
Exploring the Effectiveness of Loop Perforation for

Quality of Service Profiling

by

Sasa Misailovic

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

ARCHIVES

MASSACHUSET1si jNSTT~
| OF TECHO

OCT 3 5 2010

L L17-1RA/,fd EF

@ Massachusetts Institute of Technology 2010. All rights reserved.

/
/

/ .~l
/ /
/ //

Department of Electrical Engineering and Computer Science
September 3, 2010

Certified by..........
Martin C. Rinard

Professor
Thesis Supervisor

A

Accepted by
Terry P. Orlando

Chairman, Department Committee on Graduate Students

Author ...

Exploring the Effectiveness of Loop Perforation for
Quality of Service Profiling

by
Sasa Misailovic

Submitted to the Department of Electrical Engineering and Computer Science

on September 3, 2010, in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science and Engineering

Abstract
Many computations exhibit a trade off between execution time and quality of service.

A video encoder, for example, can often encode frames more quickly if it is given the

freedom to produce slightly lower quality video. A developer attempting to optimize

such computations must navigate a complex trade-off space to find optimizations that

appropriately balance quality of service and performance.

We present a new quality of service profiler that is designed to help developers

identify promising optimization opportunities in such computations. In contrast to

standard profilers, which simply identify time-consuming parts of the computation,

a quality of service profiler is designed to identify subcomputations that can be re-

placed with new, potentially less accurate, subcomputations that deliver significantly

increased performance in return for acceptably small quality of service losses.

Our quality of service profiler uses loop perforation, which transforms loops to per-

form fewer iterations than the original loop, to obtain implementations that occupy

different points in the performance/quality of service trade-off space. The rationale is

that optimizable computations often contain loops that perform extra iterations, and

that removing iterations, then observing the resulting effect on the quality of service,

is an effective way to identify such optimizable subcomputations. Our experimen-

tal results from applying our implemented quality of service profiler to a challenging

set of benchmark applications show that it can enable developers to identify promis-

ing optimization opportunities and deliver successful optimizations that substantially

increase the performance with only small quality of service losses.

Thesis Supervisor: Martin C. Rinard

Title: Professor

Acknowledgements

First, I am grateful to my advisor Martin Rinard. It has been a pleasure to work with
Martin during the past two years. Martin's enthusiasm and support are a source of
great inspiration. I appreciate and absorb, as much as possible, the knowledge that
he so often shares.

I am grateful to Hank Hoffmann and Stelios Sidiroglou with whom I worked on
loop perforation-related projects. They contributed significantly to this thesis with
their ideas, discussions and advice.

I would also like to thank all the members of the PAC CSAIL group, Michael
Carbin, Vijay Ganesh, Deokhwan Kim, Jeff Perkins, and Karen Zee for all their
individual help and support.

A special thanks to all my friends at MIT: Eunsuk Kang, Neha Gupta, Sachithra
Hemachandra, Jacqueline Lee, Aleksandar Milicevid, Joseph Near, Derek Rayside,
Rishabh Singh, Jean Yang and Kuat Yessenov for making graduate student life an
enjoyable experience.

I would like to thank Mary McDavitt and Janet Fischer for their help during the
final stages of thesis writing.

Finally, I would like to thank my parents for providing continuous and uncondi-
tional love and support throughout my life.

Contents

1 Introduction

1.1 Performance Profiling

1.2 Quality of Service Profiling . . .

1.3 Contributions

2 Quality of Service Profiler

2.1 Performance Profiling

2.2 Loop Perforation

2.2.1 Induction variables . . .

2.2.2 Sampling Perforation . .

2.2.3 Truncation Perforation

2.2.4 Randomized Perforation

2.3 Acceptability Model

2.3.1 Output Abstraction . . .

2.3.2 Quality of Service Loss Me

2.4 Optimization Candidate Selection

.sure

2.4.1 Amenable Computation Identification

2.4.2 Individual Optimization Candidate Discovery

2.4.3 Cumulative Optimization Candidate Discovery

2.5 Profiler Reports .

3 Experimental Evaluation

3.1 Benchmark Applications

3.1.1 x264 .

3.1.2 bodytrack .

3.1.3 swaptions .

3.1.4 blackscholes

3.1.5 canneal .

15

16

16

17

17

18

19

20

20

21

22

24

24

26

27

29

29

30

31

31

31

32

. 3 2
3.2 Experimental Setup

3.3 Loop Perforation Results

3.3.1 Individual Loop Perforation

3.3.2 Cumulative Loop Perforation

3.4 Benchmark Application Results

3.4.1 Profiling Reports

3.4.2 Profiling Results for x264

3.4.3 Profiling Results for Bodytrack . . .

3.4.4 Profiling Results for Swaptions . . .

3.4.5 Profiling Results for Blackscholes . .

3.4.6 Profiling Results for Canneal

3.4.7 Discussion

4 Related Work

4.1 Performance Profiling

4.2 Performance vs Quality of Service Trade-Offs

4.3 Trade-Off Management

5 Conclusion

. 33

58

58

58

. 59

3.1.6 Representative Inputs

.

.

List of Figures

1-1 Compiler Framework Overview . 11

2-1 Loop selection algorithm pseudocode 23

2-2 perforateLoopSet pseudocode... 24

2-3 selectLoopSet pseudocode... 27

3-1 Perforatable Loop Count . 34

3-2 Performance Comparison of Different Perforation Strategies 37

List of Tables

3.1 Basic Application Statistics . 30
3.2 Cumulative Perforation Scores . 36
3.3 Individual Loop Perforation Results for x264 41
3.4 Individual Loop Perforation Results for bodytrack 44

3.5 Individual Loop Perforation Results for swaptions (with bias) 47
3.7 Individual Loop Perforation Results for canneal 49

3.6 Individual Loop Perforation Results for blackscholes 49

Chapter 1

Introduction

Modern software is designed with multiple objectives in mind. The development of

functionally correct software which produces acceptable results is one of the most

important goals of software engineering. Besides functional correctness, the software

often needs to satisfy various additional requirements aimed at user satisfaction. The

set of desired program properties includes usability, performance, responsiveness, en-

ergy efficiency, etc. Common engineering practice divides the task of delivering these

properties into two phases. In the first phase, the developers focus on the correct-

ness of the computation. In the second phase, known as optimization, the developers

improve secondary properties, such as performance.

A typical approach to performance optimization is to find and reimplement sub-

computations that are good candidates for optimization and that would make the

program run faster. But reimplementing computations may require a significant de-

velopment effort. An appropriate prioritization of optimization candidates helps the

developer focus on the most promising candidates, resulting in significant time and

effort savings. Selection of the most profitable optimization candidates becomes an

essential part of the optimization process.

1.1 Performance Profiling

Developers often use profiling to help identify good performance optimization can-

didates. The developer monitors the execution of the program using a profiler tool.

A profiler instruments the program, executes the program on one or more represen-

tative inputs, and collects and summarizes the execution time of subcomputations.

A profiler report typically presents subcomputations ordered by the time they con-

sumed while processing the input. The developer uses this information to prioritize

which subcomputations to reimplement, often starting with the most time-consuming
subcomputations.

Many traditional applications such as compilers, databases, payroll or account
management applications have strict correctness requirements - for any input there
is exactly one correct result. The standard approach to optimizing these applications
is to produce alternative (ideally faster) subcomputations, that always produce the
same result as the original subcomputation. The performance profiler report often
serves as a good starting point for identifying which subcomputations to optimize in
such applications.

However, there exists an emerging class of applications that can produce multiple
different acceptable results. Examples of applications from this class include programs
that process media formats (audio, video or images), machine learning applications,
heuristic searches, scientific simulations and financial simulations. Some of the results
produced by such applications may be more accurate, precise or subjectively desirable
than the others. These properties of the result are captured by the Quality of Service
(QoS) measure. In this thesis Quality of Service refers to the accuracy or quality of
the result that the application produces, not the timing with which it produces or
delivers this result.

Adopting the more flexible notion of QoS instead of requiring the optimized com-
putation to produce the identical result allows for a much broader range of potential
optimizations. Developers have the option of implementing a range of subcomputa-
tions that can operate with different accuracy and performance characteristics. In
many instances a developer may be happy to trade a small amount of QoS for con-
siderable performance gains.

The inherent differences between the trade offs offered by various subcomputations
complicate the choice of which computation to attempt to optimize - the developer
needs to select the computation that can offer the best opportunity to make a prof-
itable trade off. Traditional profilers provide only part of the relevant information
in this scenario - they can only identify where the program spends the time, but
not tell which subcomputations are the best optimization candidates. In addition

to traditional profiling, a new profiling approach that can identify subcomputations

which are the best candidates for trading off Quality of Service for performance would
make optimization easier.

1.2 Quality of Service Profiling

In this thesis we present Quality of Service Profiling, a novel profiling technique for de-

tecting subcomputations that may offer profitable trade offs between performance and

Quality of Service. These computations are typically good optimization candidates.

Quality of Service Profiling explores the space of potential optimization candidates

by automatically generating and evaluating potential optimized subcomputations.

Figure 1-1 presents an overview of our Quality of Service profiler algorithm. Given

the source code of a program and a representative input, the profiler first performs

performance profiling to find the time-consuming subcomputations. The profiler also

collects the execution results of the original, unmodified program.

Acceptability
model

Quality of Service Profiler

Program
Subcomputation TransformationTime Profile Transformation Evaluation

Input(s)

Time Report Profiler Report

Figure 1-1: Compiler Framework Overview

In the following steps, the Quality of Service profiler applies predefined transforma-

tions on the original subcomputations to generate alternative versions of individual

time-consuming subcomputations. The goal of the transformations is to cause the

transformed subcomputations to execute less work. The transformed computation is

allowed to generate a result that is different from the result of the original computa-

tion as long as it still produces an acceptable result. In each step the profiler applies a

single transformation. The profiler evaluates the effects of the transformation on the

performance and QoS by executing the modified program on the representative inputs

and comparing with the results of the original program. In addition to the evaluation

of individual subcomputations, the profiler also evaluates groups of subcomputations

to find potential synergies between the subcomputations.

The Quality of Service Profiler uses a developer-specified acceptability model to

extract and summarize parts of the program output relevant to the QoS, calculate the

difference between the result summaries of the original and the transformed program

............. - - - ------

to determine the level of Quality of Service loss (QoS loss), and specify the greatest
acceptable level of QoS loss. The profiler considers the computations that, when
transformed, produce results with an acceptable QoS loss to be possible optimization
candidates. The computations whose transformations cause unacceptable results or
unexpected program termination are considered critical subcomputations.

Loop Perforation

The key element of Quality of Service Profiling is the choice of transformations used
to create alternative subcomputations. In this thesis we evaluate the effectiveness of
a class of transformations called loop perforation, which applies to for-style loops.
Loop perforation transforms amenable loops to execute fewer iterations, by changing
the rate of the loop increment value or the exit conditions.

For example, given the following loop:

for(i = 0; i < max; i+=1) { /* ... */ }

one way to perforate the loop is change the value of the increment to force the loop
execute only half of the iterations:

for(i = 0; i < max; i+=2) { /* ... */ }

Loop perforation comprises multiple variants. In this thesis we compare three
variants of loop perforation. The first variant, called sampling perforation, skips 1
out of every k iterations (as in previous example with k = 2). The second variant,
called truncation perforation, skips k iterations at the beginning or at the end of the
loop. The third variant, called randomized perforation, randomly skips k iterations.

Rationale

The rationale for transformation-based approach to Quality of Service profiling is
that good optimization candidates perform partially redundant computations. The
redundancy manifests itself in the form of additional computation, not proportional
to the increase of the quality of the result. Removing parts of such subcomputations

will typically reduce the work performed by the subcomputation and increase the
performance of the application. Quality of Service Profiling is based on the following
observation - if the original subcomputation performs redundant work, then the
transformed subcomputation typically produces a result that is close to the original

result, but will require less time than the original subcomputation. The evaluation

results that we present support the well-foundedness of this observation.

The rationale for using loop perforation is that many partially redundant compu-

tations are implemented as loops, where the iterations of the loop have different con-

tribution to the result. The evaluation results provide evidence that loop perforation

can be an effective transformation that for finding partially redundant computations.

Implementation

We implemented a prototype Quality of Service profiler, Qosprof. Qosprof uses loop

perforation to find good optimization candidates. We perform an experimental eval-

uation of the effectiveness of Qosprof to find optimization candidates on five applica-

tions from the PARSEC benchmark suite [6].

Our experimental results indicate that loop perforation can successfully transform

a number of partially redundant subcomputations to produce new subcomputations

with improved performance and small QoS losses. An inspection of the source code

of the application shows that most of the computations that the profiler identifies are

in fact good optimization candidates.

Reports

The Quality of Service Profiler generates the reports based on the execution of the

profiling algorithm. The developer can use the these reports to order the subcompu-

tations and focus his or her effort on the most promising subcomputations first. The

Quality of Service Profiler produces two reports based on the evaluation of automat-

ically transformed programs:

1. Individual transformation report - contains the performance increase and qual-

ity of service loss results of subcomputations that were transformed individually.

The developer can use this report to find the subcomputations that offer the

most profitable performance/QoS trade offs.

2. Cumulative transformation report - contains the performance increase and

quality of service loss results of multiple subcomputations transformed together.

The developer can use this report to find potential synergies between the sub-

computations that are good optimization candidates.

1.3 Contributions

This thesis makes the following contributions:

" Quality of Service Profiling: This thesis proposes a technique for exploring
a space of optimization candidates for applications that profit from trade offs
between performance and quality of service.

" Transformation: This thesis proposes loop perforation as a transformation
that can be used by Quality of Service Profiling to identify subcomputations
that offer profitable trade offs between performance and QoS.

" Evaluation: The thesis presents an experimental evaluation of the effective-
ness of different loop perforation variants in automatically generating subcom-
putations with desired properties. We analyze the perforated computations,
summarize the results and provide reasons why loop perforation works.

Chapter 2 gives an overview of the profiler design, presents the details of loop per-
foration, describes the algorithms for the optimization candidate search, and describes
the generated reports. Chapter 3 provides an experimental evaluation. Chapter 4 dis-
cusses the related work.

Chapter 2

Quality of Service Profiler

Quality of Service profiling explores the space of subcomputations that can be op-

timized by automatically generating potential program optimizations. As a first

step, the Quality of Service Profiler performs standard time profiling to find time-

consuming subcomputations. While it can in principle work with any existing profiler,

we implemented our own profiler that identifies the loops that perform most of the

work. We describe the profiler in Section 2.1.

In the following steps the profiler uses a set of predefined transformations to auto-

matically generate alternative versions of the original subcomputations. This thesis

explores loop perforation, a class of applicable computation transformations. We de-

scribe the details of the loop perforation transformations in Section 2.2. To compare

the effects of program transformations on the final result, the developer specifies the

procedure to extract and summarize the information relevant to QoS from a program

output and a procedure to compare two QoS values obtained from execution of dif-

ferent versions of the program on the same input as parts of acceptability model. We

describe the details of acceptability model in Section 2.3.

Given the application source code, a set of representative inputs, and acceptabil-

ity model, the Quality of Service Profiler performs a set of steps that insert instru-

mentation to perform program profiling, identify loops that are good optimization

candidates, and select of loops that, when perforated together, deliver a result within

QoS bounds. We describe the steps of the profiling algorithm in Section 2.4. From

the information gathered during these steps, the profiler generates a profiling report

described in Section 2.5.

2.1 Performance Profiling

The Qosprof performance profiler produces an instrumented version of the original
program that, when it executes, counts the number of times each basic block exe-
cutes. The instrumentation also maintains a stack of active nested loops and counts
the number of (LLVM bit code) instructions executed in each loop, propagating the
instruction counts up the stack of active nested loops so that outermost loops are
credited with instructions executed in nested loops.

The performance profiler produces two outputs. The first is a count of the number
of instructions executed in each loop during the loop profiling execution. The second
is a directed graph that captures the dynamic nesting relationships between different
loops (note that the loops may potentially be in different procedures).

2.2 Loop Perforation

Given a loop to perforate, our loop perforation transformation takes as input a per-
centage of iterations to skip during the execution of the loop and a perforation strat-
egy. Loop perforation can be applied to the loops that behave as f or loops. These
loops have an induction variable, whose value is changed linearly in each iterations.
A transformation pass modifies the calculation of the loop exit condition (including
the induction variable) to manipulate the number of iterations that a loop executes.
The pass conceptually performs the following loop transformation:

for(i = 0; i < max; i+=1) {/* ...

to

for(i = 0; i < max; i+=1) {

if (doPerforate(i, environment)) continue;

//...

}

The percentage of non-executed iterations is called the perforation rate (pr). De-
pending on the selected perforation rate a different performance/QoS loss trade-off
can be made. For example for a perforation rate pr = 0.5, half of the iterations are
skipped, for pr = 0.25, one quarter of the iterations are skipped, while for pr = 0.75,

three quarters of the iterations are skipped, i.e. only one quarter of the initial work

is carried out.

The compiler supports a range of perforation options, including sampling, or mod-

ulo, perforation (which skips or executes every nth iteration), truncation perforation

(which skips either an initial or final block of iterations), and random perforation

(which skips randomly selected iterations at a mean given rate). The actual gen-

erated code exploits the characteristics of each specific loop perforation option to

generate optimized code for that option.

2.2.1 Induction variables

Qosprof perforation operations manipulate loops whose induction variables are in

canonical form [17]. Qosprof uses the LLVM built-in pass loopinf o to identify loops.

Before perforating the loop, Qosprof uses the built-in LLVM passes loopsimplify

and indvars to canonicalizes the loop induction variable. As a consequence of these

initial bitcode transformations, it is possible to successfully perforate the loops that

have different increment values, or reversed minimum and maximum value. Moreover,

some of the syntactic while loops can be perforated if bitcode analysis finds that

they are controlled by an induction variable. After the transformations the induction

variable i has an initial value of 0 and is incremented by 1 in every iteration until

maxvalue is reached:

for (i = 0; i < maxvalue; i++){ /* ... */ }

2.2.2 Sampling Perforation

Sampling perforation skips every n-th iteration, or executes every n-th iteration. The

percentage of skipped iterations is determined by the perforation rate, pr, which is

determined using the following formula:

I if every n-th iteration is skipped
pr =

1 - if every n-th iteration is executed

The implementation of sampling perforation considers three cases: 1) large, 2)

small, and 3) small where n is a power of 2. In the following paragraphs, the imple-

mentation for the case when pr > 0.5 will be referred to as large perforation, while

the case when pr < 0.5 will be referred to as small perforation. Additionally, for

small perforation, if n is power of 2, a more efficient implementation is available for
some computer architectures. The following examples describe each transformation.

Large Perforation: For large perforation the increment of the induction variable is
changed from 1 to n:

for (i = 0; i < maxvalue; i += n) { /* ...

Small Perforation: small perforation is implemented by adding a new term to the
induction variable increment. The goal is to increment the value of the induction
variable by 2 when the iteration is to be skipped. The value of the induction variable
is incremented by 2 if the remainder of i divided by n is equal to some constant value
k, 0 < k < n:

for (i = 0; i < maxvalue;

i = i + 1 + (i % n == k ? 1:0)) {

//....

}

Small Perforation when n is Power of 2: When n is power of 2 (n = 2 '), small

perforation uses faster bitwise and operations to calculate the remainder of i divided
by n, which in this case are lowest m bits of i:

for (i = 0; i < maxvalue;

i = i + 1 + (i & (n-1) == k ? 1:0)) {

//..

}

2.2.3 Truncation Perforation

Truncation perforation skips iterations at the beginning or at the end of the loop
execution. The iteration count of the perforated loop is equal to (1 - pr) -maxvalue.
Discarding iterations at the beginning of the loop involves initialization of the in-
duction variable i to i = pr * maxvalue where maxvalue is known before the loop
invocation and is not changed during the loop's execution. The example of the loop
is:

for (i = pr * maxvalue; i < maxvalue; i++) { /* ... */ }

Perforating iterations at the end of the loop accomplishes an earlier exit from the

loop. This perforation is implemented by decreasing the loop condition bound. The

new condition becomes i < (1 - pr) * maxvalue:

for (i = 0; i < (1 - pr) * maxvalue; i++) { /* ... */ }

If maxvalue is not modified from within the loop body, the new condition can

be precomputed. Otherwise, it needs to be checked in every iteration. Instead of

performing floating point multiplication, which may be expensive on some architec-

tures, it is possible to represent the rational number 1 - pr as a fraction of the form

p/q, where p and q are natural numbers. Then, the condition can be represented as

q * i < p * maxvalue. If p or q are powers of 2, shifting may be used instead of

multiplication.

2.2.4 Randomized Perforation

Randomized loop perforation skips individual iterations at random, based on a user-

specified distribution with mean pr:

for(i = 0; i < maxvalue; i++) {

if (skipIteration(i, pr)) continue;

//...

}

This type of perforation is the most flexible, but introduces the greatest overhead.

It allows the runtime to dynamically control the perforation during the execution of

the loop body and change the underlying perforation distribution in the course of

loop execution. The decision to skip an iteration is always made at the run-time,

unlike the previous perforation types.

The implementation of the skipIteration() function can be arbitrary complex,

but the function may become a performance bottleneck, due to its frequent execution.

We provide a simple implementation of the skipIteration() function that generates

a pseudo-random number from an uniform distribution using standard library func-

tion rand (). It is preferable to apply this technique on loops that perform more work

per iteration or perform a larger number of iterations, which can offset the overhead

of the call. The call to skipIterationo is, in most cases, inlined by the compiler

to reduce the call overhead.

2.3 Acceptability Model

To measure the effect of loop perforation, Qosprof requires the user to provide an
acceptability model for the program output. This model consists of three components:
a) an output abstraction - a procedure for extracting or summarizing relevant parts
of the output, b) a Quality of Service loss measure - a procedure for calculating the
difference between QoS values of two program executions, and c) a bound on the
maximum QoS loss that the user is willing to tolerate.

2.3.1 Output Abstraction

The output abstraction maps the result of the program execution to a numerical
value or tuple of values that represent relevant parts of the execution. In addition
to the parts of the concrete output, the output abstraction may also use information
from the input or the environment. Formally, output abstraction accepts three inputs
- concrete output, the input, and relevant parts of the environment. The output
abstraction produces a tuple (oi, ... , o,), where each component oi is a numerical

value.

The form of the output abstraction is strongly tied to the program domain. In
many cases defining output abstractions is an intuitive process. For many application
domains there exists an extensive body of work for evaluating the quality of the result
and often the important parts of the result are directly available. The procedures for
selecting and expressing the quality of the output often exist already as parts of
the software testing framework. For example, a financial simulation may produce a
prediction of prices of the securities. The price of each security represents the the
value of interest for quality of service that the application provides. As an another
example, the quality of an encoded video can be measured by considering the accuracy
of the encoding, using e.g. peak signal-to-noise ratio and measuring the size of the
encoded video.

Our experience with the benchmark applications used to evaluate the profiler was
that creating a program output abstraction is a straightforward process for users
with basic knowledge of an application. Without prior knowledge of the PARSEC
benchmark applications, we were able to produce output abstractions for each exam-
ined application in a short time. We describe the output abstractions for the set of
benchmark applications in Section 3.1.

2.3.2 Quality of Service Loss Measure

The Quality of Service loss (QoS loss) measures the effect of the program transfor-

mation on the program outputs, with respect to the original program. A small value

of QoS loss indicates that the transformed program produced a result that is sim-

ilar to the original program, while large QoS loss indicates a dissimilarity between

the two results. We compare two program transformations by calculating the QoS

losses of the two transformed programs on the same input with respect to the (same)

original program. Additionally, QoS losses obtained from the execution of the same

transformed program with respect to the original program on different inputs should

be comparable. This property makes it possible to compare the effects of a single

transformation on both smaller and larger inputs.

In this thesis we calculate QoS loss based on the relative scaled difference be-

tween selected outputs from the original and perforated executions. Given an output

(concrete, or results of output abstraction function) 01,... , oM from an unmodified

execution and an output 51, . . . , 6 m from a perforated execution, the following quan-

tity d, which we call the distortion, measures the accuracy of the output from the

perforated execution:

d1!Z O - 6

m oMi=1 0

The closer the distortion d is to zero, the less the perforated execution distorts the

output. Because each difference is scaled by the corresponding output component,

distortions from different executions and inputs can be compared. By default the

distortion equation weights each component equally, but it is possible to modify the

equation to weigh some components more heavily. Also note that because of the scal-

ing of individual components, it is possible to meaningfully compare the distortions

obtained from executions on different inputs. More detailed discussion on distortion

is available in [20].

Bias Definition and Use

The distortion measures the absolute error induced by loop perforation. It is also

sometimes useful to consider whether there is any systematic direction to the error.

To measure sny systematic error introduced through loop perforation we use the

bias [20] metric:

1 m= o--

Note that this is the same formula as the distortion with the exception that it
preserves the sign of the summands. Errors with different signs may therefore cancel
each other out in the computation of the bias instead of accumulating as for the
distortion.

If there is a systematic bias, it may be possible to compensate for the bias to
obtain a more accurate result. Consider, for example, the special case of a program
with a single output component o. If we know that bias at a certain is b, we can
simply divide the observed output 8 by (1 - b) to obtain an estimate of the correct
output whose expected distortion is 0.

2.4 Optimization Candidate Selection

The goal of the optimization candidate selection algorithm is to find the set of sub-
computations that can be transformed to produce significant performance increases
at the cost of the QoS losses which are within the acceptable bound. The algo-
rithm transforms each subcomputation, executes the transformed program, collects
the execution time, uses the acceptability model to calculate the QoS loss.

The algorithm consists of two parts, individual and cumulative optimization can-
didate selection. Figure 2-1 presents the pseudocode of the selection algorithm. The
algorithm performs the following steps:

" Identification. It identifies the subcomputations (loops) on which loop perfo-
ration can be applied (Section 2.4.1).

" Individual computation discovery. Discovery of optimization candidates
by transforming individual subcomputations and measuring performance and
QoS loss for each candidate loop (Section 2.4.2).

" Cumulative computation discovery. The discovery of the set of loops
that maximizes performance for a specified Quality of Service loss bound (Sec-
tion 2.4.3).

In the current implementation of Qosprof, the user selects the perforation strategy
and the perforation rate before the search. The algorithm works with one transfor-

LoopSelection (program, inputs, maxLoss)

candidateLoops = {}

scores = {}

for i in inputs

candidateLoops[i] = performProfiling(program, i)

for each 1 in candidateLoops[i]

scores [i] [11 = assignInitialLoopScore(1)

filterProfiledLoops (candidateLoops [i])

for 1 in candidateLoops

spdup, QoSLoss = perforateLoopSet(program, {1}, i)

analysisRes = performAnalysis(program, {1}, i)

scoresEi] [1 = updateScore(spdup, QoSLoss, analysisRes)

filterSingleExampleLoops(candidateLoops [i], scores[i], maxLoss)

candidateLoops, scores =

mergeLoops(candidateLoops[*], scores[*])

if size(candidateLoops) == 0

return {}

candidateLoopSets = {}

for i in inputs

candidateLoopSets[i] =

selectLoopSet(program, candidateLoops, scores, i, maxLoss)

return loopsToPerforate

Figure 2-1: Loop selection algorithm pseudocode

mation at a time. It is straightforward to extend the algorithm to perform multiple

transformations on multiple types of subcomputations in a single run.

2.4.1 Amenable Computation Identification

Initially, all loops are candidates for perforation. The algorithm invokes the profile-
instrumented program, described in Section 2.1 on all profiling inputs to find candi-
date loops for perforation. The algorithm assigns a score for each loop. The score
is proportional to the amount of cumulative work that the loop performs. The al-
gorithm removes from the list the loops that have only a minor contribution to the
work that the program executes, an unsatisfactory number of iterations/invocations,
or that cannot be instrumented.

2.4.2 Individual Optimization Candidate Discovery

The algorithm perforates each candidate loop in isolation and observes the effect of
the perforation on the speedup and quality of service. The loop is statically perforated
with a predefined perforation rate. Figure 2-2 shows the pseudocode of the algorithm.
After the execution of the instrumented program Qosprof calculates the quality of
service loss.

perforateLoopSet(program, loopSet, input)

program' = instrumentLoops(loopSets)

time, output = execute(program, input)

time', output' = execute(program', input)

abstrOut = abstractoutput(output)

abstrOut = abstractOutput(output')

speedup = calcluateSpeedup(time, time')

QoSLoss = calculateQoSLoss(abstrOut, abstrOut')

return speedup, QoSLoss

Figure 2-2: perf orateLoopSet pseudocode

The score for the loops contains the measured speedup and quality of service loss
from the performed executions. Based on the score, the effects of the loop perforation
can be grouped into following categories:

" Unexpected Termination - perforating the loop caused the program to crash

(e.g. due to segmentation fault) or hang during execution.

" High QoS loss - perforating the loop caused the program to produce a result

with high QoS loss.

" Small performance gains - perforating the loop caused the program to exe-

cute more slowly.

" Latent errors - perforating the loop produced an acceptable result, but the

dynamic memory error detector revealed latent errors in program state that

could cause the program to crash.

" Perforatable - executing the program with perforated loop produced an ac-

ceptable result, faster than the original program; perforation did not introduce

latent errors.

A program with perforated loops may terminate unexpectedly or hang during loop

evaluation. In these cases, the Quality of Service loss is set to 1.0, disqualifying the

loop from further consideration. If the program is not responsive for a time greater

than the execution of the reference version, it is terminated, and the speedup set to

0, also disqualifying the loop. Loops that do not increase the performance and loops

that cause Quality of Service loss greater than the maximum bound specified by the

user are also removed from the candidates list.

The profiler performs an analysis of the program to ensure that loop perforation

does not cause latent memory errors. We use Valgrind Memcheck dynamic ana-

lyzer [18] to analyze the program for latent memory errors.

The algorithm can perform profiling on one or multiple inputs in parallel. If

multiple inputs are tried in parallel, Qosprof merges the results for individual loops

from all inputs. The loop scores of perforatable loops are averaged over all inputs. The

loops that are not perforatable for at least one input are considered non-perforatable.

Ordering Perforated Loops

After the individual loop profiling, the profiler orders the loop according to the trade-

off between the performance gains and the quality of service loss. The developer may

have different optimization objectives, according to which he or she would like the

results to be ordered. For example, the developer may prefer the highest performance

gains given that they satisfy the QoS bound. On the other extreme, the developer may

prefer the computations that produce smallest QoS loss, despite small performance
gains.

The developer may also choose to show the computations that present a balance
between the performance and QoS loss. The developer can select the function that
would average the individual trade-offs. Common average functions include arith-
metic mean (aj), geometric mean (/ab) and harmonic mean (a). Additionally,
the user may choose a weighted version of the means to perform a fine-grain ordering.
These functions operate on the terms derived from the performance p and the quality
of service loss q - the performance increase, calculated as a = p - 1, and the result
similarity, calculated as b = 1 - q (qmax is maximum acceptable QoS loss). If the
value of either of these terms is below or equal 0, the average is not calculated, but
the total score is set to 0, indicating an unacceptable result.

The means are different in the way they treat small performance gains and quality
of service losses close to the maximum loss bound. Harmonic and to some extent geo-
metric mean additionally penalize these trade-offs, unlike arithmetic mean. Harmonic
mean may give a small score to the computation that delivers high performance, but
also high QoS loss, favoring instead the computations that provide balanced trade-
offs. Arithmetic mean, on the other hand will rate each trade-off uniformly and will
not penalize borderline trade-offs.

Quality of Service Profiler allows the user to choose ahead of time the strategy for
the computation trade-off ordering. The ordering of computations is also important
for the cumulative loop profiling, described in Section 2.4.3.

2.4.3 Cumulative Optimization Candidate Discovery

The next step is to combine loops with high individual perforation scores on all
profiling inputs and observe their joint influence on program execution. Note that
the QoS losses and speedups of programs with multiple perforated loops may not
be linear in terms of the individual perforated loop results (because of potentially
complex interactions between loops). This step is executed separately for each input.
Figure 2-3 presents the pseudocode for cumulative loop selection.

The algorithm maintains a set of loops that can be perforated without exceeding
the maximum acceptable Quality of Service loss bound (maxLoss) selected by the
user. The algorithm orders loop according to the developer-provided scoring function
described in Section 2.4.2. In this thesis we use the harmonic mean between the
performance gain and the distortion to order the individual loops. At each step, the

algorithm tries the loop with the highest individual score, and executes the program

where all the loops from the set and the new loop are perforated. If the performance

increases, and the Quality of Service loss is smaller than the maximum allowable, the

loop is added to the set of perforated loops.

selectLoopSet(program, candidateLoops, scores, input, maxLoss)

loopQueue = sortLoopsByScore(candidateLoops, scores)

LoopSet = {}

cummulativeSpeedup = 1

while loopQueue is not empty

tryLoop = loopQueue.remove()

trySet = LoopSet U {tryLoop}

speedup, QoSLoss = runPerforation(trySet, input)

if speedup > cummulativeSpeedup and QoSLoss < maxLoss

loopSet = trySet

cummulativeSpeedup = speedup

return LoopSet

Figure 2-3: selectLoopSet pseudocode

2.5 Profiler Reports

Qosprof produces a profiling report that summarizes the information obtained during

the profiler algorithm run. The report contains two sections - individual transforma-

tion results and cumulative transformation results. The results are gathered during

the executions of profiling algorithms from Sections 2.4.2 and 2.4.3.

The individual Quality of Service Profiling report presents the results of trans-

forming individual subcomputations. The developer can use this information to select

the individual subcomputations that show the greatest potential for optimization. For

each transformed loop the report presents the source code identifier (function name,

source code file name and line number), the amount of work that the computation

performs, as reported by the performance profiling phase, and the effect of the trans-
formation on the program's execution time and the QoS - the report shows the
speedup over the sequential version and the QoS loss. The report highlights loops
that are good optimization candidates.

The cumulative Quality of Service Profiling report helps the developer identify
positive or negative interactions between loops that are transformed together. For
example, if the loops are nested, the profiling results show the level of potential
optimization of subcomputation - the ability to have a larger part of a subcomputa-
tion discarded with small QoS penalty makes the subcomputation potentially more
profitable optimization target. On the other hand, if the perforated loops belong to
different loop nests, the profiling results identify the existence of a positive interaction
between the subcomputations, which would lower the QoS loss or greater speedup, or
a negative interaction between the subcomputations which would cause the program
to produce unacceptable results or execute slower.

The profiling report for cumulative profiling contains the source code identifiers
of transformed computations, the effect of adding the loop to the set of already
perforated loops - the corresponding performance and QoS loss results.

Chapter 3

Experimental Evaluation

This chapter provides experimental evidence that loop perforation can generate al-

ternative subcomputations that execute faster than the original subcomputations

while still producing acceptable results. We empirically observe that many loops that

generate acceptable results with loop perforation correspond to good optimization

candidates that trade off QoS for performance, making loop perforation a suitable

transformation for Quality of Service profiling. We perform experiments with five

benchmarks from the PARSEC benchmark suite which we describe in Section 3.1.

We describe the details of the experimental setup in Section 3.2.

Section 3.3 contains the results of the experimental evaluation. Sections 3.3.1

and 3.3.2 present an overview of the individual and the cumulative loop perforation

results. We explain the reasons why loop perforation produces the observed results

for our benchmark applications in Section 3.4. We provide the summary and the

conclusion of the experimental results in Section 3.4.7.

3.1 Benchmark Applications

We evaluate the effectiveness of loop perforation using five applications from the

PARSEC suite of benchmark applications [6]. The PARSEC suite contains applica-

tions from diverse areas, which, together with the provided inputs, represent emerging

workloads for the modern multicore processors.

Table 3.1 presents summary and size of each application. The second column

(LOC) shows the number of lines of code for each application. The third column

(Loops) shows the number of loops that exist in each of the applications, while the

fourth column (f or loops) shows the number of loops that have induction variables,

Benchmark LOC Loops for loops Language Domain
x264 31527 884 700 C Video Encoding
bodytrack 6709 377 358 C++ Machine Vision
swaptions 1568 97 90 C++ Financial Analysis
blackscholes 289 8 2 C Financial Analysis
canneal 2431 76 42 C++ Engineering

Table 3.1: Basic Application Statistics

i.e. the loops that are potential optimization candidates. The fifth column (Language)
shows the language which was used to implement the application. The sixth column
(Domain) presents the domain to which the application belongs.

All applications, except blackscholes, have moderate size, over one thousand lines
of code. The largest application, x264, has over 30 000 lines of code. The number
of f or-style loops indicates that the loop perforation is suitable transformation for
a large number of subcomputations. Note that the number of loops reported in this
table is somewhat larger than the number of loops in the source code since LLVM
counts the loops belonging to the C++ standard template library. In addition, x264
defines macros containing loops that are expanded during the compilation.

3.1.1 x264

x264 is a lossy video encoder for the popular H.264 standard. It takes as input a
raw video stream and generates a compressed video file. The encoder applies various
heuristic algorithms to find parts of the video stream that can be best compressed,
such that the final video has acceptable good quality and a small size. This application
performs a heuristic computation over large set of data, which makes it appropriate
for Quality of Service profiling.

The output abstraction for this application includes a) the quality of the encoded
video, numerically represented by the peak signal to noise ratio (PSNR), a standard
measure of objective video quality [14], and b) the size of the encoded video. The
PSNR value is calculated from the original unencoded video and the encoded video
produced by the application. In this experiment we weight both parameters equally
but can easily support alternative configurations, which would place higher emphasis
on file size or video quality.

3.1.2 bodytrack

Bodytrack is a machine vision application. It identifies a human body in an image

and traces the parts of the body across the stream of images captured by a number

of security cameras. Bodytrack uses an annealed particle filter, which consists of an

on-line Markov Chain Monte Carlo (MCMC) simulation, combined with simulated

annealing to discover the parts of the body on the screen. The heuristic nature of the

computation, together with the potentially large volume of data that this application

processes makes it an appropriate benchmark for this experiment.

The output abstraction for this application includes the final positions of the

vectors of body parts. The application outputs the values of vectors as a textual file.

3.1.3 swaptions

Swaptions is a financial application that calculates the pricing of swaption financial in-

struments'. Swaptions uses Monte Carlo simulation within the Heath-Jarrow-Morton

framework to model the financial market. The approximate computation that this

application performs makes it an appropriate benchmark for this experiment.

We use the final price of the individual swaptions as the output abstraction. The

application prints the prices of swaptions to the standard output.

3.1.4 blackscholes

Blackscholes is a financial application that calculates the prices of European-style

stock options2 . The value of stock options is calculated as a numerical solution of

partial differential equations, belonging to the Black-Scholes method for modeling the

financial market. The approximate computation of option prices makes the bench-

mark appropriate for this experiment.

We use the final price of the individual options as the output abstraction. We

augmented the applications to print the list of final prices to the textual file.

'A swaption is a financial instrument granting its owner the right to exchange other financial

instruments, such as bonds, with an other party
2A European-style option is a financial instrument, that gives its owner either the ability to buy

or sell an asset, which can be exercised only at one specific date

3.1.5 canneal

Canneal is an engineering application that calculates the optimal placement of the

logic gates and minimal routing of wiring on an electronic chip. Canneal uses simu-

lated annealing as a heuristic mechanism for the discovery of the optimal placement.

In each step the calculation randomly exchanges the positions of the logic gates and

evaluates the modified chip based on the total length of wires between the logic gates.

The fact that the computation uses heuristic search makes this benchmark appropri-

ate for the experiment.

We use the price of routing as the output abstraction. The application calculates

and prints this value to the standard output.

3.1.6 Representative Inputs

The benchmark applications from the PARSEC suite include the representative in-

puts. Typically, for each benchmark, the benchmark developers provided four inputs.

The inputs are chosen such that they require a different amount of time to process.

We use larger versions of the inputs to reduce errors attributed to execution noise.

These inputs are denoted as simlarge and native by the benchmark developers.

For some applications we augmented or replaced inputs from the benchmark suite

with additional inputs to improve the representativeness of the inputs. The modifi-

cation to the original working sets include the following:

1. The benchmark inputs for x264 represent the same animated movie in different

resolutions. Instead, we used 2 high-definition videos (the same resolution as

the native input) from Xiph.org foundations. We use 20 frames from each

video.

2. The simlarge input for bodytrack is a shortened version of the native data

set. We used another sequence provided to us by the benchmark developers.

We also changed the length of image sequences: while the the simlarge input

has 4 frames, and native has 260 frames, the new input consists of the first 60

frames of the native input. The additional input contains 100 frames.

3. All financial options in the swaptions benchmark had the same initial and final

price. We instead changed the initial prices of the swaptions to ensure that

3http://media.xiph.org/video/derf/

each swaption has an unique price. For the first input, we used the simlarge

input, which calculates 64 options. For the second input we used the input that

calculates 128 options, as in the native input but with a number of Monte

Carlo simulations similar to the simlarge.

3.2 Experimental Setup

We performed the experiments reported in this thesis on a dual 4-core Intel Xeon

E5520 workstation, running Ubuntu Linux 10.04, with Linux kernel version 2.6.32.

We use LLVM version 2.7 to compile programs. We use Valgrind version 3.6 for the

dynamic analysis of the perforated programs.

We perform the Quality of Service profiling experiments independently on two

inputs from each application. We set the maximum acceptable Quality of Service loss

to 0.1, which typically corresponds to 10% difference between the outputs from the

original and the perforated programs.

We perform Quality of Service profiling with the three perforation strategies de-

scribed in Chapter 2: a) sampling perforation, which skips every k-th loop iteration,

b) truncation perforation, which skips iterations at the end of the loop, and c) ran-

domized perforation, which makes a dynamic decision to skip random iterations of

the loop. For each strategy we set the perforation rate to 0.5. In the rest of the thesis

we will refer to the combination of the benchmark, input and the perforation strategy

as the experimental configuration.

During Quality of Service profiling, we considered only loops that execute more

than 1% of the total number of instructions, as these loops are most likely to have

a significant effect on the execution time. We compiled the reference version of the

program and each perforated version of the program with standard optimizations at

level -03. For each input Qosprof executes every program 3 times and averages the

execution times. We did not observe a major variance between the execution times

of the same configurations. We calculated the speedup as the mean execution time of

the original program divided by the mean execution time of the perforated program.

3.3 Loop Perforation Results

This section presents the results of the experiments. We evaluate three properties of

the loop perforation variants:

" Transformation potential - the number and the influence of the loops that

loop perforation is able to perforate. Table 3.1 presented the number of f or-

type loops as the first indication that loop perforation can transform a large

number of subcomputations in the benchmark applications. The experimental

results in Section 3.3.1 show that experimental results that each benchmark has

perforatable loops.

" Performance improvement potential - the amount of performance in-

crease when perforating subcomputations. In Section 3.3.2 we use the cumula-

tive perforation results to characterize the amount of performance that can be

gained by performing QoS-related optimizations on the benchmark programs.

" Optimization candidates - the correlation between perforatable loops and

heuristic computations in the benchmark applications. In Section 3.4 we provide

a detailed description of the benchmark application results, and relate the effect

of loop perforation to the semantics of the application. We explain the reason

why loop perforation was able to produce acceptable results. In Section 3.4.7

we summarize the findings from the individual applications.

3.3.1 Individual Loop Perforation

- - - Perforatable

- - -Q Unperforatable

-- - - --- - - - - -

x264 bodytrack

- -

-- -- - - - -- - -

swaptions blackscholes

Figure 3-1: Perforatable Loop Count

Figure 3-1 shows the number of perforatable loops that the Quality of Service

Profiler found. Each bar on the plot represents one configuration (which consists of

the benchmark application, input and the perforation strategy).
The plot shows on the Y-axis the number of perforatable loops (top part of the

bar) and the number of non-perforatable loops (bottom part of the bar) - the loops

----- -------
------ - --- -

canneal-- --

..... _ __

that caused the program to crash, produce an unacceptable output, run slower than

the original program or introduce latent memory errors. The sum of perforatable

and non-perforatable loops is equal to the total number of loops that were above the

bound of 1% of the performed work.

For each configuration, loop perforation was able to find at least one perforatable

loop. These results provide an initial indication that loop perforation is able to

produce alternative versions of some subcomputations that caused the program to

execute faster while still producing acceptably accurate results. Moreover, the number

of perforated and total loops indicates that loop perforation is a transformation that is

applicable to a wide range of subcomputations. The detailed results, which we present

in Section 3.4, show that in many configurations perforated loops have a significant

effect on the execution time. Furthermore, we provide evidence in Section 3.4 that

transforming perforatable loops often has meaningful domain-specific interpretation,

which strongly correlates these loops with good QoS optimization targets.

The choice of perforation strategy also influences the number of perforatable loops.

This behavior is consistent across all benchmarks and inputs. We attribute this to

the nature of the computation - some computations deliver smaller QoS loss results

if a contiguous part of the computation is skipped at the end, while in contrast, other

subcomputations deliver smaller QoS loss results if a small part of the computation

is skipped regularly during the computation. Overall, for most configurations the

truncation perforation strategy selected the largest number of loops (for 6 out of 10

configurations), followed by the randomized strategy (for 2 configurations, both for

the same program) and the sampling strategy (for 1 configuration), while for one

configuration all three strategies perforated the same number of loops. The number

of perforated loops per strategy indicates the potential of a particular strategy to be

successfully applied to a variety of subcomputations. It does not, however, reflect

the impact of each of the perforated subcomputations, because it does not consider

the influence of the computation on performance and accuracy. In Section 3.3.2 we

develop the comparison metric for the effectiveness of the strategy with the regard to

the impact of the perforated loops.

Figure 3-1 also shows that the profiler considers a different number of loops for

two inputs for x264, bodytrack and canneal benchmarks. It also found a different

number of perforatable loops for these applications. We attribute these differences

to the diversity of the execution profiles for different inputs. The profiler was set to

filter out the loops that on an input execute for less than 1% of the total work. Some

of the borderline loops performed more than 1% of the work for one input and less for

the other. For sampling and truncation perforation, the loops that are not common
to both inputs contribute less than 2% of the work, and do not have potential to be
strong optimization targets. On the other hand, the profiling results for both inputs
contain all perforatable loops that have a major influence on the execution. The
dependence of profiling on the representative input, inherent to all execution-based
performance-profiling techniques, is the reason for slight differences between profiling
results.

3.3.2 Cumulative Loop Perforation

Sampling Truncation Random
Benchmark Input Loops QoS Loss Speedup Loops QoS Loss Speedup Loops QoS Loss Speedup

tractor 10 0.056 2.860 8 0.086 2.570 3 0.013 1.347x264_______________
_blue-sky 13 0.073 2.363 15 0.072 2.146 6 0.041 1.324

bodytrack seqA 6 0.076 2.923 9 0.077 2.879 2 0.034 1.965
seqB 8 0.074 2.438 10 0.023 2.460 1 0.039 1.678

swaptions input_1 1 0.029 1.953 3 0.029 2.426 1 0.039 1.869
input_2 1 0.015 1.994 4 0.013 2.423 1 0.022 1.902

blackscholes simlarge 1 0.000 1.970 1 0.000 2.060 2 0.000 3.742
native 1 0.000 1.950 1 0.000 1.960 2 0.000 3.107

canneal simlarge 2 0.040 1.270 1 0.074 1.344 2 0.086 1.388
native 1 0.009 1.162 2 0.018 1.302 2 0.009 1.239

Table 3.2: Cumulative Perforation Scores

Table 3.2 summarizes the results of the cumulative loop perforation. The rows
are grouped by the benchmark and the corresponding input. For each of the three
perforation strategies, the table presents the total number of perforated loops (col-
umn Loops), the total QoS loss (column QoS Loss) and the performance increase

(column Speedup) that the perforation of the loop causes. Note that for all of the
benchmarks, the cumulative QoS loss is smaller than the user specified bound (0.1 in
this experiment). The results indicate that loop perforation can be effective in finding
computations that can trade off QoS for performance. Perforation was able to offer a
significant performance increase with QoS loss which in many cases was substantially
below the acceptable bound.

We will use the maximum performance gain of the perforated application as the
optimization potential of the application exposed by loop perforation. As discussed
in Section 2.4.2, this metric emphasizes the amount of time savings that could be ex-
pected from the developer's optimization, while the amount of imprecision introduced
by the optimization is below the bound that the developer selected as acceptable.

Figure 3-2 shows the optimization potential that was revealed by each perforation
strategy. Each bar corresponds to one configuration (consisting of the application,

input, and the perforation strategy). The Y-axis shows the optimization potential.

This information corresponds to the Speedup column from the Table 3.2.

35 --- Sampling --
U Truncation

3 - ---------------------------------- - - - - - - ------ ------ --- Randomized- -

1.5 -- ---- --- - - - -- -- --

1
tractor blue sky sequenceA sequenceB input 1 input 2 simlarge native simlarge native

x264 bodytrack swaptions blackscholes canneal

Figure 3-2: Performance Comparison of Different Perforation Strategies

The results in Figure 3-2 show that loop perforation can increase the application

performance from 15% to almost 300%, while still producing a result that is within

the 0.1 acceptability bound (and sometimes significantly below the bound). The

number of loops perforated per application shows that all applications (for at least

one perforation strategy) can tolerate multiple perturbed subcomputations, indicating

that the amount of exploiting the redundancy in the benchmark applications goes

across multiple loops, including potential synergies between subcomputations.

The selection and the impact of the perforatable loops depend on the perforation

strategy and the type of the computation that is performed. The sampling and the
truncation perforation strategies provide similar overall potential for all benchmarks,
with the cumulative performance gains close. Sampling strategy offers better opti-
mization potential for x264, while truncation offers better potential for swaptions. For
bodytrack, blackscholes, and canneal the potentials were almost identical. Random-
ized perforation provided the best potential for blackscholes, which is the best overall
score, but on larger benchmarks it performs worse than the other strategies - it has
lower scores for x264 and bodytrack, while for swaptions its score was comparable to

sampling. Canneal is the only benchmark in which a single perforation strategy was

not able to reveal the greatest optimization potential for both inputs. For canneal,
on simlarge input randomized perforation had somewhat better performance gains

than truncation perforation, which in turn was somewhat better on native input.

.............

3.4 Benchmark Application Results

3.4.1 Profiling Reports

Tables 3.3, 3.4, 3.5, 3.6, and 3.7 present Quality of Service profiling results for indi-
vidual loops in the benchmark applications. The rows of the tables are grouped by
the corresponding input. The rows are sorted by the number of instructions executed
in the loop in the original unperforated application. For space reasons, the tables
contain only the top 10 loops for each application. The columns of the table include
the following:

Function: The first column contains the name of the function of the perforated loop.
Location: The second column contains the location of the loop, including the name
of the source code file and the line numbers of the beginning and end of loop source
code.

Instruction %: The third column contains the percentage of dynamically executed
instructions within the loop in the original unperforated program. The percentage of
work in each loop is aggregated from its dynamically (intraprocedural or interproce-
dural) nested loops.

QoS Loss: These columns contain the quality of service loss metric, which expresses
the effect of the loop perforation on the quality of the result. The value 0 of the
QoS loss indicates that loop perforation did not influence the final result. A dash
(-) indicates that the perforated execution terminated unexpectedly. We present the
values of QoS loss for each perforation strategy individually.
Speedup: The fifth column contains the speedup of the perforated application -
the execution time of the unperforated program divided by the time of the perforated
program. Speedups greater than 1 indicate that the perforated application runs faster
than the original, while speedups less than 1 indicate that the perforated program
is slower than the original program. We present the values of speedup for each
perforation strategy individually.

The tables show the results for different perforation strategies. Each strategy
has its own set of results consisting of the QoS loss and performance increase. We
use special sign (0) next to certain results to denote the loops for which Valgrind
identified latent memory errors caused by loop perforation. Note that we mark the
executions for each perforation strategy independently.

Tables 3.3, 3.4, 3.5, 3.6, and 3.7 also present part of the cumulative perforation
scores. We write each pair of the individual perforation results for a single perforation

strategy in bold numerals if these results caused the loop to be accepted by the

cumulative loop perforation. For example, the loop in ref ine-subpel from Table 3.3

(input tractor), was selected in cumulative profiling results for all three perforation

strategies. In the same table, the outer loop in pixelsatdwxh was selected when

using the sampling and truncation perforation strategies (and is thus written in bold

numerals) but not selected when using the randomized perforation strategy.

The tables show which loops in a program support profitable trade offs between

Quality of Service and performance. The developer can then identify candidate sub-

computations associated with perforated loops and focus his or her optimization effort

on those subcomputations. Good candidates for the Quality of Service related opti-

mizations are the computations that contain loops with the following properties: a)

the application spends most of the execution time in the loop, b) when the loop is

perforated, the performance of the application is significantly improved, and c) perfo-

rating the loop causes small quality of service losses with a meaningful interpretation

in the application domain. This section shows the relation between perforatable loops

and good Quality of Service optimization targets.

For each application we first describe the perforation results with the sampling

strategy. We describe the main computations that it identified as good optimiza-

tion candidates. We especially focus on those loops that were selected in both the

individual and the cumulative results, as these loops show the greatest promise of

being good optimization candidates. We also consider other perforatable loops that

contribute non-trivially to the performance increase. For these loops we provide a

rationale, based on the analysis of the semantics of the application, why the trans-

formations deliver acceptable results. Finally, we compare the profiling results using

the sampling perforation strategy against the profiling results using truncation and

randomized loop perforation strategies.

3.4.2 Profiling Results for x264

Sampling Perforation Strategy

The individual loop profiling results (Table 3.3) for the sampling perforation strategy

identify a number of loops that provide acceptable trade-offs between the Quality of

Service and performance. In particular, the two loops in the function pixelsatdwxh

are promising optimization candidates. Perforating these loops causes a considerable

speedup of over 30%, with acceptable distortion, the majority of which is due to the

increased size of the video. Perforating the loop in the function ref inesubpel can

also produce a favorable trade-off between the Quality of Service and the performance,
with smaller performance increases, but also smaller QoS loss than the previous loops.
The results are consistent across both inputs.

The profiling also identifies subcomputations that are poor optimization candi-
dates. Although the loop in the function encode performs most of the work, perfo-
rating this loop causes an unacceptable QoS loss. This loop encodes individual video
frames. The perforation of the loop causes a significant drop in the PSNR, going
down by about 40% for both inputs. Perforating the loops in pixelsubwxh_2013
produces an unacceptable Quality of Service loss (in the case of the loop on the line
181) or a latent memory error (in the case of the loop on the line 183). Perforating
the loop in function x264_mbanalyse_interp8x8 causes the program to crash due
to segmentation fault.

The cumulative profiling results highlight the distinctions between good and bad
optimization candidates. The set of loops that were perforated together includes, for
both inputs, the profitable loops from pixelsatd_wxh and ref ine-subpel. The
cumulative results also contain additional loops, including loops in x264_sad_16x16
(shown in Table 3.3 for blue-sky input). These loops generally have a smaller influence
on both the performance and on the quality of the result. Both inputs shared 8 loops,
which perform almost 80% of the total work.

An analysis of the cumulative loop perforation reveals that all of the discovered
loops are parts of the computation called motion estimation [14]. Motion estimation
is a central part of the video compressing process. It performs a local, heuristic search
over regions of neighboring frames, looking for similar blocks in these frames. In most
cases, the blocks represent parts of the objects whose position changes between frames
either due to the motion of the objects or due to the motion of the camera.

The function pixelsatdwxh, identified by the Quality of Service Profiler as
the best optimization candidate, calculates the similarity metric between two blocks.
Perforating either of the loops in this loop nest causes the encoder to sample fewer
points when calculating the similarity metric. The amount of QoS loss accumulated
in the program after perforating both loops is 0.048 for the tractor input and 0.073
for the blue-sky input, with respective speedups of 1.80 and 1.5. The majority of the
QoS loss comes from the increased video size. Successful perforation of both loops in
the same loop nest indicates that there is a positive interaction between the loops,
and possibly an additional amount of redundancy in computation, which makes the
loop nest even more palatable as an optimization candidate.

The loop from ref ine-subpel, which was also selected in the cumulative per-

sampling truncation random

Input Function Location Instruction % QoS loss Speedup QoS loss Speedup QoS loss Speedup

Encode x264.c, 839 100.00% 0.382 1.921 0.227 2.070 0.498 2.830

refine-subpel me.c, 739 40.10% 0.001 1.100 0.001 1.093 0.002 1.169

pixel-satdwxh pixel.c, 208 37.30% 0.025 1.582 0.038 1.543 0.166 1.223

pixel.satd wxh pixel.c, 211 36.80% 0.021 1.586 0.035 1.538 0.234 0.971

x264-mb-analyse-inter-p16x16 analysec, 984 23.10% 0.000 0.980 0.000 0.974 0.014 1.265
tractor

x264_mb-analyse-inter.p8x8 analyse.c, 1130 21.00% - - - - - -

pixel-sub-wxh20l3 pixel.c, 181 19.70% 0.757 0.830 0.799 0.825 0.048 0.655

pixel.sub-wxh2013 pixel.c, 183 17.60% 0.789 0.829 0.168 1.018 0.042 0.326

x264_mb-analyse.inter-p8x16 analyse.c, 1225 15.90% - - - - - -

x264-mb-analyse-interp8x16 analyse.c, 1236 15.80% - - - 0.976 -

Encode x264.c, 839 100.00% 0.375 1.847 0.213 2.096 0.471 2.719

pixel.satd wxh pixel.c, 208 36.30% 0.034 1.402 0.059 1.362 0.333 0.977

pixel.satd wxh pixel.c, 211 35.90% 0.037 1.390 0.054 1.384 0.235 0.794

refine.subpel me.c, 739 35.20% 0.001 1.067 0.000 1.004 0.000 1.150

x264_mb-analyse.inter-p16x16 analyse.c, 984 33.00% 0.000 0.993 0.000 1.003 0.028 1.098

x264_mb-analyse.inter-p8x8 analyse.c, 1130 21.30% - - - -

pixel-sub-wxh2013 pixel.c, 181 19.20% 1.672 0.749 1.708 0.747 0.055 0.571

pixel-sub-wxh2013 pixel.c, 183 17.10% 0.0070 1.079 0.0140 1.092 0.043 0.281

x264_pixel-sad-16x16 pixel.c, 97 13.60% 0.002 1.034 0.002 1.044 0.018 0.814

x264_pixel-sad_16x16 pixel.c, 97 13.10% 0.001 1.054 0.002 1.046 0.008 0.469

0 Dynamic latent memory check failed for this loop

Table 3.3: Individual Loop Perforation Results for x264

random Itruncationsampling

foration results, performs a sub-pixel refinement computation 4 . The perforatable
loop calls the similarity metric computation in function pixelsatd_wxh during the
search for good matches. Perforating this loop causes the application to compare
fewer nearby blocks during the comparison. The cumulative score shows that this
loop can be perforated together with the loops that calculate the similarity metric
between blocks, but when combined they provide a small additional performance in-
crease, suggesting that the similarity metric computation is a primary optimization
candidate, while sub-pixel refinement should be optimized after the similarity metric
computation.

The other perforatable loops in x264 compute similarity metrics for different
sizes of blocks. The implementation of these metrics is simpler than the one in
pixelsatd_wxh function. Perforating these loops also decreases the number of com-
pared points.

Truncation Perforation Strategy

In comparison to Quality of Service profiling with the sampling strategy, the indi-
vidual profiling results for perforation with the truncation strategy (Table 3.3) show
that this strategy is also able to find most of the loops, although in general with
somewhat larger QoS loss and smaller speedup than the sampling perforation. The
loops that were deemed unacceptable by the sampling Quality of Service Profiling,
are also unacceptable after performing the truncation Quality of Service Profiling.

The cumulative loop perforation results show that although for one of the inputs
(blue-sky) more loops can be perforated using the truncation strategy, the resulting
program in both cases produces a result with somewhat larger QoS loss and smaller
speedup than the program perforated with the sampling strategy. A more detailed
inspection of the results shows that the two main loops that the sampling QoS Pro-
filing discovered (pixelsatd_wxh, lines 208 and 211) for input blue-sky cause the
program to produce the result with unacceptable Quality of Service loss. Thus, the
Profiler selects only one of these loops (the one on line 211, with smaller QoS loss).
Because it selected only one loop in this loop nest, Qosprof was able to add more
small loops while preserving acceptable output.

4Subpixel refinement computation shifts block across the frames for non-integer increment. The
new pixel values are calculated by interpolating the existing pixels.

Randomized Perforation Strategy

The randomized strategy for QoS profiling does not perform as well as the other

strategies. It was only able to identify the loop in ref ine-subpel, but not the loops

in pixel-satd-wxh (Table 3.3). It also failed to recognize many of the other smaller

loops in the motion estimation computation. As a result, the cumulative loop profiling

step contains fewer, and less significant loops. The total optimization potential is as

low as 1.3, although the QoS loss is also smaller than with the other perforation

strategies. The overhead of dynamically deciding whether to perforate the loop at

every iteration causes many of the perforated subcomputations to execute slower than

the original subcomputations.

3.4.3 Profiling Results for Bodytrack

Sampling Perforation Strategy

Table 3.4 presents the results for the individual loop profiling using the sampling

perforation strategy. Five out of the top ten time consuming loops show the promise

of acceptable perforation. The loop in the function ParticleFilter: :Update is

the main computation for each frame. The computation rooted at this loop refines

the probabilistic estimation model of the human body position by performing particle

filtering. For each frame the algorithm performs several annealing steps. In each step,

the algorithm stochastically disperses a number of points according to the previous

body position model, and compares the number of points that cover the body. The

algorithm uses a fitness function to compare the new model with the previous one.

Perforating this loop causes only half of the refinement steps to execute. The obtained

performance of the perforated loop is over 40%, while the QoS loss in this case is

acceptable, only around 0.02. The loops belonging to the ImageMeasurements class

calculate the fitness function value - many of these functions are perforatable.

The loop in the function MultiCameraProjectedBody: :ImageProjection does

not belong to the group of top ten loops that perform most of the work its compu-

tation executes only around 8% of the total work. However, because it provides a

significant speedup of over 50%, with an acceptable QoS loss of 0.07, we appended

the results for this loop to the results in Table 3.4. A source code inspection shows

that this function unifies the projections from individual cameras into a single model.

Perforating this loop causes the computation to consider only inputs from half of the

cameras, making the input from other cameras unnecessary. The functions from the

Input Function Locationg truncation rando
on__Instruction___%______ oss7 Speedup QoS loss Spedp QSls peu

mainPthreads main.cpp, 219 99.70% 1.000 1.954 1.000 1.968 1.000 2.536
ParticleFilter::Update ParticleFilter.h, 220 80.50% 0.014 1.508 0.014 1.503 0.042 1.788
ImageMeasurements:: ImageErrorlnside ImageMeasurements.cpp, 140 34.40% - - 0.018 1.181 - -
ImageMeasurements::ImageErrorlnside ImageMeasurements.cpp, 142 34.30% 0.021 1.158 0.024 1.103

sequenceA ImageMeasurements::ImageErrorEdge ImageMeasurements.cpp, 126 28.40% - - 0.028 1.107 -
ImageMeasurements::ImageErrorEdge ImageMeasurements.cpp, 128 28.40% 0.031 1.089 0.022 1.070 0.018 1.045
ImageMeasurements::InsideError ImageMeasurements.cpp, 110 26.60% 7 01 1.077 0.024 1.083 0.021 0.925
ImageMeasurements::InsideError ImageMeasurements.cpp, 114 22.60% 0.038 1.138 0.026 1.050 0.018 0.665
TrackingModel::GetObservation TrackingModel.cpp, 125 13.70% 0 17.9.
ImageMeasurements::EdgeError ImageMeasurements.cpp, 65 13.60% 0.021 1.016 0.022 1.016 0.016 0.808
MultiCameraProjectedBody::ImageProjection ImageProjection.cpp, 86 8.71 % 0.070 1.547 0.055 1.562 0.021 1.156

mainPthreads main.cpp, 219 99.40% 1.000 1.907 1.000 1.969 1.000 2.763
ParticleFilter::Update ParticleFilter.h, 220 64.70% 0.021 1.395 0.021 1.390 0.039 1.678
ImageMeasurements::ImageErrorInside ImageMeasurements.cpp, 140 27.60% 0.0160 1.150 0.013 1.115 -
ImageMeasurements::ImageErrorlnside ImageMeasurements.cpp, 142 27.50% 0.016 1.138 0.011 1.065 -

sequenceB TrackingModcl::GetObservation TrackingModel.cpp, 125 24.90% 0 1.201 0.04 1.187 1 1.098
ImageMeasuremcnts::ImageErrorEdge ImagcMeasurements.cpp, 126 21.90% 0.2 1.073 0.016 1.050 1 -
ImageMeasurements::ImageErrorEdge ImageMeasurements.cpp, 128 21.80% 0.028 1.065 0.042 1.054 - -
ImageMeasurements:: InsideError ImageMeasurements.cpp, 110 21.20% . 1.054 0.035 1.079 0.013 0.910
ImageMeasurements::InsideError ImageMeasurements.cpp, 114 18.00% 0.016 1.086 0.016 1.038 0.012 0.693
ImageMeasurements::EdgeError ImageMeasurements.cpp, 65 10.40% 0.024 1.004 0.020 1.010 0.025 0.844
MultiCameraProjectedBody::ImageProjection ImageProjection.cpp, 86 8 0.053 1.424 0.014 1.386 0.028 1.117

Dynamic latent memory check failed for this loop
The ioop was appended to the top 10 list due to its notahe effect on the computation

Table 3.4: Individual Loop Perforation Results for bodytrack

the class ImageMeasurement use this model to calculate the fitness of the provisional

body part estimation. A simpler, less precise model causes a smaller amount of work

to be performed in related, non-nested subcomputations and eventually results in

performance increase that is higher than expected from the work performed in the

image projection subcomputation.

Some of the loops that passed the accuracy and performance tests failed on the

latent memory error tests. Examples of loops that do not pass latent memory error

check include the ones in getObservation. The outer loop in ImageErrorInside

caused the program to crash for the input sequenceA. For the input sequenceB, per-

forating the loop did not cause the failure of the program, but the dynamic analysis

step discovered the control of the program subsequently depended on the uninitialized

value. Sometimes, the loops that cause latent memory errors for one input, execute

without errors on the other input.

For both inputs, the cumulative loop perforation results show that the majority of

the time-consuming perforatable loops can also be perforated together. The applica-

tion has two sources of redundancy. Part of the redundancy comes from the inputs -

all cameras capture the same motion, but from different angles. Although the inputs

from a larger number of cameras improve the precision, processing only part of the

input can still be acceptable for some uses. The other part of the redundancy comes

from the algorithm - performing less refinement steps or having a different number

of points dispersed in each step can decrease the fidelity of the recognized motion,

but does not cause the computation to fail or completely alter its behavior.

Truncation Perforation Strategy

The profiling results obtained with the truncation perforation strategy show that

the truncated loops in general caused the program to behave similarly to the sam-

pling strategy, but have somewhat smaller performance increase and smaller distor-

tion. The loop in ParticleFilter: :Update function had exactly the same perfor-

mance in both cases - the influence from the previous iteration is similar with no

regard to the order of the iterations. On the other hand the loop in the function

MultiCameraProjectedBody: :ImageProjection caused the program to produce a

somewhat different result, which is caused by the choice of the camera from which

to read the input. The cumulative loop profiling results for the truncation strategy

select additional loops not present in the sampling strategy results, but these loops

have mostly a minor contribution to the program performance.

Randomized Perforation Strategy

The profiling results obtained with the randomized perforation strategy show that
both the impact and the number of perforatable loops are significantly smaller in
this case - while it identified the loops in functions ParticleFilter: :Update and
MultiCameraProjectedBody: : ImageProjection, the transformed programs crash
on most of the loops that calculate the fitness of the next step. The cumulative
loop profiling report contains at most two loops for these inputs, and miss many
computations identified by other two strategies.

3.4.4 Profiling Results for Swaptions

Sampling Perforation Strategy

Table 3.5 presents the individual results for this benchmark. The loop in the func-
tion HJM_SwaptionBlocking performs the majority of the computation. This loop
estimates the price of a single swaption, using Monte Carlo simulation. Perforat-
ing this loop using the sampling perforation strategy reduces the number of Monte
Carlo trials, resulting in the smaller accuracy of the prices. Because the number of
Monte Carlo simulations is divided by the expected number of loop iterations, the
final prices of the swaptions are about a half of the price of the swaptions computed
by the unperforated program. Qosprof can identify such regularity in the difference
between the results and employ the compensation, by calculating a systematic bias
between the two results, as described in Section 2.3. The results reported in Table 3.5
are obtained after applying a bias compensation.

The outer loop in the function worker performs the computation for each swap-
tion. Perforating this loop causes only half of the results to be calculated. Sam-
pling the computation in function HJMSimPathForwardBlocking, which calcu-
lates the path of the forward interest rate curve causes an enormous Quality of Ser-
vice loss. Since other time consuming loops produce similar behavior, the loop from
HJMSwaptionBlocking is the only loop selected for the cumulative loop profiling.

Truncation Perforation Strategy

The truncation perforation strategy is able to discover some loops that were deemed
inadequate for the sampling strategy. The loops that calculate forward interest rate
curve rates in function HJMSimPathForwardBlocking iterate over matrices, cal-
culating matrix elements which depend on the neighboring elements, calculated in

sampling truncatio random

Input IFunction fLocation Instruction % [1Qo ls Speedup jiQoS loss TSpeedup liQoS loss [Speedup
worker HJM-Securities.cpp, 55 100.00% 1.000 1.903 1.000 2.022 1.250 2.580

HJMSwaption-Blocking HJM Swaption-Blocking.cpp, 164 100.00% 0.029 1.953 0.029 2.016 0.039 1.869

HJM SimPath ForwardBlocking HJMSimPath-Forward-Blocking.cpp, 75 45.50% 1.537 0.964 0.000 1.032 1.526 0.781

HJM SimPath ForwardBlocking HJMSimPath-Forward-Blocking.cpp, 77 31.20% 0.332 1.071 0.002 0.961 - -

HJMSimPathForwardBlocking HJM-SimPath-Forward-Blocking.cpp, 42 13.70% 1.969 1.057 0.0000 1.030

Discount FactorsBlocking HJM.cpp, 390 13.50% - - 0.000 0.986

DiscountFactorsBlocking HJM.cpp, 392 13.40% 1.535 0.953 1.535 0.935

HJM SimPath ForwardBlocking HJMSimPath -Forward-Blocking.cpp, 44 12.10% - - 0.000 0.942 - -

Discount FactorsBlocking HJM.cpp, 394 11.80% 1.161 1.031 1.497 1.047 1.468 0.595

HJM_-SimPathForward_Blocking HJM SimPath-Forward Blocking.cpp, 64 10.50% .332 1.114 0.0020 1.163 -

worker HJM.Securities.cpp, 55 100.00% 1.000 1.992 1.000 2.013 1.141 2.250

HJM-Swaption -Blocking HJM Swaption-Blocking.cpp, 164 100.00% 0.015 1.994 0.015 2.013 0.022 1.902

HJMSimPathForwardBlocking HJM-SimPath-Forward-Blocking.cpp, 75 45.50% 1.512 0.980 0.000 1.116 1.505 0.779

HJMSimPath ForwardBlocking HJM-SimPath-Forward-Blocking.cpp, 77 31.20% 0.369 1.008 0.002 1.056 - -

HJMSimPathForward-Blocking HJM-SimPath-Forward-Blocking-cpp, 42 13.70% 1.984 1.038 0.0000 1.022 1.515 0.965

DiscountFactorsBlocking HJM.cpp, 390 13.50% - - 0.000 1.021 - -

DiscountFactorsBlocking HJM.cpp, 392 13.40% 1.510 0.990 1.510 1.020

HJM-SimPath-Forward-Blocking HJM -SimPathForwardBlocking.cpp, 44 12.10% - - 0.000 0.984 - -

Discount -Factors locking HJM.cpp, 394 .0% 1.156 0.994 1.479 0.988 1.452 0.619

HJM-SimPath.ForwardBlocking HJM.SimPath-ForwardBlocking.cpp, 64 10.50% 0.369 1.115 0.0020 1.130 - -

MDynamic latent memory check failed for this loop

Table 3.5: Individual Loop Perforation Results for swaptions (with bias)

previous iteration. Unlike the sampling perforation, which skips neighboring rows
and columns, the truncated loop calculates these elements, and the computation pro-
duces small overall QoS loss (with bias applied). Perforating this loop results in a
different, approximate prediction model of the swaption price change.

Randomized Perforation Strategy

Randomized perforation was also able to find the main perforatable loop. The
speedup and the QoS loss of this loop are comparable to the loops perforated us-
ing sampling and truncation strategies. The effectiveness of this approach to find the
perforatable loop can be explained by the substantial amount of work performed in
each iteration, which diminishes the overhead of dynamic decision. Additionally the
loop executes a large number of iterations of the loop (over 10 million), which ensures
that the rate of loop perforation is close to 0.5.

3.4.5 Profiling Results for Blackscholes

This benchmark has the least number of loops that were considered by the Quality of
Service Profiler. Most of the loops in this program are while loops with no induction
variable. In total, two loops that perform almost all of the work in the program are
amenable candidates for profiling.

The profiling results for the sampling and the truncation strategy (Tables 3.6)
show that the outer loop in function bs thread (line 240) can be perforated with
no QoS loss at all. At the same time, the inner loop (line 241), which calculates in
each iteration the price of an individual option, causes the program to produce an
unacceptable result - the values of only one half of the options are calculated (the
rest remains on the initial value 0). An investigation of the source code investigation
reveals that the benchmark developers inserted the outer loop in the benchmark
application to increase the amount of work that the application performs. This loops
performs the same redundant work 100 times. The number of loop iterations is an
internal constant, not available to the user of the program.

The profiling results for the randomized strategy show that the Profiler was able to
perforate both the outer and the inner loop. While the perforated inner loop produces
only half of the results, the amount of redundancy provided by the outer loop, which
repeats the entire computation 50 times even when perforated, is sufficient for the
perforated program to produce all original results.

I sampling truncation random

Input Function Location Instruction % QoS ls eS loss Speedup o Speedup

annealer-thread::Run annealer thread.cpp, 102 68.00% 0.074 1.414 0.074 1.344 0.073 1.373

netlist-elem::swap-cost netlist elem.cpp, 81 25.40% 0.018 1.199 0.018 1.112 -

netlist elem::swap-cost netlist elem.cpp, 90 25.40% - - 0.021 1.075 -

netlist::netlist netlist elem.cpp, 189 25.20% 1.000 1.163 1.000 0.891 1.000 1.100

MTRand::randInt MersenneTwister.h, 309 270% 0.271 1606 0.035 1.026 -

netlist elem::routing-cost..giveniloc netlist..elem.cpp, 63 1.76% 1.000 1.364 0.225 0.990 -

netlist..elem::routing-cost..given-loc netlist elem.cpp, 57 1.76% 0.200 1.183 0.200 0.997 -

MTRand::randlnt MersenneTwister.h, 306 1.55% 0.023 1.222 0.022 1.022 0.009 1.099

native annealer.thread::Run annealerithread.cpp, 102 91.40% 0.004 1.146 0.004 1.136 0.002 1.053

netlist -elem::swap-cost netlist.elem.cpp, 90 36.30% - - 0.009 0.916 J -

netlist-elem::swap-cost netlist-elem.cpp, 81 36.30% 0.010 0.957 0.010 0.943 -

netlist::netlist netlist elem.cpp, 189 7.03% 1.000 1.061 1.000 1.062 1.000 1.020

MTRand::randlnt MersenneTwister.h, 132 2.84% 0.353 4.397 0.012 1.171 - -

MTRand::randlnt MersenneTwister.h, 132 1.63% 10.009 1.162 0.001 0.985 0.003 1.134

Table 3.7: Individual Loop Perforation Results for canneal

sampling truncation random

Input Function Location Instruction % QoS loss Speedup QoS loss Speedup QoS loss Speedup

S bs.thread blackscholes.c, 240 99.00% 0.000 1.970 0.000 2.060 0.000 2.541
simlarge bs-thread blackscholes.c, 241 99.00% 0.481 1.885 0.488 2.103 0.000 1.825

. bs-thread blackscholes.c, 240 99.00% 0.000 1.950 0.000 1.964 0.000 2.519

bs.thread blackscholes.c, 241 99.00% 0.481 1.890 0.488 1.973 0.000 1.741

Table 3.6: Individual Loop Perforation Results for blackscholes

random Itruncation
sampling

This benchmark shows the ability of QoS profiling to discover completely redun-
dant computations.

3.4.6 Profiling Results for Canneal

Sampling Perforation Strategy

Table 3.7 presents the results for the individual loop profiling with the sampling
strategy. The loop that performs the major computation in this benchmark is in the
function annealer-thread: :Run. This function uses simulating annealing to search
for the optimal placement of the logic gates on a digital chip. In each annealing step,
the gates randomly exchange position until there are more "good" exchanges than
"bad" exchanges according to the fitness metric. The loop discovered by the Quality
of Service Profiler exchanges a number of logic gates, one swap per iteration, before
reevaluating number of "bad" and "good" swaps. After perforating this loop, fewer
gates are swapped in one step, leading to a more frequent evaluation of the number of
"bad" or "good" swaps. This subcomputation provides another interesting pattern:
the loop is contained inside a while loop which calculates the exit condition for a
step. Perforating the inner loop causes the outer while loop to execute more work (by
invoking inner loop more times). This results in somewhat lower performance gains
than expected from the amount of work that the application performs. The two
inputs show somewhat different behavior: the QoS loss and the speedup are greater
for the smaller input, and more conservative for the larger input.

Qosprof finds two more perforatable loops. One of them calculates a heuristic for
the cost of performing the swap (netlistelem: : swap-cost). This loop speeds up
the computation for one input, but slows it down for the other input. The other loop,
which belongs to the class MTRand, uses the Mersenne Twister algorithm to calculate
the sequence of pseudo-random numbers. Perforating of this loop would impact the
strength of the pseudo-random number generator, which excludes this loop from the
list of good optimization candidates. However, by inspecting the places from where
this subcomputation is called, the developer can find a subcomputation that can trade
off QoS for performance: the only use of the computation from the class MTRand is in
the perforatable annealerthread: :Run function.

Truncation Perforation Strategy

The individual results for the truncation strategy are similar to the results of the

sampling strategy. The cumulative loop perforation selects the loop from the function

annealerthread: :Run.

Randomized Perforation Strategy

The randomized perforation strategy was able to identify the main computation loop,

and its results were comparable to the other two strategies. This loop performs a

larger number of iterations (over 10000) and each iteration performs a considerable

amount of work, which partially compensates the overhead of dynamic perforation

decision.

3.4.7 Discussion

The results of the individual and the cumulative loop profiling show that for a range

of computations loop perforation can automatically perturb the computation to prof-

itably trade QoS for performance. Our analysis of individual perforated computation

in Section 3.4 shows that, in many cases, perforating the subcomputations has a

meaningful interpretation in the application's domain.

In this section we will further describe the correlation between the perforatable

computations and good QoS optimization targets. Both sets of computations share

the property that the perforation of the computation results in significant perfor-

mance gains and small QoS losses. Additionally, perforating good QoS optimization

candidates most often has a meaningful interpretation in the application domain. The

evaluation provided a strong correlation between the perforatable loops and one class

of good QoS optimization targets - those computations that are implemented using

for loops.

Qosprof found good optimization candidates in all 5 benchmarks. For 4 out of 5

applications loop perforation discovered subcomputations with favorable trade-offs,

that have a sound interpretation in the application domain. For the fifth benchmark,

blackscholes, loop perforation identified a completely redundant computation inserted

by the benchmark developers to increase the amount of work that the application

performs.

The ability to trade QoS for performance for some of the computations discovered

by Qosprof was previously recognized by the benchmark developers and explicitly

exposed to the user. However, Qosprof also discovered a number of computations for
which the trade offs were not exposed. Qosprof also discovered computations which
were known to be profitable optimization targets, but the specific performance/QoS
operation point identified by loop perforation was not made available to the user.
In general, the ability of Qosprof to identify both exposed and previously unexposed
optimization candidates increases our confidence in the effectiveness of Quality of
Service profiling.

The subcomputations whose trade offs were recognized by developers are usu-
ally exposed as command line parameters. The user of the application can choose
appropriate values of the parameters for every run. For some of the exposed com-
putations, the effects of changing command line parameters were analogous to the
effects of loop perforation. The command line parameters for these subcomputa-
tions control the number of iterations of the loops. Examples of such computa-
tions include the two computations in bodytrack (Part icleFilter: :Update and
MultiCameraProjectedBody: : ImageProjection), the computation performing Monte
Carlo simulations in swaptions (HJMSwaptionBlocking) and the computation that
swaps logic gates in canneal (annealer-thre ad: :Run). For these three applications,
loop perforation identified all subcomputations that depend on the command line
parameters.

Qosprof also discovered a number of optimization candidates that were not ex-
posed by the developer. For these computations, typically only a single implemen-
tation in the benchmark source code exists, and the execution time of this com-
putation does not depend on user-controllable parameters. The examples of such
computations include ref ine-subpel and smaller computation that calculate the
block similarity cost in x264. Other applications that provide non-exposed trade
offs are swaption pricing computation (HJMSimpathForwardBlocking) in swap-
tions, the redundant blackscholes computation (bs-thread), and swap cost calcula-
tion (netlist-elem: :swap.cost) in canneal.

For some subcomputations, the application developers provided multiple imple-
mentations with different performance/QoS trade-offs. The choice of the imple-
mentation is determined indirectly from the command line parameters. An exam-
ple of such computation is the block similarity computation performed in function
pixelsatdwxh in x264, which has two different implementations. Loop perforation
creates a set of alternative subcomputations that provide new, previously not covered
trade offs between QoS and performance. Specifically, the QoS loss and performance
offered by loop perforation lies between the QoS loss and performance offered by the

built-in subcomputation versions.

Quality of Service profiling provides new, valuable information that is not provided

by standard performance profiler, but that can help the developer prioritize his or her

optimization effort. The detailed perforation results have shown that the execution

time of the loop is not always equivalent, and in some cases not proportional to the

impact of that loop on the QoS. The loops that are selected by the Qosprof as the

good optimization candidates are in most cases not the top-most loops, although most

of them execute a significant amount of time. A notable example of the optimization

candidates is the loop in function MultiCameraProjectedBody: :ImageProjection

in bodytrack benchmark, which executes less than 10% of the work, but its perforation

contributes to 50% performance increase with small QoS loss.

Additionally, the perforatable loops which perform a similar amount of work may

offer different trade offs. The loops that perform parts of the motion estimation

computation are good examples of this behavior. The functions ref ine-subpel and

pixelsatdwxh consume almost the same amount of time, but trade off points are

different - while the function pixelsatd_wxh offers a much larger performance

benefits, the function ref ine-subpel offers much smaller QoS loss. The Quality of

Service profiling provides the developer with an option to decide which computation

to optimize first.

Manual Optimization

By manually optimizing the application the developer may expect performance gains

comparable to and potentially greater than those available via loop perforation, while

the accuracy drop remains within the acceptable range. For the subcomputations

from two of the benchmark applications (x264 and bodytrack) that the Quality of

Service profiler identified, we were able to devise manual optimizations that provide

more favorable performance/QoS trade-offs than perforation alone. The three manual

optimizations for x264 and bodytrack delivered results that are comparable to the

results of loop perforation.

The first manual transformation for x264 modifies the computation in pixelsatd_wxh

to exclude the Hadamard transformation. The results of executing this program on

the tractor input show a performance increase of 1.41, and a QoS loss of 0.0039. The

results of executing this program on the blue-sky input show a performance increase

of 1.41 and a QoS loss 0.0004. These results are better than the results obtained from

running alternative versions of the motion estimation computation settable from the

command line, using subme parameter (the value of this parameter used for the orig-

inal runs is 5, alternative versions have smaller value of the parameter).
The second manual transformation for x264 subsampled the points in the calcu-

lation from pixelsatdwxh, in addition to skipping the Hadamard transformation.

The result of executing the manually transformed program on tractor input showed

the performance increase of 1.90 with a QoS loss 0.054. The manually transformed

program on blue-sky input produced performance increase of 1.77 and a QoS loss of

0.068. The performance increase of this transformation is somewhat larger than the

result of the built-in version of the motion estimation when the subme parameter has

value 2. The QoS loss that the manually optimized program generates is higher than

the QoS loss of the built-in versions, but is still within the acceptable range.

The manual transformation for bodytrack dynamically changes the number of an-

nealing layers for each frame. This optimization increases the performance of the

application by 1.36, with the QoS loss of 0.025 for input sequenceA and the perfor-

mance of 1.30 and the QoS loss of 0.011 for sequenceB. The results are comparable

to the results of changing the number of annealing layers from the command line.

Alternatively, if the developer is not able to devise a more profitable manual op-

timization, he or she can apply loop perforation and expose the number of iterations

of the perforated loop as another user-settable parameter. Loop perforation alone

exposed a significant potential for optimization of the benchmark applications. As

presented in Section 3.3.2, the perforation can increase the performance of the appli-

cations from 15% to almost 300%, while still producing a result that is within the 0.1

acceptability bound.

Work Reduction Patterns

We attribute the ability of loop perforation to successfully transform program com-

putations to two general work reduction patterns - processing less data from the

input, or performing less computation steps on a single set of data. We base the

classification on a manual inspection of the source code.

Data perforatable loops. These loops, when perforated, skip some parts of the

inputs during the computation. These computations effectively calculate the result

from a sampled subset of the input. Examples of this class of loops are all loops

identified in the x264 benchmark (including pixel_satd_whx and ref inesubpel),
the loops in bodytrack that compute the model of the body from different cam-

eras (MultiCameraProjectedBody: :ImageProjection) and error calculation loops

(loops from the class ImageMeasurement), the forward path pricing loop in swap-

tion (HJMSimpathForwardBlocking) and the two computations in canneal bench-

mark: the main computation (annealer-thread: :Run) and cost calculation from

netlistelem: :swap-cost. For these loops, the result obtained on subset of data

is a good approximation of the result that would be obtained from the whole input

data.

Computation perforatable loops. These loops, when perforated, consider the

entire data set, but skip some of the computation for all input elements. These

computations often execute a number of refinement steps on data and stop when

the acceptable computation error bound is satisfied. The example of these loops

include the particle filter computation in bodytrack (ParticleFilter: :Update), the

Monte Carlo simulation step computation (HJMSwaptionBlocking) in swaptions,

and redundant computation in blackscholes (bs-thread). For these loops, partially

processed data still provides a good approximation of fully processed data.

Comparison between Perforation Strategies

In Section 3.3.2 we analyzed the optimization potential that each perforation strategy

was able to uncover. For most of the subcomputations in the benchmark applications

the sampling and truncation strategies identify a greater number of potential opti-

mization targets than the randomized strategy. For some of the computations one

of the strategies provided better results than the other. The randomized perforation

strategy, on the other hand excelled at discovering massively redundant subcomputa-

tions that were beyond the reach of other strategies. In this section we further discuss

the differences between the perforation strategies, inspired by the detailed benchmark

results.

The sampling perforation strategy gives the best final result for the x264 bench-

mark, in which it was able to identify the loops that give the greatest optimization

potential. Furthermore, it was able to deliver the smallest QoS loss. It was also the

best performing perforation strategy for the bodytrack benchmark. The sampling

perforation is especially suitable for a computation pattern where the processing of

one loop iteration does not depend on the processing performed in adjacent loop iter-

ations. An example of such a computation is the main block similarity computation

(pixel-satd-wxh) in the x264 benchmark. In comparison with the randomized per-

foration strategy, which also samples the elements of the input space over the entire

input domain, the sampling strategy has much less overhead, because the order of

discarding loop iteration is regular, and has virtually no overhead in the runtime. It
also executes an expected number of iterations for loops with a small number of the
original iterations, which is not guaranteed for the randomized strategy.

The truncation perforation strategy gives the best final result for the swaptions
and canneal benchmarks. It was the only strategy able to identify the loop for calcu-
lating the forward option price path in the swaption benchmark. That computation
is an example of a computation for which the results of adjacent loop iterations sig-
nificantly influence the computation of that iteration's result. The sampling strategy,
in contrast, does not handle well such subcomputations as it discards the calculation
of adjacent loop iterations. Similarly, the randomized strategy does not guarantee
that the results of adjacent iterations will be computed.

The randomized perforation strategy provided best results for blackscholes bench-
mark. It identified both loops as perforatable. As discussed in the application results,
the amount of redundancy in this particular benchmark caused the inner computation
to calculate values of all return variables. Randomized perforation also performed well
in canneal and swaptions benchmarks, in which the number of iterations of perforated
and the amount of work per iteration was large enough to successfully amortize the
costs of this perforation strategy.

While sampling and truncation perforation discover almost the same perforatable
loops, some of the perforatable loops in the benchmark applications were identified by
only one of the strategies. Additionally, for some subcomputations, a version perfo-
rated using one strategy had significantly lower QoS loss than the version perforated
using the other strategy. In general, a Quality of Service Profiling algorithm would
benefit from the combination of these two perforation strategies during the program
exploration, which would help the profiler identify and present the developer a more
complete report of palatable optimization opportunities.

Limitations

This thesis makes two main conclusions. First, Quality of Service Profiling presents
useful information to a developer who wants to perform optimizations that trade off
accuracy for performance. Second, loop perforation is an effective transformation for
finding optimization candidates. We identify several threats to the validity of these
conclusions and limitations of our approach.

The ability of Quality of Service profiling using loop perforation to find computa-
tions that offer favorable trade offs depends on the characteristics of the application.

Based on our experimental results, we believe that Quality of Service profiling in

this setting will work well for applications where good optimization candidates are

implemented as for-style loops. Computations that are implemented using other

programming language constructs may be missed. This limitation can be partially

overcome by including additional transformations that would create acceptable alter-

native subcomputations out of other kinds of subcomputations.

Second, the choice of the input used for profiling has a substantial influence on

the final results. Some subcomputations may be wrongly rejected - e.g. because of

no significant work was performed by the computation or due to small performance

gains of perforated version, or wrongly accepted - e.g. the perforated subcomputa-

tion may produce acceptable result only for a given input, but not in general. Our

experimental results showed that for the benchmark applications, profiling with both

inputs produced very similar results, with the main optimization candidates being

discovered in both cases. Note that the existence of a well-chosen representative in-

put is a necessary requirement of any performance profiling technique. It is even more

important for Quality of Service profiling because of the influence of the representa-

tive input on the quality of the result. Selecting a proper representative input is a

responsibility of a developer or a domain expert.

Third, the developer is responsible for providing an acceptability model that truly

represent the the envisioned use of the optimized program. If the output abstraction

or the maximum acceptable QoS bound are not defined according to the true needs,

the profiler may select a set loops which do not represent good optimization candidates

for the intended program use.

Fourth, the choice of a single perforation strategy may limit the number of com-

putations that are discovered during profiling. While our experimental results show

that the sampling strategy and the truncation strategy perform equally well on the

set of benchmark applications, this may not generalize to other applications. As

noted previously, a larger set of transformations would help identify more promising

subcomputations.

Finally, the performance may depend on the environment in which the program

executes, including hardware, compiler and the operating system. Computations

that execute faster in one environment may fail to do so in other environments. This

is a general limitation of any execution-based performance profiling technique. To

obtain more reliable performance results, the developer should profile the program in

multiple execution environments.

Chapter 4

Related Work

4.1 Performance Profiling

Profiling a system to understand where it spends its time is an essential component of
modern software engineering. Examples of profiling tools include prof [1], gprof [10],
DCPI [3], jprof [19], and VTune [2]. Standard profiling mechanisms include code
instrumentation (compiler-assisted [10], binary translation [23], runtime instrumen-
tation [15], runtime injection [8]), sampling (procedure executions [10], instruction
execution [1], and hardware counters [3]). The potential impact of memory system
effects on the performance has motivated the development of profilers that are de-
signed specifically to identify memory system bottlenecks [13, 16].

In comparison with standard profilers, a quality of service profiler adds the extra
dimension by providing developers with information about the quality of service impli-
cations of changing the implementation of specific subcomputations. This additional
information can enhance developer productivity because it can enable developers to
avoid computations that may consume a significant amount of time but cannot be
optimized without unacceptable quality of service losses. The quality of service in-
formation enables developers to instead focus on more promising subcomputations
that loop perforation has already shown can be optimized with acceptable quality of
service losses.

4.2 Performance vs Quality of Service Trade-Offs

Trading accuracy of the computation for other favorable program properties is a well-
known technique. At the first place, many algorithms are designed to address the

performance/accuracy trade-offs as one of their inherent properties. A prominent ex-

ample including lossy compression algorithms, including image [25], audio [7] or video

encoding algorithms [14]. Quality of Service profiling points to the subcomputations

that can be optimized in a particular context such that they result in results that are

appropriate to the given context.

The researchers have also explored automatically trading off accuracy for perfor-

mance [20], robustness [20], energy consumption [9, 24, 20] and fault tolerance [20]

both at software and hardware levels. Most of the automated approaches provide

lower level transformations and are either applied automatically in production system

under unexpected environment conditions, or are opaque to the software developer.

Quality of Service profiling operates on high level programming language constructs

and provides the information to the developer which computations are good optimiza-

tion candidates. In Section 4.3 we will provide a scenario on how Quality of Service

profiling can be used to help system operate under unexpected environment changes.

Rinard has developed techniques for automatically deriving empirical probabilistic

quality of service and timing models that characterize the trade-off space generated

by discarding tasks [20, 21]. These approaches require explicit division of the work in

tasks, for which the specialized language Jade was used. Quality of Service profiling

operates on arbitrary program written in standard programming languages, effectively

treating individual loops as the tasks.

4.3 Trade-Off Management

Recently a few frameworks for managing performance and quality of service trade-offs

have emerged. Our framework SpeedGuard [11] can be used to dynamically adapt

the performance or energy consumption of the program in response to the potentially

disruptive environment changes like clock frequency changes, core failures or load

fluctuations. SpeedPress uses QoS profiling for automatic identification of subcom-

putations that can trade-off accuracy for performance, and subsequently uses loop

perforation as a mechanism for obtaining alternative subcomputation implementa-

tions. The system uses runtime control system which uses the facilities provided by

the dynamic perforation instrumentation described in this thesis to turn the perfora-

tion of specific loops on or off during the program execution.

We have explored additional points in the performance/QoS trade off space by

tuning the program command line parameters. Our PowerDial system [12] automat-

ically introduces adaptability into the existing applications by changing the values

of appropriate command line parameters. It relies on the performance/QoS trade
offs that were explicitly exposed by the program developers, both by providing alter-
native computation implementations and user settable parameter. In contrast, loop
perforation does not rely on the explicitly exposed trade-off parameters. Instead it au-
tomatically transforms the program code and generates alternative implementations
whose trade offs may be different from manually exposed trade offs.

An alternative approach to managing performance/quality of service trade offs
enables developers to provide alternate implementations for different pieces of func-
tionality, with the system choosing implementations that are appropriate for a given
operating context [22, 4, 5]. These systems inherently rely on the developer to iden-
tify the optimization opportunities and provide multiple subcomputation implemen-
tations. In contrast, Quality of Service profiling automatically identifies optimizable
subcomputations, while loop perforation automatically generates one alternative ver-
sion of the subcomputation. Based on the information from the profiling report, the
developer may either accept loop perforation or manually write alternative program
implementations.

Chapter 5

Conclusion

To effectively optimize computations with complex performance/quality of service

trade offs, developers need tools that can help them locate promising optimization

opportunities. Our Quality of Service profiler identifies promising optimization op-

portunities by replacing original subcomputations with the automatically generated

subcomputations that perform less work. The profiling results can help developers

focus their optimization effort on the subcomputations that have demonstrated the

potential for significant performance improvements with acceptably small quality of

service losses.

We also presented loop perforation as a class of transformations that can generate

alternative subcomputations which execute fewer loop iterations than the original

subcomputations. Experimental results from our set of benchmark applications show

that our Quality of Service profiler can use loop perforation to effectively separate

subcomputations that are promising optimization opportunities from the subcompu-

tations that show less promise. Furthermore, the experimental results showed that

loop perforation can effectively reduce the execution time in multiple computations

with acceptably small QoS losses.

Bibliography

[1] prof. Digital Unix man page.

[2] VTune Performance Analyser, Intel Corp.

[3] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.T.A. Le-
ung, R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl. Contin-
uous profiling: where have all the cycles gone? ACM Transactions on Computer
Systems, 15(4):357-390, 1997.

[4] J. Ansel, C. Chan, Y.L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Ama-
rasinghe. PetaBricks: a language and compiler for algorithmic choice. In
PLDI '09.

[5] Woongki Baek and Trishul Chilimbi. Green: A system for supporting energy-
conscious programming using principled approximation. Technical Report TR-
2009-089, Microsoft Research, August 2009.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:
Characterization and architectural implications. In PA CT '08.

[7] K. Brandenburg. MP3 and AAC explained. In AES 17th International Confer-
ence on High-Quality Audio Coding. Citeseer, 1999.

[8] Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patching.
The International Journal of High Performance Computing Applications, Winter
2000.

[9] L.N.B. Chakrapani, K.K. Muntimadugu, A. Lingamneni, J. George, and K.V.
Palem. Highly energy and performance efficient embedded computing through
approximately correct arithmetic: A mathematical foundation and preliminary
experimental validation. In Proceedings of the 2008 international conference on
Compilers, architectures and synthesis for embedded systems, 2008.

[10] S.L. Graham, P.B. Kessler, and M.K. Mckusick. Gprof: A call graph execution

profiler. In SCC '82.

[11] Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal, and Mar-

tin Rinard. Using Code Perforation to Improve Performance, Reduce Energy

Consumption, and Respond to Failures . Technical Report MIT-CSAIL-TR-

2009-042, MIT, September 2009.

[12] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant

Agarwal, and Martin Rinard. Power-aware computing with dynamic knobs.

Technical Report MIT-CSAIL-TR-2010-027, Computer Science and Artificial In-

telligence Laboratory, MIT, May 2010.

[13] M. Itzkowitz, B.J.N. Wylie, C. Aoki, and N. Kosche. Memory profiling using

hardware counters. In Proceedings of the 2003 ACM/IEEE conference on Super-

computing, 2003.

[14] D. Le Gall. MPEG: A video compression standard for multimedia applications.

CA CM, April 1991.

[15] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

customized program analysis tools with dynamic instrumentation. In PLDI, June

2005.

[16] M. Martonosi, A. Gupta, and T. Anderson. MemSpy: analyzing memory system

bottlenecks in programs. In SIGMETRICS, 1992.

[17] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufman Publishers, 1997.

[18] N. Nethercote and J. Seward. Valgrind A Program Supervision Framework.

Electronic Notes in Theoretical Computer Science, 89(2):44-66, 2003.

[19] G. Pennington and R. Watson. jProf - a JVMPI based profiler, 2000.

[20] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computations that

discard tasks. In ICS '06.

[21] Martin Rinard. Using early phase termination to eliminate load imbalancess at

barrier synchronization points. In OOPSLA '07.

[22] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan,
Mark D. Corner, and Emery D. Berger. Eon: a language and runtime system

for perpetual systems. In SenSys '07.

[23] A. Srivastava and A. Eustace. ATOM: A system for building customized program

analysis tools. In Proceedings of the ACM SIGPLAN conference on Programming

language design and implementation, 1994.

[24] P. Stanley-Marbell, D. Dolech, A. Eindhoven, and D. Marculescu. Deviation-

Tolerant Computation in Concurrent Failure-Prone Hardware. 2008.

[25] G.K. Wallace. The JPEG still picture compression standard. 1991.

