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Abstract

Video chat is increasingly popular among Internet users (e.g. Skype, Windows Live

Messenger, Google Talk). Often, however, chatting sessions suffer from packet loss,
which causes video outage and poor quality. Existing solutions however are unsatis-

fying. Retransmissions increase the delay and hence can interact negatively with the

strict timing requirements of interactive video. FEC codes introduce extra overhead

and hence reduce the bandwidth available for video data even in the absence of packet

loss.
In this thesis, we present ChitChat, a new approach for reliable video chat that

neither delays frames nor introduces bandwidth overhead. The key idea is to ensure

that the information in each packet describes the whole frame. As a result, even

when some packets are lost, the receiver can still use the received packets to decode a

smooth version of the original frame. This reduces frame loss and the resulting video

freezes and improves the perceived video quality. We have implemented ChitChat and
evaluated it over multiple Internet paths. In comparison to Windows Live Messenger
2009, our method reduces the occurrences of video outage events by more than an

order of magnitude.

Thesis Supervisor: Dina Katabi
Title: Associate Professor of Computer Science and Engineering
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Chapter 1

Introduction

1.1 Is the Internet Ready for the Challenge of Con-

sumer Video Communication?

Video chat is increasingly used for both personal and business communications [31].

Measurements show a fast growth in video conferencing over Skype, Windows Live

Messenger, Google Talk, etc. [14, 61, 11, 7]; and the trend is likely to become stronger

with the recent introduction of Apple FaceTime over mobile phones [4]. This interest

in video communication shows that, if video chat is made reliable, video telephony

may gradually replace audio telephony. Today however, Internet video calls suffer

from transient packet loss, which causes frame freezes and poor visual quality [17, 34].

Without better mechanisms for handling packet loss, video chat will not reach its full

potential.

According to a recent landmark study conducted by Nemertes Research [13], unless

service providers invest billions of dollars in updating them, Internet access infras-

tructures, instead of cores of the Internet, will be a bottleneck for supporting user

demand in the next few years. The exploding visual richness of online communications

and entertainment is the main reason for this, and can potentially lead to more delay

and congestion experienced by end users. With the rapid advance in technology, this

is unlikely a disaster, yet it shows that the Internet today is far from over-provisioned.



Common reasons for packet loss include congestion (long-term) due to lack of

abundant bandwidth, wireless loss, and large variation (sudden drop) in bandwidth.

While rate adaptation helps prevent the first category of losses from happening, wire-

less random loss and loss caused by large variation in bandwidth (common on access

links) are inevitable.

Typically a loss rate lower than 5% is considered acceptable for traditional data

transmission, however, video applications are particularly extremely intolerant of

packet loss, because of the compression done at the source. Packet loss results in

jitters, corrupted images and video stalls. Jitters are much less noticeable and much

more readily tolerable than the other two. User visual experience is severely worsened

by corrupted images and video stalls. Commercial video chat softwares usually discard

a frame if it is corrupted and no longer a smooth degradation of the original frame.

This decision leads to more and longer video stalls. Disruption of communication due

to video stall or audio-video out-of-sync is without any doubt the biggest annoyance

for video chat users nowadays [17].

1.2 What Distinguish Video Chats from Real-time

Streaming?

While much of the literature has studied the problem of reliable video delivery in

presence of packet loss, it often does not distinguish video chat from live video stream-

ing [41, 23, 69, 54, 20]. In fact, both applications suffer from significant quality degra-

dation in the presence of packet loss. They also both have real-time requirements.

Nonetheless, video chat has unique characteristics that set it apart from live stream-

ing. Specifically:

* Due to its interactive nature, video chat has much stricter timing constraints

than live streaming. While video streaming is insensitive to a start-up buffering

delay of tens of seconds [39], the ITU G.114 standard recommends a maxi-

mum delay of 150 ms for video calls in order to ensure lip synchronization [49].



Meeting this timing constraint is challenging given today's processing [56]1 and

propagation delays2 . Hence any additional latency introduced in order to tackle

transient packet losses is highly undesirable.

0 Since access link is likely to be the connection with the least available band-

width and hence has the highest probability of packet loss, it has always been

the main bottleneck for media transmission both for streaming and interactive

applications [3, 12]. However, video chat is more likely to suffer from packet

drops at access links than live streaming. Specifically, a video chat application

sends video in both directions. Technologies like ADSL and cable modem how-

ever have significantly lower uplink speeds than downlink speeds [16]. Currently,

most cable plans offer two or three times as much downlink bandwidth as up-

link. This design choice is made based on the fact that most users upload rarely

compared to their downloads. With the trend that people more and more often

share their data (files, photos, videos) with each other, the allocation of up-

link/downlink capacity needs to be reexamined, yet it is unlikely to be the case

that an efficient design will allocate more or similar overall uplink bandwidth

as the overall downlink bandwidth. However, when we make video calls, we use

as much uplink bandwidth as download bandwidth, making the uplink a much

more sensitive bottleneck for video chat applications.

As a result of these characteristics, solutions for packet loss proposed in the con-

text of streaming applications [41, 23, 69, 54, 20] are mostly ineffective for chatting

applications.

(a) Forward error correcting codes (FEC): Adding redundant error correction

codes at the sender side has been widely used in conventional data transmission

applications without stringent timing constraints. This is a common way to enable

the receiver to detect and correct errors due to packet loss or channel noise. In recent

'Usually longer processing time yields better compression and hence more efficient usage of the

bandwidth.
2Round Trip Time in the Internet has been reduced tremendously over the last decade. Currently,

most links within north America have an RTT of lower than 50ms; cross-country links' RTT is around

100ms; intercontinental links such as U.S.- China has an RTT of 200-300ms.



years, FEC has been gradually adopted in real-time applications such as streaming,

given that the streaming applications can usually allow some start-up buffering as

well as tolerating some infrequent buffering during the streaming. This tolerance to

buffering allows the application to apply FEC in a way as efficient as in the traditional

data transmission applications. On the contrary, FEC codes are inefficient for dealing

with transient packet loss in video calls. Typical Internet loss rate is less than 1% [66].

In principle, an FEC code that combines every 100 packets together, adding only

one or two packets of redundancy, can recover from such a loss rate. In video chat,
however, coding across frames is precluded by the need to play each frame as soon

as it arrives, with no extra delay. Coding within a frame requires adding at least a

single FEC packet per frame. Yet, each frame in consumer video chat applications

(e.g., Skype) is typically sent using 2 to 5 packets [29].3 Hence, even when the loss

rate is as low as 1%, a minimal FEC redundancy of one packet per frame increases

bandwidth usage by 20% to 50%. Thus, FEC is likely to increase the loss rate in

a congested environment. Indeed, past studies of Skype show that the use of FEC

increases the bandwidth overhead by 20% [55] to 50% [29]. In fact, even for IPTV

solutions, people have found that "increasing the amount of protection can reduce

packet loss to some extent, but the protection capability is limited due to the short

time interleaving and the bit rate reductions required to increase the protection could

become severe." [52]

(b) Path Diversity: Proposals for routing packets over multiple paths using an

overlay network [1, 21, 20, 44], while effective at reducing packet drops in the core

of the Internet, cannot deal with losses on the access links of the communicating

nodes. Since the latter losses are common in video chat [55], this approach too is not

sufficient for these applications. [22, 36]. In fact, while Skype has an overlay network

which could potentially route traffic away from congested points in the backbone,

Skype uses a relay node only to traverse NAT boxes or firewalls, and prefers the

direct path whenever the nodes are not NAT-ed [22].

3Skype and Windows Live Messengers, transmit at 200-700 Kbps with an average frame rate of
10-15 fps and an average frame size of 2 to 5 packets [55, 29].



(c) Retransmissions: Commercial video chat softwares try to avoid packet re-

transmissions [22] because such a mechanism requires delaying the received frames

and hence interacts badly with the tight timing constraints of video calls. The uni-

fication of transmission for video data (streaming with CDN) with traditional data

is highly desirable for various communities. Specifically, the adoption of HTTP in

one-way streaming is more and more common these days. However, this convergence

is unlikely to happen with the case of interactive applications such as video chats or

VoIP, because of the tight timing constraints. In other words, even if reliable protocols

like HTTP are used, the retransmitted packets are very unlikely to be of much use

for interactive video applications. ' 5

1.3 ChitChat: a Video Chat Centric Solution

This thesis presents ChitChat, a new approach for dealing with packet loss in video

calls. ChitChat neither requires the receiver to delay a frame, nor introduces band-

width overhead. Further it addresses both edge and core losses, especially effective

in the cases of short-term transient changes in bandwidth and the resulting packet

buffer overflow. Our basic idea is simple. We want to ensure that the information in

each packet in a frame describes the whole frame. As a result, even when some packets

are lost, the receiver can still use the received packets to decode a smooth version of

the original frame. This reduces frame loss and the resulting video freezes and yields

a smooth user experience of better perceived video quality. The idea is inspired by

intensive work on both multiple description coding and network coding.

To achieve our objective of having each packet describe the whole frame, we mix

4 When the caller and the callee are behind port-restricted NAT and UDP-restricted firewall,
Skype is forced to send its media traffic over TCP; and TCP's retransmission mechanism will apply.

However, Skype prefers the use of UDP for transmitting its media data as long as it has this

option [22]. Windows Live Messenger uses HTTP for its "Show My Webcam" mode, which is indeed

a single-direction streaming mode.
5Retransmitted packets containing important information such as header and keyframes which

later frames depend on might be helpful. However, predicting whether these packets will arrive in

time to be of any use or they are simply extra burden on the link during congestion is a challenging

task.



the information in a frame before presenting it to the video codec. However, naively

mixing the information in each frame destroys the temporal and spatial correlation in

the raw video, which the codec relies on for efficient compression. In other words, this

destroys the codec's ability to recognize objects as they move across frames, and use

this information to compress the video. This long-lasting problem results from the

gap between the video community and the networking community. Given the large

variety of usages of video, one main ultimate goal of the video research community has

always been high compression efficiency. However, when videos start to be sent over a

best-effort IP network, the networking community focuses on how to improve reliable

transmission of these highly compressed videos. Sacrificing compression efficiency too

much to improve received video quality is in no one's favor, given the low loss rate

of the Internet today. Ideally, reliable video transmission should be achieved using

a minimum overhead in size. In ChitChat, to deal with this issue, we design our

information mixing algorithm to be shift-invariant (i.e., a movement of an object in

the pixel domain translates into a corresponding movement in the mixed frame). We

show that this approach allows existing codecs to continue to work efficiently in the

presence of information mixing.

We have implemented ChitChat and evaluated it both on a testbed using a CLICK

router to introduce packet loss and over multiple Internet paths, within the U.S. and

between U.S. and China. We also compared it with Windows Live Messenger 2009,

a popular video chat software [11], as well as H.264 and H.264 with one FEC packet

per frame. Our results show:

" In comparison to Windows Live Messenger, ChitChat reduces the number of

outage events by 15x (from a total of 195 outages to only 13 outages).

" Further, at all loss rates, ChitChat's video quality is higher than that of Win-

dows Live Messenger. Particularly, for loss rates of 1% to 10%, ChitChat im-

proves the average video quality (PSNR) by 3 to 6 dB over Windows Live

Messenger.

" Finally, in the absence of packet loss ChitChat delivers the same video quality

as Windows Live Messenger.



Chapter 2

Related Work

2.1 Dealing with Packet Loss in Video

Past work has recognized the negative impact of packet loss on video applications [52,

28, 62, 59, 63] and proposed techniques for dealing with the problem [21, 54, 68, 50].

These proposals can be divided into two categories: solutions for Internet-core losses,

and solutions for last-hop losses.

2.1.1 Packet Loss at the Internet Cores

Many solutions for dealing with losses in the core of the network employs path di-

versity, i.e., different versions of the video are sent over independent paths to avoid

correlated drops. For example, in [20], the authors use multiple description coding,

and send different descriptions over different paths to the receiver. Due to the self-

reliance nature of the descriptions, this design can leverage path diversity to improve

the video quality in face of core losses. SplitStream [27] employs multiple distribution

trees and splits the load among the nodes while taking into account heterogeneous

bandwidth resources. PROMISE [38] uses peer-to-peer delivery, monitors the path

to potential peers and dynamically switches between them to improve performance.

Approaches that use path diversity to reduce losses are complementary to our design.

They however cannot deal with losses on access links, while ChitChat can address



both core and last-hop losses. Moreover, loss occurring on the access link is a much

more prevalent problem in video transmission nowadays, compared to loss occurring

at the cores of the Internet. It is even worse for video chat since conferencing applica-

tions need to transmit video in both directions, yet most end systems have low uplink

bandwidth.

2.1.2 Packet Loss On Access Links

Past solutions for losses on the access links are primarily limited to retransmission

or forward error correction. Some designs buffer corrupted frames and ask for re-

transmission of lost packets [41, 23]. The stringent timing requirement in interactive

applications makes retransmissions much less useful than in conventional applications.

Also, if retransmitting certain important information is found beneficial, it can always

work in parallel with our design and hence will not be the focus of this thesis. Other

designs add forward error correction at the sender to allow the receiver to recover

from losses without retransmissions [69, 54]. However, as explained in Chapter 1,
FEC is inefficient for today's Internet where the loss rate is usually below 1% [32, 66],
and could potentially be recovered by adding only 1% packet redundancy; yet the

fact that video chat has to code over a short block length of 1 frame, increases the

redundancy overhead to 20% to 50%.

2.1.3 Multiple Description Coding

Multiple description coding (MDC) has been suggested and extensively studied in the

past decade [67, 35]. It is considered as a promising solution for dealing with both In-

ternet core losses and access link losses. The goal of MDC is to generate independent

descriptions of the same video unit (a video unit can be a frame, a group of pictures

(GOP), or an entire video, depending on the application's timing constraints), so

that a reconstructed version of proportional degree of fidelity can be derived from

the received descriptions in the presence of loss. MDC algorithms proposed in recent

years can be generally divided into three categories: postprocessing-stage MDC (FEC



based) [57], encoding-stage MDC [67, 64, 46] and preprocessing-stage MDC [65, 70].

FEC-based MDC schemes 1 is not suitable for video chats as explained in Chapter 1.

Encoding-stage MDC schemes typically include multiple description quantization,

multiple description transform coding and multiple descriptions of the motion vec-

tors. One major disadvantage of encoding-stage MDC is the requirement of making

significant changes to the video codec. In addition, the high computation complexity

of some of these encoding-stage MDC designs eliminates the possibility of their usage

in real-time applications [46]. Past work on preprocessing-stage MDC are limited to

subsampling-based MDC in spatial, temporal, or frequency domain. These subsam-

pling methods disrupt the spatial or temporal correlation in the video sequence and

hence result in redundancy. Plus, by simply splitting neighboring frames or pixels,

these methods' performance entirely depends on the accuracy of estimating the lost

descriptions. In contract, ChitChat's infomation mixing offers error concealment gain

even when the motion estimation itself is not accurate. Apart from these unique prob-

lems, a lot of the MDC techniques proposed in the past, in all these three categories,

produce extra samples to code and hence do not follow the same pattern of MPEG

data anymore. Unlike the MDC schemes, our design neither requires changing the

video codec, nor produces extra samples for coding, and at the same time, by main-

taining the correlation in the video sequence, our design does not introduce overhead

in size.

2.1.4 SoftCast

ChitChat's information mixing algorithm is motivated by SoftCast, a recent proposal

for wireless video [42]. SoftCast however addresses a different problem: it enables a

wireless transmitter to broadcast a video stream that each multicast receiver decodes

to a video quality commensurate with its wireless channel quality. SoftCast also re-

quires changing both the physical layer and the video codec, while ChitChat works

'FEC-based MDC schemes convert the prioritized output of the codec into unprioritized descrip-

tions by adding progressively weaker FEC protection to video information of decreasing importance.



with existing video codecs and physical layers.

2.2 Rate Adaptation

Also related to our work are mechanisms for media rate control, such as TFRC [37],
DCCP [48], and others [45, 18, 53]. These protocols control the transmission rate

to ensure that the sender does not transmit way above the available bandwidth and

hence does not cause excessive packet loss. Rate control is complementary to our

design; it addresses long term persistent losses, rather than transient losses, which are

unavoidable in today's best effort Internet subject to common short-term transient

bandwidth changes.

2.3 Performance Study of Commercial Applications

Additionally, the last few years have seen interest in studying the mechanisms in

commercial video applications and their performances over the Internet. In particu-

lar, [29, 24, 55] study Skype's rate adaptation and reaction to changes in available

bandwidth. The authors of [55] also study Windows Live Messenger and other video

chat applications. All of these studies however operate at the packet level, looking

at throughput and packet loss rate, but do not directly tie these measurements to

the corresponding video quality. This is due to the proprietary nature of video chat

applications which prevents direct access to the decoded video frames. These studies

offer great insights for us.



Chapter 3

ChitChat at a High Level

ChitChat is a video-chat centric approach to deal with transient packet loss in best-

effort IP networks such as the Internet. Its design ensures that: 1) received frames

can be decoded immediately and displayed, 2) no extra bandwidth is required, 3)

the approach works with both edge and core losses, and 4) it works seamlessly with

state-of-the-art video codecs.

ChitChat's architecture, illustrated in Figure 3-1, has three components that to-

gether improve resilience to lost packets:

o The information mixing module codes a frame content to ensure that the impact

of a packet loss is not concentrated in particular corrupted patches, but is rather

smoothly distributed over the frame.

o The mixing-aware reference selection module ensures that the video codec can

effectively compress the content in the presence of information mixing.

o The interleaving module distributes the video data into packets in a manner

that allows the receiver to reconstruct a smoothly degraded version of a frame

from any subset of its received packets.

As the figure shows, ChitChat operates in conjunction with standard codecs (e.g.,

MPEG-4/H.264), which makes it easy to integrate in existing video chat applications.

The following sections describe ChitChat's components in detail.
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Figure 3-1: A Block Diagram of ChitChat's Architecture. The gray boxes refer

to ChitChat's components. The white boxes are typical components of today's codecs.



Chapter 4

Information Mixing

ChitChat introduces a preprocessing step that mixes the pixel values in each frame

before passing the frames to the video codec. The mixing is done using a Hadamard

transform [43]. Hadamard coding has been used in multiple prior systems to smooth

out the impact of channel errors. For example, both MIMO systems [19] and Soft-

Cast [42] apply a Hadamard-based code to the symbols transmitted over a wireless

channel. In contrast, ChitChat applies a Hadamard transform to the pixels directly.

Hence, it can operate without changing the physical layer or the video codec. To the

best of our knowledge, ChitChat is the first system to show that applying a Hadamard

transform to the pixels themselves improves the video quality in the presence of packet

loss. In this chapter, we first explain the Hadamard transform, then describe how we

apply it in our context.



4.1 Hadamard Transform

The Hadamard matrix is an orthogonal matrix whose entries are -1 and 1. In partic-

ular, the 4-dimensional Hadamard matrix looks as follows:

1
H=--

1 1

-1 1

1 __1

-1 -1

1

-1

-1

1

The Hadamard transformed version of a, b, c, and d is

S1 1 1 1 a

b 1 1 -1 1 -1 b

S 2 1 1 -1 -1 C

d1 -1 -1 1 di

Hadamard transform has the property of evenly distributing

corrupted versions of the transmitted values: & + Ca, b+ eb, C+

ea, eb, ec, ed, we can reconstruct the original values as:
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the error. If we receive

ec, d- + ed, with errors

From the above equation we can see that any error in the transmitted signal & or

b or or d is evenly distributed to the 4 reconstructed numbers.

At the same time, the sum of square error is still e2 + e2 + e2 + e2. (This is because



Hadamard is an orthogonal matrix.)

The two properties above work greatly towards our goal of a smooth degradation

in face of loss or error.

* By applying Hadamard, we will be able to distribute the channel noise evenly

on the pixels we combine together.

* Quantization noise which results from the lossy compression applied by the

codec is still evenly distributed on pixels as if did not apply Hadamard to them.

" The total sum of square error does not change, meaning that given the same

degree of quantization and same amount of loss, the overall quality (i.e., PSNR)

of the part of image we are combining will not change.

Said differently, Hadamard distributes the noise resulting from a packet loss over

a frame without adding any extra noise. This creates a smooth frame with no jarring

corrupted patches. Also when the noise is distributed over a larger area, it tends

to become easier to correct using simple denoising algorithms leveraging only local

information. 1

4.2 Hadamard Mixing in ChitChat

We apply the Hadamard transform directly in the pixel domain, before any compres-

sion. Given a frame, we first compute the average luminance in the frame and subtract

it from all pixels. We refer to this average as the DC value in the frame. We pass this

value directly to the interleaving component which includes it in every packet for this

frame to ensure its most reliable delivery in the face of losses. Removing the DC value

before coding images or frames is typical in the literature [33] and does not change

how the codec works.

As in MPEG, we divide the frame into macroblocks, where each macroblock con-

tains 16 x 16 pixels. We take every 4 adjacent macroblocks and code them together

'Simple denoising filters are usually just low-pass filters. Since low-pass filters consider only the

difference between adjacent pixels, reducing the local noise magnitude generally renders the image

easier to smooth by low-pass filters.



using the Hadamard matrix. In particular, consider 4 adjacent macroblocks, A, B, C

and D. We represent these macroblocks as follows:

A

C

a1

a2

a16

C1

C2

a 17

a18

a32

C17

C18

*' a225

-.. a226

-.. a256

- . . C2 2 5

. . . C2 2 6

C16 C32 ' C2 56

b1  b17

b2  b18

b16  b32

di d17

d2  d18

d16 d32

To apply the Hadamard transform on these

in each macroblock into a vector, e.g., (ai, a2 ,*-

H, to combine the 4 vectors:

... a256

... b2 5 6

-. -6 C56

''' d256

4 macroblocks, we rearrange the values

- a256), and use the Hadamard matrix,

- - a 2 5 6

- . b2 5 6

-.-. C256

''' d256

We then rearrange the coded vectors into 4 mixed macroblocks A, B, C, and D.

We repeat the process on all non-overlapping sets of 4 adjacent macroblocks in the

original frame to produce a mixed frame.

4.3 Effect of Hadamard Mixing on a Toy Example

Video codecs typically code frames as differences with respect to the previous frame

(or any chosen reference frame). Thus, when a packet is lost for a frame, after error

concealment, most likely we lose the corresponding differences, which leads to some

noisy macroblocks. To understand the effect of Hadamard mixing on these losses, let

'. 'b 225

-.-. b226

-. b256

-. -4 225

.. 'd 226

*.*. d256
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Original

(a)

(b) (c)
Figure 4-1: Hadamard mixing spreads the error and produces less jarring

frames. (a) shows the original image (b) shows the image after adding noise to

a macroblock and denoising the resulting erroneous block, (c) shows a Hadamard-

mixed version of the image after adding noise, unmixing, and then denoising. The

figures shows that Hadamard mixing spreads the noise, allowing the receiver to easily

denoise the image.



us consider the toy example in Fig 4-1. Specifically, we take an image, corrupt one of

its macroblocks, and observe the impact of corruption, with and without Hadamard

mixing. Figure 4-1(a) shows the original image; whereas the top row in Figures 4-1(b)

and 4-1(c) shows the image after adding random noise for the cases with and without

Hadamard mixing. (The noise is Gaussian with a mean of 0 and a standard deviation

of 40. These parameters are set to produce noise magnitudes comparable to what we

see due to packet losses in our experiments.)

Then, we try to recover the original image by denoising. Denoising filtering is rec-

ommended by MPEG-4 in post-processing [581. Here we use a simple smoothing filter

which only operates on adjacent pixels. For the Hadamard-mixed image, however,

we first invert the Hadamard transform before applying denoising. The results after

denoising are shown in the bottom row in Figures 4-1(b) and 4-1(c). As can be seen

from the figures, the errors with Hadamard-mixing look less jarring, which shows the

benefit of applying Hadamard.

Note that the error we will see due to packet loss will not, in general, be random

Gaussian noise; and will depend on the lost information. But as we show in Chapter 7,
the general effect of Hadamard continues to spread the noise and deliver a better video

quality.

4.4 Why Not Use a Bigger Hadamard Matrix

One may wonder why we do not combine more macroblocks together, instead of just

four. Isn't it even better if we can distribute the noise across a wider range of blocks

(a larger area)? The answer is mainly twofold.

" As explained in Chapter 1, in video chat one should code only within a frame

to ensure that each received frame can be immediately decoded and displayed.

However, the average size of a frame in off-the-shelf video conferencing programs

(e.g., Skype, Windows Live Messenger, etc.) is 2-5 packets [55]. Hence, there is

no point mixing more macroblocks.

" We will see in Chapter 5, that the number of reference frames that we need



to pass to the video codec corresponds to the number of macroblocks mixed

together, and hence mixing too many macroblocks can increase the complexity

unnecessarily.2

2There is another subtle reason, which is the flexibility of motion compensation. One can imagine

combining all the macroblocks in a frame. The block motion compensation of the mixed frame will

be almost equivalent to global motion compensation of the original image.
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Chapter 5

Mixing-Aware Reference Selection

5.1 Motion Compensation in Video Compression

Video codecs (e.g., MPEG-4/H.264) exploit correlation across frames to compress

the video. They do so by encoding a frame with respect to a prior frame, called a

reference frame. Specifically, for each block in the current frame, the codec finds the

closest block in the reference frame, where the distance is typically computed as the

sum of square errors [60]. The codec computes a motion vector that represents the

vertical and horizontal shifts between the block and its closest reference block. It then

encodes the current block using the differences from its closest reference block and

the motion vector. This form of compression is called motion compensation.

Motion compensation is the most expensive but also the most valuable step in

achieving compression in state-of-the-art video codecs. A lot of work has been ded-

icated to finding faster, more flexible or more efficient motion search algorithms.

Allowing more flexibility in motion compensation in general means expanding the

motion search area, increasing the number of reference frames, and reducing the size

of the base unit that the codec performs motion compensation on. More often than

not, more flexibility results in more bits spent on motion vectors and less bits spent

on encoding the residual. Deciding the optimal degree of flexibility has always been a

difficult problem in video coding. Yet it is not the focus of this thesis. In our design,

our goal is to allow the same degree of flexibility as the base video codec decides to



use. The typical block size for motion compensation is 16 x 16 pixels, meaning that the

codec finds a close match for each non-overlapping 16 x 16 block in a frame. MPEG-4

however has the option of using different block sizes depending on the amount of

motion in the video. In video conferencing applications, the background is often rel-

atively static and we expect slow/medium motion except for the speakers' faces and

gestures. So in the prototype we built, we only implemented 16 x 16 block size, al-

though all of the MPEG-4 sizes can be easily incorporated in our algorithm once we

have the auxiliary reference frames as we will describe later in this chapter.

5.2 Obstacles in doing Motion Compensation after

Information Mixing

One cannot naively give the codec the sequence of Hadamard-mixed frames and expect

motion compensation to continue to work as if the frames were not mixed. Figure 5-1

illustrates this issue. The first column in the figure shows two consecutive frames in

the pixel domain. The ball has moved between the two frames. Thus, the codec can

compress the current frame simply by representing the macroblock with the ball as a

shifted version of some block in the previous frame. The middle column in the figure

shows the same two frames after Hadamard-mixing. It is no longer the case that one

can see an object that moved between the current frame and the previous frame.

Thus, if we simply give the codec the sequence of Hadamard-mixed frames, motion

compensation would fail in finding how a block moved across frames.

Luckily however the way we apply the Hadamard transform is shift invariant as

will be proved. That is if an object shifts position in the original pixel domain, it will

also shift by the same amount after the Hadamard transform. One may then wonder

how come the two Hadamard-mixed frames in column (b) in Figure 5-1 do not show

a moving object? The reason is simple: It is because the boundaries of the blocks

over which we perform the Hadamard transform do not shift with the moving object.

Figure 5-1(c) shows an alternative Hadamard transform of the original frames in
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Figure 5-1: Challenges with motion compensation. Column (a) shows two con-

secutive frames in the pixel domain. The ball has moved from one frame to the next.

Column (b) shows the same two frames after Hadamard transform. One cannot see

an object that moved across the two frames though the original frames represent a

moving ball. Column (c) shows the same two frames with an alternative Hadamard

transform where the boundaries of the combined blocks move from one frame to the

next, with the moving ball. Now, one can see that the area in the dashed square

moved from one frame to the next.

Figure 5-1(a) where we move the boundaries of the Hadamard-combined blocks with

the moving ball. These frames show a moving block, and hence are easily compressed

by today's codecs.

The above argument shows that one can perform effective motion compensation

if one computes the Hadamard transform over all possible shifts of the macroblocks.

Even if we assume that object movement between frames stays within a limited area,

and hence limit our search, similarly to MPEG, to an area of -16 to 15 in both the

x and y coordinates, there are 1024 candidate shifts for the Hadamard transform.

Given a typical frame size of 240 x 320 and a block size of 16 x 16 we need to do

Hadamard transform 240 x 320/16/16 x 1024 = 307, 200 times for each frame. this



overhead is unacceptable.

This problem, however, can be solved with a negligible computation overhead. The

key insight is that there is a huge amount of shared information between these shifted

Hadamard-transformed blocks. In particular, since these shifted blocks that we need

to calculate Hadamard transform on share a great number of pixels and our mixing

is shift invariant, we can perform the computation for each pixel once and reuse it

in all these blocks, and thus significantly reduce the overhead. Below we explain our

algorithm which exploits this insight.

5.3 Algorithm

Let's define the 4 adjacent macroblocks we are working on as:

A B

C D

A = F (4m : xo + 15, yo : yo + 15)

B = F (mO + 16: :rO + 31, yo : yo + 15)

C = F (mo : zo + 15, Yo + 16: yo + 31)

D = F (mo + 16 : xO + 31, yo + 16: yo + 31)

After the Hadamard transform we have:

A B A B
= H

C D C D

Let frame R be the reference frame for frame F. Many codecs use the previous

frame as the reference frame. However, our algorithm can work with any reference

chosen by the codec. And in 5.4, we will discuss the impact of different choices in

selecting reference frames.

We construct 4 auxiliary reference frames in transform domain RA, Rb, R ,, Rb



in the following way.

RA(x, y) = [R(x, y) + R(x + 16, y) + R(x, y + 16) + R(x + 16, y + 16)]

21
Ra (x, y) = - 16, y) - R(x, y) + R(x - 16, y + 16) - R(x, y + 16)]

21
R(x y) [R(x, y - 16) + R(x + 16, y - 16) - R(x, y) - R(x + 16, y)]

1
Rb(x, y) = I[R(x - 16, y - 16) - R(x, y - 16) - R(x - 16, y) + R(x, y)]

2

When the pixel is out of range, e.g., x - 16 < 0, we use the boundary pixel.

Given the above auxiliary reference frames, motion compensation on Hadamard-

mixed frames requires only a minor tweak on motion compensation in the pixel do-

main. Specifically, without information mixing, given a macroblock in frame F, the

codec would search an area of width r, and height ry in the reference frame R, looking

for the closest block. However, with information mixing, the codec treats each one

of the mixed macroblocks slightly differently. When it searches for a closest repre-

sentation of A in the reference, the codec searches in the neighboring region in the

auxiliary frame RA. Similarly, to find the prediction for B, it searches in Rh; in Ra

to find a prediction for C; and in Rb to find a prediction for D.

This approach effectively solves the boundary issues discussed earlier. In particu-

lar, because of fixed boundaries, a pixel which would have been in A in the original

frame could end up in some B in the reference frame, in which case motion compen-

sation would fail to find how a block moves across frames. To address this issue, our

algorithm essentially removes these boundaries in the reference frame by computing

the four auxiliary frames. Thus, we create auxiliary reference RA, which has only the

A transform, auxiliary reference Ra3 which has only the B transform, and so on. We

can then perform motion compensation for each of these blocks by searching in the

corresponding reference frame. 1

'By shifting in RA, we are essentially doing motion search in the original reference frame R,

because the A in
H(R(x: x + 31, y: y + 31))



Note that once the four auxiliary frames are computed, the search for the closest

block has the same complexity as in the case without information mixing. This is be-

cause, for each Hadamard-mixed macroblock, the codec needs to search only a single

auxiliary reference frame (RA, R3, Rb or Rb). The time for computing the auxiliary

frames themselves is relatively small in comparison to the motion search, which re-

quires exploring all possible pixel shifts, and is known to be the most computationally

expensive part of today's codecs [601.

Finally, after motion compensation, today's codecs encode the residuals using 8 x 8

two dimensional DCT, order the 64 DCT coefficients in zigzag order, and use entropy

coding to encode the motion vectors and DCT coefficients [60). With ChitChat, these

steps proceed without modification.

5.4 Intra-coded Frames and Reference Frame Se-

lection

5.4.1 GOP: Group of Pictures

Video codecs occasionally send frames that are coded independently without any

reference frames. These frames are called I-frames. In MPEG, as we have described

in previous sections, temporal dependency in the video is explored to reduce the

compressed video size. Specifically, a group of successive pictures (GOP) are coded

together. The first frame of a GOP is an I-frame (intra-coded frame), followed by P-

frames (predictive-coded frames) or B-frames (bidirectional-predictive-coded frames).

P-frames contain the motion compensation difference information, i.e. motion vectors

and residual coefficients, from the previous I-frame or P-frame. B-frames are both

forward and backward predicted. In other words, B-frames are coded based on both

is exactly
RA(x: x + 15, y: y + 15).

The function R(xi : x2 , yi : y2) returns the pixel values in the area that lies horizontally between xi
and x2 and vertically between y1 and y2 in frame R, and similarly for RA. Therefore, searching for
A in RA will identify motion in the original video. The proof for Ra, R , and Rb are identical.



the previous I-frame or P-frame and the succeeding I-frame or P-frame. Clearly, en-

abling B-frame usage will lead to a delay in the video application, and therefore is

not suitable for interactive applications, such as video conferencing.

In a GOP starting with an I-frame followed by N P-frames, if the ith frame is

corrupted due to packet erasure or channel noise, later frames are all affected. The

encoder will always encode the next frame based on the assumption that the decoder

gets all the information it sends before and the decoder always accurately knows what

the reference frame is. When loss happens and the decoder fails to get (part of) a

frame, the encoder and decoder will have different perceptions of the reference frames

used for later frames. This is known as a drifting effect or mismatch between the

encoder and decoder. 2

In general, error in a frame will propagate to all the frames after it in the same

GOP, and it only stops at the border of this GOP. We can think of the beginning

of every GOP (or the usage of every I-frame) as a resynchronization between the

encoder and decoder. A shorter GOP implies a more robust system, but a larger size

because I-frames are much larger in size than P-frames. Adaptive GOP size has been

suggested and adopted (Skype) in both literature and real systems. In video chat,

I-frames are infrequent since there is rarely a change of scene, and hence coding with

respect to a prior frame is significantly more efficient than introducing an independent

frame. In fact chatting programs tend to introduce an I-frame every 300 frames [30]

or whenever loss is detected.

From the perspective of ChitChat, I-frames can be regarded as frames whose

reference is an all-zero frame. With this representation, our description applies to

I-frames as well. Since the estimation of channel quality and the selection of proper

GOP size is not an easy task, in our design, we get rid of the notion of GOP and take

a different approach by using acknowledgment.

2Intra-coded blocks are used in P-frames when the motion is huge, or periodically with some
probability to improve robustness. These blocks will not be affected by errors in previous frames in
the same GOP. However in a video conferencing environment with slow/medium motion, usage of a
large number of intra-coded blocks will result in a much larger size.



5.4.2 ACK or NACK?

An acknowledgment system is a natural way of synchronization of the encoder and the

decoder in a video chat system. Moreover, commercial video chat applications already

leverage acknowledgments for rate adaptation. Positive acknowledgment (ACK) and

negative acknowledgment (NACK) are two forms commonly used in video chat.

" In a positive acknowledgment (ACK) system, the encoder will encode the cur-

rent frame using ONLY the acknowledged frames as candidate references, not

necessarily the immediately proceeding frames. And it explicitly lets the de-

coder know which reference frames it used as part of the header information.

Whenever the decoder successfully decodes a frame (receives all the packets

for the frame), it sends back a positive acknowledgment message (ACK) indi-

cating the most recent frames it decoded. The decoder reference frame buffer

can delete any frame earlier than the latest reference frames the encoder uses.

And the encoder will discard any frame in its reference frame buffer prior to

the latest acknowledged frames. 3 In an ACK system like this, the encoder and

decoder are always synchronized completely at any moment. In other words,

the decoder always has the reference frames the encoder uses to encode each

frame; the encoder always knows what frames the decoder has in its reference

frame buffer.

* Instead of using only ACKed frames as reference to ensure 100% synchroniza-

tion, an alternative is to let the sender always use the immediately preceding

frames as reference. When the decoder finds loss has occurred during trans-

mission, it can send back a negative acknowledgment (NACK) to let the sender

know what information is missed by the receiver. This negative acknowledgment

message can be repeatedly sent many times to ensure the sender gets it. Such a

NACK system makes sure that the drifting effect lasts no longer than the time

for the sender to get the NACK message and resynchronize the encoder with

3 In this framework, we eliminate the notion of GOP and I-frames (except for the very first frame
of the video). Every frame is coded with respect to some reference frames. Of course intra-coded
blocks are still allowed when motion is large.



the decoder then.

In cases of short RTT, a NACK system is effectively the same as an ACK system.

In cases of long RTT, there is a trade-off between robustness and video size. The

advantage of an ACK system is that the encoder and the decoder are always syn-

chronized and hence the drifting effect is completely eliminated and there is no error

propagation across frames. However, this robustness comes at a price of the increase

in video size. The gap in an ACK system between a frame and its reference frame is

larger than one RTT, because the sender only uses acknowledged frames as reference

frames. The larger the gap is, the less temporal correlation there is between a frame

and its reference frame. Since the codecs rely heavily on motion compensation across

frames to achieve compression, this reduction in temporal correlation translates to

increase in the compressed video size. In contrast, always using the previous frame

as the reference frame, a NACK system requires less bandwidth than an ACK sys-

tem, when no loss occurs. This difference in video size depends on the RTT, as will

be shown in Chapter 9. When loss occurs, it takes one RTT for a NACK system

to resynchronize. Hence the disadvantage of a NACK system is that it is more vul-

nerable than an ACK system when the RTT is large. In a nutshell, in cases of long

RTT, using an ACK system guarantees robustness yet results in a larger size; using

a NACK system does not introduce overhead in size but it suffers for one RTT when

loss happens.

Considering the trade-off between robustness and video size, one should decide

whether to use ACK or NACK based on the RTT and the loss rate of the channel.

Different chatting programs use different algorithms to make this decision. ChitChat

can leave this decision to the video codec and work with both ACK and NACK

designs. However, in our implementation and evaluation, we use a NACK design if not

stated otherwise. One thing to note here is that, with ChitChat's information mixing

and error concealment, the degradation of the visual experience during the drifting

effect in a NACK design is ameliorated to a great extent as shown in Chapter 9.
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Chapter 6

Interleaving and Packetization

After the codec is done compressing the video, for each mixed macroblock, it produces

a motion vector and quantized DCT coefficients. Next, the macroblocks (with their

motion vectors and DCT coefficients) need to be distributed into packets.

In current off-the-shelf video conferencing software, e.g. Skype, Windows Live

Messenger, Google Talk, only a few packets are sent for each frame in the video.

From our experiment, we see an average packet size of about 700 bytes and 2-5

packets are sent for each frame of size 240 x 320. This means each packet contains

the information for approximately 100 macroblocks. Without interleaving, adjacent

macroblocks, A, B, C, and b, will be transmitted in the same packet, which renders

the goal of distributing error in a frame impossible.

Given that our algorithm enables distribution of the error among adjacent blocks,

we certainly need interleaving to put the information for A, B, C and D in different

packets. Further, given the bursty nature of packet loss in the Internet, we would

definitely want to put the information for A, B, C and D in packets as far away from

each other as possible.

Thus, we use an interleaving matrix to reorder the macroblocks in one frame, as

shown in Figure 6-1. Each cell in the graph represents one mixed macroblock. The

number in the cell is the new position of the macroblock in the order after interleaving.

N is the total number of macroblocks in the frame. K is the number of 32 x 32-size

blocks in each column in a frame. Adjacent 32 x 32-size blocks are shaded in different



Figure 6-1: Interleaving the Macroblocks. The macroblocks are interleaved to

ensure that adjacent macroblocks will not be transmitted in the same packet.

colors. The idea is to put A, B, C and D as far away from each other as possible in

the new order. Since there are N macroblocks in the frame, we perform interleaving

so that A, b, o and b have a minimum gap of in the transmitting order. For4

example, A of the upper-left-most 32 x 32-size block will be the first in the new order

after interleaving; b will be the N + lh; C will be the + 1h; b will be the + 1th

And as we move on to the next 32 x 32-size block, we can put the A of this block

in the position after the A of the previous block, which will be the second in the

transmitting order.

This interleaving order ensures that information for A, B, C and D is placed as

far away from each other as possible in transmission, which means A, B, C and D

will end up being transmitted in as many different packets as possible, even if the

application is unaware of how the encoded video will be packetized later.

H.264 MPEG-4 PartlO has defined a set of error concealment mechanisms at the



encoder side, notably Flexible Macroblock Ordering and Data Partitioning [60]. The

objective of Flexible Macroblock Ordering, similar to ours, is to scatter the errors

as evenly across the entire frame as possible, which will make the error concealment

of Data Partitioning possible. However, without the information mixing proposed in

this thesis, flexible macroblock ordering typically leads to the jarring visual effect in

packet erasure environment as we discussed earlier in Chapter 4. In ChitChat, the

interleaving not only scatters the error across the entire frame, with the aid of its

Hadamard mixing, it also yields a smooth visual experience within a limited region.
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Chapter 7

Video Recovery at the Receiver

7.1 Decoding and Error Concealment

At the decoder, we reorder the macroblocks back into the original spatial order be-

fore interleaving. Since our interleaving matrix is not random, from the packet loss

information we will know exactly which macroblocks are lost.

We distinguish three scenarios. First, if no packet loss occurs, all macroblocks will

be received and the frame can be fully recovered by inverting the encoding applied

by the video codec, then taking the inverse Hadamard transform. (In fact, the inverse

Hadamard transform is the same as the Hadamard transform.)

Second, if all the packets for a frame are lost, then the best any scheme can do is

to present the last reconstructed usable frame to the user.

Third, it is uncommon for all the packets for a frame to be lost, based on our

experiment and other literature [26]. Knowing the interleaving matrix, the receiver

can map the lost packets into lost macroblocks. Figure 7-1 shows an example of the

loss map from our experiment. Three packets were sent for this frame and their sizes

are 568, 856 and 774 bytes. The second packet was lost during transmission. The white

blocks are the macroblocks in the mixed frame whose information the decoder does

not know due to this packet loss. The black blocks are the macroblocks which are not

affected. Note that when a macroblock is lost, both its motion vector and the residuals

from subtracting the reference block are lost, because these two are in the same



Figure 7-1: Example of the Loss Map of a Frame. Three packets of size 568,

856 and 774 bytes are sent for this frame and the second packet is lost. White color

indicates the corresponding macroblock after the mixing is lost.

packet. The residuals should almost always be sent in the same packet as the motion

vector since they are meaningless without the knowledge of which reference block

was subtracted. Thus, to recover a lost macroblock we need to estimate its motion

vector and the residuals. In this case, normally MPEG depends on Data Partition

and Flexible Macroblock Ordering for error concealment. Apart from estimating the

motion vectors in a similar way as MPEG, ChitChat's error concealment also benefits

from information mixing.

7.1.1 Estimating Lost Motion Vectors

As in today's codecs, we estimate a lost motion vector using the motion vectors of

nearby blocks [60]. For example, if the motion vector for C is lost, we will use the

motion vector of A or B or b (the first one that the decoder has received) as an

estimation for C.



(a) (b) (c)
Figure 7-2: Error Concealment. (a) is the original image. (b) is the reconstructed

version with ChitChat's error concealment. (c) is the reconstructed version with

MPEG's error concealment only.

7.1.2 Error Concealment by Unmixing

Now that we estimated the lost motion vector, how do we estimate the lost residu-

als? In fact, there is no need to estimate the lost residuals. Since C contains mixed

information about A, B, C and D, after unmixing, the error will be distributed over

all four macroblocks and no single block will experience a dramatic corruption.

Continuing with our example where block o is lost, let C' be the reference block

that the estimated motion vector points to. We then reconstruct a representation of

the 4 adjacent macroblocks as follows:

C'D

We then invert the Hadamard transform to obtain an estimate of the four original

macroblocks A, B, C, and D.

Note that we use the similar algorithm used by MPEG to recover lost motion

vector, then simply inverted the Hadamard mixing. However, this simple algorithm

for recovering motion vectors works better in combination with our Hadamard scheme

than without it.

. If the motion vector we recover is exactly the same as the lost one, then the



error on this macroblock would only be the residual in the lost macroblocks. The

mixing will evenly distribute this error across the four adjacent macroblocks,

smoothing it and reducing the jarring effect. In fact, since residuals carry much

less information than motion vectors, this noise is normally of small magnitude

and hence its effect is fairly mild and similar to the noise in the toy example in

Chapter 4.

e If the motion vector we estimated is different from the lost one, the error caused

by this estimate will also be equally distributed to all four macroblocks. Yet

the impact of this error will be structural. In Figure 7-2 we show an example

where the lost motion vectors cannot be accurately estimated. The left image

shows the original block we consider from the frame with the loss map shown

in Figure 7-1. The right image is the reconstructed block of MPEG by only

estimating the motion vectors for the lost macroblocks, without information

unmixing. In the middle is the reconstructed block of ChitChat. We can see

that by mixing the information, a much smoother decoded block is obtained,

even though the motion estimation error concealment scheme is not accurate. In

contrast, without mixing the information, merely estimating lost motion vectors

leads to jarring visual effect which lacks consistency.

7.2 Out-of-Loop Smoothing

The last step at our decoder is an out-of-loop smoothing block in the pixel domain,

which is commonly used by commercial softwares and highly recommended by MPEG-

4 [58]. This is because certain artifacts might be seen on the decoded frames due to

block-based transforms and quantization. H.264 has an intricate in-loop deblocking

filter to deal with this problem [58]. However, in our design, to mitigate this phe-

nomenon, we use a simple total variation based denoising method [25], which will

originally run multiple iterations to achieve a desired degree of smoothness. Yet to

ensure low complexity, we force the denoising to terminate after a maximum of 10

iterations. Moreover, since this smoothing block is out of loop (only exists at the



decoder), the only timeline we have to meet is the display time to the user. Thus, an-

other option is to let the decoder keep iteratively smooth the frame until the frame's

play time is due.
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Chapter 8

Experiment Setup

8.1 Video Quality Metrics

Ideally, video quality is measured as the mean of the scores given by human judges

who rate video call samples [8]. Human studies however need controlled environments

and are quite expensive to run. Instead, tests of video quality typically use objective

measures that can be computed automatically [9]. Among these, it is widely common

to use the Peak Signal-to-Noise Ratio (PSNR) and video outages [40], which are the

two metrics we employ in this study.

8.1.1 Peak Signal-to-Noise Ratio (PSNR)

The PSNR of a single frame is a function of the mean square error (MSE) between the

reconstructed frame and its original version. Overall PSNR of a sequence of frames

is the a function of the MSE between the reconstructed sequence and the original

sequence.

m-1 n-1

MSE = 1 [I(i,j) - )]2
i=0 j=0

( 2 L - 1)2

PSNR = 10- logio MSE [dB]

L is the number of bits used to encode each pixel luminance, typically 8 bits. m



is the number of columns and n is the number of rows in a frame. I is the recon-

structed frame or sequence and K is the original version. A typically good PSNR is

around 35 dB and it is generally agreed upon that PSNR values below 20 dB are

unacceptable [71].

8.1.2 Video Outage

Surveys show that the vast majority of users identify video freezing and lag as the

biggest annoyance in video conferencing, instead of less clear images [171. Hence, video

outage has been suggested as an alternative metric for video quality, particularly for

video conferencing applications [401. Further, it has been found that a frame rate of

below 5 fps in a slow/medium video is noticeable by a normal user, and people will

find video of a frame rate lower than 3 fps to be jerky [15). Thus, we define a video

outage to be an event where the video stalls for more than 1/3 of a second. The

duration of an outage is the period of time that the video stalls.

8.1.3 Measuring Outages and PSNR

Measuring video outage and PSNR is complicated by the fact that we want to compare

against Windows Live Messenger (WLM), which is a proprietary closed software. In

particular, to measure video outage, we need to know which frames are sent by the

sender and which frames are received by the receiver; to measure PSNR, we need to

capture all the raw frames both at the sender and at the receiver and compare them

for loss of quality. For WLM, however, we can only see the coded packets; but we do

not have access to the pixel values. To work around this issue, we use the approach

proposed in [561. Specifically, we screen-capture [2] all the frames that are displayed

on the screens both on the sender and the receiver's sides by WLM. We perform

the screen capture 30 times per second. Since the highest frame rate of the original

video is 15 fps 1, a capture sample rate of 30 fps is sufficient to record all the frames

'We feed a pre-recorded video of 15 fps to WLM to replace the webcam input. The encoder might
choose to lower the frame rate to below 15 fps to match the available bandwidth. Yet the highest
frame rate will not exceed 15 fps.



displayed on the screen. To make sure this screen capture process does not introduce

any artifacts or noise, we tested it by playing multiple raw videos on the machines we

used in the experiment and screen-capturing them. The screen-captured video output

proved to be always the same as the displayed raw video input, pixel by pixel. Apart

from this, to be completely fair to WLM, we perform the same screen capture on all

our decoded videos using the other compared schemes, and use the screen-capture

output for measurement.

Once we have the original encoded sent video and received decoded video, we

need to accurately match the decoded frames to the encoded frames and the original

frames, so that we can calculate the frame rate, video outage and PSNR of the decoded

video. Again we use a trick proposed in [56] where we imprint an index number of

the frame on a 16 x 16 area at the bottom-left corner of each frame 2

8.2 Measured Internet Paths

The focus of our algorithm is to cope with packet loss in video chat. Packet loss gen-

erally happens in the following three situations. 1) Congestion in limited bandwidth

environment. 2) Wireless loss. 3) Large variation in bandwidth. To evaluate our de-

sign under these circumstances, we conduct experiment over the following Internet

paths:

* MIT office building and Residential area in Cambridge, MA: On this trace, the

two locations are 0.4 miles from each other. One end is the high speed connection

of an MIT office. The other end is a residential DSL wireless connection provided

by Verizon, usually shared with two roommates. The average loss rate observed

on this path was 1%.

" MIT office building and Residential area in College Station, TX: The two loca-

tions are approximately 1900 miles from each other. The first end is the same

MIT office above, while the other end is a residential DSL connection provided

2Here we use 2 digit numbers, while in [56] the author used bar codes.



by Suddenlink, used exclusively by the experiment laptop. The average loss rate

observed on this path was 4%.

MIT graduate dorm and Tsinghua graduate dorm in Beijing, China: This is

a cross-Pacific link with a distance of about 12000 miles. At the MIT side,

high speed Ethernet connection with abundant bandwidth was used. At the

Tsinghua graduate dorm in Beijing, wired connection was used. One thing to

notice is that Tsinghua University is where you can find almost the highest

Internet connection speed in China. The average loss rate observed on this path

was 0.4%. 3

The experiments are conducted over a period of 3 weeks, during which we collect a

total of 5 hours of video data over each path. To limit the computational overhead,

we sample the traces at intervals of 10 minutes and process each time a window of 1

minute.

8.3 Lab Testbed Setup

We also conducted similar experiment on a testbed we set up in the lab, in order to

evaluate ChitChat in a wider range of controlled loss rates. In Figure 8-1 we show

our lab testbed setup. We run video calls between A and B. Since A and B are both

in the same building and both have Gigabit bandwidth, we use a CLICK router [47]

to create a bandwidth bottleneck. Specifically, A and the CLICK router are in the

same subnet. We set A's gateway to be the CLICK router and force all the traffic

going from/to A to travel through the CLICK router. Therefore, all the Internet

traffic from/to A is the natural competing traffic for the video calls.

We set the bandwidth of the CLICK router to be 1Mbps and the queue size to

be 40. This means with an average packet size of 700 bytes, when the queue is full,

3 Typically consumer video calls between U.S. and China are of very low quality, due to the
fact that the available bandwidth in China is normally very limited. 400kbps is considered a good
downlink speed in Beijing, China. With congestion, video calls will be very often dropped. Therefore,
we conducted this experiment at times when there was little competing traffic at the China side. As
a result, we expect the loss we see here to be primarily Internet core losses.



Figure 8-1: Testbed Setup in the Lab. We hide A behind a CLICK router and

run Windows Live Messenger video calls between A and B. The competing traffic is

all the Internet traffic going from/to A.

the router will discard any packets that arrived more than 200ms ago.

8.4 Compared Schemes

We compare the following four schemes.

" Windows Live Messenger 2009 [11]. Windows Live Messenger is an instant mes-

saging client created by Microsoft and it has over 330 million active users by

June 2009 [10]. Its free video call service sees more than 230 million video con-

versations each month, with an average length of 13.3 minutes, making it one

of the largest consumer video telephony providers in the world [10].
" H.264 AVC/MPEG-4 Part 10. H.264 AVC/MPEG-4 Part 10 is a state-of-the-art



video codec standardized by ITU-T Video Coding Experts Group together with

the ISO/IEC Moving Picture Experts Group (MPEG). It is widely adopted by

applications like Blu-ray, Youtube and video conferencing softwares. We use the

reference implementation available at [6].4

" H.264 AVC/MPEG-4 Part 10 with FEC. This scheme uses the same video codec

as above, with one FEC packet being added to every encoded frame.

* ChitChat integrated with MPEG-2 codec [60 ' but without any FEC.

8.4.1 Ensuring a Fair Comparison

In this work, our goal is to tackle the problem of robustness to packet loss without

changing the details of the underlying video codec or other components of the video

chat program. Therefore, to compare different schemes, we need to keep certain factors

the same for all of them. This issue however is complicated by the fact Windows Live

Messenger is a proprietary software, and hence we cannot control its parameters.

Thus, to ensure fairness we force the other three schemes, as much as possible, to use

the same parameters and setup as Windows Live Messenger (WLM).

Specifically, commercial video conferencing applications like Windows Live Mes-

senger all have their own built-in rate control mechanisms [55]. The rate control

algorithm estimates the available bandwidth and adapts the video frame rate accord-

ingly (i.e., reduces the frame rate in time of congestion and increases it when spare

bandwidth becomes available). Using a different rate control algorithm across the

compared scheme will result in unfair comparison as the differences in video quality

may be due to differences in the bandwidth usage and the frame rate enforced by rate

control. However since Windows Live Messenger is not open source, we can neither

change its rate control mechanism nor learn its detail to implement it for the other

compared schemes.

4The exact command that we run is: time ffmpeg re pixifmt gray force-fps g 12 i input.avi psnr
vcodec libx264 vpre fast vpre baseline strict 1 r 15/1 force-fps qscale Q b B output.mp4.

5MPEG-2's compression is not as efficient as H.264 with videos of high motion. Yet the basic
mechanisms are the same. Since in video calls, usually we observe only slow/medium motion, we
expect the performance of MPEG-2 to be relatively similar to more advanced codecs.



Thus, to ensure that all schemes make the same decisions about their bandwidth

usage and frame rate we run our experiments as follows. We run WLM video calls

between various pairs of locations to collect trace data. We capture all the sent packets

and received packets. In addition to muting the sound during the video call, we also

classify the packets based on the payload. Since the payload sizes of audio packets

and video packets are very distinct, we make sure all the packets we consider are

dedicated to encoded video information.

To make sure that all schemes react to the rate adaptation decisions in the same

way, we force the other three schemes to send the same number of packets at the

same points in time using the same packet size, which ensures an identical usage of

bandwidth. We also make all compared schemes encode and send the exact same

frames during the experiment, which ensures the same frame rate for all schemes at

any moment. With these two constraints, we guarantee all four compared schemes

conform to the same rate control decisions, which are those taken by the Windows

Live Messenger built-in rate adaptation mechanism.

Ideally we would like also to make all compared schemes use the same video codec.

This is however not doable, as Windows Live Messenger employs the VC-1 codec [511,
which is proprietary. Our scheme, on the other hand, uses the MPEG/H.264 codec.

This, however, should not put Windows Messenger at a disadvantage. This is because,

the VC-1 codec is known to generally have a better quality than H.264. Specifically,

the viewers in a test conducted by DVD Forum rated the quality of VC-1 the best

among VC-1, H.264, MPEG-4 Advanced Simple Profile and MPEG-2 [51].

8.5 Tested Videos

Instead of having our own video conference, which might depend on our environment

and the humans conducting the call, we use standard reference videos available at

Xiph.org. We experiment with the videos: Deadline, Salesman, and Students. We

chose these videos because, among the available reference test video sequences, they

best represent a video conferencing setting: A talking person/two talking people with



a relatively static background. We use a frame rate of 15 fps and crop the frames to

320 x 240, which are the default values for Skype and Windows Messenger. We take

20 seconds of the each video and repeat it to form a long sequence, which we then

feed into Windows Live Messenger as a pre-recorded source replacing the webcam

input [5].



Chapter 9

Evaluation

We compare ChitChat with Windows Live Messenger 2009, H.264 and H.264 with

FEC.

9.1 Impact of Packet Loss on Video Quality

We would like to examine the PSNR of the decoded videos in presence of packet

loss, for the four schemes. Thus, as recommended by ITU-T Video Coding Experts

Group [9], we calculate the average PSNR over each 5-second interval, between all

frames of the source sequence and the corresponding reconstructed frames. We look

at the relationship between packet loss rate and average PSNR for these intervals.

When a source frame is lost in the decoded sequence, video conferencing applica-

tions generally display the most recent usable frame. Therefore, the PSNR of this

frame will be calculated between the source frame and the most recent usable frame.

Average PSNR calculated this way reflects both the compressed video quality and

the robustness of the system against packet loss since it introduces penalty for lost

pictures.

(a) How Do the Four Schemes Compare?

Figure 9-1 plots the average PSNR at different loss rates for all experiments over the

Internet paths described in 8.2. The results are computed over all the intervals for all

traces. The figure shows the following:



35 35

-o

30 30-

25 25

(D 0

20 20

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Packet Loss Rate Packet Loss Rate

(a) ChitChat (b) Windows Live Messenger 2009

35 35

30: -30

25 25

20 20

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Packet Loss Rate Packet Loss Rate

(c) H.264 (d) H.264 with one FEC packet per frame

Figure 9-1: PSNR at different loss rate. The figure shows that ChitChat's video

quality is significantly higher than the compared schemes over the whole range of loss

rates.

* When no loss occurs, the average PSNR of ChitChat is as good as WLM 2009

and H.264, which proves the mixing of information in ChitChat does not render

the standard video compression less efficient. In contrast, at zero loss, the FEC-

based approach has a PSNR 3 dB lower than the other schemes. This is because

rate control forces all schemes to use exactly the same rate. Hence to add an FEC

packet per frame, the codec needs to compress the video more (i.e., quantize

more), resulting in lower quality even without loss.

" As the loss rate increases, ChitChat's average PSNR drops much slower than the

other schemes. At a typical Internet loss rate of 1%, ChitChat has an average

PSNR of 35 dB, 0.8 dB lower than the PSNR without loss. In contrast, at 1%

loss rate, the PSNR of Windows Live Messenger and H.264 drops by about 3 dB

and 5 dB respectively. The PSNR of the FEC scheme drops by 1.2 dB at this
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loss rate; however this comes at the cost of reducing the PSNR in times of no

losses. At a high loss rate of 15%, ChitChat still achieves an average PSNR of

32 dB while the other schemes' PSNR all drops to below 26 dB, which indicates

a significant amount of dropped frames.

" On the same figure, the vertical bars show the maximum and minimum PSNR

within each loss rate bucket for all four schemes. ChitChat has a much more

consistent performance (smaller standard deviation) than the others.

" Finally, we note that the video quality of ChitChat, Windows Messenger and

H.264 is the same at zero loss rate, and differs only in the presence of packet loss.

This shows that ChitChat's gains are due to differences in reacting to packet

loss rather than the differences in the codec. The FEC scheme uses H.264 and

hence its reduced PSNR at zero loss rate is not due to the codec but rather to

the overhead of FEC.

(b) Detailed Comparison with FEC

Aside from its excessive overhead when used in interactive applications, FEC also

suffers from the well-known cliff effect, which is especially amplified in video applica-

tions. In particular, a scheme that adds one packet of redundancy to each frame can

completely recover from one packet loss per frame. However, frames that have two or

more lost packets will be as corrupted as if no FEC was used. In fact, even with an

average loss rate as low as 1%, it is not uncommon for multiple packets of a frame

to get lost from time to time. In particular, Figure 9-2 shows the PSNR degradation

of ChitChat and H.264+FEC for the MIT-Cambridge DSL trace. This trace has an

overall packet loss rate of 1%. We can see that the FEC scheme can maintain a rel-

atively constant PSNR with small standard deviation at loss rates below 1%, yet as

soon as the loss rate nears 2%, a wide range of PSNR is observed. In other words, even

a 25% FEC redundancy does not prevent frame quality from worsening severely even

with just 2% of packet loss. On the contrary, ChitChat's degradation is both much

slower and much smoother. By mixing the information and letting each packet carry

equally important information for the entire frame, we allow the receiver to recover
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Figure 9-2: With increased loss rate, FEC shows a cliff effect while ChitChat

degrades smoothly.

a smooth version of the frame with relatively high quality, without a cliff effect.

(c) Differences Across Tested Videos

Next we want to check that the behavior of ChitChat is consistent for any conference-

style videos. Thus, in this section, we show the video quality of ChitChat and Windows

Live Messenger for two different videos: Salesman and Students. In contrast to the

previous figures which reported results from experiments over the Internet paths as

described in 8.2, here we conduct the experiment on our testbed to ensure we can

span a large range of loss rates and fix all parameters other than the tested video.

The Students video is easier to compress than Deadline and Salesman, because

there is less motion in it than the other two. In Figure 9-3, the top row shows the

average PSNR of the Salesman video, and the bottom row shows the average PSNR of

the Students video. As the loss rate increases, the drops of PSNR for both ChitChat

and WLM for Students are slower than those for Salesman. The explanation for this

is that, the less motion in the video, the less the penalty in PSNR when frames are

dropped due to packet loss. With both videos, ChitChat continues to outperform

WLM at all loss rates. At a loss rate of 2%, the average PSNR of ChitChat is about

4 dB higher than WLM; at a loss rate of approximately 20%, the average PSNR

of ChitChat is more than 7 dB higher than WLM.
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Figure 9-3: PSNR at different loss rates of the testbed experiment. The figure

shows that ChitChat's video quality is significantly higher than that of WLM for the

whole range of loss rates.

9.2 Video Outage

Here we would like to closely examine the frequency and duration of outages experi-

enced by the four schemes. Recall that an outage is as a video stalls for more than

1/3 of a second, which is the threshold at which humans perceive the video to be

jerky [15].

It is important to note that due to rate control, the sender might decide to encode

at a lower rate than 3 fps, causing video stalls. Such outages are not due to packet

loss; rather they are caused by the rate control algorithm detecting lack of available

bandwidth. Also, they are the same for all compared schemes since by the design
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Figure 9-4: A histogram of sender-side outages. These outages are the result of

the rate control algorithm detecting the lack of bandwidth and resorting to a very

low frame rate.

of our experiments (see 58.4.1) all schemes send the same number of packets at the

same time instances, experience the same packet losses, and react using the same rate

control algorithm. Thus, in our study, we distinguish the sender side outages due

to rate control, from the loss-caused outages seen only at the receiver because of

packet loss and the resulting frame loss.

Figure 9-4 shows a histogram of the outages at the sender side from all experiments

done over Internet paths. Figure 9-5 shows the additional outages at the receiver, for

all four compared schemes.The figures show that ChitChat dramatically reduces the

occurrence of loss-caused outage events, and eliminates all long lasting outages. In

comparison to Windows Live Messenger, ChitChat reduces the occurrence of outage

events by 15x (from a total of 195 outages to only 13 outages). In comparison to

H.264, ChitChat reduces the occurrence of outages by 11x (from 148 to 13 outages).

In comparison to the FEC scheme, ChitChat reduces the occurrence of outages by 4x

(from 53 to 13 outages).

Interestingly, Windows Live Messenger has significantly more short outages than

H.264 and the FEC scheme, but is more robust to long-lasting outages. One explana-

tion for the smaller number of long outages is that WLM uses some acknowledgment
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mechanism that allows the sender to quickly discover an outage and stop using lost

frames as reference frames.

9.3 ChitChat with ACK or NACK

Recall that in cases of long RTT, there is a trade-off between robustness and video

size as discussed in 5.4.2. Using an ACK system guarantees robustness yet results in

a larger size; using a NACK system does not introduce overhead in size but it suffers

for one RTT when loss happens. Different chatting programs use different algorithms

to choose between ACK and NACK, considering this trade-off based on the RTT and

loss rate of the channel. ChitChat, however, can work with both ACK and NACK
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systems and leave this decision to the codec.

For a U.S-Asia link, the RTT is normally around 300 ms, which is the duration of

approximately 5 frames at a frame rate of 15 fps. Figure 9-6 plots the PSNR of each

frame against time for part of the U.S.-China trace. The orange data is ChitChat

with ACK and the blue data is ChitChat with NACK.

9 In an ACK system, the loss-caused error will only affect the current frame and

will not propagate to following frames. In the figure, any sudden drop of the

orange line because of loss always immediately recovers on the next frame. The

packet loss happening at 94.1s is a clear example. The PSNR for the ACK

system goes back up immediately after the loss while the PSNR of the NACK

system remains lower than normal for about 5 frames. This shows the advantage

of robustness in an ACK mechanism. Note that a lot of the low PSNR for the

ACK system is due to the inefficiency in compression caused by the long RTT,

100
Time (s)
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Figure 9-7: ChitChat's Contribution to an NACK mechanism on traces with

long RTT. ChitChat reduces the impact of the drifting effect to a great extent and

yields usable decoded frames of PSNR higher than 28 dB.

instead of packet loss.

However, this robustness of an ACK system comes at a price of the increase in

video size. We can see from the figure that this gap of 300 ms from the reference

frame causes the PSNR of the ACK system to be 2-3 dB lower than the NACK

system when the size of the encoded video remains the same.

Therefore with a relatively low loss rate, we consider a NACK mechanism to

be much more reasonable for long RTT Moreover, ChitChat's information mixing

design can make a NACK system work better in terms of improving video quality and

reducing video outages. When a NACK mechanism is adopted, the drifting between

the encoder and the decoder will not last for longer than one RTT before they are

resynchronized. Even in the extreme case of U.S.- Asia, this only affects 5 frames. The

quality of these 5 consecutive frames all depend on how well the system can recover

the first frame suffering from loss. With ChitChat, if at least one packet for the frame

is received, we can very often reconstruct a usable copy of the frame of satisfying

quality. Therefore the later 4 frames will not be dropped either.

Figure 9-7 zooms in to two examples on the U.S-China trace where one out of

the three packets transmitted for a frame is lost. The first loss happens at a part of



the video where the motion is high and the second loss happens at a part where the

motion is low. We plot PSNR for individual frames against time. In the first example

(left), PSNR of both WLM 2009 and H.264 dropped quickly to below 20dB when the

loss happened, indicating the motion in that part of the video is medium/high. In

this case, ChitChat successfully reconstructed a version of the first frame affected of

29 dB PSNR, a quality degradation readily accepted by an average user. In the second

example (right), from the PSNR drop of WLM 2009 and H.264, we can see this part of

the video has low motion, in which case ChitChat was able to reconstruct a very good

version of the original frame. Please note that the drop of PSNR for H.264+FEC is

not due to the packet loss; it is due to the redundancy FEC introduces. In conclusion,

as long as not all packets for a frame are lost, ChitChat can lessen the degradation

of video quality during the period of the drifting effect in a NACK system, in cases

of both high motion and low motion. In the case where all the packets for one frame

are lost, ChitChat with a NACK mechanism will see an outage of one RTT.

9.4 ChitChat's Additional Error Concealment Gain

In 7.1.2, we explained how ChitChat's error concealment works more than simply

estimating the lost motion vectors. Here we want to restress the gain in error con-

cealment of ChitChat. If the motion vector we recover is exactly the same as the lost

one, the error on this macroblock would only be the residual in the lost macroblocks.

The mixing will evenly distribute this error across the four adjacent macroblocks,

smoothing it and reducing the jarring effect. In fact, since residuals carry much less

information than motion vectors, this noise is normally of small magnitude and hence

its effect is fairly mild and similar to the noise in the toy example in Chapter 4.

The more interesting case is where the motion vector we estimated is different

from the lost one. In this case, the error caused by this estimate in ChitChat will

also be equally distributed to all four macroblocks, while jarring structural noise will

be observed without mixing. Figure 9-8 shows an example where the lost motion

vectors cannot be accurately estimated. The left image shows the original block we



(a) (b) (c)
Figure 9-8: Error Concealment when the Estimated Lost Motion Vectors

are not Accurate. (a) is the original image. (b) is the reconstructed version

with ChitChat's error concealment. (c) is the reconstructed version with MPEG's

error concealment only.

consider from the frame with the loss map shown in Figure 7-1. The right image is

the reconstructed block of MPEG by only estimating the motion vectors for the lost

macroblocks, without information unmixing. In the middle is the reconstructed block

of ChitChat. By mixing the information, a much smoother decoded block is obtained,

even though the motion estimation error concealment scheme is not accurate. In

contrast, without mixing the information, merely estimating lost motion vectors could

lead to very disturbing jarring visual effects.



74



Chapter 10

Conclusion

We present a new approach for improving robust video transmission over the Internet.

We design a practical system, ChitChat, based on the idea of information mixing and

ensuring the information in each packet describes the whole frame. Experiments are

conducted on both intercontinental Internet paths and links within the U.S. as well

as on a lab testbed. Our evaluation shows that ChitChat significantly reduces the

occurrences of video stalls due to packet loss and improves the overall video quality.

By providing a satisfying user experience even in presence of packet loss, this approach

can contribute to making video chat reach its full potential.
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