
Automating Abstraction Functions

by

Derek F. Rayside

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the ARCHIVES
MASSACHUSETTS INSTITUTE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY OF TECH IOLOGY

September 2010 OCT 0 5 2010

@ Derek F. Rayside, MMX. All rights reserved. LIBRARIES

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in

part.

Author ......................
Depd'rtment of

Electrical Engineering and Computer Science
August 31, 2010

Certified by ................. ........
Daniel Jackson

Professor
Thesis Supervisor

Accepted by...................
Professor Terry P. Orlando

Chairman, Department Committee on Graduate Students



Automating Abstraction Functions
by

Derek F. Rayside

Submitted to the Department of
Electrical Engineering and Computer Science

on August 31, 2010, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Data abstraction has been the dominant structuring paradigm for programs for decades. The
essence of a data abstraction is the abstraction function, which relates the concrete program
representation to its abstract meaning. However, abstraction functions are not generally
considered to be a part of the executing program. We propose that making abstraction
functions an executable part of the program can enable programmers to write clearer and
more concise programs with fewer errors.

In particular, we show that the object equality and hashing operations (which programmers
are required to write), can often be expressed more clearly and more concisely in terms
of the abstract state of the object. Getting these methods right has proven to be difficult
for programmers at all skill levels, from novice through expert. In a case study of the
standard Java libraries we show that rewriting the code with explicit declarative abstraction
functions (and generating equality and hashing methods automatically) removed object-
contract compliance faults previously found by Pacheco et al.

To make abstraction functions part of the executing program we develop four techniques
for the dynamic evaluation of abstraction functions written in a declarative first-order logic
with relations and transitive closure. We observe that the abstraction functions program-
mers write in practice may often be viewed as navigation queries on the heap, and two of
our techniques exploit this insight to synthesize executable code from declarative abstrac-
tion functions. The performance of our research prototype is within striking distance of
hand-written code.

Thesis Supervisor: Daniel Jackson
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Chapter 1

Introduction

This dissertation is a small part of a broader vision, shared by many researchers over many
years, of executable specifications. The goal of such research is to produce programs that
are more correct with less programmer effort. Such techniques may be applicable in do-
mains where the specifications are clearer and more concise than hand-written imperative
implementations would be.

As Hoare [47] has pointed out, executing specifications is, in general, next to impossi-
ble. However, in the last twenty-five years or so researchers have found a variety of ways
to specialize particular aspects of this general problem, including: restricting the specifica-
tion language; restricting the task for which the execution is to be used for; executing only a
subset of the specification language; executing only particular kinds of specifications; plac-
ing finite bounds on the execution; etc. We employ many of these kinds of specializations
in this dissertation.

The work presented here executes abstraction function specifications for the purpose of
object-contract compliance. This chapter introduces these concepts, gives a general overview
of the dissertation, and provides some historical context. Chapters 2 & 3 explain our ap-
proaches to executing abstraction functions. Chapters 4 & 5 deal with object-contract com-
pliance. Chapter 6 concludes.

1.1 Specifications

In the early 1970's researchers in specification languages became interested in separating
the meaning of an abstract data type from its concrete representation. For example, a
set of integers could be represented by an array or a binary tree or some other concrete
structure. It should be possible to specify a set of integers independently of the choice of
representation.

Two solutions to this challenge were developed, one in which the abstract values were
represented as terms in an algebra, and one in which the abstract values were represented
by sets and relations.



The algebraic approach was first presented by Steve Zilles on October 3, 1973, at a work-
shop at MIT organized by Barbara Liskov [40]. Zilles presented the algebraic specification
of a set of integers listed in Figure 1-1 (as recorded by Homing [48], who was in attendance
at the talk). In the algebraic approach operations on the abstract datatype are defined by
equations that relate them to other ADT operations. The algebraic approach was developed
by a number of people, including in the doctoral dissertations of Guttag [39] and Wing
[116], which eventually culminated in the Larch system [40].

Figure 1-1 Algebraic specification of a set of integers by Zilles [48]

Operators
Insert: Sets x Ints -> Sets
Remove: Sets x Ints -> Sets
Has: Sets x Ints -> Bools
Null: -> Sets

Relations
Has(Insert(s, i), j) = if i=j then True else Has(s, j)
Has(Remove(s, i), j) = if i=j then False else Has(s, j)
Has(Null , j) = False

In 1972 Hoare [46] proposed instead a model-based approach where the abstract values are
represented set-theoretically. Figure 1-2 lists the specification for a set of integers given by
Hoare [46]. In the model-based approach operations on the abstract datatype are defined
by set-theoretic operators such union (U), intersection (n), and membership (e). Our work
follows in this model-based tradition.

Figure 1-2 Model-based specification of a set of integers by Hoare [46]

s- insert(x) ' s U {x}
s remove(x) s:= s n -,x}
s has(x) xes

Hoare [46] then shows how to verify that an implementation of a set of integers as an array
conforms to the specification of Figure 1-2. Hoare's example implementation is listed in
Figure 1-3, where we have translated it into Java from Hoare's original Simula 67 [28]
listing. This program has an array, a, and a variable named size that records how many
slots of the array are currently being used. Integers are stored in the array in the order in
which they are added to the set. Lookup is by linear search.



Figure 1-3 A set of integers implemented with an array (Hoare [46])

class ArraylntSet implements IntSet I
int[] a = new int[100];
int size = 0;

void insert(int x) {
for (int i = 0; i < size; i++) { if (a[i] == x) return; I
a[size] = x;
size ++;

}
void remove(int x)

for (int i = 0; i < size ; i++)
if (a[i] == x) {

for (j=i+1; j < size; j++) (a[j-1] = a[j];}
size -- ;
return;

boolean contains(int x) {
for (int i = 0; i < size ; i++) { if (a[i] == x) return true;
return false;

Hoare [46] verifies that the example implementation of Figure 1-3 meets the specification
of Figure 1-2 by introducing an abstraction function, which we name Jf, that maps the
concrete program variables to the mathematical domain of the specification. (Elsewhere in
the literature this is sometimes referred to as an 'abstraction relation' or 'refinement rela-
tion' or 'simulation relation' [81] or 'coupling invariant'.) Figure 1-4 lists the abstraction
function that maps the concrete program variables of Figure 1-3 to the abstract values of
the specification in Figure 1-2. This example abstraction function is a set comprehension
that returns all integers in the array a between indices 0 and size-1.

Figure 1-4 Abstraction function for a set of integers represented by an array (Hoare [46])
Y(a, size) = { x : int | ] i (0 i < size A a[i] = x) }

Before performing the verification, Hoare [46] also introduces the idea of an invariant,
which is a formula that serves as both a pre-condition and a post-condition for every pro-
cedure that operates on the abstract datatype. In this array-implementation example the
invariant is simply the condition that 0 s size 100.

The verification that Hoare [46] performs is what is now known as a forwards (or down-
wards) simulation [118], and is depicted in the commutative diagram in Figure 1-5. We start
at concrete pre-state c and attempt to get to abstract post-state a' by two different paths: if
the two different paths both lead to a', then we say that the program P refines the specifi-
cation S. The first path is to apply the program P followed by the abstraction function A.
The second path is to apply the abstraction function A followed by the specification S.



Figure 1-5 Commutative diagram describing data refinement

Dennis [32] states the objective of this proof in the following formula (where I is the in-

variant introduced above):

V c, c', a I (I(c) A 91(c, a) A P(c, c')) => (3a' I I(c') A 91(c', a') A S(a, a'))

This kind of verification of a program against its model-based specification was the original

purpose of abstraction functions. The verification is usually done statically, as a mathemat-

ical exercise, and so there is no need to make the abstraction function executable. In this

dissertation we use abstraction functions as part of a definition of object equality, and so

they become an integral part of the program's computation. To support this integration we

develop techniques for executing declarative abstraction functions.

1.1.1 Specification Fields

In Hoare's original 1972 paper [46] an abstract data type has a single abstract value.

In modern specification languages, such LM3[40], Larch/C++ [62], JML [21, 63], Ja-

hob [59, 123], Spec# [11, 12] and JFSL [32, 119], an abstract data type may have multiple
specification fields (also known as modelfields), each of which has a value.

For example, the set of integers discussed above might have a specification field for the

elements of the set and another specification field for the size of the set. Each specification

field, then, requires its own abstraction function to compute its value from the concrete
state. We use the term field abstraction function and the symbol a for these functions. We

use the term object abstraction function and the symbol A( for the combination of these

individual specification field abstraction functions. If we consider the field abstraction

functions as predicates, as Yessenov [119] does, and also consider object abstraction func-

tions as predicates, as Dennis [32] does, then we could consider that an object abstraction

function is the conjunction of the relevant field abstraction functions.

If we use the term abstraction function without qualification then the intended meaning



should be clear from context. For example, Chapter 3 is about executing field abstraction
functions, whereas Chapter 4 is about defining object equality in terms of object abstraction
functions.

A bit of history. The idea of having variables that exist only in the specification and not
in the program is at least as old as Hoare's classic 1972 paper on data abstraction [46].
However, the particular incarnation of this idea as specification fields seem to have been
developed on the LM3 (Larch-Modula-3) project in the early 1990s. The preliminary de-
sign of LM3 in 1991 [14, 54] has specification fields, although not by that name and only
private. The first use of the term specification field that we can find is the paper [55, §3.4.4]
on the semantics of LM3 that Kevin D. Jones presented at the first Larch workshop [77] in
1992. The 1993 description of LM3 included in the Larch book [40] also includes specifi-
cation fields as we now know them.

To our knowledge, other Larch interface languages that pre-date LM3 do not have speci-
fication fields: for example, Larch/CLU [116, 117], Larch/Smalltalk [24], and LCL [109].
While later versions of Larch/C++ do have specification fields [62], the Larch/C++ docu-
mentation that pre-dates specification fields in LM3 does not [61].

Leino [65] developed techniques for reasoning (during verification) about scopes that con-
tain both specification fields and the concrete variables that they abstract. Similarly, our
users sometimes want to write abstraction functions that contain both abstract and con-
crete variables. While our system executes these abstraction functions without employing
Leino's ideas, our objective of synergy with static verification tools would be diminished if
such tools could not verify with these functions. So we have a debt of gratitude to his work
for helping our users have their cake and eat it too.

1.1.2 The JForge Specification Language

We use the JForge Specification Language (JFSL) in this work. JFSL is a model-based
behavioural interface specification language [41] developed by our colleagues and collab-
orators, Dennis [32] and Yessenov [119] of MIT's Software Design Group. JFSL may
be considered as a variant of Alloy [52] customized for the purpose of specifying Java
programs. A key point of the JFSL semantics is that Java fields are modelled as binary
relations, following Jackson [51]. For example, the assignment x.f = y creates the heap
reference x -> y, which is modelled as tuple (x, y) in binary relation f. Details of JFSL will
be introduced by example as we proceed.

1.1.3 Extensions to Abstraction Functions

Since Hoare's original paper introducing abstraction functions [46] researchers have gen-
eralized the idea in two different ways: into abstraction relations [43], or by augmenting



the specification with auxiliary history [74, 92] or prophecy [1] variables. These general-
izations support the verification of more sophisticated programs or specifications.

History variables are used when the abstract state is not directly computable from the con-
crete state, but is computable from some combination of the current concrete state and
some past concrete state(s). For example, consider a program that computes the mean
of a sequence of integers [84]. The program might be implemented so that the concrete
state contains only the sum of the sequence and the count of the number of elements in
the sequence. However, the specification might be defined in terms of the entire sequence.
History variables can be used to provide the extra information needed to map the concrete
state to its corresponding abstract state.

Prophecy variables are used when the specification involves non-determinism. Vaandrager
[112] gives the example of verifying a distributed summation algorithm. The algorithm
involves a spanning tree of distributed nodes. This spanning tree is not known to the code
until the algorithm has almost completed: its construction depends on the (unknown) com-
munication links, as well as the latency of the communication between nodes. The specifi-
cation includes a prophecy variable that predicts what the spanning tree will be.

Abstraction relations might be used in either of these cases instead of the auxiliary vari-
ables. There is now a well-established theory of data refinement formalizing abstraction
relations [9, 29, 46, 84, 85, 87].

Our work is based on only abstraction functions, and so is restricted to deterministic pro-
grams in which the abstract state is computable from the concrete state. The Forge [32]
tool that we use is also restricted in this way. In the words of Liskov and Wing [72]: 'for
most practical purposes, abstraction functions are adequate.'



1.2 Ongoing Example: Binary Search Tree of Integers

Like Zilles [48] and Hoare [46], we will also use a set of integers as our main example.
Figure 1-6 shows a Java interface IntSet for a set of integers annotated with specifications
written in JFSL that are similar to those given by Hoare [46] above in Figure 1-2. The
@SpecField annotation in Figure 1-6 introduces the specification field elts that represents
the set of integers modelled by the IntSet. To support verification, concrete implementations
of IntSet must provide a declarative abstraction function that defines the elts specification
field in terms of the concrete implementation variables.

Figure 1-6 Model-based specification of a set of integers (written in JFSL)

@SpecField("elts : set int")
interface IntSet {

@Ensures("x in this.elts") void insert(int x);
@Ensures("x not in this.elts") void remove(int x);
@Returns("x in this.elts") boolean has(int x);

}

However, we will use a concrete implementation of this integer set specification based on
a binary search tree, rather than the array-based implementation used by Hoare [46] (Fig-
ure 1-3). Figure 1-7 lists the Java class declaration and its associated abstraction function
for our binary search tree example. The method bodies are elided because they are not
germane to our work (since we are not doing verification).

Figure 1-7 JForge abstraction function for binary search tree

@SpecField("elts : set int I this.elts = this.root.*(left+right).value")
class BinarySearchTree implements IntSet {

Node root;
void insert(int x) {
void remove(int x)
boolean has(int x) { ...

class Node { Node left, right; int value; I

The abstraction function for our binary search tree example is defined in the formula to
the right of the vertical bar in Figure 1-7: it is this.elts = this.root.*(left+right).value. The sub-
expression this.root selects the root node of the tree. The sub-expression *(Ieft+right) denotes
a binary relation that includes a tuple from every parent node to each of its descendants (in-
cluding itself, since * is reflexive transitive closure). The sub-expression this.root.*(left+right)
selects all nodes that are descendants of the root. The expression this.root.* (left+right).value
returns the set of integers associated with the tree's nodes. In Chapter 3 we will discuss
techniques for translating this expression into executable code.

Figure 1-8 lists our binary search tree example with manual implementations of the object
contract methods equals and hashCode and helper methods (e.g., iterator). This is the page



of code that the application programmer would have to write without our system. With
our system the programmer only needs to write the one line @SpecField annotation listed in
Figure 1-7 and the equals and hashCode methods are automatically synthesized.

The equals and hashCode method of Figure 1-8 are written in terms of a iterator method
that returns all of the integers stored in the set. The iterator uses the well-known text-book
non-recursive algorithm for in-order traversal. In this example, the iterator method serves
in the role of the abstraction function.

This iterator-based style is a relatively common way to write object contract methods for
well-known data structures: for example, the JDK Collections classes are written in this
style. In our observation, this style is not commonly used for other kinds of classes. The
more common style is to duplicate the iteration code (i.e., abstraction function) into each of
the object contract methods, which sometimes leads to discrepancies between equals and
hashCode as the program evolves and the dual maintenance requirement is forgotten about.

One major complexity that the hand-written code for this ongoing example does not have
to contend with is cyclic heap references. Because the example is a set of integers, rather
than objects, it is not possible to store the set inside itself. However, for many programmer-
defined classes the type system does not prevent heap cycles. For these classes extra work
must be done to ensure that the object-contract methods terminate. Writing this extra code
by hand is difficult and we have not observed programmers doing it in practice. For exam-
ple, the Javadoc comment for java.util.List says the following:

While it is permissible for lists to contain themselves as elements, extreme cau-
tion is advised: the equals and hashCode methods are no longer well defined
on such a list.

One of the advantages of our system is that it terminates correctly in the presence of cyclic
heap references, as discussed in Chapter 4 on equality and in Chapter 5 on hashing.



Figure 1-8 Binary Search Tree example with manual implementation of object contract
methods

class BinarySearchTree implements IntSet
Node root;
void insert(int x) {
void remove(int x) { ...

boolean has(int x) { ...

Iterator iterator ()
return new Iterator ()

Stack stack = new Stack (;
Node node = (BinarySearchTree. this). root;

boolean hasNext() { return !(node == null && stack.isEmpty());

Object next ()
assert hasNext();
while (node != null)

stack.push(node);
node = node. left;

assert !stack. isEmpty ()
Node n = stack.pop();
node = n.right;
return n. value;

void remove() throw new UnsupportedOperationException ();
};

boolean equals(Object other) {
if (other == null) return false;
if (other == this) return true;
if (!(other instanceof IntTree)) return false;
IntTree that = (IntTree)other;
if (this.size() that.size()) return false;
for (Iterator it = iterator ( ; it .hasNext(); ) {

if (!that.has(it.next())) return false;

return true;

int hashCode()
int hash = 17;
for ( Iterator it = iterator (; it .hasNext(; )

hash += it.next();
}
return hash;

class Node { Node left , right ; int value; }



1.3 Executable Specifications

The desire to automatically execute specifications is an old one and it has been approached
from many angles by many researchers. Here we discuss some parts of the literature that
have influenced this work.

In the 1980's Back [8], Back and von Wright [9], Hehner [44], Morgan [83, 85], Mor-
ris [86], and others showed how considering code and specifications in the same light
made the calculus of program refinement simpler and more systematic. Morgan [85] names
programs that include both specification statements and imperative statements mixed pro-
grams. While the researchers of this time considered mixed programs to be executable in
theory, they were primarily concerned with pencil-and-paper mathematical reasoning about
such programs rather than mechanized execution or analysis.

In the 1990's there was much discussion about specification animation and analysis. Hayes
and Jones [42] argued that attempting to make specifications executable in the general
case would result in compromised specification languages in which programmers would
write poor specifications that were biased towards particular implementation strategies.
Fuchs [37] argued that the benefits to the programmer in terms of specification validation
and understanding were strong and that executable specifications should be pursued as a
research direction. One might view systems such as Alloy [52] as evolving from these
debates. The kind of specification analysis and animation it performs are what Fuchs [37]
had in mind in terms of specification 'execution': that is, a model-theoretic evaluation that
produces concrete examples. In all of this, the discussion was focused on specifications
rather than programs - and these weren't mixed.

More recently, there has been some work executing specifications for software engineering
purposes, such as testing, rather than for computing particular outputs: for example, the
JML runtime assertion checker by Cheon [23], test-input generation strategies by Khurshid
[57] and Marinov [76], debugger support in the Eclipse IDE, and data-structure repair by
Demsky [31] and Elkarablieh et al. [35]. Many of these more recent works focus on exe-
cuting invariants or abstraction functions rather than procedure post-conditions. These in-
variant and abstraction function specifications are sometimes written in a declarative spec-
ification language and sometimes in stylized imperative code.

These works based on executing invariants and abstraction functions for software engineer-
ing purposes are usually not considered to be examples of mixed programs. However, we
have elsewhere argued that they can be viewed in this way [100], and we have found that
viewpoint to be fruitful for this dissertation. The reason that they are not considered to be
examples of mixed programs is that the result of evaluating an invariant or an abstraction
function is not usually part of the output computed by the program. However, because we
define object equality in terms of abstraction functions, the result of evaluating the abstrac-
tion function at runtime is part of the computed output of the program.

There has been much other work on executable specifications that has not been a direct
inspiration for our work here. For example, Pamela Zave developed the PAISLey sys-
tem [120] for highly-parallel systems, possibly with real-time constraints, and without
unbounded data structures. Mandayam Srivas [108] wrote his 1982 dissertation on syn-



thesizing implementations for abstract data types from their algebraic specifications with a
term re-writing system, and work in this spirit continues today (e.g., Henkel et alia's 2008
paper [45]). Our work is from model-based, rather than algebraic, specifications, and we
use a syntax-directed translation rather than term-rewriting.

1.4 The Object Contract

The Object Contract is the name commonly used for the specification that all objects are
supposed to comply with in languages such as Java and C#. In short, the Object Contract
states that the equals method must define a mathematical equivalence relation, and that the
hashCode method must return results that are consistent with the equals method.

Object-contract compliance is important to the correct functioning of any program (written
in these languages). Any lookup operation will require that the desired key object and the
stored key object are correctly able to compare with each other for equality. Hash-based
lookups will additionally require that the hashcodes of equal objects are equal.

The essence of the Object Contract can be written as an algebraic specification in the Larch
Shared Language, as listed in Figure 1-9 (adapted from examples in Appendix A of the
Larch book [40]). The specification in Figure 1-9 says that an Object has an equals method
that compares two objects and returns a boolean, and a hashCode method that maps objects
to integers. The equals method defines a relation that is reflexive, symmetric, and transitive
(i.e., is a mathematical equivalence relation). The consistency requirement for the hash-
Code method is that if two objects are equal then they must also hash to the same value.
The equals and hashCode methods are expected to be side-effect free and to terminate on
all inputs.

Figure 1-9 The Object Contract as an algebraic specification

Object : trait
introduces

_ equals Object , Object -> Bool
- hashCode Object -> Int

asserts V x, y, z : Object
x equals x ; % reflexive
(x equals y) == (y equals x) % symmetric
(x equals y A y equals z) -> (x equals z) % transitive
(x equals y) = (x hashCode == y hashCode) % consistent

While the Object Contract appears relatively simple, numerous studies have documented
that programmers at all levels of ability have difficulty writing compliant code [17, 49, 91,
93, 94, 97, 114]. Some of the challenges of object-contract compliance are discussed by
Bloch [17], and Odersky et al. [91], and below in Chapter 4.



1.5 Thesis Statement

The problem of making specifications executable, in its full generality, is not (at this time)
practical. In this dissertation we narrow our focus in a number of ways: to a particular kind
of specification, abstraction functions; to a particular use for executable specifications,
object-contract compliance; and to a subset of a general-purpose specification language,
JForge [32, 119]. The thesis that we establish in this dissertation is:

Executable abstraction functions enable object-oriented programming languages
to provide better support for object-contract compliance, resulting in clearer
and more concise programs that have fewer errors.

Our aspiration is that, as a consequence of this work, programmers will no longer be
obliged to implement the equals and hashCode methods by hand. Implementing these
methods manually is both tedious and time consuming: in our opinion it offers a poor return
on investment for the programmer's effort. We think that application programmer attention
is better spent on matters more closely connected to the application domain. We hope that
the automatic synthesis of object-contract compliance will remove one more technology-
related distraction from the application programmer's attention space and thereby improve
programmer productivity.

1.6 Contributions

This dissertation makes two observations:

1. Expert programmers sometimes define object equality in terms of the abstract state
of the object. When doing this they sometimes write an imperative procedure to
embody the conceptual abstraction function, and then write the equality comparison
in terms of this procedure.

2. The field abstraction functions that expert programmers most commonly employ can
be considered as navigation queries on the heap.

We develop the following ideas to put these insights to good use:

e Four techniques for evaluating declarative field abstraction functions at runtime. We
develop four techniques for executing declarative field abstraction functions written
in JFSL at runtime. These techniques are applicable to different subsets of possible
abstraction functions and have different runtime speeds. The most general technique
executes the slowest, and the least general technique executes the fastest. General-
ity here refers to the class of JFSL expressions that the technique is applicable to:
each technique is applicable to a different subset of possible JFSL expressions. A
static analysis is used to determine which technique to apply for a given abstraction
function. The techniques are:



- Conservative Navigation: The conservative navigation technique is based on a
syntax-directed translation from a subset of JFSL to executable code. We refer
to this subset as navigable expressions: in broad outline, they begin with a set,
involve forwards traversal of fields, and result in a set. Navigable expressions
are characterized more precisely in Chapter 3.

- Streamlined Navigation: The streamlined navigation technique is an optimized
version of the conservative navigation technique. If certain invariants, which
we call optimization conditions, are true of the program, then faster alternative
computations may be used. For example, list concatenation may be used in
place of set union if the optimization conditions establish that the lists do not
contain duplicates and have no intersection with each other.

- Predicate Substitution: If the abstraction function is written using a pre-defined
predicate with a known imperative implementation, then that implementation is
used at runtime. This technique is usually employed for abstraction functions
returning sequences of objects (rather than sets of objects). This technique is
applicable in the smallest number of cases but is the fastest to execute.

- Constraint Solving: A constraint solver (Kodkod [110, 111]) is used to compute
the result of the abstraction function. This technique is the most general and is
also the slowest to execute.

" A library of logical predicates for use in declarative abstraction functions. These
predicates have well-known imperative implementations. We argue that the logical
definitions we provide here are consistent with the well-known imperative versions.

" A generic definition of object equality. We say that two objects are equal if they have
the same specification fields with the same values, and if those specification fields
were declared in a common supertype.

" An exploration and evaluation of object hashing strategies. We argue that program-
ming language implementations should automatically provide object hashing. This
provision is facilitated by our generic notion of object equality. We evaluate the per-
formance of half a dozen object hashing strategies and show that it is possible for
automatically provided hashing to perform acceptably in comparison to manually
implemented hashing in most cases.

We evaluate these ideas by annotating a number of real programs and measuring the result-
ing change in code size, performance, etc..

1.7 Architectural Overview of Prototype Implementation

Figure 1-10 gives an architectural overview of our prototype implementation. This pro-
totype has been used for all of the case studies in this dissertation and, additionally, in
a Bayes net solver and a multi-objective optimization solver [99] written by the author.



While there is very limited experience of other people programming with this prototype,
around ten people have used the multi-objective optimization solver in which all classes
with programmer-defined equality make use of the prototype.

Each box in Figure 1-10 represents a component. Components depend on the components
depicted below it in the diagram. Containment indicates that the contained box is a part
of the containing box. The blue box labelled The Object Contractor represents this work
as a whole. The grey boxes represent third-party components. The yellow boxes represent
components developed by my colleagues in the Software Design Group at MIT. The orange
boxes represent specific parts of this work.

Figure 1-10 Architectural overview of prototype implementation

Application Program

The overall picture is that the application program uses The Object Contractor to provide
implementations of equals, hashCode and other common methods such as toString. Both
The Object Contractor and the application program run on top of a Java Virtual Machine
(JVM).

The Object Contractor includes generic implementations of equals and hashCode in terms
of the abstract state of the objects. These generic implementations are discussed in Chap-
ters 4 and 5, respectively, and they depend on our field abstraction function evaluator to
compute the object's abstract state.

. . . . .... . .. ... ...... . .... .......... .. ... ......... .. ........ ........ ........ ., .



Our field abstraction function evaluator is summarized above and described in detail in
Chapter 3.

Our constraint solving execution strategy is applicable to any field abstraction function
written in the JForge specification language. It is implemented in the Squander tool, which
was developed jointly by myself and Aleksander Milicevic, with contributions from Kuat
Yessenov. Squander also makes use of JForge, but only for its semantic mapping between
Java and Forge, rather than for verification purposes.

JForge [119] defines the JForge Specification Language and provides a translator from that
surface syntax to the Forge Intermediate Representation (FIR) [32]. JForge was written
by Kuat Yessenov [119] in the Software Design Group at MIT, with some minor contribu-
tions by myself as part of this work. JForge makes use of the Antlr [96] parser-generator
written by Terrence Parr at the University of California, San Francisco. JForge also uses
the Soot [113] Java bytecode analysis and transformation framework developed by Laurie
Hendren's students at McGill University.

Forge [32] is a program analysis framework primarily intended for performing bounded
program verification: i.e., verifying that an imperative object-oriented program meets its
logical specification, given some a priori bounds on the size of the heap and the number of
loop unrollings. Forge was written by Greg Dennis [32] in the Software Design Group at
MIT.

Kodkod [110] is a relational model finder. It translates formulo from the 'Alloy logic'
(i.e., a first-order logic with relations and transitive closure) to propositional logic. The
propositional logic formulas are then given to a SAT-solver such as MiniSAT [34]. Kodkod
is the backend of the fourth version of the Alloy Analyzer tool [22]. Kodkod was written
by Emina Torlak [110] in the Software Design Group at MIT.

1.8 Summary

Programmers often define object equality (and other object contract methods) implicitly
in terms of the abstract state of the object. We show that providing an explicit means to
express abstraction functions effectively separates these concerns and facilitates generic
versions of the object contract methods. We develop several novel techniques for executing
abstraction functions written in a declarative specification language. The key insight behind
these techniques is that the kinds of abstraction functions that programmers often write may
be considered as queries on the reachable heap.

In the literature, abstraction functions are usually considered to be relevant only to spec-
ification and verification: they are generally not considered to be part of the computation
of the program. However, by defining the object contract methods explicitly in terms of
abstraction functions we make the execution of abstraction functions an integral part of the
computation. We hope that this dynamic use of abstraction functions will entice program-
mers to write specifications more often.



Chapter 2

Expressing Abstraction Functions

In our system the imperative code of each abstract data type (ADT) is accompanied by
a declarative abstraction function written in a modern specification language (JFSL [32,
119]). In most modern specification languages the abstract state of an ADT is described
by a set of specification fields. Each specification field has an associated field abstraction
function that computes its abstract value from the concrete representation. We understand
the object abstraction function to be the amalgamation of these field abstraction functions.

The abstract value of each specification field is a set or a sequence of concrete objects. If we
give a concrete representation to this abstract mathematical structure (containing concrete
objects) then we can have a concrete representation of the abstract state. The concrete
representations we use for these abstract structures are described below in Chapter 3.

Abstraction functions for most data types can be expressed as a navigation over the heap,
starting with the receiver object, and following a path that collects a set or sequence of
objects to be returned as the abstract value. This kind of navigation, it turns out, is much
more easily expressed using relational navigation operators (notably join and closure) than
with conventional imperative code, and this is the source of much of the succinctness of our
abstraction functions. In some cases, though - notably tree traversals that return a sequence
of objects in a particular order, as well as some operations on lists - these relational oper-
ators are insufficient. While it is possible to express these more complex traversals using
relational logic, it is more cumbersome than we would like it to be. We therefore show how
a repertoire of standard traversals can be represented as a library of predicates, enabling
abstraction functions to be expressed simply by invoking them in expressions. Matching
imperative implementations allow these predicates to be executed efficiently, and their full
logical formulations are available for verification.

The technical contribution of this chapter is the logical definitions of the predicates. We
do not use these definitions for execution: for execution we simply substitute the well-
known imperative version of the predicate name. These logical definitions are for use by a
verification tool.

It is our hope that our system will provide some immediate and tangible motivation for
programmers to write partial specifications, and that this will be a stepping stone for them



to write more complete specifications and use formal verification tools. We provide these
predicate definitions to support this potential future verification task.

This chapter also provides a brief overview of the JForge Specification Language (JFSL),
which is described in greater detail in Kuat Yessenov's master's thesis [119].

2.1 Choosing a Specification Language

Abstraction functions are most commonly written in a specification language and used
during verification. We considered three specification languages for use in our system:
JML [21, 23, 63], Jahob [18, 121, 122], and JForge [32, 119]. To illustrate the comparison
we examine our ongoing example of a set of integers represented as a binary search tree in
each language. These examples are shown in Figures 2-1, 2-2, and 2-3, respectively.

As seen in Figure 2-1, although JML is a specification language, it has the programmer
express abstraction functions as imperative code. Cheon [23] developed this facility in his
dissertation to support runtime verification. For our purposes this is essentially the same
as an older version of our system [98] in which the programmer wrote the abstraction
functions with regular imperative code. The shortcomings of this approach are that: (1)
the abstraction functions tend to be longer than they would be if written in a declarative
specification language; (2) the programmer must handle cyclic heap references manually
in an ad-hoc manner; (3) it is less compatible with static verification.

Jahob [59, 123] uses the Isabelle higher-order logic [89] to express abstraction functions
(and other parts of specifications), as shown by the example in Figure 2-2. The purpose of
the Jahob project is to integrate various back-end approaches to static verification, such as
shape analysis, decision procedures, and theorem provers.

JForge [32, 119] uses a variant of the Alloy [52] relational logic for expressing abstraction
functions (and other parts of specifications), as shown by the example in Figure 2-3. JForge
is also designed for static verification.

The Alloy relational logic is, in a technical sense, less powerful than the Isabelle higher-
order logic. However, the Alloy relational logic has proven, through the experience of other
researchers, to be adequately powerful for many software specification tasks.

We chose to work with Alloy/JFSL because its relational operators let programmers write
powerful abstraction functions with a simple syntax: e.g., many abstraction functions can
be written without quantifiers or set comprehensions. Our code synthesis techniques (dis-
cussed in Chapter 3) are substantially enabled by this syntactic simplicity.



Figure 2-1 JML abstraction function for binary search tree (adapted from [23])

class BinarySearchTree {
Node root;

model Set elts;
represents elts <- eltsValue ();
model pure Set eltsValue() throws IllegalStateException I

Set ret = new HashSet();
if (root != null) { ret.addAll(root.subtree());
return ret;

@*/

class Node
Node left, right;
int value;

model pure Set subtree() throws IllegalStateException
Set ret = new HashSet();
ret.add(new Integer(value));
if (left != null) { ret. addAll(left. abstractValue ());
if (right != null) { ret. addAll(right. abstractValue());
return ret;

@a*/

Figure 2-2 Jahob abstraction function for binary search tree (adapted from [124])

specvar elts int set;
vardefs elts == {x. -3 n. n : subtree & n.. value = x}

specvar subtree objset;
vardefs subtree == {nO. nO#null A (this,nO) c {(x,y). x.. left=y v x.. right=y}^*};

class Node I Node left, right ; int value;
class BinarySearchTree { Node root ; }

Figure 2-3 JForge abstraction function for binary search tree (adapted from Figure 1-7)

@SpecField("elts : set int I this.elts = this.root.*( left+right).value")
class BinarySearchTree { Node root ; }
class Node { Node left, right ; int value;



2.2 JForge Specification Language Overview

The JForge Specification Language (JFSL) [32, 119] is a specification language for Java
(i.e., imperative object-oriented) programs based on the Alloy [52] relational logic. JFSL
was developed by Yessenov [119] and Dennis [32] to support static verification of func-

tional properties of single-threaded programs.

This section gives a brief overview of the pertinent features of JFSL. The expressions and
formulo of JFSL are essentially Alloy. JFSL adds on top of this special annotations to
connect these expressions and formulo to code. Yessenov's master's thesis [119] discusses
the syntax [119, §3] and semantics [119, §4] of JFSL in detail.

Figure 2-4 briefly summarizes the JFSL annotations. We are primarily interested in the

@SpecField annotation, which both declares specification fields and defines their associated
field abstraction function. The other annotations listed in Figure 2-4 are included to give
the reader an overall sense of JFSL; they are not discussed further in this document. In

the notation of Figure 2-4 we sometimes use Greek characters such as # as place-holders
for Alloy formulo. JFSL uses only the common 7-bit ASCII characters, and does not use
Greek letters. For example, in Figure 2-4 we write @lnvariant("#"), where # stands for some
Alloy formula such as this.size = #(this.root.*(left+right)).

Figure 2-4 Summary of JForge Specification Language (JFSL) annotations

Types
@SpecField("f : r from g | a") defines a specification field f, characterized by the

range-type expression r, and its abstraction function a;
g is the list of concrete fields to which f corresponds;
more detail in the main text

@lnvariant("#") defines an invariant (# is a JFSL formula)

Fields

@NonNull indicates that this field may never-refer to null

@Nullable indicates that this field may refer to null

Methods
@Requires("#") pre-condition (# is a JFSL formula)
@Ensures("#") post-condition (# is a JFSL formula)
@Modifies("g") frame condition (g is a list of fields that may change as

a result of executing this method)

@Returns("e") return value (e is a JFSL expression)
@Pure indicates that this method has no side-effects



2.2.1 Specification Fields and Abstraction Functions

As shown in Figure 2-4, the general form of the @SpecField annotation is:

@SpecField(" f : r from g I a ")

where f is the name of the specification field being defined, r is an expression that describes

the multiplicity and type of f's range, g is f's data group, and a is f's field abstraction func-

tion. We will now explain these in overview. The exact grammar of the specification field

annotation is discussed in detail in §3.5.2 of Yessenov's master's thesis [119]. To begin,

Figure 2-5 shows a simple example @SpecField annotation for a Java class that represents a

mathematical set that contains at most one object.

Figure 2-5 Abstraction function for SingletonSet

@SpecField("elts set Object")
interface Set {

@SpecField("elts set Object I this.elts = this .o - null")
class SingletonSet implements Set { Object o; }

In the example of Figure 2-5 the range expression r is set Object. In principle r can be more

complex than this, but in practice it rarely is. The declaration of the elts specification field

on the Set class and the set Object range expression mean that elts is a binary relation from

Set to Object. The possible multiplicity keywords are [119]:

* one - the field has a singleton value, similar to Java fields;
* some - the value is a non-empty set;
* lone - the value is either an empty-set or a singleton;
e set - the value is a set;
e seq - the value is a sequence.

As in Alloy [52], if r has arity 1 (which is always the case in practice), then the default
(unspecified) multiplicity is one; otherwise it is set [119].

The seq multiplicity keyword is special [119]. When it is used, then f is a ternary relation
from C (the Java type that declares f), to int (the sequence indices), to the type(s) named
in r. The use of seq also implies extra constraints on f that the ints in the relation start at

zero, are contiguous, each appear in the relation at most once, etc., so that the programmer
gets a relation that corresponds with what one would intuitively expect from a sequence.

These multiplicity constraints are implicitly part of the specification field's abstraction

function and so are conjoined with what the programmer explicitly writes in a.

The data group [66] of specification field f, g, is a list of concrete fields from which the

value of specification field f is derived. This list is used during the static verification of

methods: if a concrete field on this list is mutated by the method, then it may be possible



that the value of specification field f has also been changed. We do not make use of this
list (g) in our work, and so we have excised it from all of our example listings and will not
discuss it further.

Finally, a is a JFSL formula that defines the field abstraction function. It is most commonly
of the form:

this.f = e

where e is some JFSL expression. In the small example from Figure 2-5, this expression is

simply this.o - null.

However, the abstraction function a does not need to be in this assignment-like equational
form. Any valid JFSL formula will do. Another common form for a is:

p(ei, e2, ..., en, this.f)

where p is some logical predicate and ei are JFSL expressions. We provide a library of such
predicates, mostly for working with sequences, for the programmer's convenience. For
example, Figure 2-6 shows an abstraction function for a cons cell class using the prepend
predicate (explained below). Similarly, Figures 2-7 and 2-8 show abstraction functions for
a linked list and an array list, using the Iink2seq and subseq predicates, respectively. More
complete descriptions of the available predicates are given below.

Figure 2-6 Abstraction function for ConsCell

@SpecField("elts : seq Object I prepend(this.head, this.rest.elts , this.elts)")
class ConsCell extends AbstractimmutableLinkedList {

final Object head;
final AbstractImmutableLinkedList rest ;

Figure 2-7 Abstraction function for LinkedList

@SpecField (I
"private nodeseq : seq Node I link2seq(this.head, Node@next, this.nodeseq)",
"elts : seq Object I this. elts = this .nodeseq. elt"})

class LinkedList implements List { Node head; I
class Node I Object elt ; Node next ; }

Figure 2-8 Abstraction function for ArrayList

@SpecField("elts : seq Object I subseq(this.a.elems, 0, this.size, this.elts))
class ArrayList implements List I Object [] a; int size ; }

Recall our ongoing example of a binary search tree, originally introduced in Figure 1-7. In
Figure 1-7 the specification field elts was defined as a set of integers with the abstraction



function this. elts = this. root.*( left +right ). value. One could imagine the programmer want-
ing to have some other specification fields as well. For example, it may be useful to define
a private field nodes for writing invariants. Such a field is introduced in Figure 2-9, and an
alternative definition of the elts field is given in terms of it. Since this is a binary search
tree, the programmer may also wish to have the elements in order: this is done with the
nodeseq and eltseq fields.

Figure 2-9 Various abstraction functions for ongoing binary search tree example

@SpecField ({
"private nodes : set Node I this.nodes = this.root.*(left+right)-null",
"public elts : set int I this. elts = this .nodes.value"
"private nodeseq : seq Node I

inorder(this . root , Node@left, Node@right, this .nodeseq)" ,
"private eltseq : seq int I this. eltseq = this .nodeseq.value"})

class BinarySearchTree I Node root ; }
class Node { Node left , right ; int value; }

Finally, occasionally the programmer will have cause to write an abstraction function that

is not in either of the above forms. For example, the abstraction function for empty cons
cell in Figure 2-10 is simply no this.elts. If one were to model a Lisp-style linked list as an
algebraic datatype in Java, then one might introduce a class EmptyConsCell, as in Figure 2-
10, to represent the case of a node with no element and no further links.

Figure 2-10 Abstraction function for EmptyConsCell

@SpecField("elts : seq Object I no this . elts")
class EmptyConsCell extends AbstractimmutableLinkedList {

2.3 Traversal Predicates

We have written a library of traversal predicates, primarily for working with sequences,
that are summarized in Figure 2-11. Some of these predicates are adapted from the Alloy
standard predicate libraries and some of them are new. This library of predicates serves two
purposes: programmer convenience and efficiency of execution. As will be seen below, the
logical definitions of some of these predicates can be both lengthy and subtle. Having a
predefined library is easier for the programmer than developing these from scratch on an
ad hoc basis. Since these predicates have well-understood imperative implementations, our
translator (discussed in the next chapter) can simply substitute these well-known imperative
versions when executing the abstraction functions.



Figure 2-11 Traversal predicates

Predicate signature Description
link2seq( Constrain result to be the sequence of objects starting

head : one Object, with head and following the links in relation next. Ex-
next : Object -> Object, pects next to be linear (potentially cyclic).
result : seq Object )

obj2seq( result = (0->obj)
obj : one Object,
result : seq Object )

prepend( Constrain result to be the sequence rest prepended

first : one Object , with objectfirst at position 0.
rest : seq Object ,
result : seq Object )

subseq( Constrain result to be the subsequence of seq of length
seq : one Object, length starting at index index.

index : int ,
length : int,
result : seq Object)

subseqeven( Constrain result to be a sequence that includes only
seq : one Object , objects that were at even indices in seq.

result : seq Object )
subseqodd( Constrain result to be a sequence that includes only

seq : one Object , objects that were at odd indices in seq.
result : seq Object )

preorder( Constrain result to be the preorder (i.e., depth-first)
root : one Object , traversal of tree tree, which is rooted at root.
tree : Object -+ Object ,

result : seq Object )

postorder( Constrain result to be the postorder traversal of tree
root : one Object , tree, which is rooted at root.
tree : Object -> Object ,
result : seq Object )

levelorder( Constrain result to be the levelorder (i.e., breadth-first)
root : one Object , traversal of tree tree, which is rooted at root.
tree : Object -> Object ,
result : seq Object )

inorder( Constrain result to be the inorder traversal of the bi-
root : one Object , nary tree rooted at root, with left children indicated
left : Object -+ Object , by relation left and right children indicated by relation
right : Object -+ Object , right.

result : seq Object )



The link2seq predicate produces a JFSL sequence from a Java linked-list structure. In order

to discuss the details of link2seq we first introduce a simple linked-list structure, given in

Figure 2-12, to use as the basis of the discussion.

Figure 2-12 Linked-list structure

sig List { head : lone Node }
sig Node { next : lone Node, val : lone Object }

A naive definition of link2seq is given in Figure 2-13. This definition works only for acyclic

lists, and is essentially the same as the one given in [57, §6.4.2]. This naive definition will

result in an infinite sequence if applied to a cyclic list. (In practice the sequence will not

actually be infinite: it will be bounded by the scope of the int type. Nevertheless, this

predicate will not produce the result the programmer intends when applied to a cyclic list.)

Figure 2-13 Naive forwards traversal of linked-list

pred link2seq(head : Node, next : Node->Node, result : seq Node) I
result[O] = head
all i : Int i > 0 -> result[i] = result[i-1].next

Some previous work claims that it is difficult or impossible to define linear traversals of

cyclic structures with Alloy [57, §6.4.4 & §6.5]. An argument that has been given is that
a list of visited nodes must be maintained in order to detect cycles, and that while this is

easy in an imperative implementation, it is difficult to do declaratively [57, §6.5]. We agree
that it is difficult to maintain a list of visited nodes in a declarative context, but we now

show that there is at least one other way to approach this challenge: first, compute what the
length of the result should be, and then constrain the result to be exactly that length.

Figure 2-14 shows an improved version of the linked-list traversal predicate from Figure 2-
13. The key difference is that we compute the size of the list using set cardinality and use
this to differentiate between in-bounds and out-of-bounds indices. This improved predicate
will produce the desired result even for cyclic lists.

Figure 2-14 Forwards traversal of a potentially cyclic linked-list

pred link2seq(head : Node, next : Node->Node, result : seq Node) {
result[0] = head
let size = #(head.^next) I

-- appropriately constrain result at in-bounds indices
all i : Int l (i > 0) and (i < size) => result[i] = result[i-1].next
-- ensure that garbage is not injected to result out of bounds
all i : Int I (i < 0) or (i > size) => no result[i]



2.3.1 Tree-Traversal Predicate Definitions

Trees and tree-like structures are common in many kinds of programs. Consequently we

have developed a library of common tree-traversal predicates to make these expressions

easier for the programmer. The signatures of these predicates were given above in Figure 2-

11, along with the other traversal predicates. The tree-traversal predicates are preorder

(i.e., depth-first), postorder, levelorder (i.e., breadth-first), and inorder. The first three are

applicable to trees of any arity, whereas inorder is only applicable to binary trees. Here we

discuss the logical definitions of these predicates, and make some efforts to establish that

our logical definitions correspond to the well-known recursive meanings.

For reference we give the standard recursive definitions of these common tree traversals in

Figure 2-15. Figure 2-15 is written in the Haskell [105] programming language because

it is clear and concise for this kind of task. In Haskell [] constructs a list and ++ concate-

nates lists. Iterative worklist-based implementations of these traversals are also commonly

known (e.g., [115]).

Figure 2-15 Standard recursive definitions of pre-order, post-order, in-order, and level-

order traversals of binary trees [101]

data Tree a = Empty
I Node { value a,

left : Tree a,
right :: Tree a }

preorder , inorder , postorder , levelorder Tree a -> [a]

preorder Empty = []
preorder (Node v L R) = [v] ++ preorder L ++ preorder R

inorder Empty = []
inorder (Node v L R) = inorder L ++ [v] ++ inorder R

postorder Empty = []
postorder (Node v L R) = postorder L ++ postorder R ++ [v]

levelorder x = loop [xl
where loop [] = [1

loop (Empty xs) = loop xs
loop (Node v L R xs) = v : loop (xs ++ [L,R])

Figures 2-17, 2-18, 2-19, and 2-16 give our declarative definitions for post-order, pre-order,
level-order, and in-order tree traversals, respectively. While the standard recursive defini-

tions given in Figure 2-15 are all written in terms of an ordered binary tree, in principle

only the in-order traversal needs to be defined this way: all of the other traversals easily

generalize to unordered n-ary trees. Consequently, we give our definitions of post-order

(Figure 2-17), pre-order (Figure 2-17), and level-order (Figure 2-17), traversals in terms of

unordered n-ary trees.



These four tree-traversal predicates all begin by declaring the name tnodes to refer to all

of the nodes in the tree. The expression for determining all of the nodes in the tree differs

depending on whether it is an unordered tree of arbitrary arity (root +root.^children) or an

ordered binary tree (root +root.^(left+right)). The name tnodes is used in almost all subsequent
clauses.

All four definitions also constrain the resulting sequence (result) to have each of the nodes in

the tree (tnodes) exactly once. The remaining parts of the predicates differ as they constrain

the ordering of the resulting sequences.

The analyses we have performed (described below in the next section) have focused on es-

tablishing that these logical predicates properly formalize their well-known intuitive mean-

ings. It may be possible that, for each predicate, there is a more concise yet logically
equivalent formulation.

Figure 2-16 lists the predicate for an in-order traversal of an ordered binary tree. The

ordering constraint says that for every node in the tree, none of the nodes to the left of it
occur later in the resulting sequence, and none of the nodes to the right of it occur earlier
in the resulting sequence.

Figure 2-16 Declarative definition of in-order traversal of a binary tree

pred inorder [root : Node, left, right : Node--+Node, result : seq Node]
let tnodes = root +root.^(left+right) I

-- every node in the tree is in the result exactly once
all n : tnodes I one result.n
Int.result = tnodes
-- left, parent, right
all n : tnodes I {

no Ic : (n.left).^(left+right) I result.lc > result.n
no rc : (n.right).^(left+right) I result.rc < result.n

Figure 2-17 lists our declarative definition of a post-order traversal of an unordered n-ary

tree. The general idea of a post-order traversal is that children/descendants come before
their parents. However, this property alone is not enough, as we learned through conducting
the analyses described in the subsequent sections of this chapter. We must also specify that
the children of a node appear earlier in the resulting sequence than the siblings of that
node. Furthermore, every parent node must appear immediately after one of its children in

the resulting sequence.



Figure 2-17 Declarative definition of post-order traversal of an n-ary tree

pred postorder [ root : one Node, children : Node->Node, result : seq Node]
let tnodes = root +root.^children I {

-- every node in the tree is in the result
Int.result = tnodes
all n : tnodes I one result.n
-- descendants come before parents
all disjoint p, c : tnodes I ((p->c) in ^children) =* (result.p > result.c)
-- children before siblings
all disjoint p, c : tnodes I (p->c) in children => all s : siblings[p, children] I (result.c < result.s)
-- parent comes immediately after some child
all p : tnodes I some p.children =* some c : p.children I result.p = ((result.c)+1)

Figure 2-18 lists our declarative definition of a pre-order (i.e., depth-first) traversal of an
unordered n-ary tree. The general idea of a pre-order traversal is that parent nodes are
visited before their descendants. However, this condition alone is insufficient to ensure
the correct result. The additional conditions that we have added include: the immediate
successor of every node is a child of that node (if a child exists); sibling nodes must occur
before uncle nodes; children nodes must occur before uncle nodes; and, finally, younger
generations must respect older generations. This last condition means that for any two
distinct nodes ni and n2 that are siblings of each other, if ni occurs before n2 in the output
sequence, then all descendants of ni occur before n2 in the output sequence.

Figure 2-18 Declarative definition of pre-order traversal of an n-ary tree

pred preorder[ root : one Node, children : Node-->Node, result : seq Node]
let tnodes = root +root.^children I

-- every node in the tree is in the result
Int.result = tnodes
all n : tnodes I one result.n
-- parents come before descendants
all disjoint p, c : tnodes I ((p->c) in ^children) = (result.p < result.c)
-- some child is the immediate successor
all p : tnodes I some p.children * some c : p.children I result.c = ((result.p)+1)
-- siblings before uncles
all n : tnodes I all s : siblings[n, children] I all u : uncles[n, children] I result.s < result.u
-- children before uncles
all n : tnodes I all c : n.children I all u : uncles[n, children] I result.c < result.u
-- younger generations respect older generations
all n : tnodes I all s : siblings[n, children] I {

(result.n < result.s) =e all c : n.children I (result.c < result.s)
(result.n > result.s) = all c : n.children I (result.c > result.s)

Figure 2-19 lists our declarative definition of a level-order (i.e., breadth-first) traversal. As



with a pre-order (i.e., depth-first) traversal, the general idea is that parents nodes occur

before their descendants. Given this similarity, there is a (perhaps surprisingly) large class

of trees for which the breadth-first and depth-first traversals produce the same resulting

sequence (discussed in more detail below). There can be significant differences in the order

in which descendants are visited though. The additional conditions that we have added to

define level-order traversal include: child nodes occur before grandchildren; children are

all consecutive; and younger generations respect older generations. This last condition is

the same as the condition added to the pre-order definition above.

Figure 2-19 Declarative definition of level-order traversal of an n-ary tree

pred levelorder [ root : one Node, children : Node->Node, result : seq Node]
let tnodes = root +root.^children I {

-- every node in the tree is in the result
Int.result = tnodes
all n : tnodes I one result.n
-- parents come before descendants
all disjoint x, y : tnodes I ((x->y) in ^children) =' (result.x < result.y)
-- children before grandchildren
all disjoint p, c, g : tnodes I{

(p-+c) in children and (c-4g) in children -> (result.c < result.g)
}
-- children are all consecutive
all p : tnodes I { #(p.children) > 2 -(

-- no monkey in the middle
no x : tnodes-p.children I some disjoint c1, c2 : p.children I

result.cl < result.x and result.x < result.c2

-- younger generations respect older generations
all n : tnodes I all s : siblings[n, children] I

(result.n < result.s) -> all c : n.children I (result.c < result.s)
(result.n > result.s) -> all c : n.children I (result.c > result.s)

2.3.2 Tree Traversal Predicates Are Functional

In this section we describe how we checked that our declarative definitions of the tree
traversals are functional: i.e., for a given input tree they produce exactly one output traver-
sal order. We show only the theorem that the in-order traversal definition is functional
(Figure 2-20) because the others look almost identical.

These 'theorems' are theorems in the sense that we believe them to be true on the basis of

Alloy's exhaustive analysis of all possible trees with up to ten nodes. There is a remote

possibility that one of our traversal definitions may be non-functional on a tree of a larger

size, in which case our 'theorems' would not be theorems. A proof technique without

Alloy's finite bounds could be applied to these theorems.



The property as stated above glosses over a key subtlety that would confound most of these

theorems if not addressed: the pre-order, post-order, and level-order traversals are defined

over unordered trees. This lack of ordering in the inputs leads to non-determinism in the

outputs. Non-deterministic output means that there may be more than one possible output
for a given input (i.e., more than one possible traversal for a given unordered tree).

We work around this wrinkle by imposing an ordering on the children of each node in the

input tree, and constraining the traversals to be consistent with this ordering. Note that

we are not imposing an ordering on the input tree as a whole: we are just ensuring the
local property that the children of a node occur in some order. Under these conditions our

traversal definitions are indeed functional: i.e., for a given (now ordered) input tree, they

produce exactly one output traversal order.

The effort to establish these theorems led to substantial revisions and elaborations of our

initial versions of the definitions. Without the benefit of mechanical analysis we would

have had no way to know what elaborations were necessary and our definitions would have

remained under-constrained and hence non-functional. Such weaker, under-constrained,
definitions may have created problems for future users of these definitions if they attempted

to use these weaker definitions to establish invariants or post-conditions of their programs.

All of these theorems share a common structure, which can be seen in Figure 2-20. Each

theorem establishes two traversals, ti and t2, of the same tree. These traversals are con-

strained to be consistent with the arbitrary ordering placed on the tree. Recall that our

predicates are defined over unordered trees, and so this arbitrary ordering is necessary for

the property we are interested in to make sense. The formula Node = OrderedNode ensures
that every node in the tree is part of this arbitrary ordering.

The theorem that our in-order traversal predicate is functional contains an additional con-

straint that restricts the tree to be binary. Whereas the other traversals are well-defined for

trees of any arity, in-order traversal is only well-defined for binary trees.

Figure 2-20 Theorem: definition of in-order traversal is functional

assert InorderlsFunctional I
no disjoint t1, t2 : Traversal {

t1.elems # t2.elems
inorder[ Root, left, right, t1.elems ]
inorder[ Root, left, right, t2.elems ]
consistentWithOrderedChildren[ t1.elems ]
consistentWithOrderedChildren[ t2.elems ]
Node = OrderedNode
-- restrict to a binary tree
Node.(orderedChildren.Node) in {01 +{1}

check InorderisFunctional for 10 but exactly 2 Traversal



2.3.3 Tree Traversal Predicates Differ

To further ensure that our predicate definitions do in fact correspond to their well-known

intuitive meanings we also checked that they differ from each other. The key subtlety nec-

essary to establish these properties is the size of the tree for which the definitions produce

different traversal orderings. For example, on a tree of size one all definitions produce the

same traversal order.

Figure 2-21 lists the Alloy theorem that for any tree with more than one node our defini-

tion of a pre-order traversal produces a different result than our definition of a post-order

traversal does.

Figure 2-21 Theorem: definitions of pre-order and post-order traversals differ

assert PreNotEqualPost I
no disjoint t1, t2 : TraversalI{

-- equality
t1.elems = t2.elems
-- orders
preorder[Root, children, t1.elems]
postorder[Root, children, t2.elems]
-- minimum size constraints
#(Node) > 1

check PreNotEqualPost for 10 but exactly 2 Traversal

There is a surprisingly large class of trees for which pre-order (i.e., depth-first) and level-

order (i.e., breadth-first) traversals produce the same results. Figure 2-22 depicts eight

example trees for which the pre-order and level-order traversals are identical. Figure 2-23

depicts two examples of small trees on which pre-order and level-order traversals differ.

The class of trees for which the pre-order and level-order traversals are the same are char-

acterized by the nonTrivialTree predicate in Figure 2-24, as part of the theorem establishing

that our definitions of pre-order and level-order produce, in most cases, different traversal

orderings. This predicate says that there are two disjoint cousin nodes, x and y, in the tree

that both have multiple children.

Checking these properties via mechanical analysis led to refinements of our initial defini-

tions, generally improved our understanding of tree traversals, and increased our confidence

that our declarative traversal definitions are consistent with the intuitions.



Figure 2-22 Example trees for which pre-order and level-order traversals are equivalent.

Nodes are numbered in traversal order.

Figure 2-23 Example trees for which pre-order and level-order traversals differ. Nodes for

which the orders differ are circled.

(a) (b)

0 0



Figure 2-24 Theorem: definitions of pre-order and level-order traversals differ

assert PreNotEqualLevel {
no disjoint t1, t2 : Traversal {

-- equality
t1.elems = t2.elems
-- orders
preorder[Root, children, t1.elems]
levelorder[Root, children, t2.elems]
-- minimum size constraints
nonTrivialTree

pred nonTrivialTree
some disjoint x, y Node | {

#(x.children) > 1
#(y.children) > 1
(x--y) not in -children
(y->x) not in -children

check PreNotEqualLevel for 10 but exactly 2 Traversal



Chapter 3

Executing Abstraction Functions

This chapter presents four techniques for the dynamic execution of set or sequence-valued

field abstraction functions. The execution of a field abstraction function computes the

abstract value for an object's specification field from that object's concrete representation.

This abstract value is composed of concrete objects, already existent in the heap, in a
mathematical set or sequence. We choose to represent this mathematical set or sequence

structure at runtime with an iterator that returns the next element of the set (or sequence)
on demand.

Our four techniques share the following general structure. A translation step produces an

executable higher-order function from the field abstraction function written by the program-
mer in the declarative specification language JFSL [32, 119]. At runtime this higher-order

function is applied to an object of interest in order to compute the abstract value of one of its

specification fields from its concrete representation. The result of this function application

is an iterator. This iterator yields the elements of the set or sequence on demand.

Figure 3-1 shows a Pareto Front of these techniques, illustrating the trade-off between

expression generality and evaluation speed. At one extreme of the Pareto front, constraint

solving works for any abstraction function but is the slowest to execute. Constraint solving

is used for abstraction functions that written with inherently expensive language feature

such as set comprehensions. At the other extreme of the Pareto front, predicate substitution
runs the fastest but only works for the predicates defined above in Chapter 2.

There is a relatively simple subset of the JForge Specification language that we translate di-

rectly to imperative code. We call this subset navigable expressions. When navigating the

heap it may be possible to encounter the same object via multiple paths. If the result of the

navigation is intended to be a set then these duplicates must be detected at runtime and re-
moved. However, if we know a priori that no duplicate objects will be encountered then we

no longer need to do dynamic duplicate detection, and so can save both space and time dur-

ing execution. To determine if it is safe to remove dynamic duplicate detection we perform

a static analysis of the field abstraction function to produce a set of optimization conditions

(desired invariants of the ADT). If these optimization conditions can be discharged by a

verification system then we know that the same object will never be encountered twice

during the navigation of the field abstraction function.



Figure 3-1 Pareto Front of abstraction function evaluation strategies: generality of expres-
sion versus runtime speed
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This chapter explains the evaluation strategies according to the order in which they depend
on each other. First we define navigable expressions and generally characterize how navi-
gation is performed. Then we explain conservative navigation, streamlined navigation, and
the optimization condition generation process that determines when streamlined navigation
is applicable. Finally, predicate substitution and constraint solving are described.

The chapter concludes with a case study of the collections classes in the standard Java li-
brary. The main result of this case study is that our system can synthesize code for 25 of the
29 abstraction functions that were implemented imperatively by the original programmers.
All of these abstraction functions were expressible with navigable expressions or the spe-
cial predicates defined above in Chapter 2. Constraint solving was not required to execute
any of the abstraction functions in this case study.

3.1 Navigable Expressions

Our two navigation strategies, streamlined navigation and conservative navigation, are ap-
plicable to only a syntactically-defined subset of the JForge Specification Language. We
call this subset navigable expressions. The intuition of navigable expressions is that they
start from the receiver object (this), traverse fields only in the forwards direction, and have
a unary result. In this section we define navigable expressions; in the subsequent sections
we describe streamlined navigation and conservative navigation.

An abstract syntax of navigable expressions is listed in Figure 3-2. The listing is given in
the Haskell [105] programming language. This listing is part of a program that specifies the
computations (described below) performed in evaluating navigable expressions. In Haskell,
the data keyword introduces a new user-defined datatype, and the first word on each line
after the equals sign introduces a new constructor function for that datatype.

....... .... ... .. ...... ...... .... .. ...................... ............... .. ....... ....... .... . ..... -- - - - -. .. ....



This abstract syntax of navigable expressions has five important features:

1. Productions are classified according to the arity of their output as either unary or

binary. The abstract syntax of Alloy (or JFSL) is usually presented in an arity-

independent manner. However, here we are defining a subset of JFSL that is amenable

to particular computations, and this division is useful for describing these computa-
tions.

2. The root production of any AST is always unary: in other words, a navigable expres-

sion always computes a unary result.

3. All of the unary productions with binary children involve a join: UnaryJoin, JoinClo-

sure, ReflexiveJoinClosure.

4. The leaves of a navigable expression are always fields or the distinguished singletons

this and null.

5. The productions for transitive closure are coupled with a join: e.g., JoinClosure and

ReflexiveJoinClosure. This coupling is not the case in the standard Alloy grammar

because join and closure are considered as separate operators [52]. However it is the

case in the JFSL [32, 119] implementation because it simplifies certain analyses.

Figure 3-2 Abstract syntax of navigable expressions (in Haskell)

data NavigableExpr

data UnaryExpr

data BinaryExpr

= UnaryExpr

= ThisExpr
I NullExpr
I UnaryUnion UnaryExpr UnaryExpr
I UnaryDiff UnaryExpr UnaryExpr
I UnaryJoin UnaryExpr BinaryExpr
I JoinClosure UnaryExpr BinaryExpr
I ReflexiveJoinClosure UnaryExpr BinaryExpr

= FieldExpr String
| BinaryUnion BinaryExpr BinaryExpr
| BinaryDiff BinaryExpr BinaryExpr

Recall our ongoing example of a set of integers represented by a binary search tree, intro-
duced in Figure 1-7, with abstraction function this.root.*(left+right). Figure 3-3b shows the

AST for this navigable expression. The leaves are concrete field references (root, left, right)

and the distinguished name this. The root node is a reflexive-join-closure (.*). Recall that

join is syntactically represented by a dot.

Figure 3-3a shows
bered 1 through 5.
function annotated

an example instance of a our binary search tree with five nodes, num-

Figure 3-3b shows the abstract syntax tree of our example abstraction
with the denotation of each syntax-node in the context of the example

this
null
u+u
u-u
u.b
u.^b
u.*b

f
b+b
b-b



data structure in Figure 3-3a. We see, for example, that the root field of Figure 3-3a is
represented as a binary relation with the tuple {(tree,2)) in Figure 3-3b. We also see that the
union of the left and right relations results in the binary relation ((2,1), (4,3), (2,4), (4,5)}.
Finally, at the root node of the AST (a reflexive-join-closure), we see the result set (1, 2, 3,

4, 51.

Figure 3-3 Denotation of this.root. *(left+right) on simple example tree data structure.

{1,2,3,4,5}

tree(4, 3)
tree (2 4)

root {2} (4 5)

2+

left rght

1 4
thistt dh root left right

left right

3 5 {tree} {(tree, 2)} (2, 1) (2. 4)

(a) Example tree data struc- (b) Abstraction function AST annotated with
ture in heap. denotation of example at left.

3.2 Syntax-Directed Execution of Abstraction Functions

Our two navigation execution strategies (streamlined and conservative) are produced by a
top-down syntax-directed translation of the text of the (navigable) field abstraction func-
tion. These translations do some restructing of the AST. Let us name each node of the
abstraction function AST ai, and each corresponding part of the executable abstraction
function a.

The key insight behind our translations is that, because of the grammatical properties of
navigable expressions, the result of each ai can be represented as a unary set - even if
that ai represents an expression with a binary result. The reasoning is as follows: the only
binary leaf nodes are fields; the root is always unary; and there is always a join on the path
between the field leaf and the unary root. Therefore, from a computational standpoint, we
can push the joins down into the leaves. At runtime then the only binary tuples are the
referencing relationships already extant in the heap.

In our example, the computed output of aroot is not the binary tuple (tree,2) (which is what
aroot denotes) but, rather, simply the unary 2 (by which we mean node #2 in the example of
Figure 3-3a). What then is the role of a ? In the runtime computation it is a no-op: its work
is done by aroot. The important work related to a. happens during the translation where the

1: 11 : .:: :: z :::: ::::::::: I'll .. 11 .......................................... ...... ................. .. ........... ....... . ............... .... .... .................. .. ............................. ... ... .... ......... .......... ... ...... . ..... .......... -.- ..... ...... --- ---



AST is restructured from a.(athis, aroot) to aroot(athis). This translation and computation are
described formally below using the Haskell programming language [105].

Figure 3-4 shows a sequence chart of the execution of the abstraction function from our
ongoing example (this.root.*(left+right)) on the example data structure of Figure 3-3a. In
this chart each a is lazy and returns partial results as they are computed. The final result
is the set {2, 1, 4, 3, 5} - which is the result of a level-order traversal of the example
tree data structure. Note that in choosing to write a navigable expression that includes
transitive closure for an abstraction function the programmer is leaving the traversal order
unspecified. The translator is free to employ whatever traversal strategy it chooses; our
translator usually performs a level-order traversal.

Figure 3-4 Sequence chart of evaluation of example a on example data structure.
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In our actual implementation each a is realized as a Java iterator. This implementation
choice gives us some flexibility: the ai may be 'lazy' or 'demand-driven', which opens the
door for some potential performance improvements.

In subsequent sections we construct some formal models of our translation and mechani-
cally check that they are consistent with the semantics.

3.3 Conservative Navigation

Conservative navigation is applicable to any navigable expression. Streamlined navigation,
by contrast, is applicable to only a semantic subset of navigable expressions. We use the
Haskell programming language [105] to describe both conservative navigation (here) and
streamlined navigation (below).

Figure 3-5 introduces five type definitions that are used by the functions below. First, Obj
is defined as an alias for the Haskell built-in type String. Second, the type UnaryRelation

........... ......................................................... ................................... ................ .:::::.._:_M ... ....... ..... . .... . .................. ................



is defined to be a set of Objs. Third, a BinaryRelation is defined as a set of pairs of Objs.
Fourth, a Field is defined as a pair of a string (that names the field) and the binary relation

(that represents the mappings of the field). Finally, a Heap is defined as a pair of an object

and a list of fields. The fields represent all of the referencing relations in the heap. The

distinguished object in a heap pair represents the receiver object: i.e., this; the object on

which we are going to evaluate the abstraction function.

Figure 3-5 Haskell description of conservative navigation (type definitions)

type Obj = String
type UnaryRelation = Set.Set Obj
type BinaryRelation = Set.Set (Obj, Obj)
type Field = (String , BinaryRelation)
type Heap = (Obj, [Field])

Figure 3-6 describes conservative navigation for the unary productions of our navigable ex-

pression grammar. The function being defined here is named tu which stands for 'translate

unary'. The inputs to tu are a UnaryExpr and a Heap, and the output is a UnaryRelation,
which is the result of the evaluation of the unary expression with respect to the given heap.
Functions are defined piecewise in Haskell, with pattern matching on the arguments used

to differentiate the different cases. We will now discuss the various cases for unary produc-
tions.

The simplest case is when the programmer writes 'this' in the abstraction function: the com-

putation returns a singleton set with the distinguished receiver object. The computations

for a unary union and unary difference are simply set union and set difference, respectively.

Figure 3-6 Haskell description of conservative navigation (unary productions)

tu :: UnaryExpr -+ Heap -> UnaryRelation
tu ThisExpr (this , -) = Set. fromList [this]
tu (UnaryUnion Ihs rhs) h = (tu lhs h) 'Set.union' (tu rhs h)
tu (UnaryDiff Ihs rhs) h = (tu Ihs h) 'Set. difference' (tu rhs h)
tu (UnaryJoin Ihs rhs) h = tb rhs h (tu lhs h)
tu (JoinClosure Ihs rhs) h = levelorder rhs h (tu Ihs h)
tu (ReflexiveJoinClosure Ihs rhs) h =

(tu Ihs h) 'Set.union' (tu (JoinClosure lhs rhs) h)

The computations for unary join, join-closure, and reflexive join-closure all make use of

helper functions that are listed below in Figure 3-7. Recall that what we refer to as a 'unary

join' is an expression like u.b where u is a unary relation and b is binary relation. We

call such an expression a unary join because its output is unary. The function unaryJoin in

Figure 3-7 selects (filter) each pair out of the binary relation (rhs) where the first element of

the pair is in the unary relation (lhs); it then returns a set of the second elements in these

pairs (map snd).

The computation for join-closure composes the computation for unary join and the helper



function levelorder from Figure 3-7; levelorder performs a level-order, or breadth-first, traver-

sal. The tree that it traverses is created dynamically by repeatedly applying unary join to its

own result. Any other traversal, such as pre-order or post-order, would also suffice. When

the programmer writes a JFSL expression with a join-closure they are leaving the traver-

sal unspecified. The computation for reflexive join-closure (Figure 3-6) simply unions the

result of evaluating its left-hand argument to the result of computing a regular join-closure.

Figure 3-7 Haskell description of conservative navigation (helper functions)

doJoin :: UnaryRelation --> BinaryRelation --> UnaryRelation
doJoin Ihs rhs = Set.map snd (Set.filter (('Set.member' lhs ) . fst) rhs)

levelorder :: BinaryExpr -> Heap -> UnaryRelation -- UnaryRelation

levelorder _ set I Set.null set = Set.empty
levelorder rhs h u = let x = (tb rhs h u) in x 'Set.union' levelorder rhs h x

Figure 3-8 lists the computations for binary productions in our grammar of navigable ex-

pressions. The function being described is tb, which stands for 'translate binary'. One

might expect the type of tb to be BinaryExpr -> Heap -> BinaryRelation, following the struc-

ture of the type of tu. However, as discussed above, the type of tb is actually BinaryExpr

-> Heap -) UnaryRelation -* UnaryRelation, where the first UnaryRelation is the input and

the second UnaryRelation is the output. This type signature is the manifestation of our key

insight that the result type of every navigable ai can be unary.

In Figure 3-8 we see that binary union and binary difference are, like unary union and unary

difference, defined in terms of set union and set difference. This is possible because of our

key insight that the result of a semantically-binary expression can in computation be unary.

As in Alloy, field dereference is considered as a unary join.

Figure 3-8 Haskell description of conservative navigation (binary productions)

tb :: BinaryExpr -+ Heap -> UnaryRelation -> UnaryRelation
tb (BinaryUnion Ihs rhs) h u = (tb Ihs h u) 'Set.union' (tb rhs h u)
tb (BinaryDiff Ihs rhs) h u = (tb Ihs h u) 'Set. difference ' (tb rhs h u)
tb (FieldExpr f) (-, fields) u = doJoin u (fromJust (lookup f fields))

In the context of data structure repair Demsky et al. [30] perform two optimizations that

have the same motivation as what we do here: relation elimination, like our restructuring
of the translate binary function, aims to avoid instantiating tuples for (binary) relations; set

elimination aims to avoid instantiating sets for computed results, as our streamlined nav-

igation described next does. They found that these optimizations, combined with a third

optimization only relevant in their data structure repair context, sped up execution time by

a factor of 800. The technical details of our work differs: our specification language is dif-

ferent, the analyses we perform on it are different, and our software engineering objectives

are different. However, we share the common basic point that instantiating relations and

sets for computed values is expensive and is to be avoided if possible.



3.4 Two Navigations With Sequences

We have observed that there are two kinds of expressions involving sequences that pro-

grammers commonly want to include in their abstraction functions. One is to extract the

set of elements from the sequence with an expression of the form int.s, where s is a se-

quence, and int names the set of all signed 32-bit integers. The other is to use a sequence as

an index to another field with an expression of the form seq.field, where seq is a sequence,
and field is a field. Both of these kinds of expressions are easily navigable.

Figure 3-9 shows the extra line we added to the definition of the translate-unary (tu) func-

tion to handle expressions of the form int.s, which we call SeqSetJoin expressions. The

computation is simply to compute the set of the elements in the sequence. We here model

a sequence as a Haskell list of objects: [Obj]. The elements in the sequence are computed

by the translate-sequence (ts) function, described next.

Figure 3-9 The set of elements in a sequence

tu (SeqSetJoin i rhs) h = Set. fromList (ts rhs h)

Figure 3-10 lists the translate-sequence (ts) function, which includes the line evaluating

expressions of the form seq.field. We name these SeqMapJoin expressions. A sequence

expression is either an array expression or a SeqMapJoin expression. The evaluation of

SeqMapJoin makes us of a utility function named unaryJoin2. This function is simply a

wrapper for the unaryJoin function seen above. The wrapper packs up the arguments to

unaryJoin appropriately and unpacks the result. We know that the result of this call to

unaryJoin will result in a singleton because a Java field can refer to only a single object or

null. The wrapper uses the Set.findMin function to extract the single object from the result

set of unaryJoin.

Figure 3-10 Joining a sequence to a field

ts :: SeqExpr -+ Heap -> [Obj]
ts (ArrayExpr a) h = a
ts (SeqMapJoin s f) h = map (unaryJoin2 f h) (ts s h)

unaryJoin2 :: FieldName --+ Heap -+ Obj -> Obj
unaryJoin2 f (_, fields) x =

Set.findMin ( unaryJoin (Set.singleton x) (fromJust (lookup f fields))

Allowing expressions of the form seq.field also requires us to extend the definition of a

navigable expression to be either a unary expression or a sequence expression. The addition

of this extra case does not change the reasoning behind navigating unary expressions.



3.5 Streamlined Navigation

Streamlined navigation may be used to execute navigable expressions that are applied only
to a tree-like subset of the heap. We formalize the conditions under which streamlined nav-
igation is applicable below. The process for determining whether streamlined navigation
may be used is as follows:

1. A static analysis of the field abstraction function, described below, derives a specific
set of optimization conditions (desired invariants).

2. A program verification system attempts to discharge the optimization conditions via
a static analysis of the program. We use the JForge [32, 119] verification system.

3. If the optimization conditions hold, then streamlined navigation may be used; other-
wise conservative navigation must be used.

An intuition about the difference between streamlined and conservative navigation is that
streamlined navigation performs lazy computation with lists, whereas conservative naviga-
tion performs eager computation with sets. For example, if the abstraction function con-
tains a union operator (+), streamlined navigation will perform list concatenation whereas
conservative navigation will perform set union.

We use the Haskell programming language [105] to describe streamlined navigation, as
with the conservative navigation described. Figure 3-11 lists the type definitions used in
our description of streamlined navigation. They are almost the same as the type definitions
given above in Figure 3-5 for conservative navigation, except now UnaryRelation is defined
to be a list of objects (rather than a set of objects) and BinaryRelation is defined to be a list
of pairs (rather than a set of pairs).

Figure 3-11 Haskell description of streamlined navigation (type definitions)

type Obj = String
type UnaryRelation = [Obj]
type BinaryRelation = [(Obj, Obj)]
type Field = (String , BinaryRelation)
type Heap = (Obj, [Field])

Figure 3-12 describes the streamlined translate-unary (tu) function. As compared to the
conservative tu above in Figure 3-6, the set union operations have been replaced with list
concatenation. (In Haskell, the ++ operator performs list concatenation.) For the unary
difference production the right-hand side is simply dropped: i.e., the streamlined form of
x-y is just x.



Figure 3-12 Haskell description of streamlined navigation (unary productions)

tu :: UnaryExpr -> Heap -+ UnaryRelation
tu ThisExpr (this, -) = [ this ]
tu (UnaryUnion Ihs rhs) h = (tu Ihs h) ++ (tu rhs h)

tu (UnaryDiff Ihs rhs) h = tu lhs h
tu (UnaryJoin Ihs rhs) h = tb rhs h (tu Ihs h)
tu (JoinClosure Ihs rhs) h = levelorder rhs h (tu lhs h)
tu (ReflexiveJoinClosure Ihs rhs) h =

(tu lhs h) ++ (tu (JoinClosure Ihs rhs) h)

Similarly, the helper functions unaryJoin and levelorder have been re-defined in terms of

lists and concatentation rather than sets and union: contrast Figure 3-13 with Figure 3-7.

Figure 3-13 Haskell description of streamlined navigation (helper functions)

unaryJoin :: UnaryRelation -> BinaryRelation -> UnaryRelation
unaryJoin Ihs rhs = map snd (filter (('elem' Ihs ) . fst) rhs)

levelorder :: BinaryExpr -> Heap -> UnaryRelation -> UnaryRelation
levelorder - [] = []
levelorder rhs h u = let x = (tb rhs h u) in x ++ levelorder rhs h x

Figure 3-14 lists the streamlined translate-binary (tb) function. As above, set union has

been replaced by list concatenation (++), and set difference is achieved by dropping the

right-hand side. Otherwise the listing in Figure 3-14 is quite similar to the conservative
definition listed above in Figure 3-8.

Figure 3-14 Haskell description of streamlined navigation (binary productions)

tb :: BinaryExpr - Heap -> UnaryRelation -> UnaryRelation
tb (FieldExpr f) (_, fields) u = unaryJoin u (fromJust (lookup f fields))
tb (BinaryUnion Ihs rhs) h u = (tb Ihs h u) ++ (tb rhs h u)
tb ( BinaryDiff ihs rhs) h u = tb Ihs h u

Obviously streamlined navigation does not produce the same results as conservative nav-

igation for all inputs: list concatenation and set union are not generally equivalent opera-
tions. But consider the case of two sets with no common elements: if we represent these

sets as lists, then the concatenation of the lists is equivalent to the union of the sets. We
can only substitute list concatenation (streamlined navigation) for set union (conservative

navigation) if we know a priori that the two inputs have no intersection. We call this 'no in-

tersection' criterion an optimization condition, and the process of generating these desired

heap invariants from field abstraction functions is described next.



3.6 Optimization Condition Generation

This section formalizes the conditions under which streamlined navigation is semantically

correct: i.e., formalizes the notion of a 'tree-like' portion of the heap. A static analysis of

the field abstraction function produces a set of optimization conditions. An optimization

condition is a desired heap invariant. If these desired invariants are in fact true of the

program, then the navigation described by the field abstraction function is tree-like and

streamlined navigation may be used.

Like our translation strategies for navigable expressions, optimization condition genera-

tion follows a syntax-directed approach. The optimization conditions generated for each

production are listed, as an Alloy model, in Figure 3-15. In these Alloy models every ex-

pression atom is constrained to be part of the abstraction function AST. We never compare

two ASTs, and so the AST itself is implicit.

The Alloy model in Figure 3-15 makes use of one signature, JObject, and two relations,

udenotes and bdenotes. The JObject signature models Java objects in an execution of the

program. The udenotes and bdenotes relations model the denotation of unary and binary

productions in the abstraction function. The values of these denotation relations are given

by the semantics of navigable expressions, which are essentially Alloy semantics.

Many of the optimization conditions are fairly simple. For example, the optimization con-

dition for unary difference is that there is no intersection between the denotation of the

left-hand side and the denotation of the right-hand side: no e.Ihs.udenotes & e.rhs.udenotes.

The optimization condition for unary union is exactly the same. These conditions are also

essentially the same in the binary case.

The optimization condition for unary join is slightly more complicated. It essentially says

that performing the join will not lead to the same target object via two different paths. The

starting point of those paths are ol and 02, from the denotation of the LHS. The ending

point of those paths are found by joining the starting points to the denotation of the RHS.

The optimization conditions for join-closure and join-reflexive-closure are the same, and

are rather involved. Again, the intuition is to ensure that the navigation is tree-like. A join-

closure expression has both a right-hand side, which names the structure to be traversed,

and a left-hand side, which names the starting points for that traversal. The first condition

says that there is no object o that has two incoming edges (one from x and one from y).
The second condition says that there is no cycle in the right-hand side relation that can be

reached from a starting point in the left-hand side set.

The first two conditions establish that the relation on the right-hand side is sufficiently

tree-like. The third condition checks that the left-hand side enters that tree appropriately.

Consider the tree a, b, c, d in Figure 3-16. If we start traversing at a we visit all four nodes.

If we subsequently start traversing at b we then re-visit nodes b, c, d. The starting-points a

and b are hierarchically related to each other. The third condition ensures that no starting-

points for the traversal (i.e., objects in the denotation of the left-hand side) are hierarchically

related. We learned of the necessity for this third condition through the formalization and

mechanical analysis of optimization condition generation.



Figure 3-15 Optimization condition generation for optimized navigation

pred OptimizationConditions {
all e BinaryExpr I BinaryOC[e]
all e UnaryExpr-GoalExpr I UnaryOC[e]

}

pred UnaryOC [ e : one UnaryExpr] {
e in UnaryDiffExpr => no e.lhs.udenotes & e.rhs.udenotes
e in UnaryUnionExpr =- no e.lhs.udenotes & e.rhs.udenotes
e in UnaryJoinExpr * no disjoint ol, o2 : e.lhs.udenotes I let r=e.rhs.bdenotes I some o1.r & o2.r
e in JoinClosureExpr = JoinClosureOC[e]
e in Join Ref lexiveClosureExpr * JoinClosureOC[e]

pred BinaryOC [ e : one BinaryExpr] {
e in BinaryUnionExpr -> no e.lhs.bdenotes & e.rhs.bdenotes
e in BinaryDiffExpr => no e.lhs.bdenotes & e.rhs.bdenotes
e in BinaryJoinExpr => (no a, b : JObject I

(a-ab) in e.bdenotes
some disjoint x, y : JObject I

((a-+x) +(a->y)) in e.lhs.bdenotes
((x->b) +(y->b)) in e.rhs.bdenotes }})

}

pred JoinClosureOC[ e : one AbstractJoinClosureExpr]
(no o : JObject I { some disjoint x, y : JObject I {

-- no object (o) reachable from two others (x, y)
((x-io)+(y->o)) in (e.rhs.bdenotes)
(x+y) in (e.lhs.udenotes) +(e.lhs.udenotes).^(e.rhs.bdenotes)

}}) and ( no o : JObject I {
-- no cycle that is reachable from the LHS
(o->o) in ^(e.rhs.bdenotes)
some x : e.lhs.udenotes I (x->o) in ^(e.rhs.bdenotes)

}) and (
-- can't enter the tree at two hierarchically-related positions
no disjoint p, q : e.lhs.udenotes I (p->q) in ^(e.rhs.bdenotes)

Figure 3-16 Multiple navigation entry points into a tree data structure

[f -- aSI.-. .



3.7 Soundness of Optimization Condition Generation

This section establishes the soundness of the optimization condition generation described

above: that is, if the optimization conditions described above hold, then streamlined naviga-

tion will produce results that are consistent with the semantics. We establish this soundness

result with a number of Alloy models:

" the syntax of navigable expressions (seen above, in Haskell, in Figure 3-2);

" the semantics of navigable expressions (regular Alloy semantics; not shown);

" the optimization condition generation (seen above in Figure 3-15);

* a direct model of the streamlined computations (discussed below);

" an indirect model of the streamlined computations (discussed below).

The analysis searches for a field abstraction function and a program heap (constrained by

the optimization conditions for the given field abstraction function) for which streamlined

navigation is inconsistent with the semantics. No counterexample is found, giving support

to the claim that streamlined navigation produces semantically correct results.

We have expressed the streamlined computations in four different ways during the course of

this work: our running implementation is written as higher-order functions in Java; above

they were described using the Haskell programming language in Figures 3-11, 3-13, 3-12,

and 3-14; in this section we have both the indirect and direct Alloy models. Our objective in

this section is to confirm that our running implementation is consistent with the semantics

of navigable expressions. Each different form of the streamlined computations moves one

small step along this continuum:

" The direct model is conceptually similar to the semantics because both explicitly

represent the results associated with each node of the field abstraction function AST.
We have mechanically verified the consistency of the direct model and the semantics

of navigable expressions using the Alloy Analyzer.

" The indirect model is closer to the code because it uses a unary representation for the

output of AST nodes that semantically have a binary output. We have mechanically

verified the consistency of the indirect model with the direct model and the semantics

using the Alloy Analyzer.

" The Haskell code is the most clear and concise expression of the streamlined com-

putations. We used it as a conceptual specification both for the Alloy models and for

the Java implementation. The consistency of the Haskell code with the Alloy models

and the Java implementation was checked manually.

" The Java implementation has been tested with a variety of abstraction functions and

program states, including hand-written tests by us and by independent third parties,

and machine-generated tests from the Randoop tool [93, 94].



Through the course of these verification steps we have rectified a variety of issues with
our understanding and expression of the streamlined computations. The most interesting
such issue was the multiple-entry scenario depicted in Figure 3-16 above. Without the
benefit of the Alloy Analyzer's mechanical analysis we would have failed to include the
third optimization condition for join-closure that prevents this scenario (Figure 3-15).

We now explore the formalizations of the direct and indirect models and their consis-
tency with each other and with the semantics. Figure 3-17 shows the Alloy predicate
that claims the direct model is consistent with the semantics if the optimization condi-
tions hold. This predicate checks that, for each node in the abstraction function AST,
the denotation and the computation are equivalent if the optimization conditions hold.
This check is broken down into two separate helper predicates (the text of which is not
shown here), one for unary nodes (unaryComputesEqualsDenotes), and one for binary nodes
(binaryComputesEqualsDenotes).

Figure 3-17 Theorem: the optimization conditions imply that the computation is equal to
the denotation for the direct model of streamlined navigation

pred ComputationisOk {
OptimizationConditions -(

(all e UnaryExpr I unaryComputesEqualsDenotes[e]) and
(all e BinaryExpr I binaryComputesEqualsDenotese]))

}

Figure 3-18 shows the Alloy predicate that claims the indirect model is consistent with
the semantics if the optimization conditions hold. In this case the check is only for the
unary nodes of the abstraction function AST because the computed results for the binary
nodes are not explicitly represented in the indirect model. Instead, the partial results at
each time-step are modelled for the binary nodes (these time-steps are not shown in the
listings here). These partial results cannot (easily) be compared against the denotations of
the nodes. Note, however, that the root node of a navigable expression is always unary, and
so the check in Figure 3-18 always includes the final output of the navigation.

Figure 3-18 Theorem: the optimization conditions imply that the computation is equal to
the denotation for the indirect model of streamlined navigation

pred ComputationisOk { OptimizationConditions => (all e : UnaryExpr I unaryComputesEqualsDenotes[e])

Figure 3-19 shows the Alloy predicate that checks that the direct and indirect models of
streamlined computation produce the same results. This cross-check only examines the
root node of the AST: i.e., it only checks that the two models produce the same ultimate
result (it does not check the partial results at each sub-node of the abstraction function
AST).



Figure 3-19 Theorem: direct and indirect models of streamlined navigation are equivalent

assert crosscheck I OptimizationConditions =* (GoalExpr.ucomputes = GoalExpr.ustream) }

Let us stand back for a minute to look at what the Alloy Analyzer is verifying here. First,
the Analyzer constructs every possible navigable abstraction function AST (within some

finite bound) according to (an Alloy version of) the grammar shown above in Figure 3-2.

Second, it constructs every possible Java program heap (according to our model of the Java

heap, and within some finite bound). Then it evaluates (1) the denotation of this abstraction

function AST with respect to this Java program heap according to the semantics; and (2)

the streamlined computation of this abstraction function AST with respect to this Java

program heap according to either the direct or indirect model. Finally, it checks whether

the denotation and the computation are equivalent.

We have run these checks with a variety of different finite bounds. The smallest bound was

for abstraction function ASTs with up to five nodes and Java program heaps with up to five

objects. This bound can be verified in one or two seconds for both the direct and indirect

models. We have also verified for abstraction function ASTs up to eight nodes and Java

program heaps up to four objects. These bounds take time between twenty seconds and

twenty minutes depending on how the allowance of eight AST nodes is divided between

different kinds of AST nodes and whether the direct (faster) or indirect (slower) model is

being verified.

3.8 Predicate Substitution

The predicate substitution execution strategy involves substituting pre-defined imperative

code for the library of predicates introduced above in Chapter 2. These are well-understood

sequence operations and tree-traversals.

Recall our ongoing example of an integer set represented as a binary search tree. In Fig-

ure 2-9 we saw an example of a specification field nodeseq defined in terms of the inorder

predicate, which we reproduce here in Figure 3-20. At runtime, the system uses the iterative
definition of an in-order binary tree traversal to evaluate the inorder predicate; pseudo-code

for this imperative in-order traversal is listed in Figure 3-21. Our actual implementation of

in-order traversal is structured as a Java iterator, and looks somewhat more like the listing

given above in Figure 1-8.

Figure 3-20 Ongoing example: use of inorder predicate to define nodeseq specification field

@SpecField ( "nodeseq : seq Node I
inorder( this. root, Node@left, Node@right, this .nodeseq)")

class BinarySearchTree I Node root; }
class Node { Node left , right ; int value;



Figure 3-21 Iterative definition of in-order traversal predicate [115]

inorder(root , left , right , result)
stack := empty Stack
node = root
while (!(node == null && stack.isEmpty())

while (node != null)
stack.push(node)
node = node. left

assert !stack. isEmpty ()
n = stack.pop()
node = n. right
result .add(n)

The arguments passed to the inorder predicate in Figure 3-20 are handled in different ways.
The last argument, this.nodeseq, names the specification field that is being constrained by
this predicate. The middle two arguments, Node@left and Node@right, name the fields that
are to be used for fetching the left and right children, respectively, of a node (this is the
syntax used by JFSL [32, 119] for what might be written in Alloy as a domain restriction
such as Node <: left or Node < : right). The first argument, this. root, is a navigable expression
that is evaluated using the navigation techniques discussed above.

Substitution for the other predicates described in above in Chapter 2 works in much the
same way: a well-known imperative implementation is used in place of the logical defini-
tion; arguments are either the specification field being constrained, expressions that name
fields to be used in the evaluation, or navigable expressions that name particular objects to
be used as starting points.

3.9 Constraint Solving

Constraint solving is the execution strategy of last resort, to be used when the field abstrac-
tion function does not conform to the syntactic restrictions of predicate substitution nor
navigable expressions. It supports the entire syntax of the JForge Specification Language,
and in almost all cases computes the results that the programmer expects (an exceptional
case is described below). The steps involved in constraint solving are as follows:

1. Serialize. The visible heap is serialized into a (large) logical formula. The 'visible
heap' is the objects reachable by field references starting from the receiver object
and the method parameters. Following Jackson [51], each field in the program is
modelled as a binary relation, and each individual field reference is modelled as a
tuple in the appropriate such relation.

2. Solve. Combine the formula representing the visible heap with the formula of the
field abstraction function, and invoke a constraint solver to search for a solution.



3. Return. The logical solution returned by the constraint solver names a set of pro-
gram objects by their representative logical variables. From these logical variables,
the corresponding program objects must be located in the heap and returned to the
running program.

The technology stack that performs these operations was described above in § 1.7.

Figure 3-22 gives an example of an abstraction function that requires constraint solving.
The class ArrayPointSet uses an array to store a set of Point objects. The specification field
points is the conceptual set of points that are stored in the array, and is computed via a
navigable abstraction function. The specification field brightest refers to the brightest point
in the set (there may be multiple brightest points that all have the same brightness value).
This specification field is computed via a set comprehension, and that requires constraint
solving in our system.

Figure 3-22 Example abstraction function that requires constraint solving (ArrayPointSet)

@SpecField ({
"points : set Point I this.points = int.(this.a.elems)-null",
"brightest : set Point I p : this . points I

no q : this . points q!=p => q. brightness > p. brightness }" })
@Invariant("no disjoint p, q : this.points I p.x == q.x && p.y == q.y")
class ArrayPointSet I Point [] a; }
class Point ( int x, y, brightness;

Our approach to constraint solving evaluates formualo with respect to the portion of the
heap that is visible from the receiver object. This approach may not always produce the
results the programmer intends: in some circumstances the programmer may expect the
formula to be evaluated against the entire heap or even against potential objects that have
not been instantiated. In such cases our approach to constraint solving will produce results
that may surprise the programmer.

Consider the example RangePointSet class in Figure 3-23. This class describes a rectan-
gular area in a Cartesian coordinate space. Its concrete representation is just the minimim
(bottom left) and maximum (top right) points of the rectangle. This example was inspired
by the RangeSequence class written by Emina Torlak as part of the Kodkod [110, 111]
relational model finder. The specification field points is computed via a set comprehension,
which requires constraint solving in our system. However, the programmer clearly intends
to this specification field to include every integer point in the rectangle - even if those
objects have never been instantiated by the program. In our system the constraint solver
will only see the minimum and maximum points, and so the abstraction function might as
well be this.points = this.min + this.max.



Figure 3-23 Example abstraction function for which constraint solving would not produce
the expected result (RangePointSet)

@SpecField("points : set Point | this.points = { p : Point I
this.min.x <= p.x && this .min.y <= p.y &&
this.max.x >= p.x && this.max.y >= p.y }")

@Invariant("this.min.x <= this.max.x && this.min.y <= this.max.y")
class RangePointSet { Point min, max; }
class Point { int x, y; }

3.10 Performance Characterization

This section characterizes the performance of our field abstraction function execution strate-
gies on our ongoing binary search tree example. This characterization has two purposes:
first, to show that it is worth the effort to apply more specialized execution strategies when
possible; second, to show the circumstances under which these strategies are competitive
with hand-written code.

We compare our execution strategies against two hand-written implementations, one using
normal field access and the other using reflective field access. Our current implementations
of the execution strategies use reflection for field access. This choice gives us greater
flexibility and modularity in our implementation, at the cost of runtime performance. The
hand-written implementations use the common recursive form of in-order traversal, which
was listed above for reference in Figure 2-15.

We use two different syntactic forms of effectively the same abstraction function because
the predicate substitution strategy and the other strategies operate on different subsets of
the JForge Specification Language. For most strategies we use the navigable expression
this.root.*(Ieft+right) that was originally introduced in Figure 1-7. For the predicate substi-
tution strategy we use the predicate inorder(this.root, Node@left, Node@right, this.nodeseq),
which was introduced in Figure 2-9. These two abstraction functions are not logically
equivalent because the navigable expression does not specify the traversal order. However,
in practice our implementation uses in-order traversal for this example, and so the results
at runtime are the same.

Figure 3-24 plots the performance times of these strategies on red/black trees of varying
sizes. Red/black trees are a kind of balanced binary search tree. Figure 3-24a examines
trees of up to five thousand nodes and presents the individual data points. Trees of this
small size are traversed extremely quickly, and so the times are quantized at millisecond
boundaries (which is the smallest unit of time we can measure inside a Java virtual ma-
chine). Figure 3-24b examines trees of up to one million nodes and uses lines to connect
the individual data points so that the trend is clear.

The constraint solving strategy has been omitted from the data in Figure 3-24 because that
strategy is orders of magnitude slower than the others and does not scale to even medium-
sized trees. For example, the maximum time recorded on Figure 3-24a for the other strate-



gies on trees of up to 5000 nodes is 7ms; the maximum time recorded on Figure 3-24b for
the other strategies on trees of up to 1 million nodes is less than 2s. The constraint solving
strategy incurs about 2s of overhead for an empty tree, and its run-time grows exponentially
from there. Even the worst of the other strategies can traverse a tree of a million nodes in
the time it takes the constraint solving strategy to process an empty tree.

From the plots of Figure 3-24 we observe the following:

" All of the measured strategies scale to trees of one million nodes.

" The measured strategies are indistinguishable on small trees up to five hundred nodes.
On such trees every strategy measures at zero milliseconds: i.e., we cannot measure
the performance differences. Hand-written code offers no measurable advantage over
automatically synthesized code that uses reflective field access.

" On trees of over five hundred nodes the conservative navigation strategy is measur-
ably more expensive than the others.

" On trees of over two thousand nodes the streamlined navigation strategy is mea-
surably more expensive than the special predicate strategy and normal hand-written
code. However, it appears that this extra time is consumed by the reflective field ac-
cess and not the streamlined navigation strategy per se: the hand-written code using
reflective field access becomes similarly more expensive with trees of this size.

" On trees of over four thousand nodes the predicate substitution strategy becomes
measurably more expensive than the normal hand-written code. Again, it appears
that this extra expense is due to the reflective field access more than the strategy
choice.

" All examined strategies scale linearly. The conservative navigation strategy has a
significantly steeper slope than do the rest of the examined strategies because of
the cost of dynamically ensuring that duplicates are eliminated at each step of the
computation.

" Predicate substitution performs very nearly as well as hand-written code using re-
flective field access on trees of up to one million nodes.



Figure 3-24 Traversal times for binary search tree abstraction function this. root.*(left+right)
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Based on these observations we make the following conclusions:

" It is worth the effort to apply a more specialized execution strategy, if possible. In
particular, the streamlined navigation strategy shows very significant performance
improvements over the conservative navigation strategy with medium to large trees.
The predicate substitution strategy also shows some improvement over streamlined
navigation, but this difference is not as large as the difference between conservative
and streamlined navigation.

" Much of the cost of our implementations of these execution strategies is due to the
engineering choice to use reflective field access. A future implementation of these
ideas using bytecode generation for field access is likely to bring the performance of
streamlined navigation and predicate substitution very close to normal hand-written
traversal code.

" All of the measured execution strategies are likely to perform acceptably on small to
medium-sized object structures in many contexts - even in their current realization
with reflective field access.

" The streamlined navigation and predicate substitution strategies are likely to perform
acceptably on even large object structures in many contexts.

This performance characterization provides evidence that synthesizing code for abstraction
function specifications may be a reasonable alternative to hand-written implementations.



3.11 Annotating the JDK Collections v1.4

We evaluate the expressiveness of our approach on a subset of the standard Java libraries,
the JDK Collections v1.4. This data-structure library was written primarily by Joshua
Bloch and Doug Lea. Figure 3-25 characterizes the JDK Collections vl.4. We consider
that there are five important abstract types: List, Set, Map, Map.Entry, and Iterator. The
number of concrete subtypes of each of these abstract types may surprise the reader who has
used the JDK Collections but not studied their implementation. A JDK user might think,
for example, that there are only two concrete subclasses of List: ArrayList and LinkedList.
However, there are in fact 14 concrete subclasses of List. Most of them are inner classes
that are not directly visible to clients. They largely serve special utility purposes. For
example, the Collections utility class has four inner classes that implement the List interface:
EmptyList, SingletonList, SynchronizedList, UnmodifiableList.

Figure 3-25 Count of interesting classes in JDK Collections vi .4

Abstract Type Subtypes Specification Fields
Abstract Concrete Total

java. util . List 2 14 16 elts

java. util .Set 2 22 24 elts
java. util .Map 2 13 15 entries, keys, values
java. util .Map.Entry 0 9 9 key, value
java. util . Iterator 5 29 34 n/a

Total 11 87 98

Figure 3-25 also names what we consider to be the specification fields for these abstract
types. List has one specification field that we name 'elts' (short for 'elements'), which is a
sequence of objects. Similarly, Set has one specification field, also named elts, but that is
a set of objects rather than a sequence. Map has three specification fields: entries, keys, and
values. The Map.Entry interface has two specification fields: key and value.

The abstraction functions for the concrete subclasses of Map.Entry are trivial, and always of
the form this.specField = this.concreteField. These can all be easily expressed in JFSL.

The abstraction functions needed for concrete subclasses of List, Set, and Map are more
interesting. Furthermore, they are all manifested as iterators in the code. So one way
to assess the expressiveness of JFSL and our automatic synthesis is to see how many of
these manually written iterators can be replaced by ones automatically synthesized from
abstraction functions written in JFSL.

We were able to automatically synthesize 25 out of the 29 concrete iterators in the JDK
Collections v1.4 from abstraction functions written in JFSL. All of these 25 abstraction
functions can be evaluated with navigation or predicate substitution: constraint solving was
not necessary. Some interesting examples of these abstraction functions are listed below.
The remaining four cases that our approach did not cover are:



* Collections. UnmodifiableMap.UnmodifiableEntrySet.elts: The UnmodifiableMap class is a wrap-
per that provides an immutable view of some other Map object. Its UnmodifiableEntrySet
inner class provides an immutable view of the Map.Entry objects wrapped by the
UnmodifiableMap. We can easily express in JFSL that the value of elts specification
field is the same as the value of the wrapped map's entries field. However, we can-
not automatically synthesize an iterator that is equivalent to the manually written
one because the manually written one wraps each returned Map.Entry object in an
Immutable.Entry object.

* Collections. UnmodifiableCollection. iterator (): UnmodifiableCollection is a wrapper class that
provides an immutable view of some other Collection object. Collection is a supertype
of both Set and List. While Collection defines an iterator () method, it has no specifica-
tion field: sets, lists, and bags are all expected to implement the Collection interface,
and to provide an implementation of the iterator () method that iterates over their con-
tents. Because Collection has no clear specification field it is impossible to write an
abstraction function for it.

* ldentityHashMap.entries: IdentityHashMap is a hash-table implementation that uses linear-
probing to resolve hashing conflicts. In such a strategy the table is one large array
with keys stored at even indices and values stored at odd indices. There is no ex-
plicit instantiation of Map.Entry objects as there is in, for example, HashMap, which
uses separate-chaining to resolve hashing conflicts. Consequently, we cannot write a
JFSL abstraction function for the entries specification field. The value of the entries
specification field is a set of Map.Entry objects. A JFSL abstraction function cannot
cause objects to be created: it can only query objects that exist in the heap. Since the
IdentityHashMap does not create Map.Entry objects as part of its internal storage, they
aren't in the heap to be queried. The ldentityHashMap.Entrylterator instantiates Map.Entry
objects when the client calls the next() method.

e TreeMap.SubMap.entries: The TreeMap class requires that its keys be drawn from a to-
tally ordered domain, such as strings or integers. Consequently, it supports an opera-
tion to create a 'submap' comprising only entries whose keys are within some lower
and upper bound in the key domain. Making the determination that a key falls within
the selected range requires calling a Comparator object. Based on personal discussions
with Dennis and Yessenov, it is not entirely clear how to specify these Comparator ob-
jects in a way that a static verifier can work with. Moreover, even if we had a good
way to specify them, we would still need to be able to automatically synthesize their
implementation in order to synthesize an iterator for the SubMap.entries field.

We verified that our 25 automatically synthesized iterators for these specification fields
worked correctly by running 20,661 regression tests that were generated with the Randoop
tool [93, 94]. We used Randoop to generate these tests against the original JDK Collections
vl.4 code, and then ran the tests against our modified version of the code. The modified
code past all of tests except those that expected mutating functionality from the iterators.
The Iterator interface defines a number of methods that mutate the underlying data structure,
such as add and remove. Our synthesized iterators only read the underlying data structure



and do not mutate it: they simply throw UnsupportedOperationException when these mutating

methods are invoked. Randoop generated 1,757 tests (out of the 20,661) that expected to

be able to mutate the underlying data structure via an iterator. Our modified code failed

these tests, as expected.

3.11.1 Interesting Abstraction Functions from the JDK Collections

The most interesting abstraction functions in the JDK Collections v1.4 are those for TreeMap

(Figure 3-26) and HashMap (Figure 3-27). The abstraction function for TreeMap.entries is like

our ongoing example, since TreeMap implements a Red/Black binary search tree.

Figure 3-26 Abstraction functions for java. util .TreeMap

@SpecField ({
"public entries : set Map. Entry from this . root | " +

"this. entries = this. root .*( left+right) - null",
"public keys : set Object from this. root I " +

"this .keys = this . entries .key" ,
"public values : set Object from this . root I " +

"this .values = this. entries .value" })
public class TreeMap extends AbstractMap
implements SortedMap, Cloneable , Serializable

The abstraction functions for HashMap are listed in Figure 3-27. The abstraction function

for the entries specification field is the most interesting of the three. The sub-expression

this. table. elems evaluates to the elements of the array (table) used for storage: it is a binary

relation from int (array indices) to Map.Entry objects. Joining this sub-expression to the set

of all 32-bit integers, denoted int, produces just the set of Map.Entry objects that are stored

in the table array. These entry objects are not the all of the entries in the HashMap: they are

just the entries that head the collision chains. Joining the set of these head entries to the

reflexive transitive closure of the next field gives all of the entries in the HashMap.

Figure 3-27 Abstraction functions for java. util .HashMap

@SpecField ({
"public entries : set Map. Entry from this . table

"this.entries = (int.(this.table.elems)
"public keys : set Object from this .table I " +

"this.keys = this.entries.key - null",
"public values : set Object from this. table I

" this .values = this . entries . value" })
public class HashMap extends AbstractMap
implements Map, Cloneable , Serializable

|" +
- null).*next - null",

+



Equality cannot be implemented auto-
matically because two abstract objects
can be equal even if their reps are not.

Chapter 4 Liskov & Guttag [67, p.93]

Equality

Until now programmers have been obliged to implement object equality comparison proce-

dures manually. As is widely remarked in the literature (e.g., [17, 49, 91, 93, 94, 97, 114]),

this is both tedious and error-prone. Sources of error range from the normal minutiae of

programming, to subtle issues around subclassing and delegation, to the practical challenge

of cyclic references, and the conceptual challenge of differing concrete representations for

the same abstract value.

By automating abstraction functions we can also automate object equality comparisons.

The key idea is to define object equality in terms of the abstract state of the object. Two

objects are equal if they have the same public specification fields and those fields have

equal abstract values. We can perform this comparison at runtime thanks to techniques for

automating abstraction function described above in Chapter 3.

Automation obviously removes many of the mechanical difficulties of implementing ob-

ject equality comparisons. Techniques for computing equality in the presence of cyclic

references are known in the research literature, but they are not easy to add to manually

implemented equality comparisons, and so are usually not used by programmers. The key

missing step has been automating the computation of the abstract state. With this piece we

can now fully automate object equality comparisons.

Allowing objects of different types to be considered equal poses a variety of challenges.

For example, a LinkedList and an ArrayList have completely different concrete representa-

tions. Another thorny case that has been the source of much discussion in the literature

is when one type is a subtype of the other and adds some extra state: the classic example

is ColourPoint extends Point. Computing the abstract state of the object is one important

component of these comparisons; explicitly declaring which classes are comparable with

each other is another.

We introduce the notion of equality types as a mechanism for the programmer to clearly

express their intent about which types are to be considered potentially equal. Equality

types ensure that the equals methods in the program, collectively, define a partition that

aligns with the subtype structure of the program in a manner explicitly specified by the

programmer.



To reduce the programmer annotation burden we have designed an equality type inference
procedure. In our case study this procedure was able to infer the equality type for all but
one class. It turns out that this one class had a design peculiarity that defeated the inference
procedure, and that this design peculiarity has been independently classified as a bug in the
vendor's bug-tracking system.

We evaluate our approach in terms of expressiveness and correctness on three real pro-
grams: the collections classes in the standard Java libraries (also studied above in Chap-
ter 3), the Apache Commons Collections library, and JFreeChart (an open source plotting
program). We find that almost all of the hand-written equals and hashCode methods in
these programs can be replaced by our system. The methods that could not be replaced
either intentionally violated the object contract or used weak references to control inter-
action with the garbage collector. Using both tests hand-written by the program authors
and tests generated by the Randoop [93, 94] tool we show that our automatically generated
implementations have fewer faults than the original hand-written versions.

4.1 A Simple Example

An example of two objects with different concrete states representing the same abstract
value is given in Figure 4-1, where the String objects s1 and s2 both represent the sequence
of characters 'art'. Strings so and s2 are both created by calling a constructor of the String
class that allocates new storage for the underlying character array. String si, by contrast,
is created by calling the substring method. Instead of allocating new storage, si shares the
underlying array with so and just uses a different offset and length.

Figure 4-1 Example of two equal string objects

void main( String [] args) {
String sO = new String ("farther"); so
String s1 = sO. substring (1 , 4); offset=O

String s2 = new String ("art"); count=7

assert s1.equals(s2); // true f a r t h e r

@SpecField("chars : seq char Ioffset=1
subseq( this .value .elems, count=3

this . offset
this . count , this . chars)")

class java. lang . String ( s2
char[] value; offset=O a r t
int offset , count; count=3

(a) Code snippet with two equal string ob- (b) Heap diagram corresponding to
jects. Abbreviated definition of String code snippet in part a.
class included for reference.



4.2 Object-Contract Compliance is Difficult

Previous researchers have documented that object-contract compliance is difficult to achieve
for students [97], difficult for regular programmers [49, 114]; difficult for expert program-
mers [93, 94]; and difficult to write about for language designers and implementers [17, 91].
This section discusses five areas of difficulty, all of which are resolved by our systematic
technique.

4.2.1 Difficulty: Simple Errors

Programming requires organizing many details. Programmers sometimes overlook some
details, even if the they understand the issues at hand. In the programs we studied, simple
errors (such as implementing equals but forgetting to implement hashCode) were com-
mon. Additionally, as programs evolve, maintenance of equality and hashing methods is
frequently neglected. When a class is modified by a change to its fields, its equals and
hashCode methods (as well as the equals and hashCode methods of its subclasses [80]) are
likely to need modification as well.

If these methods are generated automatically, as they are in our technique, programmers
are no longer burdened with the repetitive task of maintaining them, and their correctness
is guaranteed.

4.2.2 Difficulty: Subclassing

The primary conceptual difficulty caused by subclassing, with respect to equality, is that
all of the implementations of the equals method are supposed to, collectively, define a
symmetric relation - but the programming language mechanism for implementing them,
single dynamic dispatch, is asymmetrical. Looked at from another angle, the type hierarchy
has the programmer thinking in terms of subsets but, an equivalence relation is a partition
and there are no subsets in a partition. Bloch [17] illustrates this conundrum with the
classic Point/ColourPoint example. Figure 4-2 lists a simple two-dimensional Point class
and its equals method.

Figure 4-2 Simple Cartesian Point class and equals method (Bloch [17])

class Point {
int x, y;
Point(int x, int y) { this.x = x; this.y = y;
public boolean equals(Object o) {

if (!(o instanceof Point)) return false;
Point p = (Point)o;
return p.x == x && p.y == y;



As the classic example goes, suppose we want to extend this Point class and add a colour
field to it in the new ColourPoint subclass. How shall we write the equals method of this
subclass? There is no pleasant, commonly agreed upon solution to this problem. Bloch
[17] gives two examples of equals methods that programmers in practice often write and
shows that they are faulty. His first example uses the instanceof test the way it is popularly
used and violates symmetry (Figure 4-3).

In Figure 4-4 Bloch [17] lists an example of how a clever programmer might try to modify
the listing of Figure 4-3 to regain symmetry. However, this 'fix' comes at the cost of
introducing a transitivity fault.

Roulo [102] suggests using the getClass() method instead of the instanceof test. While the
suggestion is phrased in terms of the programming language features used, the essence
of the idea is that points and colour points will never be considered equal to each other.
Aligning the boundaries of the equality partition with the type structure of the program
is a sensible and easily understood approach that we will discuss in more detail below.
Following Roulo's suggestion in practice requires applying it uniformly, and that opens the
door to the kinds of simple errors discussed above.

Finally, the superclass state may not be visible in the subclass. While this issue does not
have the same intellectual depth as the one just discussed, it is a serious practical impedi-
ment for hand-written implementations. Moreover, it also points to the fact that implemen-
tations of equals are subject to the fragile base class problem [80] (changes in the superclass
may cause problems in the subclass).

Figure 4-3 ColourPoint1 extends Point, violates symmetry (Bloch [17])

class ColourPoint1 extends Point (
int colour ;
ColourPoint (int x, int y, int colour) { super(x,y); this. colour colour
// Broken - violates symmetry.
public boolean equals(Object o) {

if (!(o instanceof ColourPoint1)) return false;
ColourPointl cp = (ColourPoint1)o;
return super.equals(o) && cp.colour == colour;

public static void violateSymmetry ()
Point p = new Point(1 , 2);
ColourPoint1 cp = new ColourPoint1 (1, 2, 3);
assert p.equals(cp); // returns true
assert cp.equals(p) : "symmetry violation";



Figure 4-4 ColourPoint2 extends Point, violates transitivity (Bloch [17])

class ColourPoint2 extends Point {
int colour ;
ColourPoint2( int x, int y, int colour) { super(x,y); this. colour = colour;
// Broken - violates transitivity.
public boolean equals(Object o) {

if (!(o instanceof Point)) return false;
// If o is a normal Point, do a colour-blind comparison
if (!(o instanceof ColourPoint2)) return o.equals(this);
// o is a ColourPoint2; do a full comparison
ColourPoint2 cp = (ColourPoint2)o;
return super.equals(o) && cp.colour == colour;

public static void violateTransitivity () I
Point p2 = new Point(1 , 2);
ColourPoint2 p1 = new ColourPoint2(1 , 2, 3);
ColourPoint2 p3 = new ColourPoint2(1 , 2, 4);
assert p1.equals(p2); // returns true
assert p2.equals(p3); // returns true
assert p1.equals(p3) : "transitivity violation";

4.2.3 Difficulty: Delegation

Decorator/wrapper classes are used to add features to an existing class. This pattern is often
used to make a thread-safe class from a thread-unsafe one, or to prevent mutation of the
wrapped object. For example, a common implementation of equals in such a class is listed
in Figure 4-5.

Figure 4-5 A simple wrapper class and its equals implementation

class Wrapper {
Object x;
Wrapper (Object o) { this.x =o; }
public boolean equals(Object that) I

synchronized (this) I return x.equals(that); }

However, this common implementation has reflexivity, symmetry, and termination faults,
as illustrated by Figures 4-6, 4-7, and 4-8. In Figure 4-6 the test makes use of a class named
Contrarian that has an equals method with a fault: it always returns false. This fault in turn
causes a reflexivity failure in our Wrapper class, which is itself faulty.



Figure 4-6 Test revealing reflexivity fault in common wrapper implementation of equals

static void reflexivityViolation () {
Contrarian c = new Contrarian (;
Wrapper w = new Wrapper(c);
assert w.equals(w) "reflexivity violation";

class Contrarian { public boolean equals(Object o) (return false;}}

Figure 4-7 lists a test that reveals a symmetry fault in our wrapper: we see that w.equals(o)

is true but that the converse o.equals(w) is false. Note that the fact that w.equals(o) evaluates

to true is probably inconsistent with the programmer's intentions, but that is not per se an

object-contract violation. The object-contract violation here is the fact that w.equals(o) and

o.equals(w) do not return the same result. Pacheco et al. [94] found exactly this problem in

the JDK Collections v1.4.

Figure 4-7 Test revealing symmetry fault in common wrapper implementation of equals

static void symmetryViolation ()
Object o = new Object();
Wrapper w = new Wrapper (o);
assert w.equals(o); // passes
assert o.equals(w) : "symmetry violation";

Figure 4-8 lists a test that causes our common wrapper implementation of equals to throw

a StackOverflowError: i.e., to enter an infinite loop. This undesirable behaviour is provoked

by having a wrapper object wrap itself.

Figure 4-8 Test revealing non-termination in common wrapper implementation of equals

static void stackOverflow ()
Wrapper w = new Wrapper ( n ull );
w.x = w;
assert w.equals(w) : "infinite loop";

The simple delegation code of Figure 4-5 contains three serious object-contract faults: re-

flexivity, symmetry, and termination. Yet this idiom is widely used, including in the stan-

dard Java libraries, as we discuss below. The essence of these problems with delegation is

that equality of the wrapper is being defined in terms of the code of the wrapped object.

In our approach, the abstract state of the wrapper object is defined in terms of the abstract

state of the wrapped object, and equality is defined in terms of these abstract states.



4.2.4 Difficulty: Objects of Different Classes

Sometimes objects should be regarded as equal even when they belong to different classes.
The JDK Collections contain many such cases: a LinkedList, for example, can be compared
to an ArrayList, and the two will be considered equal if they contain the same set of elements,
even though they use different representations internally.

4.2.5 Difficulty: Cyclic Object Graphs

Cyclic object graphs - which are not uncommon in object-oriented programs - are even
more challenging for equality and hashing than they are for serialization. Programmers
often try to sidestep the problem by defining equality only on fields that do not contain
cycles, or by adding a precondition to equals and hashCode that the object's references
should be acylic. In such circumstances it is usually the case that if this precondition is
violated that the equals and hashCode methods will fail to terminate. For example, the
Javadoc comment for java.util.List says the following:

While it is permissible for lists to contain themselves as elements, extreme cau-
tion is advised: the equals and hashCode methods are no longer well defined
on such a list.

Moreover, adding predconditions to overriding method implementations in subclasses is
generally considered poor programming practice because it violates Liskov's substitutabil-
ity principle [67].

Proper handling of equals and hashCode in the presence of cycles is, however, not impos-
sible, as we discuss below.

4.3 Object Equality in Terms of Abstract State

In general outline, our approach is the following. According to the object contract, the
equals method is supposed to implement a mathematical equivalence relation. It is well
known that any mathematical equivalence relation, ~, has a corresponding function f (~ is
sometimes known as the 'equivalence kernel' of f), such that:

a ~ b e- f(a) = f(b)

We define the equals equivalence relation in terms of the object abstraction function (:
in other words, our system considers two objects to be equal if they have the same ab-
stract state. This approach is consistent with our observations of code written by expert
programmers.

We define the object abstraction function i to be the combination of the field abstraction
functions a for the public specification fields of each object. Two objects are equal if they



have the same public specification fields and if those fields have equal abstract values. This
definition of equality is recursive: the abstract values of the objects referred to by each
specification field must be computed, and so on. The main challenge in this approach is
handling cycles in the abstract state, which we discuss next.

4.3.1 Cyclic References

There may be cycles in both the concrete state and in the abstract state. Consider the
example of a linked list that contains itself, as illustrated in Figure 4-9. This linked list
implementation is designed with a sentinel node, as is done in the JDK Collections that
we study, and so the next relation is cyclic. This cycle in the concrete next relation is
encountered during the evaluation of the abstraction function for the elts specification field
(aeits). Evaluating field abstraction functions in the presence of cycles in the concrete state
was discussed in the previous chapters.

Figure 4-9 Concrete and abstract cyclic references

data nextLinkd is elts

(a) Concrete state (b) Abstract state

However, as can be seen in Figure 4-9b, there is also a cycle in the abstract state, since the
linked list contains itself as an element. Cycles in the abstract state may cause difficulty for
operations such as equality and hashing that operate on the abstract state.

A common definition of equality in the presence of cycles is that two objects are equal if
the (possibly infinite) tree unfoldings of their state are element-wise equal. This definition
of equality is used (in terms of concrete state) in Scheme [107, §11.5] and Eiffel [78] and
is seen elsewhere in the research literature [2, 38].

There is also a common technique used for computing equality according to this defini-
tion: build a table of assumptions and search for evidence to refute them; the algorithm
terminates when either contrary evidence is found (the objects are not equal), or at some
step no new evidence is found and no new assumptions are made (the objects are equal).
Consider two linked lists, Li and L2, that contain each other so the abstract state looks
like so: L1i - L2. These two lists are equal to each other according to the definition. The
computation of L1.equals(L2) proceeds as follows:

* add (L1, L2) and (L2, Li) to the assumption table;
e compare the contents of L1.elts (=L2) and L2.elts (=Li);

- initiate comparison of L2 and Li;



- discover (L2, Li) in assumption table;
- return true;

e no more elements to examine and no contrary evidence found, so assumptions must
be correct, therefore return true.

Chapter 5 explores a variety of approaches to handling cycles during hashing. This assumption-
table technique does not work for hashing because hashing is a unary operation (i.e., on a
single object), whereas equality is a binary operation (i.e., on a pair of objects).

4.3.2 A Syntactic Shorthand: @ConcreteEquality

We have observed that in many cases the programmer wishes to have trivial abstraction
functions of the form this. abstractField = this.concreteField, and to have such a trivial ab-
straction function for every concrete field. We introduce the @ConcreteEquality as a syn-
tactic shorthand for this common idiom.

4.3.3 Equality Types

We introduce the idea of equality types as a means to assist the programmer in ensuring
that the equals method defines a partition while allowing objects of distinct types to be
considered equal. The equality type is realized as a specification field that is common to all
objects, as listed in Figure 4-10. Figure 4-10 also defines the default abstraction function for
this specification field using the special syntax @ThisClass, which means that the equality
type is the object's concrete class.

Figure 4-10 Declaration of equalityType specification field

@SpecField ( "equalityType : one Class I th i s . equalityType = @ThisClass")
public class Object {}

Subtypes may redefine the abstraction function for the equalityType specification field. For
example, TreeSet might define it to be this.equalityType = Set@class, indicating that Set is
the equality type for TreeSet. This kind of redefinition is only necessary in cases where
different concrete classes are intended to implement the same abstract datatype.

For the purposes of equality comparison only the public specification fields of the equality
type are used.

Recall the classic Point/ColourPoint example, given above in Figures 4-2, 4-3, and 4-4. The
idea of equality types forces the programmer to make a clear design decision: the equality
type for ColourPoint is either Point or ColourPoint. In the former case the colour field is not
used for equality comparisons. In the latter case a Point and a ColourPoint will never be
considered equal. In either case the object contract will be respected.



4.3.4 Inferring Equality Types

To reduce the programmer's annotation burden we attempt to infer the equality type ab-
straction function for concrete classes that do not have the @ConcreteEquality annotation.
In the case of @ConcreteEquality, the default equality type abstraction function, described
above, that names the concrete class of the object is usually what the programmer intends.

Consider a concrete class C that does not have (nor inherit) the @ConcreteEquality annota-
tion. The basic idea of our inference is to find the first supertype of C, other than Object but
including C itself, that declares new specification fields. 'First' here is defined in terms of
proximity to Object. In a language where the subtype hierarchy is a strict tree and so each
type has only one supertype this inference is simple. In a language where any given type
may have multiple supertypes, such as Java, it requires a bit more sophistication.

Consider, for example, C as java. util .LinkedList from the JDK Collections library, as de-
picted in Figure 4-1la. We are going to infer that the equality type of LinkedList is List. Our
inference proceeds as follows. Consider the type structure of a Java program as a partially
ordered set with a distinguished greatest element (java.lang.Object). Name this poset Sp; in
our list example, S p is illustrated in Figure 4-11 a-i.

Now consider Sc : SP that consists of only C and all of C's supertypes. In our list
example, Sc is illustrated in Figure 4-11 a-ii. This subset Sc forms a lattice, with C as the
least element and Object as the greatest element. Consider a further subset, SA Sc, that
contains only C and its supertypes annotated with @SpecField, excluding Object. In our list
example, SA is illustrated in Figure 4-1la-iii. If SA is a lattice, then the equality type of C
is inferred to be the greatest element of SA.

If SA has no greatest element (i.e., is not a lattice), then our inference returns no result
and the program requires manual annotations. Such programs sometimes contain design
flaws. For example, consider the fictional UniqueList class shown in Figure 4-1 lb that im-
plements both the Set and List interfaces. Our inference procedure does not return a result
for this fictional class. It turns out that this fictional class violates the specification of
java.util.Collection.equals(, which states that instances of List may not be equal to instances
of Set, and so no class may correctly implement both List and Set.



Figure 4-11 Illustrations of equality type inference

(a) Inferring equality type for LinkedList

(i) illustration of type hierarchy of java.util package
(ii) supertypes of (iii) annotated

LinkedList suLinke isto

(b) Inferring equality type for (fictional) UniqueList

(i) illustration of type hierarchy of java.util package (ii) supertypes of
with fictional UniqueList class UniqueList

(iii) annotated
supertypes of

UniqueList

Legend: Ellipses represent abstract types. Boxes represent concrete types. Asterisks indi-

cates a type other than object that is annotated with @SpecField.

... . ..... . ....



Figure 4-12 Number of manually written equals and hashCode implementations in original
program, and remaining after code was converted to use our technique.

Case Study Before After

JDK equals 24 2
hashCode 24 3

equals 56 6
Apache hashCode 57 9

JFreeChart equals 263 0
hashCode 114 0

4.4 Empirical Evaluation

We evaluate our approach to object equality from two software engineering perspectives:

1. Is it sufficiently expressive to replace the hand-written equals and hash code method
implementations that programmers write in practice?

2. What effect does replacing hand-written implementations with automatically gener-
ated implementations have on the correctness of actual programs?

To answer these questions, we annotated three widely used programs: the JDK Collec-
tions library vl.4 (a subset of java.util), the Apache Commons Collections library v3.2,
and JFreeChart 1.0.0 (an open source plotting program that is a member of the DaCapo
Benchmark Suite [15]).

4.4.1 Expressiveness

Our technique was able to replace almost all the equals and hashCode methods of the three
benchmark programs, as shown by Table 4-12. Those that we were not able to replace
were within classes that either intentionally violated the object contract (such as Identity-
HashMap) or used weak references to control interaction with the garbage collector.

Our equality type inference algorithm produced acceptable output in all but one case, where
it did not produce any output at all. The class IdentityHashMap.Entry implements both
the Map. Entry and Iterator interfaces, which have no common supertype that declares their
specification fields, and so caused the inference to fail. While the JDK 1.4 code shipped
in this configuration, this questionable design decision has resulted in bug #6312706 in the
JDK bug database [53].



Figure 4-13 Test results
Total Original Annotated

Machine- Errors Failures Errors Failures

JDK Collections I 20661 1 184 0 0
Tests
by Randoop

Hand-written
Tests
by Vendor

Apache Collections 3415 0 7 0 0

JFreeChart 59 2 57 2 0

Total Original Annotated
Errors Failures Errors Failures

JDK Collections 1366 2 5 2 7

Apache Collections 2443 0 0 0 0

JFreeChart 1038 1 8 0 3

'Errors' are test cases that throw unexpected exceptions.
'Failures' are test cases that compute incorrect results.

4.4.2 Correctness

To evaluate correctness, we ran two sets of unit tests on each of the benchmark programs:

a set generated by the Randoop tool [94] and the standard set provided by the program's

author.

The annotated versions of these programs are more often correct than the originals. This

is primarily shown in Table 4-13, where it can be seen that the annotated versions usually

pass more test cases than the original versions. Where they do not, the test cases them-

selves either contain hard-coded constants tied to particular implementations or are faulty,

as discussed below.

Table 4-14 classifies the faults we found according to the parts of the object contract vi-

olated (§ 1.4) and according to the reasons that writing correct implementations of equals

and hashCode are difficult (§4.2). The application of our technique fixed all faults found.

JDK Collections Faults. We found the same faults in the JDK 1.4 collections that Pacheco

et al. [94] found previously: namely that some of the wrapper sets and maps had reflexivity
and symmetry faults.

There is an interesting case where our technique forced us to restructure some of the JDK

code, from an original design that produced some surprising behavior to a more conven-

tional design. Originally, the IdentityHashMap. Entry class implemented both the Iterator and

Map.Entry interfaces. When one called nexto on the iterator, it returned itself in the guise of

a Map.Entry. A programmer retaining a reference to this entry from a previous iteration of

the loop would be surprised to find that its key and value were now the key and value for the

current iteration. This design saved allocating a Map.Entry object for each iteration of the

loop, at the cost of surprising mutation behavior (which is documented as Bug #6312706

in the Sun/Java bug database).

Our technique forced us to split this class into two classes, because Iterator and Map.Entry



are different equality types, and so no single class may implement both of them.

Failing JDK Collections test cases. Our annotated JDK Collections code fails two ven-
dor test cases that the original code passed: BitSet.hashCodeTests and Vector.ToStringTests.
Both of these test cases have hard-coded values (such as hash codes and string encodings)
that are computed differently (but still correctly) in our implementation.

Apache Collections Faults. Delegation issues led to symmetry faults in Synchronized-
Buffer.equals() and ReferenceMap.equals(, and a reflexivity fault in MapBackedSet.equals(.

PriorityBuffer.equals( was not implemented, even though it was clear from the usage that an
implementation was expected.

JFreeChart Faults. We found 32 classes in JFreeChart that implement equals but not
hashCode, which is a simple but common error.

AbstractObjectList.equals( was actually performing a prefix test, rather than an equality test,
because it neglected to compare the size of the lists. This caused symmetry and transitivity
failures. Furthermore, the equals and hashCode implementations in this class failed to
terminate on cyclic inputs.

ShapeUtilities.equals(GeneralPath,GeneralPath) had a copy-paste error that resulted in it
comparing the first argument to itself, and so it always returned true.

XYlmageAnnotation had a 'todo' indicating that the image field should be serialized. After
de-serialization, the image field was null, and so the equality test failed.

Range had a fault caused by the special primitive double value NaN (not-a-number). The
programmer mistakenly expected == to be reflexive, when in fact it is not: all boolean
operations involving NaN return false, including NaN==NaN. java.awt.geom.Point2D, which
is used by JFreeChart, had a similar fault.

We found 14 classes in JFreeChart that neglected parts of their abstract state in their equals
and hashCode implementations in order to avoid potential cycles.

Faulty JFreeChart test cases. We found faults in five of JFreeChart's vendor-supplied
unit tests. Interestingly, these tests did not exhibit failures when run against the original
JFreeChart code because of the fault in AbstractObjectList.equals(): two wrongs made a
right. Once we fixed the fault in AbstractObjectList, we found that these test cases failed.
Upon inspection, we discovered that the test cases had incorrect expectations about which
objects are equals. The numbers in Table 4-13 reflect the corrected versions of these tests
cases. The five test cases in question were:

* XYAreaRendererTests.testSerializationo
* StackedXYAreaRenderer.testSerializationo
* CombinedRangeCategoryPlotTests.testCloning(



" CombinedDomainCategoryPlotTests.testCloning()
" CategoryPlotTests.testCloningo.

Failing JFreeChart test cases. As shown in Table 4-13, our annotated version of JFreeChart

still fails three tests - which also failed when run with the original code.

XYlmageAnnotationTests.testSerializationo fails because of the previously mentioned serial-

ization/equality fault in XYlmageAnnotation.

XYPlotTests.testGetDatasetCounto has expectations that are inconsistent with the behavior

of the XYPIot constructor.

SegmentedTimelineTests.testMondayThroughFridayTranslations() imprecisely transforms one

representation of time to another.

Observations. On the basis of this, albeit limited, sample of programs we might infer

that:

1. When programmers wish to simply compare the concrete state of two objects, the

kinds of mistakes they make amount to simple oversights, rather than the more subtle

issues discussed in §4.2.

2. When an abstract view is needed in order to compare objects of different concrete

classes, programmers tend to make mistakes due to the more subtle difficulties, most

often delegation.

3. Cyclic object graphs are not handled well. The two most common approaches that

we observed were: (1) allowing the stack to overflow, and (2) neglecting parts of the

abstract state that may lead to a cycle.



Figure 4-14 Classification of faults found (and fixed)

Object Contract Violations Difficulties (§4.2)
equals hash

Fault Location /Description Ln 414
JDK 1.4 Collections
Synch ro nizedSet.eq uals(Obj) I I
Unmodif iableSet.equals(Obj) I I
Synchronized Map.eq uals(Obj) I I
Unmodif iableMap.equals(Obj) I I
Apache Commons Collections
MapBackedSet.equals(Obj) I I
Synch ronizedBuffer.equals(Obj) I 1 I
Reference Map. equals (Obj) I I I I I
PriorityBuffe r. equals (Obj) I
JFreeChart 1.0.0
equals but not hashCodel 32 32
Ignoring abstract state 2 14 14
AbstractObjectList. equals (Obj) I I I I I I I
Shape UtilIities. equals(G PGP) I I
XYlmageAnnotationII
Range.equals(Obj) I |I
Totals 8 8 1 1 i2 2 17 1132 2 37 6 8 15

1. The following JFreeChart classes implement equals but not hashCode: BlockBorder,

ChartRenderinginfo, Colorblock, CombinedDomainXYPlot, ContourPlot, DefaultBoxAnd-

WhiskerCategoryDataset, DefaultDrawingSupplier, EntityCollection, FastScatterPlot,

HistogramDataset, Item Label Position, JFreeChart, KeyToGroupMap, LegendGraphic,

Legend ItemCollection, MeterPlot, MiddlePinNeedle, PiePlot3D, PieSectio nLabel Gene r-

ator, PinNeedle, PlotRendlering Info, Simplel-istogramBin, SpiderWebPlot, StackedBar-

Renderer, StandardXYToolTipGenerator, StandardXYZURLGenerator, SymbolicXYltem-

LabelGenerator, Task, TaskSeriesCollection, ThermometerPlot, TimeTableXYDataset,

XYPlot.

2. The equals implementations in the following JFreeChart ignore some part of their

abstract state in order to avoid potential cycles: CategoryPlot, CategoryTableXY-

Dataset, ChartRenderingInfo, CombinedDomainCategoryPlot, Combined DomainXYPlot,

Combined RangeCategoryPlot, CombinedRangeXYPlot, DefaultTableXYDataset, Inter-

valXYDelegate, PlotRendering Info, TableXYDataset, XYPlotTests, XYSeriesCollection.



4.5 Related Work

Automatic generation of concrete equality comparisons is not uncommon: there are tools

(e.g., Eclipse), libraries (e.g., Apache Commons Lang), annotations (e.g., [79]), built-in

language features (e.g., [78, 91, 105, 107]), and language extensions (e.g., [10]) that ac-

complish this goal. Most of these approaches are for functional languages or work only for

record-like structures within object-oriented languages.

Static code generation techniques can be fragile if the programmer needs to remember

to regenerate the code each time a new field is added to a class. Approaches based on

annotations, reflection, built-in language features, and language extensions are robust in

this respect.

Many of these approaches are also fragile in the face of cyclic object references; notable

exceptions include Eiffel [78] and Scheme [107]. We borrow the idea of treating the tree-

unfolding of cyclic structures from Scheme and the strategy of using an assumption set to

compute equality of cyclic structures from Eiffel.

Grogono and Sakkinen [38] and Vaziri et al. [114] both have a concept of abstract state.

However, neither of these approaches allow objects of different concrete classes to be con-

sidered equals. The two crucial elements of our technique that facilitate these kinds of

comparisons are explicit equality types and rich abstraction functions.

Grogono and Sakkinen [38] also distinguish fields as 'essential' or 'accidental' and use this

distinction to specify object ownership properties that are taken into account when cloning

objects.

Vaziri et al. [114] distinguish fields as either part of the object's identity or not. The identity

of an object must be immutable, whereas the other fields may refer to mutable objects.

Object construction is controlled so that there can never be two different objects with the

same type and the same identity. In other words, Vaziri et al. [114] adopt the Liskov and

Guttag [67] view of the consistency of equality, but provide some linguistic mechanisms to

make this discipline easier for practicing programmers to follow.

Object mutability (or immutability) plays an important role in the ideas of Liskov, Guttag,

Grogono, Sakkinen, and Vaziri et al. We provide a mechanism, and we think that program-

mers would be well-advised to use that mechanism in a manner consistent with the ideas

of these researchers.

The object contract and difficulties in implementing it have been discussed extensively

elsewhere. Abiteboul and Bussche [2], for example, present three formalizations of deep

equality and prove that they are equivalent. Their main concern is deep equality in the

presence of cyclic object graphs. Bloch's book [17], which is a standard reference for Java

programmers, explains other common pitfalls (such as asymmetry due to subclassing) and

how to avoid them. Odersky et al. [91] also discuss common pitfalls, and provide some

recipes for implementing equals and hashCode manually.

Finally, we note that Grogono and Sakkinen [38] consider four different notions of equality,
including a topological notion of equality that is not discussed elsewhere. They use the term



'structural equality' for this topological notion, and use the term 'deep equality' for what
we refer to as 'concrete equality' and some other authors refer to as 'structural equality.'

4.6 Object Equality and Observational Equivalence

Liskov, Guttag, Wing, and Leavens [60, 67-70] recommend that object equality should
imply observational equivalence: i.e., that the two equal objects are indiscernible, and any
computation would produce the same result with either one. The phrase 'observational
equivalence' is also used in the formal semantics of programming languages with a similar
meaning: any observationally equivalent terms compute the same result.

One could see this idea of observational equivalence as a modern incarnation of Leibniz's
Law [64], which has two parts: the Identity of Indiscernibles and the Indiscernibility of
Identicals. In the notation of modern symbolic logic one might write for the first part [36]:

VP(Px - Py) -+ x = y

meaning that if object y has every property P that object x has, and vice versa, then x is
identical to y. The converse, the Indiscernibility of Identicals, might be written as [36]:

x = y -> VP(Px <4 Py)

In the Haskell programming language object equality implies observational equivalence.
The Haskell runtime system uses this property to reduce the memory footprint of the run-
ning program by sharing objects. However, Haskell has neither mutation nor subtyping.

In object-oriented programming languages with subtyping, aliasing, and mutable state it is
much harder to ensure that object equality implies observational equivalence. Some of the
challenges include:

" Mutation violates the Indiscernibility of Identicals: even if x and y have the same
state now now and then x is mutated it may no longer be equal to y.

" In a program with subtyping there may be multiple implementations of some method
m. In order to ensure that the various subtypes are behavioural subtypes [6, 60, 69,
70] we need to verify that the various implementations of method m are equivalent,
which is undecidable in general.

" Even if the various implementations of method m have been proven to satisfy some
specification s, s may be under-constrained and hence the client may actually be
depending on a specification stronger than s. One might argue that this is the client's
fault, but it nevertheless leads to a situation where the client may work with mi and
not work with m2.



In our experience we have observed that object-oriented programmers sometimes seem
to expect object equality to imply observational equivalence and sometimes do not. When
they do not expect object equality to imply observational equivalence, sometimes they seem
to expect to violate the Identity of Indiscernibles, sometimes they seem to expect to violate
the Indiscernibility of Identicals, and sometimes they seem to expect to violate both.

Our synthesized equals methods provide a stepping stone towards observational equiva-
lence but do not guarantee it. If the programmer wants this stronger property then they will
have to use other analysis tools, such as type-checkers (e.g., [95, 125] or verification tools
(e.g., [32, 119], [59, 123], [21, 63]). Whatever the case, ensuring object-contract com-
pliance is a first step, and having declarative abstraction functions is another step towards
verification.



Chapter 5

Hashing

Object hashing needs to be consistent with object equality so that two equal objects hash
to the same value. Since we can define object equality in terms of the abstract state of the
object, we also define object hashing in terms of the abstract state.

In algorithms text books, discussions of hashing assume that a hash code is computed from
a value represented as a string of bits - and indeed this is sufficiently general to address
computational properties of hashing. But from a programming perspective, an object is
not a string of bits, but is rather a graph structure on the heap. Hashing this structure
therefore requires a traversal. We therefore distinguish the hashing method from the hash
function and the traversal strategy. The method takes an object and returns an integer
by composing the function (that computes an integer from a sequence of integers) and
the strategy (that computes a sequence of integers from an object). Since hashing is an
operation on the abstract state of the object, the traversal strategy makes use of the object
abstraction function I.

We describe six object hashing strategies. These strategies are situated at different points
in a two-dimensional design space.

The first strategy design dimension is how much of the object state is examined to produce
the hash: examining more of the state is likely to produce fewer hash collisions but takes
more time. The textbook treatment of hashing strings assumes that many of them will be
stored in a single hash table: for example, the number of strings in the hash table is usually
assumed to be much larger than the average length of the strings stored in it. Under these
circumstances it is worth the effort to examine the object in depth. However, the practical
circumstances of many object-oriented programs differ from these textbook circumstances.
In practice, many object-oriented programs often have small hash tables of large objects.
For example, the average size of the objects in a hash structure could be larger than the
number of objects in the structure. Under these practical circumstances it can make sense
to examine less of the object state and tolerate the higher potential for hash collisions.

The other strategy design dimension is the kind of cycle detection the strategy uses. Cyclic
references may confound both correctness and performance. We identify distinct logical
cycles as a kind of cyclic reference that does not exactly align with a physical cycle. In order



to be consistent with equality a hashing strategy must handle the possibility of distinct

logical cycles in some way. Explicitly checking for these kinds of cycles can be more

expensive than checking for physical cycles. Moreover, the technique used for computing

equality in the presence of cyclic references cannot work for hashing, since that technique

takes advantage of the fact that equality is a binary operation, whereas hashing is a unary

operation.

We measure the performance of these strategies on real programs, primarily from the Da-

Capo [15] benchmark suite, and on synthetic micro-benchmarks that we generated using

the Korat [20, 82] tool. The empirical results are:

" Hashing strategy selection can affect overall program performance.

" Automatically generated hashing methods can have comparable performance with

manually written ones.

" Returning a constant, while terrible in theory, is not always terrible in practice. In

some real programs it even offers moderately better performance than hand-written

hashing methods.

" Finite unrolling is a good general-purpose hashing strategy. It may not always be the

best, but (at least in our experiments) it is never terrible.

5.1 Design Objectives

An object hashing strategy should be general, correct, and efficient. In this section we

discuss these design objectives with respect to important corner cases that confound them.

5.1.1 Design Objective: Generality

The main challenge to generality of a hashing strategy is different concrete representations
of the same abstract value. In most cases we resolve this challenge by applying the hashing

strategy to the abstract state of the object, computed with the object abstraction function

SA. An alternative approach that we also examine is to simply ignore the state of the object

and always return a constant.

5.1.2 Design Objective: Correctness

An object hashing strategy is correct if it is consistent with equals and it terminates on any

input. These are conditions from the object contract that we discussed above in § 1.4. To

ensure consistency with equals our traversal strategies (with the exception of returning a

constant) use the object abstraction function A1. Like the computation of equality, the strat-

egy will apply i to each object that it examines. Consider, for example, a java.util.HashSet



object s that contains two Cartesian Point objects pi and P2. Using the field abstraction
function aeits (part of 91 HashSet) we compute that s.elts = {pi, P21. Then using ax and ay
from A Point on objects pi and p2 we compute the their x and y values. As discussed above in
Figure 4-9, there may be cycles in the abstract state. The strategy is charged with ensuring
termination in the presence of such cycles.

The main threat to termination of a hashing method is termination of its hashing strategy:
the termination of our abstraction function execution strategies was discussed above, and
classic hash functions are designed to terminate. Cyclic object structures are the primary
reason that a hashing strategy may fail to terminate (we do not consider infinite object
structures).

We distinguish between physical cycles and logical cycles (Adams and Dybvig [3] also
have these two notions, but do not name them.) To guarantee termination it is sufficient for
a hashing strategy to detect physical cycles. However, to maintain consistency with equality
a hashing strategy must also be designed with the notion of logical cycles in mind. We
now explain these two kinds of cycles and the challenges they create for hashing strategy
correctness.

We say that object x is in a physical cycle if there is some path through the heap that begins
at x and reaches x. Consider, for example, Figure 5-la-i, which depicts an object x of type
Node. The Node class defines two fields: next and data. In Figure 5-1 solid lines represent
next references and dotted lines represent data references. So, according to Figure 5-la-i,
x.next = x and x.data = 7. The reference from x to x via the next field creates a physical
cycle.

We say that an object structure contains a logical cycle if it contains two objects y and
z (possibly the same) such that there is a path from y to z and y.equals(z). Every physical
cycle is also a logical cycle, by the reflexivity of equality. Assuming finite object structures,
every logical cycle also contains a physical cycle. The case we are concerned with is when a
logical cycle is larger than the physical cycle it contains: we refer to such cycles as distinct
logical cycles. In these cases techniques used to detect physical cycles may not be adequate
to ensure correctness of the hashing strategy. Figure 5-lb-i shows an object structure with
a distinct logical cycle.

Figure 5-1 Equivalent cyclic object structures and their unrollings
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As discussed above in Chapter 4 we use the common tree-unfolding definition of equality
for cyclic structures: two objects are equal if their (possibly infinite) tree unfoldings are
equal [2, 3, 38, 78, 107]. According to this tree unfolding notion of equality, all of the
objects in Figure 5-1 - x, y, and z - are equal to each other. Figure 5-lb shows the
infinite tree unfoldings of objects x, y, and z originally depicted in Figure 5-la; this visual
representation makes it easier to see that they are all equal.

Distinct logical cycles do not present any special difficulty in computing equality. The
technique we described above in Chapter 4 for computing the equality of cyclic structures
still computes correct results for object structures that contain distinct logical cycles. Let's
walk through the computation of x.equals(y) from Figure 5-1:

" add (x,y) and (y,x) to the assumption table;
" compare x.data and y.data;

- return true, since 7=7;

" compare x.next and y.next;

- add (x,z) and (z,x) to the assumption table;
- compare x.data and z.data;

* return true, since 7=7;

- compare x.next and z.next;
* return true, since (x,z) is already in the assumption table;

- return true, since no more evidence to examine;

" return true, since no more evidence to examine.

Hashing methods, on the other hand, are unary operators, and so this pairwise comparison
technique cannot be used: cycles must be either worked around or explicitly detected.
We detect physical cycles by maintaining a set of previously visited memory addresses.
We detect distinct logical cycles by maintaining a set of previously visited objects. This
set may itself make use of the hashCode and equals methods, and so this can be more
expensive than physical cycle detection.

5.1.3 Design Objective: Performance

Conventional wisdom holds that hashing methods should produce few hash collisions and
run in time linear in the size of their input [58]. Consequently almost all classic hashing
functions have at worst this linear performance. However, for a hashing method to have
this linear performance it must use a hashing strategy that is linear.

We are not aware of any strategy that examines the entire object state (to reduce the num-
ber of potential collisions), runs in linear time, is consistent with equality, and terminates
on all inputs. Since we do not consider inconsistent nor non-terminating strategies to be
acceptable, a trade-off must be made between the time taken to compute the hash code (i.e.,
amount of the object's state examined) and the number of potential collisions.



Returning a constant value runs in constant time while maintaining consistency with equal-
ity, but does not examine the state of the object and hence produces many collisions.

A naive hashing strategy would be linear for tree-like object structures and produce few
collisions. However, such a strategy is likely to be super-linear for structures with undi-
rected cycles (because subobjects will be visited for each incoming reference) and to fail
to terminate on structures with directed cycles.

A strategy that examines the entire state of the object (to reduce potential hash collisions)
and detects logical cycles (to maintain correctness) will run in super-linear time. At best,
logical cycle detection will cause it to run in quadratic time. At worst it may potentially
be exponential. Consider, for example, the fully connected structure shown in Figure 5-2a.
The tree unrolling of this structure, starting from node a, and pruning each path containing
a cycle, is shown in Figure 5-2b. The size of this tree unrolling is exponential in the number
of objects in the original structure.

Figure 5-2 A fully connected object structure and its unrolling
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(a) fully connected object structure (b) tree-unrolling of structure from (a)

Memoizing hash codes offers an important way to improve performance. Memoization of
hash codes is an obvious choice when the object is immutable. Our system will automati-
cally memoize hash codes for objects that it is told are immutable. However, techniques for
ensuring that objects are immutable in imperative object-oriented programming languages
are still maturing (e.g., [95, 125]). Therefore, in the experiments described in this chap-
ter we do not perform memoization. Combining our system with one for ensuring object
immutability offers an obvious opportunity for improved performance in the future.

5.2 Design Space

We identify a two-dimensional design space for object hashing strategies. The first di-
mension is the amount of the object's state that is examined: none, some, or all. The
second dimension is kind of cycles detected: none, physical, or logical. Table 5.1 gives an
overview of this design space and the hashing strategies we discuss in this chapter; shaded
cells indicate points for which we have designed and evaluated hash strategies.



The cells that are not shaded indicate points in the space for which it is impossible to design
a strategy that meets our design goals. The cells marked 'n/a' are nonsensical: if none of the

state is examined, then no cycle detection is needed. As discussed in the previous section,
examining all of the object's state with anything less than logical cycle detection leads

either to non-termination or results that are inconsistent with equals, making it impossible
for such a strategy to meet our design goals.

Table 5.1 Design space for object hashing strategies

State Cycle Detection
Examined None J Physical Logical

None Constant n/a n/a
Some Finite * Constant Canonical

Unrolling When Cyclic Set
e Ignore

Cycles

All naive incorrect Canonical
(incorrect) Tree

There is one strategy that is commonly used by practicing programmers that is not included
in Table 5.1: examining only a subset of an object's state that is guaranteed to be acyclic.
Mechanizing a strategy such as this would require a process similar to the optimization
condition generation and discharge described above in Chapter 3: at the least it would
entail either a program verification system or a deep program analysis.

5.3 Object Hashing Strategies

This section describes the hashing strategies named in Table 5.1. We begin in the upper-left
corner of the table, and move through the labelled strategies in order toward the bottom-
right of the table; for each strategy, we provide a pseudocode listing and argue that the
strategy satisfies the design goals. Figure 5-3 describes the notation that we use in the
strategy pseudo-code listings.

Recall that a hash strategy has the type R - [Z] (where R is the set of references, or objects,
and [Z] is a list of ints). A classic hash function is then applied to the output of the hash
strategy; so the type of a classic hash function is [Z] -> Z. A hash method is a function
applied to the result of a strategy and hence has the type R -- Z.

While the presentation of the strategies here is of type R --* [Z], and so involves the explicit
construction of a list of integers, in an actual implementation (including ours) it is likely
that the programmer would compose the classic hash function with the hashing strategy so
as to avoid explicitly constructing this list. This composition is trivial if one uses the simple
classic hash functions recommended by Bloch [17], for example.



Figure 5-3 Notation for hash strategy listings

Figure 5-4 Finite Unrolling Hash Strategy

finiteUnrolling (r, d)
if dsO :

return [42]
else

h < []
V a c A (r):
V v c a(r)

if isPrimitive (v)
h <- h ++ [hashp(v)]

else :
h - h ++ finiteUnrolling (v, d-1)

return h

Term Description

[] empty list
R set of all references (objects)
P set of all primitives
V set of all values (R U P)
9I(r) object abstraction function (R -* [a])

a(r) field abstraction function (R -+ [V])

++ list concatenation operator

hashp(p) hash a primitive (P -- Z)

5.3.1 Constant Value

Returning a constant value, such as 42, executes in constant time and trivially satisfies the

termination and consistency correctness properties, since it assigns the same hash value to

all objects. This strategy produces a high number of collisions.

5.3.2 Finite Unrolling

The Finite Unrolling hashing strategy (Figure 5-4) traverses the infinite tree unrolling of its

argument only up to the finite depth d. The returned hash value is composed of the hash

values of the primitives in that tree.

Finite unrolling does not loop on cyclic object structures because the bound on the com-

putation is not a function of the object structure. Finite unrolling is consistent with equals:

identical tree unrollings remain identical when pruned at a particular depth; the Finite Un-

rolling strategy prunes all unrollings at the same depth, and thus yields the same hash values

for two identical tree unrollings.



5.3.3 Constant When Cyclic

The hashing strategy Constant When Cyclic (Figure 5-5) examines all of the state for tree-
like object structures and returns a constant value for object structures that contain physical
cycles.

This strategy always terminates on finite object structures, since it returns immediately on
detecting a physical cycle. It is also consistent with equals: when no cycles are present, it
examines the entire tree unrolling of its argument; when cycles are present it reduces to the
Constant Value strategy, which is consistent with any equality method.

Figure 5-5 Constant When Cyclic Hash Strategy

constantWhen Cyclic (r) :
try h <- recursive HashWith PhysicalCycleDetection (r, 0)
catch PhysicalCycleException

return [42]
else

return h

recursive HashWith PhysicalCycleDetection (r, S)
h <- []
if r c S

throw PhysicalCycleException
else :

V a c 91(r)
V v c a(r)

if isPrimitive (v)
h <- h ++ [hashp(v)]

else :
h <- h ++ recursiveHashWithPhysicalCycleDetection (v, S U {r))

return h

5.3.4 Ignore Cycles

The Ignore Cycles hashing strategy (Figure 5-6) is a slight variation of the Constant When
Cyclic strategy. The difference is in the handling of cycles. When Constant When Cyclic
detects a physical cycle, it returns a constant for the entire object structure. When Ignore
Cycles detects a physical cycle, on the other hand, it produces a constant only for the sub-
structure with the cycle.

A cycle in the original object structure of an object appears in its tree unrolling as a repeated
node. This hash strategy ignores parts that contain cycles, meaning that the strategy does
not examine any branch of the unrolling that contains a repetition. That is, the strategy
examines only the finite-length branches of the unrolling, ensuring both termination and
examination of the same set of nodes for identical unrollings.



Figure 5-6 Ignore Cycles Hash Strategy

ignoreCycles(r)
h +- []I
V ae E1(r)

V v E a(r)
if isPrimitive (v)

h <- h ++ [hashp(v)]

else :
try t <- recursiveHashWithPhysicalCycleDetection (v, {rl)

catch PhysicalCycleException
noop

else :
h +- h ++ t

return h

5.3.5 Canonical Set

The Canonical Set hashing strategy (Figure 5-7) selects one object per equivalence class

of the objects reachable from its argument and composes the hash values of their corre-

sponding primitive parts. The implementation achieves this by mutating a global set S of

logically distinct objects visited during the traversal.

Canonical Set is consistent with equality if it is paired with an associative and commutative

hashing function. The other strategies discussed in this paper do not place restrictions on

the hashing functions they are paired with. If two objects are equal, the set of equivalence

classes of objects reachable from them must be equal. Note that this is a set of equivalence

classes: sets are unordered; hence the requirement that this strategy be paired with a hash

function that is oblivious to the ordering of its input sequence.

This strategy detects logical cycles and therefore terminates for finite object structures.

Figure 5-7 Canonical Set Hash Strategy

canonicalSet(r)
global S -0 buildSet(r)
buildSet (r) for each a c (r)
hfor each v c a(r)
Vif isObject(v)

V a c () if (no x c S I x.equals(v))
Yv E a(o) : <--SUIV)

if isPrimitive (v) :
h <- h ++ [hashp(v)]

return h



5.3.6 Canonical Tree

The Canonical Tree hashing strategy (Figure 5-8) transforms the object graph into a (finite)
canonical representation of its (potentially infinite) tree unrolling, which we call its canoni-
cal tree. Finite paths are unrolled completely. Infinite paths are pruned when a logical cycle
is detected. Thus the Canonical Tree strategy examines all of an object's state without the
possibility of divergence.

The canonical tree of the example in Figure 5-la is x -+ 7, and the canonical tree of the
example in Figure 5-lb is y -> 7. In the former case, the x -- x edge is pruned, and in the
latter case the y --+ z edge is pruned: both of these edges represent logical cycles. Similarly,
Figure 5-2b depicts the canonical tree of the object structure shown in Figure 5-2a.

The Canonical Tree strategy prunes infinite branches of its argument's tree unrolling be-
fore the first repetition, making all branches of the unrolling finite. Since this pruning is
done based on logical cycles, two identical unrollings will have identical (finite) prunings,
and thus will yield the same hash code. Since the resulting tree is finite, termination is
guaranteed.

Figure 5-8 Canonical Tree Hash Strategy

canonicalTree(r, S)
h - [ I]
if (- ix E S I x. equals(r))

return []
else :

V a e 91(r)
V v E a(r)

if isPrimitive (v)
h <- h ++ [hashp(v)]

else :
h <-- h ++ canonicalTree (v, S U{v})

return h

5.4 Evaluation

In this section we present empirical evaluations of the hashing strategies described above.
Our evaluations involve both specially constructed micro-benchmarks and experiments in-
volving real-world programs. We also present some conclusions based on our results.

5.4.1 Micro-Benchmarks

To develop a systematic understanding of the empirical performance of these hashing
strategies we designed a set of micro-benchmarks. Each benchmark adds a number of



objects to a HashSet (using the put operation) and then performs a containment check (us-

ing the contains operation) on each object that was added. We record the total time taken

for these operations.

These benchmarks characterize the space of possible programs by varying both the number

of objects placed in a collection and the size of those objects. We define an object's size

to be the number of objects reachable from it, and a collection's size to be the maximum

number of key objects it may contain in a given benchmark. We ran our benchmarks on a

crafted set of structures containing integers.

We generated both cyclic and acyclic structures of sizes ranging from 1 to 1000 using

Korat [20, 82]. Korat is particularly suited to this task: it exhaustively generates all valid

non-isomorphic structures up to a given bound, ensuring that all shapes are represented.

Since these experiments required only a small number of structures, however, we ran Korat

only until it generated the desired number. Korat allowed us to easily express desired

structure properties (e.g. cyclicity; number of nodes; number of children per node) and

automatically generated non-isomorphic structures.

For each hashing strategy, our micro-benchmarks evaluate both hashing speed and effec-

tiveness in avoiding collisions. Adding an object to a HashSet requires the computation of

that object's hash value; the time taken in this operation is recorded as part of the overall

time. The subsequent containment test, on the other hand, uses an object's hash value to

find it; in the presence of collisions, this process degrades to linear search, penalizing each

hashing strategy in proportion to the number of collisions it causes.

Figure 5-10 summarizes the results of our experiments with a collection of heat-map plots.

Each heat map represents one experiment; rows correspond to hashing strategies, while

columns correspond to the variables of our micro-benchmark. The columns labelled "acyclic"

represent experiments in which our micro-benchmark was run over a set of object struc-

tures containing no cycles, while those labelled "cyclic" represent experiments in which all

objects contained cycles. The remaining column labelings are as follows:

* Varying Shapes, Random Values
Generated object structures varied both in their topologies and in the integer values

they contained.
* Varying Shapes, Same Values

Generated object structures varied in topology, but contained the same integer values.

* 50% Equals, Same Values
Generated objects contained the same integer values; half of them also shared a topol-

ogy with another object, making them equals to that object.

Figure 5-9 contains an example heat-map plot with its associated axes labelled and is in-

tended as a legend for the plots in Figure 5-10. All of the plots in Figure 5-10 use the same

logarithmic axes as the example in Figure 5-9.

In general, the amount of state examined was not a good predictor of hashing strategy

performance. In fact, in the majority of cases, Finite Unrolling to a depth of 1 was the most

efficient strategy; the use of more object state in Finite Unrolling to depths 2 and 3 actually



hurt performance in most cases. Even ignoring object state entirely, as in the Constant
strategy, was a reasonable choice when collections were small.

The Constant when Cyclic and Ignore Cycles strategies performed as badly (or worse, due
to the overhead of cycle detection) as the Constant strategy in experiments involving cyclic
objects; there was no significant difference between the two strategies.

The greater amount of object state used by the Canonical Tree strategy seems to have
mitigated the overhead involved in cycle detection: Canonical Tree performed reasonably
well in all experiments, though it was never as efficient as Finite Unrolling.

Most hashing strategies perform well when collection sizes are small. In fact, the hashing
strategy seems to make very little difference for collections with fewer than 100 elements.

Finite Unrolling of depth 1 is the best general-purpose strategy on these micro-benchmarks.
Potential future work could use these heatmaps for automatic customized strategy selection
as follows: a program with an associated workload identifies specific points in this heatmap
space (object size vs. collection size vs. cyclicity etc.); each point in this space has an op-
timal strategy; matching the program to the point in the heatmap space selects the strategy.
In most, but not all, cases the selected strategy will be Finite Unrolling of depth 1.

Figure 5-9 Example Heat Map Plot

1000

100

10
Object Size

An example heat map representing one
experiment. Object size is plotted along

10000 the x-axis, collection size along the y-

1000 axis, and time in milliseconds along the
z-axis (colour). All scales are logarith-

2
100 ~ mic; lower times are better. Red parts of

10 the graph represent points where perfor-
mance was poor, while blue areas repre-

1 sent good performance. The graphs in
Figure 5-10 are rendered with the same
scales and color schemes.
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5.4.2 Strategy Evaluation in The Wild

While the synthetic analysis above characterizes the space of possible programs and work-
loads, it does not tell us what common programs and workloads are actually like. To get
an understanding of what real-world programs and workloads are like we evaluated the
hashing strategies on the following programs and workloads:

" The JDK Collections Library 1.4 with workloads from the JCK (Java Compliance
Kit) and the Randoop tool [93, 94] (Figure 5-11).

" The Apache Commons Collections Library 3.2 with hand-written vendor tests and
tests generated by Randoop (Figure 5-11).

" The JFreeChart graphing program from the DaCapo benchmark suite 2006 with five
different workloads: DaCapo small, medium, large; hand-written vendor tests; and
Randoop-generated tests (Figure 5-11).

* The batik, fop, pmd, and xalan benchmarks from the DaCapo 2009.12 suite on the
medium and large DaCapo workloads (Figure 5-12). DaCapo 2009.12 contains a
number of other benchmarks that were excluded for reasons described below.

Figure 5-11 confirms the general conclusion that Finite Unrolling (depth 1) is a good
general-purpose hashing strategy. However, for all of the programs and workloads pre-
sented in Figure 5-11, other strategies are also reasonable choices: Finite Unrolling of
depths 2 or 3; Constant when Cyclic; and Canonical Tree. Ignore Cycles is often a reason-
able choice, but for the JFreeChart vendor tests and DaCapo large workload is a terrible
choice.

Figure 5-11 shows that, surprisingly, returning a constant is a reasonable choice in most
circumstances. Only on the Apache Collections vendor tests is it a terrible choice. We
explore this result in more detail below.

Figure 5-12 compares the original programmer-written hashing methods with the Finite
Unrolling (depth 1) on the batik, fop, pmd, and xalan benchmarks from the DaCapo suite
2009.12. Finite unrolling always outperforms the programmer-written hashing methods on
the batik benchmark, by a margin of about 10%. The programmer-written hashing methods
perform better in all other cases except pmd on the large workload with no warmup run.
This exceptional case, and the contrast between the times for no warmup and four warmup
runs, highlights how important JIT compilation technology is.

The data in Figure 5-12 suggest that the programmer-written hashing methods are much
better than Finite Unrolling on the xalan benchmark. We believe that this is a reflection of
the overhead of our framework more than a valid comparison of a programmer-written
hashing method and Finite Unrolling. There is only one programmer-written hashing
method in xalan that is heavily exercised by the DaCapo workloads: Charlnfo$CharKey
from the org.apache.xml.serializer package. This class is just a wrapper for a primitive char,
and its hash method simply returns the char widened to an int. Finite Unrolling, in principle,



does exactly this as well. However, our framework adds a substantial amount of overhead

to what is essentially a widening conversion.

A production quality implementation of our framework should produce identical runtimes

for xalan. The fact that our research quality implementation sometimes outperforms hand-

written hashing methods supports the general point that programming language implemen-

tors are the ones who should be hashing objects, rather than application programmers.

Excluded Benchmarks from DaCapo 2009.12. The avrora, luindex, and lusearch bench-

marks were excluded because of inconsistencies between their hashing and equality meth-

ods. Our abstraction function framework is not capable of expressing these inconsistencies.

We suspect that these inconsistencies are programmer errors, but verifying that conjecture

is beyond the scope of this chapter.

The jython benchmark was excluded because, as a programming language implementation,

it often needs to work with objects at a low-level not supported by our abstraction function

framework (which is designed for application programs).

The sunflow benchmark was excluded because its workloads do not exercise any user-

defined hashing methods.

The eclipse, h2, tomcat, tradebeans, and tradesoap benchmarks were excluded for technical

reasons. For example, in some cases perturbing the hashing methods at all causes the

workloads to fail because they are hard-wired to expect certain results.

Figure 5-11 Performance evaluation
Times in Randoop Tests Vendor Tests DaCapo Input Averages

milliseconds Before I After I Change Befiore I After Change Before After hange

JDK 7374 7699 +4% 4-

Apache 2231 2514 +13% 2479 5049 +104% +58%

JFreeChart 669 986 +47% 20382 21217 +4% 21355 21827 + ±8

Averages +21% +32% +2% +23%

Figure 5-12 Programmer-written hashing methods versus Finite Unrolling (depth 1) com-

parison in DaCapo benchmarks

Times in Medium WL Medium WL Large WL Large WL

Seconds (no warmup) (4 warmups) (no warmup) (4 warmups)
User Unroll User Unroll User Unroll User Unroll

batik 5.91 5.36 1.69 1.61 8.78 7.83 3.58 3.25
fop 4.11 5.42 0.58 1.76 - - - -

pmd 7.71 8.70 3.01 3.10 13.03 11.95 5.17 5.28

xalan 8.48 9.03 2.60 3.73 36.27 43.52 26.29 30.82



5.4.3 The Worst Possible Strategy

// The worst possible legal hash function - never use!
@Override public int hashCodeo { return 42; 1

- Effective Java [17]

Figure 5-11 above contains the surprising result that returning a constant is sometimes a
reasonable hashing strategy. In Figure 5-13 we explore this result in more depth.

Conventional wisdom dictates that an object's hashcode should represent as much infor-
mation about it as possible, since hash collisions may make containment tests and lookup
operations more expensive. Consequently, returning a constant is sometimes referred to
as "the worst possible legal hash function," and programmers are advised to "never use"
it [17].

However, as discussed above, there is a trade-off between the time spent examining the
object's state and the time saved by reducing hash collisions. It may be the case that, in
some circumstances, returning a constant is actually a reasonable strategy. For example, as
the micro-benchmark results in the heatmaps of Figure 5-10 show, returning a constant is a
fine strategy when the objects are used only in collections with a single element. It takes at
least two elements to have a hash collision.

Figure 5-13 evaluates returning a constant against the programmer-provided hashing meth-
ods for all but two of the benchmark programs in the DaCapo 2009.12 suite. (The excluded
programs are eclipse and sunflow, which depend on specific results from certain hashing
methods in order to complete the workloads.)

The instrumentation used to produce Figure 5-13 was done without using the framework
that we employ in the rest of this dissertation. For Figure 5-13 we did a simple bytecode
transformation to replace the hashCode method in every programmer-defined class with
returning a constant. This instrumentation approach is applicable to any program and incurs
no framework-related runtime overhead.

Surprisingly, in 15 out of 35 cases of Figure 5-13, returning a constant outperforms the
programmer-provided hashing methods. The improvement is sometimes significant, as in
the case for lusearch on the medium workload, which reduces 9.253s to 6.398s; or the
jython small workload, which reduces 1.585 seconds to 0.505s.

Perhaps even more surprisingly, returning a constant is rarely terrible. Only for the h2 and
jython benchmarks on medium and large workloads do we see the kind of exponential per-
formance degradation that one might expect from having all hashing methods implemented
as 'return 42'.

These results suggest that it may be reasonable guidance to encourage application pro-
grammers to use 'return 42' as their default hashing method implementation. Returning a
constant has the great virtues that it is easy to implement and is always correct. Using this
strategy is equivalent to replacing hash tables with linked lists. The data in Figure 5-13
suggest that the effort that application programmers are putting into writing customized
hashing methods for their classes is misspent in most cases.
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Figure 5-13 Performance of returning a constant (the "worst possible hash function")

Times in Small Workload Medium Workload Large Workload

Seconds User Return User ReturnI User Return1

avrora 2.609 2.613 5.457 5.243 27.242 28.378

batik 1.976 2.101 4.682 5.069 9.965 10.155

fop 1.817 1.339 3.970 3.395 - -

h2 1.887 2.735 7.995 11.437 44.006 713.862

jython 1.585 0.505 13.675 360.945 43.977 2,574.207
luindex 0.587 0.581 2.775 2.186 2.265 2.069

lusearch 2.251 2.625 9.253 6.398 13.770 12.788

pmd 0.416 0.380 7.079 8.153 12.362 11.217

tomcat 5.686 5.741 10.275 9.943 34.354 36.950

tradebeans 3.678 3.725 13.386 12.663 33.851 33.162

tradesoap 21.246 24.579 43.416 42.402 103.946 104.875
xalan 2.737 3.174 7.356 7.787 31.547 33.519

' We didn't instrument "eclipse" and "sunflow" benchmarks because those two jars were

signed, and so any modifications to their code causes the tests to fail.

2 Large workload for "fop" benchmark doesn't exist

5.5 Conclusions

The textbook study of classic hashing functions has been concerned with hashing im-

mutable bitstrings to an integer. Such classic hashing functions are an important com-

ponent of an object hashing method, but they are not the only component. An object hash-

ing method also needs an object hashing strategy to convert the (potentially cyclic) object

graph into a bitstring suitable for input to a classic hashing function. This object hashing

strategy may in turn require the use of an object abstraction function in order for the hash-

ing method to be consistent with equality. The correctness and performance of an object

hashing method are determined largely by its hashing strategy rather than by its hashing

function.

The dominant design issues for correctness are consistency with equality and cyclic object

structures. The former can be easily handled through the use of abstraction functions. The

latter is an integral part of the design of the hashing strategy. The common technique of

building up an assumption table that is used to handle cyclic structures during an equality

comparison cannot be used during hashing because hashing is a unary operation. Alterna-

tive cycle management techniques must be employed. Moreover, to be correct an object

hashing strategy must handle not only physical cycles but also logical cycles.

Practical performance of object hashing methods varies with both object size and collection

size. The textbook study of classic hash functions usually focuses on large collections

of small immutable objects. However, many object-oriented program executions contain

small collections of large mutable objects. (The hashcode of a mutable object cannot be
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cached and so must be recomputed each time it is needed.) Under these circumstances
some of the conventional wisdom about hashing no longer holds: we have found that it
is usually better to examine less of the object state, and thereby have a higher chance of
collisions, than to focus on reducing potential collisions.

At the extreme we have found that replacing programmer-written hashing methods with
returning a constant can actually improve program performance in some cases. In some
cases, of course, returning a constant result in a dramatic decrease in program performance
- but not in as many cases as one might have expected. Application programmers us-
ing a language that does not yet provide default hashing methods that are consistent with
programmer-defined equality methods may reasonably consider returning a constant until
profiling shows that this hashing strategy is actually degrading overall program perfor-
mance.

We have found that the best default hashing strategy is Finite Unrolling of depth 1: it may
not always be the best, but it is never terrible. This strategy examines enough of the object
state to avoid extensive collisions in most cases and it avoids expensive cycle detection. For
immutable objects where the hashcode can be cached then it may be worth using a strategy
such as Canonical Tree that examines more of the object state. However, immutable classes
are uncommon in object-oriented programs, and ways for application programmers to reli-
ably communicate immutability to language implementors are still maturing [95, 125].

In general we find that application programmer effort is probably better spent on problem-
domain specific aspects of their program, rather than attempting to implement clever hash-
ing methods.

In future, once the language runtime has control over hashing strategy selection then perfor-
mance improvements may be possible. For example, some analysis of the program could
be used to determine which hashing strategy to use for each class. In this paper we only
looked at scenarios where the same strategy was used for every class in a given execution.
Even with this primitive approach we saw performance improvements of up to 10% in
some cases. This idea is similar in approach to the complementary goal of automatic data
structure selection [73, 103, 104], which has recently been shown to reduce the memory
footprint of some Java programs by up to 30% [104]. There are a wide range of opportuni-
ties for tuning programs through high-level optimizations such as automatic data structure
selection and automatic hashing strategy selection.
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Chapter 6

Conclusions

This dissertation has argued that executable abstraction functions enable object-oriented
programming languages to provide better support for object-contract compliance, resulting
in clearer and more concise programs with fewer errors that still have acceptable perfor-
mance. We have supported this thesis by developing:

" four approaches for executing abstraction functions written in the JForge [32, 119]
variant of the Alloy [52] declarative logic;

" a library of logical predicates that make abstraction functions both more concise and
more amenable to execution;

" a generic notion of object equality defined in terms of abstraction functions;

" a handful of object hashing strategies and their evaluation.

We have found empirically that our system is capable of synthesizing a replacements for a
majority of hand-written object-contract methods and iterators from declarative abstraction
functions. Were an industrial quality version of our system to be included as part of a
programming language runtime, application programmers might spend less time and effort
on object-contract compliance, and therefore a greater proportion of their time and effort
on the domain-specific dimensions of their programs.

Providing a dynamic interpretation for abstraction functions may encourage programmers
to write specifications, just as dynamic uses for invariants has. There is a long history of
intellectual arguments for writing formal specifications for software. In practice, though,
the benefits of specifications are not realized as often as they might be. We hope that his
work provides another starting point for programmers to realize the broader benefits of
specifications. We have elsewhere [100] contributed to this discussion by illustrating how
executable specifications might be used together with code to find some methodological
middle ground between agile and formal methods: for example, mock-objects [75] could
be synthesized from executable specifications, and executable specifications could make it
easier for the programmer to take a test-driven [13] approach to specification development.
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6.1 Zave Evaluation Criteria

In reflecting on the PAISLey [120] system of executable specifications for concurrent sys-
tems, Pamela Zave proposed five questions to evaluate executable specification languages.
She intended these questions for more general systems than ours - our system has a very
particular focus - but nevertheless the questions are worth examining.

1. Is the language expressive enough for the functional specification of the intended
class of system?

We evaluated expressiveness from two different angles. First, in Chapter 3 we looked
at the ability of our JFSL-based system to express the abstraction functions needed
for the JDK Collections v1.4 data structure library. We found that 25 out of the
29 hand-written iterators could be synthesized from declarative abstraction functions
by our system. The remaining cases generally involved the hand-written iterator
returning objects that did not exist at the time the iteration began. Our system can be
viewed as a query evaluator for the extant heap: it does not synthesize new objects
during its traversal, and it is limited to return objects discovered during that traversal.

In Chapter 4 we looked at how many of the equals and hashCode methods could be
replaced with our generic, abstraction function based, versions. We found that our
generic versions could replace the hand-written versions in almost all cases. The
remaining cases involved classes that intentionally violated the object contract or
used weak references to control interaction with the garbage collector.

Our system is sufficiently expressive for the majority of classes that programmers in
practice need to write. In the cases our system doesn't cover the programmer is still
free to implement iterators and object contract methods by hand.

2. Does the language support the formal reasoning necessary for validation of the in-
tended class of system?

Use of our system improves the both the options for formal reasoning about the
program and the correctness of the program versus hand-written implementation of
object-contract methods. The abstraction function that our system requires the pro-
grammer to write can also be reused as part of the specifications of the invariants,
pre-conditions, and post-conditions of the program.

In Chapter 2 we developed a library of logical predicates that make it easier for
programmers to write complex abstraction functions involving sequences and trees.
Even without the executability aspect of our system these predicates make it easier
for programmers to specify and hence verify their programs.

In Chapter 4 we saw that shipping production code from expert programmers con-
tains bugs in object contract methods, and that replacing these hand-written imple-
mentations with our system removed these bugs.

3. Does the language preserve the implementation freedom needed to meet the nonfunc-
tional requirements of the intended class of system?
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Our system does not prevent the programmer from implementing iterators and object-

contract methods by hand, and so the programmer's freedom is not impinged by our

system.

The programming language implementor, on the other hand, gains a new dimension

of freedom to improve program performance from the use of our system. By bring-

ing hashing strategy selection under control of the language runtime, as discussed

in Chapter 5, the language implementor has a new opportunity to systematically im-

prove program performance.

4. Is there a method for construction, validation, and implementation of specifications

in the language?

While we have not deeply explored the methodological dimensions of this work,

our experience with our system suggests two things: first, simple hand-written unit

tests are usually sufficient to validate that the abstraction function meets program-

mer intent; second, automated testing tools that specifically target object-contract

compliance, such as Randoop [93, 94], are useful for more systematic validation.

5. Is use of the language cost-effective for the intended class of system?

There are three costs to be considered: the cost of producing the program, the time

required to run the program, and the space required to run the program.

The space consumed by an industrial quality implementation of our system should

be minimal: it would be a linear function of the number of classes in the system and

therefore constant in the number of objects in a given execution.

In Chapter 3 we saw that our synthesized iterators are slower than hand-written ones,
but that there is also room for improvement. In Chapter 5 we saw that changing the

hashing strategy can have a noticeable impact on overall program running time. Since

our system brings the choice of hashing strategy under the control of the language

runtime there is an opportunity here to systematically improve running time. This

opportunity is not available when object-contract methods are implemented by hand.

While we do not have quantitative data specifically on production cost, we argue that

the evidence suggests that using our system is less expensive than implementing iter-

ators and object contract methods by hand. It is certainly the case that a declarative
abstraction function is more concise than the hand-written iterator, equality compar-

ison, and hashing method that it replaces. If lines of programmer-written code are

a measure of production cost, then our system, where applicable, would seem to be

less expensive than implementing by hand. Furthermore, there is ample evidence in

the literature [17, 49, 91, 93, 94, 97, 114], and in Chapter 4, that programmers of

all skill levels have difficulty attaining object-contract compliance. In Chapter 4 we

show that our synthesized code has fewer bugs than hand-written code - even indus-

trial quality code hand-written by expert programmers. This evidence suggests that

by using our system the programmer will save both development time and debugging

time, producing a more concise program with fewer flaws.
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6.2 The Programmer as Relational Navigator

Among the first approaches to computerised database management systems were the net-

work and hierarchical models, epitomized by General Electric's Integrated Data Store

(IDS) and IBM's Information Management System (IMS), respectively. These models

have been referred to as navigational [7] because queries are written in imperative form

as a sequence of operations navigating references between records. These database sys-

tems are important commercially and academically, in addition to historically: Charles

Bachman won the 1973 Turing Award for his work on IDS [7], and despite being intro-

duced in 1968 as part of the Apollo space program [16], IMS had its most successful sales

year in 2003 [50].

In 1970 E.F. Codd introduced relational database management systems [25]. Codd's pro-

posal had a number of dimensions. He argued that data should be conceptualized as sets

of tuples (i.e., relations), rather than a graph of records. He further argued that queries

should be expressed in a declarative logic, and that the database system should automati-

cally determine how to translate these declarative expressions into navigations of the un-

derlying storage. Codd won the 1981 Turing Award for his pioneering work on relational

databases [26].

The heap of an object-oriented program is like an IDS database: a graph of references

between objects/records. And currently object-oriented programmers write their programs

in much the same way that IDS programmers did almost fifty years ago, as a sequence of

imperative navigations.

One way to look at this dissertation is that it brings the idea of declarative relational logic

queries to data that is physically structured in a graph rather than in relations. In other

words, our Alloy query engine for Java programs is like a (hypothetical) SQL query engine

for IDS. Continuing in the vein of this comparison, the main optimization that we perform

is to determine whether the Java program under consideration represents an IMS database

(i.e., hierarchical) or an IDS database (i.e., unrestricted graph).

It so happens that most abstraction functions that we have observed in practice are essen-

tially queries on the program heap. So while we focus on abstraction functions and uses
for their dynamic interpretation, the fundamental technology is really a query engine. The

technical issues in our query engine differ from traditional relational database query en-

gines because: (a) our entire 'database' is in memory rather than on disk; (b) the data

are stored as a graph rather than as row-store or column-store relations; and (c) the query

always starts from the distinguished this object.

Both Bachman [7] and Codd [26] hoped to improve programmer productivity through two

main principles: (1) separating the application code from the data management code; and

(2) giving the programmer clearer, more concise, and more powerful tools for working

with their data. For my part, I hope to replay their shared vision in miniature, with the

same motivations and principles, and hopefully similar (albeit smaller) attendant benefits.
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6.3 Future Directions

There are a variety of future directions that could be pursued from this work.

For programmers in the field, a more industrial grade implementation would help them
realize the practical benefits of our system. Such an implementation would improve ob-
vious deficiencies, such as performance and error message quality. It would also enhance
some features that we have not discussed in this dissertation, such as automatic synthesis
of toString and compareTo methods (from additional annotations). Enhancing debuggers
to give programmers a view of the abstract state of their objects would also be useful.
The Eclipse Java debugger already contains a rudimentary ad-hoc implementation of this
feature, suggesting that there is demand for a more systematic solution.

We think practicing programmers would also appreciate some minor modifications to the
JForge Specification Language, such as syntactically separating specification field declara-
tions from abstraction function definitions, and perhaps adding explicit syntactic expression
for equality types.

We also have some ideas for future research. For example, it would be interesting to see
the performance gains that could be had by automatic selection of hashing strategies, and
further by combining this with automatic data structure selection.

Our optimization condition generation process derives potential program invariants from
an abstraction function. It would be interesting to know if these derived potential in-
variants are a super-set of the programmer's hand-written invariants. Such an experiment
could be conducted with the manually specified and verified data structures from the Jahob
project [59, 123]. If there are hand-written invariants that are not included in the auto-
matically derived set, it would be interesting to learn what they are and why, and to see if
they could also be automatically derived from an abstraction function through a modified
version of our optimization condition generation technique.

Implementations of abstract data types often maintain a separate concrete field that records
the size of their main specification field: for example, the number of elements in a set or
the length of a linked list. Ensuring that this size field is accurate consumes programmer
effort. It would be easier to simple define a specification field and abstraction function as
follows: this-size = #(this.nodes). Programmers can do that today with our system. How-
ever, today our system would not evaluate this expression in the most efficient manner.
What would be interesting is to take this specification field and abstraction function and
automatically synthesize a concrete field and the code to maintain its correct value incre-
mentally. For example, in a linked-list insertion procedure to automatically synthesize code
to increment the concrete size field. Code synthesis techniques such as those developed by
Solar-Lezama [106] might be applicable here since we have both a working but innefficient
implementation of the desired functionality (our current system) and a 'sketch' of the ef-
ficient implementation in the form of the hand-written linked-list insertion procedure that
does not maintain the value of the size field.

It is my conjecture, at the conclusion of this work, that data abstraction and object owner-
ship [4, 19, 90] are closely related: the owned objects may be named by a (perhaps private)
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specification field and its associated abstraction function. In our ongoing example of a bi-
nary search tree we might say that the tree owns its nodes: that is, the tree object owns
all of the objects named by the abstraction function this.nodes = this.root.*(left+right). Using
abstraction functions in this way would likely reduce the programmer's annotation burden
as compared to ownership type systems: the number of specification fields in a program
is a function of the number of classes, whereas the number of ownership annotations is a
function of the lines of code; moreover, if the programmer is already writing the specifi-
cation field and abstraction function for other reasons then ownership is an added benefit
negligible marginal cost.

If this connection between ownership and data abstraction can be substantiated then per-
haps it can also be used, in combination with the work of this dissertation, for object
cloning. With today's technology object cloning tends to be either shallow, which clones
just the object under consideration, or deep, which clones not only the object under con-
sideration but also all objects reachable from it. In most cases the programmer desires
something in between. For example, when cloning a linked list the programmer usually
desires to have a new list that refers to the same external data objects as the original list.
Grogono and Sakkinen [38] explored some potential solutions to this problem that involve
annotations tailored to this task. The combination of our dynamic interpretation of ab-
straction functions along with deriving ownership from abstraction functions might give
programmers the cloning operations they want for no additional programmer effort.
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