
Constant Time Algorithms in Sparse Graph Model

by

Huy Ngoc Nguyen

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

Author...........
Departme f Electrical Engineering and

Certified by...........

Computer Science
August 6, 2010

~fA

Alan Edelman
Professor in Applied Mathematics

Thesis Supervisor

A ccepted by ................ . . . .. .... . -. ... -... --------
Terry P. Orlando

Chairman, Department Committee on Graduate Students

AgcHIVES

OCT)3 5 Ig



Constant Time Algorithms in Sparse Graph Model

by

Huy Ngoc Nguyen

Submitted to the Department of Electrical Engineering and Computer Science
on August 6, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

We focus on constant-time algorithms for graph problems in bounded degree model.
We introduce several techniques to design constant-time approximation algorithms for
problems such as Vertex Cover, Maximum Matching, Maximum Weighted Matching,
Maximum Independent Set and Set Cover. Some of our techniques can also be applied
to design constant-time testers for minor-closed properties.

In Chapter 1, we show how to construct a simple oracle that provides query access
to a fixed Maximal Independent Set (MIS) of the input graph. More specifically, the
oracle gives answers to queries of the form "Is v in the MIS?" for any vertex v in the
graph. The oracle runs in constant-time, i.e., the running time for the oracle to answer
a single query, is independent to the size of the input graph. Combining this oracle
with a simple sampling scheme immediately implies an approximation algorithm for
size of the minimum vertex cover.

The second technique, called oracle hierarchy, transforms classical approximation
algorithms into constant-time algorithms that approximate the size of the optimal
solution. The technique is applicable to a certain subclass of algorithms that compute
a solution in a constant number of phases. In the transformation, oracle hierarchy
uses the MIS oracle to simulates each phase.

The problems amenable to these techniques include Maximum Matching, Maxi-
mum Weight Matching, Set Cover, and Minimum Dominating Set. For example, for
Maximum Matching, we give the first constant-time algorithm that for the class of
graphs of degree bounded by d, computes the maximum matching size to within en,
for any e > 0, where n is the number of vertices in the graph. The running time of
the algorithm is independent of n, and only depends on d and e.

In Chapter 2, we introduce a new tool called partitioning oracle which provides
query access to a fixed partition of the input graph. In particular, the oracle gives
answers to queries of the form "Which part in the fixed partition contains v?" for
any vertex v in the graph. We develop methods for constructing a partitioning oracle
for any class of bounded-degree graphs with an excluded minor. For any e > 0, our
partitioning oracle provides query access to a fixed partition of the input constant-
degree minor-free graph, in which every part has size 0(1/ 2 ), and the number of



edges removed is at most en.
We illustrate the power of this technique by using it to extend and simplify a

number of previous approximation and testing results for sparse graphs, as well as to

provide new results that were unachievable with existing techniques. For instance:

" We give constant-time approximation algorithms for the size of the minimum

vertex cover, the minimum dominating set, and the maximum independent set
for any class of graphs with an excluded minor.

* We show a simple proof that any minor-closed graph property is testable in

constant time in the bounded degree model.

Finally, in Chapter 3, we construct a more efficient partitioning oracle for graphs
with constant treewidth. Although the partitioning oracle in Chapter 2 runs in time
independent of the size of the input graph, it has to make 2POlY(1/E)) queries to the
input graph to answer a query about the partition. Our new partitioning oracle
improves this query complexity to poly(1/E) for graphs with constant treewidth.

The new oracle can be used to test constant treewidth in poly(1/E) time in the
bounded-degree model. Another application is a poly(1/E)-time algorithm that ap-
proximates the maximum matching size, the minimum vertex cover size, and the
minimum dominating set size up to an additive en in bounded treewidth graphs.

Thesis Supervisor: Alan Edelman
Title: Professor in Applied Mathematics
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Introduction

In recent years, the explosive growth of the Internet and digital media created an

enormous amount of data and completely changed the concept of efficiency in algo-

rithmic setting. Traditionally, algorithms that require linear time and/or space are

generally considered to be highly efficient; in some settings, even polynomial time and

space requirements are acceptable. However, today this is often no longer the case.

For examples, in the graph mining area, as the Web graph has grown to the order

of hundred billions of nodes and edges, even reading that graph would take a lot of

time and computation power, while most of the real-time web mining applications

require instant response. In these cases, algorithms that run in sublinear time or even

constant time have become crucial.

Sublinear-Time Algorithms and Bounded Degree Model

The line of research on sublinear time algorithms was initiated to deal with massive

datasets that occur more and more frequently in various contexts. The main goal in

this area is to design algorithms that only read and process a small portion of input

data and produce correct output with high probability. Blum, Luby and Rubinfeld [6]

were the first to take this approach to design a fast testing algorithm for the linearity

of functions. Since then, research in sublinear time algorithms has been expanded for

many other optimization problems in graph theory, statistic, algebraic computations,

geometry and computer graphics. See the surveys [16, 20, 42, 41] for detailed results

and references.

In this thesis, we focus on sublinear time algorithms for graph problems in the



bounded degree model. The bounded degree model is introduced by Goldreich and Ron

[21] as a natural model for sparse graphs. The model assumes that the input graphs

have maximum degree bounded by a constant, and algorithms can access the graphs

through queries to the adjacency lists. Formally, given an input graph G = (V, E)

with degree bounded by a constant d, there is a query function fG : V x [d] -+ V,

where for each v E V and k E [d], the function fG(v, k) returns the kth neighbor of v

in the adjacency list. We also assume that the computation time of fG(v, k), for all

v E V and k C [d], is constant.

Given an algorithm A in bounded degree model, the query complexity of A is the

maximum number of queries made by A to the input graph. Also, the conventional

time complexity of A refers to maximum running time of A. Algorithm A is said to

run in constant time if its time complexity is independent to the size of the input

graph.

Approximation Algorithms. We define the notion of approximation that we use.

This notion combines additive and multiplicative approximation, and appears in the-

oretical computer science in many contexts.

Definition 1 We say that a value 9 is an (a, p)-approximation to y, if

y P e -y +.

We say that an algorithm A is an (a, #)-approximation algorithm for a value V(x)

if it computes an (a, /)-approximation to V(x) with probability at least 2/3 for any

proper input x.

In most problems considered by us, under very natural assumptions, this notion

suffices to get a multiplicative approximation. For instance, we later show a (1, en)-

approximation algorithm for the maximum matching size for graphs of maximum

degree at most d. If there are Q(n) edges in the graph, the maximum matching

size is at least Q(n/d). Hence, by picking e = e(e'/d), we can get a multiplicative

(1 + E')-approximation to the maximum matching size.



Property Testing. Given a graph G = (V, E) with maximum degree bounded by

d > 2 and a combinatorial property P (e.g., planarity, connectivity, cycle-freeness).

The graph G is said to be E-far from statisfying P if one has to insert/delete at least

edJVI edges in G in order to turn it into a graph satisfying P. The meta question

in the area of property testing in bounded degree model is the following: Given a

graph G = (V, E) with maximum degree bounded by d and a combinatorial property

P, distinguish between the case that G satisfies P and the case that G is E-far from

satisfying P. An algorithm for a property testing problem, which is called a property

tester, is required to output accept with high probability if G satisfies P and output

reject if G is c-far from satisfying P. In the borderline case, where the the graph is

neither c-far nor satisfying P, the tester is allowed to output arbitrarily.

It should also be noted that in addition to the bounded degree model, there is

also another well-studied model for sublinear time algorithms in graph theory called

the adjacency matrix model. This model assumes that the input graphs are dense,

i.e., the number of edges is Q(n 2 ) where n is the number of vertices. In this model,

algorithms are allowed to access to the input graphs through the queries to the adja-

cency matrices. The main reason that we choose the bounded degree model over the

adjacency matrix model is that we believe most of the interesting real world graphs

are sparse, and thus, fit better to the bounded degree model.

Constant-Time Approximation Algorithms via Local Improve-

ments (Chapter 1) .

We present two generic techniques to design constant-time approximation algo-

rithms for the Vertex Cover, the Maximum Matching, the Maximum Weighted Match-

ing and the Set Cover problems. The material covered in this chapter is based on the

joint work with Krzyzstof Onak [34].

Constant-time Oracle for Maximal Independent Set We construct a simple

oracle which gives query access to a fixed maximal independent set (MIS) of the input



graph. More specifically, the oracle selects a fixed MIS of the graph and answers any

query of the following form: "Is a vertex v in the MIS?" for any vertex v. Also,

the oracle is consistent. That is, once the oracle answers a query about the MIS,

all subsequent answers must also refer to the same MIS. In addition, for each query

about the MIS, it only takes the oracle constant time to come up with the answer.

Finally, in the construction of the oracle, no pre-computation is required.

Marko and Ron [32] were the first who design an oracle for MIS. They achieved

an oracle with similar properties to ours, except that the query complexity of their

oracle has worse dependency in e, but better in d.

Oracle Hierarchy and Locality Lemma We introduce the oracle hierarchy tech-

nique which can be used to construct more sophisticated oracles from simpler ones.

In particular, the technique shows how to take a classical approximation algorithm

and turn it into an oracle that provides query access to an approximate solution (to

the problem being considered). In order for the technique to work, the approxima-

tion algorithms must run in a constant number of phases such that each phase is an

application of a maximal set of local improvements.

It is interesting to note that in order to simulate a phase in the approximation

algorithm, the oracle hierarchy technique uses a MIS oracle (which can be either our

MIS oracle or the MIS oracle by Marko and Ron) to find a maximal set of local

improvements.

Using oracle hierarchy, we show how to construct oracles that give query access to

approximations of the Maximum Matching, the Maximum Weighted Matching and

the Set Cover. In order to show that these oracles run in constant time, we also state

and prove the Locality Lemma which is a tool to bound the query complexity for

these oracles.

Applications on Approximation Algorithms We show that our techniques can

be applied to obtain constant-time approximation algorithms for the Vertex Cover,

the Maximum Matching, the Maximum Weighted Matching and the Set Cover in



bounded degree model.

" Vertex Cover. We show that there exists a (2, en)-approximation algorithm

of query complexity 2 0(d)/E2, for graphs of maximum degree bounded by d.

Combining the results of Parnas and Ron [35] and Marko and Ron [32] yields a

(2, En)-approximation algorithm for the minimum vertex cover size of running

time and query complexity dO(log(d/E)). Our algorithm has better dependency

on e, but worse on d. Furthermore, Trevisan showed that for any constant

c E [1, 2), a (c, En)-approximation algorithm must use at least Q(./Ei) queries

(the result appeared in [35]).

" Maximum Matching. The only results on approximation of the maximum

matching size in sublinear time that have been known before are the algorithms

of Parnas and Ron [35]. Since their algorithms give a constant factor approx-

imation to the minimum vertex cover size, they also give a constant factor

approximation to the maximum matching size. The main obstacle to applying

the general reduction of Parnas and Ron from distributed algorithms is that the

known distributed algorithms [12, 13] for maximum matching run in a number

of rounds that is polylogarithmic in the graph size, not constant.

We show that nevertheless, there exists a (1, en)-approximation algorithm for

the maximum matching for graphs of maximum degree bounded by d > 2 with

query complexity 2d .

" Maximum Weighted Matching. For bounded-degree weighted graphs of

all weights in [0, 1], one can also show an algorithm that computes a (1, en)-

approximation to the maximum weight matching with a number of queries that

only depends on d and e. We show that there exists a (1, en)-approximation

algorithm for graphs of maximum degree bounded by d > 2, and edge weight is

in [0, 1], with query complexity 2 20(1/e 2+og d/E)

" Set Cover. Let H(i) be the i-th harmonic number E 1/j. Recall that

H(i) ; 1 + In i. We show that there is an (H(s), en)-approximation algo-



rithm of query complexity (2(02-) for the minimum set cover size, for in-

stances with n sets Si, each of size at most s, and with each element in at

most t different sets. As a special case of the set cover problem, we get an

(H(d + 1), en)-approximation algorithm of query complexity ,8 ) for the

minimum dominating set size for graphs of degree bounded by d.

Combining the results of Parnas and Ron [35] and Kuhn, Moscibroda and Wat-

tenhofer [28] yields an (O(log d), En)-approximation algorithm for the minimum

dominating set of query complexity do(log d)/2

Constant-Time Partitioning Oracle for Minor-Free Graphs and

Applications (chapter 2)

Solving or even finding a good approximate solution to combinatorial graph prob-

lems (such as minimum vertex cover, maximum independent set) are typically NP-

hard (see [27], [18] and [47])1. However, for planar graphs or graphs with an excluded

minor, there exist polynomial-time approximation schemes for these problems due to

the separator theorem by Lipton and Tarjan [29], Alon, Seymour and Thomas [1]. In

Chapter 2, we present a new technique that takes advantage of the separator theorem

to design constant-time approximation algorithms for minor-free graphs and planar

graphs. Our technique can also be applied to design property testers for minor-closed

properties. The results presented in this chapter are based on the joint work with

Jonathan Kelner, Avinatan Hassidim and Krzyzstof Onak.

Partitioning Oracle We introduce the partitioning oracle that provides query ac-

cess to a fixed partition of the input graph. In particular, given an input graph G, a

partitioning oracle 0 for G allows any algorithm to pick an arbitrary vertex v in G

and make a query to 0 of the form "What is the part in the partition that contains

v?". In response, 0 makes some queries to G and outputs the part that contains v in

'Note that the approximation algorithms for the Minimum Vertex Cover in Chapter 2 can only

achieve multiplicative approximation factor of 2.



the partition. In addition, for each query about the partition, 0 only needs to make

a constant number of queries to the input graph.

Since our goal is to design constant-time algorithms, we are only interested in par-

titions in which every component has constant size and the number of edges removed

is a small fraction of the graph size. However, in general, not all graphs have such

partition. Therefore, we restrict our consideration to the family of hyperfinite graphs

which is essentially the largest family of graphs that satisfies this property. A formal

definitions follows.

Definition 2

" Let G = (V, E) be a graph. G is (e, k)-hyperfinite if it is possible to remove EIVI

edges of the graph such that the remaining graph has connected components of

size at most k.

" Let p be a function from R+ to R+. A graph G is p-hyperfinite if for every

e > 0, G is (e, p(e))-hyperfinite.

" Let C be a family of graphs. C is p-hyperfinite if every graph in C is p-hyperfinite.

Examples of bounded-degree hyperfinite families of graphs include bounded-degree

graphs with an excluded minor [1] (for instance, bounded-degree planar graphs,

bounded-degree graphs with constant tree-width), bounded-degree graphs of subex-

ponential growth2 [15], and the family of non-expanding bounded-degree graphs con-

sidered by Czumaj, Shapira, and Sohler [10].

We show that for this family of graphs, there exists a partitioning oracle for every

(e, p(e))-hyperfinite graph that only requires 2d"(p(E/
3 45 6 00 0 ))/E queries to the input

graph to answer a query about the partition. In case p(e) = poly(1/e) (which is

always true for minor-free graphs), we construct a more efficient partitioning oracle

that only requires 2Poly(,d) queries to answer a query to the oracle.

2The growth of a graph or a family of graphs is a function g : Z+ -4 Z+ such that g(d) equals

the maximum number of vertices at distance at most d from any vertex d.



Applications in Approximation Algorithms We show that in case the in-

put graph is hyperfinite with p(E) = poly(1/e), there are constant-time (1, en)-

approximation algorithms for minimum vertex cover, minimum dominating set, and

maximum independent set whose running time is 2 P017Y(/E). Note that finding algo-

rithms of running time 2(1/6)0(1) is unlikely, since by setting E = 1/(3n), this would

yield subexponential randomized algorithms for NP-hard problems. The above three

problems are NP-hard for planar graphs, even with degree bounded by 3 [17, 18].

Applications in Property Testing We say that a graph property3 is minor closed

if it is closed under removal of edges, removal of vertices, and edge contraction. Ex-

amples of minor-closed families of graphs include planar graphs, outerplanar graphs,

graphs of genus bounded by a constant, graphs of tree-width bounded by a constant,

and series-parallel graphs.

Goldreich and Ron [21] showed an 0(1/3) tester for the property that the input

graph is a forest, i.e., does not have K 3 as a minor. Until the breakthrough result of

Benjamini, Schramm, and Shapira [5], who showed that any minor-closed property

can be tested in constant time, this was the only minor-closed property that was

known to be testable in constant time. However, the running time of the tester of

Benjamini, Schramm, and Shapira is 22 (/E , and the analysis is quite involved.

Using the partitioning oracle for minor-free graphs, we give a simple proof of their

result, and present a tester that runs in 2 Po Y(/E) time.

Efficient Partitioning Oracle for Constant Treewidth Graphs

It is easy to note that although the query complexities of the partitioning oracles

in Chapter 2 are independent of the graph size, they are exponential in 1/E and

d. A natural open question is whether it is possible to construct a more efficient

partitioning oracle that runs in time poly(1/6, d). Such a partitioning oracle would

make a great impact in both theory and practice. Unfortunately, we don't know

3 1n this context, all graph properties are defined for graphs with no labels and are therefore closed

under permutation of vertices.



how to answer that question. However, in Chapter 3, we show that if we narrow

the problem domain to the family of graphs with constant treewidth, we can build a

partitioning oracle that only run in time poly(1/e, d).

The partitioning oracle immediately implies the following results.

" For every family of graphs with treewidth bounded by a constant, there is a

randomized approximation algorithm that computes the minimum vertex size,

the maximum matching size, and the minimum dominating set size up to an

additive en in poly(1/E) time, where n is the number of vertices in the graph.

Using the partitioning oracle in Chapter 2 only yields an approximation algo-

rithm that runs in 2POlY(l/E) time.

Moreover, this shows better approximation algorithms than those known for

general graphs. This adds to long line of research on this kind of algorithms

[35, 33, 34, 45, 22].

" For every minor-closed property with bounded treewidth, there is a poly(1/E)-

time tester in the bounded-degree model. This strictly improves on the recent

result of Yoshida and Ito [44], who showed a poly(1/E)-time tester for outer-

planarity. Earlier it was known that cycle-freeness is testable in poly(1/eps)

time [21].

The results of this chapter are based on the joint work with Alan Edelman,

Avinatan Hassidim and Krzyzstof Onak.



Chapter 1

Constant-Time Approximation

Algorithms via Local

Improvements

There has been an enormous amount of work on Maximum Matching, Vertex Cover,

and Set Cover in the classical computation model, where the whole input is read. It is

obviously not possible to compute a solution to them in time sublinear in input size,

since an optimal solution may itself have linear size. Can one approximate just the

optimal solution size in time sublinear in the input size? This and similar questions

have been asked by several researchers for various optimization problems [4, 9, 11, 24,

35]. In particular, Parnas and Ron [35] asked this question for the minimum vertex

cover problem. They discovered a connection to distributed algorithms that run in

a constant number of rounds. For graphs of bounded maximum or average degree,

the connection yields approximation algorithms of running time independent of the

size of the graph. In this chapter, we show two general techniques that can be used

to construct constant-time approximation algorithms. The techniques work for all

problems that were considered by Parnas and Ron, but does not rely on distributed

algorithms, and for Maximum Matching, it can be used to overcome limitations of

the previously known distributed algorithms.



Algorithm 1: A simple global algorithm to find a Maximal Independent Set

i foreach v E V do
2 L Let r, be a random value in [0, 1].

3 M:= 0
4 foreach v G V in increasing order of r, do
5[ if v does not have any neighbor in M then

6 L m:= MU {v}
7 return M.

1.1 Oracle for Maximal Independent Set

Let G = (V, E) be the input graph. Our oracle 0 given query access to G, provides

query access to a fixed MIS in G of the form "Is q in the MIS?" for every vertex q of

the graph.

We describe how to construct 0 as follows. First, we show a global greedy al-

gorithm that compute a MIS for the input graph. Then, we show how to simulate

the global algorithm locally. Finally, we show that the query complexity of the local

simulation is independent to the size of the input graph.

An Global Algorithm. Consider the Algorithm 1 which computes a MIS for the

input graph. The algorithm starts with assigning a random value in [0, 11 to each

vertex in the graph. Then, the algorithm considers the vertices in increasing order

of these values. For each vertex v in the graph, if v does not have any neighbor that

has already been in the set M, then v is added to M. When all vertices have been

considered, the algorithm output M as a MIS.

It is clear from the implementation of Algorithm 1 that M is an maximal inde-

pendent set of the input graph1 . Note that, since the Steps 3-7 of Algorithm 1 are

deterministic, the MIS M only depends on the input graph G and the random bits

in vector r.

'In some literatures, the set M is called the lexicographically first maximal independent set with

respect to the random order r for the input graph.



The Constant-time Algorithm. For each query vertex q E V, the oracle first

determines the set of vertices adjacent to q of numbers r, smaller than that of q,

and recursively checks if any of them is in the set M. If at least one of the adjacent

vertices is in M, q is not added to M; otherwise, it is.

Note that, for each vertex v E V, we can query the random value r, assigned

to v as follows. When we see v for the first time, we can obtain the value of r, by

generating a random value in [0, 1] on the fly and store that value in the memory.

Later, when we see v again, we can retrieve r, by looking it up in the memory.

Query Complexity. It remains to bound the query complexity of the algorithm.

Lemma 3 Let G be a graph such that each vertex is adjacent to at most d other

vertices. For each vertex v, we independently select a random number r(v) from the

range [0, 1]. The expected query complexity of an algorithm that starts from a vertex

u chosen independently of the values r(v), and explores all paths wo = u, w 1 , ... , wk

such that r(wo) > r(wi) > ... > r(wk) is 20(d).

Proof

Consider a path P = (wo = u, wi,-- , w_1) of length k that starts from q. The

probability that the r-value in P is decreasing, i.e., r(wo) > r(wi) > ... > r(wk_1),

is at most y
Also, since there are at most dk paths of length k that starts from u. Therefore,

the number of queries to the input graphs that the algorithm has to make, is at most

0S d k d 2 0 (d )k_
k=1

By Lemma 3 and the Markov's inequality, for any 6 > 0, with probability 1 - 6,

the constant-time algorithm only makes at most 20(d) /6 queries to the input graph.

We summarize the construction of the MIS oracle in the following theorem.



Theorem 4 Let G = (V, E) be an undirected graph with maximum degree bounded

by d > 2. There is an oracle 0 given query access to G and 6 > 0, provides query

access to a function fG : V -* {YES, NO} of the following properties.

1. All YES vertices in G form a MIS. That is, for any u, v E V such that fG(U) =

fG(v) = YES, (u, v) E E and for any w E V such that w does not have any

YES neighbor, fG(w) = YES.

2. For each query about fG, with probability 1 - 6, 0 only needs to make 2 0(d)/ 6

queries to G to answer.

3. The function fG only depends on the input graph and random bits. In particular,

it does not depend on the order of queries to 0

Approximating the Size of A Maximal Independent Set It follows from

the Hoeffding bound that the size of the MIS M can be estimated with constant

probability and additive error at most en by checking for 0(1/ 2 ) randomly chosen

vertices v, if they are in M. Therefore, there exists an (1, e)-approximation algorithm

for the size of a MIS of the input graph which only requires at most 2 0(d) /E2) queries

to the input graph.

1.2 Oracle Hierarchy and Locality Lemma

We describe the general idea of how to construct more sophisticated oracles from sim-

pler ones using oracle hierarchy. The applications of this technique will be described

in detail in Section 1.4, 1.5, and 1.6. We also prove the Locality Lemma which can be

used as a tool to bound the query complexity of oracles constructed by this technique.

1.2.1 Oracle Hierarchy

Observe that for problems like Maximum Matching, Maximum Weighted Matching

or Set Cover, there are approximation algorithms which run in a constant number

of phases such that each phase is an application of any maximal set of disjoint local



improvements. In addition, each local improvement considered in a given phase in-

tersect with at most a constant number of other considered local improvements (see

Section 1.4, 1.5, 1.6 for the algorithms).

The general idea behind the construction of oracles for these problems is the fol-

lowing. Let k be the number of phases in the approximation algorithm. We construct

a sequence of oracles 00, 01, -- -, Ok where, for 1 < i < k, the oracle 09 implements

query access to the intermediate solution constructed by the i-th phase of the algo-

rithm. (00 gives the initial solution that the algorithm starts with.) 09 is itself given

query access to Oi-1, and simulates the i-th phase of the algorithm on the output of

the (i - 1)-st phase. In order to find a maximal set of disjoint improvements, Oi uses

the oracle in Section 1.1 (or the MIS oracle by Marko and Ron). Finally, Ok provides

query access to a solution that the approximation algorithm could output.

1.2.2 Locality Lemma

We show that for the problems that we consider, the answer to a query about the

output of the i-th phase can be computed, using in most cases only a small number

of queries about the output of the (i - 1)-st phase. We show that long chains of

dependencies between prospective improvements in the i-th phase can be avoided

by considering them in random order. Hence, it usually suffices to query a small

neighborhood of each query point.

We now state and prove the Locality Lemma. Let us first give its informal ex-

planation. We are given a graph of bounded degree with random numbers r(v) in

[0, 1] assigned independently to each node v of the graph. A function f is defined

inductively on the nodes of the graph. The value of f at a node v is a function of only

v and values of f at neighbors w of v such that r(w) < r(v). The value of f at a node

can be computed recursively. Suppose that we have an algorithm that does not know

the numbers r(v), and only wants to learn f at q different nodes. The lemma gives a

bound which holds with high probability on the total number of nodes for which we

must compute f in all recursive calls. A single phase of each of our algorithms can

be expressed as this type of computation for a certain graph.



Lemma 5 (Locality Lemma) Let G = (V, E) be a graph of degree bounded by

d > 2, and let g : V x (V x A)* -+ A be a function. A random number r(v) E [0,1] is

independently and uniformly assigned to each vertex v of G. A function fr : V -+ A

is defined recursively, using g. For each vertex v, we have

fr(v) = g(v, {(w, fr(w)) : r(w) < r(v)}).

Let A be an algorithm that initially does not know r, but can adaptively query f,

at q different nodes. To answer A's queries, it suffices to recursively compute fr(v)

for at most

§L- CE
6

nodes v with probability at least 1 -6, for any 6 > 0, where C is an absolute constant.

Proof Handling each query of A requires computing f,(v) for certain nodes v.

Unfortunately, since A's queries may be adaptive, A may be able to deduce from

answers to previous queries how to query fr to increase the number of nodes for

which the function must be recursively computed. Intuitively, if all A's query points

were far away from each other, the sets of nodes explored to answer each query would

likely be disjoint, and we could bound the number of nodes explored for each of them

independently. Therefore, whenever we bound the number of f,(v) computed for A's

query, we also make sure that there is no node w close to the query point such that

computing f,(w) requires computing many f,(v).

We now give a few auxiliary definitions. We say that a node v can be reached

or is reachable from a node w if there is a path uO = w, u1, ... , uk = v, such that

r(ui_1) > r(ui), for all 1 < i < k. Less formally, v can be reached from w if we need

to compute fr(v) in order to compute fr(w). The reachability radius of node v is the

maximum distance between v and a node that is reachable from v.

What is the probability that for a given node v, the reachability radius is greater

than t? The probability can be bounded by the probability that there is a path of

length t + 1 that starts at v, and the values r are strictly decreasing along the path.

There are at most d - (d - 1)' such paths, and by symmetry, the probability that the



values r decrease along a fixed such path is 1/(t + 2)! Hence the probability of the

event is at most d(d+1)t

We now consider not just a single query, but all the (potentially adaptive) queries

constructed by A. What is the probability that for each query f,(w), the reachability

radius of w is at most t? After each query, A learns something about r, and may use

this knowledge to create a malicious query. Note that it cannot learn more than r(v)

for nodes v that are either reachable from w or are a neighbor of a node reachable

from w, where one of the queries was about f,(w). Suppose that the reachability

radius for all previous query points was at most t. Let v be a vertex at distance

greater than 2(t +1) from each of the previous query points. The probability that the

reachability radius of v is at most t depends only on r(u), for u at distance at most

t +1 from v, and hence is independent of the algorithm's current knowledge. We only

need to make sure that for a query about f(v), for v at distance at most 2(t + 1) to

one of the previous query points, v has small reachability radius. This may depend

on the knowledge of the algorithm. Hence, for any query point v, we also bound the

reachability radius for all vertices at distance at most 2(t + 1), so that the algorithm

is unlikely to construct a query that requires exploring many vertices.

For each query point v, there are at most

2t+1 2t+1

1+ d Z (d - 1)' < 1+d( d < d2t+3

i=O i=O

vertices at distance at most 2(t + 1). The total number of nodes close to one of the

q query points is hence at most q -d2t+3 . We want to bound the reachability radius

by t for all of them. By the union bound, the probability that the algorithm queries

some f,(v), where v has reachability radius greater than t is at most

qd 2t+3 . d(d - 1)t q -d3 t+4  3d3 t+2

(t + 2)! - (t + 2)! - t+2

Let Ei be the event that the maximum reachability radius for all query points is

exactly i, and E> the event that it is greater than i. We have, Pr[E>i] < q- (d )i+ .



What is the expected total number T of vertices for which we recursively compute

fr? It is

T E Pr[E] -q(1+ d - (d - 1)j)
i>O Osjsi-1

< Pr[Ej] -qdi+ 1 Pr[E>i_1] -qdi'+1
i>O i>O

S q 3ds i+d+1

i>O i>0

For i > 6d4 - 1, we have

E 3d 4 
2 -i+)+i

i>6d4- i>6d4-1

Using calculus, one can show that the term is maximized for i + 1 3d 4
\i+1 e

and hence,

3d (6d4 - 1) eM
i<6d

4 -1

We get

2 4 1)3d
4

)
T < q2 1 +(6d -1- e

< q2 -6d4 -e q2C

for some constant C. By Markov's inequality, the probability that the number of

queries is greater than T/6 is at most J. Hence with probability at least 1 - 6, the

number of queries is bounded by q2Cd4 /6.

Note that the Locality Lemma's upper bound is worse than the more specialized

upper bound 2 0(d) in Lemma 3. The improved upper bound takes advantage of the

fact that the algorithm consists of only one phase, and avoids dependencies between

queries to oracles on lower levels.



1.3 Approximating the Size of the Minimum Ver-

tex Cover

A constant-time (2, en)-approximation algorithm for the size of the minimum vertex

cover seems to be the simplest application of the MIS oracle.

Consider the line graph of the input graph G. This graph has at most dn/2

vertices with maximum degree bounded by 2d. Therefore, there exists an oracle 01

that given query access to G, provides query access to a fixed MIS M1 of the line

graph in G.

In addition, observe that a MIS of the line graph in G is a maximal matching of

G. Gavril (see [19]) proved that the set of nodes matched in any maximal matching

is a proper vertex cover of size at most 2 times the optimum. Furthermore, it is also

well known that the size of a maximal matching is at least one half of the maximum

matching size. Thus, we immediately obtain a (2, en)-approximation algorithm for

the size of the minimum vertex cover.

Corollary 6 There exists a (2, en) approximation algorithm of query complexity 2 0(d)IE2

for the minimum vertex cover size for graphs with maximum degree bounded by d.

1.4 Approximating the Size of the Maximum Match-

ing

1.4.1 Definitions and Notation

Let M be a matching in a graph G = (V, E), that is, a subset of nonadjacent edges

of G. A node v is M-free if v is not an endpoint of an edge in M. A path P is an

M-alternating path if it consists of edges drawn alternately from M and from E \ M.

A path P is an M-augmenting path if P is M-alternating and both endpoints of P

are M-free nodes (i.e., |P n MI = |P n (E \ M)| + 1).



1.4.2 Properties of Matchings

Let e denote the symmetric difference of sets. If M is a matching and P is an M-

augmenting path, then M D P is a matching such that IM D P| = MI + 1. Many

matching algorithms search for augmenting paths until they construct a maximum

matching, and one can show that in an non-maximum matching there is an augment-

ing path.

The correctness of our algorithm relies on the properties of matchings proven by

Hopcroft and Karp [23]. The part of their contribution that is important to us is

summarized below.

Fact 7 (Hopcroft and Karp [23]) Let M be a matching with no augmenting paths

of length smaller than t. Let P* be a maximal set of vertex-disjoint M-augmenting

paths of length t. Let A be the set of all edges in the paths in P*. There does not

exist an (M E A)-augmenting path of length smaller than or equal to t.

We now prove an auxiliary lemma that connects the minimum length of an aug-

menting path and the quality of the matching.

Lemma 8 Let M be a matching that has no augmenting paths of length smaller than

2t + 1. Let M* be a maximum matching in the same graph. It holds MI |yIM*\.

Proof Consider the set of edges A = M E M*. There are exactly IM*I -|MI more

edges from M* than from M in A. Since M and M* are matchings, each vertex is

incident to at most two edges in A. Hence A can be decomposed into paths and

cycles. Each path of even length and each cycle contain the same number of edges

from M and M*. Each path P of odd length contains one more edge from M* than

from M. It if contained one more edge from M, it would be an M*-augmenting

path; an impossibility. P is then an M-augmenting path. Summarizing, we have

exactly IM*I - |MI odd-length vertex-disjoint paths in A, and each of them is an

M-augmenting path.

Since each M-augmenting path has length at least 2t - 1, this implies that |MI

t(IM*| - |MI). Hence, |MI -|M*|.



1.4.3 The Algorithm

Consider the maximum matching problem in an unweighted graph of bounded degree

d. It is well known that the size of any maximal matching is at least half of the

maximum matching size. Because of that, we can obtain a (2, En)-approximation

algorithm for the maximum matching size using the same argument as for the Vertex

Cover (see Section 1.3). We now show that our technique can be used to achieve

better approximations in constant time.

An Global Algorithm. We simulate the following global algorithm. The algo-

rithm starts with an empty matching Mo. In the i-th phase, it constructs a match-

ing Mi from Mi_1 as follows. Let i1 be a maximal set of vertex-disjoint Mi_1 -

augmenting paths of length 2i - 1. Let Ai_ 1 be the set of all edges in the augmenting

paths in P* 1. We set Mi = Mi_1 G Ai_ 1. If Mi_1 is a matching, so is Mi. By

induction, all Mi are matchings. The algorithm stops for some k, and returns Mk.

We now show that Mi has no augmenting path of length smaller than 2i+ 1. M1

is a maximal matching, so it has no augmenting path of length smaller than 3. Now,

for the inductive step, assume that Mi_1 , i > 1, has no augmenting path shorter

than 2i - 1. P1 is a maximal set of vertex-disjoint Mi_1 -augmenting paths of length

2i - 1. Therefore, it follows by Fact 7 that Mi does not have any augmenting path

shorter than 2i + 1.

Set k = [1/61, and let M* be a maximum matching. By Lemma 8, k |M*

IMkI < IM*I, which yields IM*I k- 1|Mk < (1 + 6)|M*I. If we had an estimate a

such that 2|MkI a < 2IMkI + En/2, we could get a (1 + 6, En)-approximation to

|M*| by multiplying a by k+1, which is at most 1.

The Constant-Time Algorithm. We construct a sequence of oracles 01, 02,

Ok. A query to O is an edge e E E. The oracle's reply indicates whether e is in Mi.

To compute the required a, it suffices to estimate the fraction of vertices that are

matched in IMkl. In order to do so, one can sample O(1/2) vertices, and for each

of them, check if any incident edge is in Mk or not. The correctness of the estimate



with probability 5/6 follows from the Hoeffding bound.

The oracles O are constructed by using our technique for transforming algorithms

into constant-time algorithms. O has access to 0 i-1, and simulates the i-th phase

of the above algorithm. We assume that each Mi-raugmenting path P of length

2i - 1 is assigned a random number r(P), which is uniformly and independently

chosen from [0, 1]. These random numbers give a random ordering of all the Mi-r

augmenting paths. P*_1 is the greedily constructed maximal set of vertex-disjoint

Mi- raugmenting paths P considered in order of their r(P). To handle a query about

an edge e, the oracle first finds out if e E Mi_1, and then, checks if there is an Mi-r

augmenting path in P*_1 that contains e. If there is such a path, the answer of 0; to

the query about e is the opposite of the answer of 0 i-1. Otherwise, it remains the

same.

The oracle can easily learn all length-(2i -1) Mi-raugmenting paths that contain

e by querying G and 0 i-1. To find out which augmenting paths are in P*_1, the oracle

considers the following graph Hi. All the Mi-raugmenting paths of length 2i - 1 are

nodes of Hi. Two nodes P1 and P2 are connected in Hi if P1 and P2 share a vertex.

To check if P is in P1*_1, it suffices to check if any of the paths R corresponding to

the vertices adjacent to P in Hi is in Pi*_1, for r(R) < r(P). If none, P E Pi*_1.

Otherwise, P is not in 1i*_1. This procedure can be run recursively. This is basically

how the MIS oracle works on input graph Hi. This finishes the description of the

algorithm.

Query Complexity. It remains to bound the number of queries of the entire algo-

rithm to the graph. This is accomplished in the following lemma.

Lemma 9 The number of queries of the algorithm is with probability 5/6 of order

20 (d
9 k)

Od )where k = [1/61], and d > 2 is a bound on the maximum degree of the input

graph.

Proof Our main algorithm queries 0k about edges adjacent to C'/E 2 random ver-

tices, where C' is a constant. Let Qk+1 = C'. d/e 2 be the number of the direct queries



of the main algorithm to G. These queries are necessary to learn the edges that Ok is

queried with. Let Qi+1 be an upper bound on the number of queries of the algorithm

to 09. We now show an upper bound Qi on the number of queries to G performed

by 0%. The upper bound holds with probability at least 1 - 1. Qi also bounds the

number of queries to Oi-1, since 09 does not query any edge it has not learnt about

from G. For each received query about an edge e, Oi first learns all edges within the

distance of 2i - 1 from e, and checks which of them are in Mi_1. For a single e, this

can be done with at most d - 2 Zj_- (d - 1)i < 2d2 ' queries to both G and Oi-1, and

suffices to find all length-(2i - 1) Mi_ 1 -augmenting paths that contain e.

There are at most id2i- 1 length-(2i - 1) paths in G that contain a fixed vertex

v. Each such path can be broken into two paths that start at v. The length of the

shorter is between 0 and i - 1, and there are at most d' paths of length t that start

at t.

The number of length-(2i - 1) Mi-raugmenting paths that contain e is therefore

at most id2 -1 . Moreover, the maximum degree of Hi can be bounded by the number

of length-(2i -1) paths that intersect a given length-(2i -1) augmenting path. Hence,

the degree of Hi is at most 2i - id2i-1 = 2i 2d2i-1. Finally, to find augmenting paths

adjacent in Hi to a given augmenting path P, it suffices to learn whether e' is in

Mi_1, for each edge e' within the radius of 2i from any of the vertices of P. This can

be accomplished with at most 2i - d Ei- dj < 2id2i+1 queries to both G and 0 i_1.

In total, to answer queries about all, at most Qi+1 edges e, 0% must check mem-

bership in P_1 for at most Qi+1 2id2i- 1 augmenting paths. By the Locality Lemma,

the number of augmenting paths for which we recursively check membership in 1_1

is with probability 1 - at most

(Qi+1 - id2i-1)2 - C(2-2d2t1)
4

. 6k < 2 0(d8i) - kQ+ 1 -



For each of them we compute all adjacent paths in Hi. Therefore, with probability

1 - ,the total number of Oi's queries to both 09_1 and G is bounded by

Q 2d 2i ± 20(dsi) - kQ+ 1 -2id2t+1

The total number of queries to G in the entire algorithm can be bounded by

Qk 1 C ' - d - k 2 k - 8oa k) .2 kE ±1 <3 2Q i E2CI .d 2 0(ds )2

j=1

20(d 
9

k

<E2k+1'

We summarize the whole algorithm in the following theorem.

Theorem 10 There is a (1+6, En) -approximation algorithm for the maximum match-

ing size that uses 2k queries, where d > 2 is a bound on the maximum degree, and

k~ [ 1/6]1.

Proof We run the algorithm described above. If the algorithm exceeds the number of

queries guaranteed in Lemma 9, we terminate it, and return an arbitrary result. The

algorithm returns a (1 + 6, en)-approximation with probability at least 2/3, because

the sampling can return a wrong estimate with probability at most 1/6, and the

algorithm can exceed the allowed number of queries with probability at most 1/6. U

Finally, we can easily remove the multiplicative factor.

Corollary 11 There is a (1, en)-approximation algorithm of query complexity 2dc(")

for the maximum matching size, where d > 2 is a bound on the maximum degree.

Proof Using the algorithm of Theorem 10, we can get a (1+ e, en/2)-approximation

for the maximum matching size, using 2d"(') queries. Since the size of the maximum

matching is at most n/2, this approximation is also a (1, en)-approximation for the

maximum matching size. N



1.5 Maximum Weight Matching

1.5.1 Definitions and notation

Given a weighted graph G = (V, E) with bounded degree d and a weight function

w : E - [0, 1]. Let M be a matching in G, we write w(M) to denote total weight

of all M's matched edges. Let M* be the matching with maximum weight, and let

MWM(G) = w(M*).

Similarly, let S be a collection of edges in G, we write w(S) is the total weight of

all edges in S, and write gM(S) to denote gain of S on matching M which is defined

as gM(S) = w(S n(E \ M)) -w(S n M).

A simple path P is an M-augmenting path if P is M-alternating and gM(P) > 0.

In addition, we say a simple path P is k*-M-augmenting path if P is an M-augmenting

path with at most k edges.

1.5.2 Existence of constant factor improvement

The correctness of our algorithm relies on the following lemma proven by Pettie and

Sanders [36].

Lemma 12 (Pettie and Sanders [36]) For any matching M and any constant k,

there exists a collection of vertex-disjoint k*-augmentation such that gm(A) = w(M e

A) > w(M) + 1 ( kMWM(G) - w(M))



Algorithm 2: A Global Algorithm for the Maximum Weight Matching

i Remove all the edges of weight less than E/2 in G. k := 3/E

2 L:= 2log(e/3)/log(+j)

3 W :=log 6/E2/ log(1 + E/3)

4 M:=0

5 for i := 1, 2,--. , L do

6 for j:= W, W - 1, ,1 do

- S7, := a maximal set of k*-M-augmenting paths with gain in the range

((1 + E/ 3 )iJ1, (1 + E/3)i

8 M:= M e S 

9 return M

A Global Algorithm. Consider Algorithm 2 that computes a matching for the

input graph G. The algorithm starts by removing all edges of weight less than E/2

in G. Then, it takes an empty matching M and augments it by repeatedly finding

a maximal set of disjoint k*-M-augmenting paths and applying them to M. Note

that, in each augmenting step, the algorithm only considers k*-M-augmenting paths

of gain in a certain range, i.e., in every j-th iteration of the inner loop (Step 7-9), the

algorithm only considers augmenting paths of gain in range ((1 +e/3)i-1, (1 +e/3)i .

We show that the matching M that Algorithm 2 computes, is an (1 + E, en)-

approximation of the Maximum Weighted Matching.

Let Mi be the matching at the end of the i-th iteration of the outer loop (lines

3-6). Let Mij be the matching at the end of the j-th inner loop iteration of i-th outer

loop iteration. Let3, be the set of k*-augmenting paths selected in the j-th inner

loop iteration of the i-th outer loop iteration. Let Si be the set of k*-augmenting

paths selected in the i-th iteration, i.e., Si = U, Sj.

It is straightforward to check that, after removing all edges of weight less than

e/2, the total weight of the Maximum Weighted Matching in G only changes by at



most en/2

MWM(Gafter Step 1) > MWM(Gbefore Step 1) - E/2n

For simplicity, from now on, we will write G' to refer to the graph that remains after

Step 1. By Lemma 12, for each 1 < i < L, there exists a collection of vertex-disjoint

k*-Mi_--augmenting paths Ai such that

k +1 /k
9Mi_ 1(Ai) 2k+1 (k MWM(G') - w(Mi_1)

2k+1 k+1

Consider a k*-Mi_--augmenting path P in Ai. There must exists an augmenting path

P' E P* such that P' intersects P and the gain of P' is at least the gain of P divides

by (1 + e/3), i.e, g(P') 2 g(P)/(1 + e/3). (Otherwise, the path P can be added to

some set , and this contradicts to the fact that P*, is maximal.) In addition, each

k*-augmenting path in Pi* intersects with at most k + 1 paths in Ai. Therefore, the

total gain of all augmenting paths in P* is at least (1(A). Thus,

1
w(Mi) - W(M-i) > gmi 1 (Ai)(k + 1)(1+ e/3)

1k
-(2k±+ 1)(1 + e/3) (k +- 1 M MG)-(M )

> + ((1 - e/3)MWM(G') - w(Mi_1))
-6 + 4/E

Thus,

w(ML) (1 - 6 + 3 e)L)( 1 - E/3)MWM(G')
6 + 4e

2 (1 - e)MWM(G) - En/2

Therefore, the matching M outputted by Algorithm 2 is a (1+e, en)-approximation

of the Maximum Weighted Matching in G.



1.5.3 The Constant-Time Algorithm.

Let we first describe how to construct an oracle for the matching ML computed by

the global algorithm.

We construct a sequence of oracles 01,1, 01,2, - 0 ,w, - OL,1, OL,2, ,

OL,W, each to simulate an (inner) iteration of the Algorithm 2. A query to O, is

an edge e E E. The oracle's reply indicates whether e is in Mi,. Given 1 < i < L

and 1 < j W, we construct 03, as follows. First, 04, makes queries to 0 ,_j-1 (or

Oi-1,w if j = 1) and G' to learn about graph structure and matching around query

edge e. Then, it checks if there is any k*-augmenting path in P*, that contains e.

If yes, the answer of Oj is opposite to the answer of 0ij-1 (or Oi-1,w if j = 1).

Otherwise, it stays the same.

The oracle OL,W is the oracle that we want to construct. In other words, OL,W

provides the query access to the matching ML computed by Algorithm 2.

Recall that ML is a (1 + e, en)-approximation of the Maximal Weighted Matching

in G. Therefore, if we had an estimate a such that w(ML)-en/4 < a < w(ML)+en/4,

then we could easily get a (1 + e, en)-approximation to MWM(G) by subtracting en/4

from a. To compute the required a, it suffices to estimate the total weight of edges

in ML. In order to do so, we can sample s = 0(1/2) vertices, and for each of them

check if any incident edge is in ML or not. If yes, add its weight to a sum T. Then,

the value of a can be computed as nT/2s. The correctness of the estimate with

probability 5/6 follows from Hoeffding bound.

Query Complexity. The following lemma shows an upper bound on the number

of queries made by our constant-time algorithm.

Lemma 13 With probability 5/6, the number of queries of the constant-time algo-

rithm is of order w2k 2 2"d6k2w>, where k = [3/e], W = [log(e)/ log(1 + e/3)] + 1, and

d > 2 is a bound on the maximum degree of th input graph.

Proof Our main algorithm queries OL,W about the edges adjacent to CI/E2 random

vertices, where C' is constant. Let QL+1,1 = C'd/e2 be the number of the direct



queries of the constant-time algorithm to both G' and OL,W. Let Qi,j+1 (or Qi+,1 in

case j = W) be an upper bound on the number of queries of the algorithm to O,

and G'. We now show an upper bound Qj, on the number of queries to both G' and

0ij_1 (or Oi-1,w in case j = 1) performed by O,,. The upper bound holds with

probability 1.

Let Hij be the intersection graph of augmenting paths in the (i, j)h iteration,

i.e., all k*-Mi,j-raugmenting paths with gain in range ((1 + E/3)i-1, (1 + E/3)j are

nodes in Hi, and two nodes P1 and P2 are connected if they share a vertex. The

degree of Hi, is at most (k + 1) 2 dk+1.

In addition, for each edge e in G', the number of k*-augmenting paths that contain

e is at most kdk. Therefore, in total, to answer all Qi,j+1 queries, O, only need to

check membership in PJ for at most Qi,j+1 kdk augmenting paths. By Locality

Lemma, with probability 1 - 1 , the number of augmenting paths that we have to

recursively check membership is at most

(Qi,j+1 - kdk) 2 
. C((k+1) 2dk+1) 4 - 6LW = 2 dl/) Q+ 1

(Note that, from Algorithm 2, k := 3/e O(1/E), L := 2log(e/3)/log(6j )

O(1/E) and W := log 6/E 2/log(1 + e/3) = O(1/E).)
Now observe that for a given augmenting path P in Hi,, it takes at most (k+1)dk+1

queries to G' and 04,_1 to compute the set of augmenting paths that intersect P.

Therefore, with probability 1 - 12 , the total number of 03j's queries to both

0ij_1 and G' is bounded by

2do"')Q j+1 - (k + 1)dk+1

d(lE)Qj+1 =: Qi,j



Therefore, the total number of queries to

by

L W

SS ij -+ QL+1,1 - 2Qi,1
i=1 j=1

G in the entire algorithm can be bounded

(C 2LW

2 d/e-2LW

C' 
2

e2

_ 720(1/e 2+log d/E)

We summarize our result in the following theorem.

Theorem 14 There is a (1+e, en)-approximation algorithm for the maximum weight

matching that use 220(/E2+0logd/E) queries, where d > 2 is a bound on the maximum

degree.

We can also remove the multiplicative factor.

Corollary 15 There is a (1, En)-approximation algorithm of query complexity 2 2 0(1/e
2
+]ogdk)

for the maximum weight matching, where d > 2 is a bound on the maximum degree.

Proof Omitted.

1.6 Set Cover

In the minimum set cover problem, an input consists of subsets Si to S" of U =

{1, ... , m}. Each element of U belongs to at least one of the sets Si. The goal is to

cover U with the minimum number of sets Si, that is, to find a minimum size set I

of indices such that U2, Si = U. In this work, we want to approximate the optimal

size of I.



We assume that for each set Si, we have query access to a list of elements of Si,

and that for each element u E U, we have query access to a list of indices of sets Si

that contain u.

1.6.1 The Classical Greedy Algorithm

Theorem 16 There is an (H(s), en)-approximation algorithm of query complexity

( (28) for the minimum set cover size for instances with all n sets Si of size at

most s, and each element in at most t different sets.

Proof We simulate the classical greedy algorithm [25, 31] for the set cover problem.

The algorithm starts from an empty cover, and keeps adding the set Si which covers

most elements that have not yet been covered, until the whole set U is covered. The

approximation factor of the algorithm is at most H(s) < 1 + In s.

We first consider all sets in random order and add to the cover those that cover

s new elements at the time they are considered. Let C1 be the set of sets that were

already included into the cover. We then consider the remaining sets, also in random

order, and we add to the cover those that cover s - 1 new elements. This way we get

C2 , the set of all sets already included in the cover. We keep doing this until we cover

the whole set U, and C, is the final cover. We show that in most cases one can check

if a set is in the cover without simulating the whole process.

We create a sequence of oracles 01, 02, ... , 0, that correspond to the process

described above. A query to an oracle O is an index i of a set Si. The oracle's reply

indicates whether Si is in C,.

How is O implemented? We assume that each set Si is assigned a random number

ri, which is uniformly and independently chosen from [0, 1]. These random numbers

give a random ordering of sets Si. To handle a query about a set Sk, we first ask

0,-1 if Sk was already included in Cj-1. (For j = 1, we assume that Cj_1 = Co = 0,

so no query is necessary in this case.) If Sk was already in Cj_ 1 , then it is also in

C,. Otherwise, we learn first the elements of Sk (at most s queries) and what sets Si

they belong to (at most st further queries). Then, we check for each of these Si if



it was already in Cy_1 (at most st queries to 0j_1), and for all of the Si's that have

rji < rjk, we recursively check if they are in C,. Finally, using this knowledge, we can

verify what number of elements of Sk is not yet covered, when Sk is considered. If

the number of these elements is s - j + 1, then Sk is in C,. Otherwise, the number of

the elements is lower than s - j + 1, and Sk is not in Ci.

It is obvious that the above procedure simulates the classical greedy algorithm.

Our sublinear approximation algorithm queries 0, for C'E 2 sets chosen at random,

where C' is a sufficiently large constant, to estimate the fraction of sets which are in

the cover to within en/2 with probability 5/6. By adding En/2 to the estimate, we

get the desired approximation. We want to bound the number of queries. We set Q,

to (C'/E 2)2 - 6s'- C(st), and define Qj, for 1 < J < s - 1, to be Qj (Qj+i . (st +

1))2 -6s- C (t) 4 . By Lemma 5, each Qi bounds the number of sets for which we check

if they are in C, with probability 1 - s - = 1 - 1 =. It can be shown by induction6s 6 6

that

6s - (st + 1) . C(st)4) O(2) 2(8t)4 0(2")

E E

with probability at least 5/6. So with probability 5/6, the total number of queries is

at most
2(St)0(28)

(s + st) - Q, =
i=1

Summarizing, with probability 2/3, the algorithm uses the above number of queries,

and returns the desired approximation.

1.6.2 Application to Dominating Set

In the dominating set problem, one is given a graph, and chooses a minimum size

subset S of its vertices such that each vertex v of the graph is either in S or is adjacent

to a vertex in S.

Theorem 17 There is an (H(d+1), en)-approximation algorithm of query complexity

(20 ,(2d) for the minimum dominating set size for graphs with the maximum degree

bounded by d.



Proof The problem can be trivially expressed as an instance of the set cover problem.

For each vertex v, we have a set Sv of size at most d + 1 that consists of v and all

neighbors of v. We want to cover the set of vertices of the graph with the minimum

number of sets S,. To approximate the minimum set cover size, we use the algorithm

of Theorem 16. U

1.6.3 Query Lower Bound Discussion

Trevisan proved that for every two positive constants y and e, there exists a constant

d such that obtaining with constant probability a (2 - -y, en)-approximation of the

size of a minimum vertex cover of graphs over n vertices and degree d, requires Q(V/5)

queries [35]. Note that vertex cover is a special case of set cover, in which we want

to cover the set of edges of the graph. For each vertex v, we create a set S, that

consists of edges incident to v. This implies that the above lower bound also applies

to set cover, and shows that it is impossible to get a constant approximation factor

less than 2 with the number of queries independent of the input size.

1.7 Remarks

Follow up on the work in this chapter, Yoshida, Yamamoto, and Ito [46] show that

the query complexity of the MIS oracle can be improved exponentially by adding

a simple pruning mechanism. In particular, they prove that the pruned MIS ora-

cle has expected query complexity O(d 2). In addition, they show a new technique

to analyze the query complexities of approximation algorithms for the maximum

matching, minimum vertex cover and set cover. For example, they show that the

(1, En)-approximation algorithm for the maximum matching only requires at most

dO(C)(N)O(i) queries to the input graph.



Chapter 2

Constant-Time Partitioning Oracle

for Minor-Free Graphs and

Applications

Solving combinatorial graph problems (such as minimum vertex cover, maximum in-

dependent set, minimum dominating set) has been one of the main research goals of

theoretical computer science. In the early 1970s, many of those problems unfortu-

nately turned out to be as hard as the satisfiability problem, due to the breakthrough

result of Karp ([27], see the survey [18]). In the 1990s, the discovery of the PCP

theorem resulted in showing that even finding good approximate solutions is often

NP-hard (see for instance [47]).

In spite of these negative results, multiple methods for finding good approximate

solutions for several restricted families of graphs have been developed over the years.

Notably, Lipton and Tarjan [29] proved the separator theorem for planar graphs,

which resulted in polynomial-time approximation schemes for several combinatorial

problems, which remain NP-hard even restricted to planar graphs [30]. The sepa-

rator theorem was generalized to arbitrary graphs with an excluded minor by Alon,

Seymour, and Thomas [1], and similar polynomial-time approximation schemes im-

mediately followed.

An important implication of the separator theorem is that any graph with a fixed



excluded minor with maximum degree bounded by d can be partitioned into small

components of size at most poly(d, 1/e) by removing only an E-fraction of edges

for any E > 0. In this chapter, we develop techniques for locally computing such

a partition for minor-free families of graphs and in general, for hyperfinite families

of bounded-degree graphs (see Introduction for the formal definition of hyperfinite

graphs). We construct a partitioning oracle that given query access to a graph from

a specific family of graphs, provides query access to a fixed partition, and queries

a fraction of the graph independent of the graph size. Just like knowing the entire

partition is useful for finding a good approximate solution, our local version is useful

for approximating the size of the optimal solution in time independent of the actual

graph size. Our partitioning oracles also find applications to other approximating

and testing problems that we describe in more detail below.

2.1 Preliminaries

Partitions. We say that P is a partition of a set S if it is a family of nonempty

subsets of S such that UXP X = S, and for all X, Y E P either X = Y or XfnY 0.

We write P[q) to denote the set in P that contains an element q E S.

Graph Minors. A graph H is a minor of a graph G, if H can be obtained from G

by vertex removals, edges removals, and edge contractions. A graph is H-minor free

if it does not have H as a minor. A graph property P is minor-closed if for every

graph G C P, every minor of G also belongs to P. The Robertson-Seymour theorem

[40] says that every minor-closed property can be expressed via a constant number

of excluded minors. Moreover, Robertson and Seymour [39] showed that for every

minor H, there is a deterministic O(n3 )-time algorithm for checking if H is present

in the input graph.

Lemma 18 (Proposition 4.1 in [1]) For every graph H, there exists a constant

CH such that if G is an n-vertex H-minor free graph, then there exists a set S of at



most CH - n/vfli vertices of G such that removing vertices of S leaves no connected

component on more than t nodes (t > 1).

Corollary 19 Let H be a fixed graph. There exists a constant CH > 1 such that for

every e E (0,1), every H-minor free graph with degree bounded by d is (edn, CH/e 2)_

hyperfinite.

Proof Set t in Lemma 18 to C/E2 > 1. One can remove from G at most en vertices

so that each remaining connected component has at most C/ 2 vertices. Since the

degree of each vertex in G is bounded by d, it suffices to remove from G the edges

incident to those vertices to achieve the same property. The number of these edges

is at most Edn. N

Vertex Cover. We write VC(G) to denote the minimum vertex cover size for a

graph G.

Bounded Degree Subgraphs. Let G be a graph. We write Gk, k E N to denote

G without the edges that are incident to vertices of degree higher than k in G. For a

family of graphs C, we define:

Clk = {GIk : G E C}.

2.2 Partitioning Oracles and Their Applications

We now define the main tool that is used in this chapter. A partitioning oracle

provides query access to a global partition of the graph into small components.

Definition 20 We say that 0 is an (E, k)-partitioning oracle for a family C of graphs

if given query access to a graph G = (V, E) in the bounded degree model, it provides

query access to a partition P of V. For a query about v E V, 0 returns P[v]. The

partition has the following properties:



" P is a function of the graph and random bits of the oracle. In particular, it does

not depend on the order of queries to 0.

" For every v E V, IP[v] k and P[v] induces a connected graph in G.

" If G belongs to C, then I{(v,w) E E : P[v] -# P[w]}I 5 e|V| with probability

9/10.

The most important property of our oracles is that they compute answers in time

independent of the graph size by using only local computation. We give two methods

for constructing partitioning oracles for different classes of graphs. We briefly describe

them below.

A Generic Partitioning Oracle for Hyperfinite Graphs (Section 2.3).

We give a generic oracle that works for any hyperfinite family of graphs.

Theorem 21 Let G be an (e, p(e))-hyperfinite graph with degree bounded by

d > 2. Suppose that the value p(e 3 /3456000) is known, that is, it can either be

efficiently computed, or is hard-wired for a given e > 0 of interest. There is an

(Ed, p(e 3/3456000))-partitioning oracle with the following properties. The oracle

answers every query, using 2 do p(e
3

/3456000)) /E queries to the graph. If q is the total

number of queries to the oracle, the total amount of the oracle's computation is

bounded by q log q - 2d"(p(e3
/345600)) /6

The oracle's construction is based on locally simulating a greedy global par-

titioning procedure. The procedure repeatedly selects a random vertex v and

tries to remove a small component containing it by cutting few edges. If there is

no such component, only v is removed. This procedure can easily be simulated

locally using a local computation paradigm in Chapter 1.

An Efficient Partitioning Oracle for Graphs with Small Components (Section 2.4).



Recall that a (e, p(E))-hyperfinite if it is possible to remove EIVI edges of the

graph such that the remaining graph has connected components of size at most

k. We now focus on p-hyperfinite families of graphs with p(E) = poly(1/E).

That is, for every E > 0, one can remove at most En edges of the graph to

obtain small components of size poly(l/e). In this case, the generic oracle of

Theorem 21 makes 2 'O1Y(l/E) queries to the graph to answer each query to the

oracle. We give a more efficient oracle that makes 2 P9ly(1/e,d) queries.

Theorem 22 Let R : R2 -* R be a polynomial. Let C be a family of graphs

such that, for every d G N+, and every e C (0,1), CId is (E, R(d, E))-hyperfinite.

There is a uniform partitioning oracle that takes d E Z+ and e c (0,1) as input

and acts as an (E, poly(1/e, d))-partitioning oracle for CId. Let q be the number

of queries to the oracle. The oracle makes q - 2POly(1/ed) queries to the input

graph and the total amount of the oracle's computation is (q log q) . 2 POly(1/ed).

Recall that every minor-free family of graphs is (c, poly(1/e))-hyperfinite (Corol-

lary 19). Theorem 22 immediately implies a (E, poly(1/E, d))-partitioning oracle

that makes 2poly(1/e,d) queries to the input graphs per query.

In addition, it is also possible to construct an efficient partitioning oracle for minor-

free graphs based on a deterministic clustering method of Czygrinow, Handc'kowiak,

and Wawrzyniak [14, Section 2]. The oracle only requires dPoly(1/e) queries to the input

graphs per query to the oracle (for more details, see the full paper [34]). We also note

that for graphs with polynomial growth, Jung and Shah [261 provide methods that

can be used to construct a partitioning oracle that makes poly(1/E) queries to the

graph for each query to the oracle.

2.2.1 Constant-Time Approximation Algorithms

We describe how to use partitioning oracles to design constant-time approximation

algorithms for combinatorial problems for hypefinite families of graphs. As an ex-

ample, consider the minimum vertex cover problem. We use a partitioning oracle to



obtain access to a partition of the input graph. The union of optimal vertex covers

over all connected components constitutes a set of size within an additive O(en) of

the minimum vertex cover size of the original graph. By sampling 0(1/E2) vertices

and computing the fraction of those that belong to the optimal vertex cover in their

component, we obtain a (1, O(En))-approximation to the minimum vertex cover size

of the original graph.

A formal theorem and proof follow. To achieve a good approximation, a bound

on the average degree is needed. Note that every family of graphs with an excluded

minor has average degree bounded by a constant.

Theorem 23 Let C be a family of graphs with average degree bounded by d. Let

e > 0. Let 0 be an (e/3, k)-partitioning oracle for the family C13,1e. There is a (1, en)-

approximation algorithm for the minimum vertex cover size in any graph G = (V, E)

in C. The algorithm

" gives 0 query access to the graph G3j/e,

" makes O(1/e 2) uniformly distributed queries to 0,

" uses 2O(k)/E2 + O(dk/E 3) time for computation.

The same holds for the maximum independent set problem, and the minimum domi-

nating set problem.

Proof All edges from G missing in G| 3i/e can be covered by vertices of degree greater

than 3d/E in G. We write G' = (V, E') to denote G 3j/e. Note that the number of

such vertices is by Markov's inequality at most en/3. Therefore, we have

VC(G) - En/3 < VC(G') VC(G).

The adjacency list of every vertex v in G' can easily be computed in O(3d/e)

time. If the degree of v is greater than 3d/E in G, then v is an isolated vertex in G'.

Otherwise, we go over the neighbors of v in G, and each neighbor w in G remains a

neighbor in G' if and only if w has degree at most 3d/6 in G. We give 0 query access



to G'. With probability 9/10, 0 provides query access to a partition P such that the

number of edges (v, w) E E' with P[v] = P[w] is at most En/3. Let G" = (V, E") be

G' with those edges removed. Since they can be covered with en/3 vertices, we have

VC(G') - en/3 < VC(G") VC(G'),

that is,

VC(G) - 2en/3 < VC(G") < VC(G).

To get a (1, en)-approximation to VC(G), it suffices to estimate VC(G") up to ±en/6.

By the Chernoff bound, we achieve this with probability 9/10 by sampling O(1/E 2 )

vertices and computing the fraction of them in a fixed minimum vertex cover of

G". Such a vertex cover can be obtained by computing a minimum vertex cover

for each connected component of G" independently. Therefore, for every vertex v in

the sample, we obtain P[v] from 0. We compute a minimum vertex cover for the

component induced by P[v] in such a way that the vertex cover does not depend

on which vertex in P[v] was the query point. Finally, we check if the query point

v belongs to the computed vertex cover for the component. In total, our procedure

takes at most 0 (k- d/e3) + 20 (k)/E 2 time.

To prove the same statement for minimum dominating set, we assume that all the

high degree nodes are in the dominating set, and we take this into account when we

compute optimal solutions for each connected component in the partition. This can

increase the solution size by en/3 at most. For maximum independent set, it suffices

to recall that the sum of the size of the maximum independent set and the size of the

minimum vertex cover equals n, so a (1, en)-approximation to one of the problems

immediately implies a (1, En)-approximation to the other one. U

We now use the fact that the average degree of a graph with an excluded minor is

0(1). We combine Theorem 22 and Theorem 23, and achieve the following corollary.

Corollary 24 For every H-minor free family of graphs (with no restriction on the

maximum degree), there are (1, en) -approximation algorithms for the optimal solution



Algorithm 3: Tester for H-Minor Freeness (for sufficiently large graphs)

Input: query access to a partition P given by an (ed/4, k)-partitioning oracle
for H-minor free graphs with degree bounded by d for the input graph

1 f := 0;
2 for j = 1,t.. , ti (where ti = O(1/E 2 )) do
3 Pick a random v E V and a random i E [d];
4 if v has > i neighbors, and the i-th neighbor of v not in P[v] then

L f := f + 1
5 if f/ti > e then REJECT;
6 Select independently at random a set S of t 2 = O(1/e) vertices of the graph;
7 if the graph induced by UXes P[x] is not H-minor free then REJECT;
8 else ACCEPT

size for minimum vertex cover, maximum independent set, and minimum dominating

set that run in 2P9 (1/6) time.

2.2.2 Testing Minor-Closed Properties

We now describe how partitioning oracles can be used for testing if a bounded-degree

graph has a minor-closed property. The constant-time testability of minor-closed

properties was first established by Benjamini, Schramm, and Shapira [5].

We now recall the definition of property testing in the bounded degree model

[21]. A graph G is E-far from a property P if it must undergo at least edn graph

operations to satisfy P, where a single graph operation is either an edge removal or

an edge insertion. An e-tester T for property P is a randomized algorithm that has

query access to G in the sense defined in the preliminaries, and:

o if G satisfies P, T accepts with probability at least 2/3,

* if G is e-far from P, T rejects with probability at least 2/3.

Lemma 25 Let H be a fixed graph. Let 0 be an (ed/4, k)-partitioning oracle for

the family of H-minor free graphs with degree bounded by d. There is an E-tester

for the property of being H-minor free in the bounded-degree model that provides 0

with query access to the input graph, makes 0(1/E2) uniform queries to 0, and uses

0((dk log k)/E + k'/E6 ) = poly(d, k, 1/E) time for computation.



Proof For sufficiently large graphs, our tester is Algorithm 3. The value ti equals

Ci/s2 for a sufficiently high constant C1 such that by the Chernoff bound the number

of edges cut by the partition P is approximated up to ±edn/8 with probability 9/10.

Let t3 = C2/E be an upper bound on the- expected time to hit a set of size E|X

by independently taking random samples from X, where C2 is a sufficiently large

constant. We set t2 in the algorithm to 10 -q -t3 , where q is the number of connected

components in H. Finally, we set t 4 to C3 - k - t2 for a sufficiently high constant C3

such that for graphs on more than t4 nodes, the probability that two samples from S

belong to the same component P[v] is at most 1/10.

If the number of vertices in the graph is at most t 4 = O(k/E 2 ), we read the

entire graph, and check if the input is H-minor free in O((k/E 2) 3 ) time via the cubic

algorithm of Robertson and Seymour [39]. For larger graphs, we run Algorithm 3.

The loop in Lines 2-4 takes at most O(d/E 2 ) time. In Line 7, the induced graph can

be read in O((dk log k)/e) time, and then O((k/E) 3) time suffices to test whether it

is H-minor free. Therefore, the amount of computation that the algorithm uses is

O((dk log k)/e + (k/e 2)3 ).

If G is H-minor free, then the fraction of edges cut by P is with probability 1-1/10

at most Edn/4. If this is the case, the estimate on the number of cut edges edges is

at most 3edn/8 with probability 1 - 1/10. Moreover, every induced subgraph of G

is also H-minor free, so G cannot be rejected in the loop in Line 5 of the algorithm.

Hence, G is accepted with probability at least 8/10 > 2/3.

Consider now the case when G is E-far. If the partition P cuts more than edn/2

edges, the graph is rejected with probability 1 - 1/10 > 2/3. Suppose now that P

cuts fewer than Edn/2 edges and the tester does not reject in Line 5. Let G' be the

new graph after the partition. G' remains e/2-far from H-minor freeness, and there

are at least edn/2 edges that must be removed to get an H-minor free graph. This

implies that G' is E/2-far from Hi-minor freeness also for every connected component

Hi, 1 < i < q, of H. For every i, at least an edn/2 edges belong to a component

of G' that is not Hi-minor free. It follows that at least en vertices are incident to

such an edge. Therefore, it suffices to pick in expectation t3 random nodes to find a



Algorithm 4: The global partitioning algorithm with parameters k and 6

1 (7ri, .. . , 7r,) random permutation of vertices;
2 P:= 0;
3 for i = 1,...,ndo
4 if iri still in the graph then
5 if there exists a (k, 6)-isolated neighborhood of 7ri in the remaining graph

then
6 L S this neighborhood

7 else
8 L S:= {7ri}
9 P := P U {S};

10 remove vertices in S from the graph

component that is not Hi-minor free. For q connected components of H, it suffices

to pick in expectation q -t 3 random nodes to find each of them. By picking, 10 -q -t3

random nodes, we find the components with probability 1 - 1/10. Furthermore, since

the considered graph is large, i.e., has at least t4 nodes, the components for each i are

different with probability 1 - 1/10, and the graph is rejected in Line 7. Therefore,

the probability that a graph that is E-far is accepted is at most 3/10 < 1/3. U

By combining Theorem 22 with Lemma 25, we obtain a 2PolY(1/e)-time tester for

H-minor freeness for graphs of degree 0(1). Since every minor-closed property can

be expressed via a finite set of excluded minors H [40], it suffices to test if the input

is E/s-far from being minor free for each of them, where s is their number. We arrive

at the following theorem.

Theorem 26 For every minor-closed property 'P, there is a uniform c-tester for P

in the bounded-degree model that runs in 2POY(1/6) time.

2.3 A Simple Generic Partitioning Oracle

We start by presenting a partitioning oracle that works for any family of hyperfinite

graphs. We later show more efficient oracles for specific families of hyperfinite graphs.



2.3.1 The Oracle

We introduce an auxiliary definition of a small subset S of vertices that contains a

specific node, and has a small number of outgoing edges relatively to S.

Definition 27 Let G = (V, E) be a graph. For any subset S C V, we write eG(S)

to denote the number of edges in E that have exactly one endpoint in S.

We say that S C V is a (k, 6)-isolated neighborhood of v E V if v C S, the

subgraph induced by S is connected, |SI < k, and eG(S) < 615.

We now show that a random vertex has an isolated neighborhood of required

properties with high probability.

Lemma 28 Let G = (V, E) be a p(e)-hyperfinite graph with degree bounded by d,

where p(e) is a function from R+ to R+. Let G' = (V', E') be a subgraph of G that

is induced by at least on vertices. For any e E (0,1), the probability that a random

vertex in G' does not have a (p(e 2 6/28800), e/120)-isolated neighborhood in G' is at

most e/120.

Proof Any induced subgraph of G can still be partitioned into components of size

at most p(e) by removing at most en edges. Since G' has at least 6n vertices, it is

still (e/6, p(e))-hyperfinite for any e > 0, or equivalently, it is (e, p(e -6))-hyperfinite

for any e > 0.

Therefore, there is a set S' C E' of at most (e2 /28800)IV'l edges such that if all

the edges in S' are removed, the number of vertices in each connected component

is at most p(e 26/28800). Denote the achieved partition of vertices into connected

components by P. We have

[ ]eG(v _ SI eG(S) 21S'l e2

IF1P ev S S VI - 14400'

By Markov's inequality, the probability that a random v C V' is such that e(Pv])/IP[v] I>
is at most e/120. Otherwise, P[v] is an (p(e 26/28800), e/120)-isolated neighbor-

hood of v.



Finally, we now use the above lemma to construct a partitioning oracle.

Proof [Proof of Theorem 21] We set k = p(e 3/3456000) and 6 = e/120. Consider the

global Algorithm 4 with these parameters. The algorithm partitions the vertices of

the input graph into sets of size at most k. We define a sequence of random variables

Xj, 1 < i < n, as follows. Xi corresponds to the i-th vertex removed by Algorithm 4

from the graph. Say, the remaining graph has n - t vertices, and the algorithm is

removing a set S of r vertices. Then we set Xt 1 = ... = Xt+r = eG,(S)/r, where G'

is the graph before the removal of S. Note that E"_j Xi equals the number of edges

between different parts in P. For every i, if Xi corresponds to a set S that was a

(k, 6)-isolated neighborhood of the sampled vertex, then Xi 6 = E/120. Otherwise,

we only know that Xi < d. However, by Lemma 28, if i < n - en/120, this does not

happen with probability greater than e/120. Therefore, for every i < n - en/120, we

have

E[Xi] < e/120 + d -e/120 < 2ed/120.

For i > n - en/120, we again use the bound Xi < d. Altogether, this gives that

the expected number of edges connecting different parts of P is at most 2edn/120 +

edn/120 < edn/40. Markov's inequality implies that the number of such edges is at

most edn/2 with probability 1 - 1/20.

Algorithm 4 can be simulated locally as follows. For each vertex v, we want to

compute P[v]. Instead of a random permutation, we independently assign a random

number r(v) uniformly selected from the range [0, 1]. We only generate r(v)'s when

they are necessary, and we store them as they may be needed later again. The numbers

generate a random ordering of vertices. To compute P[v], we first recursively compute

P[w] for each vertex w with r(w) < r(v) and distance to v at most 2 - k. If v E P[w]

for one of those w, then P[v] = P[w]. Otherwise, we search for a (k, 6)-isolated

neighborhood of v, keeping in mind that all vertices in P[w] that we have recursively

computed are no longer in the graph. If we find such an neighborhood, we set P[v]

to it. Otherwise, we set P[v] = {v}.



We now analyze the above local simulation procedure, using Lemma 3 in Chapter

1. Our computation graph is G* = (V, E*), where E* connects all pairs of vertices

that are at distance at most 2 -k in the input graph. The degree of G* is bounded by

D = do(k). The expected number of vertices w for which we have to compute P[w]

to obtain P[v] for a fixed vertex v is at most T = 2d"(). Suppose that we run the

procedure for every vertex in the graph, but we never recursively compute P[w] for

more than T' = 40T/e vertices w. The probability that we do not compute P[v] for a

given v is by Markov's inequality at most e/40. The expected number of vertices that

we fail for is bounded by en/40. Using Markov's inequality again, with probability

1 - 1/20, the number of such vertices is bounded by en/2.

The oracle works as follows for a given query vertex v. It first checks whether

there is at least one vertex u for which we compute P[u] using at most T' recursive

calls, and v E P[u]. This can be done by running the recursive simulation procedure

for every vertex u at distance less than k from v. If there is such vertex u, the oracle

returns P[u]. Otherwise, it returns the singleton {v}. This procedure clearly provides

query access to a partition P' of the vertex set with all components of size at most k.

Let us show now that the number of edges cut in P' is likely to be small. First,

we know that P cuts at most edn/2 vertices with probability at least 1 - 1/20. P'

additionally partitions components of in P in which the recursive evaluation does not

finish in T' recursive calls for any vertex. The number of such vertices, and also the

number of vertices in such components, is at most en/2 with probability 1 - 1/20.

This means that with probability 1 - 1/20, at most edn/2 additional edges are cut in

P'. Therefore, with probability at least 1 - 1/20 - 1/20 = 9/10, the P' cuts at most

Edn edges.

Let us now bound the number of graph queries that the oracle makes to answer

a single query. It simulates the recursive procedure starting at do(k) vertices with at

most T' = 2do(k) /e recursive calls each time. Each recursive call has query complexity

do(k) associated with reading the neighborhood of radius 0(k) at every vertex. In

total, this gives a bound of 2d"(k) /E queries. For q queries, the amount of computation

the oracle uses is q log q.2d0(k) /E. The extra logarithmic factor comes from a dictionary



that is necessary to store random numbers r(v) assigned to vertices v of the graph,

once they are generated. U

2.4 A Partitioning Oracle for Hyperfinite Graphs

We focus on the family of hyperfinite graphs where p(E) = poly(1/E). We show that

there is an efficient partitioning oracle for this family of graphs which only makes at

2 poly(1/ed) queries to the graph to answer a query to the oracle.

We describe a local distributed partitioning algorithm that builds the required

partition. Recall that a distributed algorithm is local if it runs in a constant number

of rounds. Such an algorithm can be used to construct an efficient partitioning oracle,

since for every query point, one can compute the distributed algorithm's output by

simulating it for nodes within a constant radius around the query point. See the

paper of Parnas and Ron [35] for more details.

2.4.1 Preliminaries

Given an undirected graph G = (V, E). For a set of vertices S C V, the volume P(S)

is defined to be,

(S) : (x)

where i(x) denotes the degree of the vertex x. The conductance of S is defined to be

$(S) := eG(lpS

Growing an Isolated Neighborhood Using Volume-Biased Evolving Set

Process

Starting from a given vertex v, searching for an isolated neighborhood that contains

v is one of the challenges most partitioning oracles have to face. In this oracle, we use

the Volume-Biased Evolving Set Process (VBESP) of Andersen and Peres [2]. This

method does not only take much less queries to the graph (linear in the size of the



neighborhoods), but also guarantee some nice local properties of the neighborhoods

which will be crucial for our analysis. The following lemma mimics, with minor

modification, the Theorem 2 in the paper of Andersen and Peres [2].

Lemma 29 Let G = (V, E) be an undirected graph with degree bounded by d > 2.

Let A C V be a (k, e5/(6, 220,800, 000 - d' - log(2kd)))-isolated neighborhood where

e E (0,1) and k > 1. There is a subset C C A with size of at least (1 - e)IAI for

which the following holds. For every v E C, with probability at least 1 - e/60, we can

find an isolated neighborhood S, will satisfy all the following:

1. S, is a (2k, e/30)-isolated neighborhood.

2. |Sv \ A| < E -|Sv|I30- d

We need the following proposition which mimics Proposition 5 in the paper of

Andersen and Peres [2].

Proposition 30 Let (Xi) be a lazy random walk Markov chain starting from the

vertex x. For any set A C V and integer T, let

esc(x, T, A) := P2 [UT o(Xj 0 A)] ,

which is the probability that a lazy random walk starting from x leaves A within the

first T steps, and define AT := {x E Alesc(x, T, A) d -T -$(A)/e}. Then, |ATI

(1 - e/2) -JAI

Proof By Theorem 2.5 in [43], it is shown that pL(A)- 1 EZxA p(x)esc(x, T, A)

T#(A)/2. By Markov inequality,

IAI < p(A') ep(A)/2d < e|A|/2

Proof [Proof of Lemma 29]



Since A induces a connected subgraph of G,

#(A) < eG(A)IAI E6 /(6 220, 800, 000 log(2kd))

We simulate the volume-biased ESP started from So = {v} as in [2] with stopping

time r such that the process stops when r = T = 81, 000 d2 log(2 kd) or |S,| is larger

than 2k. By Lemma 1 in [2],

#(Sj)2 4klog p(SO) 4 Alog(2kd)
p(So)-

Therefore, by Markov's inequality, the event L<, #(Sj)2 < 960 -log(2kd)/E holds

with probability at least 1 - e/240. Let S, be the smallest conductance set in the

sample path (So, - - , ST),

ik [#(Sv) v960 - r- - log(2kd)/e] 1 - e/240 (2.1)

Also, by Lemma 2 in [2], if we consider a sample path (So, - , ST) from the

volume-biased evolving set process,

?x max p(St \ A) > 240-esc(x, T,
It T (L) e

b [t'IT pL(St \ )< 240 1 eSc(x, T, A)
p1(St) 8

#2 [Vr(St \ A) < 240 esc(x, T, A)p(St)]

,[VTISt \ Al < 240!esc(x, T, A)dlSt|l

A)] < E/240

> 1 - E/240

> 1 - E/240

> 1 - E/240 (2.2)



Let C:= AT ={x E Aesc(x,T, A) d -T -$(A)/e}. For x G C:

Px [VtT|St \ Al < 240 T - #(A) -d2S 1 - e/240

i [ VVTISt \ A| < > 1 - e/240

By (1), (3) and the Union Bound, for x E C:

Px [#(Sv) < 960 - log(2kd)/E & VT ISt \ A < 30d

'6 [eKSv) d 960 -r-1 - log(2kd)/E & VtTIStI) < 2k]

[eG(Sv) <_d960 1 -T'log(2kd)/E]

Th le a f s f )E30

The lemma follows from (3), (4) and the Union Bound.

> 1 - e/120

2 1 - e/120

> 1 - e/120

2 1 - e/120 (4)

Note that it is also possible to use a simple brute force search algorithm to search

for isolated neighborhoods. However, such method does not work well with the design

of this oracle since it does not guarantee a local property as Property 2 of Lemma 29.

Hyperfinite Graphs With Polynomial Hyperfinite Function

The following corollary can be proved by the same argument in the proof of Lemma

28.

Corollary 31 Let R : R?2 -- 1? be a polynomial. Let G = (V, E) be a (e, R(d, e))-

hyperfinite graph with degree bounded by d. Given e E (0,1), let K be the smallest

integer that satisfies the following constraint:

K > R (E8/(1 492, 992, 000, 000 -d5 -log(2Kd)), d)

Let G' = (V', E') be a subgraph of G, which is induced by at least E/4 -n vertices. The

probability that a random vertex in G' does not have an (K, E6/(6, 220, 800, 000 -d5 .



log(2Kd)))-isolated neighborhood in G' is at most E/30. Furthermore, there exists a

partition P for G' such that the probability that P[v], for a random vertex v E V', is

not an (K, E6/6, 220, 800, 000 -d5 - log(2Kd))-isolated neighborhood is at most E/30.

In order to simplify the notations, given a polynomial R : 1Z2 _4 7?, let us define

KR : Z+ -+ R+ such that KR(e) is the minimum positive integer satisfying the

following constrain:

CR(E) R (E8/(1, 492, 992, 000, 000 -d5 - log(2ACR(E) - d)), d)

Lemma 32 For any polynomial R: R 2 
-+ R, KR(E) is also a polynomial 1/e and d.

Proof Let r be the degree of R. Let C be a constant such that R(E, d) C(d/E)r.

Consider the following

1
p(e) = (1, 492, 992, 000, 000 -3r -C -d5 -log(2d) -)

It can be checked that p(e) R (E8/(1, 492,992, 000, 000 -d5 - log(2p(E)d)), d). There-

fore, KR(e) < p(e) = poly(1/e, d).

Also, define 3R : R+ -4 R+ such that

#R(E) - E6/(6, 220, 800, 000 - d5 - log(2KR(E) - d))

2.4.2 The Partitioning Oracle

The oracle simulates a distributed algorithm that repeatedly selects and removes

many disjoint isolated neighborhoods at once. As we will show in the analysis, after

each step of selecting and removing disjoint neighborhoods, the size of the graph is

expected to decrease by a fraction of 1/ poly(1/e, d). Therefore, by repeating the step



Algorithm 5: A single step of selecting and removing disjoint neighborhoods

1 For every vertex v in G, color v white.
2 For every vertex v in G, if the neighborhood grown by VBESP method starting

from v is a (2KR(e), e/30)-isolated neighborhood, set S, to that neighborhood.
Otherwise, set S, := 0

3 For every vertex v in G, if v appears in more than 60K(e)/e neighborhoods
grown in Step 2, color v black and set Sv, 0.

4 For every white vertex v in G, remove black vertices from S,. If S, is no longer
a (2KR(E), e/15 + e2/450)-isolated neighborhood, set S, := 0

5 For every vertex v in G, set r, be a random number in [0, 1].
6 For every vertex v in G, if S, is (2KR(e), E/15 + e2/450)-isolated neighborhood

and S, does not intersect with any S, such that r, <= re, add S, to the
partition and remove it from G.

poly(1/e, d) times, the size of the graph that remains is small (less than En) with high

probability and can be ignored. Since there are only poly(1/e, d) steps and each step

only takes poly(1/e, d) communication rounds, it can be deduced that the distributed

algorithm requires only poly(1/E, d) communication rounds. Applying the simulating

technique described in the paper of Ron and Parnas [35], we can obtain a partitioning

oracle of query complexity 2 poly(1/e,d).

Removing A Maximal Set of Isolated-Neighborhoods

We describe a single step of the distributed algorithm. Algorithm 5 starts by finding

an isolated neighborhood for each of the vertex that remains in the graph. Then,

it considers these neighborhoods in a random order and selects them greedily so

that no pair of selected neighborhoods intersect. Finally, the algorithm removes all

selected neighborhoods from the graph at once. The follow lemma shows that after an

execution of Algorithm 5, the number of vertices in the graph is expected to decrease

by a large enough fraction.

Lemma 33 Let G = (V, E) be a (e, R(d, e))-hyperfinite graph with degree bounded by

d > 2. Given E G (0,1). Let G' = (V', E') be a subgraph of G that is induced by at

least en/4 vertices. Let G" = (V", E") be the graph that remains after an execution



of Algorithm 5 on input G'. Then we have

E [|V"|] < I V'|

where 1 := 1- 1440.KCR(ej
4

Proof By Corollary 31, there exists a partition P for G' and a subset S C V' of size

at least (1-e/30)- IV'I such that and for every v E S, P[v] is an (KR(E), #R(e))-isolated
neighborhood in G'. A part inP is good if it is a (KR(), #R(E))-isolated neighborhood.

Let Pgood be the set of good parts in P. Since each part in the partition has at most

ICR(e) vertices, P has at least 1-1 30 IV'I distinct good parts,

IPgoodI (6) /3(1)

Let v be a vertex in G'. Let f(v) = IS, 1. Let g(v) be the number of grown isolated

neighborhoods that contain v (i.e. g(v) = {u c Vk : v E S.}). From the definition, v

is colored black in Step 3 if and only if g(v) ;> 60 -KI(E)/e. Also,

( g(v) = ( f(v) < 2KR(e) -|V'|
vEV' vEV'

Therefore, the number of black vertices is at most

2KR(E) -|V'|. E - |V'| (2)
60K(e) 30CR()

By (1), (2) and the Union bound, the number of good parts that do not contain

any black vertices is at least

1 - E/15|V'| (3)
KR(e)

For each part A of the partition P, let XA be an indicator variable for the event

that there is some vertex in A can grow a (2KR(e), e/30)-isolated neighborhood. By



Lemma 29,

Pr IXA = 1] 1 - E/60
A Pooda L

EACPgood [XA] > 1 - E/60

E[ E X ] IPoodI
AEP9 0 0 d

By Markov's in equality, with probability at least 1/2, EAEPOOd X Pgoodl. Thus,

with probability at least 1/2,

Z XA (1 - E/30)IPgoodI (1 - E/30)2 i > 1 |- E/1IVII (4)
ICR(e) CR(e)

We say a part A is a surviving if A is good and A does not contain any black vertices

and there is some vertex in A can grow a (2KR(E), e/30)-isolated neighborhood . Let

Psurviving C P be the set of surviving parts. By (3), (4) and the Union bound, with

probability at least 1/2,

Psurvivi, >1- |V' (5)
CR(e)

Now consider a surviving part A. Let v be a vertex in A that can grow a

(2KR(E), E/30)-isolated neighborhood, and let Sv be the neighborhood grown by v.

Since A is surviving, Sv n A does not contain any black vertices. The part of Sv

outside A is very small and contains at most '|3,| vertices. Therefore, in the worst

case, the removal of black vertices from S, only adds at most E - IS,1/30 edges and

removes at most e - ISv|/30 vertices from S,. Therefore, even after the removal of

black vertices, S, is still a (2KR(E), e/15 + E2 /450)-isolated neighborhood.

Let r(v) be the number of grown isolated neighborhoods intersecting with S in

Step 6. Observe that, at this step, all vertices in S, are white. Therefore, we can

bound r(v) by

g(u) 60KI(e)EIS,I < 120 R
uEsv



Observe that if S, has higher rank than every other S, that intersects with S,,

then S, will be removed from the graph. Therefore, with probability at least ,

S, will be removed from the graph. Since S, contains at least one vertex of A, with

probability at least E at least one vertex of A will be removed.

For a surviving part A, let ZA be the indicator variable for the event that at least

one vertex is removed from A after the execution of Algorithm 5,

Pr [ZA = 1] >

EACP [ZI 120K%(e)
EE 'uvvn 12 1C (E)&12 K () """' 6

E [ urv A]sing u

By (5) and h(6),

E [ (3 ZA Pr [Psurviving (1-e/6)-|V'||KR(e)l -120K R6 R -

A E Psurv>iving L v 1 ()

Thus,

E[IV"I| E |V'| - (3 ZA (1 - (6e - e 2 )/1440K ). - V'|
AEPurviving

It can be shown that Algorithm 5 only requires a constant communication rounds.

For a vertex v in the graph, observe that there exists a vertex u E Se, such that the

distance from u to v is at most KR(S) (see the paper by Andersen and Peres [2]

for details). Thus, the distance from v to any vertex in S, is at most 3A(). Let

us consider each of the steps in the algorithm that requires communication between

different vertices:

Step 2 From the observation above, it takes 3Ka(c) communication rounds to compute



Step 3 Observe that in order to compute the number neighborhoods containing v, it

is sufficient to compute the set of neighborhoods grown by all vertices within

distance of 3CR(E) from v. Thus, this step takes at most 6CR(E) communication

rounds.

Step 4 It takes 3KR(E) communication rounds to decide which vertices in S, are black

and remove them.

Step 6 In order to decide if S, is removed, it is sufficient to compute the set of neigh-

borhoods grown by all vertices within a distance of 6KR(E) from v. Thus, this

step takes at most 9KAR(e) communications rounds.

In total, Algorithm 5 requires at most 21KR(E) communication rounds.

Full Distributed Algorithm

Our distributed algorithm computes the required partition by executing Algorithm 5

multiple times. The following lemma shows that after a small number of executions of

Algorithm 5, with high probability the size of the remaining graph can be neglected.

Lemma 34 Let G = (V, E) be a (e, R(d, c))-hyperfinite graph with degree bounded by

d > 2. Given e E (0,1). There is a distributed partitioning algorithm that runs in

poly(d, 1/E) rounds, and determines a partition of G such that:

" The size of each connected component is bounded by poly(d, 1/E).

" With probability 9/10, the number of cut edges is at most ed|VI.

Proof We describe our distributed algorithm. Let M := 2. (log(1/e) +6)/(- log(1 -

y/2) - -y). Our distributed algorithm first runs Algorithm 5 M times to select and re-

move neighborhoods. Then, for each vertex v that remains in the graph, v constitutes

a part of size one in the partition.

It is clear from the distributed algorithm that the size of each connected compo-

nent is bounded by 2KR(e) = poly(d, 1/E) for polynomial R.



It remains to bound the number of cut edges. Let us first bound the number of

edges that remain after M execution of Algorithm 5.

For 0 < k < M, let Gk = (Vk, Ek) be the graph that remains after k executions

of Algorithm 5. Let Yk be the random variables defined as following,

{k I VkI if IVkI >en/4
-Y|Vk_1| otherwise

By Lemma 33, for all k, 0 < k <,

E [Yk - Yk+1] Yk (7)

We also have,

E [Yk - Yk+1] <

Pr LYk - Yk+l -Yk/2 -Y + Pr [Yk - Yk+l < - - Yk/2 - -y Yk/2 <

Pr [Yk - Yk+l -Yk/2 Yk + Yk/2 (8)

By (7) and (8),

Pr [Yk - Yk+l -7-' Yk/2] > y/ 2

Pr [ log(Yk) - log(Yk+1) 2 - log(1 - y/2)] > -y/2

E [log(Yk) - log(Yk+1) 2 - log(1 -y/2) -y/ 2

E log(Y) - log(YM)] - log(1 - -y/2 ) -y - M/2 = log(1/E) + 6

E [YM] en/64.

By Markov's inequality

Pr [YM En141 1/ 16.



Therefore,

Pr [IEMI e End/2] 2 Pr [IVM 5 En/2] 2 Pr [YM + En4 ( En /2 > 9/10

Thus, with probability 9/10, the number of remaining edges after M executions of

the Algorithm 5 is at most end/2. Also, observe that the number of edges going out

of all removed neighborhoods is at most Edn/10. Therefore, with probability 9/10,

the total of cut edges is at most edn.

Proof of Theorem 22

Proof

For every query the oracle locally simulates the distributed algorithm from Lemma

34 with the algorithm's e set to e/d. See the paper of Parnas and Ron [35] for details

how to conduct such simulation. The required number of queries to the graph is

dPoly(d,1/e) for every query to the oracle. The oracle needs to store previous coin tosses

for each seen vertex in the graph. The total computation time for q queries is at most

qlog q - 2 poly(1/E,d), where the extra log q factor comes from the use of a dictionary. U



Chapter 3

Efficient Partitioning Oracle for

Constant Treewidth Graphs

As we have seen in the previous chapter, there exists a partitioning oracle for family

of graphs with an excluded minor whose running time is independent to the graph

size. However, the running time of that oracle is exponential in both 1/eps and d.

This raises a natural question whether there exists a partitioning oracle for minor-

free graphs that runs in poly(d, 1/E) time. An affirmative answer would imply a

polynomial tester for minor-closed properties in the bounded degree model, solving

Open Problem 4 of Benjamini et al. [5].

In this chapter, we try to make a step closer to the answer of the open question.

We restrict our consideration to the family of graphs with constant treewidth and

show that it is possible to construct a parititioning oracle for this famliy of graph

that runs poly(1/c) time.

Bounded Treewidth. The tree decomposition and treewidth were first introduced

by Robertson and Seymour [37, 38], and later found many applications in the design

on algorithms, and in machine learning (a nice though outdated survey is [7], and

see also [3, 8] for more recent applications). Given a graph G = (V, E), a treewidth

decomposition of G is a pair (X, T), where X = (X1, X 2, - - - , Xm) is a family of

subsets of V and T is a tree whose nodes are the subsets Xj, satisfying the following



properties:

1. Every vertex of V is associated with at least one node in tree T. That is

Uixi = V.

2. For every edge (u, v) E E, there is a node Xi E X that contains both u and v.

3. For every vertex v E V, the set of nodes in T associated with v forms a connected

subset of T.

The width of a tree decomposition is the size of its largest set Xi minus one. The

treewidth of G is defined as taking the minimum over decompositions of this quantity.

Examples of graphs families with bounded treewidth include outerplanar graphs,

series-parallel graphs, cactus graphs, and pseudoforests. We show that there is an

efficient partitioning oracle for the family of graphs with constant treewidth.

Theorem 35 Let G = (V, E) be a graph with maximum degree bounded by d and

treewidth bounded by h. There is an oracle 0 that given an e E (0,1/2), and query

access to G, provides query access to a function f : V -+ 'P(V) of the following

properties:

1. For all v E V, V E f(v).

2. For all v C V, and all w G f(v), f(v)= f(w).

3. With probability 9/10, |{(v,w) e E: f (v) # f (w)}} < EIVI.

4. For all v e V, If (v)| - 6(22
(h Ca3

7
)

5. For all v, the oracle uses ()O(h) - log Q time to compute f(v), where Q is the

number of previous queries to the oracle.

6. The function f is independent of the queries to 0.

Our main result immediately implies efficient approximation algorithms (run in

poly(1/6) time) for many graph problems such as minimum vertex cover, maximum

independent set and set cover. The oracle can also be used to design efficient property



tester for constant-treewidth properties such as cycle-freeness, outerplanariry. See

Chapter 3 for how to use a partitioning oracle to design approximation algorithms

and property tester.

In Section 3.1, we show how to construct an efficient partitioning oracle for forests

and trees. Although, this oracle only works for a very restricted family of graphs,

its construction is simple and contains some flavors that are crucial to the design of

the oracle for constant treewidth graph in Section 3.2.5. In Section 3.2.5 and Section

3.3, we prove our main result showing an partitioning oracle for constant treewidth

graphs.

3.1 A Simple Partitioning Oracle for Forests

Theorem 36 (Local Partitions for Forests) Let T = (V, E) be a forest with max-

imum degree bounded by d. There is an oracle 0 that given an E E (0,1/2), and query

access to T, provides query access to a function f : V -± P(V) of the following prop-

erties:

1. For all v G V, v G f(v).

2. For all v E V, and all w E f(v), f(v) = f(w).

3. With probability 9/10, I{(v,w) E E : f(v) f f(w)}I < eIVI.

4. For all v E V, If (v)I 5 O((d/e 2 ) . log(1/E)).

5. For all v, the oracle uses ((dIe 2) + (11e) - log Q) time to compute f(v), where

Q is the number of previous queries to the oracle.

6. The function f is independent of the queries to 0.

Proof The oracle does not begin with a fixed partition of the graph; instead it

builds different parts of the partition to answer the queries it is asked. However, not

every partition of the graph is permissable. Instead, we begin with a global partition-

ing algorithm (Algorithm 6 in this case), and the oracle simulates the algorithm on



Algorithm 6: Global-Forest-Partitioning

1 G:= T;
2 forall the vertex v do s[v] := {v};
3 while there exists a node v of degree 1 such that Is[v]I < 12/E do
4 Let u be the neighbor of v.
5 s[u] := s[u] U s[v] ;
6 Remove v from G.

7 Remove all edges incident to vertices of degree strictly greater than 2.;
8 Independently remove each remaining edge from G with probability 6/60.;
9 foreach connected component C in G do

10 Vc := set of vertices in C
1n S:= UsVc s[v];
12 if |Vcl <; 2. (60/E) - ln(120/e)] then
13 L forall the v E S do f(v) :=S;

14 else
is L forall the v E S do f(v) {v}

different parts of the graph. We begin by analyzing the global partitioning algorithm,

and then discuss how it can be simulated by the oracle.

Algorithm 6 clearly constructs a partition of the vertices of the graph. It starts by

shrinking some branches into single nodes in the loop in Step 3, and then partitions

the remaining vertices. It first removes edges incident to vertices of degree strictly

higher than 2, which leaves us with a collection of paths. Then, it removes each of

the remaining edges with some fixed probability, which (with high probability) cuts

long paths into small components. If a component is small, then all the vertices of the

component and all the vertices in the branches that were merged into the component

constitute a single part. Otherwise, if the component is large, then each of the vertices

constitutes a separate part of size 1.

Let us now bound the probability that the number of edges between different parts

of the partition is greater than E|VI. The edges between different parts are the edges

removed by the algorithm in steps 7,8, and the edges between vertices which were in

a large component in step 12, and were thus separated in step 15.

* Step 7: For each leaf v, we have Is[v]I ; 12/E. Since the sets s[v] are disjoint, the

total number of leaves is at most E|VI/12. This implies that the number of edges



incident to nodes of degree higher than 2 is bounded by 4 -eIVI/12 = E|V/3.

" Step 8: The expected number of edges removed is bounded by E|VI/60. The

probability that more than eIVI/3 edges are removed is bounded by Markov's

inequality by 1/20.

" Step 15: What is the probability the endpoints of an edge e end up in different

parts because of the decision taken in Step 15? After Step 7, the graph is a

set of disjoint disconnected paths. There are two cases: either the endpoints

of e are consecutive vertices on a path or both were shrunk to the same node

on a path. The probability that after Step 8 more than [(60/E) - ln(120/E)]

consecutive edges survived in any of the two directions on the path is at most

2 . (1 - -)[(60/e)-1n(12O/e) 1 2 . e-In(120/e) = E/60. If the number of consecutive

edges that survived on the path is bounded by [(60/E) - ln(120/E)] in both

directions, the size of the component is bounded by 2 - [(60/E) - ln(120/e)].

Therefore, e connects two different parts in a decomposition due to a decision

in Step 15 with probability at most E/60. In expectation, we have at most

eIVI/60 such edges, and by Markov's inequality, the probability that more than

eIVI/3 edges are removed is bounded by 1/20.

Summarizing, the number of edges connecting different parts is at most eIVI with

probability at most 2 -1/20 = 1/10 by the union bound, as required by Claim 3.

We now bound the size of each part in the partition. The size of a connected

component in G that passes the test in Step 12 is at most 0(1/E - log(1/E)). For

each node v, the size of the set s[v] is bounded by 1 (v itself) plus the number of

nodes in at most d different branches that were shrunk into v. A branch can only be

shrunk if the number of nodes in it is bounded by 12/e. The size of each s[v] is hence

bounded by O(d/e), and the size of any f(v) is bounded by O(1/e,-log(1/E)) -O(d/E) =

O((d/E2) - log(1/e)), as stated by Claim 4 of the theorem.

Let C be a connected component in the original graph T. Let e = (u, v) be an

edge in C. If we remove e from C, we get two components Cu and C, containing u

and v, respectively. The edge e is not shrunk in the loop in Step 3 if and only if the



number of vertices in both C, and C, is at least 12/E. We call such an edge inner.

If none of the edges of C are inner, the loop in Step 3 shrinks C into a single vertex,

and for every vertex v in C, f(v) equals the set of vertices in C. On the other hand,

if there is an inner edge in C, the component created from C by the loop in Step 3

and the sets s[.] for this component are unique. This explains why the order in which

we consider vertices in the loop does not matter.

We now show how Algorithm 6 can be simulated locally. Let q E V be a query to

0. For each neighbor u of q, we first check if the number of nodes in the connected

component that are closer to u than to q is less than 12/E. This can be done in

0(1/) time for each u. For each such u, we shrink the entire branch outgoing from q

towards u. Then we consider the number of edges incident to q that were not shrunk.

If there is 0 of them, f(q) equals the all the vertices in the connected component of q.

If there is more than 2 of them, then all these edges would be removed in Step 7 of

Algorithm 6, and f(q) consists of q and all vertices that were merged into q. If there

is exactly 1 of them, say u, and the number of nodes q corresponds to is less than 1/,

we merge q into u, and repeat the whole procedure for u. Otherwise, q is incident to

1 or 2 inner edges. We now grow a component, which initially consists of just one

vertex. We pick an unexplored inner edge, and if hasn't been done before, we remove

it with probability e/60 (as in Step 8 of Algorithm 6). We store the result for future

references. If the edge hasn't been removed, we find the number of inner edges that

are incident to its unexplored endpoint. If it is at most 2, we grow the component by

adding that endpoint. We keep doing that until no unexplored inner edge remains, or

the component size becomes greater than 2. [(60/E) -ln(120/E)]. If the component size

is greater than 2 - [(60/e) -ln(120/e)], each vertex that contributes to it constitutes

its own part, i.e., f(q) = {q}. Otherwise, if the component have stopped growing,

f (q) consists of all vertices of the component and all vertices that were merged into

the vertices of the component. The procedure clearly corresponds to what the global

algorithm does.

We now assume that a dictionary operation (insertion, deletion, look-up) costs

O(log n) for a collection of size n. The running time of the algorithm is then at most



O((d/e2 ) + (1/E) -log Q). Finally, the partition is computed such that it is independent

of queries to the oracle. It is only a function of coin tosses that correspond to Step 8

of Algorithm 6. U

3.2 Partitioning Oracle for Constant Treewidth

3.2.1 Definitions and Notations

Let G = (V, E) be a graph and S be a subset of V. We write N(S) to denote the set

of vertices that are not in S and adjacent to at least one vertex in S. We write il(S)

to denote the cut-size of S which is defined to be the size of N(S),

n(S) = |N(S)|

We write #(S) to denote the vertex conductance of S which is defined as

#(S) = 0)

Definition 37 Let G = (V, E) be a graph. We say that S C V is a neighborhood

of v in G if v E S and the subgraph induced by S is connected. Given k, c > 1

and 6 E (0, 1), we say that S is a (k, 6, c)-isolated neighborhood of v E V if S is

neighborhood of v in G, |SI 5 k, q(S) < c and #(S) 6.

Definition 38 Let G = (V, E) be a graph and and let A be a family of neighborhoods

in G. A subset B C A is a cover of A if for every neighborhood T E A

T C U S
SEB



3.2.2 Local Isolated Neighborhoods in Constant Treewidth

Graphs

Lemma 39 Let G = (V, E) be a graph with treewidth bounded by h and maximum

degree bounded by d. Given e, 6 E (0,1/2), there exists a function g : V -+ P(V) of

the following properties:

1. For all v E V, v E g(v).

2. For all v E V, Ig(v)I < 144002
3 h+1)5

3. For all v E V, g(v) is connected.

4. Let B be the subset of V such that v E B if and only if g(v) is a (100o->h+1)5 6 2(h ± -

isolated neighborhood of v in G. The size of B is at least (1 - e/20)IV|.

Basically, Lemma 39 shows that given a bounded treewidth and bounded degree

graph, for almost every vertex v in the graph, we can find an isolated neighborhood

of v. The proof of the lemma is somewhat technical, and is postponed to Section 3.3.

3.2.3 Computing Isolated Neighborhoods Locally

The following lemma shows that given a vertex v in a bounded treewidth and bounded

degree graph, if there exists an isolated neighborhood of v, one of such neighborhood

can be found locally with a polynomial number of queries.

Lemma 40 Let G = (V, E) be a graph. There is a local algorithm that given a vertex

v C V and k, c > 1 and 6 G (0,1), makes at most dkc+1 queries to the graph and

satisfies the following properties:

1. If there exists a (k, 6, c)-isolated neighborhood of v in G, the algorithm returns

one such neighborhood.

2. Otherwise, if no such isolated neighborhood exists, the algorithm returns {v}.



Procedure Find-Isolated-Neighborhood(v,k,6,c)

1 Run BFS from v until BFS stops or exactly k vertices are visited.
2 Let S be the neighborhood found.
3 if S is a (k, 6, c)-isolated neighborhood in the original graph then

4 L Output S and terminate

5 if c > 0 then
6 foreach w E S \ {v} do
7 Remove w from the graph.
8 Find-Isolated-Neighborhood(v,k,6,c - 1);
9 Put w back to the graph.

10 else

11 L return {v}

Proof Consider Procedure Find-Local-Neighborhood that finds a (k, 6, c)-isolated

neighborhood of v in G if at least one such neighborhood exists. The procedure is

simply a brute force search that tries to search for a (k, 6, c)-isolated neighborhood S

of v by guessing vertices in N(S). At each iteration, it uses BFS search to explore the

input graph around v until k vertices are visited or BFS stops (the latter happens when

the size of the connected component that contains v is less than k). In both cases,

the procedure checks if the set of visited vertices is a (k, 6, c)-isolated neighborhood of

v. If it is, the procedure outputs the set and terminates. Otherwise, if the set is not a

(k, 6, c)-isolated neighborhood, at least one of the vertices in the set must be in N(S).

The procedure guesses a vertex, removes it from the graph and tries again. Since

the neighborhood S, if exists, has cut-size bounded by r, i.e., IN(S)I < r. Procedure

Find-Local-Neighborhood only needs to have a recursion depth of r to search for all

possibilities. Therefore, Procedure Find-Local-Neighborhood must return a (k, 6, c)-

isolated neighborhood of v if such at least one such neighborhood exists and return

{v} otherwise.

Since, at each iteration, there are at most k possible guesses for a vertex in N(S),

the procedure only makes at most dkc+l queries to the graph1. U

'The extra factor of k comes from the execution of the BFS algorithm in each iteration.



When the values of k, 6, c are clear from context, for any u, v E V, we say u covers

v if the isolated neighborhood found by Procedure Find-Local-Neighborhood(u,k,6,c)

contains v. Observe that if Find-Local-Neighborhood(u,k,6,c) does not terminate

right after it found the first (k, 6, c)-isolated neighborhood of u in Step 4, it will

find every possible (k, 6, c)-isolated neighborhood of u. Therefore, if u covers v, for

any u, v E V, then u must be visited by Find-Local-Neighborhood(v,k,6,c) (without

termination in Step 4) at some point. Therefore, for any v E V, there are only kc+1

vertices that can cover v. This also implies it takes at most dk2(c+l) queries to find

the set of vertices that cover v.

3.2.4 Cover Set

Lemma 41 Given an undirected graph G = (V, E) and a vertex v E V. Let A be

a family of neighborhoods of v such that all the neighborhoods in A have cut-size

bounded by k. One of the following properties must be true:

(a) AI < 2k.

(b) There exists S* E A such that S* C UsEA\s* S-

Proof Assume that (b) is false, we will prove that (a) must be true and thus proving

the lemma. For each S E A, there must exists a vertex vs E V such that vs

US'EA\S S'. Let T be the BFS tree of G rooted at v. Let Ps= (v0 
= v, v,..- , vns

vs) be the path from v to vs in T. Let T* be the union of all these paths, T*

UseAPs. Observe that T* is also the subtree of T such that each leaf of T* is a

vertex vs for some S E S and vice versa, for each S E S, vs is a leaf of T*. In other

words, the leaf set of T* is exactly {vs : S E A}.

Consider a path Ps for some S E A. An edge (ui, U2 ) is a branch of Ps in T* if

(ui, U2 ) E T*, Iu E Ps and u2 V Ps. We can show that Ps can only have at most k

branches.

Consider N(S) - the neighbor set of S which includes all the vertices that are not

in S and adjacent to at least one vertex in S. By definition, IN(S)I k. Also, any



path Ps, for S' # S, must contains a vertex N(S). Therefore, every branch of Ps

must end up at one vertex in N(S). This implies that the number of branches of Ps

is at most k.

Given T*, we can encode a path Ps for any S E A as follows. Give all vertices

an arbitrary order. Start from the root, each vertex in the path can be encoded by

its order in the children list of its parent. In particular, if the parent has d children,

then the child can be encoded with [log d] bits. Note that if the parent only has one

child, the encoding of the child is free, i.e. no bit is needed to encode the child. The

total number of bits needed is:

E [log d(vk)1
vEPs\{vs}

where d(v) is the number of children of v. Since the number of branches of Ps is at

most k, we have

d(vk) - 1 < k
vcPs\(vs}

Also, since log a < a - 1 for a > 1, we have

E [log d(vk)1 5 5 d(vk) - 1 < k
vEPs \{Vs} VEPs\(vs}

Therefore, at most k bits is sufficient to encode PS for every S E A. Thus, the size

of A is at most 2k.

Corollary 42 Let A be a family of neighborhoods such that all neighborhoods in A

have cut-size bounded by k. There exists a cover of A with size of at most 2k.

3.2.5 Proof of Theorem 35

Proof



Algorithm 7: Global-Constant-Treewidth-Partitioning

1 forall the v E V do Unmark v
2 foreach v E V doL Sv := Find-Isolated-Neighborhood(v,k,6,2(h + 1))
4 Let rv be a random value in (0, 1).

5 foreach v E V in increasing order of r, do
6 U:= {w E S:, w; is unmarked }.
7 forall the w E U do f[w] := U
8 Mark all vertices in U.

9 Output f.

Algorithm 8: Local-Bounded-Treewidth-Partitioning

1 Qq := the set of vertices that cover q.
2 Let u be the vertex in Qq such that ru is smallest.
3 S, := Find-Isolated-Neighborhood(u,k,6,2(h + 1))
4 if Su = {u} then
5 L return Su.
6 Let P = 0
7 foreach w E Su do
8 Q := the set of vertices that cover w.
9 Let u. be the vertex in Qw such that rUW is smallest.

10 if u = uw thenK P:= P u 1{w}
12 return P.

Consider the global partitioning Algorithm 7 where

6 := O(E/(2 2(h+1)h 2 d2)

k := O(22(h+)d7h7 )

The algorithm clearly constructs a partition of the vertices in the graph. It starts

with all vertices in the graph unmarked. For each vertex v E V, the algorithm tries

to find a (k, 6, 2(h + 1))-isolated neighborhood of v in G. If one such neighborhood

is found, S, is set to that neighborhood. Otherwise, if no such neighborhood exists,

Sv is set to {v}. Next the algorithm starts partitioning the graph. It considers the

vertices in a random order. For each vertex v in that order, all the unmarked vertices



in S, constitute a single part and get marked.

Clearly, at the end of the execution of Algorithm 7, all vertices must be marked.

Therefore, f(v) is well defined for all v E V. Also, observe that when f(v) is defined,

the value of function f for all other vertices in f(v) is also set to f(v). Therefore,

Claims 1 and 2 of the theorem hold for the function f computed by Algorithm 7.

Let us bound the probability that the number of edges between different parts

is greater than eIVI. By Lemma 39 with the lemma's e set to e/d, there exists a

function g: V -* P(V) of the following properties:

1. For all v E V, V C g(v).

2. For all v E V, Ig(v)I k.

3. For all v E V, g(v) is connected.

4. Let B be the subset of V such that v E B if and only if g(v) is a (k, 6, 2(h + 1))-

isolated neighborhood of v in G. The size of B is at least (1 - E/20d)|VI.

Let us group the edges between different parts into two sets: the set of edges

incident to at least one vertex in Bc = V \ B and the set of edges with both endnodes

in B. Observe that the total number of edges in the first set is at most |V|. It

remains to bound the number of edges in the second set. Consider a vertex v E B.

Let Q, be the set of vertices that cover v and let m, = IQv. As it is shown in Section

3.2.3, m_ < k2 h+ 3 . Let qi, q2 , - -- , q, E Q, be the sequence of vertices that cover

v in increasing order of r, i.e., rqj rq2 < -.-. For each k E {1,2,... ,m,}, let

Sk) = {Sqi, Sq2 , - - - , Sq}, where Sq, is the isolated neighborhood found by Procedure

Find-Isolated-Neighborhood starting from qj. Note that, since r is random, S(k) and

qk are random variables for all k E {1, 2,... , m,}.

Given u, w E B, we say u marks v if v E S, and v is not marked before u is

considered. Also, we say a vertex u E B is marking if u marks some vertex in the

graph. It is clear from the definition that, for any k E {1, 2,... , m,,}, qk is marking if

and only if Sq, Un-?Sql. This implies that Sq must be a member of every cover of



SVk). By Corollary 42, there exists a cover Bk E SVk) such that I BkI 2 2(h+1). Thus,

Pr [qk is marking] = ( Pr [qk is marking|Svk)] Pr [Svk)]
Sik)

E Pr [Sqk E BkISvk)] Pr [Shk)]
S W

= kIPr [Svhk)]
S(k)

2 2(h+1)

- k

Let the number of marking vertices in Q, be av. We have,

m, m" 2 2(h+1) 2(+1 o V: 2(+1
E[a,] Pr[q, is marking] < ( k ~ 2 2(h+1) log m_ < 22(h+1) (2h + 3) - log k

k=1 k=1

Let M C B be the set of marking vertices in the graph, we have

E |SU| = E a,
UEM UEB

Thus,

E[( |Sul] < 2 2(h+1) . (2h + 3) - log k|BI
uEM

Note that, for each marking vertex u, the number of edges that have exactly one end

in Su is at most dISu6. This is also a upper bound for the number of edges going out

of the part that contains u in the partition. Therefore, the expected number of edges

with both ends in B is at most

0 (d2 2(h+1) - (2h + 3) -log k) |BI |001V|
100

Thus, by Markov inequality, the probability that the number of edges in the second

set is greater than ,|V| is 1/10. Therefore, the probability that the total number of

edges in both set is less than EIVI is at least 9/10, as required by Claim 3.



We now bound the size of each part in the partition. Observe that each part

is either a single vertex or a subset of some (k, 6, 2(h + 1))-isolated neighborhood.

Therefore, the size of each part is at most k, as stated by Claim 4 of the theorem.

We now show how Algorithm 7 can be simulated locally. Consider the local

Algorithm 8 that given a query q E V, computes f[q]. The local algorithm starts

with computing the set of vertices that cover q. Then among the vertices in this set,

it finds the vertex u with smallest r-value. Clearly, u is the vertex that marks q, and

thus, f[q] is a subset of Su. Next the local algorithm considers each vertex in S., and

checks whether that vertex is also marked by u. If it is, the vertex should also be

included in f[q]. Clearly local Algorithm 8 computes exactly the same set f [q] as it

was computed by the global Algorithm 7. Let us bound the number of queries to the

input graph that Algorithm 8 makes to answer query q:

" As it is shown in Section 3.2.3, finding Qq, the set of vertices that cover q, takes

only dk 4 h+1 queries to the input graph.

" By Lemma 40, finding Su only takes at most dk2 h+3 queries to the input graph.

" Finally, for each w E S,, checking whether w is marked by u also takes dk4h+6

queries to the input graph. Therefore, it takes at most dkeh+9 ) queries to find

the subset of vertices in S, that are marked by u.

Summarizing, the oracle only has to make at most dk 6 h+9  (4)O(h) queries to the

input graph to answer a query about f. We now assume that a dictionary operation

cost O(log n) for a collection of size n. The running time of the oracle to answer a

query about f is then at most ) - log Q), as stated by Claim 5 of the theorem.

Finally, the partition is computed such that it is independent of queries to the

oracle. It is only a function of coin tosses that correspond to Step 5 of Algorithm 72

2As a technical requirement to make the argument valid, we also assume that the loop in Step

6 of Procedure Find-Isolated-Neighborhood considers vertices of the input graph in an order that is

independent of queries to the oracle.



3.3 Proof of Lemma 39

3.3.1 A Strong Partition for Forests

We now show that for any forest T, there exists a partition of T such that the cut-sizes

of most of the parts in the partition are at most 2.

Lemma 43 Let T = (VT, ET) be a forest with maximum degree bounded by d > 2.

Given e, 6 E (0,1/2) and let k = 240d 2 there exists a partitioning function f : V -+

P(V) of the following properties:

1. For all v E V, v E f(v).

2. For all v E V, and all w E f(v), f(w) = f(v).

3. For all v E V, If(w)I < k.

4. For all v E V, the subgraph of T inducted by f(v) is connected.

5. Let C be the subset of VT such that w E C if and only if f(w) is a (k, 6, 2)-isolated

neighborhood of w in T. The size of C is at least (1 - e/60)IVI.

Proof Consider the global partitioning Algorithm 93. The algorithm consists of

four parts:

1. Step 3-7: Small branches are shrunk into single nodes. For each node v E VG,

s[v] is the set of vertices in VT that are contracted to v.

2. Step 8-12: In this part, the algorithm partitions the set of vertices that are

contracted to nodes degree higher than 2. For each node of degree higher than

2, all the vertices in each branch that is shrunk to that node constitutes a single

part and the node itself constitutes a part of size 1. Once all the node with

degree higher than 2 are removed, the graph that remains only contains disjoints

paths and isolated nodes.

3Note that, since we only need to show the existence of a partition of required properties for T,
it is not necessary to show how to simulate Algorithm 9 locally.



3. Step 13-20: In this part, the algorithm partitions the set of vertices that are

contracted to nodes in the paths. For each end node of a path in the graph, if

its weight is less 2/6, the node is contracted to its only neighbor. Otherwise, if

the node's weight is at least 2/6, all the vertices in the branches that are shrunk

to that node constitutes a single part.

4. Step 21-22: Finally, for each isolated node that remains in the graph, the set

of vertices that are contracted to that node continues a single part.

Clearly, from the construction of function f, Claims 1, 2 and 4 of the Lemma 43

holds.

Let us bound the size of each part in the partition constructed by Algorithm 9.

First, observe that for each part in the partition, all the vertices in that part are

contracted to the same node. Also, observe that the weight of a node in T is a most

d -ki = k. Therefore, the size of each part in the partition is also bounded by k, as

required by Claim 3.

Finally, we now show that the size C is at least (1 - E/60)IVI.

" Let us bound the number of vertices in T which are in parts of cut-size greater

than 2. Observe that for any v E VT, the cut-size of f(v) is only greater than

2 if v is also a node of degree higher than 2 in 9 of Algorithm 9. Since after

the first part of Algorithm 9, the weigh of each leaf node in G is at least ki,

the number of leaves in G at Step 8 is at most IVI. This also implies that

the number of nodes with degree higher that 2 in G at Step 8 is bounded by

* We now bound the number of vertices in T which are in parts of conductance

greater than 6. Given v E VT, observe that #(f(v)) is only greater than 6 in

one of the following cases:

- v is a node of degree higher than 2 in Step 8 of Algorithm 9. There are at

most 1|V| E IVI vertices of this type.



Algorithm 9: Stronger-Tree-Partitioning

1k := 2

2 G:= T
/* Phase 1: Contract leaf node of weight less than ki

3 forall the vertex v do s[v] := {v}
4 while there exists a node v of degree 1 such that Is[v] I < k1 do
5 Let u be the neighbor of v.
6 s[u] := s[u] U s[v]
7 Remove v from G.

/* Phase 2: Remove node with degree greater than 2

8 foreach node v of degree greater than 2 do
9 foreach w E s[v] such that (w, v) E ET do

10 L f(w) := s[w]

11 f(v):= {v}
12 Remove v from G.

/* Phase 3: Partitioning paths
13 while there exists a node v in G with degree 1 do
14 if Is[v]I > 2/ then
15 forall the w E s[v] do f[w] := s[vi]
16 L Remove v from G.

17 else
18 Let u be the only neighbor of v in G.
19 s[u] := s[u] U s[v]
20 Remove v from G

/* Phase 4: Partitioning isolated nodes
21 while there exists an isolated node v do
22 L forall the w E s[v] do f[w] := s[v] Remove v from G.

- v is contracted to a node u, and u is vertex of degree higher than 2 in

Step 8. In this case, 4(f(v)) > 3 if and only if the size of the branch

that was shrunk to u and contains v, is less than 1/6. Since for each high

degree node u, there are at most d such small branches. Therefore, the

total number of vertices in T of this type is at most - IVI <; 2|Vi.

- v is contracted to a node u where u is the last node that remains after

partitioning a path in G at Step 13 and the weight of u is smaller than

2/J. Observe that before Step 8, u is not a leaf node in G, since otherwise

u would be contracted another node. Therefore, u must be a neighbor of



a node with degree higher than 2 in Step 8. Since the number of nodes

with degree greater than 2 at Step 8 is less than -V IV , there are at most

y IVI nodes likes u in G. This implies that the number of vertices like v is

at most k|V <; 24.

Summarizing, the number of of vertices in T which are in parts of conductance

greater than 6 is at most -VL.

By the Union bound, there are at least (1 - e/60) VI vertices in T which are in parts

of conductance at most 6 and of cut-size at most 2. Combining this with the Claim

3 of the lemma, we have |Cl > (1 - e/60)IVI, as stated in Claim 5. U

3.3.2 Some Properties of Tree Decomposition

Definition 44 Let (X, T) be a tree decomposition of G = (V, E), where X = (X 1 , X 2 ,.- , Xm)

is a family of subsets of V and T is a tree whose nodes are the subset X,'s.

1. We say (X, T) is edge-overlapping if for any Xj, X, E X such that (Xi, Xj) E

T, Xi n Xj # 0.

2. We say (X, T) is minimal if for any Xi E X and any xi E Xj, removing xi

from Xi will make (X, T) no longer a tree decomposition of G.

3. We say (X, T) is non-repeated if for any (Xi, Xj) E T, Xi # X3 .

Let T, be a subtree of T. We write Xi7r to denote the set of nodes in Ti.

Let S be a subset of X and let v be a vertex in V. We write ljs to denote Uzes Z.

Similarly, let T, be a subtree of T, we write VI-r to denote UZEXIT Z

Let v be a vertex in V, we say v appears in a subset S C X if v E ljs, and v

appears in subtree T, of T if v E Vrr1.

Let e = (u, v) E E be an edge in G, we say a subset S C X witnesses e if there

exists a node Z E S such that Z contains both u and v. Similarly, we say a subtree

T, of T witnesses e if there exists a node Z E XTii such that Z contains both u and

V.



Lemma 45 Given a graph G = (V, E) with treewidth h. There is a tree decomposition

of G of width h which is edge-overlapping, minimal and non-repeated.

Proof Let (X, T) be a tree decomposition of G of width h. Starting from (X, T),

we can obtain a edge-overlapping, minimal and non-repeated tree decomposition of

G by repeatedly applying the following operations.

1. If there exists a pair of nodes Xj, X, E X such that (Xi, X) C T and Xi = Xj,

remove X, and connect all neighbors of X, to Xi.

2. If there exists a pair of nodes X, Xj E X such that (X,, X3) E T and X, n X,

0, remove the edge (Xi, Xj) from T.

3. If there exists a node Xi E X and a vertex xi C Xi such that (X, T) is still a

tree decomposition of G after removing xi from Xj, then remove xi from Xi.

Lemma 46 Given a graph G = (V, E) and (X, T) is a non-repeated tree decomposi-

tion of G of width h. Let T be a subtree of T.

h±1 -j V--

Proof The first inequality is straightforward. Since each vertex in Vj-r- appears at

least once in Xi- 1 and each set in Xi-, contains at most h + 1 vertices, IX 1 II .

The second inequality can be proved by induction on the size of X(T1 ).

" Base case 7, is an isolated node X0 in T. Thus, IXriI= 1 < IV| = IXol.

" Inductive case T, is a connected component of size k > 1 in T. Let X 0 E XI

be a leaf node in T1. By the induction hypothesis,

|iVT \ {X0}1 I U Zi (3.1)
ZEXmT1 \{Xo}



and let X1 be Xo's neighbor in 71. Since (X, T) is non-repeated, there must be

some vertex v E V such that v E Xo \ X 1. By the definition of tree decomposition,

the set {X E X : v E X} is a connected component of T. Therefore, for every

Z E X- 1 \ {XO}, v 0 Z. This implies that,

I U Zi< iVr\{v}I=lmri -1 (3.2)
ZEXImr \fXo}

From (3.1) and (3.2), we have IXIT1I < I Vr1 .

Lemma 47 Given a graph G = (V, E) with maximum degree bounded by d and (X, T)

is a edge-overlapping and minimal tree decomposition of G of width h. The maximum

degree of T is bounded by (h + 1) - d.

Proof Let Xo E X be a node in T. Consider a neighbor X1 of X0 . Since (X, T) is

edge-overlapping, there must exist some x E V such that x E Xo n X1. In addition, if

we consider T as a tree rooted at Xo, there is an unique subtree of Xo which contains

X1. Since (X, T) is minimal, this subtree must witness some edge (x, y) E E, y E V,

that is not witnessed by any other subtree of Xo,. Therefore, we can correspond each

subtree of X 0 to an unique edge of a vertex in Xo. Since there are at most h + 1

vertices in Xo and each of them has at most d edges, Xo can only have at most d(h+ 1)

neighbors.

Proof [Proof of Lemma 39]

By Lemma 45, there exists a a edge-overlapping, minimal and non-repeated tree

decomposition (X, T) of G of width h. By Lemma 47, T is a tree with maximum

degree bounded by d - (h + 1). By Lemma 43, with the lemma's e set to e/(h + 1), d

set to d(h+ 1) and 6 set to 6h+1), there exists a partitioning function f : X -+ P(X)

such that:

1. For all X E X, X E f(X).

2. For all X E X, and all Y E f(X), f(Y) = f(X).



3. For all X E X, If(X) io44d
3 +1)4

4. For all X E X, the subgraph of T inducted by f(X) is connected.

5. The size of C, the subset of nodes in X such that for every X E C, f(X) is

a (144 4+1) 4 , 60d(h+1), 2)-isolated neighborhood of X in T, is at least (1 -

e/60(h + 1))|XI.

Let P be the partition represented by the function f. To simplify the notation, we

say a part P in P is good if P is a (14oo40,+1)' 2)-isolated neighborhood.

Otherwise, P is bad. Let Pgood be the set of good parts in P. Also, let Pbad = P \Pood

be the set of bad parts in P. Let Abad = UpePbad VP, i.e., Abad is the set of vertices

in V that appear in at least one bad part in P. Let Agood-neighbor = UPePgo-d YN(P)

is the set of vertices in V that appear in the neighbor of at least one good part4 .

Finally, let Agood = V \ (Abad U Agood-neighbor) is the set of vertices in V such that for

every v E Agood, v only appears in exactly one part in P and that part is good.

Let us construct the function g as follows. For each v E V, if v Agood, set g(v)

to {v}. Otherwise, if v E Agood, set g(v) to the connected component that contains

v, in the subgraph of G induced by Agood.

It is clear from the construction that the Claims 1 and 3 of Lemma 39 hold for

the function g.

Let us bound the size of g(v).

- If v V Agood, then it is clear from the definition of g, |g(v)| = 1.

- Otherwise, if v E Agood, let P be the part in P that v appears. It is clear from

the construction of g that YN(P) n Agood = 0. Therefore, g(v) G 1/f(p)|. Thus,

Ig(v)| 5 |VN(P)I (h± 1)If(P)l 2h+1)

In both cases, the size of g(v) is bounded by l 4 +1), as stated by Claim 2 of the

lemma.
4Recall that N(P) denotes the set nodes in T that are not in P and adjacent to at least one node

in P.



Finally, we now show that I ;> I VI. Consider a vertex v E Agood Let P be

the part in P that contains v. Observe that every edge going out of g(v) must end

up in VN(P). Therefore,

n(g(v)) N(P) Vj (h + 1)IN(P)I 2(h + 1) (3.3)

Let Ahigh-conductance c Agood be the set of vertices in Agood such that v E Ahigh-conductance

if and only if #(g(v)) > 6. Also, let Aoumconductance =Agood \ Ahigh conductance.

" Observe that for each bad part P in P, all nodes in P are in Cc,

|Abad| I I U Z| (h + 1)|CcI | IXI < IVI
ZEc60 60

* Observe that for each good part P in P, |N(P)| 1 5 6 1| P1. Thus,

IVIN(P)| 5 (h + 1)IN(P)I < |P

This implies that |Agoo<neighbo, _< V| IV.

" Since every edge going out of g(v) must end up in Agood-neighbor, the total of

edges going out of g(v) for all v E Agood is at most djAgood-neighborl. Thus, the

size of Ahigh-condudance must be bounded by

dIe
| Agood-neighjor| 60

From (3.3), it can be deduced every vertex in Alowconduetance is also in B. Therefore,

|B| _> IAtow-conductance| _> IVI - |AbadI - |Agood-neighborI - |Ahigh-conductance| _> V|

20
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