. This is an important

147

Draw

X Fork Draw X Fork

that a forced avoidance is a special case of a more general pattern that involves

both forced and multi-choice avoidances. Because lose tic-tac-toe did not have nearly

as many forced avoidances as tic-tac-toe, I generalized the forced avoidance pattern

grouping algorithm to recognize instances of both forced and multi-choice avoidances.

Thus, I created the avoidance pattern grouping algorithm described in Section 3.1.3.

Similarly, early versions of the N-move-to-a-goal and fork-to-an-N-move-win algo-

rithms labeled all collapsed subtrees as paths to a win and forks to a win, without

considering subtree features. Subsequent versions of the algorithms differentiated be-

tween forced-move and decision-point subtree roots and labeled collapsed subtrees

based on. the number of moves to a win. I began recursively applying the avoidance

pattern grouping algorithm, and I again encountered segmented state space diagrams

such as those in Figure A-4 that were dominated with paths leading to a draw. To ad-

dress this situation, I created a recursive version of the draw tree grouping algorithm

that collapsed subtrees after each iteration of the avoidance grouping algorithm and

labeled subtrees based on the look-ahead required to force a draw. This final step

created the version of the algorithms described in Chapters 3, 5, and 6.

Throughout the development process, exploring partially collapsed versions of the

state space exposed topological patterns and game-related concepts such as forced

avoidances. It inspired the creation of new pattern grouping algorithms that made

it possible to visually explore increasingly large portions of the state space. In the

future, this mode of interactive computer-aided discovery could be applied to other

domains to identify high-level structure, expose concepts, and hierarchically organize

networks.

148

Appendix B

Symbiotic Sets of Representations

The cognitive linking of representations creates a whole that is more than

the sum of its parts.... It enables us to see complex ideas in a new way

and apply them more effectively.

- James J. Kaput, 1989

In my work on the equivalence class principle, I attempted to computationally

characterize a mechanism for building connections between representations. The

ideas behind the equivalence class principle emerged during an effort to taxonomize

the space of knowledge representations. This work revealed that humans often create

multiple representations to describe the same domain. It also suggested that sets of

representations become powerful when one can build connections between and trans-

late between representations in a set. In this appendix, I review previous efforts to

characterize the space of representations, highlight research on sets of representa-

tions, and propose three computational properties that make sets of interconnected

representations powerful.

149

B.1 Characterizing the Space of

Representations

A representation is a formal system that

* Makes certain entities, relationships, and types of information explicit (Marr,

1982; Winston, 1993),

* Exposes constraints inherent in a domain or problem (Winston, 1993),

" May make other information hard to recover (Marr, 1982), and

* Supports a specific set of operations (Larkin & Simon, 1987; Boshuizen &

(Tabachneck-)Schiff, 1998).

Most methods used to construct a taxonomy of representations involve analyzing

each representation individually and identifying features that make each representa-

tion distinct or powerful (see Cox, 1996 and Ainsworth, 2006 for reviews). Researchers

have created taxonomies of this sort using "a variety of methods (e.g. intuition, anal-

ysis of domain properties, and card sort techniques with subjects), and although there

is some overlap between the taxonomies, no one classification is universally accepted.

[The taxonomies] differ in domains addressed, the granularity with which representa-

tions are described, and the task for which they were created" (Ainsworth, 2006, pp.

10).

For example, Lohse, Biolsi, Walker, and Rueler (1994) analyzed how human sub-

jects classified and rated sixty visual representations. Subjects rated the representa-

tions using the following scales:

" spatial versus non-spatial,

* easy versus hard to understand,

* numeric versus non-numeric,

" continuous versus discrete,

150

e concrete versus abstract,

e nontemporal versus temporal,

* attractive versus unattractive,

" emphasis of wholes versus parts,

* displaying of static structure versus dynamic processes, and

* conveying of large versus small amounts of information.

Using both types of human data, the authors identified eleven types of visual repre-

sentations, including graphs, tables, process diagrams, and cartograms. The resulting

classification system separated some visual representations based on the type of infor-

mation conveyed and others based on the mechanisms used to convey the information.

Instead of identifying classes of representations, De Jong et al (1998) proposed

five dimensions for characterizing representations: perspective, precision, modality,

specificity, and complexity. A representation's perspective describes the types of

concepts that play a central role within the representation. For example, circuits can

be described from a functional perspective that focuses on the circuit's purpose, a

behavioral perspective that focuses on each component's input-output behavior, or a

physical perspective that focuses on each component's internal physics. Perspective is

closely related to a representation's ontology, which is an enumeration of the concepts

used by a representation.

Precision describes the level of abstraction and distinguishes between qualitative

and quantitative information. Modality describes the form of the representation, such

as text, animations, diagrams, graphs, formula, real-life videos, and tables. Specificity

(Stenning & Oberlander, 1995) is intended to capture computational differences be-

tween representations and explain why one modality is better than another for de-

scribing a particular type of information. Finally, complexity measures the amount

of information presented using a single representation.

Alpay, Giboin, and Dieng (1998) developed a set of features for describing repre-

sentations within collaborative settings. Features such as internal vs. external and

151

shared vs. unshared apply specifically to representations used in inter-personal con-

texts. In contrast, the level of abstraction and degree of permanence apply regardless

of the context. The degree of permanence distinguishes between representations that

are reused in many contexts (e.g., frameworks) and ones that are built dynamically

to describe a particular situation or scenario.

Davis, Shrobe, and Szolovits (1993) proposed five purposes for representations.

Representations provide a simplified, compressed characterization of real-world in-

formation and offer a set of ontological commitments that dictate how and what to

attend to in the world. They also support a mechanism for forming inferences and

favor particular types of inferences. Finally, representations support efficient compu-

tation and serve as a medium for communication.

Boshuizen and (Tabachneck-)Schijf (1998) break representations into two parts:

the format used to record, store, and present the information, and the operators

available for modifying the information. This breakdown highlights computational

differences between informationally equivalent representations, because two represen-

tations that share the same information content but have different operators will have

different computational properties.

Larkin and Simon (1987) and Stenning and Obderlander (1995) also offer com-

putational explanations for why different representations lend themselves to different

types of tasks. Larkin and Simon introduced the idea of informational equivalence

and compared informationally equivalent diagrams and logical representations. They

concluded that diagrams provide computational benefits because they localize in-

formation and reduce the need for search during problem solving. Stenning and

Oberlander highlight the difference in abstraction between diagrams and linguistic

representations. For example, the abstract concept of "to the side" can be repre-

sented linguistically, but a pictorial representation will display an item either to the

left or to the right.

152

B.2 Related Work on Sets of Representations

My taxonomy of representations highlights a representation's ontology, format, and

operators, but instead of attempting to classify or characterize the differences between

representations, I seek to define characteristics that a set of representations must share

to make it possible to build connections between members of the set. In this section,

I review other research on sets of representations.

Ainsworth (1999, 2006) provides an organizational structure for studying sets of

related representations based on the roles played by each representation in the set.

More specifically, Ainsworth studies the circumstances under which learners benefit

from a learning environment that highlights multiple representations within the same

domain. She proposed that within a learning or problem-solving environment, sets

of representations are beneficial when they perform one or more of the following

functions: (1) when they support complementary information or processes, (2) when

a familiar representation makes it easier to interpret an unfamiliar representation or

removes ambiguity from an otherwise ambiguous representation, or (3) when multiple

representations provide different views that lead to a deeper conceptual understanding

of a domain.

Although the ability to translate between multiple representations is a notewor-

thy characteristic of expert behavior (Kozma, Chin, Russell, & Marx, 2000), learning

how to connect representations can be challenging. Kozma et al. (2000, pp. 6)

suggests that "the meaning of a representation is often generated by coordinating

features within and across multiple representations." However, research on multi-

representational learning environments indicates that learners find the task of in-

tegrating representations challenging, and suggests that the extent to which multi-

representational learning environments help learners to understand a domain depends

the extent to which learners stop treating the representations in isolation and start

building connections between the representations (see (Ainsworth, 2006) for a re-

view). Educational research on multiple external representations seeks to identify the

conditions under which multi-representational learning environments promote the cre-

153

ation of connections between representations, but such work is ongoing (Ainsworth,

2006; Goldman, 2003). While the educational research focuses on identifying features

within a learning environment that facilitate the creation of connections between

representations, the emphasis in my work has been to characterize the features that

representations must share to make such connections possible.

B.3 Characterizing What Makes Sets of

Representations Powerful

By analyzing approximately one hundred representations used either by humans to

study math, science, engineering, or music, or by computers to reason about causality,

space, action, or time, I determined that humans tend to exploit sets of representa-

tions within the same domain, while computers traditionally use only one type of a

representation at a time. I observed that the power inherent in a set of representa-

tions lies in the ability to translate between the representations. In this section, I

propose a set of computational properties that enable sets of representations to form

an interconnected whole that is greater than the sum of its parts.

Within this section, I use ontology to describe a representation's core set of con-

cepts. Format refers to the medium used to describe a representation. For example,

plots and diagrams are examples of visual formats, while equations and logic are ex-

amples of grammar-based formats. Finally, I define a symbiotic set of representations

to be a set of representations whose members

e Share an overlapping set of core concepts,

* Share a translation mechanism, and

e Support complementary operators.

Examples of symbiotic sets include chemical formula, Lewis diagrams, and three-

dimensional models in chemistry; plots, difference equations, block diagrams, and

Z-transforms in signal processing; force diagrams, plots, and equations in physics;

154

and cartesian planes, polar coordinate systems, algebraic equations, and geometrical

representations' in mathematics.

The first of the three criteria requires that representations in a symbiotic set have

interrelated ontologies. For example, the cartesian plane representation features con-

cepts such as above, below, and steepness of a curve, while the equation representation

features concepts such as coefficients, terms, and addition. Because both represen-

tations also share concepts such as slopes and intercepts, these representations have

overlapping ontologies. In this case, unshared concepts tend to capture visual aspects

of the cartesian plane and algebraic aspects of the equations, while shared concepts

highlight connections between the two representations.

The shared concepts support translation, which is the second component of a

symbiotic set. In the cartesian plane example, numerical descriptions of a line's slope

and intercept within the equation representation translate directly into visual features

within the cartesian plane. This correspondence enables one translate an equation of

a line into a cartesian plot by identifying the position of the y-intercept, using the

slope and y-intercept to plot a second point, and connecting the two points to form

a line.

The equation and cartesian plane representations support complementary sets

of operators that facilitate mathematical and visual operations, respectively. These

complementary sets of operators make it easier to, for example, identify minima and

maxima in the cartesian plane representation and compute the sum of two functions in

the equation representation. Because the representations have overlapping ontologies,

support a translation mechanism, and facilitate different types of operations, they

form a symbiotic set of representations that provide interconnected perspectives of

mathematical concepts.

While analyzing sets of representations, I observed that a representation's format

can provide a domain-general mechanism for translation. This mechanism relies on

creating one-to-one correspondences between elements within each format. For exam-

1By a geometrical representation, I mean a representation with an ontology that emphasizes
planes, surfaces, and intersections without necessarily situating the surfaces within a coordinate
system.

155

ple, Figure B-1 provides three examples in which a production rule format translates

into a tree format. In this example, elements within the production rules map to

elements within the trees and provide a mechanism for translating between represen-

tations in both physics and natural language.

Some representations provide one-to-one correspondences with the real world

and with an abstract representation. These representations create a mechanism for

grounding concepts within an abstract representation's ontology. For example, the

Dienes blocks shown in Figure B-2 provide a representation that bridges between an

object-centric representation of number and a base-ten representation of number. The

number of large blocks translates into the ten's digit of the base-ten representation,

while the number of disconnected small blocks translates into the one's digit. At the

same time, the total number of small blocks provides an object-centric description

of the number thirteen. In the same way that Dienes blocks ground the meaning

of one's and ten's digits, animations of people throwing balls and cars rolling down

inclined planes ground the meaning of abstract concepts in physics. Symbiotic sets of

representations often have at least one member that grounds the meaning of abstract

concepts used by other members of the set.

The ability to translate between representations sometimes makes it possible to

performs tasks that would be impossible using only a single representation. For ex-

ample, if you wanted to build a circuit implementation of the top block diagram in

Figure B-3, but you did not have the correct components, one way to circumvent this

problem would be to create an alternate block diagram that uses different compo-

nents to perform the same function. This task can be accomplished by translating

the circuit into an equation representation, manipulating the equation, and translat-

ing the new form of the equation into a new block diagram. This translation process

relies on one-to-one correspondences between elements in the block diagrams and el-

ements in the equations. Translating from the block diagram representation to the

equation representation and performing the processing within the equation represen-

tation makes it possible to design equivalent block diagrams. For sufficiently complex

circuits, performing the equivalent manipulations entirely in the block diagram rep-

156

Particle Equations

n -, p* + W

w- - e- + ve | + v

Feynman Diagrams

Translates to

n n

Discrete Space

CFG Production Rules
S -> N VP

VP -> V N

V -> likes

N -* Bob I Mary

CCG Rules

Bob -> N

Mary -> N

likes -- V\N/N

Translates to

CFG Parse Trees
S

N VP

/ VNBob
likes Mary

Discrete Space

CCG Parse Trees

Translates to Bob

N

likes

V\N/N

Discrete Space

(c)

Figure B-1: Three examples of a representation with a production rule format trans-
lating into a representation with a tree format. These translations rely on one-to-one
correspondences between attributes of the formats and do not depend on domain-
specific information.

157

Mary

N

Figure B-2: The Dienes block representation provides a mechanism for translating
between objects in the real world and the base-ten representation for number. The

single large block translates into a ten's digit of one, while the three separate small

blocks translate into a one's digit of three, creating a base-ten description of the
number thirteen.

resentation would be impossible because the block diagram representation does not

support the correct set of operators.

While studying the development of mathematical representations and represen-

tations within artificial intelligence, I observed that the format and ontology of a

representation appear to constrain the types of changes that can be made to it when

using it as a base for developing a new representation. This agrees with Richard

Feynman's observation in his nobel lecture that different representations in physics

"suggest different kinds of modifications." For example, first order logic builds on

predicate logic by replacing variables with predicates. In predicate logic, variables

map to either true or false. In first order logic, these variables are replaced by pred-

icates that take an object as an argument and map that the object-predicate pair

to either true or false. This makes it possible to express statements such as hasRed-

Hair(Bob) = true. In this example, grammar constrains what types of changes can be

made to predicate logic to create other types of logic. Studying the historical develop-

ment of representations and examining how their format and ontology constrain the

types of incremental changes that can be made when creating a new representation

may shed light on the mechanisms that enable representational discovery.

In my efforts to characterize the space of representations, I created a taxonomy of

approximately one hundred representations, introduced the concept of a symbiotic set

of representations, and identified a set of computational criteria that make it possible

to form connections between members of a symbiotic set and thus to create a whole

158

I
S-2z-1 + z- 2 (1 -z 1)(1 -z 1)

I

Figure B-3: In signal processing, creating a set of equivalent block diagrams requires
translating the first block diagram into an equation, algebraically manipulating the
equation into a new form, and translating the new form back into a second function-
ally equivalent block diagram. The translations involve one-to-one correspondences
between parts of the block diagrams and parts of the equations.

159

that is greater than the sum of its parts. I also discovered a domain-general mechanism

for translating between representations by exploiting one-to-one correspondences in

a representation's format. Finally, I proposed a new direction for future research on

representational discovery.

160

Bibliography

Ainsworth, S. (1999). The functions of multiple representations. Computers &
Education, 33, 131-152.

Ainsworth, S. (2006). Deft: A conceptual framework for considering learning with
multiple representations. Learning and Instruction, 16(3), 183-198.

Allen, J. (1989). A note on the computer solution of connect-four. In D. Levy
& D. Beal (Eds.), Heuristic Programming in Artificial Intelligence: The First
Computer Olympiad (p. 134-135). Ellis Horwood Limited.

Allis, L. V. (1988). A knowledge based approach of connect four. the game is solved:
white wins. Master's thesis, Vrije Universiteit.

Allis, L. V. (1992). Qubic solved again. In H. van den Herik & L. Allis (Eds.), Heuris-
tic Programming in Artificial Intelligence 3: The Third Computer Olympiad
(p. 192-204). Ellis Horwood.

Allis, L. V. (1994). Searching for solutions in games and artificial intelligence. Ph.D.
thesis, University of Limburg.

Allis, L. V., van den Herik, H., & Herschberg, I. (1991). Which games will survive?
In D. Levy & D. Beal (Eds.), Heuristic Programming in Artificial Intelligence
2: The Second Computer Olympiad (p. 232-243). Ellis Horwood Limited.

Alpay, L., Giboin, A., & Dieng, R. (1998). Accidentology: An example of problem
solving by multiple agents with multiple representations. In M. W. van Someren,
P. Reimann, H. P. A. Boshuizen, & T. de Jong (Eds.), Learning with Multiple
Representations (p. 152-174). Pergamon.

Bain, M., & Srinivasan, A. (1995). Inductive logic programming with large-scale
unstructured data. Machine Intelligence, 14, 233-267.

Bell, R. C. (1979). Board and table games from many civilizations. New York, NY:
Dover Publications, Inc.

Boshuizen, H. P., & (Tabachneck-)Schiff, H. J. (1998). Problem solving with multiple
representations by multiple and single agents: An analysis of the issues involved.
In M. W. van Someren, P. Reimann, H. P. A. Boshuizen, & T. de Jong (Eds.),
Learning with Multiple Representations (p. 137-151). Pergamon.

Burnside, E. S., Davis, J., Chhatwal, J., Alagoz, 0., Lindstrom, M. J., Geller, B. M.,
et al. (2009). Probabilistic computer model developed from clinical data in
national mammography database format to classify mammographic findings.
Radiology, 251, 663-672.

Buro, M. (1999). From simple features to sophisticated evaluation functions. In
H. van den Herik & H. Iida (Eds.), Lecture Notes in Computer Science: Com-

161

puters and Games (Vol. 1558, p. 126-145). Springer Berlin / Heidelberg.
Buro, M. (2003). The evolution of strong Othello programs. In R. Nakatsu &

J. Hoshino (Eds.), Entertainment Computing - Technology and Applications.
Springer.

Cazenave, T. (2001). Generation of patterns with external conditions for the game
of Go. In Advances in Computer Games 9 (p. 277-296).

Coen, M. H. (2005). Cross-modal clustering. In Twentieth National Conference on
Artificial Intelligence (AAAI'05).

Coen, M. H. (2006). Self-supervised acquisition of vowels in american english. In
Twenty First National Conference on Artificial Intelligence (AAAI'06).

Coen, M. H. (2007). Learning to sing like a bird: An architecture for self-supervised
sensorimotor learning. In Twenty Second AAAI Conference on Artificial Intel-
ligence (AAAI-07).

Cohen, D. I. A. (1972). The solution of a simple game. Mathematics Magazine, 45,
213-216.

Collins, G. (1987). Plan creation: Using strategies as blueprints. Ph.D. thesis, Yale
University, Department of Computer Science.

Cox, R. (1996). Analytical reasoning with multiple external representaitons. Ph.D.
thesis, University of Edinburgh.

de Jong, T., Ainsworth, S., Dobson, M., van der Hulst , A., Levonen, J., Reimann, P.,
et al. (1998). Acquiring knowledge in science and mathematics: The use of mul-
tiple representations in technology-based learning environments. In M. W. van
Someren, P. Reimann, H. P. A. Boshuizen, & T. de Jong (Eds.), Learning with
Multiple Representations (p. 9-40). Pergamon.

Epstein, S. L. (1991). Deep forks in strategic maps. In D. Levy & D. Beal
(Eds.), Heuristic Programming in Artificial Intelligence 2: The Second Com-
puter Olympiad. Ellis Horwood.

Epstein, S. L. (2005). Thinking through diagrams: Discovery in game playing. In
Spatial Cognition IV (p. 260-283). Springer-Verlag.

Epstein, S. L. (June 18, 2010). Personal communication.
Epstein, S. L., & Keibel, J. H. (2002). Learning on paper: Diagrams and discovery

in game playing. In Diagrams (p. 31-45). Callaway Gardens, GA: Springer
Verlag.

Fajtlowicz, S. (1988). On conjectures of Graffiti. Discrete Mathematics, 72, 113-118.
Fang, H., Hsu, T., & Hsu, S. (2002). Construction of chinese chess endgame databases

by retrograde analysis. In CG '00: Revised Papers from the Second Interna-
tional Conference on Computers and Games (p. 96-114). London, UK: Springer-
Verlag.

Finkelstein, L., & Markovitch, S. (1998). A selective macro-learning algorithm and
its application to the NxN sliding-tile puzzle. Journal of Artificial Intelligence
Research, 8, 223-263.

Fhrnkranz, J. (2001). Machine learning in games: A survey. In J. Fiirnkranz &
M. Kubat (Eds.), Machines that Learn to Play Games (pp. 11-59). Huntington,
NY, USA: Nova Science Publishers, Inc.

Gasser, R. (1991). Applying retrograde analysis to nine mens morris. In D. Levy &

162

D. Beal (Eds.), Heuristic Programming in Artificial Intelligence 2: The Second
Computer Olympiad (p. 161-173). Ellis Horwood Ltd.

Gasser, R. (1993). Nine men's morris is a draw. Posting to rec.games.abstract.
Available from http: //www. ics.uci. edu/~eppstein/cgt/morris. html

Gasser, R. (1996). Solving nine mens morris. Computational Intelligence, 12, 24-41.
Gernert, D. (2007). Ockham's razor and its improper use. Journal of Scientific

Exploration, 21, 135-140.
Gobet, F., & Charness, N. (2006). Chess and games. In Cambridge Handbook on

Expertise and Expert Performance (p. 523-538). Cambridge, MA: Cambridge
University Press.

Goldman, S. R. (2003). Learning in complex domains: when and why do multiple
representations help? Learning and Instruction, 13, 239-244.

Guid, M., Mozina, M., Sadikov, A., & Bratko, I. (2010). Deriving concepts and strate-
gies from chess tablebases. In Lecture Notes in Computer Science: Advances in
Computer Games. Springer Berlin / Heidelberg.

Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators. Machine
Learning, 3, 285-317.

Kaneko, Y. K., T., & Kawai, S. (2003). Automated identification of patterns in
evaluation functions. In H. J. van den Herik, H. Iida, & E. A. Heinz (Eds.), Ad-
vances in Computer Games: Many Games, Many Challenges. Kluwer Academic
Publishers.

Karmiloff-Smith, A. (1995). Beyond modularity: A developmental perspective on
cognitive science. The MIT Press.

Kemp, C. (2007). The acquisition of inductive constraints. Ph.D. thesis, MIT.
King, R. D., Muggleton, S. H., Srinivasani, A., & Sternberg, M. J. E. (1996).

Structure-activity relationships derived by machine learning: The use of atoms
and their bond connectivities to predict mutagenicity by inductive logic pro-
gramming. Proceedings of the National Academy of Sciences, 93, 438-442.

Knowles, D. (1990). Explanation and its limits. Cambridge University Press.
Kojima, T. (1998). Automatic acquisition of Go knowledge from game records: De-

ductive and evolutionary approaches. Ph.D. thesis, University of Tokyo.
Kojima, T., Ueda, K., & Nagano, S. (1997). Flexible acquisition of various types of

knowledge from game records: Application to the game of Go. In In Proceedings
of the IJCAI-97 Workshop on Using Games as an Experimental Testbed for AI
Research (pp. 51-57).

Kojima, T., Ueda, K., & Nagano, S. (2000). Flexible acquisition of various types
of Go knowledge. In H. I. H.J. van den Herik (Ed.), Games in AI Research
(p. 221238). Universiteit Maastricht, Maastricht.

Korf, R. E. (1985). Macro-operators: a weak method for learning. Artificial Intelli-
gence, 26, 35-77.

Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and
tools in the chemistry laboratory and their implications for chemistry learning.
Journal of the Learning Sciences, 9(2), 105-143.

Kulkarni, D., & Simon, H. A. (1990). Experimentation in machine discovery. In

163

J. Shrager & P. Langley (Eds.), Computational Models of Scientific Discovery
and Theory Formation. San Mateo, CA: Morgan Kaufmann.

Landau, B., Smith, L. B., & Jones, S. S. (1988). The importance of shape in early
lexical learning. Cognitive Development, 3, 299-321.

Langley, P. (1981). Data-driven discovery of physical laws. Cognitive Science, 5,
31-54.

Langley, P. (1998). The computer-aided discovery of scientific knowledge. In First
International Conference on Discovery Science.

Larkin, J., & Simon, H. (1987). Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, 11(1), 65-100.

Lenat, D. B. (1977). Automated theory formation in mathematics. In Fifth Interna-
tional Joint Conference in Artificial Intelligence (p. 833-842).

Levinson, R., & Snyder, R. (1991). Adaptive pattern-oriented chess. In L. Birnbaum
& G. Collins (Eds.), Proceedings of the 8th International Workshop on Machine
Learning.

Lock, E., & Epstein, S. L. (2004). Learning and applying competitive strategies. In
AAAI-04: 1 9 th National Conference on Artificial Intelligence (p. 354-359). San
Jose, CA.

Lohse, G. L., Biolsi, K., Walker, N., & Rueter, H. H. (1994, December). A classifica-
tion of visual representations. Communications of the ACM, 37(12), 36-49.

MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms.
Cambridge University Press.

Marr, D. (1982). Vision: A computational investigation into the human representation
and processing of visual information. New York: Henry Holt and Co., Inc.

McGovern, E. A. (2002). Autonomous discovery of temporal abstractions from interac-
tion with an environment. Ph.D. thesis, University of Massachusetts Amherst.

Minton, S. (1984). Constraint-based generalization: Learning gameplaying plans
from single examples. In Proceedings of the National Conference on Artificial
Intelligence (p. 251-254).

Minton, S. (1990). Quantitative results concerning the utility of explanation-based
learning. Artificial Intelligence, 42(2-3), 363-391.

Mitchell, F., Sleeman, D., Duffy, J. A., Ingram, M. D., & Young, R. W. (1997).
Optical basicity of metallurgical slags: new computer based system for data
visualisation and analysis. Ironmaking and Steelmaking, 24, 306-320.

Mitchell, T. M. (1980). The need for biases in learning generalizations (Technical
Report CBM-TR-117). Computer Science Department, Rutgers University.

Muller, M. (2002). Computer Go. Artificial Intelligence, 134, 145-179.
Murphy, G. L. (2002). The big book of concepts. Cambridge, MA: The MIT Press.
Nunn, J. (1994). Secrets of pawnless endings. Batsford.
Nunn, J. (1995). Secrets of minor piece endings. Batsford.
Ratterman, M. J., & Epstein, S. L. (1995). Skilled like a person: A comparison of

human and computer game playing. In Proceedings of the Seventeenth Annual
Conference of the Cognitive Science Society (p. 709-714).

Romein, J. W., & Bal, H. E. (2003). Solving the game of awari using parallel
retrograde analysis. IEEE Computer, 36, 26-33.

164

Roycroft, A. J. (1988). Expert against oracle. Machine Intelligence, 11, 347-373.
Sadikov, A., & Bratko, I. (2006). Learning long-term chess strategies from databases.

Machine Learning, 63(3), 329-340.
Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., et al.

(2007). Checkers is solved. Science, 317, 1518-1522.
Sei, S., & Kawashima, T. (1998). Memory-based approach in Go-program Katsunari.

In Complex games lab workshop.
Spelke, E. S. (1990). Principles of object perception. Cognitive Science, 14, 29-56.
Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic

reasoning: Logic and implementation. Cogntive Science, 19(1), 97-140.
Stoutamire, D. (1991). Machine learning, game play and Go, Technical Report TR

91-128 (Tech. Rep.). Case Western Reserve University.
Thompson, K. (1996). 6-piece endgames. International Computer Chess Association

Journal, 19, 215-226.
Valds-Prez, R. E. (1995). Machine discovery in chemistry: new results. Artificial

Intelligence, 74 (1), 191-201.
van den Herik, H. J., Uiterwijk, J. W. H. M., & van Rijswijck, J. (2002). Games

solved: now and in the future. Artificial Intelligence., 134 (1-2), 277-311.
Winston, P. H. (1993). Artificial Intelligence: 3rd edition. Reading, MA: Addison-

Wesley Publishing Company.
Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms.

Neural Computations, 8, 1341-1390.
Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1, 67-82.
Yee, R. C., Saxena, S., Utgoff, P. E., & Barto, A. C. (1990). Explaining temporal-

differences to create useful concepts for evaluating states. In Proceedings of
AAAI-90.

Zaslavsky, C. (1982). Tic-tac-toe and other three-in-a-row games, from ancient Egypt
to the modern computer. New York: Crowell.

Zytkow, J. M., & Simon, H. A. (1986). A theory of historical discovery: The con-
struction of componential models. Machine Learning, 1, 107-137.

165

