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Abstract

Web application developers partition and replicate their data amongst a set of SQL databases
to achieve higher throughput. Given multiple copies of tables partioned different ways,
developers must manually select different replicas in their application code. This work
presents Dixie, a query planner and executor which automatically executes queries over
replicas of partitioned data stored in a set of relational databases, and optimizes for high
throughput. The challenge in choosing a good query plan lies in predicting query cost,
which Dixie does by balancing row retrieval costs with the overhead of contacting many
servers to execute a query.

For web workloads, per-query overhead in the servers is a large part of the overall cost of
execution. Dixie's cost calculation tends to minimize the number of servers used to satisfy a
query, which is essential for minimizing this query overhead and obtaining high throughput;
this is in direct contrast to optimizers over large data sets that try to maximize parallelism
by parallelizing the execution of a query over all the servers. Dixie automatically takes
advantage of the addition or removal of replicas without requiring changes in the application
code.

We show that Dixie sometimes chooses plans that existing parallel database query
optimizers might not consider. For certain queries, Dixie chooses a plan that gives a 2.3x
improvement in overall system throughput over a plan which does not take into account per-
server query overhead costs. Using table replicas, Dixie provides a throughput improvement
of 35% over a naive execution without replicas on an artificial workload generated by Pinax,
an open source social web site.

Thesis Supervisor: Robert T. Morris
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Chapter 1

Introduction

A common architecture for web applications is a relational database with a set of frontend

web servers. Web application frontend servers are stateless, making it easy to add additional

servers to handle more concurrent.user requests. As the traffic and number of frontend servers

grow, the database server will become the bottleneck in the system. Partitioning a Web

application's data across many database servers is a common way to increase performance.

Once a web application has partitioned its data, it can handle queries in parallel on

multiple database servers and thus satisfy queries at a higher total rate. A horizontal

partitioning of a table is one that partitions a table by rows. Given a single copy of the data,

a table can only be horizontally partitioned one way, using one column or combination of

columns as the partition key, assuming range or hash-based partitioning. The value of this

column in the row determines which single storage server will store the row. Figure 1-1

shows a typical web application with a partitioned database.

Many workloads can benefit from more than one partitioning of the data. Suppose a

web application issues two kinds of queries: those that can be addressed to a single database

server to retrieve data, and those that must be sent to all servers. The system can execute

more queries in the first category in parallel with the addition of more servers. Queries in

the second will require the same percentage of overall storage server resources as more

servers are added; dividing a query amongst N servers does not allow the system to process

N times as many queries per second. The reason for this is per-query overhead. Per-query

overhead is the fixed part of the time to execute a query on a server, including time spent



Database Servers

Figure 1-1: Architecture for Web applications. Independent application webservers issue
queries to a set of database servers. The users table is replicated and partitioned.

parsing the query and processing the request. If a query retrieves 100 rows, and those rows

are spread out amongst N partitions, the application will have to send at least N requests.

Suppose that per-server query overhead is 0. lms of CPU time. If a query has to go to all

servers, the throughput of the system is bounded by a maximum of 10,000 queries per

second regardless of how many servers are added. If a query can be satisfied on just one

server, then query overhead would limit throughput to 10,000 qps on one server but only

100,000 qps on 10 servers. For small queries, per-query overhead is of the same order of

magnitude as processing the whole query.

Our experience with web application data shows that there is rarely a single partitioning

of a table that allows each read query to be directed to only one database server; web

application workloads frequently contain queries that require data from multiple partitions

or that cannot be addressed to a single partition because the query does not restrict to certain

values for the partition key.

Replication addresses this problem by keeping copies of a table partitioned on different

keys. A query can access the same data in a table using any replica. If the query's WHERE

... ...... ......... .. ....... ........



clause restricts on certain tables and columns and there are replicas partitioned on those

columns, then the query can often be sent to one partition instead of being set to N.

Using replicas, a developer can keep data partitioned in different ways so that more

queries can be addressed to just one partition. However, having replicas of tables introduces

the question of which replicas to use when planning the execution of a query. Each time a

developer adds a replica of a table to improve the performance of a set of queries, she has

to change every place in her code that might benefit from using that replica. In addition,

choosing how to execute a query across such a partitioned and replicated database can be

difficult. It requires a lot of effort on the part of the application developer to decide how to

best execute queries.

This thesis presents Dixie, a query planner and executor for multiple shared-nothing

databases tailored towards a Web application workload. Dixie runs on the client, intercepting

SQL queries between a web application and the database servers shown in Figure 1-1, acting

as the application's query executor. A query plan is a step-by-step execution plan for dividing

a query over a set of database servers. To generate a single plan, the query planner chooses

a replica for each table, an ordering of the tables for joins, and what work should be done

in the server vs. the client. Dixie chooses good query execution plans by generating many

query plans that use different replicas and different join orders and choosing the plan with

the lowest predicted cost. Dixie computes a query plan's cost using a linear combination of

the following two components:

e Total query overhead

- Total row-retrieval costs

Dixie estimates row-retrieval cost as the number of rows a server returns to the client. It

models the entire query cost as a sum of query overhead for all servers with this row-retrieval

cost, which is proportional to the total number of rows the client retrieves.

Dixie is novel because its cost formula recognizes that the cost of per-query overhead is

significant enough to warrant choosing a plan which retrieves more rows but sends requests

to fewer servers over a plan which retrieves fewer rows but sends a query to many servers;

our experiments showed that the overhead of sending a query to a server was roughly



equivalent to retrieving 50 800 byte rows. This causes Dixie to choose some unexpected

plans - for a join query which only returns one row, a plan which retrieves 50 rows into the

client, 49 of them unnecessary, has higher throughput than a plan which only retrieves one

row (see Chapter 6). Existing distributed query planners do not consider query overhead in

this manner when choosing query plans.

This cost model omits the costs of both disk 1/0 and the time a database server spends

processing rows that are never returned to the client. However, Section 6.3 shows evidence

that this cost model is effective at predicting cost for the simple queries in our application

workloads.

Dixie works by parsing application SQL queries and generating a sequence of backend

server requests, different but also SQL, based on the data needed from each table. Dixie

aggregates the results and does local SQL processing to return final results to the client.

Dixie generates a plan per table replica per ordering of join tables, in addition to other plans

detailed in Chapter 4.

The prototype of Dixie does not currently support writes. Dixie's design has two other

major limitations. First, keeping many replicated tables increases the cost of writes because

a row will be replicated amongst many servers. Second, Dixie has a different consistency

model than that of a relational database - an in-progress read query will see the effects of

concurrent writes, and for a window of time, a client might read stale data after reading a

later version. Chapter 2 argues that web applications can tolerate this relaxed consistency.

This work makes two major contributions: First, a distributed query planner and executor

which reduces the burden on application developers by automatically executing SQL queries

designed for one database in a way that takes advantage of partitioning and replicas, without

requiring any rewriting of application code. Second, a query optimizer which uses the

observation that query overhead is a significant part of the cost of executing queries in a

web application workload, and thus has a new cost estimation formula for distributed query

plans.

We show that Dixie chooses higher throughput plans than a query optimizer that only

considers per-row cost. Using Pinax [10], an open-source collection of social Django



applications, we also show that Dixie automatically takes advantage of additional replicas to

improve overall throughput by 34% with no additional effort by the application developer.

The rest of this thesis is structured as follows. Chapter 2 describes Web application

requirements, workloads, and particular challenges in scaling, and Chapter 3 describes query

planning. Chapter 4 describes Dixie's query planner, cost estimator, and executor. Chapter 5

details the choices and assumptions we made in implementing Dixie, and Chapter 6 shows

how well it scales on queries and workloads relevant to Web applications. Chapter 7

discusses related work, Chapter 8 mentions limitations and directions for future research,

and Chapter 9 concludes.
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Chapter 2

Web Applications

This chapter describes characteristics of web application workloads which Dixie leverages

for performance, and assumptions about what features are important to web developers.

Specifically, it explains a web application's ability to do without transactions, how a web

workload differs from traditional workloads described in previous research, and how those

differences allow Dixie to make choices in execution.

2.1 Workloads

Web application workloads consist of queries generated by many different users, each

accessing different but overlapping subsets of the data. A workload is a set of SQL queries

along with a set of tables. Neither OLTP nor OLAP workload descriptions capture web

application workloads, especially those of social applications. These workloads consist

of queries which access small amounts of data, but will perform joins on multiple tables.

The applications have both the goals of handling peak load and reducing query latency to

provide a real-time response to a user; system designers for OLTP traffic generally focus on

throughput while those who work on larger warehouse-style databases optimize for latency.

Another feature of Web application workloads is that the database can satisfy most

queries by using an index to retrieve rows from a table, instead of requiring a large scan

to compute an aggregate. The entirety of the application's data is usually not large, and



this work assumes it will fit in memory. Finally, a user session usually consists of reading

several web pages but only doing a few updates, resulting in mostly read operations.

2.2 Partitioning and Replication

We say a workload cleanly partitions if there exists a partition key for every table so that

each query of the workload can be satisfied by sending the query to one server. For instance,

given a workload for a link-sharing web site that supports comments, queries in the workload

might look like the following:

SELECT *

FROM links

WHERE id = 3747;

SELECT *

FROM comments

WHERE linkid = 3747;

A clean partioning would be to use l inks . id and comment s . linkid as the partition

keys. However, if the developer changes the code to view comments by the user who wrote

them, the workload will no longer cleanly partition, since one query needs to partition

comment s by link-id and the other needs to partition by us ername.

SELECT *

FROM comments

WHERE username = 'Alice';

If the data is partitioned by something other than a column value, it might still be possible

to find a clustered partitioning of the data so that all queries can be satisfied by the data on

one machine, but the storage system would need to retain a reverse-index entry for every

row in the table since a column of the row can no longer be used to determine the partition.

Even with this relaxed definition, social website workloads in particular would rarely cleanly

partition since users have overlapping sets of friends. Facebook considered a variety of data

clustering algorithms to create isolated partitions and ultimately decided that the complexity

was not worth the benefit [28].

Pinax's workload does not cleanly partition. 17% of all pinax queries use a table which

another Pinax query refers to with a restriction on a different column. In order to address this



partitioning problem, web applications keep multiple copies of tables partitioned in different

ways. In the example above, if the database also stored a copy of the comment s table

partitioned by comments . username, the application could direct queries to retrieve a

user's comments to that replica.

2.3 Development

Web applications are frequently built with frameworks like Django [3], CakePHP [2],

Drupal [5], or Ruby on Rails [13]. These frameworks give the application an abstracted data

layer which distances the developer from the actual SQL queries the application is making -

she might never write a line of SQL. Frameworks typically generate queries that use only

a small subset of SQL. In fact, Web applications don't need the full functionality of SQL;

in our examination of Pinax and Pligg [11], an open sourced web application built to share

and comment on links, neither used nested SELECT statements or joins on more than three

tables.

It would be more convenient if developers did not have to modify their applications to

use multiple partitioned tables. Web developers are generally not database administrators

and would rather focus on developing application features instead of breaking through the

application framework's data abstraction layers to rewrite their application for faster data

access.

Web applications also seem to be able to forgo transactions. Django and Pligg by default

use the MyISAM storage engine of MySQL [4], which does not provide transactions. Drupal

used MyISAM as the default until recently (January 2010). Web application developers

have already learned to build their applications to tolerate stale or slightly inconsistent data,

by writing code to lazily do sanity checks, or by structuring their read-time code to ignore

inconsistencies; for example when Pligg writes a link, it first inserts into the links table with

a visibility status set to "off" until it has made changes to other tables, such as adding a new

category or tag. It then returns and flips the status bit to "on". The application is written so

that only "on" links are ever displayed to users.



2.4 Implications

These factors affect the choices made in Dixie's design, described in Chapter 4. Dixie

focuses on choosing between multiple replicas of a table since web workloads do not cleanly

partition, and Dixie does not support distributed transactions. Dixie supports a subset of

SQL so that the application can continue to issue SQL queries. Since the important part of

a web application's dataset fits in memory, Dixie does not consider the cost of disk seeks

when choosing how to execute a query.



Chapter 3

Query Planning and Optimization

This chapter explains what is in a query plan and describes how to break down query

execution into a set of steps. In addition, it explains how Dixie can estimate the costs of

executing a query. The next chapter expounds on this by describing how Dixie generates

plans and explaining Dixie's cost formula.

Query 1: Comments on Posts

SELECT *

blogpost, comments

WHERE blog-post.author = 'Bob'

comments.user = 'Alice'

blogpost.id = comments.object

Figure 3-1: Comments Alice made on Bob's blog posts.

Schema 1: Blog posts and comments

Ti : blogpost

T2 : comments

id

author

post

id

user
object
comment

int,
int
text };

int,
int,
int
text };

Figure 3-2: Schema for the blog post and comments tables.

FROM

AND

AND



A query plan is a description of steps to take to execute a query. For each step, the plan

contains a request for data, a replica for each table mentioned in the request, and a list of

servers to which to send the request. For the purposes of this work, a replica is a range

partitioning of a table amongst multiple servers using one column as the partioning key.

Replicas are referred to by the table name and the column used to partition the table. In

the application shown in Figure 1-1 in Chapter 1, the user s table has two replicas, one

partitioned on us e rn ame and one partitioned on i d.

The query planner generates a plan for every combination of the following possibilities:

- Order of tables in the join

- Replica(s) to use to access each table

A join order is an ordering of tables which describes in which order to retrieve rows

from each table. Figure 3-1 shows an example Web application query which is referred to

throughout the rest of this chapter, and Figure 3-2 shows the schema of each of the tables in

the query. This query retrieves all of Bob's blog posts where Alice wrote a comment.

A predicate is a part of the WHERE clause of the form:

Tablel.columnl = Table2.column2

The WHERE clause of a query consists of a set of predicates which must evaluate to true for

every row returned. Each item in the predicate is an operator or an expression. An expression

is either a table and column or a scalar value. A predicate can have multiple expressions or

an operator other than equality, but for the purposes of this example we will only describe

queries with an equality predicate and two expressions, either two tables with two columns

or a table and column with a scalar value. A query that mentions multiple tables produces a

join. A predicate that looks like Table1 . column1 = Table2 . column2 restricts the

results of the join to rows with identical values in column1 and column2 of the two

tables. The two columns are called join keys. A query can have more than two join keys.

The query in Figure 3-1 has three predicates, one of which contains the join keys. The

join keys of this query are between blog-post . id and comments . object. Since

it only accesses two tables, there are only two possibilities for join orders. Assume the
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*

blogpost
author = 'Bob'

Plan 1:

SELECT

FROM

WHERE

SELECT

FROM

WHERE

AND object IN ( B.id )

*

comments

user = 'Alice'

*

blogpost

author = 'Bob'

id IN ( C.object

blog-post, comments

comments.user
= 'Alice'

blog-post.author

= 'Bob'

blog-post.id
= comments.object

author,id

user ,object

user ,object

author ,id

blogs
comments

id &
object

Table 3.1: Distributed query plans for Example Query 1 in Figure 3-1.

web developer has created the following table replicas: Two for the blog-post table

partitioned on the id and aut hor columns and two for the comments table partitioned

on the us e r and ob je ct columns.

*

comments

user = 'Alice'

Plan 2:

SELECT
FROM

WHERE

SELECT

FROM

WHERE

AND

Plan 3:

SELECT

FROM
WHERE

AND

AND

Replica ChoicesQuery Steps



3.1 Query Plans

Consider the plans shown in Table 3.1. Each plan has steps describing an execution strategy

in the left-hand column, and a list of replicas available for each step in the right-hand column.

Each plan is incomplete without a choice of replica. Dixie's backend servers understand

SQL, so the request for each step uses a SQL query, referred to as a dquery. Each execution

step also records how to store intermediate results. In later steps, each records how to

substitute in previous saved results, described below.

Plan 1 describes an execution strategy where the executor first retrieves blog-post

rows from the database servers using all predicates that apply only to the blog-pos t table,

and stores the results in B, a temporary table in the database client. In the next step it

retrieves all comments rows whose object column is the same as the id column in one

of the blog-post rows retrieved in step one. The client sends a single dquery to each

server including all the object values it needs in the list in the IN. As an example, if

the results returned in step one have values (234, 7583, 4783, 2783) in the id column, the

dquery in step two would be converted to the following:

WHERE comments.user = 'Alice'

AND comments.object IN (234, 7583, 4783, 2783)

Dixie's executor stores the results from the comment s table in C. At the end of the plan,

the executor can combine the results in the subtables B and C by executing the original join

over this data. It would execute Plan 2 similarly, except it retrieves comments first, then

posts.

Plan 3 is a pushdown join. Pushdown joins are joins which are executed by sending a

join dquery to each server so that the join can be executed on each database server, and

the results aggregated in the client. A query planner can only create a pushdown join step

if the replica of each table in the join is partitioned on the join key it uses with any other

table in the join, otherwise only executing the join on each database server would produce

incorrect results. Pushdown joins can have a lower cost if executing the join in two steps

would require transferring large amounts of data back to the client.



Blog posts per author 10
Comments per user 50
Comments a specific user made on another specific user's blog post 1

Table 3.2: Average number of results

Blog Replica Comments Replica Rows Servers
id user 11 N+1

id object 11 N+n

author user 11 2

author object 11 l+n

Table 3.3: Row and server costs per replica for Plan 1. N is the number of database servers,
n is a subset < N.

3.2 Choosing Plans to Maximize Throughput

Which of these three plans is likely to yield the highest throughput? Dixie decides this by

counting rows accessed and per-dquery server overhead. This makes sense because there is

an overhead to retrieving a row, and there is an overhead to sending a request to an additional

server, which is the cost of parsing the request and initializing threads to check for the data.

Using the statistics shown in Table 3.2 Dixie can estimate the number of rows returned

at each step of the plan's execution. Given that there are ten blog posts per author, Dixie's

query optimizer will estimate that a query which restricted on a specific author would return

ten rows. Similarly, the optimizer would estimate a query which requested all the comments

by a specific user to return 50 rows. For each step of a plan the combination of expressions

in the predicates and choice of replicas determine to which servers a dquery is sent, and

thus the query overhead cost. For example, using the blog-post . id replica in Step 1

of Plan 1 an executor would have to send a dquery to all N partitions, whereas using the

Blog Replica Comments Replica Rows Servers
id object 1 N

Table 3.4: Row and server costs per replica for Plan 3. N is the number of database servers,
n is a subset < N.

IValueIStatistic



blog-post . author replica, it could send just one dquery to the partition with Bob's

blog posts.

Tables 3.3 and 3.4 show the total estimated rows retrieved and servers contacted for

execution of Plans 1 and 3, assuming N servers and considering different choices of replicas.

Plan 1 will always retrieve 11 rows. No matter the choice of replicas the executor has to

retrieve all of Bob's blog posts first, and then the one comment by Alice which is on one of

those blogs.

Using the comment s .us er replica means that in the second step the executor could

send a dquery to just the one server with Alice's comments. With the ob j e ct replica, the

executor would have to send a dquery to whatever partitions were appropriate given the

set of values returned as blog-post . id from the first step. We represent the size of this

set as n, a subset of the N servers. The value of n could be 0 if no blog posts are returned

from the first step, or N if the first step returns blog posts that have ids such that all the

comments are on different partitions. Using replicas author and user, the number of

servers contacted is 2.

Plan 3 always returns one row to the client, the row that is the final result of the

query, though the database servers will have to read more than that in order to process the

join. Based on row costs, a query optimizer should always choose Plan 3 when replicas

blog-post . id, blog-post . author, comments . user-id, and comments . object

are available. Taking into account per-dquery server overhead costs shows that Plan 3 must

send a request to every server, whereas Plan 1 will send dqueries to only 2 servers. Though

Plan 1 fetches blog posts that Alice has not commented on into the client, on most systems

the reduced query overhead makes Plan 1 a better choice. Chapter 6 shows measurements

of overall throughput for Plans 1, 2, and 3 given varying amounts of data.



Chapter 4

Design

The main goal of Dixie's design is to maximize database throughput for web workloads by

choosing a query plan that consumes the fewest database server resources. Dixie does this

by generating plans and choosing replicas before calculating cost, and estimating which

location would use the least amount of overall server resources. Note that this design goal

is quite different than trying to minimize latency for a web application query, or trying to

obtain maximal intra-query parallelism across many servers.

4.1 Overview

Figure 4-1 shows the architecture of Dixie. Starting with an input of a SQL query, Dixie

parses the query and Dixie's planner generates a set of plans in three stages: first flattening

the query tree, then splitting it up and generating subplans, and finally choosing replicas

for each table access. Dixie's query optimizer evaluates the cost of each plan, chooses the

plan with the minimum predicted cost, and sends this plan to the executor. Dixie's executor

follows the plan by sending requests to a set of backend database servers, aggregating the

retrieved rows, and returning the result to the application. Queries generated by the web

application are queries and the requests generated by Dixie to the backend database servers

are dqueries.

Dixie focuses on queries that involve relatively small portions of tables so that straight-

forward intra-query parallelization usually isn't useful, and the overhead portion of total
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Figure 4-1: Architecture for Dixie. Dixie could run as a library inside the client or as
standalone middleware.

query cost is significant. An OLAP-style query optimizer might optimize to send the query

to replicas that maximize the number of partitions accessed, in order to parallelize data

access. Dixie recognizes that in web application workloads, overall throughput does not

benefit from intra-query parallelism. Instead, on these queries, Dixie chooses replicas and

join orders to balance the number of servers accessed with rows read.

4.2 Partitioning and Replication Schema

The developer provides Dixie with a partitioning and replication schema. This schema

should include a list of all replicas for each table, and the partitioning for each replica. A

partitioning of a replica includes the partition key, which corresponds to a column of the

replica's original table, and the range of the partition key present on each partition. Choosing

an appropriate set of replicas and partitions for tables is important for good performance of a

-- --------



partitioned database, but is outside the scope of this work; Dixie requires that the developer

establish a partitioning beforehand.

Dixie currently only works with tables that are fully replicated, in that all columns of a

table are present in each replica. In order to save space, an extension of this work would be

to consider tables that are only partially replicated, in that only a subset of columns or rows

are part of a replica.

4.3 Planner

Dixie goes through three stages to generate a set of plans: flattening the WHERE predicate,

creating different join orders, and assigning replicas. Dixie represents a plan as a set of

ordered steps to pass to the executor. Algorithm 1 shows a template for a simple query plan.

For each table t in the query, the planner creates a step which issues a dquery, DQt, and

saves the results in Rt both to fill in the next step's query and to compute the final result.

The planner specifies which dqueries the executor should send in what order (or in parallel),

what data the executor should save, how it should substitute data into the next query, and

how to reconstruct the results at the end. Some plans will contain multiple loops that will be

executed in parallel.

Algorithm 1 A query plan represented as a sequence of steps. The executor will issue
dquery DQt at each step and store the intermediate results in subtable Rt. The original
query is applied to the subtables in line 4.

1: for all tables in Q do
2: Rt <- DQt(Rt_1)
3: end for
4: R <- Q(R1, R 2 , ... , RT)
5: return R

4.3.1 Flattening

Dixie first parses the application's SQL query into a query tree. The query's WHERE clause

can have an arbitrary number of levels of nested ANDs and ORs. Dixie can execute a

query with one OR by sending two dqueries and unioning the results in the client; it always



Table 4.1: Example An dSubP l an

executes an AND on one table by letting the database server execute the AND operation.

Dixie needs to group ANDs and ORs appropriately, and to do so it needs to know which

predicates apply to each table.

In order to fit the WHERE clause into a structure separating ORs and ANDs and filter

predicates of a query to each step, Dixie flattens the the WHERE clause into disjunctive

normal form, an OR of ANDs. As an example, consider the following clause:

A.g=5 AND A.a=B.b AND B.c=C.d AND (C.e=20 OR C.e=4)

The planner would flatten this predicate as follows:

(A.g = 5 A A.a = B.b A B.c =C.d A C.e = 20)

(A.g = 5 A A.a = B.b A B.c= C.d A C.e = 4)

To create more plans, Dixie could also use conjunctive normal form or directly parse the

WHERE predicate.

4.3.2 Join Ordering

Once the tree is flattened, the planner generates a set of AndSubPlans per AND clause.

For instance in the above example it would generate a set of AndSubP lans for the clause

A.g = 5 A A.a = B.b A B.c = C.d A C.e = 4. An AndSubPlan consists of an ordering

of tables in the clause, the projection to retrieve from each table, and the predicates which

are applicable to that table. The order of the tables in a join can greatly effect the overall

number of rows retrieved, so it is important for Dixie to generate and evaluate plans with

different join orderings. To generate an AndSubPlan, the planner considers all possible

join orderings of tables in the corresponding AND clause. For the above example, the

planner would create the following set of table orderings:

(ABC), (ACB), (BAC), (BCA), (CAB), (CBA)



Tables Select Clauses
A,B * A.g = 5,B.b A.a

C * C.e = 20,C.d =B.c

Table 4.2: Example AndSubPlan with Pushdown Join

This set represents the initial set of AndSubPlans for the first AND clause. For each

table, the AndSubPlan includes the clauses specific to that table and the predicates that

are dependent on a prior table in the subplan. Table 4.1 shows the AndSubP lan for the

first ordering of tables. The planner generates additional AndSubP lans per AND clause

to create plans for pushdown joins. Within an AndSubP lan, the planner combines each

prefix of tables to create a join. For example, the planner would produce the AndSubP lan

shown in Table 4.2. The planner creates each plan by choosing an AndSubP l an from each

set in the OR, and produces a plan per combination of AndSubP lans.

plans = {AndSubPlanso X AndSubPlansi x ... x AndSubPlans}

4.3.3 Assigning Replicas

For each plan so far, the planner generates a new set of plans by creating a plan per

combination of replicas for each table. It creates an execution step based on each step of an

AndSubP lan. An execution step is a SQL query, a replica for each table in the query, and

a set of partitions. The planner can narrow the set of partitions based on the replicas and

expressions in each step; for example, in the plan where the planner used a replica of table A

partitioned on A. g, the first step of the first AndSubP lan in Table 4.1 could send a dquery

only to the partition where A. g = 5. The set of partitions for each step might be further

narrowed in the executor. Each execution step also contains instructions on what column

values from the results of the previous dqueries to substitute into this step's dqueries, by

storing expressions which refer to another table. The substitution is done during execution.

At this point Dixie has generated a set of plans exponential in the number of tables

and replicas. In the applications we examined, no query has more than three tables and no

workload required more than 4 replicas.. Thus the size of the set of plans generated was



Tabl RepicasAvaiabl
friends:

profiles:

comments:

{to-user, fromuser}

{user, city}

{id, user, object,
comment}

to-user, from-user

user, city

user

Table 4.3: Schema for friends, profiles, and comments tables.

Query 2: Comments on Posts
*

friends, comments, profiles
friends.from user = 'Alice'

profiles.city = 'Cambridge'

comments.user = friends.to user
friends.touser = profiles.user

Figure 4-2: Comments by Alice's friends in Cambridge.

manageable. For applications which wish to maintain more replicas or issue queries with

many tables, Dixie would need to prune plans at different stages.

Table 4.4 shows a plan for the query shown in Figure 4-2, which retrieves comments

made by all of Alice's friends in Cambridge using partitioned comment s, pro f ile s, and

f r iends tables. The schema for the tables is detailed in Table 4.3.

to user
friends
from user = 'Alice'

*

profiles
user IN ( A.to_user
city='Boston'

*

comments

user IN ( B.user

Replica

from-user

user

user

Partitions

Po

poPi,...,Pn

poPi,...,Pn

Table 4.4: A distributed query plan produced by Dixie.

SELECT
FROM
WHERE
AND
AND
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Query Steps

SELECT
FROM
WHERE

SELECT
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WHERE

AND

SELECT

FROM

WHERE

Table Replicas Available



Query Steps Replica
Plan 1:

SELECT

FROM

WHERE

SELECT
FROM

WHERE

AND

SELECT

FROM

WHERE

Plan 2:

SELECT
FROM

WHERE

SELECT
FROM

WHERE

AND

SELECT
FROM

WHERE

-4 A I from.user

to-user
friends
from-user = 'Alice'

*

profiles
user IN ( A.to user
city='Boston'

*

comments
user IN ( B.user

to-user
friends
from user = 'Alice'

*

profiles
user IN ( A.to-user
city=' Boston'

*

comments
user IN ( B.user

A I from-user

city

user

Table 4.5: Distributed query plans, 1-2.

Tables 4.5, 4.6, and 4.7 detail different query plans Dixie's query planner would produce

for the same query.

4.4 Optimizer

A cost model is a useful way to evaluate different plans. Once the planner generates a set

of plans, Dixie's optimizer assigns a cost to each plan, and chooses the lowest cost plan

for execution. Dixie models the cost by summing the query overhead and the row retrieval

costs. Query overhead, cost,, is the cost of sending one dquery to one server. cost, is the

user

user

ReplicaQuery Steps



Plan 3:

SELECT *

FROM prof iles -+ A city
WHERE city=' Boston'

SELECT to-user
FROM friends

WHERE from user = 'Alice' -B fromuser

AND touser IN ( A.user

SELECT *

FROM comments c user
WHERE user IN ( B.touser

Plan 4:

SELECT *

FROM profiles - A city
WHERE city=' Boston'

SELECT to-user
FROM friends
WHERE from user = 'Alice' 4B to-user

AND touser IN ( A.user

SELECT *

FROM comments c user
WHERE user IN ( B.touser

Table 4.6: Distributed query plans, 3-4.

cost of data retrieval for one row, which includes reading data from memory and sending it

over the network. Dixie's design assumes an in-memory working set and a set of indices to

make the cost of retrieving any row roughly the same. Since all rows are in memory, row

retrieval costs do not include the costs of disk 1/0. Dixie's optimizer computes costs using

the following formula: the sum of the row retrieval cost per row times the number of rows

retrieved and the cost of sending a query to a server times the number of dqueries sent.

cost = cost, * nr + cost, * n*

Query Steps Replica



Quer Stes Relic
Plan 5:

SELECT

FROM

WHERE

AND
AND

SELECT

FROM

WHERE

Plan 6:

SELECT

FROM

WHERE

SELECT
FROM
WHERE

AND
AND

*

profiles, friends

city='Boston'
from user = 'Alice'

profiles.user
= friends.to user

*

comments
user IN ( A.to user

*

profiles
city='Boston'

*

friends, comments

from user = 'Alice'

touser IN ( A.user
comments.user =

friends.to user

+ A I user, to-user

user

city

to-user, user

Plan 7:

SELECT *

FROM friends, profiles, comments

WHERE city='Boston'

AND from-user = 'Alice' to user,
AND friends.touser A user, user

= profiles.user

AND friends.to user
comments.user

Table 4.7: Distributed query plans, 5-7.

Costs are only used to compare one plan against another, so Dixie's actual formula

assumes cost, is 1 and scales cost,. Dixie uses table size and selectivity of the expressions

in the query to estimate n,, which is based on the number of rows returned to the client,

not the number of rows that might be read in the server. In addition to storing a schema for

replication and partitioning, Dixie stores the number of rows in each table and the selectivity

ReplicaQuery Steps



Statistic Estimate
Alice's friends 50
Profiles in Boston 500
Alice's friends in Boston 10
Comments by Alice's friends 200
Comments by Alice's friends in Boston 100

Table 4.8: Estimated row counts.

of each column, which is represented by the number of distinct keys in each column. It uses

the cost function in Figure 4-3 to estimate n, the number of servers queried, and nr, the

number of rows retrieved, both in one step. The selectivity function described in Figure 4-3

assumes a WHERE clause with only ANDs, so it can multiply the selectivity of the different

columns mentioned in the query. This cost formula is simpler than that of a state-of-art

public int computeCost (QueryStep step) {
int numPartitions = step.partitions.size(;
int numEstResults = 0;

for ( table : step.tables

double selectivity = table.selectivity(step.columns);
numEstResults += table.tableSize * selectivity;

}
cost = scale(numEstResults) + numPartitions;

return cost;

public double selectivity(String[] columns) {
double selectivity = 1;

for ( col : columns) {
selectivity = selectivity * (1 / numDistinctKeys(col))

}
return selectivity;

Figure 4-3: Function to estimate the cost of a step in a query plan.

query optimizer. In future work Dixie should use dynamically updated selectivity statistics

on combinations of tables. Table 4.4 shows the partitions and costs of each step of the plans

shown in Tables 4.5, 4.6, and 4.7, using estimated row counts found in Table 4.8.



1 Po 50 1
Plan 1 2 PO, Pi, ,Pn 10 1

3 Po, Pi,., Pn 100 N
1 Po 50 1

Plan 2 2 Pi 10 1
3 PO, Pi, ... , Pn 100 N
1 Pi 500 1

Plan 3 2 Po 10 1

3 PO, Pi, ..., Pn 100 N
1 Pi 500 1

Plan 4 2 PO, Pi, ,Pn 10 N

3 Po, Pi,, Pn 100 N

Plan5 1 PO, P, Pn 10 N
2 PO, Pi, ,Pn 100 N
1 Pi 500 1

Plan6 2 Po, Pi, ,Pn 200 N
Plan 7 1 PO, Pi, ,Pn 100 N

Table 4.9: Row and server costs per replica for different query plans.

4.5 Executor

The executor takes a query plan as input and sends dqueries for each step in the plan to a

set of backend database servers. The executor executes steps within an AndSubP lan in

sequence, and executes each AndSubPlan in parallel. Dixie assumes that dqueries request

small enough amounts of data that the executor can store all of the data from a step at once.

The executor substitutes results to fill in the next step of the plan with values retrieved from

the previous steps' dqueries.

The optimizer might assign a cost to a plan that is higher than the actual cost of execution.

The executor can often reduce the number of dqueries it issues by further narrowing the set

of servers required to satisfy a step's request. This means that the cost initially assigned to a

step by the optimizer may not be correct. For example, in Plan 1, shown in Table 4.5, Alice's

friends might all have similar user ids, and therefore will all be located on the same partition

of the pro f ile . us e r replica. So in Step 2 of Plan 1, instead of sending a dquery to every

server, the executor will only need to send one dquery to one server, reducing the query

overhead and thus reducing the total cost. This might make this the best plan. The optimizer

Step Partitions Rows Servers



has no way of knowing this at the time when it chooses a plan for execution, and so it might

not select the optimal plan.

The executor uses an in-memory database to store the intermediate results and to combine

them to return the final result to the client. This produces correct results because Dixie

will always obtain a superset of the results required from a table in the join. As it executes

dqueries, the executor populates subtables for every logical table in the dquery (not one per

replica). After completion, it uses the in-memory database to execute the original query on

the subtables and return the results to the client.



Chapter 5

Implementation

We have a prototype of Dixie written in Java which runs against a set of MySQL databases.

We made several choices in building the pieces of Dixie's implementation - the subset of

SQL Dixie handles, the query parser and database client, and the database system used for

the backend servers.

The prototype of Dixie uses an off the shelf parser, JSQLParser [7], to create an interme-

diate representation of a SQL query. Since JSQLParser does not handle the full syntax of

SQL produced by Django, we altered JSQLParser to handle IN queries and modified some

of Django's queries to convert INNER JOIN queries into join queries which use commas,

as shown below. These queries are equivalent in MySQL.

SELECT *

FROM profiles

INNER JOIN auth user

ON (profiles.userid = authuser.id)

WHERE profiles-profile.location = 'Boston'

SELECT *

FROM profiles, auth-user

WHERE profiles.userid = authuser.id

AND profiles-profile.location = 'Boston'



It is much simpler for Dixie to execute dqueries in SQL instead of inventing a different

intermediate language. We chose MySQL, a popular open source relational database, as

the database backend. We tested the effectiveness of Dixie using queries generated by

applications from Pinax, an open source suite of social web applications including profiles,

friends, blogs, microblogging, comments, and bookmarks. Pinax runs on Django, a popular

web application framework.

Dixie is written in Java, so it sits as a middleware layer between clients running Django

and the MySQL database servers. It accepts SQL query strings and returns results in the

Java Re sult Set format. In order to sanity check Dixie's results on multiple databases, we

issued the same set of queries to Dixie using a partitioned set of replicas on four databases

and to a single database server containing the same data but with only a single replica per

table. We compared row-by-row results returned by both.

Dixie keeps static counts of number of rows, partitioning plans, replicas, and distinct

key counts for each table. These are stored in YAML configuration files which are read on

start up and not updated. Implementing a mechanism for updating these configuration files

on the fly as replicas are added and deleted or as table counts change is left as future work.

Dixie executes plans by executing each execution step sequentially, sending the step's

dquery to each partition's MySQL server listed in the step. This could be done in parallel to

speed up latency of the query, but it doesn't affect the throughput measurements since every

experiment runs many concurrent clients. Dixie saves intermediate results in an in-memory

database, HSQLDB [6]. Dixie then executes the original query against this in-memory

database, and returns a Java Re sult Set. An alternative implementation would have been

to construct the response on the fly as results are returned from each partition and each

step, but using an in-memory database allowed us to handle a useful subset of SQL without

having to write optmized code to iterate over and reconstruct results. The Dixie database

client uses JDBC to execute requests to the in-memory and MySQL databases.



Chapter 6

Evaluation

This chapter first measures and explains an example query where Dixie achieves higher

throughput than an optimizer whose goal is intra-query parallelism, and then compares their

performance on a full Pinax workload. Our sole measurement of performance is overall

throughput of the system, measured in application queries per second with many concurrent

clients.

6.1 Web Application Workload: Pinax

We use the social networking application Pinax to evaluate Dixie's performance. Pinax is

built using the web application framework Django, and is a suite of various applications

found in a typical social website. All queries in the workloads in Sections 6.4, 6.5, and 6.6

are directly generated by Pinax, and the queries used in the microbenchmark are derived

as additional functionality from Pinax's schema. In this evaluation we focus on the profile,

blog, comment, and friend features of Pinax. Each user has a profile page, and each user can

add friends in a one-way relationship. The workload is made up in equal parts of viewing

profile pages, viewing friends' blogs, and viewing comments. We used Django's client

framework to generate SQL traces of application queries as though a user were browsing the

site. Unless stated otherwise, each experiment uses these traces. We refer to this workload

as the macro Pinax workload.



In addition, we conducted some experiments against a narrowed Pinax workload. In this

workload, we removed queries of the form:

SELECT *

FROM auth user

WHERE auth user.id = 3747

This is a very frequent query that Django's auth system issues. In all experiments, both

executors will send this query to one partition using the replica of aut h-us e r partitioned

on id.

There are 1.2 million users, 1.2 million profiles, 2.4 million blog posts, 12.2 million

comments, and 5.7 million friendships in the database tables. The workload consists of many

sessions with seven different start page views, and then a variable number of pages viewed

depending on how many friends a user has. Each session is conducted with a randomly

chosen logged-in user.

Pinax produces some SQL queries which when executed on a large database take a

prohibitively long time, and skew the measurement of throughput. As an example, Django

creates the following query when viewing the All Blog Posts page:

SELECT *

FROM blog-post

INNER JOIN auth user

ON (blog-post.authorid = authuser.id)

WHERE blog-post.status = 2

ORDER BY blog-post.publish

DESC

This query requests the entire blog.po s t table joined with the entire auth-user table

into the client. Even adding a limit causes MySQL to perform a scan and sort of the entire

blogpo st table, which in these experiments was 2.4 million rows, with an average row

length of 586 bytes (1.3 GB). In order to speed up the performance of this query, which is

unlikely for a web application to ever issue to respond to a real time user request, we added

a LIMIT, an index on blog.post . publish, and a signifier to indicate to MySQL the



order to join the tables. This reduced the time of the query from 7 minutes to .07 seconds.

The following is the modified application query:

SELECT STRAIGHTJOIN *

FROM blog-post, authuser

WHERE blog-post.authorid = authuser.id

AND blog-post.status = 2

ORDER BY blog-post.publish

DESC

LIMIT 20

6.2 Setup

Evaluation Hardware. Each database server is a Dell PowerEdge 850 with a single Intel

Pentium(R) D 2.80GHz CPU and 1GB of RAM. We run four database servers in all of the

following experiments, unless specifically noted otherwise. We use three client machines,

each with 8-16 cores running at 2.80 to 3.07GHz, and a range of 8GB to 12GB of memory.

In all experiments, the throughput is limited by the database servers.

MySQL Configuration. Each database server is running MySQL 5.1.44 on GNU/Linux,

and all data is stored using the InnoDB storage engine. MySQL is set up with a query cache

of 50 MB, 8 threads, and a 700 MB InnoDB buffer pool.

Measuring Throughput. First we run Dixie's planner and optimizer on traces of

application queries to generate traces of plans. During every experiment, each client

machine runs a single Java process with a varying number of threads. Each thread opens

a TCP connection to each database server, and reads pre-generated plans one by one from

its own trace file. It runs Dixie's executor to perform the dqueries and post-processing in

each plan, and then goes on to the next pre-generated plan. We pre-generate plans in order

to reduce the client resources needed at experiment time to saturate the database servers. On

this workload, generating a set of plans and running the optimizer to calculate costs took an

average of 1. 14ms per query.



Throughput is measured as the total number of queries per second completed by all

clients for a time period of 30 seconds, beginning 10 seconds after each client has started,

and ending 10 seconds before the last client stops. We vary the number of threads per

client until we produce the maximum throughput, and then use the average of 3 runs.

Before measurement, each experiment is run with a prefix of the trace files used during the

experiment to warm up the operating system file cache, so that during the experiment's three

runs the databases do not use the disk.

Comparison. In all examples, we compare Dixie to a query optimizer which works

exactly like Dixie except that that the competing optimizer does not take the number of

servers accessed into account when computing the cost of a plan.

6.3 Query Overhead

This experiment derives a value for query overhead by graphing the time per query varying

the number of rows per query. This motivates the work in this thesis by showing that for

small queries which retrieve fewer than 100 rows, query overhead is a significant part of the

cost of issuing a query.

To measure the effect of query overhead, we run a single MySQL 5.1.44 server with

one table of 1,000,000 rows of seven 256 character columns, described in Figure 6-1. Each

column has a different number of distinct keys shown in Table 6.1, and as such a different

number of rows returned when querying on that column. Figure 6-2 shows the time per

query measured as 1/qps where qps is the throughput in queries per second, as a function

of the number of rows returned by the query. The number of rows retrieved by each query is

varied per run by changing the column in the query. Throughput is measured by running 8

client threads on one machine, each generating and issuing queries of the form:

SELECT cl,c2,c3,c4,c5,c6,c7

FROM test1

WHERE c5 = 2857

Within a run each client thread issues a sequence of queries requesting a random existing

value from that column. The client saturates the CPU of the database server. The overall



TABLE testl: (cl varchar(256),

c2 varchar(256),

c3 varchar(256),

c4 varchar(256),

c5 varchar(256),

c6 varchar(256),

c7 varchar(256));

Figure 6-1: Schema for query overhead measurement benchmark

Column Distinct Keys Average Rows Returned
cl 500000 2
c2 250000 4
c3 100000 8
c4 40000 23
c5 20000 46
c6 10000 115
c7 4000 230

Table 6.1: Distinct key counts per columns

throughput of a run as measured in queries per second is a sum of each client thread's

throughput, measured as a sum of queries issued divided by the number of seconds in

the run. The queries per second measurement is converted to a milliseconds per query

measurement by dividing 1000 by the total throughput.

Figure 6-2 is a graph showing how query processing time increases as the number of

rows retrieved increases. This line is represented by the formula tq = to + x * tr, where tq is

the total time of the query, t, is query overhead, x is the number of rows retrieved per query,

and t, is the time to retrieve one row. The y-intercept of the line represents query overhead,

and the slope of the line is the cost of retrieving one row. Using the data in Table 6.2, on our

experimental setup we measure query overhead as 0. 14ms and the time to retrieve one row

as 0.013ms. This means that retrieving 10 rows from one server takes .27ms, and retrieving

10 rows from two servers takes .41ms, a 52% increase in time. Retrieving 100 rows from

two servers instead of one server results in a 10% increase in time.

Based on this experiment, our prototype implementation of Dixie uses values of 1 for

cost, and .1 for cost, in the formula described in Section 4.4.
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Figure 6-2: Measurement of milliseconds spent executing a query on a single server database,
varying the number of rows per query using multiple clients.

Rows per Query Queries/sec
2 5925
4 4889
8 3764
23 2231
46 1340
115 612
230 306

Table 6.2: Throughput in queries per second varying the number of rows retrieved per query.

6.4 Query Plans

This section compares the performance of the three plans described in Table 3.1. Chapter 3

explained how Dixie would execute the query show in Figure 6-4. This section shows that

Dixie chooses the highest throughput plan by using a cost formula which includes per-query

overhead.

If a planner and optimizer were to just consider row retrieval cost, it would select Plan

3 in Table 3.1 since it retrieves the fewest rows. The plan describes an execution which

contacts all servers, but sends at most one row back.



blog-post (id integer

authorid integer

post text);

PartitionKey: id

blog-post (id integer

authorid integer

post text);

PartitionKey: authorid

comments (id integer

userid integer

object-id integer

comment text);

PartitionKey: userid

comments (id integer

userid integer

objectid integer

comment text);

PartitionKey: objectid

Figure 6-3: Simplified schema from Pinax, a social networking application

Query 1: Example Query

SELECT *

FROM blog-post, comments

WHERE blog-post.author = 'Bob'

AND comments.user id = 'Alice'

AND blogpost.id = comments.object-id

Figure 6-4: All comments Bob made on any of Alice's blog posts.

Plan 1 contacts two servers in two steps: first to get Bob's blogs, then to get Alice's

comments on Bob's blogs. It will end up sending back many rows in step one, even though

the final result of the query will be at most one row.

The graph in Figure 6-5 shows the throughput measurements for these plans, running

many concurrent clients and varying the amount of data returned in Step 1 of Plan 1 by

increasing the number of blog posts per user. Throughput is calculated by how many queries

per second Dixie can perform using multiple clients, with different values used for "Alice"

and "Bob" in Figure 6-4.



3500
Plan 1 -- +--

3000 + Plan 2 - -x- -
000 Plan 3 -A-

One DB --- 0---
2500 - -

-
-- -

) 2000

1500 --

1000 - -l

500 -

0

10 20 30 40 50

Blog Posts per Author

Figure 6-5: Throughput of queries/sec retrieved from four databases using different query
plans (and only using one database in one plan).

Figure 6-5 shows that if the query retrieves few enough rows in step one, the system can

achieve a higher throughput using Plan 1, sending the query to only 2 servers and retrieving

more rows than necessary than by sending the query to all servers while retrieving fewer

results. Using Plan 1 instead of Plan 3 when there are only 10 blog posts per user gives

a 2.66x improvement in throughput. When there are 50 blog posts per user it is about

equivalent to Plan 3. For all variations of the blog posts table, there are 6000 users and 100

comments per user. A row in the blog posts table is approximately 900 bytes, and a row in

the comments table is approximately 700 bytes.

A query optimizer which only considers row retrieval costs would always choose Plan 3.

Dixie, which balances row retrieval costs with query overhead, would often choose Plan 1.

The application developer would need to calibrate Dixie to make the proper tradeoff between

per-server query overhead and row retrieval time, since it varies on different systems.

Figure 6-5 also shows the throughput of this query against one database, for compar-

ison's sake. By switching to a four database setup, adding replicas, and using a query

planner designed for a partitioned database, the programmer can achieve a 3.6x increase in

throughput on four databases as compared to one database.
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Figure 6-6: Queries per second retrieved from 1 database server, 4 database servers with one
replica per table, and 4 database servers with up to 3 replicas per table of a Pinax workload.

This experiment shows that choosing good plans requires a query optimizer to consider

per-query overhead, and that the plan that Dixie would choose, Plan 3, will perform better

than the plan a naive query optimizer would choose up to a certain point. It also shows that

Dixie's cost algorithm needs to be tuned to scale row retrieval costs with query-overhead

costs.

6.5 Replicas

This section demonstrates that adding replicas to a partitioned database can increase through-

put, and that Dixie can take advantage of additional replicas without any code changes by

the application developer.

This experiment tests Dixie on the narrowed Pinax workload described in Section 6.1.

Our test setup uses six tables and approximately 12 GB of total data.

Figure 6-6 shows the benefit of adding replicas. This graph shows that using four

database servers the workload sees a 3.7x improvement over using one database server. Each

table was partitioned on the id column. Adding additional replicas, shown in Table 6.3,



Table Replica Column
auth-user username

blog-post author-id
comments object-id, user-id
friends to-user-id, from-user-id

Table 6.3: Added replicas.

adds an additional 34% improvement in throughput over four database servers with one

replica per table, and an almost 5x improvement in throughput over one database server. The

reason the throughput increase is 5x with only four times as many database servers is that

the experiment sets up the same amount of data on four as on one, and with four databases

requests are faster because there is less data on each.

The most beneficial replicas were f riends . f rom-use rid and f riends . t o-use rid,

because 46% of all the queries in this workload restricted on one or the other of those partition

keys in an equality predicate. The next most beneficial replica was aut h-u s e r . u s e rn ame,

because 28% of the queries restricted on use rname in an equality predicate. Only 7% of the

queries used the c omment s . ob je ct _id replica, and none used the bl ogpo s t . aut ho ri d

replica.

Keeping replicas of tables partitioned on different keys can increase overall database

server throughput. Dixie works on un-altered application queries, which shows that using

Dixie, the application developer does not have to change her code to take advantage of

additional replicas. However, choosing the appropriate replicas requires examining the

application workload.

6.6 Comparison on a Realistic Workload

This section compares the throughput of queries executed using Dixie with the query

optimizer described in Section 6.2 on the macro Pinax workload described in Section 6.1.

Dixie has the same throughput on the macro Pinax workload as the comparison query

optimizer, which does not consider query overhead. Both perform approximately 9135



queries per second. Dixie chooses almost all the same plans as the comparison query

optimizer, except for the following query:

Differing Query

SELECT *

FROM friends, authuser

WHERE friends.to userid = auth user.id

AND friends.from userid = 1081830

Dixie chooses a pushdown join plan, and sends a dquery to every partition using the replicas

f riends . to-user-id and auth-user. id. The comparison query optimizer chooses

a plan which sends one dquery to retrieve friends to the f riends. f rom-userid replica

and then many dqueries, up to four, to retrieve users from the aut h-us e r . i d replica. The

two plans are shown in Table 6.4.

In the case where a user has friends which are on 3 or fewer partitions, the two-step plan

has the same query-overhead costs as Dixie's pushdown plan. Hence, we do not see much

of a difference between the throughputs of the two query optimizers. This shows that in this

specific workload, Dixie didn't significantly change the execution of any queries, but also

that Dixie does not harm the performance of this web application workload.



Dixie's Pushdown Join Plan: i
SELECT

FROM
WHERE

AND

Comparison

SELECT

FROM
WHERE

SELECT
FROM
WHERE

*

friends, authuser
friends.from user id

= 1081830

friends.to userid
= auth user.id

Query Optimizer's Plan:

*

friends
from user id =

*

authuser

id IN ( A.id

1081830

auth user.id &
friends.to userid

from-user-id

id

Table 6.4: The two query plans chosen by Dixie and a comparison query optimizer.

Plan Replicas



Chapter 7

Related Work

Dixie relies on a large body of research describing how to build parallel databases. This

section describes the most closely related systems and shows how considering only the

queries in a web application workload, described in Chapter 2, and the data storage layout

that naturally results from that, causes Dixie to choose query execution plans that balance row

retrieval costs with per-server query overhead, possibly sacrificing intra-query parallelism

and load balancing.

7.1 Parallel Databases

The literature describes parallel databases with shared-memory, shared-disk, and shared-

nothing architectures. In this section we focus only on systems with a shared-nothing

architectures [25].

Gamma [19] presented a horizontally partitioned database in a shared-nothing system,

an idea that Dixie uses. Gamma efficiently executes queries by exploiting horizontal parti-

tioning and intra-query parallelism, but did not measure throughput for small transactions.

Horizontal partitioning works well to spread out the work in a query that scans large amounts

of data, or to spread the load for queries that read individual rows from a table, but for a web

application workload minimizing total query overhead by sending queries to a few servers

is a better policy than gaining intra-query parallelism by splitting each query over many



servers. This work motivates keeping replicas of tables to obtain this goal, and shows how

to optimize queries given a choice of table replicas, a problem Gamma did not address.

Bubba [17] evaluated the idea of declustering data across many nodes in a parallel

database using different workloads, and found that when the system is CPU-bottlenecked,

declustering degrades performance due to startup and communication costs, which are

equivalent to query overhead. Dixie applies a similar idea to web application workloads, but

goes beyond this to motivate keeping many replicas of the data, and to use query overhead

in the query optimizer to determine cost.

Teradata [27] and Tandem [20] are shared-nothing database systems which decluster

data and relations across multiple machines in order to exploit intra-query parallelism. These

systems perform well for simple read queries or large scans, but would not perform as well

on the medium-sized queries of a Web application workload.

C-Store [26] and its successor Vertica [14] vertically and horizontally partition and

replicate data in different sort orders. C-Store's query planner and optimizer consider which

copies of a column to use in answering a query. One contribution of this work is identifying

the importance of minimizing query overhead, and so Dixie minimizes the number of servers

involved in executing a query. Given a similar choice of partitionings for tables, Dixie

would choose plans that C-Store would not; as an example, Dixie might choose a plan which

requests larger amounts of data from a few servers instead of a plan which requests a smaller

amount of data from many servers.

Comparisons between column stores and row stores have shown that row stores perform

better than column stores in web application workloads, where most of the columns in a row

are always read, or each row is small [22]. The same work shows benefits comparable to

those of compression can be obtained with row stores, reducing the storage overhead needed

to keep multiple replicas of a table.

7.2 Parallel Query Optimization

Parallel query optimization research has focused on two areas. One is reducing response

time using parallelism against large databases, two assumptions being that the reason to



partition a database on multiple servers is because the data set is very large, and that the

queries being performed on the data involve table scans. The second is using parallelism to

scale OLTP workloads by directing individual transactions amongst different servers. Dixie

focuses on web applications, a different workload. This workload has a small dataset that

fits in memory, but a high enough read rate of small queries that partitioning is necessary.

OLAP optimized databases use a cost formula based on minimizing CPU and I/O costs

by taking into consideration the number of rows retrieved. Systems like Tandem's Non-

StopSQL [20] optimize for parallelism, and hence favor plans which contact the maximum

number of servers:

cost = cost,* nr

ns

Dixie introduces this idea of per-query overhead into the cost formula, and most im-

portantly might assign a lower cost to a plan that contacted fewer servers at the expense of

retrieving more rows.

7.3 Partitioning

Schism [18], built using the database H-Store [23], notes that distributed transactions are

expensive and gives an algorithm to choose a horizontal partitioning of data that maximizes

the number of transactions that can be satisfied by one server, where a transaction contains

one or more queries which should be executed atomically. Dixie further notes that even in

the absence of distributed transaction overhead, distributed queries are expensive. H-Store

requires a schema which can be converted into a tree of 1-n relationships, and Schism and

H-Store assume that applications will be executing many transactions, and keeping multiple

partitionings of tables would decrease their transactional throughput. Dixie does not provide

distributed transactions, and handles arbitrary schemas and workloads which do not cleanly

partition due to a substantial number of queries that access a table by multiple columns.

This type of workload is extremely common in social web applications [21].



7.4 Key/Value Stores

SimpleDB [1], Voldemort [12], MongoDB [9], Cassandra [24], and Bigtable [15] provide

high performance, low latency persistent storage, but they do not provide automatic support

for multiple partitionings of tables, though they do replicate data for fault tolerance. The

onus is on the developer to write application code to execute joins or keep an additional

partitioning of a table. They also have a limited data model and do not provide the familiar

SQL syntax of a relational database.

Web applications use memcached [8] to scale read performance by avoiding the

database, though the application developer has to manage invalidating or recomputing

the items in the cache. The popularity of these services shows that web applications do not

require the full transactional consistency guarantees relational databases provide. Therefore

a system like Dixie, in which an application could read stale data, would still be useful.

Using Dixie, a developer can create new partitionings of tables without rewriting any appli-

cation code, whereas with memcached a developer would have to change all parts of the

application which could take advantage of the new replica.

Yahoo's PNUTS is a large scale distributed data store which offers ordered updates to

records located within a geographic region [16]. A similar technique could be used with

Dixie to ensure that conflicting updates to the same row in different replicas of a table are

ordered. Similarly, Dixie could add an attribute to queries so applications could retrieve the

values found in all replicas of any record involved in a query instead of the most convenient

replica, so the application could resolve conflicts if there are delay-based discrepancies

between the replicas.



Chapter 8

Limitations and Future Work

Dixie's design and implementation do not currently support writes. We believe that Dixie

could use a centralized write manager such as the system described in PNUTS [16] to

implement serialized writes, but we leave the full design and implementation to future work.

A centralized write manager would provide durability by logging all write requests to

disk before returning successfully to the client that requested the write. Given such a write

manager, we can make certain claims: In the absence of other writes to the same row, any

successful write issued by a client will eventually be observed by that client at any replica

of the data.

Reads will be interleaved with writes that are in progress, and as such clients may read

stale versions of data interleaved with current versions. Consider the example where a table

blogpost has replicas blog-post . author and blogpost . id, and a client issues

a write which updates blog posts with ids 25 and 26, both by user Alice. A query which

requests all of Alice's posts might see the result of neither, both, or any one of those updates

while the write manager is updating replicas; in fact with concurrent writes, the same read

query executed against different replicas might return different results. In practice, the

window of time to update all replicas is expected to be on the order of tens of milliseconds.

We believe that developers can write web applications with these semantics because

developers naturally write their code to be resilient to inconsistencies, and the nature of web

applications is that they are tolerant to a short window of staleness.



Dixie assumes either a range or hash-based partitioning plan. There are other partitioning

schemes which involve clustering data by some other value than a column within the row,

but these schemes make it more complicated for the application to address the data.

Dixie's cost estimation algorithm assumes row retrieval time is small as compared to

the overhead of initiating queries on multiple servers, and that queries will not benefit from

intra-query parallelism, which is not true if the application frequently accesses data that is

stored on disk. In addition, Dixie's cost algorithm only uses static counts to estimate results

returned from tables, and assumes the distribution of keys in a table is uniform and that the

distribution of values between columns is independent. Updating this data would provide

more accurate estimates of number of rows retrieved.

Finally, Dixie's prototype only supports select, project, and equality join operations

in SQL, along with ORDER BY, GROUP BY, and LIMIT. It does not supported nested

queries, user defined functions, or UN ION.



Chapter 9

Conclusion

To summarize, Dixie is a query planner and executor for a partitioned, replicated database.

Dixie can execute application SQL queries written for a single database against a partitioned

database with multiple replicas without any additional code by the application developer.

Dixie chooses plans which have high throughput by taking into account per-query server

overhead when minimizing costs. The key insight behind Dixie is that when executing a

query, it is more efficient to retrieve data for that query from fewer machines than from

many machines, even at the expense of retrieving more rows. Dixie is designed for web

application workloads, which are read heavy and execute mostly small queries which require

a few rows of data.
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