
Universal Semantic Communication

by

Brendan Juba

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

1/

Author

Department of Electrical Engineering/nd Computer Science
August 30, 2010

- 4
tx --

Certified by M. adhu.
Madhu Sudan

Fujitsu Professor of Electrical Engineering and Computer Science
Thesis Supervisor

,<9 /1

A ccepted by
Terry P. Orlando

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHN-OLOGY

OCT 3 5 2010 ARCHIVES

LIBRARIES

it I

2

Universal Semantic Communication
by

Brendan Juba

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Is meaningful communication possible between two intelligent parties who share no
common language or background? We propose that this problem can be rigorously
addressed by explicitly focusing on the goals of the communication. We propose a
theoretical framework in which we can address when and to what extent such semantic
communication is possible.

Our starting point is a mathematical definition of a generic goal for communica-
tion, that is pursued by agents of bounded computational complexity. We then model
a "lack of common language or background" by considering a class of potential part-
ners for communication; in general, this formalism is rich enough to handle varying
degrees of common language and backgrounds, but the complete lack of knowledge is
modeled by simply considering the class of all partners with which some agent of sim-
ilar power could achieve our goal. In this formalism, we will find that for many goals
(but not all), communication without any common language or background is pos-
sible. We call the strategies for achieving goals without relying on such background
universal protocols.

The main intermediate notions introduced by our theory are formal notions of
feedback that we call sensing. We show that sensing captures the essence of whether
or not reliable universal protocols can be constructed in many natural settings of
interest: we find that across settings, sensing is almost always sufficient, usually
necessary, and generally a useful design principle for the construction of universal
protocols. We support this last point by developing a number of examples of protocols
for specific goals. Notably, we show that universal delegation of computation from
a space-efficient client to a general-purpose server is possible, and we show how a
variant of TCP can allow end-users on a packet network to automatically adapt to
small changes in the packet format (e.g., changes in IP).

The latter example above alludes to our main motivation for considering such
problems, which is to develop techniques for modeling and constructing computer
systems that do not require that their components strictly adhere to protocols: said
differently, we hope to be able to design components that function properly with a
sufficiently wide range of other components to permit a rich space of "backwards-
compatible" designs for those components. We expect that in the long run, this
paradigm will lead to simpler systems because "backwards compatibility" is no longer
such a severe constraint, and we expect it to lead to more robust systems, partially

because the components should be simpler, and partially because such components
are inherently robust to deviations from any fixed protocol.

Unfortunately, we find that the techniques for communication under the com-
plete absence of any common background suffer from overhead that is too severe for
such practical purposes, so we consider two natural approaches for introducing some
assumed common background between components while retaining some nontrivial
amount of flexibility. The first approach supposes that the designer of a component
has some "belief" about what protocols would be "natural" to use to interact with
other components; we show that, given sensing and some sufficient "agreement" be-
tween the beliefs of the designers of two components, the components can be made
universal with some relatively modest overhead. The second approach supposes that
the protocols are taken from some restricted class of functions, and we will see that
for certain classes of functions and simple goals, efficient universal protocols can again
be constructed from sensing.

Actually, we show more: the special case of our model described in the second
approach above corresponds precisely to the well-known model of mistake-bounded
on-line learning first studied by Barzdirs and Frievalds, and later considered in more
depth by Littlestone. This connection provides a reasonably complete picture of the
conditions under which we can apply the second approach. Furthermore, it also
seems that the first approach is closely related to the problem of designing good
user interfaces in Human-Computer Interaction. We conclude by briefly sketching
the connection, and suggest that further development of this connection may be a
potentially fruitful direction for future work.

Thesis Supervisor: Madhu Sudan
Title: Fujitsu Professor of Electrical Engineering and Computer Science

Acknowledgments

It seems fitting to start with my parents.
Over the years here, I've slowly come to realize that a graduate student couldn't

wish for better parents. You see, my parents both entered doctoral programs, so
they knew what the allure was, and what challenges lay ahead; at the same time,
moreover, my parents both dropped out of graduate school with master's degrees, so
there was no sense of pressure or unrealistic expectations. Finally, they demonstrated
that even if things didn't work out for me here, it would still be possible to lead a
rich, fulfilling life. It took me a long time to realize how uncommon that was.

On the subject of support, I also want to thank my wife, Angelina. As I write
these acknowledgements, she's sitting next to me, plugging away at the research for
her own thesis. The writing process over the last year or so has been a grueling, all-
consuming, long, hard slog, but she's endured it about as well as anyone could. Her
companionship and the sense of solidarity with it has prevented the writing process
from turning isolating and lonely. Moreover, she's acted as my test audience more
times than could reasonably be expected of anyone, and some of the material here
has benefitted substantially from her careful feedback.

I'm also deeply indebted to my officemates, especially those that were here during
the early days of this work (and long "middle years" of graduate school) - Swastik
Kopparty, Paul Valiant, Guy Rothblum, and Ben Rossman, and later Jing Chen -
for the feedback, sanity checks, and numerous helpful conversations they provided
while the work presented here was taking form. Similarly, I'd like to thank the rest
of my groupmates over the years, Sergey Yekhanin, Victor Chen, Elena Grigorescu,
Shubhangi Saraf, Tali Kaufman, and Jakob Nordstrbm for conversations, feedback,
and support of various kinds. Thanks to Jacob Scott for keeping the pressure on me
to go to the gym regularly back in the early days. (Seriously.)

I want to thank Lenore Blum for suggesting that I should try a REU-prior to that,
I hadn't realized that the kind of problem-solving that I liked was called "research."
I also want to thank Steven Rudich for his course 15-251, "Great Theoretical Ideas in
Computer Science" (and also for his course on computational complexity, as a result
of which, I no longer have any fear of hard problems). I grew immeasurably as a
result of my involvement in 15-251, both as a student and as a TA.

Moreover, I'd also like to thank Steven Rudich for several interesting conversa-
tions about "alien communication," i.e., the subject of this thesis. I had influential
conversations about this work with a number of other people, including Eran Tromer,
Leslie Valiant, Leslie Kaelbling, Adam Kalai, and Bob Berwick. Eran and Adam have
been enthusiastic about the work, and provided numerous helpful insights - Adam
specifically for helping inspire the model of Chapter 4, and Eran more generally -
while the conversations with Professors Valiant and Kaelbling helped point the way
towards the connection to on-line learning in Chapter 8. Bob Berwick directed me to
the relevant background in Philosophy of Language. I had some particularly helpful
conversations with Santosh Vempala, and several of the results here are joint work
with Santosh, as indicated. Likewise, I want to thank David Sontag and Dan Roy for
their continued enthusiastic interest in the work, and their suggestion of the connec-

tion to PAC-Bayes that inspired Chapter 4. Finally I want to thank Ryan Williams
for several conversations, for his continued interest and support in this work, and
(perhaps most of all) for his willingness to read some of our early drafts.

I'd like to thank my committee members, Mike Sipser and Silvio Micali. Mike
had two particularly rare qualities: first, he took the time to read the write-ups that
I sent to him, and second, he was almost always available. Silvio, on the other hand,
has given me substantial, highly relevant advice over the years, on this work, and
more generally. Also, although relative to him, I'm a mere novice at the art of a good
definition, I owe much of what I know to some of the early courses I had with him.

Now, I wish to acknowledge the influence that Oded Goldreich has had throughout
this work. To put it briefly, anywhere the formalism is clear and the terminology
suggestive, it is due to Oded, and anywhere the work seems hasty and awkward, it is
the result of my own attempt to fill in.1 Chapter 6 closely follows a technical report on
which Oded was the principal author [67], and the present version of the framework
in Chapter 2 (and by extension, Chapter 5, as well as the rest of the thesis!) was in
turn deeply influenced by the choices made by Oded in reformulating and extending
my earlier work with Madhu (from [81]) to the infinite execution setting. I want to
thank Oded, first for his vote of confidence in our work, and subsequently for his
untiring efforts to make it comprehensible. A theoretical framework such as the one
proposed here would be no good to anyone if no one could make sense of it!

I'd also like to acknowledge the influence Manuel Blum has had, both on the
direction of this project, and on me as a researcher. It's fair to say that the two
years I worked with Manuel at Carnegie Mellon shaped my taste and identity as a
researcher, and probably the main reason I was originally interested in the questions
considered in this work was that I was looking for another way to make progress on
some of the questions that Manuel had raised while I was working with him. I've had
the pleasure of conversations with Manuel about this work several times since, and
they've all proved immensely helpful. Manuel also continues to be perhaps the most
amazingly supportive person I have ever met, and I can't thank him enough.

Finally, it's an honor to acknowledge the influence, direction, support, and contri-
butions of my advisor, Madhu Sudan. After working with Manuel, I was looking for
another significant but colorful, wide open problem to work on, and so when Madhu
suggested working on "the problem of establishing a common language," during my
first year, I was hooked. I'm extremely grateful for his willingness to work closely
with me on these problems, as well as for his support, advice, and encouragement
over the long years since. So long, Madhu! And, thanks for all the sushi.

Brendan Juba
Cambridge, Massachusetts
August, 2010

This work was made possible by an Akamai Presidential Fellowship, an NSF Grad-
uate Research Fellowship, and NSF grants CCR-0514915 and CCF-0726525.

'The reader may confuse this for modesty, but a simple comparison of Chapter 2 with the original
technical report [81] should clear up any lingering doubts.

Contents

1 Introduction
1.1 Technical motivation
1.2 Limits of our scope, or: what this thesis is not about
1.3 History and prior work

1.3.1 Prior work on CETI
1.3.2 Formal theories of communication problems . .
1.3.3 Similar work in other areas

1.4 Overview of our contributions
1.4.1 Philosophical context
1.4.2 An example: computational goals
1.4.3 Overview .
1.4.4 Contributions of this thesis in the context of its r

other work .

2 Theory of finite goal-oriented communication
2.1 An informal overview of the theory

2.1.1 Goals: a formal explication of meaning
2.1.2 Sensing functions
2.1.3 Capabilities and limits of universal users

2.2 Model of communication and goals
2.2.1 Agents: users, servers, and their environment
2.2.2 Goals of communication
2.2.3 Universal users
2.2.4 Helpful servers

2.3 Sensing and universality
2.3.1 Sensing: safety and viability
2.3.2 Sensing is necessary and sufficient for finite goals
2.3.3
2.3.4

11
. . . . 11
. . . . 13
. . . . 14
. . . . 14

.... 15
. . . . 16
. . . . 17
. . . . 17
. . . . 18

elationship to
. 24

35
. 35
. 36
. 38
. 40
. 41
. 41
. 42
. 46
. 49
. 49
. 50

. 53
Extensions and variants of sensing: alternative constructions
Safety requirements in the basic universal setting

3 Verifiable goals for communication
3.1 Notation and definitions .
3.2 Control-oriented goals .

3.2.1 Transparent goals .
3.2.2 Searching .

55
61

63
63
65
66
67

3.3 Computational goals . 69
3.3.1 Main definitions in this setting 71
3.3.2 Characterization of functions with polynomial-time universal

protocols . 73
3.3.3 Main consequences of the characterization.. 75
3.3.4 Beyond PSPACE-completeness: more examples of universal

protocols for computational problems 76
3.3.5 Communication in spite of indeterminacy 78

3.4 Intellectual curiosity . 78
3.4.1 A primer on computational depth 79
3.4.2 Formalizing a goal of intellectual curiosity 82
3.4.3 Constructing universal reviewers: sensing functions for goals of

intellectual curiosity . 83
3.5 T ests . 84

3.5.1 A test of computational ability 85
3.5.2 Examiner strategy for a test of computational ability 88
3.5.3 Promises and verifiability . 90

4 Conditions for efficiency in finite executions 93
4.1 Running time lower bounds via passwords 94

4.1.1 Lower bound for nontrivial goals 94
4.1.2 Extension to parameterized nontriviality 96

4.2 A Bayesian model of helpfulness . 98
4.2.1 Basic notions: priors and benchmarks 98
4.2.2 Uniform viability . 101
4.2.3 An efficient universal protocol for close priors 103

4.3 Effective conditions for efficient users 106
4.3.1 Servers with a designated class of properly functioning states . 106
4.3.2 Effective refinements of sensing 108
4.3.3 A universal user for servers that are easy to use and hard to

break . 111
4.4 Lower bounds in the absence of a common prior 113

4.4.1 A generic lower bound when no common prior exists 114

5 Computational complexity of goals 117
5.1 Generic complexity classes for interactive computation 118

5.1.1 Model of interactive computation 118
5.1.2 Bounded resources and simulation 120
5.1.3 Com position . 122
5.1.4 Basic agents: the toolkit . 126

5.2 On the computational complexity of goal oriented communication . . 127
5.2.1 The complexity of interpreting versus the complexity of learning

to communicate . 127
5.2.2 Helpfulness for generic classes of users 128

5.3 Sensing m odules . 129

5.3.1 Safety and viability for generic classes of agents 129
5.3.2 On the necessity of sensing and its safety requirements 131

5.4 Universal users for enumerable classes 133
5.4.1 Enumerable complexity classes 133
5.4.2 Sensing suffices for universal protocols for enumerable user classes139

5.5 The complexity of universal users for computational problems 140

5.5.1 Competitive interactive proofs for generic classes 141
5.5.2 Computational goals for logspace agents 147

6 Theory of goal-oriented communication in infinite executions
6.1 Goals and sensing for infinite executions

6.1.1 Goals in infinite executions
6.1.2 The computational complexity of strategies
6.1.3 Achieving goals and helpful servers
6.1.4 Sensing for goals in infinite executions

6.2 On universal users in infinite executions
6.2.1 Universality and sensing in infinite executions
6.2.2 Sensing in the basic universal settings for infinite executions
6.2.3 Universality without feedback
6.2.4 Quantification of errors and delays
6.2.5 On the non-triviality of strong sensing functions

6.3 Extensions .
6.3.1 Varying state sizes .
6.3.2 Concurrent session multi-session goals
6.3.3 Partial robustness .

6.4 Embedding goals in finite executions into infinite executions

7 The
7.1

power of relaxed models
Universal protocols for any computable decision problem
7.1.1 Efficient universal protocols for infinite executions

153
154
155
160
161
163
167
168
173
176
178
188
189
190
194
196
196

201
202
203

7.1.2 Universal protocols with bounded mistakes for finite executions 206
7.2 Protocols for generic goals with exploration sessions and resettable servers212

7.2.1 Multi-session goals with exploration sessions 213
7.2.2 Resettable servers . 215
7.2.3 A generic constant-error protocol for goals with exploration ses-

sions and resettable servers . 218

8 The error complexity of strategies in infinite executions
8.1 On the number of errors incurred with password-protected servers
8.2 On-line learning is equivalent to semantic communication with one-

round goals .
8.2.1 Fixed length multi-session goals
8.2.2 Generic users for goals implicitly specified by sensing
8.2.3 Model of mistake-bounded on-line learning.

223
224

226
227
228
229

8.2.4 Equivalence of on-line learning and generic universal users for
one-round goals .

8.3 Consequences of the equivalence: universal user strategies from on-line
learning algorithm s .
8.3.1 Parity strategies .
8.3.2 Linear threshold strategies .
8.3.3 Demonstrating optimality via Littlestone's method
8.3.4 Generic users for other classes of strategies: a survey

8.4 Overcoming the limitations of basic sensing with richer feedback . . .
8.4.1 Limitations of basic sensing
8.4.2 Richer feedback .

9 Towards applications: communication with a changing network pro-

231

234
234
235
240
241
244
244
246

tocol 249
9.1 Model of communication under a changing network protocol 250

9.1.1 Setting and goal of communication 250
9.1.2 Model of network protocols and bounded changes 252

9.2 An end-user protocol for decoding messages sent under a modified net-
work protocol . 256
9.2.1 Algorithms for deterministic extractors and inverting transducers256
9.2.2 The user decoding strategy and its implementation 262
9.2.3 Analysis of the user decoding strategy 265

9.3 End-to-end protocol for communication across an unreliable network
with a modified protocol . 268
9.3.1 A review of the key sub-protocols of TCP 269
9.3.2 A modified end-user scheme for reliable communication 275
9.3.3 Analysis of the modified stop and wait scheme 284
9.3.4 An improved end-user scheme for reliable communication . . . 297

9.4 On extending the protocol to networks connecting many users 307
9.4.1 Approaches for protocols using the same addresses 308
9.4.2 Approaches for protocols using different addresses 309

10 Conclusions and directions for future work 313
10.1 Directions for future work . 314

10.1.1 Concrete universal systems . 315
10.1.2 Reducing the overhead of concrete systems 315
10.1.3 Connections to the usability of computer interfaces 317

Appendix: On the measurability of various sets of executions 323

Chapter 1

Introduction

Consider the following fantastic scenario: an extraterrestrial named "Alice" contacts
an earthling named "Bob" via radio waves. Suppose further that Bob has set up a
transmitter, so that he can respond to Alice's message. In a strict sense, Alice and
Bob now have the capability to exchange information-but can they ever hope to
have a meaningful conversation?

1.1 Technical motivation

The philosophical substance of this question is self-evident: how does information
carry semantic content, and in particular, does this require some common background
or language to be "hard-wired" into the (genetic) code of the participants? Thus, it
is unsurprising that philosophers have considered such issues, and we will examine
this context in Section 1.4.1. What is less obvious is that there are equally com-
pelling technical motivations for studying the semantics of communication, especially
communication without a common background.

Most of these motivations arise in the context of computer networks, especially
out of the technical challenges posed by the internet. The development of the modern
protocols underlying the internet was guided by the following "robustness principle"
due to Postel et al. [142]: "be liberal in what you accept, and conservative in what
you send." Our work focuses on the first clause of this fundamental principle; the
theoretical question is, how liberal can a fixed protocol be? Naturally, we expect that
a rigorous treatment of this problem will lead to simpler, more robust protocols for
the following reason. It has been observed that these protocols are subject to constant
revision and evolution, as deficiencies in the scalability, security, etc. of the protocols
are revealed over time. Modifying the protocols, however, clearly either involves
updating all of the relevant deployed software or designing the updated protocol to be
backwards-compatible with the old protocol. In practice, the first option demands an
extensive coordinated effort by many individuals and the second option leads to a less
elegant design; neither option is ideal. Our hope is that the use of a sufficiently liberal
protocol would broaden the class of "backwards-compatible" protocols to include
suitable designs, thus allowing us to avoid both of the drawbacks described when

modifying the protocols at a given point.
Similar considerations also apply in the context of peripherals-consider the pro-

cess of attaching a new printer to an old computer. Ideally, we would like for the
computer to have the capability to print documents using the printer "out of the
box," but of course this does not always hold in practice. Instead, we often find that
we need to install a new driver for the printer obtained from some third party, either
provided on the disk, downloaded from the internet, or written from scratch with
considerable effort. As with the internet protocols, it is not reasonable to expect that
a single fixed protocol should be employed by all pairs of devices that remains static
over time - certainly, at a minimum, over time the data we transmit tends to become
richer, as when a monitor with higher resolution and color depth is attached - and
this says nothing of what should be done when fundamentally new kinds of devices
are attached to the computer. In this context, our question is, for how broad a class
of devices can a single driver successfully operate? If this class is sufficiently broad,
then we might hope to be able to install a driver that does not need to be updated
by a third party when we attach new hardware.

Along these lines, a more abstract and less pressing (but no less intriguing) issue
arises in the semantics of data. As we demand richer kinds of data, file formats
change-e.g., the documents produced by a modern office productivity suite now
include a plethora of auxiliary information, including at least formatting, fonts, etc.,
leading to a format that vastly differs from the old ASCII text format. There are a
number of competing, incompatible formats, and the task of reading these documents
either involves using different software for the different formats, or using a reader that
is compatible with these numerous formats. We might hope, in this context, that it
is possible to store the data in such a way that the contents of the file can outlive
the particulars of the data format that they are stored in, that a new reader does not
need to know explicitly about the particular (archaic or idiosyncratic) format of the
file in order to recover its contents. In this way, we would hope that the semantics
of the file could be made less dependent on its syntactic formatting, and thus this
problem is the most closely related to the "classic" problem of making the contents
of a message independent of the language used to express it.

More radically, Lanier [88] has suggested adopting a "protocol-free" approach to
the architecture of computer systems. He observes that the fundamental assumption
in protocol-oriented architectures, that the components in a computer system strictly
adhere to the stated protocols, leads to the catastrophic failure modes when the
components do not actually adhere to these protocols-failure modes that are an
everyday experience, since strict adherence is almost impossible to achieve in any
system of even moderate complexity. Moreover, along the lines of our discussion
above, he notes that the requirement that components adhere to given protocols
results in the mandatory adoption of old design decisions in the construction of new
systems, and similarly, the mandatory adoption of old ideas and architectures-a
process he calls "sedimentation." As an example, he notes that the "file" architecture
for information storage was a debatable design decision that has since become "a fact
of life, as fundamental as a photon" (in his words). Lanier's hope is that an alternative
to the protocol-oriented approach will yield a more effective means of engineering

large, complex systems-a task that we can barely achieve with any competency

today.
Although our work is most concretely motivated by the first of these contexts,

all four are questions about to what extent the semantics of communication can be

decoupled from the syntactic form of the communication, and we believe that our

results will be relevant to all four. In particular, contrary to Shannon's assertion that

the semantics of a message are "irrelevant to the engineering problem" in the opening

lines of his seminal paper [129], we hope to have demonstrated that the semantics

of the communication are of fundamental importance to the engineering problems of

communication in modern applications.
Moreover, since the entire problem in each case is how a fixed design for a com-

munications system can cope with the task of operating with other systems whose

designs and purposes were unanticipated at the time of the original system's design,
we believe that a theoretical evaluation of the quality of communications systems is

inherently necessary. That is, since in every case, the issue is whether or not the

system can cope with circumstances that were not anticipated until after the design

was fixed, an empirical evaluation, in which the communications system is tested in

operation with existing systems, inherently fails to address the key property that we

desire in our systems-since indeed, the designs of the existing systems used in the

evaluation were (or at least, could easily have been) anticipated at the time of the

system's release, assuming that the system's evaluation occurs before its release, of

course! By contrast, a theoretical evaluation can guarantee that a design can operate

successfully with an entire class of potential other systems. Although the classes of

systems we consider is always limited, in many cases we view these limitations on

the systems as inherent-as we may consider the class of polynomial-time bounded

systems to encompass all "reasonable" systems that we will ever encounter, as a con-

sequence of the strong Church-Turing thesis, for example. In any case, even when

the class under consideration is not the result of considering some inherent limita-

tions, it at least provides some basis for evaluating and comparing the flexibility and

robustness of proposals for the designs of communications systems.

1.2 Limits of our scope, or: what this thesis is not
about

Put succinctly, our work concerns communication, not languages. In particular, the

kinds of communication considered in Section 1.1, although they may be structured

as TCP/IP packets or in some other arbitrary way, should fall under our domain. To

take a natural example, the "dance" employed by honeybees to convey the location

of sources of pollen to other bees fits our criteria for "communication," even though

it seems unlikely that the bee can be said to have a "theory of mind" or any such

thing. Indeed, taking a page from Shannon we can say that it is irrelevant to the

general problem of communication whether or not the bee, a computer, or even an

extraterrestrial ascribes intentions to others or builds models of objects in its sur-

rounding environment. Indeed, we expect that in some cases such assumptions will
aid communication, but in accordance with our primary motivation as outlined in
Section 1.1, and in accordance with positions held by various modern philosophers -
see Section 1.4.1 and the overview in Section 2.1 for more - what counts for us in the
first case is what communication does, not how it has been realized in various natural
systems.

Thus, in contrast to the scope of the fields of Linguistics, Semiotics, or Cognitive
Science, we are not interested in the structure of human languages for their own sake;
in particular, we do not assume a priori that the communication must be structured
as a grammar with terms-as a "language," as generally construed. Nor are we
concerned with categorizing the various concepts employed by the human mind and
asking if other communicators share this conceptual scheme. If such structure should
arise from general considerations in our model, so be it, and so much the better for
these other fields, but we do not regard these structures as fundamental.

1.3 History and prior work

In this thesis, we must consider as prior work the contributions of two vastly different
traditions-first, the empirical tradition of approaches to the problem of communi-
cation with extraterrestrial intelligence (CETI), and second, the formal tradition of
the solution of a computational theory of semantic communication. Due to the vast
differences between these traditions, we will survey them separately. Likewise, we
will separately attempt to give the philosophical context for our contributions in Sec-
tion 1.4.1, and we will mention in passing some similarities to approaches in other
communities in the final section, which surveys the contributions of this thesis and
contrasts them with the prior approaches.

1.3.1 Prior work on CETI

In spite of the fantastic nature of the question of whether or not communication with
an extraterrestrial is possible, it has been seriously considered in the past. The most
notable early attempt, unique in its depth and scope, is the language LINCOS pro-
posed by Freudenthal [58]. In LINCOS, semantic concepts are gradually introduced
by means of examples, building on one another, until a rich enough language has been
constructed to express the desired message. Freudenthal claims that it is possible to
send messages discussing mathematics, physics, and even simple stories, provided
that the recipient is sufficiently "humanlike." Although LINCOS sounds like a posi-
tive answer to our question, a closer inspection reveals a host of unresolved difficulties.
On the one hand, it is unclear under what conditions a recipient should be consid-
ered "humanlike," and on the other, it is not even clear that a message written in
LINCOS would be understood by a human recipient who did not have the assistance
of Freudenthal's suggestive notation, or who did not know the language's purpose a
priori. Similar attempts based on pictographs, like the messages famously included
on the Voyager space probes or sent from the Arecibo radio telescope in 1974 [9], are

further described by McConnell [105]. The basic problem with all of these schemes is

that there is no reason to believe that they will succeed: these schemes lack formal

foundations, and thus there is no way to demonstrate that they achieve their intended

purpose.
The problem of communication with extraterrestrials was discussed seriously at a

pair of conferences held in 1964 and 1971 [137, 123]. These conferences were nearly

dominated by radio astronomers, following the earlier proposal by Cocconi and Mor-

rison [45] that radio waves would be ideal for such communication, and the physics of

detection and communication took center stage-Cocconi and Morrison themselves

had been content with the problem of recognizing a signal of "artificial" origin from

an extraterrestrial civilization. Still, the semantic communication problem was men-

tioned in passing at both conferences. In the 1971 conference, the overall tone was

considerably less optimistic, especially towards LINCOS, and there seemed to be no

clear consensus among the participants as to whether or not communication should

be possible. Notably, Minsky expressed optimism that communication should be pos-

sible, and sketched an argument for a message in the form of a program, a proposal

that is arguably similar to Fitz's extension to LINCOS, CosmicOS [57].
Although the same caveats concerning LINCOS still apply to Minsky's suggestion,

it is particularly notable that years later Minsky also sketched an argument for the

validity of such approaches [106]. The essence of Minsky's argument is that it should

be possible to send a message in which the correct interpretation is distinguished

by being less contrived (complicated) than the alternatives. Although this is an

appealing suggestion, unfortunately it is not clear how to formally achieve this effect.

The immediate problem one faces when attempting to pursue this approach is that

it is still unclear how to model the recipient's "interpreting" of the message.

1.3.2 Formal theories of communication problems

The oldest and most fundamental study of communication problems is the theory of

information due to Shannon [129]. Many of the basic concepts we require to begin

discussion of the problems that follow - e.g., the architecture of a communication
channel, the measure of information in bits and sufficiency of the binary channel,
etc. - were laid out in Shannon's original paper. Indeed, discussion of the problems

in this thesis would be entirely premature if not for Shannon's work. On the other

hand, as noted in the introduction, Shannon boldly dismissed the semantic aspects of

communication as "irrelevant," and focused exclusively on the problem of maximiz-

ing the rate of information transmission between a fixed source and receiver. This

assumption was valid in the application envisioned by Shannon, in which the algo-

rithms for encoding and decoding a message are designed as a fixed pair, but fails

to hold in modern applications in which the devices at different ends of the channel

were designed and implemented at different times by different parties, as described

in Section 1.1.
Similar assumptions are present in the more recent theory of communication com-

plexity due to Yao [153]. Yao's setting is distinguished from Shannon's in that the

parties at both ends of the communications channel have private information, and

both parties know that they are communicating for the purposes of computing some
shared function f, which takes the private information from both as input. As in

Shannon's theory, the protocols are designed as a fixed pair, and the aim is to min-

imize the total amount of information exchanged in computing f. The introduction

of the shared function f associates some semantics with the information exchanged,
and in this sense our approach is similar, but as previously stated, our major task is

to eliminate the assumption that the protocols are designed as a fixed pair.

This end is partially achieved by the theory of interactive proofs of Goldwasser,
Micali, and Rackoff [71], and in many cases our work draws on and extends technical

results in this area. The setting of interactive proofs again involves two parties ex-

changing information over a communications channel, but unlike in earlier work, the
parties are given conflicting aims: one party is designated a prover and the other a

verifier, which are of course respectively analogous to the source and receiver in Shan-

non's setting. The verifier possesses an input string x, and for some fixed property

R, wishes to know whether or not x has the property R. As in Yao's setting, both

parties are aware of R (and also x) but now, in contrast to all previous settings, the

verifier is computationally limited. Moreover, the prover has some sort of computa-

tional advantage - either computational power or simply the result of some infeasible

computation - and the prover wishes to convince the verifier that x has property R,
regardless of whether or not this is so. In particular, the verifier's algorithm must be

robust against all possible prover strategies when x does not satisfy R. Although in

our setting Alice is not trying to mislead Bob - he simply does not understand her

- this kind of "robustness" against a vast collection of possible behaviors is what we

desire, and for this reason, the theory of interactive proofs turns out to be particularly

pertinent. Likewise, we also demand that Bob's protocol only utilizes limited compu-

tational resources, and in some cases this motivates our communication problems too.
The major difference between the setting of interactive proofs and our setting is that,
in some sense, the prover "knows" the protocol used by the verifier, and this allows

the prover to convince the verifier when x has the property R-in practice, some

satisfactory prover protocol for this case is still designed with the verifier protocol as

a fixed pair, as was done in Shannon's setting and Yao's setting, which we wish to
avoid, as previously discussed.

1.3.3 Similar work in other areas

It turns out that work that is technically and/or conceptually similar has appeared

previously in a variety of other areas-most notably, Jaron Lanier's "Phenotrop-

ics" [88] (alluded to in Section 1.1) and Stuart Russell and Devika Subramanian's
"Asymptotic Bounded Optimal Agents" [121]. A proper discussion and comparison

of the similarities and differences between these works and the work presented in this

thesis will require us to describe the approach taken in this thesis in more detail,
though. Thus, we defer the discussion until after giving an overview of our work in

the next section.

1.4 Overview of our contributions

We now turn to outlining our work and highlighting its contributions. Our main con-

tribution is an approach to study semantic communication by explicitly formulating
goals for the communication. Moreover, as a consequence of our generic mathematical

definition of a goal, we are able formally study semantic communication in general by
considering the class of all possible goals for communication. We propose that, when

studying the semantics of communication without a common language, one should

have in mind an explicit, precisely formulated verifiable goal for the communication.
In short, possession of such explicit goals is necessary and sufficient for the design

of protocols that reliably achieve them. Thus, this observation about generic goals
also will permit us to describe when, and to what extent, semantic communication is

possible between two parties.
In the rest of this section, we will describe our approach and contributions in more

detail; in particular, we will give a more detailed outline of the present document in

Section 1.4.3. Moreover, in this section, we will attempt to clarify our contributions
in the context of the numerous disciplines and areas that turn out to have consid-

ered related subjects, including Philosophy (next, in Section 1.4.1) and (theoretical

approaches to) Artificial Intelligence. We will also attempt to clarify our technical

contributions in the context of other results and areas of Theoretical Computer Sci-
ence that feature various kinds of similarities and relationships to our work. Of course,
in the latter cases, the distinction tends to be technical, and so the latter discussion is

postponed until Section 1.4.4, following the aforementioned overview of our work, and

a moderately detailed technical example illustrating our approach and contributions
in the context of the goal of solving computational problems, in Section 1.4.2.

1.4.1 Philosophical context

If the reader is only interested in designing and building systems, he or she does not

need to accept our claim that our results address all semantic communication, but the

fact that our results seem to be sufficient to cover all such cases are the grounds on
which we feel justified in making such claims. The idea that communication must be
considered as means to an end and thus that the semantics of communication should
be identified with its usage was first championed by Dewey in 1925 [51], and later
brought to the forefront of philosophy by Wittgenstein [148, 149] in his "language
games," as he argued that most, if not all of the seemingly deep questions that had
been studied in philosophy had arisen as a result of a basic misunderstanding of the
workings of language-that, outside of being used to some end, our words - and hence

questions about them - are quite meaningless. Moreover, the fact that this conclusion
seems to have been reached independently many times over' reassures us that it is

a reasonable characterization. "Goals" in our sense then arise naturally when we

1cf. Dewey's footnote at the end of Chapter 5 of Experience and Nature [51]; indeed, Madhu

Sudan and I also reached this conclusion before we were acquainted with the philosophical literature,
although I don't think that our ignorance of the past 80 years of work in philosophy should be

celebrated by calling it "independent!"

distinguish between successful and unsuccessful usage of a language; we say that a

"goal is achieved" when language is used successfully to some end.
So we see that the idea that the semantics of communication must be under-

stood in terms of the goals of communication has been implicitly present in the

language-focused inquiry of modern philosophy for quite some time, but more recently

Gauker [591 explicitly invoked goals for communication for the purposes of resolving
some questions about contexts and the semantics of reference in the philosophy of
language. Thus, we believe that our identification of "semantic communication" with

"goal-oriented communication" is not only plausible, but entirely reasonable, since
various aspects of natural languages do not seem to make sense unless viewed through
the lens of goals.

With respect to this context, then, our main contribution is two-fold:

1. We supply a mathematically precise framework for formal goals

2. We introduce computational and quantitative aspects to this study of goal-
oriented language usage

where we especially stress the "goal-oriented" aspect in the second point above-it is
certainly true that linguists, led by Chomsky [42, 43], have considered computational
aspects of languages, but these treatments did not focus centrally on the ends that
language serves to achieve. Gold [63, 62], on the other hand, was originally motivated
by the question of the computational feasibility of language learning, and considers
some computational aspects of language, and we will contrast our work with Gold's
at the end of this section. We opt to postpone our discussion of the relationship of
our work to that of Gold and others since the differences in our approach are best
illustrated by means of an example, which we provide next.

1.4.2 An example: computational goals

We illustrate our approach with our first example of a universal communications pro-
tocol from prior work [80]. We will formalize a computational goal for communication
and state feasibility and infeasibility results for universal communication in this set-
ting. More specifically, we define a notion of a "helpful" Alice, and the goal of a
"universal" Bob. We show that there is a universal Bob that can decide PSPACE
complete problems when interacting with any sufficiently powerful and helpful Alice.
We also prove a matching negative result showing that Bob can not decide problems
outside of PSPACE, provided the "language" of Alice is sufficiently unknown. Again
crucial to this step is formalizing the concept of the language being unknown. We
will return to this setting in Chapter 3, where we show how this goal fits into the
formal framework introduced in Chapter 2 and how the theorems about generic goals
in our framework yield the theorems we claim here as corollaries.

Basic notation

As this section is intended to serve as an illustration, we will adopt simplified notation,
borrowed from the classical setting of interactive proofs, for use in this section only.

We start by setting up our basic notation for interactive computation. We assume
that Alice and Bob exchange messages by writing finite length strings from a binary
alphabet on common tapes; we assume that there are two tapes, one which only
Alice can write to and only Bob can read, and one which Alice can read and Bob

can write to. We assume that the interaction proceeds in rounds, and they are well

synchronized2 , i.e., they only write after the other has finished reading, and they
know when the other has finished writing. Thus a history m of the interaction
consists of a sequence of pairs of strings m = ((mjAB , m4A), . . . , , mh'A))

where (m-* , P-A) E {0, 1}* x {, 1}*. The messages m -* are written by Alice,
and mhA by Bob. Each player may toss random coins and have some private inputs.
For example, the k + ith message written by Alice is a function of the k messages
from Bob in the history thus far, as well as Alice's randomness and private inputs.
We describe her response by the function A(m). (We remark that we don't highlight
her randomness and private inputs, since these will be irrelevant to Bob.) Similarly
Bob's messages are also (probabilistic) functions of the history and any private inputs
he may have. Bob's message on private input x and history m is denoted B(x; m).
Once again this function may depend on the history of random coins tossed by Bob
but we will suppress this aspect in our notation.

Conditioned on a history m, Alice's responses in the future may be viewed as
a new incarnation of Alice. We use Am to denote her future responses and thus
Am(m') = A(m o m') where m o m' denotes the concatenation of the histories m and
m'.

At the end of an interaction with Alice, Bob will output a Boolean verdict.
(A, B(x)) will denote the random variable produced by Bob's output following the
interaction between Alice and Bob, where Bob has private input x. We will abuse
notation in a natural way to let a decision problem (set) 11 also denote a Boolean
function: U(x) = 1 if x G E1 and H(x) = 0 otherwise.

Definition 1.1. We say that Alice helps Bob decide a problem 11 if for every x E

{0, 1}*, it is the case that Pr [(A, B(x)) = 11(x)] > 2/3.

Main definitions and results in the computational setting

Our general approach is to consider the situation where Bob interacts with some
member of a large class A of Alices, but does not know which specific member of
the class he is interacting with. Essentially, we would like Bob to be successful in
deciding the problem 11 for every member of the class A. (Sometimes we may also
wish to consider what Bob does when Alice does not belong to A.) In order to make
this viable, the class A should only include Alices that are powerful (enough to decide
11), and helpful. While the former is easy to formalize, the latter notion is somewhat
subtle. One aspect we'd like to capture here is that her ability to decide 1 should be
based on her "external characteristics," namely on her input/output response, but

2This and similar syntactic assumptions may already be questioned in the general setting of
"intergalactic communication." Indeed these simplify our task, however they do not trivialize the
problem and we are optimistic that these can be removed at a later stage.

this is still insufficient. For instance suppose that for each round i, Alice has chosen

a random bit bi (known only to her) and then answers any question y with the bit

r1(y) G bi. In this setting her input/output response at time i represents her ability

to decide 11 - someone who knew some bi would be able to easily obtain P(y) for any

y - but this is clearly not detectable by (poor) Bob. This introduces an additional

element that "helpfulness" must capture, namely Alice's behavior as a function of the

history of messages thus far.
In the following definition we attempt to formalize the notion of a powerful and

helpful Alice by setting minimal restrictions on Alice. Roughly, we insist that Alice be

able to help some Bob' decide H, conditioned on any prior history. The requirement

that Alice should be able to help some Bob' decide H is necessary if we would like

to design a specific Bob to decide H by interacting with Alice. Moreover, observe

that if no such Bob' exists, no matter what is said to Alice and no matter in what

language, Alice provides no assistance, so the difficulty is surely not merely one of

"lack of a common language." The requirement that this should happen independent

of any history does restrict Alice somewhat, but we argue that it is a simple way

to overcome issues such as the time-varying Alice described above, and therefore a
reasonable "universal" principle.

Definition 1.2 (H-Helpful Alice). We say that Alice is H-helpful if there exists a

probabilistic algorithm Bob and a polynomial p, such that for every prior history m,
the incarnation of Alice conditioned on the history, Am, helps Bob decide H in p(n)
steps (independent of m).

We remark that this Alice is not assumed to be an oracle; her responses may
depend on m in general,3 and this is essential for our approach to claim any relevance.
We only require that Bob is successful independent of m.

We now formalize Bob's goal in this computational setting.

Definition 1.3 (1-Universal). We say that Bob is a universal decider for a decision
problem H, or 1-universal, if for any H-Helpful Alice, Alice helps Bob decide H and

there exists a polynomial p such that for every instance x E {0, 1}* Bob runs in
expected time p(|x|).

The main theorem in this setting is the following result, which gives a universal
Bob for problems in PSPACE.

Theorem 1.4. For every PSPACE complete problem H, there is a Bob that is 11-
universal.

This result uses the power of interactive proofs and in particular the fact that

PSPACE has short interactive proofs [97, 128]. Effectively Bob attempts to get from

Alice, not only the answer to a question of the form "Is x E 11?", but also an interactive

proof of this answer. The full treatment appears in Chapter 3.

3Hence, in particular, checkability of H will be insufficient; such issues are considered in more
detail in Section 3.3.3.

Next we will rule out the possibility of obtaining a f-Universal Bob for Ul
PSPACE. We prove this by showing that for every probabilistic polynomial time
bounded Bob, there exists a U-helpful Alice such that the decision problem (promise
problem to be more precise) that Alice helps Bob decide is contained in PSPACE.

Theorem 1.5. Let U be a decision problem that is not in PSPACE. Then for every
probabilistic algorithm B, there exists a 11-helpful A such that B fails to decide U1 with
the help of A.

Perhaps a more distressing consequence of the level of generality we seek is that
the running time of the universal Bob constructed in Theorem 1.4 is exponentially
long in the description length of the shortest asymptotically optimal protocol for
interpreting Alice (in Bob's encoding). Notice that with a trusted third party, Bob
would have had only a polynomial dependence on the encoding of this protocol. The
next theorem asserts that this is necessary.

For simplicity, we will present this result in terms of the "password closure" of a
helpful Alice:

Definition 1.6. Given any Alice A, the password closure of A, denoted PW(A), is
the following class of Alices: for each x E {0, 1}*, PW(A) contains the password-
protected Alice with password x, Ax, described as follows. Ax sends only empty
messages to Bob until she first receives the message x in round i, whereupon, she
responds with A applied to the suffix of the history following round i.

Notice that the password closure of a fl-helpful Alice A contains only U-helpful
Alices (in particular, that help various other Bobs with the same asymptotic running
time); therefore, an exponential lower bound for the running time of a fl-universal Bob
on this subclass is also a meaningful lower bound for the overhead of the fl-universal
Bob in general.

Theorem 1.7. Let U be a PSPACE-complete decision problem, and let A be a U-
helpful Alice. Then, unless PSPACE = BPP, if a probabilistic algorithm Bob decides
instances of 11 using the help of any Alice in PWQ(A) with passwords of length f in
time te(n) = O(nk), Bob must run for Q(2 11) rounds with A'.

Note that in a family of helpful password-protected Alices, whenever Alice ex-
pects a password of length £, since Alice is a black-box to Bob, Bob cannot try
every password in a number of rounds that is subexponential in f, and thus must
output a verdict without Alice's help. Moreover, this Alice helps a protocol of de-
scription length f + 0(1), so the construction in Theorem 1.4 is qualitatively optimal
for password-protected families. We will return to this theorem and its proof when
we consider issues with the efficiency of our protocols in Chapter 4.

1.4.3 Overview

Returning to the general setting, we first lay out a framework for discussing commu-
nication problems in a system of interacting agents. Our model agents are straightfor-
ward extensions of the interactive Turing machines introduced in interactive proofs [71]

and fit the definition of agents used by the artificial intelligence community (cf. the

textbook of Russell and Norvig [120]). We give generic mathematical definitions
of a goal for communication, (e.g., solving a computational problem as outlined in

Section 1.4.2) that is pursued by an agent in our model system.

Models of goals for communication

In slightly more detail, we introduce our framework in three stages. We first consider
a special case of goals that are to be achieved within a (polynomial) time bound in

Chapter 2, and introduce all of our main terminology in that simplified context; we
then refine our model to address more general classes of resource-bounded agents in

Chapter 5. Finally, in Chapter 6, we broaden the kinds of goals of communication we
consider to include goals in which the agent wishes to keep communicating successfully
over time, i.e., in which the agent never "completes" its job, where success at the goal
is equated with the agent "mastering" its task, so that it only makes a reasonable
number of mistakes.

Universal communication for verifiable goals

In each of these chapters, we develop notions of feedback that we call "sensing, " that
the agent may or may not be able to obtain with respect to a given goal, in hopes
of evaluating its progress towards achieving that goal. We then support our proposal
that one should pursue universal communication by first precisely formulating an
explicit verifiable goal for communication with theorems about the capabilities of
these agents-specifically, we show that if sensing is possible with a class of partners,
then an agent can achieve its goal with any given partner in that class, as illustrated
for a computational goal in Theorem 1.4.

Indeed, the theorems are sufficiently general to permit the agent to succeed, even
if the class contains every partner with which communication is feasible (i.e., given
only that the partner is "helpful, " in the terminology of Section 1.4.2)-so then, given
sensing, we can design agents that overcome any "language barrier" and achieve their
goals. We refer to the aforementioned setting, in which communication with a given
partner is merely assumed to be feasible for some (other) agent, as the universal
setting, and the agents that succeed in the universal settings employ universal com-
munication, as suggested by the title of the present work.

Extent and limits of the verifiability of goals

Moreover, conversely, in the case of goals that are (reliably) achieved in bounded
time (as considered in Chapters 2 and 5), we see that communication with any class
of partners requires sensing to be possible with that class of partners, and in this
sense, we will find that verifiability is (often) necessary for universal communication.
We will also see that sensing must be possible in a "weak" sense in the broader
case of the goals we consider in Chapter 6. The stronger kinds of feedback will be
observed to lead to limits to the kinds of goals that can be achieved, along the lines
of Theorem 1.5 in Section 1.4.2; the basic theorems are again proved in Chapters 2,

5, and 6, and the respective applications appear in Chapters 3, 5, and 6. We will see
that the aforementioned "weak" kind of verifiability is not bound by these limits in
Chapter 7. We will note that analogues of this weak verifiability correspond to an
agent that may make some errors, and we will see that such agents (that are allowed
to fail sometimes) can achieve much harder goals, albeit in a weaker sense.

Nevertheless, we also show how verifiable goals can be formulated for a variety
of natural goals for communication in Chapter 3, in support of our claim that most
natural semantic communication can be modeled as communication in pursuit of ver-
ifiable goals. Our treatment of computational goals (from Section 1.4.2) in particular
is refined further in Chapter 5, to show that general polynomial-time computation is a
verifiable goal for weak (logarithmic space bounded) devices-and so, in a somewhat
realistic sense, universal delegation of computation by these weak devices is possible.
Also, returning to our motivation outlined in Section 1.1, we will address a more
sophisticated example goal in Chapter 9: we will construct a protocol for end-users
on a packet network that automatically adapts to (sufficiently small) changes in the
network's packet format.

On the overhead of universal communication

Now, the drawback of our techniques is that in general, our universal protocols incur
some substantial overhead, especially in the running time, as illustrated by Theo-
rem 1.7 for computational goals. Again, Theorem 1.7 shows that in general, this
overhead is unavoidable, (and in particular, this means that the universal settings
described above suffer from such overhead, so universality comes at some cost) but
it does not rule out the existence of (broad) special cases that do not suffer such
prohibitively large overhead. Thus, we will develop two approaches to reducing this
overhead by considering different kinds of special cases.

The first approach, described in Chapter 4, is designed for the model developed in
Chapter 2. In this approach, we suppose that both parties have some "belief" about
what constitutes a "natural" communication strategy. We then show that if these
beliefs are similar and both parties are attempting to communicate effectively with
respect to their own beliefs, then the overhead is small. Actually, more generally, we
can give a quantitative relationship between the overhead and the difference in beliefs
(of course, given that these terms are all formalized in an appropriate way); we can
also show that, for communication with low overhead to be possible, there must also
exist some common "belief" with respect to which the indistinguishable members of
a class of potential partners are all communicating effectively.

The second approach, described in Chapter 8, is designed for the model of goals
developed in Chapter 6. In this approach, the agent only wishes to communicate as
well as some simple agent-or, equivalently, assumes that some extremely simple rule
suffices to communicate successfully. In this context, then, we can show that methods
exist to determine from sensing what the rule must be, while making relatively few
mistakes. Such methods actually turn out to be precisely learning algorithms for a
well-known model of learning (we will comment on this relationship in more detail in
the next section). Thus, prior work gives a pretty clear picture of what is possible

and what is not, given the strong notion of sensing we developed in Chapter 6.
Unfortunately, these methods turn out to only exist for extremely simple kinds of

rules. Still, we note that some stronger kinds of feedback would allow richer kinds of

rules to be learned, and we hope that this will be a fruitful direction for future work.

1.4.4 Contributions of this thesis in the context of its rela-
tionship to other work

We now attempt to clarify our contributions in the context of other existing areas of

work in Computer Science.

Phenotropics

As noted in Section 1.1, Lanier [88, 89] has suggested searching for alternatives to
protocol-oriented architectures. Furthermore, like us, he also notes that Shannon's
information theory is an inadequate framework for developing such an alternative
that does not take the context or "significance" of bits into account.

In his essay, Lanier proposed one alternative approach, that he calls "statisti-
cal surface binding" or (in other subsequent writings, cf. [89]) "phenotropics." His
suggestion is that software might instead be based on "measurement" of other com-
ponents and then using "signal processing" and "pattern classification" techniques.
His approach suggests developing "an operating system whose components recognize,
interpret, and even predict each other," [88] and he aims to "build large computers
using pattern classification as the most fundamental binding principle, where the dif-
ferent modules of the computer are essentially looking at each other and recognizing
states in each other, rather than adhering to codes in order to perfectly match up
with each other." [89]

Lanier's exposition of his alternative architecture has been criticized for being
rather vague (cf. the published responses to [89]).4 Lanier stresses that his approach
to developing such an alternative is ultimately purely empirical, though-essentially,
if and when he succeeds at building a complex system based on such an alternative
design philosophy, then his success will be proof of the quality of his principle.

Of course, part of the difficulty Lanier faces in conveying his ideas is that, again,
the existing conceptual frameworks are inadequate to even describe the problem that
his approach is attempting to avoid, which is to say that the necessary groundwork
for him to be able to clearly state the problem did not even exist. We view our
development of suitable conceptual foundations for the discussion of these problems
as our main contribution. We believe that they are sufficient to enable clear and
precise discussion of the problems Lanier is attempting to solve, and to evaluate his
proposals.

Another benefit of the possession of such a conceptual framework is that it enables
one to begin to understand what inherent limits exist. For example, Lanier asks,

4Indeed, as far as we have found, the above description of the computer systems Lanier aspires

to build contain about as much detail as Lanier has committed himself to anywhere in describing
his alternative approach.

Who's to say that a computer is present? To a Martian, wouldn't a
Macintosh look like a lava lamp? It's a thing that puts out heat and
makes funny patterns, but without some cultural context, how do you
even know it's a computer? If you say that a brain and a computer
are in the same ontological category, who is recognizing either of them?
Some people argue that computers display certain kinds of order and
predictability (because of their protocol-centricity) and could therefore be
detected. But the techniques for doing this wouldn't work on a human
brain, because it doesn't operate by relying on protocols. So how could
they work on an arbitrary or alien computer? [89]

He never really comes back to explicitly answer this question, but he eventually
seems to suggest that what distinguishes a "computer" (or "consciousness") is the "in-
formation bandwidth"-that the predictability he alludes to above is a consequence
of it only interacting with its external environment in a limited way. We take a very
different approach, but we obtain something like a precise answer to his question
in Section 5.5.2: roughly, in analogy to the example developed in Section 1.4.2, we
show that a sufficiently powerful general purpose computer can be recognized without
cultural context, since a weak device can "offload" computational work to the more
powerful computer without knowledge of the powerful computer's interface.

Another related major difference in Lanier's work is that his proposed approach
to capturing the semantics of communication is in terms of "legacies," in the sense of
assumptions and/or design decisions that have become embedded in the workings of
computer systems [88]-actually, more boldly, he suggests that "semantics" should
be defined in terms of how information is interpreted as a consequence of these legacy
assumptions. Of course, the "semantics" of communication in our sense are not for-
malized this way, and we feel that goals capture what is significant about the systems
we wish to design. Nevertheless, this is more of a question of terminology, of which
definition we wish to grace with the label "semantics" (i.e., a question of "philos-
ophy") than a real conceptual distinction in the work. Arguably, we can capture
"legacies" in our framework by restricting the class of partners, or by introducing
a prior distribution over the class of protocols (as proposed in Chapter 4), and this
turns out to be important in ensuring that certain goals may be feasibly achieved
by a single flexible communications system with a large class of other systems (cf.
Chapters 3, 4, 8, and 9).

The Semantic Web and semantic interoperability

Put briefly, the objective of the Semantic Web [24] is to enable data and services on
the World-Wide Web to be processed automatically by artificial agents. Thus, the
ultimate objectives and criteria for success are related to our motivation and criteria
for success-in particular, the ultimate purpose and meaning of "semantics" in both
cases is that it enables agents to accomplish the various precisely defined goals that
we may desire. In particular, when data and services may be shared among systems in
service of such goals, we may say that the systems are semantically interoperable, and

both the Semantic Web project and the work in the present thesis concern semantic
interoperability. Beyond this common subject of study, though, the two bodies of
work are completely orthogonal.

In the first place, the Semantic Web project demands that semantic interoper-
ability will be possible (to some specified degree of functionality) as its fundamental
objective, and then the project seeks to provide sufficient support to make this ob-
jective possible. For example, the basic technique to integrate semantics with data
on the web is to assume that a tag in some standard language (e.g., RDF) has been
attached to the data, describing what the data signifies [24]. Specifically and crucially,
the project requires the establishment of standards for the integration of semantics; in
particular, the project assumes that a community (in which semantic interoperability
is to be supported) possesses a shared, standard ontology, encoding the relationships
among kinds of data [24, 127].

The existence of a shared, standard ontology and data format side-steps the core
of the questions we seek to address, which concern whether and how one can cope
with the very absence of standards. Of course, if we could show that standards
were unnecessary in a sufficiently strong sense - e.g., as essentially promised by LIN-
COS [58], as discussed in Section 1.3.1 - then this would have direct implications for
potential architectures for the Semantic Web-it would obviate the need for standard
data formats, ontologies, and so forth, and permit universal semantic interoperabil-
ity. Unfortunately, as again discussed in Section 1.3.1, Freudenthal's expectations for
LINCOS seem overly optimistic.

So then, in contrast to the Semantic Web project, the subject of our work de-
mands that we model the breakdown of standards as our first objective, and then
we ask what is possible under such circumstances. While we can show that universal
interoperability - specifically, universal access to services - is possible in some cases,
as shown for example by' Theorem 1.4, we don't guarantee (or even necessarily an-
ticipate) that the degree of richness of interoperability demanded by the Semantic
Web project will be feasible in our settings. Indeed, continuing along the lines of
Section 1.4.2, we see that in the complete absence of standards, some goals become
impossible to achieve (cf. Theorem 1.5), while communication in general may quickly
become prohibitively expensive (cf. Theorem 1.7).

Still, there is potential for our work to be informed by work on the Semantic
Web and vice-versa; we ultimately are motivated more by a desire to find schemes
that are feasible, and thus we are led to consider not just situations where there
is no common background, but rather contexts where common backgrounds (i.e.,
standards) exist to various degrees. In Chapter 4, in particular, we consider such a
setting and show how the performance of agents can be made to degrade (somewhat)
gracefully with a particular measure of common context. Obtaining interoperability
across ontologies is a particularly challenging problem for the Semantic Web [127]

(and to our knowledge, it is not handled to any moderate degree of scale), and we
might hope that techniques such as those considered in Chapter 4 could one day
capture and address such problems, although this is well beyond what we accomplish
here. Conversely, the Semantic Web may provide a good example of a setting in
which a nontrivial level of semantic interoperability is achieved, and moreover, the

design choices made in the Semantic Web might help direct the development of a more
general theory, for example by suggesting what may be necessary for rich semantic
interoperability.

Gold's approach to Linguistics and Learning in the Limit

Gold's original motivation for introducing his well-known model of "learning in the
limit" [63] was studying the learnability of languages; in particular, Gold mentions
that "nontrivial models of the usages of language," which are to comprise a second
stage of his program of study, are constructed in a lesser-known manuscript [62].
Taken together, these two works bear conceptual and technical similarities to the
current work that we now discuss.

Superficially, the difference between our theory of goal-oriented communication
and Gold's approach to Linguistic theory outlined in the technical report [62] is that
Gold is essentially interested in natural languages, whereas as described in Section 1.2,
our interests are strictly more general. On a second look, however, there are some
significant similarities in the approach: the main conceptual similarity between our
theory of communication and Gold's linguistic theory is that he characterizes a natural
language in terms of a "suitability relation," indicating whether or not an utterance
represents an appropriate use of the language in a given situation. Thus, Gold's
suitability relations play a role roughly analogous to our referees (in the definition of
a goal) together with one of our environment-server systems. Put this way, it is clear
that on the one hand, there is a strong similarity in the model of what constitutes
correct communication (cf. our discussion in Section 1.4.3); on the other hand, it is
also clear the difference in our model is that Gold does not decouple the speaker's
goal from the language used to achieve the goal, and so his model is not suitable
for capturing universal communicators. Still, one of his basic requirements for a
"Linguistic theory" is that in the theory, the natural languages should be among
the learnable languages in some appropriate model, which in Gold's case led to the
proposal of the learning in the limit model [63].

Gold's learning model [63], meanwhile, features some technical similarities to our
work. In particular, Gold's central technique in the learning in the limit model is
learning by enumeration, which we also employ in our basic results (in Chapters 2,
5, 6, and 7), and his criteria for successful learning is similar to our basic criteria
for successful communication in our model of goals in infinite executions (specifically,
"compact" goals) as presented in Chapter 6. One major difference is that we are not
strictly interested in learning the same kinds of predicates presented either in Gold's
work or, as far as we can tell, those considered in the vast subsequent body of work
on the learning in the limit (or inductive inference) model, at least as surveyed by
Angluin and Smith [6]: we stress that our model of goals of communication (and our
environments) are richer than those usually considered by those studying learning
in the limit, cf. the examples of Chapter 3 and especially Chapter 9, and so the
learning in the limit model may be captured as a special case (e.g., as illustrated in
Example 6.45 or as presented in Chapter 8). We hope that the relationship between
our work and these models is clarified in Chapter 8, where we show that "generic"

constructions of universal protocols from our main notion of sensing for a class of
very simple goals correspond to mistake-bounded learning algorithms somewhat like
those considered by Gold.

Gold's approach to Artificial Intelligence

Gold also had further results in Artificial Intelligence that have some technical sim-
ilarities to our work [61, 64]-indeed, as our model agents conform to the definition
of agents used by the artificial intelligence community (again, as described by Russell
and Norvig [120]), it turns out that our work bears the closest similarity to some
later work in Al, which we will describe and contrast our results against in the next
section.

In the case of Gold's work [64], he introduced "universal goal-seeking agents" for
certain restricted classes of goals-specifically, optimizing the total reward obtained
by an agent in a deterministic finite-state environment. He shows that for any finite-
state agent, there is an environment of one more state for which the finite state agent
fails badly, and for any finite collection of finite state agents, there is an environment
of polynomially related size in which all of the agents in the do badly. By contrast,
he shows that there is a primitive recursive agent that does achieves optimal reward
in all finite-state environments. There are two substantial differences between Gold's
approach in this work and our work. The first difference is that we fix part of the
environment and only demand that our agents succeed with all reasonable variations of
the other part, i.e., for which success is possible by some agent of similar complexity.
The second difference is that Gold only considers two extreme classes of agents:
finite-state agents and primitive recursive agents. By contrast, in our opinion, all of
the the interesting classes of agents (and all of the classes we consider) are of some
intermediate complexity, such as polynomial time agents.

We note that Gold, in his thesis [61], noted these same limitations. Specifically,
he remarked that the aforementioned result on finite-state agents had led him to
believe that truly universal Al is impossible. He suggested instead that perhaps
agents for "special classes" of goals, which is essentially the framework of the present
thesis. He also noted that the recursion-theoretic results don't address the questions
of whether or not inference is feasible in practice, and suggested measuring, e.g., the
computation time and memory requirements of the agents, which is also the approach
taken presently. Still, Gold's work didn't follow up on these suggestions in much
depth. The most he says about the time to learn in the limit (a result also appearing
in [63]) is that whenever his method makes mistakes on a target function at a later
round than another method, then there's some other function (i.e., the hypothesis of
his method at that point, specifically) which his method identifies sooner than the
competing method. Of course, in his defense, computational complexity was just then
being born, and at the time, much less was known about the subject than is known
today.

Artificial Intelligence: Bounded Optimality.

In summary, broadly, our approach is to prove theorems about the capabilities of
computational agents of limited complexity-namely, we wish to design an agent that
succeeds at a goal of communication whenever some bounded agent is able to do so.
As such, in a sense, our universal protocols could be broadly considered as examples
of bounded-optimal agents, in the sense of Russell and Wefald [122], who advocated
framing Al as the study of "bounded-optimality." In particular, our framework of
goals and agents (and some of our basic results) are strikingly similar to those in the
theory of bounded-optimal agents introduced by Russell and Subramanian [121].5

Russell and Subramanian describe "task environments" corresponding roughly to
our goals and environments, except that instead of our time-independent notion of
success or failure in "achieving goals," they obtain a real-valued payoff given by a
time-dependent "utility function," where the agent then aims to maximize its payoff;
and "bounded optimal agents" that obtain utilities in the task environment as high
as any agent from a bounded class. Of particular interest to us are their description
of "universal asymptotic bounded optimal agents," which achieve utilities as high
as any computationally limited agent while using resources that are greater by at
most a constant factor than the resources used by the corresponding limited agent.
Russell and Subramanian show that these agents can be constructed under some
conditions, but only for utility functions that decrease to zero over time (i.e., so the
decaying utility forces the agent to act quickly). More generally, this is in line with the
conceptual framework promoted by Russell and Wefald-they constrain their search
by supposing that deliberation by an agent comes at a cost in utility, and so there is
an optimal "sweet spot" that an efficient agent could hope to approach in practice.

By contrast, as a consequence of our focus on modeling communication rather than
real-time actions, we consider the case where the (potential) utility is not dropping
over time, but we still desire that the agent's computation time is limited by some
reasonable (polynomial) bound. We then show that such a computationally limited
agent can be programmed to efficiently achieve a goal (by communicating with some
other party) if and only if the agent can compute feedback on whether or not its goal
has been achieved. Another consequence of this difference in focus is that we construe
the interaction differently - as proceeding in coarser "rounds" - which simplifies our
model.

Hutter's Universal Al

The aforementioned constructions of optimal agents are also reminiscent of some
results by Hutter [78]. There are a few differences: the first one is that Hutter's results
are proved in a control-theoretic (reinforcement learning style) setting, in which the
environment provides the agent with the value of its payoff at each moment in time.
Now, we stress that although our restricting our attention to "goals" is significant, this

5 Again, although I would hesitate to call it "independent," Madhu Sudan and I were embarrass-
ingly unaware of the contributions of Russell and Subramanian when we started, in spite of the fact
that the first publication of their work predates ours by nearly fifteen years.

is unsurprisingly not novel to our work - goals in such a framework were explicitly
considered under different motivations by Wooldridge [152], for example - and in
general goals and utilities are equivalent, as one may always give a goal of the form,
"achieve utility u." Rather, the significance of goals and the major novelty of our
work lies in our ability to prove limitations on the capabilities of the bounded agent by
showing that it fails to achieve its goal - results that are vital to any theoretical study
- and the corresponding results stated in terms of utilities are somewhat less natural.
For example, crucially, we can show that in our setting the agent must compute its
own "payoff," i.e., whether or not its goal has been achieved, in contrast to Hutter's
setting.

Still, one may view our generic constructions of universal protocols from sensing as
being constructions of universal agents from reinforcement (and we do take such a view
explicitly in Chapter 8); the more subtle difference here is that Hutter's construction
achieves a superior constant factor in its running time, but relies on a notion of
"provable equivalence" that we would not expect to be available in general, as in
general, the agent has no way of knowing what environment it is operating in. To be
more precise, our partners are black boxes to the agent in general, and there is no
use in attempting to prove theorems about their behavior. Of course, one can take
the maneuver of considering a restricted class of partners that one can reason about,
and an analogue of Hutter's work could be carried out in such a setting, in hopes
of obtaining better performance without sacrificing too much flexibility (although
unfortunately, Hutter's construction only succeeds at converting an infeasibly large
multiplicative constant overhead to an infeasibly large additive constant overhead).
Again, in Chapter 8, we consider some such restricted classes, and find that existing
techniques would permit us to design agents that would even be feasible in practice,
but only with some severely restricted (but nevertheless nontrivial) classes of partners.

Computational learning theory

Broadly speaking, although the notions of computational learning theory played es-
sentially no role in the development of the basic framework and theorems, we have
found that learning theory is extremely relevant to addressing the questions of how
the overhead experienced by universal protocols may be reduced. In particular, the
central result of Chapter 8 mentioned above actually shows that when we consider
communications protocols for goals in infinite executions (i.e., "goals to maintain")
and focus on the number of failures as a measure of quality as introduced in Chap-
ter 6, then the problem of constructing universal protocols from sensing that is viable
with restricted kinds of user strategies is precisely the same problem as considered in
the on-line learning model first introduced by Barzdir§ and Frievalds [18] and subse-
quently investigated in depth by Littlestone [95]. Thus, the aforementioned "existing
techniques" that allow us to design agents that are computationally feasible in prac-
tice are actually techniques for the design of efficient on-line learning algorithms. The
relationship of this mistake-bounded on-line learning model to other models of learn-
ing is fairly well understood, and we are able to obtain a reasonably complete picture
of what is possible and what is not from "basic sensing" in a somewhat limited special

class of goals.
Learning theory, and in particular PAC-Bayesian analyses, as first introduced by

Shawe-Taylor and Williamson [130] and McAllester [104], also serve as a source of
inspiration for another approach to designing computationally feasible protocols in
Chapter 4. In this case, unlike in Chapter 8, the setting is actually very different
and the existing work does not seem to be so technically useful to us. Nevertheless,
we found the approach taken by PAC-Bayesian analyses to be highly relevant at a
conceptual level.

Program checking

Another, more substantial result of our focus on communication is that we can obtain
further results that stress the point that the verifiability of the goal is of the utmost
significance: in the absence of common language or background, we can show that
the verifiability requirements are particularly strong, as strong as required in the
setting of interactive proofs. In some sense, this also supports the extended form of
the robustness principle which in practice guided the development of the protocols
underlying the internet [34]-the philosophy that one should assume that the network
is filled with malicious entities, and design to handle the worst possible case, even if
a malicious human could never be so devious.

Thus, for example, the explicit design of a universal communications protocol
for a computational goal described in Section 1.4.2 resembles the program checkers
of Blum and Kannan [32]. It uses interactive proof systems for PSPACE-complete
sets [97, 128] to verify a particular instance x of a particular problem in PSPACE
II using an unreliable "interpretation" of Alice's (the server's) statements as being
about a sequence of other instances of PSPACE-complete problems, which are used
to efficiently construct a proof about II(x).

We consider the question of the relationship of our universal protocols to program
checkers in some depth in Section 3.3.3. It turns out that the proper characterization
of computational problems with universal protocols in terms of interactive proofs,
given in Theorem 3.12, is quite similar to Blum and Kannan's characterization of the
problems with program checkers in terms of interactive proofs-in particular, as we
note in Corollary 3.13, these characterizations show that whenever a problem has a
universal protocol, it also has a program checker. Thus, essentially all of our examples
of problems with universal protocols from Section 1.4.2 and Section 3.3.4 are familiar
examples of problems with program checkers. Of course, we know that the converse
is unlikely to hold, as we discuss in Section 3.3.3.

Moreover, we give a variety of examples of goals in Chapter 3 and Chapter 9
that are not computational goals, but for which we can design universal protocols.
Indeed, in our motivating examples from Section 1.1, the reader should note that
"solving computational problems" only encompassed rather little of what we wish for
our protocols to achieve for us, and when our goal is something other than solving
a computational problem, it doesn't really make sense to talk about our objectives
in terms of "program checking." In some sense, our work can be viewed as the
generalization of program checking to other tasks achieved by computer systems.

Levin's universal search algorithms

Our basic constructions of universal protocols, as presented in Proposition 2.27 (and
in Theorem 5.23 for other classes of agents) are completed by efficiently enumerating
all possible "interpretations," so that whenever a suitable protocol for interpreting
the server exists, the protocol is able to efficiently achieve the goal and obtain feed-
back indicating that the goal is achieved. This argument extends a similar argument
by Levin [91] which gave an optimal universal search procedure for total functions in
NP. Moreover, the corresponding class of problems for which our interactive universal
protocols can be constructed has an arguably nicer characterization, given in Theo-
rem 3.12, as the class of function problems that have "competitive interactive proof
systems," originally introduced by Bellare and Goldwasser [20] for rather different
reasons.

This construction is sufficiently generic that it encompasses all verifiable goals
in a straightforward way, which demonstrates that verifiable goals are sufficient for
universal communication. Of course, Levin's work was only concerned with solving
computational problems, whereas as we noted in the context of program checking
above, our constructions address goals of communication that may have rather little
to do with computation, so in a sense our work generalizes Levin's technique as well.

Actually, in a sense, we can see that our work, and in particular our focus on com-
munication makes essential use of the "universal" aspect of Levin's universal search
technique. In the case of Levin's algorithm, we know that the universal algorithm is
asymptotically optimal, but we know that it necessarily incurs a steep overhead over
the running time of any other fixed algorithm that it chooses to run. Thus, unless
the optimal running times are achieved by an infinite sequence of algorithms (which
is possible), Levin's algorithm is virtually guaranteed to be actually slower than an
algorithm that only runs the few relevant algorithms from the enumeration. In such
a case, this observation raises the question of why one should use Levin's algorithm
at all, instead of one of these other algorithms. Of course, the answer is that if one
knew an "explicit" optimal algorithm for the problem one wouldn't run Levin's al-
gorithm. The virtue of Levin's technique is that it is always available, regardless of
whether or not we understand how to design good algorithms for a problem, and when
one (merely) uses the technique to solve computational problems, this feature of the
technique is underutilized. By contrast, it is essential for the purposes of a flexible
communications protocol that we exhibit a single, fixed protocol that can communi-
cate with as broad a class of partners as possible, and moreover, it is likewise inherent
to the problem in this case that we have no prior knowledge or understanding of what
kind of protocol to use. We thus believe that the technique is more naturally suited
our generalized setting than it was to Levin's original setting.

Moreover, as a consequence of our focus on communication, we can also uncon-
ditionally show (in Chapter 4) that in many cases, such enumeration strategies are
essentially optimal, in contrast to Levin's setting, where the best possible results are
based on assumptions such as P # NP, as obtained by Trevisan [138]. Again, to
our knowledge, no such limitation results are known in the asymptotic bounded op-
timal agent framework of Russell and Subramanian, an omission which we can also

attribute to our restricting our focus to goals, rather than general time-dependent
real-valued utilities. Since the optimality of enumerations is unfortunate, we also
consider some variants on our main definitions. We explore characterizations of when
goals can be achieved more efficiently in Chapters 4 and 8, in hopes of demonstrating
that some goals can be achieved with a broad if not entirely unrestricted class of
partners, without paying the enormous overhead incurred by the enumerations used
in Levin's technique.

Bibliographic notes

The foundations of the work presented in this thesis are based on one previously pub-
lished work with Madhu Sudan [80], and a couple of technical reports with Madhu
Sudan [81] and Oded Goldreich and Madhu Sudan [67]. More specifically, this intro-
ductory chapter closely follows the paper with Madhu Sudan [80], while the technical
report with Madhu Sudan [81] contains an early version of Chapters 3 and 5 (and
thus implicitly also Chapter 2). Chapter 6, on the other hand, is a modified version
of the technical report with Oded Goldreich and Madhu Sudan [67], and the second
half of Chapter 7 is also adapted from the same report. (Likewise, the initial section
of Chapter 8 appeared in the aforementioned technical report.) More generally, the
present form of Chapter 2 (in contrast to the version described in the technical report
with Madhu Sudan [81]) and thus also the present formulation of this work benefitted
immensely from the input from Oded Goldreich.

The rest of the work in this thesis is presently unpublished. I have tried to note
throughout when the work was particularly indebted to the contributions of others.
In general though, unless otherwise noted, the work in this thesis is joint work with
Madhu Sudan.

34

Chapter 2

Theory of finite goal-oriented
communication

This chapter describes a formal theory of semantic communication in terms of "goals"
for communication. In this chapter, we focus exclusively on finite goals, where an
agent wishes to reach some desired state of being, in contrast to infinite goals where
an agent wishes to maintain some desirable state over time, which we will intro-
duce in Chapter 6. We will describe our model for communicating agents and state
our main definitions; in particular, we will introduce the "basic universal setting"
for finite goals, in which we aim to design an agent for a finite goal that achieves
the goal of communication with a partner in polynomial time whenever some other
polynomial-time agent could communicate with that partner. We then prove some
basic results about this model-in particular, theorems characterizing when universal
communication is possible with a given class of partners.

Subsequent chapters will depart from this basic model in a variety of ways. For
example, in Chapters 4 and 7, we will depart from this setting by respectively em-
ploying a more restricted setting to obtain a more efficient protocol or weakening the
reliability requirements to obtain more powerful protocols. On the other hand, in
Chapter 5, we will show that the theorems introduced in this chapter hold for classes
of users with differing computational resources

The theory and results developed in this chapter first appeared in an early form in
a technical report [81] extending previously published work [80 with Madhu Sudan;
the vastly cleaner version of the framework presented here is derived from a later
technical report with Oded Goldreich and Madhu Sudan [67], and generally owes its
present clarity and simplicity to Oded Goldreich.

2.1 An informal overview of the theory

We begin by attempting to motivate the development of the basic notions in our
theory from its foundations in modern philosophy. We will informally illustrate the
considerations that lead to the specific choices we make in the formal development
in Section 2.2, and we will give an overview of some of our main results - two from

User Printer

Figure 2-1: A user communicating with a printer

Section 2.3 and one from Chapter 4 - at the same intuitive, informal level.

2.1.1 Goals: a formal explication of meaning

Communication is a means to an end, and the "meaning" of a message is no more
and no less than the conditions under which it is used. This view of meaning and lan-
guage was proposed simultaneously by various authors in the 1920s, and was brought
to prominence through Wittgenstein "language games" [148, 149]. Following Wittgen-
stein, we can clarify what we mean by using a simple language game as an example;
we have chosen one that, while simple enough to have stood among the original ex-
amples, we hope is also sufficiently familiar to impart our motivations for studying
"semantic communication."

Consider the everyday case where we, situated at a PC, communicate with a
printer (say, via a printer cable for simplicity). The players in this game are ourselves
at the PC, which we will refer to together as the "user," and the "printer." At some
point, the user has in mind a sequence of white and black dots that he or she would like
printed on a page, and after our printer driver exchanges some signals with the printer
- suppose it sends the message "010010111" across the cable - the printer produces
a sheet of paper with our desired sequence of dots (see Figure 2-1 for a schematic).
In our scenario, the message "010010111" has meaning: upon hearing it, the printer
produces some particular sequence of white and black dots. The philosophical claim
is that there is no more to meaning in general, nothing deeper happening in any act
of communication.

More generally, the user's printer driver communicates successfully when the
printer produces the same sequence of dots on its sheet of paper as we had envi-
sioned (composed in our word processor, etc.). In particular, we could distinguish
between cases in general where the printer produces the pattern we had in mind and
cases where, as a result of using the wrong driver for example, the printer produces
some other, garbage output. We take this distinction of cases where communication
succeeds and cases where it fails as fundamental, and we say that the goal of commu-
nication is to enact successful communication. Thus, the goal of communication for
the user is that the printer should produce the pattern of dots envisioned by the user.

From an engineering standpoint, this is well enough, since such goals are all we
ever aim to facilitate with a particular implementation. Perhaps this talk about

meaning even seems a little irrelevant-we recall that Shannon [129] explicitly disre-
garded everything occurring beyond the sender and receiver at the two ends of the
communications channel. The philosophical claim is only relevant in that it asserts
that by studying goals of communication in general, we cover all possible scenarios for
communication, and we will never find occasion to consider any requirements more
demanding than the correct usage of messages in our solutions to any communication
problem. 1

We will insist on baking these wider aspects of goals of communication in to
our models since, unlike Shannon, we will attempt to confront the problems that
arise when the sender and receiver have not agreed on a communication protocol in
advance. For example, we might imagine that the cable serves as a binary channel,
and that one printer, P interprets a '0' as a white dot to be printed, and a '1' as
a black dot, while another printer, Pi interprets a '1' as a white dot and a '0' as a
black dot. Such choices of encoding are arbitrary, after all, and ideally we would like
for the user to be able to succeed at his or her goal regardless of whether the cable
is attached to P or P1. One might hope that, like Shannon, we could dispense with
talk about "meaning" and simply have the user figure out the printer's encoding.

Unfortunately, it turns out that without a protocol having been fixed a priori,
the situation is more severe in some subtle ways, and this naive approach is generally
doomed to failure. Leaving the printers aside for a minute, suppose that Alice and
Bob speak different natural languages and wish to have a discussion via some binary
channel. We would expect that a third party who knows both languages could give
finite encoding rules to Alice and Bob to facilitate this discussion, and we might be
tempted to ask that a "universal protocol" translate Alice's statements into the same
statements in Bob's language that the third party would have selected and vice-versa.
In the absence of the third party, this is unreasonable to expect, though: Quine [114]
has suggested that mutually incompatible interpretations of a language may be en-
tirely consistent with observation, and hence indistinguishable from "correct."

We can observe an example of Quine's "indeterminacy" in the setting where Al-
ice and Bob are restricted to using the binary channel for communication: suppose
that Alice and Bob were given encoding rules that were identical to those that a
third party would have given them, except that some symmetric sets of words have
been exchanged-say, Alice thinks "left" means "right," "clockwise" means "counter-
clockwise," etc. (If we wished to be more formal, we could consider objects such as
graphs with nontrivial automorphisms, as done in Example 2.20.) Unless they were
given some additional means to tell that these basic concepts have been switched,
observe that they would still have a conversation that is entirely sensible to each of
them, and yet Bob would be interpreting Alice incorrectly. Thus, if we are to have any
hope of constructing universal protocols at all, we must work with the broader model
and be prepared to accept interactions that are indistinguishable from successes as
''successes'' as well.

1Wittgenstein's claim was actually stronger than this, asserting that human language is described
by no more and no less than a collection of similar but ultimately distinct language games. We
won't need this stronger claim, since we only consider communications systems, in which case it is
somewhat evident that the "language games" for different tasks may vary.

Even the simple example of the two printers P and Pi immediately raises some
important issues, since as we have set things up so far, this task may be impossible.
We have in mind some dot we want printed first, perhaps a white dot, and if we send
a '0' first, this is incorrect for P1, whereas if we send a '1' first, this is incorrect for
Po. The obvious fix is that we should allow ourselves to print some "test pages" first,
which amounts to relaxing our notion of "successful communication" in our language
game. For simplicity, we will say that the user's goal is achieved if the desired pattern
of dots appears as the suffix of the printer's output. A user who accomplishes this
with both Po and Pi is said to be universal with respect to the class {Po, P1} and the
relaxed goal of printing (henceforth Gprint), or {Po, P1}-universal for Gprint.

More broadly, we will only attempt to address goals of communication that are
"forgiving" in the sense that for every state of the other players (e.g., the printers) it
is still possible to achieve the goal, and we will likewise require our universal users to
achieve the goal regardless of the initial states of the other players. Notice that this
restriction to forgiving goals rules out some thornier scenarios that actually arise in
the real world: for example, the printer might have some special string that allows us
to "update" the firmware, which, if used incorrectly, could prevent the printer from
either printing new pages or responding to new firmware updates. Ultimately, we
would like to guarantee that this kind of catastrophic failure is extremely unlikely to
happen, but addressing these issues is not our aim for the time being, and we will
simply rule such issues out of bounds.

2.1.2 Sensing functions

From the definition of the relaxed goal of printing Gprint, an approach to designing
a {Po, P1}-universal user for Gprint springs immediately to mind: send a '0' to the
printer; if a white dot is produced, we know we are connected to Po, otherwise we
know we are connected to P1, and either way we can print accordingly. It seems
almost too obvious to mention, but this is fine just so long as we are permitted to
watch the dots leaving the printer.

If we cannot see the printer's output - perhaps it is in another room - then again,
our goal is impossible: this time, supposing that the final dot should be white, again
sending a '0' last is incorrect for P1, and sending a '1' last is incorrect for P. Although
we might be tempted to try to relax the goal further here - perhaps just require our
desired pattern to appear as a substring - this snag only hints at a deeper problem.

Leaving the printer P1 aside for a minute, we will describe a class of "password-
protected printers," or more generally the password closure of a player which we will
denote P/V, which will have further importance later: for a fixed player P, for each
binary string (password) u, PW(P) contains the player P' that ignores messages
unless they are prefixed by a, and otherwise drops a and responds to the suffix as
P would. So for example, PW)4(Po) contains the printer P 1 01 that ignores messages
that do not start with "1101" and upon receiving "1101010010111" prints the same
pattern that Po would print upon receiving "010010111."

Without any feedback from the printer, a PW(Po)-universal user for Gprint (or
even a further relaxed printing goal) can never stop trying-otherwise, the user will

only have tried a finite number of passwords, whereas there are infinitely many distinct
passwords, and thus certainly some corresponding printers which would have simply
ignored every message sent by the user before he or she gave up. Needless to say, this
is undesirable behavior either way: we would like to be able to succeed at our goal
and move on to do something else.

We would be in good shape if only we could obtain a signal that our pattern had
been printed successfully. More generally, what we are after is a binary-valued sensing
function V for our goal that the user can reasonably compute from his or her goal and
history of messages (exchanged with the other players or their broader environment).
By "reasonably compute," we mean that V can be computed in probabilistic polyno-
mial time (in terms of some reasonable parameter associated with the goal, such as
the length of the pattern to be printed), and we will say that the sensing function is
safe with a player P if whenever it produces a '1' during an interaction with P, the
user can "halt" (i.e., stop sending messages) and the goal will be achieved.

A safe sensing function specifies a sufficient condition for achieving the goal, but
not a necessary one-as stated, it may be that the goal is achieved and we do not
know about it. In particular, the function that always evaluates to '0' is quite safe,
but also quite useless. Similarly, any safe sensing function for our earlier notion of
printing - i.e., one that only outputs '1' if the output of the printer is precisely the
pattern we have in mind - is also safe for the weaker goal Gprint, but as we noted, the
strong goal is impossible to achieve universally with {P, P1}.

The guarantee we are after turns out to be similar to the kind of "forgiving" con-
ditions we demanded earlier when we relaxed the strong printing goal to Grint-we

want a sensing function which, no matter the state of the other players, can still be
made to produce a '1' by further interactions. In particular, we wish to constrain the
kind of behavior required of us to behavior which we could be realistically expected
to exhibit, that is to say, behavior that can be generated by probabilistic polynomial
time computation. To be more precise, we now say that the sensing function V is vi-
able with some fixed player if there is some probabilistic polynomial time computable
user behavior such that for any state of the other player, the interaction of the user
behavior with the other player leads to a point where V outputs '1' with high prob-
ability. The notion of a safe and viable sensing function leads us directly to our first
theorem, which reassures us that we are on the right track:

Theorem (Theorem 2.25, informal statement) For any class of players Pf and
goal G, there is a probabilistic polynomial time Pf -universal user for G if and only if
there is a sensing function for G which is safe and viable with every member of Pf.

The proof is simple: taking a probabilistic polynomial time Pf-universal user
for G, we observe that the function that checks to see if the user would halt is a
safe and viable sensing function. On the other hand, given such a sensing function,
there is a standard trick (due to Levin [91]) by which we dovetail all (probabilistic)
user behaviors, so that each runs with only a constant factor slowdown. We are
guaranteed that V will output a '1' by viability, and if we halt when this happens,
safety guarantees that we have succeeded at the goal G. Moreover, because we only

have a constant factor slowdown, viability guarantees that we run in probabilistic
polynomial time when communicating with each fixed player in P. Thus, safe and
viable sensing functions are precisely the functions that tell universal users when they
should halt.

2.1.3 Capabilities and limits of universal users

Readers who are familiar with Levin's enumeration technique will recall that the
"constant factor overhead" it incurs in the running time is actually exponential in
the length of the corresponding program. For even moderately large programs, this
"constant factor" may be enormous. By contrast, we expect that any reasonable
design of a universal user for the two printers { o, P1 } will not require this kind of
overhead. We are left to wonder if the enumeration technique is merely a crutch,
whether or not the kind of overhead it exhibits is really essential in general.

For a sufficiently broad class of players, the overhead turns out to be essential.
This is easiest to see by considering the password closure of some player; there are 2'
passwords of length f, so a user who sends fewer than 2f messages cannot expect a
response from every member of the password closure who uses a password of length
f. Thus:

Theorem (Theorem 4.3, informal statement) A PW(P)-universal user for a
goal G that requires another player to act must send Q(2e) messages to P' for some
- of each length f.

Since the passwords of length f can be "hard coded" in to programs at the cost of
f additional bits, this is the same qualitative relationship between program lengths
and running times as shown by Levin's enumeration technique. So, the generic users
constructed by this proof technique come at some substantial "cost" in their running
time. We may well wonder what this high price buys us.

The price in running time turns out to buy us a remarkable kind of robustness,
which we describe presently. Fix a goal of communication G, and consider the class PG
of G-helpful players P for whom there is some corresponding probabilistic polynomial
time user Up such that, no matter the state of the player P, Up succeeds at G with P.
A PG-universal user for a goal G then succeeds at G whenever it is feasible for some
user to reliably do so. In particular, the class of G-helpful players encompasses players
who we can think of as speaking in some foreign or alien language, so a universal user
for this class would serve as a universal communicator. Of course, since passwords
can be built in to user behaviors, PG contains all of the password-protected versions
of its players, and therefore we cannot expect such a powerful user to be too efficient.

The class of G-helpful players also contains wilder differences in behavior than
mere password protection-since a sufficiently long password can map messages out-
side of any finite domain, every possible behavior on a finite set of finite histories is
exhibited by some player in PG. This observation leads to the following important
requirement of universal users' sensing functions:

Theorem (Theorem 2.37, informal statement) If a sensing function is safe for
every player in PG, then the sensing function must be safe for all players, even ma-
licious and unhelpful ones.

The proof of this theorem is somewhat subtle, and would demand more precision
than we have been employing so far. We will need the definitions from Section 2.2,
and the full proof will appear in Section 2.3. The main idea, though, is that when a
malicious player is able to trick a user into halting prematurely, there is a finite subset
of the histories in which the user is fooled that occur with an arbitrarily small loss
in probability. Thus, the representative of the finite malicious behavior in PG would
also trick the user into halting prematurely; turning this around, if the user doesn't
halt prematurely with such players, then the user also must not halt prematurely
with malicious players.

A corollary of this theorem (together with our first theorem) is that the existence
of a PG-universal user for G is equivalent to the existence of a sensing function for
G that is viable for PG and always safe. So for example, the results described in
Section 1.4.2 follow from our characterization by well-known facts and techniques-
as we will demonstrate in Section 3.3. Thus, the characterization helps shed light on
the capabilities and limits of "universal communication" in ways we will illustrate in
Chapter 3.

2.2 Model of communication and goals

We begin by describing the basic model of communicating agents and their goals in a
broader environment. We will distinguish between two kinds of agents in our language
games: agents that represent ourselves, that we call users, and other agents that we
interact with, who we call servers. We will then describe universal protocols that a
user can employ to reliably achieve these goals, and minimal helpfulness conditions
on servers which permit goals to be reliably attained with that server. In the basic
''universal setting," we aim to construct a universal protocol that reliably succeeds
under these minimal conditions, like the protocol described in our prior work [80]. Our
model (if one removes the servers) and basic universal protocols respectively turn out
to be very similar to the model of agents and "Asymptotic Bounded Optimal Agents"
introduced by Russell and Subramanian [121], so our work could be thought of as a
study of communication in a variant of their model, and we will take care to point
out where the models diverge.

2.2.1 Agents: users, servers, and their environment

In familiar terminology from the Theory of Computation, we consider an interaction
between several parties, the environment, and two agents, a user and a server, that
proceeds in rounds. We will assert that, on each round, all parties are in one of
countably many states,2 and that the parties share communication channels, which

2 This is without loss of generality-the environment's state could be a history of the entire
interaction up to the present round.

likewise carry a finite sequence of symbols - elements of {0, 1}* - and hence the overall
system is in one of countably many states.3 We will denote this countable state space
of the system by Q. Thus, Q is a product of the following sets: for each ith party in
the interaction, there is an internal state space Q(M, and for each pair of parties (i, j),
there is a communications channel carrying a message from i to j with state space
Q(i'). We denote the index of the user by u, the environment by e, and the server
(when there is precisely one) by s.

The actions of all three parties will be dictated by a local function, the party's
respective strategy:

Definition 2.1 (Strategies). The strategy of the ith party in a system is a function

Pi : Q(W x (X i(,ii)) - Qi) x (X iQ(ii)) representing the party's actions in

the current round: P takes as input the party's state and incoming messages at the
beginning of the round, and computes the party's new state and outgoing messages
for the following round.

Although the parties' strategies only operate on the specified "local" components
of the global state, for convenience we may abuse notation by writing a strategy as a
function mapping Q to itself.

The communication channels corresponding to Q(e,u) and Q(e's) model the agents'

senses, whereas Q(ue) and Q(se) model the agents' actions in the environment. This
model naturally fits the same basic outline of agents described elsewhere (e.g., in
the AI textbook of Russell and Norvig [120] and references described there). The
channels joining the user and the server, on the other hand, are intended to model
communication between the agents. Although less standard, this feature of the model
is undoubtedly also employed elsewhere (e.g., in the study of multi-agent systems).

Likewise, in the following section, we will introduce a notion of goals for these
agents, that resembles definitions appearing elsewhere-roughly, the agent's goal will
be to have some effect on the environment. One difference in our work is that the
goals, rather than the agents, come to play the central role in our study. In particular,
a crucial difference between our setting and some settings considered elsewhere (e.g.,
the universal agents of Hutter [78]) is that we do not assume that "utilities" are
computed for us by the environment-in our setting, in general it will be up to the
agent to decide whether or not it is satisfied.

2.2.2 Goals of communication

Our objective is to study communication in general, particularly communication when
the details of a protocol have not been fixed in advance. To determine when such
robust communication is possible and particularly when it is impossible, we first need
a formalization of communication problems in general, which we provide next, in

3We note that the restriction that a channel only carry finitely many distinguishable symbols in

one unit of time seems to be an unstated conclusion of Shannon's model. In particular even if a
channel is capable of carrying an arbitrary real number in [-1,1], but introduces Gaussian error,
the capacity of the channel reduces to a finite amount.

terms of "goals." As described in Section 2.1, the goal of communication will specify
a subset of states in which communication was used successfully.

We find it cleanest to formally describe a goal of communication in terms of the
formal states of the environment. This is so because it will permit us to freely vary the
agents involved and the language they speak without worrying about how these vari-
ations affect the goal-in particular, such a formal model decouples the requirements
on a user from its implementation, giving us the freedom to implement the same user
strategy in a variety of ways.4 Thus, goals will be formally represented by a pair of
the environment's strategy (thus describing the semantics of its states) together with
a subset of "successful" states which we define using a "referee" predicate:5

Definition 2.2 (Finite referees and successful states). A finite referee is a function
from a state of the environment to a boolean value, R : Q(*) - {0, 1}. We say that
{ E Q() : R(u) = 1} is the set where communication is successful.

We specify that the referee is "finite" in contrast to the "infinite" goals that we
will introduce in Chapter 6, where rather than aiming to reach a successful state, the
user wishes to remain in a successful state during an infinite execution. When it is
understood from context, we will drop the specification that the referee is "finite" or
"infinite."

In particular now, and in contrast to the infinite goals we will consider later, we
will only concern ourselves with settings where a user wishes to spend only a finite
amount of time in pursuit of a goal. This certainly models the aims of common
"client software" and other typical applications of PCs, such as the printing example
described in Section 2.1, as well as the "sub-goals" that an agent studied in Al might
wish to pursue.' We model this by giving the user a distinguished "halting state"
that signifies the end of the execution:

Definition 2.3 (Halting). The halting state cF is a distinguished member of Q(").
When the user's strategy outputs UF, we say that the user halts.

As with standard Turing machines, we can think of entering the halting state in
our model as "returning from a function call," and correspondingly, a desirable user
strategy's "post condition" is that the user halts in a successful state.

4Russell and Subramanian [121] describe similar motivations for modeling their agents as abstract
functions at length as they introduce their model.

'As such, our goals are directly analogous to the "task environments" of Russell and Subrama-
nian [121], except that instead of their time-dependent real-valued utilities, we use a boolean-valued
referee. We prefer not to cast our model in terms of utilities since agents' limitations are more
naturally stated in terms of goals.

'Although these goals are formally similar to the "episodic" task environments of Russell and
Subramanian (121], we conceive of them differently-namely, Russell and Subramanian envision
that each round corresponds to a constant number of steps of the execution and the episode is
ended when the agent selects a single action, whereas we consider a longer execution in which each
round corresponds to some polynomial number of steps and the agent may take many actions before
electing to terminate the execution.

Definition 2.4 (Achieving goals). We say that the user achieves the goal specified by
a referee R and an environment with states Q(e) if the user halts and communication
was successful: that is, when a(u) = cF and R(o*(e)) = 1.

We reiterate that the goal is given by the pair of the environment's strategy and the
referee. In a deterministic environment, there is only one set of reachable successful
states, and hence, although there may be many ways of achieving the goal, in a sense
there is only one aim for the user. Although most goals are not of this form, we can
give at least one interesting example of such a goal.

Example 2.5 (Turing test). We recall Turing's famous test [141], which we can
model in simplified form as follows. We consider two classes of "servers," computers
and humans, which we denote as Si and S2, containing agents that are assumed to
report their respective class affiliations to the environment. We assume that in each
round, the environment records the message "i" reported by the server as a member
of Si, and the environment stores the last message sent from the user in its internal
state (i.e., so o(e) is a pair, (o"(ue), i)). If the user's last message to the environment
is "i" where S E Si, then R(o(*)) = 1. Otherwise, R(*(e)) = 0.

To describe most interesting goals in our model, we need to consider richer kinds
of environments, which we will introduce next.

Non-deterministic and probabilistic environment strategies

It is evident that, in our model as described thus far, a deterministic environment
cannot even capture the goal achieved by the printer driver in the story described
in Section 2.1. The difficulty is that for the printer driver, success in printing the
various "patterns the user has in mind" should correspond to disjoint sets of states
of the environment, whereas with a deterministic environment, the referee predicate
specifies only one such set. We can capture the goal of printing and much more by
instead considering a class of environments, which we capture with non-deterministic
strategies:

Definition 2.6 (Non-deterministic strategies). A non-deterministic strategy is a set
of strategies; an actual strategy is a member of this set.

For simplicity, we will generally assume that the environment's strategy is formally
non-deterministic (since this is almost always the case), preferring to consider even
deterministic environments as being given by a singleton set of strategies. Opera-
tionally, we will think of the environment as non-deterministically (i.e., adversarially)
choosing an actual strategy from its non-deterministic strategy. The significance of
this from the user's perspective is that the user's strategy needs to achieve the goal
with every actual strategy that the environment could choose from its set of strategies.

The various actual strategies of the environment are direct analogues of the "in-
put" in classical computation, whereas the user's strategies are analogues of the var-
ious functions one might try to compute. To continue this analogy, and enable the
quantitative study of the user's strategies, we associate a size parameter with the
environment:

Definition 2.7 (Size parameter). For a given non-deterministic environment strategy
E, the size parameter is a function n : E -+ N taking the environment's actual strategy
E E E to its size n = n(E).

The size parameter is used to determine, for example, the running time of a
program implementing the user's strategy. It is the generalization of the "input
lengths" from classical computational complexity theory to our model.

The basic use of non-deterministic strategies is best illustrated by demonstrating
how it captures our printing goal (i.e., the goal achieved by a printer driver):

Example 2.8 (Printing). The goal of printing Gprint is given by a non-deterministic
environment E such that for each string to be printed, x E {0, 1}*, there corresponds
an environment E_ E E which on each round stores the last message sent by the
server together with x in its state, and forwards that message together with x to the
user. R(or()) = 1 if x is the server's last message, and R evaluates to 0 otherwise.
The size parameter, n(Ex), is the length of x.

The formalism of non-deterministic strategies can capture much more than simply
specifying the "user's input." Although the environment's state space is countable,
we expressly avoided specifying that the environment's actual strategy has a finite
description; indeed, we permit this strategy to be given by an arbitrary function,
and we permit the non-deterministic strategy to contain uncountably many actual
strategies. In particular, if we define the environment's actual strategies so that the
environment's state contains an index that is updated on each round, then since
the environment never repeats states, this non-deterministic choice of actual strategy
makes the infinitely many "non-deterministic choices" that may occur during exe-
cution. This use of non-determinism models changes to the environment by events
that are independent of the interaction between the user and server; changes that
only depend on the current state of the environment, and that are otherwise entirely
arbitrary.

The reason we choose to formalize non-determinism as the environment making an
"up-front" choice is that it will enable us to sanely introduce randomness to the model,
by allowing the actual strategies to be randomized functions. Indeed, the advantage
of this approach (as opposed to allowing the environment to make non-deterministic
choices "on-line") is that it will allow us to talk sensibly about the probabilities of
events concerning the execution of the actual strategy. We first formally specify the
definition of probabilistic strategies:

Definition 2.9 (Probabilistic strategies). A probabilistic strategy of the ith party in
a system is a random process P representing the party's actions in the current round:
for each state of the ith party and each sequence of incoming messages at the beginning
of the round P associates a distribution over the ith party's states and outgoing

messages for the following round. That is, for each element of Q() x (X iQUiO),

Pi associates a distribution over Q() x (X 5o0%).

As indicated by the definition, in general, we allow all parties to use probabilistic
strategies; since probabilistic strategies can easily capture deterministic strategies by

using a strategy P for which each outcome in its distribution occurs with probability
1, we will in fact formally assume that all parties in the interaction use a probabilistic
strategy as we proceed. Thus, our formal definition of a finite goal of communication
is as follows:

Definition 2.10 (Goals). A finite goal of communication is given by a pair, consisting
of the environment's non-deterministic probabilistic strategy and a finite referee.

We remind the reader that the referee determines its verdict by examining the
state of the environment, where the meaning of these states (in the sense discussed
in Section 2.1) is determined by the environment's strategy. In particular, since
the environment can maintain the entire history of the interaction as reported by
the agents in its state, we can set up a goal of communication in which the referee
computes an arbitrary function of these interpretations of the interaction together
with the rest of the environment's state.

Once the environment's non-deterministic choice of an actual probabilistic strat-
egy is fixed, the resulting system under consideration is a (stationary) discrete time
Markov process with countable state space Q, stopped when the user halts:7

Definition 2.11 (Executions). An execution of a system consisting of m probabilistic
strategies P1,. . . ,Pm is an Q-valued discrete time stochastic process {Xt} 1 such that

T E N U {oo} is the random index of the first round in which the user halts and for
each i C [in] and each t < T, (X(4 , (X2j)jgi < , An execution
starting from global state o-1 E Q is defined similarly, except we fix X 1 to -1 .

For a fixed system, we can thus speak freely of "the probability that the user
achieves the goal" in an execution, since this is simply Pr[R(XI) - 1] in familiar
terminology.

2.2.3 Universal users

Now that we possess a formal model of a generic finite communication problem, we
return to our original motivation, an investigation of the extent to which communica-
tion can be made independent of the details of any particular protocol. To this end, we
will begin to explicitly consider the role played by other entities in the interaction-
entities which, in hopes of emphasizing the applications of our model to computer
networks, we will refer to as "servers." Roughly, we wish to design user protocols
that achieve a fixed goal with an arbitrary member of a large class of servers; such a
user is said to be "universal" for the class of servers, and in this way, the user pro-
tocol is able to communicate effectively in spite of variations in the server protocols.
Presently, we turn to refining this notion of a desirable universal user protocol.

Our first refinement is motivated by our observation in Section 2.1 that in order
to have any hope of universality, we must restrict our attention to goals that are
"forgiving" of an initial failure of the user protocol to communicate adequately with

7The sequence of o-algebras associated with each round is defined in the obvious way, and it is
easy to verify that the "first time the user halts" is a stopping time due to our Markovian setup.

the server. Since we would like to describe such goals without reference to a particular
user protocol, the cleanest and simplest definition of such a forgiving goal is stated as
a guarantee that no matter what state the execution has entered, a good user protocol
can still communicate successfully-so any prior failed attempts at communication
are then "forgiven" by the referee. (We will refine this definition to refer only to states
of the execution that can be feasibly reached in Chapter 4, which will substantially
broaden the applicability of our notions.) Such a user protocol that communicates
successfully from any state that the execution could have entered could surely be said
to be "robust," motivating the following definition:

Definition 2.12 (Robustly achieving goals). A pair of user strategy U and server
strategy S are said to robustly achieve the goal G = (S, R) with probability p if for
every E E E and every state a in which the user strategy is started from its initial
state, the probability that the user achieves the goal in the execution of (E, U, S)
started from a is at least p.

Naturally, a goal that is robustly achieved by some pair of user and server turns
out to be forgiving of initial failures by the user to communicate:

Proposition 2.13 (robust achievement overcomes initial miscommunication). Let
U' be a user strategy that, except in an event of probability zero, begins executing
according to user strategy Uo from its initial state after some finite number of rounds.
Let S be any server and G = (8, R) be a goal. Then if (Uo, S) robustly achieves the
goal G with probability p, then so does (U', S).

Proof Let To c N U {oo} be the random index of the first round in which U' begins
executing Uo from its initial state. Recalling the definition of robust achievement,
we know that Uo achieves the goal in the execution (E, Uo, S) started from state o>r
with probability p; that is, when Uo halts, R is satisfied with probability p. Since this
execution is identical to the suffix of the execution (E, U', S) starting from round To,
when U' halts, the distribution over the states of E is identical in both executions.
Thus, U' achieves the goal with probability p as well. U

With this refined notion of achieving goals in hand, we turn to providing a defi-
nition of a user protocol that operates with a large class of servers. Given that our
attention is restricted to goals that may be robustly achieved, it is natural and desir-
able to ask for a user protocol that itself robustly achieves the goal; this way, we do
without an assumption that we "know" that the environment (and server) start in
some predetermined initial state. With this caveat in mind, the definition is natural.

Definition 2.14 (Universal users). We say that a user strategy U is (S, p)-universal
for a goal G if for every S C S, (U, S) robustly achieves G with probability p. If for
every S E S there is a negligible function c : N -- [0, 1] such that U is (S, 1-E(n(E)))-
universal for G, then we simply say that U is S-universal for G.

Although we are primarily interested in these robust universal users, we will find
a few occasions where robust achievement is out of the question (or an open question)
but we can show that a weaker kind of universal user exists, one that is sensitive to
the initial state.

Definition 2.15 (Weakly universal user). Suppose that S* is a set of pairs (S, o)
where S is a server strategy and - is a global state. We then say that a user strategy
U is weakly (S*, p)-universal for a goal G = (8F, R) if for every E E E and (S, -) E S*,
(U, S) achieves G with probability p in the execution (E, U, S) started from global
state o.

Time-bounded user strategies

We now further refine our notion of a desirable user protocol by focusing on the model
of computation implementing the protocols. We motivate these considerations by
observing that in practice, we would only be interested in protocols that are efficiently
computable, which we naturally associate with "polynomial time computable." Of
course, to make sense of this notion, we rely on a given parameterization of the size
of the environment, as described in Definition 2.7. Thus:

Definition 2.16 (Time-bounded user strategies). Fix a universal interactive Turing
machine #, and a non-deterministic environment strategy S with size parameter n.
For a function t : N -* N, we say that a user strategy U is time-t bounded if there is
a program on # such that for every server strategy S and every state of E E E in the
execution with S and E, # computes U until it halts and runs for no more than t(n)
steps. When U is time-t bounded for a polynomial t, we say that U is a polynomial
time protocol.

From a purely formal perspective, there is nothing special about polynomial-time,
and thus we consider other classes of protocols explicitly in Chapter 5, but surely
the case of polynomial-time protocols is the most intuitive and the one of greatest
natural interest. Since fixing the class of algorithms will also lead to a simplification
in the notation and presentation more generally, henceforth we restrict our attention
to polynomial time protocols.

Once we have bounded the computational resources available to the user, it be-
comes interesting to consider the goal of solving computational problems (posed by
the environment). Indeed, this is the goal considered in Section 1.4.2. We now show
how this goal is formalized in the present terminology.

Example 2.17 (Computation). Fix a computational problem H. The goal of solving
H, Gr, is given by a non-deterministic environment S such that, for each instance
X of H1, there corresponds an environment E, E E which on each round sends x to
the user and stores the last message sent by the user together with x in its state.
R(u(e)) = 1 if the user's last message is H(x).8 The size parameter n(Ex), is simply
the length of x.

For a problem H that can be solved in polynomial time, we remark that Gr can be
achieved robustly without the server's assistance. This stands in contrast to the goal
of printing from Example 2.8, which inherently depends on the server's assistance.

8 We take H to be a promise function problem, so not every string x counts as an instance, but
for those that do, we assume 1(x) is a nonempty set. So, if no satisfactory pair (x, y) exists, then
we assume that some special string I indicating this is in H(x).

2.2.4 Helpful servers

We close this section with a description of an important class of server strategies, one
that is maximal in a sense that we will describe shortly. Recall that our aim was to
study protocols for communication when the details of a protocol have not been fixed
in advance, and that we captured such protocols in Definition 2.14: these protocols
robustly achieve a fixed goal with an arbitrary member of some (large) class of servers.
It is natural to consider, in conjunction with such a definition, the largest possible
class of servers. In this case, one constraint on such servers that would immediately
follow from the existence of a universal user is that some user strategy exists that
robustly achieves the goal. We call such servers, which permit some user strategy to
robustly achieve the goal, "helpful" servers.

Definition 2.18 (Helpful servers). We say that a server strategy S is p-helpful for
a goal G if there exists a polynomial time user protocol U such that (U, S) robustly
achieve the goal with probability p. We denote the class of p-helpful servers for a
goal G by SG,p. If S is 1 - E(n(E))-helpful for a goal G and some negligible function
c : N -4 [0, 1], then we simply say that S is helpful for G, and we denote the class of
such servers by SG.

In particular, a polynomial-time (SG,p, p)-universal protocol for G robustly achieves
G with probability p with any server for which some (unknown) other polynomial-
time protocol robustly achieves G with probability p. This is rather like the notion of

(asymptotic) bounded optimality used by Russell and Subramanian [121]: the proto-
col achieves G essentially as well as any other bounded protocol. We call the problem
of achieving a goal with respect to the class of all helpful servers for the goal the
basic "universal setting," and in Section 1.4.2, we asserted that a nontrivial goal (i.e.,
computation) can be achieved in the basic universal setting. In the present chapter,
we will primarily examine generic goals in general settings. We will, however, give
one result about the basic setting in this chapter and another one in Chapter 4, which
motivate looking beyond it.

2.3 Sensing and universality

Not every goal can be reliably achieved. Consider the following goal:

Example 2.19 (Guessing coins). The environment's non-deterministic strategy is
given by S = {E}, where E, tosses n fair coins and stores them, along with the
user's last message in its state, and provides no other feedback. The referee declares
success if the user's last message equals the coin tosses. Notice, since the coin tosses
are independent of the user's strategy, no user strategy succeeds in E, with probability
greater than 2-".

Of course, goals such as the one described in Example 2.19 are immediately ruled
out if we restrict our attention to goals with helpful servers. One might even hope
that we could achieve any goal whenever a helpful server exists for that goal. Unfor-
tunately, it turns out that the situation is more severe in some subtle ways for a user

who wishes to communicate with the members of a broad class S: goals which the

user could hope to achieve "in principle" with the aid of a trusted third party (since

the server is helpful) may turn out to be unattainable "in practice" due to the user

misunderstanding the server.
We can observe an example of this by recalling our informal example when Alice

and Bob speak different natural languages and are restricted to using the binary

channel for communication. In this example, Alice spoke one of two languages that

were identical except that the words for "left" and "right," "clockwise" and "counter-

clockwise," etc. were switched. Since Alice and Bob are restricted to using the

binary channel, unless they possess some prior shared knowledge of some physical

objects or they are given some other means to fix an orientation, Bob has no way of

distinguishing the two languages. In particular, if Bob's goal is to determine whether

Alice has in mind "left" or "right," this is an example of a goal which cannot be

achieved reliably with a collection of helpful Alices. For the sake of completeness, we

also give an abstract, formal example that some readers may find more compelling:

Example 2.20 (Identifying a vertex). Fix a graph with a nontrivial automorphism

7r and vertex set V. In the environment's non-deterministic strategy E = {E,},EV,
on each round, E, sends v to the server, and stores v with the user's last message in

its state. The referee declares success if the user's last message is "v."

Suppose that the class of helpful servers contains S, and S,, which are identical,
except that S, applies 7r to the environment's message (the corresponding user needs

only to apply 7-1 to its last message). Since S, with E(,) is indistinguishable from

S, with E, regardless of whether the user sends v or w(v), the user is wrong with

one pair, and hence this is an example of a goal which cannot be achieved reliably

with a collection of helpful servers.

Example 2.20 is not so strange if we keep in mind that the channel connecting the

server with the environment may model an entirely different kind of communications

channel from the channel connecting the user and the server. For example, it may

model some communication internal to the server or it may be the encoding of some

kind of video input to the server, whereas the user-server channel may be across the

internet. Since 7(v) is just as good a representation of the vertex v as "the identity,"

there is no reason to expect that the server should use one or the other, and these

kinds of issues fall entirely within our intended scope.
We claim that the difficulty in Examples 2.19 and 2.20 is that the environment

and server provide the user with no means to tell whether or not communication is

succeeding. In the remainder of this section, we introduce "sensing functions" that

capture such "means to tell whether or not communication is succeeding," and prove

that (at least for finite goals) the feedback from sensing is precisely what is required

for the construction of universal protocols.

2.3.1 Sensing: safety and viability

Roughly, a sensing function for a goal is some locally computable function that allows

the user to effectively guess the referee's verdict. Intuitively, a "locally computable

function" is one that the user can compute from the "user's view" of the execution:
a history of its states and messages exchanged with other parties in the execution.
This is not quite sufficient for many nontrivial examples of sensing, though, because
whenever sensing relies on a probabilistic test, we require that the user's messages
were drawn from an appropriate distribution; the soundness of the test may not hold
if the distribution is skewed. A simple, natural, and sufficient means to address
this issue is to provide the sensing function with the outcomes of the (fair) coin
tosses used during the execution of the user protocol. We will elect not to provide the
sensing function with the user's states in the execution since these may be meaningless
without a description of the user protocol (and when a user protocol is fixed, the
sensing function can just as well recover the states from the coins and messages).
Thus, we have the following definition of the user's view.

Definition 2.21 (User's view). The user's view of an execution is given by the list
of the user's incoming and outgoing messages and coin tosses on each round of the
execution.

Now, a sensing function takes the user's view of the execution to a Boolean verdict,
which we take as a prediction of the referee's verdict. A good sensing function should
satisfy two complementary properties that we call "safety" and "viability." Roughly,
a safe sensing function guesses conservatively-when it predicts that the referee is
satisfied, then the referee is actually satisfied with high probability. A viable sensing
function, on the other hand, is effectively nontrivial, in the sense that some feasible
user strategy can lead the sensing function to guess that the referee is satisfied. Note
that a sensing function must satisfy both safety and viability to be meaningful: a
sensing function that predicts that the referee is never satisfied is trivially safe but
unviable, whereas a sensing function that predicts that the referee is always satisfied
is trivially viable but unsafe. We need both properties for the sensing function to be
of any use.

Definition 2.22 (Sensing, safety, and viability). A sensing function is a Boolean
function of the user's view of the execution.

* We say that the sensing function is p-safe for a goal G = (S, R) w.r.t. a server S
if for any t C N, user strategy (as a probabilistic strategy in which the underlying
sample space is given by coin tosses), and E C 8, the probability that R(Xt) = 1
conditioned on the sensing function outputting 1 when run on the user's view
up to round t is at least p. If there exists some negligible function C : N -> [0, 1]
such that the sensing function is 1 - c(n(E))-safe with S, then we say that the
sensing function is safe for G w.r.t. S.

* We say that the sensing function is (t, p)-viable for a goal G w.r.t. a server S if
there exists a user strategy Us such that with probability at least p, when started
from any state of the server and environment, Us runs for t steps in expectation
and the sensing function outputs 1 on the user's view of the execution (E, Us, S).
If there exists some negligible function y : N --* [0, 1 such that the sensing
function is (t, 1 - p(n(E)))-viable for G w.r.t. S, then we say that the sensing
function is t-viable for G w.r.t. S.

To illustrate sensing, we describe a sensing function for our printing goal.

Example 2.23 (Sensing for printing). Recall the definition of our printing goal Gprint
given in Example 2.8: the environment chooses a string x that it sends to the user,
along with the last message printed by the server on each round, and the referee is
satisfied whenever these strings are the same. Thus, since both of these strings are
present in the user's view, the function that checks that they are equal is 1-safe with
every server strategy. Furthermore, if the server S is p-helpful for Gprint with a user
protocol running in time t, then this sensing function is (t, p)-viable for Gprint and S.

A nontrivial example of sensing is given by a sensing function for the goal of solving
problems in PSPACE, considered in Section 1.4.2. It turns out that this construction,
when combined with Theorem 2.35 (a strengthened variant of Theorem 2.25 below),
immediately yields Theorem 1.4, the "positive" claim from Section 1.4.2.

Example 2.24 (Sensing for computation). Recall the goal of solving a computational
problem H, described in Example 2.17. A nontrivial safe sensing function computable
in polynomial time can be constructed for H E PSPACE. Let (Pn, Vn) be a public-
coin interactive proof system with perfect completeness, soundness error E, and a
binary prover (as essentially given by Shamir [97, 128]) for the set of pairs (x, 1(x)),
which is clearly in PSPACE whenever H is. Then V simulates Vr by providing it the
user's coin tosses from each round, 9 and providing it a specially marked subsequence
of the messages from the user to the environment as the messages from the prover;
V only outputs 1 if the user's last message is y such that in the preceding rounds, Vr
would accept on input (X, y). Since Vr1 is a public-coin proof system with soundness
error E, V is (1 - e)-safe for Gr and all server strategies.

If 11 is additionally PSPACE-complete then it turns out that V is also (1- p', ts)-
viable for Gr1 with any 1 - ps-helpful server for some polynomial ts and negligible
functions ys and p's. To see this, observe that given the polynomial time user Uo such
that (Uo, S) achieves Gr1 with probability 1 - ps, we can construct a user strategy
U* that first uses Uo with S to obtain H(x), subsequently stores the entire history of
coin tosses, and uses this history together with (x, H(x)) to compute the polynomial-
time reduction from the optimal prover's next message to an instance of H, which it
solves by again using Uo with S. Since (Pn, Vr1) has perfect completeness, the optimal
prover's messages satisfy Vr1 , and hence V. Since U* invokes Uo at most a polynomial
number of times and pus is negligible, the simulation satisfies V with probability 1-P's
for some other negligible function p'. Finally, since U* also runs in some polynomial
time ts with S, V is (ts, 1 - p's)-viable with S as claimed.

Both of these examples of sensing functions have the desirable property that they
are viable with all servers that are helpful for their respective goals. We will see in
the next section that this means that they yield universal users for the basic universal
setting, i.e., they achieve the goal in polynomial time whenever it is possible for some
polynomial time user to do so.

9V considers VrI to reject if insufficiently many coins are provided on any round.

2.3.2 Sensing is necessary and sufficient for finite goals

We now show that the feedback from a suitable sensing function is precisely what
is required to successfully communicate with a broad class of servers. We prove the
following theorem:

Theorem 2.25 (Sensing is equivalent to universality). Let any goal G and any class
of servers S be given along with polynomials ts : N -+ N for every S E S. Then there
exists a sensing function that is safe and O(ts)-viable for G w.r.t. every S E S if and
only if there is an expected O(ts)-time bounded S-universal user for G.

More precisely, we prove Theorem 2.25 in two parts. We show first that given a
universal user for a class of servers, we can construct a sensing function with essentially
no loss in parameters, so in this sense, if it is possible to communicate with the class
of servers, then sensing is (at least implicitly) available with that class of servers. We
then show how to construct a universal user for the class of servers given a sensing
function for that class of servers. Actually, the proof of Proposition 2.26 (and to a
lesser extent, Proposition 2.27 below) is essentially immediate given the observation
that sensing functions are precisely the functions that tell a universal user when to
halt. Since this turns out to be a useful observation in its own right, we include it in
the conclusion of the first proposition.

Proposition 2.26 (sensing is necessary for universality). Let U be a universal user
strategy for a goal G and a class of servers S be given along with functions ts : N -~ N,
and As, es : N -- [0,1] for every S E S such that in the execution (E, U, S) U
halts with probability 1 - es(n), and conditioned on it halting, runs in ts(n) steps in
expectation and with probability 1 - ps(n) achieves the goal. Then the function V of
the user's view that outputs 1 iff the user sent the same messages as U on each round,
and on the final round, U would halt is a sensing function that is 1 - As-safe for G
with respect to every S E S, and (ts, 1 - cs)-viable for G with respect to every S E S.
Furthermore, V is computable in time ts whenever U runs in time ts.

Proof Given a universal user strategy U for a goal G and class of servers S that
halts with probability 1 - cs and conditioned on halting, achieves G with probability
1 - ps, let V be the function described in the statement of the proposition. Notice
that V is computable in time ts(n) given that U runs in time ts(n).

Let any E E E and S E S be given, and consider the execution (E, U, S). Ob-
serve that when U halts, by construction V outputs 1, which occurs with probability
1 - es(n) by assumption, and U runs for ts(n) steps in expectation by assumption.
Therefore, V is (ts(n), 1 - es(n))-viable for G with respect to every S E S. Similarly,
consider any E E C, S C S, and user strategy U*, and suppose that V outputs 1
in some round t of the execution (E, U*, S). If (U*, S) failed to achieve the goal in
round t with probability greater than ps, notice that since U would have produced
the same interaction as U* on the corresponding views, in particular, there would
exist a set of coin tosses and messages occurring with probability greater than ps on
which (U, S) would also have failed to achieve the goal. Therefore (U*, S) can only
fail with probability ps when V outputs 1, i.e., V is 1 - ps-safe with every S E S. 0

Proposition 2.27 (sensing is sufficient for universality). For a class of servers S, let
functions ts : N -+ N, es : N -+ [0, 1/3], and ps : N -+ [0, 1] for each S E S, and a goal
G be given, and suppose there exists a sensing function V for G that is 1 - ps(n)-safe
with every S E S, (ts(n), 1 - es(n))-viable with every S E S, and expected ts(n)-
time computable with every S E S. Then there is an expected O(ts(n))-time bounded
(S,1 - O(ts(n) - s(n)))-universal protocol for G.

Proof Our argument borrows heavily from a classic result due to Levin [91].

Construction. Given a sensing function V, we enumerate protocols in stages,
where in stage i we enumerate protocols of length up to i - 2 log i: on each pro-
tocol of length f, we spend up to t = T steps simulating the protocol until it halts,
and then running V on the resulting view. When V outputs 1, we halt.

Analysis. When executing with a server S E S, since V is given to be (ts(n), 1 -
es(n))-viable for G with S, there is some expected ts-time bounded user strategy Us of
length Fs that, for any state of the execution, satisfies V with probability 1 - es(n) >
2/3. Since V is furthermore assumed to be expected ts(n)-time computable, when
t > 32ts(n) (in stage i*), we run Us until it halts in the first 16ts(n) steps with
probability at least 15/16 and then see V output 1 in the next 16ts(n) steps with

probability at least - 1. Thus, we run Us r additional times with probability at
most (24).

Notice that if we run r additional stages, we spend an additional

i*+r 22 i*+r 2
S2S 2 % < 5: S~2 *r)

f2 2f fi=i* f<i-2 log i i <is+r i=i*

steps, which occurs with probability at most (N) . Thus, the overall expected running
time is at most O(E," 2 '*2 r(1 1/ 2 4)r) = O(2 *) where 2'* - 2fs+ 2 logfs+lts(n), so this
is O(ts(n)).

By the assumed safety of V, each time we run V, it outputs 1 when the ref-
eree is not satisfied with probability at most ps(n). By a union bound, since we
run V at most O(ts(n)) times in expectation, this occurs with probability at most
O(ts(n)ps(n)). Since, from any state of the execution, we halt with probability 1
and never halt unless V outputs 1, we only fail to achieve the goal when V outputs
1 and the referee is unsatisfied. Thus, since S E S and the starting state was ar-
bitrary, our protocol robustly achieves the goal with every S E S with probability
1 - O(ts(n) - ps(n)), as needed. U

Thus, the search for universal user protocols for a finite goal can be cast as the
search for safe and viable sensing functions for that goal. In many cases, the problem
of constructing sensing functions is either simpler and more natural or can be ad-
dressed with existing techniques in a relatively straightforward way, as demonstrated
by Examples 2.23 and 2.24, respectively. In the basic universal setting, we will see

how this characterization can also be used to demonstrate limitations on universal
users.

2.3.3 Extensions and variants of sensing: alternative con-
structions

In a sense, Theorem 2.25, on the equivalence of sensing functions and universal users
in finite goals, is the central result of the present chapter. The notions of "sensing
function" and "universal user" employed in that result, while natural enough and
perhaps the simplest definitions, are surely not the only reasonable definitions one
might state. In the present section, we will explore some main variants of these def-
initions that turn out to be useful in the constructions of universal users in some
situations. In particular, we will first consider some useful ways in which the kind of
sensing functions required by Proposition 2.27 can be weakened while still obtaining
the same conclusion-briefly, we can design sensing for a related goal featuring any
number of "private outputs" and we can assume that the source code of the user pro-
tocol is given as input to the sensing function. We will then consider stronger variants
of the definitions of sensing and universal users featuring "controllable safety," that
is, where the safety of the sensing function and correspondingly, the probability that
the universal user achieves the goal can be efficiently controlled to be bounded by
some a priori known quantity, independent of the server. Such control over the error
can be obtained in many natural situations, notably when the algorithm employed
by the sensing function permits its success probability to be amplified by standard
techniques, and this variant in particular will allow us to easily obtain the results
claimed in Section 1.4.2.

Using some relaxed sensing functions

We first discuss some ways in which Proposition 2.27 can be strengthened, construct-
ing a universal user from a relaxed notion of sensing that will be convenient to use in
Chapter 3 when we provide more examples of universal users for a variety of goals.
Essentially, in Corollary 2.30 below, we will observe that the technique used to prove
Proposition 2.27 is strong enough to obtain a universal user even when the sensing
function requires "private outputs" that are taken to be ignored by the environment,
and even when the sensing function depends on the code of the user strategy.

We begin by describing "private outputs" in more detail. As motivation, recall
that, as we noticed in the construction of our sensing function for computation (in
Example 2.24), it was useful for the user to send some messages to the environment
that did not directly help achieve the goal. It turns out to be convenient in the
design of sensing functions generally to further assume that the user's messages to
the environment and the environment's states are structured as a tuple, in which
some components of the user's current message are only stored in special components
of the environment's state for a single round and then discarded. We will refer to
these components as the user's private outputs, since the states of the execution are
otherwise unaffected by these parts of the message. Formally:

Definition 2.28 (Private outputs). Suppose that the states of the environment and

messages of the user are products of k+I components, i.e., of the form Q') x Q(e) x ... x

Qg) and QGue) x QOue) X ... x QOue) respectively, such that every actual strategy E of the
environment is given by k +1 independent functions Eo,0.. , Ek such that components
1,... , k of E only depend on the respective components of the user message, and
component 0 is independent of these components of the user message.Then we say
that components 1, . .., k of the user's message are private outputs.

In general, we allow the private outputs to affect the state of the environment
for a single round, and thus influence the referee. In the design of sensing functions,
however, it will be useful to assume the existence of additional private outputs that
are not only discarded, but moreover also known to be ignored by the referee. We
will show how to handle this assumption in Corollary 2.30, below.

Our second relaxation is to consider sensing functions that are assumed to have
access to the program for the user strategy in addition to the user's view. We refer
to such sensing functions as grey-box sensing functions (and, when we wish to make
the distinction clear, we will refer to the sensing functions of Definition 2.22 as black-
box sensing functions). Except for this additional input, the following definition is
essentially identical to Definition 2.22.

Definition 2.29 (Grey-box sensing). Fix a reference universal interactive Turing
machine #. A grey-box sensing function is a Boolean function of a program U for #
and the user's view of an execution in which the user employs U as its strategy.

" We say that the grey-box sensing function is p-safe for a goal G = (s, R) w.r.t.
a server S if for any round t E N, program U for #, and E E E, whenever the
sensing function outputs 1 in an execution with S in round t, the referee also
outputs 1 in round t with probability at least p. If there exists some negligible
function c : N -> [0, 1] such that the grey-box sensing function is 1 - e(n(E))-
safe with S, then we say that the grey-box sensing function is safe for G w.r.t.
S.

" We say that the grey-box sensing function is (t, p)-viable for a goal G w.r.t. a
server S if there exists a program Us for # such that with probability at least p,
when started from any state of the server and environment, Us runs for at most
t steps in expectation and the grey-box sensing function outputs 1 on Us and the
user's view of the execution (E, Us, S). If there exists some negligible function

p : N --+ [0, 1] such that the grey-box sensing function is (t, 1 - p(n(E)))-viable
for G w.r.t. S, then we say that the grey-box sensing function is t-viable for G
w.r.t. S.

It is easy to see that a grey-box version of a black-box sensing function can be
obtained by merely ignoring the code of the user strategy. Furthermore, grey-box
sensing functions can equivalently be thought of as a (uniform) family of sensing
functions, one for each user strategy.

We now turn to the statement and proof of Corollary 2.30.

Corollary 2.30 (Grey-box sensing functions with private outputs are sufficient for

universality). Let G = (E, R) be a finite goal, and let G' be a version of G with any

number of additional private outputs that are ignored by the referee. For a class of

servers S, let functions ts : N -* N, cs : N -+ [0, 1/3], and ps : N -+ [0, 1] for each

S E S be given, and suppose there exists a grey-box sensing function V for G', that

uses an efficient reference universal interactive Turing machine $, is 1 - As(n)-safe

with every S E S, (ts(n), 1 - Es(n))-viable with every S E S, and expected ts(n)-

time computable with every S E S. Then there is an expected O(ts(n))-time bounded

(S, 1 - O(ts(n) -ps(n)))-universal protocol for G.

Proof Consider the following modification of the construction used in the proof of

Proposition 2.27:
Given a grey-box sensing function V, we enumerate protocols on # in stages,

where in stage i we enumerate protocols of length up to i - 2 log i: on each protocol

of length f, we spend up to t = 2 steps simulating the protocol until it halts, only

forwarding to the environment the components of the user's messages that exist in

G. If the current protocol halts within t steps, we then run V on the current protocol

and resulting simulated view, including the extra components of the user's messages

in G'. When V outputs 1, we halt.
Since the referee in G' is assumed to ignore the components of the user's message

not present in G, the referee in G is satisfied on the projection of an execution (E, U, S)

of G' iff the referee in G' would also be satisfied with the corresponding execution.

Thus, the safety and viability of V w.r.t. G' are sufficient for the analysis w.r.t. G,
and the rest of the proof is identical to that of Proposition 2.27. U

Thus, Corollary 2.30 places a handful of additional tools at our disposal for the

design of universal users. We will see how these ease matters in Chapter 3. Of course,
we stress that as a consequence of Proposition 2.26, strictly speaking we never needed

either the extra power of grey-box sensing or additional private outputs for sensing-

and in fact, these features actually provide no extra power. These features are merely

a matter of convenience.

Controlling the probability of errors

We now turn to consider stronger variants of both sensing and universal users that

will turn out to be equivalent, yielding an incomparable variant of Theorem 2.25 that

will be extremely useful when it is available to us. It will not always be available

due to the following somewhat obvious yet counterintuitive point about goals (when

viewed as a generalization of computational problems): one cannot always amplify

correctness.

Example 2.31 (Safety cannot always be amplified). Consider the following goal: on

each round, the environment flips a (private) fair coin to decide whether or not the

referee is satisfied. If the referee is satisfied, the environment sends '1' to the user;

otherwise, the environment sends '0, to the user with probability 1 - e and '1' with

probability e. The function that reports this message from the environment is a -
safe sensing function for this goal (and (0(1), 1)-viable). It is not hard to see that no
sensing function (and no universal user) can do better since the environment's choice
of "false positives" versus "positives" is independent of the user.

Still, in many situations, particularly situations of natural interest, sensing is pos-
sible by means of probabilistic tests where the correctness of the test can be amplified
by the usual means, e.g., repeating the test many times and taking a majority vote.
We capture such sensing functions with the following definition.

Definition 2.32 (Sensing with controllable safety). We say that a sensing function
has controllable safety for a goal G w.r.t. a server S if it takes a rational number (in
binary) as an additional input, and on input e it is (1 - E)-safe for G w.r.t. S.

When appropriate, we will describe the running time of the sensing function ex-
plicitly, but generally we will consider it "efficient" if it runs in time polynomial in
the length of e in bits, as well as the size parameter n(E).

When such sensing functions are available, we can correct for one of the main
deficiencies of the universal users constructed by Proposition 2.27, the dependence
on the (unknown) server in their success probabilities. In fact, the existence of such
stronger sensing functions turn out to be (again) equivalent to the design of stronger
universal user protocols, where the probability of failure can likewise be controlled to
fall below any desired tolerance level, as is the case for probabilistic polynomial time
algorithms. Before we prove this, we give a formal definition of such protocols, and a
natural example of a class of algorithms captured by them.

Definition 2.33 (Universal users with controllable error). We say that a user strategy
is S-universal with controllable error for a goal G if for every S E S and rational E > 0,
U takes as auxiliary input E given in binary, and (U(e), S) robustly achieves G with
probability 1 - E.

Again, we will explicitly comment on the running time of these universal users
when appropriate, but we expect "efficiency" to mean a running time that is polyno-
mial with respect to the length of 6 in bits and the size parameter.

We briefly digress now to show how we can capture Valiant's PAC-learning model [144]
as a goal for communication in which the class of servers corresponds to the class of
concepts. The usual (E, 6) definition of a PAC-learning algorithm will correspond to
a user with controllable error for this goal, and we will furthermore note that in this
setting, sensing with controllable safety is always available.

Example 2.34 (PAC-learning). The goal of (improper, distribution-free) PAC-learning
is given by a class of environments E = {ED,ne}, parameterized by n E N, E E Q,
and a distribution D over {0, 1}', and a referee that, in ED,,e interprets the mes-
sages from the user and server as representations of circuits computing functions
Cu, Cs : {0, 1} -* {0, 1}, and is satisfied iff PrxED[CU(X) = CS(X)] > 1 - E. On each
round, ED,n,e sends x sampled from D to both the user and the server, and sends E
to the user.

Naturally, a concept class C corresponds to a class of servers S(C) in the following

way: for each function C E C, there is a server Sc in S(C) that responds to a message
X E {0, 1}" from the environment by sending C(x) to the user, and sending a circuit
computing C on {0, 1}' to the environment.

Thus, a user with controllable error who achieves this goal with every server in

S(C) in m + 1 rounds outputs a circuit after receiving m samples such that the circuit

is 1 - c close to C E C on inputs of length n under the distribution D with probability
at least I - 6, for every n, c, and D specified by the environment and every input to

the user 6, as needed for PAC-learning (with sample complexity m). In particular, if

the user runs in time polynomial in n, 1/c, and log 1/6, then we capture precisely the
usual notion of efficient PAC-learning.

Moreover, in this setting, we have a generic sensing function with controllable

safety: V(6) outputs 1 iff the circuit proposed by the user disagrees with at most

em - Ellog of the m samples. Then, Hoeffding's inequality tells us that if V

accepts, then with probability at least 1 - 6, the proposed circuit agrees with C with

probability at least 1 - e under D. It should be immediately clear that the sensing

function is viable with any class of servers corresponding to a PAC-learnable concept

class.

We are now ready to prove a variant of Theorem 2.25, showing an equivalence of

sensing functions and universal users in this alternative, "controllable error" setting:

Theorem 2.35 (Sensing functions with controllable safety are equivalent to universal

users with controllable error). Let any goal G and any class of severs S be given, along

with a polynomial ts : N x N -> N and function 6s : N x Q -4 [0, 1/3] for every S E S.

Then there exists a sensing function with controllable safety, running in expected time

O(ts(n, IE)), and (6(ts(n, e|1), 1 - 6s(n, e))-viable for G w.r.t. every S E S iff there

is an expected O(ts(n, |cl))-time bounded S-universal user with controllable error for

G. Furthermore, given a universal user with controllable error, the sensing function

we obtain indicates whether or not the user would halt on a given view with input E.

Proof The reverse direction is essentially immediate: for each fixed e, we have a

(S, 1 - e)-universal user and we can apply Proposition 2.26 to find that the function
described in the furthermore claim is a sensing function with controllable safety. Thus,
all that remains to show is that we can obtain a universal user with controllable error
from a sensing function with controllable safety. To do so, we will need to revisit the

construction of a universal user from Proposition 2.27 in some detail.

Construction. We again enumerate protocols in stages i = 1, 2,..., where in each

ith stage we enumerate protocols of length up to i -2 log i. On each protocol of length

f, we spend up to t = 2 steps running the protocol until it halts and then (if the

protocol halted) running our sensing function with safety parameter e = E2-
If the sensing function accepts, then we halt, and otherwise we continue.

Analysis. Fix any S E S. Since the sensing function is (O(ts(n, 1E|), 1 - 6s(n, El))-
viable, some expected O(ts(n, EcI))-time bounded user strategy Us of length Es satis-
fies V on any safety parameter E with probability 1 - 6 s > 2/3 from any state of the
execution. Likewise, V is O(ts(n, lJ))-time computable, and so for some constants
C, k, and C', if

t = f2 2 > Cts(n, Ie El) log k ts(n, lE) > C is (n, JE + i) lOgk snIc+Z'

then Us runs to completion and V outputs 1 with probability at least 13/24. Observe
that since ts is a polynomial, this inequality is satisfied for some sufficiently large
value of i, i*. In particular, if ts has maximum degree D in its second argument,

i* > log(C'ts(n, IEl) logk ts(n, 1E|)) + (D + 1) log log(C'ts(n, Icl) logk ts(n, |ED)

suffices, and when we run r additional stages, we spend Q(2i*+r) steps total, which
occurs with probability at most (11/24)r. Therefore, we find that the total expected
running time of our universal user is at most O(Z 00

2 i*2 r(1 1 / 24)r) = O(2 *). Now,
we see that using the minimum value for i'*, the expected running time is

O(ts(n, leI) logD+k+l ts(n, 1E1)) = 6(ts(n, E1))

as claimed.
Now, note that in phase i, by our controlled safety guarantee, for each protocol

of length f, we only risk halting without success with probability e2 -(i+2+1). Thus,
by a union bound, our total probability of halting without success is given by

~~z z 2EE2- (+2f+1 Zl2 2e
i=1 t<;i-2 log i i=1 e=1

as needed for a universal user with controllable error. M

So, for example, since we noted in Example 2.34 that there is a sensing function
that is safe and viable for every class of servers corresponding to a PAC-learnable
concept class, the universal learning algorithm of Goldreich and Ron [69] can be
obtained (up to logarithmic factors) as a corollary of Theorem 2.35.

Before we move on, we note that just as the argument used in Proposition 2.27 was
strong enough to provide the same quality of universal user from a grey-box sensing
function which required additional private outputs (Corollary 2.30), the argument
in Theorem 2.35 also yields a universal user with controllable error from a grey-box
sensing function which requires additional private outputs, so long as it also features
controllable safety.

Corollary 2.36 (Grey-box sensing functions with private outputs and controllable
safety are sufficient for universal users with controllable error). Let G be a finite goal
and let G' be a version of G with any number of additional private outputs that are
ignored by the referee. For a class of servers S, let functions ts : N x N -> N and

6s : N x Q -- [0,1/3] for each S E S be given and suppose there exists a grey-
box sensing function V for G' with controllable error, that uses an efficient reference
universal interactive Turing machine $, is (ts(n, Id), 1 - Os(n, E))-viable with every
S E S, and expected ts(n, e|)-time computable with every S G S. Then there is an
expected O(ts(n, E|))-time bounded S-universal protocol for G with controllable error.

The proof is no more than a concatenation of the arguments of Corollary 2.30 and
Theorem 2.35.

2.3.4 Safety requirements in the basic universal setting

We now present one of two limitation results that motivate considering classes of
servers other than the class of all helpful servers for a goal (the other result is post-
poned until Chapter 4). We show that whenever a sensing function is safe with all
servers that are helpful for a given goal (i.e., in the basic universal setting) then the
sensing function is actually safe with all server strategies, even malicious and unhelp-
ful ones. This explains why our only examples of sensing functions that are safe (and
viable) for all helpful servers for a goal (e.g., given in Examples 2.23 and 2.24 so far;
more examples are given in Chapter 3) are actually safe with all servers.

In particular, this result implies that the sensing functions we obtain from Propo-
sition 2.26 for universal users in the basic universal setting are also actually safe with
all servers. It is easiest to see why we consider this to be a limitation of the basic
universal setting by considering computational goals: the result says that computa-
tional goals with universal users can only exist for problems with interactive proof
systems. Thus, Theorem 1.5 from Section 1.4.2, stating that we can only hope to
give universal users for computational goals corresponding to problems in PSPACE,
follows from the special case of this result for computational goals. The present result
says, furthermore, that any goal that can be achieved in the basic universal setting
for finite executions has a cryptographic-strength test of its achievement. Therefore,
when a goal permits no such test, we must either leave the basic universal setting and
consider a smaller class of servers, or else we must switch to the infinite executions
setting and find a means to achieve the goal without sensing (we prove an analogous
theorem for sensing in infinite executions in Chapter 6).

Theorem 2.37 (Safety with all helpful servers implies safety with all servers). Let
G be a goal and suppose that V is a sensing function that is p-safe for G with respect
to every S E SG,p' for some nonempty SG,p'- Then V is also p-safe for G with respect
to every server strategy.

Proof Suppose that V is not p-safe for G with respect to some server strategy S.
Then, for some E E 8, some user strategy U, and some initial state o, there are finite
executions (E, U, S) starting from o occurring with probability p + 6 > p for which
V outputs 1 on the user's view, but the referee is not satisfied in the corresponding
state of the execution; we will call such an execution a violation of safety.

The total probability of such a violation can be written by summing over triples
consisting of round numbers, finite sequences of coin tosses, and lengths of the longest

message sent by the user: a triple contributes to the sum the probability of a first
violation in the execution occurring at the round number using precisely that sequence
of coin tosses in which the user's longest message is the given length. Since every
execution with a violation is witnessed by one such triple, the sum equals p + 6; in
particular, since this is a countable sum that may be written as a limit, there is some
finite subset of these triples for which the sum is at least p + 6/2 > p. Let M be the
maximum length of the longest user message over this set of triples.

Let S' E SG,p' be given, and consider the following server strategy s: s has states
corresponding to states of S and states of S'. It behaves identically to S until it
receives a message from the user consisting of 0 M+1, whereupon it enters some state
of S' and behaves identically to S'.

We first argue that 9 E SG,p'. Given a polynomial time user protocol U' such that
(U', S') robustly achieves G with probability p', let ii be the user strategy that first
sends 0M+1 to the server, and then follows U', and notice that i6 is also a polynomial
time user protocol. Let any state of the environment be given. Now, if s starts in any
state of S, ft sends 0M+1 in the first round, so 9 enters a state of S' and the execution
(E, ft, 9) starting from the second round is identical to an execution of (E, U', S').
Thus, since (U', S') robustly achieve G with probability p', (fi, 9) achieve G in these
executions with probability p'. If, on the other hand, s starts in any state of S', again,
the execution (E, 'i, s) starting from the second round is identical to an execution of
(E, U', S'), so (ft, s) also achieve G in these executions with probability p', and we see
(ft, s) robustly achieves the goal with probability p'. Therefore, 9 E SG,p'.

We claim that despite this, executions of (E, U, s) violate safety with probability
at least p + 6/2 > p. To see this, notice that in executions where § starts in the
state o(s) of S, (E, U, 9) is identical to (E, U, S) started from o until U sends a
message of length greater than M. M was chosen so that our finite set of triples
describes an event of (E, U, S) occurring with probability at least p + 6/2 in which
U never sends a message of length greater than M and a violation of safety occurs;
the corresponding executions of (E, U, 9) are also violations of safety since the user's
view and the distribution over states of the environment are identical. Therefore, V
is not p-safe with s E SGI'

We remark further that Theorem 2.37 also holds in the controlled error setting,
since we can apply the theorem to the sensing function for each fixed value of the
safety parameter c. Thus, we find analogously:

Corollary 2.38 (Controllable safety with all helpful servers implies controllable
safety with all servers). Let G be a goal and suppose that V is a sensing function
with controlled safety for G with respect to every S E SG,p for some nonempty SG,p-
Then V is also a sensing function with controlled safety for G with respect to every
server strategy.

Chapter 3

Verifiable goals for communication

We saw in Chapter 2 that our sensing functions are sufficient to capture all finite
goals for which we can design protocols, but we only gave two examples of such
sensing functions: Example 2.23, a sensing function for the goal of printing described
in Example 2.8; and Example 2.24, a sensing function for the goal of computation,
first described in Section 1.4.2 and then formally revisited in Example 2.17. It is not
immediately clear how many more interesting goals actually have universal protocols!
Fortunately, we can show that many goals can be captured by safe and viable sensing
functions, and hence have universal protocols-in fact, we believe that most (if not
all) reasonable goals for communication can be captured in this way. We will support
this claim by developing a variety of examples of goals, and demonstrating how we
can provide sensing for each of the goals. These examples are adapted from an early
technical report [81].

3.1 Notation and definitions

Our first two examples - the goal of printing and the goal of computation - suggest
a dichotomy in the kinds of goals we have for communication. Namely, the former
goal cannot be achieved without the aid of a server, whereas the latter goal does not
require the aid of a server in general. Motivated by this observation, we introduce a
simple taxonomy of goals for communication to guide our discussion.

Control-oriented goals

The first family of goals captures goals like the printing goal that depend on the aid
of a server. The server in particular can only influence the states of the environment -
and hence, the achievement of the goal - via the messages it sends to the environment,
these are goals that might require the server to do something. We call these goals
control-oriented, since they rely on the ability of the user to control (or at least
influence) the server's actions.

Definition 3.1 (Control-oriented goal). We say that a goal G = (S, R) is control-
oriented if for some E E , R(oe)) is not independent of the server's messages. We

say that G is purely control-oriented if for each E E E, R is determined by the history
of the server's messages.

Complementing the definition of control-oriented goals, we will also formally define
a "nontrivial" subclass of (control-oriented) goals for which the user explicitly needs
a server's assistance to have any hope of achieving the goal. We model a server
providing "no assistance" by a strategy that sends only an empty message to all
other parties.

Definition 3.2 (Nontrivial goal). Let T denote a trivial server that sends empty
messages on all rounds. A goal G = (8, R) is considered nontrivial if for every
polynomial time user protocol U, there is a E E E such that R never outputs 1 in
the execution (E, U, T).

We will also revisit this notion in Chapter 4 when we describe password-protected
servers.

Intellectual goals

The other families in our taxonomy will take some more care to describe. Turning
to the goal of computation, the aspect that we wish to capture is that the user
doesn't need to "do anything"--that is, the only important part of the states of
the environment are the messages from the user, and even then, achievement of the
goal only depends upon the user sending a single "right" message, so a sufficiently

(computationally) powerful user strategy could always succeed at such goals in a
single round. We will refer to these goals as intellectual goals.

The reason intellectual goals are more challenging to describe is that unlike control-
oriented goals, we need to be mindful of how the environment treats the messages
from the user. We might want to say, for example, that while the user can influence
the environment, it doesn't need to. An informal example of how this might happen is
if our model environment also allows the user to search Google for answers to its com-
putational problems, or allows the user to request a different instance of the problem
if the initially provided instance is too hard. A sufficiently powerful user might be
able to solve the problems without using these extra features, but less powerful users
might find it beneficial to interact with the environment in other ways. We would
still like to say that such a goal is an intellectual goal.

We note that the modeling of the environment in our goal is entirely under our
control, and whether or not a goal is considered to be an "intellectual goal" will
depend on how it has been (or "can be") modeled. To be more specific, we recall
the definition of private outputs (given in Definition 2.28): roughly, we assume that
the environment's states and user's messages to the environment are both structured
as tuples in which some components of user's message only affect the corresponding
components of the environment's state, and moreover that the effect only lasts for a
single round. Note that, in contrast to the application of private outputs in Corol-
lary 2.30 where the private outputs are known to be ignored by the referee, we took
care to ensure that in general the referee's verdict was permitted to depend on the
contents of the private outputs on each round.

With this definition of private outputs in hand, we are ready to define intellectual
goals:

Definition 3.3 (Intellectual goal). We say that a goal G = (E, R) is an intellectual
goal if for some E E S, R depends on the user's private outputs. It is purely intellectual
if for every E E E, the verdict of R is determined by private output components of
the user's message.

We remark that no purely intellectual goal that can be achieved in a polynomial
number of rounds can be nontrivial (in the sense of Definition 3.2), since a user
that sends random messages succeeds at any such goal with positive probability in
polynomial time. We would still like to have a definition to capture intellectual
goals for which the server's assistance is essential to success. We can achieve this by
introducing a parameterized notion of nontriviality.

Definition 3.4 (Parameterized nontriviality). We say that a goal G = (E, R) is
(t(n), e(n))-nontrivial if no user running in time t(n) can satisfy R with the trivial
server and every E E E with probability greater than e(n).

The parameterized notion of nontriviality will be useful partially in assessing the
scope of limitations on universal users' running times (in Chapter 4), but also as a
"sanity check" on the definition of some intellectual goals in the present chapter.

We note that in contrast to the goals of printing and computation, the goal of
the Turing test examiner in Example 2.5 neither purely intellectual, since it depends
on the server reporting its affiliation, nor purely control-oriented, since it depends on
the user's verdict. We can take the user's verdict to be a private output, though, so
it is both an intellectual goal and a control-oriented goal.

3.2 Control-oriented goals

We start by considering some of the simplest and most natural goals for commu-
nication, goals that may be purely or impurely control oriented. Recall that these
are goals for which success is influenced by the server's actions on the environment.
Starting with these goals is natural for two reasons. First, we hope that these goals
give a sense that many practical aspects of communication are captured by our the-
ory. Second, these goals allow us to start with some examples of goals and sensing
that are particularly simple from a technical standpoint, and so they serve as a good
warm-up for the gradually more complex examples that follow later in this chapter.

We have already seen one such motivating example of a control-oriented goal-
the goal of printing, introduced in Example 2.8. Actually, we have also seen that
it is easy to construct a sensing function (with perfect soundness) for this printing
goal in Example 2.23, and thus by Proposition 2.27, we know that there exists a
universal user for printing which, in particular, never halts without succeeding. We
will revisit printing, and give a generic class of goals, capturing many natural (purely)
control-oriented goals for which the design of sensing functions is likewise immediate-
transparent goals, in which the environment's state is visible to the user, and the
referee's predicate is easy to compute.

We will then consider one more example of goals that may not be purely control-
oriented, but are surely not computational goals, and are likewise naturally included
in this setting: goals of searching, e.g., in a file system, a physical environment, or the
web. We can consider this goal from either of two perspectives, the "client" or the
"search engine," and while these are essentially the same goal (swapping which entity
is labeled the "user" and which is the "server" in our model), both perspectives are
instructive to consider.

3.2.1 Transparent goals

A transparent goal is one in which deciding whether or not the goal is achieved on
the current round is easy for the user essentially by definition. Formally, we mean
the following:

Definition 3.5 (Transparent goal). A goal G = (E, R) is transparent if the messages
sent to the user by every E E E are structured as a tuple in which one component
is always the state of E at the current round and R is probabilistic polynomial time
computable.

Thus, by running an algorithm for R on the E's self-reported state, the user can
efficiently decide whether or not the goal is presently achieved.

Proposition 3.6 (Transparent goals have sensing functions). Let any transparent
goal G = (S, R) be given. Then there is a probabilistic polynomial time computable
sensing function with controllable safety for G that, on input E, is (t(n), 1 - p(n) -e)-
viable for some polynomial t(n) with every (1 - p(n))-helpful server for G.

Proof V simply runs the probabilistic polynomial-time algorithm for computing
R, guaranteed to exist since the goal is transparent, repeating it O(log e) times and
taking a majority to decide if the referee is satisfied. Since it follows by Hoeffding's
inequality that this suffices to decide whether or not R is satisfied with probability
greater than c, this is a sensing function with controllable safety for G with any server.
To see that it is also viable, note that for any given (1 - p(n))-helpful server for G,
there is a user strategy running in some polynomial time t(n) that achieves G with
probability 1 - p(n). When this strategy achieves G, R(u()) - 1 by definition, so our
sensing function is satisfied unless it makes an error; again by Hoeffding's inequality
the probability of computing R incorrectly is at most e, so by a union bound, the
probability that V is satisfied is at least 1 - p(n) - c, as claimed. U

We are interested in transparent goals because one of the main messages of Chap-
ter 2 is that feedback is essential in the design of users for finite goals, and transparent
goals represent one natural way in which such feedback might be obtained. This is
especially true in the case of purely control-oriented goals, where the messages from
the server to the environment - which, remember, are not assumed to be visible to
the user - determine success or failure at the goal. For such goals, when feedback is
obtained, it is often because we can "see" the relevant state of the environment as
the server works on it. We note that our model of the printing goal in Example 2.8 is

an example of such a transparent, purely control-oriented goal, and furthermore that
this was a natural property of the goal, even though it did formally depend on how
we chose to model printing.

It follows immediately from the existence of good sensing functions with control-
lable safety for such goals, described in Proposition 3.6, and from the construction of
universal users with controllable error from sensing functions in Theorem 2.35 that
all transparent goals have efficient universal users with controllable error:

Theorem 3.7 (Transparent goals have efficient universal users with controllable er-
ror). Let G be a transparent goal and let S be a class of (1 - pu(n))-helpful servers for
G for some p : N - [0,1/3). Then G has a S-universal user with controllable error
for G that runs in expected polynomial time with each S E S.

We further remark that if our sensing function can be computed in deterministic
polynomial time, we can obtain a sensing function that is perfectly safe (in contrast
to the loss in safety in Proposition 3.6), and then we could obtain a universal user
from Proposition 2.27 that achieves the goal with probability 1 (this is what we mean
by "(S, 1)-universal") and is slightly more efficient.

3.2.2 Searching

We now consider a class of goals modeling "search." Roughly, in such goals, the
environment models a large space, and the goal is satisfied if the user can locate a
suitable "object" (independently specified by the environment) in that space. As
such, the environment plays a relatively active role in the satisfaction of the goal.

Definition 3.8 (Search). We say that a goal G = (E, R) is a goal of search if every
E E E sends a description of a property Vo that is probabilistic polynomial time
computable in the size parameter n(E) to one entity - the client - and R is satisfied
iff the environment receives a message f from the client such that the response of E
to f satisfies Vo. If the responses of each E C E to the client are according to a fixed
function fE, we say that G is a goal of search in static environments.

Our definition only describes goals of search up to a "class" of goals, since we do not
specify which party is the client, nor the other party's interface to the environment-
variously, the user might be the client and the server might possess an "index" of the
space, might control access to locations in the space, or might be able to modify the
space's contents to satisfy the user's specification, if the environment is not static.
Nevertheless, the goal permits sensing by the client essentially by definition, and thus
every such goal has universal users when the user is the client.

Theorem 3.9 (Universal clients with controllable error exist for any goal of search).
Let G be a goal of search in which the user is the client, and let S be a class of
(1 - p(n))-helpful servers for G for some p : N -> [0,1/3). Then G has a S-universal
user with controllable error that runs in expected polynomial time with each S E S.

Proof We observe that, by running the provided code for the predicate Vo O(log)
times on the environment's last message and taking a majority vote, we can obtain
a sensing function with controllable soundness. Likewise, since the referee is satisfied

by definition when the function Vo computes is satisfied, if S is (1 - p(n))-helpful,
(to some t(n)-time bounded strategy) we find that the described sensing function is

(t(n), 1 - p(n) - e)-viable. Thus, we can apply Theorem 2.35 to find that there is a
S-universal user for G with controllable error. U

Awareness and searching

We remark that there is a close connection between our model of searching (in static
environments) here and the model of computational awareness proposed by Devanur
and Fortnow [50]. In their model, Alice is an agent with oracle access to an envi-
ronment and some input context. Alice also possesses an enumeration procedure M,
and Devanur and Fortnow define her "unawareness" of a string (w.r.t. M) to be

the time it takes for her to print the string using M. The correspondence with our
model is simple: Alice plays the role of the client, and her input context contains
to the property Vo provided by the environment to the client. If the environment is

static, her interaction with the environment is equivalent to that of an oracle machine
interacting with its oracle, and the time it takes for the client to succeed at the goal

is precisely its unawareness of a location f satisfying V0 . One of the results Deva-
nur and Fortnow state for this model is that by using a universal enumeration M,
Alice's unawareness of any object is optimal up to a constant factor, and so in some

sense, is (asymptotically) independent of her actual choice of enumeration procedure.
Naturally, this corresponds to our construction of a universal user for search, whose
running time is optimal up to a constant factor.

There are a few differences, of course, and neither our goals of search completely
subsume the model introduced by Devanur and Fortnow, nor vice-versa. A minor
difference is that in our model, the environment need not be static. Devanur and
Fortnow also implicitly consider such cases, but in their modeling they still consider
it to be an oracle, and they do not consider the effects of this statefulness on the
"unawareness." A more substantial difference is our emphasis on communication -
the introduction of a server playing the role of, e.g., a search engine - that they
would have generally modeled as an aspect of the (stateless) environment. In such
aspects, our goals of searching are somewhat richer. On the other hand, they consider

(un)awareness with respect to all kinds of strings, not merely those "specified" by the
input context, nor merely locations in the environment, and along such lines, they
likewise do not assume that the input context is necessarily a description of some

property Vo. In this sense, their model is more general than our goals of searching.

Search from a search engine's perspective

Note that, in our definition of goals of search, we did not specify which entity should
play the role of the client-inspired by a conversation with Manuel Blum [31], we now
briefly consider searching when the "server" (in the model of Chapter 2) plays the

role of the client for the goal. In this case, the user plays the role of, e.g., a "search
engine," and a helpful client provides the the search engine with enough information
about Vo for the search engine to provide assistance, and then must actually query
some appropriate location. 1

The goal is now arguably a more interesting because it is easy to see that mere
"helpfulness" in this sense is not sufficient to permit achieving such a goal in a finite
execution: the issue is that, while searching is trivially verifiable by the client, it
may not be verifiable to other entities. Success at the goal in a finite execution
would therefore typically rely on some further assumptions about the class of clients-
perhaps we assume that the client notifies the search engine that it is terminating
its session, or else we assume, e.g., that the queries are in English and the client
visits locations that the server suggests. In the latter case, the problem is strictly a
problem of interpreting the client's English queries, and not a problem of overcoming
the lack of a common language per se. It is still interesting to note that this latter
problem is a fair specification of "the problem solved by Google." The point more
generally is that in many natural cases, it may be still interesting to consider S for a
rather limited subset of the class of all helpful "servers" for a goal-here, it models
the variety of ways an English-speaking Google user might express a query Vo. We
will return to this more general point in Section 3.5 and again in Chapter 4 where
we explore how restricting the class of servers in natural ways (i.e., making natural
assumptions about the server) will allow us to achieve goals that would otherwise
be unverifiable and hence impossible, or to achieve goals more efficiently than would
otherwise be possible.

Although such assumptions about the class of servers are often reasonable, we also
note that the infinite executions model introduced in Chapter 6 - in which the client
is given an infinite sequence of queries and hopes to eventually succeed at its searches
- is also a reasonable model to consider for this problem, and in that model, feedback
(i.e., verifiability) is not strictly necessary. Such a direction may provide avenues for
"universal" search engines, and it is not hard to see how to leverage the construction
for universal users without feedback we introduce there to obtain a weak version of
such a search engine.

3.3 Computational goals

We now consider computational goals, as introduced in Example 2.17. We begin
by showing how results from interactive proofs allow us to easily obtain the results
claimed in Section 1.4.2 (originally appearing in prior work [80]). Returning to the
fantastic scenario sketched there, we suppose that Bob has been contacted by some
computationally powerful extraterrestrial Alice, and we ask what Bob can learn by
communicating with her. We do not limit Alice's computational power a priori: we

1An alternative view is that we are trying to design a "very helpful server," and we'll develop a
framework that is more appropriate to this perspective in Chapter 4. Although we won't consider
the design of such servers in much depth in this thesis, we will return to the question in some more
detail and suggest it as a direction for future work in Section 10.1.3.

imagine that she can solve any computational problem, and thus see how Bob's lack
of understanding places inherent limitations on the communication. Again, we model
the lack of understanding by considering a class of Alices, defined by the existence of
a suitable communications protocol (i.e., "language"), and we ask that Bob's protocol
work with every member of this class. In this case, since it turns out that verifiability
the goal is necessary and sufficient, the inability for Bob to verify solutions to problems
outside PSPACE prevents Bob from using Alice's help to solve such problems, but
interactive proofs allow Bob to use Alice's help to solve PSPACE-complete problems,
as sketched in Section 1.4.2.

More generally, we characterize the class of function problems for which the cor-
responding goals have polynomial time bounded universal users in the basic universal
setting. We will show that this is precisely the class of function problems for which
the problem has a "competitive proof system," first introduced in the work of Bellare
and Goldwasser [20]. In particular, we mean decision problems for which both the
problem and its complement are contained in the class compIP.

Technically, we proceed as follows. We start by recalling the computational
goals associated with a class of computational problems, and effectively invoke The-
orem 2.25 to cast the existence of universal protocols for these goals in terms of the
existence of sensing functions. On the one hand, given competitive proof systems, we
will mimic the construction of a sensing function sketched in Example 2.24, note that
this sensing function features controllable safety, and then apply Theorem 2.35 to
obtain a universal user. (We note that it is essential to use Theorem 2.35 rather than
Proposition 2.27 since we want universal users for which the probability of error is
independent of the unknown server; these universal users have controllable error im-
mediately since we can always run them several times and take majorities to amplify
their correctness.) On the other hand, Theorem 2.37 shows that whenever a universal
user exists for a computational problem, then the sensing function we obtain from
that user by Proposition 2.26 is a good verifier for an interactive proof system. In
particular, the fact that the user is viable with all helpful servers implies that this
sensing function is satisfied when interacting with an oracle for the problem, which
is a competitive prover strategy.

The results claimed in Section 1.4.2 then follow as immediate corollaries since
compIP C PSPACE, every PSPACE-complete problem is in compIP, and PSPACE
is closed under complement. We will also examine a variety of other consequences
of our characterization: we will see that universal users only exist for functions with
program checkers and that under a reasonable complexity-theoretic hypothesis, there
exist problems in NP that do not have universal users. We will also consider some
representative examples of computational problems other than PSPACE-complete
problems that have universal users. Finally, we will close this section with some initial
remarks on what our constructions say about communication without a common
language.

3.3.1 Main definitions in this setting

For a computational problem H, we recall the computational goal Gr = ({E}2, R),
defined in Example 2.17: essentially, in E,, the user is given x on every round, and

the user succeeds in Ex if its last message is an element of H(x). In this case, it is

easy to see that the class of H-helpful Alices described in Section 1.4.2 is essentially

the class of (Gr, 2/3)-helpful servers, SGr,2/3:2 a server S is in SGr,2/3 if there exists

some user strategy Us such that (Us, S) robustly achieves Gr (outputs y E P(x) in
each Ex) with probability at least 2/3. Similarly, a H-universal Bob is essentially
an expected polynomial time bounded (SGr,2/3, 2/3)-universal user strategy, that is,
it robustly achieves Gr with every S E SGr,2/3 with probability at least 2/3, and

runs in expected time ps(|x|) with S, for some polynomial ps. For convenience,
in the present section we will return to using the terminology "11-helpful" and "H-

universal," with the understanding that we really mean (Gr, 2/3)-helpfulness and

(SGr ,2/3, 2/3)-universal users, respectively.
Precisely, we wish to know for which problems 1 it is possible to construct a

1-universal user. Since it will turn out to be for a generalization of the decision
problems Hl such that both Hl and its complement have competitive interactive proof

systems, we recall the relevant definitions next.

Competitive interactive proofs

Competitive interactive proofs were introduced by Bellare and Goldwasser [20] to

study the complexity of the prover in an interactive proof system. Roughly, these are

interactive proof systems for set membership in which the prover can be efficiently

simulated using oracle queries to the set. In particular, the question of the existence of

competitive interactive proof systems is a generalization of the decision-versus-search
question for NP proof systems-simulating the interaction between the prover and
the verifier using an oracle for the set allows one to generate "proofs" of membership
in polynomial time, given the ability to decide membership. Precisely, the definition
is as follows:

Definition 3.10 (Competitive interactive proof system). Let P be a probabilistic
polynomial time interactive oracle Turing machine and let V be a probabilistic poly-
nomial time interactive Turing machine. We say that (P, V) is a competitive interac-

tive proof system for a set S if

1. (Completeness) For every x E S, the probability that V accepts when inter-
acting with PS on common input x is at least 2/3.

2. (Soundness) For every x (S and every interactive Turing machine P, the

probability that V accepts when interacting with P on common input x is at

most 1/3.

2The only difference is that II-helpfulness only demands that Alice is helpful for all message
histories, whereas (Gr, 2/3)-helpfulness demands that the server is helpful for all states, including
those that cannot be reached by any message history. We trust that the reader will not be too upset

at this modest weakening of our ambitions.

We say that P is a competitive prover strategy. We let compIP denote the class of
decision problems 1U with competitive interactive proof systems for membership in 1
(viewed as a set), and we let co-compIP denote the class of decision problems such
that their complements are in compIP. For a general computational problem H,3 we
say that H has a competitive proof system if the set {(x, y) : x an instance of 1, y E
H(x)} has a competitive interactive proof system.

Note that our definition is somewhat overloaded-we can view a decision problem
either as a set, or as a relational problem (deciding whether "(x) = b" is true).
That is, H (as a relational computational problem) has a competitive interactive proof
system iff the corresponding set 1 1 {x : P(x) = {1}} is in compIPnco-compIP. We
are forced to make this mildly confusing convention because while the relevant concept
for our purposes will be competitive proof systems for (relational) computational
problems, the definition of compIP is classical and related to other concepts, so we
wish to leave it intact.

For example, since a competitive interactive proof system is, in particular, an
interactive proof system, compIP g IP. The proofs of Theorems 1.4 and 1.5 will rely
on a few easy consequences of the constructions used to show IP = PSPACE [97,
128] which we will recall briefly, partially to illustrate competitive interactive proof
systems.

Proposition 3.11. Let H be PSPACE-complete decision problem. Then there is a
competitive interactive proof system for the relational computational problem 11.

Proof Notice that if 11 E PSPACE, the the set of pairs (x, U(x)) is also in PSPACE,
and thus we let V be the verifier for a proof system for this set, as given by Shamir.
Since the soundness conditions are the same as for standard interactive proofs, we
know that V is sound, and we only need to show that V has a competitive prover
strategy.

We note that, given a partial message history, we can loop over all sequences of
coin tosses of V and subsequent messages that the prover could send, to recursively
compute an optimal next message in polynomial space. In particular, the problems
of deciding whether or not the ith bit of the first optimal prover message is a '1' and
deciding whether the message has length i, are in PSPACE.

Thus, since H is PSPACE-complete, there exist polynomial-time reductions to
these two problems. In particular Pr can store the current message history and
invoke these reductions repeatedly to read off an optimal next message in polynomial
time from queries to H. In particular, since Shamir's prover succeeds with probability
at least 2/3 for (x, U(x)) (it actually succeeds with probability 1), so does Pr. *

We stress that what we have actually argued is that PSPACE-complete problems,
when viewed as sets, are contained in compiP n co-compiP.

3 Recalling that we are primarily interested in relational promise problems for which every instance
x is associated with a nonempty set II(x).

3.3.2 Characterization of functions with polynomial-time uni-
versal protocols ,

We now present our characterization of functions having polynomial-time univer-
sal protocols in the basic universal setting as those problems for which competitive
proof systems exist. This result is closely related to Theorem 2.25, with competitive
proof systems readily providing us with a sensing function (as demonstrated in Ex-
ample 2.24) and (invoking Theorem 2.37) conversely the universal protocol's sensing
function providing us with a competitive proof system for function problems almost
immediately.

Thus, in summary, we get a complete characterization for function problems:

Theorem 3.12. Let 11 be a promise function problem. There is a fl-universal user
if and only if U1 has a competitive proof system.

Proof

(->:) Given a f-universal user U, we construct a competitive proof system (P, V) for
11 as follows. Let P' respond to any message x with rl(x) (obtained from the
11 oracle). This is trivially a competitive prover strategy.

Note that Pr is 11-helpful, to the user who simply forwards the instance to Pr
and returns its response. Therefore, in the execution of the system (Ex, U, Pr1),
U runs for p(n) steps in expectation and halts for some polynomial p, and
returns H(x) with probability at least 2/3.

We are now ready to describe the verifier strategy. Let V simulate U interacting
with Ex for up to 24p(n) steps on three independent runs, and accept iff at
least two of the three runs lead U to halt with a final message that matches the
claimed value of H(x). It is easily verified that, when interacting with Pr, V
accepts (x, H(x)) with probability greater than 2/3, as needed.

To see that V is sound, note that by Proposition 2.26, the function indicating
when U halts is a 2/3-safe sensing function for Gn, which by Theorem 2.37 is
also 2/3-safe with every server strategy. Thus, when interacting with any P,
U only halts with a wrong answer in any of the three runs with probability at
most 1/3 independently; thus, for a false claim (x, y) U only halts with output
y with probability at most 1/3 on each run, and so we see that V accepts (x, y)
with probability less than 1/3. Thus, (P, V) is a competitive proof system for
H.

(-:) Given a competitive proof system for H, we will construct a viable sensing
function for Gr with controlled safety, and then invoke Theorem 2.35 (actually
Corollary 2.36) to obtain a universal user with controllable error. Fixing E = 1/3
for this user protocol then gives a 1-universal user.

Construction. Let (Pn, Vn) be a competitive proof system for H. Our grey-
box sensing function V for Gr with two private outputs and controlled safety is

then as follows: V only accepts transcripts from protocols that simulate a fixed
syntactic composition of Vr with some other protocol that simulates a prover

(and provides the claim for H (x)); the first private output will essentially contain
a claimed value for 1(x), and the second private output, will produce a sequence
of messages that will be used as the prover's messages in a simulated run of the
proof system. In more detail, the private outputs have an initial bit indicating
whether they contain an appropriate message for the simulation, followed by the
contents of the message when the first bit indicates that such a valid message is
provided. On auxiliary input E, V simulates V1r O(log 1) times on input (x, y)
where x is given by the environment on each round and y is given by the first
private output on each round; the simulation starts on the first round after y is
valid, and V is assumed to output 0 unless the first private output is marked as
valid. The simulation proceeds by taking the messages produced on the private
output when they are valid to be the messages from the prover, and using the
same coin tosses as used by the user's protocol to simulate Vr. When Vr would
halt instead of sending a next message, V records its verdict and starts a new
simulation on the following round. V outputs 1 if and only if, after the last
simulated run, Vr1 accepted in a majority of runs and the user's last message to
the server is y.

Controllable safety. We first note that since V checks that the user's
protocol is of the form of some private-coin simulation of (Vr1 , P') for some prover
protocol P', the soundness of VrI holds for the user's simulation. Therefore,
by Hoeffding's inequality and the soundness of Vr1 , an appropriate choice of
O(log 1) = O(E|1) repetitions suffices to guarantee that V is (1 - e)-safe for Gr
with any server.

Viability. We will now show that the sensing function described above is
viable with every 1-helpful server. Suppose that S is 11-helpful; then we know
that there is some polynomial-time user strategy Us the robustly achieves Gr
with S with probability 2/3. Thus, suppose that our user strategy simulates
interactions between Vr1 and Pr by using Us to simulate the 11-oracle. More
precisely, the strategy P' first uses Us on x with S to obtain a claim for 1(x),
and then simulates Pr until Pr invokes its H-oracle on some instance w; P' then
switches to simulating Us in E, with S until Us would halt, returning some
message z (as its guess for H(w)) to E,. P' repeats this simulation several
times (we will specify how many times in the analysis), and if a majority of
them agree that 11(w) = z for some z, P' then resumes the simulation of P 1

using z as the response from the oracle. We note further that as long as the
number of repetitions of the simulation of (Vn, P') is sufficiently large, if P'
faithfully simulates Pr, then Vr accepts (x, H(x)) with probability at least 5/6.

Since Us correctly returns 11(w) in any E, with probability at least 2/3 re-
gardless of the state of S, and neither E, nor E. sends any messages to S,

the simulated version of Us with E, also returns 11(w) with probability at least
2/3 when interacting with S, even though this simulation is actually carried out
with S interacting with E,. Since both of the strategies in our competitive proof
system run in probabilistic polynomial time (relative to the oracle for H), there
is a polynomial upper bound p(n) on the number of oracle calls needed for an
instance of size n. Therefore, by Hoeffding's inequality, O(log nlc) repetitions
suffice to bring the probability of error per invocation below O(I); therefore,
since there are p(n) invocations of Us per simulation and O(Ie|) simulations, by
a union bound, we can guarantee that every simulation of the fl-oracle by P'
succeeds with probability at least 5/6. Thus, by another union bound, the prob-
ability that either P' fails to accurately simulate Pr or P' fails to convince VrI
is at most 1/3. Thus, since Us and the strategies employed in the competi-
tive proof system are all polynomial-time computable, the O(Il) simulations
of (Vr, P') can also be computed in time p'(n, jej) for some polynomial p', and
hence V is a (p'(n, Icl), 2/3)-viable sensing function for Gr with S.

We note that V runs in time comparable to the corresponding user strategy
(since both simulate V O(log 1) = O(Hl) times), and thus by Corollary 2.36,
there is a O(p'(n, le|))-time bounded SGr, 2/3-universal user with controllable
error; fixing e = 1/3, this gives a f-universal user, as desired.

U

3.3.3 Main consequences of the characterization

Having obtained a characterization of the functions for which efficient universal users
can be designed, we now briefly examine some of the major consequences of this
characterization. Principally, we show that the results claimed in Section 1.4.2 follow
as immediate corollaries from Theorem 3.12. We will also note two other corollaries
that follow largely from work by Bellare and Goldwasser on the class complP.

Our first corollary is the main theorem from Section 1.4.2:

Theorem 1.4 For every PSPACE complete problem U1, there is a Bob that is U-
universal.

Proof Proposition 3.11 says that PSPACE-complete problems (as relation problems)
have competitive proof systems, so the claim follows immediately from Theorem 3.12.
E

We next immediately obtain the impossibility result stated in Section 1.4.2:

Theorem 1.5 Let l be a decision problem that is not in PSPACE. Then for every

probabilistic algorithm B, there exists a f-helpful A such that B fails to decide U with
the help of A.

Proof Suppose H is a decision problem with a fl-universal user. The reverse direc-
tion of the characterization provided by Theorem 3.12 shows than any such decision
problem H is contained in compIP n co-compIP. Since complP C IP = PSPACE,
the theorem follows. U

That is, no matter how powerful or helpful the "extraterrestrial" is, as a result of
our potential misunderstanding of the communication, we cannot learn the answers to
problems outside of PSPACE, and Theorem 1.4 shows that the hardest problems for
which solutions can be communicated without a common language are the PSPACE-
complete problems.

A further consequence of our characterization is that all functions with universal
users have program checkers, as introduced by Blum and Kannan [32].

Corollary 3.13. Let H be a decision problem with a fl-universal user. Then H has
a program checker.

Proof We recall a result of Bellare and Goldwasser [20], compIP C fr-IP. Since
Blum and Kannan [32] showed that the class of checkable decision problems is pre-
cisely fr-IP n fr-co-IP D compIP n co-complP, our claim follows immediately from
Theorem 3.12. (Alternatively, it can be verified that our construction of a competi-
tive proof system from a universal user yields an explicit construction of a program
checker directly, but we leave the details to the interested reader.) U

We stress, however, that the converse is unlikely to hold-a result of Babai, Fort-
now and Lund [14] shows that EXP-complete problems have program checkers, but
Theorem 1.5 shows that all decision problems with universal protocols are contained
in PSPACE, so if all checkable problems also had universal protocols, we would find
PSPACE = EXP, which is widely considered unlikely.

We also remark that one more of the results of Bellare and Goldwasser is rele-
vant here: assuming NEE Z BPEE (i.e., some problem in nondeterministic doubly-
exponential time cannot be decided in bounded-error probabilistic doubly-exponential
time), NP Z complP. Together with Theorem 3.12, this yields yet another limitation
of universal users:

Corollary 3.14. If NEE Z BPEE, then there exist 11 E NP for which U-universal
users do not exist.

Put more plainly, because (under a reasonable hypothesis) there are decision prob-
lems for which constructing proofs is strictly harder than deciding instances, if we
interact with a server that is only capable of deciding instances of such problems, we
can't ensure that we recover the correct verdicts by means of communicating with
that server.

3.3.4 Beyond PSPACE-completeness: more examples of uni-
versal protocols for computational problems

PSPACE-complete problems are not the only problems with competitive interactive
proofs. Some of the nicest classic examples are not most naturally stated as decision

problems. For example, it is well known that the work of Lund et al. [97] gives a proof
system for a #P-complete problem in which the prover can be simulated with queries
to a #P-complete problem-a competitive proof system for a counting (function)
problem.

Likewise, Levin's original technique for universal algorithms solving (total) func-
tion inversion problems - for a total polynomial-time function f, given y, find an
x such that f(x) = y - can be used here: we only need to check that the output
x satisfies f(x) = y. Since the "prover" can be taken to be any inversion oracle
for f, this is essentially a competitive proof system for a function problem, and we
can design universal protocols for such problems, including integer factorization and
discrete logarithms.

Actually, although in general these inversion problems may themselves be general
relational problems rather than function problems (i.e., there may be several distinct
values of x that map to the same y under f, each of which would count as a solution
to the inversion problem) and so the construction of Theorem 3.12 may not apply as
stated in cases where the function f to be inverted is not one-to-one, the construction
in Theorem 3.12 can be modified easily to cover such cases. The key point here
is that verification here is noninteractive - we only need to evaluate f(x) for the
value of x suggested by a single interaction with the server - so we can guarantee
correctness with high probability for any single claimed solution x. This is of course in
contrast to relation problems for which we might have a nontrivial competitive proof
system, where amplification of the correctness of our simulated oracle queries cannot
be achieved by taking majority votes, since different sessions with the server may well
all return distinct values. We note that this multi-valued aspect is also the problem
with applying our construction of a proof system from a universal user to relation
problems, so for general relation problems, neither direction of our characterization
is known to hold.

Our characterization of decision problems having universal users in terms of compIP
is useful in providing further examples. Bellare and Goldwasser [20], in considering
zero knowledge aspects of competitive proof systems, noted that both Graph Isomor-
phism and Graph Non-Isomorphism possess competitive interactive proofs (a result
originally due to Goldreich, Micali, and Wigderson [68]); therefore, Graph Isomor-
phism has a universal protocol.

Finally, Bellare and Goldwasser noted that while Quadratic Non-Residuosity has a
well-known competitive interactive proof (it was the first example, due to Goldwasser,
Micali, and Rackoff [71]), it is unclear whether or not Quadratic Residuosity has an
interactive proof, so it is unclear whether or not Quadratic Residuosity has a universal
protocol. On the other hand, it is easy to see that we can construct a universal
protocol for a related goal:

Example 3.15 (Modular square roots). Let GSR = ({E(x,,)}xez*, R) be the following
goal: on each round, E(x,n) sends (x, n) to the user (and stores this pair in its state).
R accepts if either x is a quadratic non-residue and the user's last message is a string
corresponding to "non-residue" or x is a quadratic residue and the user's last message
is some y E Z* such that y2 = x (mod n).

That is, we can obtain a universal protocol for the modular square root partial
function. The relevant sensing function is fairly obvious: it checks that either a square
root is given for x in the range of the squaring function modulo n (although this may
be multiple-valued, this poses no trouble since our verification has perfect soundness),
or that a valid interactive proof of non-residuosity of x modulo n has been given. In
this way, we obtain a universal protocol for a problem for which the natural decision
version does not seem to have a universal protocol.

3.3.5 Communication in spite of indeterminacy

The protocol claimed in Theorem 1.4 (constructed in the proof of Theorem 3.12)
implies that Bob can obtain wisdom from a powerful extraterrestrial Alice for the
following simple but easily overlooked reason: Alice can be H-helpful without knowing
which problem H Bob has in mind! To be H-helpful for H E PSPACE, Alice only
needs to help some BA E P solve some PSPACE-complete problem H; then, since H
polynomial-time reduces to H via some polynomial-time (Cook) reduction F, there
is some B' E P who simulates F composed with BA, so Alice is also H-helpful since
Alice helps B' decide H. In this case, Alice might think the conversation is about some
problem 17, whereas Bob is "really" interested in help solving some entirely different
problem H. We observed that such "gaps" between the interpretations possessed by
Alice and Bob are essentially unavoidable in Section 2.3; the interesting observation
here, which could be made repeatedly throughout this chapter, is that these differences
of interpretation do not pose any barrier to the pursuit of a goal, and so in spite of
one might naively expect, they do not need to be eliminated to enable successful
communication.

3.4 Intellectual curiosity

Let us return again to the story from Chapter 1. In Section 3.3, we characterized
precisely the class of problems that Bob could solve with a powerful Alice without
knowledge of a common language. The solution we presented was only really inter-
esting for problems that Bob cannot solve on his own. Unfortunately, it also turned
out that, in order for Bob to learn the answer to, e.g., a PSPACE-complete question
from Alice, our solution required that Alice be able to solve any problem in PSPACE,
which we don't believe to be feasible, even for some advanced extraterrestrial civiliza-
tion. If we still believe that feasible computation is characterized by polynomial time,
it is hard to see what benefit can be obtained from computing functions by interact-
ing with another party who faces the same fundamental computational constraints,
and thus even if language were not an issue, a party who still could not compute the
desired instances "on demand."

Not all intellectual goals involve computing a hard function on a specific instance,
though, and we could imagine that Alice, although constrained by the usual laws
of efficient computation during her interactions with Bob, has access to some store
of knowledge (e.g., of mathematics or physical laws) that has been generated by

inefficient means over the lifetime of her civilization. In particular, we may wish to

grant Alice the latitude to suggest a context where she knows something as in the

following example.
Suppose Alice wishes to submit results to Bob, who is serving on the program

committee for the nth Intergalactic Conference on the Mathematical Foundations

of Computer Science. Bob is expecting to obtain from Alice a proof of a "deep"

theorem, to be presented at the conference. Informally, but more specifically, Bob

is only willing to accept theorems with proofs that no efficient entity lacking prior

knowledge would be able to reliably produce.4 In the interest of fairness to alien

civilizations, Bob would like to evaluate Alice's submission regardless of the language

she uses.
Our formalization of this will be in terms of computational depth [81, which we

describe next. We will minimally wish that the user (program committee member)
outputs a theorem # followed by an output containing a proof of # such that any

proof of # has t-time bounded depth at least f(k) = E(log k) conditioned on #, so in

this sense the theorem is "hard." We want a little bit more than this, though, so that

the produced theorem is a product of Alice's submission, not merely something that

Bob imagined on his own, and we will subsequently address these moderately subtle

issues in Section 3.4.2.

3.4.1 A primer on computational depth

Intuitively, computational depth is meant to capture the amount of useful, non-random

information in a string. For example, strings that are efficiently generated from short

programs and random strings are not "deep" in our sense, but solved random instances

of a hard-on-average computational problem should be "deep." The original definition

of logical depth, due to Bennett [22], captured this intuition by measuring the shortest

running time of a short program producing the string in question. On the other hand,
Bennett's definition was difficult to work with, and so we use a new, much simpler

notion of depth given by Antunes et al. [8]. In this new definition, we measure this

"amount of information" in bits, so in our latter example, we expect the depth to

be roughly the number of bits in the solutions (i.e., minus the bits describing the

instances), and indeed this is essentially how we define depth below.

As preliminaries, we will need to recall the definitions of prefix machines and

Kolmogorov complexity. Kolmogorov complexity (especially as defined on prefix ma-

chines) has many interesting properties that are beyond the scope of this thesis. The

interested reader is referred to the textbook by Li and Vitinyi [93].

Definition 3.16 (Prefix machine). We say that a Turing machine M with two inputs

is a prefix machine if, for any two strings x and y such that x is a prefix of y, and

any third string z, M(x, z) and M(y, z) do not both halt. If, for every prefix machine

M', there exists some string p such that for all x and y M'(x, y) = M(px, y) and M

4Note that we do not necessarily condone this measure of quality, nor do we know of a demon-

strably better one. We only wish to provide a reasonable model of an existing process.

has running time greater than M' by no more than a factor of O(|pj + jxj + |yl) for
all such M', p, x, and y, we say that M is an efficient universal prefix machine.

So, the strings on which a prefix machine halts form a prefix-free set, and a pair
from the set (x, y) can be uniquely recovered from their concatenation, xy, (which
may represent, for example, the composition of programs computing functions f and
g) which has length jx| + |yl. In this sense, the strings are self-delimiting, and this
property makes prefix machines particularly appealing to use for the Kolmogorov
complexity, a measure of program length.

Definition 3.17 (Prefix Kolmogorov Complexity). Fix a reference efficient universal
prefix machine U, and let Ut denote the corresponding t-time bounded machine.
The prefix Kolmogorov complexity (or, simply Kolmogorov complexity) of a string x
conditioned on a string y, denoted K(xly), is the length of the shortest string p such
that U(p, y) = x. The t-time bounded prefix Kolmogorov complexity of x conditioned
on y, denoted Kt(xly), is the length of the shortest string p such that Ut(p, y) = x.

It is easy to see by counting that at least half of all strings of a given length
cannot compress by more than one bit. It is similarly easy to establish a more general
quantitative relationship, and the underlying moral is that random strings have high
Kolmogorov complexity. More generally, strings with high Kolmogorov complexity
are essentially as good as random strings to a fixed, "reliable" algorithm ("reliable"
in the sense that only a few faulty strings of coin tosses exist) since an algorithm
which exhibits different behavior on such a string would readily yield a means to
compress it to its index in this small set of faulty strings. (Again, a reader unfamiliar
with these notions and unsatisfied with our informal treatment is referred to Li and
Vitinyi [93].) So, strings of maximal Kolmogorov complexity are essentially random
strings, and more generally, the Kolmogorov complexity of a string x is the length of
a "random" description of x, or the "amount of randomness" (in bits) contained in x.
Since, relative to an efficient, reliable algorithm, this randomness can be "replaced" by
tossing fresh coins, we might intuitively hope that the following definition captures the
minimal amount of information that is "needed" by an efficient randomized algorithm
to reconstruct something computationally equivalent to a given string x:

Definition 3.18 (Computational depth). The t-time bounded computational depth
of x conditioned on y, denoted deptht(xly) is defined to be Kt(xly) - K(xy). The
t-time bounded computational depth of a set S conditioned on y, denoted deptht(Sly),
is defined to be minxEs{deptht(xjy)}.

We don't know how to show this directly, but work by Antunes et al. [7] has shown
that this intuition holds, given the following standard derandomization assumption:

Assumption 3.19 (Good pseudorandom generators). For every polynomial time
bound t, there is an efficiently computable function Gt : {0, 1}(") -+ {0, 1}" such
that s(n) = O(log n) and for all t-time bounded decision procedures A,

Pr [A(x) = 1] - Pr [A(Gt(y)) = 1] < 1/6
xE{O,1}n YE1o,11sn>

This assumption is widely assumed to hold, as a consequence of evidence in the
work of Impagliazzo and Wigderson [79].

Paraphrased slightly, Antunes et al. [7] prove the following:

Theorem 3.20. Fix any nonempty set Sx decidable in time ts(|x|) from an auxiliary
input x. There is a randomized algorithm running in time O(2deptht(S.Ix)(t + ts(xi))
given input x and the algorithm for Sx, that outputs some y G Sx.

This yields the following immediate corollary, roughly corresponding to our orig-
inal intuition:

Corollary 3.21. Under Assumption 3.19, for every fixed polynomials t(k) and ts(|x|),
and every nonempty set Sx decidable in time ts(|x|) by some algorithm A, from an
auxiliary input x, there exists some y E Sx that can be recovered in time polynomial
in |x| and k from a description of length |Ax| + O(deptht(k)(Sxzx) + log k + log lx|)
given input x.

In particular, if S, is the set of witnesses for x under some NP-relation R, Ax I=
0(1) so some witness of x has a description of length O(deptht(k) (SXx)+log k+log lxi).
If additionally deptht(k)(Sx Ix) is O(log Ix1) over all x, then the algorithm claimed in
Theorem 3.20 runs in polynomial time with respect to x and k.

On the other hand, Antunes et al. [7] also observe the following:

Proposition 3.22. Under Assumption 3.19, if there is a polynomial t(|x|) such that
there is a randomized algorithm outputting a member of S, on input x in t(|x|) steps,
then there is some member y E Sx that can be recovered in time t'(|xl) for some
polynomialt' from a description of length O(log lx|). In particular, deptht'(Ix,)(SXlx) =
O(log Ixi).

In summary, we have the following

Proposition 3.23. Fix an NP-relation R with corresponding decision problem TIR-
Under Assumption 3.19, the following are equivalent:

1. The search problem for R can be solved in randomized polynomial time.

2. There is a polynomial t such that for all x E 1 deptht(IxI)(Rx\x) = O(log lxi)
3. There is a polynomial t such that for every x E UR, some member of Rx can be

recovered in t(ixl) steps from a description of length O(log lx|).
The characterization in Proposition 3.23 is simple enough, but it leads to some

subtle scenarios which we will now illustrate. Suppose that we have a one-way
function, f. Let R = {(x, y) : y = f(x)} be our NP-relation, and let Rln denote

{(xy) E R : lxi = n}. We can sample (x,y) E R~n easily, so for some polynomial
t, deptht(n)(Rlf) = O(logn). On the other hand, since f is one-way, for y such that
y = f(x) for some x, deptht(n)(Ryly) = w(logn) for all polynomials t. In particular,
for any pair x E RY, deptht(n)(xIy) = w(log n). But notice: for a random x E {0, 1}n,
deptht(n)(x) = O(logn). Thus, it is the context of y that makes x deep. It is easy
to see how this happens from the definition: given an input y, there is a natural,
computationally inefficient coding for x, so K(xly) cannot be too large.

3.4.2 Formalizing a goal of intellectual curiosity

Now that we have recalled the notion of computational depth and the relevant results,
we are ready to formalize the setting described in our story. Recall that Bob wishes to
referee Alice's submission to the Intergalactic Conference on the Mathematical Foun-
dations of Computer Science, and he aims to vet submissions for "deep" theorems,
and he wishes to do so independent of the language Alice uses.

The rough strategy Bob will employ as a reviewer is a natural one: he will try to
prove Alice's result "on the fly," and if he fails he will conclude that the theorem is
hard. The subtle point here is that the reviewer is not only evaluating the output,
but also translating both the theorem and the proof from an unknown language;
we need to somehow separate the knowledge of the proof from the knowledge and
effort employed in "understanding" and "translating" it-namely, the product of this
process should be based on the submission, and not a theorem that the reviewer
produced on his or her own during the translation process.

Formally, for a given selectivity parameter k and polynomial ti(k), we wish that
the proof has t1(k)-time bounded depth at least fi(k) = Q(log k) conditioned on
the theorem, guaranteeing that the theorem is "deep" on its own merits. Further-
more, if the committee member spends t steps discussing the proof with the author,
then we wish to only accept theorems with proofs having t-time bounded depth at
least f 2 (t) = Q(log t), where this dependence on t rules out reviews from reviewers
who end up (inadvertently) proving the theorem themselves during the translation
process rather than faithfully representing the submission's contents. We will need
this quantity to be conditioned on the reviewer's "prior knowledge" and translation
strategy to rule out reviews from reviewers who (again, inadvertently) "pollute" the
submission with their own insights during translation. Since we know that condition-
ing can increase or decrease the depth of a string substantially - additional auxiliary
inputs can, respectively, either provide context that makes a string deep, or provide
immediate access to a string that makes it shallow - the depth conditioned on just
the theorem, and the depth conditioned on the translator's knowledge are, in general,
quite different, and both of these conditions are necessary.

The goal. Precisely now, we fix three functions, fi, t1 , and f2. The goal G is given
by an environment S = {Ek} where Ek sends the user the selectivity parameter k on
each round and records the transcript of the interaction with the server as (assumed
to be) reported by the user, and a referee R that is only satisfied if the user sends a
message # marked as a "theorem," followed by a message marked "proof," containing
a proof of #, such that

1. Any proof of # has ti(k)-time bounded depth at least fi(k) conditioned on

2. For some (user) translation strategy U that, on the provided transcript, enters
a state a(u) when it produces #, and then produces a proof of # t steps later, the

produced # does not have a proof of t-time bounded depth f 2 (t) conditioned on
#, o(u), and the code for U.

Note that it follows from Proposition 3.22 that assuming pseudorandom generators
against polynomial time with logarithmic seeds exist, since we can easily simulate the t
step execution of any user strategy U' and the trivial server in t steps, if U' interacting
with the trivial server outputs a theorem # and a proof at most t steps later with
probability at least c, then the t-time bounded depth of the proof conditioned on 4,
the code for U', and the state of U' when it outputs # is at most O(log t). Hence, the
goal is (t, c)-nontrivial given an appropriate choice of f2 (i.e., one that is Q(logt)), so
the proof (at least) must depend on Alice's submission.

3.4.3 Constructing universal reviewers: sensing functions for
goals of intellectual curiosity

We now wish to describe a universal reviewing strategy by giving a sensing function for
the goal described above. In light of the second condition (stipulating a lower bound
on the depth conditioned on the code for the translator) it should not be surprising
that it will be substantially easier to give a grey-box sensing function for this goal than
to give a black-box one. Our construction will use an efficient probabilistic algorithm
H such that U(x; t, dly) either outputs a proof of x or I, which we interpret as "I don't
know." Using Theorem 3.20, we can obtain an algorithm H that finds polynomial
length proofs of x having t-time bounded depth conditioned on y of d with high
probability, running in time O(2d(t + p(Ix|))) for some polynomial p (depending on
the verification time for proofs of x).

Construction. For the above choice of H, we define V(c) to accept if and only
if the following holds: the user U' has sent a message # marked "theorem" to the
environment while entering a state o5"), followed by another message containing a
proof of # marked "proof" t steps later, satisfying the following two conditions in all
of O(log 1/e) independent trials:

1. 1(0; ti(k), fi(k)) = 1

2. H(#; t, f 2(t)IU', or")) - I

Correctness: safety and viability of our sensing function. Note since our
choice of H finds proofs of theorems with depth fi (k) conditioned on # or f2 (t)
conditioned on #, U', and o(u), with high probability on each run, in O(log 1/E) runs,
V rejects such theorems with probability 1 - c; since we see that the goal is achieved
whenever the produced theorem and proof satisfy the depth conditions, V is (1 - E)-
safe, and thus has controllable safety. Moreover, whenever Alice is helpful for G,
we see that there must be some polynomial time U' that produces theorems and
proofs that satisfy both conditions in an execution with Alice; since the runs of H
complete in polynomial time, it follows again from Proposition 3.22 that, assuming
that good pseudorandom generators exist, the runs of H only find theorems of depth
O(fi(k) + log ti(k) + log p(#|)) or O(f 2(t) + log t + logp(l#|)) with any reasonable
probability. Thus, V(e) (taking 6 fixed) is viable with Alices producing theorems

deeper than these bounds. We can therefore construct universal reviewers for our

conference using Corollary 2.36.

3.5 Tests

So far, we have seen how to design sensing functions (and hence universal protocols)
for goals that are classified as purely intellectual or purely physical in our taxon-

omy; we now consider some goals - tests - that are necessarily both intellectual and

physical- intellectual because they depend on the user reaching a correct verdict,
and physical because the correct verdict depends on the server. We begin by recall-

ing the goal of the Turing test examiner, as considered in Example 2.5. There, we

had two possible classes of "servers," Si and S 2, which corresponded to computers

and humans, respectively, and the goal was that we wanted to report to the environ-

ment whether we were conversing with a computer or a human-formally, sending
the verdict "i" when we are communicating with a member of Si.

Remarks on formalizations of the Turing test

Before we continue, we make two remarks concerning Turing's original formulation

of the test [141]. First, Turing's formulation involved the examiner communicating
with one member from each of the classes, and required the examiner to label one a
human and one a computer; we could model this by introducing a second "server" as

a fourth party in the system, but we hope that the reader will agree that this would
be a needless complication at the moment. Second, Turing originally focused on the

role of the computer, rather than the examiner as we do here: in Turing's exposition,
the computer was said to pass the Turing test if the examiner would not succeed at
this goal better than chance, and the ability to pass the test was taken as defining

"intelligence." We stress that we only consider the examiner's goal here, and note
that some of the weaknesses of Turing's proposal stem from ambiguities concerning
the role of the examiner.

In the original exposition, Turing only indicated that the computer should pass the
test with a single examiner, although remarks he made subsequently indicated that
he felt that the computer should pass with a representative sample of the population
playing the role of the examiner [131]. Now, although on the one hand, it is hard
to fault the test as a sufficient condition for intelligence if the computer is made
to pass with all examiners (perhaps with some minor caveats, which we mention in
the next section), on the other hand, it isn't clear what the computer passing with

one examiner, or an examiner randomly selected from the general population says

about its ability to pass with all examiners-and hence, whether or not the test,
as administrable in practice, is really suitable as a definition of "intelligence." In

particular, distinctly unintelligent algorithms such as Weizenbaum's Eliza [147] do

surprisingly well at fooling the average examiner. Perhaps if we had an optimal

strategy for the examiner, then the computer passing against such a strategy would

suffice to guarantee that the machine could pass against any other examiner, but of

course, we don't have such a strategy.

Tests amenable to formal analysis

Ultimately, we won't attempt to formalize the Turing test any further: due to our
inability to further characterize the classes of strategies corresponding to either unin-
telligent computers or humans, at present we have no provably good means to distin-
guish the two. Consequently, we have no suggestions for designing sensing functions,
let alone strategies for Turing tests.

Before we leave Turing tests behind entirely, we note that a CAPTCHA [145] is
precisely a strategy for the examiner when S1 is the class of currently known time-
efficient algorithms, and von Ahn et al. describe a variety of such strategies. Thus, a
CAPTCHA successfully distinguishes computers from humans in practice. Of course,
if we expect Al to be possible, then in principle we would only expect to be able to give
a strategy for a test that, at best, distinguished some class S' of unintelligent strategies
from the class of human strategies-an "optimal" strategy for the examiner as alluded
to above. We note that a CAPTCHA is therefore not a Turing test in the sense
that it isn't intended to provide a definition of "intelligence," but rather a test that
distinguishes strategies that can't be used for solving a hard Al problem from human
strategies. As such, CAPTCHAs provide a useful filter, preventing the automated
abuse of a variety of web applications at present. We note that CAPTCHAs have
been partially analyzed in a manner similar to a cryptographic protocol: since a
strategy for passing the CAPTCHA would solve an open problem in Al, we know
that no presently available algorithms can be used to pass the CAPTCHA. On the
other hand, since we still have no formal model of human strategies or capabilities,
we can't formally show that humans pass the CAPTCHA-we can only note that
empirically, they have demonstrated the ability to pass with high probability.

Instead of discussing Turing tests or CAPTCHAs any further, in the rest of this
section, we will exhibit a test of computational ability (irrespective of whether or not
this corresponds to "intelligence") which we can analyze, and will illustrate several
important issues in the design of such tests. Very roughly, we will describe a strategy
allowing an examiner to distinguish a class of servers with limited computational
abilities from servers exhibiting powerful computational abilities.

3.5.1 A test of computational ability

Attempt #1. Suppose we take "limited computational ability" to mean that the
server employs a strategy implemented by an algorithm running in time t(n) for some
polynomial t, and that we would like to distinguish servers with such limited strategies
from servers which use strategies that cannot be implemented within such limits. We
immediately encounter our first difficulty: any finite function (on strings of length
n < N for some finite bound N) can be hard-coded into a linear-time algorithm via a
look-up table, so in a bounded-length test, every server is indistinguishable from some
linear-time server strategies. The analogue of such "cheating" has been raised as an
issue with the Turing test by Block's "Aunt Bertha machine" [27] which, by means of

a hard-coded table, would mimic Block's fictional Aunt Bertha in any conversation
lasting up to an hour.

The fix for this issue in the Turing test suggested by Shieber [132] was to restrict
our attention to algorithms of some bounded program length k(n) that is sufficiently
small to prevent answers from being hard-coded, but large enough to permit the
use of all "feasibly produced" algorithms. Since the size of the table must grow
exponentially with the length of the conversation, moderate length conversations
would require an astronomically large table, and we can expect that any machine
we'd ever encounter in practice would only have resources falling well within some
much more modest bound. We will likewise only attempt to distinguish powerful
servers from weak servers running some short program, and starting from some simple
initial configuration - clearly otherwise, the corresponding table could be stored in the
program's configuration - and thus, we will only attempt to give a weakly universal
strategy (cf. Definition 2.15). For our purposes, we only will be able to give a
"reasonably efficient" test (running in time polynomial in n) for k(n) = O(log n); the
existence of examiner strategies that are more efficient with respect to the program
lengths of the limited strategies is an open question.

Attempt #2. Thus, minding this first caveat, we would ideally like to distinguish
servers using a strategy that can be computed in time t(n) by a k(n)-bit program from
servers using a strategy that cannot be computed in time t(n), but this still demands
too much-there will always exist server strategies that cannot be computed in time
t(n), but are indistinguishable from some time t(n) strategy on some large set of his-
tories. For example, for any given examiner, there is a server strategy that simulates
some time t(n) server unless it receives some long string, longer than the examiner
would send at that point in the execution with any reasonable probability. This
server strategy is never distinguished from a time t(n) server by the aforementioned
examiner (or any examiner sending similarly short messages) with high probability.
We stress that the difficulty exposed here is that the hard-to-compute aspects of a
server strategy demanding substantial resources may be elusive-in the language of
the Turing test, this would be like the case of an intelligent but uncooperative subject
who either sees no reason to participate or wishes to fail the test for some reason.

The natural fix for the Turing test in this case is to relax the guarantee: we
only guarantee that the test passes a subject who is "trying" to pass. The corre-
sponding fix for our test of computational ability is to restrict the class of powerful
server strategies S2 to those strategies that readily provide evidence of their abili-
ties; roughly, in this case, to strategies that are helpful for some class of sufficiently
hard computational problems. Even merely requiring that the server is helpful is
not enough-for any fixed examiner, constructions of servers similar to the aforemen-
tioned "uncooperative" servers (and similar to the servers constructed in the proof of
Theorem 2.37) yield server strategies that are helpful but nevertheless simulate some
time t(n) bounded server with the fixed examiner. More precisely, our fix is then to
require that the server helps some user programs of length at most b(n) bits solve
hard computational problems.

Of course, for this to be a meaningful restriction, the problems that the server
helps the user solve must be harder than the user could solve on its own. More to
the point in this case, for the restriction to distinguish the powerful servers from the
limited servers, the problems must be harder than any that the user could solve with
any k(n)-bit server program running in time t(n). Thus, supposing that the server
helps b(n)-bit user programs running in time t'(n), it will suffice to ask that the server
is helpful to some such user for simulating any time t(n) + t'(n) computation by a
f(n) = O(b(n) + k(n))-bit program from a p(n)-bit state for some polynomial p(n).

A goal for testing computational ability. We will need to modify the goal of
Example 2.5 to accommodate our new parameters t, t', k, b, f, p : N -+ N (described
above). The environment's non-deterministic strategy S = {En}nEN (where En has
size n) merely sends n to the user and server and records n along with the current
messages from the user and the server.

Essentially, we will assume two classes of servers, Si and S 2. We assume that on
each round, any member S of Si sends a message consisting of (1, f) where f is the
length of the program running in time t(n) computing the strategy used by S; and,
any member S of S2 sends a message consisting of (2, f(n)) where f(n) is the maximum
length of a user program running in t'(n) steps needed for S to be (Gr, 1)-helpful for
the problem H of simulating some f(n)-bit program from a p(n)-bit initial state for
our reference universal Turing machine for t(n) + t'(n) steps, and deciding whether it
accepts. (Recall that the goal of deciding El, Gr, was described in Example 2.17.)

The referee, now, is satisfied in the following three cases:

1. The server's message is (1, f) such that f > k(n), so the weak server's program
is too long.

2. The server's message is (2, f) such that f > b(n), so the server does not exhibit
its power to sufficiently simple user strategies.

3. The user's message is "i" such that the server's message is of the form (i, f), so
the server is a member of Si.

Remarks on the goal's formulation. Several remarks are in order. We begin
by noting that the first two cases in the definition of the referee provide the necessary
relaxations of our goal to circumvent the problems that felled our first two attempts
at formulating a test of computational ability. The consequence of this weakening
of our goal is that a user succeeding at the goal either outputs "1," and therefore
concludes that "either the server is weak (case 3) or the server does not exhibit its
power to simple strategies (case 2)" or outputs "2," and then concludes that "either
the server is powerful (case 3) or the server has a very long program (case 1)." We
also saw that related relaxations were needed for the Turing test, as presumably with
other goals for testing abilities.

This goal also illustrates a more general point about the modeling of goals for
tests: note that the server's "truthfulness" with respect to the environment is not at

issue. Rather, by design, the classes of servers Si and S2 only contain servers that
report their relevant properties - membership in Si, program lengths, etc. - directly
to the environment. In this way, the referee's verdicts can depend on these properties

without requiring us to make any messy (and invariably incomplete) general specifica-

tion of what properties of the server the referee "sees" -in short, the referee sees what

the server tells it, which we can supply by design (and corresponding assumption on
S) as appropriate to the application at hand.

3.5.2 Examiner strategy for a test of computational ability

We now turn to constructing a "universal" examiner strategy for testing the com-

putational abilities of servers from our two classes: S*, consisting of "weak" servers
that

1. Employ strategies that are time t(n) bounded

2. On each round, send a message (1, f) to the environment such that their strategy
is computed in time t(n) by a program of length f (that also specifies the
program's initial state).

and S2, consisting of "powerful" servers that

1. Employ strategies that are (Gr, 1)-helpful to some time t'(n) user strategy for
the problem H of deciding whether or not a f(rn)-bit program accepts from a
given p(n)-bit state in time t(n) + t'(n).

2. On each round, send a message (2, f(n)) to the environment (in response to
the environment's message "n") where f(n) is the least upper bound on the
length of user programs running in time t'(n) so that the problem II of deciding
whether a f(n)-bit program accepts from a p(n)-bit state in time t(n) + t'(n) is
decided by some such user with the server.

3. May start from any state.

We will aim to give an examiner strategy running in polynomial time for fixed poly-
nomials t(n) and t'(n), and functions b(n) and k(n) that are O(logn) (we will specify
f(n) = O(log n) and a polynomial p(n)).

Helpfulness is clearly not an issue-every member of S* U S2 is helpful to either
the user that sends "1" to the environment, or to the user that sends "2." Thus,
moreover, the message of Theorem 2.25 - that the goal ought to be distilled down
to distinguishing S* from S2 - is mere common sense. 5 It is interesting that, despite
this, we will find it easier to proceed by designing a protocol directly.

5Technically, Theorem 2.25 does not apply since we will only aim to construct a weakly universal
protocol, and moreover, it is not clear that a satisfactory analogue of Theorem 2.25 would even hold
for weakly universal protocols. Nevertheless, the "moral" of the theorem is still common sense here!

Theorem 3.24. Let polynomials t(n) and t'(n), and O(log n) functions k(n) and b(n)
be given. Then, for an appropriate choice of reference universal Turing machine, there
are functions f(n) and p(n) such that for the corresponding test of computational
ability and classes S* and S;, there is a weakly (S* U S2, 1)-universal strategy for
testing computational ability that is computable in polynomial time.

Proof

Overview. At a high level, our construction will enumerate all weak (time t'(n)
and b(n)-length) user strategies, and attempt to diagonalize against all weak user-
server pairs-a powerful server will help some weak user to compute the diagonal
function, but the weak servers will all be caught, thus allowing us to reliably dis-
tinguish the two kinds of servers. Towards this end, we will rely on the ability to
simulate the interaction between a time t'(n) user strategy with a program length
of k(n) and a time t(n) server strategy with a program length of b(n) via a time
t(n) + t'(n) program of length f(n), for an appropriate choice of f(n) = O(log n)
(these will be our only constraints on the choice of f).

Choice of f(n) and universal Turing machine. If our programs are given by
deterministic O(log n/log log n) state controls, for example, then each has a O(log n)-
bit description (given by a list of 0(log log n)-bit "next state" transitions), and it is
no issue to redirect a transition to one program's "wait for response" state to the
other's "resume" state; it is not hard to see that the length of each item in the list
increases by at most an additive constant in this combined program, and thus that
the length of the combined program is greater than k(n) + b(n) by at most a constant
factor-and thus, we can choose f(n) = O(k(n) + b(n)) = O(logn).

Choice of p(n). We rely on k(n) and b(n) being O(logn) so that there are only
a polynomial number of weak user-server pairs, thus allowing us to enumerate the
entire set of pairs in polynomial time. Assuming that we only run each weak user
once for each weak server, and given the polynomial time bound t'(n) on the running
time of a weak server in this interaction, there is therefore a polynomial upper bound
on the number of bits needed to describe the state of any weak server at any point
during our interaction with that server-this will be our choice of p(n).

With these technicalities out of the way, we can describe our scheme in more
detail.

Construction. For each possible k(n)-bit server, we will maintain a table indi-
cating what the current state of that server would be; if the responses of the actual
server are inconsistent with one of the k(n)-bit servers, we will mark that server as
"inconsistent" in the table.

For each b(n)-bit user strategy, we will loop over the remaining consistent k(n)-bit
server strategies until we detect a failure of that user strategy in the following sense:
given the conjectured current state of a k(n)-bit server, we will prepare an instance of

the problem, "does the current b(n)-bit user strategy reject when interacting with the

current k(n)-bit server started from its current state?" by swapping the outputs of

the user strategy. We will both simulate the interaction of the b(n)-bit user and the

k(n)-bit time t(n) server on that instance, and run our b(n)-bit user strategy on that

same instance with the server; if the answers disagree, then the b(n)-bit strategy is

considered to have failed, and we move on to the next weak user strategy; otherwise,
we will move on to testing the same weak user strategy with the next weak server.

Regardless of whether or not the user strategy failed, we update the current states of

the servers in our table according to the last interaction.

If, for some b(n)-bit user strategy, no failure is detected with any of the remaining
k(n)-bit server strategies, we return "2" and halt. Otherwise, after all b(n)-bit user

strategies have failed, we return "1" and halt.

Analysis. First, note that since there are a polynomial number of weak user strate-

gies and weak server strategies, and each runs in polynomial time, the user strategy

described above is performing a polynomial number of polynomial-time computable

simulations. Therefore, our user strategy runs in polynomial time.

Turning to correctness, we will naturally separately consider the behavior of our

strategy when we interact with members of S* and members of S* We note first

that we are allowed to output either verdict if the server is a member of S1 with a

program length greater than k(n), or if the server is a member of S2 which is not

helpful for our decision problems of interest to weak users of length at most b(n), so it

only remains to show that our strategy works when neither of these conditions hold.

It is particularly easy to show that the strategy works for servers in S2 now.

Whenever a server S in S2 is helpful to one of the weak users of length at most b(n),
then when we reach that user in the enumeration, S will help it decide every instance

of our diagonal problem; therefore, at that point, our strategy will find that b(n) did

not fail on any of the instances, and correctly output "2" and halt.

To see that our strategy works for servers S in S*, note that when S is computed

by a program of length at most k(n), each b(n)-bit user strategy will fail to correctly
decide "does the current b(n)-bit user strategy reject when interacting with the current
k(n)-bit server started from its current state?" when we consider S as the current

k(n)-bit server. Thus, each b(n) will fail by the point it reaches S in the inner loop;
since every weak user will therefore fail, we finally (correctly) output "1" and halt. U

3.5.3 Promises and verifiability

There is a moral to the story of the development of our test for computational ability.

Recall that our original ambitions - to distinguish time t(n) bounded server strategies

from server strategies requiring more time - had to be scaled back substantially by
means of a collection of "promises" (i.e., assumptions) concerning the goal and the

class of servers. The difficulties we encountered stemmed from the fact that, under a

variety of conditions, weak servers could be indistinguishable from strong servers-

that is, there were many cases in which success at our goal could not be verified, and
we were only able to succeed once we eliminated these cases by assumption.

The same observation is likely to be relevant to other goals, given that we know by
Theorem 2.25 and its variants that (robust) universal users can only be constructed
for verifiable goals; therefore, if a goal is not verifiable, it must be weakened before
we can have any hope of designing a universal user for it. Such weakening can take
the form of either a relaxed referee, a restricted class of servers, or both-as we saw
here.

More broadly, one could envision situations where we could assume various kinds

of "commonality" (common knowledge, etc.) between the server and user, and these
would be reflected in restrictions on the class of servers that the protocol is designed to
work with. The benefits of such restrictions are not merely limited to which goals can
be achieved, and in particular, we will see ways in which a user can also exploit such
kinds of restrictions to attain greater efficiency in its communication in Chapter 4.

92

Chapter 4

Conditions for efficiency in finite
executions

The theory described in the previous sections engages in some abuse of our notions

of "efficiency." Although it is easily seen to be necessary and reasonable that our

protocol should use different polynomial running time bounds for each server S E S,
the Levin-style enumerations incur an overhead in the running time that, for the user

protocol Us used to interact with S, is 2 0(usI) where |Usi is the length of our program

for Us. Since we expect |Us| to be of moderate size, 20(lUs) is enormous, and it is

natural to wonder if there is a better method. In this chapter, we will show that

unfortunately, this cost is unavoidable in general.

Still, the class of "password-protected" servers used to show the lower bound is

intuitively designed not to allow easy access; thus, there is reason to hope that a more

open server might not force us to pay such a prohibitively large price. To an extent,
these hopes are fulfilled: we will show how a different construction of a universal
user protocol can take advantage of a natural sense of "commonality" - a notion
of "natural user strategies" - when the server is designed to efficiently aid a large
collection of such natural user strategies in achieving the goal.

We will also consider another upshot of restricting our attention to such servers:

we will be able to relax our various requirements on all states of a server to a require-

ment merely on the effectively reachable states. Such a relaxation will substantially

broaden the applicability of the theory, to include servers that are allowed to become

completely unhelpful so long as this is unlikely to be observed in practice.

Finally, we will describe some joint work with Santosh Vempala, in which we

consider the consequences of the lack of a suitable common notion of "natural user

strategies" across a class of servers. In particular, we will show that when no such

common notion exists under which all of the servers are easy to use, then no common

efficient universal algorithm can be designed for that class.

4.1 Running time lower bounds via passwords

We are motivated by the undesirable exponential dependence on the length of the rele-
vant program for a user protocol in the running times of the constructions of universal
users given in Proposition 2.27, Theorem 2.35, and the like. We will show that the
qualitative behavior of the running time of the generic constructions of universal users
in Proposition 2.27, etc. is optimal whenever the class of servers contains "password
protected" servers and the goal requires that the user obtain the server's assistance-
nontrivial goals, as specified in Definition 3.2. Since these password protected servers
are "helpful" (to users possessing the passwords), our results demonstrate that the
qualitative behavior of the running time of any universal user in the basic universal
setting for such nontrivial goals is undesirably large. Although Definition 3.2 does
not capture purely intellectual goals (and hence the result we have just described
does not suffice to prove Theorem 1.7 concerning computational goals, originally ap-
pearing in our first paper [80]) we will also show that the results also carry over to
our parameterized notion of nontriviality, given in Definition 3.4, which does capture
purely intellectual goals.

A different variant of these lower bounds appeared previously in a technical re-
port [81], and we will prove another similar lower bound on the number of errors
occurring in an infinite execution in Chapter 8. The technique of deriving lower
bounds by considering "passwords" itself is quite natural and hence unsurprisingly
not new to this work-we believe it was first discovered by Moore [108].

4.1.1 Lower bound for nontrivial goals

We will first show the lower bound for the original, simpler notion of nontriviality,
which is well-suited to physical goals. To begin, recall that in our models of nontrivial
goals, we chose to model a server providing "no assistance" as the server employing
a strategy that only sent empty messages to all other parties; a nontrivial goal in the
sense of Definition 3.2 was then one that could not be achieved with such a server.
Along these lines, a "password protected" server is one that provides no assistance to
a user until it receives a message from the user that matches its password.

Definition 4.1 (Password-protected server). For every server strategy S and string
x G {0, 1}*, the password-protected version of S using password x, denoted SX, is a
server strategy which is identical to S except for an extra "waiting for password" state

(not used by S), in which it sends empty messages to all other players; it remains in
the waiting state until it receives a message from the user containing x, from which
it enters an initial state of S.

A user for a large collection of password protected versions of servers must incur
substantial overhead compared to the respective optimal user strategies for each server
because whenever the user does not know the password, the user has no choice but
to try all possible passwords in the class, which implies a lower bound on the user's
running time. We address this claim in two parts. First, we observe that given a user
strategy for any server, we can construct user strategies for each password protected

version of that server which are not much less efficient than the original user strategy
with the unprotected server.

Proposition 4.2 (password protection preserves helpfulness). Let S be a server strat-
egy and U be a t-time bounded user protocol such that (U, S) robustly achieves a goal
with probability p. Then, for every password x of length less than f, there is a t + f -
time bounded user protocol Ux such that for the password protected version of S using
password x S', (Ux, Sx) also robustly achieves the goal with probability p.

Proof Given the t-time bounded user protocol U that robustly achieves the goal
with S with probability p and the password x of length less than f, the user strategy
Ux that sends x to the server and then runs U from its initial state is t + E-time
bounded.

Let an arbitrary initial state of the environment be given. If Sx starts in the wait-
ing state, notice that after the first round, the execution of Ux with S' is identical to
some execution of U with S; therefore, since both executions send the same messages
to the environment and (U, S) achieves the goal in an execution started from this
state with probability p, so does Ux with Sx. If Sx starts in any other state of S,
we again notice that after the first round, the execution of Ux with Sx is identical to
some execution of U with S, so again Ux with Sx achieves the goal from this state
with probability p since U with S does. Thus, (U', Sx) robustly achieves the goal
with probability p. U

Now that we see that the dependence of the running time of a good strategy for a
fixed password-protected server only depends linearly on the length of the password,
we show that the running time of a universal user depends exponentially on the lengths
of the passwords. The lengths of the descriptions of the optimal user strategies
similarly depend only linearly on the lengths of the passwords, so this shows that
the exponential dependence on these lengths in the generic construction of universal
strategies used in Proposition 2.27 is qualitatively optimal for classes containing all
the password protected versions of a server using passwords of each given length.

Theorem 4.3 (exponential overhead is necessary for nontrivial goals with pass-
word-protected servers). For a nontrivial goal G and any server that is helpful for
G, for every user strategy U, integer f and 6 C (0,1), there is a password x of length f
such that U does not achieve G in less than 6 2e rounds with the server using password
x with probability greater than 6.

Proof Let any user strategy U be given and let T be a trivial server. Since G is
a nontrivial goal, there is some E C S such that the referee is never satisfied in the
execution (E, U, T). Since the expected total number of times the user sends strings
of length f in the first 6 2e - 1 rounds is less than 62t, by a pigeonhole argument, we
see that there must be some string x of length f such that the user does not send
a message consisting of x in 62e - 1 rounds with probability at least 6. Therefore,
if we consider the execution (E, U, SX), we see that the first 62 - 1 rounds of this
execution are identical to the execution (E, U, T) with probability greater than 1 - 6.

In particular, since the referee is never satisfied in (E, U, T), the referee is only satisfied
in (E, U, SX) during the first 62'-1 rounds with probability less than 6. The theorem
follows. U

In particular, Proposition 4.2 immediately implies that whenever a p-helpful server
for a goal exists, the class of all p-helpful servers for the goal contains all of the
password protected versions of that server, so the lower bound of Theorem 4.3 applies
to the basic universal setting for nontrivial goals. That is, if we wish to avoid the
exponential overhead incurred by the construction employed in Proposition 2.27, then
we must look at classes of servers more restricted than the class of all p-helpful servers
for a nontrivial goal.

4.1.2 Extension to parameterized nontriviality

Thus, Theorem 4.3 is already sufficient to motivate searching for new restrictions on
the class of servers in some cases. We stress that this effect actually holds much more
broadly than Theorem 4.3 would strictly suggest. The problem with Theorem 4.3 is
that unless the referee is never satisfied with some actual strategy of the environment,
a purely intellectual goal cannot be nontrivial in the sense of Definition 3.2. In
particular, our exponential lower bound on the overhead of users for computational
goals, Theorem 1.7 from Section 1.4.2, does not follow from Theorem 4.3.

Recall that we had also introduced a parameterized notion of nontriviality, in
Definition 3.4, to capture situations where although the goal may be achievable by a
user on its own, the user expects to reduce the time requirements by communicating
with a server. We will show how Theorem 4.3 can be adapted to show a lower bound
for goals that are nontrivial in this parameterized sense. Thus, we will see that
actually, most goals of natural interest require exponential overhead in general.

Theorem 4.4 (Exponential overhead for goals that are nontrivial in the parameter-
ized sense). If G = (S, R) is (t(n), E(n))-nontrivial and, then for every user strategy
U, (G, p) -helpful server strategy S, integer f and 6 C (0, 1), there is a password x of
length f such that U does not simultaneously achieve G in less than 62 ' rounds and
run in time less than t(n) with probability greater than 6 + c(n) with the server using
password x.

Proof The argument essentially follows the same basic outline as the proof of The-
orem 4.3, with a few new technicalities:

Suppose for contradiction that some user strategy U could achieve G in less than
6 2' rounds and less than t(n) steps with every server using a password x of length f
with probability 6 + E(n) + 6 E for some 6 E > 0.

Since G is (t(n), e(n))-nontrivial, we can find some E E E such that U cannot
satisfy R with the trivial server T when it runs in t(n) steps with probability greater
than e(n). Now, by a pigeonhole argument (just as in the proof of Theorem 4.3) there
must be a string x of length f such that in the execution (E, U, T), the user does not
send a message consisting of x within the first 62 - 1 messages with probability at
least 6.

Consider the execution (E, U, S'). Conditioned on U failing to send x to Sx,
(U, Sx) send the same messages to the environment as (U.T); in particular, since this
occurs with probability at least 1 - 6, and we assumed that U achieved G with Sx

in t(n) steps with probability 6 + e(n) + 6E, by a union bound, we see that U should

also achieve G with T in t(n) steps with probability at least c(n) + 6 E. Recall, now,
that E was chosen so that R was only satisfied with (U, T) when U ran in t(n) steps
with probability at most 6(n), a contradiction. Therefore, no such user U can exist.
U

Theorem 4.4 now yields, in particular, our exponential lower bound on the number
of rounds needed to achieve our goal of computation for PSPACE-complete problems
as a corollary. The definitions of H-helpful and "deciding instances of 11" were orig-
inally given in Section 1.4.2, and later revisited in Section 3.3.1; to understand the
theorem below, it suffices to know that "deciding instances of H" (as defined in Sec-

tion 1.4.2) means achieving the goal of computing H, Gr as defined in Example 2.17,
with probability at least 2/3.

Theorem 1.7 Let H be a PSPACE-complete decision problem, and let A be a H-
helpful Alice. Then, unless PSPACE = BPP, if a probabilistic algorithm Bob decides
instances of H using the help of any Alice in PW(A) with passwords of length f in

time te(n) = O(nk), Bob must run for Q(21xi) rounds with Ax.

Proof Suppose that the goal of deciding H, Gr, were not (p(n), 7/12)-nontrivial for

every polynomial p(n); this would imply that some user interacting with the trivial

server could decide H with probability 7/12 in polynomial time. Of course, this
immediately yields a BPP algorithm for H, and hence since H is PSPACE-complete,
we would have PSPACE = BPP.

Therefore, unless PSPACE = BPP, Gn is (p(n), 7/12)-nontrivial for every poly-
nomial p(n). Theorem 4.4 now shows that for any user protocol, for every length f,
if the user's running time with servers with passwords of length f is bounded by a
polynomial te(n), then there is some password x of length f such that the user cannot
achieve Gr with Ax with probability 2/3 in less than -§2 rounds. N

Since, with the one exception of the goal of testing computational ability in Sec-
tion 3.5 - which was designed for a highly specialized class of servers - all of the goals
we have considered so far were either nontrivial in the sense of Definition 3.2 or in
the sense of Definition 3.4, we see that enumeration is unfortunately qualitatively op-
timal for many (perhaps most) natural goals of interest in the basic universal setting.
Since this exponential "constant" in the running time of a universal user protocol is

extremely undesirable, we need to explore means of restricting the class of servers so

that it does not contain, e.g., password-protected servers, but is still broad enough
to yield useful protocols.

In particular, recalling Proposition 4.2, these results suggest that, e.g., merely

restricting the complexity of the user protocols that the servers help cannot suffice

for obtaining a more efficient universal user; intuitively, we need some definition
that rules out the degenerative "hiding" behavior of the password-protected servers.

Alternatively, one might hope to find a measure of the "degeneracy" of a server and
we might then hope to find a protocol for which the efficiency scales appropriately
with this quantity. In the next section, we will see one example of how such notions
can be made precise, and under some natural conditions, a universal protocol can run
more efficiently.

4.2 A Bayesian model of helpfulness

In the previous section, we saw that as a consequence of our counting "password-
protected" servers as "helpful" servers that our universal users were expected to work
with, we had no hope of giving a really efficient user strategy-the number of rounds
required under such conditions often grows exponentially in the length of the user
protocol needed to successfully communicate with the server (cf. Theorems 4.3 and
4.4). This is a dissatisfying state of affairs since, in applications, one surely never
expected a protocol that could quickly break into a password-protected server; we
would have been quite happy to use a protocol that was only efficient when the server
was not designed to keep us out in the first place. Thus, we desire a refinement of
our notion of "helpfulness" to include only easy-to-access servers, and a protocol that
can take advantage of such servers, both of which we will develop presently, inspired
by "PAC-Bayesian" analyses in learning theory [104, 130].

The suggestion that the PAC-Bayes (and/or a Bayesian approach more generally)
may be relevant to developing a notion of a more "proactive" helpful server is due
to Dan Roy and David Sontag [119]. Some of the notions we develop here were also
inspired by conversations with Adam Kalai.

4.2.1 Basic notions: priors and benchmarks

As a starting point, we suppose that there is a server designer who is attempting
to design an easy-to-access server for some fixed goal G that is known to all parties.
Once we have a notion of what kind of server a benign designer might produce, we
will be able to ask whether or not we, as users, can generally access such servers and
achieve G efficiently with their assistance.

Towards developing a notion of an easy-to-access server, we will first reflect on
what goes wrong with password-protected servers. Formally, the reason a long pass-
word provides security is that, for a user who does not have the password, accessing
the server requires searching through an exponentially large space. Of course, this
only holds if the password is properly chosen-if the password does not have enough
"randomness," then it may be possible to break it by searching through a smaller
space: in practice, for example, by searching through the words in the dictionary.
Relative to the dictionary, such weak passwords have short descriptions, and may be
considered "easier to guess" or more "natural." Thus, as a first stab at a notion of
easy-to-access along these lines, we might wish to say that a server should operate
with a user protocol with a short description.

The problem with the "short description" requirement is that there could be a

I -.

Figure 4-1: An illustration of the two types of inefficiencies; P denotes the set of user
protocols given high weight by the prior distribution P, and similarly Q denotes the
set of user protocols given high weight by the prior distribution Q.

gap between our notion of a short description and the server designer's notion. One
might be tempted to retort that a basic result in Kolmogorov complexity is that
these description lengths should not differ by more than a constant [93], but this
is no help at all: for a given password string x, we could consider a programming
language for which the instruction "print x" has a very short (e.g., two-bit) code.
If the server's designer happens to use such a programming language, then a user
with the password x might seem very natural indeed, and we are back where we
started. Indeed, in general, there is no bound on how large this "0(1)" term might
be. Although this is a particularly pathological choice of programming language, it
is intuitively clear at least that in practice, some programs are substantially easier
to write in one language than another and vice-versa. Thus, it is clear that this first
attempt is inadequate, and we will have to give up something here.

Roughly, we will give up on a universal notion of "natural" programs, and allow
our performance to degrade with the gap between our notion of which user protocols
are "natural" choices, and the -server designer's notion of "natural" user protocols. We
will formalize "naturalness" in terms of probability distributions over user protocols.
Or, in Bayesian language, we will talk about a prior belief over user protocols, in
which the probability assigned to a protocol U corresponds roughly to the (assumed)
probability that a user drawn from the "general population" will use protocol U.
Thus, as a user, we may have a prior distribution P describing our beliefs about
which protocols would be "natural" to run - in particular, which protocols we believe
the server designer to be anticipating - and the server designer may have a different
prior distribution Q, capturing how likely the designer believes users are to run various
strategies.

Now, we suppose that the server designer will attempt to construct a server strat-
egy S that helps as many natural user strategies as possible to achieve a goal G

efficiently-which means, in this case, that a protocol drawn from distribution Q
achieves G with the designed server S in reasonable time with as high probability as
possible. Now, what we hope is that if the user and the server designer mostly agree
on which user strategies are natural, then the user, using a universal user strategy
designed with the prior distribution P in mind, will also achieve G with S in reason-
able time. Thus, as illustrated in Figure 4-1, if the user does not achieve G efficiently
with S, we should either be able to explain this by saying that either

I. there was a mismatch in the expectations of the user and the server designer,
e.g., about what kind of programming language is natural, or

II. the server was not designed to be easily accessed, e.g., it is password-protected.

Closeness of priors

The notion of "closeness" of priors that we will use is the statistical distance between
distributions P and Q, denoted A(P, Q). Precisely, if P(x) and Q(x) are the probabil-
ities assigned to outcome x by P and Q respectively, A(P, Q) = 1 JP(x) - Q(x)|.
It is useful to note that the statistical distance may be alternatively defined as the
advantage given by the best choice of event A in distinguishing P from Q, i.e.,
A(P, Q) = maxA P(A) - Q(A)I.

We note that our notion of priors associated with users and server designers is
sufficient to capture our preliminary notion of "natural" strategies as those with
short descriptions, and that two different programming languages that can be easily
translated have a "reasonable" bound on their distances.

Example 4.5 (Uniform distributions). Given a programming language (universal
interactive Turing machine #), we can consider a "uniform distribution" over programs
Pp in which each program of length F E N has probability 2 -(f+2Iog +). Equivalently,
we can consider a corresponding "prefix free" encoding of the program of length f (in
the sense of Definition 3.16) by prepending f in binary, itself preceded by a string of
zeros of length [log EJ (note that the high-order bit of F is a 1); P, then corresponds
to a distribution that is sampled by choosing uniform bits until a 1 appears, choosing
a length f by choosing a bit for each 0 it obtained before the first 1, and then choosing
f uniform bits to obtain a program for #.

The basic results of Kolmogorov complexity may then be adapted to tell us that
the distance between the uniform distributions corresponding to # and 4' is bounded
by a constant: we can consider a program p:,p(p') on # that simulates 4' on a hard-
coded program string p' embedded in its code with some modest overhead in its
running time; if p' is of length f, then p' need not increase the length of po:v by more
than U, and hence by the concavity of the logarithm function, pO:p(p')+ 2 logpep(p')]+
1 need be no more than co:* + U + 2 [log fJ + 1 for some constant cp:p. Therefore, the
strategy corresponding to program p' has weight at least

2-(cO:p+t+2L1ogi +1) = 2 -c, PP, (p')

100

for each such program p'; we therefore see that for every strategy U, (letting U
correspond to the event that we sample a program for U of a suitably low running
time) P4(U) > 2-%+P(U) and we say P0 dominates Pp. Of course, we similarly find
that P0(U) 2- +PO(U) for another appropriate constant cp.. Thus, for any U,

P(U) - PO(U) < (1 - 2-c**)PVp(U) and P4(U) - Pv)(U) < (1 - 2-C**)P4(U) so we

can bound the statistical distance of Pp and P0 as 1 - 2 -max +cpC*.

Benchmark distributions

It may also be natural for the designer of a server for helping users achieve a goal G to
assume that users will only use strategies that will (eventually) achieve G; certainly,
our universal users will fit the bill whenever they can be constructed. In this case, the
server designer may have a prior Q for which every user strategy in the support of Q
will achieve G with any candidate server design, and the designer's sole objective is
then to design a server S that minimizes the running time of these users with S. Q is
then the "benchmark" distribution used by the server designer in evaluating various
candidate designs, which motivates the following definition:

Definition 4.6 (Benchmark running time). For a goal G, a server strategy S, and
a user protocol U, let tus(n) denote the maximum expected running time of U in
an execution (E, U, S) over E of sizes at most n. Then, for a distribution over user
protocols Q, the Q-benchmark running time for G with S, denoted tQ,s(n), is given
by the expected value of tus(n) when U is sampled from Q.

Now, supposing we have a prior distribution P that is close to the benchmark
distribution Q used by the server designer, we would hope to be able to construct a

user strategy that achieves G with a server S in time comparable to the Q-benchmark
running time for G with S.

4.2.2 Uniform viability

Ultimately, we aim to construct universal users which have more desirable running
times when the server designer's prior is close to our prior. Naturally, as in the
generic construction of universal users presented in Proposition 2.27, we will rely on
the availability of an appropriate kind of sensing for the goal. Again, we know that
some kind of sensing must be available in order for it to be feasible for us to reliably
achieve the goal. The construction of Proposition 2.27, however, worked by searching
the space of user protocols for a protocol that satisfied the viability requirement of
Definition 2.22 with the given server, where it was given that some such user protocol
existed, i.e., that the server was viable for our sensing function. Now, in general,
there may be a "gap" between user protocols that achieve a goal with a server S, and
protocols that witness viability of a sensing function with S, even when the sensing

function is viable with all helpful servers; our example of sensing for computational
problems in Example 2.24 (and discussed in more detail in Section 3.3) is a concrete
example of such an instance, and the user protocol witnessing viability in our generic
construction of a viable sensing function from Proposition 2.26 is actually the given

101

universal user protocol. Indeed, satisfying a sensing function may be much more
demanding of a user-server pair than merely achieving a goal, and we have seen
examples (Example 2.20 and Corollary 3.14) of goals where servers may be helpful
but no safe and viable sensing function exists (under a reasonable hypothesis, in the
case of Corollary 3.14).

Now, note that our assumption about the server designer is merely that he or
she attempts to optimize the running time and fraction of "natural" user protocols
achieving the goal G with the designed server. Since our constructions of sensing
tend to be relatively ad-hoc and it is unclear what we might even want to constitute
"natural" sensing for a goal, in general it would be completely unreasonable to expect
that the server designer has designed the server with our particular sensing function
in mind. Thus, in order for our assumption about the server designer helping many
natural user protocols achieve the goal to lead to a construction of an efficient user
protocol, we will modify the viability condition that our sensing function satisfies: we
will assume that the viability condition satisfied by our sensing function is uniform
in the sense that there is an associated generic (black-box) reduction that, given a
protocol that achieves G with a server S, uses that protocol as a subroutine to satisfy
the sensing function with S. Note that this is an extremely natural paradigm, and
essentially the natural way to show that a sensing function is viable with the class of
all helpful servers-and indeed, all of our example constructions of universal users in
the basic universal setting proceeded by constructing such uniformly viable sensing
functions.

In order to proceed, we will need to define what we mean by such a "reduction"
in an interactive setting. Noting that in the specific case of computation, we wished
to invoke the "solution" to our sub-problem many times, we see that in particular we
desire a generalization of a Cook reduction to an interactive setting. Thus, we will
rely on the following definition of an interactive oracle protocol:

Definition 4.7 (Interactive oracle protocols). A universal interactive oracle Tur-
ing machine with interactive oracle strategy 0, 0, is modeled by a pair of entities
(#0, 0), in which #0 is a universal interactive Turing machine which may, at unit
cost, start 0 running from its initial state; while 0 is running, #0 plays the role of
the environment with respect to 0, and 0 interacts with the remaining entities in
place of #0. An interactive oracle protocol U0 is given by a program UO for #0 and
an oracle strategy 0.

For a given interactive oracle protocol U0 , a non-deterministic environment strat-
egy S with size parameter n, and a function t : N -+ N, we say that U0 is time-t(n)
bounded if for every server strategy S and every state of E E E, in the execution of
#o on the program UH with oracle strategy 0, #0 runs for no more than t(n) steps
before it halts; if #0 on program UO never runs for more than t(n) steps on any
oracle, then we simply say that UO is time-(n) bounded.

Now that we possess the necessary groundwork to precisely describe a generic
reduction from satisfying a sensing function with a server S to achieving G with S,
we are ready to give the refined notion of viability that we will use.

102

(environment
w. r. t. O)

E

(user w.r.t. S)

Figure 4-2: The system corresponding to an universal interactive oracle Turing ma-
chine #0 with interactive oracle strategy 0, executing with an environment's actual
strategy E and a server strategy S. S exchanges messages with 0 while #0 is invoking
0, and otherwise exchanges messages with #0.

Definition 4.8 (Uniform viability). We say that a sensing function V is (p(n), r(n), 1-
6(n), 1 - e(n))-uniformly viable for a goal G and a class of server strategies S if there
is some interactive oracle user protocol UO running in expected time p(n) such that,
given a user strategy Us that robustly achieves G with S in in environments of size up
to r(n) with probability 1- 6(n), V outputs I on user's view with probability at least
1 - e(n) in the execution (E, UUs, S) from any state of the server and environment.

4.2.3 An efficient universal protocol for close priors

We can now present the main theorem of this section, refining Proposition 2.27 given
that we have a safe and uniformly viable sensing function, and given that we have a
sampleable prior distribution P. (Of course, if we could not obtain samples from P, we
would not expect it to be particularly useful in designing an algorithm!) The theorem
then follows the same paradigm as the family of PAC-Bayesian bounds in learning
theory, introduced by McAllester [104] and Shawe-Taylor and Williamson [130]: we
obtain a worst-case bound that degrades with the distance between our prior and
the distribution used by the server designer. Thus, when our prior closely matches
the designer's distribution, our performance roughly matches what the designer would
anticipate us to obtain by using protocols sampled from the "natural" distribution; in
particular, when the server designer expects that we should be able to run efficiently
by using natural protocols, and our notions of natural protocols largely agree, we do

103

achieve the goal efficiently.

Theorem 4.9 (Universal users for servers with a close prior). For a class of servers
S, let functions 6s : N -+ [0, 1], ts : N -+ N, Ps : N -+ N, PU : N - N, r : N -+ N,

ps : N -+ [0, 1], vs : N -+ [0, 1] and es : N -+ [0, 1/3] and a distribution on user

protocols Qs be given for each S E S. Let G be a goal with a (1 - ps(n))-safe and

(pu(n), r(n), 1 - vs(n), 1 - Es(n))-uniformly viable sensing function V computable in
expected time time ps(n) with S E S, and such that G is achieved with S in (ts or)(n)
steps with probability 1 - vs(n) in environments of size up to r(n) by a 1 - 6s(n)
fraction of user strategies under Qs. Let P be any efficiently sampleable distribution
over protocols. Then, for

Ts(n) = 18((tsor)(n)pu(n)+6ps(n)) 1 log 2

1 - 6s(n) - A(P, Qs) 1 - 6s(n) - z(P, Qs)

there is an expected Ts(n)-time bounded (S, 1 - ps(n)Ts(n))-universal protocol for G.

Proof We use a variant of the protocol used in the proof of Proposition 2.27, in
which the enumeration of protocols is replaced by simply sampling repeatedly from
our given distribution P.

Construction. Let UO be the interactive oracle user protocol guaranteed to exist
by the (pu(n), r(n), 1 - vs(n), 1 - cs(n))-uniform viability of our sensing function V.
Our protocol is then as follows:

9 For i = 1, 2,. . ., repeat the following:

- For j = 1,..., i - 2log i, and k = 1, ... ,2, repeat the following:

1. Sample a protocol U from P.

2. For up to t = 2 j -2,gj steps, simulate U0 and run V on the resulting
transcript if U0 halts; if V accepts, halt.

Analysis. Since we assumed that U0 was as guaranteed by the (pu(n), r(n), 1 -
vs(n), 1 - es(n))-uniform viability of V with S E S, for any user strategy U running
in (ts o r) (n) steps that achieves G with S with probability 1 - vs(n) in environments

of size up to r(n), V outputs 1 on the view generated by UU with probability at
least 1 - es(n) > 2/3. If a 1 - 6' fraction of the user strategies under P achieve G

with S with probability at least 1 - vs(n) in (ts o r)(n) steps in environments of size
up to r(n), then if t > (ts o r)(n)p(n) + 6ps(n), since V runs in expected time ps
and UH only runs U with environments of size up to r(n), with probability at least
2/3 - 1/6 = 1/2, we see V run to completion and output 1 on the view generated by

UU, given that we successfully sampled such a U. We will call these U good protocols.

If i > i* = log((ts o r)(n)p(n) + 6ps(n)) - log(1 - 6') + 2 log log 1 , then for

j = 1, ... log ,, we run each protocol we sample for at least (ts or) (n)p(n) + 6ps (n)

104

steps, and there are precisely

log 1

2 = 2 1
j=1

such samples in phase i*; we therefore obtain a good protocol in phase i* and run it

for sufficiently many steps with probability at least 1 - (1 - 6)2 6-1 > 1 _ 1
(l-5')e

2 l

where each time we then succeed and halt with probability at least 1/2. Moreover, in
phase i* + k, there are 2k+116 - 1 such samples, and thus if we group our samples

into batches of 2,_1-y, in each of our first 2k -1 batches, we only fail when we either fail
to hit a good protocol, or when a good protocol fails, which by a union bound occurs
in each group with probability at most 1/2 + 1/e 2, and thus at most (1/2 + 1/e2)2k-1
overall. Since the total running time up to phase i* + k is

i*+k i-2 log i 2i .2

S 2 22i - 3
i=1 j=1

our expected running time is at most

2 00

3 2 1 + 2 k+1 - + 1/ e2)2k+12

k=0

where we can bound the sum by, e.g., for s = 6,

1 2k1 1 2 2k_-1 +2s+1(1/2 + 1/e2)25+1-1 (1/2 + I/e2 2+1

1/2 + e
1/2 - 1/e2 (1/2 - 1/e2)2)

which can be verified numerically. Thus, our running time is at most

18((ts o r) (n)pu (n) + 6ps(n)) log2-'

We now note that since the probability of sampling a good protocol under Q is at
least 1 - Js(n), 1 - ' > 1 - Js(n) - A(P, Q); our protocol's running time is therefore
at most Ts(n). Moreover, since our sensing function is (1 - ps(n))-safe with S and
our protocol only halts when V outputs 1, where we run the sensing function at most
Ts(n) times, by a union bound, our probability of halting when G is not satisfied with
S is at most 1 - ps(n)Ts(n). Thus, our protocol is an expected Ts(n)-time bounded
(S, 1 - ps(n)Ts(n))-universal protocol, as claimed. U

As a corollary, by Markov's inequality we also show that if the server designer
evaluates the server with respect to a benchmark distribution (over user protocols
that always achieve G) and our prior is close to the server designer's benchmark
distribution, then the running time of our universal protocol is comparable to the
benchmark running time.

105

Corollary 4.10 (Universal users running in time comparable to a server's benchmark
time). Let ps, us, es, and Qs be given along with a goal G with a sensing function V
satisfying the conditions of Theorem 4.9, and supp(Qs) containing only user strategies
Us such that (Us, S) robustly achieve G with probability 1 - vs(n). Let ts,Q(n) be the

Qs-benchmark running time of users for G with S. Then, for

Ts(n) = 69((ts,Q o r)(n)pu(n) + 3ps(n)) 1 -o (PQ) log

there is an expected Ts(n)-time bounded (S, 1 - ps(n)Ts(n))-universal protocol for G.

Proof For each server S E S, put 6s(n) = !(1 - A(P, Qs)). Then, Markov's
inequality gives that, for a choice of user protocol U according to Qs, the running time

of U with S, tus(n), is at most 1(P) with probability at least 1- (1-A(s) =

1 - 3s(n). Applying Theorem 4.9 (using the slightly tighter bound from the proof)

with ts(n) = 12,(7'?) now easily yields a protocol with the claimed performance. U

We note that distributions induced by the program lengths of a set of good strate-
gies, (i.e., conditioning the distributions in Example 4.5 on a set of good strategies),
when applied to Corollary 4.10, gives us an overhead in the running time that is at
most exponential in the length of the program that translates one language to the
other, which is about as much as we could hope to prove in general. We would still
hope that the difference in the priors would be less than this in many natural settings.

4.3 Effective conditions for efficient users

There is an additional benefit to restricting our attention to user strategies that are
"natural" in some sense, such as having short programs: it will allow us to broaden the
applicability of our theory to include servers that are only helpful to these "natural"
strategies, by restricting our attention to only those states of the server that can be
feasibly reached by natural user strategies.

4.3.1 Servers with a designated class of properly functioning
states

Many real-world devices provide the ability to update their internal software. When
used properly, this feature allows the inevitable bugs in the software to be patched as
they are discovered. Unfortunately, we can see that any device that has this feature
is not "helpful" in the sense of Definition 2.18: if we consider a user strategy that
"updates" the internal software of the device by replacing it with a program that
does nothing, we find that this user reaches a state of the device where it simulates
the trivial server, where we noted at the outset of this chapter that the trivial server
is generally not helpful.

We might still hope that if the feature that allows a user to update the device's
software is password-protected, then we could ignore the fact that the device has

106

this feature-after all, we know that it is generally infeasible to find a long password
intentionally, let alone by accident. We might then reasonably expect that as long
as it is possible to figure out how to use an idealized, truly helpful version of the
device efficiently, we should be able to figure out how to use the real device without
discovering that the real version can be "broken" by an unfortunate choice of user
program. Essentially, we will ultimately show this by stating a variant of Theorem 4.9
for servers that are unlikely to break with respect to their design distributions.

Thus, the key definition enabling us to state such a theorem captures subsets of
server states that are hard for "natural" users to distinguish from the set of all server
states. Whereas the set of all server states is trivially "closed" in the sense that no
user can causes the server to enter some new state, we say that such a set of states that
is merely "hard" for "natural" users to exit is effectively closed with respect to the
given notion of natural users. In anticipation of future applications, we will actually
define "effectively closed" sets of pairs of server states and environment states, and
obtain the desired notion of effectively closed sets of server states as a special case.

Definition 4.11 (Effectively closed). For a non-deterministic environment strategy
E with size parameter n : S -+ N, a server S, a distribution over user strategies
P, t : N -+ N, and -y : N -+ [0, 1], we say that the set of server and environment
states E C Q(s) x Q(e) is (t(n), -y(n))-effectively closed with respect to P if, for every

(o(s), (e)) E e and t ; t(n) the probability that, for a user strategy U drawn from P,

(Xs), X e)) E) with probability at least 1 - -y(n) in the execution (E, U, S) started
from (o(e), o(u), o(s)) for the initial state o(u) specified by U, where the probability is
taken over the choice of U from P and the random evolution of the execution.

Similarly, a set of server states es for a server S is said to be (t(n), -y(n))-effectively
closed with respect to P in E if the set Os x Q(e) is (t(n), -y(n))-effectively closed with
respect to P.

We stress that it was again essential that we invoke some notion of "natural"
user strategies like the one provided by prior distributions. Merely considering "time
efficient" users, for example, wouldn't capture the effective impossibility of guess-
ing a password, because hard-coded user behavior can include the password; worse,
hard-coded behavior can even simulate any strategy for any finite number of rounds

(much as in the proof of Theorem 2.37), so such a notion would collapse to merely
characterizing the reachable server states, which is surely not the kind of relaxation
we were after. By contrast, we can see that a collection of states can be effectively
closed in the presence of password-protected states:

Example 4.12 (Password-protected servers can have effectively closed states). Fix
any distribution over user strategies P and any non-deterministic environment E, and
let S be any server strategy. Then, supposing that a user strategy U is drawn from
P, the same argument as used to prove Theorem 4.3 shows that for every f E N and
6 E (0, 1), there is some password x of length f such that for the password-protected
version of S with password x, Sx, the waiting for password state is (62', 6)-effectively
closed with respect to P and 8.

107

Of course, we are not presently interested in servers that are indistinguishable
from the (unhelpful) trivial server, but rather servers that are indistinguishable from

helpful servers. Naturally, this can be formally accomplished by weakening the notion

of robust achievement to only quantify over a subset of global states. It is then

immediate to obtain the desired variant of helpfulness, by substituting this weaker

definition for the original definition of robust achievement:

Definition 4.13 (Robust achievement, refined). For a goal G = (S, R), server strat-

egy S, set of pairs of states of the server and environment 8, and a user strategy
U, we say that the pair (U, S) robustly achieve the goal G with probability p with

respect to 0 if for every E E E and every state o such thata(u) is the initial state of U
and (a(s),I,)) C E, the probability that the user achieves the goal in the execution
(E, U, S) started from o- is at least p.

Definition 4.14 (Effectively helpful server). We say that a server strategy S with a
set of states 8s is p-effectively helpful for a goal G if there exists a polynomial time

user protocol U such that (U, S) robustly achieve the goal with probability p with
respect to 8s X .

Although we don't require it in the definition, it is our intent to consider effec-
tive helpfulness with respect to an effectively closed set of server states. Then, for

example, a modification of the server in which transitions out of the designated set
of states were replaced by "self-loops" would be helpful in the original sense, and our

effectively helpful server is indistinguishable from the helpful modification by natural
user strategies, in the sense that they produce indistinguishable executions. In this

case, we will generally refer to the effectively closed set of states as states where the
server is functioning properly, and if the server leaves this set of states, then we will
say that the server breaks.

We could similarly state a definition of a universal user in which the robust achieve-
ment requirement was relaxed to robust achievement with respect to the set of states
associated with the server (and environment), but in fact, we have already formally
stated a variant of universal user strategies that are appropriate to the present set-
ting: recall that, for a set of server-state pairs S*, a (S*, p)-weakly universal user, as
introduced in Definition 2.15, was only guaranteed to achieves G with probability p
with a server S when the execution started from some global state o- associated with
S in S*. For the current purposes, it suffices to merely give the convention that the
set of pairs of servers and associated functioning states (S, Os) corresponds to the
set of server-global state pairs S* containing a pair (S, o) for each -such that o(u) is
the user's initial state and o(s) E Es. Then it can be checked that a (S*, p)-weakly

universal user is one such that (U, S) robustly achieves G with probability p with

respect to 0s x 0(*) for each pair (S, Os), as desired.

4.3.2 Effective refinements of sensing

Towards developing an analogue of Theorem 4.9 for servers that are only effectively
helpful, we will need to also develop an appropriately weakened notion of sensing.

108

This is inevitable: safe and viable sensing in the original sense for a server implies,
by Theorem 2.25, that the server is helpful in the original sense. At a minimum, it
is obvious that we will need to weaken the viability requirement, and we will handle
this first. We will also weaken the safety requirement, for the reason that we want to
handle, e.g., servers that can be reprogrammed, as discussed at the outset, in which
case, if we wished to rely on some special property of the class of servers for safety,
this property could fail to hold of a server if it was reprogrammed improperly.

It is not difficult to state an appropriate "basic" weakening of sensing that only
demands viability with respect to properly functioning states of the server, analogous
to our weakening of helpfulness in Definition 4.14:

Definition 4.15 (Effectively viable sensing function). We say that a sensing function
V is (t, p)-effectively viable for a goal G with respect to a server S and a set of server
states Os if there exists a user strategy Us such that in any execution (E, Us, S) for
E E S started from a state u such that a(u) is the initial state of Us and o(s) E Os,
with probability at least p, Us runs for t steps in expectation and V outputs 1 on the
user's view of (E, Us, S).

Ultimately, though, as discussed in Section 4.2.2, we will require a definition of
viability that is more closely related to the notion of effective helpfulness. Hence,
paralleling the development of Definition 4.8, we state a uniform variant of Defini-
tion 4.15 which guarantees a black-box reduction from obtaining positive indications
in the properly functioning states to robustly achieving G in the properly functioning
states. Note that if the reduction requires multiple calls to its oracle strategy, then
we will need a guarantee that the provided strategy not only achieves the goal, but
also does not break the server, so that the same strategy can be invoked more than
once.

Definition 4.16 (Uniform effective viability). For a set S* of servers S with associ-
ated sets of states Os, we say that V is (p(n), r(n), 1-6(n), 1-y(n), 1-e(n))-uniformly
effectively viable for G and S* if there is some interactive oracle user protocol UO
running in expected time p(n) such that, for every server S and associated set of
states Es in S*,

1. Given any user strategy U' that in executions (E, U', S) started from states U

such that U(u) is the initial state of Us and o(') E Os, halts in states u such that
oc E Os with probability at least 1 - -y(n), in an execution (E, UU', S) started

from a state o such that ao") is the initial state of UU' and o C Os, every tth

state of the execution Xt in which UU' is not invoking U' has X c E) with
probability at least 1 - t-y(n).

2. Given a user strategy Us that robustly achieves G with S with respect to
Os x Q(*) in environments of size up to r(n) with probability at least 1 - 6(n),
V outputs 1 on the user's view with probability 1 - c(n) in the execution
(E, Uus, S) from any state U such that U(u) is the initial state of Uus and

oCs) E Os

109

We noted in Section 4.2.2 that all of our examples of sensing functions that were
viable with respect to the class of all helpful servers for a goal were actually uniformly
viable with respect to the class of all helpful servers. It can likewise be easily verified
that, moreover, when we instead consider a class of effectively helpful servers with
respect to a set of states that are effectively closed with respect to a given prior
over user strategies, the very same sensing functions are still safe, but also uniformly
effectively viable (potentially with some loss in E(n) due to the possibility that the
server may break during the reduction), since the efficient reductions only interact
with the server by running the oracle strategy repeatedly.

We now turn to developing a less demanding refinement of safety of a sensing
function, one that will apply to servers that are only hard for "natural" users to
distinguish from servers that actually satisfy the safety requirement. To be more
precise, we don't mean that the servers produce indistinguishable user views, but
rather that it is hard for "natural" users to distinguish the server from a safe server
by producing an execution in which safety is actually violated. Naturally, much as
in the definition of an effectively closed set of states, the desired relaxation may be
obtained by replacing the original universal quantification over user strategies for
which safety should hold (in Definition 2.22) by a "probabilistic" quantification with
respect to the given prior over user strategies.

Definition 4.17 (Effectively safe sensing function). We say that a sensing function
V is p-effectively safe for a goal G = (E, R) with respect to a server S with a set of
functioning states 6s and a distribution over user strategies P if, for any E E E and
round t E N, for a user strategy U is sampled according to P, when V outputs 1 on
the user's view of the first t rounds of the execution (E, U, S) started from the initial
state of U and any state of the server from Es, then R outputs 1 in round t with
probability at least p.

Of course, as we noted earlier, our existing examples of sensing functions that
were safe with respect to the class of all servers did not require a relaxed notion of
safety. The only cases where such a notion becomes important is when we needed
to assume some further property of the servers to achieve the goal, and where we
want to consider the possibility that this property could fail to hold with some small
probability. Naturally, since our main objective is to study communication in the
absence of assumptions (or at least, in the presence of minimal assumptions), we have
tended to avoid assuming properties of our servers. The only formal examples of
such properties that we have considered were that the servers "truthfully" reported
the functions they computed in the goal of PAC-learning in Example 2.34, and that
the servers "truthfully" reported their afilliations (and length parameters) for the
goals of testing, as considered in Section 3.5, although in the latter case we did
not explicitly construct a sensing function. We informally considered another case
where the assumption of some property would be necessary in Section 3.2.2, when we
considered searching from a search engine's perspective. Looking ahead, we will later
consider resettable servers in Section 7.2.2, and this is another natural example of a
property on which we might wish to base safety, that could fail to hold.

110

4.3.3 A universal user for servers that are easy to use and
hard to break

Now that the definitions for the relaxed setting are in place, we can prove the desired
analogue of Theorem 4.9, showing that when our prior is close to a server's design
distribution, there is a strategy under which the server is not much more likely to
break than the design distribution would predict, and moreover, when it does not
break, we manage to achieve our goal in time comparable to what the server's design
distribution would predict. Thus, for our purposes, it is sufficient to operate with
a server that was designed to be easy to use and hard to break, provided that our
notion of "natural strategies" is sufficiently close to that used by the server designer.

There is one major caveat in the adaptation: we do not obtain a bound on the
expected running time of the universal user. This is inevitable when the server is
allowed to break with positive probability, since we know nothing about the server's
behavior when it breaks, so the user may not halt in such cases. We chose to simply
bound the expected running time conditioned on the server not breaking, but it would
also have been possible to provide a tighter description of the distribution of running
times (than, e.g., can be recovered by means of Markov's inequality).

Theorem 4.18 (Effectively universal users under close priors). Given a goal G =

(E, R), consider any class of servers with associated sets of functioning states, S* and
associated distributions over user strategies Qs and time bounds ts for each (S, Os) E
S*. Let functions Js, Ils, vs, ys : N -> [0, 1], and es : N -> [0, 1/3] be given for each

(S, Es) E S. Suppose there is a (1 - ps(n))-effectively safe and (pu(n), r(n), 1 -
us(n), 1 - -ys(n), 1 - cs(n))-uniformly effectively viable sensing function V for G with
respect to S, Os, and P that is furthermore computable in expected time ps(n) for
every (S, Os) E S*; finally, suppose that for a 1 - 6s(n) fraction of user strategies U
under Qs, (U, S) robustly achieve the goal with probability 1 - vs(n) with respect to
0 s in environments of size up to r(n). Then, for

Ts(n) = ((ts o r)(n)pu(n) + 6ps(n)) 18 log 2
1 - os(n) - A(P, Qs) 1 - os(n) - A(P, Qs)

if Os is (CsTs(n), -s(n))-effectively closed with respect to Qs in S for Cs ;> 1, then
there is a (S*, 1 - 2-cs - 18(ps(n) + ys(n) + A(P, Qs))Ts(n))-weakly universal user

for G, that breaks S with probability at most 18(ys(n) + A(P, Qs))Ts(n) + 2-cs, and
conditioned on S remaining in states in Os, runs in expected time 18Ts(n).

Proof We will use the same algorithm as in the proof of Theorem 4.9, and at a high
level, our approach will be to first pretend that we are sampling from Qs instead of
P. We then note that when the class of server states Os is effectively closed with
respect to our sampling distribution, and we obtain a bound on the probability that
the modified protocol breaks the server. We then return to the analysis of the real
algorithm, and pay a penalty due to the statistical distance between Qs and P for
each sample.

Then, given that the server does not break, we can apply the same analysis as
before to bound the probability of failure and running time. Thus, a union bound

111

gives the overall failure probability (by adding in the probability that the server
breaks), and we obtain the claimed condition on the running time when the server
does not break immediately.

Before beginning, we will note that we can bound the probability that we will
break the server while running the oracle strategy guaranteed by uniform effective
viability on a user strategy sampled from Qs in the "obvious" way:

Claim 4.19. Let UO be the interactive oracle user protocol running in expected time

pu(n) guaranteed by the uniform effective viability of V for G and S*. Then, if
Es is (CsTs(n), 7ys(n))-effectively closed with respect to a distribution Qs over user
strategies in E, and we sample a strategy U' from Qs, the probability that UU' breaks
the server within t < CsTs(n) steps when started from its initial state and the server
starts in a state in Os is at most t . ys(n).

Proof We will divide the execution of UU' into steps where it is invoking U' and
steps where it is not; suppose that in the first t steps, UU' invokes U' ti times. We
now consider the probability that these ti independent invocations of U' break the
server.

Suppose that when S is started from any state in Os, the probability that a fixed
U' breaks S in E is at most 7yu, (n). Then, when we run U' ti times independently, we
know that given that t1,'u'(n) < 1, that (1 -yu,(n))l < 1- t1yu,(n), so therefore the
probability that U' breaks S in any of the ti runs is at most t1yu,(n). Now, we note
that when U' is instead sampled from Qs, since we run U' for at most CsTs(n) steps,
the (CsTs(n), 7s(n))-effective closedness of Os guarantees that Eu,[7u,(n)] < -Ys(n);
so, by linearity of expectation, the probability that the U' sampled from Qs breaks
S in any of its ti independent runs is also at most t17s(n).

Now, by the definition of uniform effective viability, we also know that when our
oracle strategy is not invoking U', it breaks S with probability at most Ys(n) per
step; thus, over the first t steps of UU' for U' sampled from Qs, the total probability
that the server breaks is at most t'ys(n), as needed. U

Therefore, a union bound together with Claim 4.19 yields that the total probability
that our algorithm breaks the server (when sampling from Qs) in the first t steps is
also likewise at most t-ys(n) up to phase i = log CsTs(n) + 1, since the maximum
running time allocated to algorithms in phase i is 2 i-1 steps. If we can argue that
the algorithm only runs for T steps in expectation given that it does not break, then
the probability that it breaks can be bounded by the probability that it runs past
phase i plus Tys(n). Now, we note that since we sample from Qs at most T times
in expectation, this means that we can bound the probability that the server breaks
when we actually sample from P by the probability that we run past phase i plus
T(ys(n) + A(P, Qs)).

We now return to the running time analysis of the protocol that actually samples
from P, following the analysis in the proof of Theorem 4.9. When the server does
not break, we note that the protocols actually sampled from P and run for (ts o
r)(n) steps achieve G in environments of size up to r(n) with probability at least
1 - 6s(n) - A(P, Qs); therefore, uniform effective viability gives us that such a good

112

protocol U when run as the oracle strategy UO for (ts o r)(n)pu(n) steps generates
a user view that V accepts with probability 1 - es(n) > 2/3. We also know that V

runs in 6ps(n) steps with probability at least 5/6, so when we schedule UU and V to
run for (ts o r)(n)pu(n) + 6ps(n) steps, V outputs 1 with probability at least 1/2.

Therefore, continuing along the lines of the proof of Theorem 4.9, for each phase
i*+k ;> i* = log((tsor)(n)pu(n)+6ps(n))+log 1-Is(n)+A(P,Qs)+21g log

we obtain 2 k - 1 groups of 2 1
1-5s(n)+A(P,Qs) samples, where when we actually sam-

ple from P, each group fails to obtain a positive indication with probability at most
1/2+ I1/e 2. So, as long as the server has not broken, we only fail to obtain a positive
indication in round i* + k with probability at most (1/2 + 1/e2)2k-1, and so by the
same calculation as before, the expected time until we obtain a positive indication is
at most 18Ts(n), given that the server does not break.

Moreover, the probability that we run past phase i = log Cs + 1 + i* can now be
seen to be the probability that we fail to obtain positive indications in rounds i*, i* +
1,..., i* + log Cs +1, giving us 2 1og Cs+3 log 1-3s(n) A(PQs) - (log Cs + 3) independent

runs. We have at least 2Cs batches of 21-3s(n)IA(Ps) runs, each of which fail to

provide a positive indication with probability at most (1/2 + 1/e 2). Thus, since
(1/2+ 1/e 2)2 < 1/2, the probability of us failing to obtain a positive indication before
the end of phase i is at most 2 -Cs. So, the overall probability that the server breaks
is at most 2-Cs + 18(ys(n) + A(P, Qs))Ts(n), as claimed.

Likewise, since our algorithm only actually runs UO for algorithms U' sampled
from P repeatedly, provided that the server has not broken up to the tth round, we see
that effective safety (with respect to P) provides that sensing yields a false positive
with probability at most ps(n). It therefore follows that the probability that we halt
without success when the server does not break is at most 18Ts(n)pLts(n); by a union
bound, then, we also achieve the goal with probability at least 1 - 2-Cs - 18(ps(n) +
-s(n) + A(P, Qs))Ts(n), so the strategy is weakly universal for S* as claimed. 0

4.4 Lower bounds in the absence of a common
prior

Upon reflection, Theorem 4.18 was a ultimately a positive application of a negative
result; namely, by showing that it was difficult to accomplish some bad behavior,
i.e., "breaking the server," the user could safely accomplish some relatively easy task
without needing to be too concerned about the unknown insurmountable dangers that
a more powerful user might encounter. Thus, the definitions developed in Section 4.3
- specifically the definition of an effectively closed set of states - were ultimately tools
for proving lower bounds. In this section, we turn to examining what kind of lower
bounds they can be used to obtain more generally. The results we describe are joint
work with Santosh Vempala.

113

4.4.1 A generic lower bound when no common prior exists

Our first lower bound will be a lower bound on the number of algorithms that an
oblivious schedule (in particular, such as the Levin-style enumerations and the itera-
tive sampling algorithm used in the proof of Theorem 4.9) must use to escape from
a bad set of states whenever a class of servers does not allow the existence of a com-
mon prior under which escaping the bad set is easy. We will subsequently refine it
to handle adaptive algorithms under the assumption that executions with servers in
their respective collections of bad states produce indistinguishable user views.

Note that these lower bounds provide additional justification for the introduction
of prior distributions-a move which we originally justified by appealing to the "nat-
ural appeal" of such notions. That is, suppose that we wish to achieve some goal that
cannot be achieved while the execution is in one of our "bad sets" - again, our canon-
ical example of a bad set of states that is hard to escape and generally necessary to
escape to achieve a goal is the set of "waiting for password" states in executions with
password-protected servers - then, our lower bounds will demonstrate that when the
class of servers lacks a suitable common notion of "natural users" under which escap-
ing the bad sets is easy, a universal user cannot be too efficient, and in particular, the
best possible running time more generally is roughly that which would be obtained
by sampling from the best common distribution. In our intended application of the
following theorem, we consider 6 to be a relatively large constant (e.g., 6 = 1/2) and
E is very small (perhaps "exponentially" small in the right context).

Theorem 4.20 (A lower bound when no common prior exists). Let G = (E, R) be
a goal and S be a class of servers such that for every E E S and S E S we have
designated some set of pairs of states of E and S, eS,E. Let 6 E [0, 1] be given.
Now, suppose that there is some (t, e) E N x [0,1] such that for every distribution
over user strategies from the class U, Q, there is some E G 8 and S E S such that
ES,E is (t, c)-effectively closed with respect to Q in E. Then, for any sequence of user
strategies and running times (U1, t1), (U2, t 2), ... such that each ti < t, there is some
S G S and E C E such that if in the execution where the user runs U1 for t1 steps,
U2 for t2 steps, and so on, the first step T for which (Xs), XTe) $ S is at most

k3 ti with probability at least 6, then k >

Proof Consider a zero-sum game between a "user" player and a "server/environment"
player, in which the strategy sets are U and S x 8, respectively, and the payoff of U
with (S, E) is given by the maximum probability, over executions starting from initial
states from 0 S,E, that the execution exits ES,E in t steps. Note that our assumption
on distributions over U shows that the server/environment player always has a good
counter-strategy for any distribution over user strategies. Thus, given that no good
distribution over user strategies exists, Loomis' Corollary to von Neumann's Min-max
Theorem [96] yields that there is some distribution Q over S x 8 such that when any
user strategy U1 E U that is run for ti < t steps with a server and environment
pair (S, E) drawn from Q and started in any state of ES,E, the probability that the
execution (E, U1, S) enters a state o such that (o(s), ,(e)) (OS,E is at most 6.

114

We claim that it will follow by induction on k that, given that the execution never
entered a state o such that (7(s), or")) (eS,E during the runs of U1 , .. ., Uk-1, during
the tk step run of Uk, the probability that the execution enters such a state o is at
most I ke. Indeed, given that if we ran Uk for tk < t steps given that U1, .. . , Uk-2

had not entered a state (o."), o")) 0 OS,E for some t*, U would only have entered
such a state with probability at most 1_(1)E Therefore, conditioning on the event
that this also did not happen during the run of Uk_1 only increases the probability
that Uk causes the execution to exit the associated ES,E by a factor of I (1 (k-1)E)
so the probability is still at most

e 1 e

1 - (k - 1)e 1 - e/(1 - (k - 1)c) 1 - ke

as needed.
Therefore, noting that while ke < 1, our bound on the probability of exiting ES,E

only grows with each run, we see that a union bound over the first k runs gives a total
probability of exiting eS,E in the first k runs of at most k's. In particular, some

(S*, E*) in the support of Q must give the sequence (U1, ti),..., (U, tk) probability
at most k' of exiting ES*,E. Thus, if we exit 9 s*,E with probability at least 6 by
the end of the kth run, we see that this requires k > (1/ 6) as needed. E

We now extend Theorem 4.20 to cover adaptive algorithms, given that the servers
generate indistinguishable views so long as they remain in the bad states. Again, our
password-protected servers that say nothing while the execution leaves them in their
respective "waiting for password" states are an example of such servers. The key
point is that in this case, the algorithm generates a schedule nearly independently of
the actual server it faces, permitting us to essentially reduce to the earlier analysis.

Corollary 4.21 (Good algorithms require a common prior when servers are indis-
tinguishable). Let G, U, S, sets of states OS,E for each E C S and each S E S,
and 6 e [0,1] be given as in Theorem 4.20. Suppose that there is some fixed E e S
such that for every distribution Q over U, there is some S E S such that 0 S,E iS
(t, e)-effectively closed with respect to Q in E. Suppose further that for any U E U
and any pair of servers Si and S2 from S, for any (cal), (6)) E 0 S 1 ,E, there is some

S(s),')) e 0 S 2 ,E such that the distribution over user views in the first t steps of
the execution (E, U, S1) started from a state (a,'), U"),) is -y-statistically close to
the user view in the first t steps of the execution (E, U, S2) started from the state

(ore), o "), u s)). Then for any algorithm U that on each step either starts running a
new strategy from U from its initial state or continues running the same strategy from
U for up to at most t steps, there is a server S E S such that if U reaches a state -
such that (o-s), oe)) (ES,E with probability at least 6 by running up to k strategies
from their initial states, then k >

Proof As in the proof of Theorem 4.20, we set up a zero-sum game with the same
payoffs, but we restrict the second player's strategy set to (S, E) for any S E S and the

115

given, fixed E E S. Letting Q be the distribution over the second player's strategies
obtained by Loomis' Theorem in the proof of Theorem 4.20, consider the following
experiment. For a strategy S sampled from Q and a starting state (o(s), g(e)) E 0 S,E,
suppose we sample a second strategy So from Q and consider the execution (E, U, So),
started from the corresponding initial state (o90)) E O,E. Now, suppose that
we analyze the choices of U from (E, U, So) in the execution with S and E started
from (a(s), o(e)); since S is chosen independent of (E, U, So), we find that for each

strategy run by U, the same bound on the probability that U causes S and E exit
the set ES,E within T < t steps holds as before. The same bound also holds if we first
choose the state of So, and start S from its corresponding state. We thus obtain the
same bound on the probability that S and E exit ES,E after U chooses k strategies.

Now, note that as long as the execution with S and E remains in 0 S,E, since
the distribution over user views with S starting from (o(s), o(e)) is -y-close to the

distribution over user views with So starting from (os, o)) for each strategy run
by U, and the choice of U of whether to continue running the same algorithm, or
to start running some other U' E U at each ith step is a function of (the prefix of)
the user's T-step view, the distribution over the choices of U over its run of up to k
strategies changes in statistical distance by at most k-y in response to the actual SO
drawn from Q that U is executing with. Therefore, the probability that U chooses
some strategy from U to run that can exit OSo,E by the Tth step increases by at most
k-y, so if we consider the number of strategies a user must run to exit ES,E (i.e., when
S was chosen independently of the view) with probability at least 6 - k-y, this is a
lower bound on the number of strategies for U to exit 0 So,E with probability at least
6 when So is sampled from Q. We can, as before now, find some S* E S such that
the probability that the user exits after running k strategies is no greater than this
bound; noting that k-y < k-y/(1 - kc), we obtain the claimed bound. M

Note that we can also apply Corollary 4.21 to the case where the sets ES,E are
chosen to be states of the execution where a given sensing function fails. This will
allow us to obtain lower bounds on the performance of any user strategy that uses
such a sensing function.

116

Chapter 5

Computational complexity of goals

In the basic universal setting developed in Chapter 2, we restricted our attention
to the class of probabilistic polynomial time bounded agents. This was a natural
choice, given our usual association of polynomial-time algorithms with the notion of
"efficient computation" in accordance with the strong version of the Church-Turing
thesis proposed by Cobham [44] and Edmonds [55]. It turns out that our main
theorems for goals in finite executions hold for many classes of agents other than the
class of polynomial-time bounded agents, and so in the present chapter, derived from
an early technical report [81], we seek their proper generalizations.

In order to generalize the statements of these theorems, though, we need an ab-
stract definition of a complexity class, which is a highly nontrivial feat, and the
traditional abstract approach to complexity, due to Blum [30], is not so convenient
for our purposes. We won't seek to give a definition of a complexity class in its place,
though; rather, we'll specify the properties of the classes we require, similar to Cob-
ham's approach [44], and we will merely note that many natural complexity classes
satisfy these properties. In particular, we will see that the a closure property for a
class of interactive functions that is particularly well-suited to our purposes is clo-
sure under "parallel composition" in the sense of Hoare [77]. We'll also give abstract
generalizations of Levin's efficient enumerations [91] for other complexity classes, and
note that many natural complexity classes also have efficient enumerators.

We can then show that analogues of our main theorems hold for generic complexity
classes C satisfying certain properties, primarily closure under parallel composition
and efficient enumerability. In particular, we introduce the C-bounded universal set-
ting in which a user attempts to succeed at a goal by communicating with a server
using resource bounds in accordance with the class C whenever some other agent from
C could achieve the goal with that server.

In particular, these theorems will hold for computational goals and for the class of
polynomial time and logspace bounded users, and we will conclude the chapter by ex-
amining which computational problems have polynomial time and logspace bounded
universal users (analogous to Section 1.4.2 and Section 3.3). Compellingly, we will
find that P-complete problems have such universal users, which demonstrates that
"universal delegation" of polynomial-time computation is possible for logspace users.

117

5.1 Generic complexity classes for interactive com-
putation

We begin by revisiting the model of agents and interactive computation introduced
in Section 2.2. There, and more broadly in Chapter 2 (as well as Chapters 3-4), we
restricted our attention to polynomial-time bounded users. The decision to restrict
our attention to this familiar class of algorithms allowed us to get on with the de-
velopment or our basic theory of semantic communication with a minimal amount of
hassle, since polynomial time is a familiar, robust model of computation-in particu-
lar, the definition of a stateful polynomial-time bounded agent we introduced there is
equivalent to the definition of a strategy as a polynomial-time function from message
histories to next messages, as presented in Section 1.4.2 (and the latter is the way
interactive algorithms are typically defined in "modern" treatments). We now find it
necessary to revisit the models we use, in the interest of treating resource-bounded
computation more generally, especially computation that does not have the full power
of polynomial time, since this will be useful for some proposed applications (e.g., to
universal delegation of computation). Note, for example, that the two definitions of
interactive algorithms described above are not equivalent if the user's memory us-
age is limited. The models we develop here will apply broadly to these classes, as
well as pointing to the right notions for capturing efficient users for goals in infinite
executions, which we will introduce in Chapter 6.

5.1.1 Model of interactive computation

Recall that our agents were each given by a probabilistic strategy, assigning a distri-
bution over the outgoing message channels and state space of the agent for each state
of the incoming message channels and internal state for that agent. The execution
of a system of agents proceeded in rounds, in which given a state of the system, each
party's strategy induced a distribution over the local states of the system for the next
round of the execution, so that jointly, the parties strategies induced a stationary
Markov process on the global states of the system. The agent representing the user
was also assumed to have a distinguished halting state, and the execution was stopped
and the user's performance evaluated once the user entered its halting state.

We won't need to be too deeply concerned with the usual details of the model
of computation for the strategies, and for our current purposes the reader should
equally well be able to follow the present development when keeping any sufficiently
strong model of computation in mind - such as multi-tape Turing machines1 or RAM
machines - provided that we can define memory configurations and time bounds for
the machine model in a reasonable way. What we will need to consider carefully here
are the aspects of the model that are special to interactive computation. Specifically,
we will find it convenient to view the usual models of computation as decomposed
into a communicating network of modules. To be more precise, we view our users as

'i.e., with Turing machines in the class having any given number of tapes-classes of k-tape
Turing machines for bounded or fixed k will be too restrictive for us.

118

containing the following modules:

1. A deterministic control module, having a control state - corresponding to ei-
ther the Turing machine's control state or the registers of a RAM machine -
and memory configuration - corresponding to the state of the internal working
memory of the machine - running some fixed program.

2. An input module for each incoming message channel that the control module
may read from.

3. An output module for each outgoing message channel that the control module
may write to.

4. A random bit generator module that, on an appropriate signal from the control
module, responds with a uniform random bit.

5. A suspend execution module that, on an appropriate signal from the control
module (e.g., the message "1"), commits to the outgoing messages and waits
until the next round of the execution.

6. A halting module that, on an appropriate signal (e.g., receiving an incoming
message consisting of "1"), triggers the end of the execution.

The space of messages associated with the communication channels joining modules
will depend on our model of computation. For example, in the Turing machine model,
we may assume that they carry messages from a finite set-in particular, in the case
of a Turing machine with two-way access to its input, the transition function of the
finite state control is usually assumed to produce a tuple with a head-movement
component from the set {+-, -+} indicating whether it should read the next symbol

of the input tape or the previous symbol on the next computation step, and in our
model, we assume that these symbols are passed as messages to the input module; the
response of the input module should of course be the indicated symbol of the input.
In the usual model of sublinear-time computation, on the other hand, random access
to the input is permitted, and in this case the messages to the input module indicate
indices of the incoming message i.e., of log £ bits if the message has length f. The
crucial point will be that the size of the internal messages should be sufficiently small
that when we consider a class of resource-bounded control modules, we find that the
class is closed under parallel composition as described in Section 5.1.3.

Now, there is a natural correspondence between a network of modules and a sys-
tem of agents as described in Section 2.2, and we will essentially use the same language
to describe them. Specifically, we can associate a strategy with each module as well
as a state capturing the agent's current state along with some additional information,
e.g., the Turing machine's head position. We can then talk about executions of the
modules, noting the except for the random bit generator, the modules are determin-
istic. In particular, we will define parallel composition in terms of systems of agents,
but our intent is to apply it to modules to construct an strategy for an agent.

119

5.1.2 Bounded resources and simulation

Now, in the present chapter, we are interested in interactive algorithms that achieve

a given goal with a large class of servers S while satisfying various bounds on their

usage of computational resources. The natural and obvious way to do this is to assert

that the algorithm should be a member of some class of algorithms C that never use

more of a given resource than a specified amount in any execution of a system with

an environment of a given size (e.g., 5n 2 bits of memory in environments of size n).

In some cases, such as if we specify the number of gates in a circuit implementing the

algorithm, then this approach makes sense, though we would have to be sure to use

the "right" circuit for the given size of the environment. In general, though, we wish

to consider the resources used by an algorithm when interacting with an arbitrary
member of a class of servers S for which there is no common a priori bound on the

resources required to communicate with the various members. We stress that we

wish to be able to invoke the same algorithm with any member of S and any actual

strategy of the environment, knowing only that it will use an "appropriate" amount

of resources for the given server and environment strategy. In particular, we would

like to handle a wide variety of resource bounds without needing to treat each one

individually. Our approach in the current chapter is to require that with each server

S, for our fixed user U there exists some appropriately resource-bounded version Us
(i.e., that is a member of our class C) such that then for every E E E, U behaves

like Us, and Us uses only an appropriate amount of resources in (E, Us, S). We need

an appropriate notion of "U behaves like Us" for this to achieve the desired effect,
though, which leads us to introduce the following strong notion of simulation:

Definition 5.1 (Simulation). We will say that an agent A' simulates an agent A in

a collection of computation histories if there is a surjective mapping o from control

states of A' to control states of A and a projection 7r mapping the memory configura-

tion of A' to a memory configuration of A such that for all histories in the collection,
A' simulates A, the mapping #0 from configurations of A' to configurations of A ob-

tained from o- and ir is surjective on the set of configurations of A occurring in the

history, and if for configurations ci and ci+1 of A' ci -+ ci+1 (on random bit b), then
it is either the case that ?P(ci) = 7p(ci+1) or V)(ci) -+ 4(ci+1) (on random bit b).

Notice that if A' simulates A, A' takes at least as many steps on each history
in the collection, uses at least as much space, and uses at least as many coin tosses.

Typical examples of such simulations are the standard "clock" and "ruler" simulations

for obtaining time and space bounded versions of arbitrary algorithms whenever the

bounding functions are time and space constructible, respectively. For reference, we

recall the definition of time and space constructibility below:

Definition 5.2 (Time and space constructibility). We say that a function t : N -> N
is time-constructible if there is an algorithm that computes t(n) on input n within

t(n) steps. We say that a function s : N -+ N is space-constructible if there is an

algorithm that, on input n, computes s(n) using space at most s(n).

So then, for example, a "ruler" simulation for the RAM machine model may be

constructed as follows:

120

Example 5.3 (Space-bounded simulation on a RAM machine). Given any algorithm
A and a space-constructible bound s(n) (and given the size n), one construction of a
"ruler" simulation of A would first compute s(n) in space s(n), and use this as the
initial value of a counter that meters the space usage in the simulation of A. The
simulation then only writes to odd-numbered words of memory (i.e., by adding a low-
order bit of '1' to every index A would visit in our simulation), and uses the adjacent
even-numbered words to place a mark every time A would visit a new address-that
is, whenever A would visit an address, we first check the adjacent word to see if a
mark is present, and if not, we mark the adjacent word, and decrement the counter
before simulating the read or write by A. Thus, when the counter reaches 0, if A
tries to visit a new address, we halt the simulation, and so the simulation takes only
O(s(n)) space overall.

The simulations for other resources (in our models of interest) are even simpler.

Thus, we can introduce resource bounds by introducing a class C of bounded
algorithms and require in each case that the behavior of our agent A when interacting
with a server S E S should be simulateable by some member As E C-namely, by
the "clock" and/or "ruler" simulation of A with the appropriate bounding function(s)
for S. Since we use the particularly strong notion of simulation described above, the
requirement that As simulates A for some As taken from a resource-bounded class C
implies a bound on the resources used by A during its execution with S.

Definition 5.4 ((C,p)-bounded protocol). For a class of agents C and a function
p : N -+ [0,1], we say that an agent A is (C,p)-bounded with respect to a system with
a non-deterministic environment strategy S if there exists A' C C such that for every
E E S and every initial state of the system in which A' is started from its initial state
and given the size parameter n as auxiliary input, with probability at least p(n) (over
the execution), A' simulates A in the execution (E, A,.. .). If p = 1, we simply say A
is C-bounded with respect to S.

We note that although there are many natural cases - e.g., computational goals
- where the size parameter is given by the length of the environment's message, in
general the user doesn't necessarily have access to the value of the size parameter
during the execution, so the fact that a user strategy U is C-bounded only says that
U uses an "appropriate" amount of resources in each system, even though U may
have no a priori way of knowing what amount is appropriate. Still, while (C, p)-
boundedness captures the aforementioned uniform complexity bounds, we note that
it also captures the "trivial" case where the agent A was a member of C to begin with:
we can take the maps o and 7 to be the identity map, so A can be said to simulate
itself (with p - 1) and thus if A E C, A is C-bounded in the above sense (as it can
simply ignore the size parameter), and so we can still use it for nonuniform resource
bounds such as circuit size. Although we won't be able to construct universal users
via enumeration for such classes, the sensing requirements described in Section 5.3
will hold for such kinds of resource-bounded agents.

121

5.1.3 Composition

The constructions underlying our theorems will require us to be able to take an agent
with bounded resources, and produce a new agent satisfying a similar resource bound
that performs some simple additional tasks. We can obtain such results naturally by
composing members of the class whenever the class is closed under the appropriate
notion of composition. In this section we will introduce our main notion of compo-
sition - "parallel" composition - that will play the leading role in the subsequent
developments. We will also introduce a less important notion of "sequential" com-
position, that we will still desire to invoke on occasion. In both cases, most of the
usual classes of interactive algorithms will be closed under the respective notions of
composition.

Parallel composition

The crucial basic property that we will require of the resource-bounded classes of
agents (or rather, of control modules) that we consider in the present chapter is
closure under parallel composition, in the sense of Hoare [77], which we will now
describe in more detail.2 Suppose we have a system of k > 2 agents containing agents
with indices a and b. Suppose we choose to take a and b together as a "group"-
that is, for any ith player that previously had outgoing channels (i, a) and (i, b) and
incoming channels (a, i) and (b, i) joining it to a and b, these channels are relabeled as
(distinct) channels joining i to some index c. Then informally, the parallel composition
of the strategies of indices a and b is the corresponding strategy for c that simulates
the two component strategies together. (See Figure 5-1 for a diagram.)

Definition 5.5 (Parallel composition strategy). For agents using strategies A and
B, at indices a and b respectively in a system of k > 2 agents, suppose that in a
corresponding system of k - 1 agents, indices a and b are replaced by index c with
internal state space

Q(c) _ Q(a) X Q(a,b) X Q(b,a) X Q(b)

i.e., so that any state of a and b, and any contents of the channels joining a and b,
there is a corresponding internal state of c, o(c) E Q(c). The parallel composition of A

and B, denoted AlIB, is the strategy (AlIB)(oo) given by associating the distribution

A(o(a), (.,a)) over the (a) and (a, b) components of o(c) and over the respective o-(ai)
components for i f b, and similarly for the distribution given by B.

We note that the system ((AllB),...) started from state ao and the system
(A, B,...) started from the corresponding state produce identically distributed ex-
ecutions under the appropriate formal maps, and likewise simply produce identical
distributions as long as we project away the (c) and (a), (a, b), (b, a), (b) components,

2 Actually, if one ignores the internal states, our agents are captured reasonably well by Hoare's

theory of communicating sequential processes, as our executions projected down to the communi-
cation channels are distributions over traces for the corresponding processes (in Hoare's language).
The only awkward aspect is simulating the synchronous round-wise communication among agents.

122

lefi-i right-outAIB
A A B

left-out right- in

A||B

Figure 5-1: The parallel composition of agents A and B exchanging messages with
each other on channels A -> B and B -+ A yields an agent AllB that produces

executions distributed identically to those produced by a system containing A and B
when A||B communicates over the channels left-in and left-out previously used by A
and the channels right-in and right-out previously used by B.

respectively, since the other components of the global state are untouched by the
aforementioned formal maps.

Parallel composition will be useful to us as a natural way to combine interactive
algorithms to obtain new algorithms. The crucial point in the context of this chapter
is that for an appropriate model of computation, if the individual strategies A and
B use only a limited amount of a resource, then the parallel composition AI|B does
not use (much) more than a multiple of the amounts of the resource used by A and
B. (We note that we only count the time spent by A or B when they are not halting
or suspended.) Precisely:

Proposition 5.6 (Resources usages remain bounded under parallel composition).
In either the RAM machine or multi-tape Turing machine model of computation,
suppose that in every system (A, B,...) of size n in which A and B are run from
designated starting states until one of them halts (resp., they both suspend execution),
A can be computed in tA(n) steps, using space sA(n), and rA(n) random bits; and

B can be computed in tB(n) steps, using space SB(n), and rB(n) random bits. Sup-

pose furthermore that Q(a,b) and Q(ba) can each be represented in m(n) symbols in
systems of size n. Then A||B can be computed from the corresponding starting state
in O(tA(n) + tB(n)) steps, using space 6 max{ sA(n), sB(n), m (n) and rA(n) + rB(n)

random bits. Moreover, the construction of A||B also simulates A and B in any

execution.

Sketch of proof In the RAM model, this is accomplished by designating one out
of every six consecutive words of memory to a, b, and two buffers for (a, b), and
(b, a), respectively; in the multi-tape Turing machine model, this is even easier, since
we can simply designate appropriate numbers of tapes for A and B, and introduce
new tapes for our two buffers for (a, b) and (b, a), giving these tapes independent

123

read-only and write-only heads.3 Thus, the state and inputs/outputs of A and B can
be accessed freely at unit cost (alternating the use of buffers for the messages, i.e.,
using one buffer to store odd-numbered messages between A and B and the other
one to store the even-numbered ones) and we can simulate the strategies, alternating
between them each time one of them suspends execution, and halting when both
suspend execution or one of them halts. The common random bit generator is thus
also shared naturally since only one strategy is simulated on any given step. Moreover,
the control and memory configurations of A and B respectively can be obtained via
appropriate maps, so this construction simulates both A and B. 0

The abstract significance of Proposition 5.6 (and the way we will invoke it) is
that classes of algorithms defined by bounds on their time, space, and/or randomness
complexities that are closed under constant factors (and have appropriately chosen
internal communications channels) are closed under parallel composition. Formally,

Definition 5.7 (Parallel composition closed). We say that a class of agents C is
parallel composition closed if for any pair of agents A and B in C simulating agents A'
and B' in a collection of histories, AI|B is also in C, and moreover, there is a parallel
composition agent (A'IIB') such that the agent realizing (A||B) in C simulates (A'IB')
in the same collection of histories.

We insist on the simulation condition, of course, because we may want to use the
fact that a particular implementation of (AlIB) is in C to bound the complexity of
some other agent-somewhat dryly:

Proposition 5.8. Let C be a class of agents defined by bounds on the time, space,
and/or randomness usage of its members such that the bounding functions are closed
under constant factors, and the length of internal messages is less than the space
complexity. Then C is parallel composition closed.

Sketch of proof Suppose A and B simulate A' and B', respectively in some col-
lection of histories, and that A and B are in C. Suppose we construct (AlB) and
(A'IB') according to the construction of Proposition 5.6; we immediately have that
(AIIB) E C, so it only remains to show that (AIIB) simulates (A'||B') in the given
collection of histories. Since the memory configurations of A and B are interleaved in
(AIB) in the same way as in (A'||B'), the interleaving of the respective projections
for A and B is still a projection from the memory configuration of (AflB) recovering
the memory configuration of (A'IIB'). Likewise, the respective control maps for A
and B can be used to obtain a mapping relating the control states of (AflB) and
(A'IB') since in any segment of the computation, only one of the strategies is being
executed, and within this segment, the state of the inactive member remains fixed,
while the states of the active member are related between (AllB) and (A'|B') via the
appropriate map either relating the control states of A and A' or relating B and B'.
U

3 Alternatively, we could give each tape one head, and copy from an "input" tape to an "output"
tape when we switch control from A to B, at a cost of m(n) additional steps per switch in the time
complexity.

124

Of course, in trivial cases where A' = A and B' = B (as would happen for circuits,
for example), then in our construction (A'IB') = (AllB), and there is even less to
say.

Parallel composition versus composition of functions: a technical point

In the interest of pre-empting a potential point of confusion, we note that our notion
of parallel composition of agents only generally captures the composition of functions
in a limited sense, when the composition can be computed in an on-line fashion.
This permits a less sophisticated construction of parallel composition agents than
the usual construction for composition of space-bounded functions, which requires re-
computing the "inner" function so that we can simulate two-way access to its output
by the "outer" function. We couldn't even hope to simulate two-way access to the
(buffered) output of an agent in a space-bounded manner in general since that agent
may interact with other parts of the system that we would have no control over in
the simulation. Thus, we need to buffer the messages sent by A and B to one another
on the previous round in the internal state of the agent (and this is why we explicitly
restrict the size of messages sent between A and B). It is fortunate that we can,
for the most part, make do with this relatively weak kind of composition-since the
parallel composition of agents is easier to construct, we expect a wider variety of

classes of agents to be closed under parallel composition. The one exception we will
encounter in this chapter, where the composition of functions is required, is in the
construction of Theorem 5.26 creating users for computational goals from interactive
proof systems, which consequently has a substantially reduced domain of applicability.
(Indeed, Theorem 5.26 has the most restrictive hypotheses of any of the results in
this chapter, and only applies to a relative handful of settings.)

Sequential composition

We will also wish to use Hoare's notion of sequential composition [77] on occasion. In
our framework, this is an even simpler notion:

Definition 5.9 (Sequential composition). Given strategies A and B with designated
initial states for the same agent in a system, the sequential composition of A and B,
denoted (A; B) is the strategy that runs A from its initial state until it would halt,
and then instead of halting, runs B from its initial state.

We say that a class of agents C is closed under sequential composition if for any
pair of agents A and B in C, an agent realizing (A; B) is also in C.

In both the RAM machine model and multi-tape Turing machine model, it is
fairly evident that any of the usual resource-bounded classes are closed under par-
allel composition: if A can be computed in time/space/randomness (tA, SA, rA), and
B can be computed in (tB, sB, rB), then without fear we can compute (A; B) in
time/space/randomness (tA + tB, SA + sB, rA + rB), and then whenever the bounds
provided by Proposition 5.6 suffice to guarantee that (AfjB) is in C given A and B in
C, this bound also guarantees that (A; B) is in C.

125

5.1.4 Basic agents: the toolkit

We now describe a few basic kinds of agents that we will require in the constructions
we use in our proofs. Generally, these agents will have extremely simple implementa-
tions as deterministic finite-state transducers so it will be clear that they belong to
the class of bounded agents in question, and hence when that class is closed under
parallel composition, we will be able to use these basic agents in parallel composition
constructions to obtain new agents in the same class. Of course, in each individual
case, we still need to verify that such implementations exist.

Logic gates and fanout

We assume that there are agents computing any logic gate of finite fan-in: precisely,
for each gate G : {0, I}k -+ {0, 1}, there is an agent with k input channels and one
output channel such that when the k input channels contain some (X1,... , X) E

{0, }, that agent writes G(xi,... , Xk) to its output channel. Likewise, we assume
that there is a fan-out agent, that has one input and two outputs, that on any input,
writes it to both of its outputs. Note that by parallel composition of a constant
number of these agents, we can construct an agent computing any finite-size circuit;
if the circuit is acyclic, then on any input, the circuit suspends execution in a finite
number of steps and uses no random bits, nor any memory beyond its finite-state
control.

Equality test

Building on the above example, we assume that there is an agent implementing the
following kind of on-line equality testerT the agent has two inputs, which we will label
i and j, and one output. From its initial state, the agent outputs 1 until it receives
inputs on i and j that are not equal, whereupon the agent outputs 0. Although this
may be represented as a cyclic circuit, given that some care would need to be taken
to ensure that such a representation produces messages in finite time, we feel it is
more natural to note that this may be represented as a simple two-state finite-state
transducer.

Fixed padding

For each integer i, we will assume that the following padding agent is in our class:
the agent has one input channel and one output channel, and it outputs i Os before
copying each subsequent message from its input channel to its output channel. Of
course, this agent may be implemented by an i + 1-state finite-state transducer.

Copying

We will also need a copying agent that "forwards" the contents from an input module
to an output module. The complexity of such an agent depends on the model of
computation: in the Turing machine model, given end-markers, this can be realized

126

as a two-state transducer whereas in the RAM machine model, it seems to require a
counter.

5.2 On the computational complexity of goal ori-
ented communication

Now that we have refined our model of interactive algorithms, we return to our main
concern, understanding how and to what extent communications protocols can be
made more robust and flexible. In particular, we now introduce some variants of
the basic universal setting introduced in Chapter 2 in which we consider classes of
algorithms defined by other resource bounds, including other complexity measures
and classes of time complexity bounds other than simply all polynomials.

5.2.1 The complexity of interpreting versus the complexity
of learning to communicate

Recall that in the basic universal setting, we had fixed polynomial time bounded
algorithms as our class of interest, and we wanted a protocol that ran in polynomial
time with each fixed server for which some other protocol could achieve our goal in
polynomial time. As a starting point to motivate the development of the current
chapter, suppose we wish to take a more refined view of the various roles played by
the protocols we constructed. Our basic architecture, introduced in the construction
of Proposition 2.27 and employed in many constructions since, combined an enumer-
ation with a sensing function, and we succeeded at our goal when we found a good
protocol in the enumeration. The alternative construction we have seen, described in
Theorem 4.9, used sampling instead of enumeration (and a uniform reduction instead
of running the protocol directly), but otherwise the architecture was quite similar.
For the present discussion, we will call the protocols we seek interpreters - that is, we
will refer to the protocols that satisfy the viability condition of our sensing function
with a server as interpreters - and we will identify the roles played by the universal
users as

1. Searching for an interpreter.

2. Interpreting the communication with the server.

3. Verifying successful communication.

We previously indicated that we would be happy so long as we had a polynomial time
bound for the components carrying out each of these tasks, but we have already seen
an example where this was not so: in the test of computational ability, described in
Section 3.5, we demanded that interpretation of the powerful servers was achieved by
some very limited protocol, having a short description and time complexity bounded
by a fixed polynomial, even though we were still happy to have an examiner that ran
in polynomial time for an arbitrary polynomial. The requirement on our interpreters

127

allowed us to achieve the third task, distinguishing powerful servers from weak ones.
We will see another example in Chapter 9 where limiting the class of interpreters
we consider is crucial in allowing us to verify that communication was successful,
where moreover, we are motivated primarily by a desire for correctness than with
other measures of computational efficiency. Meanwhile, in Chapter 8, we will see
examples where limiting the class of interpreters allows us to achieve the first task
much more efficiently, but still by using a protocol much more sophisticated than the
interpreters that actually interact with the server for us (we will see, the interpreters
in this case will really necessarily be given by extremely simple algorithms). The
point is, in general, there will be ample reason to draw a distinction between the
class of algorithms that communicate for us, and the class of algorithms carrying out
the other two tasks-which will consequently dominate the resource consumption of
our universal users. That is, in the settings that we will consider in general, there
will be two classes of agents under consideration, the class of users U (for which we
wish to design a universal user strategy) and the class of interpreters I, where we will
naturally need that I C U, but I may frequently be a strict subclass of U.

5.2.2 Helpfulness for generic classes of users

Most of the definitions capturing goal-oriented communication made no reference to
resource bounds whatsoever, and so they will persist without modification even as we
consider other kinds of complexity measures (although we will explicitly bound the
complexity of, e.g., our universal users by other measures). The only two exceptions
are the definitions that reference the class of algorithms capturing the interpreters, i.e.,
the definition of a helpful server and viable sensing, and more broadly the definition of
a good sensing function, which was specialized to the class of polynomial time bounded
users in a somewhat subtle way. Sensing will need to be essentially reworked for it to
generalize properly, and we defer the discussion to the next section. The definition
of helpfulness has a much more immediate generalization that we discuss presently.
Essentially, we simply replace the mention of the class of polynomial-time protocols
with an arbitrary class C:

Definition 5.10 ((G, C, p)-Helpful). We say that a server S is (G, C, p) -helpful for a
goal G, a class of agents C, and p : N --+ [0, 1] if there exists Us c C such that (Us, S)
robustly achieve the goal with probability p(n) in environments of size n.

Now, although we have stressed that we permit the class of interpreters to differ
from the class for which we aim to construct a universal user in general, there are still
some cases - notably, the goal of computation as considered in depth in Section 3.3
- in which the entire purpose of invoking a universal user is to accomplish a goal
using less resources, and it is natural to simply desire that interpreting the server's
communication does not pose an obstacle by requiring more resources than we wish
to allow the universal user. That is, if we want a C-bounded universal user for a goal,
then we may naturally desire to construct a universal user for the class of servers that
are helpful for the class C-which is, of course, the largest possible class of servers
for which we could hope to give a C-bounded universal user, much as the class of all

128

helpful servers was the largest class for which we could hope to give a polynomial-time
universal users in the basic universal setting. To contrast this common set-up with
the basic universal setting, we will refer to this as the C-bounded universal setting.
We feel that the goals of greatest natural interest in C-bounded universal settings are
computational goals, and we will revisit these goals at the end of this chapter.

5.3 Sensing modules

We now turn to reworking sensing for classes of users other than polynomial time
bounded users. The objective will be to obtain a definition of sensing with generic
classes of users for which an analogue of Theorem 2.25 holds, establishing the equiv-
alence of the design of sensing and universal users. Actually, the analogue of Propo-
sition 2.27, constructing universal users from sensing, will only hold when the class is
enumerable (which, in turn, necessitates a new definition in the abstract approach of
the current chapter), whereas an analogue of Proposition 2.26, showing that sensing
must be possible with complexity comparable to that of any universal user strat-
egy (whenever universal users can be constructed), holds much more broadly. Thus,
we actually defer the presentation of the positive direction of our analogue of The-
orem 2.25 until the next section. Nevertheless, the existence of an analogue of this
theorem is our litmus test for the suitability of a notion of sensing, and will serve as
a guide for our discussion.

5.3.1 Safety and viability for generic classes of agents

We already hinted at the problem with our original definition of sensing for polynomial
time bounded users when we were motivating our refined model of interactive compu-
tation, but we now spell it out explicitly: our original definition of sensing relied on
the equivalence of polynomial-time functions of histories and functions computable
by polynomial-time strategies. Thus, we had the option of introducing sensing either
way, and much as in Section 1.4.2 and most modern treatments of interactive com-
putation, we felt it was simpler to introduce sensing as a polynomial time function
taking user views to positive or negative indications. The right definition, i.e., the
one that generalizes, though, is one that treats sensing as a separate, stateful module
in the user that produces verdicts in an on-line fashion from the view of the control
module (i.e., interacting with the rest of the system via the user's input and output
modules).

This amended notion of a sensing module now plays essentially the same role that
sensing functions played in our earlier treatment. In particular, its verdicts should
again satisfy notions of safety and viability, meaning that positive indications indicate
that the goal has actually been achieved with high probability, and that positive
indications can be obtained, respectively. These notions will also be generalized
to hold for arbitrary classes of agents in a manner similar to our generalization of
helpfulness in the previous section.

129

verdict

output suspend

Figure 5-2: When used with a control module U, the sensing module V receives a copy

of the messages sent to U by the input module and random bit generator module,
and receives a copy of the messages sent by U to the input, output, and suspend

execution module. Each time execution resumed after it is suspended, V issues a

verdict, roughly indicating whether it believes the referee is satisfied.

Definition 5.11 (Sensing module). A sensing module is a module that, when given

a copy of the messages sent by the input module and random bit generator module

to the control module, along with the messages sent by the control module to the

input, output, and suspend execution modules, produces a Boolean verdict each time

the control module indicates that execution should be suspended. (See Figure 5-2 for

a diagram.)

" We say that a sensing module is (C, p)-safe for a goal G = (E, R) with a server
S if, for any U E C, and any E E E, the probability that R outputs 1 on the

first round in which the sensing module produces a verdict of 1 in the execution
(E, U, S) started from any state of E and S (conditioned on sensing producing
such a verdict) is at least p(n).

" We say that a sensing module is (C, p)-viable with an environment strategy 8

and a server S if there exists Us E C such that for any E E E and any initial

state of E and S, with probability at least p(n), the sensing module outputs a

1 verdict in the execution (E, Us, S).

Now, for the desired class of users U that is closed under parallel composition, we

will usually require that the sensing module is also U-bounded, so that the parallel

composition of the sensing module and the control module yields another U-bounded

agent ;4 on the other hand, we will need the sensing module to satisfy (I, p) -safety and

4 Strictly speaking, this also assumes that modules computing the fanout, described in Sec-

tion 5.1.4, are also available in U and these are also involved in the parallel composition, but this is

surely not at issue in most cases of interest.

130

(I, p) -viability for the class of interpreters I, where we again stress that in general, I
may not be equal to li for a variety of reasons.

5.3.2 On the necessity of sensing and its safety requirements

Now that we have a suitable notion of sensing for generic classes of agents, it turns
out to be easy to obtain generalizations of our theorems from Chapter 2 showing
that strong sensing is necessary; as we noted at the outset of this section, we need
additional hypotheses such as enumerability to obtain a construction of universal users
from sensing, and so we will have more work to do before we can obtain analogues of
our positive results. For now, we first prove an analogue of Proposition 2.26 in the
C-bounded universal setting.

Proposition 5.12 (Sensing is necessary for universal users in the generic bounded
universal setting). Let C be a class of agents that halt with probability 1 containing
the fanout, on-line comparison, and AND agents, that is closed under parallel com-
position. Let U be a universal user strategy for a goal G and a class of servers S
such that for each S E S there exists Us E C and functions es, ps : N -+ [0, 1] such
that in the execution (E, U, S), Us simulates U with probability 1 - es(n), and in
the executions (E, Us, S) where Us simulates U, Us achieves the goal with probability
1 - ps(n). Let V be the agent that computes U on the messages from the input and
random bit modules, and outputs the AND of U's halting signal and the result of the
on-line comparison of the user's output with the output of U as its verdict. Then V is
a (C, 1 - es)-bounded (C, 1 - ps)-safe and (C, 1 - cs)-viable sensing module with each

SEES.

Proof Let any server S E S be given, and V be the agent described above. Now,
for the agent Us that simulates U in the execution (E, U, S) for each E E E with
probability 1 - es(n), consider the agent Vs obtained by the same construction as V
with Us substituted for U in the parallel composition. Now, since the fanout, on-line
comparison, and AND agents are in C and Us is the C-bounded agent that simulates
U with S, Vs E C, and moreover Vs simulates V with probability 1 - Es(n), the same
as Us simulating U, V is (C, 1 - es)-bounded.

Now, let any E E E, U' c C, and S C S be given, and consider the execution
(E, U', S) when the control module of U' is attached to V. Note that when V pro-
duces a 1 verdict, then U' produced an execution that is identical to the execution
that U would have produced (note that the behavior of the control module of U' is
deterministic). Thus, if V output 1 and U' failed to achieve the goal with probability
6, we'd find that in the same execution with U, occurring with probability at least
6, U would also fail. Since U is assumed to achieve the goal with probability at least
1 - ps(n), though, we find that 6 < ps(n), so V is (C, 1 - ps(n))-safe, as needed.

Likewise, for any E E E and S E S, for the agent Us C C that simulates U with
probability at least 1 - cs(n), we find that since Us must halt, and U and Us produce
the same outputs in this case, V produces a 1 verdict on the round in which Us halts.
Thus, V is also (C, 1 - es(n))-viable in S with S. M

131

Likewise, we can obtain an analogue of Theorem 2.37 for the C-bounded universal

setting; Proposition 5.12, together with the following theorem, show that the signal

to the halting module of a C-bounded universal user is an unconditionally safe test of

a goal's achievement, computable by members of C. In the case of a computational

goal, for example, we will see that this is the key step showing that a universal user

can be used to obtain a verifier for an interactive proof system.

Theorem 5.13 (Safety with all helpful servers for a generic class of interpreters

implies safety with all servers). Let C be a class containing the padding agents and

closed under parallel composition. For a goal G, suppose that V is a sensing module

that is (C, p)-safe for G with every (G, C, p')-helpful server. Then, if a (G, C, p')-helpful

server exists, we find that V is also (C, p)-safe for G with every server strategy.

Proof The argument is very similar to the proof of Theorem 2.37. Consider a

sensing module V that is not (C, p)-safe for G with respect to some server S. Then

there must exist E E E, U E C, and some initial state o such that in the execution

(E, U, S) started from o-, V outputs a 1 verdict, but R is not satisfied with probability

p+6 > p.
Now, we can find some finite set of executions for which the probability that V

outputs a 1 verdict but R is not satisfied is at least p + 6/2 > p; in this set of

executions, there is some finite maximum length of the messages sent by U up to the

first round in which V outputs a 1 verdict, M.

If no (G, C, p')-helpful servers exist, there is nothing to show, so suppose that

some helpful server S' exists, along with some Us E C that robustly achieves G with

probability p'. Now, consider the server 9 with states given by a pair of a state of S

and a state of S'; on each round in which s receives a message of the form OM+lx from

the user, s responds as S' would if the user's message were instead x, and updates

the component of its state corresponding to a state of S' accordingly. Otherwise,
on message y from the user, s responds as S would on its current state for S, and

updates the state for S accordingly.
By hypothesis, the padding agent that adds M + 1 symbols of padding is also

in C, and so since C is closed under parallel composition, the agent that pads each

message from Us with M + 1 symbols is also in C. Now, we note that since this agent

with s generates identical executions with every E E E from every initial state of the

environment and s as Us would generate with E and S' from some appropriate state

of S' (given by a projection of the state of s), and thus since Us robustly achieves the

goal with S' with probability p', so does our padded version of Us with s. Thus, s is

(G, C, p')-helpful as well.
But we see that with U, in the chosen set of executions, U does not send messages

of length longer than M, and so 9 behaves identically to S in these executions up

to the round in which V would output a 1 verdict. Thus, we see that in this set of

executions occurring with probability greater than p, V outputs a 1 verdict with s
when R is not satisfied, so V is not (C, p)-safe with all (G, C, p')-helpful servers. U

132

5.4 Universal users for enumerable classes

Our main theorem in the basic universal setting was Theorem 2.25 and its variants,
establishing that the construction of a universal user was possible whenever the con-
struction of a sensing function was possible, and vice-versa. In the previous section,
we developed a notion of sensing for the C-bounded universal setting that we could
show is broadly necessary for the construction of C-bounded universal users. The
more interesting, positive direction of Theorem 2.25, however, remained out of reach.

Part of the difficulty was that the classes C could have been instantiated as the
class of agents with an efficient nonuniform implementation, such as the class of
agents implementable by polynomial-size circuits, for example. In such a case, the
number of possible strategies that a user could employ grows with the environment's
size parameter; in particular, it is easy to see that the circuits may have a hard-
coded password of size similar to the environment's size parameter. Therefore, along
the lines of Section 4.1, we find that a user requires exponential time in the size
parameter to communicate with the class of all helpful servers with this class C.
Clearly, additional hypotheses are needed for the construction of a universal user.

The hypothesis that we used in Chapter 2, of course, was the efficient enumer-
ability of polynomial-time algorithms, as first discovered by Levin [91]. While the
efficient enumerability of polynomial-time algorithms is a surprising fact, given that
even time-bounded algorithms can be enumerated in a time-efficient way, it is not
surprising that most other natural resource-bounded classes of algorithms also have
efficient enumerations (with respect to their various resource measures). Thus, in this
section, we present a generic definition of efficient enumerability, and show that it,
together with a notion of "resettability" that most uniform algorithms are easily seen
to possess, suffice to obtain constructions of universal users.

5.4.1 Enumerable complexity classes

The key ingredient in Levin's construction of "universal search algorithms" as well
as our construction of time-bounded universal users in Proposition 2.27, was Levin's
technique for time-efficient enumeration of time-bounded algorithms. Recall, the
technique guaranteed that for every algorithm A there was a constant factor overhead
C such that the enumeration scheduled A to run for t steps within Ct steps for every
t. In both Levin's algorithms and our user strategies, although the enumeration itself
is an infinite schedule, we had a source of feedback (from sensing, in our case) that
could stop the enumeration by the time some appropriate algorithm finished running.
Thus, if the algorithm A was time-t(n) bounded, then the efficient enumerator was
time-(C - t(n)) bounded.

Recall that in the present chapter, in Section 5.1.2, we chose to model the re-
source bounds satisfied by such algorithms by saying that there was a member of
some efficient class of algorithms C that simulated the enumerator in a strong sense
(cf. Definition 5.1). Of course, as stressed in Section 5.2.1, we sometimes wish to
communicate via interpreters that are weaker than our universal users, since there
were cases (such as our tests of computational ability in Section 3.5) that relied on

133

the relative weakness of our interpreters. Thus, in such a case, it's sufficient for the
enumerator to have complexity similar to that of the user rather than the interpreters.
Thus, we state the definition below for a class of interpreters I and a class of users
U, and allow for the possibility that I C U.

Definition 5.14 (Efficiently enumerable class). We say that a class of agents I that
halt with probability 1 is U-efficiently enumerable (or, if I = U, simply efficiently
enumerable) if there is some efficient enumerator agent U with an additional internal
"restarting" output channel such that,

1. Whenever U outputs 1 on its restarting channel in any system (U, ...), there is
some I E I such that U simulates I until the next round in which U outputs a
1 on its restarting channel.

2. For each I E I there is some agent U, E U and a pair of random indices
ro < T E N such that in any system (U, . .), U outputs 1 on its restarting

channel at round To and outputs 0 during rounds To + 1...., T, U simulates I

starting from round To until I would halt at round T, and U, simulates U up to
round r of the execution.

The "restarting" indications are primarily a technical convenience-in most im-
plementations of efficient enumerators, and certainly in all of the constructions we
will see in this thesis, they are trivially available. In order to take advantage of these
signals, we will need to amend our definition of sensing slightly: it was originally
defined in an unforgiving way, in that the sensing module is now stateful, and our
original definition of viability only guaranteed that a positive verdict would be pro-
duced if the sensing module and the user strategy were started simultaneously. Thus,
rather like our original refinements of "goals" to "forgiving goals" in Section 2.2.3, we
refine the notion of a sensing module to a resettable sensing module with a viability
condition that is likewise ready to "forgive" an initial miscommunication by the user
once it receives a "reset" signal.

Definition 5.15 (Resettable sensing). We say that a sensing module is resettable if
it has an additional "reset" input channel.

" We say that a resettable sensing module is (C, p)-safe for a goal G = (s, R) with
a server S if, given that each time the appropriate "reset" indication (e.g., a
"1") is provided on the reset channel the control module simulates some strategy
from C until the next reset indication, the probability that R outputs 1 on the
first round in the execution (E, U, S) in which the sensing module outputs 1 is
at least p(n) conditioned on the sensing module producing a 1 verdict.

" We say that the resettable sensing module is (C, p) -viable in an environment S
with a server S if there exists an agent Us E C such that in an execution S and
any E E E, and any state of S and E at round To, if the "reset" signal is then
provided on the reset channel and the user subsequently uses the same strategy
as Us, then with probability at least p(n), there will be some round T > To in
which the sensing module outputs a 1 verdict.

134

Of course, for the classes of enumerable agents C that we consider, it is usually not
an issue to "reset" the state of an agent (or more properly, the state of its modules)
since there is usually a space bound that is less than the agent's time bound, so we
can obtain a modified version of the agent that, on an appropriate signal, can be
made to wipe out is memory and return to its initial control state. More abstractly,
the agents satisfy the following:

Definition 5.16 (Resettable agents). We say that a class of agents C is resettable

if their control modules have an additional "reset" input channel such that, when
the reset channel receives a "1" message, the control module resets to its initial
configuration.

We'll also use resettable sensing in our construction of universal users, but we note
that when the class of agents is resettable (which, as we've argued above, it usually
is for the classes of resource-bounded agents that we would generally consider) then

Proposition 5.12 can be amended to produce a resettable sensing module as follows:

Corollary 5.17 (Universal users for classes of resettable agents yield resettable sens-
ing). Let C be a class of time bounded resettable agents containing the fanout, on-line

comparison, and AND agents, that is closed under parallel composition. Let U be
a universal user strategy for a goal G and a class of servers S such that for each

S E S there exists Us E C and functions es, ps : N -+ [0, 1] such that in the execution

(E, U, S), Us simulates U with probability 1 - es(n), and in the executions (E, Us, S)
where Us simulates U, Us achieves the goal with probability 1 - ps(n).

Let V be an agent that computes a fanout on its reset channel, that computes U
on the messages from the input and random bit modules and the reset channel, and
outputs the AND of U's halting signal and the result of the on-line comparison of the

user's output with the output of U as its verdict, forwarding the second copy of the
reset message to the on-line comparison agent. Then, when V is run with an user

strategy running for t(n) steps and S E S, V is a resettable (C, 1 - t - es)-bounded
(C, 1 - t -ps) -safe and (C, 1 - es)-viable sensing module.

Proof Note that since Us simulates U until it halts with probability 1- es, whenever
Us is run after a reset message, V is satisfied with probability 1 - ES, as needed for

resettable viability. We likewise find that since V was (C, 1 - ps)-safe and (C, 1 - Es)-
bounded when run from its initial configuration, and it is run from its initial config-
uration at most t(n) times, a union bound gives the claimed safety and boundedness
of V with the given user strategy and S. 0

Now, the appearance of the agent's running time in the conclusion of Corollary 5.17
is the first observable sign that, unfortunately, the classes of agents that we are
considering in this setting are substantially less general. Of course, as we noted
at the outset of this section, we were already prepared to accept that the classes

of algorithms we would consider for the construction of our universal users would
be substantially less general, but the reader may find it unfortunate that we found
it necessary to introduce time bounds (specifically) into the discussion. It seems,
though, that this is another necessary restriction: consider the following example.

135

Example 5.18 (Agents that take unbounded time). Consider the following two-state
agent: in the first state, as long as it receives a 0 from the server, it remains in the
first state; when it receives a 1 from the server, it enters the second state and halts.
Now, consider a class of servers S such that for every t E N, there is a server St that
sends 0 t times and sends a 1; in any execution with some St E S, the agent enters
the second state and halts, and yet whenever we run the agent for T steps, for any
server St with t > T, we do not witness this.

Likewise, for any agent A that robustly achieves some goal with a server S that
never sends empty messages, we can construct an agent A' that suspends its transition
to a new control state as long as it continues to receive empty messages from the server,
and we can construct servers St that sends t empty messages before each message S
would send. A' now robustly achieves the goal with every St, but if the goal is
nontrivial, no a priori bound T on the number of steps for which we run algorithms
of space complexity and length at most that of A' will suffice.

In particular, we invite the reader to suppose that he or she wishes to construct a
(purely) space-efficient enumeration. When should the enumeration move on from the
two-state machines to the three-state machines? The point of Example 5.18 is that
there is no good time, nor any safe signal that we've exhausted the capabilities of, e.g.,
the two-state machines. In fact, perhaps contrary to our intuition, construction of a
(purely) space-bounded efficient enumeration is harder than construction of a time-
bounded efficient enumeration, despite the fact that space may be re-used! Thus, we
only expect to be able to construct efficient enumerations in the context of some time-
bound. Of course, in the case of computational problems, space-bounded algorithms
were implicitly time-bounded by their configuration count. Thus, we wish to reassure
the reader that the familiar, natural space-bounded algorithms that he or she is
familiar with also satisfied some natural class of time bounds as well, and so we
aren't conceding much on this point.

Now, we are ready to present some further constructions of efficient enumerations-
Levin's original construction [91] (and in particular, our application of it in Propo-
sition 2.27) is easily seen to be satisfactory for essentially all classes of purely time-
bounded users. Thus, we will focus constructions of efficient enumerators that are,
for example, time and space bounded, as we do in our first construction below. It
is a straightforward extension of Levin's time-efficient enumeration of time-bounded
algorithms.

Proposition 5.19 (Efficient enumeration of time and space bounded algorithms).
Let C be the class of agents satisfying some collection of time bounds T closed under
constant factors, and space bounds closed under constant factors such that for a given
time bound t E T the corresponding space bound is given by s = fs(t) = Q(log t) for
some monotone, time-t and space constructible function fs : N -+ N which satisfies

fs(C -t) = O(fs(t)) for every C E N. Then C is efficiently enumerable.

Proof We enumerate algorithms in stages, where in stage i we loop over all algo-
rithms of length f < i - 2 log i. For each algorithm of length f, and t = 2 g-2 l

136

we compute s = f,(t) (in t steps and space s); we then output a "restarting" indi-
cation and simulate the algorithm for up to t steps or until it either halts or tries
to use space greater than s. Note that each algorithm our enumerator runs between
restarting indications is therefore in C.

Suppose we are interested in some agent A C C with an algorithm of length

LA and time bound tA(n). Note that A is run for tA(n) steps in phase iA(n) =

log tA () + LA +2 10g LA. Now, up to phase iA (n), our enumerator runs algorithms for

iA 2 A+210g(A 2iA+l 72

2 f2 < 2 ^+10 (nt)E 22 e- 3
i=1 f<i-2logi f=1

steps. Since we can amortize the time to maintain our loops and counters, and the set
of time bounds T defining C are closed under constant factors, we see that this time
bound is also in T; moreover, for CA = (7r2/3)2^+2loge^, we give the algorithms space

at most f,(CAtA(n)) = O((f, 0 tA)(n)) by assumption, and since our space bounds
are all Q(log t), accounting for the space needed to track the phase and maintain the
clock, we still use space at most O((f, o tA)(n)). Therefore, since the space bounds
are closed under constant factors (and given by monotone functions of t), there is
some time bound t' > tA such that our enumerator runs in time t' and uses space

(fUSo t').
Therefore, for the algorithm UA that, on auxiliary input n, simulates our enu-

merator with a clock of t'A(n) and a "ruler" of (f, o t')(n), we see that UA E C, and
moreover, in any environment of size n, in the phase where UA simulates A for at least
tA(n) steps, since f, is monotone, we also give it a space bound of at least (fs otA) (n),
so UA simulates A until it halts. 0

Proposition 5.19 shows in particular that we have efficient enumerators for agents
that run in polynomial time and logspace (by taking fs (n) = log n), and agents that
run in time O(nk) and space Q(nE) for fixed k and E (by taking fs(n) = nE/k). In this
case, the time or space bound of the enumerator may be somewhat worse than that
of the optimal agent-e.g., it is bounded by time/space (nk, k log n) for the minimum
k C N satisfied by the target algorithm. Still, we do obtain a simultaneous bound on
both resources, as desired.

Now, note that the construction of time and space efficient enumerator in Proposi-
tion 5.19, like in the original time-efficient enumeration, always uses an "appropriate"
amount of time and space without necessarily knowing the size parameter, and there-
fore without explicitly knowing a priori how much time or space will be appropriate.
If one is given the size parameter as input, though (such as in the case of computa-
tional goals), we find that it is also possible to use almost arbitrary (independent) sets
of bounding functions for the time, space, and randomness. This covers most natural
cases, e.g., we could specify that the algorithms use "quasi-polynomial time," "space
O(nE)," and "polylogarithmic randomness," and we would find that the class of algo-
rithms with bounding functions given by such a product set is efficiently enumerable
as a consequence of the following construction.

137

Proposition 5.20 (Efficient enumeration given size parameters). Let C be a class
of algorithms defined by a product set of enumerable time, space, and randomness
bounding functions that are closed under constant factors, such that

1. The space bounds are space-constructible

2. The time bounds are time-constructible

3. For every time bound function t, there are space bound functions that are Q(log t)
and computable in time t

4. For every randomness bound, there is a time bound that is greater

Then, if the size parameter n is given as an auxiliary input, C is efficiently enumerable.

Proof We dovetail the three enumerations with an enumeration of algorithms, and
thus obtain an enumeration of 4-tuples {(A, t, s, r)} 1. Then, for i = 1, 2, ... ,, we
output a "resetting" indication and for the tuple (A, t, s, r)i we run algorithm A for
up to t(n) steps or until it either halts, tries to use space greater than s(n), or more
than r(n) random bits. Note that each such algorithm is in C.

Now, for any member A* of C running in time tA(n), space SA(n), and randomness
rA(n) tA(n), we know that this tuple appears at some index i* in the enumeration;
we could consider the enumerator UA that stops after this index, and note that it
satisfies the simulation requirement.

To see that UA E C, we let t*(n) be the maximum time bound occurring by
index i*, let r*(n) be the maximum randomness bound (note r*(n) < t*(n)), and, let
s*(n) be the maximum space bound. Now, since the class of bounding functions are
closed under constant factors, t'(n) = i*t*(n) is in the collection of time bounds, as is
r'(n) = i*r*(n). Furthermore, we are given that there is some space bound s'(n) that
is Q(logt*(n)) (and therefore also Q(logr*n)) and computable in time t*(n). Thus,
UA requires total space at most O(s'(n)), time at most O(t*(n)), and randomness
at most O(r*(n)) for functions t*, s', and r* in the collection of bounding functions.
Therefore, since the class of bounding functions is also closed under constant factors,
UA E C.E

We will also be able to incorporate the extensions of sensing described in Sec-
tion 2.3.3; note that the proof of Corollary 2.30 only referred to specific properties of
our enumeration, which also happen to be satisfied by the enumerators constructed in
Proposition 5.19 and Proposition 5.20: we only need to use an appropriate encoding
of algorithms, and note that the enumerator has the code of the algorithm available
when it is about to simulate the algorithm. Thus, we obtain the desired extensions
of our enumerators as a corollary:

Corollary 5.21 (Extended enumerations of time, space, and randomness bounded
algorithms). The constructions of Proposition 5.19 and Proposition 5.20 also yield
enumerations of agents with any fixed number of auxiliary inputs and private outputs,
and on a resetting indication, output the description of the algorithm that it will

138

simulate until the next resetting indication. The maximum length of any algorithm
output by the enumerations for any U, running in t steps witnessing the C-boundedness
of the enumerator for any I E C are O(log t) and 0(1), respectively.

5.4.2 Sensing suffices for universal protocols for enumerable
user classes

Now that we have a generic notion of efficiently enumerable classes of agents, we
have all of the necessary notions to construct universal users in generic settings. In
particular, for a suitable analogue of the "negligible" functions for polynomial-time
in a C-bounded setting, we can obtain the following analogue of Theorem 2.25:

Theorem 5.22 (Constructions of universal users are equivalent to constructions of
sensing in bounded settings). Let C be an efficiently enumerable class of resettable
agents that is closed under parallel composition and containing the fanout, AND, and
on-line equality test agents, and let any goal G and any class of servers S be given
along with a set of functions {negl} = {e : N -+ [0, 1]} such that for every time bound
t(n) of an agent in C, and every e E {negl}, t -e cE {negl} as well. Then, there is a
(C, 1 - O(es))-bounded (S, 1 - O(es))-universal user for G for some es e {negl} iff
there is a (C, 1 - O(es))-bounded resettable sensing module that is (C, 1 - O(es))-safe
and (C, 1 - O(es))-viable for G for some es E {negl} with every S E S.

One direction, obtaining sensing from a universal user, is a corollary of Propo-
sition 5.12, noting that the user strategy and equality test used in the construction
of sensing in that proposition are members of C and therefore resettable. The other
direction follows from Proposition 5.23, described below.

Proposition 5.23 (Universal users for enumerable classes can be constructed from
sensing). For a given class of agents U containing the fanout agent that is closed
under parallel composition, consider any U-efficiently enumerable class of agents 1.
Let any goal G and class of servers S be given. Suppose that for each S E S we
have functions ps,es, s : N -+ [0,1], and a resettable sensing module V that is
(U, 1 - 6s(n))-bounded with every user in U, (I, 1 - ps(n))-safe, and (I, 1 - Es(n))-

viable for G with S. Then there is a (S, 1 - (ps(n) + cs(n)))-universal user U for G
that is (U, 1 - (6s(n) + es(n)))-bounded with every S E S.

Proof We give an abstract, generic version of the construction of Proposition 2.27.

Construction. Let U0 be the efficient enumerator for 1. Now, U is the agent
obtained by attaching V to the control module of U0 , providing the output on UO's
"restarting" channel as the input to the "reset" input channel of V, and using the
verdict of V as the input to the halting module instead of the output of Uo.

U achieves G. Let any S E S be given, and consider the agent Is E I witnessing
the (I, 1 - cs(n))-viability of S for V in every E E S. Now, we know there is some
Urs E U such that

139

1. Between any two "restarting" indications, U1 simulates some I E I.

2. At some random index To, Urs outputs a "restarting" indication and simulates

Is until it halts.

Let U' be the parallel composition of Urs attached to V with the verdict of V supplied

to the halting module (i.e., the construction of U with Uo replaced by Urs).
Since Is is the agent witnessing the resettable viability of S with V, regardless

of the state of the execution at index To, Uo (and therefore also U1s) provides a

"restarting" indication to V at round To, and so V subsequently produces a 1 verdict

with probability 1 - cs(n), at which point U' halts by construction; since each I

that U1s simulates up until it simulates Is is in I, the (2, 1 - ps(n))-safety of V

with S for G gives that when V produces a 1 verdict, G is achieved with probability

at least 1 - ps(n). By a union bound, therefore, U' achieves G with probability
at least 1 - (ps(n) + es(n)). Now, because Urs simulates Uo until Is halts, and Us
is obtained by substituting Urs for Uo in the construction of U, we find that when

Is obtains a positive indication, US and U both halt, and thus U' simulates U. U

then also must achieve G with probability at least 1 - (ps(n) + cs(n)). Thus, U is

(S, 1 - (ps(n) + Es(n)))-universal for G.

U is U-bounded. Since V is (U, 1 - 6s(n))-bounded, let Vs E U be the agent that

simulates V with probability 1- 6s (n) with S and Uis. Let Us be the agent obtained

by attaching Vs to Uis and supplying the verdict of Vs to the halting module.

Since U is closed under parallel composition and contains the fanout agent, and

Ui, E U, we know that Us E U as well. Thus, since Vs simulates V with probability

at least 1 - 6s(n), and Us is obtained from Us by substituting Vs for V in the parallel

composition, Us simulates U' with probability at least 1 - 6 s(n) as well. Likewise,
as we saw above, U' simulates U in turn whenever V provides a positive indication,
which occurs with probability 1 - es(n). Therefore, by composing the maps, we find

that Us simulates U with probability 1 - (6s(n) + Es(n)), and we have that U is

(U, 1 - (6s(n) + es(n))-bounded with S, as claimed. U

It also follows from Corollary 2.30 (as a parallel corollary to Proposition 5.23)
that we can construct U-bounded universal users from grey-box sensing for users with

auxiliary inputs and private outputs whenever the enumerator is of the appropriate

form (e.g., as given by Corollary 5.21). We'll see an application of this in the next

section when we apply Proposition 5.23 to construct universal users for computational

goals.

5.5 The complexity of universal users for compu-

tational problems

The development of sensing and universal users in the previous sections of the present

chapter was necessarily rather abstract-the point was to show that our main theo-

rems hold much more broadly than simply for the setting of polynomial-time bounded

140

agents considered in Chapter 2. Still, in the absence of any examples of natural inter-
est captured by these definitions, the reader may rightly feel troubled by this pervasive
abstractness. We now seek to exhibit an interesting example of a goal in settings cap-
tured under the new classes of agents, and not by our earlier polynomial time setting,
as evidence that these new settings are interesting.

Our example goals, of course, will be computational problems. These goals are
a natural choice for several reasons: first, we recall that in Section 1.4.2 (as in our
first paper [80]), computational goals pointed the way to all of our major theorems,
and served as a compelling first example; second, computational problems are likely
to provide a clear illustration of the benefit achieved by communication, by showing
that an agent obtains something that he or she could not produce on his or her own
(due to the agent's computational limitations); and third, computational problems
seem to provide the most natural motivation for considering classes of agents beyond
polynomial-time.

We will find ourselves rewarded for our choice by analogues of Theorem 3.12
from Section 3.3 for new classes of agents, characterizing the classes of computational
problems solvable by universal users in a C-bounded universal setting in terms of "C-
competitive interactive proofs," which we will define in this section, but seem to be
quite natural in their own right. In particular, and perhaps most compelling of all,
we will see an application of this characterization to the familiar class of polynomial-
time and logspace bounded agents: we will see that the proof system settling the
power of public-coin polynomial-time and logspace interactive proof systems is ac-
tually polynomial-time and logspace competitive. It then follows as a consequence
of our characterization for the polynomial-time and logspace bounded setting the
these agents can engage in universal delegation of computation-a polynomial-time
and logspace agent can "delegate" any polynomial time computation to any server
that is capable of solving such problems, without knowing anything about how to
communicate with the server a priori.

5.5.1 Competitive interactive proofs for generic classes

Recall that we first considered competitive interactive proofs (Definition 3.10), as
introduced by Bellare and Goldwasser [20], in Section 3.3. (P, V) was said to be a
competitive interactive proof system for a decision problem H if P was a probabilistic
polynomial-time oracle machine such that (Pr, V) was an interactive proof system for
H. The original motivation of Bellare and Goldwasser was to obtain a generalization of
the decision-versus-search question for NP proof systems: simulating the interaction
between P and V using an oracle for 11 allows one to generate "proofs" in polynomial
time given the ability to decide H, so competitive interactive proof systems give such
a generalization. In a similar spirit, we introduce the following modification of their
definition to generic classes:

Definition 5.24 (Generic competitive interactive proof system). Let P be an agent
with two fixed input channels and two sets of communication channel for other agents,
and let V be an agent in C with three fixed input channels (and size parameter given

141

by the total lengths of the inputs on these channels) and a communication channel

for a second agent, that produces a boolean output when it halts. Then we say
that (P, V) is a C-competitive interactive proof system for a problem 11 if the parallel

composition of P and V with the first two fixed input channels shared and a fanout

on the communications channels joining them is also in C, and moreover,

1. (Completeness) For every instance x of 11 and E E Q+, if P is attached to an

oracle for H, P and V are attached to one another, and both are given x and

y for y E H(x) as their first two inputs, the probability that V accepts when

given E as its third input is at least 1 - E.

2. (Soundness) For every pair (x, y) such that y (1(x) and E E Q+, if V is given
x, y, and e as its inputs and attached to any other agent, the probability that
V accepts is at most E.

We note that we've replaced the fixed constant probabilities for soundness and

completeness with probabilities controlled by an auxiliary input E. This implicitly

assumes that C is strong enough to allow the error rate to be reduced by sequential

repetition, for example. For most classes we would consider, bounded by reasonable

functions of time, space, and randomness, this is not an issue, but as we will need the

ability to amplify the correctness of the proof system and it turns out to be somewhat

awkward to carry out the amplification in an abstract setting, we prefer to take it as

given that such amplification is available.
This definition has similar virtues to its polynomial-time counterpart-if it exists,

then one can generate a proof in C, given that one is interacting with an oracle for

H. This is the main observation involved in the following theorem:

Theorem 5.25 (Universal users yield competitive proof systems). Let C be a class of

agents closed under sequential and parallel composition, containing the fanout, logic,
on-line equality, fixed padding, and copying agents. Then, for any function problem

11, if there is a C-bounded universal user for 11 with controllable error for the class of

all (Gn, C, 2/3)-helpful servers, there is a C-competitive interactive proof system for

11 with a deterministic prover strategy.

Proof We suppose we are given a C-bounded universal user U(E) for H with con-

trollable error for the class of all (Gr, C, 2/3)-helpful servers. In particular, the agent

that forwards its input to the server and forwards its response to the environment

and halts is in C because the copying agent is and C is closed under sequential com-

position; note that this agent achieve Gr with an oracle for H, which is therefore

(Gr, C, 2/3)-helpful. We then find that there is some U' E C that simulates U in its

interaction with a server using an oracle for IT as its strategy.

Construction of prover and verifier. Now, our proof system is therefore as

follows: the verifier is given by the composition of U' with a test that checks that

the output of U' matches the verifier's second input and that U' halts; since the

copying, AND, and on-line equality test agents are in C, and C is closed under parallel

142

composition, this verifier is also in C. The prover is given by an agent that ignores
its fixed inputs and forwards its incoming messages from the verifier to the oracle,
and forwards the oracle's responses back across its communications channel to the
verifier; note that this prover is deterministic, as claimed. The parallel composition
is in C since we can attach the verifier directly to the communications channel for the
oracle forward a copy of the communication on these channels to an external output.

Completeness. Since in Ex, U'(E) outputs H(x) and halts with probability at least
1 - E when interacting with an oracle for H, and the prover behaves identically to
the oracle for Hl, we find that the verifier accepts on inputs x, I(x), and e when
interacting with our prover with probability at least 1 - E, as needed.

Soundness. Now, we note that by Proposition 5.12, the function V(E) that checks
to see that U(e) would have halted is a (C, 1- E)-safe sensing function for Gr with the
class of all (Gr, C, 2/3)-helpful servers, and hence by Theorem 5.13, it is actually a
(C, 1-E)-safe sensing function with the class of all servers. Thus, U(E) only halts when
outputting y # P(x) with probability at most e, no matter which server it interacts
with. Therefore, on inputs x, y $ H(x), and e, our verifier's test is only satisfied with
probability at most E, no matter what strategy the prover uses, as needed. M

As Theorem 5.25 only involves our results from Section 5.3.2 establishing the
strong sensing requirements of the C-bounded universal settings, it inherits a rather
broad scope from those results.5 By contrast, of course, we recall that the construc-
tion of universal users in Section 5.4 required us to assume that C was efficiently
enumerable, so it is no surprise that a converse to Theorem 5.25 will require at least
that much. Actually, we will see, such a construction may depend on somewhat more.

All of the trouble arises from the fact that the prover's oracle is considered to be
"external" to the prover-verifier system in a competitive interactive proof system-
the prover can query the oracle on any instance it can compute, irrespective of the
instance's size, written to an external buffer, and the oracle answers in unit time.
This is all fine until we set out to introduce a simulation of the oracle by another
agent in such a way as to allow the parallel composition of the prover, verifier, and
oracle simulations to all lie within the class C. At a minimum, C then seems to need
to be closed under composition of functions in some suitable sense, and its resource
bounds need to allow for the oracle to run on any instance computed by the prover
within its own resource bound. These are some specialized requirements, and so we
will no longer aim for abstract generality, and simply focus explicitly on classes of
uniform time, space, and randomness bounded agents, which are the only classes we
presently know how to enumerate efficiently, anyway.

Now, as long as the class is defined by a collection of time and randomness bounds
that are closed under composition with the time bounds in the class (i.e., if bounding

5Though, we expect that in many of the cases where the present theorem applies, it may be
vacuous, since for example we don't expect universal users for nontrivial goals to be possible in the
setting of nonuniform polynomial-size circuits, cf. our discussion at the outset of Section 5.4.

143

functions (t1 , ri) and (t2, r2) are in the class, then so is (ti a t2 , r1 a t2)), and the

class is efficiently enumerable, closed under parallel composition, etc., then it is not
too hard to see that the construction in the proof of Theorem 3.12 (with the time-
bounded enumeration perhaps replaced by the enumeration of Proposition 5.20 if

there is randomness bound) will suffice; we leave the details to the interested reader,
and focus instead on the case of computation with a (sublinear) space bound. In this

case, we will show that it is still possible to obtain a converse by applying all of the

usual tricks for composing space-bounded functions.

Theorem 5.26 (Universal users for computation from competitive proof systems for

time and space bounded classes). Let C be a class of time/space/randomness bounded

agents that are efficiently enumerable given a size parameter, that have two auxiliary
inputs and a private output, and such that the enumerator provides the algorithm

along with each resetting indication, and that when the enumerator runs for at most

t steps, the length of this algorithm is at most 0(logt).
Suppose further that the time bounds of C are Q(log(1/E)); with time bound t,

the space bound Q(log(t/E)) is in C; the randomness bounds are either all 0 or else

with time bound t, randomness bounds of Q(log(t/e)) are in C; and furthermore, for

any two sets of bounds (t1 , s1, r1) and (t 2, S2, r 2) in C, the set of bounds (O(t1 (t2 0
ti)), O(s 1 + (s2 o ti)), O(r1 (r2 o ti))) are all in C.

Then for any function problem U such that the range of H on inputs of length n has

length O(s(n, 1)) for some space bound s in C, if there is a C-competitive interactive

proof system for U with a deterministic prover, there is a (C, 1 - E)-bounded universal

user U(e) for H with controllable error for the class of all (Gri, C, 2/3)-helpful servers.

In particular, as discussed above, note that the time bounds must be closed un-

der composition; this naturally suggests that the time bound should be polynomial,

quasipolynomial (i.e., of the form 2P9y log(n)) or "elementary" (of the form 22). Of

course, since the space and (nonzero) randomness bounds must also be at least log-

arithmic in the time bound, the corresponding minimal bounds are log n, poly log n,
and "elementary" (where the last case, consequently, is not so interesting). Never-
theless, polynomial time is the class of time bounds of greatest natural interest (and
quasipolynomial time is of secondary interest). Since the size parameter is given as
input, Proposition 5.20 gives that essentially all natural classes of bounding functions
are enumerable in this case, so the composability requirement is the main restriction.
Proof Our objective will be to construct a sensing module from the proof system
so that we can invoke Proposition 5.23. We will construct a uniformly viable (cf.
Section 4.2.2) grey-box sensing module with private outputs.

Construction of grey-box sensing. We can construct a resettable sensing module

as follows. We will assume that the user agent has private input and output channels;
note that this class of agents (i.e., with the same resource bounds as C and private

outputs) is still enumerable. Let (P, V) be the C-competitive proof system for H. Our

grey-box resettable sensing module V'(E) is now given by the following algorithm: we
keep a count of the number of times i in which we have received the "reset" signal; on

144

the ith reset, we first check that the user is some appropriate parallel composition of
the agent Uv we construct below (i.e., for uniform viability) and some other agent. If
so, we provide the composed agent (UvI|-) e and i as its auxiliary inputs, and output
a 1 iff Uv halts and outputs a 1 on its private output.

The agent (Uv||-)(E, i) is now as follows. Since (P, V) is C-competitive, we first
consider the agent simulating (P||V) in C, computing it in time/space/randomness
(ti, si, ri). We then construct UV as follows: Uv(e, i) first computes Ei = '/4i(i+1),

and then simulates (P|V(Ei)). The parallel composition (UvI|U')(E, i) then simulates
(P||V(E)) with U' attached to P as its oracle; since this communication is across P's
output module, we must recompute the messages of P on the current round of an
interaction between V and P to simulate access by U' into P's queries as follows.

Suppose that when P tries to write its first symbol to the output module to its
oracle, we make a copy of the state of the parallel composition of P and V; we continue
the execution of the parallel composition of P and V until P suspends its execution,
and needs a response from its oracle. We then begin running U', recomputing the
composition of P and V (supplying 0 to all requests for random bits) to obtain
each bit of the query that U' reads. Now, recall that P is a deterministic strategy

(and cannot read V's next message until it suspends execution), and so therefore
P's query is a deterministic function of its (externally visible) message history up
to the current round. Therefore, since the parallel composition produces the same
distribution over messages as the individual strategies, the query of P is independent
of the random bits generated in the parallel composition, so U' obtains the same bits
as P wrote originally. Moreover, since the parallel composition satisfies a time, space,
and randomness bound of (ti, si, ri) (with probability 1), the query of P is computed
in time/space/randomness (t1, si, 0), and we note that the query has size at most t1.

Now, furthermore, (Uv |U') (E, i) actually computes the responses of U' by invoking
U'j = O(log(t 1/ic)) times and taking its "majority response" (when it has one) using
the following well-known algorithm for computing the majority element in a data
stream:

(Uv 11 U') maintains a potential for the "candidate" element, initialized to 0; when-
ever the count is zero, the algorithm takes the current element in the stream as a new
"candidate" element with potential 1. When the algorithm encounters an element
in the stream that matches the candidate, it increments the potential, and otherwise
it decrements the potential. At the end of the stream, the algorithm outputs the
candidate element. It is easy to see that the candidate must be the majority ele-
ment: suppose that all of the non-majority elements in the stream are identical, and
suppose that we take the potential to be "negative" whenever the candidate element
is the minority element. Then each time we see the majority element, we increment
this modified potential, and every time we see the minority element we decrement
it-but, since the potential starts at zero and the majority element appears in over
half of the locations, the final potential must be positive, so the majority element is
the candidate at the final step.

The private output of (Uv||U')(8, i) is now the verdict of V(Ei) in the simulation
of ((P||U')||V(Esi)) described above.

145

V' and (Uv|-) are C-bounded. Suppose V' is run with some agent U' in C with

time/space/randomness (t 2, s 2 , r 2). V' itself is deterministic since it merely checks

that the current user strategy is of the right form and, if so, watches its output. The

time to maintain the counter can be amortized to 0(t) time total, and the space for

maintaining the counter and checking user strategies need not be larger than O(log t2),
so V' can be computed in space O(log t2) as well. Thus, we see that V' is in C (i.e.,
with 6s -- 0 with all servers).

As for Uv, since the counter V' maintains has value at most t 2, and the calcula-

tion of Ei for i < t2 can be done in time O(log(1/) log 2), the time to compute si
during the execution with the agent is 0(t 2 log(1/E) log t2), and it only requires space

0(log(t2/E)).
Now, to simulate Uv in the parallel composition with U', the data stream algo-

rithm used at most logj space for the potential and needed to store the output of U',
which, as a potential element of II, is assumed to be within some space bound s'(n, 1)

in C. We can amortize the time of maintaining the counter to 0(1) steps per opera-

tion. So, our simulation of Uv, recomputing P to simulate each bit read by U' likewise

takes time/space/randomness (0(t 2 - t log(t1/fi)), s 1 + s' +log log + 0(1), ri), and

so its total bound is

(0(t 2 -ti log(t 1 /E) log t2), si + s'+ log log(t1 /) -+ log(t 2/E) + 0(1), ri)

which is also in C. Thus, since U' C C, we find that for this particular simulation, the

parallel composition (Uv|U') is also in C since C is closed under parallel composition.

Every helpful server is viable with V' and (Uv|-). Let any (Gr, C, 2/3)-helpful
server S be given; then there is some agent Us E C for which Us robustly achieves Gr

with S with probability at least 2/3. Now, although we know that Us is C-bounded

in the system (Er, Us, S), we now consider Us in the system (El, Uy(E, i), Us, S) (i.e.,
for which we wish to replace Uv and Us by (UvlUs)(E,i)), and we wish to show

that Us still satisfies a bound in C, and moreover that V and therefore UV accepts

in the parallel composition. Since Us C C, we know that it runs in some appropriate
time/space/randomness bound (t2 , s2, r2)-

Recall that (UvlUs)(E, i) invokes Us j = 0(log(t1/&i)) times for each query and

takes a majority vote using the data stream algorithm described above. Our sim-

ulation of Us then runs in time/space/randomness (0(j - t2), s 2 + logj, j - r 2). We

noted above that all of the queries of P to Us were of size at most ti; since we

took j = 0(log(ti/si)), Us can therefore be simulated on P's (at most ti) queries in

time/space/randomness

(0((t 2 0 t1) - ti log), (s2 t1) + s1 + log log - + 0(1), 0((r2 ti) log -))

which is in C by assumption.
We now argue that this user strategy satisfies V. Note that when Us is run

in E, with S, since Us outputs II(x) with probability 2/3 on each trial, Hoeffd-

146

ing's inequality yields that in j trials it is the majority element with probability
1 - exp(-18j). Therefore, for any ti, we reduce the error probability to Ei/(4ti) by

taking j = O(log(ti/ei)), as done above. Note that by a union bound, the probability
that the majority vote of j repetitions of Us does not compute H1 correctly during
the simulation of P (which makes at most ti queries) is at most E/4. Therefore,
by the completeness of (P, V), V(E6) is satisfied in an interaction with P using Us
with probability at least 1 - Ei > 1 - E/4, and hence, since V'(E) simply checks that

V(Ei) is satisfied in this interaction, by a union bound over the probability that we

always compute P's queries correctly and the probability that P convinces V, V'(E)
is (C, 1 - e/2)-viable in E with S.

V' is safe. We note that by the soundness property of V, on input ei (on the ith
reset) V only accepts y # I(x) with probability at most Ei, no matter what user
strategy it interacts with; therefore, by a union bound, the probability that it ever
produces an accepting verdict on a bad output is at most EZ(E/4) 1/i(i+1) = E/4.

Since V' only considers agents that are parallel compositions of V with other agents,
we therefore see that V'(E) is (C, 1 - E/4)-safe.

Conclusion: obtaining the universal user. We have assume that C is efficiently
enumerable, and we have constructed a sensing module that is bounded, safe, and
viable with reset. We can now invoke the same argument used in the proof of Propo-
sition 5.23, additionally incorporating the extensions to private outputs and grey-box
sensing from Corollary 2.30; note that we have assumed that enumerator for C in-
cludes the appropriate auxiliary inputs and private outputs, and that the code of the
algorithm is provided as needed for our sensing module. So, we obtain a (C, 1 - E)-
bounded universal user U(e) with error 1 - E for the goal of computing H with every
(Gr, C, 2/3)-helpful server, as claimed. M

5.5.2 Computational goals for logspace agents

We will close this chapter with some applications of our generalized results, by in-
vestigating the computational capabilities of agents running in polynomial time and
logspace. First, we show an application to delegating polynomial-time computations
to unknown servers by polynomial time and logspace agents, and second, we discuss
the challenges in determining how powerful polynomial time and logspace agents can
be as was done in Section 3.3 for polynomial-time agents.

Logspace agents delegating computation

Section 3.3 demonstrated how any agent who can compute PSPACE can communicate
the results to a polynomial-time universal agent. This was an example of delegation of

computation-the polynomial time agent had an instance of a problem in PSPACE in
mind, encoded as an instance of a PSPACE-complete problem, and was able to obtain

147

the solution to the instance from the powerful server. If we believe that PSPACE-
complete problems cannot be solved by any agent in a reasonable amount of time,
though, it is hard to see what practical value the resulting protocol has, if any. In light
of this, the more interesting question to ask is if, in a similar way, polynomial-time
agents can communicate the results of "hard" computations to some weaker universal
agent; in this section, we will envision the weaker universal agent "delegating" the
problem to the polynomial-time agent. For example, we might imagine wishing to
use a weak handheld wireless device to solve some hard problem, e.g., solving a linear
program, using the aid of some foreign server that happens to be within its range.
Our objective here will be to design a protocol for the weak device that allows it to
use any server which can be accessed by a lightweight communications protocol. (In
Section 3.4, by contrast, we considered a different variant of this question, showing
that polynomial-time agents could share knowledge among each other, as opposed to
delegating computation to more powerful agents.)

We will model our weak devices as polynomial time and logspace bounded agents.
We will then find that a result of Goldwasser et al. [70] provides an analogue to the
proof systems we used in Section 3.3 for P-complete problems with polynomial time
and logspace verifiers; moreover, we will find that these proof systems are polynomial
time and logspace competitive as a consequence of earlier work by Condon and Lad-
ner [47]. Then, since the class of polynomial time and logspace agents is efficiently
enumerable (using the enumeration of Proposition 5.19, for example) and satisfies
the hypotheses of Theorem 5.26, thus yielding a universal user for any P-complete
computational problem.

We first recall the definition of a public-coin interactive proof system:

Definition 5.27 (Public coin interactive proofs). We say that (P, V) is a public coin
interactive proof system if it is an interactive proof system in which the verifier's
messages are precisely the random bits generated by the verifier.

Precisely now, Goldwasser, Kalai, and Rothblum have proved the following:

Theorem 5.28 (Goldwasser-Kalai-Rothblum [70]). There is a P-complete problem
I for which there is a public-coin interactive proof system in which the verifier runs
in polynomial time and logspace.

The construction is highly nontrivial, and we refer the interested reader to consult
the original paper for more details.6 Now, Condon and Ladner [47] showed that any
problem U having a public-coin proof system with a logspace verifier is contained in
P. More than the actual result, we are interested in their proof, which actually shows,
analogous to the construction in Proposition 3.11, how the optimal prover messages
for any verifier can be computed in polynomial time-we will use their reduction to
show that a competitive prover strategy can be given for the GKR proof system.

Theorem 5.29 (Logspace-competitive proof systems for P-complete problems). Let
UT be a P-complete problem under deterministic logspace reductions, and let (P, V) be a

'For full details, the reader may consult Rothblum's thesis [118].

148

public coin interactive proof system for 1l in which the verifier runs in polynomial time
and logspace. Then there is a deterministic polynomial time and logspace competitive
prover strategy Py for V.

Proof Condon and Ladner [47] showed how to construct an instance of linear pro-
gramming for any logspace verifier such that an optimal solution gives the probability
of the prover convincing the verifier on any message from any state of the verifier on
a given instance; we will review this construction shortly. Note, however, that this
implies that given the instance and the verifier's current state, a solution to this lin-
ear program can be used to easily decide which message the prover should send next.
In particular, since linear programming can be solved in polynomial time, there is
a polynomial-time algorithm that, given the instance and verifier's state as input,
computes a solution to this linear program for each next bit, and accepts if and only
if the probability that the verifier accepts is greater if the next bit is a "1;" since II is
P-complete, then, there is a (deterministic) logspace reduction RV such that for any
instance x and state of the verifier a, U(Rv(x, o)) = 1 iff the optimal prover's next
bit on common input x when the verifier is in state a may be a "1."

Pyrj is therefore the prover strategy that maintains the current state of V - it starts
out as some state uo, and since x is known and the verifier is public-coin, each time the
verifier sends its next coin toss, we can update its current state - computes R(x, a),
writing the result to its oracle query, and forwards the oracle's response to the user.
Since the verifier's state a is assumed to be O(log n) bits on x of size n and R(x, a) is
likewise computable in logspace, Py is thus also computable in logspace; moreover,
the prover uses no randomness, so it also computes each response in polynomial time
relative to U. Therefore, if the verifier runs in polynomial time overall, there are only
polynomially many rounds, and the prover also runs in polynomial time.

Reduction to linear programming. Now, the linear programming instance is as
follows: for each state of the verifier a we have a variable y, with constraint y, 0. If
y, is a coin tossing state which, on common input x enters states ao and ai uniformly,
then there is also a constraint y, = !(y. + y"); if, on the other hand, a is a state
that, on common input x, waits for a bit from the prover, and then enters either state
ao or oi, then there are two more constraints, Y, > yo,0 and y, > yal. Finally, if a is

an accept state, we have y, = 1, and if o- is a reject state y, = 0. Now, the objective
function simply minimizes E, y.

Optimal prover strategies yield feasible solutions. To see that this computes
the probabilities realized by an optimal prover strategy, suppose that we assign y, to
be the probability that the verifier accepts from state a on common input x given the
prover strategy. Of course, the constraints on the accept, reject, and coin toss states
are satisfied, and at the states a that wait for a bit from the prover, an optimal prover
must choose to send a bit such that y, is max{y,0, y, } for the possible next states
of the verifier on common input x, so these constraints are satisfied as well, and the
probabilities that the verifier accepts with the optimal prover on input x from state
a are a feasible solution to this linear program.

149

Optimal feasible solutions yield prover strategies. Conversely, an optimal
solution to this linear program must set y,, > 0 such that the constraints on the coin
toss, accept, and reject states are satisfied, and such that for states a that wait for a
bit from the prover, y, = max{y0o, y. } for the possible next states ao and a. Thus,
in particular, in any optimal solution, we can replace these constraints y, > y, 0 and
y, y, with a single constraint y, = Yeb for any state ob that has yb Ycybe ,
and obtain a solution with the same value in the objective function. Now, we note
that this also gives a prover strategy: at state a, the prover sends b such that the
verifier would then enter ob for the new constraint. Moreover, the probabilities that
the verifier accepts for this prover strategy are another nonnegative solution to the
same system of linear constraints, and in both cases, in the directed graph given by
edges in the verifier's configuration graph corresponding to these constraints, if there
is no path to an accept state from a, then both solutions must set y, = 0.

Claim 5.30. Suppose we remove all nodes from the verifier's configuration graph
corresponding to the given prover strategy with input x that do not have a path to an
accept state, and consider the corresponding set of linear constraints. The resulting
system has a unique solution.

Proof Let b, = 1 if a is an accept state, and b, = 0 otherwise, and let M be a matrix
such that if o- is a coin toss state, then M(o-, ao) = M(a, o-1) = 1/2 and if a is a state
waiting for the prover's input, M(o, Ub) = 1. Then, ignoring the constraints y, 2 0,
the remaining system of constraints may be written y = My+b. We will show (I-M)
is invertible, which will prove the claim since we may then conclude that the solution
is nonnegative, as it may be given by the probabilities of the verifier accepting from
each state under an optimal prover strategy (which also satisfies y = My + b).

Recall that (I - M) is invertible if l 0 Mk converges; now, Mk (o, -r) is the
probability that, if the verifier starts in state a, after k steps, the verifier enters state
r. Note that the verifier "exits" at the accept and reject states; moreover, since every
remaining state (by construction) has a path to the accept state, if the verifier has
n states remaining, then within n steps, from any starting state, the verifier must
reach the accept state with probability at least 2-1. Therefore, the sum of the entries
in any row of Mn is at most 1 - 2-", and likewise the sum of any row of Muk is at
most (1 - 2 -n)k. Since the entries of Mk are all nonnegative and the row sums of

Ek- MiMnk for i = 0,... n - 1 are bounded above by a convergent series, the row
sums of Ejo M converge; hence, each individual entry is bounded and thus must
also converge. Thus, the limit exists and I - M is invertible, proving the claim. U

It thus follows from Claim 5.30 that an optimal solution to the linear program
above gives the probability of the verifier accepting at each state a for the corre-
sponding prover strategy, as needed, since they both satisfy the system of constraints
described in the claim. E

Combining Theorem 5.28 and Theorem 5.29, we find that the GKR proof system
is a polynomial time and logspace competitive proof system with a deterministic
prover strategy, as needed for the application of Theorem 5.26. Noting that since

150

the particular P-complete problem H that is used by the GKR proof system can be

converted into any other P-complete problem H' by a logspace reduction, if a server

is helpful for Gn, it is also helpful for Gn; and likewise, our universal user can first

apply the reduction from H' to H and then use the construction for Gn to achieve

Gnp. We therefore obtain:

Theorem 5.31 (Logspace universal users exist for P-complete problems). Let H be

a P-complete problem under logspace reductions and let L be the class of polynomial

time and logspace bounded agents. Then there is a (L,,1 - c)-bounded universal user

U(e) with controllable error for Gn1 with the class of all (Gn, L, 2/3)-helpful servers.

We thus see that it is possible to delegate any polynomial time computation to

a server that can solve P-complete problems without needing to know a protocol (or

even "which" P-complete problem the server was "designed" to solve). Note that,
analogous to the proof of Theorem 1.7 (given in Section 4.1), any such Gn is clearly

nontrivial (in an appropriate parameterized sense) unless BPL = P, so something
interesting has been achieved.

Classifying the computational capabilities of logspace universal protocols

Of course, one of our objectives in Section 3.3 was not just to construct a universal pro-
tocol, but to give a characterization of the class of problems which have polynomial-

time universal protocols. Correspondingly, we have a characterization of the problems

with polynomial time and logspace universal protocols:

Theorem 5.32. Let 1 be the class of polynomial time and logspace agents. A Boolean

function problem H has a (L, 1-e)-bounded universal user U(e) with controllable error

for Gn1 with the class of all (Gn, L, 2/3)-helpful servers iff there is a L-competitive

proof system (Pn, V(E)) for H in which the prover's strategy is deterministic.

One direction of Theorem 5.32 follows from Theorem 5.25. The other direction
follows from Theorem 5.26 since the class of polynomial time and logspace agents is

efficiently enumerable by Proposition 5.19.
Now, along the lines of Section 1.4.2, we might also wish to know just how powerful

the problems that can be solved by logspace universal protocols are. That is, we

might again imagine that Bob is communicating with an all-powerful Alice, and we

might again wish to know how his lack of understanding limits what he can learn

from Alice-with the twist now that Bob is additionally restricted to run in logspace.
Formally, this corresponds to finding the class of problems H that can be reduced to

a problem H' for which there exists a universal protocol in the polynomial-time and

logspace bounded setting.
In the basic universal setting, we had Theorem 1.4, which showed that PSPACE-

complete problems had universal users - thus implying that universal users with

sufficiently powerful servers can decide every problem in PSPACE - and Theorem 1.5,
which showed that polynomial time users could not decide problems outside PSPACE.

Thus, the class of problems that a user can solve with an all-powerful server in the

basic universal setting is precisely PSPACE.

151

We obtain a similar limitation result for polynomial time and logspace universal
users in Theorem 5.32-since the verifier in a L-competitive proof system is a poly-
nomial time verifier, the problems with L-competitive proof systems also fall within
IP = PSPACE, and therefore this class is no larger than PSPACE since the reduc-
tions can also be computed in PSPACE. This is the best limitation result we know;
it is possible that this is tight, but we do not know how to show this. One cannot, for
example, insert the reduction of Condon and Ladner [47] in the proof of Theorem 5.25
and obtain a tighter result since this reduction only applies to public-coin protocols,
whereas a universal protocol is, in general, a private-coin protocol. Indeed, this was
one of the difficulties that we had to overcome in proving Theorem 5.25-if we had
only handled public-coin protocols, then it wouldn't have been necessary to use grey-
box sensing, e.g., as achieved in Example 2.24 since the sum-check protocol [97, 128]
was a public coin protocol.

By contrast, there is a construction due to Condon [46] that can be used to convert
a polynomial-time verifier into a verifier that runs in polynomial-time and logspace,
e.g., given II c PSPACE, we would let Vr be the verifier for an interactive proof
for membership in the function relation for H as before; we can then use Condon's
construction to convert Vr1 into VA that runs in polynomial time and logspace. The
basic idea is that the prover sends the verifier a tableau for the computation of V
while computing with the prover, and the verifier checks a random column in the
tableau on each transition. In slightly more detail, in the modified proof system, the
logspace verifier chooses the coin tosses for VII, and the prover maintains the state of
Vr, sending the next configuration of Vr on each round. In each round, the verifier
chooses a random location in the configuration, and stores a small window around that
location; on the following round, while the prover is sending the next configuration
of Vr, VA checks that the cell in the middle of the window was updated correctly.
Since Vr is a polynomial-time verifier, each configuration has polynomial size, and any
errors are detected with 1/poly(n) probability; thus, sequential repetition is sufficient
to guarantee the verifier a probability 2/3 of catching a cheating prover.

We can, of course, construct a polynomial time and logspace sensing module
for this proof system, and construct a polynomial time and logspace user from the
sensing module as done in Theorem 5.26. Although the existence of the honest prover
guarantees that the class of servers for which the sensing module is viable is nonempty,
it isn't clear at all whether or not this class is the class of (Gr1 , L, 2/3)-helpful servers.
Theorem 5.32 tells us that the complexity of the prover is the key issue here, and it
isn't clear how we could simulate the prover in Condon's proof system without using
polynomial space, for example, or whether or not some other suitable proof system
exists. and hence it isn't clear whether or not a universal user exists in the L-universal
setting for a PSPACE-complete II. and the capabilities of users in the [-bounded
universal setting remains open.

152

Chapter 6

Theory of goal-oriented
communication in infinite
executions

Our model of goals in finite executions, as first introduced in Chapter 2, captured
many natural goals for communication, as illustrated in Chapter 3. This framework
only captured goals that could be modeled as the user trying to reach a certain state
of the environment by communicating with the server, though; another kind of goal
that is not captured by this framework is a goal in which the user tries to maintain
effective communication with the server over time. As such goals arise naturally in
many contexts, we are motivated to introduce a new framework that does capture
such goals-in fact, we'll even see at the end of this chapter, in Section 6.4, that this
new framework can even capture the finite-execution framework as a special case,
and so the new framework will subsume the earlier framework, at the cost of some

(moderate) additional technical complexity.
Specifically, the model we introduce defines goals for communication (between

a user and a server) as properties of entire infinite executions of an environment-
user-server system. We adapt all of the key notions from the finite execution setting
to appropriate analogues in this new infinite execution setting in Section 6.1; in
particular, we develop a somewhat different notion of sensing in Section 6.1.4, that
is more concerned with detecting failure than predicting success.

Actually, moreover, our development for infinite executions will feature different
levels of quality of sensing, weak and strong sensing; we will see that this distinction
is relevant when we consider the relationship between sensing and universal users for
infinite execution goals in Section 6.2: strong sensing will allow us to obtain universal
users with guarantees on the number of errors they make, but will only exist under
circumstances similar to sensing in the finite execution setting (that is, only when
the goal is even verifiable with adversarial "servers"); weak sensing, by contrast, will
be available more generally, but will not provide bounds on the number of errors
(which are highly desirable to have). Still, this distinction can be exploited to achieve
goals that cannot support strong sensing, as we will see in Chapter 7. We will see,
furthermore, in Section 6.2.3, that some goals in infinite executions do not require

153

feedback at all! Thus, this new setting turns out to be quite different from the finite
execution model we studied in previous chapters.

Finally, in Section 6.3, we'll see how the model can incorporate some further
features that will be relevant in later chapters. In particular, we'll see how to capture
some cases where the size parameter varies over time and develop universal users that
achieve error bounds in an appropriate size-weighted sense. We'll also see a definition
of a class of goals in which the user engages in multiple "sessions" (i.e., multiple sub-
goals) concurrently, that in addition to being of natural interest, will be useful to us
in Chapter 9.

All of the work described in this chapter is joint work with Oded Goldreich and

Madhu Sudan, and is adapted from a technical report [67].

6.1 Goals and sensing for infinite executions

Our objective in this section is to develop a new framework for modeling communi-
cation in infinite executions. Specifically, the model we introduce defines goals for

communication (between a user and a server) as properties of entire infinite executions
of an environment-user-server system. Of course, the class of all such properties is
much too general to be of any interest, so in Section 6.1.1, we formulate some key spe-
cial cases-notably, that of multi-session goals, in which each session may correspond
to a sub-goal of the variety considered in the finite execution model. We will see in

Section 6.1.3 that our earlier notions of achieving goals and helpful servers translate
to this new setting by essentially replacing the old definitions with the corresponding
new definitions. We will also briefly consider how our measures of the complexity of

user strategies should be modified in an infinite execution setting, in Section 6.1.2.

Finally and most significantly, we will develop notions of sensing for infinite exe-
cution goals in Section 6.1.4. These notions will be central to the rest of this chapter,
and moreover (in contrast to the ease with which we adapted helpfulness and robust
achievement to infinite executions) will turn out to be quite different from the kind
of sensing we worked with in the finite execution model. As we hinted at in the
introduction, the difference is that sensing for infinite executions only needs to detect
miscommunication after the fact. Keeping this in mind, we will actually introduce
three kinds of sensing: weak sensing, in which we only require that that failures are
eventually detected, and that viable servers only incur finitely many (detected) er-

rors; very strong sensing, in which all failures must be detected within a specified
time bound, and viable servers only trigger failures within a bounded initial period;
and, finally, strong sensing, in which the error detection is relaxed (from very strong
sensing) to allow sensing to "forgive" a few errors, provided that the user strategy
can recover from them, and will only incur a bounded number of errors in the long
run. Ultimately, the weak and strong versions (and not the very strong version) will
be the main subjects of interest in subsequent sections.

154

6.1.1 Goals in infinite executions

Recall that our model of goals in finite executions only captured the goals that arose

in a certain context-that is, goals in which we were happy so long as we could make

the environment's state satisfy some desired property (i.e., the property correspond-
ing to a finite execution referee). Another natural kind of "goal" that we could have

considered is goals in which we wish to maintain some desired property in the en-

vironment over time; or, equivalently for our purposes, we could have asked for our

agents to keep communicating successfully over time. So, as this kind of goal is not

naturally captured by the finite execution framework of Chapter 2, we will consider
a more general notion of achieving goals, a notion that refers to an infinite execution

of the system. Intuitively, this may capture reactive systems whose goal is to repeat-
edly achieve an infinite sequence of sub-goals (where the individual sub-goals may

correspond to the kinds of finite goals considered in Chapter 2) and in particular may
capture the desired behavior of servers on a network or operating systems. Thus, we
again augment the environment with a referee, which rules whether such an infinite

execution (actually, the corresponding sequence of the environment's local states) is
successful.

Definition 6.1 (Infinite execution referees and successful executions). A infinite

execution referee R is a function from infinite executions to a Boolean value; that is,
R : Qw - {0, 1} (or, actually, R : (Q(*))w -> {0, 1}). Indeed, the value of R(a, U2 ,

only depends on ol oe , ... (and it may be written as R(of,), 1 .)). We say that
the infinite execution - = (o1, U2 , ...) E Qw is successful (w.r.t R) if R(U) = 1.

As in finite executions, the combination of the environment's strategy and a referee

gives rise to a notion of a goal. Intuitively, the goal is to affect the environment in

a way that is deemed successful by the referee. Formally, we have a definition quite
similar to Definition 2.10:

Definition 6.2 (Goals in infinite executions). A goal of communication for infinite
executions is given by a pair, consisting of the environment's non-deterministic prob-

abilistic strategy and an infinite execution referee.

We can illustrate this new setting by presenting a couple of familiar goals from
finite executions as goals in infinite executions:

Example 6.3 (Predicting the environment's coins). A simple, but impossible to
achieve, goal is predicting the environment's coin tosses. This goal may be formulated
by considering a (single actual)1 environment strategy that, at each round, tosses a

single coin and sets its local state according to the coin's outcome, and a referee that

checks whether (at every round) the message sent by the user to the environment

was equal to the environment's state on that round. Since this environment's actual

strategy does not communicate any information to the user, no user strategy may

succeed with positive probability-since the number of rounds exceeds the logarithm

1Indeed, in this example, the environment's non-deterministic strategy is a singleton, containing
a single actual strategy.

155

of the reciprocal of any positive number, the user's probability of satisfying the referee
goes to zero in the limit.

Note that in this example no server can help the user to achieve its goal (i.e.,
succeed with positive probability). In contrast, if the environment communicates its

state to the server, and the referee checks whether the message sent by the user to

the environment (at each round) equals the environment's state two rounds before,
then an adequate server may help the user succeed with probability 1.

Example 6.4 (Solving computational problems posed by the environment). For a

fixed decision problem II, consider a non-deterministic environment strategy that in
round r generates an arbitrary r-bit string, denoted xr, and communicates it to the

user, and a referee that checks whether, for every r > 2, the message sent by the user
to the environment at round r equals II(Xr-2). Indeed, this goal can be achieved by
the user if and only if in round r + 1 it has computational resources that allow for
deciding 11 on instances of length r.

Note that also in this example no server can help the user, since the user obtains

the "challenge" at round r and needs to answer at round r+2 (which does not allow for

communicating the challenge to the server and obtaining the server's answer in time).
In contrast, if the goal is modified such that the referee checks the user's message in

round r against the environment's message of round r - 3, then communicating with

a server that has computing power that exceeds the user's power may be of help.
Indeed, in this modified goal, communication between the user and the server allows

the user to obtain computational help from the server. By contrast, in the next goal,
the server's help is required, regardless of computational resources.

Example 6.5 (Printing). Think of the server as a printer that the user wishes to use

in order to print text that is handed to it by the environment. That is, consider a
non-deterministic environment strategy that at each round r generates an arbitrary
bit br E {0, 1} and communicates br to the user, and a referee that checks whether,
for every r > 2, the message sent by the sender to the environment at round r equals
br- 2.

Indeed, the only way that a user can achieve this goal is by transmitting br to the
server in time r +1, and counting on the server to transmit this bit to the environment
in round r + 2.

Compact goals

Examples 6.3-6.5 belong to a natural class of goals, which we call compact. In com-

pact goals, success can be determined by looking at sufficiently long (but finite)
prefixes of the actual execution. Indeed, this condition refers merely to the referee's

predicate, and it guarantees that the set of successful executions is measurable with

respect to the natural probability measure (see Appendix). Furthermore, the com-

pactness condition also enables the introduction of the notion of sensing of success

(see Section 6.1.4).

156

By incorporating a record of all (the relevant information regarding) previous

states in the current state, it suffices to take a decision based solely on the current

state.2 As in the case of the referee function R, the temporary decision captured by
R' is actually a function of the environment's local state (and not of the entire global
state).

Definition 6.6 (Compactness). A referee R: QW -+ {0, 1} is called compact if there

exists a function R' Q -- {0, 1, I} (or, actually, R' : QG -+ {0, 1, I}) such that for

every o = (U1 , o 2 , ...) E QW it holds that R(a) = 1 if and only if the following two

conditions hold

1. The number of failures is finite:

There exists T such that for every t > T it holds that R'(ot) / 0 (or, actually,

R'(o-,) / 0).

2. There are no infinite runs of I:

For every t > 0 there exists t' > t such that R'(ut') # I.

The function R' is called the temporal decision function.

Indeed, the special symbol I is to be understood as suspending decision regarding
the current state. Definition 6.6 asserts that an execution can be deemed successful

only if (1) failure occurs at most a finite number of times and (2) decision is not

suspended for an infinite number of steps. (A stronger version of (Condition 2 of)
Definition 6.6 may require that there exists B such that for every t > 0 there exists

t' E [t + 1, t + B] such that R'(o-t) f 1.)3

Multi-session goals. Examples 6.3-6.5 actually belong to a natural subclass of

compact goals, which we call multi-session goals.4 Intuitively, these goals consist

of an infinitely repeated finite execution goal, where each of the corresponding finite

(sub-)executions is referred to as a "session." In other words, these goals consists of an

2That is, consider a definition analogous to Definition 6.6, where R' : Q* -- {0, 1, I} and the

conditions refer to R'(xi, U2, ..., oi) rather than to R'(uj). Then, using (0i, 02, ... , oj) as the ith state,
allows to move to the formalism of Definition 6.6. Furthermore, in typical cases it suffices to include

in the ith state only a "digest" of the previous i - 1 states.
3 1t is tempting to suggest even a stronger version of Definition 6.6 in which both T and B are

absolute constants, rather than quantities determined by the sequence i-; however, such a stronger

definition would have violated some of our intuitive desires. For example, we wish to focus on

"forgiving" goals that are achieved even if the user adapts a good strategy only at an arbitrary

late stage of the execution, and so we cannot afford to have T be execution invariant. Also, for an

adequate notion of "size" (of the current state), we wish to allow the user to achieve the goal by

interacting with a server for a number of rounds that depends on this size parameter (and suspend

decision regarding success to the end of such interactions). In fact, we even "forgive" infinite runs

of l's if they result from a permanent increase in the size parameter.
4Actually, to fit Examples 6.4 and 6.5 into the following framework we slightly modify them such

that the environment generates and sends challenges only at rounds that are a multiple of three.

Thus, the ith session consists of rounds 3i, 3i + 1, 3i + 2. Such an adaptation is also a case of a

3-round multi-session goal as introduced in Section 8.2.1.

157

infinite sequence of sub-goals, where each sub-goal is to be achieved in a finite number

of rounds, which are called the current session, and the environment's state is (non-
deterministically) reset at the beginning of each session (indeed, as in Example 6.4).

We further restrict such goals in the following definition, where these restrictions are

aimed to capture the intuitive notion of a multi-session goal.

Definition 6.7 (Multi-session goals). A goal consisting of a non-deterministic strat-

egy S and a referee R is called a multi-session goal if the following conditions hold.

1. The environment's states: The local states of the environment are partitioned
into three non-empty sets consisting of start-session states, end-session states,
and (intermediate) session states. Each of these states is a pair consisting
of an index (an integer representing the index of the session) and a contents

(representing the state of the actual execution of the session).5 The initial local

state corresponds to the pair (0, A), and belongs to the set of end-session states.

2. The referee suspends verdict till reaching an end-session state: The referee R is

compact. Furthermore, the corresponding temporal decision function R' evalu-

ates to I if and only if the current state is not an end-session state.

3. Starting a new session: When being in an end-session state, the environment

moves non-deterministically to a start-session state while increasing the index.

Furthermore, this move is independent of the actual contents of the current end-

session state. That is, for each actual environment strategy E E E, the value

of E is invariant over all possible end-session states that have the same index

(i.e., for every two end-session state (i, o-') and (i, o-"), it holds that E(i, o-')(e) =

E(i, o-")(e) E {I + 1} x Q, and similarly for E(i, .)(e-)).

Optional: The environment can also notify the user that a new session is start-

ing, and even whether or not the previous session was completed successfully

(i.e., with R' evaluating to 1). Analogous notifications can also be sent to the

server.

4. Execution of the current session: When being in any other state, the environ-

ment moves probabilistically while maintaining the index of the state (i.e., for

every E E E and such state (i, o-'), it holds that E(i, o-') = (i, -)). Furthermore,
the movement is independent of the index as well as of the actual environment
strategy; that is, for every E1, E2 E S and every ii, i2 E N and o-', o-" E Q, it
holds that Pr[E1(ii, o-') = (ii, o-")] equals Pr[E 2 (i2 , 9') = (i2 , O-")].

The execution of a system that corresponds to Definition 6.7 consists of a se-

quence of sessions, where each session is a sequence of states sharing the same index.

Indeed, all the states in the ith such sequence have index i, and correspond to the

ith session. The temporal decision function R' determines the success of each session

5The states are augmented by an index in order to allow for distinguishing the same contents

when it occurs in different sessions. This is important in order to allow different non-deterministic

choices in the different sessions (cf. Condition 3).

158

based solely on the state reached at the end of the session (which includes also the
session's index), precisely as a finite execution referee would determine success in an
execution corresponding to the ith session. Recalling our definition of a referee for a
compact goal, now, it follows that the entire execution is successful if and only if all
but finitely many sessions are successful. We stress that, except for the index, the
environment's local state carries no information about prior sessions. Furthermore,
with the exception of the initial move into a start-session state, the environment's
actions during the session are oblivious of the session's index. (In contrast to the
environment's action, the strategies of the user and server may maintain arbitrary
information across sessions, and their actions in the current session may depend on
this information.)

Repetitive (multi-session) goals. A special type of multi-session goals consists
of the case in which the environment repeats the non-deterministic choices of the first
session in all subsequent sessions. We stress that, as in general multi-session goals,
the environment's probabilistic choices in each session are independent of the choices
made in other sessions.6

Definition 6.8 (Repetitive goals). A multi-session goal consisting of a non-deterministic
strategy S and a referee R is called a repetitive if its non-deterministic choice is inde-
pendent of the index; that is, for every E E S and every i E N and u' E Q, it holds
that E(i,u') - E(1, -).7

Indeed, any multi-session goal using an environment strategy that makes no non-
deterministic choices (cf., e.g., Example 6.3) is a repetitive goal. An example of a
repetitive goal that does involve non-deterministic choices follows.

Example 6.9 (Repeated guessing with feedback). Consider a non-deterministic en-
vironment strategy that generates an integer i and proceeds in sessions. Each session
consists of two rounds, where in the first round the user sends a guess to the environ-
ment, and in the second round the environment notifies the user whether or not its
guess was correct (i.e., whether or not the message sent by the user in the first round
equals i). The referee deems a session successful if the user sent the correct message
i. Indeed, by recording all previous failed attempts, the user can eventually succeed
in a single session, be informed about it, and repeat this success in all subsequent
sessions.

Indeed, the feedback provided by the environment is essential for the user's ability
to (eventually) succeed in guessing the environment's initial choice. In particular, note
that no user strategy can reliably guess the environment's choice correctly in the first
i - 1 sessions, let alone the first one, so the natural corresponding finite execution
goal is unachievable.

'Indeed, a stronger notion, which we do not consider here, requires that the environment also
repeats the probabilistic choices of the first session in all subsequent sessions. We note that this
stronger notion cannot be captured in the current formalism.

'We used X = Y to indicate that the random variables X and Y are identically distributed.
Note that if a' is an end-session state, then E(i, a') and E(1, o-') are actually fixed strings (and they
must be equal).

159

Generalized multi-session goals. Our formulation of multi-session goals man-
dates that the current session must end before any new session can start (see Defini-
tion 6.7). A more general formulation, which allows concurrent sessions, is postponed
to Section 6.3.2 (cf. Definition 6.53). Note that Examples 6.4 and 6.5 fit this general
formulation without any modification (cf. Footnote 4).

6.1.2 The computational complexity of strategies

In contrast to the finite execution setting, it no longer makes sense to talk about,
e.g., the "total time" spent by the user in an infinite execution. Since strategies are
essentially functions, it is natural to generally define their time complexity as the
complexity of the corresponding functions, and this is always a reasonable notion in
infinite executions.

In the case of multi-session goals, though, the connection to finite execution goals
motivates an arguably more natural notion of time complexity: since each session
corresponds to a finite execution, the natural corresponding notion of time complexity
is the total time spent by the user during a session, i.e., the time complexity of the user
strategy in the finite executions sense. We caution that this correspondence is not as
strong as it first seems, since the termination of a session is under the environment's
control, whereas the termination of an execution in the finite-execution setting was
always under the user's control. Thus, we'll explicitly mention when we wish to
consider the "per-session" time complexity.

Of course, considerations similar to the above hold for the randomness complexity,
and we can consider both "per-round" and "per-session" versions. On the other
hand, whenever we consider the space complexity of a strategy (as, e.g., we did in
Chapter 5 for finite executions), the natural notion refers to the maximum space
used by the user during the computation of its strategy across the entire infinite
execution, in particular, including the space consumed to store the user's internal state
across rounds of the execution. We note that the intuitive notion of an "efficient"
user strategy in infinite executions should generally be both polynomial-time and
polynomial-space bounded, where the polynomial time bound no longer implies a
corresponding polynomial space bound.8

As before in the finite execution setting, we define the complexity of a (user)
strategy with respect to the specific party (i.e., server) with which it interacts. This
convention facilitates reflecting the phenomenon that some servers allow the user to
"save time;" that is, the complexity of the user is lower when interacting with such
servers. In contrast to the finite execution setting, though, we define complexity with
respect to the size of the current state (rather than with respect to the length of its
description or with respect to the environment's strategy, as was the case in finite
executions), where size is an adequate function of the state that need not equal the
length of its description. Nevertheless, typically, the size will be polynomially related
to the length, but this relation need not be fixed a priori.

81n particular, in the absence of the space bound, we may encounter situations where a multitape
Turing machine would experience unbounded time overhead over a time-efficient RAM machine-
and, unfortunately, we will actually encounter such a situation in Chapter 7.

160

6.1.3 Achieving goals and helpful servers

We have already touched on the notion of achieving a goal in an infinite execution,
but now we turn to define it formally, while assuming that the corresponding referee
is compact (as per Definition 6.6). As detailed in the Appendix, the compactness
assumption implies that the set of successful executions is measurable (with respect
to the natural probability measure). The basic definition of achieving a goal is as
follows.

Definition 6.10 (Achieving goals in infinite executions). We say that a pair of user-

server strategies, (U, S), achieves the goal G = (8, R) if, for every E C E, a random
execution of the system (E, U, S) is successful with probability 1, where success is as
in Definition 6.1.

Recall that by Definition 2.11, our convention is that (unless stated differently)
the execution starts at the system's (fixed) initial global state. However, in the sequel
we will be interested in what happens when the execution starts in an arbitrary state,
which might have been reached before the actual execution started. This reflects the
fact that the environment is not initialized each time we (users) wish to achieve some
goal, and the same may hold with respect to the servers that we use. Thus, a stronger
notion of achievable goals arises.

Definition 6.11 (Robustly achieving goals in infinite executions). We say that a

pair of user-server strategies, (U, S), robustly achieves the goal G = (E, R) if for every
E c 8 and every global state o, a random execution of the system (E, U, S) starting
in state o is successful with probability 1.

Indeed, this notion of robust achievability is again "forgiving" of an initial portion
of the execution that may be carried on by inadequate user and/or server strategies.
A more refined definition, which quantifies over a subset of the possible states is post-
poned to Section 6.3 (see Definition 6.54). Most importantly, this refined definition
allows to consider the (natural case of the) set of all global in which the user's lo-
cal state is reset to some initial value, as we did when considering finite executions.
(Indeed, in contrast to resetting the environment, resetting the user seems feasible in
many cases, and seems less demanding than resetting the server.)

Proposition 6.12 (Robustness allows ignoring execution prefixes). Let Ut (resp., St)
be a user (resp., server) strategy that plays the first t rounds using the user strategy
Uo (resp., server strategy So) and plays all subsequent rounds using the user strategy
U (resp., server strategy S). Then, if (U, S) robustly achieves the goal G = (8, R),
then so does (Ut, St).

The proof only uses the hypothesis that (E, U, S) is successful when started in
a state that may be reached by an execution of E with an arbitrary pair of user
and server strategies. Indeed, for all practical purposes, the definition of robust
achievability may be confined to such initial states (i.e., in Definition 6.11, we may
quantify only over states o, that can be reached in some execution of the system
(EO, UO, SO), where EO E 8 and (Uo, SO) is an arbitrary user-server pair).

161

Proof The proposition follows by considering the execution of the system (E, U, S)
starting at the state, denoted o-, that is reached after t rounds of the system (E, Uo, So).
(Indeed, o may be a distribution over such states.) By combining the robust achiev-
ability hypothesis (which refers to the execution of (E, U, S) started at a) and the
compactness hypothesis (which allows discarding the t first steps of (E, Ut, St)), we
conclude that the execution of (E, Ut, St) (started at any state o') is successful with
probability 1. U

Achievable goals. We may say that a goal G = (8, R) is achievable (resp., ro-
bustly achievable) if there exists a pair of user-server strategies that achieve (resp.,
robustly achieve) G. Indeed, as hinted before, predicting the environment's coins
(i.e., Example 6.3) is an unachievable goal, whereas the goals of Examples 6.4 and 6.5
are (robustly) achievable. Note, however, that the printing goal (i.e., Example 6.5)
is achievable by a very simple user-server pair, whereas solving the computational
problems posed by the environment (i.e., Example 6.4) is achievable only by a suffi-
ciently powerful user (i.e., one that can decide membership in D). Thus, achievable
goals are merely our starting point; indeed, starting with such a goal G, we shall ask
what should be required of a user-server pair that achieves G and what should be
required of a user that can achieve this goal when paired with any server that is taken
from a reasonable class.

Helpful servers

Our focus is on the cases in which the user and server need to collaborate in order
to achieve the goal. Indeed, in order to collaborate, the user and server may need to
communicate, and in such a case they furthermore need to understand one another.
The latter requirement is non-trivial when the server may be selected arbitrarily
within some class of helpful servers, where just as in the finite execution setting (cf.
Definition 2.18), a server is helpful if it can be coupled with some user so that this
pair achieves the goal-even in this case, the mere existence of a suitable user strategy
U does not suffice because we may not know this strategy. Still, we must start with
the assumption that such a user strategy U exists, which leads to the definition of a
helpful server.

Fixing an arbitrary (compact) goal G = (E, R), we say that a server S is helpful if
there exists a user strategy U such that (U, S) achieves the goal. Just as we did with
helpfulness for finite executions, we will strengthen this helpfulness requirement in
two ways. Firstly, we will require that (U, S) robustly achieves the goal, rather than
merely achieves it. This strengthening reflects our interest in executions that start at
an arbitrary state, which might have been reached before the actual execution started
(cf. Definition 6.11). Secondly, along the lines of Definition 5.10 in the generic finite
execution setting, at times, we may require that the user strategy U (for which (U, S)
robustly achieves the goal) belongs to some predetermined class of strategies li (in
particular, e.g., the class of polynomial time user strategies, as was the case for our
original notion of helpfulness, Definition 2.18).

162

Definition 6.13 (Helpfulness). A server strategy S is U-helpful (w.r.t the goal G) if
there exists a user strategy U c U such that (U, S) robustly achieves the goal G.

When U is not specified, we usually mean that helpfulness holds with respect to

the class of all computable user strategies.

6.1.4 Sensing for goals in infinite executions

We recall that "sensing" was an essential concept for goals in finite executions (cf.
the results of Section 2.3). The notion of feedback we developed for finite executions,
however - i.e., predicting the verdicts of a finite referee - does not immediately trans-
late to anything meaningful in the context of the referees used in goals in infinite
executions. Still, we saw that the achievability of the goal of "repeated guessing with
feedback" (i.e., Example 6.9) relied on the feedback provided to the user regarding its
success in previous sessions. More generally, we will find that an analogue of finite-
execution sensing that refers to the temporal decision function of a compact goal
instead of a finite-execution referee is very natural. Such a formulation introduces a
few new twists, notably that as with the feedback provided by the repeated guessing
goal, we no longer need to be so concerned with predicting what the referee will decide
on the current round so much as eventually determining what the verdicts were in
earlier rounds of the execution. In general, such feedback is reasonable to assume in
the context of many multi-session goals, and (as we shall see) such feedback can also
be helpful to the user in non-repetitive goals.

Intuitively, we shall consider environment strategies that allow the user to sense
its progress towards achieving the goal, where this sensing should satisfy adequate
safety and viability conditions. Loosely speaking safety now means that if the user
gets a positive indication (i.e., senses progress) almost all the time, then the goal
is actually achieved, whereas viability means that when the goal is achieved the user
gets positive indication almost all the time. Thus, infinitely many negative indications
should occur if and only if the execution fails. (As usual, we will represent a positive
indication by the value 1, and a negative indication by 0.)

The aforementioned indication is provided by a separate stateful module, as de-
veloped in Section 5.3. That is, as motivated in Section 5.2.1, we view the user's state
space as decomposed into a product space Q(u) = Q(i) x Q(v) x Q(c) where Q(i) is the

state of the interpreter strategy that the user uses to communicate, Q() is the state of
the sensing strategy, and Q(c) is the state of the controller strategy that incorporates
the feedback from sensing and modifies the interpreter strategy accordingly. In the
present chapter, we won't be so concerned with user strategies consuming sub-linear
space as we were in Chapter 5, but properly speaking, we still consider the sensing
strategy to be a module "attached" to the interpreter as described in Definition 5.11
(also cf. Figure 5-2), and thus the sensing module "watches" the input/output behav-
ior of the interpreter (and its coin tosses) to determine its verdicts. (The controller
likewise obtains the same inputs as the sensing strategy, along with the indication
produced by sensing on the current round, and chooses an interpreter strategy for use
on each round).

163

The sensing strategy is required to be viable and safe. Note that our new notion

of viability is again not meaningful without safety, and vice versa; for example, under

any reasonable definition, the all-zero function is (trivially) safe, whereas the all-one

function is (trivially) viable. Although we will be interested in safety and viability

with respect to classes of possible servers, we find it useful to define restricted notions

of safety and viability that refer to a fixed server strategy.

Definition 6.14 (Sensing function, weak version). Let G = (S, R) be a compact'

goal and S be a server strategy. The predicate V : Q -+ {0, 1} (or rather V : QM -+

{0, 1}) is safe with respect to (U, S) (and G) if, for every E E E and every o, E Q,
letting - denote a random execution of the system (E, U, S) starting at state a,
with probability 1, it holds that if R(-) = 0 then for infinitely many t it holds that

V(ot) = 0. The predicate V is viable with respect to (U, S) if, for every E E E and

every or E Q, with probability 1, it holds that V(ut) = 0 holds for finitely many t.

Indeed, if V is viable and safe with respect to (U, S) (and G), then (U, S) robustly

achieves the goal G, because viability implies that a random execution yields finitely

many negative indications, whereas safety implies that in such a case the goal is

achieved. In particular, if V .is safe with respect to (U, S), then, with probability 1,
if V evaluates to 0 finitely many times, then the corresponding temporal decision

function R' evaluates to 0 finitely many times.
The foregoing reference to the temporal decision function R' suggests stronger

(i.e., quantified) notions of sensing. Intuitively, we seek a stronger notion of (safe)

sensing in which failure (as per R') is sensed after a bounded number of steps (rather

than eventually). Similarly, a stronger notion of viability should guarantee a positive

indication after a bounded number of steps (rather than eventually). That is, in both

cases, the "grace period" (of bad sensing) is explicitly bounded rather than merely

postulated to be finite. This bound will be stated in terms of an adequate notion of

"size" (of the current state), denoted sz(o), thus allowing the grace period to depend

on the "complexity" (or rather the "size") of the relevant states. For simplicity,
we assume here that the size of the various states remains invariant throughout the

execution; the general case (in which the size varies) will be dealt with in Section 6.3.1.
Anyhow, we assume that the size of the current state is known to the user in the

present development.
Our formulation will be further simplified by observing that the quantification

over all initial states (which also takes place in Definition 6.14) allows us to focus on
grace periods that start at time 1 (rather than considering grace periods that start

at time t for any t E N). These considerations lead to the following definition, which

is a straightforward strengthening of Definition 6.14.

Definition 6.15 (Sensing function, very strong version). Let G = (E, R), S, U, and

V be as in Definition 6.14, and let sz : Q -- N be the aforementioned size function.

9 Actually, the current definition does not refer to the compactness condition (and is applicable

also w.r.t non-compact goals). The compactness condition was added here for consistency with the

following definitions, which do refer to it (or rather to the temporal decision function provided by

it).

164

We say that V is very strongly safe with respect to (U, S) (and G) if there exists a
function B : N -+ N such that, for every E E S and every o-1 E Q, the following two
conditions hold.

1. If R'(o-) = 0, then, with probability at least 2/3, for some t < B(sz(o-i)) it
holds that V(-t) = 0, where at denotes the system's state after t rounds.

2. If for every i E [B(sz(o-1))] it holds that R'(o-) = I, then, with probability
at least 2/3, for some t C [B(sz(ori)) + 1, 2B(sz(o-))] it holds that V(ot) = 0,
where ai, at are as above.

Analogously, V is strongly viable with respect to (U, S) if, for every E C S and every
a1 E Q, with probability at least 2/3, for every t > B(sz(oi)) it holds that V(ot) = 1.
We say that strong viability holds perfectly if the foregoing holds with probability 1
(i.e., for every E E S and every -1 E Q, with probability 1, it holds that V(Ut) = 0
holds for finitely many t).

We note that satisfying the first safety condition of Definition 6.15 implies that,
for every E E S and o-1 C Q and every T > 0, if R'(orT) = 0 then, with probability
at least 2/3, for some t E [T, T + B(sz(orT))) it holds that V(ot) = 0, where oi
denotes the system's state after i rounds. Analogous statements apply to the second
safety condition and to the viability condition (of Definition 6.15). It follows that
very strong safety (resp., viability) as in Definition 6.15 implies weak safety (resp.,
viability) satisfying Definition 6.14 (because infinitely many sensing failures imply
infinitely many disjoint B-long intervals containing sensing failure).10 All of this will
apply also to the following definition (which is a relaxation of Definition 6.15).

In order to motivate the following definition, note that Definition 6.15 requires
that failure be detected even if the execution has recovered from it. For example,
the first safety condition requires that V senses that R'(u) = 0 (i.e., V(Ut) = 0
for some t < B(sz(i))) even if R'(u) = 1 for every i > 1. Insisting on detection
of an old (initial) failure that is no longer relevant seems unnecessary, and it may
make the design sensing functions (unnecessarily) harder. The following (relaxed
w.r.t Definition 6.15) definition requires detection of an initial failure only in the case
that the entire execution has failed. In other words, if the sensing function "believes"
that the possible initial failure is no longer relevant, then it is not required to signal
an alarm.

ioThe foregoing sketchy justification seems to suffice for the case of strong viability that holds
perfectly, but even in such a case a more rigorous argument is preferable. Indeed, suppose that
weak viability as per Definition 6.14 is violated. This implies that, with positive probability, for a
random execution - there exist infinitely many t c N such that V(Ut) = 0. But this contradicts
strong viability (even in the general, non-perfect, sense) as per Definition 6.15, because for every
T E N with probability at least 2/3 it holds that V(ut) = 0 for every t < T + B(UT). Dealing with
the safety conditions is somewhat more complicated. One has to show that the very strong safety
condition implies that the probability that a random execution 5 is unsuccessful (i.e., R(-) = 0) and
yet {t E N : V(ot) = 0} is finite is zero. Properly, this follows by an application of the Borel-Cantelli
Lemma.

165

Definition 6.16 (Sensing function, strong version). Let G = (E, R), S, U, and V be
as in Definition 6.14. We say that V is strongly safe with respect to (U, S) (and G) if
there exists a function B : N -> N such that, for every E E E and every -1 E Q, the
following conditions hold.

1. If R'(o-) = 0, then, with probability at least 2/3, either R(:) = 1 or for some
t < B(sz(oi)) it holds that V(ot) = 0, where - = (o-1, o2 , ... ,) denotes a random
execution of the system (E, U, S).

2. If for every i E [B(sz(o))] it holds that R'(or) = _, then, with probability at
least 2/3, either R(U) = 1 or for some t E [B(sz(ai)) + 1, 2B(sz(a))] it holds
that V(ot) = 0.

The strong viability condition is exactly as in Definition 6.15.

We mention that the strong sensing version (i.e., as per Definition 6.16) implies
the weak one (i.e., as per Definition 6.14)." We will refer mainly to the weak and
strong versions (i.e., Definitions 6.14 and 6.16, respectively); the very strong version
(i.e., Definition 6.15) was presented mainly for clarification.

Safety with respect to classes of servers. Sensing is crucial when the user is
not sure about the server with whom it interacts. Recall that Section 6.1.3 ended
with a declared focus on achievable goals; but this only means that the adequate user
U can be sure that it achieves the goal when it interacts with an adequate server. But

this user may not be aware that the server is actually not the designated one, and in
such a case if interaction with this server is not leading to success, then the user may
wish to be notified of this failure. For this reason, we will be interested in sensing
functions V that satisfy the safety condition with respect to (U, S) for every S in a
set of servers S.

Definition 6.17 (Safety w.r.t classes of servers). For each version of safety, we say
that V is safe with respect to U and the server class S (and the goal G) if for every
S E S it holds that V is safe with respect to (U, S) (and G).

Safety and viability with respect to classes of interpreters. Our motivation
for considering sensing was that we wanted feedback to distinguish successful strate-
gies from unsuccessful ones; as in the goal of repeated guessing in Example 6.9, we
could then search through the space of interpreter strategies to find one that led to
success. To support such a search, we therefore would like for our sensing function to
be safe with not just a single user strategy, but with the entire class of user strategies
we intend to search through. Thus:

Definition 6.18 (Safety w.r.t. classes of interpreters and servers). For each version
of safety, we say that V is safe with respect to the interpreter class I and the server
class S (and the goal G) if for every I e I V is safe with respect to I and the server
class S.

"This requires a proof; cf. Footnote 10.

166

On the other hand, in order for such a search to be ultimately successful, we only
need to know that some user strategy in the class is viable, not that, e.g., some a
priori fixed strategy is viable. Thus, for viability, the relevant notion is the following.

Definition 6.19 (Viability w.r.t. classes of interpreters). For each version of viability,
we say that V is viable with respect to the class of interpreters I and S if there exists
some I C I such that V is viable with respect to (I, S).

Grey-box sensing and private outputs. As discussed before for finite-execution
sensing in Section 2.3.3, the notions of sensing we consider here can be extended to
incorporate additional information from the interpreter or about the interpreter. In
grey-box sensing, we assume that the description of the interpreter strategy used on
the current round is provided as an additional input to the sensing strategy, i.e., as
an input from the controller; as we noted in Section 5.4.1, such input is a feature
that is easily obtained from most enumeration strategies. Meanwhile, private outputs

are an orthogonal consideration, in which we consider a class of interpreters which
have additional output channels, beyond those that are present in the environment
for the goal under consideration, that are only forwarded to the sensing strategy (and
not to the environment). Such additional information is usually easily incorporated,
as long as the private outputs either do not exceed the user's space bound, can
be processed by sensing in an on-line fashion, or can be recomputed (e.g., if the
interpreter is deterministic). Again, in the present chapter, we won't be so concerned
with the user's space complexity, and so it will be feasible to temporarily store the
interpreter's private outputs during the current round.

6.2 On universal users in infinite executions

Now that we have laid out the basic framework of goal-oriented communication in
infinite executions, we return to our main subject of interest, the construction of uni-
versal user strategies for achieving goals with a collection of servers. More specifically,
along the lines of Section 2.3 in Chapter 2 for finite executions, we will examine the
relationship between the feedback provided by our new notion of sensing for infinite
execution goals, and universal users for those goals.

Roughly, we show two things: first, we will show that our weakened notion of
feedback for infinite executions, that merely detects failures post-hoc rather than
predicting successes, is a suitable kind of feedback for the construction of universal
users. We'll actually provide three successively stronger constructions: the first con-

struction, in Section 6.2.1, only requires weak safety (as defined in Definition 6.14),
but provides no guarantee on the number of errors besides "finiteness." Since this
finite bound actually depends on the unknown server strategy, the guarantee is so
weak as to be almost meaningless (cf. computable functions have algorithms that
similarly run in "finite time"), and so we are motivated to introduce a refined notion
of achieving goals with a bounded number of errors in Section 6.2.4, and show that
strong safety (with strong viability, along the lines of Definition 6.16) allows us to

167

construct a universal user strategy with only a linear increase in the number of errors
(Theorem 6.36). Upon closer inspection, though, we find that the class of user strate-
gies satisfying strong viability, in which the period of miscommunication instead of
the number of errors is bounded, may be more restrictive than we would like-in par-
ticular, we can only obtain the latter kind of guarantee in our constructions. Thus, we
also introduce a relaxed notion of viability that only counts the number of errors, and
finally construct a universal user strategy that can take advantage of this relaxed vi-
ability, with a quadratic increase in the number of errors (Theorem 6.41). Depending
on circumstances, one of these last two theorems should be suitable infinite-execution
analogues of our constructions of universal users in finite executions (e.g., as first
presented in Proposition 2.27), and we'll see a couple of examples - Example 6.44
and Example 6.45 - that illustrate this point.

Along the way, we will also consider the relationship of universal users to sensing
in infinite executions; broadly speaking, the second thing we will show is that the con-
nection to sensing is surprisingly weak in the infinite execution setting, as compared
to finite executions. We will only construct a converse construction of sensing to our
first theorem, providing a weakly safe sensing function in Proposition 6.26, which as
noted above, may be so weak as to be almost meaningless; we will also see, in Sec-
tion 6.2.5, that sensing with strong safety in a basic universal setting is bound by the
same limitations as sensing in finite executions, namely, as established first in The-
orem 2.37, such sensing must be safe with all servers. We will find in Section 6.2.3,
though, that constructions of universal users in infinite executions are not always
bound by such limitations, and in fact, in a weak but still meaningful sense, it is
possible to construct universal users without any significant feedback. Thus, although
strong sensing is still available in most goals of interest, it isn't strictly necessary for
the construction of universal users in the infinite execution setting, and we'll see that
it is possible to take advantage of this difference in Chapter 7.

6.2.1 Universality and sensing in _infinite executions

Recall that the basic setting of interest to us is when the user wishes to achieve a goal
which requires the user to communicate with a server. When allowed to interact with
a known (to us) helpful server, we may achieve the goal (if we use the strategy U that
is guaranteed by Definition 6.13). But what happens when we are allowed to interact
with a server that is selected arbitrarily among several helpful servers? Specifically,
suppose that both Si and S2 are U-helpful (in the infinite execution sense, now),
does this mean that there exists a user strategy U (let alone in U) such that both
(U, Si) and (U, S2) achieve the goal? As shown next, similar to our demonstration in
Section 2.3 for goals in finite executions, the answer still may be negative.

Example 6.20 (Using one out of two different printers). In continuation to Exam-
ple 6.5, for every i E {0, 1}, consider a printer Si such that, in each round, upon
receiving the message b from the user, the printer Si sends the message b (i to the
environment. That is, if at round r + 1 the server Si receives b, then at round r + 2
it sends the message b D i to the environment. Note that each of these two server

168

strategies is {Uo, Ui}-helpful, where U is a user strategy that at round r + 1 sends
b, D i to the server, where b, E {0, 1} denotes the message sent by the environment to
the user in round r. However, there exists no user strategy U such that both (U, So)
and (U, S1) achieve the goal.

Indeed, one may think of U1 and Si as using, for communication among them, a
different language than the one used by the environment (i.e., they interpret 0 as 1,
and 1 as 0). Thus, the situation is again essentially similar to that considered in
Example 2.20 for finite executions: the communication between the various pairs of
parties may represent communication in different systems or over vastly different me-
dia. As another example suggested by our calling the goal of Example 6.5 "printing,"
we may suppose that the user obtains email (from the environment), which the user
sends to the printer in some adequate format, while the printer produces an image
(in the environment). Thus, Example 6.20 can be made more realistic by saying that
there exists two text formating functions, denoted fo and fi (e.g., Postscript and
PDF) such that the following holds: if, at round r, user Ui receives the email text
T, (from the environment), then it sends fi(T) to the server in round r + 1, whereas
when server S, receives the message M from the user it prints an image of fy1 (M)
(i.e., it sends the message ff1 (M) to the environment).

Example 6.21 (Two printers, modified). In continuation to Example 6.20, we con-
sider a modified goal in which the environment sends in each round a pair of bits (b, s)
such that b is as above (i.e., as in Examples 6.5 and 6.20) and s indicates whether
the referee is satisfied with the last message received by the server. In this case,
there exists a simple user strategy U such that both (U, So) and (U, S1) achieve the
goal. Specifically, U first behaves as Uo, and if it gets an indication (in round 3) that
printing failed, then it switches to use U1.

Indeed, in this case the environment's messages suggest a sensing function that
is both safe and viable (w.r.t the server class {So, S1}). This sensing function allows
the user to recover from failure (by learning with which server it interacts and acting
accordingly).

Universal users. The user strategy U of Example 6.21 achieves the corresponding
def

goal when coupled with any server strategy in the class S {So, S1}. Thus, we may
say that U is S-universal-it satisfies a definition essentially identical to our definition
of "universal users" for finite executions except, of course, that the goal is now a goal
in infinite executions, and we use the corresponding notion of robust achievement for
goals in infinite executions.

Definition 6.22 (Universality). A user strategy U is S-universal (w.r.t the goal G)
if for every server strategy S E S it holds that (U, 5) robustly achieves the goal G.

Now, as usual, we are primarily motivated by a desire to construct universal user
strategies. The following theorem provides our first seemingly general construction
of a S-universal user. Furthermore, it justifies our introduction of a weaker definition

169

of sensing for infinite executions, establishing that every S E S can be used by a
user strategy that is viable with respect to S for a sensing function that is safe with
respect to U and the server class S.

Theorem 6.23 (On the existence of universal strategies). Let G = (E, R) be a com-
pact goal, U be a set of user strategies and S a set of server strategies such that the
following two conditions hold.

1. There is a sensing strategy with sensing function V such that V is weakly safe
with respect to U and S (and G) and for every S E S, V is strongly viable with
respect to U and S. Furthermore, the mapping U F-- B is computable,12 where
B is the bounding function guaranteed by the strong viability condition.

2. The set U is enumerable.

Then, there exists an S-universal user strategy (w.r.t G). Furthermore, if the (strong)
viability condition holds perfectly, and for each U E U, the composition of U with
the sensing strategy and the enumeration is also in U, then, for every S C S, the
complexity of the universal user strategy when interacting with S is upper-bounded by
the complexity of some fixed strategy in U (when interacting with S).

Just as in the finite execution setting, if U is S-universal, then every S E S must
be U-helpful for any U that contains U. Thus, we cannot have S-universal users
whenever the server class S contains unhelpful strategies. And indeed, Condition 1
(which implies weak sensing as per Definition 6.14)" implies that every S E S is
U-helpful. We will see that Condition 1 is necessary, cf. Proposition 6.26. (Although
strictly speaking, in this connection, we note that Theorem 6.23 can be extended to
employ grey-box sensing and private outputs, along the lines of Corollary 2.30.) Note,
though, that only weak safety is required in Condition 1. We mention that there is
an intuitive benefit in having strong safety, but this benefit is not reflected by the
statement of the theorem. We shall return to this issue in Section 6.2.4.

Proof We construct a user strategy, denoted U, that operates as follows. The
strategy U enumerates all Ui E U, and emulates each strategy Uj as long as it (via V)
obtains no proof that Uj (coupled with the unknown server S E 5) fails to achieve the
goal. Once such a proof is obtained, U moves on to the next potential user strategy
(i.e., Ui+ 1). If this "proof system" is sound, then U will never be stuck with a strategy
Uj that (coupled with the unknown server S E S) does not achieve the goal. On the
other hand, the completeness of this "proof system" (i.e., the hypothesis that every
S E S is U-viable) implies that there exists a U that (once reached) will never be
abandoned.

Needless to say, the foregoing argument depends on our ability to construct an
adequate "proof system" (for evaluating the performance of various Uj E U). Let Bi

12We view the bounding function B for strong viability as a function of the user strategy U.
Indeed, an alternative formulation of the conditions is obtained by replacing the current mapping
and enumeration requirement by requiring that the set of pairs (U, B) such that U c U and B is the
corresponding strong viability bound for V is enumerable.

"See Footnote 11.

170

be the bounding function guaranteed by the strong viability condition of Uj with V;
that is, viability guarantees that (with an adequate S) the sensing function V will
indicate success after at most Bi(sz(-)) rounds. Thus, a good strategy is to wait for
the system to recover (from potential past failures) for Bi(sz(-)) rounds, and abandon
the current Uj whenever V indicates failure after this grace period. A more accurate
description follows.

Let us first analyze the case where the (strong) viability condition hold perfectly;
that is, with probability 1 (rather than with probability 2/3, as in the main part
of Definition 6.15). Suppose that U starts emulating Uj at round ti, and denote
the system's state at this round by ot,. Then, for the first b <- Bj(sz(o-t,)) rounds
strategy U just emulates Uj, and in any later round t > tj + bi strategy U switches to
Uj+ 1 if and only if V(ot) = 0.

Claim 6.24. Suppose that U| is strongly and perfectly viable with respect to (Ui, S),
and consider *, a random execution of (E, U, S). Then, if this execution ever emulates
Uj, then it never switches to Ui+ 1.

Proof Let ti, and bi be as above. Then, by the strong viability condition, for every
t > tj + bi, it holds that V(ot) = 1. U

Claim 6.25. Suppose that (U, S) does not robustly achieve the goal and consider a
random execution of (E, U, S). Then, recalling that each V is (weakly) safe (w.r.t
(Ui, S)), this execution emulates each Uj for a finite number of rounds.

Combining the foregoing two claims with the hypothesis that for every S E S
there exists a user strategy Uj E U and a sensing function V such that V is strongly
viable with respect to (Ui, S), it follows that (U, S) robustly achieves the goal.
Proof Let o-1 be a global state such that a random execution of the system starting
at o-1 fails with positive probability, and let - be such an execution (i.e., R(5) = 0).
Let tj and bi be as above. Then, by the (weak) safety of V w.r.t (any) S E S (cf.,
Definition 6.14), for some t" > ti + bi (actually for infinitely many such t's), it holds
that V(o-t+) = 0, which causes U to switch to emulating Ui+1- M

The above analysis assumes perfect (strong) viability, which may not hold in
general. In order to cope with imperfect viability (i.e., a strong viability condition
that holds with probability 2/3) we need to modify our strategy U. Specifically, we
will use a "repeated enumeration" of all machines such that each machines appears
infinitely many times in the enumeration. Furthermore, for every i and t there exists
an n such that Uj appears t times in the first n steps of the enumeration (e.g., use
the enumeration 1, 1, 2,1,2, 3,1, 2, 3, 4, ...). Using a modified version of Claim 6.24
that asserts that if the execution starts emulating Uj then it switches to U+11 with
probability at most 1/3 (equiv., stays with U forever), we derive the main claim of
the theorem (because after finitely many R'-failures, strategy U returns to emulating
Ui).

Regarding the furthermore claim, we note that the complexity of U (when inter-
acting with S) is upper bounded by the maximum complexity of the composition of

171

each of the strategies U1, . . , Uj with the sensing and enumeration strategies, where i
is an index such that (Ut, S) robustly achieves the goal. Note that by the additional
hypothesis, these composed strategies U1, .. . , Uj' are also contained in U. 0

On the computational complexity of the universal strategy. Note that The-
orem 6.23 asserts that, for every server S E S, the computational complexity of
the universal strategy (when interacting with S) is comparable to the computational
complexity of some user strategy in U (when interacting with S). Thus, if U denotes
the class of user strategies that are implementable in probabilistic polynomial-time
when interacting with any fixed S E S (where the polynomial may depend on S),
then the universal strategy resides in U. Indeed, this stands in contrast to standard
universality results in complexity theory, where the universal machine does not reside
in the class for which it is universal." The reason that the universal strategy of
Theorem 6.23 escapes this fate is that its complexity is measured with respect to the
server that it interacts with, and so it may afford to spend a different amount of time
when emulating each of the corresponding user strategies.

Sensing requirements for universal users in infinite executions

Recall that in the finite execution setting, there was a strong connection between
universal users and sensing functions: if U was S-universal, then as we saw in Propo-
sition 2.26 (and Proposition 5.12), we could always obtain a safe and viable sensing
function with U for S. This yielded a general equivalence between our notions of
sensing and universal users, which was rather useful to us, e.g., in identifying the
precise power of universal users for computational goals in Sections 3.3 and 5.5. In
light of this context, it is natural to wonder if, analogously, we can obtain a sensing
function from a universal user for infinite executions. While the answer turns out to
be affirmative, we warn the reader in advance that the resulting construction turns
out to be rather disappointing.

Proposition 6.26 (Universal strategies have trivial sensing strategies). If U is S-

universal, then there exists a grey-box sensing function V such that V is strongly
viable with respect to (U, S) and (weakly) safe with respect to U and S.

Indeed, as its title indicates, the sensing strategy provided by the proof of Propo-
sition 6.26 is rather trivial (and is based on the hypothesis that for every S E S it
holds that (U, S) achieves the goal).15 Still, Proposition 6.26 may be regarded as
meaningful as a necessary condition for the design of S-universal users; that is, we
must be able to design a sensing strategy that is both weakly safe and viable for the
class of servers S.

"Note that completeness results avoid this fate by padding the instances.
15Interestingly, strong safety does not seem to follow because the discrepancy between the bounded

nature of the strong safety condition and the unbounded nature of the definition of achieving a goal.
This discrepancy is eliminated in Section 6.2.4.

172

Proof Let V be the function that is identically 1 if the user strategy is U and iden-

tically 0 otherwise, and consider any S E S. Then, viability of V (under any version)

holds trivially. The weak version of safety (i.e., Definition 6.14) also holds vacuously

for V (w.r.t (U, S)), because for every E E E a random execution of (E, U, S) starting

at any state o is successful with probability 1. U

Another interpretation of Proposition 6.26 is that the availability of our weak-

ened notion of sensing doesn't say much at all, in contrast to the notion of sensing

required for finite executions. Or, if we prefer to take an optimistic point of view,
this interpretation suggests that universal users in infinite executions may be much

easier to construct. The optimistic view turns out to be essentially correct, as we'll

see in Chapter 7.

6.2.2 Sensing in the basic universal settings for infinite exe-

cutions

Recall that we framed the problem of communication in the absence of a common

language (in finite executions) as the problem of achieving a fixed goal of communica-

tion with the class of all helpful servers for that goal--the existence of a user strategy

that achieved the goal with the server's help guaranteed that the only issue was how

to communicate effectively with the server. We are likewise interested in considering

this "basic universal setting" for goals of communication in infinite executions, by

which we of course mean, we are interested in designing user strategies that achieve

a fixed goal with the class of all servers that are helpful for that goal, where we now

mean helpfulness in the infinite execution sense.

Now, Proposition 6.26 and Theorem 6.23 relate universality with sensing. Specif-

ically, Proposition 6.26 asserts that, if U is S-universal, then there is a (grey-box)

sensing strategy such that the associated sensing function V is weakly S-safe (and,
actually, safe with all user strategies) and every S C S is strongly viable with U. On

the other hand, Theorem 6.23 (essentially) asserts that, if V is weakly safe for S and

U, and U-viable with every S E S, then there exists an S-universal user strategy.

Indeed, both S-universality and safe and viable sensing with S become harder to

achieve when S becomes more rich (equiv., are easier to achieve when S is restricted,
of course, as long as it contains only helpful servers), and we note that the class of

all helpful servers for a goal is the richest class for which sensing could possibly be

feasible, and therefore also the hardest.
Therefore, the actual issue in the basic universal setting is again moving from

helpfulness to viability for some suitable sensing strategy. That is, the actual issue

is transforming user strategies that witness the helpfulness of some class of servers

S to user strategies that witness viability with respect to sensing that is safe for

the same class of servers S. (Recall that we discussed such issues at length for the

finite execution setting in Section 4.2.2.) A simple case when such a transformation

is possible (and, in fact, is straightforward) is presented next.

173

Definition 6.27 (Goals that allow trivial sensing). We say that a compact goal G =
(S, R) allows trivial sensing if, at each round, the corresponding temporal decision
function R' evaluates to either 0 or 1, and the environment notifies the user of the
current R'-value; that is, for every E E E and every - E Q, it holds that the first bit
of E(o)(e u) equals R'(o-).

We note that compact goals that allow I-runs of a priori bounded length (as in
Footnote 3) can be converted to (functionally equivalent) compact goals that allow
no I-values (w.r.t R').16

By letting V output the first bit it receives from the environment (i.e., V(-) equals
the first bit of o(eu)), we obtain a sensing strategy that is strongly safe with respect

to any pair (U, S) and is strongly viable with respect to any (U, S) that robustly
achieves the goal. Thus, we obtain:

Proposition 6.28 (Trivial sensing). Let G = (E, R) be a compact goal that allows
trivial sensing, and U be a class of users. If a server strategy S is U-helpful w.r.t G,
then, there is a sensing function V such that the strategy S is strongly viable for V
w.r.t. U and for every class of server strategies S, V is strongly safe with U and S
for G.

By combining Proposition 6.28 and Theorem 6.23, we obtain

Theorem 6.29 (Trivial sensing implies universality). Let G and U be as in Proposi-
tion 6.28, and suppose that U is enumerable and that S is a class of server strategies
that are U-helpful w.r.t G. Then, there exists an S-universal user strategy (w.r.t
G). Furthermore, for every S E S, the complexity of the universal user strategy is
upper-bounded by the complexity of some fixed strategy in U.

Proof The sensing function V that arises from Definition 6.27 satisfies Condition 1

of Theorem 6.23 (i.e., V is fixed, B = 1, and the viability and safety conditions hold
perfectly and in a very strong sense). Condition 2 of Theorem 6.23 holds by the extra
hypothesis of the current theorem, which now follows by applying Theorem 6.23. U

A variant on allowing trivial sensing. One natural case that essentially fits
Definition 6.27 is that of a "transparent goal" as considered in Section 3.2.1, which
intuitively corresponds to the case that the user sees the entire state of the environ-
ment. Formally, a transparent goal was defined as an environment that communicates
its current state to the user (at the end of each round). Thus, ability to compute the
corresponding temporal decision function R' puts us in the situation of a goal that
allows trivial sensing. Consequently, analogously to Theorem 6.29 (and Theorem 3.7
for finite executions), we conclude that

16 That is, for R' as in Definition 6.6, we assume here the existence of a function B :N -> N such
that R(a) = 1 only if for every t > 0 there exists t' E [t +1, t + B(sz(i))] such that R'(og) # 1. In
such a case, the goal can be modified as follows. The states of the modified environment will consist
of pairs (,(e), i) such that a(e) is the state of the original environment and i indicates the number
of successive I-values (w.r.t R') that preceded the current state. Thus, the index i is incremented
if R'(a(*)) = I and is reset to 0 otherwise. The modified temporal decision function evaluates to 1
on input (o(*), i) if and only if either fR(a(e)) = 1 or i < B(sz(a)).

174

Theorem 6.30 (Transparent goal implies universality). Let G be a compact, trans-
parent goal. Suppose that U is an enumerable class of user strategies and that S is a
class of server strategies that are U-helpful w.r.t G. Then, there exists an S-universal
user strategy (w.r.t G). Furthermore, for every S E S, the complexity of the universal
user strategy is upper-bounded by the complexity of some fixed strategy in U and the
complexity of the temporal decision function R'.

Beyond trivial sensing. Going beyond goals that allow trivial sensing, we note
that a viable and safe sensing function may arise from the interaction between the
user and the server (and without any feedback from the environment). An instructive
example of such a case, first discussed back in Section 1.4.2, is reformulated next using
the present terminology.

Example 6.31 (Solving computational problems, revised). In continuation to Ex-
ample 6.4, we consider a multi-session goal that refers to a decision problem, Do. In
each session, the environment non-deterministically selects a string and sends it to
the user, which interacts with the server for several rounds, while signaling to the
environment that the session is still in progress. At some point, the user terminates
the session by sending an adequate indication to the environment, along with a bit
that is supposed to indicate whether the initial string is in Do, and the referee just
checks whether or not this bit value is correct. Indeed, a simple two-round interaction
with a server that decides Do yields a user-server pair that achieves this goal, where
the user strategy amounts to forwarding messages between the environment and the
server. But what happens if a probabilistic polynomial-time user can interact with a
server that decides D, where D is an arbitrary decision problem that is computation-
ally equivalent to Do? That is, we say that a server is a D-solver if it answers each
user-message z with a bit indicating whether or not z E D, and we ask whether we
can efficiently solve Do when interacting with a D-solver for an arbitrary D that is
computationally equivalent to Do.

" Clearly, for every D E D, any D-solver is U-helpful, where D denotes the class
of decision problems that are computationally equivalent to Do, and U denotes
the class of probabilistic polynomial-time user strategies (strategies that in each
session run for a total time that is upper-bounded by a polynomial in the length
of the initial message obtained from the environment).' 7 Specifically, such a user
may just employ the polynomial-time reduction of Do to D.

" More interestingly, as shown implicitly in Section 3.3, if Do has a program
checker [32], then the program checker provides a sensing strategy that is is safe
with F and U for G and which is strongly viable for U with the D-solver for
every D C D, where F is the class of all memoryless strategies18 and U is as
above.

17Indeed, our definition of U restricts both the complexity of the user strategy as a function and
the number of rounds in which the user may participate in any session.

18Recall that strategies map pairs consisting of the current local state and the incoming messages
to pairs consisting of an updated local state and outgoing messages. In the case of memoryless
strategies there is no local state (or, equivalently, the local state is fixed).

175

The argument amounts to constructing an adequate user strategy U for the
D-solver that attempts to answer the initial message obtained from the envi-
ronment by forwarding it to the server; our (grey-box, or equivalently, uniformly
viable) sensing strategy verifies the correctness of the answer by ensuring that
the user runs the program checker for Do. Specifically, V checks that U emu-
lates the composition of the program checker with a potential program for Do
by using the hypothetical D-solver via a reduction (of Do to D) that, in partic-
ular, maintains no state across invocations (on instances of DO), and then the
verdict of the program checker determines the verdict of V. Note that this V
is therefore strongly viable with respect to U and the D-solver, and safe with
respect to F (and U), where the crucial point is that the strategies in F are
memoryless, and so a reduction interacting with such a strategy is also memory-
less. Furthermore, the bound in the strong viability condition is the constant 1,
since a solver is correct in each round.

Recall that program checkers exist for PSPACE-complete and EXP-complete
problems (cf. [97, 128] and [14], respectively).1 9

By invoking Theorem 6.23, we obtain an S-universal user strategy, where S denote
the class of all D-solvers for D E D. Furthermore, for every S E S, when interacting
with S this universal strategy can be implemented in probabilistic polynomial-time.

Example 6.31 provides a rather generic class of goals that have S-universal user
strategies, where S is a class of "adequate solvers" (and furthermore these universal
strategies are efficient). This class of multi-session goals refers to solving computa-
tional problems that have program checkers, and universality holds with respect to
the class of servers that solve all computationally equivalent problems. We stress
that the environment strategies underlying these goals provides no feedback to the
user, which indeed stands in sharp contrast to the goals that allow trivial sensing (of
Definition 6.27).

We mention that the class of "adequate solvers" S considered in Example 6.31
is actually a strict subset of the class of all U-helpful servers, where U is as in Ex-
ample 6.31. In the context of Section 3.3, we actually established a stronger result,
which can be reformulated as referring to the class of all servers that are helpful in
a strong sense that refers to achieving the goal with a bounded number of errors.
(Recall that a general helpful server may cause a finite number of sessions to fail,
whereas the aforementioned solvers do allow achieving the goal without making any
errors.) For details, see Section 6.2.4.

6.2.3 Universality without feedback

While Theorem 6.29 and Example 6.31 provide universal users based on sensing func-
tions that rely on feedback either from the environment or from the server (respec-
tively), we note that universality may exist in a meaningful way also without any

19See also (15].

176

feedback-below, we identify a class of goals for which this is possible. That univer-
sality is possible without feedback is a rather striking fact when considered in the
context of Proposition 2.26 on the necessity of sensing for goals in finite executions

(and likewise Proposition 5.12 for other classes of users): it shows that the infinite
execution setting is fundamentally different from the finite execution setting.

Example 6.32 (multi-session "forgiving" communication goals). For any function
f : {0, 1}* -+ {0, 1}*, we consider the multi-session goal in which each session consists
of the environment sending a message, denoted x, to the user and expecting to obtain
from the server the message f(x). That is, the environment starts each session by
non-deterministically selecting some string, x, and sending x to the user, and the
session ends when the user notifies the environment so. The session is considered
successful if during it, the environment has obtained from the server the message
f(x). (Indeed, this notion of success is forgiving in the sense that it only requires
that a specific message arrived during the session, and does not require that other
messages did not arrive during the same session.) The entire execution is considered
successful if at most a finite number of sessions are not successful. Note that this
goal is non-trivial (i.e., it cannot be achieved when using a server that does nothing),
and yet it can be achieved by some coordinated user-server pairs (e.g., a user that
just forwards x to the server coupled with a server that applies f to the message it
receives and forwards the result to the environment).

Proposition 6.33 (A universal strategy for Example 6.32). Let G = (E, R) be a goal
as in Example 6.32, and U an arbitrary enumerable class of user strategies. Let S
be a class of server strategies such that for every S E S there exists U E U and an
integer n such that in any execution of (U, S), starting at any state, all sessions, with
possible exception of the first n ones, succeed. Then, there exists an S-universal user
strategy for G.

Note that the hypothesis regarding S is stronger than requiring that every server
in S be U-helpful (which only means that for some U E U the pair (U, S) robustly
achieves the goal).20

Proof For simplicity, we first assume that n = 0 (for all S E 5). In this case,
the universal strategy, denoted U, will emulate in each session a growing number of
possible user strategies, and will notify the environment that the session is completed
only after completing all these emulations. We stress that in all these emulations we
relay messages between the emulated user and the server, but we communicate with
the environment only at the beginning and end of each session. Specifically, in the ith
session, U emulates the first i strategies in the enumeration, denoted U1,..., Ui. For
every j =1,..., i, we start the emulation of Uj by feeding Uj with the initial message
obtained from the environment in the current (i.e., ith) session (as if this is the first

2 0This only means that for every S E S there exists U E U such that, in any execution of (U, S)
starting at any state, there exists an integer n such that all sessions, with possible exception of the
first n ones, succeed. In the hypothesis of Proposition 6.33, the order of quantification is reversed
(from "for every execution there exists an n" to "there exists an n that fits all executions").

177

session). (Thus, in the ith real session we only emulate the first session of each of the
Uj's.) When emulating Uj, for j < i, we use Uj's notification (to the environment)
that the session is over in order to switch to the emulation of the next strategy (i.e.,
U,± 1). When the emulation of Uj is completed (i.e., when Uj notifies the environment
that the session is over), we notify the environment that the session is over.

Suppose that U interacts with the server S E S, and let j denote the index of a
user strategy Uj such that (Uj, S) achieves the goal (in the strong sense postulated
in the hypothesis). Then, for every i > j, considering the time ti, in the ith session
in which we start emulating Uj, we note that the subsequent execution with S yields
the adequate server message to the environment, regardless of the state in which S
was at time tij. Thus, with a possible exception of the first j - 1 sessions, the pair
(U, S) will be successful in all sessions, and hence (U, S) robustly achieves the goal.

We now turn to the general case, where n may not be zero (and may depend on
S E S). In this case, we modify our emulation such that in the ith real session we
emulate each of the user strategies (i.e., U1, ..., Uj) for i sessions (from each Uj's point
of view), where we use the message we received in the real ith session as the message
sent to Uj in each of the emulated sessions. That is, let x denote the message that
U receives from the environment at the beginning of the ith real session. Then, for
j = 1, ..., i, the modified strategy U emulates i sessions of the interaction between U
and the server (but, as in the case n = 0, does not notify the environment of the end
of the current session before all emulations are completed). Each of these i emulated
sessions (in which Uj is used) starts with feeding Uj the message xi (as if this were
the message sent by the environment in the currently emulated session).

For the modified strategy U and every S E S, with a possible exception of the
first max(j - 1, n) sessions, the pair (U, S) will be successful in all sessions, where j
is as before and n is the bound guaranteed for S. M

Digest. Proposition 6.33 asserts that there exists universal user strategies for (non-
trivial) goals in which no feedback whatsoever is provided to the user. These goals,
however, are very forgiving of failures; that is, they only require that during each
session some success occurs, and they do not require that there are no failures during
the same session. Hence, we have seen three types of universal users. The first type
exist for goals that allow trivial sensing (as in Definition 6.27), the second type rely on
sensing through interaction with the server (as in Example 6.31), and the third type
exists for multi-session goals that allow failures in each session (see Proposition 6.33).

6.2.4 Quantification of errors and delays

In this section we present two refined versions of Theorem 6.23. The first one is
merely a quantified version of the original, where the quantification is on the number
of errors, which relies on the quality of the sensing functions in use. The second version
introduces a more flexible universal user, which uses a relaxed notion of viability in
which only the total number of negative indications (rather than the length of the
time interval in which they occur) is bounded.

178

A quantified version (bounding the number of errors)

As stated in Section 6.2.1, the universal user strategy asserted in Theorem 6.23 does
not benefit from the potential strong safety of sensing functions. The intuitive benefit
in such sensing functions is that they may allow the universal strategy to switch earlier
from a bad user strategy, thus incurring less errors. Indeed, this calls for a more refined
measure of achieving goals, presented next.

Definition 6.34 (Achieving goals (Definition 6.10), refined). Let G = (8, R) be a
compact goal and R' : Q -- {0, 1, I} be as in Definition 6.6. For B :N -+ N, we say
that a pair of user-server strategies, (U, S), achieves the goal G with B errors if, for
every E E 8, a random execution 5= (o1, o2 , ...) of the system (E, U, S) satisfies the
following two conditions:

df
1. The expected cardinality of {t C N: R'(ot) = 0} is at most b = B(sz(o-)).

2. The expected cardinality of {t E N: (Vt' E [t, t + b]) R'(uog) = I} is at most b.

When B is understood from the context, we say that the execution f contains an
error in round t if either R'(ot) = 0 or for every t' E [t, t + B(sz(u))] it holds that
R'(og) = 1. If - contains at most B(sz(o-1)) errors, then we write RB(S) = 1.

Note that Definition 6.34 strengthens Definition 6.10, which (combined with Def-
inition 6.6) only requires conditions analogous to the above where B may depend on
the execution (o1 , U2 , ...). Intuitively, whereas Definition 6.10 only requires that the
number of errors in a random execution be finite, Definition 6.34 requires a bound on
the number of errors such that this bound holds uniformly over all executions (as a
function of the size of the initial state). A similar modification should be applied to
the definition of robustly achieving a goal. Lastly, we refine the definition of strong
sensing functions (i.e., Definition 6.16), by replacing all references to R by references
to RB (and specifying the relevant bound B in the terminology). (We also seize the
opportunity and replace the fixed error-probability bound of 1/3 by a general bound,
denoted c.)

Definition 6.35 (Strong sensing (Definition 6.16), refined). Let G = (8, R), S, U
and V be as in Definition 6.16. For B : N -+ N and e : N -> [0, 1/3], we say that V
is (B, e)-strongly safe with respect to (U, S) (and G) if, for every E C E and every
-1 C Q, the following conditions hold.

1. If R'(o1) = 0, then, with probability at least 1 - e(sz(- 1)), either RB(U) = 1 or
for some t < B(sz(o-1)) it holds that V(a) = 0, where - = (U1 , -2,...,) denotes
a random execution of the system (E, U, S).

2. If for every i E [B(sz(o-1))] it holds that R'(u) = 1, then, with probability at
least 1 - E(sz(o-)), either RB(6) = 1 or for some t E [B(sz(o-)) +1, 2B(sz(o-))]
it holds that V(ot) = 0, where here the probability refers to the execution suffix

(ot+ 1, oi+2, ..., i).

179

Analogously, V is (B, e)-strongly viable with respect to (U, S) if, for every E E E and
every a- E Q, with probability at least 1 - e(sz(a)), for every t > B(sz(a)) it holds
that V(o-) = 1. We say that strong viability (resp., safety) holds perfectly if e =- 0
holds in the viability (resp., safety) condition, and in such a case we say that V is
B-strongly viable (resp., B-strongly safe).

Note that the existence of a B-strongly safe and viable sensing function w.r.t
(U, S) (as in Definition 6.34) implies that (U, S) robustly achieves the goal with 2B
errors (as in Definition 6.35). Intuitively, B errors result from the delay of the viability
condition, and another B from the safety condition (i.e., the allowance to fail sensing
if RB = 1). If the sensing function is only (B, 1/3)-strongly safe and viable, then
(U, S) robustly achieves the goal with O(B) errors.

We comment that the foregoing definitions are simplified version of more appro-
priate definitions that we only sketch here. For starters, note that the bounding
function B is used in Definition 6.34 in three different roles, which may be separated:
(1) bounding the expected number of errors of Type 1 (in Item 1), (2) bounding the
expected number of errors of Type 2 (in Item 2), and (3) determining the length of 1-
runs that is considered an error of Type 3. Thus, RB should be replaced by RB1 ,B2,B3 ,
where B 1, B 2, B 3 are the three separated bounding functions. In Definition 6.35, the
bounding function B is used in six different roles: three roles are explicit in the two
items analogously to the roles in Definition 6.34 and three implicit in the use of RB
(which should be replaced by RB1 ,B2 ,B3). Separating all these bounding functions is
conceptually right, since the various quantities are fundamentally different. Still we
refrained from doing so for sake of simplicity.2 1

With the foregoing definitions in place, we are ready to present a refined version
of Theorem 6.23. The universal strategy postulated next achieves the goal with a
bounded number of errors, where the bound depends on the bounds provided for the
strong user-sensing functions.

Theorem 6.36 (Universal strategies (Theorem 6.23), revisited). Let G = (8, R) be a
compact goal, U be an enumerable set of user strategies, S be a set of server strategies,
and c : N -+ [0,1/3] such that the following two conditions hold:

1. There exists a sensing strategy V such that for every U E U, there is an associ-
ated bounding function B such that V is (B, e)-strongly safe with U and S for
G, and for every S E S there exists a user strategy U E U such that for the
bounding function B associated with U, V is (B, E)-strongly viable with respect
to (U, S). Furthermore, the mapping U -* B is computable.

Let B denote the set of bounds that appear in the image of this mapping; that
is, B = {Bi : i E N}, where Bi is the bound associated with the ith user strategy
in U.

2. One of the following two conditions hold.

21Likewise, it is conceptually correct to replace RB (and actually also R) in Definition 6.35 (resp.,
Definition 6.16) by a more strict condition that requires no errors at all after time B. Again, this
was avoided only for sake of simplicity.

180

(a) The (strong) viability condition holds perfectly (i.e., e - 0).

(b) For every i, it holds that Bi+1 < Bj/2c.

Then, there exists an S-universal user strategy U such that for every S E S there
exists B G B such that (U, S) robustly achieves the goal G with O(B) errors, where
the constant in the O-notation depends on S. Furthermore, if the (strong) viability
condition holds perfectly and the composition of any U E U with the sensing and
enumeration strategies is also contained in U, then, for every S G S, the complexity
of U is upper-bounded by the complexity of some fixed strategy in U.

Proof Following the proof of Theorem 6.23, we first consider the case in which both
the (strong) viability and safety conditions hold perfectly; that is, C _ 0 in (both
the viability and safety conditions of) Definition 6.35. Recall that the universal user
strategy U enumerates all Uj E U, and consider the corresponding bounding function
Bi, where V is Bi-strongly safe (w.r.t Uj and S). Specifically, suppose that U starts
emulating Uj at round ti, and denote the system's state at this round by ot,. Then,
for the first bi <- Bj(sz(at)) rounds, strategy U just emulates Uj, and in any later
round t > ti + bi strategy U switches to Ui+ 1 if and only if V(at) = 0.

Note that Claims 6.24 and 6.25 remain valid, since we maintained the construc-
tion of U. However, we seek a stronger version of Claim 6.25. Let us first restate
Claim 6.24.

Claim 6.37. Suppose that V is Bi-strongly viable and safe with respect to (Ui, s),
and consider a random execution of (E, U, S). Then, if this execution ever emulates
Uj, then it never switches to Ui+ 1. Furthermore, in this case, for tj and bi as above,
it holds that the number of errors (w.r.t the bound bi) occurring after round t is at
most 2bi.

The furthermore part follows by observing that Bi-strong viability implies that
for every t > tj + bi it holds that V(ot) = 1, whereas the Bi-strong safety implies
that the number of errors (w.r.t the bound bi) occurring after round tj + bi is at
most bi (because otherwise RB, evaluates to 0, and so V(-t) = 0 must holds for some
t > t' > tj + bi, where t' is some time in which such a fault occurs).

Claim 6.38. Let i > 1 and suppose that (U, S) does not robustly achieves the goal with

4 E [Bi errors. Consider a random execution of (E, U, S), and, for j C {i, i + 1},
let t3 denote the round in which U started emulating Uj. Then, recalling that for each
j, V is Ba-strongly safe (w.r.t (Uj, S)), the expected number of errors (w.r.t the bound

def
B) that occur between round tj and round tj 1 is at most 4bi where bi = Bi(sz(- 1)).
In particular,

1. The expected cardinality of {t E [ti, ti+1] : R'(o-) = 0} is at most 4bi.

2. The expected cardinality of {t G [ti, ti+1] : (Vt' G [t, t + bi]) R'(ug) = I} is at
most 4bi.

181

Combining the foregoing two claims with the hypothesis that there is a sensing
strategy V such that for every S E S there exists a user strategy Uj E U such that V

is Bi-strongly viable and safe with respect to (Us, S), it follows that (Us, S) robustly

achieves the goal with B errors, where B(s) = 2Bj(s) + 4 Eje-_ Bj(s). Note that

indeed B(s) = O(B(s)) for some j < i, where the constant in the O-notation depends

on i (and hence on S).

Proof We proceed by induction on i (using a vacuous base case of i = 0). Let a1

be a global state such that the expected number of errors produced by a random

execution of the system starting at a1 exceeds b = 4 EZE~ B3(sz(ui)) (i.e., either

I{t E N : R'(ut) = 0}| > b or I{t E N : (Vt' E [t, t + b]) R'(at) = L}| > b). By the
induction hypothesis, the expected number of errors that occur before round tj is at

most 4 EjE[_] Bj(sz(o-1)), and some errors (w.r.t the bound bi) occur after round

ti + bi, where bi = Bi(sz(o-)). That is, there exists t > tj + bi such that either

R'(o) = 0 or for every t' E [t, t + bi] it holds that R'(ua') = 1. In the first case the

first (Bi-strong) safety condition (w.r.t S E S) implies that for some t" E [t, t + bi]
it holds that V(ua) = 0, whereas in the second case the second (Bi-strong) safety

condition implies that for some t" E [t' + 1, t' + bi] C [t + 1, t + 2bi] it holds that

V(un) = 0. In both cases, the fact that V(out) = 0 (for t" > ti + bi) causes U to

switch to emulating Uji at round t" + 1 (if not before). Hence, if t > ti + bi is set

to the first round that contains an error (following round tj + bi), then the number of

errors (w.r.t the bound bi) during the emulation of Ui is at most bi + (t" - t) < 3bi.

The claim follows. U

The foregoing analysis applies also in case the (strong) safety condition holds only

with probability 1 - c, where c = c(sz(o-)), because there are many opportunities to
switch from Uj, and each one is taken with probability at least 1 - E. More precisely,
except for the first bi+4 Zje[j-l] Bj(sz(o-1)) errors, each error yields an opportunity to

switch from Uj soon, and each such opportunity is accounted for by at most 2bi errors.
Thus, in addition to the 3bi errors that occur when we have perfectly strong safety, we

may incur j -2bi additional errors with probability at most es, which gives an expected
number of additional errors that is upper-bounded by EjEN 0 - 2bij < 2bi. Hence,
Claim 6.38 holds also in the general case, when replacing 4 1Z j[B by 6jE j] Bj.

In contrast, in order to cope with imperfect (strong) viability (i.e., a strong viabil-

ity condition that holds with probability 1- c), we need to modify our strategy U. We
use the same modification (i.e., "repeated enumeration") as at the end of the proof
of Theorem 6.23. Since each additional repetition occurs with probability at most E,
the expected number of failures will remain bounded. Specifically, if U is repeated

r > 1 additional times, then the expected number of errors is at most EE +] 6Bj,
and so the expected number of errors is bounded by ErO Er -EE[i+] 6Bj. Using the

hypothesis Bj+1 < (2c)-1 - By, which implies Bi+r < (2e)r -Bi, we upper-bound this

sum by 12 Zjc[i] By, and the main claim follows.
Regarding the furthermore claim, we note that the complexity of U is upper

bounded by the maximum complexity of the composed strategies U1, ... , U , where i

is an index such that (U, S) robustly achieves the goal, and each Uj is obtained by

182

composing Uj with the strategies for sensing and enumeration. Indeed, by the extra
hypothesis, each Uj is also a member of U, as needed. N

Theorem 6.36 versus Theorem 6.23. Indeed, Theorem 6.36 utilizes strongly safe
sensing functions, whereas Theorem 6.23 only utilizes weakly safe sensing functions,
but the conclusion of Theorem 6.36 is much more appealing: Theorem 6.36 provides
an absolute (in terms of state size) upper bound on the number of errors incurred by
the universal strategy, whereas Theorem 6.23 only asserts that each infinite execution
of the universal strategy incurs finitely many errors. We stress that a user strategy
that incurs (significantly) less errors should be preferred to one that incurs more
errors. This is demonstrated next.

Example 6.39 (Goals with delayed feedback). Consider a goal G and classes of users
and servers as in Theorem 6.36, and suppose that B is a class of moderately growing
functions (e.g., constant functions or polynomials). Suppose that, for some huge
function A : N -+ N (e.g., an exponential function), for every execution 6 and every
t E N, the user can obtain R'(ot) at round t + A(sz(o-t)). This implies a very simple

universal strategy via a simple adaptation of the principles underlying the proof of
Theorem 6.29, but this strategy may incur O(A) errors. In contrast, recall that the
universal strategy provided by Theorem 6.36 incurs O(B) errors, for some B E B.

Refined helpfulness. The refined (or rather quantified) notion of achieving a goal
suggests a natural refinement of the notion of helpful servers. This refinement is
actually a restriction of the class of helpful servers, obtained by upper-bounding the
number of errors caused by the server (when helping an adequate user). That is, for
any bounding function B : N -> N, we may consider servers S that are not only U-
helpful but can rather be coupled with some U C U such that (U, S) robustly achieves
the goal with B errors. We say that such servers are U-helpful with B errors.

Using relaxed viability

The notion of helpfulness with an explicitly bounded number of errors is not com-
patible with our current notion of bounded viability (cf. Definition 6.35). The point
is that B-strong viability allows failure indications to occur only till time B, whereas
helpfulness with B errors refers to the total number of errors. Wishing to utilize such
helpful servers, we relax the notion of strong viability accordingly.

Definition 6.40 (A relaxed notion of strong viability). Let G = (E, R), S, U and
V be as in Definition 6.16. For B : N -> N and e : N -> [0, 1/3], we say that V is
(B, e)-viable with respect to (U, S) (and G) if, for every E E E and every o, E ,
with probability at least 1 - e(sz(oa)), the cardinality of {t E N : V(u) = 0} is at
most B(sz(a)). If e =_ 0, the we say that V is B-viable.

Indeed, while helpfulness with B errors refers to the expected number of errors, the
notion of (B, .)-viability refers to the probability that the number of failure indications

183

exceeds B. Needless to say, the latter bound is easily related to an upper bound on
the expected number of failures.

Theorem 6.41 (Theorem 6.36, revisited). Let G = (E, R), U, S, V, e and B be
as in Theorem 6.36, except that the sensing function V is (Bi, e)-viable with Ui (as
per Definition 6.40) rather than (Bi, e)-strongly viable (as per the viability condition
in Definition 6.35). Then, there exists an S-universal user strategy U such that for
every S E S there exists B c B such that (U, S) robustly achieves the goal G with
O(B 2) errors, where the constant in the 0-notation depends on S. Furthermore, if
B-viability holds (i.e., the sensing function V is (Bi, 0)-viable with some Ui) and the
composition of any U E U with the sensing and enumeration strategies also resides in
U, then, for every S E S, the complexity of U is upper-bounded by the complexity of
some fixed strategy in U.

Sketch of proof Following the proof of Theorem 6.36, we first consider the case in
which both the viability and safety conditions hold perfectly (i.e.,, e = 0 both in the
viability condition of Definition 6.40 and in the safety condition of Definition 6.35).
We modify the universal user strategy U used in the proofs of Theorems 6.23 and 6.36
such that it switches to the next strategy after seeing sufficiently many failure indi-
cations (rather than when seeing a failure indication after sufficiently much time).
Specifically, suppose that U starts emulating Ui at round ti, and denote the system's
state at this round by otx. Then, strategy U emulates Ui till it encounters more than
bi <- Bi(sz(ort)) rounds t > ti such that V(o-t) = 0 holds, and switches to Ui+ 1 once
it encounters the (bi + 1)th such round.

We shall show that Claims 6.37 and 6.38 remain essentially valid, subject to some
quantitative modifications. Specifically, Claim 6.37 is modified as follows.

Claim 6.42. Suppose that V is Bi-viable and Bi-strongly safe with respect to (Us, S),
and consider a random execution of (E, U, S). Then, if this execution ever emulates
Ui, then it never switches to Ui+ 1 . Furthermore, in this case, for ti and bi as above,
it holds that the number of errors (w.r.t the bound bi) occurring after round ti is at
most bi + b .

The furthermore part follows by observing that Bi-viability implies that f {t > ti:
V(ot) = 0}| <! bi, whereas the Bi-strong safety implies that if more than bi errors
occur after round t' > ti, then V(u-i) = 0 must holds for some t" C [t', t'+ bi] (since in
this case RB, evaluates to 0). Thus, if errors appear at rounds t'i, t' > ti such that
t' < t' < '' < t', then failure indications must occur in rounds t', t2, .,t_ > ti
such that tj e [t', t + bi] (for every j E [m - bi]). Since at most bi of these intervals
may intersect at any index, it follows that (m - bi)/bi ; bi. Thus, Claim 6.42 follows.
As for Claim 6.38, it is modified as follows.

Claim 6.43. Let i > 1 and suppose that (U, S) does not robustly achieve the goal with
3 B i]B? errors. Consider a random execution of (E, U, S), and, for j E {i, i + 1},
let t3 denote the round in which U started emulating Uj. Then, recalling that V is
B3 -strongly safe (w.r.t (Uj, S)), the expected number of errors (w.r.t the bound Bi)
that occur between round ti and round ti+1 is at most 3Bi(sz(- 1)).

184

Combining Claims 6.42 and 6.43 with the hypothesis that for every S E S there
exists a user strategy Uj E U such that V is Bi-viable and Bi-strongly safe with
respect to (Us, S), it follows that (U, S) robustly achieves the goal with B errors,
where B(s) = 2B?(s) +-3 Zje i-l] B?(s). Note that indeed B(s) = O(B?(s)) for some

j < i, where the constant in the 0-notation depends on i (and hence on S).

Sketch of proof Following the proof of Claim 6.38, we proceed by induction on
i. Let ai be a global state such that the expected number of errors produced by a
random execution of the system starting at ai exceeds 3 Ej[] B?(sz(o-i)). By the
induction hypothesis, the expected number of errors that occur before round tj is
at most 3 Eje i 1 B?(sz(ci)), and so at least 3b? errors occur after round ti, where
bi = Bi(sz(ai)). The first (bi + 1)bi errors must (by Bi-strong safety) cause more
than bi failure indications (i.e., rounds t > t, such that V(at) = 0), which causes U
to switch to emulating Uj1 i as soon as bi + 1 such indications are encountered, which
occurs at most another bi rounds after the last detected error (again by Bi-strong
safety). Hence, the number of errors (w.r.t the bound bi) during the emulation of Uj
is at most 3b, and the claim follows. U

As in the proof of Theorem 6.36, we need to extend the analysis to the general case
in which E < 1/3 (rather than e = 0). The extension is analogous to the original one,
where here each repetition causes an overhead of O(B 2) (rather than O(B)) errors.
U

On the use of different bounding functions for safety and viability. For
simplicity, we assumed that the bounding functions for safety and viability with the
ith user strategy were the same function Bi, and the conclusion of Theorem 6.41 gave
a bound of O(B 2) errors for some bounding function B E B. Now, it may be useful
for applications to note that if we had separate bounding functions for safety and
viability - suppose the bounding function for safety associated with the ith user is
Bs, and the bounding function for viability is By - and if the algorithm were modified
to switch after encountering more than B' failure indications, then the argument in
the proof of Theorem 6.41 would give O(Bs - Bv) errors for some pair of bounding
functions (B8 , By). The reason is, of course, that in the proof of Claim 6.42, at most
Bs intervals (of length B') may now intersect in the same index, and thus the number
of errors incurred by a good strategy is at most B (Br + 1). Likewise, in the proof
of Claim 6.43, Q(B' - Bv) failures while the algorithm is running Uj are enough to
ensure that at least B' + 1 failure indications occur, and so we switch to Usi.

Example 6.44 (Solving computational problems, revised again). We consider the
same goal as in Example 6.31, but here we consider the possibility of achieving this
goal when interacting with an arbitrary server that is U-helpful with a polynomi-
ally bounded number of errors (rather than interacting with an arbitrary D-solver).
Recall that we consider the multi-session goal of solving instances (selected non-
deterministically by the environment) of a decision problem, Do, and U denotes the
class of probabilistic polynomial-time user strategies. This is a multi-session version

185

of the goal studied in Section 3.3, and the solution can be nicely cast in the current
framework. Specifically:

* As shown in Section 3.3, if both Do and its complement have competitive in-
teractive proof systems, then for some polynomial B, there exists a sensing
function that is B-viable and (B, 1/3)-strongly safe with respect to the class of
U-helpful with B errors servers. 22

The proof of the foregoing claim is essentially identical to the positive direction
of Theorem 3.12: the user invokes the interactive proof system while playing
the role of the verifier, and uses the helpful server in order to implement the
designated prover strategy.

Recall that adequate interactive proof systems exists for PSPACE-complete and
some problems in SZK that are believed not to be in P (cf. [97, 128] and [68],
respectively) 23

" By invoking Theorem 6.41 we obtain an S-universal user strategy, where S
denotes the class of all U-helpful servers. Furthermore, for every S E S, when
interacting with S this universal strategy can be implemented in probabilistic
polynomial-time.

We also note that as in Chapter 5, analogous reasoning can be applied to other classes
of user strategies, such as polynomial time and logspace strategies.

Another illustration of the difference in error bounds may be obtained by con-
sidering the kinds of learning algorithms that the various settings capture. Recall
that we showed in Example 2.34 that in the finite-execution setting, users with con-
trollable error naturally captured Valiant's PAC-learning model [144]. In contrast to
the finite execution setting now, and as a prelude to Chapter 8, we show that the
setting of Theorem 6.36 naturally captures a well-known model of on-line learning as
considered by Barzdins and Frievalds [18] and Littlestone [95]; we will return to this
model in more depth in Section 8.2.3.

Example 6.45 (Mistake-bounded on-line learning). Suppose we fix a space of func-
tions f : X -> Y. The goal of mistake-bounded on-line learning is a multi-session
goal given by a non-deterministic environment strategy in which the environment
non-deterministically selects an infinite sequence of elements of X, E = {E2 : t =

{x E X}&'j}, such that each ith session lasts a single round, and consists of Ej
sending Xi to both the user and server. The referee's temporal decision function R'
is satisfied iff the server receives a message consisting of "1" from the server.

22In fact, strong safety holds with respect to all possible servers. This fact follows from the
unconditional soundness of the interactive proof system (i.e., soundness holds no matter which
strategy is used for the cheating prover).

2 3Recall that we need interactive proof systems in which the designated prover strategy is relatively
efficient in the sense that it can be implemented by a probabilistic polynomial-time oracle machine
with access to the problem itself. We reviewed some known constructions of such proof systems in
Sections 3.3.1 and 3.3.4.

186

Now, each concept class C ; {f : X -> Y} corresponds naturally to a class of
servers S(C) in the following way: for each f E C, there is a server Sf E S(C) such that
in each round, the server stores the message x E X it received from the server until
the next round; the server then sends "1" to the user and environment if the user sent
a message y E Y on that round such that y = f(x) for the previous message x that
the server received from the environment, and sends "0" to the user and environment
otherwise.

Thus, the messages from the server indicate whether or not the user successfully
predicted f(x), and the user incurs an error precisely when f (x) is predicted incor-
rectly. We note that 1-strongly safe and 1-strongly viable sensing with respect to U
and Sf is trivially available for this goal whenever f can be computed by members
of U, and so if C can be computed by members of U, Theorem 6.36 applies to give a
universal on-line learning algorithm that achieves a mistake bound of 0(i) for the ith
function in the class, since the viability condition holds perfectly, and the bounding
functions for safety and viability are both 1.

By contrast, we note that Theorem 6.23 (and more generally, use of the weak def-
initions of safety or viability introduced in Definition 6.14) would only be guaranteed
to produce a user strategy that makes finitely many mistakes, with no a priori bound
on how large this "finite number" should be (in particular, it could depend on the
environment's non-deterministic choices).

Still, the conclusion obtained in Example 6.45 is itself somewhat sub-optimal: it
is still closer in spirit to older definitions of "learnability in the limit" or "inductive
inference," [63, 28]. By contrast, we would like to say that whenever C is efficiently
learnable in m mistakes, then our universal algorithm makes f(m) mistakes for some
moderately growing function f, so that the performance of the universal learning
algorithm matches (as well as possible) the performance of the optimal learning al-
gorithm for the unknown class C. Theorem 6.36 doesn't allow for such conclusions,
though, because the failures of a good on-line learning algorithm may be spread out
over time, perhaps well past the initial "grace period." But we see now that these
mistake-optimal learning algorithms actually satisfy the relaxed viability conditions,
so we will be able to obtain an improved learning algorithms by an application of
Theorem 6.41:

Example 6.46 (Mistake-bounded on-line learning, continued). In continuation of
Example 6.45, suppose we know that there is an on-line learning algorithm in the
class U that makes m mistakes in the worst case when learning the concept class
C. Then the natural sensing function is m-viable for U with S(C). Therefore, Theo-
rem 6.41 applies to give a universal on-line learning algorithm that achieves a mistake
bound of 0(m 2) for any class C efficiently learnable in m mistakes since the viability
condition holds perfectly, and the bounding functions for viability is m > 1. Actu-
ally, moreover, since the sensing is 1-strongly safe, the more careful accounting of the
errors in Theorem 6.41 we sketched earlier (for separate safety and viability bounding
functions) would give that the mistake bound is only O(m).

187

6.2.5 On the non-triviality of strong sensing functions

Recall that the existence of a S-universal strategy implies the existence of a sensing

function that is safe with respect to S (see Proposition 6.26). However, this sensing

function is trivial (i.e., it is identically 1), and its safety with respect to S just follows

from the fact that the S-universal strategy achieves the goal when coupled with any

server in S. Clearly, this safety property may no longer hold with respect to servers

outside S, and specifically with respect to servers that are not helpful at all.

We stress that these sensing functions were always unsafe with unhelpful servers,
even if the class S was the class of all helpful servers, which, recall, we saw in The-

orem 2.37 could not happen with sensing from finite executions. While on the one

hand, we believe that sensing functions that are also safe with respect to a wider class

of servers are desirable, on the other hand, in the case of finite executions, we saw

that this strong safety property also limited the class of goals that could be achieved

with sensing. This point was most clearly made in the context of computational goals

in Section 3.3.
Now, turning to the cases in which we designed strong sensing functions - e.g.,

those in Example 6.31 - we observe that these sensing functions were actually safe

with respect to any server, just as our sensing functions were for the analogous goals

in finite executions. We note that it is desirable to have sensing functions that are

strongly safe, because such functions offer bounds on the number of errors made by
the universal strategy (see Theorems 6.36 and 6.41).

We show now that this is (unfortunately) no coincidence: it turns out that a

strong sensing function with respect to a sufficiently rich class of helpful servers is

actually safe with respect to any server. In other words, if V is strongly safe with

respect to S, which may contain only U-helpful servers, then V is strongly safe with

respect to any server (including servers that are not helpful to any user). Thus, a

strongly safe sensing function cannot be trivial.
The proof is essentially a slightly more involved variant of the proof of Theo-

rem 2.37. Considering a class of helpful servers that are each helpful when they

communicate with users that send sufficiently long messages and may behave ar-

bitrarily otherwise, we show that (strong) safety with respect to this class implies

(strong) safety with respect to all servers. Specifically, for each user strategy U, we

will consider the class pad(U) of all user strategies that prepend messages of U by a

sufficiently long prefix, and show that (strong) safety with respect to the class of all

pad(U)-helpful servers implies (strong) safety with respect to all servers.

Theorem 6.47 (Strong safety w.r.t helpful servers implies same w.r.t all servers).

Let G = (SE, R) be a compact goal, which is achievable by the pair (U, S). Let padi(U)

denote a user strategy that prepends 0 --11 to each message sent by U, and suppose

that V is (B,c)-strongly safe with respect to U and each {padi(U) : i E N}-helpful

server (and G). Then, V is (B, E)-strongly safe with respect to the user U and every

server (and G).

Proof Suppose, towards the contrary, that there exists an arbitrary server S* such

that V is not (B, e)-strongly safe with respect to (U, S*) and G. The strong safety

188

property implies that the sensing failure of V is witnessed by finite prefixes of the
relevant executions. Specifically, for some E E E and some initial state o,, with
probability (strictly) greater than E, a random execution of (E, U, S*) starting at o-
contains a finite prefix that witnesses the sensing failure. Recall that there are two
cases depending on whether R'(u1) = 0 or R'(o1) = _.

Starting with the first case, we suppose that with probability at least E(sz(o-1)) +6
(for some J > 0), the random execution - is such that V(a) = 1 for all i < B(sz(o-))
and RB(U) = 0. Note that the first event depends only on the B-long prefix of o,
denoted o-[1,B]. Thus, with probability at least c + 6, this prefix is such that (1) V is
identically 1 on all its states, and (2) with positive probability this prefix is extended
to a random execution that is unsuccessful (per RB). Fixing any such prefix, we note
that event (2) is also witnessed by a finite prefix; that is, with positive probability, a
random extension of this prefix contains a (longer) prefix that witnesses the violation
of RB. Using the fact that the latter event refers to a countable union of fixed prefix
events, we conclude that there exists f E N such that with positive probability the
said violation is seen in the E-step prefix. Furthermore, by viewing the probability of
the former event as a limit of the latter events, we can make the probability bound
within an additive 6/3 of its original value. The same process can be applied across
the various B-long prefixes, and so we conclude that there exists an f E N such
that, with probability at least e + 6/3, a violation is due to the E-long prefix of a
random execution. Similar considerations apply also to the second aforementioned
case (where R'(o-) = IL).

Next, we note that we can upper bound the length of the messages that are sent
by U in the first f steps of most of these random executions. That is, there exists
an i e N such that, with probability greater than e, the sensing function V fails in
a random E-step execution prefix during which U sends messages of length at most
i. At this point we are ready to define a helpful server that also fails this sensing
function.

Firstly, we consider the strategy U = padi+1 (U), and define a hybrid strategy
S such that S behaves like S* on messages of length at most i and behaves more
like S otherwise. Specifically, upon receiving a message of length greater than i, the
strategy S omits the first i + 1 bits, feeds the result to S, and answers as S does.
Clearly, (U, S) achieves the goal G, and so S is pad(U)-helpful. On the other hand,
by the foregoing argument, it is the case that V fails with probability greater than 6

in a random execution of (E, U, S). Thus, V is not (B, E)-strongly safe with respect
to U and S (and G), which contradicts our hypothesis regarding safety with respect
to all helpful servers (or rather all {pad3 (U) :j E N}-helpful servers). The theorem
follows. M

6.3 Extensions

In this section, we discuss various natural augmentations of our basic model, specif-
ically the treatment of varying state sizes (see Section 6.3.1), a generalizations of

189

multi-session goals to concurrent session goals (see Section 6.3.2), and a relaxation of
the notion of robustly achieving goals (in Section 6.3.3) to allow a nonzero probabil-
ity of failure and to allow user strategies to start from a set of initial states. Further
extensions will be motivated and introduced in Chapter 7.

6.3.1 Varying state sizes

Our basic treatment, provided in Sections 6.1 and 6.2, postulates that the size of
the various states remains invariant throughout the execution. This postulate was
made mainly for sake of simplicity, and we waive it here both for sake of generality
and because the generalization seems essential to an appealing result that appears in
Section 7.2.3.

Extending the definitional treatment

Recall that the size of the various states in the execution is used only as a basis for
defining various bounds, which are stated as functions of the state's size. Given that
the state's size may change, the question that we face is how to express these bounds
in such a case.24 Recall that we use bounds of two types.

1. Bounds that determine the length of various intervals, including the length of
intervals in which the temporal decision is suspended (i.e., R' = I) or the delay
of sensing (e.g., in the definition of safety). For example, both types of delays
appear in (Item 2 of) Definition 6.16 (which refers to strong sensing).

Since such bounds refer to some "transient" events (i.e., a state in which R' = 0
or the first state in a I-run under R'), it is natural to keep them expressed in
terms of the size of the corresponding state (in which the event occurs).

2. Bounds that determine the total number of various events, including the num-
ber of allowed errors and/or detection failures (as in Definition 6.34 and Defi-
nition 6.40, respectively).

Since these bounds are "global" in nature, it makes no sense to associate them
with any single event (or state or size). Instead, we may view each individual
bad event (i.e., an error and/or detection failure) as contributing to a general
pool, and weight its contribution with reference to the relevant size. (See Defi-
nition 6.48.)

In accordance with the foregoing discussion, the definitions of sensing functions (i.e.,
Definition 6.16 (and, needless to say, Definition 6.14) remain intact (although the size
of the various states in an execution may vary). We stress that, since our universal

24While we believe that the definitional choices made here (i.e., in Section 6.3.1) are reasonable,
we are far from being convinced that they are the best possible.

190

strategies refer to these bounds, it is important to maintain our postulation by which

the user knows the size of the current (global) state.25

We now turn to the treatment of global bounds, like the bounds on the total
number of errors (in Definition 6.34). Recall that Item 1 in Definition 6.34 states

that the expected cardinality of {t E N : R'(o-t) = 0} is at most B(sz(o-)), for
every initial state oi. However, when the size of states may vary, it makes little

sense to bound the number of errors with reference to the size of the initial state.

Instead, we may consider an error at state at as contributing an amount proportional
to 1/B(sz(-t)) (towards the violation of the "error bound") and say that a violation
occurs if the sum of all contributions exceeds 1.

Definition 6.48 (Varying size version of Definition 6.34). Let G = (S, R) be a

compact goal and R' : Q -+ {0, 1, I} be as in Definition 6.6. For B : N -+ N, we say
that a pair of user-server strategies, (U, S), achieves the goal G with B errors if, for

every E E S, a random execution i = (U, o2, ...) of the system (E, U, S) satisfies the
following two conditions:

1. The expected value of the sum E is at most 1.YtENq:R1(ot)=O B(sz(ut))

2. The expected value of the sum EteN:(vt'Et,t+B(sz(ut))]) R'(at')=_L B(sz(ot)) is at most 1.

If - is an execution in which the bounds corresponding to the foregoing conditions
are both satisfied, then we write RB(i) = 1. Finally, if a is an execution such that

R'(ot) = 0 or (Vt' E [t, t + B(sz(ot)))) R'(ut') = I, then we say that i contains an

error in round t.

Note that each individual bad event in Item 2 is defined with respect to the size at
the corresponding time, and (like in Item 1) its contribution is defined with respect
to the size at the corresponding time. However, in both items, the condition refers
to the aggregate contribution, where each event may contribute a different amount
to this sum. Observe that in the case that the state remains fixed throughout the
execution, Definition 6.48 coincides with Definition 6.34.

A similar modification should be applied to the definition of robustly achieving
a goal. Consequently, the refined definition of strong safety (i.e., Definition 6.35)
is updated by merely postulating that RB is as defined in Definition 6.48 (rather
than as in Definition 6.34). Lastly, we generalized the definition of relaxed viability
(i.e., Definition 6.40)26 analogously to the foregoing modification (i.e., that yielded

Definition 6.48).

Definition 6.49 (Varying size version of Definition 6.40). Let G = (E, R), S, U,

and V be as in Definition 6.16. For B : N -+ N and c E [0, 1/3], we say that V is

25Indeed, we relied on this postulation also in the fixed-size case, since it was used there in the

same way. However, in the current context the state may change all the time, and the user should

be aware of these changes (at least whenever it needs to determine the values of these bounds).
261n order to avoid a possible controversy, we state Definition 6.49 only for constant values of

E, whereas Definition 6.40 allowed any E : N -> [0,1/3]. Note that E = 0 and E = 1/3 are indeed

the most important cases (cf. Definition 6.16). Nevertheless, we mention that we believe that when

allowing E to vary, it is most natural to apply it to the initial state (indeed, as in Definition 6.40).

191

(B, e)-viable with respect to (U, S) (and G) if, for every E E S and every a E Q,
with probability at least 1 - e, the value of the sum EtEN:V(Ut)=0 o is saller
than 1. If e = 0, the we say that V is B-viable.

As commented in Section 6.2.4, the foregoing definitions are simplified versions of

more general definitions that use different bounding functions for the various bounds

that underly these definitions.

Extending the (fixed-size) universality results

The universality results stated in Section 6.2 can be generalized to the context of

varying sizes, where we refer to the generalized definitions presented in Section 6.3.1.
Actually, we can prove these generalized results only for goals in which the state size

does not change dramatically from one round to the next one. For simplicity, we

only consider one concrete case, in which the size can change at each round by at
most one unit. (Note that goals that allow arbitrary changes in the state sizes can

be emulated by the foregoing restricted goals by introducing an adequate number of

dummy rounds.) Similarly, we consider only small bounding functions, while larger
bounds can be handled by artificially increasing the size measure (which is an arbitrary
function of the states).

Theorem 6.50 (Varying size version of Theorem 6.41). Let G = (S, R), U, S,
V, e, and B be as in Theorem 6.41, except that here we refer to the varying-size

generalization of the notions of achieving and sensing (and in particular to replacing
Definition 6.40 by Definition 6.49). Suppose that G is such that in each execution

D = (Oc,o-2 ,...) and at every time t it holds that |sz(ot+1) - sz(ot)| 5 1. Further

suppose that for every B E B it holds that B(s + d) < B(s) + (d/2), and that for

every two functions in B it holds that one of them dominates the other (i.e., for every

B 1, B 2 E B and s, s' E N, if B1(s) < B 2 (s), then B1(s') < B2(s')). Then, there exists

an S-universal user strategy U such that for every S e S there exists B e B such

that (U, S) robustly achieves the goal G with O(B 2) errors, where the constant in the

0-notation depends on S. Furthermore, if B-viability holds (i.e., the sensing function
V is (Bi, 0)-viable with some Uj) and the composition of any U E U with the sensing

and enumeration strategies is also in U, then, for every S C S, the complexity of U
is upper-bounded by the complexity of some fixed strategy in U.

Recall that by saying that a "goal is achieved with a certain number of errors"

we mean that the expected contribution of all errors is bounded by 1, where the

contribution of each error is "normalized" with respect to the relevant size (as per

Definition 6.48).

Sketch of proof We follow the outline of the proof of Theorem 6.41, while adapt-

ing the "accounting of failure indications". Recall that, in that proof (and while in

the case of e = 0), we introduced a universal user strategy U that switches from

the user strategy Uj to the next strategy (i.e., Ui+ 1) after seeing sufficiently many

failure indications, where "sufficiently many failures" meant a number that exceeds

a predetermined bound that was expressed in terms of the fixed size (of states).

192

Here, sufficiently many failures will mean an accumulated contribution that exceeds 1,
where each contribution is normalized with respect to the relevant size (as per Defini-
tion 6.49). Specifically, suppose that U starts emulating Uj at round ti, then strategy
U emulates U until a time tj+1 such that the sum 1 (exceeds 1,
and switches to Ui+1 once the latter event occurs.

We shall show that Claims 6.42 and 6.43 remain essentially valid, when modified
in accordance to the relevant new measures. Specifically, Claim 6.42 is modified as
follows.

Claim 6.51. Suppose that V is Bi-viable and Bi-strongly safe with respect to (Ui, S),
and consider a random execution of (E, U, S). Then, if this execution ever emulates
Uj, then it never switches to Ui+1. Furthermore, in this case, letting Err denote the set

of rounds containing errors (as in Definition 6.48) it holds that ZtErr:t>tj 4B(sz(ot))
1, where t2 is as above.

Sketch of proof As in the case of Claims 6.37 and 6.42, the main part only re-
lies on Bi-viability and follows from the construction of U. The furthermore part
follows by observing that Bi-viability mandates a upper bound on the contribution
of failure indications (w.r.t V), whereas the Bi-strong safety condition translates the
total contribution of errors (w.r.t R') to a lower bound on the the contribution of
failure indications (w.r.t V). Specifically, suppose towards the contradiction that

1 > 4. Consider b > t scthtbhE 1 > 2
LEtEErr:t>ti B (sz(Wt)) such that both EteErrn(ti,b B (sz(ut))

and EtEErr:t>b B (sz(t)) > 1 hold, and let Err' = {t E Err : t E (ti, b]}. Now, by the

Bi-strong safety condition, for every t' E Err' there exists t" E [t', t' + Bj(sz(o-t1))]
such that V(o-t") = 0 (because RB (o-t,) evaluates to 0). Let us denote the corre-
sponding mapping by -r : Err' -> (N \ [ti]); that is, for every t' E Err' it holds that
r(t') E [t', t' + Bi(sz(u-))] and V(o-r(t)) = 0. Then:

1 1

t>t:V(at)=O Bi(sz(o-)) - E7r(Err') Bi(sz(o-t))

_ 1

17r-1(-xr(t'))| I Bj(sz(o-ste)))

- r'2B?(sz(o-,(t,)))

where the last inequality follows from the fact that r 1 (t")| < 2B (sz(ot")), which
in turn follows by combining r- 1(t") ; {t' E [t"] : t' + Bj(sz(o-e)) > t"} with
{t' E [t"] : t' + Bi(sz(ot')) > t"}| < 2Bi(sz(o-t")), where the last fact relies on

two of the technical conditions of the theorem.27 Using 2(sz() > 1, weUsng ErrE 2Bi(zct)

infer that Et>tj:V(Ot)=0 Bj(sz(ot)) > 1, which causes the execution to switch to Ui+1, in
contradiction to the main part. The furthermore part follows. U

27 Specifically, using Isz(ot') - sz(ot,)I < It' - t"| and Bi(s + d) < Bi(s) + (d/2), we upper-bound

I{t' E [t"] : t' + Bj(sz(at')) > t"}| by |{t' E [t"] : t' + Bj(sz(at")) + (t" - t')/2 > t"}.

193

Regarding Claim 6.43, it is modified as follows.

Claim 6.52. Let i > 1 and suppose that (U, S) does not robustly achieve the goal
with 6i maxjE[i B. errors.2 That is, letting Err be as in Claim 6.51, it holds that the
expected value o 1 exceeds 6i. Consider a random execution of

expeced vlue f ZtEErr maxjCejj]{B (szGut))1

(E, U, S), and let ti, ti+1 be as above. Then, recalling that each V is B1 -strongly safe

(w.r.t (Uj, S)) it holds that the expected value of LtEErrtE(ti,ti.1] t is at most 6.

Combining Claims 6.51 and 6.52 with the hypothesis that for our sensing strategy
V for every S E S there exists a user strategy Ui C UI such that V is Bi-viable and

Bi-strongly safe with respect to (Uj, S), it follows that (Uj, S) robustly achieves the
goal with B errors, where B(s) = 6imaxjE[i{B?(s)}.

Sketch of proof Following the proof of Claim 6.43, we proceed by induction on i.

Let o- be a state such that the expected value of tErr max {B (sz())} exceeds 6i.

By the induction hypothesis, the expected value of EtEErr:<ti maxei1 i(sz(ot))} is at

most 6(i-1), and so the expected value of EtEErr:tE(ti,ti+1) B?(sz(ut)) is at least 6. By Bi-

strong safety, for each of these t c Errn (ti, ti+1] there exists t' E [t, t+Bi(sz(ot))] such

that V(ot,) = 0, and by an accounting similar to the one in the proof of Claim 6.51
itfollowsthatZ 1 > 3 which causes U to switch to emulating

Uj+ 1 before ti+1 (in contradiction to the definition of ti+1). The claim follows. U

As in the proof of Theorem 6.36, we need to extend the analysis to the general
case in which e < 1/3 (rather than c = 0). The extension is analogous to the original

one, where (as in the proof of Theorem 6.41) each repetition causes an overhead of

O(B 2) errors. U

6.3.2 Concurrent session multi-session goals

In this section we consider a generalization of the notion of multi-session goals to
concurrent session goals. In relation to the treatment of state sizes in Section 6.3.1,
it is natural to comment of the state sizes in multi-session goals. It is natural to
postulate that, in the basic formulation (i.e., Definition 6.7), the state size remains
invariant during each session, and is thus determined by the start-session state of this

session. In the case of concurrent sessions it is natural to define size as a function of

the sizes associated with all active sessions. 29

28Here we use the technical hypothesis by which for every two functions in B it holds that one
of them dominates the other. Hence, maxjEgjj1 {Bj} is well defined, and if B1 (s) < B 2 (s) for some

s E N then B1(s') < B2 (s') holds for all s' E N.
29 While the maximum size and the sum of sizes seem like natural choices, the product of the sizes

may be better behaved: if we have a linear error bound, and sessions of size si and s2, then note

that a strategy that successfully completes the two sessions in turn first incurs, e.g., up to si - 1

errors of size si - s2, and thus incurs total error less than 1/s2. Therefore, if the size returns to s2
after the first session is terminated, the user can still afford to make up to S2 - 1 errors at size S2

while still incurring total failure less than one.

194

Our basic formulation of multi-session goals (see Definition 6.7) mandates that the
current session ends before any new session can start. A more general formulation,
which allows concurrent sessions, follows.

Definition 6.53 (Concurrent multi-session goals, sketch). A goal consisting of a non-
deterministic strategy E and a referee R is called a concurrent multi-session goal if
the following conditions hold.

1. The environment's states: The local states of the environment consist of (non-
empty) sequences of pairs, where each pair is called a session state and has a
form as postulated in the first condition of Definition 6.7; that is, each session
state is a pair consisting of an index and a contents, and belongs to one of
three sets of session states called start-session states, end-session states, and
intermediate session states. The initial local state corresponds to the single
pair (0, A), and belongs to the set of end-session states.

2. The referee verdict depends only on the end-session states: The referee R is
compact. Furthermore, the corresponding function R' evaluates to I if and
only if the current state contains no end-session state. Otherwise, the value of
R' is a conjunction of the values of some Boolean predicate R" that is applied
to all the end-session states that appear in the current state.

3. Starting new sessions: At any round, the environment may start an arbitrary
number of new sessions. This is done by moving non-deterministically to a state
that contains a list of start-session states, each having an index that does not
appear in the previous list of session states.30 The contents of each of these
new session states is determined by the environment based solely on the indices
of the existing sessions (and is invariant of their contents; cf. Condition 3 of
Definition 6.7).

4. Execution of the current active sessions: In addition to the above, the environ-
ment takes a move in each of the active sessions that are listed in the current
state, where a session is called active if it is not in an end-session state. The
environment's movement in each such session is probabilistic and is independent
of the index as well as of the actual environment strategy (cf. Condition 4 of
Definition 6.7). Furthermore, this movement maintains the index of the session.

Note that the state maintains the list of all non-active sessions (i.e., sessions that
reached a end-session state). An alternative formulation may omit the non-active
sessions from the state, and maintain instead an explicit counter that represents the
number of sessions started so far.

We will develop an example of a concurrent-session goal modeling communica-
tion over an unreliable network in Chapter 9, where messages may be dropped and

soWithout loss of generality, this index may be the smallest integer that does not appear in that
list.

195

reordered in transit, as occurs with packets sent across the internet. Roughly, each ses-
sion captures a message to be sent across the network; the reason we use a concurrent-
session goal and not, e.g., a multi-session goal to capture this setting is that, in the
interest of maintaining a high throughput, the user wishes to continue sending mes-
sages without needing to know whether or not an earlier message has been received.
Thus, the natural way to capture this goal is to introduce sessions corresponding to
all of the messages in the user's buffer, which is of course a concurrent session goal
when the buffer may contain more than one message.

6.3.3 Partial robustness

As hinted in Section 6.1.3, the notion of robustly achieving a goal (see Definition 6.11)
is too strong for the study of one-shot goals. Recall that this definition mandates that
the goal is achieved no matter which global state the system is initiated in. In general,
a more refined definition that quantifies over a subset of all possible global states is
desirable, because it corresponds to natural settings and offers greater definitional
flexibility. Most importantly, this refined definition allows to consider the (natural
case of the) set of all global states in which the user's local state is reset to some
initial value. (Indeed, in contrast to resetting the environment, resetting the user
seems feasible in many cases, and seems less demanding than resetting the server.)

We relax (and generalize) the notion of robustly achieving a goal by quantifying
over a predetermined set of states (rather than over all states). We also allow an
explicit specification of the success probability (rather than insisting that the success
probability equals 1).

Definition 6.54 (Robustly achieving goals, revised). Let E C Q and p : N -+ [0, 1].
We say that a pair, (U, S), of user-server strategies (e,p) -robustly achieves the goal
G = (E, R) if for every E E E and every o, E 8E a random execution of the system
(E, U, S) starting in state o, is successful with probability at least p(sz(ou)).

Definition 6.11 is obtained as a special case of Definition 6.54 by letting E = Q
and p = 1.

6.4 Embedding goals in finite executions into infi-
nite executions

Our earlier study of goal-oriented communication in finite executions referred to the
environment's state in the final round of an execution, and thus does not directly fit
our main terminology for infinite executions (as presented in Section 6.1). Neverthe-
less, goals in finite executions can be viewed as a special case of general goals where
this case is closely related to (but different from) to a special case of multi-session
goals. Thus, the framework of goals in infinite executions introduced in Section 6.1.1
is a strict generalization of the goals in finite executions we studied initially.

196

Definition 6.55 (Goals in finite executions as a special case of goals in infinite
executions). A goal G = (E, R) is called a one-shot goal if the following conditions
hold.

1. The environment's states: The local states of the environment are partitioned
into two non-empty sets consisting of non-terminating states, terminating states.
The initial local state belongs to the set of non-terminating states.

2. The referee suspends its verdict until reaching a terminating state: The referee
R is compact. Furthermore, the corresponding function R' evaluates to _ if
and only if the current state is a non-terminating state.

3. Termination: When being in a terminating state, the environment just main-
tains its state; that is, for each actual strategy of the environment E E E, and
each terminating state - it holds that E(o) = a.

When in any non-terminating state, the environment follows its strategy as usual.

Thus, a typical execution of a system that refers to a one-shot goal consists of an
actual finite execution that enters a terminating state, which is artificially propagated
by an infinite sequence of repetitions of this state. It follows that an execution is
successful if and only if it enters a terminating state that evaluates to 1 (under R').

Robustly achieving one-shot goals. Recall that, as we noted in Section 6.3.3,
the notion of robustly achieving a goal in infinite executions (see Definition 6.11)
is too strong for the study of one-shot goals, because no execution that starts in a
terminating state that evaluates to 0 (under R') can be successful.3 ' Thus, we must
relax the notion of robustly achieving a goal such that starting in such states is not
considered. Hence, our starting point is Definition 6.54, which offers a general refined
notion of robustly achieving a goal that quantified over a predetermined set of states
rather than over all states. Indeed, the flexibility provided by Definition 6.54 provides
a good basis for defining robustly achievable one-shot goals. Specifically, we let 0
consist of all global states in which the current user's local state is empty and the
environment's next local state is non-terminating. (That is, we wish to avoid not only
states o- such that a() is terminating, but also states a that lead the environment to
a terminating state in the next move, due to messages in transit.)

Definition 6.56 (Robustly achieving one-shot goals). For a one-shot goal G = (E, R),
we say that a global state o- is doomed if for every E E E it holds that E(o)(e) is
terminating, and we assume that G has states that are not doomed. Letting y denote
an unspecified negligible function, we say that a pair of user-server strategies, (U, S),
robustly achieves the one-shot goal G - (8, R) if it (E, 1 - p)-robustly achieves the
goal G = (E, R) for E that contains all global states in which the user's local state is
empty and the environment's local state is not doomed. If p = 0, then we say that

3 'The same holds for any global state o- that causes the environment to immediately enter such a
terminating state due to the messages currently in transit. We consider this case specifically since
the environment usually terminates the session in response to a message that the user sends.

197

(U, S) robustly achieves the one-shot goal G = (E, R) in a perfect manner. We stress
that if E = 0, then the goal G is not (robustly) achievable.

The foregoing adaptation of robust achievability to one-shot goals supports the
following adaptation of Proposition 6.12 (and is therefore the analogue of Proposi-
tion 2.13 for this reformulated setting).

Proposition 6.57. Let U, S and St be as in Proposition 6.12, and let Ut be a user
strategy that plays the first t rounds using the user strategy Uo, then resets its local
state to empty and plays all subsequent rounds using the user strategy U. Then, if
(U, S) robustly achieves the one-shot goal G = (SE, R), then so does (Ut, St).

The proof proceeds as in the case of Proposition 6.12, while relying on the modified
robust achievability hypothesis (which matches the modified construction of Ut).

Sensing in the context of one-shot goals. We are already quite familiar with
the notion of sensing for finite executions, as first introduced in Section 2.3.1, and
refined in Section 5.3. We now consider how to recover these notions within our
infinite execution framework, as modifications of sensing in infinite executions

The notion of strongly viable sensing for infinite executions (cf. Definitions 6.15
and 6.16) is adapted to the current context in a way analogous to the adaptation
applied to the notion of robustly achieving (cf. Definition 6.56 versus Definition 6.11).
That is, a sensing function for a one-shot goal is considered strongly viable if the
condition in Definition 6.15 holds for every o, E e (rather than for every o, E Q)
and with probability 1 - p (rather than with probability 2/3).

As for the safety condition, its formulation is greatly simplified by the special fea-
tures of one-shot goals (i.e., the fact that the environment's state does not change once
it enters a termination state). In particular, the difference between Definitions 6.16
and 6.15 disappears, and it suffices to refer to the value of R' at termination states.
As a consequence of safety referring to the value of R' on terminating states though,
the delay period for sensing must be eliminated, or else a "safe" sensing function could
provide a failure indication after the session has terminated; actually, quite contrary
to allowing any delays in sensing, recalling that the user often terminates a session
by sending the environment a message, the sensing function must predict the value
of R' on the subsequent round (e.g., from a doomed state), if it is to be of any use.
This is of course, also in mild contrast to sensing in the finite execution framework,
where sensing only needed to "guess" to the referee's verdict in the current round,
due to the technical difference in how termination of the execution is handled. Thus,
the one-shot goal should correspondingly be formulated so that the referee's verdict is
preserved to the next round when environment receives the termination message from
the user. Finally, for consistency with the foregoing adaptation, we also adapt the
strong safety condition (cf. Definition 6.16) such that it holds with probability 1 - p

(rather than with probability 2/3).

Deriving multi-session versions of one-shot goals. As we suggested when we
defined multi-session goals in Section 6.1.1, for every one-shot goal, we can derive a

198

natural multi-session version by letting the new environment initiate a new session
each time the original (one-shot) environment enters a terminating state. Note that,
in the derived multi-session goal, we may only expect to succeed in a 1 - p fraction
of the sessions (where p is the error probability allowed in Definition 6.56), whereas
properly speaking, achieving a multi-session goal requires that we succeed in all but
finitely many sessions. In order to overcome this difficulty, we extend the definition of
one-shot goals by allowing the user to control the success probability as considered in
Section 2.3.3. Formally, we consider a uniform family of user strategies, U = UiliEN,
along with a uniform family of negligible functions, y! = {pi}iEN (e.g., pin) 2

for some negligible function p), and require that (Uj, S) (E, pi)-robustly achieves the
goal (for every i E N). An analogous adaptation will be applied to the sensing function
so that they feature controllable safety, as introduced in Definition 2.32.

199

200

Chapter 7

The power of relaxed models

Recall that our main theorems for finite executions in Chapter 2 and Chapter 5 show
that in order to construct an efficient, reliable protocol for achieving a goal, it must
be possible to efficiently verify that the goal has been achieved. We know that this

places limits on what kinds of goals we could hope to achieve-for example, as we
saw in Section 3.3, any problem we can solve using such a communications protocol
in polynomial time with with the class of all helpful servers must lie in PSPACE.
Some natural computational problems are outside PSPACE, though, and so it is very
natural to wonder if some weaker benefit could be obtained for these problems via
communication with helpful servers. Now, although we saw that strong sensing in
the infinite execution model was also bound by similar limitations in Theorem 6.47,
we also saw that it was possible to construct universal users from weak safety in
Theorem 6.23, which was not bound by such limitations. We will see, in this chapter,
that this gap can be exploited: when the reliability requirement of the protocols is
relaxed in some natural ways, we can substantially extend the class of goals that we
can achieve universally.

As a motivating first example, in Section 7.1.1, we will give a universal protocol
for deciding any computable decision problem with all helpful servers in the infinite
executions model of Chapter 6. We will then show in Section 7.1.2 how this protocol
can be converted into a protocol for deciding the same problems in finite executions
if we allow the protocol to err on a finite set of instances (which depends on the
server and its initial state). In Section 7.2, we will return to the infinite execution
setting, and consider what aspects of computational goals we used in the design of

our protocols. We will introduce exploration sessions as an abstraction of the key
property, and show how, together with the ability to reset the server, the protocol
can be generalized to a universal protocol that only makes a finite number of mistakes
with each server independent of the size parameter.

201

7.1 Universal protocols for any computable deci-
sion problem

In this chapter, we're going to consider how, by either relaxing our expectations for
the user, or by assuming more favorable conditions, we can obtain some stronger
results. As usual in this thesis, computational goals will allow us to demonstrate
quantitative improvements in what is achieved, and will point the way to more gen-
eral results. In this section, we'll consider a couple of special scenarios in which a
time-bounded user strategy can (almost) "go all the way," and obtain solutions to
any computable decision problem. As both scenarios may properly be thought of as
relaxations of a C-bounded universal setting, and Theorem 5.25 has established that
C-bounded universal users only exist for problems that have C-competitive interactive
proof systems - and so, e.g., Theorem 1.5 has established that universal users in the
basic universal setting do not exist for problems outside PSPACE - this will be a
dramatic demonstration of the expansion of the user's capabilities.

Briefly, the first scenario we consider is a cross between the basic universal setting
in finite executions, and the multi-session infinite execution setting: we assume that
the server is helpful in the finite execution sense, but we relax the requirements on
the user, only requiring it to succeed in the infinite execution sense-thus, a stateful
user strategy is invoked many times, and we will be happy if the user only fails in
a bounded number of these sessions. In the second scenario, first considered in our
paper [80], we restrict our attention to the finite execution setting, but relax our
requirement on the user by allowing it to fail for finitely many of the environment's
non-deterministic choices. In this case, if we then consider an exponential-time user,
we will find that it again can achieve the goal of computing any computable decision
problem in this finite-error sense; since there's still an enormous gap between what
exponential-time competitive proof systems can handle and the class of all computable
decision problems, this is again a meaningful demonstration.

Moreover, in the second setting, we'll notice that the construction delimits how
badly a user strategy that isn't safe with all servers in the finite execution sense can
fail with the class of all helpful servers. More specifically, in contrast to Theorem 2.37
and Theorem 5.13, which show that such a user must fail at least once with some
helpful server, we find that the user need not fail more than a finite number of
times, even if the user may fail infinitely many times with unhelpful servers. Thus,
Theorem 2.37 and Theorem 5.13 do truly capture the extent of the "bad news" in
the finite execution setting.

The two protocols are actually rather closely related, and in particular, the finite-
error protocol can be thought of as a natural adaptation of the multi-session protocol
to the finite execution setting. Thus, we will consider the protocol for the the multi-
session setting first.

202

7.1.1 Efficient universal protocols for infinite executions

We already considered universal users for multi-session computational goals in Exam-

ple 6.44 in Section 6.2.4: there, we applied the techniques we developed in the finite

execution setting (to prove Theorem 3.12, for example) to find again that we could

achieve the multi-session computational goal for any problem that had a competitive
interactive proof system with any server that was helpful for the multi-session goal -
i.e., in the infinite execution sense - with a quadratic blow-up in the number of errors
by using Theorem 6.41 in the place of Theorem 2.35.

The reason we needed Theorem 6.41 (instead of, say, Theorem 6.36) was that
helpfulness only guaranteed that the total number of errors incurred by a good user
strategy was bounded, but errors could occur at any time. Earlier, in Example 6.31,
we were able to construct users whenever the desired problem had a program checker

from less sophisticated constructions, but only when the server was assumed to be
stateless. The technical reason that this eased matters was that a "good" user strategy
would yield correct results immediately.

Another assumption on the server that provides a similar guarantee is the as-
sumption that it is helpful in the finite-execution sense--then, if we simply run the

finite-execution strategy on each session, no matter what state it is in at the end of
a session, the helped user protocol obtains a correct answer from the server in the
following session with probability p; in particular, for a computational problem I and
the finite-execution goal of solving H Gn, we could consider SGr,1, i.e., the class of
servers that help some finite-execution user achieve Gr with probability 1.

Now, the problem of achieving the multi-session goal of computing H with the
class SG.,i can be viewed either as an alternative restriction of the basic universal
setting in infinite executions (since SGr,, is a subclass of the class of all helpful servers
for the multi-session goal) or as a relaxation of the basic universal setting in finite
executions, in which we invoke the same user strategy on many finite executions,
but allow the user to "remember" what happened previously. In the latter case, we
have also relaxed our requirements for correctness, allowing the user to make a few
mistakes across the various finite executions. Either way, it is surely a natural setting
to consider.

Now, returning to Example 6.31 for a moment, recall that every problem with the
necessary competitive proof systems has a program checker (cf. Corollary 3.13), but
the converse is generally considered unlikely to hold; therefore, this stronger assump-
tion on the server allowed the user to accomplish a little more. Presently, we will
develop a different technique that will allow us to push this further-the technique
will resemble that used in the original "learning in the limit" [63] or "inductive in-
ference" [28] constructions; in this case, though, rather than producing a hypothesis
that predicts, e.g., the value of the function on values we haven't seen yet, we'll be
able to use the server's help to efficiently compute a very hard function on any in-
stance of our choice-under our still weaker assumption on the server (the stateless
"solvers" of Example 6.31 are all contained in SG,,1), we'll be able to get users for all
computable decision problems:

203

Theorem 7.1 (A time-efficient universal user for any computable decision problem).
Let 11 be a computable decision problem, and let G be the multi-session goal of solving
H and Gn be the finite-execution goal of solving 11. Let SGn,1 be the class of servers
that are (Gn, 1)-helpful in the finite execution sense. Then there is a SGn,1-universal
user strategy for G. Moreover, in every execution, there exists a polynomial p such
that the user strategy's running time in each session of size n is bounded by p(n) in
the RAM model.

Proof We will first show, for any computable decision problem, how to construct
a sensing function that is safe and viable with the class of all helpful servers (in the
one-shot sense) for computing that function, and time-efficient on each round. At
this point, it already follows from Theorem 6.23 that a universal user exists for this
class of servers. We then argue that the universal user constructed in Theorem 6.23
is also time-efficient overall, completing the proof.

Construction of sensing. Let 11 {0, 1}* -> {0, 1} be a computable decision
problem. In particular, suppose that 11 is computed by some algorithm A.

Our basic strategy in sensing will be to first produce a table of H by simulating a
constant number of steps of A on each round; we will then verify the answers produced
by our current user strategy U against the table for H as it is computed-if the verdict
U would produce in a round does not match the value recorded in the table, sensing
outputs 0. On the other hand, in each session (after the first time U terminates a
session) where the environment provides an instance x such that the table does not
yet contain the value of x, we will also record its verdict in a table of "unverified"
answers provided by the current algorithm (each time sensing outputs 0, we skip to
an empty table). Then, each time the simulation of A completes on some instance y,
the sensing function will examine the table of unverified answers for the current user
strategy for an earlier unverified guess for 11(y) by this strategy; if one exists and this
guess is incorrect, sensing will output 0 in that round. In all other cases, sensing will
output 1.

Note that in the RAM model, this sensing function can be computed in a con-
stant number of steps on each round-we store the table of unverified answers by a
table starting from a "base" pointer and track the index of the lexicographically last
unverified answer from the current strategy; when sensing outputs 0, "skipping to
a new table" is achieved by replacing the base pointer with the index following the
lexicographically last unverified answer. Lookup of an entry in one of our tables and
simulation of a constant number of steps of A is trivially constant time.

Weak soundness of sensing. It is easy to see that the above construction satisfies
weak soundness: when the user fails a session where the environment provided an
instance x, there are three cases. In the first case, the user may still be executing
during its first session, in which case either it only produces a single error, or else it
must make an error during a later session, which we will argue next that we catch.
The other two cases depend on whether or not the sensing function has computed
II(x) yet. If it has, then we immediately see that user's verdict is wrong, and output

204

0. If not, then the incorrect verdict is recorded in the table of unverified answers for
the strategy. Then, once the sensing function completes its simulation of A(x), either
we will have already produced a 0 on some other round for some other reason, or
else we will see that the verdict stored in the unverified answers table does not match
1(x), and output 0. Thus, in any case, if there is an error after the end of the first
session, the sensing function eventually outputs 0 with probability 1.

Strong viability of sensing. We note that by definition, for every S E SGr,,
there is guaranteed to exist some user strategy Us such that if it is run from its
initial state, in each session of the execution with E and S in which E sends x to the
user, Us returns rl(x) and terminates the session in some polynomial number of steps

ps(sz(-)). Thus, consider the infinite execution strategy U' that runs Us from its
initial state at the beginning of each session. Whenever we start running U's, if we run
it until Us would terminate the current session (in at most ps(sz(u)) rounds), then
subsequently U' will run Us from its initial state in each session. Thus, if we run Us
with a grace period of ps, it computes 1(x) correctly on every round except for the
first one. Note that our sensing function does not store the verdict produced by U' in
its unverified answers table, so it only stores correct values for 1(x) in the unverified
answers table for Us. Since, by construction, the only ways sensing outputs 0 are
when the user either produces a verdict in a round that does not match an existing
instance in our table for 11 or when we complete the simulation of A(x) for some
instance x for which we an incorrect verdict is recorded in the unverified answers
table, sensing does not output 0 with U's after the first session with probability 1.
Therefore, our sensing function is strongly viable with every such S.

Time complexity of the universal user. Suppose we consider the class of poly-
nomial time clocked user strategies in which each strategy is given by a pair (U, p)
where U is a user strategy (in the general sense) and p is a polynomial, with the
interpretation that, on each session, the strategy (U, p) runs U for at most p(sz(o-))
steps (unless U terminates the session on its own), and then automatically terminates
the session. This class is easy to enumerate; moreover, each strategy (U, p) is trivially
time-bounded. In particular, we note that for the aforementioned strategy US and
polynomial ps with the server S, the clocked strategy (Us, ps) behaves identically to

US, and ps is the desired bounding function for strong viability. We therefore can
apply Theorem 6.23, to conclude that there is a SGr,1-universal user for the goal of
computing H in the infinite execution sense. Moreover, since strong viability holds
perfectly, by the furthermore clause of the theorem and the fact that computation
of the sensing function only requires 0(1) additional steps per round in the RAM
model, the running time of the universal user in each session is indeed bounded by
some fixed polynomial. E

205

7.1.2 Universal protocols with bounded mistakes for finite

executions

Theorem 7.1 exploited the fact a user for an infinite execution goal could make mis-

takes to cope with the fact that verifying the server's answers was vastly more difficult

than communicating with the server.1 Thus, this construction suggests that perhaps

by lowering our expectations for users in the finite execution setting and allowing it

to make mistakes sometimes, we might be able to achieve a broader class of goals,
perhaps even much more-in a sense, the construction we saw showed how the fi-

nite execution user could do more if we "ran it multiple times." We'll now consider

a different relaxation in which the user is allowed to "make some mistakes," even

though we have only one "session" to work with: namely, we'll ask that the user

only err with the server for a bounded number of the non-deterministic choices that

the environment could make, i.e., for a bounded number of the environment's actual

strategies:

Definition 7.2 (Finite-error universal user). We say that a user strategy U is finite-

error (S, p)-universal for a class of servers S and a finite goal G = (E, R) if for every

S E S, for all but finitely many E E 8, in every execution in which the user is started

from its initial state, the user achieves the goal in (E, U, S) with probability p.

Likewise, a user strategy is weakly finite-error (S*, p) -universal for a class of server-

state pairs S* and a finite goal G = (8, R) if for every pair (S, o(s)) E S*, for all but

finitely many E E E, the user achieves the goal in the execution (E, U, S) with

probability p whenever U is started from its initial state and S is started from o(s).

Strictly speaking, we will only work with finite-error weakly universal users in the

following; note that the collection of environment strategies in which the user fails is

allowed to depend on the server and its initial state. We will also continue to restrict

our attention to computational goals for the rest of this section. Moreover, for the

technique we will develop to work, we will need to presently restrict our attention

to users that run in time 20(. (Although at the end of this section, we'll briefly

consider a variant of our construction which has a polynomial-time user strategy.)
Now, notice that in interactive proofs, if we utilize an exponential-time verifier,

the arguments in IP = PSPACE "scale up" to give us proof systems for precisely

ESPACE (i.e., the class of decision problems solvable in space 20()); for the present

purposes, the particularly relevant direction is the containment that problems with

proof systems with exponential-time verifiers must be contained in ESPACE-this

follows from the technique sketched in Proposition 3.11. Allowing the verifier to err

on a finite set of instances and run for a long time on instances where the proof

'Actually, in all fairness, this is a kind of abuse of the weakness of the conclusions of Theorem 6.23

and unquantified "achievement" in infinite executions more generally, to an extent even more severe

than that employed in our use of enumerations, which we criticized for finite execution goals in

Chapter 4 and will criticize again in the context of our infinite execution strategies in the next

chapter. Our objective in the present chapter is more to understand where the real theoretical limits

of the power of our universal users lie, and we can only ask for the reader's forbearance towards the

fact that these limits are sometimes pretty far removed from any practical concerns.

206

fails does not change the class of problems, since these "corrections" could be hard-
coded into the simulator for the proof system. Likewise, for the standard notion of
universal users running in time 2 0("), an analogue of Theorem 3.12 holds - precisely,
Theorem 5.25 is the relevant direction - showing that any universal user for such
a problem 1l yields an 20 ("N-time (competitive) interactive proof system for H1, as
discussed in Chapter 5. We can therefore conclude that such universal users exist
only for solving decision problems in ESPACE.

Thus, in this context, the following theorem is striking:

Theorem 7.3 (Weakly finite-error universal users for any computable problem). Let
H be a computable decision problem, and let C be the class of agents running in time
20(n). Then, for any c E [0,1/3], for the class S* of server-state pairs (S, a(s)) such
that S is (Gn,C, - e)-helpful and a(s) is any state of S, there is a (C, 1- E)-bounded
weakly finite-error (S*, 1 - e)-universal user for Gn.

That is, by allowing the user to err on some set of instances, the class of problems
provably expands dramatically-as a consequence of the Space Hierarchy Theorem,
we know even EXPSPACE (problems solvable in space 2PlY(")) is not contained in
ESPACE, which in turn, although it contains many natural problems, does not begin
to encompass nearly all computable problems. Furthermore, although we do not see
how to extend the technique to handle, e.g., enumerable sets such as the halting set,
we likewise don't know of any formal obstacles preventing such an extension.

We will use the following enumeration in the construction

Lemma 7.4. There is an enumeration of all triples (U, y, k) where U is an interactive
algorithm (probabilistic interactive Turing machine), k E N, and y E {0,1}*, such
that if each U is simulated in Ey for 2 k|yj steps in enumeration order, the following
properties are satisfied

1. Any fixed U* and input x of length n is simulated for 2 k, steps within 2 0((\U*I+k)n)

steps.

2. For any fixed U* and k*, there is an integer N(U*, k*) such that there are at most
N(U*, k*) pairs (U, k') such that for any x, the triple (U, x, k') is enumerated
before (U*, x, k*).

3. For any fixed U* and k*, the triples (U*, y, k*) appear enumerated according to
a standard length-increasing enumeration of binary strings.

Proof

Construction. The enumeration proceeds in phases, i = 1, 2,.. .. In phase i, for
each j = 1, ... , i -1, we check if jIi. If so, we put m = i/j, and for each y of length m
in standard order, we repeat the following. For each f = 1,... , j -1, we put k = j -f,

and for each U with a description of length f (listed in some fixed order), the next
triple is (U, y, k).

207

We verify the three claimed properties.

1. Notice first that when we are running the simulations for the tuples correspond-
ing to a fixed f, k, and y of length m, there are 2e such interactive algorithms
and each is run for 2 km steps. Thus, for a fixed y, the simulations take

j-1 j-1 j-1

km _ 2 km+j-k _ 2j Y k(m-1) < 2 (j-1)m+2

k=1 k=1 k=1

steps. There are 2m y of length m, so the simulations foK each m take at most

2 m 2 (j-1)m+2 = 2 jm+2 steps.

Now, notice that for a given phase i, there are at most i pairs (j, m) such that
j -m = i so the total running time in a given phase i is at most

2 = S 2i+2 < i 2 i+2 < 22i+2

(j,m):jm=i (j,m):jm=i

So in particular, up to the completion of the ith phase, the total running time
is at most 2 2i+3. Since the triple (U*, x, k) for x of length n is enumerated when
j = U*I + k and i = j - n = (IU*I + k)n, this triple is enumerated during the

(IU*I + k)nth phase, which thus completes within 2 2(IU*I+k)n+3 steps.

2. Notice that for any given y of length m, for a particular |U*I and k*, we enu-
merate (U*, y, k*) whenever j = j* = U*| +k*. Prior to this triple, on the same
index j* we always enumerate the same set of pairs (U, k) with IUl + k = j*.
Now, suppose we output (U*, y, k*) on index i* = j*m. Notice also that since
i is strictly increasing, if we consider the triples output with different values
of j, for a fixed length m, only pairs (U, k) with 1Ul + k = j < j* can have
been enumerated since otherwise j > j* and we would have for some i' < i*
i'-= j -m > j* -m = i*. Notice that there are at most j pairs (IUI, k) satisfying

I|UI + k = j, and therefore at most j2i triples (U, y, k) at any index j < j*, and
hence N(U*, k*) = 22(IU*I+k*)+1 suffices.

3. For a fixed (U*, k*), for each y of some fixed length m, we output a triple
containing (U*, k*) precisely once each time we consider j* = |U*|+ k*. Notice
that, for a fixed m, we consider the strings y of length m in standard order.
So, for each m, the triples (U*, y, k*) for y of length m are output in standard
order. Again now, since i is strictly increasing, prior to m, we could only
have considered j* with m' < m since otherwise we would have for i' < i
i'= m' - j* > m -j* = i. Thus, we output the triples (U*, y, k*) in the desired
length-increasing standard order.

U

Using Lemma 7.4, we are ready to adapt Theorem 7.1 to a finite execution setting.
Proof (of Theorem 7.3) We wish to construct a user U that, for all sufficiently
long instances x, when interacting with a server S, computes Il(x).

208

Analysis.

Our construction will be a finite-execution analogue of Theorem 7.1: the basic

idea is to guarantee that in any execution (Er, U, S), for the finite-execution goal Gr,
U simulates (a prefix of) an execution with the environment for the infinite-execution

(multi-session) version of the goal. More precisely, we'll consider an infinite execution
in which every instance x is non-deterministically chosen by the environment in some

session, and output the user's verdict in that session. Then, since the user achieving
the infinite-execution goal only errs in a finite number of sessions, we'll be able to

conclude that our finite execution user only errs on a finite number of instances.

Of course, this reasoning is only sound if the user really simulates the same non-

deterministic environment strategy, independent of the instance x that the user is

really interested in for the finite-execution goal. Since there are 2n instances of length
n, this requires our user to run in exponential time.

In slightly more detail then, instead of running the sensing function of Theorem 7.1

"in parallel" with the user's interaction with the server, we find it simpler to simply

perform this computation up front. Thus, before starting to communicate with the

server, the user computes H(y) on as many small instances y as he or she can within

some growing time bound. Since we will run in exponential time, we will use a time
bound of 2", but this is not essential.

Now, as in most of our constructions of universal users, we again enumerate user

strategies, and for each guess U for the user strategy helped by the server in our
enumeration, we then check the answers U obtains from the server on these small

instances. We can then guarantee that if we would obtain an incorrect answer by
following U on y, for sufficiently long x, we will have already computed 1(y) ourselves,
and so we conclude that U is not the user U* who decides H with the server's help,
so we move on to the next guess U in the enumeration. Thus, since U* occurs at

some finite index in the enumeration, there is some finite bound on the number of

times we must change U, and hence some longest small instance y for which we need

to compute H(y) to prompt a revision. As suggested earlier, we will embed all of our
instances into the same fixed "infinite environment strategy" so that the server really

misleads each incorrect ith U on the same instances yi.

Construction of U: Let {zi E {0, 1}*}% be the standard enumeration of binary
strings. Since H is decidable, let M be a decision procedure for H, let T(y) denote the

running time of M on input y, and let K = max {k: Z i T(zi) < 2 . On input

x, U first simulates M on inputs z1 , Z2, ... for up to 2n steps, and thus computes
H(zi),... ,H(zKn). U then enumerates triples (U, y, k) according to the enumeration
guaranteed to exist in Lemma 7.4.

For each (U, y, k) with y of length m, U simulates U to interact with S for up

to 2 km steps in Ey, repeating the interaction up to 36(m + 1 + log(1/c)) times if it

completes. If all 36(m + 1 + log(1/c)) interactions complete and y E {z 1 , . . . , zKa },

U checks that the majority agrees with 1(y); if not, U marks (U, k) as FAULTY.
Finally, if y = x, and (U, k) is unmarked, U halts and outputs the majority answer

for (U, S) on x as its verdict.

Analysis: Observe first that only the user's stopping rule depends on x; otherwise,
the user's interaction with the server is independent of x. Of course, in Gr, the server

209

is also oblivious to which strategy E, E E the environment has chosen. Since the

server is (Gr, C, 1 - e)-helpful for the class C of users running in time 2 0(), there is

some U* running in time 2 k* (in environments of size n) such that for all Ey E 8,
Pr[U* returns 1(y) in (Ey, U*, S)] > 1 - E. For k' = k* + log log(1/E) + 0(1), all
36(m + 1 + log(1/e)) interactions will complete within 2k'm steps on inputs of length
m. Observe that the enumeration guarantees that there are at most N = N(U*, k')
pairs (U, k) occurring prior to (U*, k') on each input in the enumeration.

Claim 7.5. There is a sequence of r < 2 instances y1, y, = ze such that if

K_ > f, then for each (U, k) before (U*, k') in the user's enumeration, either (U, k)
is marked as FAULTY, or else (U, k) fools the user into outputting a wrong answer
with probability at most

Proof Consider the sequence of instances Y1, Y2,... where yi is the first instance
(in standard order) for which, on input yi, the user computes H(yi_1) and for some

(U, k) before (U*, k') in the enumeration, the user would output a wrong answer after
concluding the simulations of (U, S) on input yi with probability at least e/2N. Let
BADCOINS((U, k), i) be the set of coin tosses that lead the user to this event.

Observe that, if (U, k) would mislead the user into outputting an incorrect answer
on some sequence of coin tosses on any z E {y1,... , yj-1} and K s, then after
the simulations resulting from that sequence of coin tosses C,, the user would notice
that the answer obtained from (U, S) on input z, did not match the computed value
1(z,), and so by construction (U, k) would be marked as FAULTY. Of course, by our

choice of yi, the user computes 11(z,) on input yi. Therefore, since the user's behavior
is deterministic on any fixed sequence of coin tosses, (U, k) is marked as FAULTY
on this input on any sequence of coin tosses having C, as a prefix. In particular,
by construction now, observe that since the user considers the instances in order and
(U, k) cannot mislead the user if it is marked FAULTY, the sets BADCOINS((U, k), i)
are prefix-free, and thus, for a fixed (U, k), the events of picking a sequence of coin
tosses that have a prefix in BADCOINS((U, k), i) are disjoint, and so the probability
of some such event occurring is the sum of the probabilities of the individual events.

Finally, observe that if there were more than - such instances, some (U, k)

must be fooling the user with probability at least E/2N on more than 2N/E distinct
instances. Since these are disjoint events, the probabilities would then sum to greater
than one. U

Now, we observe that on any instance z, by our guarantee on the correctness of U*,
and since e < 1/3, (U*, V') only has a majority of incorrect answers with probability
at most e-2m-2-1og(1/) < L2 -2m. Notice that each triple (U*, y, k') is enumerated
exactly once and thus, the probability that (U*, k') is marked as FAULTY is less
than 0 2m2 -2m - E4

Whenever (U*, k') is not marked as FAULTY on some sequence of coin tosses,
our choice of enumeration guarantees that for input x, there are at most N pairs
(U, k) prior to (U*, k') such that (U, x, k) appears in the enumeration. Notice that
by our claim, if n is sufficiently large, either each such pair is marked as FAULTY
or else causes the user to output an incorrect verdict with probability at most c/2N,

210

and hence by a union bound, the user outputs an incorrect verdict before simulating
(U*, x, k') with probability at most c/2. Moreover, notice that if (U* , k') would not
be marked as FAULTY, then the user outputs a correct verdict after completing the
simulation for (U*, x, k'), where our enumeration guarantees that this simulation will
complete within 20(steps. Thus, the probability that the user does not output a
correct verdict within 20(steps is at most e/2 + c/4 < E as needed. 0

The key point in Theorem 7.3 was that on every instance specified by the envi-
ronment, the user simulated some prefix of a fixed execution with the server, and the
only reason that the user needed to run in exponential time was so that all of the
instances of length up to the length of the target instance could appear in a prefix
within the user's time bound during the finite execution. Another way of accomplish-
ing the same effect would be to consider problems in which the instances are encoded
in unary-so that there are only n instances of length up to n. The reader can check
that essentially the same construction suffices for such problems, and thus we also
find:

Corollary 7.6 (Polynomial time weakly mistake-bounded universal users for com-
putable unary problems). Let 11 be a computable unary decision problem. Then, for
any c E [0, 1/3], for the class S* of server-state pairs (S, u(s)) such that S is (Gn, 1-e)-
helpful and a(') is any state of S, there is weakly finite-error (S*, 1- E)-universal user
for Gn that runs in polynomial time.

Limits to the strength of sensing requirements in finite executions

Theorem 7.3 and Corollary 7.6 are not only demonstrations of the power of the
ability to make errors: they also delimit the "bad news" presented by our theorems
on the necessary strength of sensing in the basic and generic universal settings for
finite executions, Theorems 2.37 and 5.13. Recall that those theorems showed that
if a sensing function was not safe with the class of all server strategies, then the
sensing function was also not safe with respect to their respective classes of all helpful
user strategies; the proof, of course, proceeded by taking a server that fooled the
sensing function and constructing a helpful server from it that still fooled sensing. In
particular, since Propositions 2.26 and 5.12 showed that the sensing functions that
indicated whether or not a universal user would halt were safe sensing functions, we
had no hope of constructing universal users for the basic and generic universal settings
unless the user strategies knew not to halt with an unhelpful server.

Now, if there was a server strategy that fooled sensing for infinitely many of the
environment's non-deterministic choices, then the constructions of Theorems 2.37 and
5.13 could be used to construct helpful servers that could fool the sensing function
with some user strategy on any finite subset of these environment strategies by simply
embedding the helpful server with padding of some length given by the maximum of
the finite padding lengths that Theorems 2.37 and 5.13 indicate for each environment
strategy. So, if the user makes infinitely many mistakes with unhelpful servers, then
in such a case we can construct "counterexample" helpful servers that force the user

211

to make mistakes in any desired finite number of environment strategies from a fixed
initial server state.

In this context, Theorem 7.3 and Corollary 7.6 now show examples of highly non-
trivial goals (deciding arbitrary computable problems, and computable unary prob-
lems, respectively) for which unsafe user strategies cannot be forced to make infinitely
many mistakes from any server state. That is, the fact that the user may make mis-
takes in infinitely many environments with an unhelpful server (as is surely the case
here-both user strategies must make infinitely- many mistakes with the trivial server
if the problem is not in ESPACE) does not imply that the user must also make
infinitely many mistakes with some helpful server. Indeed, moreover, Theorem 7.3
shows (along with Corollary 7.6) how to exploit this gap to construct nontrivial user
strategies for which safe sensing is provably impossible.

7.2 Protocols for generic goals with exploration
sessions and resettable servers

Perhaps the most remarkable aspect of Theorems 7.1 and 7.3 is that they show an ex-
ample of a goal for which it is possible to construct universal users that are stunningly
efficient relative to the complexity of sensing (as a function of the size parameter).
In the interest of obtaining such efficiency more broadly, we now turn to developing
a setting that abstracts the properties that the constructions of Theorem 7.1 and/or
Theorem 7.3 relied on, to exhibit an analogous construction for a generic class of
goals.

In a sense, the real key property exploited in Theorem 7.3 was that since the
server was oblivious to the environment's actual choice of strategy, the environment
implicitly allowed us to simulate communication with the server in any environment
of our choosing. In the following section, we'll develop a notion of exploration sessions
in which the environment is explicitly assumed to provide such an ability somehow
(with, naturally, environments that don't communicate with the server as an example
of environments providing this ability automatically). Effectively, this extension will
allow us to evaluate candidate user strategies in "easy" environments, which will
accomplish the desired decoupling of the complexity of sensing from the complexity
of communication.

Now, the real weakness of Theorem 7.1 and Theorem 7.3 was that the number of
errors that the user made, though it was always finite, could depend on the server's
initial state, whereas in accordance with Definition 6.34, in our earlier constructions
of universal users with bounded errors, specifically Theorem 6.36 and Theorem 6.41,
we required that the number of failures should be bounded independent of the server's
state. Now, the techniques we have available don't seem to allow us to obtain the
usual standards, but in the second part of this section, we'll introduce the notion of
resettable classes of servers that, on some standard indication, may each be reset to
some respective fixed state. Thus, we finesse the weakness of the technique because we
do obtain a fixed bound for the reset state, and in the final part of this section, we'll see

212

how the technique developed in the first part of this chapter can yield universal users
for which the number of errors is independent of the environment's size, provided that
the server is resettable and that the environment supports exploration. This section
is from joint work with Oded Goldreich and Madhu Sudan [67].

7.2.1 Multi-session goals with exploration sessions

Our basic formulation of multi-session goals (see Definition 6.7) mandates that the
environment determines the initial state of new sessions obliviously of any previous
actions of the (other) agents (i.e., actions of these agents in prior sessions). This is
an artifact of the postulate that the environment's move at an end-,session state only
depends on the index of that state (i.e., the index of the last session), which means
that whatever effects the user and server have had on the environment (during the
last session) is dissolved at the beginning of a new session. This somewhat stringent
postulate was made in order to develop a notion of sessions that are independent of one
another (from the environment's point of view). In contrast, at the extreme, allowing
the environment's actions (in each session) to depend on the entire history collapses
such multi-session goals to general compact goals. An intermediate case, which seems
very appealing, refers to multi-session executions in which the dependence of the
environment's actions on the history of prior sessions is limited. Specifically, we
restrict the dependence of the environment's actions on the history of prior sessions
to the selection of the contents of the initial state in new sessions. Furthermore, we
introduce a framework that allows us to consider cases where the selection of the
initial state (of the new session) is further restricted.

In addition to the general appeal of the new framework, it facilitates the intro-
duction of the notion of "exploration sessions:" these are sessions that are actually
initialized by the user with the aim of assisting it to later perform better in "real"
sessions that are invoked by the environment, as usual. Note that such sessions can
be easily modeled (by the new framework) by having the user indicate at the end of
the current session that it wishes to perform such an exploration and even have the
environment behave as if it has selected a specific contents for the initial state of the

2next session.

Definition 7.7 (History-dependent multi-session goals, sketch). Let 'H be a family
of functions, representing the allowed history-dependent actions of the environment
when initiating a new session. A goal consisting of a non-deterministic strategy S
and a referee R is called an --dependent multi-session goal if the following conditions
hold.

1. The environment's states: As in Definition 6.7, the local states of the environ-
ment are partitioned into three non-empty sets consisting of start-session states,
end-session states, and (intermediate) session states. Each of these states is a

2Indeed, such an effect can also be captured by the original formulation (i.e., of Definition 6.7)
by an awkward modification of the environment's strategy. However, capturing such exploration
sessions via Definition 7.7 seems more transparent.

213

pair consisting of a record (representing a digest of the history of prior sessions)
and a contents (representing the actual state within the execution of the current
session).3 The initial local state corresponds to the pair (A, A), and belongs to
the set of end-session states.

2. The referee behaves like in Definition 6.7; that is, the corresponding temporal
decision function R' evaluates to -L if and only if the current state is not an
end-session state.

3. Starting a new session: When being in an end-session state, the environment
moves non-deterministically to a start-session state. Furthermore, like in Defi-
nition 6.7, this move is independent of the actual contents of the current end-
session state. That is, for each actual strategy of the environment E E E, E is in-
variant over all possible end-session states that have the same record, and it fits
some function in H; that is, for each E E E there exists h E H such that for every
end-session state (r, o-') E {o, 1}* x Q, it holds that E(r, o-') = h(r) E {0, 1}* x Q.4

Optional (as in Definition 6.7): The environment can also notify the user that
a new session is starting, and even whether or not the previous session was
completed successfully (i.e., with R' evaluating to 1). Analogous notifications
can also be sent to the server.

4. Execution of the current session: When being in any other state, the environ-
ment moves probabilistically, while possibly updating the record, but its be-
havior is independent of the actual strategy. That is, for every E1 , E 2 E S and
every non-end-session state (r, o-'), the random variables E1 (r, o-') and E2 (r, a')

are identically distributed. Furthermore, the contents of that state changes
obliviously of the record; that is, for every E E E and pair of non-end-session
states ((ri, a'), (r2 , o-')), the second element of E(ri, o-') is distributed identi-
cally to the second element of E(r 2 , U') (i.e., for every o-" E Q it holds that

E, Pr[E(ri, a') = (r', o-")] equals Er Pr[E(r 2, U') = (r', a-")]).

Indeed, Definition 6.7 is a special case of Definition 7.7, obtained by requiring
that for every E E 8 and every state (r, o-') the first element of E(r, o-') equals r + 1
if the state is an end-session state and equals r otherwise. Needless to say, here we
are interested in other cases.

One natural type of history-dependence that is captured by Definition 7.7 is the
dependence of (the initial contents) of the next session on the record of failures and
successes of prior sessions. Another natural case, which refers to the aforementioned

(multi-session goals with) exploration sessions, is defined next. In this case, the record
maintains the number of sessions completed so far and possibly also an exploration
request, denoted e, sent by the user (say, at the very end of the last session).

3Indeed, the index of the current session (used in Definition 6.7) is a special case of the record
(of prior sessions).

4Note that Condition 3 in Definition 6.7 can be stated in this manner, when r equals the current
index i, and 7(is the set of all functions h over Q such that h(i) = (i+ 1, h'(i)) for some h' : N -+ Q.
Alternatively, we can state the condition in Definition 6.7 by postulating that h only depends on
the number of prior sessions recorded in r.

214

Definition 7.8 (exploration sessions, sketch). A multi-session goal with exploration
sessions is an 7-dependent multi-session goal as in Definition 7.7 where for every
h E H it holds that h(r) = (i + 1, e) if r = (i, e), and otherwise the environment
replaces the record r = i by i + 1 (where r = i and i + 1 are viewed as integers).
Lastly, during the execution of a session, the record r = i remains intact unless (at the

session's end) the environment receives a special exploration request with contents e
(from the user), which sets the record to the value (i, e).

Indeed, r = (i, e) encodes the event that session i ended with the user requesting
exploration with contents e, and otherwise the record is viewed as merely encoding the
number of sessions completed so far. In the latter case, the new session is initialized
with a contents that only depends on the environment's non-deterministic choice (and
on the number of sessions completed so far).

7.2.2 Resettable servers

A natural feature that many servers have is resettability: that is, a guarantee that

these servers can be simply reset to a predetermined initial state. This resetting is
performed in response to a simple predetermined user command (or message). Indeed,
we distinguish the case in which the "resetting command" (or "resetting message")
is known a priori from the case in which this command (or message) may not not
be known a priori. Needless to say, it is more advantageous to have servers of the
first type, but we mention (see discussion below) that it is also beneficial to just have
servers of the second type. Formally, we capture the difference by considering classes
of resettable servers that respond to the same resetting command.

Definition 7.9 (User-resettable servers). A server strategy is called user-resettable

(or just resettable) if upon receiving a special (resetting) message from the user, it
moves to a predetermined state, which coincides with its initial local state. A class
of resettable servers is called uniformly resettable if all servers in the class respond to
the same resetting message.

Note that we do not assume that the servers in a uniformly resettable class have
the same initial local state, nor do we assume any other common features (beyond
resetting upon receiving the same message).

Uniformly vs non-uniformly resettable servers. In the rest of this section, we

will refer to classes of uniformly resettable servers. As we shall see uniform reset-
tability can play a role in constructing universal user strategies, while it seems that
non-uniformly resettable servers cannot play this role. Still, non-uniform resettabil-
ity can be beneficial for achieving various goals, and this benefit may be inherited
by universal strategies. Specifically, if a server tends to get stuck (or damaged by
some effect of the environment), then being able to reset it (even by a server-specific
message) is very beneficial.

215

One benefit of uniform resettability

The benefit of using uniformly resettable servers is demonstrated by considering the
gap between Examples 6.31 and 6.44. Recall that both examples refer to solving
computational problems posed by the environment; specifically, instances of a decision
problem Do. In Example 6.31, we showed that solvers for arbitrary computationally
equivalent problems (i.e., equivalent to DO) can be used for solving Do, by relying
on a program checker for Do. In Example 6.44 we showed that we can do better if
both Do and its complement have interactive proof systems (with relatively efficient
provers); in such a case, we can solve Do by using any server that is helpful for solving
Do. That is, we can benefit from a considerably wider class of servers.

Recall that interactive proof systems as required in Example 6.44 yields a program
checker (for the same decision problem), but the opposite direction is widely believed
to be false (because it would have implied EXP C PSPACE). This means that, in
this context, benefiting from arbitrary helpful servers is harder than benefiting from
all D-solvers, where D is the class of problems that are computationally equivalent
to Do.

Here we note that the result of Example 6.31 can be extended to any class of helpful
servers that is uniformly resettable. That is, we show if Do has a program checker,
then Do can be solved by using any resettable server that is helpful for solving Do.
Indeed, this extends the result in Example 6.31, because the class of all D-solvers is
a very restricted class of helpful servers that are uniformly resettable.

Proposition 7.10. Suppose that the decision problem Do has a program checker. Let
U denote the class of user strategies that run in probabilistic polynomial-time, and So
denote a class of uniformly resettable servers that are all U-helpful (with a bounded
number of errors)5 for deciding Do. Furthermore, suppose that the set of bounding
functions B for the servers is enumerable. Then, there exists an So-universal user
strategy such that, for every S E So, when interacting with S, this universal strategy
runs in probabilistic polynomial-time.

Indeed, the additionally required enumeration exists trivially in the case that So is

a class of uniformly resettable servers that all have the same (known) helpfulness-error
bound.

Proof The proof is a hybrid of the arguments used in Examples 6.31 and 6.44. As in
both cases, we reduce the construction of a So-universal strategy to the construction
of an adequate user strategy for each server S E So. Furthermore, as in both cases,
each such user strategy U is coupled with an adequate sensing function V that is
viable with respect to S and safe with respect to So. In our construction we use a
program checker for Do (just as done in Example 6.31), but only provide a relaxed
viability guarantee (as in Example 6.44), because we use a wider class of helpful
servers that (unlike in Example 6.31) includes servers that cause a bounded number
of errors. Consequently, as in Example 6.44, we shall be using Theorem 6.41 (rather
than Theorem 6.23, which was used in Example 6.31).

5Here we refer to the notion of refined helpfulness, as defined at the end of Section 6.2.4.

216

We mention that the enumeration of user strategies (required by Theorem 6.41)
holds by definition of U, whereas the mapping of users to the index of the correspond-

ing error bound for the server can be obtained by replacing each possible user strategy

U with the sequence (U, B 1), (U, B2), Thus, we focus on constructing an adequate

user strategy U and an adequate sensing function V for every S E So, while assum-

ing that we know the corresponding error bound (as well as the uniformly resetting

message). This is done by following the approach of Example 6.31, which relies on

using a program checker for Do. In fact, following this approach, it suffices to show

how to transform a resettable server into a memoryless strategy (i.e., a member of

.F)6 such that S is transformed into a Do-solver.

The transformation, which amount to emulating a memoryless strategy by using

a resettable strategy, proceed as follows. Let us assume first that this resettable

strategy S is helpful without any errors, and consider the corresponding user strategy

u(S) that uses it. Recall that we are trying to emulate a memoryless strategy that

is supposed to be a Do-solver, while the messages that we attempt to answer come

from the program checker (which the strategy U invokes, on input a message received

from the environment). Upon receiving a new message (which is an instance of DO),
we reset the server, and start a new communication session using the said message

as if it were received from the environment. (Note that we know the corresponding
resetting message.) When we (or rather the corresponding user u(S)) detect that

the communication session is completed (i.e., that u(S) has determined its answer to

the environment), we use the corresponding answer (i.e., the answer that u(S) would

have sent to the environment) as our response to the original message. We stress that

all this activity is oblivious towards the environment; that is, we create sessions that

do not exist with respect to the environment, while the server is unaware of their

"unreal" nature (since by this goal's definition the environment only communicates

with the user, whereas the environment neither sends messages to the server nor

expects any messages from it).
Indeed, the foregoing transformation converts any resettable server strategy into

a memoryless strategy, because in each emulation of the latter we invoke the former

on the same initial local state (via resetting) and communicate with it using the same
strategy u(S). Furthermore, if S E So makes no errors when communicating with

u(S), then S is transformed into a Do-solver.

It is still left to deal with the case that S E So makes a bounded number of

errors when communicating with u(S). The problem is that we only used the first

session in the interaction of S with u(S), whereas this session may always produce

a useless (e.g., random) answer. The solution is to let u(S) engage in many sessions

with S, all regarding the same instance, and rule by majority, where the number

of such sessions is significantly larger than the (expected) error bound, denoted b.

Specifically, in our ith emulation we reset the server O(log i) times, and after each

resetting we run 3b ("unreal") sessions, all regarding the same instance that equals the

ith original message of the environment (which we aim to answer). As our answer, we

6As in Example 6.31, F denotes the class of all memoryless strategies (i.e., strategies that maintain
no local state).

217

take the majority vote among these O(log i) trials, where each trial takes a majority
vote among its 3b ("unreal") sessions. Thus, the probability that we err in our ith
emulation is at most 1/(i+ 1)2, because each of the O(log i) trials errs with probability
at most 1/3. It follows that the expected total number of errors that the emulated
Do-solver commits is bounded by a constant (i.e., indeed, the constant 1 will do).

This completes the presentation of the transformation of every S E So into a

memoryless strategy, which is used by a corresponding user strategy, denoted U. Like

in Example 6.31, we couple U with a sensing function V, which uses the checker's

output in the corresponding invocation (which corresponds to a real session that is

initiated with a Do-instance, selected by the environment). This V is 0(1)-viable
with respect to (U, S), and is safe with respect to U and the class of all resettable
servers (which contains So). This would suffice for a version of Theorem 6.41 that

requires relaxed strong viability and weak safety (i.e., viability as in Theorem 6.41
and safety as in Theorem 6.23). The current proposition follows. 7 m

Digest. Proposition 7.10 demonstrates the benefit of (uniform) resetting. The effect

of resetting occurs at two levels. Most conspicuously, resetting is used to emulate a

memoryless server strategy, and the benefit is that a memoryless strategy may cause

less harm than an arbitrary strategy. In particular, the damage caused by improper

communication with a memoryless strategy is confined to the period of improper
communication, and does not propagate to the future.

7.2.3 A generic constant-error protocol for goals with explo-
ration sessions and resettable servers

Recall that all prior (quantitative) universality results upper bound the number of

errors as a function of the state size (indeed, see Theorems 6.36, 6.41, and 6.50). The

corresponding universal strategies switch away from a failing user strategy (which they
emulate) as soon as they sense many errors, where these errors occur with respect to
the actual goal that the user attempts to achieve. Instead, it would have been nice to

cause less errors with respect to the actual goal, even at the expense of causing errors

in some "side experiments" (indeed, explorations), while not slowing down progress

on the actual goal by too much. We shall actually do even better with the strategy
presented below.

The observation that underlies the following universal strategy is that the failure of
a specific user strategy (with respect to a fixed server) can be accounted to some fixed

7 Note that V is not quite strongly safe (with respect to the latter class), because the number

of rounds used in each real session grows with its index (since we use increasingly more "unreal"

sessions in our emulations), and for that reason we cannot apply Theorem 6.41 as is. The benefit

in using Theorem 6.41 is that it provides an error bound for the universal strategy, a bound not

stated in the current result. We mention that we could have obtained stronger results in a variety of

natural cases. For example, if the size of the session's initial state (i.e., the length of the instance)

grows such that the ith real session refers to size Q(log i) and if every bound B is polynomial, then

we can obtain a polynomial safety bounds.

218

state size (i.e., the minimal state size that causes failure). So if we can experiment
with various state sizes, in parallel to doing our "real" activity, then we may be able
to abandon a bad user strategy while causing a number of errors that is related to
this fixed size (rather than being related to the potentially larger size with which
we are actually concerned). These parallel attempts are performed in exploration
sessions, and the formalism of Definition 7.8 guarantees that, from the environment's
point of view, these explorations do not effect the "real" sessions and vice versa.
Furthermore, resetting will be used so that all sessions (real or exploratory) look the
same to the server, and so the server behaves in these explorations exactly as it would
have behaved in real sessions.

Theorem 7.11 (Universality via exploration). Let G = (8, R), U, S, V, e, and B be
as in Theorem 6.41, except that here we refer to the varying-size generalization as in
Theorem 6.50. Suppose that G is a multi-session goal with exploration sessions, that
S is a set of uniformly resettable servers, and that each strategy in U resets the server
at the beginning of each new session. Further suppose that the number of rounds in
a session of G is monotonically non-decreasing with the relevant size, and that the
number of start-session states of any specific size is finite. Then, there exists an S-
universal user strategy U such that for every S E S there exists a constant b such that
(U, S) robustly achieves the goal G with b errors, where here we refer to error counts
in the simple sense as in Definition 6.34 (and, e.g., in Theorem 6.36). Furthermore,
the number of rounds spent in exploration sessions never exceeds a constant fraction
of the total number of rounds.

The constant b depends on the smallest size, denoted s, for which each of the
prior user strategies tried for interacting with the server S fails. Specifically, b is
proportional to the number of initial states (i.e., initial contents of start-session states)
that have size at most s. We note that, while in many settings the said number of
initial states is exponential in s, there are settings in which the number is polynomial
in s (e.g., the environment may ask us to solve decision problems that relate to a
sparse set, as in Corollary 7.6). We also note that the helpfulness of the servers in S
holds with respect to a class of users that reset the server at the beginning of each
session. While this class of user strategies is somewhat restricted, it seems natural to
expect "helpful" severs to be helpful also with respect to that class.

Sketch of proof We focus on the special case in which the user strategies (in U)
carry no state across sessions and the environment never chooses the same initial state
for two sessions. This case is quite natural, and allows us to present all the essential
ideas.

Recall that the universal strategies used in all our proofs proceed by enumerating
all strategies in U and emulating each Ui until encountering a sufficient number of
failure indications. We do essentially the same, except that we try to maintain a bal-
ance between the number of rounds used in real sessions and the number of rounds
used in exploration sessions. In a sense, our strategy can be described in terms of an
imaginary environment strategy that introduces such exploration sessions. Further-
more, the exploration sessions are invoked such that all possible initial states (i.e.,

219

initial contents of start-session states) of a certain size are used before we use states
of larger size. We stress that this activity is done in parallel to the execution of real
sessions that are initiated by the real environment. Specifically, upon terminating
the execution of a real session (initiated by the real environment), the imaginary en-
vironment (or rather our user) initiates new exploration sessions until the number of
rounds used by all exploration sessions exceeds half the total number of rounds so
far.

Noting that the foregoing execution necessarily refers to varying state sizes, we
adopt the switching criterion used in the proof of Theorem 6.50. That is, we switch
from emulating Uj to emulating Uj+ 1 as soon as we reach a round tj+1 such that

tE(tti+):V(at)=0 B .(sz(at)) exceeds 1. We stress that this accounting (and correspond-
ing switch) is done across all sessions, real sessions and exploration sessions alike.

A key observation regarding this interleaved execution of real sessions and explo-
ration sessions is that each of these (partial) executions is oblivious of the other. This
follows by the fact that (by hypothesis) each strategy Ui E U starts each session by
resetting the server. Thus, we can decouple the aforementioned interleaved execution
into a real execution (containing no explorations) and an auxiliary executions that
consists of all exploration sessions. Furthermore, the auxiliary execution is totally de-
termined as a sequence of all possible explorations, ordered according to their initial
states (where states of smaller size appear before states of larger size).

Another key observation is that if (Uj, S) does not achieve the goal G (or rather
its real part), then there exists a constant si such that the contribution of exploration
sessions having (initial state of) size at most si to the sum EtN:V(at)=O Bj(sz(ot))
exceeds 1. This follows from the fact that events that would occur in a real execution
(of real sessions) will also occur in the auxiliary execution (of exploration sessions)
whereas each of these executions consists of a sequence of mutually oblivious sessions,
together with our assumption that the environment only uses each initial state at most
once, so the corresponding (finite) set of initial states witnesses the failure of Uj with
S.

We may now invoke Theorem 6.50, while considering only the exploration sessions.
While these partial executions do not necessarily satisfy the additional technical re-
quirements regarding B, the reasoning underlying the proof of Theorem 6.50 applies,
and so we may infer that the accumulated contribution of the rounds containing
errors (in which exploration occurs) is upper-bounded by a constant that depends
on s = maxjEgi1]{sj}, where (Uj, S) achieves the goal (and the sj's are as above).
Specifically, the number of errors in these exploration sessions is bounded by i times
the number of different initial states of size at most s, because errors occur only at
the end of sessions. We need to show that the number of errors that occur in real
sessions can also be bounded in terms of s.

The last claim is shown by noting that the number of real sessions of size at
least s that took place in the said period does not exceed the number of exploration
sessions. This follows by the monotonicity hypothesis (which implies that the number
of rounds taken by each session of size at least s is no less than the number of rounds
taken by any session of size at most s). Thus, the total number of errors (both in

220

exploration and real sessions) is bounded by twice the aforementioned upper bound

(on the number of errors in exploration sessions). The theorem follows for this special
case (i.e., where U consists of strategies that, unlike the universal strategy that we
presented, carry no state across session).

When dealing with the general case the failures at the various sessions are not

fully determined by the initial state of this session (and the strategies employed)
but can be affected by the history of the execution at the user's end. (Indeed, the

environment's behavior is independent of the history and the same holds with respect

to the server that is being reset by the user at the beginning of each session, but the

user strategy may depend on previous sessions.) The solution to this problem is to

enumerate finite sequences of sessions with start-session state having size that does

not exceed a specific bound. We treat each such finite sequence as we treated a single
session before; that is, our exploration sessions now consist of sequences of sessions
taken from this enumeration. We stress that the emulated user strategy is reset at
the beginning of each such sequence of exploration sessions, but the real execution
maintains state across the real sessions. The enumeration guarantees that any finite

sequence of sessions that causes too many failures with respect to strategy U will be

encountered in finite time and cause the universal strategy to abandon U after a finite
number of sessions. The theorem follows. M

221

222

Chapter 8

The error complexity of strategies
in infinite executions

The basic theory of semantic communication in infinite executions introduced in

Chapter 6 suffers from some of the same defects as the theory for finite executions
from Chapter 2: namely, as discussed in Chapter 4, in that setting, the universal
strategies we constructed suffered from an exponential overhead (in the length of the
target strategy) in their running time, and we saw that such overhead was unavoid-
able in general. In the present chapter, we consider the analogous overhead in the
number of errors incurred by a universal strategy in infinite executions. We will see
that this overhead is also, in general, unavoidable by a similar argument, adapted
from work with Oded Goldreich and Madhu Sudan [67].

It is natural to wonder if, similar to the development of the Bayesian setting of
Chapter 4, we can lay down some natural conditions under which the overhead in-
curred by our generic constructions (such as Theorem 6.23 and Theorem 6.36) can be
avoided. The specific constructions we introduced in Chapter 4 (i.e., Theorem 4.9 and
its refinements) are easily seen to be unsuitable since they have a positive probability
of error on each run, leading to infinitely many errors (in the same positive fraction
of sessions) in the limit. Nevertheless, we will see that when the user strategies are
assumed to come from some class of sufficiently simple strategies, universal strategies
that only incur a polynomial number of errors in the length of the description of the
relevant user strategy exist.

More specifically, in joint work with Santosh Vempala, we observe that for a
restricted kind of goal - a multi-session goal in which each session consists of a single
round - and sensing that provides feedback on the user's performance in a round on
the following round and is viable with respect to a class of simple user strategies, then
the problem of constructing a universal user from the sensing function is precisely the
problem of learning the class of concepts corresponding to the class of strategies in
the on-line learning model introduced by Barzdir§ and Frievalds [18] and investigated
by Littlestone [95]. Thus, each solution to the on-line learning problem for a concept
class yields a generic construction of a universal user from a sensing function that is
viable with respect to the corresponding class of strategies - allowing us to translate
the existing positive results - and vice-versa, allowing us to also translate the negative

223

results.
We will further note that the lower bounds proved in Section 4.4 also suggest limits

to the power of universal users based on the kind of sensing we have discussed thus
far-between the lower bounds that we obtain from the on-line learning model and
the lower bounds proved in Section 4.4, we will note that basic sensing seems to only
be adequate for the construction of efficient universal users in very simple settings.
We will observe that some natural kinds of richer feedback allow the construction of
efficient universal users for correspondingly richer user strategies, and we will suggest
the exploration of such richer feedback as a next step towards constructing universal
users of suitable efficiency for real problems.

8.1 On the number of errors incurred with password-
protected servers

Recall that the number of errors incurred by the universal user asserted in Theo-
rem 6.36 (as well as in Theorem 6.23) is at least linear in the index of the server that
it happens to use (with respect to a fixed ordering of all servers in the class). Thus,
the number of errors is exponential in the length of the description of this server (i.e.,
the length of its index). We shall show that this overhead (w.r.t a user tailored for
this server) is inherent whenever the universal user has to achieve any non-trivial
goal with respect to a sufficiently rich class of servers. In particular, we will see how
our observations concerning the running time overhead of a user in finite executions
translate into overhead in terms of the number of errors.

Ultimately, we will parallel the development from Section 4.1. As our starting
point, we adapt the definition of a nontrivial goal (originally given in Definition 3.2)
to goals in infinite executions in the natural way, i.e., we restrict our attention to
compact goals, and then subsequently refer to the referee's temporal decision function
in place of the referee. For completeness, we give the amended definition below; recall
that a trivial server sends empty messages to all other parties on every round.

Definition 8.1 (Nontrivial goals in infinite executions). Let T denote a trivial server.
We say that a compact goal G = (E, R) is nontrivial w.r.t. a class of users U if for
every user U E U there is a E E E such that the temporal decision function R' never
outputs 1 in the execution (E, U, T).

Note that the notion of nontrivial is more restricted than the requirement that
(U, T) does not achieve the goal. Nevertheless, the stronger requirement, which asserts
that the temporal decision function R' never rules that the execution is tentatively
successful, is very natural.

As for the class of "sufficiently rich" class of servers, just as in Section 4.1, we
consider here one such possible class (or rather a type of classes): specifically, we
consider servers that become helpful (actually stop sending empty messages) only as
soon as they receive a message from the user that fits their password. Such "password
protected" servers are quite natural in a variety of settings. Actually, for sake of

224

robustness (both intuitive and technical)' for the case of infinite goals, we postulate
that the password be check at every round (rather than only in the first round, as
considered in Definition 4.1 for finite executions). That is, in each round, the server
will check that the message received is prepended with a string that matches its
password. To distinguish these servers from our earlier notion of "password protected"
servers, we will refer to this new class of servers as password-prepending.

Definition 8.2 (Password-prepending servers and password closure). For every server
strategy S and string x E {o, 1}*, the password-prepending version of S with password
x (x-prepending version of S), denoted Sx, is the server strategy that upon receiving
a message of the form xy, updates its state and sends messages as S would upon
receiving y. Otherwise, Sx sends the empty messages to all parties, like the trivial
server would, and does not update the state.

As in Chapter 4, for our demonstration (of overhead) to be meaningful, we should
show that password-protected versions of helpful servers are essentially as helpful as
their unprotected counterparts. Indeed, for starters, we establish the latter claim,
where this holds with respect to classes of user strategies that are closed under a
simple transformation (i.e., prepending of adequate passwords).

Proposition 8.3 (Password-prepending versions of helpful servers are helpful). Let
U be a class of user strategies such that, for any U G U and any string x G {O, 1}*,
there exists a strategy Ux E U that acts as U except that it appends x to the beginning
of each message that it sends to the server. Then, for every U-helpful server S and
every password x C {0, 11*, the x-prepending version of S, denoted Sx, is U-helpful.
Furthermore, if (U, S) (robustly) achieves the goal, then (Ux, Sx) (robustly) achieves

the goal with the same number of errors as (U, S).

Proof Then, since S is U-helpful, there exists U E U such that (U, S) robustly
achieves the goal. Since (U', Sx) send the same messages to the world as (U, S),
it holds that (UX, Sx) also robustly achieves the goal and incurs precisely the same
number of errors as (U, S). Since Ux E U, it follows that Sx is U-helpful. U

Having established the helpfulness of password-protected versions (of helpful servers),
we prove a lower bound on the number of errors incurred when achieving (nontrivial)
goals by interacting with such servers.

Theorem 8.4 (On the overhead of achieving nontrivial goals with password-prepend-
ing servers). Let G = (S, R) be a nontrivial compact goal and S be helpful with re-
spect to G. Then, for every user U and integer f, there exists an f-bit string x such
that (U, Sx) does not achieve G in less than 2(-3)/2 errors, where S' denotes the
x-prepending version of S.

'In order for user strategies to robustly achieve goals with password-protected servers, the user
must be ready to provide the password when started from any arbitrarily chosen state (as required
by Definition 6.11). The most straightforward and natural way to ensure this is for the user to send
the password on every message to the server. Thus, a natural type of password-protected servers
that permits users to robustly achieve their goals consists of servers that expect all messages to be
prepended by their password.

225

Note that the fact that the lower bound has the form Q(2 /2) (rather than Q(2'))
is due to the definition of errors (cf. Definition 6.34).2

Proof Let any user strategy U be given and let T be a trivial server. Since G
is nontrivial, there exists E E S such that the temporal decision function R' never

evaluates to 1 in a random execution of (E, U, T). For starters, we assume (for

simplicity) that in such random executions R' always evaluates to 0. Consider, a

random execution of (E, U, Sx), when x is uniformly selected in {0, 1}', Then, with

probability at least 1 - m - 2-e, the user U did not prepend the string x to any of

the messages it sent in the first m rounds. In this case, the m-round execution prefix

of (E, U, Sx) is distributed identically to the m-round execution prefix of (E, U, T),
which means that it generates m errors. Using m = 2 e- it follows that, for a

uniformly selected x E {0, 1}, the expected number of errors in a random execution

of (E, U, Sx) is at least 2--2. Hence, there exists a string x E {0, 1}e such that (U, Sx)

does not achieve G in less than 2s2 errors.
In the general case (i.e., when considering I-values for R'), we may infer that

there exists a string x E {0, 1}' such that, with probability at least 1 - m - 2 -', the

temporal decision function R' does not evaluate to 1 in the first m rounds of a random

execution of (E, U, Sx). In this case, this execution prefix contains at least VF/ errors

(see the two items of Definition 6.34), and the theorem follows (by setting m = 2 -').

U

Combining Theorem 8.4 and Proposition 8.3, we demonstrate the necessity of the

error overhead incurred by the universal strategy of Theorem 6.36. Specifically, the

latter strategy must work for server and user classes that are derived via Proposi-

tion 8.3. Now, Theorem 8.4 asserts that this class of 2e servers contains a server that

causes an overhead that is exponential in f, which in turn is closely related to the

length of the description of most servers in this class.

8.2 On-line learning is equivalent to semantic com-
munication with one-round goals

Now that we have established that an exponential number of errors in the description

length of the desired user strategy is unavoidable in general, we would like to know

when it can be avoided. Specifically, just as in Chapter 4, we would like to have

some natural conditions under which we can develop efficient universal user strategies

for goals in infinite executions. In this section, we investigate one possible class of

conditions.

2Indeed, also the trivial server that prevents R' from ever evaluating to 1 may be viewed by

Definition 6.34 as making only V2it errors (for some adequate R'). In particular, we may consider

the following behavior of R' for the case that the server never sends a message to the world. For

every i = 1, 2, ..., and j c [22i2, 2 2i], in round j the value of R' equals 0 if j is a multiple of 22

and equals I otherwise. Then, for every even e, the first 2t rounds contain no 2f/ 2-long run of 1,

whereas the total number of zeros in these rounds is ZI 2i = O(21/2).

226

Specifically, we will restrict our attention to multi-session goals of communication
in which each round corresponds to a distinct session, and furthermore assume that
sensing with very good safety and viability is available to us, in which moreover, the
sensing function is viable with respect to some simple class of user strategies. We will
then see that a generic construction of universal users from such sensing functions is
equivalent to the design of an on-line learning algorithm in the model introduced by
Barzdiis and Frievalds [18] and used by Littlestone [95]. Thus, in this well-studied
model, we will find that generic constructions of universal user strategies exist for a
variety of classes of simple user strategies.

The direction explored in this section was motivated by conversations with Leslie
Kaelbling and Leslie Valiant, and was developed in work with Santosh Vempala. The
current presentation owes its clarity to Oded Goldreich.

8.2.1 Fixed length multi-session goals

In Chapter 6, we introduced a series of definitions of goals for communication in
infinite executions, starting from the most general basic notions given in Definition 6.1
to the most general reasonable definition of compact goals in Definition 6.6, to the
natural special case of interest of multi-session goals in Definition 6.7. In the present
section, we actually restrict our attention further still, to goals in which time is divided
into sessions of a fixed length. Thus, we consider a special case of multi-session goals
(that actually still captures Examples 6.3-6.5). We prefer to consider the special case
here because the classes of user strategies we will consider are particularly simple,
only generating messages for a fixed number of rounds (with emphasis on the case of
just one round) and so the decision of "when to halt" is not at issue (cf. in particular
the results of Chapters 2 and 5 concerning strategies in finite executions).

Definition 8.5 (Fixed length multi-session goals). A goal G = (8, R) is said to be a
k-round multi-session goal if the following hold:

1. (The environment's states.) The environment's states are partitioned into k

sets, Q(), ... 1 *). We refer to the elements of Q(*) as start-session states, and

the elements of Q(') as end-session states. In each case, the elements of Q e) are
a pair consisting of an integer index and a contents.

2. (Starting a new session.) When in an end-session state, the environment non-
deterministically moves to a start-session state with an incremented index (i.e.,
E(j, o)(e) is of the form (j + 1, a') E Q(e)); furthermore, this non-deterministic
choice is independent of the contents of the end-session state. That is, every
E E E satisfies the following: for every two end-session states with the same
index, (j, o-), (j, or') E Q e), E(j, -)(e) = E(j, o-')(e), and E(j, -)(*3 = E(j, o-)(e,.

3. (Execution of a session.) When the environment is in some state (j,) E
for i # k, E(j, -)(e) is a distribution over Q(e) such that every element in its
support has index j. Furthermore, the distribution over contents and messages
is independent of the index and environment's actual strategy, i.e., for every

227

E1 , E2 E S (j, 0-) E E1 and (j', o) E E2 the distribution over every component
except the index in E1(j, a-) is the same as E2(j', a).

4. (The referee suspends its verdict until reaching an end-session state.) The ref-
eree R is compact, and the corresponding temporal decision function evaluates
to I iff the environment's state is not an end-session state.

Thus, in the setting of k-round multi-session goals, the referee provides a verdict
once at the end of each k-round session, and we succeed at the goal if and only if we
only fail in finitely many sessions.3

8.2.2 Generic users for goals implicitly specified by sensing

A variety of examples of sensing functions for natural goals for communication (at
least in finite executions) were the subject of Chapter 3. By contrast, in this section,
rather than directly or explicitly describing goals, we will assume that we are given
a sensing function for a goal-that is, the goal is implicitly described by the kind of
feedback available to the user, and by the class of strategies that suffice to achieve
good feedback as guaranteed by the viability condition. When we can construct a
universal user strategy that achieves any goal given only this information, we say that
the strategy is generic:

Definition 8.6 (Generic universal user). For a class of goals in infinite executions g,
a class of user strategies U, and functions B : U x N -+ N, s : N --+ N and v : N -+ N,
we say that an algorithm U is a B-error (U, s, v)-generic universal user for g if for
any goal G E g, any server S, and any black-box sensing function V that is s-strongly
safe with S for G and v-viable with S with respect to U for G, when U is provided
the verdicts of V as auxiliary input, (U, S) robustly achieves G with

min B(Us,.)
USEU:US v-viable with S

errors.

Where, in particular, we use the notion of robustly achieving goals with a bounded
number of errors from Definition 6.34, the notion of strong safety from Definition 6.35,
and the notion of viability from Definition 6.40. We note that these are the same
notions as used in Theorem 6.41; the primary difference is two-fold: first, sensing
for Definition 8.6 is assumed to be black-box, whereas Theorem 6.41 held even for
grey-box sensing and, similarly, allowed for the bounding functions s and v for sensing
to vary with the user strategy; and second, the number of errors incurred by Theo-
rem 6.41 as stated was allowed to depend (arbitrarily) on the server S, whereas we de-
mand a generic universal user in the present sense that obtains a bound that depends

3 1n this context, we will also refer to the number of times the temporal decision function R'
evaluates to 0 as the number of errors. As mentioned above, this is actually a simplification of
the notion of errors used in Chapter 6 and Section 8.1 where the referee suspending a decision for
too long was also considered to be an error. Of course, no such thing can happen in a k-round
multi-session goal, so we may interchangeably use the terms "failure" and "error."

228

uniformly on the "best" user strategy in U. That having been said, it may be verified
that for any enumerable class of user strategies U, and B(Uj, n) = 3i max{s(n), v(n)}2 ,
the proof of Theorem 6.41 constructs a B-error (U, s, v)-generic universal user for the
class of compact goals. (Where Uj of course denotes the ith strategy in the given enu-
meration of U.) As suggested, we would like user strategies that only make a number
of errors that is polynomial in the length of the description of a target strategy in
U (e.g., logi for Uj), i.e., B is a polynomial in |Usi and the size parameter of the
execution.

Thus, we will consider what kind of feedback is necessary to construct a generic
universal user that succeeds in a polynomial number of errors, given that it is viable
with respect to a simple class of strategies. In particular, in Section 8.3, we show that
if the class of user strategies U in the viability condition is sufficiently simple, then we
can efficiently identify a good strategy for the class of one-round multi-session goals;
in Section 8.4.1, on the other hand, we will see that even for one-round multi-session
goals, we will need richer kinds of feedback to efficiently compute good strategies
when U is not so simple. In both cases, the results will follow from an equivalence to
an existing model of on-line learning that we describe in more detail next.

8.2.3 Model of mistake-bounded on-line learning

We have already introduced a multi-session goal of communication in Example 6.45
that captures the model of on-line learning we will discuss, but in the interest of
establishing a tighter connection with the model, we turn to describing the original
set-up in more detail. The mistake-bounded model of on-line learning that we con-
sider was essentially introduced by Barzdir§ and Frievalds [18] and we will follow the
presentation of this model given by Littlestone [95]. In Littlestone's presentation, we
assume that a target concept or target function f is drawn from some a priori fixed
class of functions C and the learning algorithm is run across an infinite sequence of
trials consisting of the following steps:

1. The algorithm is provided an instance x C X as input.

2. The algorithm produces a prediction from Y.

3. The algorithm receives reinforcement feedback, indicating whether its prediction
was equal to f(x).

In Littlestone's main setting of interest, X = {0, 1}" and Y = {O, 1}, and then n
is a natural size parameter, and C is taken to be finite, but this is not essential for
our purposes, so long as a suitable notion of size can be defined for X and members
of C. The main parameter of interest in evaluating these algorithms is the number
of mistakes that they make in the worst case over sequences of trials and unknown
target concepts:

Definition 8.7 (Mistake bounded learning). For a given on-line learning algorithm
A and a concept class C with size parameter n : C --+ N, and any target concept
f : X -- Y for f E C, let MA(f) be the maximum, over all sequences of instances

229

z = {xi E X} 1 , of the number of trials in which A outputs y such that y f f(xi).
We then say that a learning algorithm A has mistake bound m : N -> N if

max MA(f) m(n')
f eC:n(f)=n'

for all n' E N. If the state of A does not change when the algorithm receives positive
feedback, then we say A is a conservative algorithm.

Note that we can easily convert any m(n)-mistake bounded learning algorithm A
into a conservative algorithm A': A' simulates A, providing the instances to A, and
repeating the predictions of A as its own. The only difference is that whenever A
makes a correct prediction, A' resets the state of A to what it was at the beginning of
the round. Now, whenever A' makes m(n) mistakes, it has simulated A on a sequence
of instances where A has also made m(n) mistakes, so by the mistake bound of A, it
does not make a mistake on the following round, no matter which input is provided;
therefore, by repeatedly simulating A on this round with different instances as input,
A' never makes another mistake, either.

Angluin's equivalence query model

Littlestone [95] also showed that the above model of on-line learning is essentially
equivalent to the model of learning with equivalence queries (or counterexamples)
given by Angluin [4], assuming a suitably general notion of representation of functions

(e.g., circuits). Angluin's model is as follows: a target concept is again drawn from
some fixed class C C {f : X -> Y}, and we fix some representation of functions
f : X -> Y (often, alternatively, a representation exclusively of functions in C).
The algorithm is then given access to an equivalence query oracle for f E C, which
operates as follows: when the algorithm provides the oracle a representation of some
function g : X -+ Y, if g = f, the oracle responds "yes" and otherwise the oracle
non-deterministically selects a member of the set {x E X : g(x) # f(x)} as its
response.

Definition 8.8 (Learning with equivalence queries). For any class of target concepts
C C {f : X -> Y} with a size parameter n : C -+ N, and a given notion of represen-
tation of functions, an oracle algorithm AH is said to learn C with q(n) equivalence
queries if, whenever A is provided an equivalence query oracle for some f E C of size
n, A makes at most q(n) queries to the oracle, outputs a representation of f, and
halts.

For completeness, we will sketch Littlestone's argument showing the equivalence
of mistake bounded learning and learning with equivalence queries [95]:

From mistake bounded learning to learning with equivalence queries. Given
a learning algorithm A for a concept class C C {f : X -+ Y} with a given size pa-
rameter and mistake bound m(n), we can obtain an algorithm AO that learns C with
m(n) + 1 equivalence queries (for an appropriate notion of representation) as follows.

230

Suppose that we may represent functions by giving the state of A at the beginning
of any trial (note that if A is deterministic, this implicitly defines a function taking
instances from X to predictions in Y). Then AO simulates A by first providing the

oracle with the representation of the internal state of A at the beginning of each trial,
halting and outputting this state if the oracle responds "yes;" otherwise, AH feeds

A the oracle's counterexample as the instance for the current trial and simulates it

until the start of the next trial.
Since the sequence of counterexamples is a sequence of elements of X, it is the

prefix of some sequence of trials-in particular, it is a sequence in which A makes a

mistake on every step. Therefore since A is m(n)-mistake bounded, after A has been

provided with at most m(n) counterexamples, regardless of which element x E X it

is provided next, it must output y = f(x) as its prediction-thus, the algorithm's
internal state at this point is a representation of f, as needed, and the equivalence
query oracle will return "yes" by the (m(n) + 1)th query.

We also note that if, on concepts of size n, A runs in time t(n) on each trial and

never uses more than space s(n), then there is a natural circuit representation of A on

concepts of size n that has size O(t(n)s(n)). Broadly speaking, then, for algorithms
that are time and space efficient per trial, circuits are a sufficient representation of

functions for the equivalence with the equivalence query model to hold.

From learning with equivalence queries to mistake bounded learning. Given
an oracle algorithm AO that learns a concept class C with given size parameter in

q(n) equivalence queries, we can construct a q(n)-mistake bounded learning algorithm

for C as follows. At the beginning of each trial, if AO is not waiting on a query to

its oracle to be answered, A simulates AO until it either makes a query, or outputs

a function g; in the latter case, A provides g(x) as its prediction for the instance x

given in every subsequent trial, and since AO only outputs a representation of the

target function f, we see that in this case A makes no more mistakes. In the former

case, if AO would query its oracle with function g, A provides g(x) as its prediction
in every subsequent trial until it makes a mistake; it then finds that g(x) # f(x) for

the most recent instance x, and provides this instance as the oracle's response to its
last query. Since this is a valid response from an equivalence query oracle, we see

that AO will therefore output a representation of the target concept f in at most
q(n) queries; since we only make one mistake following each of the queries AO makes

during its simulated run, the learning algorithm A thus constructed makes at most
q(n) mistakes, as claimed.

8.2.4 Equivalence of on-line learning and generic universal
users for one-round goals

Earlier, we noted that we could capture the mistake-bounded on-line learning model

with a (one-round) multi-session goal of communication in Example 6.45; we then

noted that Theorem 6.41 gave a universal on-line learning algorithm with an asymp-

totically optimal mistake bound. It turns out that, for the special case of the class of

231

one-round multi-session goals (and servers with 1-strongly safe and 1-viable sensing),
on-line learning actually captures universal strategies as well. Actually, for generic

constructions of universal users from sensing that is viable with respect to a class

of users U, there is a connection to mistake-bounded on-line learning of U that runs

even deeper: the algorithms are identical.

Theorem 8.9 (Mistake bounded on-line learning algorithms are generic universal

users for one-round goals). Let g be a class of one-round multi-session goals in which

the user's incoming messages on each round are drawn from a set Q(,u), and its

outgoing messages are from the set Q(",). Let U be a class of functions {U : Q(,u) -

Q(u".)} with a size parameter n : U -+ N. Then a conservative m(n)-mistake bounded

learning algorithm for U is a m'-error (U, 1,1)-generic universal user for g for error

bound m'(U, n') = m(n(U)) + 1, and conversely, a m'-error (U, 1, 1)-generic universal

user for g for error bound m'(U, n') = m(n(U)) is a m(n)-mistake bounded learning

algorithm for U.

Proof

(->:) We suppose we are given a conservative m(n)-mistake bounded learning algo-

rithm A for U. We will show that A serves as a generic universal user as follows.

Suppose we are given G E g, a server S, and a black-box sensing function V

that is 1-strongly safe with S for G and 1-viable with S with respect to U for

G.

The target concept. In this case, by the definition of 1-viability, there exists

Us c U such that if the user sends the same messages as Us, after one round V

will provide a positive indication on every round. Thus, Us will correspond to
the target concept for the learning algorithm.

Instances, predictions, and reinforcement. Each round of the execution
will correspond to a trial for the learning algorithm. Suppose we provide the
incoming messages to A as the instance, take the prediction of A as the out-
going messages, and provide the verdict of V on the following round as the
reinforcement. In particular, note that if A sends the same outgoing message
as Us, A will receive a positive indication from the sensing function, which we

take as positive feedback. Conversely, if V produces a negative indication, then

A must not have sent the same outgoing message as Us would have sent on

the incoming messages in that round. V may also produce positive indications
when the outgoing message A sent differs from what Us would have sent, but

in this case since A is conservative, the state of A does not change.

Now, since A is a m(n)-mistake bounded learning algorithm for U, we are guar-

anteed that it only receives negative reinforcement m(n) times in any execution.

232

A bound on the number of errors. Since V is 1-strongly safe for G with

respect to S, our bound on the number of times V evaluates to 0 translates
directly into a bound on the number of errors. Since G is a 1-round multi-
session goal, R' evaluates to 0 or 1 on each round; whenever it evaluates to 0
(i.e., an error occurs), the 1-strong safety of V must guarantee that either that

is the only error that will occur, or that V evaluates to 0 in the current round.

V is therefore only allowed to evaluate to 1 when an error occurs once, so the

number of errors is greater than the number of times V evaluates to 0 by at
most 1, and we see that our strategy therefore makes at most m(n) + 1 errors,
as promised.

(+-:) Let a target concept U E U and any sequence of instances T = {x, E Q(e,u) X
Q(S,u) }* be given. We will show how to embed the corresponding sequence

of trials into a one-round multi-session goal with a 1-safe and 1-viable sensing
function for some server S.

The goal and server. Consider the following one-round multi-session goal

G = (S, Ru): the environment non-deterministically chooses (ae'u) US") E

Q(e,u) x Q(",u) for each round i, and sends (o e'u), b) to the user and o ''j to the

server. The temporal decision function R'y for the referee Ru then is satisfied

in session i if the user returns U(o eu), os')). Let S be the server that forwards
the message it received from the environment in the previous round to the user

in the current round.

The sensing function. Let Vu be the sensing function that returns 1 if
the user's message on the ith round is U(o eu), su)) Note that when the

user executes with S, Vu computes R', so VU is 1-strongly safe with S for
Gu. Furthermore, whenever the user sends the same message as U E U, Vu
is trivially satisfied on the following round, so Vu is also 1-viable with S with
respect to U for Gu.

The execution. We can embed t in an execution in the following way: let
the execution start from the state where o(e*") = z['), oj(sU) = zi') , and

o(es) - z(su) and suppose that the environment's nondeterministic choice for

the ith round is (xzu, P)). Then, we can check that in each ith round of this
execution, the user receives xi.

A bound on the number of mistakes. Now, supposing that we are given

a m'-error (U, 1, 1)-generic universal user for g A, for every target concept
U C U, A robustly achieves Gu with m'(U, n') = m(n(U)) errors when given
the feedback from Vu in an execution with S-in particular, in the execution we
constructed for a given sequence of trials . By definition of Gu, now, A makes
an error in the ith round iff it does not send the same messages as U in that

233

round, so when A is provided the feedback from VU, it makes at most m(n(U))
mistakes in the sequence of trials t. We now note that Vu computes the same
function as the learner's reinforcement, so when A is provided access to the

reinforcement instead of A, it still only makes m(n(U)) mistakes, as needed.

U

8.3 Consequences of the equivalence: universal user
strategies from on-line learning algorithms

We now turn to exploiting Theorem 8.9 to obtain generic constructions of efficient

universal users for one-round multi-session goals. We will describe a couple of exam-

ples of on-line learning algorithms - for parity functions and linear threshold functions

- and then turn to surveying the literature for a number of additional examples. The
examples we describe (notably the improved algorithm for linear threshold functions)
are from joint work with Santosh Vempala.

8.3.1 Parity strategies

We start with an extremely simple example of a user strategy, for which the corre-

sponding on-line learning algorithm is similarly simple: parity strategies. Consider
an environment strategy E and server strategy S for which the incoming messages
to the user in each round is given by an n-bit boolean vector for some n. A parity
strategy for the user simply sends the parity of a fixed subset of those bits on each
round to the other parties:

Definition 8.10 (Parity strategies). The class of parity strategies, U4, is the following
set of user strategies. We identify the user's incoming messages Q(eu) x Q(s,u) with

{0, 1}'. Then, for each subset a e {0, 1}fn, the strategy Ua that, on incoming messages

X E {0, 1}, sends Z2n1 aixi (mod 2) 4 (a, x) e {0, 1} to the server and environment
is in U.

In particular, we will assume that we have a goal G = (S, R) and a class of servers
S such that for each E C E and S C S, the length of incoming messages to the
user remains fixed throughout the execution, so that on each round the user receives
a n-bit vector of incoming messages. In this case, the relevant members of U/ are
described by a n-bit string, a E {0, 1}", and we will likewise call the size of such an

execution n.
It now turns out that there is a simple algorithm for learning Ue in n mistakes,

yielding a n-+ 1-error (/4, 1, 1)-generic universal user for the class of one-round multi-
session goals.

Theorem 8.11 (On-line learning algorithm for parities). There is a n-mistake bounded

on-line learning algorithm for U1, that runs in time 0(n 3) on each trial.

234

Proof We will maintain a set of constraints given as follows: each time, for an
instance x, that we predicted b and made a mistake, we will introduce a constraint:

(Xi, bi) = (x, b D 1) corresponding to the condition (a, xi) = bi. Now, given a list
of constraints, we use Gaussian elimination to find a candidate a such that every
constraint in our current list is satisfied. On each subsequent trial, for an instance x

we then supply (a, x) as our prediction. It is well-known that this may be computed
in time 0(n').

We now note that if, from a set of constraints {(Xi, bi)}_, on an instance x' we
incorrectly predicted b', x' must be linearly independent of {IX1, ... , xo} since whenever
z'= c1 aizx, letting Ua. be the target function, we also have

(a*, x) = Z i(a*, xi) = Z aiUa.(xi) = ao (a, xi) = (a, x')
i=1 i=1 i=1

and thus we would have had (a, x') = Ua (x').
Now, we see that after we have made n mistakes, we have n linearly indepen-

dent constraints, and a* must be the uniquely specified candidate a; therefore, we
subsequently supply Ua* (x) as our prediction for x, and make no more mistakes. U

8.3.2 Linear threshold strategies

We now turn to a class of well-studied functions in learning theory, linear threshold
functions.

Definition 8.12 (Linear threshold strategies). The class of linear threshold strate-
gies in n dimensions with b-bit weights, ULT(n,b), is the following set of user strate-
gies. We identify the user's incoming messages with Qn. Then, for each weight
vector w e {-2b+1 + 1,. . ., -1, 0, 1,. .. ,2+ - 1 n and threshold c E {-2b+1 +
1, ... , -1, 0,1, ... , +1 - 1}, the user strategy that on incoming message x E Q"

sends
1 E , wXi > c

U.C(x) = { i=10 otherwise

to the server and environment is in ULT(n,b)-

The first on-line algorithm for learning linear threshold functions is the classic
perceptron algorithm [117, 110, 107], and its discovery and analysis pre-dates our
model of on-line learning. The perceptron algorithm is not efficient; one of the main

contributions of Littlestone [95] was the introduction of a efficient on-line algorithm
for learning linear threshold functions, when the weights are all positive. 4

4Littlestone's algorithm also has the special feature that it has only a logarithmic dependence

on the "number of attributes," i.e., in {0, }, the number of mistakes only grows logarithmically in

n. Because of this property, Littlestone's algorithm is still widely used as a starting point in more
sophisticated constructions, even though we know that learning algorithms for more general linear

threshold functions exist.

235

The first algorithm for efficiently learning linear threshold functions with general

coefficients was proposed by Maass and Turin [98], based on the classic Ellipsoid
algorithm [85, 73]. Subsequently, Maass and Turin generalized their algorithm to

a reduction to the problem of finding feasible points in convex programs given by a
separation oracle [101]:

Definition 8.13 (Convex feasibility with a separation oracle). Let a convex set K C
R" be given. For r E N, we say that K has guarantee r if the volume of K n Ba 1(0, r)

is at least r-". A separation oracle for K answers queries of the form x E Q" with

"yes" if x E K and otherwise non-deterministically returns a vector v E Q and c E Q

such that (x, v) > c, but that for every y E K, (y, v) < c. If the longest vector v

returned by the separation oracle is f bits, we will say that the oracle is f-bounded.

Now, we say that an oracle algorithm AO solves the search problem of convex

feasibility with a f -bounded separation oracle in time t(n, log r, f) and query complex-

ity q(n, log r, 1) if, for any f-bounded separation oracle for a convex body K with

guarantee r, AO produces a point in K in time t(n, log r, 2), and making at most
q(n, log r, f) queries to the oracle.

Thus, as there are several different efficient algorithms for solving convex programs

in this model - besides the Ellipsoid algorithm, there is an algorithm by Vaidya [143],
and an algorithm based on random walks due to Bertsimas and Vempala [26] - we have

several different efficient algorithms for mistake-bounded learning of linear threshold

functions, which improve on the original in both the computation time and the number
of mistakes. Both of these improved algorithms make at most O(n log r) queries.

Actually, the algorithms given by Maass and Turin [98, 101] were for a slightly

different problem than the one we consider here: in their model, the instance space
was assumed to be bounded integer points (as opposed to Qn), and the time and query
complexity of their algorithm depended the size of these integers. Although it is rather

clear that we cannot hope to eliminate the dependence of the computation time of

the size of the instances (if we hope to perform arithmetic operations on them!), it
turns out that the dependence on the size of instances in the mistake bound can be
eliminated, using some techniques for solving convex programming problems when the
convex set K is not of full dimension due to Gr6tschel, Lovisz and Schrijver [72, 73].
The technique will require the following classical theorem due to Dirichlet [53]:

Theorem 8.14 (Simultaneous Diophantine Approximation). For any x E R" and

E E (0, 1), there exists p E Z" and q E N such that q < E-" and maxi |qxi - pgi < E.

In particular, we will need to find Diophantine approximations efficiently, which

is enabled by applying lattice basis reduction algorithm of Lenstra, Lenstra, and

Lovaisz [90] to find short vectors (and indeed, this was one of the original applications

of the algorithm):

Theorem 8.15 (LLL algorithm for finding short vectors). There is a polynomial-time

algorithm that, given a basis b1 , ... , bn E Q" for a lattice L, finds a nonzero vector v

in the lattice such that |vII < 2(n1)/2 min{|u|| : u E L(b1 , .. . , bn) \ {0}}.

236

The LLL algorithm may be applied to find Diophantine approximations like so:

Proposition 8.16 (Diophantine Approximation Algorithm). There is a polynomial-
time algorithm that, on input x E Q" and a rational E E (0,1), returns p E Z"n and

q E N such that q < n + 12n/2,-n and ||qx - p|| < n + 12n/2,.

Proof Consider the lattice in R +1 given by the following basis:

1 0 ... 0 -x1

0 1 ... 0 -x 2

0 0 ... 1 -xn
0 0 ... 0 "-1

Note that, the coefficient vector (p, q) E Zn+1 guaranteed to exist by Dirichlet's
Simultaneous Diophantine Approximation Theorem gives a vector in this lattice of
length less than n + 1E, and thus the LLL algorithm applied to this basis gives us a
coefficient vector (p', q') such that ||p' - q'x|| < \n + 12 /E and q < in + 12n/2-n_

E

We now present the improved learning algorithm for halfspaces using an algorithm
for solving convex feasibility with a separation oracle:

Theorem 8.17 (On-line learning algorithm for linear threshold functions). Suppose
there is an algorithm that solves convex feasibility with a f-bounded separation oracle
in time t(n, log r, f) and query complexity q(n, log r) for polynomials t and q. Then
there is a m(n, b)-mistake bounded on-line learning algorithm for 'LT(n,b) running in
time t'(n, log b, f) on each trial for some other polynomial t' where f is the length in
bits of the longest instance x E Q" we receive, and m(n, b) = O(n - q(n, b + log n)).

Proof

Overview. The basic observation is that the weight vector and threshold of the
function U, is an integer point in [-2b+1+ L 2b+1 - i n+1, where the latter is a convex
set, and a counterexample x to a proposed linear threshold (w', c') defines a hyperplane
such that either ((w', c'), (x, -1)) > 0 > ((w, c), (x, -- 1)) or ((w, c), (x, -1)) > 0 >

((w', c'), (x, -1)), and either way (x, -1) and 0 gives us a separating hyperplane.
Thus, we will be able to pass our counterexamples to the algorithm for finding

feasible points, and the algorithm will terminate once it finds some point (zn, 2) such
that any halfspace of the remaining feasible set not containing (fv, 2) has volume
less than the guarantee, which normally implies that (il, 2) is in the convex set (by
convexity of the target set, a separating hyperplane for (f, 2) exists iff it falls outside
the target)-note that by correctness, the algorithm must output some such point,
since it only knows the set of separating hyperplanes constraining the feasible set and
a lower bound on the volume of the target convex set, and so otherwise, the target
convex set may still lie in a halfspace not containing (fr, 2). Therefore, if we find a

237

counterexample to (iD, 2), the set of hyperplanes given by our counterexamples must
define a set containing (w, c) of volume less than the guarantee.

By choosing the guarantee sufficiently small, we will be able to ensure that there is
a hyperplane such that all of the points with integer coordinates (including the target

(w, c)) lie in this hyperplane; we will then be able to find this hyperplane, and reduce
to the problem of finding a feasible point in a lower dimensional space by projecting
onto it. After we repeat this process n + 1 times, we will uniquely determine (w, c).

The algorithm. For d = 0,...,n, we will construct a sequence of translations
and rotations (Rd, Ad) so that for the projection Id : Rn+1- --+ R n-d that drops
the last coordinate and the transformation Td : Rn+1-d -+ Rn+1-d given by Td(x) =

Rd(X - Ad), the linear threshold vector (w, c) of the target concept satisfies T- 1((IJd o
Td)(w, c), 0) = (w, c).

Finding a small set containing (w, c): Let AO be the algorithm for finding fea-
sible points. We run AO in Rn+1-d with a guarantee of r = max{2b+ /nr + 1 - d, n +
1 - d}; since [-2+1 + 1, 2b+1 - 1] C Ball(O, 2b+1), this guarantees that the final set
will have (n + 1 - d)-dimensional volume at least (n + 1 - d)-(n+1 -) > 1 So it(n±1-d)!'7

cannot contain (n - d + 2) points that do not lie in the same plane, i.e., a simplex in
dimension n + 1 - d. Each time AO queries its oracle on some point z E Rn+1-, we
use (w', c') = (T6- 1 o ... o T--_)(z) as our candidate linear threshold until we make a
mistake on some instance Xd,i E Qn. We then return (Tdlo ... o To)(±xi, 1) to AO
as the separating hyperplane. Finally, AO returns 2, and we again use 2 to obtain
one more candidate linear threshold (ib, b) such that once we obtain a counterexam-
ple Xd,k, the feasible region K determined by our counterexamples Xd,1,... ., z, has
(n + 1 - d)-dimensional volume less than 1

(n+1-d)!~

Finding a hyperplane near (w, c): We now find a (n-d)-dimensional hyperplane
that is -close to (w, c) for a sufficiently small E (to be chosen later). Consider the
set of hyperplanes within E of the entire feasible region K, V = {(v, a) : Vy E K, a <
(v, y) a + E}. Note that if (vi, ai) and (v 2 , a2) are both in V, then for all y c K,
Aa1 + (1 - A)a2 < (y, Avi + (1 - A)v2) < Aai + (1 - A)a2 + E, so V is a convex set.

We can provide a separation oracle for V as follows. given a candidate (V, a), we
note that K is defined by a set of linear constraints, the basic constraints -2b+1 __ 1

yi K 2 b+1 - 1, and one linear constraint for each (Td_1 o ... o To)(xd,i) = zi, either
(zi, y) ;> 0 or (zi, y) > 0. Therefore, maximizing (resp. minimizing) the linear
functional (v, y) over K is an instance of linear programming, which we can solve in
polynomial time. If the minimum y* has (v, y*) < a, then (-y*, 1) and J = a - (v, y*)
is a separating hyperplane; similarly, if the maximum y* has (v, y*) > a + E, then

(y* -1) and 6 = (v, y*) - a is a separating hyperplane.

Thus, we can invoke our algorithm for convex feasibility using this separation
oracle to find a point (v, a) E V.

238

Rounding to a hyperplane containing (w, c): Now, we find a (n-d)-dimensional
hyperplane containing (w, c) as follows: We now invoke our algorithm for finding si-
multaneous Diophantine approximations to find a rounding of (v, a) to (v'/q, a'/q)
such that q < v/n + 22(n+1)/2,-" and ||q(v, a) - (v', a')|| < v/n + 22(n+1)/2E. Then, for
every integer point y E K,

(V' Y) - a'| < |(v' - qv, y)|I+ | (qv, y) - qal + |qa - a'/I

< 2(n + 2) 2 (b+1)+(n+1)/2e + n + 2(n+1)/2 ,n

so, for c = 2 -((b+1)+(n+1)/2) and E = 3 -(n+1) 2 -(n+1)((b+1)+(n+1)/2+1og(n+2)) we find
3(n+2)

that |(v', y) - a'I < 1. Since (v', a') and y are integer vectors, this implies that
(v', y) = a', so v' and a' define the plane containing the integer points in K.

The desired Ad is now given by translating this hyperplane back to the origin,
and Rd is given by rotating its normal to the (n + 1 - d)th standard basis vector,
completing the dth iteration of the main loop.

Mistake bound. Since it is clear that the algorithm runs in polynomial time
on each iteration (i.e., on each trial) it only remains to show the claimed mistake
bound. Note that we only make a mistake when the algorithm A0 for solving convex
feasibility makes a query to its oracle or outputs a point at the end of an iteration.
Since in the dth iteration A0 makes q(n-d, log r, f) queries, there are at most O(q(n-
d, b+log(n - d))) mistakes in the dth iteration, and thus O(n -q(n, b+log n)) mistakes
overall. U

On the optimal number of mistakes

Noting that the best known algorithms for solving convex feasibility make O(n log r)
queries, this translates into on-line learning algorithms that make 0(n 2 (b + log n))

mistakes-and thus, (ULT (n,b), 1, 1)-generic universal users that also make O(n 2 (b +
log n)) errors. Although this is similar to the performance achieved by Maass and
Turin for their problem, (their algorithm found arbitrary halfspaces over {1, ... , n}d
in time O(d 2 (log n + log d))) it is not optimal for this problem.

It is possible to achieve a better bound by using the halving algorithm of Barzdiis
and Frievalds [18]: on each trial t, the algorithm maintains the set Ct = {f E C : Vi =

1, ... , t - 1 f(xi) = f*(xi)} of consistent hypotheses; on instance xt, it predicts some

y consistent with at least half of the remaining functions. Thus, each time it makes a

mistake, the size of Ct is reduced by half, and we can make no more than log C mistakes
before |Ct| = 1 and the target is uniquely identified. In the case of ULT(n,b), each
hypothesis can be represented by n + 1 (b + 1)-bit numbers, so |ULT(n,b) (1b

and therefore the halving algorithm is a (n + 1)(b + 1)-mistake bounded learning
algorithm for ULT(n,b)- Of course, unlike our algorithm based on convex programming,
it does not run in polynomial time. The existence of an efficient mistake-optimal
algorithm for this problem is an open question.

239

8.3.3 Demonstrating optimality via Littlestone's method

Littlestone [95] also introduced a useful technique for proving lower bounds on the
number of mistakes needed to learn classes of Boolean functions in the on-line learning
model, and the technique was subsequently generalized beyond Boolean functions by
Auer et al. [13] (they also generalize the technique to other on-line learning settings).
It turns out to be easy to use the technique to prove optimal lower bounds for a
number of natural classes, as shown by Maass and Turin [99, 100, 101]. In particular,
Maass and Turin [101] used Littlestone's method to show that Q(d2 log n) mistakes
are necessary to learn halfspaces over {1, ... , n}d. We will review this technique, and
likewise use it to show (essentially) optimal lower bounds for U0 and ULT(n,b)-

Definition 8.18 (k-mistake tree). A mistake tree for a class C C {f : X -> Y} is a
rooted, binary tree labeled as follows:

1. Each internal node is labeled with x E X

2. The outgoing edges from any internal node labeled x are labeled with pairs,
(C1, y1), (C2 , Y2) E 2C x Y such that yi # Y2, every f E Ci has f(x) = yi, and if
the edge from the node's parent is labeled with (CO, y), then C1 U C2 C Co.

3. Each leaf is labeled with f C C such that f E Co for the set Co C C in the label
of edge from the leaf's parent.

If the mistake tree is a complete binary tree of height k, we say it is a k-mistake tree.

In the following sense, k-mistake trees are all we need to prove lower bounds on
the number of mistakes necessary to learn any class of functions:

Theorem 8.19 (Mistake trees give optimal lower bounds [95, 13]). Suppose that K(C)
is the largest integer k for which C has a k-mistake tree. Then learning C requires
exactly K(C) mistakes.

The proof the relevant direction for our purposes, showing that a k-mistake tree
suffices to give a lower bound of k mistakes is very intuitive, so we will sketch it here.
We think of the adversary as choosing a hard target function based on the algorithm's
behavior-that is, rather than the target having been fixed in advance, the adversary
uses the tree to generate an execution with any given learning algorithm that is
consistent with some target function, and such that the learner makes k mistakes.
We then know that the learning algorithm makes k mistakes on the given target
function. The adversary uses the tree to force the algorithm to find an execution
in which it makes k mistakes like so: during the execution, the adversary traces a
path in the k-mistake tree from the root to a leaf, such that at each internal node,
the learner makes a mistake on the example used to label that node. This can be
achieved since each time the learner makes a prediction y, we can take a branch of
the tree not labeled by y, and we know that all of the leaves of the subtree under that
branch are consistent with the learner having made a mistake at this point.

While Theorem 8.19 is striking on its own merits, it says nothing of whether or
not an optimal k-mistake tree is easy to construct. Most remarkably of all, it turns
out that they often are easily constructed.

240

Example 8.20 (A lower bound for parity strategies). We can construct a n-mistake
tree for parity strategies as follows: at level i = 1, ... , n, the nodes are labeled with
the ith standard basis vector, the outgoing edges from a node with incoming edge
(Co, b) are labeled ({Ua E Co : ai = b}, b) for b E {0, 1}, and each leaf is labeled with
Ua. such that a* = bi if the path to the leaf had labels bi, . . . , bn. It is easy to see
that the tree is an appropriately labeled complete binary tree of depth n, so this is a
n-mistake tree. Theorem 8.19 then shows that at least n mistakes are necessary. As
Theorem 8.11 showed how to learn a parity strategy in n mistakes, this is optimal.

To show a lower bound on the number of mistakes needed to learn their class of
halfspaces, Mass and Turin adapted an argument for giving a lower bound on the
number of threshold functions by Muroga [109] and generalized to non-Boolean inputs
by Hampson and Volper [75]. A simplified argument can be given for our version of
the question, showing that nb mistakes are necessary to to learn ULT(n,b)- Since the
halving algorithm achieves (n + 1) (b + 1) mistakes, this is almost optimal.

Example 8.21 (A lower bound for linear threshold strategies). We will construct a
nb-mistake tree in n layers of b internal nodes each, such that in the ith layer, we only

query multiples of the ith standard basis vector, ej, and thus at the end of the ith layer,
we will have nodes identified with {U(wc) E ULT(n,b) : (wl, ... , wi) = (w*,. - , wf)} for

some weights (w*, .. ., w*). In particular, the queries in layer i will only constrain w*.
Let w denote the jth bit of w*.

For simplicity, we will only use functions with threshold 1. In each ith layer, we
will perform binary search along the ith coordinate axis to "find" 1/w*-the first
query is at 1 - ei with edges labeled yi,o E {0, 1} such that the set of linear threshold
functions with label yi,O = 0 have w* > 1 and the set with label yi,o = 1 have w* < 0;
on subsequent nodes in the ith level reached by a path with labels yi,o, yi,,. .. , ,

we fix Yi,k = Wi'k, and the node is labeled by xi,j = aij - ej for

= (i)i~o + ~ k)-1

asi,j (-1)yi, 2'-'- + yi,k2 b+l-k

k=1

Note that for the given choices of wO,... , w*j, W - ai 2 1 iff W*j+1 = 1, and that

up to j = b - 1, (w, 1, w O) are still undetermined. (Though this may not hold for

j = b if yi,o = - = Yi,b-1 = 0, since we still need wi > 1, forcing w*o = 1.) Thus,
as promised, at the end of the ith layer, the outgoing edges are labeled with sets

{ U(w,c) E ULT(n,b) : (w1, ... , wi = (w*, . . . , w*)} for some weights (w*, . . . , w*), and

we see that we can therefore choose a label U(w*,1) for each leaf, giving a nb-mistake
tree. By Theorem 8.19, nb mistakes are therefore necessary to learn ULT(n,b)-

8.3.4 Generic users for other classes of strategies: a survey

We now turn to surveying the literature for other classes of functions with efficient
on-line learning algorithms. Most of the relevant work in this area has been towards
algorithms for Boolean functions, but we will even see a few examples for richer (but
still small) message spaces.

241

Boolean strategies

Maass and Turin [99] gave efficient mistake-bounded learning algorithms for a number

of simple concept classes. Over a space of instances consisting of n integers, the
indicator function of a half-interval requires precisely log n mistakes, and learning the

indicator function of an arbitrary subset of n integers requires precisely n mistakes.
More substantially, over the space of pairs of integers (i, j) E- {1, ... , n}2 , the indicator

function of a linear order (i.e., evaluates to 1 on (i, j) if i < j) can be learned in

O(n log n) mistakes, and the indicator function of a "matching" (i.e., evaluates to one

on a set of pairs (i, j) such that each i appears in precisely one pair) can be learned
in 0(n) mistakes. Maass and Turain [100] also showed how to learn the indicator
functions for geometric sets such as boxes and balls over {1, . . . , n}d in O(log n)
mistakes for constant d. Subsequently, these results were improved by Maass and

Warmuth [102] and later generalized further by Bshouty and Mazzawi [37] as discussed
below.

The class of functions representable by k-sink width-two branching programs was

shown to be learnable by Bergadano et al. [23]; note that general width-two branching
programs can represent general DNF and CNF formulas (shown by Borodin et al. [33])
and two-sink width-three branching programs can represent general CNF and DNF
formulas (shown by Ergiin, Kumar, and Rubinfeld [56]), which are not known to be

learnable. An early algorithm due to Angluin [4] (adapting the similar algorithm of

Valiant in the PAC model [144]), however, learns functions expressible by k-CNF and
k-DNF formulas (for constant k) in O(nk) mistakes. Littlestone [95] also proves a
composition theorem that allows his algorithm to be used in this setting as well, and
it learns a formula with f terms in O(kf log n) mistakes.

Several other composition theorems have been proved, starting with Kearns, Li,
and Valiant [83] and Pitt and Warmuth [113]; the most recent composition theorem is

due to Bshouty and Mazzawi [37], giving mistake-efficient learning algorithms for any
class of functions obtained by the composition of a class having a mistake-efficient
algorithm with any class of functions having polynomial-size shatter coefficient (e.g.,
as given by Sauer's Lemma [125] for classes of constant VC-dimension). By applying
this composition theorem with a learning algorithm for linear threshold functions,
Bshouty and Mazzawi obtain a learning algorithm for the class of depth-two neural
networks with constant fan-in at the hidden nodes that makes only a polynomial
number of mistakes (improving an earlier result of Auer et al. [11]) and a learning
algorithm for functions given by a weighted threshold of substring indicator functions.
Also, by composing with the above algorithms for k-CNF, they can learn unions of
a constant number of boxes in n-dimensional space and any number of unions of

boxes in d-dimensional space for fixed d (improving the earlier results of Maass and
Turin [100] and Maass and Warmuth [102]).

A striking result, due to Auer and Long [12], shows that whenever a class of
functions can be learned with a polynomial number of mistakes and a logarithmic
number of membership queries (as discussed by Angluin [4]), the function can still
be learned in a polynomial number of mistakes without membership queries. This is
actually just one special case of their technique, which provides essentially the only

242

known method for learning functions with richer outputs as we discuss next.

Strategies with larger message spaces

For a space of outgoing messages Y = Q(us) x Q(ute), Auer and Long [12] show the

following. Suppose that there is a m'(n)-mistake bounded on-line learning algorithm

for the class of functions C C {f : X -+ Y} in a model where, after making a
prediction on input instance x E X, the learner is told the value of f(x) E Y; then,
there is a m(n)-mistake bounded on-line learning algorithm for C in our model for

mistake-bounded learning (as given in Definition 8.7) for m(n) = O(IY log |YIm'(n)).
Thus, when the space of outgoing messages IYI is polynomially large, and a class is

learnable in this stronger model, we obtain an algorithm with a good mistake bound

in our model. For many classes of functions, it essentially follows from Corollary 4.21
that the dependence on |YI obtained by Auer and Long is already nearly the best

possible, as we will see in the next section.
Their approach is roughly to simulate weighted copies of the algorithm from the

strong model, and make predictions according to a weighted vote of the copies. When

the winning prediction is correct, we know the value of f(x), and we can provide ap-
propriate feedback to all of the copies. Whenever this winning prediction is incorrect,
however, we "split" each copy into more weighted copies of the algorithm (having the

same total weight), with each copy simulating an execution in which the algorithm
received a different value for f (x). Whenever we discover that a copy's prediction is

wrong, either because it was in the winning coalition on a wrong prediction, or in

a losing coalition on a correct prediction, we decrease the weight of that copy by a

multiplicative factor. The absolute mistake bound for the algorithm guarantees an

absolute lower bound on the weight of the copy that receives the correct values, and
the weights of the other copies decay exponentially, so that within the claimed bound,
the algorithm that received correct responses has learned the function and is always
in the winning coalition. We then predict correctly on every round and no longer
need to create new copies.

Now, although the running time may be exponential in the mistake bound (since
on each mistake we multiply the number of copies by roughly IYI), it is still at
least a fixed overhead for each fixed server, still computationally efficient for |Y| =
O(log n) (corresponding to log log n-bit messages), and still gives an efficient mistake
bound for several classes of strategies that we otherwise do not know how to learn-

for example, mistake-bounded on-line learning algorithms for linear functions in the
full-feedback model were given by Cesa-Bianchi, Long, and Warmuth [40] and by
Littlestone, Warmuth, and Long [94]. Subsequently, algorithms for learning piecewise-

linear convex functions and, more generally, for learning any function obtained by
taking the maximum of a constant number of functions from classes such that any two

members of the class cross at most a constant number of times (including low-degree

polynomials, sparse polynomials, and weighted sigmoid activation functions) were

also given for this model by Auer et al. [13]. It would be interesting to know whether

or not more computationally efficient algorithms could be obtained for classes where

Auer and Long's transformation has been applied, even with a worse (polynomial)

243

dependence on |Y| and in less generality, i.e., even only for a special case.

Strategies for k-round multi-session goals

Auer and Long's technique can also be applied to give generic universal users for

k-round multi-session goals for k > 1 (it is efficient for size parameter n if k =

O(log n))-analogous to Theorem 8.9, on-line learning algorithms for their "k-trial

delayed, ambiguous reinforcement" model give generic universal users for k-round

multi-session goals, given 1-safe and k-viable sensing for any class of stateless Boolean

strategies that has an efficient mistake-bounded learning algorithm. Precisely, if there

is a m(n)-error (U, 1, 1)-generic universal user for the class of 1-round multi-session

goals, then there is a m'(n)-error (U, 1, k)-generic universal user for the class of k-

round multi-session goals for m'(n) = (2 k+11 n 2k)m(n). Once again, the overhead of

making predictions and updating the copies grows exponentially in k, but for k small,
the technique still yields efficient universal users for goals that would not otherwise

be known to have efficient universal strategies.

8.4 Overcoming the limitations of basic sensing
with richer feedback

Not all of the news Theorem 8.9 presents is good-the strength of the equivalence

between the models of on-line learning algorithms and generic universal user strategies

can also be used to transfer results showing that classes cannot be learned efficiently

in the on-line learning model to results showing that efficient generic universal users

for those same classes do not exist. Unfortunately, as we will see, under standard

assumptions, this includes most of the natural simple classes of strategies we might be

interested in. Of course, these results only show that generic constructions of universal

users from our standard notion of sensing is impossible-we will note some simple

ways in which richer sensing feedback demonstrably broadens the class of strategies
for which (generic) universal users can be constructed. The technical portions of this
section are from joint work with Santosh Vempala.

8.4.1 Limitations of basic sensing

We will begin by taking stock of what we have already seen: at the outset of this

chapter, Theorem 8.4 showed that when user strategies could prepend passwords to

their messages, an exponential lower bound on the number of errors followed for any

nontrivial goal with classes including password-protected servers. Now, for the case

of one-round multi-session goals, we actually also know that a lower bound on the

number of rounds before the referee's temporal decision function is satisfied translates

into a lower bound on the number of errors. In this case, the lower bounds from

Chapter 4 can give lower bounds for other classes of strategies. In particular, we can

show the following:

244

Theorem 8.22 (Exponential lower bounds for large message spaces). Let U be a

class of stateless user strategies computing functions U : X -+Y such that for every
outgoing message y and incoming message x, some U E U satisfies U(x) = y. Let

G = (S, R) be the goal of mistake-bounded on-line learning given in Example 6.45
and let S = S(U) be the class of servers corresponding to the class of user strategies

U. Then for any user strategy, there is some S* E S(U) such that the user strategy
makes at least jY|/3 errors with probability at least 1/2, and at least |Y|/2 errors in

the worst case.

Proof For any SU in S(U), we let OSu,E be the set of states where Su received

an incorrect prediction; note that since every server has the same behavior in these

states, they are perfectly indistinguishable. Now, for any outgoing message o(',s) and

incoming message vector o(e*"), there is some U E U that would produce the message
o(u's), and hence some server Su E S that does not exit ES,E unless it receives
o(',s); in particular, since there are jYj different messages, this implies that for any

distribution on user strategies, some message is sent with probability at most Y|--1,
and thus, whatever message the environment sends, some server does not exit SU,E

with probability at least 1 - IY-1 when the user's strategy is chosen according to
that distribution. Corollary 4.21 then implies that there is some S* E S(U) with

which I rounds are necessary to exit ESu,E with probability 6. Since we made

a mistake on every round in which the execution remained in states in JSu,E, the
claims now follow by taking 6 = 1/2, and by letting 6 -> 1. U

It is easy to construct specific examples for which learning functions on a message
space Y requires an overhead of |YI - 1-Auer and Long [12] describe one such
example. Theorem 8.22, on the other hand, applies to many cases of interest, such
as linear transformations:

Example 8.23 (Lower bound for learning linear transformations). Let U be the
class of linear transformations A : F' -+ F" for some finite field F. Suppose that the
instance space is given by F' \ {O}. Now, for any nonzero x, y c IF' we know that

there is some Ax,, such that A(x) = y. So, Theorem 8.22 shows that any on-line
learning algorithm makes at least (17Fl - 1)/2 mistakes in the worst case.

We remark that it would be possible to learn the class of linear transformations
if we had full feedback, much as we learned the class of parity strategies UE in Sec-
tion 8.3.1; therefore, Auer and Long's [12] transformation gives an essentially optimal
mistake bound for learning linear transformations for all dimensions and field sizes.

In particular, when this mistake bound is superpolynomial, no algorithm can achieve
a polynomially bounded number of mistakes.

Negative results for Boolean functions: a survey

We can exploit Theorem 8.9 more directly to recover some well-known impossibility
results for learning even Boolean functions. In particular, Angluin [4] noted that an ef-

ficient mistake-bounded learning algorithm gives an efficient PAC-learning algorithm,

245

since we can simulate the equivalence queries by taking a reasonable size sample, so
that with probability 1 - 6, the proposed function will only pass if it agrees with
the correct function on at least a 1 - e-fraction of the domain, as required by PAC-
learning. So, negative results for efficient PA C-learning translate directly to negative
results for efficient mistake-bounded learning, which translate to negative results for
generic universal users.

Valiant [144] originally noted that pseudorandom functions could not be efficiently
learned in the PAC model, which shows that if one-way functions exist, then the class
of polynomial-size Boolean circuits cannot be learned efficiently (since pseudorandom
functions were constructed from pseudorandom generators by Goldreich, Goldwasser,
and Micali [66], and in turn, pseudorandom generators were constructed from one-way
functions by Histad et al.[76]). Pitt and Warmuth [113] subsequently gave a notion
of reducibility and, in particular, a notion of prediction-completeness that showed
hardness for learning other classes of functions; these results were further exploited
by Kearns and Valiant [84] to show that under standard cryptographic assumptions -
e.g., the hardness of factoring, deciding quadratic residuosity, and inverting the RSA
function - DFAs, general Boolean formulae, and constant-depth threshold circuits
cannot be learned efficiently. In particular, we note that the hardness of learning
DFAs implies that even logspace decision strategies cannot be learned efficiently,
and strategies that recognize strings generated by a context-free grammar cannot
be learned efficiently. Kharitonov [86 showed that the class of ACo circuits cannot
be learned unless the Blum-Blum-Shub pseudorandom generator [29] can be broken.
Finally, a result by Klivans and Sherstov [87] shows that, under the assumption that
the unique Shortest Vector Problem cannot be efficiently approximated to within a
O(n 5)-factor (cf., the LLL algorithm provides a O(2") approximation), intersections
of ne halfspaces cannot be learned efficiently. This implies that general polynomial-
size depth-two neural networks and depth-three arithmetic circuits cannot be learned
efficiently.

We remark that to the best of our knowledge, at this point, the only natural
candidate Boolean function classes that have not been classified as learnable or un-
learnable for this model are the class of polynomial-size decision trees, which were
shown by Bshouty to be learnable in both the PAC model [36] and in the member-
ship and equivalence query learning model [35], and relatedly, the classes of general
polynomial-size CNF and DNF formulae and small width branching programs. The
nearest negative result, by Angluin [5] for learning decision trees, only holds for proper
equivalence queries, i.e., only for functions represented by decision trees.

8.4.2 Richer feedback

Thus, the equivalence of generic universal users for one-round multi-session goals
and mistake-bounded on-line learning algorithms gives a fairly clear picture of which
classes of strategies we can efficiently learn generically from basic sensing - i.e., with
success/fail feedback - and which classes we cannot learn efficiently from such feed-
back. Unfortunately, this boundary falls well short of where we would like-we can
only learn strategies with very small message spaces, and under standard crypto-

246

graphic assumptions, even then only for fairly simple classes of user strategies, even
given that the user strategy is stateless.

Recall that our motivation for focusing on this notion of sensing was that we had
results, such as Theorem 6.41, effectively saying that whenever sensing was possible,
it was feasible to achieve a goal with any helpful server. In the finite execution setting,
we had a variety of results in the same vein as Theorem 2.25, showing that this kind
of feedback was moreover necessary for the construction of universal users. As we are
primarily interested in user strategies that do not experience such severe overhead as
that suffered by these constructions, though, we find that we are strongly motivated to
leave this notion of sensing behind and investigate some notions of stronger feedback
(that may not always be available).

Thus, again, we view negative results showing that (U, 1, 1)-generic universal users
cannot be mistake-efficient and/or implemented time-efficiently merely as limitations
of basic sensing, and so we seek alternative notions of sensing that do not suffer these
limitations. For example, recall that Auer and Long [123 showed how some useful,
richer kinds of feedback can be simulated given only basic sensing, but only if the
feedback is still limited in the sense that it can be simulated by a logarithmic number
of queries; if we assume that these kinds of feedback are directly available, then since
we don't need to simulate the feedback, we don't experience the overhead suffered by
their technique.

Example 8.24 (Efficient universal linear transformation strategies from richer sens-
ing). Concretely, consider the class of user strategies computing linear transforma-
tions A :]Fn -> Fn for some finite field F, as considered in Example 8.23. There,
we saw that given only basic sensing, any generic universal strategy experiences at
least (IF1n - 1)/2 errors for one-round multi-session goals, where Auer and Long's
technique yields a universal strategy making O(IFIn) errors. Suppose now that we
had richer sensing feedback, that not only provided positive or negative indications,
but on a negative indication also provided some index i e {1, ... , n} such that if on
the previous round we received an incoming message vector x E Fn and responded
with y E Fn, a viable linear transformation strategy A would not have responded
with (A(x))i = yi. Then, e.g., for F2, we could use the algorithm from Theorem 8.11
to learn each ith row of a viable linear transformation on F2 in n mistakes, for n 2

mistakes (and time 0(n') per round) overall. Auer and Long's technique can then
also be used to simulate access to (A(x)) over F, for q > 2 with an overhead of
O(q) mistakes, thus allowing us to use essentially the same learning algorithm over
Fq. As long as the field size is still small, this yields polynomial error and polyno-
mial time bounded universal strategies, in contrast to the exponential lower bound
of Example 8.23.

A similar kind of feedback would enable us to construct efficient universal users
for k-round multi-session goals, given that there are stateless viable user strategies
such that a time and mistake efficient on-line learning algorithm for the class of
user strategies when restricted to any single round. Namely, if the sensing function
also told us that the user's messages in some ith round of the previous session was

247

unsatisfactory, then this feedback could be used to learn the user strategy for each

round separately, even if k is polynomially large.
Another kind of feedback that may be useful is "directional" feedback, as con-

sidered by Barland [17]. Precisely, assuming that the user's messages are identified

with points in R, we mean sensing that on negative indications additionally indicates

whether, when the user responded y to an incoming message x, user strategies U

that would have obtained positive indications would have sent messages satisfying

U(x) > y or U(x) < y, i.e., whether y was "too low" or "too high." Incidentally,
Auer et al. [13} considered this kind of feedback, and showed that the natural notion

of mistake tree for this kind of feedback yields optimal lower bounds on the number

of mistakes required to learn from this feedback.

Relationship to the finite execution setting

We note that given the standard notion of sensing in finite executions (Definition 2.22),

a result qualitatively similar to that achieved by Auer and Long [12] is trivial for one-

round user strategies:

Proposition 8.25. Let G be a goal for communication in finite executions, let S

be any class of server strategies, and let V be a sensing function (in the sense of

Definition 2.22) that for every S E S is (1 - E)-safe for G and (1 - 3)-viable for G

with some one-round user strategy U with S. Then there is a (S,1 - e/)-universal

user strategy running in expected time -1t(n) IQ(U) I where t(n) is the expected running

time of the sensing function.

Proof Let U be the following user strategy: compute the message we will send

on the current round, we simply run through the space Q(u,') of outgoing messages,
simulating the verdict of our sensing function on each message, and output the first

message that obtains a positive indication if one exists. (If no such message is found,
we send an arbitrary message.) If a one-round strategy is viable with the given server

S, then some message in this space causes the sensing function to give a positive

indication with probability 1 - 6 on each round. Thus, in 6-1 rounds in expectation,
we output a message and halt and our expected running time is as promised. We now

note that since sensing is 1 - E-safe and run 6-1 times in expectation, the probability
of it obtaining a false positive indication with the user (and failing to achieve G) is

at most E/6, as needed. U

When the space of outgoing messages is small, this strategy is efficient, and thus

none of the strategies we discussed in Section 8.3 are interesting in the context of finite

executions. By contrast, if the space of outgoing messages is large or the strategies

run for many rounds, then the techniques from on-line learning with richer feedback

may provide nontrivial examples of efficient universal strategies for goals and servers,
given an appropriate adaptation of this notion of feedback to finite executions. In

particular, this gives a potential alternative to the Bayesian constructions based on

sampleable "prior" distributions for communication in finite executions described in

Chapter 4.

248

Chapter 9

Towards applications:
communication with a changing
network protocol

We finally return to our original technical motivations for studying semantic com-
munication, outlined in Section 1.1. Specifically, we will present a first attempt at

designing end-user network protocols that can adapt to "simple" modifications of
the protocol used on the network without third-party intervention. In practice, the

network protocols we wish to modify serve the purpose of forwarding messages from

one user to another-in effect, realizing a channel across the network. Thus, our task
seems like an insurmountable challenge a priorz, since we stressed earlier (at the out-
set of Chapter 2) that this goal is not verifiable in general. Therefore, in service of the
design of a protocol, we will need to first develop a verifiable goal of communication
for the network's users, and then exhibit a user protocol that achieves our goal.

Perhaps surprisingly, a pair of users can arrange for a scheme that allows them to
verify that they receive the correct messages after a bounded adversarial modification
of the network protocol, under the assumption that the encoding of data under the
protocol is computable in a single pass by a small-space program, and given that the
modification is computed by a short program with similar restrictions. (We note that
protocols such as IPv4 and IPv6 merely attach a header to the data, and thus satisfy
these restrictions.) In particular, our scheme is ultimately capable of coping with
networks that drop and reorder the packets.

Thus, the work in the present chapter represents the culmination of several pre-
vious chapters: a complexity-theoretic restriction on the protocols (e.g., as discussed
in Chapter 5) permits the verification of a goal, which then leads to a protocol for
the desired task (as developed in Chapter 2). Actually, the goal we wish to solve is
most naturally cast in the infinite execution setting (of Chapter 6), where we assume
that the users wish to send an infinite sequence of messages correctly, and we argue
that with high probability, no errors are ever encountered when a (sufficiently simple)

modification of the network's protocol occurs.

249

Figure 9-1: Our model network: Alice and Bob wish to communicate messages pro-
vided by the Environment via the Server.

9.1 Model of communication under a changing net-
work protocol

Our model of the problem of communicating under a changing network protocol
departs from our basic model in a variety of essential ways. Most notably, we assume
that there are two users who, much as in Shannon's model [129], wish to agree on a
scheme for communication in advance; communication, in this case, therefore means
that they wish to realize the abstraction of a reliable channel. The difficulty is that
their communication is mediated by the network, modeled by an adversarially chosen
server. So, in order to get messages from one user to the other, the users need
to conform to the protocol imposed by the server. Accomplishing communication
under such conditions would be impossible in general, but we are able to achieve it
by assuming that the network's protocol is some "simple" modification of an earlier
protocol known to both the sender and receiver.

9.1.1 Setting and goal of communication

Precisely, as illustrated in Figure 9-1, we will consider a system with four entities:
two users - Alice and Bob - a server, and an environment. We will assume that Alice
and Bob can exchange messages with the server and the environment, and as before,
the communication proceeds in rounds; just as described in Chapter 2, on each round,
each of the entities computes new messages and a new state from its old state and
the messages it received on the previous round, and at the end of the round, these
messages are simultaneously passed across each of the channels, for use at the start
of the next round.

We suppose that Alice wishes to send messages to Bob, but she cannot do so
directly because Alice and Bob do not share a binary channel-rather, she must send
the messages to the server, and if the messages conform to the server's protocol, then

250

Figure 9-2: The streaming messages goal. On each session, the environment provides
Alice with xi, which she wishes to communicate to Bob; Bob returns a string yj to
the environment at the end of the session, and the goal is achieved if yj = xi.

the server will forward the message to Bob on the next round. Formally, in our model,
we suppose that the messages that Alice wishes to send to Bob are supplied to her
by the environment, and that once Bob receives a message, he passes it back to the
environment. Recalling that the users in our system correspond to, e.g., the drivers
and libraries for sending messages across the network, saying that "the environment
supplies Alice with a message" corresponds to an invocation of these lower-level sys-
tems to send messages across the network, and likewise, "returning the message to
the environment" corresponds to this sub-system passing the received message back
to some user-level application.

We will actually present two goals here. The first, cleaner and simpler goal,
illustrated in Figure 9-2, is suitable for sending messages one way across a reliable
network (e.g., across a LAN); we will initially work with this simpler goal.

Definition 9.1 (Goal for streaming messages). The goal of streaming messages is a
multi-session goal for communication in which the environment non-deterministically
chooses a string xi E {0, 1} :" in the ith session and sends it to the first user on each
round. The second user may elect to terminate the session at any time by sending
the environment some y E {O, 1}*. The temporal decision function R' is satisfied in
an end-session state if the second user terminated the session by sending y = xi.

The second, more demanding goal is intended to model communication over the
internet. It considers the case where the users might wish to send messages in both
directions and the network is allowed to randomly drop and adversarially reorder
messages (note that we must assume some kind of restriction on the dropping of
messages to allow communication). In this case, although we could attempt to only
model the guarantees provided by the IP layer, and only ask that the users correctly
decode the messages that they actually receive, it will turn out that we will necessarily
achieve a more demanding goal, since we will need to verify that we used a working
protocol to send messages. (We postpone an in-depth discussion of these issues until
Section 9.3.) Thus, more akin to the guarantee provided by the TCP layer, our

251

goal will be the reliable delivery of messages. Along these lines, we also impose a
"polynomial" bound on the extent to which the delivery of messages may be delayed,
for use in calculating the timeout (i.e., half the "maximum RTT").

Definition 9.2 (Goal for unreliable datagrams). The goal of sending datagrams with

max-delay d(n) and failure probability 6(n) is a concurrent-session goal for communi-
cation in which the environment non-deterministically chooses a string xi E {0, 1} f

for the ith session, non-deterministically chooses either Alice or Bob, and sends xi to
the selected user at the beginning of the ith session; the other user is considered the
"addressee" of the message.

The environment will interpret messages from the server as indicating the con-
tents of datagrams it receives and the source and destination of the datagrams. For
each such datagram indicated by the server to the environment, independently with
probability 6(n), the environment responds with a message indicating "drop" and oth-
erwise, (with probability 1 - 6(n)) the environment non-deterministically responds
with an integer in the range [0, d(n) - 4] indicating how long the message should be
delayed - note that a message takes four rounds to traverse our network under normal
circumstances - respecting the restriction that it does not indicate that more than
one message should be delivered to either user on any given round; in particular, if
there are already messages scheduled to be delivered to the user on every round for
the next d(n) -4 rounds, then the environment also responds with a "drop" message. 1

If a user sends a nonempty message y to the environment such that some ith active
session with that user designated as the recipient has xi = y and i is the smallest
index with that user designated as the recipient, then the ith session is considered
terminated with success. Otherwise, if y is nonempty, then the temporal decision
function is unsatisfied for that round.

9.1.2 Model of network protocols and bounded changes

We will adopt a rather simple, weak model for our network protocols: roughly, we
assume that the protocols encode a single message into a single packet, and that this
encoding can be computed by a small-space algorithm that only makes a single pass
over the data. This choice of format is not arbitrary; rather, it is the strongest (most

general) natural candidate class of algorithms for which our basic tasks, described
in Section 9.2.1, are known to be achievable. In particular, we will rely on the
construction of deterministic extractors for extracting random bits from the outputs
of these functions when the function itself is unknown, and on the ability to efficiently
decide whether or not these functions are injective and easily invert them. We remark
that while the task of deterministic extraction seems plausible for stronger classes
of algorithms - a conditional construction of a deterministic extractor for general
polynomial-time functions was given by Trevisan and Vadhan [139] - it is easy to

'Precisely, for every history of communication (including the indication of dropped messages) up

to each current round and infinite choice of sessions, the environment's actual strategy has selected a
valid delivery time for the server's next message; this schedule is then modified in the actual strategy
by the random (independent) choice of whether or not to drop the message instead.

252

construct families of logspace functions (with two-way access to their inputs) where
efficiently inverting the function would imply that P = NP (e.g., the Boolean formula
evaluation function). It is also similarly easy to construct examples where efficiently
determining whether or not the pre-image of a function has size 1 or greater would
imply P = NP (e.g., computing the identity on unsatisfying assignments to a CNF
formula and mapping satisfying assignments to a canonical unsatisfying assignment).
Thus, it seems unlikely that much stronger classes of algorithms can be used for a
scheme resembling ours.

Fortunately, the class of algorithms we use is still strong enough to capture real
network protocols-an overview of a variety of such protocols is given in the textbook
by Peterson and Davie [112]. The protocols used at the IP layer, for example, do no
more than attach a header to the data to form a packet, and Ethernet protocols
similarly involve no more than headers and checksums (e.g., CRC involves computing
the modular reduction over a finite field). The class of algorithms and changes we use
can support such headers and simple checksums, as well as some counting operations
across packets.

We will use the following "program-independent" definition of space complexity

Definition 9.3 (Bits of state). We say that a user protocol U maintains s(n) bits
of state with respect to an environment strategy S a server strategy S, and an ef-
ficiently computable encoding map @ taking the configurations of U to {0, 1}* if in
any execution (E, U, S), the image of 0 is a subset of {0, 1}s(n(E)). If the protocol
maintains s(n) bits of state with respect to all server strategies, then we simply say
that it maintains s(n) bits of state.

The key point of this definition is that the encoding map bounds the size of the

configuration graph needed to simulate the machine in an execution. Otherwise, we
will follow the terminology introduced by Rabin and Scott [115] for relating finite
state machines to Turing machines, notably using their notions of one-way tapes and
end markers. The precise meaning of these terms is somewhat obvious, so we do not
bother to recall the definition.

Precisely, the class of protocols we consider is the following:

Definition 9.4 (Streaming protocols). A space-s(n) streaming protocol with maxi-
mum stretch C and maximum message size N or (s(n), C, N)-streaming protocol is
given by a deterministic interactive Turing machine with Boolean input and output
alphabets satisfying the following conditions:

1. Bounded state: Maintains s(n) bits of state on inputs of length at most n

2. One-way tape with end marker: Computes its message in a single pass over a
one-way input tape with end marker

3. Bounded stretch: Outputs a string of length at most CN on inputs of length at
most N

253

4. Injectivity: For any two "wait for reply" states a and o' and inputs x # x' of

length at most N, the message output from state o on input x differs from the

message output from state o' on input x'.

The fourth condition guarantees that a streaming protocol is injective with respect
to messages, and therefore that a complementary decoding protocol exists; it actually
turns out that the decoding can always be performed in time polynomial in 2s(n), as
we review in Section 9.2.1.

We will focus on s(n) = O(log n) in the sequel. Strictly speaking, we will work

with some maximum message size N that is assumed to be known to both users and
not much larger than the actual lengths of individual messages n that the users wish

to send per round (e.g., N ~~ 4n). N and n should be regarded as a "comparable
size" constants, and thus s is a "relatively small" constant. We will specify the actual

quantitative relationships we need later, but the issue will be that our running time
will only be a polynomial in 2'.

The modifications to these protocols will be modeled by the following class of
functions:

Definition 9.5 (Bounded modifications). A space-s'(n) bounded modification with

stretch C' and program length t(n) of a streaming protocol U or (f(n), s'(n),C')-
bounded modification of U f is a function of program length £(n) computable by a

deterministic Turing machine over Boolean input and output alphabets with a one-
way input tape with end marker, satisfying the following constraints:

1. Bounded state: Maintains s'(n) bits of state on inputs of length up to n

2. Bounded stretch: Outputs a string of length at most C'N on inputs of length
at most N

3. Injectivity: For any two "wait for reply" states o and o' of U and inputs x # x'

of length at most N (the maximum length for U), for the messages m output
by U from state o- on input x and the message m' output by U from state or'

on input x', f (m) # f (m').

Note, in particular, given a (s(n), C, N)-streaming protocol U and a (f(n), s'(n), C')-
bounded modification f of U, the protocol f(U) that applies f to the output of U is
a (s(n) + s'(Cn), C - C', N)-streaming protocol.

We are now ready to describe the class of servers we are prepared to work with.
We begin by describing a class of "reliable" servers for our reliable communication
goal, described in Definition 9.1:

Definition 9.6 (Reliable servers under bounded modifications). For a given stream-

ing protocol U, the class of reliable servers using (f(n), s'(n), C')-bounded modifica-

tions to U, is the following class of servers: for each streaming protocol U' = f(U)

for some (f(n), s'(n), C')-bounded modification f of U, there is a server S(U') in the

class that, whenever it receives a message from the first user that is an output of U',
it forwards that message to the second user on the next round, and otherwise does

nothing (i.e., drops the message).

254

Much as with s(n) earlier, we will also focus on s'(n), f(n) = O(log n), where ef-

fectively this means that s' and f should be taken to be "small" relative to n, and our

running time will depend polynomially on 2"' and 2e observing that a bounded mod-

ification f could concatenate its input with a password of length E(n) - 0(1), S(f(U))

is a password-protected version of S(U), so the' class of servers using (e(n), s'(n), C')-
bounded modifications to U includes all password-prepending versions of S(U) with

passwords of length L(n) - 0(1). Since furthermore, the goal is (t(n), 2-"t(n))-
nontrivial, a variant of Theorem 4.4 shows that such an exponential dependence

on f is unavoidable.
Before moving on, we note that our approach can also capture networks employing

completely unknown protocols, as long as the protocol is sufficiently simple:

Example 9.7 (Bounded modifications of the identity function). For the streaming

protocol U, that maintains no state across inputs, and simply computes the identity

function, the class of protocols obtained by (e(n), s'(n), C')-bounded modifications of

U, is just the class of (stateless) protocols that compute injective encodings of their

inputs that stretch n bits to at most C'n bits, and that can be computed in space s'(n)

with one-way access to their input by programs of length at most r(n). In particular,
the class of reliable servers using (f(n), s'(n), C')-bounded modifications to U, is just

the class of servers using such short and small-space single-pass encodings.

We now turn to give a definition of the class of servers we intend to work with as our

model of unreliable networks in the unreliable communication goal of Definition 9.2.
To this end, we need the servers to drop or delay even valid messages, as specified by

the environment. This goal also introduced two-way communication over the goal of

Definition 9.1; to reflect the fact that packets with different destinations have different

headers, we will actually define our server with respect to two "protocols," one for

sending messages to the first user, and one for sending messages to the second user.

Of course, in generalizing to more users, we would like a single protocol that any

ith user can use, which takes the jth user's address as a second input to compute a

packet that will be delivered to the jth user. One would hope that this would result

in greater efficiency, since a user only has to learn a single protocol to communicate
with all other users in the network, and we will discuss approaches to generalizing

our schemes later, in Section 9.4. In any case, for the time being, we only consider

two users, and thus there is no harm in simply modeling the protocols as depending
non-uniformly on the addressee.

Definition 9.8 (Unreliable servers under bounded modifications). For a given pair of

streaming protocols U1 and U2, the class of unreliable servers using (e(n), s'(n), C')-

bounded modifications to U1 and U2 is the following class of servers. For each pair

of (f (n), s'(n), C')-bounded modifications to U1 and U2, fi and f2, there is a server

S(fi(U1), f 2 (U2)) with the following behavior.
Whenever it receives a message m from user i such that m is the output of f (U) on

some input x from some state o, it records (m, x, i, j) and sends a message indicating

that it received a message with contents x from user i addressed to user j to the

environment; note that the server might indicate receipt of up to two such messages

255

per round, one from the first user and one from the second. If the environment
responds that this message should be delayed for k rounds for some integer k, then
the server augments the record (m, x, i, j) with a counter (m, x, i, j, k), decrementing
k on each round, and finally sending m to user j when k reaches 0. If, on the other

hand, the environment responds that the message should be dropped, then the record

(mI, x, i, j) is deleted. If it receives a message that is neither an output of fi(U1) nor
an output of f 2 (U2), then it is immediately dropped.

9.2 An end-user protocol for decoding messages
sent under a modified network protocol

We now show how to address the key problem in adapting to changes to the network's
protocol: verifiably decoding a message sent under a new protocol. In the exposition

of our scheme, we assume for the moment that Alice knows the new protocol but

Bob does not, and that the network is reliable; we will postpone these issues until

Section 9.3. Thus, the only problem we face is how Bob can decode Alice's messages.
As usual, the crux of the problem is distinguishing a correct decoding from in-

correct ones; given a method for verifying correctness, we can complete the scheme

by enumerating encodings. Our scheme for verification is extremely simple. At a

high level, Alice first sends a random message to Bob, which they use to agree on a
member of a pairwise-independent hash family, by applying a deterministic extractor

to the encoding. Subsequently, Alice tags each message with its hash value under

the common function; Bob can then verify that he decodes the correct message by
comparing the tag he decodes with the hash value of the message he decodes. As a

consequence of pairwise independence, the hash function will only agree with the tag
on an incorrect decoding of the message with exponentially small probability.

9.2.1 Algorithms for deterministic extractors and inverting
transducers

Recall that our protocols are given by interactive Turing machines that maintain
s(n) bits of state and compute their messages by making a single pass over a one-way
input tape with an end marker. For given input and output lengths n and m, or fixed
maximum input length N, we can obtain two different corresponding non-uniform
representations of the functions computed by our protocol.

Fixed maximum input length N: 2s(N)-state transducer representation.
We recall that a finite state transducer is given by

1. An input alphabet A and an output alphabet B

2. A set of states Q, with initial state q_ and a set of accepting states Q+

3. A transition relation R C Q x A U {E} x B U {e} x Q where E denotes the empty
word.

256

The natural interpretation of the transition relation is as a labeled directed graph on
vertex set Q, where each edge has one input label from A U f{} and one output label
from B U {E. Given an input word x C A* (where the * is, of course, the Kleene star,
denoting any finite length string of symbols from A), the set of outputs associated
with x by the transducer is precisely the set of words y E B* that can be obtained

by concatenating the output labels on any path in the transducer from q_ to Q+ for
which the input labels are the symbols of x in order, with any number of occurrences
of E input labels in between.

For a given protocol and maximum input length N, the corresponding finite state

transducer will have the 2 s(N) states our protocol uses on inputs up to length N as its
state set, and the transition relation will be given by our Turing machine's transition
function in the natural way; we will also include the "end of input" marker transitions
from each state as transitions with E input labels. We will generally specify an initial
state (it may be a predetermined initial configuration or one of the "wait for reply"
states), and Q+ will be the set of "wait for reply" states. It is easily verified that, on
inputs of length up to N, the finite state transducer we have just described associates
the output string produced by our protocol with each input, and can be constructed
from the interactive Turing machine description of the protocol in time polynomial
in 2 s(N) and N.

Since our interactive Turing machine is deterministic, actually, the finite state
transducer has at most one successful path for each input label, so the finite state
transducer is said to be unambiguous, which of course means that it computes a
(partial) function. All of the background and results we will require on finite-state
transducers are covered by Sakarovitch [124].

Given input length n and output length m: width-2s(n) branching program
representation. For our purposes, a width-w branching program is a directed
acyclic graph in which the vertices are arranged in layers of w vertices each, in which
each edge has an input label from A U {E} and an output label from B U {} for

alphabets A and B, and each edge from a vertex in some ith layer with an output
label in B points to a vertex in the (i+ 1)th layer, while vertices in any ith layer with
an output label of E point to another vertex in the ith layer.2 There is a designated
starting state in the first layer. On a given input word x E A', an output y E B"m

is produced by concatenating the output labels on a path in our graph for which the
nonempty input labels correspond to the symbols of x in order.

The branching program associated with our protocol on input length n and output
length m has m + 1 layers, in which each layer has a copy of the 2'(n) states of the
protocol required by inputs of length n; in accordance with our convention above, for

each state in the ith layer and transition from that state with output label E specified

by the protocol's transition function, the edge points to the corresponding next state
in the same layer; otherwise, the transition points to the corresponding next state in

2The usual convention is that all edges originating in the ith layer are directed to vertices in the

(i+ 1)th layer. We can obtain such a representation if we allow input labels from A* and "collapse"
paths of edges with e outputs to the final edge that crosses to the (i + 1)th layer-such an edge must

exist by the assumption that the graph is acyclic.

257

the next layer. It is easy to see that, for any desired initial state of our protocol (i.e.,
either its initial configuration or one of its "wait for reply" configurations) for which,
on input x E {0, 1}", our protocol would produce output y E {0, 1}m, the branching
program also produces y. Again, it is easily seen that we can efficiently construct the

branching program in time polynomial in 2 s(n), n, and m.

The roles of uniform representations of functions versus their non-uniform
representations Note that, although our algorithms will all operate on these non-

uniform representations of our protocols, we still prefer to think of our protocols as

being described by a "program," i.e., a uniform representation, since ultimately our
scheme will resort to enumerating programs, rather than enumerating the non-uniform

representations. We could do the latter at the cost of some blow-up (our running

time will depend exponentially on the number of bits of state used by our protocols
anyway), but we still prefer to separate the dependence on the space complexity from

the dependence on the program length in our enumeration.

Deterministic extractors for small-space sources

We first fix some terminology and notation. Recall that A(X, Y) denotes the statisti-
cal distance between two distributions X and Y, and that a distribution X is said to

have min-entropy k if no element in its support occurs with probability greater than

2 -k*. We now recall the definition of a deterministic extractor:

Definition 9.9 (Deterministic extractor). For a class of sources X, a function Ext:

{0, 1}" -+ {0, 1} is a c-deterministic extractor if for every X E X, A(Um, Ext(X)) <
E.

Crucially for our application, Ext should work given only a sample from some

X E X, without needing to know which source X E X its inputs are drawn from. This
will allow us to extract near-perfect randomness from a packet of random bits without

knowing the encoding format, given that the protocol is a (s(n), C, N)-streaming

protocol. This is because when such protocols are used to encode randomly chosen
inputs, the resulting distribution is essentially a space-s(n) source, as described in
the work of Kamp et al. [82]:

Definition 9.10 (Space-s(n) source). A space-s(n) source on {0, 1}m is given by a
layered directed acyclic graph with m + 1 layers in which the layers are numbered

0,. . . , m, each layer has at most 2 s(n) vertices, each edge crosses from some layer i to a
layer i+1, and there is a designated start vertex in layer 0. The edges have labels (p, b)

for p E [0,1] and b E {0,1}, satisfying that the edges ei,..., ek leaving any vertex in

the graph have labels (pi, bi),... , (Pk, bk) respectively, satisfying _ pi
A space-s(n) source on {0, 1}m is sampled by taking a random walk starting from

the designated start vertex in layer 0, and choosing independently at each step among

the outgoing edges from a given vertex with labels (pi, bi),... , (pk, bk), choosing the

jth edge with probability pj, and concatenating the labels bi on the chosen edges. The

distribution of the source is the distribution on {0, 1}m of outputs of this sampling
procedure.

258

The only difference between the packets produced by our protocols on random
inputs and the space-s(n) sources of Kamp et al. is that our packets may be of
variable length. This technicality is easily dealt with by the following lemma:

Lemma 9.11 ((s(n), C, N)-streaming protocols on random inputs give space-s(n) + 1
sources.). Let X be the output distribution of a (s(n), C, N)-streaming protocol run

from its initial state on a random input of length n < N, and let pad : {0, 1}<cn

{0, 1}cn+1 be given by x F- x1O* for the unique member of x1O* of length Cn + 1.
Then pad(X) is the distribution of a space-s(n) + 1 source on Cn + 1 bits with total

entropy n.

Proof Consider the branching program representation of our protocol on inputs of
length n and outputs of length up to Cn. We add an additional state to each layer
that outputs 0 on input label e and transitions to the next layer, and add an edge
with input label E and output label 1 transitioning from each "wait for reply" state
to the new state in the next layer. It is easy to see that this branching program
computes the result of applying f to the output of our protocol, and has at most
2n + 1 states per layer.

We now obtain the space-s(n) +I source as follows: we map the labels on the edges
with inputs from {0, 1} to edges with probability 1/2, and map the labels on the edges
with input label e to edges with probability 1, and collapse paths on these edges within
a layer to the final edge crossing to the next layer, so that all edges cross from one
layer to the next. Now, since the protocol is computed by a deterministic machine
and each bit of the protocol's input is 0 or 1 with probability 1/2 independently,
it is easily verified that a path through this space-s(n) + 1 source has the same
probability as the corresponding path through the branching program representation
of our protocol on a random input of length n; since the output labels are the same,
they therefore also produce the same distribution on Cn + 1. In particular, since the
protocol computes an injective map on inputs of length n and f is injective on the
outputs of the protocol, the source also has entropy n. M

The work of Kamp et al. produced a variety of deterministic extractors for these
small-space sources, and we will use their result for constant entropy rate, paraphrased
slightly for convenience:

Theorem 9.12 (Deterministic extractor for small-space sources with constant en-
tropy rate [82]). There is a function s(n) = O(n) such that if X is a class of space-
s(n) sources on {0, 1}N with min-entropy n for N < Cn for some constant C, then
for any constant 6 G (0,1), there is a polynomial-time computable E-deterministic
extractor Ext : {0, I}N * {0, i forM = (1 - 6)n and -(n/ log n).

Inverses of single-pass logspace computable functions

Given an space-bounded interactive Turing machine and an input length bound, there
are two operations our scheme requires. First, we must be able to decide whether or
not the Turing machine computes a valid encoding of its inputs, i.e., whether or not

259

it is injective in the appropriate sense. Second, given the interactive Turing machine

representation of our protocol, we need to efficiently invert the function to decode the

message. Both of these can be efficiently carried out on the finite-state transducer

representation of our protocols, as we review next. For more background and details,
the reader is encouraged to consult the book by Sakarovitch [124].

Computing inverses of an injective finite-state transducer. Recall that our

finite-state transducer representation associates, in general, a set of outputs with each

given input; more generally, for input alphabet A and output alphabet B, it defines

a relation T C A* x B*. Thus, it is easily seen that given a finite-state transducer

computing a function f, a finite-state transducer with the same size computing the

the pre-image of that function is obtained by exchanging the input and output labels

on each edge (and thus also swapping the input and output alphabets). Of course,
the function f was injective if and only if its pre-image is a partial function. In this

case, to obtain f-1(y) for some given y E B*, we need only find a valid path from the

start state to some accept state where the "input" labels for the pre-image transducer

are the symbols of y, and concatenate the "output" labels.

Proposition 9.13 (Computing inverses of a (s(n), C, N)-streaming protocol). Given

y E {0, 1}m and a (s(n), C, N)-streaming protocol, there is an algorithm running in

time O(m 2 . 2 2s(N)) that computes the input x on which the protocol outputs y when

one exists.

Proof Implicitly, the algorithm is a dynamic programming algorithm on the branch-

ing program representation of the protocol. For i = 0, .. . , m, we maintain a list of the

possible configurations the protocol could be in and the input word that brings the

protocol from one of its initial configurations to the current configuration, or mark

it as "overloaded," meaning more than one input generates the i symbol prefix and

reaches this configuration.
To compute the (i + 1)th list from the ith, for each state in the current list, we

make two passes. On the first pass, we consider the transitions from configurations in

the current list in which the output label matches yi±1, and we mark configurations of
the machine in the next list by concatenating the input word with the input label on

that transition; if some word is already marked with another input word, we change
the mark to "overloaded," and if the configuration in the ith list is marked with

"overloaded," then we mark the configuration in the next list with "overloaded" as

well. On the second pass, we consider the new list of configurations, and perform

a breadth-first search on the transitions with output label E from the configurations
marked with an input word; again, we mark the new configurations with an input

word obtained by concatenating the source node's input word with the input label

of the transition connecting them, unless the source was marked "overloaded" or the

configuration is already marked with a different input word, in which case we (again)

mark it as "overloaded." Since the comparisons and marking can be done in 0(m)

time, these two passes each take O(m22s(N)) time.
It is easily verified by induction that the input words in each ith list constructed in

this way do take the protocol from one of its initial states to the configurations in the

260

list, producing output yi ... yi. Thus, if i = m, then the input words marking each of
the "wait for reply" configurations are the input words that could have produced y
from one of the protocol's initial configurations. By definition, therefore, there must
be at most one such label x, which must have been the input. U

We also note that the algorithm we just presented can also be used to detect a
violation of injectivity at a single output, by outputting "overloaded" if any "wait for
reply" state has an "overloaded" mark. In the next section, we will recall an efficient
algorithm that checks that a function is injective up to a given input length.

Deciding injectivity of a finite-state transducer. The key property possessed
by our streaming protocols is that they are injective with respect to inputs of length
up to N, and bounded modifications are not much more than functions that respect
this property. Our scheme for adapting to bounded modifications will involve enu-
merating candidate functions, and it will be essential to only use functions that are
at least injective on the inputs we actually see-in this regard, the modification to
the algorithm presented in Proposition 9.13 we noted above would actually suffice. It
will simplify the analysis and reduce the number of faulty candidates we try, however,
if we simply test that the protocol is injective (up to the maximum input length).

Perhaps surprisingly, we can efficiently decide whether or not our protocol is in-
jective by considering the finite-state transducer for the pre-image, which we saw was
itself easily obtained from the finite-state transducer representation of the function.
The function is injective if and only if the pre-image finite-state transducer computes
a partial function; Schiitzenberger [126] first noticed that this property was decid-
able, and the first polynomial-time algorithm was given by Gurari and Ibarra [74].
The running time of Gurari and Ibarra's algorithm was still somewhat impractical,
though; an improved algorithm has since been given by Beal et al. [19]:

Theorem 9.14 (Functionality of finite-state transducers is efficiently decidable [19]).
Given an n-state transducer with m > n transitions and maximum transition label
size K, there is an algorithm that decides whether or not the finite-state transducer
computes a partial function in time O(Km4).

In summary, we obtain the following corollary:

Corollary 9.15 (Injectivity is efficiently decidable). There is an algorithm to decide
whether or not a space-s(n) interactive Turing machine is injective from its "wait for
reply" states on inputs of length up to N in time Q(2 4s(N)).

Proof We first obtain the finite-state transducer representation of our machine, and
swap the input and output labels to obtain the "pre-image transducer." We then
give the finite-state transducer a new start state with (e, e) transitions to each of the
states corresponding to a "wait for reply" configuration of our original machine. We
can then apply the algorithm from Theorem 9.14 to this finite-state transducer. The

3 The background necessary for these older works is given by Berstel [25], which was in many
cases re-worked and improved by Sakarovitch [124] who, again, presents all of these results.

261

running time is O(2 4s(N)) since each of the 2 s(N) old states had at most two outgo-
ing transitions, and we added at most another 2 s(N) transitions. The result decides
whether or not our interactive Turing machine satisfied the injectivity property since

it was injective if and only if the pre-image was a partial function, where we note that

this is precisely the relation computed by the pre-image transducer. U

9.2.2 The user decoding strategy and its implementation

Now that we have recalled the algorithms for achieving the basic tasks that the user

will employ, we are nearly ready to describe the decoding strategy. The basic strategy
is that the messages will be tagged with a hash value, permitting us to verify that

we decoded the correct message, since the hash value to different message cannot be

constructed using a given message's hash value. Such information-theoretically secure
signature schemes were first proposed by Gilbert, MacWilliams, and Sloane [60], and
the explicit application of hashing as an "authentication" scheme was first proposed
by Wegman and Carter [146].4 The property of the hash function that will guarantee
that the hash values are hard to construct is pairwise independence. Recall:

Definition 9.16 (Pairwise independent hash family [38]). A family of functions H =

{h : A -> B} is said to be pairwise independent if for every distinct x, x' E A and

every pair y, y' E B,

1
Pr [h(x) = y and h(x') = y'] = 2

where the probability is over a uniformly random choice of h E N.

In particular, it is easily verified that the following standard construction is a

pairwise independent hash family with 2 [log q]-bit descriptions:

Construction 9.17 (Finite field hash family). Let Fq be a finite field of size q. Let
H be the family of functions ha,b : F -4 F, given by ha,b(X)= a -x + b for a, b E Fq.

We will use q = 2 '; thus, there is a natural map between members of F and binary
strings of length m, and the members of our hash family have 2m-bit representations.
Likewise, for strings of length n < m, we can easily embed the string of length n in,
say, the first n bits of a string of length m, and use the previous map to obtain an
element of Eq.

The user decoding strategy

Now, the scheme is as follows, for n < m and 2m < N:

4 Although the actual "improved" scheme they suggest does not provide the level of security we

need for our purposes-they suggest a way to eliminate the dependence on JAl in the specification

of a hash family at the cost of a worse dependence on IBI, where we need IBI > |Al. Thus, for our

purposes, their original scheme [38] seems to be the most efficient.

262

Construction 9.18 (User decoding strategy). Fix a (s(n), C, N)-streaming protocol

U and a deterministic extractor Ext for space-s (n) + s'(n) +1 sources on {0, 1}C-C'-N+1

with entropy N, extracting 6N = 2m bits for 6 E (0, 1). Let pad :{0, 1}* -+

{0, }C-C'-N+1 be the padding function described in Lemma 9.11. Fix an irreducible

polynomial of degree m, and thus a representation of the hash functions over F2m

described in Construction 9.17.
Let any (e(n), s'(n), C')-bounded modification f to U be given. Let U' = f(U)

be the modified protocol, and let S(U') be the reliable server using protocol U' (cf.
Definition 9.6). We assume that Alice knows U'.

At the beginning of the first session, Alice and Bob perform the following initial-

ization sub-protocol:

1. Alice chooses r E {0, 1}N uniformly at random, and computes (a, b) E {0, 1}m x
{0, 1}m by (a, b) = (Ext o pad)(U'(r)).

2. Alice sends mo = U'(r) to the server.

3. Bob receives mo from the server, and computes (a, b) = (Ext o pad)(mo).

Across the sessions, Bob uses an efficient enumeration (in terms of the program

lengths) of the space-s'(n) bounded Turing machines with one-way access to their

input tape with end markers, and enumerates the programs of length up to e(n).

We will let g denote the "current" member in the enumeration. Before the first

session, g is initialized to the first program such that g(U) satisfies the streaming

protocol injectivity property up to input length N (cf. Definition 9.4). We will let ha,b

denote the member of the hash family described in Construction 9.17 corresponding

to a, b E {0, 1}m.
Now, each ith session, i = 1, 2,... proceeds as follows:

1. Alice receives xi E {0, 1}" from the environment.

2. Alice sends mi = U'(xi, ha,b(xi)) to the server.

3. Bob receives mi from the server.

4. While either g(U)- 1 (mi) has no pre-image of length n + m or g(U)(mi) =

(x, y) E {0, 1}" x {0, 1}m such that y 7L ha,b(r), Bob sets g to the next program
such that g(U) is injective up to length N.

5. Bob sends x E {0, 1}" such that g(U) 1 (mi) = (x, y) to the environment.

The user strategy's running time

Before we move on, we will note that the user strategy is efficient: that is, in each

session, the user strategies have an implementation running in time polynomial in

n, N, m, 24"), 2 s(N), and 2s'(N). (Thus, polynomial time in n when f(n), s(n),

and s'(n) are O(log n) and N and m are bounded by polynomials in n.) We will

separately consider the time spent on the initialization sub-protocol, the time spent

263

by Bob on the enumeration, and the time spent to encode and decode messages per

session. A randomized algorithm can be used by Alice and Bob to find and agree on

an irreducible polynomial of degree m in expected time O(m 2 +o(l) log m) [21, 16, 133].

The running time of the initialization sub-protocol. The key computational

step performed in the initialization sub-protocol is computing Ext o pad. The extractor
we use, given in Theorem 9.12, was given to be computable in polynomial time (in N);
likewise, it is easily verified that the padding function pad described in Lemma 9.11
can be computed in time C - C' - N + 1 = 0(N). The remaining tasks are easy: a

(s(n)+s'(n), C- C', N)-streaming protocol encodes N bits in at most 2 s(N)+s'(N) steps.

Thus, the running time in this sub-protocol is polynomial in N, 2s(N), and 2 s'(N)

The cost of encoding and decoding messages. As we noted previously, en-

coding is efficient: we encode n + m < N bits in time 2 s(N)+s'(N). Likewise, as a

consequence of Proposition 9.13, Bob can find a length m + n inverse of g(U) in

time O(m2 1 222(s(N)+s'(N))). Since the multiplication and reduction of polynomials of

degree m can be trivially done in time O(m 2), our hash functions can be evaluated
in time O(m 2), and we find that the time spent computing an inverse dominates
Bob's running time. Therefore, except for the time Bob spends searching for the

next candidate modification g in his enumeration, his running time for each round is

O(m2n222s(N)22s'(N)). Alice, on the other hand, runs for at most 2 s(N)+s'(N) steps on

every round.

The cost of the enumeration. We first note that there are at most 2 (n) programs

of length f(n), and we have assumed that the enumeration itself is efficient (in f(n)).

Now, given the (s(n), C, N)-streaming protocol U, and some length f(n) program g,
Corollary 9.15 tells us that we can decide whether or not the composed program g(U)
satisfies the injectivity conditions of a (s(n) + s'(n), C - C', N)-streaming protocol
in time O(2 4(s(N)+s'(N))). We will also count the time spent by incorrect protocols
failing the hash check in the time for the enumeration-where we recall that our hash

functions can be evaluated in time O(m 2), and the composed programs g(U) can

be inverted in time O(m2n222(s(N)+s'(N))), which dominates O(m 2). Thus, the total
running time spent on the enumeration over all phases is at most

0 (2'(n) (poly(f(n)) + m2n 2 22 (s(N)+s'(N)) + 2 4(s(N)+s'(N))

which is a polynomial in m, n, 2 (n), 2 s(, and 2s'(N)

In particular, since the total running time Bob spends on the enumeration is

bounded, in every execution, for sufficiently large i his running time per round

is bounded by the cost to invert g(U) and evaluate the hash function, which is

O(m2n222(s(N)+s'(N)))

264

9.2.3 Analysis of the user decoding strategy

We will now argue that when the users employ the strategy described in Construc-

tion 9.18, they are able to use the network as a channel with high probability, as per
Definition 9.1, with the class of reliable servers described in Definition 9.6. Precisely,
we prove the following theorem:

Theorem 9.19 (The user strategy achieves the goal of streaming messages with

reliable servers). Let m < N/2 and m > n + s(N) + f(N) + log { with e > 2co(N) for

some eo(N) = 2 -(NI og3 N), and let any (s(n), C, N)-streaming protocol U be given.

Then the user decoding strategy described in Construction 9.18 robustly achieves the

goal of streaming messages with zero errors with probability 1-E from the user's initial

states with the class of reliable servers using (f (n), s'(n), C')-bounded modification to

U.

Proof Given N, s(N) + s'(N), C, and C', the function co(N) is the error of the

extractors claimed in Theorem 9.12.

Selecting a hash function: the initialization sub-protocol. Note that since

MO = U'(r) is in the range of the protocol U' user by the server, the server forwards

mo to Bob; then, since the extractor is deterministic, Alice and Bob obtain the

same pair of strings (a, b) E {0, 1}m x {O, 11m at the end of the initialization sub-

protocol. Thus, since they have agreed on a representation of the elements of F2 -,

after the initialization sub-protocol, they can both evaluate the same hash function
ha,b : {o, 1}M -+ {o, 1}m.

We will ultimately argue that if Alice and Bob had a uniformly chosen hash
function ha,b after the initialization sub-protocol, then the probability that Bob ever

outputs a string that is not x in session i under the strategy described in Construc-

tion 9.18 is at most /2. Since Lemma 9.11 guarantees that pad(mo) is a sample from

a space-s(N) + s'(N) + 1 source with entropy N, we can apply Theorem 9.12 to find

that the output of the extractor used in the initialization sub-protocol is co(N)-close
to uniform and co(N) < c/2, the probability of an error ever occurring is then at most
e, as needed.

We now proceed to the main claim.

Claim 9.20 (Pairwise independence implies first errors detected). Fix a (s(n), C, N)-
streaming protocol U, a bounded modification of U, U', and a deterministic function
g such that g(U) is injective with respect to the "wait for reply" states of U. Then,
in any execution in which the users follow the strategy in Construction 9.18 while

Bob uses g as his current function in the enumeration, the probability that in the

first round where g(U) 1 (mi) = (x', y') such that (x', y') # (xi, ha,b(xi)), (x', y') also

satisfy y' = ha,b(X') is at most 1 - .2-4n)~1.

Proof We first note that given its current configuration, U' computes a deterministic
function of its input; thus, mi is uniquely determined by the s(N)-bit configuration

of U', -, and its input (xi, yi). Similarly, since g(U) is injective with respect to inputs

265

of length up to N > m + n, g(U)- 1 specifies at most one (x', y') on input mi. Thus,

(x', y') is uniquely specified by (xi, yi) and o, where y2 = ha,b(Xi). Now, by pairwise
independence of ha,b,

1
Pr [y' = ha,b(x')|yi = ha,b(xi), U' sent xi from state o] ;

(a,b)E{O,1}m x {o,11m

where, by a union bound over the 2 s(N) possible configurations of U' and 2n+1 - I

possible messages xi of length up to n, we find that y' = ha,b(X') with probability at

most 2 n+1+s(N)-m < 2 -(e(N)+log(2/E)) *

The theorem will now follow easily. We note that since f is a (f(n), s'(n), C')-

bounded modification of U, f appears in Bob's enumeration of the programs of length

up to f(n). Let j* be the index of f in the enumeration. Now, let session ij be the

session in which Bob begins using the jth program for g. It is clear that if ij. < 00,

then since Alice sends mi in the image of (xi, ha,b(Xi)) under U' and Bob computes

f (U)-I(mi) = U'1 (mi) = (xi, ha,b(Xi)), Bob will make no errors after session ij. with

probability 1. We turn to bounding the probability of errors in all earlier sessions:

Claim 9.21. For every j < j*, there are no errors in sessions ij,..., ij+1 - 1 with

probability 1 - c24")-1.

Proof Note first that we may assume that the jth function is injective with respect

to the outputs of U on messages of length up to N, since otherwise Bob will detect

this using the algorithm described in Corollary 9.15 and immediately move on to the

(j + 1)th program, so ij = ij+1-

Now, given that the jth function is injective, if from the current configuration

of U' and environment strategy {xi E {0,1} "} , it happens that g(U)-1(m) =

(Xi, ha,b(xi)) for every i > ij, then there are no errors in sessions i > ii, and again the

claim holds. Thus, suppose that i* is the first session in which Alice sends some mi.

such that g(U) 1 (mi.) # (xi, ha,b(Xi)). Claim 9.20 then shows that with probability

at least 1 - e2-e(n)-1, for (x', y') = g(U) (mi-), y' # ha,b(x'), and thus Bob switches

to the (j + 1)th function in session i*. Since i* was the first such session, there were

no errors in sessions ifj,. . . , i* - 1, and the claim follows. M

Therefore, by a union bound over all j < j* < 2 (n), there are no errors in

the sessions up to ij* with probability 1 - 2 . 2e(n) 1 - -, and if ij* < 00,

likewise there are no errors in any later sessions with probability 1. Thus, when ha,b

is uniformly chosen, the probability that the users ever make an error is at most e/2,
which was all that we needed to show. U

On the error rate and bits per message

Before moving on, we will make a few remarks about the relationships among the

parameters required to apply Theorem 9.19 to an efficient implementation of Con-

struction 9.18. First, we note that the main constraints on the error achievable are the

266

error introduced by the extractor (requiring e > eo(N) - 2 -Q(N/logsN)), and the re-

quirement that c > 2-(N/2-n-s(N)-f(N))+1 so that a suitable choice of m exists. For ex-

ample, if N = 4n as suggested earlier, then for s(n), r(n) = O(log n) (as mandated by
time-efficiency concerns), the second constraint only specifies C > 2-(n-s(n)-f(n))+0(1),
while the first constraint requires E > 2 ~Q(/ log3 "), so the first constraint is the limiting

factor on the error probability bound we can achieve with this scheme. Thus, an im-

provement in the construction of deterministic extractors over that of Kamp et al. [82]
would translate directly into an improvement in the achievable error probability.

Second, we note that the scheme effectively reduces the maximum message size

per session from N to n. Thus, if N = 4n, we only get N/4 bits per message sent
across the network; effectively, this means that our maximum bit-rate is reduced by a
factor of four. Since our scheme demands N > 2m > 2n, our scheme cannot achieve

a rate better than N/2. The limiting factors here are again two-fold: first, specifying
a hash function takes 2m bits, which necessitates 2m < N, and second, we must

send the hash value together with a message, which then imposes the requirement
that m + n < N. Although we cannot hope to do too much better with the kinds of

"information-theoretic" techniques we use - the union bound over messages of length

up to n requires m > n - one could hope to circumvent both of these problems by
exploiting the computational limitations of the protocols. That is, we only need a

(one-time) signing function s for which we can bound

Pr[Ex E {0, 1}9 : g(U) 1 (U'(X, s(x))) = (X', y') s.t. x' f x and y' = s(x')]

where g(U)- 1 and U' are both polynomial-time functions, and furthermore only have

s(N) bits of information, e.g., about other pairs (x", s(x")). Thus, we could make
do with either a signature scheme s that is secure against the usual polynomial-time

adversaries, or else one that is secure in the bounded-storage model introduced by
Maurer [103]. In fact, a signature scheme with the level of security we desire for the

bounded-storage model was proposed by Ding and Rabin [52], but unfortunately their

signatures are likewise at least n bits for n bit messages. It turns out, though, that

there are other reasons we may wish to introduce signature schemes using stronger
assumptions, as we will discuss in Section 9.4, and in this case we may also achieve a
better rate by using these more powerful signatures.

On the other hand, if the number of messages sent by the users is relatively small

(subexponential in N) rather than an infinite stream as we have considered here, then
we might also hope to do better by using a hash function with m logarithmic in the
number of messages, which would then be sublinear in N, giving us a rate closer to
1. The correctness of the scheme would then follow from a union bound over the

sequence of messages actually sent (note that a uniformly chosen hash function works

equally well for any such sequence of messages) instead of a union bound over all

possible messages. Such a scheme could even cope with a case where the number of

messages sent exceeds our initial bound by periodically refreshing the hash function,
incrementing m each time to keep the total failure probability bounded. We could

repeat this until m reaches N/3 bits, at which point we would no longer be able
to send a new hash function together with a signature under the old hash function.

267

Of course, in this case, the rate would also degrade each time we chose a new hash

function, and the resulting scheme would be somewhat more complicated since we

would need to track the number of messages sent and introduce a mechanism for

refreshing the hash function. We leave such details to an interested reader.

9.3 End-to-end protocol for communication across
an unreliable network with a modified protocol

In Section 9.2, we saw how the goal of streaming messages (Definition 9.1) could
be achieved, even though the recipient of the messages did not know the message
format. Although the model considered there is a fair model of a LAN, we are much
more interested in whether our approach could be adapted to cope with changes to

the internet protocols. We have already noted that our model of single-pass logspace
computable protocols reasonably captures the protocols used at the IP layer, and
likewise, the IPv4 to IPv6 transformation can be performed by switching short headers

(again, overviews of IP and other protocols are given by Peterson and Davie [112]),
and is thus also captured by our model of "bounded changes." We now turn to

adapting our protocol for the goal of streaming messages in a reliable FIFO network
to a protocol accomplishing the same task as achieved by the IP layer, "sending
datagrams across an unreliable network." Actually, for reasons explained below, we

will go a little further out of necessity, and provide reliable transmission across an
unreliable network, as modeled in Definition 9.2.

Unfortunately, we can't immediately plug in our work from the previous section
for several reasons. The first reason is that the two users need to agree on a hash
function in their first message, which could be reordered or dropped by the server
in this setting. In a sense, overcoming this problem amounts to showing how the
initial handshake in TCP can be accomplished without initially needing to know how

to decode messages, and how this can provide our hash function as an output. The
second problem is that since we now assume that neither user knows the network
protocol, the recipient must send acknowledgements so that the sender can verify
that its messages were received-thus, leading us inevitably to providing a reliable
delivery guarantee similar to that provided by TCP. The third problem is that since
the network is unreliable, a single failure to send a message should not "disqualify"
a protocol-even good protocols can fail sometimes, so a plain enumeration of the
protocols will not work; although we might be able to guarantee that we can always
send messages eventually by using an enumeration in which the protocols appear in-

finitely often, we wouldn't expect the performance of such a scheme to be satisfactory.
Instead, we will use the multiplicative weights scheme of Auer et al. [10] to learn the
most effective protocol, which will allow us to maintain a good rate of transmission,
even in the face of failures.

Of course, since our original goal was merely to show how we can cope with
changes to the protocol used at the IP layer, we only show how to modify the aspects
of TCP that are relevant to this end. Thus, we don't address all of the features of

268

TCP here, notably excluding the closing of connections, estimating the round-trip
time, and congestion control, though there should be no problem incorporating such
features into the protocol we present.

9.3.1 A review of the key sub-protocols of TCP

We reiterate that our ability to construct a reliable universal user protocol hinges on
our ability to verify that our goals have been achieved; therefore, the groundwork for

our protocol lies in the existing protocols for reliable communication over an unreliable
network, that is, TCP as introduced by Cerf and Kahn [39] and subsequently refined
by Postel et al. [142] (the authoritative reference on TCP, and an alternative to our
review, is given by Stevens [135]). As our scheme amounts to a reworking of parts of
TCP to cope with a lack of knowledge of the protocol used at the IP layer, we first

review the features of TCP that permit reliable transmission of data, and show how

they permit achieving the goal described in Definition 9.2 when the network protocol
is known to both users.

Reliable data transmission: sequence numbers, ACKs, and timeouts

The goal achieved by TCP is similar to that of Definition 9.2: ultimately, streams
of bytes are exchanged between the two parties sharing a TCP connection. At a

high level, the individual bytes in the stream are indexed by sequence numbers, and
reliability is provided by the recipient of a byte stream sending back acknowledgements
indicating that it has received all bytes up to the acknowledged sequence number-if
the sender does not receive an acknowledgement of a byte that was sent before a
timeout, then the sender attempts to send a second copy of the data.5

Our model of this exchange as a (partial) approach to achieving the goal described
in Definition 9.2 with a known network protocol is thus as follows.6 There are r-
bit sequence and acknowledgement fields attached to the messages exchanged by
the users; these will indicate the index of a message modulo 2'that is, the ith

message that one user sends to the other will have a sequence number of i mod 2',
while acknowledgement of the jth message is achieved by sending j mod 2r in the
acknowledgement field. For these numbers to be meaningful, there must only be a
limited "window" of sequence numbers that one user can send to the other-otherwise,

'In reality, unlike our model, the timeouts are computed based on estimates of the round-trip
times, which leads to the possibility that multiple copies of the same data could arrive. The sequence
numbers allow the receiver to reject such data so long as the finite set of sequence numbers has not

already "wrapped around" in the interim. As the size of the sequence number field is generally set

large enough so that this doesn't occur in practice, we disregard it in our model. We note again

that these aspects of TCP and more are described in much more detail by Stevens [135].
6Strictly speaking, what we are presenting is a message-stream sliding window protocol inspired

by TCP, which by contrast is a byte-stream protocol. That is, TCP acknowledges bytes, while we

acknowledge messages-and so for example, in TCP, bytes may be repackaged in longer packets on

retransmission, which we will expressly forbid. Looking ahead, the reason we change this aspect of

the design is that we will care to know what happened to every packet we sent, and use this feedback

to learn the packet format.

269

supposing message i is dropped, the recipient may later mistake message i + 2' for

message i. Although TCP supports variable window sizes, we will disregard this

feature in our model and assume a fixed window size of 2 messages, i.e., the

window ranges from the index following the last message acknowledged, io +1 mod 2r

to io + 2-- mod 2'. Thus, until the sender receives an acknowledgement of message

io + 1, the sender must not attempt to send a message with index beyond io + 2 -1.

Still, when a user receives messages out-of-order, those messages are buffered, and
thus the sender can continue to send messages up to the allowed sequence number, or

up until the lack of an acknowledgement triggers a timeout. In our model network, the
timeout is equal to the maximum round-trip time of a message, 2d(n). For the sake of

simplicity, we will reduce the number of parameters by only considering two window

sizes. In one case, we combine these two conditions, and assume that r = log d(n) +2,
i.e., so that 2 -1 = 2d(n), and we encounter a timeout if and when we reach the end

of the allowed window. In the other case, we use a 1-bit sequence number, so after

each message we immediately reach the end of the window and must wait for either

an acknowledgement or for a timeout, which occurs 2d(n) steps later, before we try to

send the next message-the "stop and wait" protocol. Thus, corresponding to these-

two settings for the sizes of the sequence number field, we have the following two

protocols:

Construction 9.22 (Stop and wait protocol). The user maintains three message

indices, i indicating the last message sent by the environment, io indicating the last

message the user attempted to send across the network, and j indicating low-order

bit of the last message sent to the environment (initially, i = io = j = 0). The user

will also maintain a timeout counter, t, initialized to 0.
The user maintains a send buffer each time the environment sends the user a new

message, i is incremented, and that new message, together with the current value of

i, is placed at the end of the send buffer. The send buffer contains all messages that

have not yet been acknowledged by the recipient; thus, unless the buffer is empty,
at the beginning of a round, io equals the index attached to the first message in the

buffer.
At the beginning of a round, the user first checks any messages received from the

server; if there is an acknowledgement i' such that io mod 2 = i' and the buffer is not

empty, then the user removes the message with index io from the start of the buffer,
increments io, and sets t = 0. If that message contains a sequence number j' # j
then we will return the attached message to the environment at the end of the round,
and we set j= j'.

Next, if the user received a message from the environment to be sent, the user

adds that message to the send buffer and increments i as described above.

Finally, if the timeout counter t = 0 and the send buffer is not empty, the user

sends a message to the server containing the first message in the send buffer with

sequence number io mod 2 and acknowledging j, sets t = 2d(n). Otherwise, the user

decrements t and, if it received a message from the server at the beginning of the

round, it sends a message acknowledging j to the server.

270

Receive buffer
2d(n)-index send window 2d(n)-index receive window

K4 uLE
Acknowledged

i 0 k o 0 -

unreceived messages

Figure 9-3: The buffers used by the delay-bound protocol. White entries contain a
message, black entries indicate no message has been written for that index yet, and
shaded entries indicate that the entry was written and removed. In the send buffer,
k loops over the entries from io to i. In the receive buffer, jo is necessarily the last
shaded entry whereas the index following j is necessarily the first black entry.

Construction 9.23 (Delay-bound protocol). The user maintains five message in-
dices, i indicating the last message sent by the environment, io indicating the first
unacknowledged index of a message to be sent across the network, jo indicating the
index of the last message sent to the environment, j indicating the last index in the
receive buffer such that every index in the range (jo, j] is contained in the receive
buffer, and k indicating the index of the last message in the send buffer sent across
the network. (See Figure 9-3.) Initially, io = i = jo = j = k = 0.

The user maintains two buffers: a send buffer and a receive buffer. The send
buffer functions the same as in the Stop and wait protocol: each time the environment
provides a new message to be sent by the user, the user appends that message together
with its index to the end of the send buffer, and increments the index. The receive
buffer contains all messages that need to be returned to the environment together
with their indices. At the end of the round, if the first message in the receive buffer
has index jo + 1, it is removed from the buffer and returned to the environment, and
jo is incremented.

At the beginning of a round, the user first checks for any messages received from
the server. If there is an acknowledgement i' such that i' is in the window [io mod
4d(n), io + 2d(n) mod 4d(n)], then the user sets io to the representative of i' + 1 in
the range [io, io + 2d(n)}, and removes the messages in the send buffer with indices
less than this new value of io; we then say that io is updated on this round, and we
set k to io - 1.

Similarly, if the user receives a message with a sequence number j' in the window
[j + 1 mod 4d(n), j + 2d(n) mod 4d(n)] such that no other message in the receive
buffer has the same sequence number modulo 4d(n), the user inserts the message into
the receive buffer in the appropriate location, with an index j corresponding to the
representative of j' in the range [j, j + 2d(n)]. If j = j + 1, every message in the range
[j + 1, j*] for some j* is then contained in the buffer. We therefore set j = j* and we
say that j is updated on this round.

Next, if the user received a message to the environment to be sent, that message is
appended to the end of the send buffer and i is incremented as described previously.

Finally, if the send buffer is not empty and k < io + 2d(n), we set k = k + 1;

271

Send buffer

otherwise, if the send buffer is not empty, a timeout has occurred for the message
index io, and we set k = io. We then send a message to the server at the end of the
round containing the message with index k along with k mod 4d(n) as its sequence
number, acknowledging j mod 4d(n). If the send buffer was empty but j was updated,
we send a message to the server simply acknowledging j mod 4d(n). (We also send a
message to the environment if a message with index jo + 1 is in the receive buffer, as
described previously.)

Notes on the correctness. We include the stop and wait protocol primarily
for the sake of exposition: its correctness is fairly easy to see. There is at most one
message being sent in a given direction with a given sequence number at any point,
and we do not move on until that sequence number is acknowledged. Since the drops
occur independently with probability 6(n), the probability that neither the message

nor the acknowledgement is dropped is (1 - 6(n))2 ; thus, after 2d(n) rounds, the
protocol has sent a message and seen an acknowledgement wit probability greater
than 1/3, and it is clear that we see an acknowledgement in a "polynomial" number
of rounds (in d(n) and 1 - 6(n)) in expectation. In particular, the protocol eventually
succeeds at sending every message with probability 1.

In moving to the delay-bound protocol, the analysis is similar, but we need to take
more care to see that the sequence numbers won't be re-used too soon, so that they
do suffice to uniquely index the messages of current concern. We first argue that we
won't mistake an acknowledgement for an old message for an acknowledgement for a
current (unacknowledged) message. We note that io can only increment by A after
the messages io, . . . , io + A were sent where, since we send at most one message on a
given round and the maximum round-trip time for an acknowledgement is 2d(n), the
minimum index we could receive an acknowledgement for is io - 2d(n) + A. Since only
acknowledgements to sequence numbers in the window [io + A+I mod 4d(n), io + A +
2d(n) mod 4d(n)] will be subsequently accepted, where we can verify that the range of
indices for which old acknowledgements may still be delivered is [io+A -2d(n), io+A],
and this range modulo 4d(n) falls entirely outside the range of acknowledgements
we will accept (and indeed, this range of old numbers taken modulo 4d(n) is the
complement of the range we accept), we will not skip sending messages due to these
old acknowledgements.

The argument that we will not confuse old messages for new messages due to
their sequence numbers is similar: we note that the sender never advances its index
k of a message to send beyond 2d(n) of the last acknowledgement from the receiver

(and only advances it by A after having sent A messages). Thus, when the receiver
acknowledges some index j, the oldest messages the sender could be sending have

index at least j - 2d(n). The range of messages the receiver is willing to accept is

[j + 1, j + 2d(n)], and we can again note that [j - 2d(n), j] and [j + 1, j + 2d(n)]
taken modulo 4d(n) partition [0, 4d(n) - 1]. Thus, the receiver never mistakes an old
message for a new one.

The expected number of rounds past our first attempt that pass before a message
is sent by the delay-bound protocol is the same as the number of rounds as in the

272

stop-and-wait protocol, so we again find that it succeeds at sending every message
eventually with probability 1. The delay-bound protocol is intuitively much more
efficient, though. Rather than waiting for an acknowledgement, in the meantime

we attempt to send many more messages-that is, the expected latency may be the

same but the throughput is higher. Moreover, an acknowledgement is sent each time

a message gets through, so the probability that a timeout occurs on a given message
is lower. We won't analyze this protocol any further, however. The point is merely
to illustrate how reliable communication is possible as groundwork for the schemes
we will present in Section 9.3.2 and 9.3.4.

Establishing the connection: the three-way handshake

The protocol of sequence numbers and acknowledgements described in the previous
section describes the "steady-state" behavior of a TCP connection, capturing how

TCP achieves reliable data transmission across an unreliable network. There are still

other parts to TCP that we have not yet described, though. A TCP connection is

only active for a finite amount of time-connections are closed at some point (by a
protocol which we will not be concerned with here) which leads to the need for an

explicit protocol to open the connection: the issue is that after a connection has been

closed, stray packets from the connection may yet be moving through the network and

delivered to their destination at some later point. Thus, if a new connection is later

opened, and these stray packets have sequence numbers (or acknowledgements) in the

active window of that new connection, the protocol may confuse the packets from the

old connection for packets from the new connection. The guard against this danger

(such as it is) is to establish a random starting sequence number when a connection is

opened. The initialization protocol achieving this establishment of sequence numbers,
which will be an important basis for our own initialization protocol, is known as a

three-way handshake.

In the "typical" case, one end-user (unfortunately for us, usually known as the

"server") is in the passive open state, meaning that some process is watching for
incoming packets. The connection is then initiated by another end-user entering the

active open state, and sending the first user a packet initiating the handshake. In an

atypical situation, which we will address later, both users may enter the active open
state before receiving each other's packets, and establish a connection by engaging in

a "four-way handshake."
For the typical case, we will refer to the first user, in the passive open state, as

Alice, and we refer to the second user, who attempts to initiate communication by
entering the active open state, as Bob. The packets are marked with a pair of flags,
indicating whether they contain an initial sequence number, an acknowledgement of

a sequence number, or both. (Note that all subsequent messages containing acknowl-

edgements will have the corresponding A CK flag set, but only messages exchanged

containing initial sequence numbers, i.e., during the handshake, will have the first

flag - the SYN flag - set.) Bob initiates the three-way handshake by sending Alice

a packet with a random initial sequence number; Alice responds to this packet by

273

sending an acknowledgement of Bob's sequence number plus one,7 together with her

own randomly chosen initial sequence number. Bob responds with an acknowledge-
ment of Alice's sequence number - again, plus one - and the protocol is complete,
and the users can exchange data using the protocol described in the earlier section,
started from the acknowledged initial sequence numbers (i.e., with a random offset

to the indices).
Of course, any number of things may go wrong during the handshake, notably

including loss of packets. The same timeout rules as before apply, though, and if

Bob (or Alice) do not receive an acknowledgements of their sequence numbers before

the timeout occurs, then the packet is re-sent. Similarly, Alice and Bob ignore pack-

ets with acknowledgements to sequence numbers other than their expected sequence

number during the handshake-which, since this expected sequence number is uni-

formly distributed, avoids the issue earlier of them accepting an acknowledgement

from an earlier connection during the handshake with all but negligible probability.

When both users attempt to initiate communication before receiving each other's

packets, we have already described their first messages: they send a randomly chosen

sequence number. Now, to handle this case, we must describe how they respond to a

packet containing no acknowledgements. Note that every packet sent during normal

execution of the protocol contains an acknowledgement of the last sequence number

received-the only packets without acknowledgements are packets sent from the ac-

tive open state when initiating a connection. Thus, when a user receives a packet

without an acknowledgement, they know that they are instead engaging in a four-

way handshake. The user responds to this message almost precisely as they would

if they had been in the passive open state in the case of the three-way handshake:

they respond by acknowledging the other user's sequence number plus one, together

with their own sequence number, the same sequence number they sent in the original

message. This way, even if the original packet is lost, the other user successfully

completes the handshake and begins sending data, with packets containing an ac-

knowledgement of our sequence number anyway. In any case, the user waits until an

acknowledgement of that sequence number (plus one) is received before attempting

to send data, and re-sends the acknowledgement packet if a timeout occurs.
In summary, the protocol in the language of Definition 9.2, using r-bit sequence

numbers and our value 2d(n) as a timeout is as follows:

Construction 9.24 (TCP handshake). Passive open:

1. Wait until a packet with the SYN flag set arrives (with r-bit sequence number

i).

2. Choose a sequence number modulo 2r, j E {0, 1}r, uniformly at random.

3. Until receiving an acknowledgement of sequence number j + 1 (mod 2r), repeat

the following:

7 The decision to add one is somewhat arbitrary, but it is taken to be the value of the sequence

number field that Alice is anticipating on the first message from Bob.

274

(a) Send a packet with the SYN flag set, with sequence number j and acknowl-

edging i + 1 (mod 2').

(b) (Timeout) Wait 2d(n) rounds.

Active open:

1. Choose a sequence number modulo 2r, i E {0, 1}r, uniformly at random.

2. Until receiving an acknowledgement of sequence number i + 1 (mod 2r) or re-

ceiving a packet with the SYN flag set but not the ACK flag, repeat the follow-

ing:

(a) Send a packet with the SYN flag set, with sequence number i (and no ACK
flag set).

(b) (Timeout) Wait 2d(n) rounds.

3. (Four-way handshake) If a packet with the SYN flag set (with sequence number

j) but not the ACK flag was received, repeat the following until receiving an

acknowledgement of sequence number i + 1 (mod 2r):

(a) Send a packet with the SYN flag set, with sequence number i, acknowl-

edging sequence number j + 1 (mod 2 ').

(b) (Timeout) Wait 2d(n) rounds.

Since the goal in Definition 9.2 doesn't need to terminate connections, we won't

need to review the correctness of Construction 9.24 in any detail. Rather, it will serve

as a starting point for our own sub-protocol for exchanging hash functions (extending

the initialization sub-protocol from Construction 9.18) in the next section.

9.3.2 A modified end-user scheme for reliable communica-
tion

We now possess the pieces to permit a user to verify that their messages are sent,
received, and decoded properly, given that their partner at the other end of the net-

work knows the network protocol: verification of sending and receiving is provided

by TCP's acknowledgement and sequence numbering scheme, illustrated in Construc-

tion 9.22 and Construction 9.23, while verification of correct decoding was provided

by Construction 9.18 in Section 9.2.2. Unlike in Section 9.2.2, however, enumeration

no longer suffices to complete the scheme when the protocol is unknown. The main

difficulties stem from two sources of unreliability in the scheme. First, and most

clearly, the server itself (as described in Definitions 9.2 and 9.8) may be unreliable

by definition. Moreover, though, even if the server were assumed to be reliable, as a

consequence of our partner at the other end of the network not knowing the protocol,
our partner cannot be assumed to reliably send acknowledgements.

Of course, despite their distinct origins, these two issues amount to the same

problem: even a good protocol for sending messages may fail the TCP verification

275

scheme sometimes as a consequence of an acknowledgement failing to arrive. Thus, we
will see how to dispose of both with a single new idea-instead of using an enumeration
to search for a protocol to use for sending messages, we will use a more sophisticated
multiplicative weights scheme for which the success rate at sending approaches the
success rate of the "correct" protocol.

The unreliability of the network and our partner also hinders the initialization
sub-protocol for agreeing on a hash function in Construction 9.18. Fortunately, this
can be overcome by introducing acknowledgements to the initialization, much as in
the TCP handshake protocol (described in Construction 9.24). The key insight here
is that even though we do not yet know the protocol, an encoded random message
still specifies a hash function, and the associated hash function can be used to sign
the acknowledgement, which thus simultaneously tells us whether our partner has
received our hash function, tells us which hash function our partner has received (i.e.,
from which encoding it was derived), and allows us to decode the acknowledgement
if so.

Ultimately, much as in Section 9.3.1, we will exhibit two protocols. The first will
be an adaptation of the stop and wait protocol described in Construction 9.22 which,
much as was the case previously, has the virtue of a relatively tractable thorough
analysis, while allowing us to exhibit all of the main ideas. The second protocol,
which we delay presenting until Section 9.3.4, is of course a modification of the higher
throughput "delay-bound" protocol described in Construction 9.23, which will require
exhibiting a modification of the multiplicative weights scheme that still functions
when the feedback is delayed.

The bounded modification weighting scheme

We will use a result due to Auer et al. [10] that gives a strategy for repeatedly choosing
"actions" from a set of size K, with the guarantee that the "reward" obtained by these
choices is close the reward that could have been obtained by repeatedly choosing a
single fixed action, even though the strategy is not told which fixed action we are
considering. The analogy to our setting should be clear: the K "actions" correspond
to our (bounded-size) set of bounded modifications of our original protocol, and taking
an action corresponds to sending a message under the corresponding encoding, with
"reward" of 1 obtained if an acknowledgement of the message returns before the
timeout (and zero reward is obtained otherwise). Thus, the strategy should be nearly
as successful at sending messages as the (unknown) modified protocol used on the
network.

The power of the guarantee provided by Auer et al. (stated below in Theorem 9.26)
is such that it holds even when the rewards depend on the history of actions chosen
previously. Such a guarantee turns out to be crucial when the rewards depend on the
adaptive strategies of the two parties at opposite ends of the network, specifically in
our setting where the reward depends on whether or not a party manages to success-
fully send an acknowledgement-after all, the aim of our adaptive strategy is to learn
how to send messages across the network successfully in the first place.

The relevant construction for our purposes is the following:

276

Construction 9.25 (Exp3.P.1 [10]). On input 6 E (0, 1), for each r > 1, put T, 2

o (r = ±1(2, and set r* = min{r E N: 6r > KTre-KT,}.

For r = r*, r* + 1,..., repeat the following:

1. Put a = 2Vn(KTr/6r) and y = min , 2 3KT

2.. For i = 1, ... , K, put wi(1) = exp)
3. For t = 1, 2,.. . , T, repeat the following:

(a) For i = 1, ... , K, put pi(t) = (1 -) + .Z= 1 wj(t) K

(b) Choose it E [K] at random with distribution pi (t), . ., PK (t)-

(c) Use strategy it and receive reward x, (t) E [0, 1].

(d) For j E [K] \ {it} set

Wj (t + 1) = wj (t) exp y

(3pj (t) K v/Ki-

and set

wit(t + 1) = wi,(t) exp +
3K pit) M Pi,(t) v/K

Construction 9.25 provides the following guarantee:

Theorem 9.26 (The weighting scheme approaches the average reward of any fixed

strategy [10]). Let K > 2, 6 E (0, 1). For T > 2r* for the value r* specified in

Construction 9.25, put CT = 2 ln(2 + log 2 T). Then, if R(T) = E xi, (t) for the

rewards x t(t) obtained by the strategy described in Construction 9.25 and R* is the

reward obtained some fixed strategy in our set,

R*(T) R(T) 10 2K KT 10(1+log2 T) KT
<Tln + cT + In + cT

T T -/2 - 1 T 6T

with probability at least 1 - 6.

That is, the difference between the average reward obtained by the weighting
scheme in Construction 9.25 and the average reward obtained by the fixed strategy

goes to zero at a rate of O(inT /T). As an additional corollary of the theorem, it

follows from the Borel-Cantelli Lemma that as T -+ oc, any bound that is w(VlnT/T)
holds with probability 1.

Since our variant of the stop and wait protocol will wait for feedback before at-
tempting to send its next message, we will be able to apply Theorem 9.26 to the

analysis of that protocol essentially as written. When we turn to the analysis of the
modified delay-bound protocol, however, we will find that there are a few differences

277

between the setting there and the setting of Auer et al., the foremost being that in
the delay-bound protocol, the protocol will require sending the next messages before
feedback is received-where the feedback may be delayed by up to 2d(n) rounds. In
order to simultaneously connect the weights to both the performance of the best fixed
strategy and to the performance of the algorithm, the analysis of Exp3 relies on the
fact that the probabilities of each strategy are closely related to their current relative
weighting; if the weighting changes (i.e., due to feedback from other rounds) between
when we sample a strategy and when we update the weights according to the reward
we obtained, then this close relationship may no longer hold. We can finesse this
issue, though, by using 2d(n) independent sets of weights in a round-robin fashion,
so that by the time return to a set of weights, we know the reward obtained by its
last strategy. Overall, it is not hard to see that such a strategy matches the reward
obtained by the best strategy up to O(/d(rn)KT + d(n)). We will return to this
point in the analysis of the protocol in Section 9.3.4.

Establishing a connection

We now begin describing our strategy for reliable communication, using the stop and
wait scheme for reliable transmission. We will first describe the modified handshake
protocol, and in the following section we will describe the protocol for sending and
receiving messages, after the handshake has successfully completed. During the hand-
shake, we will assume that every message from the environment (to be sent to the
other user) is stored in order in a send buffer (cf. Construction 9.22).

The parameters. Throughout, we will need to fix the same parameters as used
by our decoding strategy in Construction 9.18. Thus, fix (s(n), C, N)-streaming pro-
tocols UA and UB for sending messages to Alice and Bob respectively, and suppose
we wish to adapt to any (t(n), s'(n), C')-bounded modifications fA and fB, applied
to UA and UB, respectively; let UA = fA(UA), UB = fB(UB), and S(UA, UB) be the
unreliable server using UA and UB.

Now, for the decoding strategy, fix a deterministic extractor Ext for space-s(n) +
s'(n)+1 sources on {0, 1}C-C'-N+1 with entropy N, extracting 2m bits (thus, as in Con-
struction 9.18, we will need to assume that N > 2m), and let pad : {O, 1}<C-C'-N 4

{0, i}C-C'-N+ be the padding function described in Lemma 9.11. Fix a representation
of hash functions over F2m , as described in Construction 9.17.

We will parse our encoded messages into six fields: the contents (or message)
field of length at most n, the sequence number and acknowledgement fields (which
are each 1-bit in the stop-and-wait protocol, but log d(n) + 1 bits in the protocol of
Section 9.3.4), the 1-bit SYN flag field, a 1-bit LEAD flag field (generally indicating
which user's hash function was selected, if only one), and a m-bit hash tag field.
We therefore also need m > n' = n + 4 for the present section, and m > n' =
n + 2 log d(n) + 4 for the protocol in Section 9.3.4.

Construction 9.27 (Handshake under bounded modification). Returns a value for
the LEAD flag (from {0, 1}) together with a pair of hash functions (specified by a

278

pair of elements of F 2m), the first to be used to send messages, and the second to be
used to decode received messages.

We assume that on each round that a message is received from the environment, it
is stored in a buffer, and we maintain an index i indicating how many such messages
we have stored.

Passive open:

1. Wait until a message mo arrives from the server.

2. Put (a, b) = (Ext o pad)(mo).

3. For each (f(n), s'(n), C')-bounded enumeration 92 in an infinitely repeating enu-
meration, repeat the following:

" Send a message with empty contents, sequence number 0, acknowledging
0, with the LEAD flag cleared and the SYN flag set, along with its hash
under ha,b using protocol g2 (U).

" For t = 2d(n), . .. , 1, on each round, repeat the following:

- If a message m' arrives from the server, for each (f(n), s'(n), C')-
bounded modification gi, repeat the following:

* If g1(U)-1 (m') = (x, y) (y of length m) such that x contains a
message part of length at most n, does not have the SYN flag
set, and is a message acknowledging sequence number 0, and y =

ha,(X), return (0, ha,b, ha,b)

Active open: For each (f(n), N, C')-bounded modification g, initialize mg, m' = _.

1. For each (f(n), N, C')-bounded modification 92 in an infinitely repeating enu-
meration, repeat the following:

(a) If m92= 1, choose rg2 E {0, 1}N uniformly at random, compute mg2

g2(U(rg2)) (from the initial state of U) and compute hg2 = (Extopad)(mg 2).
(b) Send mg2 to the server.

(c) For t = 2d(n), ... , 1, repeat the following on each round where a message
mo is received:

i. If mO = m92 , discard it and continue to the next round.
ii. Otherwise, for each (e(n), s'(n), C')-bounded modification gi and g',

repeat the following:

* If mg; f 1 and gi(U) (mo) = (x, y) is such that x has sequence
number 0 with the SYN flag set and y = h9 ,(x), return (1, h g, hg).

iii. Go to step 2 (four-way handshake).

2. (Four-way handshake) Put (a, b) = (Ext o pad)(mo).

3. Wait t rounds.

279

4. Resuming our enumeration of (f(n), N, C')-bounded modifications g2 , repeat
the following:

(a) If m' = _, for a message x with empty contents, sequence number 0,
acknowledging 0, the LEAD flag cleared, and the SYN flag set, compute

92= 92(U(x, ha,b(x)))

(b) Send m' .

(c) For t' = 2d(n),.. ,0, repeat the following on each round in which a mes-

sage m' was received:

i. If m' = m' 2, discard it.

ii. Otherwise,for each (f(n), s'(n), C')-bounded modification gi, repeat
the following:

A. If g1(U)- 1 (m') = (x, y) is such that x has a message part of length
at most n, does not have the SYN flag set, and acknowledges
sequence number 0 and y = ha,b(X), return (0, hab, ha,b).

B. Otherwise,for each (f(n), s'(n), C')-bounded modification g' repeat
the following:

* If mg; - 4 Iand gi(U)-(m') = (x, y) is such that x has se-

quence number 0 with the SYN flag set and y = hg, (x), return
(b, hab, h9 5) where b = 1 if ha,b > hg, in a natural ordering on
hash functions, and b = 0 otherwise.

One aspect of the handshake that may be confusing at first is why we explicitly

drop messages at a few points. The issue is that when we don't know the protocol, we

may well accidentally send a packet back to ourselves-e.g., if a bounded modification

swaps the "source" and "destination" fields of the packet (or simply offsets the bits

in the packet so that the "source" field ends up in the "destination" field). We will

need to argue that we are unlikely to drop packets from the other user in the analysis.

We postpone the analysis of our handshake protocol until Section 9.3.3, so we

will only make a few remarks here about how our protocol can be understood with

respect to the TCP handshake (described in Construction 9.24). Intuitively, our

packets encoding random bits correspond to packets with the SYN flag but not the

ACK flag set, and in the analysis we need to argue that they will not be confused

for packets which would have the ACK flag set-cf. Lemma 9.30. Likewise, the hash

functions we extract from these random packets play essentially the same role as

the random sequence number in the TCP handshake.8 The difference between our

protocol and the TCP handshake arises since we need a full packet of random bits to

specify a hash function, whereas the TCP handshake could simply include the chosen

sequence number in a reply to the first message. Thus, in a four-way handshake, our

modified handshake needs to wait for a second message from the other user to see

8As such, the hash functions could be used to detect stray packets from old connections: supposing

we retain the hash functions from recent connections, we can also check to see if the packets decode

with valid hash tags using one of the hash functions from an old connection. We chose not to address

this aspect of the protocol here, since we don't address termination of connections.

280

whether the hash function the other user is tagging its messages to us with was taken
from one of our initial random packets, or whether that user decided to use the hash
function we acknowledged receipt of in our acknowledgement of the first message we
received (as if we had been in the passive open state).

Reliable transmission scheme under an unknown modification

We now present the modification of the stop-and-wait protocol (Construction 9.22)
for reliably sending messages under an unknown bounded modification of the network.
In a manner analogous to the scheme we presented for reliable networks (Construc-
tion 9.18), we will assume that we begin execution of our protocol in the same round
as the modified handshake protocol (Construction 9.27) returned, and we will pro-
vide the hash functions and setting of the LEAD flag from the handshake protocol
as inputs to the transmission scheme, just as the initialization sub-protocol provided
a hash function to the transmission scheme for reliable networks.

Recall that each end-user's goal can be considered as a pair of sub-goals: the user
wishes to send messages to its partner, and wishes to receive the messages sent by
its partner. The hash functions provided by the handshake scheme are the key to
verifiably receiving messages properly, just as in Construction 9.18. On the other
hand, the acknowledgement scheme of TCP (e.g., in the stop-and-wait protocol of
Construction 9.22) is the key to verifiably sending messages to our partner.

As alluded to in the introduction to this section, unlike in the scheme for reliable
networks, it will not suffice to simply enumerate bounded modifications to learn how
to send messages; rather, we will use the multiplicative weighting scheme Exp3.P.1
of Auer et al. described in Construction 9.25. Due to its relative complexity, we
will not repeat the details of the scheme here. Instead, we will treat it as a black
box: the scheme will suggest a bounded modification for us to use for sending a
message, and before we request a new bounded modification from the scheme, we will
provide it with a reward value-which will be 1 if we received an acknowledgement
to the message we sent, and 0 otherwise. It should be evident that Theorem 9.26
will apply to this set-up to give us a bound on the fraction of messages that receive
acknowledgements.

Construction 9.28 (Adaptive stop and wait protocol). We take as input a triple,
(hi, h2 , b) where hi and h2 are hash functions (each specified as a pair of elements
from F 2m) and b E {0, 1}.

We also take as input the send buffer from the handshake protocol, and the index
i of the number of messages in the buffer. We initialize io = 0, indicating the index
of the last message sent so far (i.e., the first message sent will have index 1) and
i' = 0 indicating the number of messageless acknowledgements sent since the last
message. We will also maintain a bit j indicating the low-order bit of the last index
of a message sent to the environment (i.e., the 1-bit sequence number of the corre-
sponding message), thus initialized to 0, and a count j' of the number of messageless
acknowledgements we have received since the last message, also initialized to 0. We
also have a buffer X.od, initialized to -L, containing the contents of the last message

281

we sent to the server, and a counter t indicating the number of rounds since we last
sent a message, initialized to 0.

1. If b = 1, go to step 3; otherwise, until a message is received from the server, on
each round that a message is received from the environment, add it to the send
buffer and increment i.

2. For the message m' received from the server, try each (f(n), s'(n), C')-bounded
modification g1, until gi(U)- 1 (m') = (x, y) such that x has length at most n'
and y = h2 (x). If some gi was not found, return to step 1, and otherwise do
the following:

(a) If the SYN flag was set in x, go back to step 1.

(b) If the contents field of x is nonempty, send the contents field of x to the
environment at the end of the round and set j = j+ 1 (mod 2).

3. Query Exp3.P.1 for a bounded modification g2

4. (Nonempty send buffer) If i > io:

(a) Set io = io + 1 and i' = 0

(b) For a message x with contents equal to the message in the send buffer at
index io, the SYN flag cleared, the LEAD flag set to b, sequence number
io (mod 2), and acknowledging j, send g2(U(x, hi(x))) to the server at the
end of the round.

(c) Set X.od = X.

5. (Sending empty acknowledgement) Otherwise:

(a) Increment i'

(b) For the message x with contents equal to the empty message, the SYN
flag cleared, the LEAD flag set to b, sequence number io + i' (mod 2),
and acknowledging j, send g2(U(x, hi(x))) to the server at the end of the
round.

(c) Set XzId = X.

6. Set t = 0.

7. While t < 2d(n), wait until the next round and do the following:

(a) Increment t.

(b) If a message was received from the environment, add it to the end of the
send buffer and increment i.

(c) If a message m' was received from the server, try each (f(n), s'(n), C')-
bounded modification gi, until gi(U)- 1(m') = (x, y) such that x has length
at most n' and y = h2 (x) or y = hi(x) (in this latter case, if the LEAD
field is set to b, drop the message and go to the next iteration of the loop)

282

(d) If some successful gi was found, do the following:

" (Leftover message) If the SYN flag in x is set, go to the next iteration
of the loop.

* (Duplicate message) Or, if the contents field is empty and the sequence
number is j + j' (mod 2), or the contents field is nonempty and the
sequence number is j (mod 2), go to the next iteration of the loop.

" Or, if the contents field is nonempty and the sequence number is not
equal to j, set j' = 0, send the contents field of x to the environment
at the end of the round and set j = j + 1 (mod 2); if the message
acknowledges io + i' (mod 2), return reward 1 to Exp3.P.1 and go to
step 12.

" Or, if the contents field is empty and the sequence number is j +j' +1

(mod 2), increment j', return reward 1 to Exp3.P.1 and go to step 12.

8. (Timeout) Return reward 0 to Exp3.P.1.

9. Query Exp3.P.1 for a new bounded modification g2.

10. Compute g2 (U(xoid, hi(xoid))) and send it to the server at the end of the round.

11. Return to step 6.

12. (Pause) While t < d(n), wait until the next round and increment t.

13. Go to step 3.

We remark that, in contrast to Construction 9.18, we no longer maintain the same
"current guess" g for the protocol used by the sender across messages. This is neces-
sary because the algorithm used by the sender is no longer fixed across messages-note
that Exp3.P.1 (Construction 9.25), governing the sender's choice of encoding, samples
from a changing distribution over the possible bounded modifications, and it is pos-
sible for two different bounded modifications to successfully send a packet across the
network, but encode the packet's data differently. Intuitively, we would obtain a more
efficient decoding algorithm if we replaced the fixed enumeration with an adaptive
one, to match the changing relative frequencies of the sender's encodings. Unfor-
tunately, the dynamics of Exp3.P.1 in our randomized network are complicated; we
could replace our fixed enumeration order with, e.g., the well-known "move-to-front"
order, which is known to never examine more than a factor of two more indices than
the optimal ordering policy in hindsight [134], but we still have no idea what the cost
of this optimal ordering policy is. Since we don't know how to obtain a tighter analy-
sis than that yielded by the fixed enumeration, we opt to leave the simpler algorithm
in place, and leave the choice of adaptive ordering to the practitioner.

283

9.3.3 Analysis of the modified stop and wait scheme

We are now ready to present the analysis of our end-to-end scheme based on the
stop and wait protocol. Our construction is divided into two parts, the handshake
protocol (Construction 9.27) that permits the users to agree on hash functions, and
the adaptive stop and wait protocol (Construction 9.28) that takes the hash func-
tions as input and achieves the goal of sending datagrams in an unreliable network
(Definition 9.2) with a bounded modification of a known server (Definition 9.8). We
will analyze the two parts separately; in the next section, when we present a more
efficient protocol for sending messages, but we will still use Construction 9.27 to agree
on hash functions, and so the analysis we provide here will still apply.

Both constructions rely on the following key lemma establishing that a uniformly
chosen hash function from a pairwise independent hash family permits us to decode
messages reliably. The present lemma is a variant of Claim 9.20 from the proof of
Theorem 9.19, the analysis of the decoding strategy in reliable networks.

Lemma 9.29 (Pairwise independence implies decoding works with high probability).
Fix any (s(n), C, N)-streaming protocol U a family of pairwise-independent hash func-
tions {h : {0, 1}" ' {0, 1}}, and a message x of length up to n (with n+m < N).
Then, for any pair of (fE(n), s'(n), C')-bounded modifications of U, gi and g', for a
uniformly chosen function h, the probability that, g'(U)- 1 (g1(U(x, h(x)))) = (x', y')
such that y' = h(x') for some x' of length up to n but x $ x' is at most 2s(N)+2(n)-m

Proof Given a configuration of U, gi(U) is uniquely determined by its input; since

g'(U) is injective with respect to these inputs of length up to N, we see that on
any message, g'(U)- 1 specifies at most one pair (x', y') such that y' has length
m and x' has length up to n. Therefore, given the configuration of U and (x, y),
g'(U)- 1 (g1(U(x, y))) specifies at most one such pair (x', y').

We know we are given that y = h(x); but, since h was uniformly chosen from a
pairwise independent hash family,

Pr[y' = h(x')Iy = h(x), gi(U(x, y)) outputs mo from u, g'(U) 1 (mo) = (x', y')]<

We now take a union bound over the 2 s(N) configurations U could be in on inputs
of length up to N, and over the 22 (n) pairs of bounded modifications (gi, g') that
were used for encoding and decoding, respectively, to find that the probability that
g'(U)-l ever produces a valid hash tag for some x' / x is at most 2 s(N)+2(n)-m

claimed. U

Analysis of the handshake

The correctness of our handshake protocol broadly relies on two things: first, that
the different types of messages sent during the protocol are correctly distinguished by
the users, and second, that the users can correctly identify which hash function their
partner received based on the hash tag of an acknowledgement.

284

In particular, as described earlier, random messages in our handshake protocol
play a role analogous to the messages with the ACK flag cleared sent in the TCP
handshake (described in Construction 9.24)-they establish a choice of random hash
function, analogous to the choice of a random sequence number. As the users may
send many such messages before receiving an acknowledgement, the correctness of our
handshake protocol will rely on the users' ability to distinguish these random mes-
sages from messages acknowledging receipt of such messages. The following lemma
establishes that this is possible, and is representative of the various cases establishing
the first claim:

Lemma 9.30 (Random messages do not decode to valid signatures). Fix a pairwise-
independent hash function h : {0, 1}"' -+ {0, 1}m, a (s(n), C, N)-streaming protocol
U, a bounded modification of U, U', and a pair of deterministic functions, g1 and

g2 such that each gi(U) is injective with respect to the "wait for reply" states of U.
Then, if r E {0, 1}N is chosen uniformly at random, the probability that g2 (U(r)) is
in the range of U' and g1(U) (g2 (U)(r)) = (x, y) is such that y = h(x) is at most
2 n'+s(N)-N

Proof Since gi(U) is injective with respect to the wait for reply states of U, given a
wait for reply configuration -of U and a message m, the (x, y) such that gi(U(m)) =

(x, y) is uniquely determined. There are thus at most 2 n'+s(N) messages m such that
91(U)-(m) = (x, h(x))-at most 2 s(N) wait for reply configurations yielding at most
2 s(N) distinct encodings for the 2n' possible strings for x.

Now, likewise, since g2 (U) is injective, g2(U(r)) is distributed uniformly over 2N
messages. Thus, the probability assigned to any set of at most 2n'+s(N) messages under
the distribution g2(U(r)) is at most 2 n'+s(N)-N; in particular, since the probability
that g2(U(r)) is gi(U)>(x, h(x)) for some string x and is in the range of U' can only
be less, it is at most 2 n'+s(N)-N as well. M

The second claim, that users can correctly identify which hash function their
partner received based on the hash tag of the acknowledgement, will follow since
Lemma 9.29 establishes that we can decode correctly, and then given the decoding, the
tag produced by one of our hash functions will uniquely identify that hash function.
As we will see, the arguments will all be similar to Lemmas 9.29 and 9.30.

Theorem 9.31 (Users agree on hash functions following the handshake). Suppose
n' = n + 4 (i.e., for the modified stop and wait protocol),

1
2m > n' + 4f(n) + s(N) + log- +4

and a user returning from the handshake with a value 1 for the LEAD flag subsequently
sends a message with the SYN flag cleared, acknowledging sequence number 0, and
tagged with their hash function for sending messages.

Then the handshake terminates for both users and at the end of the handshake,
the hash function that the first user will use to send message is the same as the
hash function that the second user will use to decode messages, and likewise, the hash

285

function that the first user will use to decode messages is the same as the hash function
that the second user will use to encode messages, and furthermore,

1. Both users will return from the handshake protocol in at most 4d(f)2' rounds
in expectation

2. Either both users will have the same hash function that is uniformly chosen,
or else the users will have hash functions that are independently and uniformly
chosen.

3. One user will obtain b = 0 and the other will obtain b = 1.

4. Random messages remaining in the system after the users return from the
handshake protocol that were not tagged with the hash function that the users
use for decoding do not decode to messages with a valid hash tag under any
(f(n), s'(n), N) -bounded modification.

with probability at least 1 - - 2co (N) (for the function c0 specified in Theorem 9.12).

Proof

Overview. We will follow a strategy familiar to Theorem 9.19: we will argue
that the handshake is correct if the hash functions used by the users were actu-
ally uniformly chosen; we then apply Theorem 9.12 to conclude that the handshake
works correctly with slightly higher error probability due to the imperfect randomness
yielded by the extractors. Since we will already count the statistical distance towards
the error probability, we may subsequently assume (i.e., during the analysis of the
transmission protocol) that the hash functions were sampled uniformly.

At least one user must be in the active open state to initiate a connection; let
Alice be this user, and let Bob be the other user. There will be two cases, depending
on whether Bob is in the passive open state or in the active open state, and then if
both users are in the active open state, three sub-cases depending on which user's
hash functions they commit to using (Alice's, Bob's or both). We will have to argue
that the users agree on hash functions with high probability in each case separately.

First, however, to guarantee that the protocol makes progress, we need to show
that Alice does not accidentally drop Bob's messages with high probability; other-
wise, if there is only one encoding that Bob can use to send messages to Alice, it may
be that Alice drops those messages. Once we know that the users receive each others'
messages, we next argue that the users successfully distinguish the two types of mes-
sages: messages containing N random bits and messages tagged with a hash value for
some hash function. This is also important to making progress through the protocol

(and using the receipt of messages to confirm progress) because messages tagged with
hash values are considered to be "acknowledgements" of receipt of a packet of random
bits. Given these two claims, we know that the users progress through the protocol
and eventually return from the handshake and move on to transmitting data; the
running time will also follow easily once the users make progress.

286

Now, the users come to agree on the hash functions returned by the protocol by
using the hash value tagged to the acknowledgement to infer which hash function
their partner received. For this to work, we need only argue that the tag of the first
received hash function is unlikely to collide with the tag of any other hash function
sent by the user. Fortunately, since the number of hash functions is relatively small,
this will hold with high probability, and so we find that the protocol is correct.

The protocol terminates. So, we begin with the claim that Alice does not drop
Bob's messages with high probability. Unfortunately, the proof of this claim amounts
to a somewhat tedious case analysis, showing that each type of message that Alice
sends collides with a message that Bob would send with very low probability. The
rest of the proof will have a similar flavor.

Claim 9.32. If the hash functions were uniformly chosen, then with probability greater
than 1-(5/16+1/256)c, no packet from Bob is ever dropped when Alice drops packets
because they match packets she recently sent. In particular, for any hash function
derived from one of Alice's random messages, none of Alice's random messages will
not decode to a message with a valid tag under the hash function under any bounded
modification.

Proof Note that there are two points in the protocol where Alice may drop packets,
one in the first loop, and one in the second loop, during a four-way handshake.

First loop. In the first point, Alice only drops packets when they are the encoding
of a random string r = rgt under g'(U) for some bounded modification g'. Since Alice
has only been sending such packets to Bob up to this point, Bob either replies with an
acknowledgement tagged with some hash function, encoded under some protocol g2,
or if he is also in the active open state, he may be sending his own random message
encoded under some bounded modification of U, g2 (U).

In the latter case, it is easy to see that the messages will differ: since the bounded
modifications are still injective, the probability that g2(U) hits any particular g'(U(r))
is at most 2 -N. A union bound therefore gives that the probability that any of the

2 (n) bounded modifications g2 that Bob could be using map his random string to any
of the encodings of Alice's random string under any of the 2 (") bounded modifications

g2 is at most

2 2f(n)-N 2 2f(n)-2m E

256
since N > 2m > 4f (n) + log(1/c) + 8.

The former case is slightly more involved. For each of the 2 (n) encodings (one
for each of the bounded modifications 92), Alice sends a random string under that
encoding, and likewise, Bob could be sending an acknowledgement tagged by any one
of the 2(n) hash functions hg2 specified by these bounded modifications. If Bob tags
his message with a hash function h / hg2 where mg2 is the last message sent by Alice,
Lemma 9.30 guarantees that mg2 is a valid encoding under h with probability at most

2n'+s(N)-N < 2 4(n) L, so a union bound over the 2 (n) possibilities for mg2 , the 2 (n)16 92

287

possibilities for h, and the 24') possible encodings gi that Bob could be using to
encode his acknowledgement, we have a total probability of error of less than e/16 in
this case.

We still haven't handled the case when Bob tags his message with h9 2 and Alice's
last message was m92. Here, we find that since m 9 2 is the encoding of a random N-bit
message and the encodings are injective, m 9 2 is uniformly distributed over a set of
size 2N. On the other hand, the n'-bit message part x of Bob's acknowledgement
is fixed, and there are at most 2m possible values for y = h9 2 (x). Now, by a union
bound over the 2 4n) possible encodings gi(U) that Bob could be using, we see that
the probability that m 9 2 hits some valid encoding of (x, h9 2 (x)) is at most 2 m+E(n)-N

A union bound over the 2 "(n) messages m9 2 that Alice sends gives a total probability
of at most

2 m+2e(n)-N <2f(n)-m
16

by our assumptions on N and m. Note that this establishes the second part of the
claim.

Second loop. In the second loop, Alice has fixed a hash function ha,b to use to
tag messages, extracted from some message mo send by Bob (who is necessarily in
the active open state). In this case, if Bob's message is a packet of random bits (i.e.,
sent in his first loop) then by the same reasoning as in the first loop, we see that
when Bob sends m =i me, that the probability that one of Alice's tagged messages
m' = m is at most /16, and likewise for m = m, the probability that m' = m is at
most /16.

The only case remaining to consider is when Bob tags his message, too. In this
case, we see that since Alice is still in the handshake, Bob must be using some h92
specified by one of Alice's messages from the first loop. In this case, we have that
ha,b and h9 2 are independently chosen. In particular, if we assume ha,b is uniformly
distributed, we see that for the fixed message x encoded in each m' send by Alice,
ha,b(x) is uniformly distributed over {0, 1}m. Therefore, for any pair of encodings gi
used by Bob and g' used by Alice to encode (x, h 2 (x)) and (x, ha,b(x)) respectively,
the probability that some g' has g'(U((x, hab(X)) matching gi(U(x, hg2 (x))) for any
gi is at most 2 2()-m < E/16. Totaling the bounds obtained gives the stated claim.

We may therefore henceforth assume that every message Alice receives was sent
by Bob, and that every message sent by Bob is received by Alice with probability
(1 - 6(n)), independently.

We next argue that Alice does not mistake one of Bob's random messages for an
acknowledgement signed by one of her own hash functions:

Claim 9.33. With probability greater than 1 - E/16, none of the hash functions h
generated by random packets sent by Alice will have a random message m91 (for a
bounded modification g1) sent by Bob that will decode to a message with a valid tag
under h under any bounded modification g1(U)-1.

288

Proof By a union bound over the 2e") hash functions h92 Alice obtains under the
24n) bounded modifications g2 applied to random strings, the 22(,) possible pairs
of bounded modifications (gi, g') such that Alice could be using g'1(U) 1 to decode
a random message encoded using gi by Bob, it follows from Lemma 9.30 that the
probability that any such message from Bob decodes to some (x, hg2(x)) is at most

2 3 (n)2 n'+s(N)-N < 2 n'+3f(n)+s(N)-2m <
~16

by our initial hypothesis on m. U

Therefore, if Bob is in the active open state and Alice receives one of his random
messages, she will detect this and jump to the four-way handshake portion of the
protocol with probability greater than 1 - c/16. It's clear, conversely, that if Bob sent
Alice a message signed by one of her hash functions, then by the point in the inner loop
where she reaches the bounded modification gi used by Bob and the hash function h9 2
used by Bob, she will compute gi(U)-(g1(U(x, hg2(x)))) = (x, h92(x)), and so she will
not mistake the tagged message for a random message (though we haven't yet argued
that she gets the same hash function as Bob used). We therefore immediately find
by inspection that (given that Alice correctly distinguishes random messages from
tagged messages) the users progress through the protocol, and eventually return.

The users agree on hash functions following termination. Towards correct-
ness, we first note that the following claim holds:

Claim 9.34. If none of Bob's messages are dropped, then with probability at least
1 - E/16, the hash function Alice uses for sending messages is obtained from the
first message received from Bob; the hash function Alice uses for decoding received
messages is obtained from the first message she received from Bob that he tagged with
a hash function.

We also note that similarly, with probability at least 1 - e/16, Bob correctly
distinguishes random messages from tagged messages, and so a similar claim holds
for Bob, whether he is in the active open state or the passive open state.

The key is, now, to argue that the decoding of a tagged message specifies the
message used to derive the hash function, and therefore also the hash function. By
Lemma 9.29, if we assume that the hash function was uniformly chosen, then with
probability at least 1 - 2 s(N)+2f(n)-m > 1 - E/8, Alice decodes the message (x, y)
correctly; since h.2 (x) is uniformly distributed over {0, 1}' for any message x, and
there are at most 2 4n) other hash functions, and therefore at most 24n) values that
hg2 (x) might hit resulting in the potential for error, by a union bound, h9 2 only collides
with one of the other hash functions at x with probability at most 24n)-m. Using our
relationship between m and the other parameters (and using s(N), i(n) 1) we find
that the probability of such a collision is at most c/64. (Note that we only need to
worry that the first tagged message is decoded correctly.) Thus, with probability at
least 1 - E/64, the hash function hg2 used to tag the message is uniquely identified by

289

h, 2 (x). A similar argument, of course, holds for the first tagged message decoded by
Bob.

We are essentially done with correctness: we consider four cases, and now note
that since the hash functions are obtained from the extractor described in Theo-
rem 9.12 applied to a packet from a space-s(n) source, Lemma 9.11 shows that the
hash functions obtained are indeed co(N)-close to uniformly chosen.

1. First, if Bob is in the passive open state, he waits until he receives a random
packet from Alice. We see that he will use the hash function extracted from this
packet for both sending and receiving messages; since he tags his messages with
this hash function, we see that Alice identifies this hash function correctly with
probability 1 - E/64, and she uses it for both sending and receiving. We note
that the use of the extractor only increases the probability of an error (in Alice
identifying the hash function correctly) by Eo(N). In this case, Bob obtains
b = 0 and Alice obtains b = 1.

2. Now, the remaining three cases occur when Bob is in the active open state; we
first consider the case where Bob and Alice receive each other's random packets
first.

We note that with probability at least 1 - (5/8 + 1/128)E, neither of them ever
drops messages sent by the other. In this case, they both correctly identify
the packets as being random with probability at least 1 - E/8, and then sub-
sequently use the specified hash function to tag their messages in the second
loop. We now observe that they both correctly identify the hash functions
used on their respective acknowledgements with probability at least 1 - E/32,
which is decreased by at most 2Eo(N) by them each using hash functions ob-
tained from the extractor. In this case, we note that (with probability at least
1-2-N > 1-/256, plus the overhead incurred by the extractors that is already
accounted for) they return different hash functions for encoding and decoding,
and indeed, the hash function Alice will use for encoding is the same as the one
Bob uses for decoding, and vice-versa. Furthermore, in this case, since hi $ h2 ,
one of them obtains b = 1 and the other obtains b = 0.

3. If Alice receives Bob's random packet first, but Bob receives Alice's acknowl-
edgement first, then Bob correctly identifies the hash function used by Alice
with probability at least 1 - c/64, which is increased by at most eo(N) by the
extractor; note now that Bob will use this hash function for both sending and
receiving. Subsequently, Alice will later receive a message from Bob tagged with
this hash function; since she decodes it correctly (noting that the SYN flag is
not set) and correctly identifies the hash function used with probability at least
1 - E/64, (again increased by at most co(N) by the extractor) she therefore uses
the same hash function as Bob for both sending and receiving subsequently.
Here, Alice obtains b = 1 and Bob obtains b = 0.

4. Finally, the case where Alice receives an acknowledgement of Bob having re-
ceived a random packet is similar to the previous case.

290

We therefore see that with probability at least 1 - c - 2eo(N), Alice and Bob

do not drop each other's messages, and return a pair of hash functions so that the
hash function used by Alice to encode is the same as the hash function Bob uses
to decode and vice-versa, and the hash functions obtained may indeed be assumed
to be uniformly chosen. Furthermore, since we already argued that none of the
hash functions the users might select would decode the existing random messages to
messages with valid tags under any bounded modification, the only part we have left
to argue is the running time.

The protocol's running time. As for the running time in this case, we note that
there is at least one valid protocol for sending in each direction, and we use it once
every 2d(n)24) rounds; since each message is dropped independently with probability
(1- 6(n)), the message sends successfully after 1 attempts in expectation. Since
in any case, we need to wait (at most) for the first successful acknowledgement of our

first successfully sent message, this takes at most 4d(n)2% rounds in expectation, as
claimed. N

Analysis of the adaptive stop and wait scheme

We are now ready to establish the correctness of our scheme for sending messages.
Roughly speaking, this will follow from our ability to decode messages given that the
users agree on hash functions (i.e., Lemma 9.29) and the correctness of the acknowl-
edgment scheme used by TCP. The (relative) efficiency of our adaptive scheme will
follow from Exp3.P.1 achieving a rate of success that approaches the success rate of
the unknown bounded modification of the network protocol.

Theorem 9.35 (The adaptive stop and wait scheme achieves the goal of sending
messages in an unreliable network under bounded modifications). Suppose n' = n+4,
2m < N, and

16
m > n'+ s(N) + 2f(n) + log --

with e > 5Eo(N) for the eo specified by Theorem 9.12 applied to space-s(N) + s'(N) + 1
sources. Suppose further that we are given (s(n), C, N)-streaming protocols UA and
UB and any (f(n), s'(n), C')-bounded modifications fA and fB, applied to UA and UB
respectively, where UA = fA(UA), UB = fB(UB), and S(UA, UB) is the unreliable
server using UA and UB.

Then a pair of users following the handshake protocol described in Construc-
tion 9.27, and subsequently following the adaptive stop-and-wait scheme described in
Construction 9.28 using the parameters returned by the handshake protocol success-
fully achieve the goal of sending datagrams with max-delay d(n) and failure probability
6(n) with S(UA, UB) with probability at least 1 - E.

Furthermore, a message sent in round R > 2d(n)(i* + 2d(n)/(1 - 6(n))2) where

i* = min{i : log2(e)i2'(n) > log i + f(n) + log(log i + 1)(log i + 2) + log }
C

291

it is expected to arrive by round

2d(n) 2d(n) +(1+6(n)) R+ R2t(n) log R2(n)+ log R log1 - 6(n) 1 - 6(n) e11

at the latest.

Proof

Overview. The analysis will, of course, initially resemble the analysis of our
decoding scheme in reliable networks, given in the proof of Theorem 9.19: we have
already considered the analysis of the handshake protocol (Construction 9.27) in
Theorem 9.31, which serves a role analogous to the initialization sub-protocol for the
original scheme; what remains is to show that the hash functions obtained from the
handshake protocol suffice to decode messages properly under the present, slightly
different conditions. This will follow easily from Lemma 9.29.

Establishing that the messages can be successfully decoded essentially reduces
the analysis of the correctness of our modified scheme to the analysis of the stop and
wait protocol when the network protocol is known to the users (Construction 9.22),
sketched in Section 9.3.1. This analysis shows that the messages are delivered by their
designated recipient to the environment in order, and thus the goal (as described in
Definition 9.2) is achieved.

To argue that the messages are sent somewhat efficiently, we will need to show
that the multiplicative weighting scheme learns to send messages reliably. For the
scheme to work, however, it needs feedback for every kind of message we send, in-
cluding acknowledgements, which we must argue is provided. Given that we have
such feedback, Theorem 9.26 can be applied twice to give a bound on how often the
users choose a bad protocol when interacting with each other, i.e., first establishing
that a user with our scheme does well with a partner who knows the protocol, and
second establishing that the partner can actually use our scheme instead of knowing
the protocol, without failing too many times.

All messages are decoded correctly. We begin by noting that our condition
on m implies that

32
2m > n'+ 4(n) + s(N) + log -

so we can apply Theorem 9.31 to find that, as long as a user who obtains value 1 for
the LEAD flag sends messages according to our protocol (cf. steps 1 and 3), the users
agree on hash functions with probability at least 1- E/64 - 2eo(N) > 1- (2/5 + 1/64)c
(since we have assumed e > 5eo (N)). So we will assume that one user begins the stop-
and-wait protocol with b set to 1 and the other has b set to 0. Let Alice be the user
with b set to 1, and let Bob be the other user.

Theorem 9.31 already guarantees that neither user mistakes a random message
for a message with a valid tag using their hash function. We can also find that every
other message decodes correctly with high probability: by a union bound over all

292

2n'+1 messages x of length at most n', Lemma 9.29 guarantees that the probability

that any message x tagged with a uniformly chosen hash function h encoded with

a bounded modification gi of U decodes under another bounded modification g' to

a message x' f x that has a valid tag under h is at most 2 n'+1+s(N)+2t(n)-m < C/8

by our assumption on m; therefore, with probability at least 1 - E/4, for any pair of

bounded modifications of U used for encoding and decoding, neither user will ever

decode a message tagged with their hash function to any message other than the

intended message.

Messages are received in order. Now, given that the users obtain the encoded

messages from any packet correctly, note that in particular, when a user decodes

a message, the protocol discards any messages with the SYN flag set or with the

LEAD field set to b. Since only Alice's messages have the LEAD field set to 1 and

only Bob's messages have the LEAD field set to 0, Alice only continues to process

messages sent by Bob and vice-versa. Likewise, since the only types of messages

sent by the handshake protocol are either random or have the SYN flag set, (where

we already know that random messages fail decoding, and are therefore dropped)

the users also ignore any packets left in the system from the handshake protocol.

We therefore limit our attention to packets sent by Alice during the stop-and-wait

protocol that are delivered to Bob and vice-versa.

Moreover, it is easy to see that since the users wait at least d(n) rounds before

sending messages (i.e., they either wait until a timeout or hold at step 12 until d(n)

rounds have passed) and messages are delivered within d(n) rounds if at all, there is

at most one message that was sent by Alice during the stop-and-wait protocol in the

system at any time, and at most one that was sent by Bob.

We now introduce the notion of an active message at round r: Alice's first message

sent during the stop-and-wait protocol is an active message from the first round

until it is first delivered to Bob, and inductively, a message sent on a round after a

user receives an active message, acknowledging the sequence number of that active

message is also an active message for each round until it is delivered to the other

user. (Thus, Bob's acknowledgement of Alice's first message is an active message

until Alice receives a copy of it, Alice's acknowledgement of Bob's acknowledgement
is an active message until Bob receives it, and so on.) We will also refer to the sender

of an active message as an active user in a round.

Note that it follows by induction on the number of rounds that there is always

precisely one active message on every round. Thus, noting that there is at most one

other message in the system that was sent during the stop-and-wait protocol, we can

refer to this other message as the inactive message at round r, if it exists.

In particular, since we can see by induction that the messages sent by a user who

executed the portion of the protocol starting from step 3 (starting with Alice's first

message) are always active messages, the only messages that can be inactive messages

are sent after a timeout; in this case, since the message was active at some earlier

round (before it was received) and the active user (its recipient) has not yet received

an acknowledgement of the active message it sent in response (since then the message

293

it sent would not be active), the inactive message must be stored in XoId for the
active user, and is therefore dropped if it is received. Thus, the users only forward a
message's contents to the environment and return to step 3 when they receive active
messages.

On the other hand, since either the sequence number of subsequent active messages
differ from the sequence number of a message stored in Xold or the contents differ, we
see that a user will not drop the next active message it receives from its partner.
Thus, given that the active message decodes correctly, it will be forwarded to the
environment and an acknowledgement will be sent in response, so the message will
cease to be active in following rounds.

Now, because the messages from Alice to Bob are sent in Alice's active messages in
order, Bob forwards them to the environment while they are active, and the messages
are only active until they are forwarded to the environment, the messages are delivered
to the environment in order. The same holds for the messages sent from Bob to Alice
by the same argument. We therefore see that we will achieve the goal, provided
that we eventually send each message correctly, so we next turn to analyzing the
performance of Exp3.P.1 in this context.

Acknowledgements arrive before the next timeout. We first wish to estab-
lish that when (two subsequent) active messages are sent correctly and not dropped
by the network, positive feedback is provided to Exp3.P.1 regarding its latest choice
of protocol; noting that we provide positive feedback to Exp3.P.1 whenever an ac-
knowledgement arrives, this means that we want an acknowledgement to arrive before
another protocol is selected-that is, before a timeout occurs, within 2d(n) rounds.

We know that, given that the message was sent correctly and not dropped, it will
be delivered within d(n) rounds, but our concern is that our partner may not send
feedback immediately-we need to see that the feedback is sent within d(n) rounds.
We consider two cases: the first case is when the active message is sent for the first
time, and the second case will be when the active message is re-sent after a timeout
(i.e., since it was either dropped or sent incorrectly the first time).

In the first case, since the active message has been sent in response to a message
that was just received from our partner, and that message was delivered in d(n) - A
rounds for d(n) > A > 0, we know that our partner will only delay sending an
acknowledgement for another A < d(n) rounds from when we sent our message. Thus,
if the partner's (active) acknowledgement is also sent correctly and not dropped, it
will arrive in at most another d(n) rounds, so we receive feedback within 2d(n) rounds
in this case, as needed.

In the second case, suppose there have been k timeouts since we first sent the
active message, and suppose that the active message was delivered to us in d(n) - A
rounds after it was sent. In this case, k-2d(n) rounds have passed since we received the
message, and our partner has also experienced k timeouts, and since it also resends
its message every 2d(n) rounds, its most recent message was sent d(n) - A rounds
before our most recent timeout. Therefore, by the same argument as in the first case,
if we send the active message correctly on the current attempt and the message is not

294

dropped, our partner only waits until at most A < d(n) rounds have passed since we

sent the message to send an acknowledgement. Therefore, if that message is also sent

correctly and not dropped, it is delivered back to us within 2d(n) rounds of our last

(successful) attempt at re-sending the message.

The multiplicative weights scheme learns to send most messages. We

therefore see that we provide Exp3.P.1 with positive feedback whenever

1. It chooses a protocol that sends the message successfully

2. Its partner chooses a protocol that sends the acknowledgement successfully

3. Neither of these messages is dropped

We may also provide Exp3.P.1 with positive feedback if

1. Our last message was delivered in a prior round

2. The original acknowledgement was either sent unsuccessfully or dropped

3. The acknowledgement was subsequently successfully resent

but in this latter case, the feedback is independent of Exp3.P.1's most recent choice

of protocol (i.e., "noise").
We note first that in any case, we provide Exp3.P.1 with one unit of reward each

time we receive an acknowledgement. Therefore, the reward we receive up to round

r is the total number of acknowledgements we have received up to round r. Since

we return to step 3 and send the next active message precisely when we receive an

acknowledgement of our last message, as long as the total reward eventually tends

to infinity, we will eventually send every message, and we will achieve the goal. In

pursuit of this, we turn to calculating a lower bound on the reward obtained by

Exp3.P.1.
First, suppose that both Alice and Bob knew the network's protocol, and used

this instead of Exp3.P.1. In this case, each one of Alice's messages is still dropped

with probability 1 - 6(n), and if it is not dropped, then the Borel-Cantelli lemma

guarantees that Bob acknowledges her message eventually with probability 1. Thus,
if in a sequence of rounds, Alice is the active user in T of them, she receives reward

(1 - 6(n))T. Since the same expression holds for Bob, and one of the users is active

in any given round, the total reward accrued by the users in T attempts to send an

active message is (1 - 6(n))T.

We note that both users attempt to re-send their last message each time the

active message is not received. This implies several things. First, when Bob is the

active user, both users have made the same number of attempts at sending messages.

Second, on a round when Alice's active message is received by Bob, the total number

of attempts is the users' total reward plus twice the number of failed active attempts.

Therefore, in expectation, there are T attempts to send active messages after the

users individually send (1 + 6(n))T messages. In particular, in expectation, the users

295

each receive reward !(1 - 6(n))T in !(1 + J(n))T attempts, that is, reward T2 2 1±6(n)
after sending T messages.

Now, suppose that Alice uses Exp3.P.1 with parameter 60 = c/4 instead. Since
Theorem 9.26 shows that, for a function

A(T, 6o, f(n)) 1 T2(n)+1 in T24n)+ 2ln(2+log2 T)
v/_ - 1 6o

+ 10(1 + log 2 T) In + 21n(2 +1lo2T)
+l

the reward obtained by Exp3.P.1 after T attempts at sending messages (active or
inactive) is not worse than that obtained by the correct protocol by more than
A(T, Jo, f(n)) with probability at least 1 - 6o; in particular, for any fixing of the
environment's random choices of whether or not to drop messages, it does as well as
the correct protocol with probability at least 1- o, so in expectation over the environ-
ment's choices, the total positive feedback received by the users together after T at-
tempts at sending active messages by either user is at least (1-6(n))T-A(T, 6o, f(n)).

We now consider Bob's perspective: when he sends an active message, since he
is using the correct protocol, it is delivered with probability (1 - J(n)); actually,
whenever the active message is delivered, we see that Bob eventually receives reward
(of one of the two types) so Bob's expected reward after T attempts at sending as the
active user is still (1 - 6(n))T. We find now that when Bob uses Exp3.P.1 instead,
the total positive feedback received by the users together out of T attempts decreases
again by at most A(T, 6o, f(n)) with probability at least 1 - 6o.

Therefore, in total, after T attempts at sending active messages, in expecta-
tion over the environment, the users together receive reward at least (1 - 6(n))T -
2A(T, o, (n)) with probability at least 1 - 26O over the protocol's random choices.
By a similar calculation as before, after the users send (1 + 6(n))T + 4A(T, 6o, f(n))
messages in total, the users attempt to send active messages at least T times in ex-
pectation between them. In particular, (noting that T > 1 (T - 4A(T, O, f(n))

and A is a monotone increasing function of T) this implies that after the users send
T messages, they receive total reward at least

I ()T - 2 + 4 A (T, 6o, fE(n)).
1 + 6(n) 1 + 6(n)

That is, since the users make the same number of attempts and each receive the same
reward after Bob sends as the active user, the users each receive reward at least

T- 1 + 2) A(T, 6o, e(n))
1 + 6(n) 1 + 6(n)

in expectation over the environment's random choices, with probability at least 1 -
260 = 1 - c/2 over the user's random choices, after attempting to send messages T

296

times for
4

T > min{i : log2(e)i2(n) > logi + f(n) + log(logi + 1)(logi + 2) + log -}.

Now, recalling the connection between reward and acknowledgements, this means

that with probability at least 1 - c/2, each user successfully sends at least

1 C()T'n T2("

I 6 (T-O T2f(n) log + log T log
1 + 6(n) EE

messages after T attempts; since the users wait at most 2d(n) rounds before making

their next attempt at sending messages, and at most one new message is introduced

per round - either from the environment, or an empty acknowledgement - a message
introduced by the environment in round R is returned to the environment by the

other user after at most

2d(n)(1 + 6(n)) (R2(n) R2f(n)
1-6(n) (R + 0 R2e(n) log + log R log)

1 - 6(n) '

rounds of the stop and wait protocol in expectation. So, in particular, every message

is eventually sent with probability 1 in this case, and Construction 9.28 (together

with the handshake protocol of Construction 9.27) achieves the goal with zero errors

with probability 1 - c as claimed. U

9.3.4 An improved end-user scheme for reliable communica-
tion

Theorem 9.35 (together with Theorem 9.31) has established that we can successfully
communicate across an unreliable network when the protocol is modified, using the

adaptive stop and wait protocol described in Construction 9.28. Unfortunately, the
rate of the protocol is rather poor: it maintains a send window of size one, forcing the

users to wait for an acknowledgement between sending messages. Obviously, in order
to obtain a more reasonable protocol, we will need to consider larger send windows.

The difficulty that arises when modifying the adaptive stop and wait protocol

to use a larger send window is that our scheme for adapting to the modification,
using Exp3, must incorporate any feedback from the current round before being

used to obtain a protocol to use on the following round. This has two somewhat

serious ramifications: first, we cannot reuse Exp3 to send the next message until we

either receive an acknowledgement or experience a timeout; and second, we should

not proactively retransmit all unacknowledged messages that have timed out, since

many of these may have actually arrived. As suggested earlier, at the outset of

Section 9.3.2, we will finesse the first issue by using a number of copies of the weights

for Exp3 equal to the size of the send window, so that we can invoke them in a round-

robin fashion to obtain a higher throughput, but the second issue remains in force.

297

Thus, when we experience a timeout on some transmission, we will only retransmit
the first unacknowledged message in the send buffer, and wait until some prefix of
the send buffer is acknowledged before retransmitting any more messages. In other
words, due to the limitations of our learning scheme, retransmissions will still follow
a stop-and-wait scheme in our improved protocol. Fortunately, the protocol is still an
improvement, since we can still freely fill the send window, and retransmissions will
only need to be sent for a 6(n)-fraction of messages. How much of an improvement
we obtain, however, depends on the latency d(n) relative to the fraction of dropped
messages 6(n), and we will discuss the performance later.

Dealing with these different behaviors depending on whether messages need to be
retransmitted or not leads to a substantially more complex protocol, and in response,
we have adopted a more modular presentation of the protocol. We will provide an
overview first.

Broadly speaking, the protocol has three states: Active, Timeout recovery, and
Idle. The Active state merely fills the send window until either a timeout is ex-
perienced for the first message in the send window - which causes the protocol to
transition to the Timeout recovery state - or the protocol exhausts the send buffer,
which causes a transition to the Idle state. The Timeout recovery state retransmits
the first message in the send buffer until it is acknowledged; if, after receiving an ac-
knowledgement, all messages that have experienced a timeout are acknowledged, the
protocol returns to the Active state, and otherwise, the protocol retransmits the next
unacknowledged message in the send buffer. In the latter case, the send window is still
not completely full, so while waiting for an acknowledgement of this retransmission,
the protocol continues to fill the send window. Finally, the Idle state adds an empty
message to the send buffer so that it can continue to provide acknowledgements
the analysis of the adaptive stop and wait protocol shows that it is crucial for every
message to be acknowledged, and since the acknowledgement must be sent using a
protocol obtained from some set of weights, it effectively must occupy some position
in the send window (this message needs an acknowledgement so that we can provide
feedback to Exp3).

There are also two common subroutines across the states that process incoming
messages from the server, and messages to be forwarded to the environment. The for-
mer subroutine essentially performs the user decoding strategy of Construction 9.18,
together with some bookkeeping in the send and receive buffer-processing acknowl-
edgements of our sent messages, in particular. The latter subroutine simply returns
the received messages to the environment in order, respecting the fact that we can
only send one message per round (so in particular, if we had been missing only the
first message of a long block of messages, once we receive that message, we can only
send the remaining messages one at a time).

We now present the improved protocol:

Construction 9.36 (Adaptive delay-bound protocol). We take as input a pair of
hash functions hi and h2 provided by the handshake protocol, a value b E {0, 1}, and
the initial send buffer containing i messages. We will assume that the entries in the
send buffer have a field for storing the number of rounds that elapsed from when the

298

previous entry in the send buffer was first sent and when the corresponding entry was
sent (may be set to I for the first entry).

We initialize the following parameters:

io = min{1, i} The index of the first unacknowledged message in the send buffer.

jo = 0 The sequence number of the last message removed from the receive buffer.

j = 0 A sequence number where every member of the interval (jo, j] of sequence
numbers in the receive buffer such that this interval is as long as possible.

0 The last received sequence number.

ko = 0 A sequence number where every member of the interval [io mod 2d(n), ko] in
the send buffer has been sent, and such that this interval is as long as possible.

k = I The index of the last retransmitted message.

f = I The sequence number of the last message in the send buffer to time out. (Set
to I if no such message exists.)

s = oo The number of rounds until the next timeout (i.e., until f advances to f +
1 mod 2d(n)).

t = 0 The number of rounds since the last message was sent.

t' = I Counts down from 2d(n) to 1, indicating the number of rounds until the next
retransmission of the first unacknowledged message in the send buffer.

We also initialize d(n) copies of weights for Exp3.P.1.
If the send buffer is empty (i = 0) then we enter the idle state; otherwise, we enter

the active state.
Idle:

1. Set s = o, £ = f.

2. Add an empty message to the end of the send buffer with t and increment i and
ko (mod 2d(n)).

3. Query the copy of Exp3.P.1 with index io mod d(n) to obtain bounded modifi-
cation 92.

4. For a message x with empty contents, the SYN flag cleared, the LEAD flag set
to b, sequence number io mod 2d(n), and acknowledging j, send g2 (U(x, h1 (x)))
to the server, and set t = 0.

5. For t' = 2d(n),... , 1, repeat the following:

(a) Wait until the next round, process received messages, and increment t.

(b) If a message m' was received from the server, process message(m').

299

(c) If a message was received from the environment, add it to the end of the

send buffer, increment i, set t' = _, and enter the Active state.

(d) (Empty message acknowledged) If io > i, go to step 2

6. (Timeout) Provide reward 0 to the copy of Exp3.P.1 with index io mod d(n),
set k = io, and go to step 3.

Active:

1. If t mod 2 = 1, do the following:

(a) If a message m' was received from the server, process message(m').

(b) If a message was received from the environment, add it to the end of the

send buffer and increment i.

(c) If s = 0, enter the Timeout recovery state.

(d) Wait until the next round, process received messages, increment t, and

decrement s.

2. If a message m' was received from the server, process message(m').

3. If a message was received from the environment, add it to the end of the send

buffer and increment i.

4. If s = 0, enter the Timeout recovery state.

5. If io > i, enter the Idle state.

6. If ko / io + d(n) - 1 mod 2d(n), do the following:

(a) Increment ko mod 2d(n), set k' to the representative of ko in the interval

[io, io + d(n)], and set the round count field associated with index k' in the
send buffer to t; if s = o, set s = 2d(n).

(b) Query the copy of Exp3.P.1 with index ko mod d(n) to obtain a bounded
modification g2.

(c) For a message x with contents equal to the message stored at index k' in
the send buffer, the SYN flag cleared, the LEAD flag set to b, sequence
number ko, and acknowledging j, send a message g2(U(x, hi(x))) to the
server and set t = 0.

7. Wait until the next round, process received messages, increment t and decrement

S.

8. Go to step 1.

Timeout recovery:

1. Set f = io mod 2d(n).

300

2. If ko f io mod 2d(n), set s to the round count associated with index io + 1 in

the send buffer.

3. Return reward 0 to the copy of Exp3.P.1 with index io mod d(n), and query it
for a new bounded modification g2.

4. Set k = io.

5. For a message x with contents equal to the message stored at index k in the send

buffer, the SYN flag cleared, the LEAD flag set to b, sequence number io mod

2d(n), and acknowledging j, send a message g2(U(x, hi(x))) to the server.

6. For t' = 2d(n), . .. , 1, do the following:

(a) Wait until the next round, process received messages, increment t, and
decrement s.

(b) If s = 0, set f = f + 1 mod 2d(n), and if f # ko, set s equal to the round

count associated with the index of the send buffer that is the representative
of f-+1 mod 2d(n) in the range [io, io+d(n)]; otherwise, if f = ko, set s = oo.

(c) If a message was received from the environment, add it to the end of the

send buffer and increment i.

(d) If a message m' was received from the server, process message(m').

(e) (Retransmission acknowledged) If io # k, do the following:

i. If f is not in the range [io mod 2d(n), ko], set f = _L, and enter the
Active state.

ii. Otherwise, go to step 3.

(f) Otherwise, if t $ 1 mod 2 and ko # io + d(n) - 1 mod 2d(n), do the

following:

i. Increment ko mod 2d(n). Set the round count field associated with the

representative of ko in the range [io, io + d(n)] in the send buffer to t;
ifs = oo, set s = 2d(n).

ii. Query the copy of Exp3.P.1 with index ko mod d(n) for a new bounded
modification g2-

iii. For a message x with contents equal to the message stored at the
representative of ko in the range [io, io + d(n)] in the send buffer, the

SYN flag cleared, the LEAD flag set to b, sequence number ko, and

acknowledging j, send a message g2 (U(x, hi(x))) to the server and set

t = 0.

7. (Retransmission timeout) Go to step 3.

Process message(m')

1. Try each (f(n), s'(n), C')-bounded modification gi until g1(U)- 1 (m') = (x, y)

such that x has length at most n' and y = h2 (x). If no such gi exists, return.

301

2. If x has the SYN flag set or the LEAD flag set to b, return.

3. If x acknowledges some sequence number i in the interval [io mod 2d(n), ko], do
the following:

(a) For the representative i' of i in the range [i0 , io+2d(n)], provide reward I to

the copies of Exp3.P.1 with indices in the range [io mod d(n), i' mod d(n)]

(b) Increment s by the sum of the associated round counts associated with
entries io + 1, . . . , i' + 1 of the send buffer

(c) Set io =i'+1, and if i = ko, also set ko = Z+ 1 mod 2d(n).

4. If x has sequence number j in the interval [j+1 mod 2d(n),j+d(n) mod 2d(n)],
add it to the receive buffer, and otherwise return.

5. If j = j - 1 mod 2d(n), we advance j to the index preceding the first empty

position in the receive buffer in the window [j + 1 mod 2d(n), j + d(n) mod
2d(n)].

Process received messages
If j # jo, do the following:

1. Set jo = jo + 1 mod 2d(n).

2. At the end of the round, forward the message contents stored in the receive

buffer at index jo to the server.

One aspect of the protocol that may be confusing is that when we are filling the

send window, we explicitly wait at least one round between messages (i.e., check that

t # 1 mod 2). We enforce this because some bounded modifications may accidentally

address a message intended for our partner back to us-a similar concern arose in the

construction of the handshake protocol of Construction 9.27. In this case, we have

the LEAD field to distinguish such misdirected messages from messages addressed

to us by our partner, but we still need to guarantee that we do not flood the server

with such messages, since the server is permitted to drop messages addressed to us

(by, e.g., our partner) if too many messages arrive. Sending messages in alternating

rounds guarantees that the total number of messages that could be addressed to us at

any given time in this simple scenario does not exceed the server's capacity to deliver

them.
Similar remarks to those following the description of the adaptive stop and wait

protocol, concerning the time efficiency of decoding, also apply here, and we summa-

rize them briefly. In short, when proceeding through the list of the various bounded

modifications in decoding an incoming message, it would almost surely be beneficial

to use an adaptive enumeration such as a move-to-front list. We have not done so

because we do not know how to analyze the performance of the optimal ordering

policy (relative to modifications obtained by Exp3.P.1) and in any case, the optimal

running time is somewhat beside the point here.

302

Analysis of the improved scheme

We now analyze our adaptive delay-bound scheme. The correctness of the scheme
essentially follows arguments we have given previously-we know that, using the

hash functions provided by the handshake protocol, decoding of messages proceeds

without error by an argument essentially identical to the one given in the proof of

Theorem 9.35. Likewise, we know that the given space of sequence numbers will

uniquely identify messages within the users' send windows by essentially the same

argument as given in the analysis of the "delay-bound" scheme presented in our

review of TCP in Section 9.3.1 (and in fact, the size of the sequence number field was

chosen to be as small as possible). Hence, our focus will be on the performance of the

scheme, in terms of the number of rounds needed to send a given number of messages

(assuming that the send buffer is full, and we don't need to enter the Idle state).
We will see that the performance of the adaptive delay-bound scheme is generally

better than the performance of the adaptive stop and wait scheme, but how much

better depends on the relative size of the latency d(n) and the probability of a dropped
message, 6(n). In particular, we will show that our use of multiple copies of Exp3 to
obtain better throughput does not delay the "learning rate" of the overall protocol

appreciably beyond what was experienced in the stop and wait protocol. There are

essentially three cases: if d(n) << 1/6(n), then we spend most of our time in the
Active state, and we get throughput close to 1/2 (since we only send a message on

every other round), whereas if d(n) >> 1/6(n), then we spend most of our time in

the Timeout recovery state, and get poor throughput, but at least we outperform

the stop and wait protocol by roughly a 1/6(n) factor (for an overall throughput of

roughly 16(n) messages per round), since approximately that many packets arrive

successfully between failures. Finally, if d(n) - 1/6(n), then the expected number of

messages sent between dropped messages is roughly the size of the send window, and

we oscillate between the two states and obtain "moderate" throughput.

Theorem 9.37 (The adaptive delay-bound scheme sends messages in an unreliable
network more efficiently). Suppose n' = n + 2 log d(n) + 4, 2m < N, and

16
m > n'+s(N) +2(n) +log --

with e > 5co(N) for the co specified by Theorem 9.12 applied to space-s(N) + s'(N) +1
sources. Suppose further that we are given (s(n), C, N)-streaming protocols UA and

UB and any (f(n), s'(n), C')-bounded modifications fA and fB, applied to UA and UB

respectively, where UA = fA(UA), UB = fB(UB), and S(UA, UB) is the unreliable

server using U' and UB.
Then a pair of users following the handshake protocol described in Construc-

tion 9.27, and subsequently following the adaptive delay-bound scheme described in

Construction 9.3,6 using the parameters returned by the handshake protocol success-

fully achieve the goal of sending datagrams with max-delay d(n) and failure probability

6(n) with S(UA, UB) with probability at least 1 - e.
Furthermore, assuming that we always have i > io + d(n), after d(n) - i* messages

303

are sent by the adaptive delay-bound protocol where

1(n) 4
= min{i : log2(e)i2 > log i + + log(log i + 1)(log i + 2) + log -

we have spent at most

2+ 1-()(d(n) + 26(n)) + o(1)

rounds per delivered message.

Proof We first note that as in the proof of Theorem 9.35, the conclusion of Theo-

rem 9.31 implies that the users do not mistake messages sent during the handshake

protocol for messages with contents that should be forwarded to the environment;
likewise, by a nearly identical argument as in the proof of Theorem 9.35, Lemma 9.29
implies that decoding with the hash functions provided by the handshake proceeds

without error with high probability. This also implies that the users ignore messages

that were not sent by their partner during the adaptive delay-bound protocol. We

therefore only need to show that the sequence number scheme is suitably chosen to

guarantee that messages are delivered to the environment by their designated recipi-

ent correctly, and that the protocol provides the claimed rate of delivery.

Messages are delivered in order. We first argue that the sequence number

scheme for the adaptive delay-bound protocol suffices to guarantee that every mes-

sage is forwarded by its recipient to the environment exactly once, and in order.

The argument is similar to that given for the (non-adaptive) delay-bound protocol in

Section 9.3.1.
We first argue that a sender does not mistakenly take an acknowledgement for an

old message using the same sequence number as an acknowledgement for a currently

unacknowledged message, guaranteeing that we don't prematurely give up on sending

a message. We note that the send window [io mod 2d(n), ko] comprises a range of at

most d(n) indices since we only advance ko to io+d(n) mod 2d(n) in either the Active

state or the Timeout recovery state (in the Idle state, the send window has size at

most one). In particular, therefore, for a given value of ko, the "smallest" sequence
number we can send is ko - d(n) mod 2d(n). Now, ko can only advance to ko + A
after the messages ko, ko +1, . . ., ko + A have been sent, where we also guarantee that

we only advance the upper end of the send window at most once every other round,
so ko can only advance to ko + A after 2A rounds have passed; in particular, within

2d(n) - 1 rounds, ko can only advance to ko + d(n) - 1 = ko - d(n) - 1 mod 2d(n),

i.e., one index short of the smallest sequence number we could have sent. Since we

process incoming messages at the start of the round (before incrementing ko) and the

maximum round-trip time for a message is 2d(n) rounds, this means that ko will not

reach the point where it could be confused for an old acknowledgement. In particular,
every message in the send buffer up to index io - 1 has therefore been acknowledged
by our partner.

304

We now show that the receiver does not mistake an old message for a new message

using the same sequence number, guaranteeing that we only send an acknowledgement
once we receive the intended message. Assume by induction that we have received

messages up to index j. (The base case, j = 0, holds trivially.) Again, it is crucial that

the send window comprises a range of at most d(n) indices. When the sender sends a

message with sequence number 3, therefore, the oldest message that could be in the

send window has sequence number j - d(n) + 1 mod 2d(n); likewise, as we argued
above, once the sender sends a message with sequence number j, since the maximum

delay is d(n) and ko advances by at most one index per round, the old messages
that could still be present in the network may only have sequence numbers in the

range [j - d(n) + 1 mod 2d(n), j mod 2d(n)]. In particular, since the process message

routine only stores a new message in the receive buffer when it receives a sequence

number in the window [j + 1 mod 2d(n), j + d(n) mod 2d(n)], where by the induction

hypothesis we have received messages up to index j (so therefore the sender must have

sent messages up to index j), we see that any old messages we might receive must

have sequence numbers falling in the window [j - d(n) + 1 mod 2d(n), j mod 2d(n)],
where this is precisely the set of indices that the receiver ignores. Therefore, we only
store the sender's message with index j' at index j' in the receive buffer, and hence

only advance j to j + A after we have received all of the messages with indices in the

range [j + 1, j + Al, so the induction hypothesis holds, and we only ever acknowledge

a sequence number j after receiving all messages up to index j.
Taken together, these arguments show that messages are delivered to the environ-

ment in the process received messages routine in order once they are received, and that

messages remain in the send buffer until they are acknowledged (and hence received).

Therefore, so long as every message is eventually sent correctly and acknowledged,
the protocol will achieve the goal. It is easy to see that this happens-in the 2' itera-

tions of the next phase r, the designated copy of Exp3.P.1 for that sequence number
independently chooses the "correct" bounded modification with probability at least

2 V/n2,)) where across all states, we attempt to send the first message in the send

window at least once every 2d(n) rounds, and this message arrives with probability
(1 - S(n)). Therefore, the Borel-Cantelli Lemma guarantees that the first message in
the send window is always eventually sent successfully with probability 1. Since there

are only countably many messages, they are all sent successfully with probability 1,
and thus the goal is achieved.

Analysis of delivery rate. We now show that the adaptive delay-bound protocol

achieves the claimed rate of delivery, given that i > io + d(n)-that is, given that

there are always enough messages in the send buffer to fill the send window. (Note

that otherwise the rate at which messages are added to the send buffer may be a

bottleneck.) As in the proof of Theorem 9.35, we will identify the amount of reward

received by (a copy of) Exp3.P.1 with the number of acknowledgements received and

apply Theorem 9.26 twice, initially moving from the case where both parties use the

modified protocol to the case where one party uses Exp3.P.1, then to the desired case

where both parties use Exp3.P.1.

305

Thus, we begin by calculating the rate at which acknowledgements are received

when both parties know the network protocol, that is, the rate at which io advances.

The key here is to consider how many times each message is dropped: each dropped

message delays the advance of io by up to 2d(n) steps, and the expected number of

drops is (n) Therefore, each message is delayed by 2d(n)(n) rounds in expecta-

tion due to dropped messages; otherwise, messages are sent at a rate of once every
two rounds, so when a message is not dropped (with probability 1 - 6(n)) and an

acknowledgement arrives, it "costs" two rounds, for a cost of 2(1 - 6(n)) rounds in

expectation.
Finally, we need to consider the cost due to an acknowledgement failing to arrive

within the next 2d(n) rounds. There are two ways in which this might occur: the first

is that some message sent by our partner is dropped at least twice, and the second

is that some number of consecutive messages in our partner's send window are all

dropped consecutively, forcing us to wait in the Timeout recovery state. In the second

case, each such dropped message may cost us an additional two rounds of waiting,
for a total expected cost of at most 26(n) For the first case, there is an expected

1-6(n)

cost of 2d(n) rounds due to (consecutive drops of) our partner's retransmissions. In
6-(n)

the meantime, our send window fills, and so this cost is an additional delay shared by
the d(n) unacknowledged messages in our send window. Thus, the additional delay

per message is
1 2 2d(n) 26(n)

6(n) +
d(n) 1 -6(n) 1 - 6(n)

and the total number of rounds per message we spend is therefore at most

2(-6n)--26(n) 26(n) +2()
2(1 - 6(n)) + 26(n (d(n) + 1 + 6(n)) = 2 + (d(n) + 26(n))

1 - 6(n) 1 -6(n)

rounds of delay in expectation per message.

Now, we note that each copy of Exp3.P.1 receives a 1/d(n)-fraction of the mes-

sages, and hence since every message is acknowledged once, a 1/d(n)-fraction of the

total number of acknowledgements. By Theorem 9.26, we know that once the num-
ber of messages sent by each copy is greater than i*, using Exp3.P.1 with 6o = E/4
instead of the "correct" bounded modification incurs an additional O(N T/d(n) + 1)

failed attempts to send by each copy once T attempts have been made overall, yield-

ing a total of O(d(n)T + d(n)) additional "dropped messages" out of T across all

d(n) copies, where each dropped message incurs an additional delay of at most 2d(n)

rounds. Since this is bounded independent of T, as T -- oo, the use of Exp3.P.1

therefore incurs o(1) (really, O(d(n)3/2 (d(n)/T + 1/v T))) additional rounds per

message. Likewise, once both players use Exp3.P.1, each time either a player drops

a message, both players experience an additional delay of at most 2d(n) rounds in

waiting for that message to be retransmitted. Since this is at most twice the delay

from the previous setting, which was o(1), the overall cost is at most o(1) additional

rounds per message. M

306

9.4 On extending the protocol to networks con-
necting many users

In the previous section, we presented protocols that permitted two users to commu-

nicate across a packet network using an unknown modification of an earlier packet

format known to both users. A problem with the model we used, however, is that

we failed to account for the presence of the other users on the network. We consid-

ered the possibility that one of our two users might accidentally forward a message
to themselves, but we had ignored the possibility that the user might accidentally
send a packet to some other, unrelated user. In particular, we assumed that the

only messages arriving to the two users had been sent by one of them, but if we

accidentally initiate communication with a user other than the intended recipient,
then we may not achieve our intended goal at all! Thus, the essential problem comes

down to how the network manages identities (by which we primarily mean addresses

for our purposes), and we will briefly discuss some approaches to dealing with these
problems.

We are not aware of any way of coping with such problems without either relying

on some additional infrastructure or else some knowledge about the address scheme

used by the network protocol. So, although we will present some approaches to

coping with these issues, all of our approaches will entail additional design decisions,
and hence none will be entirely "universal." The aim will instead be to place relatively
minimal restrictions on the space of protocols, so as to allow as large a design space

as possible for future versions.

On the application to the update from IPv4 to IPv6

The situation is still bleak concerning even the specific example of a change in the

network protocol we have in mind, that of transitioning from IPv4 to IPv6. At the

outset, in motivating our definition of unreliable servers (Definition 9.8), we assumed
that the modification of the network protocol for the two users consisted of two

independent modifications of the existing protocol, one that Alice would use to send
messages to Bob, and one that Bob would use to send messages to Alice. Since IPv4

and IPv6 merely attach different headers to a packet of data, this was sufficient to
capture the transition from IPv4 to IPv6 with respect to two users. This approach
does not scale for several reasons. The first undesirable aspect of this approach

is that it requires learning a new "modification" for each new user we might want

to communicate with, whereas the packet format in both IPv4 and IPv6 depends

"uniformly" on the addressee's IP address, so we would hope that our protocol might

preserve this aspect, and only need to learn one protocol for use in communicating
with any user on the network. The more serious problem, as we noted above, is that

we have no way of distinguishing users, and so our protocols do not guarantee that

they establish communication with the right user (or even communicate correctly

with any user) in the case where there are many users on the network.

In both cases, the ultimate problem is that IPv4 and IPv6 use completely different

addressing schemes-and indeed, the major motivation for the change in the protocol

307

was that the IPv4 address space was in danger of being exhausted. In particular,
without some kind of outside assistance, the user does not have much hope of finding
the their addressee's new address in this larger address space. This strongly suggests
that we will need to rely on the existence of some kind of "address translation,"
either by some simple embedding of the old address space in the new space (e.g.,
padding by O's), or by some service on the network, where unfortunately neither
has been provided for the transition from IPv4 to IPv6. We will discuss some such
possible approaches that could have been taken to allow the transition to be handled
automatically in more detail at the end of this section.

9.4.1 Approaches for protocols using the same addresses

We first consider the simpler case where both protocols identify users by the same
fixed address strings. Our approaches here are tantamount to making some mild
additional assumption(s) about the protocol.

Approach #1: partially fix the packet format.

The simplest approach in this vein, suggested by Eran Tromer [140], is to assume
that the source and destination addresses are always, e.g., at the start of the packet.
If the rest of the packet is independent of the addresses, then there is no more to
be said. On the other hand, if there is any part of the packet that depends on the
addresses - for example, a checksum - then we are left with the task of verifying that
the bounded modification does not change the address.

A simple approach here that will always work is to check that the address fields
are correct prior to sending the packet, and count it as "dropped" otherwise. It is
immediate to see that this works, and reduces the problem to the one considered in
this chapter. For the special case of logspace streaming protocols we considered here,
it should also be possible to check that the protocol computes the identity map on n
bit prefixes using dynamic programming-from a given state, we can check what bits
may be output next, and so we can (one bit at a time) verify that the next output bit
matches the "latest" input bit. The only complication is that the protocol may read
many input bits before producing output, but we can handle this by recording how
many bits of output we have already accounted for from a given state. (Note that if
we reach the same state on two different paths while "accounting for" two different
lengths of prefixes of the output, then it is easily seen that the machine would not
compute the identity function properly, so we would immediately reject.) That is, if b
bits are accounted for, to check that the (b+ 1)th bit matches, we first find the states
where the protocol outputs its next bit - i.e., skip that bit - and then recursively
"skip" the next b - 1 bits in the same manner; finally, as in the original case, we have
the set of states where b bits have been output, and we check that the (b +1)th bit
matches the input.

308

Approach #2: unforgeable addresses.

A slightly heavier approach is inspired by our solution to the problem of decoding cor-
rectly: namely, if we assume that "valid addresses" are in the form of (address, signature)
pairs, then so long as the signatures cannot be forged by our bounded modifications,
with high probability our bounded modifications will not produce any valid address

besides the source or destination as output. Supposing we assume further that the
network will not attempt to deliver a packet with a bad address (i.e., one without a
valid signature), this reduces the problem to the one considered here.

Again, in the special case of logspace streaming protocols that we considered here,
even the simple signature scheme based on pairwise-independent hashing works with
high probability since we only need to ensure that for any of the polynomially many
states that the protocol could be in when reading an input (address, signature) pair,
it only subsequently outputs the (independently distributed) signature for another
address with (exponentially) small probability. So for a sufficiently long signature
(at least doubling the length of the address, unfortunately) we know that some hash
function is secure for all addresses against all bounded modifications. To avoid such
overhead in the lengths of the addresses in this case, it might be desirable to instead
use a signature scheme based on a computational assumption (e.g., using a collision-
resistant hash function, as introduced by Damgird [48] - in particular, a type of
"stream computable" hash function especially suitable for the model of protocols
considered here was also later introduced by Damgird [49] - or, surprisingly, using
any one-way function [116]9) rather than an information-theoretic scheme like we
used. In such a case, since the users have already agreed on some key and we would
only have a computational security guarantee anyway, it would also make sense to

similarly use a computationally secure scheme at the end-user level as well (since the
length of the signatures there had a serious impact on the transmission rate of the
protocols).

9.4.2 Approaches for protocols using different addresses

We now turn to discussing some approaches for coping with the more challenging
situation where the network does not manage identities in the same way across pro-
tocols. As we noted at the beginning of this section, precisely this issue arose in the
transition from IPv4 to IPv6, and would arise any time that the protocol was changed
in response to, e.g., the exhaustion of a finite address space.

Approach #1: a simple embedding of the old address space.

A very natural approach in the case where the address space has simply been enlarged
is to reserve a block of the new address space for the old addresses; in the case of IP,
for example, consider a scheme in which each old 32-bit IPv4 address corresponded
to a 128-bit IPv6 address obtained by prepending 96 zeros to the old address. More

9And of course, the textbook by Goldreich [65] contains a comprehensive overview of signature

schemes.

309

generally, we could assume that the old address space always embeds into the new

address space by padding with some appropriate number of zeros, and in this case

end-users only need to guess the correct amount of padding.

Of course, this approach should be combined with one of our methods for ensur-

ing that the packet is either delivered to the intended recipient (i.e., that we have

computed a valid address) or that it is not delivered at all. Placing the addresses

at the start of the packet does not seem to work, unfortunately, since if insufficient

padding is used, but zeros appear in the high order bits of both addresses, then we

might accidentally initiate communication with an old address in which the bits have

been "shifted up," and similarly if excessive padding is used and zeros appear in the

low order bits of the first address, then the network might mistake the addresses for

ones with zeros in the high order bits instead. Either way, if we do not use exactly the

right amount of padding, we may get into trouble with some addresses. We seem to

require some other "check" that the sender "intended" to prepend the address with

a given number of Os, and in this case the obvious approach is to assume that the

addresses are signed by the same signature scheme under both protocols (i.e., using

Approach #2 from the previous subsection). This in turn assumes the use of a signa-
ture scheme that allows for signing messages of arbitrary lengths, which rules out our

information-theoretically secure schemes, and suggests that we should instead rely on

computationally secure schemes as discussed above.

Approach #2: a verifiable (address translation) service.

Our final approach assumes the existence of some service on the network, reachable

by some simple protocol taking as input a pair of source and destination addresses,
that translates addresses from the old protocol to addresses under the new protocol,
and forwards the response to the new address of, e.g., the source address. Of course,
we would like to be able to reach this service without knowing precisely the (new)

protocol for accessing it. In particular, we assume that the protocol for accessing the

service is simple in the sense of being computed by a short program, and does not need

an additional "address" as input to reach the service. The natural approach here is to
assume that the service uses a public-key signature scheme to sign its messages (again,
requiring a computationally secure scheme as discussed earlier), where the public

key is known to all users on the network. In this way, supposing that the service

responds to requests with messages consisting of signed (old address, new address)

pairs, an end-user can be assured that it has obtained valid translations provided by
the translation service. We can then use our verifiable decoding technique to recover

the messages from the translation service, using the known public key instead of

engaging any handshake or initialization sub-protocol.
Of course, once we have assumed the existence of such a powerful service, it

would be somewhat underwhelming to only use it for address translation-note that

we could even similarly assume that some such service existed that would, when

contacted, send an updated program for sending and receiving packets under the new

network protocol (this is similar to another suggestion by Eran Tromer [140]). Then,
we would only need to learn how to communicate with the update service in order to

310

obtain the new network protocol. As noted earlier, since we know how to verify that

messages were sent by the update service (using the assumed key) in this case, we

can at least ignore messages sent to us from other users that we might accidentally

contact while attempting to obtain the update from the service. Thus, the techniques

we considered here should suffice when such a service exists.

311

312

Chapter 10

Conclusions and directions for
future work

Let us take a step back and reflect on what has been achieved. Our original moti-

vation was to construct universal users for goals of practical interest, to free the de-

signs of computer systems from the constraints imposed by our desire for backwards-

compatibility, that is, by the need for these systems to strictly adhere to existing

protocols. In order to address this issue, we first needed to understand clearly what

it was we wanted to achieve: we therefore needed to consider precisely what pur-

pose those protocols had served, so that we could attempt to design something to

take their place. We were thus led to propose successively richer theories of semantic

communication in Chapters 2, 5, and finally 6. In each case, we proposed that the

systems achieved a goal for communication with a partner ("server") employing a

fixed protocol, and so we wished to replace the systems using fixed protocols with a

system using a universal protocol, which could adapt to a variety of different partner

protocols. The degree of flexibility of our new systems is captured precisely by the

size of the class of protocols with which they operate.
In each case, we have seen that some form of sensing with respect to the goal and

the class of protocols is necessary for the design of a universal user, and that with
few exceptions (in Chapter 5, e.g., when we compared our user to classes of protocols
that couldn't be efficiently enumerated such as non-uniform classes), sensing for a

class and a goal sufficed to construct universal users that could adapt to every fixed

protocol in that class. Moreover, in Chapters 3, 5, 6, and 9, we saw that sensing

could be achieved with many natural goals for communication and broad classes of

protocols-indeed, often with the class of all protocols for which robust achievement

of the goal was possible. In such cases, our universal protocols were as flexible as

possible.
Unfortunately, this degree of flexibility was prohibitively expensive: protocols

may, in general, involve hard-coded strings, and so the password lower bounds we

considered in Chapters 4 and 8 showed that these maximally flexible protocols needed

to run in exponential time in the lengths of the protocols to which they were adapting,
in the worst case. We were therefore led to consider protocols that could run more

efficiently at the cost of some flexibility in Chapter 8, or that suffered a graceful

313

decrease in performance as more flexibility was demanded of them in Chapter 4.

Ideally, we would have liked to find some "universal principles" capturing protocols
that are easy to adapt to-perhaps some universal notion of "simplicity" or "learn-

ability," as for example some would claim Kolmogorov complexity, computational

depth, or some other such notion to provide (cf. for example, work by Adelman [3],
Levin [92], and Antunes et al. [7] capturing NP search problems that have efficient

algorithms). The problem with all of these notions for our purposes, as discussed

in Chapter 4, is that there is always some "slack" in the notion of simplicity: Kol-

mogorov complexity is only invariant over the choice of programming language up to

an additive "0(1)" term, and our overhead is exponential in this "0(1)" term, which

may be quite large in practice (and indeed, may be arbitrarily large in general). The

kinds of problems we encounter here are essentially similar to those captured by the

"No Free Lunch" theorems [150, 1513, which roughly say that some source of "bias"

is necessary for learning and search to perform better than naive random guessing.

Thus, there does not appear to exist a single "silver bullet" restriction of the class of

protocols under which we could safely assume our partner protocols will operate.

Consequently, it seems like although we can buy flexibility at the cost of some

overhead in the running time, there's no way to guarantee that the protocols devel-

oped in isolation and employed by different communities will experience low overhead
when brought into operation with one another. Said differently, it seems that even

if we aren't strictly bound to follow a specific protocol or a specific class of proto-

cols when developing a new component, there will always be some benefit to obeying

such restrictions in the efficiency of operation of the overall system; conventions and

agreement among members of a community will still provide tangible benefits. In

this sense, the models and approaches developed in Chapters 4 and 8 are about as

powerful as one could realistically hope for, and we believe that they will provide a

solid starting point for the development of systems supporting such flexibility.

10.1 Directions for future work

We now outline what we believe to be the major avenues for future research that have

been opened by the work in this thesis. Roughly, the ultimate goal is to construct
flexible protocols under the refined models of Chapters 4 and 8. The starting point,
however, is to develop our understanding of how to construct systems that support

sensing for various concrete goals of interest. In short, we believe that the "scaffold-
ing" of such concrete goals and protocols is essential to provide the context in which

meaningful improvements in the protocols' efficiency can be developed.

Given such concrete examples, the respective models of Chapters 4 and 8 provide

rather different directions of research. The main challenge raised by Chapter 8 is to

obtain richer kinds of feedback that allow richer classes of protocols to be learned

efficiently, whereas the main challenge of Chapter 4 lies in the design of servers that

are "easy to use" with respect to some "natural" distribution on protocols. We will

see that this latter question seems quite related to the problem of designing usable

computer interfaces.

314

10.1.1 Concrete universal systems

So far, we have seen a few examples of "serious" applications for which we were able
to construct protocols, specifically protocols for universal delegation of computation
in Section 5.5.2, and the adaptive packet network protocols developed in Chapter 9.

Our main motivation, as stated in Section 1.1, was the construction of such protocols,
and we believe that there should be more opportunities for the development of such

"universal," "flexible," or "adaptive" protocols, along similar lines. Specifically, we
hope that the development of explicit "flexible" protocols for any of the numerous
real applications pursued by work in distributed systems and algorithms will be a
source of good problems for future research.

In particular, we suggest that the paradigm employed in the development of the
adaptive packet network protocol of Chapter 9 may be instructive in the following
sense: notice that, although it was impossible to make a universal protocol for the

"general" goal of sending messages over a network (e.g., as essentially captured by
Example 6.20), by assuming that the packets contained messages sent by the higher-
level variant of TCP of our own design, we were able to obtain sufficiently informative
feedback from the packets to learn how to use the network. To be more explicit, the
general paradigm suggested by this example is that when a protocol architecture is
divided into levels (as with TCP/IP), the higher-level protocol may be modified to
afford the lower-level protocol more flexibility by providing it feedback.

Of course, even the specific problem we attempted to address with the protocol we
developed in Chapter 9 is still, at best, only partially solved, and another somewhat
more obvious (but perhaps no less ambitious!) research problem suggested by this
work is to correct these deficiencies. A major problem, as described at some length in
Section 9.4, is that the protocol does not currently handle networks of more than two
end-users, as a consequence of difficult issues concerning addresses. We described a
few preliminary suggestions about how one might attempt to handle these issues in
Section 9.4, but we have no sense of which, if any, of the suggestions we considered
would turn out to be effective solutions. A second problem, which we'll consider in
more detail in the next section, is that the multiplicative weights scheme we used to
learn the network protocol is really not as computationally efficient as we would need
for a real system.

10.1.2 Reducing the overhead of concrete systems

The computational overhead suffered by our techniques for constructing universal pro-
tocols currently prohibit any of our example constructions from being useful in prac-
tice. This shortcoming of our basic techniques motivated us to develop approaches
that experience less overhead at some cost in the degree of flexibility, in Chapters
4 and 8. While we feel that the techniques described in these chapters serve as a
starting point, neither one is yet quite sufficient to reduce the overhead suffered by
our examples to the point where they may actually be useful in practice.

315

Directions for work on using restricted classes of protocols

For the approach developed in Chapter 8, the most powerful classes of protocols (and

richest kinds of goals) for which we could develop efficient universal protocols fell

well short of anything of much practical interest: our overhead (using, e.g., Auer

and Long's technique [121) was exponential in the number of rounds or the size of

the messages we wished to compute, and even then, we could at best use protocols

that had no state and computed their next message by, e.g., composing a linear

threshold function with some other simple function of the incoming messages. We

suggested that perhaps these limitations could be overcome by considering richer kinds

of feedback, but we could only propose a couple of "natural seeming" candidates for

such feedback.

It seems like bad practice to attempt to propose "good candidates" for useful

feedback out of context, since what is mathematically natural may turn out to be

infeasible for our purposes in practice-for example, while the membership query

model is a very natural learning model in many respects, it seems totally inappropriate

here. In a sense, the proper way to approach this problem seems to be to first

develop concrete protocols for a variety of examples of real goals (e.g., as suggested in

the previous section) and then consider what kinds of feedback those systems could

actually provide. While a general study of which kinds of feedback allow learning

which kinds of models would also address our problem, the space of "free parameters"

we just indicated seems to be too large and rich to yield interesting results any time

soon, if ever-there's no reason to suspect that the space of "kinds of feedback" should

be any less rich than the space of "learnable models," and likewise no reason to believe

that their interaction should be easily understood. In any case, we believe that the

study of some specific examples, apart from expediting the design of useful protocols,
may also play some role in illuminating which considerations may be relevant to a

more general study, just as our specific example of proof systems for computational
goals (that we originally considered [80]) led to the more general notions of basic

sensing considered the present work.

So, to reiterate, we suggest taking concrete examples of protocols, e.g., as devel-

oped in Chapter 9, and considering how those protocols might be modified to provide

additional feedback (and/or by further restricting the class of protocols considered) to

allow the learning problem to be solved more efficiently. Of course, in the specific case

of the adaptive packet network protocol developed in Chapter 9, we needed something

stronger than the on-line learning algorithms we considered in Chapter 8-instead of

enumerations, we needed to invoke the Exp3 algorithm of Auer et al. [10] for the "non-

stochastic bandit problem." Improving the efficiency of such algorithms for special

cases of strategies, even in the full-feedback "experts learning" setting (i.e., where the

value obtained by all strategies is provided), is a well-known and challenging problem;

work in this (easier) setting is summarized by Cesa-Bianchi and Lugosi [41].

316

Directions for work in the Bayesian setting

In the case of the Bayesian setting described in Section 4.2, although we have a tech-
nique for constructing universal users for sampleable distributions, we did not provide
any examples of servers with low benchmark running times for "real" distributions or
goals of interest;1 instead, our work there simply assumed that such a server had been
constructed by some benevolent "server designer" who had optimized the benchmark
running time of his or her belief distribution over user strategies, and obtained some
"reasonable" level of performance. This is troubling, of course, because a construc-
tion of a user is meaningless without the existence of complementary constructions
of servers that actually do operate well with the user.

Our lack of nontrivial constructions of such servers was not an oversight: it is
not clear how to construct them. Moreover, we didn't provide any useful-seeming
techniques for the construction of good servers, or even any guidance as to how the
server designer's problem might be solved. The best we can achieve formally at present
is to design a server to work with a user protocol that is as short as possible, and then
invoke the length-weighted uniform distribution as considered in Example 4.5, but
this provides nothing better than the enumeration guarantee, and we don't expect
the lengths of the user protocols to be short enough for this to be a suggestion of any
practical merit. Thus, this problem is wide open at the moment, even for any specific
nontrivial goal.

What we have found, though, is that this problem seems to be closely related
to a problem considered in Human-Computer Interaction, the problem of designing
usable interfaces. Roughly, the server designer's problem is to construct a server that
exploits a given, sampleable prior distribution in the same way that the interface
designer constructs an interface that exploits the distribution of human behavior to
guide the user to his or her desired outcome efficiently. We'll describe this connection
in more detail next.

10.1.3 Connections to the usability of computer interfaces

Perhaps surprisingly, some of the most promising and interesting directions for future
work involve communication with human users, which we touched on only briefly in
Section 3.2.2 in the context of search engines. As pointed out by Gregory Abowd [2],
the models used to study human-computer interaction are remarkably similar to the
model we introduced for semantic communication. Although this is not so remarkable
in hindsight - after all, most instances of human-computer interaction are properly
viewed as goal-oriented behavior in which the human communicates with the com-
puter via its interface - it is encouraging that the models turned out to be so similar.
In particular, this connection suggests two possibilities: the first is that since the
practice of interface design yields incontrovertibly real examples of the design of help-
ful servers in the model of Chapter 4 and we viewed this as a hard problem, it would
be interesting to see what can be gleaned from the techniques used to design such

'The reader may be interested to know that the protocol for packet networks presented in Chap-
ter 9 developed out of attempts to design easy-to-use servers for the goal of printing.

317

interfaces towards the design of helpful servers in a more abstract setting. The second

possibility is that the theory might help inform the practice of design. There are a

variety of design principles that the designers of interfaces employ to guide the design

of usable systems, and there is hope that we might be able to develop a mathematical

theory of usability, in which these design principles appear as theorems. We hope

that such a theory not only captures the existing design principles, but moreover

allows us to apply abstract reasoning to devise new ones that may be less obvious

but (hopefully) no less useful.

The server designer's problem and the design of usable interfaces

The basic model of interaction between humans and computers fits neatly into our

basic framework: a human user wishes to accomplish a goal by communicating with

a computer, i.e., a server in our basic terminology. In particular, we suppose that

the interface has been designed to allow a family of possible tasks to be achieved,
and we associate each such task with some non-deterministic choice of environment

in the (formal) definition of a goal for communication. Our main theorem(s) about

universal communicators - Theorem 2.25 and its variants - say that the existence of

safe and viable sensing functions is necessary for users to achieve a given goal with

the server. The converse direction of Theorem 2.25 says that once these criteria are

in place, a user can engage in a laborious process of trial-and-error to accomplish any

task, but this is of course not the end of the story-neither users nor good designers

would be satisfied with such a system. The other half of the framework was laid out

in Section 4.2 of Chapter 4, where we introduced a distribution capturing "natural

user algorithms," and assumed that a server designer wished to both maximize the

probability that natural algorithms would accomplish a task, and also minimize the

average running time experienced by these algorithms.
Of course, at this point, the questions that concern the designers of user interfaces

no longer concern algorithms for users (let alone the design of "universal users") but

rather, the design of servers that are easily used by most users. This is essentially

the problem faced by the benevolent "server designer," down to the success criterion:
identifying user behavior with algorithms, and the designer's prior distribution with

(empirically defined) "natural user behavior," the server designer's problem may be

stated as that natural user behavior should (almost) always achieve the user's goals,
and moreover, should achieve the goals as quickly as possible (i.e., with as little effort
by the user as possible).

Now, Human-Computer Interaction is a thriving field in its own right, with its own

variety of models proposed by researchers for various purposes at various times. Of

course, as the actual models of interaction proposed by researchers vary, often refining

one aspect or another, most models of interaction can be viewed as refinements of

the model sketched above. For example, Abowd's framework for interaction [1] -
which was intended to formally model relationships between the "result" (informally,
the computer's state as it relates to progress towards the user's goal) and the input

and output - while also described as a network of communicating agents, divides the

computer into an agent representing the "system" or "core," and an "interface," which

318

is itself divided into an agent handling "input," and an agent handling "output." In

this case, the most natural correspondence with our model is obtained by taking the

"system" or "core" to be part of the environment so that the user's goal refers to the

state of the system, and taking the agents comprising the interface together as the

server. Thus, Abowd's model is a natural refinement of ours, and we'll come back to

the problems Abowd considered in the last section.

The design of helpful servers in practice

Now, the design of user interfaces (as opposed to the consideration of properties of

proposed designs) by contrast demands a model that refines our conception of the

user-a step that involves the models and methods of cognitive science or psychology,
as opposed to computer science. Fortunately, in our model, we can as well consider

an empirically defined "design distribution," so the only difficulty this step poses is

the question of whether or not we are too far removed from the questions we were
interested in answering. Given that the design of good user interfaces provides a

positive example of something - easy-to-use server designs - that we'd like to capture

and provide more broadly (analogous to the positive examples of intelligent behavior

motivating Al), we believe that this analogy does not take us too far afield.2

Quite a bit is already known about how to design user interfaces, and in particular,
the influential book by Norman [1111 lays out a refined model of the user that permits

Norman to consider what distinguishes good interfaces from bad interfaces in a variety

of real examples. Roughly speaking, Norman's model may be interpreted as telling

us about the distribution of natural user behavior-for example, human users have

only a rather limited amount of working memory, but this working memory limitation

can be overcome by giving structure to what must be remembered; or, as another

example, human users tend to make mistakes, and when they discover that they have

made a mistake, tend to try reworking the low-level aspects of what they have just

done - i.e., "did I make a performance error" - as opposed to the high level aspects,
e.g., "was it really a good idea to do that?" These observations motivate Norman

to state a variety of design principles, that we will discuss in more detail in the next

section. (A variety of design principles are also proposed by Thimbleby [136].) The
point we wish to consider at present is how good designs use the design principles in

order to accommodate a wide variety of natural user behavior.
As we will discuss in the next section, we are already implicitly familiar with

several of these design principles-they are captured by our notion of safe and viable
sensing, and we believe that we understand them pretty well. The relevant, new

design principles for us will be those that concern how to exploit the distribution

of natural behavior to solve the server designer's problem. Although it may seem

fuzzy to the practicing computer scientist, models of the user are really crucial to

2Also, unlike AI, the seemingly hard part of the problem is already being solved by computers

via known techniques-we have positive examples of good algorithms for usable interfaces. The only

mismatch here is that the distribution of user behavior is not known to be easily sampleable; or, said

differently, it does not seem to be an "algorithmically natural" distribution (and this is the problem

faced in Al).

319

solving this problem. Specifically, good designs take advantage of what Norman

calls "natural mappings" and "affordances." In the case of natural mappings, this
means that the proper use of the interface should satisfy some analogy with its effect

and the task structure--as, e.g., when a rising level of light or sound represents

"more" of something, or when the arrangement of controls are spatially similar to the

objects those controls manipulate. In the case of affordances (which may be more

culturally determined), this means that the control elements of the interface should be

operated in accordance with a "folk" understanding of their properties: knobs should

be turned, handles pulled, and buttons pressed. Thimbleby [136] similarly proposes

the (perhaps clearer) principles, "match the user's task sequence," "be consistent,
utilize symmetry," and "speak the user's language."7

Just to be clear, we aren't advocating devising a distribution on user algorithms

to mimic of these kinds of folk understandings and analogies-at some level, that's

essentially the problem research in AI has tried to solve, and it would only reduce

our "hard problem" to a harder one. Instead, we advocate an examination of how

these properties of the distribution are used, and whether some more algorithmically

natural distributions (e.g., a size-weighted uniform distribution over decision trees)
feature similar properties that can be exploited. For example, one potentially useful

principle proposed by Thimbleby is, "allow users to create shortcuts" -we might hope

that such a perspective could aid the development of servers that can adapt to the

user. Moreover, some of these properties refer to the "task structure." It would

also be worthwhile to consider, on a case-by-case basis along the lines discussed in

Section 10.1.2, whether or not any of the specific goals for which we wish to design

universal users have some kind of appropriate structure that can be exploited in

manner similar to how real-world interfaces exploit such structure.

Towards a theory of the design of usable interfaces

One direction of research in Human-Computer Interaction took a formal-methods

approach - e.g., as developed in Dix's book [54] - in which design principles simi-

lar to those described above as suggested by Norman [111] or WYSIWYG ("what
you see is what you get") were expressed in full formality, so that proposed systems

could be rigorously and automatically verified to satisfy the principles. The hope, of

course, was to automatically uncover (subtle) design flaws that might not otherwise

be discovered during testing. We earlier described Abowd's model [1] for interaction;

Abowd developed this model in service of his main contribution, which was a proposal

of a specification language for the system and user interface to support the verifica-

tion of these design principles. What is relevant about this direction of research for

our purposes was that it considered how these design principles could be captured

formally (and therefore mathematically), which in turn raises the possibility that a

clean mathematical framework could be established that captures these properties of

good interfaces as theorems. Indeed, as we have alluded to previously, following a

suggestion by Gregory Abowd [2], we find that the Bayesian framework developed in

Section 4.2 to capture efficient semantic communication under "similar beliefs" seems

that it may (unintentionally) serve such purposes.

320

Recall that our main theorems about universal communicators show that safe

and viable sensing with a server (from a given class) must be feasible for users to

achieve a given goal with that class of servers. Suppose we interpret this statement

as concerning a requirement on a user interface-this is natural and sensible, since we

are considering the case of a user who doesn't already know how to use the interface

we are designing, and must be prepared to cope with a variety of different potential

designs. We can then recover several of the usual design principles easily from the

properties of our sensing functions. First of all, the fact that the sensing function

must be safe implies that the user must be able to easily determine that his or her

goal has been achieved-bridging the "gulf of evaluation," in Norman's words [111];
the fact that the function that tells the user behavior to halt must, in particular,
be a safe sensing function corresponds precisely to a lack of "completion errors" as

discussed by Thimbleby [1363. Second, the fact that the sensing function must be

viable implies that there must be some "mental model" (or set of rules) that allow
the user to easily use the interface to accomplish any of the various tasks he or she
might have in mind, thus bridging Norman's "gulf of execution." Implicitly here, we

also require that the interface should, from any state, provide enough information
so that this set of rules determines what the user should do next, covering several

other principles concerning "visibility" and feedback. Likewise, we've taken it as a
given that the goal (and hence the system to be manipulated) is "forgiving," and

therefore resistant to error; the viability condition also may be interpreted as saying

that moreover, recovery from any error can be easily accomplished, given the proper
mental model of how to use the interface, and this was yet another one the principles

advocated by both Norman and Thimbleby.
As we noted earlier, the basic framework of Chapter 2 alone did not capture the

interface design problem satisfactorily. The richer Bayesian framework of Section 4.2

seemed to be much more appropriate, and we noted in the previous section that

optimizing the performance of the server with a distribution representing "natural

user behavior" would imply taking advantage of the principles of exploiting natural

mappings and using affordances properly. Actually, we'll see more than this: we'll see

that this optimization (essentially) implies a variety of more explicit design properties
proposed by Thimbleby.

To reiterate, we assume that a goal is fixed, and that the user will use some

universal strategy for that goal using the distribution of natural user behaviors (e.g.,
for concreteness, a user constructed using Corollary 4.10). Then the server designer's
problem is

(1) Maximize the probability that the user eventually achieves his or her goal

(2) Minimize the expected running time of the user, subject to condition (1)

and we believe that these principles are sufficient to capture usable interfaces. Of

course, Condition (1) already suggests that the server should be safe and viable with

the user's sensing function, and thus feedback should be provided and completion er-

rors avoided as described above; the interesting additional principles for the Bayesian

setting are consequences of Condition (2) that we describe next.

321

Note that the running time of our universal user is a function of the probability

that a strategy drawn from the design distribution succeeds and the expected run-

ning time of a randomly drawn user, given that it succeeds. Suppose we interpret the

weight assigned to a behavior in the distribution over user behaviors as a stand-in

for the "complexity" of the behavior, cf. the "length-weighted" uniform distributions

over programs of Example 4.5. Then, optimizing the probability of success of the typ-

ical behavior from this distribution amounts to keeping the required mental model

simple (relative to the available natural mappings, affordances, etc.), or perhaps more

explicitly, minimizing the length of the user-manual (which might as well be taken

to be an algorithm for the user), as well as ideally allowing multiple different simple

models to accomplish the same tasks. Both minimizing the length of the user manual

and permitting multiple mental models to accomplish the same task - which Thim-

bleby calls "permissivity" - were design principles explicitly suggested by Thimbleby.

Optimizing the performance of a typical behavior from this distribution corresponds
to keeping the average cognitive load (e.g., time complexity) required of a user who

operates under one of these models (at random) as low as possible, and this would

roughly correspond to Norman's principle of simplifying the structure of the task.

(Thimbleby also considers this principle implicitly when he suggests minimizing the

lengths of sequences of user actions as one aspect of design quality.)
Now, Thimbleby also advocates reducing the user's memory requirements, which

would correspond to minimizing the expected space complexity of (successful) behav-

iors drawn from this distribution as well, perhaps suggesting a revision of Condi-

tion (2) above to:

(2') Minimize the expected t such that a universal user for the natural user strategy

distribution runs in at most t steps and uses at most log t space.

The use of t and log t is of course somewhat arbitrary, but it is suggestive of the

mathematically natural (and well-behaved) case of a polynomial-time and logspace

user strategy.3

Finally, Condition (2) (or 2') also suggests the "right thing" to do if the user's

goal is unachievable (something we didn't consider at any length in this thesis, since
our focus was almost exclusively on achievable goals): namely, we want the user to

halt as soon as possible and/or use as little memory as possible in this case. This is

another principle proposed by Thimbleby, who states it as, "don't be rude."

So, we see that a number of the design principles for user interfaces can be ob-

tained from the server designer's problem, where the latter has the advantage of being

precisely formulated (up to the specification of a distribution of "natural user strate-

gies," which remains variable or empirically defined). The real question and direction

for future work, though, is whether or not the mathematical formulation leads to

the discovery of new, interesting, and nontrivial design principles, and furthermore,
whether or not these new principles stand up in practice.

3Which, in turn, may of course equivalently be described as a polynomial size two-way finite

state transducer with a short effective representation, if one is more comfortable with the language

of finite state machines that Thimbleby employs.

322

Appendix: On the measurability of
various sets of executions

In general (i.e., for a general refree that is not compact), the set of successful execu-

tions may not be measurable (with respect to the natural probability measure that

assigns each prefix of a random execution a measure that corresponds to the proba-

bility that they occur). This follows from the fact that an arbitrary referee gives rise

to an arbitrary subset of the set of all executions, whereas the set of executions is iso-

morphic to the set of real numbers. The compactness condition imposes a structure

on the set of successful executions, and thus guarantees that this set is measurable

(with respect to the natural probability measure).
Recall that a probability measure is defined with respect to a sigma-algebra that

contains the sets of interest, which in our case is the set of successful executions (as

well as other related sets). A sigma-algebra is a pair (X, E), where X is a set and

E C 2X, such that E -/ 0 is closed under complementation and countable unions

(i.e., S E E implies X \ S E E and Si, S2, ... E E implies UiENSi E E). The natural

probability measure arises from a sigma-algebra that corresponds to all execution

prefixes.

Definition A.1 (The natural probability measure of executions). For a system

(E, U, S), we consider the sigma-algebra (X, E) such that X is the set of all pos-

sible executions of the system (E, U, S) and E equals the closure of the family of sets

{ E(i,) : i E N, o E Q} under complementation and countable union, where E(i,,)
denotes the set of executions o- = (- 1, U2 ...) such that og = o. The natural probability

measure of executions, denoted p, is obtained by assigning each prefix of a random

execution a measure that corresponds to the probability that it occurs.

Note that the mapping y is indeed a measure for the foregoing sigma-algebra E,
because it is (1) non-negative, (2) assigns zero to the empty set, and (3) satisfies sigma-

additivity (i.e., for any countable collection of pairwise disjoint sets S1, S2 , ... E E it

holds that p(UiENSi)= ZiEN ,u(Si)). As we shall see, for compact referees, the set of

successful executions can be expressed as a countable union of sets in E.

Proposition A.2. For any compact referee R, the set of successful executions is

measurable with respect to the natural probability measure of executions.

Proof Let R' be the temporal decision function associated with R (by the compact-

ness hypothesis), and assume for simplicity that R' never assumes the value I. In

323

this case, the set of successful executions is a countable union of the sets St, where
St is the set of executions in which no failures occur after time t (i.e., - C St if for
every i > t it holds that R'(ui) = 1). On the other hand, St equals ni>tS$, where
Sj = {5: R'(u) = 1} is a countable union of Ei,,) such that R'(a) = 1.

To handle the case that R' may assume the value I, we show that the set of
executions containing no infinite runs of I is measurable. The latter set is the com-
plement of a countable union of the sets F, where F is the set of executions such
that R' always evaluates to I after time t (i.e., - E F if for every i > t it holds that
R'(ui) = I). On the other hand, F equals niytF', where F' = {F : R'(i) = I} is a
countable union of E(i,,) such that R'(r) = I. U

324

Bibliography

[1] Gregory D. Abowd. Formal Aspects of Human-Computer Interaction. PhD

thesis, University of Oxford, 1991.

[2] Gregory D. Abowd. Personal communication, 2010.

[3] Leonard M. Adelman. Time, space, and randomness. Technical Report MIT-

LCS-TM-131, MIT LCS, 1979.

[4] Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319-342, 1988.

[5] Dana Angluin. Negative results for equivalence queries. Mach. Learn., 5(2):121-
150, 1990.

[6] Dana Angluin and Carl H. Smith. Inductive inference: Theory and methods.

ACM Comput. Surveys, 15(3):237-269, 1983.

[7] Luis Antunes, Lance Fortnow, Alexandre Pinto, and Andre Souto. Low depth

witnesses are easy to find. In Proc. 22nd Conf. Computational Complexity,
2007.

[8] Luis Antunes, Lance Fortnow, Dieter van Melkebeek, and N. V. Vinodchan-

dran. Computational depth: concept and applications. Theor. Comput. Sci.,
354(3):391-404, 2006.

[9] The Staff at the National Astronomy and Ionosphere Center. The Arecibo
message of November, 1974. Icarus, 26:462-466, 1975.

[10] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The

nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1):48-77,
2003.

[11] Peter Auer, Stephen Kwek, Wolfgang Maass, and Manfred K. Warmuth. Learn-

ing of depth two neural networks with constant fan-in at the hidden nodes

(extended abstract). In Proc. 9th COLT, pages 333-343, 1996.

[12] Peter Auer and Philip M. Long. Structural results about on-line learning models

with and without queries. Mach. Learn., 36(3):147-181, 1999.

[13] Peter Auer, Philip M. Long, Wolfgang Maass, and Gerhard J. Woeginger. On

the complexity of function learning. Mach. Learn., 18(2-3):187-230, 1995.

325

[14] Liszl6 Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential

time has two-prover interactive protocols. Computational Complexity, 1(1):3-
40, 1991.

[15] Liszl6 Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subex-

ponential time simulations unless EXPTIME has publishable proofs. Compu-

tational Complexity, 3:307-318, 1993.

[16] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, volume 1. MIT

Press, Cambridge, MA, 1996.

[17] Ian Barland. Some ideas on learning with directional feedback. Master's thesis,
UC Santa Cruz, 1992.

[18] Janis Barzdiis and Ruisiis Freivalds. On the prediction of general recursive

functions. Soviet Math. Dokl., 13:1224-1228, 1972.

[19] Marie-Pierre Beal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch.

Squaring transducers: an efficient procedure for deciding functionality and se-

quentiality. Theor. Comp. Sci., 292(1):45-63, 2003. Preliminary version ap-

peared in LATIN 2000.

[20] Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search.

SIAM J. Comput., 23(1):91-119, 1994.

[21] Michael Ben-Or. Probabalistic algorithms in finite fields. In Proc. 22nd FOCS,
pages 394-398, 1981.

[22] Charles H. Bennett. Logical depth and physical complexity. In Rolf Herken,
editor, The Universal Turing Machine: A Half-Century Survey, pages 227-257.
Oxford University Press, 1988.

[23] Francesco Bergadano, Nader H. Bshouty, Christino Tamon, and Stefano Varric-

chio. On learning branching programs and small depth circuits. In EuroCOLT
'97, volume 1208/1997 of LNCS, pages 150-161, 1997.

[24] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific

American, pages 34-43, May 2001.

[25] Jean Berstel. Transductions and Context-Free Languages. B. G. Teubner, 1979.

[26] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random

walks. J. A CM, 51(4):540-556, 2004.

[27] Ned Block. Psychologism and behaviorism. Philosophical Review, 90(1):5-43,
1981.

[28] Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive

inference. Inf. Control, 28:125-155, 1975.

326

[29] Lenore Blum, Manuel Blum, and Michael Shub. A simple unpredictable pseudo-

random number generator. SIAM J. Comput., 15(2):364-383, 1986.

[30] Manuel Blum. A machine-independent theory of the complexity of recursive

functions. J. ACM, 14(2):322-336, 1967.

[31] Manuel Blum. Personal communication, 2009.

[32] Manuel Blum and Sampath Kannan. Designing programs that check their

work. J. ACM, 42(1):269-291, 1995. Preliminary version appeared in Proc.

21st STOC, pp86-97, 1989.

[33] Allan Borodin, Faith E. Fich, Danny Dolev, and Wolfgang Paul. Bounds for

width two branching programs. SIAM J. Comput., 15(2):549-560, 1986.

[34] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC
1122 (Standard), October 1989. Updated by RFCs 1349, 4379.

[35] Nader H. Bshouty. Exact learning boolean functions via the monotone theory.

Inf. Comp., 123(1):146-153, 1995.

[36] Nader H. Bshouty. The monotone theory for the PAC-model. Inf. Comp.,
186(1):20-35, 2003.

[37] Nader H. Bshouty and Hanna Mazzawi. Exact learning composed classes with

a small number of mistakes. In COLT 2006, volume 4005/2006 of LNCS, pages

199-213, 2006.

[38] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.

JCSS, 18(2):143-154, 1979.

[39] Vinton G. Cerf and Robert E. Kahn. A protocol for packet network intercom-
munication. IEEE Trans. Comms., Com-22(5):637-648, 1974.

[40] Nicolo Cesa-Bianchi, Philip M. Long, and Manfred K. Warmuth. Worst-case
quadratic loss bounds for a generalization of the Widrow-Hoff rule. In Proc. 6th

COLT, pages 429-438, 1993.

[41] Nicolo Cesa-Bianchi and Gibor Lugosi. Prediction, Learning, and Games. Cam-

bridge University Press, New York, NY, 2006.

[42] Noam Chomsky. Three models for the description of language. IRE Trans. Inf.

Theory, 2:113-124, 1956.

[43] Noam Chomsky. Aspects of the theory of syntax. MIT Press, Cambridge, MA,
1965.

[44] Alan Cobham. The intrinsic computational difficulty of functions. In Proc.

1964 International Congress for Logic, Methodology, and Phil. of Sci., pages

24-30, 1964.

327

[45] Giuseppe Cocconi and Philip Morrison. Searching for interstellar communica-
tions. Nature, 184(4690):844-846, September 1959.

[46] Anne Condon. Space-bounded probabilistic game automata. J. A CM,
38(2):472-494, 1991.

[47] Anne Condon and Richard Ladner. Probabilistic game automata. JCSS,
36(3):452-489, 1988.

[48] Ivan Damgird. Collision free hash functions and public key signature schemes.

In Euro Crypt87, volume 304 of LNCS, pages 203-216, 1988.

[49] Ivan Damgird. A design principle for hash functions. In Crypto89, volume 457

of LNCS, pages 416-427, 1990.

[50] Nikhil R. Devanur and Lance Fortnow. A computational theory of awareness
and decision making. In Proc. 12th Conference on Theoretical Aspects of Ra-

tionality and Knowledge, pages 99-107, 2009.

[51] John Dewey. Experience and Nature. Norton, New York, 1929. First edition
published in 1925.

[52] Yan Zong Ding and Michael 0. Rabin. Hyper-encryption and everlasting secu-

rity. In Proc. 19th STACS, volume 2285 of LNCS, pages 1-26. Springer-Verlag,
2002.

[53] G. L. Dirichlet. Verallgemeinerung eines Satzes aus der Lehre von den Ket-
tenbriichen nebst einigen Anwendungen auf die Theorie der Zahlen. SB Preuss.
Akad. Wiss., pages 93-95, 1842. Reprinted in L. Kronecker (ed.), G. L. Dirich-

let's Werke volume I, pages 635-638, Chelsea, New York, 1969.

[54] Alan John Dix. Formal Methods for Interactive Systems. Academic Press, San
Diego, CA, 1991.

[55] Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449-467, 1965.

[56] Funda Ergiin, S. Ravi Kumar, and Ronitt Rubinfeld. On learning bounded-
width branching programs. In Proc. 8th COLT, pages 361-368, 1995.

[57] Paul Fitz. CosmicOS. Open source project. http://cosmicos.sourceforge.net.

[58] Hans Freudenthal. LINCOS: Design of a Language for Cosmic Intercourse.

North-Holland Publishing Company, Amsterdam, 1960.

[59] Christopher Gauker. Words Without Meaning. MIT Press, Cambridge, 2003.

[60] Edgar N. Gilbert, F. Jessie MacWilliams, and Neil J. A. Sloane. Codes which

detect deception. Bell Sys. Tech. J., 53:405-424, 1974.

[61] E. Mark Gold. Models of goal-seeking and learning. PhD thesis, UCLA, 1965.

328

[62] E. Mark Gold. Usages of natural language. Technical report, Inst. for Math.

Studies in the Social Sci., Stanford U., 1966. Defense Technical Info. Center
Accession Number AD0644521.

[63] E. Mark Gold. Language identification in the limit. Inf. Control, 10:447-474,
1967.

[64] E. Mark Gold. Universal goal-seekers. Inf. Control, 18:395-403, 1971.

[65] Oded Goldreich. Foundations of Cryptography, volume II. Cambridge University
Press, New York, NY, 2004.

[66] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792-807, 1986.

[67] Oded Goldreich, Brendan Juba, and Madhu Sudan. A theory of goal-oriented
communication. Technical Report TR09-075, ECCC, 2009.

[68] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity or all languages in NP have zero-knowledge proof systems. J.
ACM, 38(3):690-728, 1991.

[69] Oded Goldreich and Dana Ron. On universal learning algorithms. Information
Processing Letters, 63:131-136, 1997.

[70] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating com-

putation: Interactive proofs for muggles. In Proc. 40th STOC, 2008.

[71] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. Comput., 18(1):186-208, 1989.

[72] Martin Grbtschel, Liszl6 Lovisz, and Alexander Schrijver. Geometric methods
in combinatorial optimization. In W. R. Pulleybank, editor, Proc. Silver Jubilee

Conf. on Combinatorics, Progress in Combinatorial Optimization, pages 167-
183, New York, 1984. Academic Press.

[73] Martin Gr6tschel, Liszl6 Lovi'sz, and Alexander Schrijver. Geometric algo-

rithms and combinatorial optimization. Springer, New York, second edition,
1993.

[74] Eitan M. Gurari and Oscar H. Ibarra. A note on finite-valued and finitely
ambiguous transducers. Math. Sys. Theory, 16:61-66, 1983.

[75] Steven E. Hampson and Dennis J. Volper. Representing and learning Boolean

functions of multivalued features. IEEE Trans. Sys. Man Cybern., 20(1):67-80,
1990.

[76] Johan Histad, Russell Imagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM J. Comput., 28(4):1364-
1396, 1999.

329

[77] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall Interna-

tional, Englewood Cliffs, NJ, 1985.

[78] Marcus Hutter. Universal Artificial Intelligence. Springer, Berlin, 2004.

[79] Russell Impagliazzo and Avi Wigderson. P=BPP if E requires exponential

circuits: Derandomizing the XOR lemma. In Proc. 29th STOC, pages 220-229,
1997.

[80] Brendan Juba and Madhu Sudan. Universal semantic communication I. In

Proc. 40th STOC, 2008.

[81] Brendan Juba and Madhu Sudan. Universal semantic communication II: A

theory of goal-oriented communication. Technical Report TR08-095, ECCC,
2008.

[82] Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. Deterministic
extractors for small-space sources. In Proc. 38th STOC, pages 691-700, 2006.

[83] Michael Kearns, Ming Li, and Leslie Valiant. Learning boolean formulas. J.

A CM, 41(6):1298-1328, 1994.

[84] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning

Boolean formulae and finite automata. J. ACM, 41:67-95, 1994.

[85] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady

Aked. Nauk SSSR, 244:1093-1096, 1979. English translation: Soviet Math.

Doklady, 20, 191-194, 1979.

[86] Michael Kharitonov. Cryptographic hardness of distribution-specific learning.

In Proc. 25th STOC, pages 372-381, 1993.

[87] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learn-

ing intersections of halfspaces. JCSS, 75(1):2-12, 2009.

[88] Jaron Lanier. The complexity ceiling. In John Brockman, editor, The Next

Fifty Years: science in the first half of the twenty-first century, pages 216-229.
Vintage Books, New York, 2002.

[89] Jaron Lanier. Why gordian software has convinced me to believe in the

reality of cats and apples. Edge, 128, November 2003. Available online:

http://www.edge.org/3rd-culture/lanier03/lanier-index.html.

[90] A. K. Lenstra, H. W. Lenstra, and L. Lovisz. Factoring polynomials with

rational coefficients. Math. Ann., 261(4):515-534, 1982.

[91] Leonid A. Levin. Universal search problems. Probl. Inform. Transm., 9:265-266,
1973.

330

[92] Leonid A. Levin. Randomness conservation inequalities; information and inde-

pendence in mathematical theories. Inf. Control, 61(1):15-37, 1984.

[93] Ming Li and Paul Vitainyi. An introduction to Kolmogorov complexity and its

applications (2nd ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1997.

[94] Nicholas Littlestone, Manfred K. Warmuth, and Philip M. Long. On-line learn-

ing of linear functions. Computational Complexity, 5(1):1-23, 1995.

[95] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Mach. Learn., 2(4):285-318, 1988.

[96] L. H. Loomis. On a theorem of von Neumann. Proc. Nat. Acad. Sci., 32:213-
215, 1946.

[97] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. J. ACM, 39(4):859-868, 1992.

[98] Wolfgang Maass and Gy6rgy Turin. On the complexity of learning from coun-
terexamples. In Proc. 30th FOCS, pages 262-267, 1989.

[99] Wolfgang Maass and Gybrgy Turin. Lower bound methods and separation
results for on-line learning models. Mach. Learn., 9(3):107-145, 1992.

[100] Wolfgang Maass and Gy5rgy Turin. Algorithms and lower bounds for on-line
learning of geometrical concepts. Mach. Learn., 14(3):251-269, 1994.

[101] Wolfgang Maass and Gy6rgy Turin. How fast can a threshold gate learn? In

S. J. Hanson, G. A. Drastal, and R. L. Rivest, editors, Computational learning

theory and natural learning systems: Constraints and prospects, volume 1, pages

381-414. MIT Press, Cambridge, MA, 1994.

[102] Wolfgang Maass and Manfred K. Warmuth. Efficient learning with virtual
threshold gates. Inf. Comp., 141(1):66-83, 1998.

[103] Ueli Maurer. Conditionally-perfect secrecy and a provably-secure randomized

cipher. J. Cryptology, 5(1):53-66, 1992.

[104] David A. McAllester. Some PAC-Bayesian theorems. Mach. Learn., 37(3):355-
363, 1999.

[105] Brian McConnell. Beyond Contact: A Guide to SETI and Communicating With

Alien Civilizations. O'Reilly, Cambridge, 2001.

[106] Marvin Minsky. Communication with alien intelligence. In Edward Regis, edi-

tor, Extraterrestrials: Science and Alien Intelligence, pages 117-128. Cambridge

University Press, New York, USA, 1985.

331

[107] Marvin Minsky and Seymour L. Papert. Perceptrons: an introduction to com-

putational geometry. MIT Press, 1988. First edition published in 1969.

[108] Edward F. Moore. Gedanken-experiments on sequential machines. In C. E.

Shannon and J. McCarthy, editors, Automata Studies, pages 129-153. Princeton
Univ. Press, Princeton, NJ, 1956.

[109] Saburo Muroga. Threshold Logic and its Applications. John Wiley and Sons,
New York, 1971.

[110] Nils J. Nilsson. Learning Machines. McGraw-Hill, New York, 1965.

[111] Donald A. Norman. The Design of Everyday Things. Basic Books, New York,
NY, 2002. First edition published in 1988.

[112] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Ap-
proach. Morgan Kaufmann, San Diego, CA, second edition, 2000.

[113] Leonard Pitt and Manfred K. Warmuth. Prediction-preserving reducibility.
JCSS, 41:430-467, 1990.

[114] Willard Van Orman Quine. Word and Object. MIT Press, Cambridge, 1960.

[115] Michael 0. Rabin and Dana Scott. Finite automata and their decision problems.

IBM J. Res. Develop., 3(2):114-125, 1959.

[116] John Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In Proc. 22nd STOC, pages 387-394, 1990.

[117] Frank Rosenblatt. Principles of Neurodynamics. Spartan Books, Washington,
1962.

[118] Guy N. Rothblum. Delegating computation reliably: paradigms and construc-

tions. PhD thesis, MIT, 2009.

[119] Dan Roy and David Sontag. Personal communication, 2009.

[120] Stuart Russell and Peter Norvig. Artificial Intelligence: A modern approach.
Prentice Hall, New Jersey, 1995.

[121] Stuart Russell and Devika Subramanian. Provably bounded-optimal agents.
JAIR, 2:575-609, 1995. Preliminary version appeared in IJCAI'93.

[122] Stuart Russell and Eric Wefald. Do the right thing. MIT Press, Cambridge,
MA, 1991.

[123] Carl Sagan, editor. Communication with Extraterrestrial Intelligence (CETI).
MIT Press, Cambridge, MA, 1973.

[124] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University
Press, Cambridge, UK, 2009.

332

[125] N. Sauer. On the density of families of sets. J. Combinatorial Theory, 13(1):145-
147, 1972.

[126] Marcel Paul Schuitzenberger. Sur les relations rationnelles. In Proc. 2nd GI

Conf. on Automata Theory and Formal Languages, volume 33 of LNCS, pages
209-213. Springer, 1975.

[127] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web revisited.

IEEE Intelligent Sys., 21(3):96-101, 2006.

[128] Adi Shamir. IP = PSPACE. J. A CM, 39(4):869-877, 1992.

[129] Claude E. Shannon. A mathematical theory of communication. Bell System

Technical Journal, 27:379-423, 623-656, 1948.

[130] John Shawe-Taylor and Robert C. Williamson. A PAC analysis of a Bayesian
estimator. In Proc. 10th COLT, pages 2-9, 1997.

[131] Stuart M. Shieber. The Turing Test: Verbal Behavior as the Hallmark of Intel-

ligence. MIT Press, Cambridge, MA, 2004.

[132] Stuart M. Shieber. The Turing test as interactive proof. Noss, 41(4):686-713,
December 2007.

[133] Victor Shoup. A Computational Introduction to Number Theory and Algebra.

Cambridge University Press, New York, NY, 2005.

[134] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update
and paging rules. Communications of the ACM, 28(2):202-208, 1985.

[135] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-
Wesley, Reading, MA, 1994.

[136] Harold W. Thimbleby. Press On: Principles of interaction programming. MIT
Press, Cambridge, MA, 2007.

[137] G. M. Tovmasyan, editor. Extraterrestrial Civilizations. 1964. Translation from
Russian available as NASA Technical Report NASA-TT-F-438; TT-67-51373.

[138] Luca Trevisan. The program-enumeration bottleneck in average-case complexity
theory. In Proc. 25th Conf. Computational Complexity, pages 88-95, 2010.

[139] Luca Trevisan and Salil Vadhan. Extracting randomness from samplable dis-

tributions. In Proc. 41st FOCS, pages 32-42, 2000.

[140] Eran Tromer. Personal communication, 2010.

[141] Alan M. Turing. Computing machinery and intelligence. Mind, 59(236):433-
460, 1950.

333

[142] John Postel, editor, USC-ISI. Transmission Control Protocol. RFC 793 (Stan-
dard), September 1981. Updated by RFC 3168.

[143] Pravin M. Vaidya. A new algorithm for minimizing convex functions over convex
sets. Mathematical Programming, 73(3):291-341, 1996.

[144] Leslie G. Valiant. A theory of the learnable. Communications of the A CM,
27(11):1134-1142, 1984.

[145] Luis von Ahn, Manuel Blum, Nicholas Hopper, and John Langford. CAPTCHA:
Using hard AI problems for security. In Advances in Cryptology, Eurocrypt,
pages 294-311, 2003.

[146] Mark N. Wegman and J. Lawrence Carter. New hash functions and their use
in authentication and set equality. JCSS, 22:265-279, 1981.

[147] Joseph Weizenbaum. Eliza-a computer program for the study of natural lan-
guage communication between man and machine. Communications of the A CM,
17(7):36-45, 1966.

[148] Ludwig Wittgenstein. The Blue and Brown Books: Preliminary Studies for the
'Philosophical Investigations'. Harper & Row, New York, 1958.

[149] Ludwig Wittgenstein. Philosophical Investigations. Basil Blackwell, 2001. First
edition published in 1953.

[150] David H. Wolpert. The lack of a priori distinctions between learning algorithms.
Neural Comp., 8(7):1341-1390, 1996.

[151] David H. Wolpert and William G. Macready. No free lunch theorems for opti-
mization. IEEE Trans. Evolutionary Comp., 1(1):67-82, 1997.

[152] Michael Wooldridge. The computational complexity of agent design problems.
In Proc. Fourth International Conf. Multi-Agent Systems (ICMAS'00), pages
341-348, 2000.

[153] Andrew C.-C. Yao. Some complexity questions related to distributed comput-
ing. In Proc. 11th STOC, pages 209-213, 1979.

334

