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ABSTRACT

The fields of genomics and evolution have continually benefited from one another in their common goal
of understanding the biological world. This partnership has been accelerated by ever increasing sequencing
and high-throughput technologies. Although the future of genomic and evolutionary studies is bright, new
models and methods will be needed to address the growing and changing challenges of large-scale datasets.

In this work, I explore how evolution generates the diversity of life we see in modern species, specifically
the evolution of new genes and functions. By reconstructing the history of the diverse sequences present in
modern species, we can improve our understanding of their function and evolutionary importance. Perform-
ing such an analysis requires a principled and efficient means of computing the most probable evolutionary
scenarios.

To address these challenges, I introduce a new model of gene family evolution as well as a new method
SPIMAP, an efficient Bayesian method for reconstructing gene trees in the presence of a known species tree.
We observe many improvements in reconstruction accuracy, achieved by modeling multiple aspects of evo-
lution, including gene duplication and loss rates, speciation times, and correlated substitution rate variation
across both species and loci. I have implemented and applied this method on two clades of fully-sequenced
species, 12 Drosophila and 16 fungal genomes as well as simulated phylogenies, and find dramatic improve-
ments in reconstruction accuracy as compared to the most popular existing methods, including those that
take the species tree into account.

Lastly, I use the SPIMAP method to reconstruct the evolutionary history of all gene families in 16
fungal species including several relatives of the pathogenic species C. albicans. From these reconstructions,
we identify several families enriched with duplications and positive selection in pathogenic lineages. Theses
reconstructions shed light on the evolution of these species as well as a better understanding of the genes
involved in pathogenicity.

Thesis Supervisor: Manolis Kellis
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Chapter 1

Introduction

There has never been a better time for studying genomes and evolution. This decade began with the publish-

ing in 2001 of the first drafts of the human genome [88, 141]. Although the project began in 1990, over a

majority of the sequencing was completed in only the last two years of the project, an outcome of the contin-

ually increasing improvements in sequencing technology and computational techniques [19]. Like Moore's

law for the increase in microprocessor speed, DNA sequencing appears to have its own law. Throughout

the project, the amount of sequenced DNA increased by 100 fold while matched by a 100 fold decrease in

costs [19]. Now, as the decade comes to a close, we have witnessed the sequencing of several dozen animal,

plant, and fungal genomes, along with thousands of bacterial and viral genomes. This data has completely

changed our understanding of life at the molecular level and has enabled entirely new techniques and fields

of study.

Going forward, even more ambitious goals are on the horizon. The 1000 Human Genomes Project

[117] has set out to sequence the genomes of 1000 human individuals in order to better capture the true

genetic variability present in the human population, with the hope that this will elucidate the genetic basis

of many human diseases and the evolutionary history of the human population. Beyond human evolution,

the Genome 10K Project has set its sights on sequencing over 10,000 vertebrate genomes in order to detail

the full diversity of animal genetics [111]. This wealth of information will open the way to many new kinds

of research questions and ultimately to a greater understanding of biology within ourselves and across our

planet.

A key motivation for sequencing the genomes of so many diverse species has been to compare them.

This has led to the development of a fruitful track of research called comparative genomics, where the

genomes of multiple species are compared in order better understand their function. By identifying specific



patterns of similarity and differences between genomes, one can obtain many clues about the information

they contain. This is because, by comparing genomes of modern species, we are really studying the effects

of millions of years of evolution. Since evolution is the guiding force responsible for the structure and

function of genomes as they exist today, learning about genomes and evolution goes hand in hand.

The field of phylogenetics has provided indispensable tools for tackling questions related to genome

evolution. The basic problem the field addresses is the following: given a set of characters in modern

species reconstruct the evolutionary history relating the species. The evolutionary history most commonly

takes the form of a tree, called a phylogeny. The leaves or tips of the tree represent modem taxa, whether

they be species, genes, or individuals, and the internal nodes of the tree represent ancestral states of the taxa.

The branching patterns and branch lengths of the tree represent when and how the taxa have diversified

over evolutionary time. Thus the phylogeny provides a concise summary of many evolutionary events and

can provide a framework for posing and answering many questions about evolution. Given their importance,

reconstructing phylogenies has been a primary concern for the field. Methods for reconstructing phylogenies

have a long history [46, 127, 119] and new methods are continually developed to address a wide range of

evolutionary questions.

Lately, there has been great interest in developing phylogenetic methods that are applicable for genome-

scale data and questions. These methods have been very successful and take many forms [64, 89, 69,

145, 10]. One particular combination of phylogenetics and genomics has been the research program of

phylogenomics, the study of all the gene families from multiple fully sequenced genomes [41]. A gene

family is a set of genes that although appear in many different species, share a common ancestry. Through

several mechanisms such as gene duplication and loss, gene families can expand and contract in copy number

as well as diversify in sequence and function. By comparing genomes with the aid of phylogenetic trees

describing each gene family, these duplication and loss events can be reconstructed and studied. In addition,

the trees provide a way of transferring knowledge about a gene's function in one well-studied species to less

well understood species or genes. By taking a phylogenetic view of comparative genomics, we can infer

when new functions and classes of genes appear in evolutionary time.

The purpose of this work is to better understand how evolution can create and alter genes and their

functions. Our focus will be on studying gene families in a phylogenomic framework. Our dataset will

consist of gene sequences as they exist in dozens of modern day species, and from them we will infer the

likely evolutionary scenarios that explain the diversity of species and genes we see today. By tracking the

evolution of genes within a clade of species, we can correlate the changing genotypes with the changes

observed in phenotype to better infer the function of genes and to learn how new functions arise. The



research questions posed here require a principled means of integrating many disparate types of information.

This work introduces several new mathematical models and computational methods designed specifically to

study the many forms of gene evolution.

1.1 Thesis contributions

In this thesis, I will discuss my work on developing new models and methods for understanding gene family

evolution as well as specific discoveries made by their application. The thesis is organized as follows:

" I will begin with a review of studies in gene family evolution, and give examples of what kinds of

lessons we can learn from gene families (Chapter 2).

" I will then review the relevant concepts from phylogenetics (Chapter 3) and phylogenomics (Chap-

ter 4). I will also present our own study of the challenges in applying phylogenomics to Drosophila

evolution (Chapter 4.4).

" From this case study, we can draw several insights for how to improve the reconstruction of gene

evolution. In Chapter 5, I will present a new probabilistic model of gene family evolution that in-

corporates these ideas. We have implemented a method called SPIMAP, which uses this model to

efficiently reconstruct the history of gene families.

" In Chapter 6, I will present a learning framework for how to learn the parameters of our model.

" From an analysis of 12 Drosophila genomes, we justify the assumptions of our substitution rates

model (Chapter 7).

" Armed with the S P IMA P method, we apply it to the gene families of 16 fungal genomes to understand

the evolution of pathogenicity (Chapter 8).

" In Chapter 9, I demonstrate the accuracy of our method using an extensive set of benchmarks from

both real and simulated data.

" Lastly, I will discuss this implications of this work to the field, and possibilities for future directions

(Chapter 10).
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Chapter 2

Examples of gene evolution

2.1 The role of duplication in the creation of new genes

The question of where new genes come from has been an old and exciting question throughout the study

of evolutionary biology. As early as 1939, well before the discovery of DNA, While Muller speculated that

new genes may come from other genes, writing, "every gene from a pre-existing gene" [107]. As molecular

biology began to develop thirty years later, Susumu Ohno more clearly advanced the idea of gene duplication

as providing the major mechanism for the creation of new genes [112]. Now in the age of genomics, it is

possible to thoroughly investigate this hypothesis and to truly track down the changing gene content of the

genomes of thousands of species.

As DNA is replicated during cell division and meiosis, there is an opportunity for the daughter cells

to inherit an altered copy of the DNA simply by random errors in the replication process. Some of these

errors, can be as simple as single changes in DNA sequences (substitutions), or can effect larger segments

of DNA by deleting or inserting long stretches of sequence. In extreme cases, entire genes, chromosomes,

or genomes can be deleted or duplicated. Duplicated regions can appear in tandem to their original copy or

be inserted on other chromosomes.

In the case of gene duplication, there are several theories about the fate of the new duplicate. Initially,

the new duplicate will begin to acquire mutations independently of the original copy, thus diverging in se-

quence similarity and possibly function. Many of these mutations may be tolerated, given that the original

gene is still present to fulfil its function. Eventually, one of three scenarios will occur: (1) the duplicate

acquires too many mutations to properly encode a functioning protein and thus becomes a pseudogene

(non-functionalization), (2) it will stumble upon a new function for which it will be selected (neofunction-

alization), or (3) both gene copies acquire mutations such that they specialize in restricted forms of their



original function (subfunctionalization) [51, 97]. In either case, if the new duplicate acquires a function that

becomes selected, the duplicate can be retained within the genome for long periods of time.

In a similar way, large scale changes in the genome can also occur due to gene loss. During processes

such as DNA replication or repair, a segment of DNA may be deleted from the genome. If this deletion

contains a gene, it can have a large impact on the organism or have a minor effect if the products of the gene

are no longer necessary.

In the following sections, we will briefly review what is known about the rates of these events, and give

a few examples of how evolution can use them to shape the genomes of many species.

2.1.1 Rates of gene duplication

It is estimated that gene duplication and loss is just as important for evolutionary change as sequence substi-

tution. In terms of frequency, duplication and loss has been estimated to occur at a rate that is 10-40% that

of substitutions in many species [29]. In mammalian genomes, it has been estimated from dog, mouse, and

rat genomes that genes are gained and lost at a rate of 0.0014 events per gene per million years (my) [30].

Interestingly within the primates, the rate appears to have accelerated to 0.0024 events/gene/my, even while

the rate of substitution has slowed [65]. However, these rates only describe the rate of gene duplications that

are retained and not lost to pseudogenization. By counting the number of young duplicates, those with less

than 1% silent site difference with the original copy, it is estimated that the underlying duplication rate is

much higher at around 0.001-0.016 per gene per my within eukaryotic species [96, 61].

2.2 The role of gene duplication and loss in shaping gene families

By successively duplicating genes, large groups of similarly functioning genes can be created, called gene

families. These families can grow and contract over time depending on the forces of selection, adapta-

tion, and drift. By studying genomic sequences, it is now estimated that about 1.6-3% of gene families in

flies, mammals, and yeasts undergo unusually high rates of change in gene copy number [29]. Studying

these families can shed light on the possibilities of evolution for new gene innovations as well as to better

understand the varying evolutionary pressures that different species experience.

2.2.1 The evolution of receptor gene families

An interesting and well-studied example of gene family evolution are the receptor gene families. Their copy

number appears to be especially variable across species in both the vertebrate and fly clades. They are also a



good illustration of how only a small number of changes are needed to produce a new function, in this case

the binding of a changing variety of ligands.

Olfactory receptors

Olfactory receptors (OR) represent a large class of gene families present throughout the mammalian species.

The size of these families are quite variable, reaching as low as 400 functional genes in the primates and

as many as 800-1200 in other mammals [109]. These families are often present in genomic clusters along

several chromosomes. Primates (Human and Macaque) appear to have lost many OR receptors as nearly half

of their OR sequences are pseudogenes. In contrast, the mouse and rat genomes appear to be continually

expanding in OR families as determined by phylogenetic analysis [109]. Interestingly, all OR sequences

in toothed whales have been pseduogenized, suggesting that although they have been inherited by their

terrestrial mammalian ancestor, OR genes may not be needed for their current aquatic environment [104].

It is thought that OR gene families may be especially variable due to changing environmental demands of

species.

Vision - opsin receptors

In vertebrates, vision is enabled by opsin genes that encode photoreceptors in the retina. Early identification

and sequencing of four of these genes revealed their ancient evolutionary history [108]. Through gene

duplication, the Rhodopsin (RHO) gene, which is expressed in rod cells and is very sensitive in low lighting,

was duplicated several times to create several cone cell expressed pigment genes, which are sensitive to a

range of wavelengths.

In most vertebrates, there exists four cone expressed opsins each of which is sensitive to a different

wavelength: LW (long wavelength, red), MW (medium wavelength green), SWI (short wave length, violet),

and SW2 (short wave length, blue). The actual wavelength to which each opsin gene is sensitive varies

across species and may be subject to natural selection [72]. In most mammals, only the LW and SWI opsins

are present and thus for these species only dichromatic vision is possible [139]. However in the human

genome, the LW opsin has undergone a more recent gene duplication. This has been followed by additional

sequence divergence, such that now a new opsin sensitive to green wavelengths has been recreated. This

duplication likely occurred within old world monkeys after their divergence from new world monkeys, as

the duplication is found only in old world monkeys, apes, and humans [72].

Lastly, there is some evidence that the gain of color vision may have been coordinated with the loss of

olfactory receptors in primates [54]. However, whether these two processes actually influenced one another



is still debated [102].

2.3 Whole genome duplication

One of the more dramatic cases of genome evolution is that of whole genome duplication (WGD), where

a daughter cell inherits two full copies of the entire genome. These events are traumatic for the cell, and

lead to significant genomic instability [103]. Consequently, it is thought that only a handful of such events

have occurred in the evolutionary history of modern species. Still, such events present the opportunity for

significant gene innovation [78, 73, 118], even allowing entire pathways to duplicate and specialize [9].

2.3.1 Vertebrate 2R and 3R whole-genome duplications

In vertebrates, it has long been suggested that two rounds (2R) of whole genome duplication occurred

before the radiation of the clade [112, 95]. This theory has more recently gained stronger support by a

comparison of the human and mouse genomes with the Ciona intestinalis genome, a species which out-

groups the vertebrates [27, 26]. By looking for regions of conserved gene order between Ciona and the

vertebrate genomes, ancient blocks of duplicated chromosomes can be identified. The genome sequencing

of additional important out-grouping species, such as the amphioxus, have also contributed greater support

to the 2R hypothesis [118].

A common hypothesis is that the 2R duplications played an important role in providing raw genetic ma-

terial for the development of increased morphological complexity in the early vertebrates. Recent genomic

studies have found an enriched retention of gene duplicates involved in signal transduction, transcriptional

regulation, neuronal activities, and developmental processes [118]. Two gene clusters in particular that have

been studied in detailed with respect to the 2R are the HOX and MHC gene families [70, 77]. These families

to this day continue to exist in four large duplicated blocks within the genomes of many vertebrates.

Lastly, a more recent third whole genome duplication (3R) has been identified at the base of the teleost

fish clade [73]. Many genes in the descendant fish genomes have up to eight copies, even before considering

individual family expansions.

2.3.2 Fungal whole-genome duplication

In fungi, genome sequencing has also revealed a WGD event in the ancestry of baker's yeast, S. cerevisiae

[148, 78]. Earlier studies had questioned the existence of WGD in yeasts, due to the fact that a small

percentage of gene families exist in a 2:1 ratio between S. cerevisiae and several hypothesized out-grouping



(pre-WGD) species [94, 93]. Instead, it was suggested that these numerous duplicated regions could be

explained by many independent segmental duplication events that occurred over a period of time.

However, the sequencing of the K. waltii genome provided strong evidence for WGD and an explanation

for the gene count anomaly. By comparing the two genomes, it became clear that K waltii out-grouped the

WGD event and thus for each region in K. waltii, exactly two pairs of duplicated regions in S. cerevisiae

could be aligned. Still, many genes showed 1:1 orthology between the species, a signal previous studies

had used to argue against WGD [94, 93]. Kellis et al. explained this by invoking massive gene loss after

the WGD event. In fact, when genome alignment maps were made, clear sequence similarity could be

seen surrounding many of these 1:1 orthologs indicating that a 2:1 relationship previously existed and was

followed by gene loss. Further studies compared the genomes of many more species that proceeded the

WGD (post-WGD species) [129]. In doing so, a clear picture of rapid gene loss could be determined, and

individual events could be dated.

Many cases of neofunctionalization were also identified in the gene pairs . This was done by identifying

gene families with "asymmetric divergence", that is one duplicate acquiring mutations at a significantly

faster rate than the other [78, 130]. Genes that showed such a pattern were significantly enriched in protein

kinases and regulatory proteins, such as cell-cycle transcription factors Swi5 and Ace2, and the filamentation

factors Phd1 and Sok2 [78]. Some particular examples of novel gene functions include Sir3, a silencer in

telomeres and mating type cassettes, which has been acquiring substitutions more than twice as fast as its

duplicate Orc 1, which performs origin-of-replication binding. Another example is Ski7 that now recognizes

and represses non-polyadenylated messenger RNA for anti-viral defense, but has been derived from the

translation-elongation function of Hbsl.

2.4 Future studies of gene family evolution

The evolutionary discoveries reviewed in this chapter are only a few examples of the many possible stories

we can learn from evolutionary analysis of genomes. As more diverse and closely related genomes are

sequenced, the opportunities for such discoveries will only increase. However, to truly exploit the power of

such increasingly large datasets, we will need principled and scalable methods for performing systematic

analysis of gene family evolution. In the following chapter, we will review the computational tools of

phylogenetics and see how they can be applied to understanding gene family evolution.
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Chapter 3

Phylogenetics

The field of phylogenetics provides an important theoretical foundation for studying evolution. In order to

understand gene family evolution, we make use of several concepts from the field, which we review in this

chapter.

3.1 The phylogeny

In phylogenetics, the goal is to understand the evolutionary history of a set of taxa, which can be species,

populations, individuals, or even genes. The most commonly used representation of an evolutionary history

is a tree call a phylogeny (Figure 3.1). The phylogeny depicts when and how a set of taxa have diversified.

The tree is said to have a topology T, which is a graph that describes how the taxa are connected. This

graph has a set of vertices V(T) also known as "nodes" and it has a set of connecting edges E(T) which are

commonly called "branches". The leaves of the tree L(T) C V(T) represent the modern or extant taxa, and

the internal nodes I(T) = V(T) \ L(T) represent the ancestral taxa. If the oldest node in the tree is known, it

is called the root and the tree is said to be rooted. A rooting imposes a directionality on every branch in tree,

such that there is a directed path from the root to every leaf. If the oldest node is not known, which may

be the case in many analyses, the tree is said to be unrooted, and the branches do not have any particular

directionality. Throughout this thesis we will most often work with rooted trees.

We will use several functions to discuss how nodes are related to one another within a rooted tree. For

example, for a node v E V(T), we use child(v) to represent the set of children of v. In most cases we will

work with binary trees, and thus we will use left(v) and right(v) to represent the left and right children. We

use parent(v) to represent its parental node. Lastly, we use b(v) to denote the branch (v,parent(v)).

The branches of tree can also be labeled with a measure of relatedness between the connected nodes.



a rooted tree T b unrooted tree
root(T)

parent(v)

time branch b(v) = (v, parent(v))
length 1(v)

node v

Ieft(v) right(v)

leaves L(T)

Figure 3.1: Rooted and unrooted phylogenetic trees. (a) In a rooted tree, the progression of time is known
for each branch. An example use of our notation is given for a particular node v and its neighborhood in the
tree T. (b) For an unrooted tree, it is not stated which node represented the oldest point in time.

This is often depicted in diagrams by using the length of branch. For a branch b(v) its branch length l(v) can

either represent a duration of time (e.g. millions of years) or it can represent a measurement of divergence,

such as nucleotide substitutions per site. All the branch lengths of a tree can be represented by a vector 1

such that 1= (I(vi),..., l(vN)). Therefore, a phylogeny can be represented by the tuple (T,1), which describes

both its topology and branch lengths.

3.2 Gene trees and species trees

There are two kinds of phylogenies that we will use in this thesis. One is a species tree which describes how

a set of species are related and the other is a gene tree which describes how a set of genes are related.

In a species tree, each leaf represents an extant (i.e. modern) species population and the internal nodes

represent ancestral species populations. The bifurcations in the tree represent speciations, that is points in

time when the ancestral population was divided into two or more populations that ceased to interbreed, and

thus begin to evolve into a distinct species.

A gene tree is similar to a species tree, except that it describes how gene sequences are related: the

leaves represent extant genes and the internal nodes represent the ancestral states of the genes. The bifurca-

tions in a gene tree represent the act of replicating the DNA into separate sequences that then each evolve

independently, and there are several different ways DNA can be replicated. To understand them it is best to

think of a gene tree as evolving "inside" of the species tree (Figure 3.2).
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Figure 3.2: Gene trees, species trees, and reconciliations. (a) A gene tree (black lines) evolving inside of
a species tree (blue lines). In the simplest case, the two trees are congruent and every bifurcation in the gene
is a speciation event (white circles). (b) A more complicate scenario that depicts a gene family with one
duplication event (star) and one loss event (red "X"). (c) A reconciliation (dashed arrows) maps gene nodes
to species nodes, allowing one to infer gene duplications, gene losses, and speciations.

In the simplest case, the two trees are identical, indicating a single gene in the common ancestral species

(the root) has been inherited as a single copy present in all modem species (Figure 3.2a). When a species

population speciates, each of the descend populations inherit a copy of the gene. Thus, when a species tree

bifurcates, it imposes a bifurcation in the gene tree called a speciation node (white circles in Figure 3.2).

In Figure 3.2b, a more complex evolutionary scenario is illustrated. Throughout this thesis, we will

be mainly interested in modeling two kinds of evolutionary events, gene duplications and gene losses. A

gene duplication creates an additional copy of a gene within the genome, which can then begin to acquire

mutations independently. In the diagram, we represent duplications (stars) as a bifurcation in the gene tree

that happens in the middle of a species branch. Notice, that once a gene duplicates, all descendant species

will also inherit an additional copy. The second event we will model is a gene loss (red "X" in Figure 3.2b),

where a gene is deleted from the genome at some point along a species branch and then is absent in all

descendant species. Lastly, these two events can combine in multiple ways producing a great variety of

scenarios for gene evolution. In this work, we call the set of genes that are descendant from a single gene in

the common ancestral species the gene family.

3.3 Reconciliation

The relationship between a gene tree and species tree is captured formally using a particular mapping R

called a reconciliation. Several definitions of the reconciliation have been defined [5, 59, 58, 32], but the

simplest is a mapping from gene nodes to species nodes that defines the species to which each extant and



ancestral gene belongs [57, 114] (Figure 3.2c). In this setting, a gene tree is congruent if R is an isomorphic

mapping between T and S (Figure 3.2a), and incongruent otherwise (Figure 3.2b).

For a given gene tree and species tree, there are several possible ways to reconcile them, and each implies

a different set of duplication and loss events. Thus, several lines of research have been made in exploring

these possibilities and developing algorithms for determining the "optimal" reconciliation. The earliest

optimization algorithm, called Maximum Parsimonious Reconciliation (MPR), found the reconciliation for

a given gene tree and species tree that minimized the number of implied duplications [114]. The method

uses the concept of the Least Common Ancestor (LCA, also known as most recent common ancestor) to

recursively define the mapping R. Given a mapping R of the extant genes v E L(T) to their known species

u E L(S), the reconciliation can be defined as

R(v) { R(v) if v E L(T) (3.1)
R(LCA(left(v),right(v))) if v E I(T)

Given a reconciliation R, each internal node in the gene tree can be classified as a duplication or a

speciation. In the parsimony model, there is a simple rule for determining duplication nodes. Specifically, a

node is duplication if it reconciles to the same species as one of its children

dup = {v: v E I(T),R(v) = R(right(v)) VR(v) = R(left(v))}.

The reconciliation may also imply loss events, the minimum number of which can be computed as

follows. Losses appear in a gene tree as bifurcations that should have been present along a branch in the

gene tree, but are not present because one of the lineages has been lost. These branches (vparent(v))

occur whenever R(v) # R(parent(v)). If we let p(ui, u2 ) represent the set of vertices in the path between

vertices ul and u2 (excluding ul and u2), then the number of losses that occur across the gene branch b(v),

is |p(R(v), R(parent(v)))|. Thus, the set of losses is

loss = {(v,s) : v E I(T),s E p(R(v),R(parent(v)))}.

Algorithms for reconciliation

It has been shown that the LCA mapping can be computed in linear-time [44], although a worst-case

quadratic algorithm works efficiently in practice [150]. The LCA mapping finds the unique reconcilia-

tion that minimizes the sum of the number of duplications and losses (also call the mutation cost) [98].



The LCA mapping also minimizes the number of duplications, however, it is not unique [98]. Lastly, other

reconciliation algorithms have been developed that efficiently minimize the number of implied gene losses

[13].

More recent work has explored several variations of the reconciliation problem. For example, most al-

gorithms assume binary gene trees and species trees, however, non-binary formulations have also recently

been considered [12, 142]. Although, traditionally most attention has been focused on modeling gene du-

plications and losses, more recent work has begun considering reconciliations in the presence of horizontal

transfer events [84, 59, 67]. Lastly, many of these formulations are defined in a parsimony framework,

however, probabilistic formulations are now being developed and are more frequently used [5, 33]. Going

forward, additional work will be needed to combine these ideas into a unified framework that can describe

all of the various evolutionary events that we observed in gene families.

3.4 Orthologs and paralogs

In addition to determining duplication and loss events, the reconciliation can also be used to determine

several useful relationships between extant genes. Orthology and paralogy are two very popular ways of de-

scribing the evolutionary relationship between extant genes within and between species [49]. Two genes are

orthologs if their most recent common ancestor represents a speciation (e.g. genes ml, r1 from Figure 3.2b)

and two genes are called paralogs if their most recent common ancestor is a gene duplication (e.g. mI, m2

or ml, r2). If two genes are thought to be closely related, but it is unknown whether they are either orthologs

or paralogs, then the term homology or homologs is used.

From these definitions, we can see that the reconciliation provides the necessary information for deter-

mining orthology and paralogy relationships. And in turn, to perform the reconciliation we need to recon-

struct the gene tree for the given set of genes and we need a known species tree. Methods for systematically

determining orthologs and paralogs using this approach are reviewed in Chapter 4.

In general, orthology is the most sought after relationship, because orthologs are commonly thought to

maintain similar function after speciation, although not always. Therefore, orthology can be a good predictor

of gene function between a well studied gene in one species and a poorly understood gene in another species.

However, this form of functional prediction can be complicated if a gene has a paralog. As seen in the review

of gene evolution (Chapter 2), duplications can lead to neofunctionalization and subfunctionalization of

paralogs. Because of these possibilities, it is important distinguish between orthology and paralogy.



3.4.1 Determining orthology by sequence clustering

Although, reconciling gene trees and species trees is the most principled way to determine orthology and

paralogy, it may become too computationally expensive for handling extremely large numbers of species or

genes. Even though this thesis does not use such techniques for determining orthologs, these approaches are

useful for determining larger sets of genes such as putative gene families.

The BLAST algorithm is often used to search a database of known sequences in order to find sequences

that are similar to a query sequence [4]. Ideally, given a gene in one species we could find its ortholog in

another species by using BLAST to find the most similar match or "BLAST hit". However, due to changing

mutation rates over evolutionary time and the approximate nature of BLAST, the top BLAST hit can very

often not be the correct ortholog [85, 89]. Yet, BLAST and other sequence similarity measures are still very

useful for building up more sophisticated methods of orthology determination. Among these strategies are

gene cluster databases such as Clusters of Orthologous Genes (COGs) [138], clustering methods such as

OrthoMCL [90], and paralog determination methods such as In-paranoid [122].

3.5 Phylogenetic methods

Many algorithms for constructing phylogenies exist. The input to these algorithms is either a gene align-

ment or a pair-wise distance matrix, and the output is a phylogenetic tree. The problem has been posed in

terms of distances (Nieghbor-joining[ 127], Least Squared Error[ 11]), maximum parsimony[50], maximum

likelihood[46], and Bayesian methods[ 119].

3.5.1 Complexity of phylogenetic methods

The computational complexity of these methods and the theoretical limits of their accuracy have been impor-

tant areas of research within theoretical computer science. Neighbor-joining has been shown to have cubic

run-time [135], although faster approximations exist [134]. A quadratic distance-based method called "Fast

Neighbor Joining" has also been developed, that while optimizes a slight variant of the Neighbor-joining

criteria, has been shown to perform equally well [43]. In the 1980s, various definitions of the parsimony and

compatibility problems were shown to be NP-complete [24, 23]. However, interestingly it was only recently

determined that optimizing the maximum likelihood criteria is NP-hard [15]. The works of Addario-Berry

et al. [2] and Tuffle and Steel [140] have supplied important concepts towards understanding the complexity

of maximum likelihood phylogenetics.



3.5.2 Probabilistic model of evolution

In this thesis, we will build upon the probabilistic approach to phylogenetics. We review here the basic

concepts that are most frequently used in phylogenetic probabilistic models.

The most popular probabilistic model for representing the evolution of a set of molecular sequences on

a phylogeny was initially developed by Felsenstein for his Maximum Likelihood method for phylogenetic

reconstruction [46]. In the model, we have a binary tree T, where the leaves of a tree are numbered 1,...,n

and the ancestral nodes are numbered n + 1, ..., 2n - 1. The branches of the tree are numbered by the most

recent of the two nodes it touches (e.g. branch i connects node i and parent(i)). For a tree, we have its

topology T and the branch times ti, ... ,t2n-2, where ti is the time between nodes i and parent(i).

Our sequence data can be represented as a matrix x (n rows, m columns), such that xi,1 is the j'h character

of the ith sequence and each sequence has length m. In most applications, we will be given sequence data

for only the extant sequences X1,..., Xn. The ancestral sequences Xn+, ... ,X2n-1, on the other hand, will not

be directly observed and thus we will have integrate over all their possible states.

With these definitions, the maximum likelihood method seeks to compute the maximum likelihood tree

(it), where

Tt = argmaxP(Xi,..., on|T,t). (3.2)
T,t

Thus, in order to develop this method, we must define a probability distribution for term on the right hand

side of equation 3.2. Once a distribution is defined, we can determine a method for efficiently computing

the argmax.

Defining the distributions: factoring by sites and branches

Before we can tackle the equation above, we must first define the distributions of our variables. We will

make two assumptions about the process of sequence evolution in order to make the math and algorithm

tractable.

First, assume sites evolve independently. Thus we can factor the probability along the sites j,

P(x1,..., on|T, t)= f P(x1,j, ..., o n,j IT, t). (3.3)

Now we can focus on defining a model for a single site as it evolves down the tree. To aid in this task, it

is easier if all sequences (both extant and ancestral) are specified. To do this, we can express the right hand



side of equation 3.3 as a marginal of the joint distribution over all sequences

(3.4)E P(xJ, ... , X2n-,J|T,t).

Xn+l,jr.--,22n-1,j

The next assumption we will make is that branches evolve independently. This means that a base xij

only depends on the sequence of its parent xparent(i),j and the time along its branch ti. This assumption

allows us to factor the term in equation 3.4 as follows

P(Ii, ... , X2n-1,jT, t) = P(X1,jIX2,J, ... , tX2n-1 T, lt)P(X2,JX3J, ---, 2n- 1,)j T, ...P(x2n-,jlT,t) (3.5)

= P(XI~Jlzparent(I) j,ti)P(X2,Jloparent(2) it2)---.P(X2n-1,j) (3.6)

2n-2
=P(x2n-1 J) J P(xiJ IXparent(i),j, ti).

i=1
(3.7)

Notice that equation 3.7 requires us to define only two things, a prior distribution of the root base

P(x2n-1,j) and the distribution of how single bases evolve over a branch P(xi, jlXparent(i),j, t). The following

sections will define these terms.

Defining the distribution: evolving a single branch

We now consider the probability distribution for a single site j evolving along a single branch i,

P(Xi,jlXparent(i)j, ti).

There are many models for defining this distribution. They range from the simplest, Jukes Cantor

(JC)[75], towards more complex ones such as Kimura's 2 parameters (K2P)[82], HKY[68], and the fully

general GTR model [87]. All of these models make the same basic set of assumptions, and only differ in

how many free parameters they have.

First, they all assume that the evolutionary process is time reversible, that is

P(b)P(alb,t) = P(a)P(bla,t). (3.8)

You can think of P(alb, t) as a 4x4 matrix S(t) with indices a, b. They also assume that this probability

P(zi~J, ...,) on~JlT, t) =



matrix is multiplicative, such that

P(cla,ti +t 2 ) =EP(ba,t)P(cb,t2) (3.9)
b

S(ti +t 2 ) =S(ti)S(t2). (3.10)

In the Jukes Cantor model [75], every base substitutes into every other base with an equal rate c. From

these properties, our substitution probability matrix S is then

rt St St St

P(alb,t)=S(t)= (3.11)
St ss ri St

St S St Tt

where

1
rt = (1 + 3 e-4)

4
st = I (1 - e-4at

4

The derivation of these equations are given in [37]. Notice that when t is zero we have the identity

matrix and when t tends to infinity the sequence adopts the equilibrium frequency.

In Figure 3.3 we illustrate more examples of nucleotide substitution models and how they relate to one

another. For example, the K2P model allows another parameter to model the different rates of transversions

(purines to pyrimidines and vice-versa) and transitions (purine to purine, pyrimidine to pyrimidine). The

HKY model allows three additional parameters on top of K2P in order to model a different equilibrium

distribution than 25% for each base. The TrN model generalizes HKY by giving two parameters for the two

kinds of transitions. And lastly there is the fully parametrized model General Time Reversible (GTR).

Defining the distributions: Modeling the root sequence

The last distribution that needs to be defined is the probability of the root base

P(X2n- 1,J)

Often this is just the background distribution of bases used in the sequence model.
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Figure 3.3: The hierarchy of sequence substitution models. Arrows point from general models to special
cases. The main features are whether or not models assume equal background nucleotide frequencies and
how many substitution classes they distinguish.

3.5.3 The Maximum Likelihood (ML) Algorithm

Now that we have fully defined our model of sequence evolution, we can estimate the maximum likelihood

phylogenetic tree topology t and branch lengths t.

Unfortunately, this is a difficult problem to solve. To appreciate the difficultly, consider how large the

space of possible phylogenetic trees is. For example, for n leaves the number of unrooted topologies is

N = 3*5*7*...* (2n -5) = (2n -5)!!. (3.12)

For rooted rooted topologies the number is even higher

Nr = (2n - 3) *N, = (2n - 3)* (2n - 5)!!. (3.13)

Thus, computing the likelihood for each of these possible trees would be intractable. One might try to

find ways of efficiently reducing the space of trees to consider, however, given that the ML phylogenetic

problem is NP-hard [15] in turns out there exists no way of reducing this space while also finding the

maximum likelihood tree exactly. Therefore, current approaches must use heuristic methods that search

only a fraction of the total tree-space. These search methods traverse the space of possible trees by taking a



while searching :
propose new T, t using local rearrangements (e.g. NNI, SPR)
Calculate likelihood P(xi, ..., xnIT, t)

return Tt that achieved max likelihood

Figure 3.4: Pseudo-code for ML algorithm. The algorithm heuristically searches over the space of tree
topologies and branch lengths by using a tree rearrangement operation such as Nearest Neighbor Interchange
(NNI). After searching for a specified amount of time, the tree (T, t) with the highest likelihood seen thus
far is returned.

proposed tree and performing local rearrangements to propose other possible trees (e.g. Nearest Neighbor

Interchange (NNI)[147] and Subtree Pruning and Regrafting (SPR)).

In his paper, Felsenstein presented how one could combine a heuristic tree search with an efficient

method for computing the likelihood of proposed tree [46]. See Figure 3.4 for an overview of the algorithm.

Felsenstein showed that the likelihood of a tree can be efficiently computed using a technique now known as

dynamic programming, which works by eliminating many redundant computations. This technique is also

a special case of the sum-product algorithm. Recall, that the full factoring of the likelihood term is

P( , . |T, t) = P(x,j Xn,jI T, t) (3.14a)

= E P (Xi J, ... , IX2n-1I,jlI T, t) (3.14b)
X n+1,j,--.,X2n-1,j

2n-2

= ... E P(x2n-1,j) fJ P(Xi,jlXparent(i),j,ti). (3.14c)
J X2n-,j Xn+±,j i=1

If we let Li,j,a represent the likelihood of the subtree rooted at node i with base a present at site j, we

have the following recursive expression

P(X1, ... , Xn|T, t) = jjEL2n-1,j,aP(a) (3.15a)
j a[1 ifxi,7=a,i~n

0 if xi j #a, i < n

Li,j,a = ifxij a,i<n (3.15b)
Eb,cP(bja,teft(i))Left(i),j,b if i > n

P(cja, tright(i))Lright(i),j,c

The values of Li,j,a can be thought of as a table, and its entries can be computed in O(nm) runtime by

using a postorder traversal of the tree.
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Chapter 4

Phylogenomics

4.1 The phylogenomics problem

In the last chapter, we reviewed how the field of phylogenetics has had a long history of producing many

powerful techniques for analyzing molecular sequences. With the continued advances in DNA sequencing

technology, we now have dozens of whole-genome sequences from several clades of species, which provide

a new opportunity for studying evolution on a large scale. Just as importantly, evolution provides a frame-

work for better understanding the content and function of genomes. Consequently, phylogenetic analysis

has had a growing presence in genome studies. Because of the scale of the data and the new challenges

whole genomes present, many new phylogenetic techniques have been developed specifically for genomic

applications.

This general approach of combining phylogenetics and genomics has been be called phylogenomics

[41, 42] and its ideas play a central role in achieving our goal of understanding gene family evolution.

Our goal is to reconstruct how each family of genes has expanded and contracted over evolutionary time

in a clade of related species. By comparing these expansions and contractions to gene function and to the

phenotypes of the species, we can characterize how evolution creates and changes new genes and functions.

In a phylogenomics framework, our input data are fully sequenced genomes that are annotated with gene

models. Using these gene annotations, we can cluster them by sequence similarity into families, and for

each family, we can reconstruct a gene tree. Each gene tree is then reconciled to a common species tree,

which allows us to infer orthologs, paralogs, and all evolutionary events, including gene duplications, losses,

and horizontal transfers.

Although this growing field has made several successful advances, many computational challenges re-

main. Here, we review the previous work in the field, and by detailing its challenges, we will motivate our



own approach to reconstructing gene family evolution.

4.2 Exploiting genome-wide information for greater accuracy

As with any computational approach, the quality of the conclusions of a phylogenetic analysis heavily

depends on the accuracy of the underlying methodology. Accordingly, there has been much recent work

on measuring and improving methods for phylogenetic reconstruction for both species trees and individual

gene family trees. Advances have come from increased sequencing data for both additional taxa and loci, as

well as from new methods for leveraging that data.

4.2.1 The species-tree problem

For the problem of species tree reconstruction, many advances have been made by combining data across

loci either by concatenating multiple aligned loci into a "supermatrix" [124, 16], combining multiple gene

trees into a "supertree" [21], or using a model for how such loci are correlated and coordinated in their

evolution [99, 91]. For example, in the BEST model [91], the correlated evolution of loci is captured

by modeling a common species tree that constrains the evolution of each locus while still allowing some

topological differences at each locus to occur via a coalescent process [144]. This is a hierarchical model,

where a species tree defines the distribution for gene tree topologies and branch lengths, and those gene trees

in turn define the distribution of sequences evolving down each gene tree. A probabilistic approach such as

this allows one to use sequence alignments from multiple loci to estimate the posterior distribution of the

species tree.

4.2.2 The gene-tree problem

We believe the problem of gene tree reconstruction will need a similar strategy for exploiting the abundant

sequence data. Many recent efforts to reconstruct gene families in isolation (i.e. not accounting for their

shared species tree or correlated evolution) have met many challenges. For example, the TreeFam project

[89] had found that automatic methods of reconstruction (such as ML [46], MAP [119], NJ [127], and

parsimony [47]) were not sufficiently accurate for systematic use, and thus relied on human curators to adjust

trees using additional information from the species tree, syntenic alignments, and the relevant literature. In

a study by Hahn et al. [63], simulations were used to study how errors in gene tree reconstruction propagate

into later inference of gene duplication and loss events. In particular, the study showed that methods such as



Neighbor-Joining frequently make reconstruction errors that lead to a biased inference of many erroneous

duplications in ancestral lineages followed by numerous compensating losses in recent lineages.

4.3 Modeling gene trees and species trees

Our work fits within a growing body of literature addressing the simultaneous modeling of gene and species

evolution. In one branch of this field, the primary concern is to model orthologous loci whose phylogeny

may become incongruent with the species phylogeny due to incomplete lineage sorting [99, 91]. In that case,

the rate at which alleles propagate in a population is commonly modeled by the coalescent process [144],

which defines how gene tree topologies and branch lengths are distributed across loci [120], and has been

used to reconstruct both gene trees [69, 38] and species trees [99, 91], as well as many population related

statistics, such as ancestral population sizes and recombination rates.

In another branch of the field, the loci of interest are those whose phylogeny is incongruent because

of evolutionary events such gene duplication, loss, and horizontal transfer, and several models have been

developed for each of these events. In the specific case of modeling duplication and loss, both probabilistic

approaches [60, 5, 64] and non-probabilistic or parsimony-based methods have been developed [57, 114,

14, 145] to improve the reconstruction of either gene trees [5, 121, 145] or species trees [113]. Our focus

will be in this part of the field and specifically on the goal of the probabilistic reconstruction of gene trees in

the context of a common and previously determined species tree.

4.3.1 Existing work on gene tree reconstruction

For studying gene trees, Hahn et al. used the birth-death process to track changes in the number of paralogs

in a gene family across several clades of species [64]. While it provides a way to look for significantly

changing paralog copy counts, the method lacks a way of incorporating information from DNA or peptide

sequences.

A method for incorporating such sequences was later developed by Wapinski et al. and was implemented

in their SYNERGY gene tree reconstruction program [145]. The method makes use of peptide sequences

by combining a species-aware Neighbor-Joining algorithm along with an optimization for minimizing du-

plications and losses while maximizing synteny (i.e. conserved gene order) between orthologs. However,

this combination is ad hoc and non-probabilistic, making it difficult to determine the best way to weigh

conflicting information [3]. For example, in the cases where synteny information can be misleading, such

as cases of gene conversions, SYNERGY shows significantly reduced reconstruction accuracy, suggesting



that the primary sequence information is not sufficiently incorporated into the reconstruction (Figure 9.5).

A fully Bayesian model was proposed by Arvestad et al. that combined a model for gene duplications

and losses with sequence evolution [5]. This was done by defining a prior for gene tree topologies and

branch lengths using a birth-death process, which when combined with a sequence substitution model (e.g.

JC69 [75]) produced a Bayesian method for gene tree reconstruction and reconciliation. One disadvantage

of this approach was the assumption of a clock model for substitution (i.e. constant substitution rates).

In 2007, we introduced a distance-based maximum likelihood method for gene tree reconstruction that

incorporates information from the species tree, but avoids the clock model assumption [121]. Our model

decomposes substitution rates into gene-specific and species-specific components, which was motivated

by our observation of substitution rate correlations across the genomes of 12 Drosophila and 9 fungal

species (Chapter 4.4). By first learning parameters for gene and species-specific rate distributions from

genome-wide information and then using that model to reconstruct gene trees, SP I D I R showed significantly

increased reconstruction accuracy compared to several other popular phylogenetic algorithms at the time.

However, despite these improvements, the approach was distance-based and thus did not fully utilize all of

the information available in sequence data.

Recently, Akerborg et al. have introduced PRIME-GSR, an extension of their previous work [5], which

relaxes the clock assumption by using identical independent gamma distributions to model rate variation

[3], however, no species-specific rate variation is learned or modeled. In our evaluations (Chapter 9) we find

that modeling these rates can provide a significant benefit in gene tree reconstruction.

In summary, while much progress has been made in gene tree reconstruction, what remains missing is

a principled, fast, and accurate method that incorporates all of these various models. In addition, freely

available software is needed to facilitate further analyses in this field. In Chapter 5, I present a novel method

that addresses these issues.

4.4 Drosophila challenges case study

In a recent paper of ours [121], we reviewed the accuracy of several existing phylogenetic methods for re-

constructing gene trees. Phylogenetic accuracy has been extensively investigated on simulated data [126, 86,

137, 116], however for real datasets accuracy is difficult to assess since a ground truth is rarely known. The

recently sequenced 12 Drosophila and 9 fungal species provided a unique opportunity to assess phyloge-

netic accuracy on real datasets, because the species are close enough evolutionarily to have a large fraction

of genes in conserved gene order, known as synteny. For the 12 Drosophila, we found 5154 one-to-one
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Figure 4.1: Phylogenetic accuracy increases with sequence length. (a) Maximum likelihood trees were
reconstructed (using PHYML) for each one-to-one syntenic gene alignment in a particular section of the
Drosophila genome. Although it is expected that all gene trees should match the species tree (topology TI),
several different topologies (labeled Ti-Ti3) were found. (b) Across the genome, 5154 one-to-one syntenic
gene families have up to 310 different maximum likelihood gene tree topologies. The topology congruent
with the species tree (TI) appears the most frequently at 38%. The next most frequent topologies T2-T4
are similar but differ by one or two branches (red branches). (c) When gene alignments are grouped by the
number of ungapped sites, a clear trend in gene tree congruency and gene length is seen. This indicates
that without using additional information, a typical gene family is too short in sequence length to reliable
reconstruct its gene tree.



syntenic gene families or about one third of the fly genome. Synteny can be used as a independent line of

evidence for orthology between genes. By identifying clusters of genes that are one-to-one syntenic across

all 12 fly species (Figure 4.1 a), we can obtain clusters of real genes where we expect the phylogenetic tree

to contain no duplications or losses (i.e. be congruent to the species tree).

Our analysis showed that existing phylogenetic methods have a high level of inaccuracy for recon-

structing gene families in the 12 Drosophila and 9 fungal species. For example, in the recently sequenced

12 Drosophila species, we reconstructed Maximum Likelihood gene trees of 5154 clusters of syntenically

orthologous genes using the PHYML program [62]. We found a great variety of gene tree topologies (Fig-

ure 4. 1b). Although the species tree topology did occur the most frequent, it only appeared for 38% of the

gene alignments. We then grouped gene families into eight groups based on their gene length and asked

how the congruence rate varied with gene length (Figure 4. 1c). We found congruence to increase steadily

with gene length, indicating that incongruence at smaller gene lengths were due to a lack of phylogenetic

information (fewer characters). Most importantly, the median gene length of about 900 gapless alignment

sites had only 38% reconstruction accuracy. Lastly, this trend was true regardless of whether we used

nucleotide or peptide sequences or which phylogenetic method we used: Maximum Likelihood (PHYML

[62]), Parsimony (PHYLIP [47]), Neighbor-joining (BIONJ [53]), and Maximum A Posteriori (MrBayes

[125]).

We also studied the alignments that supported incongruent topologies. We found that while alternate

topologies T2-T5 were reconstructed for as much as 4%-11% of the alignments, those rates fell to 1%-5%

when we required all phylogenetic methods to agree. We also found that the alternate topologies showed

significantly lower bootstrap support. Lastly, for the 62% of alignments that supported an incongruent

Maximum Likelihood (ML) gene tree topology, only 5.7% did so with sufficient statistical significance

(P<.01; SH-test [131]).

4.4.1 Overcoming low information within individual loci

This evidence along with several other measures of information content indicated that most loci lack enough

information to confidently support one gene tree topology over the many other competing alternatives.

Therefore, in order to make progress in gene tree reconstruction, we must look elsewhere for additional

information. Fortunately, in the phylogenomic setting, where thousands of gene trees evolve within only a

relatively small number of species, there is a large amount of shared information between gene trees that

could be learned and applied to reconstruct gene trees more accurately. In the following chapter, we develop

this idea further and demonstrate how the species tree and information about substitution rates can be greatly



informative and can be used to improve reconstruction accuracy.
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Chapter 5

SPIMAP reconstruction method

5.1 Introducing the SPIMAP method

Here, we present SPIMAP, a Bayesian gene tree reconstruction method that incorporates within a unified

framework models for gene duplication and loss, gene- and species-specific rate variation, and sequence sub-

stitution. We model gene duplication and loss using the birth-death process [5]. Similar to the other methods,

we do not attempt to model incomplete lineage sorting or horizontal transfers, although approaches for doing

so in the future could be useful. We have implemented a relaxed clock, defined using the rate variation model

we have previously developed [121]. A key distinction of our method is that we employ an Empirical Bayes

approach, where the parameters of the rate model are learned using a novel Expectation-Maximization (EM)

training algorithm that incorporates sequence data across many loci. Once these parameters are estimated,

we use them along with the species tree to reconstruct gene trees for thousands of sequence alignments

from across the genome. Our method also achieves significant speed increases by using a novel tree search

strategy derived from our gene tree topology prior. The SPI MAP software is written in C++ and is available

for download at http: //compbio.mit.edu/spimap/.

5.2 The phylogenomic pipeline

The reconstruction of gene trees for every gene family in several genomes typically requires a computational

pipeline similar to the one shown in Figure 5.1 a. Databases that have followed this general outline include

TreeFam [89], Ensembl [143], and many others [71, 22], while other methods such as SYNERGY [145]

perform similar tasks but not necessarily as separate consecutive steps. The general pipeline goes as follows:

the input (blue boxes in Figure 5.1 a) consists of nucleotide or peptide sequences for all genes in all genomes



General Phylogenomic Pipeline SPIMAP's Phylogenomic Pipeline
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Reconcied trees, orthologs, paralogs, duplications, losses

Figure 5.1: Overview of the phylogenomic pipeline. (a) The typical phylogenomic pipeline consists of
several common steps, although particular implementations may vary. The pipeline input is the set of all
gene sequences across several species and the known species tree relating the species (blue boxes). Gene
sequences are then compared across species and clustered according to their sequence similarity, resulting in
a set of homologous gene families. A multiple sequence alignment is then constructed for each gene family,
followed by phylogenetic reconstruction of each aligned family to produce gene trees. Each gene tree is then
reconciled to the known species tree in order to infer orthologs, paralogs, and gene duplications and loss
events, which are the pipeline outputs (orange box). (b) Our phylogenomic pipeline follows similar steps,
except that SPIMAP includes a model parameter estimation step (dashed light green box) for duplication and
loss rates (learned from the per-species gene counts in the gene families resulting from the clustering step),
and gene- and species-specific substitution rates (learned from a subset of trusted orthologous alignments
supported by synteny or other information and congruent to the species trees). These learned evolution-
ary parameters are then used in a joint tree building and reconciliation step (dark green box), specifically
informing our topology prior (duplication/loss model) and our branch length prior (gene/species-specific
substitution model). The joint step also enables us to use the known species tree and duplication/loss model
to rapidly score topology proposals and speed up tree search, in contrast to the traditional pipeline that only
uses the known species tree in the reconciliation step.



under consideration as well as a species tree estimated prior to the pipeline computation using any method or

information desired. Next, the sequences are compared with each other using a method such as an all-vs-all

BLAST search [4] or HMMER [39]. The BLAST hits are then clustered using a method such as OrthoMCL

[90] or a method like that of PHIGs [28] in order to form clusters of highly similar genes that are likely to

represent gene families. For each cluster, a multiple sequence alignment is then constructed (e.g. MUSCLE

[40]) followed by gene tree reconstruction using a phylogenetic algorithm (e.g. PHYML [62], BIONJ [53],

or MrBayes [125]). Lastly, a reconciliation algorithm is used to compare each gene tree to the species tree in

order to infer all duplication and loss events, as well as all ortholog and paralog relationships. Reconciliation

methods include Maximum Parsimony Reconciliation (MPR) [114, 150], RAP [34], and Notung [14], each

of which take different approaches to inferring gene duplication and loss events in presence of possibly

uncertain gene trees. The duplications, losses, orthology, paralogy, and the gene trees themselves typically

constitute the outputs of a phylogenomic pipeline (orange box; Figure 5.1).

The pipeline we have constructed for SPIMAP follows the same general structure (Figure 5.1b). For

clustering, we have implemented our own method [10] similar to that of PHIGs. For multiple sequence

alignment, we have used the MUSCLE [40] program. In contrast to other methods, however, ours takes an

Empirical Bayes approach by including a "training" step (dashed green box; Figure 5.1b) which supplies

several species-level evolutionary parameters to SPIMAP's gene tree reconstruction step. In the training

step, we estimate the average genome-wide gene duplication and loss rates Or = (X,p) based on gene counts

within each gene family cluster using a method similar to that of Hahn et al. [64] (Chapter 6.2). We also

estimate substitution rate parameters Ob = (aG, PG, a,#f) based on a subset of the alignments using a novel

EM method for (Chapter 6.3). These parameters are then used in a combined gene tree reconstruction and

reconciliation step (dark green box; Figure 5. 1b) performed simultaneously within a single probabilistic

model. From this model, we compute the the maximum a posteriori (MAP) gene tree using a novel rapid

gene tree search that incorporates information from the species tree and from duplication and loss rates. In

the following sections, we will discuss how we compute the posterior probability of a gene tree and describe

the details of our rapid tree search.

5.3 Gene tree and species tree definitions

We define a gene family as the set of all genes descended from a single gene in the last common ancestor

(LCA) of all species in consideration. We represent the rooted phylogenetic tree of n genes by a tree with

topology T = (VE), which describes the set of nodes (vertices) V(T) and a set of branches (edges) E(T)



of the tree. The leaves L(T) C V(T) of a gene tree represent observed genes from extant species while the

internal nodes I(T) = V(T) \ L(T) represent ancestral genes from ancestral species. We will use several

functions to discuss how nodes are related to one another. For example, we use child(v) to represent the set

of children of v, left(v) and right(v) to represent the left and right children, and parent(v) to represent its

parental node. For any node v, we use b(v) to denote the branch (v, parent(v)) and l(v) to be the length of

that branch, measured in substitutions per site. Lastly, we use I to denote the vector of all branch lengths of

a tree, namely I = (l(vi),...,l(v(2 - 2))). Thus, a gene tree is represented by the tuple (T,I).

In addition, we will also consider a phylogeny S relating species, called a species tree. The branch

lengths t of S are expressed in units of time (e.g. millions of years) and are thus typically ultrametric. For a

node u E V(S) we express its length as time t(u). We will assume all trees are rooted and all nodes have at

most two children.

Each gene tree can be viewed as evolving "inside" the species tree (Figure 5.2a). A reconciliation R is a

mapping from gene nodes to species nodes that defines the species to which each extant and ancestral gene

belongs [57] (Figure 5.3a). In this setting, a gene tree is congruent if R is an isomorphic mapping between

T and S, and incongruent otherwise. Also, all internal nodes of a gene tree represent either gene duplication

or speciation events (represented as stars and white circles, respectively; Figure 5.2a).

5.4 Generative model of gene family evolution

In our generative model, gene trees are generated in three steps: given a species tree with specified topology

and speciation times, (1) we first generate a gene tree topology and duplication times by repeated use of

a birth-death process, (2) we then generate substitution rates from gene and species-specific distributions,

and (3) lastly, we use these rates to generate molecular sequences according to a continuous-time Markov

process (Figure 5.2).

The parameters of our model are 0 = (S, t, Ot, Ob), where S and t are the species tree topology and branch

lengths, Or are the topology parameters X and p, and Ob are the branch length parameters OCG, PG, a, and /3,

the details of which are given below.

(1) Generating topology and divergence times. We use the gene duplication and loss model first de-

veloped by Arvestad et al. [7] which is based on a repeated use of the birth-death (BD) process [45] to

define the topologies and branch lengths (in units of time) of a gene tree evolving "inside" a species tree

(Figure 5.2a).
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Figure 5.2: SPIMA P's generative model. (a) Species tree S and divergence times t are given as input. (b)
A gene tree T (black lines and labels) is evolved inside the known species tree according to a duplication-
loss model. The gene tree bifurcates either at speciation events (white circles) at species tree nodes, or at
duplication events (stars) along species tree branches. Gene tree lineages can also terminate within a species
branch at gene loss events (red "X"). (c) Substitution rates are generated according to our relaxed clock rates
model of species-specific and gene-specific substitution rates. (d) Lastly, sequences are evolved down the
resulting gene tree according to a continuous-time Markov process to produce a sequence alignment (yellow
box).

The BD process is a continuous-time process that generates a binary tree according to a constant rate X

of lineage bifurcation (representing gene duplication) and rate p of lineage termination (representing gene

loss). After running a birth-death process for a time t, all lineages that exist at time t are called surviving,

while all others are called extinct. A node is doomed if it has no surviving descendants. The BD process has

been used widely in phylogenetics [60, 5, 64], although typically for defining priors for species trees [119].

The gene duplication and loss (DL) model is defined by repeatedly using the BD process to generate a

gene tree. To initialize, we begin with a single gene node v reconciled to the root of S (i.e. R(v) = root(S))

and mark it as a speciation node. We then recursively apply the following: (1) for each speciation node v

at the top of a species branch b(u) of length t(u), we generate a tree according to the birth-death process

for t(u) units of time. (2) For each newly created node w, we record its reconciliation as R(w) = u. (3) For

each w that survives across that species branch, we mark it as an extant gene if u is a leaf species, otherwise

mark it as a speciation. (4) We recursively apply steps 1-3 until all speciation nodes have been processed.

(5) We mark all nodes in the gene tree not marked as extant genes or speciations as duplications. (6) As a

post-processing step, we prune all doomed lineages, namely lineages with no extant descendants.

(2) Generating substitution rates. We use a relaxed clock model where substitution rates are allowed

to vary between lineages (Figure 5.2b). Each branch has a length l(v) (measured in substitutions/site)



which is the product of a duration of time t(v) and a substitution rate r(v). The times are given by the DL

model. The substitution rates indicate the number of substitutions per site per unit time and are described

by a rates model. Previously [121 ], we developed a rates model that captured the substitution rate r(v) as

the production of two components, a gene-specific rate and a species-specific rate. Here, we define these

components with the following distributions:

(a) For each gene family j, the gene-specific rate g; scales all rates in a tree. We represent the gene rate

as a random variable G; that is distributed across families as an inverse-gamma distribution with shape and

scale parameters, aG and PG. Without loss of generality, we constrain G; to have a mean value of one across

all gene families (i.e. aG = PG + 1, aG > 1). Thus we have,

P(Gj = g;IPG) = InvGamma(g;|aG = PG + 1, PG ). (5.1)

(b) For each branch b(vk), the species-specific rate sk defines a rate specific to that branch in the gene tree.

It is represented by a random variable Sk that has a gamma distribution whose scale and shape parameters

(ai, Pi) depend on the species ui = R(vk). This allows one to model rate accelerations and decelerations that

are specific to a species i and exists across all genes of that species. Thus,

P(Sk = sklai, Pi) = Gamma(sk jai, Pi), where ut = R(vk). (5.2)

We also assume that each Sk is independent of the others and of the gene rate G. Given these definitions

for the substitution rate, we can then express the branch length l(vk) of a gene tree j as

l(vk) = r(vk) X t( Vk) = g; X sk x t(vk ). (5.3)

In total, our rate model has parameters Ob = (PG, a, P), where a = (xi, ..., am), )3 (Pi, ... , pm), and m

is the number of species branches IE(S)|.

(3) Generating sequence. After generating a gene tree with a topology, divergence times, and substitution

rates, we finally evolve a molecular sequence down the tree using a continuous-time Markov chain to model

sequence substitution. Specifically, we have implemented HKY [68] to generating nucleotide sequences.

See Chapter A.l for an overview of the model. The HKY process uses the branch lengths l(vk) = r(vk)t(vk)

as parameters for sampling derived sequences. Only sequences on the leaves of the tree are emitted, whereas

ancestral sequences are hidden (Figure 5.2c). In our current formulation, sequence insertion and deletion



(indels) are not modeled. Instead, gaps in the sequence alignment are treated as missing data.

5.5 Maximum a posteriori reconstruction of gene family evolution

In our current implementation of the algorithm, we compute the maximum a posteriori (MAP) gene tree

according to our model. Thus, we seek to calculate

i, i R = argmaxP(1, T,RID,O) (5.4a)
1,T,R

= argmaxP(D|1, T,R, O)P(IT,R,O)P(T,RIO)/P(DIO) (5.4b)
1,T,R

= argmaxP(D1, T)P(lfT,R, e)P(T, RIO). (5.4c)
1,T,R

The first term in equation 5.4c is the likelihood of a gene tree with branch lengths 1 and topology T

given the sequence data D. The probability is defined by the sequence evolution model (e.g. HKY) and

can be computed efficiently using the pruning algorithm [46], which we have implemented for SPIMAP.

Because this model only depends on the topology and branch lengths of the gene tree, the likelihood term is

conditionally independent of the reconciliation R and parameters 0.

The prior of our model is factored into two terms: the prior of the topology and the prior of the branch

lengths. The topology prior P(T, R IO) is defined based on the duplication-loss model and it can be computed

efficiently (Chapter 5.6) [6]. We show that factoring out the topology prior from the branch lengths also

provides a unique advantage for fast tree search (Chapter 5.7.4).

Lastly, the branch length prior P(I IT, R, 0) represents the probability of observing of gene tree branch

lengths 1. This prior incorporates both divergence times of duplications in the birth-death process as well as

the distribution of substitution rates. We present how to compute this term numerically (Chapter 5.7).

5.6 Computing the topology prior

The topology prior P(T, R IO) (from equation 5.4c) helps SP I MA P reconstruct gene trees that have plausible

patterns of gene duplication and loss. For completeness, we describe how to compute this term.

According to the duplication-loss (DL) model [5, 6], the birth-death (BD) process is repeatedly used to

generate the gene tree topology T as it evolves from the root of the species tree S to the leaves. Therefore,

T can be viewed as a union of several subtrees, each of which was generated by one BD process. Since

these processes are independent of one another, we can view the topology prior P(T,R 1) of gene tree T as
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Figure 5.3: Reconciliation and duplication subtrees. (a) A reconciliation R maps gene nodes to species
nodes for both speciation events (white circles) and duplication events (stars). Implied speciation nodes
(gray circle) are then inferred based on the reconciliation. (b) Our algorithm breaks the gene tree T into
subtrees sub(T,v,u1) where the subtree root v is a speciation and the subtree leaves a(vui) are the next
speciation nodes below v that reconcile to species ui.

a product of the probabilities of the BD process generating each of the subtrees. Performing this factoring

is the key step in computing the topology prior, but, there are two additional caveats to consider: (1) how

to account for lineages in the gene tree that are hidden from observation due to extinction and (2) how to

account for labeled and unlabeled nodes in the gene tree. By combining these ideas, we can compute the

prior of a gene tree topology.

5.6.1 Factoring the gene tree

Given a gene tree topology T, we first decompose it into the subtrees that were generated from each individ-

ual BD process (Figure 5.3). We call each of these subtrees duplication subtrees since all of their internal

nodes consist of duplication nodes. To identify these subtrees, first notice that each speciation node v is

the root of two such subtrees. If v has reconciliation R(v) = w and w C V(S), then the two subtrees per-

fectly reconcile within the child species branches left(w) and right(w). Also notice, that the leaves of each

duplication subtree are either speciation nodes or extant genes.

Some speciation nodes (e.g the grey node in Figure 5.3a) may be initially hidden in a gene tree due to

gene losses. We call such nodes implicit speciation nodes and they can be added to a gene tree by identifying

gene tree branches that span multiple branches in the species tree (e.g. branch b2 in Figure 5.3a). If a given

gene tree T lacks implied speciation nodes, we can add them by locating each v and w = parent(v) where

parent(R(v)) # R(w). Next, the edge (v, w) is replaced by a new speciation node x and two new edges

(v,x) and (x, w), while setting R(x) = parent(R(v)). This procedure can applied repeatedly until all implied

speciation nodes are identified.



When all speciation nodes are explicit, we can identify duplication subtrees by partitioning the gene

tree at all speciation nodes spec(T) (Figure 5.3). We denote a particular subtree as sub(T,v,u), where

v C spec(T) is the root of the subtree and u c child(R(v)) is the species to which the leaves L(sub(T, v, u))

reconcile. The leaves are defined by the set

a(v,u) {w: w E spec(T) UL(T),R(w)= u,w C V(Tv)}, (5.5)

where Tv is a subtree of T containing node v and all of its descendants.

For each duplication subtree, we can derive its probability from the BD process [119]. First, for a BD

process with a birth rate X and death rate p, the probability that 1 lineage will leave s survivors after time t is

p(s,t) = (X/p)Sp(1,t)(p(Ot))S-, (5.6)

where

p(1-e-__ -__') (X - )2 - p)

p(Ot) = ( _e(-P)) p(1, t) = e-(Xp)2 (5.7)
Xpe-XP-)t (), pe-(Xp)t)2 ' 57

Second, for s survivors there are s = s!(s - 1)!/ 2 s~1 equally likely labeled histories, which are leaf

labeled topologies whose internal nodes are order by their time. Thus, for a topology T with s leaves and

H(T) labeled histories, its probability is

P(Tjt,k,p) = p(s,t), where (5.8)

H(T) = I ( |I(Tright(v))I ± V(Tleft(v))1
vGI(T) |I(Tright(v))i

5.6.2 Doomed lineages

In addition to factoring the tree, there are two caveats to consider. The first to consider is the possibility of

lineages in the gene tree that are hidden from observation because they have gone extinct, i.e. they leave

no descendants in the leaves of the species tree. We call such lineages doomed, and this extinction process

must be accounted for in our topology prior.

Let d(u) be the probability that a lineage starting at node u in the species tree will be doomed, that is

losses occur such that no descendants exist at the leaves of the species tree. This probability d(u) is the

product of the probability of extinction occurring in both the left and right subtrees beneath node u. For a



child branch b(c) where parent(c) = u, we must consider two possibilities. Either the gene lineage goes

extinct in b(c) with probability p(O, t(c)) (Equation 5.7), or it survives and leaves i survivors, each of which

themselves are doomed with probability d(c). Thus, this probability can be expressed recursively as

17 Ep(i,t(c))d(c)' if u EI(S)
d(u) = ccchild(u) i=0 (5.10)

0 if u E L(S)

The value d(u) can be computed efficiently for each node u in the species tree S by dynamic programing

following a post-order traversal of S.

5.6.3 Labeled and unlabeled nodes

The second caveat of the topology prior computation is distinguishing between labeled and unlabeled nodes

within the gene tree. In Equation 5.8, we give the probability of a BD process generating a labeled topology

T. Each duplication subtree sub(T, v, u) is generated by one BD process, however, only duplication subtrees

with extant leaves (i.e. L(sub(T,v, u)) c L(T)) are labeled topologies. All other duplication subtrees have

leaves that are speciation nodes, and thus are unlabeled topologies.

To properly account for labeled and unlabeled nodes, we envision the duplication-loss (DL) model as a

three step process. First, a gene tree T' is generated by repeated use of the BD process, after which as all

extant and speciation nodes are labeled. The probability of this tree is P(T',R10) and it can be computed by

factoring T' into duplication subtrees, each of which has a known probability (Equation 5.8).

Second, a mapping U is applied to T' that removes all labels to produce an unlabeled gene tree T". The

probability P(T", RIO) is thus the sum of the probability of each T' that becomes T" after removing labels,

P(T",RIO) = E P(T',R|O). (5.11)
{T':T"=U(T')}

We call two trees T' and TJ equivalently labeled if U(T') = U(TJ). Since equivalently labeled trees T/

all have equal probability, the probability P(T",RIO) is simply the probability of T' times the number of

equivalent labelings. The number of equivalent labelings is computed as a product of correction terms, one

for each duplication subtree. Specifically, for each internal subtree T2 (i.e. leaves are speciations nodes) we

multiply by the term N2(T, T2 ,R) and for each external subtree T2 (i.e. leaves are extant genes) we multiply

by N (T2, R). We derive these terms in the following sections.

In the third and final step, labels are added back to the leaves of T" to create our desired leaf labeled



gene tree topology T. Since each labeling is equally likely to be generated by this process, the probabil-

ity P(T,RIO) is P(T",RIO) divided by the number of ways to relabel T". This final correction factor is

1/N1 (T,R) and we derive this next.

Step 3: the number of ways gene names can be added to a reconciled gene tree

The easiest step to describe first is step 3. In step 3, we add back labels to the leaves of T" to create a labeled

topology T. Let Ni (T, R) be the number of ways to relabel T" into T. Also assume that we can compute

P(T",R Ie), which is the probability of the unlabeled reconciled gene tree (T", R) being generated by steps 1

and 2. Since each possible relabeling is equally likely in the DL model, the topology prior can be computed

as

1
P(T,R10)= P(T",RIO). (5.12)

Ni(T, R)

Defining N (T,R) can be done in the following way. Notice that after step 2, the reconciled gene tree

(T",R) has leaves that are only distinguished only by their species, but have no gene names. An example of

such a gene tree in Newick notation would be "((Scer,Scer),Spar)", where "Scer" and "Spar" represent the

species S. cerevisiae and S. paradoxus, respectively.

We can think of species as "coloring" the leaves of the gene tree T". Define a colored topology as an

unlabeled topology whose leaves are colored. Imagine we have a set of gene names (e.g. "Scerl", "Scer2",

"Sparl","Spar2", etc.) which must be used to label the leaves of the gene tree. Notice, that each gene

name ("Scerl") must be assigned to a leaf that already belongs to the corresponding species ("Scer"). Our

question is, how many ways N1 (T, R) can we assign these names?

From the set of names, we can calculate how many names c(T, u) each species u has. Expressed in our

notation we have

c(T,u) = I{v: v C L(T),R(v) = u}|. (5.13).

Naively, we might then conclude that

N17(T, R) = c(T, u)!. (5.14)
ueL(s)

This is naive, because many of the "attempted" labelings above actually represent equivalent labeled

topologies. For example, if our colored topology was "((Scer,Scer),Spar)", the naive strategy above would



attempt the labelings "((Scerl,Scer2),Sparl)" and "((Scer2,Scerl),Sparl)", which are actually equivalent.

For example, say we have the colored topology "((Scer,Spar),(Scer,Spar))", then these two attempted label-

ings would also be equivalent:

"((Scerl ,Sparl),(Scer2,Spar2))" and "((Scer2,Spar2),(Scerl,Sparl))".

These are equivalent because we can swap the left and right children of the root to turn one tree into the

other. In fact, any node v with children that have the same colored topology beneath them (e.g "(ScerSpar)"

is the common colored topology in the above example) can have its children swapped to create another

attempted labeling. We call such nodes mirrors. This means the number of true labelings is reduced by

half for each mirror node in the tree. Let M(T,R) represent the number of mirrors in tree T, which can be

calculated as follows,

M(T, R) =I{v : v E I(T), C(T, R, leftr (v)) = C(T, R, rightT (v))}|, (5.15)

where

C(T, R,(v) R(v) if v E L(T) (5.16)
{C(T,R,w) : parentT(w) = v} if v c I(T).

The function C(T, R, v) represents a colored topology using nested sets to represent the topology of the

tree. Putting this together, we can define the number of ways of labeling a colored topology as,

N1 (T,R) =2 -M(T,R) H c(T,u)!. (5.17)
UEL(s)

Steps 1 and 2: calculating the probability of a unlabeled gene tree T".

We have shown how the term N (T,R) can be used to compute the topology prior given the probability

P(T2",R|O) of an unlabeled topology T2" being generated by steps 1 and 2 of the DL model. Here, we define

how to compute P(T2",R|O).

In step 2, we use the mapping U to remove labels from the leaves and speciation nodes of tree T'

to produce an unlabeled topology T". When we remove these labels, gene trees that were once distinct

suddenly become equivalent. The probability of an unlabeled gene tree T" is thus the sum of the probability

of all the labeled gene trees 7/ where T" = U(T'). Since each T is equally likely in the model, knowing



how many T' there are for a T" is sufficient for computing the sum. We can imagine going through the gene

tree T' and removing labels from each duplication subtree T' one at a time. When we consider a duplication

subtree T2 we have two cases (i) and (ii).

In case (i) the leaves of the subtree T2 are extant genes that are labeled by their gene names (i.e. L(T2) c

L(T')). We need to ask, how many labeled subtrees would produce the same unlabeled subtree? It is also

equivalent to ask the question in reverse, how many ways can you label an unlabeled topology? Notice, that

we answered this question in the previous section for the entire tree T. When considering the question for a

subtree T2 = sub(T', v, u), we have the difference that all of the leaves of T are from the same species u (i.e.

there is only one color). Therefore, we have a correction factor of

2 -M(T2,R)L(T 2 )!, (5.18)

which is just a special case of Ni(T,R) given in Equation 5.17.

In case (ii) the leaves of the subtree T2 are speciations (i.e. L(T2') C spec(T)) and are labeled, since the

BD process generates labeled trees. The purpose of step 2 is to remove these labels, since ancestral nodes

are supposed to be unlabeled. When we remove these labels, speciation nodes will become indistinguishable

from one another if and only if they contain the same colored topology beneath them. Thus, the leaves of

a duplication subtree T2 are not completely interchangeable. If they were, the correction factor would be

|L(T2 ) J!, the number of ways of relabeling the subtree leaves L(T2). However, many of these labelings imply

equivalent colored labeled topologies. Thus, we must again account for color mirrors. We define M(T, T2 ,R)

to count the number of color mirrors within subtree T2. Thus, the correction factor for each T2 of case (ii) is

N2 (T, T2 , R) =2-M(TT2,R)IL(T2)1! (5.19)

M(T,T2 ,R) =I{v : v E I(T2),C(T,R,leftT (v)) =C(T,R,rightT (v))}|. (5.20)

5.6.4 The full topology prior

Combining the factoring as well as the equations of Chapter 5.6.3, we can compute the probability of a gene

tree topology from the DL model. The full probability of a gene tree topology from the DL model is the

probability of a gene tree being generated from step 1, times the correction factors Ni (T2 ,R) for each case

(i) and N2 (T, T2 , R) for each case (ii), and divided by the final correction factor Ni (T, R) for step (3). Thus,



we have

P(T,R|S,t,,p)=N(TR) 1 1 g(v,u,sub(T,vu)) (5.21a)N(TR) ve-spec(T) uEchild(R(v))

g (v, u, T2) =f (T, T2, R) .LTi)~ p(|L(T2)| + i, t (u))d(u)' (5.21b)
i=0( N2(T, T2,R)H(T2)A|L(T2 ) if L(T2) C I(S)

f(T, T2 , R) = (5.21c)

I N(T 2 ,R)H(T2)1jL(T2 )| if L(T 2) C L(S)

The sum in Equation 5.21 is a sum over how many doomed lineages i might have been present at

node u. Within the sum, we find the probability that a BD process generates the survivors L(T2) that are

present plus i hidden doomed lineages. The term d(u)i is the probability that those i lineages go extinct.

The permutation term describes the number of ways to choose i doomed lineages from the total number of

survivors i+ IL(T2)I-

Although this calculation involves an infinite sum, it can be computed analytically and the total com-

putation of the topology prior takes at most O(IV(T)IV(S)I) run time [6]. Currently, we only consider

reconciliations R that are maximally parsimonious for duplications and losses. This approximation is likely

reasonable, as we find that the true reconciliation is the most parsimonious one in 98% of gene trees simu-

lated using our species tree (Figure 9.1) and independently estimated duplication and loss rates [64], agree-

ing with results from similar studies [32].



5.7 Computing the branch length prior

The final term in our model is the branch length prior P(lIT,R,9), which is the prior probability of the

branch lengths 1 given the topology T, reconciliation R and model parameters 0. This term helps SPIMAP

choose gene trees that have branch lengths that are more reasonable given the time span implied by the

reconciliation and our prior knowledge of the substitution rates.

We will explain the calculation of this term in a top-down fashion, breaking it into smaller parts until

each part is defined. We begin by viewing the branch prior as a marginal over the gene rate g of the family

in consideration,

P(l IT, R, 6)= fP(l g, T, R, 0)P(gIaG, PG)dg. (5.22)

Once conditioned on the gene rate g, many of the branch lengths of T become independent since we

know their common scale factor g. However, those branches that surround a duplication node are still non-

independent because their lengths depend on the time of the duplication, which is unknown. However, if

we partition T into a set of subtrees T by segmenting at each speciation node v E spec(T) (without adding

implied speciation nodes), each subtree r E T will contain branch lengths that are independent of the other

subtrees. In particular, each subtree c is rooted by a speciation node, its leaves are either extant or are

speciation nodes, and all other internal nodes are duplication nodes. We refer to branch lengths for each

subtree t as li, its divergence times as t', and its substitution rates as r'. Thus, 1 = (l(wi),l(w2 ), ---,l(wk))

and t' = ((wI),...,t(wk)) where w1, w2,... ,wk are the non-root nodes of subtree t. Using this notation, we

can continue to factor,

P(1jg, T, R, ) = QP(lijg, T, R,0). (5.23)
'CET

The branch lengths within 1' are non-independent because they depend on the duplication times. How-

ever, if we condition on the branch times t', each branch length 1' becomes a simple function of the branch

rate r7, since I = t'r7. Since we model all branch rates as being independent of one another, we can then

finally factor the branch prior as a product of the probability of each branch length 1i,

P(lt g, T, R, 6) = P( ltIt, g, T, R, 6)P(tT 1g, T, R, )dtT  (5.24)

where P(llt t", g, T, R, 0) = rP(It", g, T, R, 0), (5.25)



and where P(ttfg, T,R, 0) describes the distribution of branch times in subtree t which is defined by the

birth-death process. We have integrated over the branch times t', since they are unknown.

The last term to define is the distribution of a single branch length 1(vi). In the simplest case (see the

next section for a caveat), the distribution can be derived as follows

l(vi) = g x t(vi) x s(vi) - g x t(vi) x Gamma (i,7,PRtv,)) = Gamma (aOR(v) gXt(vi)) (5.26)

where, s(vk) is the species-specific rate for branch b(vk). In our implementation of computing the branch

prior, we integrate over gene rates g (Equation 5.22) by approximating with a summation with equally

probable gene rates. Also, the integral over times t' (Equation 5.25) is performed with Monte Carlo by

sampling from P(tlg, T, R, 0).

5.7.1 Handling implied speciation nodes

One complexity not considered in equation 5.26 is the effect of implied speciation nodes. In such a case,

we can have a branch length 1(vi) that spans multiple species branches. For example, the branch b2 in

Figure 5.3a spans the species B and ui. Also note, that the length of branch b2 is the sum of two smaller

branches: one within species branch B and one within species branch u1. Thus, to complete our description

of the branch prior, we must define the probability P(1(vi)|t(vi),g, T,R,0) for branches that span multiple

species.

To handle these cases, we introduce a topology T' that is defined as the topology T with implied speci-

ation nodes added. Also let l' and t' be the length and time vectors of T', and R' be a reconciliation of T' to

S. For each branch b(vi) = (vi, wi) in T where wi is the parent of vi in T, there is a path p = (vi, ..., wi) in T'.

Let p(vi) be the set of all vertices in p excluding the top node wi. Thus, the branch lengths and times in tree

T can be expressed as sums of branch lengths and times in tree T',

l(vi) = l(vi) and t(vi) = [ t(v'). (5.27)
v'kEp(vi; V'kEp(vi)

The distribution of each l(vk) is the same as the distribution given in Equation 5.26 using R' as the

reconciliation. To define the probability P(1(vi)t(vi),g,T,R,0), we note that l(vi) is simply the sum of

independent gamma random variables, and methods exist to compute this probability efficiently [106].



5.7.2 Branches near the root

If a gene branch contains the root, then it is still distributed by a sum of gamma distributions and thus can

use the same methods developed here. For nodes that reconcile before the species tree root, we still treat

them as being generated by a BD process in the basal branch of the species tree. We model the length To

of the basal branch as expontentially distributed with mean Xo and model the species-specific subsitution

rate as a gamma distributioned random variable with mean and variarance that is the average of the other

species-specific rate distributions.

5.7.3 Distribution of a sum of branch lengths

I will need to be able to calculate the probability of seeing a particular branch length which is the linear com-

bination of independent gammas. First, we know that independent Gammas with the same shape parameter

P add together into another gamma and we know a gamma scaled is another gamma. But what about adding

together several gammas with differing Ps? I have found a citation Moschopoulos 1985[106], that gives a

method for computing the PDF of the sum.

First, M. uses the following definition for the PDF of a gamma distributed variable Xi

fi(xi) =xi exp(-xt/Pi)/{$7(ai)], xi > 0

and fi(xi) = 0 elsewhere. Let Y = X1 +... +X. The PDF g(y) of Y is then

P1 =min$i

n

C=H A1/%i)i
i=1

n

p= ai

yk cxz(l -P/1P1 )/k, k 1, 2,...i=1

=1

S0 =1

1 k+1
8k+1 =k + E i~i~k+1I, k = 0, 1, 2, ...

k +I

g(y) =C Y SkYp 1exp(-y/P,)/[F(p+k) +k
K=O



The CDF of the gamma sum is

G(w)=C 5k (yp+k- le-Y/11[F(p+k) fp+k])dy
k=0

5.7.4 Rapid tree search

To compute the argmax in Equation 5.4c, we search over the space of possible gene tree topologies T, branch

lengths 1, and reconciliations R using a hill climbing approach to find the maximum a posteriori reconciled

gene tree (t, i,). We begin our search with an initial tree constructed using the Neighbor-Joining algorithm

[127]. We use subtree pruning and regrafting (SPR) to propose additional topologies T. For each T, branch

lengths I are proposed using numerical optimization (Newton-Raphson) of the likelihood term P(DII, T).

One unique feature of our search, is that we use the gene tree topology prior P(T, R|O), a relatively fast

computation compared to computing P(D j, T) by 2-3 orders of magnitude, to prescreen topology proposals

for those that are likely to have high posterior probability. Given the best topology T thus far, we make

N E [100, 1000] unique rearrangements Ti and compute their topology prior k; = P(T, Ri 10), where Ri is the

maximum parsimonious reconciliation. As our next proposal we then choose a topology T1 from T1,..., TN

with probability p; = L + (1L-,K)kL, where parameter c E (0, 1) defines a mixing between the weights k; and

the uniform distribution. In practice, we use c = 0.2.

We have found that this simple adjustment to our search strategy greatly increases the speed of finding

the MAP gene tree (Chapter 9 and Table 9.3).



Chapter 6

A learning strategy for gene tree

reconstruction

6.1 An Empirical Bayes strategy for gene tree reconstruction

Our model has several parameters, such as gene duplication-loss rates and substitution rates, that are shared

across all the gene trees in a clade of species. Attempting to learn these parameters while reconstructing all

gene trees simultaneously would be computationally prohibitive. Thus, we have devised two algorithms that

can learn these model parameters from simpler but large genome-wide data prior to gene tree reconstruction.

Using these parameters, especially the substitution rates, greatly increases reconstruction accuracy, more so

than would be possible if gene trees were considered independently (Chapter 9). These two algorithms

constitute a "training" step and represent an Empirical Bayes strategy. In this section, we present the two

training algorithms for estimating (1) the duplication and loss rates Or = (X,p), and (2) the substitution rate

parameters 9b = (aG, PG, a "3) -

6.2 Estimating duplication and loss rate parameters

Our reconstruction method requires parameters for the gene duplication and loss rates 0= (X,p). We

estimate these parameters before reconstruction using an Empirical Bayes approach. To do this, we have

implemented a variant of the method introduced by Hahn et al. [64] to perform a maximum likelihood

estimation (MLE) of these parameters. However, unlike Hahn et al. we do not require ? and p to be equal.

Figure 5.lb illustrates how this estimation fits within the larger phylogenomic pipeline. In this section, we

briefly review the duplication and loss rate estimation method.



The method takes as input a species tree S and set of gene family clusters. For each cluster, we only need

the gene copy number count for each species. Thus, a gene tree is not needed to perform this estimation.

The method assumes that gene counts vary along the branches of the species tree according to a birth-death

(BD) process with constant birth rate X and death rate p. By assuming each gene family started with one

gene copy in the common ancestral species, we can use the model to inferred maximum likelihood estimates

of X and p.

To perform this inference, we build upon results from the BD process. First, consider a single gene

family and a single branch in the species tree. We can compute the probability of a gene copies at the top of

species branch of length t becoming b gene copies at its end by using the following formula [80, 8],

P(B = blA = a, t, X,p) = ai~~) a a+b-j-I a-jpb-jl _ (X_ pj (6. 1a)
j=0 ja -1

e(X-P)t - 1
C = 1 (6.1b)

e(X-Pt -1
=Aa -t_ , (6.lc)X(X-P)t -

where X $ p. For the case where X = p, we have

min(a,b) a af+ b-fj -1I ab2~ aj (.aP(B=b|A=a,t,,p)= ( aab 2J _cj (6.2a)
j=0 a -1
XtC= - (6.2b)

Given these equations, we can now express the probability of observing gene counts as they vary across

the entire species S. Assume for the moment that we knew the gene counts C present at every node of the

species tree. Let C represent a mapping from vertices v E V(S) to integers [0, o), where C(v) is the number

of gene copies that belong to a particular species v. Assuming a BD model for each branch, and given the

number of genes starting at the root of species tree C(root(S)), we can compute the probability of seeing a

family with gene counts C as

P(C|C(root(S)),X,p) = H P(B = C(v)|A = C(parent (v)),t (v),Xp). (6.3)
vEV(S),v54root(S)

In practice, we will only have the gene counts from the extant species L(S). Let us call this mapping

CL : L(S) -* [0,oo). Therefore, the probability P(C'jC(root(S)),X,p) is a marginal of P(CIC(root(S)),X,p)



over all possible gene counts at the internal nodes I(S). Let L(v,x, X,p) be the likelihood of the tree at node

v and below, given C(v) = x. We can then define the likelihood function recursively as

P(CL|C(root (S)) = x, X,p) = L(root(S),x,,p) (6.4)

Fd EP(B= iA =x, X,p)L(c,i,X,p) if v cI(S)
c child(v) i=0

L(v,x,X,p) = I if v E L(S),C(v) x (6.5)

0 if v E L(S),CQV) fx.

For most cases, a decent approximation can be achieved by only computing the first 10 to 20 terms of

the infinite sum above.

Lastly, let us consider the case where we have N gene families. Let F = {CL1, C,..., CL} represent the

extant gene counts for all the gene families, where Cfr is the extant gene count for family i. Since each of

these families evolve independently given X and p, we can compute the total probability of observing these

gene families as the product of the individual family probabilities, namely

1 P(C |C(root(S)),X,p). (6.6)
Cf6F

To compute Maximum Likelihood Estimates (MLEs) of our duplication and loss rate parameters ? and

p, we use a gradient descent method on Equation 6.6. We assume C(root(S)) is 1 for each gene family.

Gene counts F are determined by our gene clustering method which we developed in previously [10].

6.2.1 Estimating duplication and loss rates

We have used this estimation procedure extensively in our evaluation of the SPIMAP method (Chapter 9).

We have implemented a simulation program based on our DL model, which we have used to create gene trees

for the 12 Drosophila and 16 fungi clades (Figure 9.1). The gene trees were simulated with duplication and

loss that were IX, 2X, and 4X the rate of these events in real species. In Table 6.1, we show a comparison of

true and estimated duplication and loss rates for data sets of simulated 12 flies and 16 fungi gene families.



dup/loss actual rates estimated rates
species rate-setting dup loss dup loss
flies 1X,1X 0.0012 0.0012 0.001460 0.001170
flies 1X,4X 0.0012 0.0048 0.001203 0.004607
flies 2X,2X 0.0024 0.0024 0.002467 0.002268
flies 4X,1X 0.0048 0.0012 0.004852 0.001290
flies 4X,4X 0.0048 0.0048 0.004928 0.004608
fungi 1X,1X 0.000732 0.000859 0.000726 0.000805
fungi 2X,2X 0.001464 0.001718 0.001546 0.001705
fungi 4X,4X 0.002928 0.003426 0.002873 0.003102
fungi 4X,1X 0.002928 0.000859 0.002940 0.000879
fungi 1X,4X 0.000732 0.003426 0.000783 0.003237

Table 6.1: Recovery of duplication and loss rates estimated for simulated datasets. For each simulated
dataset we choose duplication and loss rates at IX, 2X, and 4X the rate estimated from real datasets. Above
are the actual rates (events/gene/million years) specified in our simulation program and the rates estimated
from gene counts of the resulting 500 simulated gene trees using the duplication loss estimation procedure.
Estimated rates closely follow true rates for each dataset.

6.3 Estimating substitution rate parameters

The second training procedure that we have developed estimates the parameters of our substitution rate

model from genome-wide data. As discussed previously (Chapter 5.4), our substitution rate model is able

to describe rate variation that occurs in both gene- and species-specific ways. In order to achieve this it

requires the estimation several parameters Ob = (cG, PG, ai,# 3). One unique approach in our method is that

we estimate these parameters prior to reconstruction by analyzing substitution rates from multiple loci with

known phylogenetic trees. Figure 5. 1b illustrates how this estimation fits within the larger phylogenomic

pipeline.

Currently for our training dataset, we use trees of one-to-one orthologous gene alignments (e.g. syntenic

orthologs or unambiguous best reciprocal BLAST hits) where we can be reasonably confident that the gene

tree topology is congruent to the species tree. Fixing the gene tree topology, we estimate the ML branch

lengths for N trees with M =IE(S)I branches each, in order to construct a matrix L of branch lengths, such

that li; is the length of the j1h branch in the i'h tree. We then use the L matrix along with a species tree S and

its branch lengths t to estimate the parameters Ob. Since the gene rates g of these trees are not known, we

treat them as hidden data and use an Expectation Maximization (EM) algorithm to estimate our parameters.



6.3.1 Variables of the model

The variables of the substitution rate training model are as follows. A gene tree will have a gene rate

g, a vector of species rates s (measured in substitutions/site/unit time), and a vector of branch lengths 1

(measured in substitutions/site). Thus, for a single gene tree, we have the following variables

g, 1 l=1,...,lM]T, S= [s1,...,sM] T , t = [ti,...,tM]T, with li = gsiti. (6.7)

For a set of N gene trees indexed by j, we can describe them using the variables

9 = [g1, ---,gN]T , L = [l1,...,IN], S = [S1, ---, SN], with lij = gjsijti. (6.8)

We have designed this method to assume that L is directly observed and is given as input along with the

divergence times t. In contrast, the gene rates g and species rates S are not directly observed and have to be

inferred from the model.

As for the distribution of these variables, recall that gj are i.i.d. by the inverse gamma InvGamma(aG, PG)

and that sij are independently distributed by Gamma(ag, ;). Thus, the distribution of the branch length ma-

trix L is

P(LIt, ,, aG, PG) P(lj It, ,, aG, PG) (6.9a)

o .jP(gjlCG, PG)P(ljgjt, ai/3)dgj (6.9b)

- fj InvGamma(gjlaG,PG) flGamma lij Iai, i ) dgj. (6.9c)

6.3.2 EM method for estimation model parameters

In our EM algorithm, the branch length matrix L is the observed data and the gene rate vector g is the hidden

data. The EM method guarantees that if we use the following iterative method, that we will converge on a

locally maximum likelihood estimate of our parameters.

Obh+1 = argmax f P(g|L, Obh) logP(L,g|9b)dg (6.1Oa)
Ob

= argmax ... P(gL,9bh)logP(L,9b)dg1...dgN- (6.1Ob)

We will show in the rest of this section how to compute this expression efficiently.



First, we take advantage of several independence assumptions from our model. Note, that the variables

gj and 1j for a tree i are defined to be independent from variables g1j and lj, from any other tree j. Therefore,

we can factor the expression as

Obh+1 _ pargmax f P(gk lk,Obh) log17P(lj,gj\0b) dg1...dgN- (6.11)
Ob k

Rearranging the product and logarithm gives us

Obh+1 = argmax ... [P(gklk,Ob h lgP(igj|0b) dg1... dN (6.12a)

=argmax... FP(gk lk,Ob h) logP(lj,gj|0b) dg1...dgN. (6.12b)
Ob j kII

Now, if we pull out the term P(gIli, Obh) from the product, we can move the integrals over g1, ...,gN

within the product

Obk+1 = argmax [... P(gkjlk,b h)] P(gj Ilj, b h)log p(lj,gj 0b)dg1...dgN (6.13a)
Ob jkj

= argmax [F P(gkIlk,Obh)dgk] P(gj Ilj,Obh) logP(lj,gjOb)dgj. (6.13b)

Lastly, we take advantage of the fact that

fP(gk Ik,Ob h)dgk = 1, (6.14)

which gives us the simplified expression

Obh+I = argmaxE P(gj I j, Ob )logP(lj,gjl0b)dgj. (6.15)
Obj

In terms of the overall, EM algorithm, computing the term P(gj l, Obh) (i.e. the probability of hidden

data) constitutes the E-step, which we will outline in the next section. However, before we continue can



simplify this expression further. For example, the term logP(lj,gj I b) can be written as

logP(lj,gjl0b) =logP(ljlg, b) +log P(gjlaG, PG) (6.16a)

= slog Gamma (lifla~~ i )+1ogInvGamma(gjlaG,PG)- (6-16b)

When we plug this term back in, we can move the integrals inward and move the summations outward,

giving us

Obh+1 =argmax P(gj jlj,0bh) log Gamma (ij ai, +logInvGamma(gj jaG,PG) dgj

(6.17a)

argmax P(gjllj,Obh) logGamma lijai, dgij +
9b5 (6.17b)

P(gjIlj,Ob )logInvGamma(gj JaG, PG)dgj]

argmax [ P(gjlj, b h)logGamma (ijjacc, -! dgj +
S 6,, gj 1 ) (6.17c)

Y [f P(g jl j, Ob h) logInvGamma(g jIaG, PG)dgj -

Since each parameter appears within its own term within this summation, we can compute the argmax

by optimizing each term separately. Therefore, we can write the EM optimization as N + 1 argmax equations

ah+1 h+1 =argmaxy, [J P(g Ij, Ob h) logInvGamma(gyjIaG, 3G)dgj (6.18)
a G,PG -G d j( . 8

a+1 +1 =argmaxY [fP(gjllj,Ob )logGamma (ifIla 1 7 i, ) dgj . (6.19)
A 13i Lji

One last restriction we add to the model is to require that the gene rate distribution has a mean of one.

Without this restriction the model is over-parameterized, since a gene rate distribution with a higher mean

could be offset by species-specific rates with lower means. When this restriction is added, the gene rate

argmax can be rewritten as follows

ph+1 = argmax P(gj I lj,ebh) log InvGamma (g I|PG)dgj- (6.20)
PG I



M-step: the gradient

To maximize the equations above, we use the BFGS method which requires the gradient with respect to Ob.

In this section, we give the derivatives of Equations 6.19 and 6.20 with respect to each parameter.

The integrals in Equations 6.19 and 6.20 are approximated by discretizing the gene rate g into K classes

and computing the following lookup tables. The table igtabj,k] represents the gene rate for the jth gene

family and the kth gene rate class, where the table pigtabj,k] gives the probability of that gene rate, namely

P(gj ll, Obh). Populating these tables constitutes the E-step (see next section).

In the following equations, we will use the function f to represent the right-hand side of the argmax,

namely

Obh+I = argmax f(0bh, b). (6.21)
0b

Thus, for equation 6.20, the derivative is

InvGamma' (gj IPG) 1
f = Pgjlbh) dgj (6.22a)

G ) InvGamma(gj) jPG j

InvGamma'(igtab[j, k] IPG)
E pigtabUj,k]- . (6.22b)

j k InvGamma(igtab[j,k]|iPG)

Since this is one dimensional, we will use root finding on its derivative to optimize it. Such a method

may need the second derivative, which is

a2 E a Gamma'(gj| G)
f P(gjIlh, Obh) dgj (6.23a)

a2VG =%G Gamma(gj\%G)

Gamma(gj IG)Gamma' (gj I G) - Gamma' (gG 2
= [ P(gj Ij,b h) G 2  dgJ (6.23b)

Gamma( g j\%G I



The derivative with respect to the lineage rate parameters asi and Pi are

Gammaa (ijli, )
f =( P( g I~li Obb) gj-d g j

Gamma ij I ai, P

Lpigtab[j,k]
jk Gamma (lij ai, igtab jk]t,)

Gamma' (i jda
f =( P(gjlj,0bh gt 1  J

api j f Gamma (li jl~i, g 9tj j

(6.24a)

(6.24b)

(6.24c)

(6.24d)
Gamma' (iij lci, igtab[j,k]t

1k pigtab[j, k]
jk Gamma (iijlai, igtab j,k]t,) igtab[j, k]ti

Derivatives of the gamma and inverse gamma distributions.

For our gradient, we need several derivatives of the gamma and inverse gamma probability distribution

functions, which we give here

-Gamma(xlca, ) =Gamma'(xIa, P)

=e-PF(a)-faa-1 log(x) +log(S)

a Gamma(xIcl, ) =Gamma'(xc, f)

- W(O)(a)d

=xa- 1 F(a)1(a-e-Px x e -X)

Gamma(xlax, P) =Gamma'(xIa, P)

=e )itgm fni a ()[ (X / 1)x) i+ t Poya emma ,f

where Q~x) is the gamma function and W(O)(x) = 1'(x)/F(x) is the PolyGamma function.

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

Gamma'a iij Iai, gti

--



For the inverse gamma distribution, where x = + 1, we have the following first and second derivatives

ap-InvGamma(xp)

a2

~InvGamma(x| ~)

[P-2(1+ P)x+(3+)x 2 +

x(log() +Ilog(l/x))(2(J(x- 1) +x)+$x(log(p) +log(l/x)))+

-2x(p(x- 1)+x+$x(log(p)+log(1/x)))V(O) (1 +P)+

$x2V(o)(1 + @)2 _ pX2,V(1)(1 + p)]

E-step

The goal of the E-step is to compute the probability of hidden data gj given the previous iteration's parame-

ters Obh, which is

P(gjI, Ob) P(ijgj,Ob)P(gj|Ihb)
f P(lj g1 , bh)P(gj|Ib h)dgj

(6.31)

Since P(gjjObh) is the inverse gamma distribution and P(lj[gj,0b h) is the gamma distribution, we can

use conjugate priors to rewrite the probability of the hidden data as

P(g l j,b ) oInvGamma(gj jaG, PG) f Gamma (lijCi, Pi

=InvGamma(gjIa', b').

(6.32a)

(6.32b)

We can derive the parameters (a', b') of the posterior distribution as follows. First we look at the

=(1/r(1 +@)@0exp(-$/x)(1/x)(14+3))

P(x - 1) +x+Px(log(P )+log(1/x)) - PxW(O)(P+ 1)

=(1 /r(1 +@))@Pexp(-@/x) (1/X) (,+4)



probability of the data 1j.

P( 9j, ti b) = Gamma(lj ( P )
=Ilia- exp - F f(ai) -

= lj tig ) ex --l)

mexp -

( S\[1iY
=exp - I \

where

S= A= at.
i ti

Notice the likelihood can be factored such that we have a single term that depends on the parameter of

interest gj and only on sufficient statistics S and n. Since the conjugate prior is proportional to this term, the

conjugate prior is the inverse gamma distribution

InvGamma(xla,b) =-(a) (/X)a+1 exp (-b/x).

Also, we know the posterior distribution is proportional to the product of the isolated term above and

the prior.

___ 
S )1)A

P(gjlj, t, 79') x (l/g )a+1 exp (-b/gj) exp
kgjJb) F(a) gj gj

1 A+a+1 exp (-S+b)
g j gj

xInvGamma(gf a', b'),

where

a' =A +a b'= S +b.



Rewriting these variables in the our notation gives

a' =G + Eci b =PG+j1L
Sti

Thus, we have

P(g 1jy,t,9)=InvGamma gJIaG ± icLL, Gj (6.33)

I have formulated my EM algorithm to use a discretized posterior distribution. First, the probability

distribution function (PDF) is partitioned into W parts indexed by k. For a tree j, the gene rate g associated

with the kth partition will be stored in the table entry igtab [ j, k ] and its probability will be stored in

pigt ab [ j, k I . To cover the range of the distribution, we define divisions around the mode of the distribution,

which for inverse gamma is b'/(a'+ 1).

6.3.3 Extension: multiple gene rates

One possible extension to this model that may be interesting to explore in the future, is to model multiple

gene rates that may exist in distinct parts of the species. This can be done with only a few modifications.

The main idea is to break up the species tree into K subtrees indexed by m, each with their own gene rate

gjm. The tree partitioning can be described by a mapping Q(i) = m, which gives the gene rate partition m

for each branch i E E(S). Let us also define the reverse mapping

G'(m) = {ilg(m) = i}. (6.34)

When we incorporate this extension, the variables for each gene tree becomes

g = [gii-.,gK lzI , --, M] T, S = S,..., SM, T -= [tl,.. T , with li = g()siti. (6.35)

For a set of N gene trees indexed by j, we can describe them using the variables

G = [gi,...,gN]T, L = [l, ..., IN] S=[S1,.--,SN], with lij =gjg(i)sijti, (6.36)



with parameters

aG =(XG1, --- , QGK]; OG =PG1, --- , (GK; a =[C(1, --- , N; 1, --- , N - (6.37)

For notational convenience, let us define the super-script m to denote the subset of branches in within

gene class m,

£7 = [lij(I) = m. (6.38)

The distribution for G becomes

g jr ~InvGamma(XGm, PGm), (6.39)

where each gjm is sampled independently.

Since the gene rate classes are independent, we can factor our usual likelihood function along these

classes, which gives us

P(LIt, a,3, aG,/3 G) = jP(1jt, a,/0, aG, 1G) (6.40a)

K oo

= fj 0  P(1 It, a,3, QGm, PGm)- (6-40b)
j m=1I

We can now treat the terms inside of the product as marginals over the gene rates

P(1T It, a, 3,CCG, PG) j P(1Tgjm It, a, 3, aGm, PGm)dgjm. (6.41)

Next, we can factor out the gene rate probability,

P(l, gjm It ,a, 3 , Gm,3 Gm) =P(I7Igjm,tm af)P(gjm lRGm,PGm) (6.42a)

=InvGamma(gjm IaGm, PGm) P(lij gjm, ti, Xi, Pi)- (6.42b)
is g'(m)

In conclusion, our likelihood function is

P(LIt, a,0, CG, PG) =

H 17jInvGamma(gjm I(Gm, PGm) H Gammalija,, P dgjm. (6.43)
j m 0 icg'(m) gjmti



EM method for multiple gene rates

An EM method for the model with multiple gene rates can be easily constructed from multiple instances of

the EM method for a single gene rate. Notice that in likelihood function of Equation 6.43, we could pull

the product over gene classes m E 1,...,K out as the outer most product. Once this is done all of the model

parameters split into separate groups, one for each gene rate class. Thus optimizing the likelihood for the

parameters in each gene class separately, optimizes the over all likelihood.

6.3.4 Fitting the model

Using gene trees of one-to-one syntenic gene alignment from the 12 Drosophila and 16 fungi clades (Fig-

ure 9.1), we estimated parameters for our substitution rates model. In Figure 6.1, we compare the estimated

distributions of the substitution rates (black lines) to the empirical rates (red lines) seen in the 16 fungi clade.

In Figure 6.2, we show the comparison between the true rate distributions (black lines) of simulated 12 fly

trees with the estimated rates (red lines).
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Chapter 7

Drosophila case study

7.1 New model of sequence substitution rates

Our sequence substitution model was motivated by rate distributions observed in the Drosophila and fungal

genomes [121]. This model provided a key advantage in producing a more informative prior and thus better

reconstruction accuracy.

To understand how branch lengths could be modeled, we revisited our 5154 one-to-one syntenic ortholog

Drosophila gene alignments [121], only this time we built maximum likelihood gene trees with PHYML [62]

while requiring a fixed topology congruent with the Drosophila species tree [136, 66]. Although each of the

gene trees are the same in topology, they vary greatly in branch lengths (Figure 7.1; top row). However, when

we normalized the gene trees by their total branch length to produce relative branch lengths (Figure 7.1;

bottom row), we found the branch lengths to be much similar, although with some variation remaining.

From this, we concluded that we could model gene families as evolving according to a gene-specific

CG4494-PA CGI 3867-PA CG6549-PA CG12630-PA (69188-PA
.56 sub/site .80 su b/site IDO sub/ste 1.26 sub/site 2.01 sub/site

normalized trees

Figure 7.1: Examples of various one-to-one orthologous gene trees. Trees are displayed with absolute
(top) and relative (bottom) branch lengths. Although gene trees vary greatly in total tree length, relative
branch lengths are fairly consistent.
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rate, that is a rate present throughout all branches in a gene tree that effectively scales the branch lengths

together. Thus, a gene evolving fast in -one species, is likely to be fast evolving in all species. In Figure 7.2a,

we show the gene rate (expressed as the total tree length) of two such gene trees. In Figure 7.2b, we show

the distribution of the gene rate across all 5154 gene families. We find that the distribution can be well

approximated by either a gamma distribution (shown in Figure 7.2b) or the inverse gamma distribution (see

Figure 6.3).

Modeling gene-specific rates has been done previously in several contexts [152, 48, 133, 81]. The 12

Drosophila provided a good dataset for testing this approximation for a large number of gene families.

One by-product of the scaling effect of gene rates can be observed in correlations between different

species lineages. In Figure 7.2d, we see the absolute lengths of the D. grimshawi and D. ananassae branches

show strong correlation (r = 0.813) across all 5154 gene trees. This high correlation is also seen for all pairs

of branches in the fly tree (Figure 7.2f), where we find an average correlation of r = 0.61.

However, when we produce the same plots for the relative branch lengths, we see a significantly dif-

ferent picture. For the same two species, we find that the correlation of relative branch lengths between D.

grimshawi and D. ananassae is dramatically lower (r = 0.082). In addition, this reduction in correlation is

present throughout all pairs of species (Figure 7.2; r = 0.09). This indicates that relative branch lengths can

be well approximated as being independent of each other.

When we plot the distribution of the relative branch lengths, we find that we can approximate them with

either normal distributions (Figure 7.2c) or gamma distributions (Figure 6.3). Each of the distributions have

a distinct mean and variance specific to each species. Therefore, we think of these rates as being species-

specific. The mean of each normal distribution incorporates the time duration of that species branch as well

as a genome-wide rate acceleration that is in effect for that species. In our later work, we have separated

these two effects, such that we can isolate true rate changes from time span differences (Chapter 6.3).

We have found these same effects for other species as well. In Figure 7.3, we show the pair-wise

correlations for absolute branches lengths (mean r = 0.37) and relative branch lengths (mean r = 0.01) of

739 gene trees from a clade of 16 fungi. In Figure 6.3, we show how the branch length distributions fit the

gamma distribution.

One likely limitation of this model is that we may only be able to model a gene-specific rate for species

that are some what closely related. For example, between the Saccharomyces and Candida clades there is

less branch correlation than within the clades. Perhaps over long periods of evolutionary time, the function

or architecture of a gene changes significantly enough that it alters the percentage of sites that are free to

substitute without negative effect. Such a scenario might indicate that each major clade could be modeled



with its own independent gene-specific rate. In Chapter 6.3.3, I have presented a model and estimation

procedure that could be appropriate for such data.
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Chapter 8

Candida gene family analysis

8.1 Candida genome sequencing

Invasive candidiasis is the leading cause of death resulting from fungal infections in the United States, and

over 95% of these infections are caused by four particular species: C. albicans, C. glabrata, C. tropicalis,

and C. parapsilosis [115]. Among these species C. albicans is the most prevalent in the human population,

where it acts as an opportunistic pathogen, benignly existing in 80% of people, but occasionally becoming

pathogenic, infecting oral cavities, genitals, and the blood stream. C. albicans can be life-threatening for

immunocompromised patients and is an increasingly frequent cause of infections during hospital care.

The whole-genome sequence of C. albicans (strain SC534) was first published in 2004 [74]. Because

of its pathogenicity, it has been the focus of many anti-fungal agent studies [92, 100, 115], where the use of

gene expression profiles has been an especially useful tool.

The Candida species have also been studied for their unique use of a tRNA that performs a non-standard

translation of the CUG codon to a serine residue instead of the usual leucine [101]. This alternative trans-

lation is common for all the Candida species and is hypothesized to have evolved at the base of the clade

(Figure 8.1). In C. albicans, CUG codons are translated both with the standard and alternate residues in an

apparently stochastic fashion, thus a single gene can express a great number of proteins [56]. It has been

hypothesized stochastic translation may contribute to the species ability to adapt to new host environments

or evade host detection.

In an effort to better understand this species, the Broad Institute along with a consortium of collaborators

at the Sanger Center and the Candida Genome Database (CGD) have sequenced five related fungal species

(C. tropicalis, C. parapsilosis, L. elongisporus, C. guillermondii, and C. lusitaniae) as well as a second

strain of C. albicans, strain WO- 1 [10]. These species, along with two additional species (D. hansenii and



1 sustitionsite

Figure 8.1: Species phylogeny of Candida and Saccharomyces clades. The estimated positions of the al-
ternative CTG translation origin (arrow) and the Saccharomyces whole-genome duplication (star) are in-
dicated. Species that are frequently found in human fungal infections are denoted as "strong pathogens"
(**) and those that are only rarely seen as infectious are denoted "weak pathogens" (*). In our duplication
enrichment analysis, lineages marked in red were assumed to be pathogenic, and lineages marked in dark
red were assumed to be "strongly" pathogenic.

C. dublinensis) sequenced by other projects, represent a clade spanning approximately 100 million years of

evolution.

As part of the genome sequencing project, we were interested in studying the evolving of these species.

One question we focused on in particular was how the varying levels of pathogenicity may have evolved

amongst these species. Figure 8.1 illustrates the distribution of these species on a phylogenetic tree and

how they are related to the Saccharomyces. We have denoted four of the species as "strong pathogens",

indicating that they are frequently found to be the cause of human infections. Another three species, which

we denote "weak pathogens", are also pathogenic, but are rarely seen in human infections. Although most

of the pathogenic species are near each other in the species tree, they are not monophyletic, that is they are

interspersed with non-pathogenic species. Given these genome sequences, can we detect any changes in

their gene content as the level of pathogenicity evolved across this clade?

8.1.1 Phylogenomics approach to Candida evolution

We sought to study the evolution of pathogenicity by using a phylogenomic approach. In particular, we asked

whether the historical transition from non-pathogenic to pathogenic status had left any patterns in their gene



evolution. Moreover, could we identify possible pathogenic related gene families by finding those that show

significantly different evolution within pathogenic lineages compared to the non-pathogenic?

Combining all annotations and computational predictions, the 16 species together contain about 111,745

genes. Since C. dublinensis was not part of the consortium sequencing, it was not included in this analysis.

Using a sequence clustering procedure, we were able to assign 89,924 genes to 9209 families [10]. Families

range from as small as 2 genes to the largest containing 126 glucose transporters which are present in all 16

species (Figure 8.2). There are 2865 families with 16 or more genes, 401 (83.8%) of which are persistent

(black bars), that is they contain at least one gene from each species. 1521 families are specific to the

Candida clade, and 3765 are specific to Saccharomyces.

For each gene family cluster, we aligned protein sequences with MUSCLE ([40]), and mapped coding

sequences onto the peptide alignments (replacing each residue with a codon and every gap with a triplet of

gaps). We then used a preliminary version of our SPI MA P algorithm to reconstruct gene trees for each of the

9209 families. By reconciling each gene tree to the species tree, we were able to infer all gene duplications

and losses (Figure 8.3). We also inferred the appearance of a new gene families. These families exist within

only a subset of the species and contain no easily identified orthologs in the other species. This may occur

due to a significantly new gene architectures created by gene fusion or fission, or due to a high rate of

sequence substitution.

8.2 Gene-specific rates in 16 fungi

Using our gene evolution model, we estimated the gene-specific rate for each family. Similar to our previous

work with Drosophila gene families, we found that the distribution of fungal gene rates can be approximated

by a gamma distribution (Figure 8.4). Of families with at least 10 genes, the fastest 10% of gene rates

are significantly enriched (hypergeometric test) for several Gene Ontology (GO) terms related to adaption,

including regulation (P < 8.8 x 10-15), transcription (P < 8.7 x 10-8), and pseudo-hyphal growth (P <

5.8 x 10~8). In contrast, the gene families with slowest 10% of gene rates are enriched for conserved core

processes such as ribosome related processes (P < 2.4 x 10-46), and translation elongation (P < 6.4 x 10-8).

8.3 Pathogen-associated gene duplication

Within the Candida clade of species, only L. elongisporus and D. hansenii are rarely found in infections,

where as C. albicans, C. tropicalis, and C. parapsilosis are the most aggressive pathogens. Among these
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Figure 8.2: Distribution of family sizes across 16 species of fungi. Of families with 16 or more genes, 83.8%
are persistent (at least one gene present in each species; black bars).
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Figure 8.3: Inferred counts of all gene counts (boxes), gene duplications (green), gene losses (red), and
gene appearances (blue) in fungal species phylogeny. Each branch is labeled with the following: "+gene
appearances + duplications - losses".
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Figure 8.4: Distribution of gene-specific rates in 9209 gene families approximately follows a gamma distri-
bution (a = 6.14, = 0.71).
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family annotation genes PD D L P value FDR gene rate
1. CF7734 Leucine-rich repeat (IFA/FGR38-like) 34 32 32 5 1.le-14 5.2e-11 18.3
2. CF8711 GPI family 18 (Hyr/Iff-like) 66 46 52 11 1.2e-14 5.2e- 11 16.2
3. CF10581 Reductase family 54 30 31 30 1.6e-12 5e-9 2.3
4. CF10326 Ferric reductase family 55 28 30 25 .le-10 2.6e-7 2.4
5. CF1318 GPI family 17 (ALS-like adhesins) 36 27 29 4 2.8e-10 5.2e-7 20.5
6. CF10555 Oligopeptide transporters 44 21 23 11 7.5e-08 1.2e-4 6.7
7. CF9063 GPI family 13 (Pga30-like) 41 22 25 5 1.6e-07 2.0e-4 14.8
8. CF10133 Cell wall mannoprotein biosynthesis 56 18 19 34 1.8e-07 2.0e-4 2.1
9. CF1039 Short chain dehydrogenases 41 14 14 11 8.0e-07 7.3e-4 7.9
10. CF 11051 Major facilitator transporters 32 14 14 17 7.0e-07 7.3e-4 2.0
11. CF739 Unclassified 20 13 13 3 2.2e-06 1.8e-3 15.8
12. CF10190 Amino acid permeases 38 11 11 18 1.6e-05 0.012 1.7
13. CF5137 Sphingomyelin phosphodiesterases 23 11 11 9 1.6e-05 0.012 7.4
14. CF2015 Short chain dehydrogenases 40 13 14 5 2.0e-05 0.012 8.6
15. CF1 1000 RNA binding proteins 26 13 14 43 2.0e-05 0.012 3.0
16. CF10270 GPI family 6 (Pga59/62-like) 29 14 16 32 4.le-05 0.023 1.7
17. CF896 Phosphoglycerate mutase 41 10 10 8 4.4e-05 0.023 7.7
18. CF10316 MFS/sugar transporter 15 10 10 6 4.4e-05 0.023 1.6
19. CF1699 Unclassified 37 16 20 0 9.6e-05 0.046 10.9
20. CF4945 Unclassified 34 13 15 6 9.9e-05 0.046 11.1

Figure 8.5: Families with duplications enriched in pathogenic species. Duplications (D), losses (L), and
pathogenic duplications (PD) were identified by reconciling each gene tree to the species tree.

family annotation genes SPD D L P value FDR gene rate
1. CF7734 Leucine-rich repeat (IFA/FGR38-like) 34 32 32 5 1.8e-17 3.0e-14 18.3
2. CF1318 GPI-family 17 (ALS-like Adhesins) 36 26 29 4 3.5e-1 I 2.9e-8 20.5
3. CF9063 GPI-family 13 (Pga30-like) 41 19 25 5 3.0e-6 1.7e-3 14.8
4. CF739 Unclassified 20 12 13 3 5.4e-6 2.2e-3 15.8
5. CF10333 Formate dehydrogenase 27 12 14 4 2.7e-5 9.0e-3 4.8
6. CF8711 GPI-family 18 (Hyr/Iff-like) 66 30 52 11 3.3e-5 9.2e-3 16.2
7. CF10555 Oligopeptide transporter 44 15 21 11 1.2e-4 0.02 6.7
8. CF7425 FGR6 family (filamentous growth) 13 7 7 1 2.3e-4 0.04 14.5

Figure 8.6: Families with duplications enriched in strong pathogenic species. Duplications (D), losses (L),
and strong pathogenic duplications (SPD) were identified by reconciling each gene tree to the species tree.

species, we expect to find common properties of pathogenesis to be inherited from a common ancestor.

Using our reconstructions of all duplications and losses, we asked if any families are significantly enriched

with genes or duplications from the pathogenic species and lineages (see Figure 8.1 for lineage definitions).

Using the hypergeometric test and requiring a false discovery rate of 5%, we found 20 families signifi-

cantly enriched for duplications within pathogenic lineages (Figure 8.5). In addition, duplications were also

significantly enriched in the "strong" pathogenic species for at least 8 gene families (Figure 8.6).

These families were associated with several pathogenic relevant functions such as the cell wall, transport,

secretion, and filamentous growth. Cell wall and secretion proteins play important roles in adhesion to the

host as well as avoiding detection by the host. Filamentous growth is a stage of growth that C. albicans often



adopts when it is invading host tissue during infection. Lastly, for several of the families we identified, very

little is known about them (CF739, CF1699, CF4945). This analysis suggests that these families may be

related to pathogenesis and may be good candidates for future functional analysis related to pathogenicity.

8.4 Pathogen-associated positive selection

In addition to studying duplication and loss within our families, we also searched for positive selection,

specifically in association with pathogenicity. Using a branch-site model [149], as implemented in PAML,

we looked for positive selection that is specific to only the strong pathogenic lineages (foreground branches:

terminal branches leading to C. albicans, C. parapsilosis, C. tropicalis, and the branch immediately ancestral

to C. albicans and C. tropicalis). We used the gene tree topologies found by SPIMAP and codon aligned

nucleotide alignments for this analysis.

To test for significant positive selection, a Likelihood Ratio Test (LRT) was performed between model A

and its null for each family (for details on PAML's models see [149]). Out of all 9209 families, 4927 families

contained both strong pathogenic and as well as other lineages, and 64 showed significant positive selection

(FDR < 0.001) within the strong pathogenic lineages (Figure 8.7). These families have faster substitution

rates on average, showing a gene-specific rate of 8.13 substitutions/site compared to the overall average of

5.8.

Using the Candida-specific GO SLIM terms [20], we found 18 GO terms enriched within our positively

selected set (Figure 8.8). Many of these terms are similar to the functions found in our pathogenic gene

duplication analysis, although a different set of families were found. For example, 12 families are related

to either hyphal, pseudohyphal, fileamentous growth, or biofilm formation and 6 families were previously

associated with pathogenesis. One such example is the ERG3 family (CF3105), a C-5 sterol desaturase that

is essential for yeast ergosterol biosynthesis[105]. ERG3 has been found to be up-regulated in azole-resistant

strains of C. albicans [76].
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positively
selected other

GO term families families P value FDR fold

cell cycle 13 311 2.1 x 10~ 4  1.3 x 10- 2 3.0

cell wall organization and biogenesis 9 154 2.2 x 10-4 1.3 x 10-2 4.3

external encapsulating structure org. and biogen. 9 154 2.2 x 10~4 1.3 x 10-2 4.3

biological regulation 20 683 3.8 x 10-4 1.7 x 10-2 2.2

growth 12 319 9.5 x 10-4 3.4 x 10-2 2.8

hyphal growth 7 119 1.1 x 10-3 3.4 x 10-2 4.3

filamentous growth 11 288 1.4 x 10-3 3.6 x 10-2 2.8

regulation of cell size 6 94 1.7 x 10-3 3.9 x 10-2 4.6

regulation of biological process 16 555 2.0 x 10-3 4.1 x 10-2 2.2

biofilm formation 3 20 3.1 x 10-3 4.4 x 10-2 10.0

symbiosis 7 144 3.2 x 10-3 4.4 x 10-2 3.6

interspecies interaction between organisms 7 145 3.3 x 10-3 4.4 x 10-2 3.5

anatomical structure morphogenesis 8 191 3.9 x 10-3 4.4 x 10-2 3.1

anatomical structure development 8 191 3.9 x 10-3 4.4 x 10-2 3.1

regulation of cellular process 15 539 4.0 x 10~3 4.4 x 10-2 2.1

regulation of biological quality 8 194 4.3 x 10-3 4.4 x 10-2 3.0

pathogenesis 6 114 4.4 x 10-3 4.4 x 10-2 3.8

pseudohyphal growth 4 48 4.4 x 10- 4.4 x 10-2 5.9

Figure 8.8: Gene Ontology (GO) terms enriched in the 64 families positively selected in the pathogenic

lineages. P values were calculated using the hypergeometric test. Many GO terms describe functions or
features related to pathogenicity (e.g. hyphal, pseudohyphal, fileamentous growth, biofilm formation, etc.).
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Chapter 9

Extensive benchmarks for phylogenomics

9.1 Phylogenomic datasets

To evaluate our approach for gene tree reconstruction, we have reconstructed gene trees for both real and

simulated datasets. For our real dataset, we have used 16 fungi species (Figure 9.1 a) whose genomes have

been sequenced to either draft or high coverage quality [55, 79, 18, 78, 74, 35, 31, 10]. For our simulated

datasets, we simulated gene alignments that share many properties of real gene trees, by using a model with

parameters estimated from real datasets. Thus, we have simulated gene trees that capture the properties of

the 16 fungal genomes as well as 12 fully sequenced Drosophila genomes [1, 123, 17] (Figure 9. 1b). By

using both clades, we can evaluate the performance of phylogenetic methods across a variety of species tree

topologies, divergence times, and gene duplication and loss rates.

For the species trees, we obtained the topologies and divergence times from several data sources. For the

16 fungi, we used the species phylogeny as constructed in Butler et al. [10] and estimated time divergence

using the r8s program [128] with an estimate of 180 million years [101] for the clade depth (Figure 9.1a).

For the 12 flies, we used the same topology and divergence times as used in several recent studies [136, 66]

(Figure 9.1b).

9.2 Training SP I MA P's model parameters

To run SPIMAP in our evaluations, we applied our training algorithms to estimate the parameters of our gene

family model. These parameters were also used to generate the simulated datasets. Here, we describe how

we prepared the input data for our training procedure for both the 16 fungi and 12 Drosophila datasets. Our

training procedure contains two methods: one to estimate our substitution rate parameters Ob = (PG, a ,3)
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Figure 9.1: Species and phylogenies used in evaluation. (a) Phylogeny of 16 fungal species used for the

reconstruction pipelines of real and simulated evaluation datasets. The phylogeny was estimated in [10] with

divergence times estimated by the r8s program [128] assuming 180 million years [101] for the divergence

depth. (b) The phylogeny of 12 Drosophila species used in our simulation evaluation. Phylogeny was

estimated by Tamura et al 136].

and one to estimate our duplication and loss rates 0, = (X,p).

The first method (Estimating substitution rate parameters) estimates our substitution rate parameters

from a dataset of one-to-one orthologous gene trees that are congruent to the species tree. To obtain such

trees, we identified families that are highly likely to be one-to-one orthologous (i.e. one gene from each

species in the clade). For the 16 fungi, we previously identified 739 confident one-to-one orthologous

families [10]. This was done by identifying synteny blocks containing at least 3 consecutive genes and

spanning across the Saccharomyces or Candidae clades. Pairs of syntenic clusters with best reciprocal

BLAST hits spanning across the clades were merged, resulting in 739 families. For the 12 flies clade,

we previously identified 5154 one-to-one families where genes belong to a synteny block spanning all 12

species and contains at least three consecutive genes along each chromosome [121]. Next, for each one-to-

one family, we made peptide multiple alignments using MUSCLE [401. Coding sequences were mapped

onto the alignments to produce codon-aligned nucleotide alignments, substituting every amino acid with the

corresponding codon and every gap with a triplet of gaps. PHYML v2.4.4 [62] was run on each nucleotide

alignment using the HKY+1'+I model and a fixed topology (congruent with the species tree), resulting in

estimates for the branch lengths of each gene tree. Lastly, these branch lengths L were used in our EM

method to estimate the model parameters (Figure 6.2 and Figure 6.3).

The second method (Estimating duplication and loss rate parameters) estimates our duplication and

loss parameters from gene counts present within gene family clusters that contain duplications and losses.

For the 16 fungi, we used gene counts from gene families previously clustered [10] to estimate the gene



duplication and loss rates 2 = 0.0007 3 2 ,p = 0.000859 (events/gene/million years). For the 12 Drosophila

clade, we used the duplication and loss rates 2 = 0.001 2 ,p = 0.0012 that were previously estimated [66].

9.3 Reconstructing gene families from 16 fungi

In our first evaluation, we analyzed the performance of SPIMAP versus several other popular phylogeny

programs on a dataset of 16 fungi species. We have included three "traditional" methods: PHYML v2.4.4

[62] (Maximum Likelihood), BIONJ [53] (Neighbor-Joining), and MrBayes v3.1.1 [125] (Bayesian). We

have also evaluated several other methods that use species-related information, which we call "species tree

aware". These include our previous method [121] SPIDIR, SYNERGY [145], and PRIME-GSR [3].

For our 16 fungi real dataset, we downloaded coding sequences and peptides from the January, 2009

update of fungi dataset used by the SYNERGY method [145, 146]. By using this data as the input for all

the other methods, we can compare against the trees constructed by SYNE RGY (also downloaded from the

January, 2009 update). We focused the analysis on the same 16 species as used in [10], which is a tree that

also agrees with the one used by SYNERGY. We used the same gene clusters as defined by SYNERGY's

trees, in effect using SYNERGY as the clustering step for the phylogenomic pipeline (Figure 5.la). Peptide

alignments were made using MUSCLE [40] and coding sequences were mapped onto them to produce nu-

cleotide alignments. In addition, from the nucleotide alignments, we also produced RY-encoded alignments,

which only indicate whether a base is purine (R) or pyrimidine (Y). No other information from SYN E RGY

trees was made available to the other methods.

We used the following parameters for each of the methods. For PHYML and BIONJ, we used a

HKY+1'+I model of nucleotide substitution. We configured MrBayes with four chains, an automatic stop

rule, a 25% bum-in, sampled every 10 generations from a total of 10,000 generations, a 4by4 model for

nucleotides, and enforced a binary tree. For methods that do not produce reconciled trees (i.e. PHYML, Mr-

Bayes, BIONJ), we have used maximum parsimonious reconciliation (MPR) to infer duplications and losses.

For SPIDIR, we used duplication and loss penalties of .001 and an error cost of -600. For PRIME-GSR,

we used 50,000 iterations, the JTT model, gamma distributed rates, and our own species tree (Figure 9.1).

The tree search was initialized by an ML tree found by PHYML. We also ran PRIME-GSR with 1,000,000

iterations (as recommended by Akerborg et al. [3]) but for only 500 trees randomly chosen from the dataset

in order to limit the computational run time. SPIMAP was executed with two settings: "long" (2000 itera-

tions with 1000 prescreening iterations) and "short" (100 iterations with 1000 prescreening iterations). For

all other programs and options, defaults were used.



Table 9.1: Evaluation of several phylogenetic programs on gene trees from 16 fungi
Program % Orthologsa # Orthologsb # Dupb # Lossb avg. run time

SPIMAP (quick)c 96.2% 550,800 5,541 10,884 1.0 m
SPIMAP (long)' 96.5% 557,981 5,407 10,384 21.9 m
SPIMAP (iid)d 93.9% 547,976 6,201 13,428 21.6 m
SPIDIR 83.3% 524,292 10,177 33,550 2.2 m
SYNERGY 99.2% 595,289 4,604 8,179 -e
PRIME-GSR (quick)" 88.9% 527,153 7,951 21,099 53.1 m
PRIM E-GSR (long)" 90.7% - - - 20.7 h

MrBayes 63.9% 460,510 21,307 65,238 43.2 s
PHYML 64.2% 464,479 21,264 64,391 45.3 s
BIONJ 60.4% 439,193 22,396 71,231 0.5 s

a Percentage of syntenic orthologs recovered.
b Number of pair-wise orthologs, duplications, and losses inferred from trees.
c Both SPIMAP and PRIME-GSR were run with a few iterations ("quick") of 100 and 50,000 and with
many iterations ("long") 2000 and 1,000,000.
d SPIMA P was also run using a i.i.d. species-specific rate model.
e Since SYNERGYtrees were downloaded, no run time was estimated.

Although, a ground truth is not known for real datasets, we have used several informative metrics to

assess the quality of gene trees, gene duplications, and losses inferred by these methods. Each of these

metrics also illustrate different advantages and short-comings of each method.

9.3.1 Recovering syntenic orthologs

The first metric we investigated was the ability to infer syntenic orthologs - pairs of genes that are highly

likely to be orthologous given their surrounding conserved gene order. Although not all orthologous pairs

are syntenic, synteny information does allow us to identify a conservative set of orthologous genes using a

method independent of phylogenetics, and thus provides a useful gold standard to test against. See Chap-

ter A.2 for a description of our synteny determination method. When we construct trees on families that

contain such genes, we expect a syntenic gene pair to appear within the reconstructed gene tree such that

their most recent common ancestor is a speciation, and thus are inferred as orthologs.

SPIMAP recovered syntenic orthologs with 96.5% sensitivity followed by PRIME-GSR at 88.9% and

PHYML at 64.1% (Table 9.1). Since SYNERGY uses synteny as one of its inputs, this test alone cannot

assess its accuracy, and indeed 99.2% of syntenic genes are orthologs in SYNERGY's trees. When given

more iterations, P R I M E -GS R's accuracy increases to 90.7% but computational time increases dramatically,

24-fold from 53 minutes to 20 hours. In contrast, SPIMAP achieved its accuracy of 96.5% in 29.1 minutes



S. cerevisiae 0.3291 0.1907 0.2050 0.2752 0.5341 0.4659 0.6044 0.3956

S. paradoxus 0.3276 0.1921 0.2065 0.2738 0.5341 0.4659 0.6014 0.3986

S. mikatae 0.3311 0.1873 0.2045 0.2772 0.5356 0.4644 0.6083 0.3917

S. bayanus 0.3225 0.2024 0.2109 0.2643 0.5334 0.4666 0.5868 0.4132

C. glabrata 0.3278 0.1901 0.2141 0.2680 0.5419 0.4581 0.5958 0.4042

S. castelii 0.3397 0.1775 0.1979 0.2849 0.5376 0.4624 0.6246 0.3754

K. waltii 0.2891 0.2267 0.2332 0.2511 0.5222 0.4778 0.5401 0.4599

K. lactis 0.3218 0.1909 0.2089 0.2784 0.5307 0.4693 0.6002 0.3998

A. gossypii 0.2551 0.2494 0.2739 0.2217 0.5290 0.4710 0.4767 0.5233

C. albicans 0.3492 0.1659 0.1863 0.2987 0.5354 0.4646 0.6479 0.3521

C. tropicalis 0.3476 0.1603 0.1847 0.3075 0.5323 0.4677 0.6551 0.3449

L. elongisporus 0.3286 0.1930 0.2113 0.2671 0.5400 0.4600 0.5957 0.4043

C. parapsilosis 0.3244 0.1869 0.2112 0.2775 0.5356 0.4644 0.6020 0.3980

D. hanseni 0.3368 0.1721 0.2023 0.2887 0.5391 0.4609 0.6256 0.3744

C. guillermondii 0.2909 0.2217 0.2255 0.2619 0.5164 0.4836 0.5528 0.4472

C. lusitaniae 0.2779 0.2290 0.2375 0.2556 0.5154 0.4846 0.5334 0.4666

standard deviation 0.0264 0.0244 0.0215 0.0199 0.0078 0.0078 0.0454 0.0454

CV 8.29% 12.46% 10.08% 7.33% 1.47% 1.67% 7.69% 11.10%

Table 9.2: Stability of purine (R) and pyrimidine (Y) frequency across fungal species. Although within

coding sequence, GC content varies greatly across the 16 fungal species (standard deviation 0.0454), the

frequency of purines (R) and pyrimidines (Y) is more consistent (standard deviation 0.0078, coefficient of

variation (CV) 1.47%-1.67%).

on average per tree, and can achieve as much as 96.2% accuracy even when limited to an average run

time of 1.0 minute ("quick" mode). Also, SPIMAP achieves 96.3% ortholog accuracy when assessing the

same 500 tree subset as PRIME-GSR's "long" mode. Note that the species tree aware programs (SPIMAP,

SYNERGY, and PRIME-GSR) predict as much as 20% more ortholog pairs than the leading competing

traditional program (PHYML).

For SPIMAP, performance was greater on RY-encoded alignments (96.5%) versus the full nucleotide

alignments (92%, data not shown). This is likely due to that fact that the nucleotide alignments contained

a GC bias that varies across species (Table 9.2), thus violating the stationarity assumption made in our

implemented sequence evolution model (HKY). Reconstruction accuracy of PHYML and MrBayes was

slightly diminished on RY-encoded alignments (63.0% and 61.1%, respectively), mostly due to the their

lower information content.

One important distinction between SPIMAP and PRIME-GSR is that SPIMAP models species-specific

rate variation. To investigate the effect of this difference, we configured SPIMAP to learn an i.i.d. rates

model, similar to PRIME-GSR. For each branch, our modified training step estimated (ci = 2.819, i =

663.0) as the parameters for the i.i.d. gamma distributions. Reconstructing gene trees using these parame-

ters, we found fewer syntenic orthologs (93.9%) and greater numbers of duplications and losses.

W (AT) S (GC)A C G T R (AG) Y (CT)
species



9.3.2 Counting duplication and loss events

Second, we evaluated the total numbers of duplications and losses inferred across the clade (Figure 9.2).

We found similar estimates between SPIMAP and SYNERGY(5,407 vs. 4,604 duplications and 10,407 vs.

8,179 losses). In contrast, traditional methods that do not use the species tree, infer many more events on

nearly every branch, especially for short interior branches. The distribution of duplication and loss events

that occur within each gene tree is illustrated in Figure 9.3. Interestingly, each of the other traditional

methods inferred over four times as many gene duplication events and six times as many gene loss events as

SPIMAP. For the traditional methods, duplications are more frequent near the root of the species tree and

losses are more frequent near the leaves, a pattern suggesting that these events are erroneous [63].

9.3.3 Duplication consistency score

With our third metric, we sought to characterize the plausibility of the inferred duplications using the du-

plication consistency score, introduced by Ensembl for evaluating their phylogenomic pipeline [143]. The

consistency of a duplication node with children I and r, is define as |AfnBI/IAUBI, where A and B are the set

of species represented in descendants of I and r, respectively (see example in Figure 9.4a). The consistency

score is designed to detect duplications that are wrongly inferred due to phylogenetic reconstruction errors,

since such false duplications are often followed by many compensating losses [63, 143] (i.e. low species

overlap |A n BI). Figure 9.4 depicts the distribution for the duplication consistency score for each program.

Both SPIMAP and SYNERGY showed similar consistency distributions that are heavily shifted towards 1

(47.8%-49.0% and 4.2%-17.2% of duplications with a score of 1 and 0, respectively; Figure 9.4). The tra-

ditional methods have many low scoring duplications (<11% and >70% with scores 1 and 0, respectively),

an effect seen previously [143]. PRIME-GSR's distribution lies in between these extremes with 30.0% and

42.1% for scores 1 and 0, respectively. Lastly, the i.i.d. version of SPIMAP also scored lower than SPIMAP,

inferring 10% more duplications with a consistency score of zero (Figure 9.4).

9.3.4 Recovering gene conversions

The four metric was specifically designed to test the case where species-level information is misleading,

effectively testing the ability of species-aware methods to properly weigh species information against con-

flicting sequence information.

The fungal clade contains a whole-genome duplication (WGD) event, such that every gene duplicated

simultaneously followed by many gene losses [148, 78]. Of the paralog pairs that are still present in the S.
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Figure 9.2: Total counts of duplications and losses inferred on the 16 fungi species phylogeny by SPIMAP
(left), SYNERGY (right) and PHYML (bottom). Both SPIMAP and SYNERGY find similar numbers
of events while PHYML infers many more ancient duplications followed by many compensating losses.
Duplications for each branch are indicated by green text and bars, losses are indicated by red text and bars,
and gene appearances are indicated by blue text and bars. Thickness of bars is proportional to the number
of genes duplicated, lost, appearing, or inherited. The total thickness of the branch represents genome size
along each branch.
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Figure 9.3: Distribution of gene duplication (horizontal) and loss (vertical) events per gene tree as inferred
by SP IMA P for the 16 fungi dataset (5351 trees).
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Figure 9.4: The duplication consistency score for assessing phylogenetic methods. (a) Duplication con-
sistency score, computed on two example trees. For each duplication node (star), this score computes the
number of species present in both the left and right subtrees divided by the total number of species de-
scendant from the duplication node. Erroneous duplications show an increased rate of compensating losses,
and thus lower scores. (b) Cumulative distribution of duplication consistency scores for all duplications
inferred in the 16 fungi dataset by each method. SPIMAP (blue) and SYNERGY (green) perform best ac-
cording to this metric, having the fewest duplications with low consistency scores. SPIMA P trained with an
i.i.d. model similar to PR I M E-GS R (dashed blue) infers duplications with overall lower consistency scores.
These are followed by PR IM E-GSR (dark green) and SPI DI R (dashed light blue) that show more moderate
performance. Lastly, the three traditional methods implemented in the programs MrBayes, PHYML, and
BIONJ, all have similar and significantly lower score distributions.
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Figure 9.5: Inferred duplication times for recent S. cerevisiae gene conversions. (a) Typical gene-tree
topology for 37 paralogous gene pairs originally arising from whole-genome duplication (WGD) and pre-
viously reported [52] to have undergone gene conversion events (small star) near or after the speciation of
S. cerevisiae and S. bayanus, such that one gene copy (green) is replaced by the other (red), followed by
subsequent nucleotide divergence (orange). The correct inferred duplication of the two S. cerevisiae par-
alogs (red and orange lines, denoted 1 and 2) should occur within the time span indicated by the top brown
bars. However, we expect methods that are heavily biased to follow the known species tree to incorrectly
infer these events further up the tree. (b) We evaluated both traditional and species-aware methods in their
ability to recover the correct trees in these cases, and report the counts of where different gene conversion
events are inferred for each method. We find that both SPIMAP and PRIM E-GSR, as well as all traditional
methods find the vast majority of these paralogs duplicates near or after S. bayanus speciation. However,
SYNERGY incorrectly infers a WGD topology, most likely due to strong reliance in synteny information
which is misleading in this case.

cerevisiae genome, 37 of them have a Ks less than the average Ks between the S. cerevisiae and S. bayanus

genomes of 1.05, indicating that these paralogs have undergone recent gene conversions near or after the

speciation of the S. cerevisiae and S. bayanus lineages [52] (see an example in Figure 9.5a). Also indica-

tive of gene conversion [110], these genes have a significantly elevated GC frequency of 42.0% in the third

codon position, compared to a frequency of 37.9% for all S. cerevisiae genes (P< 1.7-09; Mann-Whitney U).

Of these paralogs, SPIMAP infers 15 of them happening after the S. bayanus speciation and 31 after the

C. glabrata speciation (Figure 9.5b). In comparison, SYNERGY infers none of the paralogs duplicating

after the S. bayanus speciation and only 1 after the C. glabrata speciation. Instead 34 of the 37 paralogs

are inferred as occurring on the branch containing the WGD, thus indicating that synteny information be-

tween S. cerevisiae and other post-duplication species overrides sequence information in the vast majority

of cases. For 33 families, the SPIMAP-constructed tree has a higher likelihood than the SYNERGY tree

and for 22 families the likelihood is significantly higher (P<.01; SH-test). In contrast, SYNERGY never

has significantly higher likelihood.

Together these four metrics applied to real gene trees from 16 fungi suggest that SPIMAP often out-



performs both traditional and species-aware methods. From these trees, we observe what appears to be an

over estimation of duplication and loss events by the other methods, an error which has been observed in

previous empirical studies [63]. To better understand how phylogenetic errors influence the accuracy of

event inference, we turn now to simulated data.

9.4 Reconstructing simulated gene trees

To test our method on a dataset where the correct phylogeny is unambiguously known, we implemented a

simulation program based on our model for gene family evolution. Our intent was to make the simulations

realistic by capturing the same gene and species-specific rate variation as well as gene duplication and loss

rates as seen in real gene trees. Thus, the same model parameters and species phylogeny were used as those

estimated for both the 12 flies and 16 fungi clades.

For each clade, we simulated 1000 gene trees and generated the corresponding nucleotide alignments

(Figure 9.6 and Figure 9.7). Next, we reconstructed gene trees from these simulated alignments using

SPIMAP and the other traditional phylogenetic methods. Since PRIME-GSR uses an i.i.d. model for

species-specific rates, we choose to exclude it from this analysis (see Search efficiency for a comparison).

SPIMAP's substitution rate parameters were estimated on a simulated dataset with no duplications and

losses (Figure 6.2 and Figure 6.3). Its duplication and loss parameters were trained from the gene counts of

each simulated dataset (Table 6.1).

First, we measured topology accuracy across all of the methods. SPIMAP outperforms the other pro-

grams by 7%-29% on the simulated 12 flies dataset and by 52%-81% for the 16 fungi dataset (Figure 9.8a).

The accuracy improvement for SPIMAP is larger on the fungi dataset, which has a more complex and

divergent phylogeny.

Second, we assessed partial topology correctness using the percent of branches accurately reconstructed.

For the flies, SPIMAP consistently performs better but by only a few percent (Figure 9.8b). However, for

the fungi, SPI MA P again shows a larger accuracy improvement at 20%-39% over other methods.

Third, we looked at the percentage of orthologs inferred correctly, where we noticed a surprising trend.

Although topologies and branches had high error rates for many methods, there was also a high percentage of

correctly inferred ortholog pairs (Figure 9.8c). Upon closer inspection, we found that often when a branch

is misplaced it only disrupts a small fraction of the pair-wise orthologs. Thus, it appears that orthology

discovery at the pair-wise level is quite robust to phylogenetic errors. In addition, we noticed that false

positive orthologs calls are rarely made, although false negatives are more frequent, especially on the fungal



clade.

Fourth, we looked at the accuracy of inferring gene duplications and losses, which is very important

for studies interested in study the rate of such events. As opposed to the ortholog pair-wise metric, we

find that duplications and losses are very sensitive to phylogenetic errors. Notice, that although branch

accuracy may be high for some programs and datasets, even a small number of errors can lead to dramatic

overestimation duplications and losses (Figure 9.8c,d and Figure 9.10). In general, all programs are able to

recover duplication and loss events for the flies and fungi datasets with similar sensitivity (<6% difference,

with SPIDIR and BIONJ as outliers). However, in terms of precision SPIMAP has a dramatic improvement

in event estimation: 21%-27% and 45%-53% for the flies duplication and loss, respectively, and 58%-69%

and 75%-80% for fungi duplications and losses (with BIONJ as an outlier in each case). This 2 to 3 fold

over prediction of events by the other phylogenetic methods (Figure 9.8c,d) is an effect similar to that seen

in the real data.

Lastly, we find that these results also hold when simulations are performed with unusually high duplica-

tion and loss rates at twice (2X) and four-times (4X) the estimated true rates (1X). We performed simulations

with five different settings IX- IX, 2X-2X, 4X-4X, 4X- IX, 1X-4X for duplication and loss rates respectively.

We find that SPIMA P has increased performance for topology, branch, and event accuracy for all of these

rate settings (Figure 9.9).

9.5 Search efficiency

In addition, to evaluating reconstruction accuracy we also evaluated reconstruction speed. Our goal with

SP IMA P, was to develop a method that is feasible enough to include in a phylogenomic pipeline containing

thousands of trees and a variety of family sizes.

From the reconstruction of genes from our real dataset (Table 9.1), we found that SPIMA P has an aver-

age reconstruction time per tree (1.0 minutes) that is only slightly longer than that of PHYML (43.2 seconds).

To investigate how our search strategy influences reconstruction run-time, we generated a simulated dataset

of 500 gene families using 16 fungi species tree. For this simulation, we used i.i.d. species-specific rates

(ci = 2.819, Pi = 663.0), no variation occurs in the gene rate, and the Jukes-Cantor model. We also used

the same gene duplication and loss rates as estimated from real fungi gene families (X = 0.000732,p =

0.000859). SPIMAP's substitution rate model was trained on a dataset with the same parameters but no

duplications and losses. The parameters used by SPIMAP during reconstruction are given in Figure 6.4.

Although, we have not implemented many optimizations for SPIMA P, our prescreening search strategy

100



Table 9.3: Evaluation of search time for several phylogenetic methods
Program iterationsa prescreensb bootstraps topology branch run time

PHYML - - 0 26.0% 83.9% 25.8 s

PHYML - - 100 26.0% 83.9% 13.9 m

SPIMAP 50 1 0 32.4% 81.4% 7.2 s
SPIMAP 100 1 0 50.8% 87.1% 12.7 s
SPIMAP 500 1 0 83.8% 96.0% 1.2m

SPIMAP 1000 1 0 88.6% 97.5% 2.0 m

SPIMAP 50 100 0 84.8% 96.7% 8.5 s

SPIMAP 1000 100 0 90.8% 98.1% 2.3 m

SPIMAP 50 100 100 86.4% 97.1% 11.1 m

a Number of iterations used for each method.
b Number of prescreening iterations used for SP IMA P.

allows SPIMA P to compete with the highly optimized PHYML program (Table 9.3). We believe this is be-

cause the gene family model, through the use of the species tree in the prior, produces a posterior distribution

that is far more concentrated than the likelihood. Thus, many seemingly equivalent trees from a likelihood

perspective are significantly different based on their priors and posteriors. In addition, our prescreening

search strategy (Rapid tree search) appears to greatly help in speeding up discovery of the MAP gene tree.

For example, with no prescreening, SPIMAP achieves a topology accuracy of 32.4% with an average run

time of 7.2 seconds. By using 100 prescreening iterations, accuracy increases to 84.8% while run time only

increases to 8.5 seconds. For comparison, PHYML achieves 26.0% topology accuracy in about 25.8 seconds

on average.

SPIMA P is currently implemented as a Maximum a posteriori (MAP) method, thus if branch support

values are needed, bootstrapping will be required. Given the speed of our search, we can perform 100

bootstraps in about 11.1 minutes to achieve 86.4% accuracy. This run time is comparable to 100 bootstraps

of PHYML at 13.9 minutes and 26.0% accuracy. Thus, bootstrap analysis is quite feasible for SPI MAP, and

the method should be efficient and practical enough for any pipeline that uses phylogenetic programs with

run times on the order of PHYML's.

Lastly, we evaluated the influence of run time and family size on reconstruction accuracy. Using the

same parameters above, we simulated more gene trees from the 16 fungal species tree and divided them into

six classes based on the their number of extant genes: 5-9, 10-19, 20-29, 30-39, 40-49, and 50-59. Each

size class was populated with 100 simulated trees and alignments. SPIMAP was run in two modes, one

without bootstrapping (1000 iterations and 100 prescreens) and one with 100 bootstraps (100 iterations and

100 prescreens). For the middle gene size class 20-29, SPIMAP achieved average run-times of 5.3 minutes



and 50.4 minutes, respectively. For each dataset, PRIME-GSR was also executed, using the same amount

of time as SPIMAP, which required 7300 iterations (quick mode) and 77,000 iterations (long mode) . We

find that for smaller trees with 5 to 29 extant genes, that both SPIMAP runs and PRIME-GSR's long mode

achieve similar topology accuracy in the range of 80%-100% (Figure 9.11). However, for larger gene trees

with 30-49 extant genes, as accuracy degrades for all methods, both modes of SP IMA P have a 20% increase

in topology accuracy over PRIME-GSR. Improvements in inferring duplication and loss accuracy is also

seen for the larger trees (> 10% increase in duplication precision and > 30% increase in loss precision).
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Figure 9.6: Distribution of observed gene duplication (horizontal) and loss (vertical) events per tree in the
simulated 12 flies dataset (500 trees each). Event distributions are shown for each of the 5 duplication and
loss rate settings. These rate settings provide a variety of gene tree sizes for evaluating the phylogenetic
methods.

103



du.loss = IX, IX
1 1 1

20 12 5 4 2

58 62 27 6 2 1 2

8 12 3 4 1 1

2 5112 17 6 3 2

0 1 2 3 4 5 6 7 8 9

dup,loss = 4X, 1X
6 1 1 1
5 1 2 1 3 1 1 1
4 2 1 1 3 1 2 5 1 3 1 1 1 1
31 5 7 6 6 6 5 3 2 1 5 1 2 1 1 3
25 22281728202411165 8 7 6 3 6 1 2 1
122385614438311312148 3 3 1 1 1
021444672553727227 8 7 3 1 2 1 1

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20

dup,loss = 2X, 2X
7 1

1

4 2

10 6

1 1

4

2 4

3 5

15 5

6 8

3

11
2 1 1

1 1 2

1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

dup,loss =IX, 4X

2 2

7 2 3

6 3 11 4 1

5 28 15 13 4 1

44 45 11 4 2 1

3 358 28 4 1

2 0 67 22 3 2

1956 11 4 3

0 65 29 8

0 1 2 3 4 5

11 dup,loss = 4X, 411
10 1 1 1
92 1 1 1

8 1 3 2 2 1 1 1
7 2 2 7 8 4 2 2
6 3 4 5 3 7 3 5 2 2 4
53 101315126 7 9 7 3 2 2
41527232022158 4 6 3 1
3 2847433621129 8 5 3 1
2 315136441819123 2 2 1 1
144462927136 4 3 1 4 1
01516159 8 4 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 9.7: Distribution of observed gene duplication (horizontal) and loss (vertical) events per tree in the
simulated 16 fungi dataset (500 trees each). Event distributions are shown for each of the 5 duplication and
loss rate settings. These rate settings provide a variety of gene tree sizes for evaluating the phylogenetic
methods.
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Figure 9.9: Reconstruction accuracy at increasing duplication and loss rates. Accuracy is measured for
(a) topology, (b) branch, and (c) pair-wise orthology on both the 12 Drosophila and 16 fungi simulation
datasets. 1000 alignments were simulated for each duplication and loss rate setting. Simulations were done
with the same rates of duplication and loss as found in the real datasets (1,1), with twice the rate (2,2),
and four times the rate (4,4). We also simulated more extreme cases such as 1,4 and 4,1. SPIMAP shows
consistently higher accuracy in both clades, especially in the fungi due their larger trees. Orthology accuracy
appears more robust to phylogenetic errors and is fairly high for many of the methods. PRIM E-GSR was
evaluated on this dataset since this data is not simulated with i.i.d. rates.
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Figure 9.10: Event estimation by each program for increasing duplication and loss rates in the simulated
datasets. (a) Number of inferred events by each program for each simulated dataset. The actual number
of events are shown in grey bars. (b) Sensitivity and precision of estimating duplication events for the 12
Drosophila and 16 fungi simulation datasets. (c) Sensitivity and precision of estimating loss events for the
12 Drosophila and 16 fungi simulation datasets. Event estimation for SPIMAP remains high even for fast
rate of duplication and loss.
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Figure 9.11: Reconstruction performance of several phylogenetic methods for gene trees of increasing size
for 16 simulated fungi. Gene trees were simulated and divided into six classes based on the number of
extant genes: 5-9, 10-19, 20-29, 30-39, 40-49, 50-59. Each size class was populated with 100 simulated
trees and alignments. SPI MAP was run both with bootstrapping (100 iterations and 100 prescreens) and
without bootstrapping (1000 iterations and 100 prescreens). For each dataset, PR IM E-GSR was executed
for the same amount of time taken by S P1 MA Pwith and without bootstrapping.
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Chapter 10

Conclusions

10.1 Discussion

In this thesis, I have presented a novel probabilistic model and algorithm for gene tree reconstruction. The

approach uses a Bayesian framework to model sequence evolution, gene duplication, loss, and substitution

rate variation, thus incorporating many disparate types of information in a principled way. This unified

framework presents many advantages.

In contrast to previous gene tree reconstruction methods [151, 34, 36, 143], where a gene tree is rec-

onciled only after full reconstruction by a method such as Neighbor-Joining or ML, our method finds a

reconciliation and gene tree simultaneously. In addition, the parameters of our model are interpretable (e.g.

substitutions rates and duplication/loss rates), and we have provided training algorithms for each one. This

provides an advantage over a method like SYNERGY [145] which optimizes a parsimony-based cost func-

tion for several different events such duplications, loss, and syntenic relationships. Without a probabilistic

basis, the weights of these costs and the behavior of their combination are more difficult to determine and

analyze. Our study of gene conversions demonstrates more work is needed to understand how synteny

information should be weighed against conflicting sources of information.

Our method models rate variation that is correlated across all branches of the tree (gene-specific rate) as

well as rates specific to each species lineage (species-specific rates). We have found that when both of these

effects are modeled, the result is a more informative prior which leads to increased reconstruction accuracy

(see the i.i.d. version of SPIMAP in Table 9.1 and Figure 9.4). In contrast, PRIME-GSR uses identical

and independent gamma distributions for rate variation which do not model species-specific rate variation.

Thus species with rate acceleration or decelerated across the genome will have branches that are consistently

penalized by an i.i.d. rate prior. One complication for modeling species-specific rates is possibility of over-
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parameterizing the model. We addressed this issue by learning the rate distributions prior to reconstruction

from a dataset of multiple orthologous gene trees. By combining data across loci, the rate variation prior

can be estimated more accurately than if the gene trees were considered in isolation.

The rate prior of our current work builds upon a previously developed method, SPI DI R [121]. We de-

signed SPI DI R to be a distance-based likelihood method that exploits the rate variations we had observed in

the 12 fly and 9 fungal genomes. Although the method proved effective, its reliance on pair-wise distances

did not fully utilize the available character information and it lacked an explicit model for duplication and

loss rates. Indeed, we find in our latest comparison that SPIMAP has more consistent accuracy improve-

ments than SPI DIR even for large species trees (16 fungi) and fast rates of duplication and loss (Figure 9.8,

Figure 9.9, and Figure 9.10).

We envision SPIMAP participating in a larger phylogenomic pipeline. We believe that within most

clades of interest, there will be sufficient data for training our model. For example, in the 12 sequenced

Drosophila species, about one third of all genes are syntenic across all 12 species [17, 121], and thus can

serve as a training set for our substitution rates model. Once a model is learned from simple gene families,

it can then be applied to reconstruct gene families with more complicated histories of gene duplication

and loss. Given these advances and many others, phylogenetics will likely play an ever increasing role in

understanding the evolution and function of genomes.

In Chapter 8, we implemented such a phylogenomic pipeline in order to study the gene families of

16 fungal species including S. cerevisiae and C. albicans. The trees allowed us to inferred gene families

enriched in duplications specifically in pathogenic lineages. In addition, we were able to use the trees

and their reconciliations to infer positive selection that specifically occurred in pathogenic species. Many

families and protein functions currently known to be related to pathogenicity were found as well as several

families where little is known thus far. Thus, evolutionary analysis such as these can provide clues about the

functions of genes with currently unknown function.

10.2 Current directions

Going forward, there are many promising directions for how to further develop the work presented here.

Several extensions to the substitution rate variation model are possible and one such possibility was pre-

sented in Chapter 6.3.3. However, it remains to be seen how much power they actually add in gene tree

reconstruction in practice.

One particularly interesting line of work is to consider how to model duplications and losses in a popula-
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tion setting. As more genomes are sequenced, our species trees will become more dense and the time spans

we must consider will become as short as one or two million years. For example, in the primates clade there

will soon be about 15 whole-genome sequences available [132]. Studying gene innovation through dupli-

cation and loss will be especially exciting in this clade, as it will shed light on the early stages of human

evolution. However, such analyses will be quite challenging with our current models and algorithms.

Throughout this thesis and in the broader field, models for gene duplications and losses (both parsimony-

based and probabilistic) currently assume that population-related effects are negligible, even though for

many clades of interest this assumption may not be reasonable. In analyses of one-to-one orthologs, the

coalescent model [83, 120, 25] has been used to study the distribution of the age the most recent com-

mon ancestor (MRCA) of two or more individuals. Although such a model will be import to use to study

duplications in the primates, all coalescent models assume duplications and losses do not occur.

I believe it is possible to relax the assumptions of both the duplication-loss model as well as the mul-

tispecies coalescent, in order to form a new model that describes all of these event simultaneously. Such

a model would lead to several useful algorithms for a variety of problems such as reconciliation, gene tree

reconstruction, and species reconstruction. It may even have applications for problems within population

genetics.
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Appendix A

Supplementary material

A.1 M. Hasegawa and H. Kishino and T. Yano (HKY) model

This is a review of the HKY model [68].

The rate matrix for HKY is

(t - RC K-g 7t

Q=CX Ra ~~ 7g K9t

KEa 71c - 2t

\ a Knc 7g -

with nucleotides ordered by A, C, G, T. The variables ta, 7Cc, g, 7tr represent the equilibrium base

frequency as thus sum to 1.

The constant c scales the overall rate of substitution. In most circumstances, the rate of substitution

cannot be estimated separately from the duration of time. Thus, it is usually the convention to choose the

scale factor c, such that the average rate of substitution at equilibrium is 1, namely

avgerage rate = Ci Q = 1.
i j i

This convention is convenient, because estimating time t will also give the number of substitutions/site.

The coefficient K is called the transition/transversion ratio and represents the ratio of the transition rate

over the transversion rate. However, it should be noted that there is also another popular definition of the

transition/transversion ratio. For example, Felsenstein will often use a variable R to represent this concept,

however its definition takes into account the equilibrium base frequency. Given the rate of transitions ts and
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Figure A. 1: The location of transitions (s) and transversions (v) in a nucleotide substitution matrix. There
are twice as many ways to preform a transversion (8) than a transition (4).

transversions t,, we have

ts = 7Ea Qag ± 7Cg Qga + 7cQct + Et Qtc

ty = ta (Qac + Qat) + c (Qca + Qcg) ~ 7g (Qgc - Qgt) + Rt (Qta - Qtg)

R = ts/t,.

Thus if there is no bias for transitions over transversion, such as in the Jukes-Cantor model, then K = 1.

However, for the other definition of this ratio we have R =, because there are twice as many transversions

(8) as transitions (4) (see Figure A. 1).

For the HKY model, the two definitions of the transition/transversion ratio can be converted as follows:

2 Kcna7cg + 2 xmcgit
27Ea7Ec + 271a7Ct + 2 7cc7cg + 2

cg lt

7_t 71c - ta 7g

Ry7Cr

For the HKY model, the substitution matrix can be solved analytically. I have implemented the HKY

model for my own work. For convenience, I include the relevant formulas for using this model.



Definitions:

j =destination base

i=source base

t =time

7ci =background/prior distribution of basei

R =Transition/Transversion ratio

K =Transition/Transversion ratio (easier to specify)

Parameterization:

r Ra + 71g

Ry =7C + 7Et

R =(ECt~c + 7a~g)KC/(7Uy7r)

=1/(2triCy(1 +R))

P= nr/7Cy

a iriyR - Rang - tc7Et

2(1 +R)(7Cy7Eai7gP +-rcit)

ar =Pay-

Convenience variables: { ar ifi C{A,G}
ay otherwise

Er ifiE{A,G}

iry otherwise

Sij = [i = j]

ei = [(i C {A, G}) = (j E {A, G})],

where [X] is 1 if X is true and 0 otherwise.
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Formula: The probability of seeing a base j given a starting base i and a duration of time t is

Pi= P(jIi,t, 7c,R) =exp(-(ct + P)t)ij +

exp(-Pt)(1 -exp(-ait))(njet;/ry)+

(1 - exp(-pt))t

Derivatives: There are many cases where one may want to find the maximum likelihood estimate of t. In

these cases the following derivative will be useful:

dP(ji,t, ,R) = - i(a + @) exp(-(ti + $)t)+

(7tjeij/x7ry)([-@exp(-@t) + (ai + @) exp(-(ai + @)t)]+

7Ej$exp(-Pt).

The second derivative of the likelihood is

d2 P(jji, t, rr,R) =Si(ai +@ )2 exp(-(ai + $)t)+

(7cjeij/ry) [p2 exp(--@t) - (X, + p)2 exp(-(ai + @)t)] -

7tj1 2 exp(-@t)).

A.1.1 Use of HKY in ML

Within the ML algorithm, we will have to compute the likelihood of a single branch. In addition, we will

like to maximize the likelihood of a branch.

We will have a likelihood table with the following form: f(n, j,k), where n is a node, j is a site, and k is

a character.

P(DIroot,t) = E HE kf(root, j,k)
j k

- HjEk(EP(xjk,ta)f(a,j,x))([P(ylk,tb)f(b,j,y))
k x y
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The above equation is written specifically for the root node in the tree. Let it have child nodes a and b

with branch lengths ta = t and tb = 0, such that ta + tb = t. Lets now express the log likelihood

logP(Dlroot,t)=Elog(E7k(EP(xlk,t)f(a,j,x))([P(ylk,O)f(b,j,y)))
j k x y

= [log([kK(b,j,k)([P(xlk,t)f(a,jx))
j k X

Where

K(b, j, k) =P(ylkO)f(b, j,y).

g(t, j) = [xkK(b, jI, k)([P(xk, ta)f(a, j,x)).
k x

Then, the derivative of the function is

dlog P(DIroot, t) - d-log(g(tj))
dt ~ dt

g'(t, j)
j g(t,j)

g'(t, j) = skK(b,jk)([P'(xlk,ta)f(a,j,x)).
k x

The second derivative is

dlog P(D Iroot, t) = g'(t, j)

g'(t, j)2 g"(t,j)

Sg(t'j)2 g (t,j)

g'(t, j) =E:kK(b, j, k)([P'(xIk, ta)f(a, j,X))
k x

g" (t, j) = RK(b, j, k)([P"(xIk, ta)f(a, j,x)).
k x
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A.2 Synteny

I have used synteny in many of my analyses. Here are a few of the algorithms that I use to identify synteny.

A.2.1 BLAST

First I perform BLASTs on peptides between all pairs of species. I usually threshold BLAST hits on an

e-value (e.g. 1x10~5), a minimum alignment length (e.g. 30AA), and a percent identity (e.g. 60%). Next, I

discard genes (and all their hits) that are promiscuous: have more than say 10 significant hits.

A.2.2 Fuzzy synteny blocks

Fuzzy synteny gets its name by allowing synteny blocks to skip over genes that appear to participate in

another block. This allows one to find syntenic blocks in the presence of segmental or genome-wide dupli-

cation. The alternative form of synteny identification is called strict synteny.

Two hits are defined to be in a synteny block if their genes (a,b) and (c,d) are within a specified window

of base pairs in both genomes. An additional requirement can be made that the hits have the same orientation

and are properly ordered. If a gene's strand is specified as either +1 or -1, then the orientation of a hit (a, b)

is a.strand * b.strand. To test for correct order the following test is performed (Figure A.2). In essence, it

allows handles the case where genes overlap.

def samedir-hits (hitI , hit2):
a, b = hit1
c, d = hit2
dirl = a. strand * b. strand
dir2 c. strand * d. strand

# check same orientation
if dirl != dir2:

return False

# check for proper order
if dirl > 0:

return ((c.end >= a. start and d.end >= b.start) or
(c.start <= a.end and d.start <= b.end))

else
return ((c. start <= a.end and d.end >= b. start) or

(c.end >= a.start and d.start <= b.end))

Figure A.2: Pseudo-code for determining whether two hits are the same orientation and are properly ordered.
These two criterion are used for clustering hits into synteny blocks

After clustering hits into synteny blocks, we often need to filter blocks for those at a significant size. I

defined the size of fuzzy synteny block as the number of its associated hits that best bi-direction (BBH). I
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typically specify a threshold of (BBH size >= 3).

A.2.3 Orthologous synteny blocks

Orthologous synteny refers to genes in conserved order that are also orthologous. When identifying such

blocks, we take additional steps to ensure paralogous synteny blocks and hits (resulting from segmental

duplication) are removed.

For example in whole genome duplication, ohnologs (paralogs from WGD) can often be found in con-

served gene order. In such cases, a region of genome A will have two (or more) regions in genome B that

are syntenic or vice-versa. Two blocks overlap if their regions in either genome overlap. An overlap set is

the single linkage cluster of blocks that overlap in one genome. We find that paralogous blocks tend to have

lower block scores than their overlapping orthologous blocks. Thus, we filter out paralogous blocks by only

keeping blocks that have the highest score in their overlap set.

Any hits that remain after these filters are called syntenic orthologs and they provide a confident gold

standard set of orthologs for testing phylogenetic methods.

A.3 Relevant distributions

A.3.1 Exponential distribution

PDF

f(x;X)= XeX ,X>=O
0 ,x<0

p =1/X

022

Sampling
- ln(Uniform(0, 1))

x

A.3.2 Gamma distribution

PDF

f(x;a,P)=xa- Pae-xF(aL)-1
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Using shape parameter k and scale parameter 0 we have

f(x;k, 0) = X1--I-ke-x/oF(k)-I

for x > 0 and k,0 > 0. To convert between the parameterizations use

k = a

O= 1/P

Summation

Xi ~ Gamma(ai, P), indepently distributed

N N

Xi ~ Gamma( ai,P)
i=1 i=1

Scaling

t > 0

tX ~ Gamma(ac, l)

Gamma function The definition of the Gamma function is

F(z) = tIe-'dt

It behaves similar to the factorial for positive integers n:

F(n) = (n - 1)!

P = aX/P

Ga2 = aC/p2

Another parameterization



and obeys the following for real and complex numbers:

F(z + 1) = zI(z)
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