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ABSTRACT

This dissertation reports the results of two English experiments on timing and perception. The
first experiment demonstrates asymmetries in timing between consonants and vowels, which
depend on the manner of the consonant. The second experiment shows that these asymmetries in
speech production are mirrored by perceptual asymmetries among consonants with different
manner features. We argue that these phenomena are best described in terms of auditory rather
than articulatory representations. A formal analysis is developed using weighted, gradiently-
violable constraints on segment and syllable duration. Because the constraints make reference to
the auditory features of segments, the analysis can derive the relationship between asymmetries
in speech production and asymmetries in speech perception. The patterns of timing discovered
here appear to interact in limited ways with systems of phonological contrast. We incorporate the
duration constraints proposed here into a phonetically-driven model of phonology, examining the
predictions that such an approach makes about phonological typology.

Thesis Supervisor: Edward Flemming
Title: Associate Professor of Linguistics



Acknowledgements

A large number of colleagues, teachers, and friends have helped me get to this point, and I can't
possibly thank them all here. Nonetheless, I would like to single out a few people who have been
especially important to me over the preceding years.

Edward Flemming is an extraordinarily knowledgeable and insightful linguist, and it is hard to
imagine a better thesis advisor. At every step of this project, he has struck a balance between
pushing me to take the work in new directions and making sure that what I've already done is up
to the same standards of empirical and formal rigor to which he holds his own work. Nothing
contained here would have been possible without Edward's help; he supervised this work from
the day in my second year that I decided to try an experiment on compensatory shortening to the
day that I completed my revisions. Edward is an inspiring teacher, mentor, and role model.

Adam Albright has been instrumental in the development of this thesis. No matter how abstract
the theoretical idea one presents to him, he always seems to have a range of relevant
phonological data points at his fingertips. He constantly pushes his students to broaden the
empirical coverage of their work to account for patterns that they may not have known about or
taken to be in the purview of their theories. Adam is also the only teacher I've ever had who
quotes the Simpsons as much as I do, and that is worth something in and of itself.

Donca Steriade is an inspiration to everybody who works with her. She has the uncanny property
of always being two steps ahead of you, even when you're describing your own theory to her.
She has constantly pushed me to pay attention to the details, strive for formal precision and
clarity, and think through the broader consequences of every hypothesis. Donca has constantly
challenged me to sharpen and broaden my thinking, with complete confidence in my ability to
rise to those challenges.

Many other people have offered helpful comments on various parts of this project. Thanks to
Lasse Bombien, Adamantios Gafos, Jelena Krivokapic, Elliott Moreton, Joe Pater, Jason Shaw,
Mark Tiede, and audiences at MUMM 2007 and the Munich Workshop on Consonant Clusters
and Structural Complexity.

Lisa Selkirk has done a few things for me over the years. She taught my first phonology class,
designed my first experiment, gave me my first research assistantship, convinced me to go to
grad school, co-authored my first paper, and helped me get my first job. Lisa is the sine qua non
of my linguistic life; I'm terribly fortunate to have met her, and she is an unbelievable teacher,
mentor, colleague, and friend.

David Pesetsky has been very important to me, as a linguist and as a friend. He nearly convinced
me to study syntax during my first few years at MIT. Even though that didn't end up happening,
we've remained very close. David taught me how to form an argument, and how to write (and
think) clearly. Whether we are writing a paper together, sparring with musicologists in Berlin, or
discussing how to design a text-to-speech system with a thick Russian accent, David is a joy to
be around. Even in an environment as full of wonderful teachers as the one I've come from, he
stands out for his sheer dedication to the well-being and intellectual advancement of his students.



John Kingston taught the hardest undergraduate class I ever took, and it also turned out to be the
most important. After I graduated, John hired me as a full-time research assistant in his lab;
that's where I learned to be a scientist and to do phonetics. He has also had an important
influence on the work reported here; his words of encouragement after hearing about an earlier
version of the production study helped convince me that this work was worth pursuing, and
suggested some directions in which I might pursue it.

All of my teachers at MIT, and as an undergraduate at UMass, have been unbelievably
supportive and helpful. Many thanks to Kai von Fintel, Danny Fox, Irene Heim, Sabine Iatridou,
Kyle Johnson, Eva Juarros-Daussi, Michael Kenstowicz, Angelika Kratzer, Shigeru Miyagawa,
Barbara Partee, and Norvin Richards.

I've learned from many other students at MIT during my time here, and benefited from their
friendship. I single out my amazing classmates Hyesun Cho, Jessica Coon, Gillian Gallagher,
Maria Giavazzi, and Patrick Jones for special gratitude.

My friends, my family, and especially my wonderful parents Larry and Stephanie have offered
unconditional love and support throughout my grad school experience, and I doubt I could have
done it without them. Jodie Rose, in particular, has put up with a very boring Jonah for the last
year or so, and managed to remain unfailingly upbeat, supportive, and fun the entire time.



Table of Contents

1 Introduction 6

2 An investigation of compression effects in English 13
2.1 Introduction 13
2.2 Methods 32
2.3 Results 46
2.4 Discussion and conclusions 70
Appendix 2A 88

3 A constraint-based account of English CS 90
3.1 Introduction 90
3.2 The framework 97
3.3 Simplex CS phenomena 108
3.4 Complex CS phenomena 113
3.5 Other asymmetries 122
3.6 Task-specific effects and isochrony 127
3.7 Conclusion 133
Appendix 3A 137

4 An experimental investigation of vowel recoverability from consonants 139
4.1 Introduction 139
4.2 Methods 150
4.3 Results 158
4.4 Discussion 170
4.5 Conclusion 173
Appendix 4A 175

5 Timing and phonotactics 186
5.1 Introduction 186
5.2 A phonetic approach to phonology 187
5.3 The unified grammar 196
5.4 Typology and repairs 208
5.5 Some further predictions 231
5.6 Conclusion 265

6 Conclusion 268

References 272



1 Introduction

This dissertation is concerned with timing patterns in speech production, the auditory and

articulatory influences on those patterns, and the way those patterns interact with phonological

contrasts. We argue that some aspects of timing must be explained with reference to auditory

representations rather than articulatory ones. A formalism is developed that derives timing

patterns in production from auditory properties of the units to be produced. That formalism relies

on assumptions about auditory perception, which are tested experimentally. Finally, the

formalism is extended to account for certain categorical phonotactic phenomena.

The grammar of timing is a rather broad topic, and no single work will settle all of the questions

inherent to the domain. This dissertation approaches the topic starting from a narrow range of

phenomena in English. These phenomena are known as compression or compensatory shortening

effects. Evidence from this domain is then incorporated into a general model of timing.

The term 'compression' refers to the fact that, when more segments are present in a syllable,

each one of the segments is shorter. For instance, /o/ in sad is shorter than in add. This holds in

English for the addition of both onset (Fowler 1983, van Santen 1992) and coda consonants

(Fowler 1983, Munhall et al. 1992). It also holds in Dutch (Waals 1999) and Swedish (Lindblom

& Rapp 1973). The typologically widespread phenomenon known as closed-syllable vowel

shortening (Maddieson 1985) is the most familiar compression effect. We further distinguish

simplex compression, between an item with no consonant in a given position and an item with a



consonant in that position (e.g. add-sad); from incremental compression, between an item with

one consonant and several (e.g. lad-clad).

No previous study has examined the influence of consonant manner or syllable position on

compression effects. Chapter 2 reports the results of an English nonce-word study that examined

obstruents, nasals, liquids, and clusters in onset and coda position. All consonants are associated

with some amount of simple vowel-compression, but not all strings induce incremental

compression. Clusters including liquids induce incremental compression in both onset and coda

position relative to liquid singletons, clusters including nasals do so only in onset position, and

clusters containing only obstruents do not condition incremental compression in either position.

For instance, the vowels in /brod/ and /dorb/ are significantly shorter than those in /rod/ and /dor/,

but the vowel in /donz/ is not shorter than that in /don/.

The results have broad consequences for the theory of timing. One common analysis of

compression effects treats them as emergent from general principles of articulatory gestural

organization (Fowler 1983, Nam et al. 2009). When the articulatory gestures that are associated

with segments overlap more, the acoustic manifestations of those segments will be shorter. Thus,

patterns of compression should correspond to independent facts about the temporal organization

of gestures. The asymmetries in incremental compression reported here, however, can not be

explained by any known facts about gestural organization in English. While articulatory studies

find that consonant clusters impinge more on a following vowel than singleton consonants (part

of a phenomenon known as the C-center effect), the same is not generally found for coda

consonants (Browman & Goldstein 1990 et seq., Honorof & Browman 1995). Even if the C-



center effect is extended to syllable codas, differences between various manners of consonant are

difficult to explain in articulatory terms.

We argue instead that compression effects are due to constraints on the auditory duration of

segments and syllables. This generalizes a common approach to closed-syllable vowel

shortening: compression effects are due to conflicting pressures on segments and larger units

such as rimes or syllables (Maddieson 1985, Fujimura 1987, Flemming 2001). Consonants

behave differently with respect to compression because constraints on duration are stated in

perceptual terms, and consonants differ widely in how much perceptual information they contain

about an adjacent vowel.

In this approach, patterns of compression can be explained in terms of independent facts about

perception. For instance, vowels shorten more adjacent to liquids than adjacent to obstruents

because liquids help to satisfy the duration requirements of an adjacent vowel more than

obstruents do. This, in turn, is because liquids contain more information about adjacent vowels

than obstruents do. Incorporating these hypotheses into a formal grammar requires some

adjustment to the notion of a segment's duration; the end result is that the grammar manipulates

something more like a segment's recoverability.

In chapter 3, a formal theoretical model is developed to account for asymmetries in compression.

Both segments and syllables have auditory duration targets; weighted constraints assess a cost to

any linguistic form related to the difference between target durations and realized durations in

that form. As segments are added into a syllable, conflict arises between the pressure to keep



segments long and the pressure to keep syllables short. The weighted-constraint formalism

predicts that the result should be a compromise between the two pressures. This is exactly what

was found in the chapter 2.

Duration constraints on segments assess not only the duration of the segment itself, but the

duration and amount of perceptual information included in adjacent transitions and segments.

The model thus predicts that, in cases where two segments or their transitions differ in these

properties, they should also differ with regard to compression effects. We develop several

hypotheses about which segments and transitions might differ in the amount of information they

contain about an adjacent vowel. For instance, we mentioned above that liquids might contain

more information than obstruents. When these differences are incorporated into the model, we

can predict exactly the qualitative patterns of shortening observed in the production experiment.

Although based on known acoustic properties of segments, the hypotheses about recoverability

that the formalism relies on largely consist of conjecture until we can confirm them empirically.

Chapter 4 describes a perceptual experiment designed for this purpose. The experiment attempts

to test hypotheses about the relative amount of 'vowel information' contained in various parts of

the speech stream outside the vowel proper. In this study, subjects were asked to identify

forward- and reverse-gated stimuli with truncated or removed vowels. The results display clear

parallels to the compression asymmetries discovered in the production experiment. Subjects in

general do significantly better at identifying adjacent vowels from liquids alone than from

singleton obstruents alone. In onset position, where nasals induce incremental compression but

obstruents do not, subjects show a significantly greater increase in sensitivity to vowel contrasts



as CV transitions are added back into the syllable for /nV/ sequences than they do for obstruent-

vowel sequences. In coda position, where neither manner induces incremental compression, no

such perceptual asymmetry exists.

The idea that patterns of duration and segmental overlap are governed in part by perceptual

considerations is not new (Byrd 1994, Silverman 1995, Chitoran et al. 2002). In the

formalization developed here, however, it becomes clear that the grammar of timing should have

pervasive effects on phonotactic licensing cross-linguistically. In particular, many phonotactic

generalizations can be explained with reference to cue availability and perceptual distinctiveness

of contrasts (Steriade 1997, Flemming 2001, Wright 2004 inter alia). If temporal coordination

affects and is affected by the same perceptual facts that drive phonotactics, we predict a wide

range of duration-related effects on phonotactic licensing and repair strategies.

The available cues to any given contrast depend on language-particular patterns of phonetic

realization (Steriade 1997, Gordon 2001, Jun 2002, Flemming 2008). In particular, cues to both

the presence and the features of a stop in pre-stop position depend on how much it is overlapped

with the following stop. If the two stops are very overlapped, the first one may not include an

audible burst; if they are less overlapped, the burst will be audible; and if they are entirely non-

overlapped, they will be separated by an open transition that provides cues to the presence and

features of both stops. As such, the perceptibility of the first stop is largely a function of fine-

grained timing relations between the two segments.



Chapter 5 extends the timing grammar from chapter 3 to include constraints on the number of

contrasts in any given context and the distinctiveness of those contrasts. This extended grammar

produces as output both categorical phonotactic patterns and fine-grained temporal

representations. We show that it is capable of characterizing a host of facts involving consonant

clusters and timing.

Like any cue-based approach, it predicts that a contrast will always be neutralized in

environments where it is difficult to maintain the distinctiveness of that contrast before being

neutralized in environments in which it is less difficult. The important sense of 'difficult' in the

grammar here is 'produced with a relatively marked durational pattern'. From the general

principles of timing developed in chapter 3 and the contrast constraints introduced here, we can

derive the typology of stop-stop and stop-liquid clusters.

Given a detailed timing grammar, we can also analyze cases where the realization of contrasts

varies language-internally, exemplified here by Tsou, Georgian, and Spanish. In Tsou and

Georgian, the fine-grained temporal patterning of stop-stop clusters varies depending on context

and place of articulation; these pattern are predicted by the timing grammar developed here. In

Spanish, rhotics behave as sonorants in terms of phonotactic licensing, despite the fact that they

are sometimes phonetically more similar to stops. The grammar developed here explains how the

timing of these segments varies in order to preserve cues to a preceding obstruent; this contrasts

with stops, which are not predicted to benefit from the same 'repair strategy'.



Finally, the grammar developed in chapter 5 makes strong typological predictions. One example

of such a prediction: any language that licenses word-initial clusters with open transitions should

also license coda consonants, but not vice versa. This is because the presence of consonants in

the two positions is governed by a single constraint on contrasts, and a consonant cluster with

open transitions will always produce a temporally more marked structure than a singleton coda

consonant. On a first pass, this prediction appears to capture at least a strong tendency across

languages. We examine seven languages that have been described as having CCV but no CVC

syllables: Arabela, Cheke Holo, Lakhota, Mazateco, Pirahi, Piro, and Tsou. Two of these,

Lakhota and Piro, are argued to include coda consonants; the other five do not license any

clusters with open transitions.

A range of other cross-linguistic predictions that emerge from the particular theory of timing

developed here are then elaborated and evaluated against the available empirical evidence. Most

of these predictions involve some form of long-distance dependencies between phonological

contrasts in different locations within a syllable. Some of the predictions are supported by a

small number of attested patterns; others are unattested. In the final part of this chapter, we

explore possible ways of constraining the formalism to eliminate unattested predictions.

Chapter 6 summarizes the preceding chapters and explores directions for future research.



2 An investigation of compression effects in English

2.1 Introduction

2.1.1 Overview

This chapter reports on an experiment that examines whether and how duration-trading relations

manifest themselves in the English syllable. The general term used here to describe such

relations is compression effects. The empirical and theoretical description of temporal

coordination is of course significant in its own right; one goal of linguistics is to describe and

analyze the world's languages, and timing relations at various levels of structure are part of the

set of phenomena that must be described and analyzed. These phenomena are also of broad

theoretical interest for several reasons. Asymmetries in compression across different contexts

provide evidence about the division of labor between articulatory and auditory representations in

language. And general properties of temporal coordination, be it articulatory or auditory, interact

with the phonological licensing of contrast. As such, clarifying the empirical picture of

compression effects will lead to greater understanding in other theoretical domains.

Complexity-driven compression effects have been approached from both an articulatory and an

auditory standpoint; the two types of approach attribute compression effects to very different

underlying principles, discussed in the next section. Given these differences in the underlying

motivation for compression, the two approaches naturally make different predictions about

where compression should be observed, and how much compression we should observe in

different places. Testing these predictions will shed light on the nature of the representations that

are relevant to timing and duration phenomena.



Timing phenomena are also of interest because they interact with systems of phonological

contrast. For instance, one of the approaches to compression described here was developed to

explain phonetic and phonological patterns of closed-syllable vowel shortening (Maddieson

1985, Flemming 2001).1 In chapter 5, we highlight a variety of phenomena involving consonant

clusters that both affect and are affected by compression. Given that these phenomena interact

with temporal patterns, we can not hope to describe or analyze them fully without at least a

partial theory of timing and duration. In the next section, we provide a sketch of two such

theories.

2.1.2 Two approaches to compression

2.1.2.1 Articulatory approaches

One approach to compression treats it as essentially an epiphenomenon, one wholly determined

by patterns of articulatory gestural coordination (Fowler 1981 et seq., Browman & Goldstein

1990 et seq., Nam et al. 2009). These theories include no mechanism for actively modulating the

acoustic duration of a vowel, for instance. Rather, they include a small set of articulatory gestural

coupling relations as primitives, and facts about acoustic duration emerge from those gestural

relationships. Essentially, shortening happens when part of an articulatory gesture is encroached

upon by an overlapping gesture.

The simplest version of this approach is laid out by Fowler (1983). The proposal is that

consonant gestures are superimposed on the leading and trailing edges of vowel gestures.

I The terms phonetic and phonological refer here to non-neutralizing and contrast-neutralizing
patterns of vowel shortening, respectively.



Essentially, the vowels form a 'scaffold' that can be used to support consonantal constrictions.

This is shown in the figure below:

Cl C2

Figure 2.1. A model featuring vowels as a gestural scaffold (top) and consonants as gestures

overlaid on this scaffold (bottom). The introduction of consonantal gestures, the thicker arcs, has

the effect of acoustically obscuring the part of the vowel gesture underneath those arcs. The

arrows show this shortening. In this figure and those that follow, the vertical axis represents

gestural activation.

Assuming that the duration of vowel and consonant gestures remains constant between various

contexts, this framework predicts pervasive compression effects. Every time a consonantal

gesture is introduced into the speech stream, it masks part of a vowel gesture. The more

consonants, the more masking. For instance, adding in C1 in figure 2.1 will tend to make the

acoustic manifestation of VI shorter; adding in C2 will tend to shorten the acoustic realizations

of both VI and V2; adding in a third consonant adjacent to C2 would result in even more

shortening of VI and V2.



This approach predicts that compression effects are more or less uniform across the grammar.

Any time we add any kind of consonantal gesture in any position, it should drive vowel

shortening. All segments should be alike in this regard, to the extent that they all at least partially

mask the qualities of an adjacent vowel. Singleton consonants drive compression relative to no

consonant; clusters drive compression relative to singletons.

This general theory could make different predictions about compression if it were coupled with a

more specific theory of gestural alignment. Articulatory Phonology (henceforth AP) is just such

a theory (Browman & Goldstein 1986 et seq.). One of the findings from this research program

involves asymmetries in gestural alignment that depend on the number of consonantal gestures

present and on the position of those gestures in the syllable.

Browman & Goldstein (1992) find that, for consonants in onset position, the beginning of the

vowel gesture bears a constant temporal relationship to the temporal midpoint of the sequence of

consonantal gestures (referred to as the C-Center). Across various singletons and clusters in

onset position, what remains constant is not the temporal relationship between the beginnings of

vowels and the beginnings of consonant complexes, but the relationship between the beginnings

of vowels and C-centers. This is shown below.



Figure 2.2. The C-center effect. As more consonants are added into a syllable, the temporal

relationship between the vowel onset and the C-center remains constant. The more consonant

gestures are present, the more they impinge on the following vowel's gesture.

It should be clear from figure 2.2 that the C-center effect will be accompanied by acoustic

compression of the vowel. In order to keep the alignment of the C-center and vowel onset

constant across clusters of increasing size, it is necessary for those clusters to impinge upon the

following vowel gesture more as the number of consonant gestures in the cluster increases.

Under the assumption that the duration of a vowel gesture remains fixed from one utterance to

the next, and that acoustic vowel duration is roughly equal to duration of unmasked vowel

gesture, this will result in acoustic shortening. This is illustrated by the arrows in figure 2.2.



In coda position, on the other hand, the c-center effect does not hold. In earlier versions of the

AP model (e.g. Browman & Goldstein 1992), Browman & Goldstein report that the offset of the

vowel gesture bears a constant temporal relationship to the beginning of the first consonant

gesture in coda position, regardless of how many other consonant gestures might follow it. This

is shown in figure 2.3.

Figure 2.3. Lack of a c-center effect in coda position. As more consonants are added to a

syllable the relationship between vowel offset and onset of the first consonant gesture remains

constant. Adding more consonant gestures will not impinge on the preceding vowel.

Left edge of coda



The lack of a C-center effect in coda position means that there should be no additional vowel

shortening as more and more consonantal gestures are added to a coda. Adding further

consonantal gestures will not cause the preceding ones to impinge any more on the vowel

gesture, and the acoustic duration of the vowel should not be affected.

This model differs from Fowler's in its predictions regarding compression. Fowler's model was

formulated specifically with acoustic compression in mind, while this model was intended to

account for an entirely different empirical phenomenon, that of the c-center effect. Despite the

different motivation behind the AP model, it does still make predictions about acoustic

compression: incremental with every added consonant in onset position, but constant in coda

position. This prediction is made explicit in a later version of the AP model, which differs from

the earlier implementation in the explanation of the c-center effect, but not its presence and

absence by syllable position. According to Nam et al. (2009), 'adding Cs to a coda is predicted

not to decrease the acoustic duration of the vowel'.

Broadly, then, these articulatory approaches predict that compression should obtain between

syllables with different numbers of onset consonants, and possibly coda consonants as well.

They predict a certain amount of uniformity in the phenomenon: compression arises whenever

gestures overlap, regardless of the internal features of those gestures. In fact, this raises an

important question of segmentation and coarticulation. Because the nature of masking and of

coarticulation may vary between different linguistic sounds, the nature of what shortens may also

vary. Presumably, when one sound more or less completely masks another (like a stop

superimposed on a vowel), the audible duration of the masked sound should decrease. If the



masking relationship is only partial, producing an acoustic blend, than the portion of each sound

that is not acoustically affected by the other should shorten. This suggests that it would be useful

to examine compression effects on both the acoustic steady states of segments and the transitions

between them.

2.1.2.2 Auditory approaches

An entirely different approach to compression effects emerges from investigations of closed-

syllable vowel shortening (henceforth CSVS). In this phenomenon, which is widely attested

cross-linguistically, vowels in closed syllables are observed to be shorter than vowels in open

syllables. CSVS, then, is a specific sub-type of compression effect. The most frequent analysis of

this pattern, whether explicit or implicit, is that it involves conflict between duration targets for

smaller units such as segments and larger units such as moras, rimes, or syllables. The grammar,

in this view, attempts to keep segments sufficiently long to be perceptible. It is also desirable to

keep larger units sufficiently short to foster rapid and efficient communication, and to create at

least a tendency toward evenly-spaced (or isochronous) sequences of these larger units. Long

segments are good because they increase perceptibility, shorter syllables and greater overlap are

good because they allow more contrasting units of information to be expressed over any given

unit of time, and more isochronous syllables are good because they facilitate perception by

inducing strong temporal expectations (Quen6 & Port 2005).

Analyses of CSVS often make reference to the idea that vowel compression is due to higher-

level duration constraints, on a syllable or rime. Maddieson (1985), after arguing that closed-



syllable vowel shortening is widespread enough to be considered a near-universal, suggests that

the phenomenon may itself be an argument for treating the syllable rime as a unit of timing. This

implicitly suggests that compression effects are due to higher-level duration targets conflicting

with lower-level ones. Myers (1987) invokes this trading approach in a phonological analysis of

English closed-syllable vowel shortening. Flemming (2001) is a more recent and more explicit

approach to closed-syllable vowel shortening in this vein. His model makes use of weighted

constraints to characterize competing pressures on segment and syllable durations.

The general idea behind this approach can be captured with the metaphor of fitting small objects

into a large container. As the number of small objects inside the container increases, the size of

the objects and the size of the container come into conflict. We must either compress the small

objects, or stretch the container, or both. This is illustrated below.

Segment Segment Segment Segment Segment

Syllable Syllable Mismatch

Figure 2.4. Conflicting duration targets. As the number of segments inside a syllable increase, a

mismatch arises between the target duration of the segments and the target duration of the

syllable. The conflict can be resolved by shortening the syllables, lengthening the syllable, or

both.



In this approach, the auditory duration of lower-level and higher-level linguistic units is directly

manipulated by the grammar. We use the syllable as the higher-level unit for this illustration and

in much of what follows, but duration targets could in principle be associated with any of a

number of larger units, such as the mora, rime, foot, or prosodic word.

The predictions of this general approach to compression are somewhat less constrained than the

articulatory models outlined above. There are several reasons for this. First, the domain of

compression depends upon which higher-level units have duration targets associated with them.

If it is only the rime, for instance, then we expect compression driven by coda consonants but not

onset consonants. If it is the syllable, on the other hand, we expect compression driven by all

consonants.

Many researchers have written about CSVS because it is hypothesized to be of particular

relevance to phonological phenomena involving vowel length contrasts. In many languages,

CSVS is a gradient or phonetic phenomenon: closed syllables contain more or less the same

vowels as open syllables, but shorter. In some languages, such as Egyptian Arabic (Broselow

1976) and Turkish (Clements & Keyser 1983), however, a contrast between long and short

vowels in open syllables is neutralized to the short vowel in closed syllables.

Because these researchers have been concerned mainly with coda-driven vowel alternations, they

tend not to consider the possibility of onset-driven CS. Correspondingly, we know of no attested

language where vowel-length neutralization is conditioned by the presence of an onset

consonant. If the explanation for vowel-length neutralization is truly to be found in compression



effects, then these theories should posit the rime (or possibly mora) as the higher-level duration

target. This, in turn, would predict no onset-driven compression effects, and no interaction of

onset consonants with vowel-length neutralization.

The second way in which the auditory approach might predict a greater variety of compression

patterns than the articulatory approach concerns the nature of the representations that are

involved in the phenomenon. If the grammar directly manipulates auditory duration, it may do so

in a number of ways. For instance, if the motivation behind segmental duration targets is to

maintain auditory perceptibility of those segments, then the grammar might introduce an

absolute minimum duration threshold, which would constrain compression effects. The Klatt

(1979) duration model proposes just such a parameter, although it is not explicitly concerned

with compression.

A related prediction of the auditory approach is that compression effects might interact with

other auditory properties of segments besides their duration. For instance, if sound a masks

sound y completely, but sound P masks y only partially, the grammar may be sensitive to this

distinction. Because duration targets in this approach are driven in part by auditory perceptibility,

and overlap with sound P decreases the perceptibility of y less than overlap with a does, we

might predict less compression of y adjacent to a than adjacent to P. Compare this to the

articulatory approach, where auditory duration is an emergent side-effect of gestural overlap and

is not part of phonetic representations. In that view, no actual shortening of segmental

representations is taking place; only increased overlap. As such, we would not expect

compression effects to be sensitive to the auditory properties of the segments involved.



The auditory approach, then, predicts that at least coda consonants will drive compression

effects. It could also be stated in a way that predicts onset-driven compression, but this would

create some problems for the phonological analysis of vowel-length neutralization. Furthermore,

this approach predicts that compression effects might vary depending on the auditory properties

of the segments involved.

2.1.3 Previous findings

We begin by introducing some terminology. Following Munhall et al. (1992), we refer to

compression effects that are driven by increasing the number of segments in a string as

compensatory shortening (henceforth CS). Because the current study examines compression in

several contexts, it will be useful to introduce some terminology to describe those contexts. First,

we distinguish between CS driven by the addition of segments to the onset of a syllable from CS

driven by coda segments: onset CS vs. coda CS. We can also distinguish between CS observed in

the comparison of syllables that contain one (consonantal) segment at the relevant periphery of

the syllable (onset or coda) to syllables that contain no segments at the relevant periphery:

simplex CS. For example, if we observe that the vowel is shorter in a CVC syllable than in a

comparable CV syllable, it would be classified as simplex coda CS. Another case would be CS

observed in the comparison of syllables that contain one (consonanal) segment at the periphery

to syllables that contain more than one: incremental CS. For example, if we observe that the

vowel is shorter in a CCVC syllable than a comparable CVC syllable, it would be classified as

incremental onset CS. Many of the comparisons in this study examine incremental CS for pairs

of items that involve the same consonant adjacent to a vowel, and differ in the presence or



absence of an additional consonant to the other side of the initial consonant. This includes pairs

such as /nod/-/snod/ and /don/-/donz/. In cases where CS does obtain between such pairs, we say

that the innermost consonant drives or induces incremental CS; this is something of a -

terminological shortcut or abbreviation. It reflects a hypothesis, to be made explicit later, that the

innermost consonant is especially relevant to compression effects.

Several previous studies have found CS in various contexts in several languages. There are a few

cases where different studies fail to agree. Here we summarize previous results that bear on the

current discussion and explore ways to improve the methodology and analysis of previous

studies. Fowler (1981) includes a brief review of literature on this subject before 1981.

Simplex coda CS, discussed here under the name closed-syllable vowel shortening, is widely

attested cross-linguistically. These investigations tend to be concerned with rime-driven

phenomena such as syllable weight (Broselow et al. 1997) and contour-tone licensing (Zhang

2004); as such they generally don't touch on any other type of compression effect. Maddieson

(1985) gives an extensive review of languages where the phenomenon has been attested; he

tentatively proposes that it is a universal tendency.

A number of studies find simplex and incremental CS in both onset and coda position. Lindblom

& Rapp (1973) show this for Swedish; they report that the coda effect is stronger. Fowler (1983)

reports this pattern for English. Clements & Hertz (1996) report that English displays simplex

CS for segments in what they call 'the extended nucleus' of a syllable, which includes voiced

transitions preceding and following the vowel, following glides, and following liquids. For



instance, they find that the steady-state vowel is much shorter in bait than wait, presumably

because the transition is so much longer in wait; similarly, the /a/ portion of tide is shorter than

that of Todd, because the nucleus is more 'crowded' with the diphthongal offglide present.

Munhall et al. (1992) find incremental coda CS for obstruent-obstruent clusters. The effects are

generally rather small (the largest is 36 ms but most comparisons are on the order of 3-10 ms)

and vary between subjects.

Although none of these studies examines differences in CS across consonant manners, there are a

few studies that report some relevant data in this regard.

Van Santen (1992) reports on a large corpus study of English. He finds differences in preceding

vowel duration depending on the following consonant; for instance, voicing and frication

correlate with longer preceding vowels; /r/ is preceded by extremely short vowels. He also finds

a small but significant incremental onset CS effect (about 10 ms) for obstruent-liquid clusters.

Results are not reported for obstruent-obstruent clusters, and not enough data was available to

assess obstruent-nasal clusters. The study finds significant simplex CS for onsets and codas, but

there is not enough data to distinguish between classes of consonant in this regard.

Waals (1999) examines the durational properties of various consonants and clusters in Dutch,

including some data that bear on the question of CS. She finds that, in onset position, consonants

in clusters are shortened relative to singleton counterparts. Compression disproportionately

affects higher-sonority segments relative to lower-sonority ones. In coda position, she finds

incremental vowel shortening between singleton and cluster codas for all segment types, and



possibly for two vs. three coda consonants. This effect is much larger for vowels preceding /r/

than those preceding other consonants. For long vowels, the effect is largest for those preceding

liquids, intermediate with /n/, and smallest with obstruents.

Katz (2008) finds simplex CS in both onset and coda position in English. The study finds

incremental CS for /1/ in both onset and coda position, but not for obstruents in either position.

There is an incremental CS effect for /n/ in onset position, but it varies between subjects and is

only marginally significant. Nasals in coda position were not examined.

One series of studies fails to find convincing evidence for compression effects in English.

Crystal & House (1982, 1988, 1990) report duration measurements from a study of 6 speakers

reading a short script. They find no strong evidence for compression effects in stressed syllables,

but some evidence in unstressed syllables. They report that the sonorant/obstruent distinction has

no effect on the duration of a preceding vowel.

Taken as a whole, the literature suggests that CS is present in some form in various contexts, but

many questions still remain, and some studies have failed to find any effect at all. There is some

evidence that CS may differ across manners of consonant. Only two of the studies described

above directly compare onset and coda CS; some of the studies test only simplex or only

incremental CS. Most of the studies make no attempt to compare different manners of consonant,

and the ones that do often don't cross these differences with syllable position or number of

consonants.



The current experiment was designed to test for CS across a range of consonants and contexts in

English. The study also attempts to avoid some of the methodological shortcomings of previous

studies. These shortcomings include a small subject pool, lack of appropriate (or any) statistical

analysis, failure to distinguish between types of vowel and consonant, elicitation of artificially

rhythmic speech using a single carrier phrase or a metronome, and a lack of clarity or precision

in characterizing segment boundaries. It is not the case that all of the studies described above

suffer from all of these problems, but each of those studies suffers from at least one of them.

The current study reports results from six speakers. While this is not a particularly large number,

it is more than any of the studies reported here except for Crystal & House (1982 et seq.), which

pooled counts across subjects. The current study involved a large number of measurements taken

by hand; as such, the time required to analyze materials grows hugely with each additional

subject. As we'll see, six speakers are enough to get significant and coherent results.

The data were analyzed with linear mixed effects regression models, which are described in the

next section. These models allow us to ask questions about fine-grained differences in duration

in a principled, quantitative way, and to assess the reliability of the answers we find.

The materials include three vowels and four 'series' of consonant, meaning that the same

consonant is elicited as a singleton and in a cluster. The four series target two liquids, a nasal,

and two obstruents (the obstruent series could not be completely identical across onset and coda

position). The statistical analysis starts with the assumption that each consonant series (and each

vowel) may have a different CS pattern and proceeds by eliminating model parameters to



generalize across segments. In this way, we avoid making unwarranted assumptions about which

segments are equivalent with respect to CS; prior literature offers some evidence that different

manners of consonant, at least, may differ in this regard.

The materials were elicited with a set of different carrier sentences, which were broken up by

prosodically, syntactically, and semantically diverse filler sentences. This results in speech that is

less rhythmically constrained than repeating one phrase over and over again. The drawback is

that the variance in the study is larger than in a more constrained task, which could obscure small

effects. Because there are already substantial findings about CS in repetitive and isochronous

speech, however, it is now desirable to see whether the findings extend to more naturalistic

speech. The next section also reports several methodological and statistical attempts to control

for speech rate and prosodic phrasing.

The problem of boundary criteria for segments is a more vexing one. It is clearly difficult to find

a set of objective criteria for drawing a boundary between vowels and liquids, for instance. The

same uncertainty also arises in cases that would seem to be relatively clear, such as vowel-

obstruent boundaries. For instance, it seems obvious that to draw the boundary between a vowel

and /s/ we would look for the dividing line between periodic voicing on one side and aperiodic

frication on the other. In reality, such a dividing line is often not present in running speech: high-

frequency noise creeps into periodic phonation and the one gradually subsides into the other (and

in the case where the vowel precedes the fricative, the transition often goes through a phase of

breathy or voiceless /h/-like noise in between the two segments). Because segments are

coarticulated, there is almost never in principle a clear point in the signal where one segment



ends and the next begins. Even in relatively clear-cut cases such as stop-vowel boundaries, the

signal changes from acoustic properties characteristic of one segment to those of another over a

non-negligible period of time.

The solution adopted here is in the spirit of the phone-and-transition model advocated by Hertz

(1991) though it differs in some details. In a sequence of two segments, the acoustic signal is

segmented into the steady state of the first segment, the transition between the two segments, and

the steady state of the second segment. Each boundary is selected using a particular acoustic

landmark or combination of landmarks. For instance, in a token of /la!, the transition begins

when F 1, which remains relatively steady internal to the /1/, begins to rise; the end of the

transition and the onset of the vowel steady state is marked when Fl stops rising in the vowel.

Even this model is an idealization; there is often no clear single point in the acoustic signal

where a formant or other acoustic entity goes from some slope to no slope. The experimenter

attempted to identify a small portion of the signal as containing the boundary; within that

portion, exact boundary selection was often guided by the Praat (Boersma & Weenink) formant

tracker. There is undoubtedly measurement error in the data; the hope is that it is essentially

random and should not unduly affect the duration of some segments more than others.

The main objective for the segmentation strategy is to delimit intervals that are comparable

across items that differ in the number of target consonants. Although the boundary between

transition and vowel proper in the /la/ case discussed above may not correspond to any

psychologically real boundary between two symbols, it at least gives us an acoustic landmark

that can be compared to the same landmark in tokens of /gla/ (as well as /al/, and /na/). If we find



that the interval of vowel with steady Fl in /gla/ is shorter than that in /la/, it entails that there is

incremental onset CS for /1/. On the other hand, this boundary won't be strictly comparable to the

one in /ra/, where the comparable boundary tracks F3 rather than F1. If we find that the intervals

delimited by such boundaries differ in duration, the most we can say is that the interval of vowel

with steady F3 in /ra/ is shorter than the interval of vowel with steady F 1 in /l/. Similarly, the

marked boundaries in /la/ are not strictly comparable to those in /li/, which track F2, or in /ph/,

which track aspiration.

Note that the term 'steady-state' is used here as a label for an interval marked in a particular way;

this does not imply that all spectral properties are static within the interval. For instance, the

'steady-state' of an /o/ may be segmented on the basis of F2 movement; within the marked

steady-state, there may be a fair bit of FI movement. What 'steady-state' really means is, in this

case, something like 'the interval beginning/ending at a local F2 plateau and extending to the

fixed /d/ on the other side of the vowel'.

This method results in boundaries that may not correspond to what we intuitively think of as

'the' boundary between two segments. For instance, in the /lI/ token, an approach that tries to

mark the true boundary between /1/ and /a/ would likely place it somewhere inside the segment

marked as a transition in the current study. As such, some of the vowel and consonant durations

reported here may differ from previous studies or from accepted facts about English vowel

duration (e.g. the period marked as vowel proper is far shorter before liquids than before



voiceless obstruents). One of the points this study should reiterate and drive home is that the

notion of a boundary between segments is not particularly well-founded. The ways in which

segments overlap are an important part of duration patterning, and need to be measured and

analyzed in any work that purports to describe these patterns.

Besides an explicit, objective, and replicable set of boundary criteria, the segmentation method

used here offers several analytical advantages. Previous studies on CS have generally marked off

boundaries, equated them with segments, and shown that some segment shortens from one item

to another (Clements & Hertz 1996 and the articulatory data from Munhall et al. 1992 are

exceptions). The current study will allow us to see in greater detail exactly what shortens in CS;

no theory of temporal coordination is complete until it has addressed this issue.

2.2 Methods

2.2.1 Materials

The 'target' materials consisted of every phonotactically legal combination of the vowels {i, a,

o} with: the consonants{r, 1, n, 0} in onset and coda position; /p/ in onset position; /s/ in coda

position; the clusters {br, gl, sn, sp} in onset position; and the clusters {rb, lb, nz, sp} in coda

position. Each item contained a 'fixed' consonant /d/ at the opposite edge of the syllable/word

from the one being manipulated. The number of logically possible combinations is 54. Three of

these (/di/, /dir/, and /dirb/) are phonotactically illegal in English. /dosp/ is arguably ill-formed as

well, because there are no English words with a tense vowel followed by a cluster of obstruents



where one is non-coronal: toast and cusp are OK, but *toasp may not be. Because this case is not

as clear-cut as the obviously ill-formed words mentioned above, it was included. This left a total

of 51 target syllables/words. Of these, 24 correspond to existing English words (if the slang word

diss/dis is counted); the remaining 27 are nonce-words.

IPA Orth.

ad od

lad lod

glad glod

da dah

dal dall

dalb dalb

rad rodd

brad brod

dar dar

darb darb

id idd

lid lidd

glid glid
dil dil
dilb dilb

rid ridd
brid brid

Table 2.1. Phonetic

experiment.

IPA Orth.

od oad

lod lode

glod gload

do doh

dol dole

dolb dolb

rod rode

brod brode

dor dore

dorb dorb

nad nodd

nid nid

nod noad

snad snod

snid snid

snod snoad

dan don
and orthographic

IPA Orth.

din dinn

don doan

danz donz

dinz dinz

donz doanze

pad podd

pid pid

pod poad

spad spod

spid spid

spod spoad

das doss

dis diss
dos doase

dasp dosp

disp disp
dosp doasp

representations of the 51 target words elicited in the

These items were chosen to include a variety of consonant manners, to compare singletons and

clusters, and to compare onsets and codas. It was impossible to satisfy all of these goals

perfectly. English only realizes voiceless singleton stop onsets in stressed syllables as aspirated,

but their counterparts in /sp/ clusters are unaspirated. As such, this is not a minimal pair (because



the members differ in both aspiration and the presence of /s/). The only possible cluster in onset

position with /n/ as the second consonant is /sn/; in coda position, however, we tested /nz/ instead

of /ns/. This is because voiceless obstruents induce radical shortening of a preceding vowel

(Peterson & Lehiste 1960). Any vowel shortening we uncovered in an /ns/ sequence couldn't be

attributed with certainty to CS; it might also be a property of the voicing contrast.

Wherever possible, items were assigned orthographic respresentations that do not correspond to

English words. The only exceptions are rode, lode, don, and possibly diss (meaning 'disrespect')

and doh (an exclamation of dismay associated with Homer Simpson). Some of the words

unavoidably were assigned unusual or ambiguous orthographic representations. The

pronunciation of nine such words was demonstrated to subjects at the beginning of the

experiment.

In addition to the target items, 39 filler words were included in the reading session. These were

also monosyllables, with different consonants and vowels than the target items, including some

consonant clusters. Freave, skay, andjeg are examples of filler words used in the experiment.

The experiment included 17 target carrier sentences and 13 filler carrier sentences. The target

carrier sentences were strictly controlled for prosodic factors. Each sentence was nine syllables

long, of the form [[X] [Y the Z W]], where: X is a trochaic first name; Y is a past tense

monosyllabic verb; Z is the target item; and W is a four-syllable modifier, beginning with a

preposition and containing one noun (with one exception, mentioned later). Thomas bought the



dore at a yard sale and Dustin got the snid off ofE-bay are examples of target sentences used in

the study.

The expectation was that, given their identical syllable count and syntactic structure, the target

sentences would elicit comparable prosodic structures across utterances. The target word itself is

determiner- or noun-phrase-final but not utterance-final in these sentences, and is expected to be

produced with a pitch accent.

Because the target sentences are so similar rhythmically, filler sentences were formulated to

disrupt the sense of repetition, which could result in effects of isochrony or parallelism not

characteristic of natural speech. The filler sentences vary in their length, syntactic structure, and

illocutionary force. They include questions, statements of opinion, and direct and indirect

commands. The yeam is poisonous, right? and This jutch wouldn't be a bad thing to buy are

examples of filler sentences used in the study.

There were 90 total experimental items (target and filler) to pair with 30 carrier sentences; each

experimental block of 30 trials included one third of the experimental items and each carrier

sentence. Pairings of experimental item and carrier sentence were randomized, as was the order

of trials inside each block of 30. The randomized sentences were presented to subjects on a

computer screen. They were asked to 'read each sentence in as natural a manner as possible'

before pressing a button to move to the next sentence. They were given the opportunity to take

breaks after each block of 90. There were 4 repetitions of each experimental item (paired with a



randomly selected carrier sentence each time) for a total of 360 utterances. The experiment ran

between 30 and 45 minutes for all subjects.

2.2.2 Subjects

Subjects were 6 native speakers of American English, 4 female, 2 male, all between 21 and 31

years old. None reported being diagnosed with any speech, reading, or hearing disorders. Three

were from Massachusetts; the other three from New York, North Carolina, and Minnesota.

Subjects were debriefed after their recording sessions; none reported knowing what the

experiment was 'about'.

2.2.3 Recording

Subjects were recorded in a sound-attenuated booth inside the MIT phonetics laboratory. They

were outfitted with a head-mounted condenser microphone, placed at an oblique angle to the lips.

They read the experimental sentences off of a computer screen. The utterances were recorded in

mono at 44.1 kHz with the Amadeus software and saved to .aiff files.

2.2.4 Measurement

The recordings were cut into smaller files and annotated for duration by hand using the Praat

software (Boersma & Weenink). In the descriptions that follow, I make reference to 'acoustic

values' as a catch-all term for the variety of acoustic properties used in segmentation. Full details



of what these properties are and how they were used can be found in Appendix 2A. For all

words, the following regions were marked:

* Vowel proper: the portion of vowel from the innermost edge of the fixed consonant to the

first point where acoustic values begin to slope noticeably toward characteristic values

for the target consonant

- Fixed consonant: for onset /d/, the region extending from an abrupt drop in (or cessation

of) energy in the preceding schwa to the onset of periodic voicing in the vowel of the

target word; for coda /d/, the region extending from an abrupt drop in (or cessation of)

energy to just after the following release burst. In cases where the /d/ was realized as a

tap, the offset was marked after the abrupt drop in energy and formants around the tap.

All target words appeared in between two vowels: they were preceded by the vowel in the, most

often realized as a schwa; and followed by the initial vowel of a preposition, which varied across

carrier sentences. The terms C1 and C2 will be used to refer to the innermost and outermost

target consonant, respectively. So, for instance, /dolb/ has /1/ as Cl and /b/ as C2; /brod/ has /r/ as

Cl and /b/ as C2.

For words with target consonants (not VC or CV words), the following regions were also marked

where applicable:

e Transition: the region extending from the vowel proper to the steady-state portion of the

adjacent target consonant.



- Cl: the region extending from the onset or offset of the innermost (i.e., adjacent to the

vowel) target consonant to the first point where acoustic values begin to slope noticeably

toward characteristic values for the vowel.

e C2: The region extending from the onset or offset of C1 to the onset or offset of the

outermost (i.e., not adjacent to the vowel) consonant.

No attempt was made to place a boundary between the vowel proper and the transition to the

fixed consonant /d/; rather, the vowel proper measurement incorporates this transition (though

not the closure or release of /d/). Because all of the items have fixed /d/ in them, variation

between tokens with regard to this transition should affect all tokens equally, on average, and

should show up in the results only as random noise.
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Figure 2.5(a). Schematic illustration of duration measurements, using an idealized single

acoustic dimension that tracks all boundaries. In reality, the relevant acoustic dimension would

be different for different boundaries. The top illustration shows a CCVd word; the bottom a

dVCC word. (b). Actual implementation of segmentation strategy in a token of/glid/ (left) and

/dilb/ (right) from subject PC; spectrogram shows F2.
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The strength of the prosodic boundary following the target word varied somewhat, both between

and within speakers. Realizations ranged from no noticeable temporal discontinuity to a full

pause, sometimes including a schwa-like excrescence following the final consonant. Every

recorded token included what could be considered a pitch accent on the target word; the most

common realization would be labelled as a H* tone followed by a L- phrasal tone in the TOBI

model (Silverman et al. 1992). Because there were few or no instances of unaccented or

deaccented target words, no attempt was made to systematically transcribe the prosody of the

materials. One target sentence, which ended with the modifier all in one batch, was consistently

produced with a slightly different prosodic structure than the other sentences. This sentence

tended to have a pitch accent on all, whereas the other sentences contained in the corresponding

position an unaccented preposition. In addition, almost all tokens of this sentence included a

noticeable temporal discontinuity or pause between the target word and all. We return to this

irregularity in the results section.

2.2.5 Analysis

Separate models were constructed for each of three dependent variables: duration of the steady-

state vowel, duration of the CV/VC transition, and duration of steady-state C1. The data were

analyzed with linear mixed effects regression models.2 This type of model offers several

advantages over the repeated measures ANOVA models that are common in speech and

language research (Quen6 & van den Bergh 2004, Baayen et al. 2008).

2 The discussion of mixed-effects models draws heavily on Quen6 & van den Bergh 2004;
mathematical concepts that are only mentioned here are explained more fully in that paper.



A repeated measures model makes assumptions about the distribution of data points; it assumes

that variance is comparable between conditions (homogeneity of variance) and that, roughly

speaking, co-variance between each pair of conditions is comparable to every other pair

(sphericity). Mixed effects models don't rely on either assumption, as the variance-covariance

matrix is modeled directly from the data, rather than being taken as a given.

A repeated measures model can't accomodate missing data points. Essentially, if we fail to

obtain any one observation from a subject, we must discard all of that subject's data or find a

way to impute those data. Mixed effects models are robust to missing data points.

A repeated measures model can only accommodate one random effect at a time. In the case of

nested or crossed random variables, there are two possibilities: the experiment must be counter-

balanced; or the analysis must incorporate a separate model for each random variable, with an

approximate criterion for determining statistical significance based on test statistics from each of

the models (Raaijmakers et al. 1999). Mixed effects models can in principle incorporate many

random effects at once.

Finally, mixed effects models appear to be more powerful than comparable repeated measures

models. This means that they are better suited to detecting and quantifying meaningful trends in

a data set. This is probably the most important difference between the two types of model.

The models reported here are the end product of a hierarchical backward elimination procedure.

The process begins with a baseline model that includes a separate parameter for each item in the

experiment. Such a model corresponds to a theory of temporal coordination where each lexical



item (or perhaps each bigram) is stored in memory with its own idiosyncratic timing pattern, and

there are not necessarily any useful generalizations to be made about similarities in timing

between words with similar segments. This is an extremely weak hypothesis, in the sense that it

makes fewer predictions than a theory which includes equivalence classes (segments, features,

cues) internal to lexical items. Successively stronger theories are then tested by removing

parameters or blocks of parameters from the model. This corresponds to modifying our

hypothesis to include ever more general equivalence classes. Checking how much these

removals decrease the fit of the model to the data will tell us how much empirical coverage we

lose by strengthening the hypothesis.

This hierarchical process was adopted to allow examination of many possible influences on CS

without wildly inflating the number of ad hoc parameters in the model and overfitting the data.

As summarized in section 1, a lot remains to be learned about where CS occurs and how it

differs according to context. Fortunately, we have a theory of linguistic units to guide our

research that includes at least vowels, consonants, manner features, and linear order. Hierarchical

modeling allows us to ask about contrasts that are based on linguistic units, rather than

haphazardly searching for predictors that improve model fit. This avoids many of the pitfalls

associated with those stepwise or sequential regression procedures where predictors are selected

post hoc on the sole basis of their quantitative properties.

The baseline model includes random effects of subject identity and carrier sentence. These are

variables whose levels are sampled from the larger population at random, without covering every

possible level in those populations (e.g. the 17 target sentences used in this experiment are just a



tiny fraction of all English sentences sharing a particular set of syntactic and prosodic

properties).

The model includedfixed effects of two kinds: level-defining effects that were manipulated to

create the different experimental conditions; and normalizing effects that attempt to control for

differences in speech rate, prosodic structure, allophony, and any other phenomena that might

differ between utterances. Note that this distinction into two types of fixed effect is purely for

expository purposes; the variables are treated exactly the same by the model.

The normalizing effects pertain to several different aspects of the materials. Lexical status

({word, non-word}) and frequency (natural logarithm of values from the CELEX database) 3

pertain to the familiarity of each item. Trial (how far along in the experiment the item was

uttered) pertains to possible changes in speech rate, familiarity, and concentration as the

experiment progresses. For items in the onset condition, the allophonic status of word-final fixed

/d/ ({flapped, non-flapped}) pertains to speech rate and prosodic phrasing,4 as does the duration

of the fixed consonant in both onset and coda positions. Two variables corresponding to

allophonic properties of VC words will be discussed in section 2.3.

3 Two English words included in this study, rid and diss, have no listing in CELEX. They were
assigned the mean log frequency of the other existing English words in the experiment. This
solution was adopted because we don't believe that these words are vanishingly rare. We suspect
that the omission of rid is some type of an editing or compilation error, and that dis/diss is either
too recent a coinage or too rare in written language to appear in CELEX.
4 Note that this variable was coded 0 if there was a visible or audible burst in the realization of
/d/, 1 otherwise; this may not correspond exactly to intuitions about what is and is not a flap, but
it is at least a concrete and replicable criterion.



The level-defining effects are vowel ({i, a, o}), C1 quality ({rhotic, lateral, nasal, obstruent}),

syllabic position of the target consonant(s) ({onset, coda}), and number of target consonants ({O,

1, 2}). The baseline model, then, would be one that includes all 4-way interactions between these

variables (with the exception of the impossible items mentioned above). Removing higher-order

interactions from the model generalizes across classes of item, creating a stronger hypothesis.

The statistical significance of the higher-order interactions amounts to a metric of how much

we've damaged the empirical coverage of our hypothesis by making it more general.

At each step, the significance of the fixed effects was assessed using Markov chain Monte Carlo

(MCMC) sampling. Roughly speaking, this procedure generates hypothetical sets of parameters

over and over again, then compares these parameters to the actual ones the model has fitted to

the data, in order to assess the probability of obtaining such extreme parameters by chance.

Baayen et al. (2008) give a more detailed description of this procedure.

Non-significant fixed effects were removed level by level if they included a term for number of

target consonants. These are the parameters that test whether CS is present, and whether it varies

from one context to another. All fixed effects were retained if they did not include a number-of-

consonants term. Because 1 consonant (CVC) was used as the reference level, these parameters

define baselines (generally durations in a CVC syllable) for each condition, against which the CS

parameters of the model are tested. Hence, even if they are non-significant, retaining them can

only increase the accuracy of the estimated CS effects. After each elimination step, MCMC

simulation was repeated for the reduced model.



The significance of random effects is calculated differently in a mixed-effects model. To check

for subject interactions with a fixed effect, for example, we must include a by-subject random

slope for the fixed effect of interest. We then check how much this parameter improves the

model fit by comparing the performance of the reduced and expanded model using a chi-squared

test of the likelihood ratio. After the fixed effects in the model had been reduced by the

procedure described above, by-subject random slopes were tested. All significant fixed main

effects were examined; if the by-subject slope for two main effects both resulted in significant

improvement of the model, the by-subject slope of their interaction was also tested.

In some cases, including subject interactions changed the estimated values of fixed effects. As

there is currently no way of running an MCMC simulation on a model that includes by-subject

random slopes, the significance of these changes could not be assessed with certainty. There is,

however, an approximate way of gauging whether effects are likely to be significant without

running an MCMC simulation.5 This is to check the value of the t statistic for each parameter. In

an experiment with few observations and few degrees of freedom, this statistic is anti-

conservative (it inflates the probability of Type I error, rejecting a true null hypothesis). At

relatively great degrees of freedom, however, the t-statistic converges on the standard normal

distribution. As such, we can roughly gauge whether an effect is significant at the a = 0.05 level

by checking whether the absolute value of the t-statistic is greater than 2. There is currently no

generally agreed-upon method for determining the degrees of freedom for a mixed effects model.

The upper bound of estimated degrees of freedom for the current experiment (equal to the

number of observations minus the number of fixed effect parameters) is greater than 1,100. None

5 This argument is from Baayen et al. (2008).



of the changes after random slopes were added resulted in any fixed parameter moving from a t-

value greater than 2 to one less than 2, or vice versa, so we can tentatively conclude that the

addition of subject effects doesn't qualitatively change the nature of the results.

In what follows, all fixed effects will be reported with an effect size and p-value from MCMC

sampling. All random effects will be reported with an effect size, chi-squared statistic, and p-

value from a test of likelihood ratios. In cases where MCMC sampling is not available, fixed

effects will be reported with an effect size and t statistic.

Before statistical analysis, the data were centered around 0 and normalized using a z

transformation for each subject. This transformation characterizes data points by how many

standard deviations they lie above (positive values) or below (negative values) the mean. Effect

sizes, then, are in standard deviations; in the text, they are translated back into a range of ms

values for ease of comprehension. These ms values represent the range obtained by multiplying

the z-transformed effect size by the smallest and largest subject standard deviations.

2.3 Results

2.3.1 Simplex CS

2.3.1.1 VC syllables

The VC syllables in the experiment were realized with substantial variation pertaining to the

presence and nature of a glottal constriction at the beginning of the item. Some tokens included a

realization of the as /6i/, with a modally-voiced transition between /i/ and the target vowel; other



tokens included full glottal closure following a schwa in the, with near-immediate modal voicing

of the target vowel upon release. The majority of tokens fell on a continuum between these two

endpoints. For instance, some tokens included a creaky-voiced transition between the two

vowels. In some cases, this was preceded or punctuated by fairly long closures; in some cases

glottal pulses were irregular but more or less continuous. Illustrative examples of various

realizations are shown in figure 2.6.



a) b)

the" gde // "the" ggi/

c) d)

the cbos gigi /a/ "the" pulsing glot /a/

e) f)

the" gg 2 /a / "ie closure /a/

Figure 2.6. Utterances oJthe odd illustrating variability in the VC condition. a) modally-voiced

transition. b) creaky-voiced transition. c) closure followed by creaky onset. d) intermittent glottal

pulsing followed by creaky onset. e) creaky transition and creaky steady state followed by modal

voicing. f) full glottal stop.

This variability raises the question of what should 'count' as vowel duration in these items, both

psychologically and for analytical purposes. Investigating various metrics of duration is desirable



both for what it reveals about the temporal organization of these materials and for discovering

the most consistent and principled metric to use in comparisons with other materials. Three

different metrics were investigated:

- ml: only the portion of the vowel with modal voicing and steady formants

e m2: the portion of the vowel with steady formants, regardless of glottalization

e m3: the entire portion of the vowel with visible formant structure

The third metric produced more consistent results than the other two. As a preliminary, the

standard deviation was computed for each metric within each vowel; m3 produced the smallest

values, indicating less variability. This is despite the fact that the absolute numbers for m3 are

the largest of the three metrics.

a i o
m1 58.2 45.1 39.2
m2 57.4 42.5 43.9
m3 34.3 36.4 31.2

Table 2.2. Standard deviations, in ms, for each metric and each vowel.

As a purely practical matter, m3 was adopted as the measure for VC items in all further statistical

modeling. The smaller variability under this metric will make it easier to compare these items to

others in the experiment. The nature of the relationship between duration and onset quality in

these items is also of theoretical interest, however. Comparison just within this class of item

reveals something about the nature of CS.

To examine patterns in greater detail, VC materials were split into five classifications of onset

quality, corresponding to the tokens in figure 2.6 (a-c, e-f); the realization shown in 2.6 (d) was



not observed often enough to conclude anything about it. The classes will be referred to as glide

(2.2a), creaky transition (2.2b), creaky steady state (2.2c), 2-part creak (2.2e), and stop (2.2f).

Figure 2.7 shows the average duration of each part of the VC syllables, separated into classes.

Duration by Onset Realization

0.30 .- - - - - -

0.20
Z Closure

.15 Transl
2 0.15 ETrans2

Modal V
0.10

0,05

4S4
0.00

Type of onset

Figure 2.7. Duration, portion-by-portion, of VC syllables, separated into onset classes. 'Trans2'

refers to creaky steady state; 'Trans]' refers to a transition with moving formants.

The most obvious pattern in figure 2.7 is that modal, steady-state vowel duration is longer in the

classes where it is not preceded by formant transitions (or, alternatively, in the classes where it is

preceded by closure). This suggests that the transitions 'count' at least partially as vowel

duration in whatever sense is relevant to a speaker's temporal coordination. Correspondingly, the

metric which includes these transitions, m3, results in a more uniform characterization of vowel

duration in VC syllables than the other 2 metrics. This is shown in figure 2.8.



Comparative Duration by Metric
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Figure 2.8. Vowel duration across onset class and metric.
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Note that, even on metric m3, duration is not perfectly uniform across classes. This metric

characterizes the creaky transition realizations as having somewhat longer vowels than the

others, and the glide realizations as having somewhat shorter vowels than the others. One

hypothesis would be that transitions don't count entirely as a part of the vowel, but that different

types of transitions count in different proportions. This property will figure prominently in the

analysis of other phenomena in the experiment. Metric m3 was used for the statistical model

reported here, with separate variables corresponding to the presence of creaky transition and

glide realizations.

2.3.1.2 Comparison to CVC syllables

For all comparisons that were tested, vowels in CV and VC words were significantly longer than

vowels in CVC words. This is shown for all CV, VC, and CVC words below.



Vd pVd nVd LVd dV dVs dVn dVL

Figure 2.9. Portion-by portion duration, in seconds, for CV, VC, and CVC syllables, separated

by syllabic position of target consonants. The bottom bar represents steady-state vowel duration;

the middle bar the CV or VC transition; and the top bar steady-state consonant (closure in the

case of glottal stop).

The effects ranged in size from 0.56 standard deviations (25-35 ms) for /od/ vs. /pod/ to 2.79 sds

(122-175 ms) for /da/ vs. /dar/. MCMC sampling revealed that all of the tested effects were

significant below the p = 0.000 1 level.

Some complications arise in comparing the size of the simplex CS effect in various contexts. The

source of the problems is the fact that the acoustic landmarks used as duration criteria for any

given CVC item differ from other CVC items and differ from CV/VC items. For instance, we

can ask whether simplex CS differs across vowels by comparing the [id]-[hd], [ad]-[lad], and

[od]-[lod] pairs; the answer is that the /o/ items show significantly less shortening than the other

two vowels. But this could be due to several factors. In the VC items, boundary marks track the

onset of voicing; in [lid], they track F2 maxima; in [lad], they track F1 maxima; and in [lod],



they track F2 minima. Furthermore, the steady-state formant values of // are closer to those of

/o/ than they are to the other two vowels. So any differences in steady-state duration among the

pairs mentioned above may be due to differences in the relative timing of one acoustic landmark

in the VC stimuli to several different landmarks in the CVC stimuli. If we could use the same

landmark in all stimuli, or at least the same two landmarks in each pair (as in the [lVd]-[glVd]

comparisons), we could be more certain that differences in measurement reflect actual

differences in temporal coordination.

The solution adopted here is to compare CV/VC words to CVC words with /r/ as the target

consonant. Boundary marks between /r/ and vowels track F3 movement in all relevant items, so

landmarks are somewhat comparable across word-pairs; vowels still presumably differ in how

close their F3 values are to /r/. By this test, the simplex CS effect was not significantly different

across vowels, nor across onset and coda position. There was one significant 3-way interaction

term: the effect was much larger in coda than in onset position for the vowel /a/, relative to the

vowel /o/ (46-65 ms greater difference between onset and coda for /o/; p < 0.0001).

The magnitude of the simplex CS effect differed between subjects (although the direction of the

effect did not), and adding that variation to the model resulted in a significantly better fit: x2

26.3 on 2 Df; p < 0.0001. The size of the effect differed for various subjects by up to 34 ms from

the mean effect, but all subjects showed the same qualitative pattern of simplex CS.

Subjects also differed significantly with regard to the relative size of the simplex CS effect in

onset and coda position (x2 = 25.9 on 4 Df, p < 0.0001). There was no significant main effect,



but the addition of by-subject random slopes reveals that three subjects had much greater

shortening from VC to CVC items, two subjects had greater shortening from CV to CVC items,

and one subject had essentially no difference between onset and coda (about 4% of a standard

deviation). If there are differences in simplex CS depending on context, they vary in their

direction and presence from subject to subject, unlike the main effect.

2.3.2 Incremental CS

Patterns of incremental CS differ by consonant quality, and they differ between onset and coda

for some consonants. This is shown in the boxplot below, which compares CVC words to

comparable CCVC or CVCC words.
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Figure 2.10. Average steady-state vowel duration across subjects and vowels, in standard

deviations from the mean. Each plot represents one manner of consonant in onset or coda

position; the left bar in each plot represents duration in the singleton item, the right bar duration

in the cluster item. 'Lat' = lateral, 'Nas' = nasal, 'Obs' = obstruent, 'Rho' = rhotic, 'on' =

onset, 'co' = coda. For instance, the left and right bars inside the box labeled 'co' and 'Rho'

show mean durations for /Vr/ and /Vrb/ items, respectively. Inside each plot, the boxes indicate

the inter-quartile range (IQR), the range between the first and third quartile. The solid dot

indicates the median. The whiskers indicate the range, up to 1.5 times the IQR away from the

median. Open dots outside the whiskers lie more than 1.5 times the IQR away from the median

and are potential outliers.

Note that none of the interactions between incremental CS and vowel quality came out

significant. This means that, broadly speaking, patterns of CS do not differ between vowels.
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Including by-subject random slopes for incremental CS did not significantly improve the model:

for all variables representing incremental CS effects, X2 statistics ranged from 2 to 9 on 7 Df; p >

0.3. This means that subjects did not differ with regard to incremental CS.

2.3.2.1 Liquids

Laterals and rhotics show significant incremental CS in onset position (liquids: 11-15 ms;

rhotics: 16-22 ms; p < 0.01 for both). Both show even more incremental CS in coda position (9-

13 ms more for laterals, 2-3 ms more for rhotics), but not significantly so. However, when the

distinction between incremental CS with laterals and rhotics is collapsed, creating the single

class 'liquids' (the difference between the two is not significant), the onset-coda asymmetry is

significant: there is, on average, 8-11 ms more incremental CS in coda position; p <0.05.

[ LVd OLVd dVL dVLb I
Figure 2.11. Full duration results, in seconds, for laterals and rhotics. The bottom bar

represents steady-state vowel duration; the second bar the CV or VC transition; the third bar

steady-state C]; and the top bar steady-state C2.



2.3.2.2 Nasals

Nasals show incremental CS in onset position. It is not significantly different from the amount of

CS observed for laterals in onset position (1-2 ms difference between nasals and laterals). There

is a small incremental CS effect for nasals in coda position (3-5 ms), which is not significant.

Figure 2.12. Full duration results, in seconds, for nasals. The bottom bar represents steady-state

vowel duration; the second bar the CV or VC transition; the third bar steady-state C]; and the

top bar steady-state C2.

2.3.2.3 Obstruents

/p/ in /spVd/ is followed by a shorter steady-state vowel than /ph/in /phVd/. The effect is

significantly larger than the onset effect for /1/ (14-20 ms larger than /1/; p = 0.0046). The effect

is actually reversed in coda position, leading to a significant interaction between number of

consonants, obstruent manner, and syllable position (29-42 ms difference between /s/ in coda



position and /p/ in onset, p < 0.0001). The coda anti-CS effect, 4-5 ms in magnitude, is not

significant.

pVd spVd dVs dVsp

Figure 2.13. Full duration results, in seconds, for obstruents. The bottom bar represents steady-

state vowel duration; the second bar the CV or VC transition; the third bar steady-state C]; and

the top bar steady-state C2.

2.3.3 Other effects and discussion

Several other effects besides those related to the experimental hypotheses were present in the

data. Words ending in /d/ had vowels that were significantly shorter when the /d/ was flapped

than when it wasn't flapped (8-11 ms, p < 0.0001). This is presumably an effect of increased

speech rate or smaller prosodic junctures, both of which could lead to shorter vowels and make

flapping more likely.

Those vowels in vowel-initial words that were preceded by creaky transitions were significantly

longer than those that were not (29-41 ms, p < 0.0001). This reflects the issues with metric m3

discussed in section 2.3.1. The results may suggest that only part of the preceding formant



transitions 'count' as vowel when compared to a word with initial glottal closure. Alternatively,

they may indicate that this realization is more likely at slower speech rates than at faster ones.

There was a significant acclimation effect over the course of the experiment: vowels got shorter

by about 0.03-0.04 ms in every successive item in the experiment, on average (p < 0.0001). This

would average out to a shortening of about 3-4 ins. between successive utterances of a single

item. Subjects differed in the presence/absence and magnitude of this effect: three subjects had

reasonably large acclimation effects; two subjects showed effects of less than 0.02 ms/item; and

one subject had a small effect in the opposite direction, which could be characterized as fatigue.

Including this variation in the model significantly improved the fit: X2 = 30.2 on 6 Df; p <

0.0001.

Although nearly all of the experimental items were presented as 'nonce-words', with

orthography and meanings that don't correspond to existing English words, some of them are

homophonous with existing English words. Neither the existence of a homophonous word nor

frequency differences between existing homophones had a significant effect on steady-state

vowel duration. Examination of the model shows that, while estimates of these effects were

fairly large (up to 11 ms of lengthening for words with low-frequency homophones vs. no

homophones and high-frequency homophones), the standard error was even larger.

As noted in section 2.2, the carrier sentence Michael baked the ___ all in one batch appeared to

elicit a larger prosodic juncture adjacent to the target word than the other carrier sentences.

Consistent with this observation, the random intercept assigned to this carrier sentence had a



higher positive value (indicating longer vowels) than all other sentences. However, the effects

associated with carrier sentence were very small overall, and the estimate for this particular

intercept is at most 1-2 ms of lengthening. It is possible that the normalizing fixed effects

discussed above accounted for a good deal of the prosodic variation associated with differences

in carrier sentence, leaving less variation for the random intercepts to account for.

2.3.4 Transition effects

A separate model investigated how the duration of the transition between vowel and adjacent

consonant changes depending on syllable structure and consonant manner. /phVd/ and /spVd/

words were excluded from this model, because their transitions (aspiration and formant

transitions, respectively) are not comparable to one another.
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Figure 2.14. Average transition duration across subjects, in standard deviations from the mean.

Each plot represents one manner of consonant in onset or coda position; the left bar in each plot

represents duration in the singleton item, the right bar duration in the cluster item.

Transitions in CVCC words are shorter than their counterparts in CVC words by less than 2 ms

on average. This effect is not significant. The (lack of a) shortening effect does not interact

significantly with syllable position or vowel quality. There is one significant interaction

involving consonant quality and shortening: the transitions between /s/ and the adjacent vowel

show significantly more shortening from /dVs/ to /dVsp/ words than the other consonant

manners show (7-11 ms. more shortening, p = 0.0027).

Subjects do not differ significantly for any transition effects.



Transitions have a tendency to be longer in coda position than in onset position. This effect

differs by vowel, however, and is not observed for /a/.

7- 7

CO on CO On cW on

la/ vowe V1 vowel / I0/ Vowel

Figure 2.15. Average transition duration across subjects and items, in standard deviations from

the mean. Each plot represents one vowel; the left bar in each plot represents duration in coda,

the right bar duration in onset.

The onset/coda asymmetry is significant for /o/: 8-13 ms difference, p = 0.002. It is even larger

for h/: 16-26 ms larger difference, p < 0.0001. The difference is reversed for /a/: transitions are

somewhat longer in onset position, but not significantly so.

Of the other effects examined, only acclimation was significant: transitions got shorter by 0.01-

0.02 ms in every successive item in the experiment, on average (p = 0.0151). This would average

out to a shortening of about 1-2 ins. between successive utterances of a single item.



2.3.6 Consonant effects

A third model investigated how the duration of the adjacent consonant changes depending on

syllable structure and consonant manner. The general pattern is that there is clear shortening for

all manners in onset position, while all of the manners except obstruents show a reversal to an

anti-CS pattern in coda position. However, there are reasons to believe that the anti-CS effect

may be an artifact of the segmentation strategy used; this issue is taken up in section 2.4.
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Figure 2.16. Average C] duration across subjects, in standard deviations from the mean. Each

plot represents one manner of consonant in onset or coda position; the left bar in each plot

represents duration in the singleton item, the right bar duration in the cluster item.
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2.3.6.1 Obstruents

The closure portion of /p/ is significantly shorter in /spVd/ words than in /phVd/ words (12-18

ms, p < 0.0001). The shortening effect is even larger in coda position (3-4 ms more shortening),

but not significantly so. This pertains to the /s/ in /dVs/ and /dVsp/.

Subjects differ with regard to the onset/coda asymmetry, and assigning by-subject random slopes

for this variable significantly improves the model fit: x2 = 9.5 on 3 Df; p = 0.024. Recall that the

fixed effect is non-significant; further examination shows that three subjects shorten more in

coda than onset position, while the other three subjects shorten more in onset than coda position.

2.3.6.2 Liquids and nasals

/1/, /n/, and /r/ all show more shortening from CVC to CCVC than /p/, which already shows

significant shortening. The difference between /p/ and /1/ is only marginally significant (6-9 ms

more shortening of /1/, p = 0.0825). The comparisons of /n/ and /r/ to /p/ are significant: 16-37 ms

more shortening of /r/ and /n/, p < 0.0001 for both comparisons).

/1/, /n/, and /r/ all show a reversal of the shortening effect in coda position, leading to significant

3-way interactions: p <0.0001 for all comparisons. In coda, /1/ shows the least lengthening, 1-3

Ins, and the effect is not significant. Rhotics show significantly more lengthening than /1/ (10-15

ms more lengthening for /r/, p = 0.0219). /n/ also shows significantly more lengthening than /1/

(26-40 ms more lengthening for /n/, p < 0.000 1).



Subjects differ with regard to the magnitude of the reversal from onset to coda position for /1/.

Assigning a by-subject random slope for this variable significantly improves the model fit: X2

20.1 on 5 Df; p = 0.00 12. Further examination reveals that all subjects except one had a reversal

from CS in onset to lengthening in coda. The lone exception, subject ME, shows substantially

less shortening in coda but no actual reversal. This is shown below, with /1/ duration separated by

subject and syllable position.

Figure 2.17. Average /l/ duration across vowels, in standard deviations from the mean. Each

plot represents onset or coda position for one subject; the left bar in each plot represents

duration in the singleton item, the right bar duration in the cluster item.



Onset/coda asymmetries

Across liquids and nasals, steady-state consonant duration tended to be shorter in coda than onset

position. Obstruents were not included in this comparison because different obstruents were

tested in the two positions.

C-8

CO on CO on CO on

ia/ VoWelA Vowel 40 Vowel

Figure 2.18. Average C1 duration across subjects, in standard deviations from the mean. Each

plot represents one vowel; the left bar in each plot represents duration in coda, the right bar

duration in onset.

The effect is significant for nasals and laterals: 28-42 ms difference; p < 0.0001. It is even larger

for rhotics: 10-15 ms larger difference; p = 0.006. The effect is significantly smaller for h/i than

the other vowels: 13-20 ms smaller difference; p = 0.004. The lone exception to this vowel

asymmetry is the lateral series, where the effect is somewhat larger for //, leading to a

significant 3-way interaction: 5-8 ms opposite effect; p = 0.001 for interaction.

2.3.6.3



Other effects and discussion

There is significant interaction of syllable structure with vowel quality, specifically for /a/.

Incremental effects across the board tend more towards shortening with /a/ than with other

vowels. This means that CS is greater with /a/, and anti-CS lengthening is smaller (6-9 ms, p =

0.0007). It's possible this has to do with the measurement criteria used for /a/ as opposed to other

vowels. The offset of the transition, and the onset of the steady-state consonant, was generally

judged by an F 1 minimum next to /a/; F2 played a larger role next to /o/ and h/i. If there is an

asymmetry in incremental CS between F1 trajectories and F2 trajectories, it may help explain

this effect. The only other explanation that comes to mind is that this effect may be due to the

relatively long inherent duration of /a/; if this were the case, however, we would expect

compression asymmetries in more than just this one domain.

Of the other effects examined, only acclimation was significant: consonants got shorter by 0.02-

0.04 ms in every successive item in the experiment, on average (p < 0.0001). This would average

out to a shortening of about 2-4 ms. between successive utterances of a single item.

2.3.7 Summary of results

The preceding sections have enumerated a long list of results. In this section, we collect and

summarize those results. We further distinguish between results that seem to reflect general

2.3.6.4



compression effects and effects that can be explained by artifacts of the segmentation strategy or

the particular materials elicited in the experiment.

All consonants drive simplex CS in both onset and coda position. The statistical model finds

some asymmetries by manner, vowel, and position, but these are confounded by differences in

the acoustic criteria used for segmentation in various contexts. Examining the segment with the

most consistent criteria across contexts, /r/, there does not appear to be significantly greater coda

CS than onset CS.

The incremental CS results for steady-state vowels, on a first pass, are summarized as follows:

Incremental CS
Onset Coda

Obstruent Y N
Nasal Y N
Liquid Y Y

Table 2.3. Presence of incremental CS effect for steady-state vowel as a function of C] manner

and syllable position; measurement criterion excludes formant transitions of/sp/ clusters.

Recall, however, that the onset obstruent items are not a perfect comparison; it is not obvious

what the best comparison is. While the period of steady-state vowel is shorter in /spVd/ than in

/phVd/, /spVd/ also contains a period of (modally-voiced) formant transitions into the vowel that

/phVd/ does not. When that period is taken into account, there is a marginally significant anti-CS

effect (6-9 ms, p = 0.079). Because aspirated stops don't occur as the second consonant in

English clusters, and voiceless unaspirated stops don't occur as singleton onsets, this is the best



comparison we can manage, but it is not a straightforward singleton-cluster pair. Comparing the

duration of modally-voiced vowels, the table looks as follows:

Incremental CS
Onset Coda

Obstruent N N
Nasal Y N
Liquid Y Y

Table 2.4. Presence of incremental CS effect for steady-state vowel as a function of C1 manner

and syllable position; measurement criterion includes formant transitions of/sp/ clusters.

Not reflected in the table is one finding about the magnitude of incremental CS: liquids induce a

slightly larger incremental shortening effect in coda than in onset position, particularly /1/.

For vowel steady-states, incremental CS effects did not vary by subject nor by vowel.

For transitions and consonant steady states, results were somewhat more variable. In general,

transitions do not shorten between singleton and cluster words. There is one exception to this,

/dVs/-/dVsp/, which is discussed in the next section. Consonant steady states do display CS in

onset position. There is an anti-CS lengthening effect in coda position, but we argue in the next

section that this is confounded by other differences between the CVC and CVCC stimuli.

Transitions tend to be generally longer in coda position than in onset position, while consonant

steady-states show the opposite pattern. This might be taken as evidence for a trading

relationship between consonant duration and transition duration, which is predicted by both of

the approaches outlined in the introduction. Both patterns show idiosyncratic reversals across



vowels however, and both should be interpreted with caution. The design of the experiment does

not allow for completely and strictly controlled comparisons between boundaries in onset and

coda position; indeed, there may not exist such a design.

2.4 Discussion and conclusions

2.4.1 Distinguishing between the articulatory and perceptual models

The study finds that simplex CS for steady-state vowels is present in both onset and coda

positions; incremental CS for vowels is induced by liquids in both positions, nasals in onset, and

is not clearly present for obstruent sequences in either position. Incremental consonant

shortening affects all consonants in onset position (regardless of vowel shortening); coda

consonants are discussed below. Transitions between consonants and vowels do not shorten, with

one exception discussed below.

In section 1, we developed schematic predictions about CS based on two broad theoretical

approaches, one articulatory in nature and one auditory. We now turn to the question of how well

each of the approaches can account for these results.

The articulatory approach makes more specific and more uniform predictions, and therefore is

the stronger hypothesis, to be preferred a priori. Those predictions appear to be too uniform to

account for the data, however. The version of the articulatory theory that includes asymmetries in

the presence of a C-center effect predicts that compression effects should be driven by onset

consonants but not coda consonants. This is falsified by the results of the study.



One might attempt to modify the theory to accomodate the results. One possibility is that there

really is a C-center effect present in coda position, but something about the variability of

coordination between vowels and coda consonants has made it difficult to detect in articulatory

studies. This essentially turns the C-center version of the theory into the simpler Fowler theory.

This hypothesis, however, can't explain why the incremental coda effects are limited to items

with liquids.

One further modification might try to explain that asymmetry as well. Gestural investigations

generally find that, in coda position, the vowel-like dorsal gesture associated with /1/ precedes the

tongue-tip gesture, impinging on the preceding vowel (Sproat & Fujimura 1993, Browman &

Goldstein 1995, Proctor 2009 for a review). If this dorsal gesture is half-way in between a vowel

and a consonant, it might display some kind of mixed behavior, impinging on the preceding

vowel in cluster-like fashion while also being repelled incrementally from following consonants.

Even if this could be formally worked out, however, it would not explain the data. For one thing,

it is not clear whether English rhotics display a similar articulatory asymmetry. Furthermore,

nasals do display a similar coda asymmetry, whereby their velar abduction gesture is phased

earlier with respect to their oral constriction gesture. If the asymmetry in CS is to be explained

by the gestural properties of wide as opposed to narrow constrictions, it will need to somehow

connect the conditioning of CS to the difference between /n/ and /1/ in this regard; they do not

condition identical patterns of incremental CS.

The patterns of CS discovered in this study do not seem to be amenable to explanation in

articulatory terms. What, then, of the auditory theory? That theory predicted that compression



should be observed in codas, but not necessarily in onsets. It also predicted that there could be

asymmetries between various segments in the conditioning of CS, which would be based on the

auditory properties of those segments.

Clearly, onset consonants do drive CS. This result replicates several previous studies described

in section 1. This poses problems for the analysis of vowel-length contrasts and their distribution,

which are briefly discussed in the next section.

Apart from this, the auditory theory seems capable of explaining most of the results, when

coupled with specific hypotheses about recoverability. We briefly outline some of those

speculative hypotheses here; they will be investigated in detail and tested empirically in the

following chapters.

The hypothesis formalized in the next chaper and explored in the next several chapters is that

larger vowel-compression effects are observed in syllables that include higher-sonority segments

adjacent to the vowel, because higher-sonority segments allow more information about that

vowel to be recovered.6 To explain all of the asymmetries observed here will also require a

minimum inherent 'floor' duration for vowels, as mentioned in section 2.1.

To illustrate the logic of the proposal, we first consider the variation in VC items discussed in

section 2.3.1. We saw in section 2.3.1 that the particular phonetic realization of VC syllables

correlates with vowel duration. Some of these tokens are produced with a glottal stop preceding

6 In fact, the relevant notion here is not exactly sonority, but something like 'transparency with
respect to the features of an adjacent vowel'. By hypothesis, the two notions correlate in English.



the initial vowel, some with a modally-voiced glide transition from the vowel in preceding the;

most tokens feature a realization somewhere between these two extremes. The duration of

steady-state vowel is shorter in tokens that are preceded by formant transitions.

When we introduce a duration metric that counts these transitions as part of the vowel, they

instead come out longer than comparable tokens without formant transitions. This can be

analyzed and explained in a model where vowel duration is not simply a property of acoustic

steady states, but may be dispersed over different parts of the acoustic signal. In this approach, a

vowel's effective duration is associated with its recoverability: parts of the signal that contain

steady-state vowel obviously contribute a lot to perceptibility; adjacent parts of the signal that are

affected by the vowel may also contribute to the vowel's perceptibility, and may therefore be

perceived as part of the vowel's effective duration.

Glottal closure conveys little or no information about the following vowel; formant transitions

convey a lot of information. In the glottal stop realizations, then, that following vowel will need

to be relatively long in order to convey as much information as the combined steady state and

transitions convey in the realizations with transition. The crucial idea in this approach is that

vowels have a target for something like recoverability over time, rather than simple duration.

Steady state duration, of course, will help fulfill that target; other portions of the signal will also

help fulfill the target, in proportion to how informative they are about vowel quality.

This approach can be extended to account for most of the data in the experiment, when coupled

with assumptions about the relative perceptual informativity (for vowel quality) of various



portions of the signal. Those assumptions will be more fully elaborated in chapter 3, and tested in

chapter 4.

One broad asymmetry encountered here is that incremental CS is observed in comparisons of

items containing liquids adjacent to the vowel, but not items that contain only obstruents. If the

recoverability hypothesis is correct, this asymmetry must hold because either the liquid steady

state or the transition between vowel and liquid (or both) conveys more information about the

adjacent vowel than the comparable intervals do in obstruent items. This seems plausible at a

first pass: liquids and their transitions have clear formant structure that could change based on an

adjacent vowel; obstruents are realized acoustically as some combination of noise and silence.

Silence, obviously, conveys nothing about an adjacent vowel; noise should change somewhat

depending on the vowel context, but our hypothesis predicts that this variability is less

informative about vowel quality than variability in liquids is.

Even given this asymmetry, we might predict that obstruents induce less incremental CS for

vowels, but we would still predict some. One possibility is that there really is a small effect, but

the current study is not precise enough to uncover it; perhaps the effect is tiny in comparison to

between-subject effects or random noise introduced by a failure to perfectly control for prosodic

factors. In this case, there would be nothing left to explain. The more prudent response, however,

would be to assume that the lack of incremental CS is real, and ask how it might be explained.

The hypothesis explored in the next chapter is that in some cases, the recoverability or effective

duration of the adjacent vowel hits a 'floor' after adding just one (low-sonority) segment; in



these cases, adding further segments (as in CVC vs. CVCC) will not result in further shortening.

This is why some consonants in some positions do not drive incremental CS.

A further asymmetry concerns items with a nasal as C1; they display incremental CS in onset

position, but not coda. The recoverability hypothesis can explain this asymmetry if something

about coda nasals makes them less informative than onset nasals with regard to vowel contrasts.

Again, this entails that either the consonant steady-state, the transition to vowel, or both carry

less information about an adjacent vowel in coda than in onset position. One plausible property is

the amount or extent of nasalization overlapping the adjacent vowel.

The velar abduction (by lowering) gesture for nasals is 'stronger' in coda position than in onset,

in several senses. According to Krakow (1999), "[t]he larger velum lowering movement, lower

minimum and longer low plateau indicate that a vowel preceding a [syllable- or word-]final nasal

is more likely to be affected by coarticulatory nasality than a vowel preceding an [syllable- or

word-]initial nasal." All else being equal, nasality during the preceding vowel or transition will

make vowel contrasts less distinct (Wright 1986, Beddor 1993). If 'duration' targets are actually

recoverability targets, we can explain the asymmetry in incremental CS for nasals.

One might object that onset /sn/ and coda /nz/ are not comparable in the first place, because the

outer consonants differ in voicing and the /nz/ sequence is likely to be interpreted as a

morphologically complex plural noun. We digress for a moment to argue that these hypotheses

are not likely to explain the data.



As to voicing, the hypothesis might be that vowel-lengthening associated with a final voiced

obstruent could negate the default pattern of incremental CS. The coda liquid clusters, however,

also contained a voiced stop in final position, but incremental CS was observed for these items.

The morphological confound would rely on the idea that, in spite of the orthography (the words

were not written with /s/), subjects analyzed items ending in /nz/ as morphologically complex.

Given that assumption, we might then hypothesize that compression effects only hold internal to

a morpheme, and that this is why no incremental CS was observed in these items. We can't

conclusively rule out this explanation, although /nz/ is available morpheme-internally in English:

examples include lens; cleanse; the colloquial use of the proper name Jones (for) as a singular

noun or verb meaning 'desire'; the colloquial use of the proper name Benz as a singular noun

meaning 'Mercedes Benz car'; and the neuroanatomical term pons.

Returning to the asymmetries found in the experiment, we now consider liquids. They show a

similar asymmetry to nasals, but in the opposite direction: driving greater CS in coda position

than in onset. The recoverability hypothesis can explain this asymmetry if something about coda

/1/ and /r/ make them more informative about vowel quality than onset /1/ and /r/. As mentioned

above, Sproat & Fujimura (1993) find that the relative timing of the tongue-tip constriction

gesture and the tongue-body constriction gesture involved in /1/ changes from onset to coda

position. In onset position, the two gestures are more or less simultaneous, reaching peak

displacement at roughly the same time; in coda position, however, the tongue body gesture leads,

with the tongue-tip gesture starting around the time of peak tongue-body displacement. What this

means for the recoverability hypothesis is that the 1-V transition in onset position consists of both



a tongue-tip and tongue-body gesture overlaid on or blended with the following vowel gesture,

while the V-1 transition in coda position consists of only the tongue-body gesture overlaid on or

blended with the vowel gesture. All else being equal, more obscuring gestures should result in

inferior recoverability; this could explain the syllable-position asymmetry.

In addition, the stiffness, velocity, and degree of constriction are lower for the /1/ tongue-tip

gesture in coda than in onset position. This suggests that some of the asymmetry may also be

attributed to the characteristics of the // steady-state, although that steady-state also tends to be

shorter in coda position.

Less is known about the timing of various articulatory gestures involved in English /r/. This

segment can include at least three gestures: a tongue-tip or -blade constriction, pharyngeal

constriction, and rounding or protrusion of the lips (Alwan et al. 1997). The tongue gestures, at

least, show a fair amount of variability between subjects and contexts, including trading

relationships (Alwan et al. 1997, Guenther et al. 1999). If English /r/ patterns with /1/ and /n/ in

initiating its wider constriction gesture earlier in coda than onset position, then the CS

asymmetry is explicable in exactly the same terms as /1/. Although I am not aware of any

research on this point, it appears to be the case that at least for Spanish /r/ in coda position,

tongue-body activity precedes tongue-tip activity (Proctor 2009). Of course, this segment differs

from English /r/ in many respects.

One final point that may be explicable in terms of perceptual asymmetries is the comparison

between onset /ph/ and /sp/ sequences. This study found that the steady-state vowel following



/sp/ is shorter than the modally-voiced vowel following /ph/. This could be explained if the

formant transitions adjacent to /sp/ contain more information about a vowel than aspiration does,

or if the presence of the /s/ offers an advantage, or both. Another possible explanation, however,

might be that /sp/ is simply longer than /ph/, hence induces more shortening.

2.4.2 Some effects that do not have a perceptual explanation

There were no shortening effects observed for transitions in any of the consonant series except

one. This is consistent with a model in which acoustic transitions are basically determined by

interpolation between steady-state targets, and are not actively manipulated (for durational

properties) by the speaker. The lone exception is the coda /s/-/sp/ comparison, where V-s

transitions shorten significantly in /Vsp/ words. Closer examination of the relevant materials

suggests that this is due to a difference in timing between events internal to the segment /s/.

Specifically, transitions in /Vs/ words are often marked by formant movements beginning well

before breathiness and/or an abrupt decrease in energy above the first formant; in /Vsp/ words,

the two changes tend to begin closer to the same time. Illustrative tokens are shown below.
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Figure 2.19. Illustrative examples of /das/-/dasp/for speakers CH (top) and DG (bottom).

Transitions shorten in /dasp/ tokens relative to /das. Spectrograms show F1 and F2 (bottom)

and noise in the 5.5-10 kHz range (top).

The finding is that the portion of signal from onset of formant movements at the end of the vowel

(a rise in F2 in this case) to onset of the /s/ steady state (a peak in energy above 5 kHz) is shorter

in /dVsp/ tokens than /dVs/. This is related to another observation: the onset of attenuation of

energy above F 1 relative to the onset of formant transitions occurs earlier in /dVsp/ tokens than

/dVs/; this is why the rise in F2 is much easier to see in the /das/ tokens above. Transitions in the
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/dVs/ case consist of first formant movement than attenuation of energy; transitions in the /dVsp/

case consist of both changes at once.

This raises the question of why the timing changes. One speculative explanation concerns the

shortening of steady-state /s/ in cluster tokens relative to singleton ones. If we assume that the

attenuation of energy is related primarily to a glottal abduction gesture, while changes in F2 are

related primarily to a tongue-tip gesture, it suggests that the tongue-tip gesture precedes the

glottal gesture in singleton tokens, but the two are closer to simultaneous in cluster tokens. This

would follow naturally from the shortening of the /s/ if the glottal gesture is timed to coincide

with some point internal to the /s/.

alignment point
glottis

Figure 2.20. Illustration of how articulatory shortening of/s/ might result in a shorter acoustic

transition for /dVsp/ tokens (bottom) than /dVs/ tokens (top). TT = tongue-tip gesture.

vowel

time
alignment point

TT 'p/
vowel

glottis

/p/



Figure 2.20 shows how /s/ shortening might lead to transition shortening. In this scenario, the

glottal gesture bears a constant temporal relationship to the attainment of constriction target for

the tongue-tip gesture. As the tongue-tip gesture shortens, target attainment occurs earlier

relative to the vowel (this assumption only holds for compression, not truncation). Assuming that

the acoustic steady state of /s/ occurs at a fixed point relative to the glottal gesture, the measured

acoustic transition will be shorter in the cluster case. This scenario is meant only as a suggestion

of how the observed timing pattern may arise. We can't know whether this it is correct in the

absence of articulatory data that bear on the issue.

The study also found unexpected patterns of anti-CS lengthening for /r/, /n/, and a small (non-

significant) effect for /1/ in coda position; for instance, the steady state of /r/ is longer in /dorb/

than in /dor/. This is most likely a result of the fact that the criteria for marking the offset of these

segments in CVC and CVCC syllables are not strictly comparable. In CVC syllables, the offset

was marked as soon as the following preposition-initial vowel began to influence the acoustic

signal. In CVCC stimuli, the offset was marked where the following obstruent abruptly changed

the acoustic signal. The difference in duration between CVC and CVCC syllables can be

explained under the hypothesis that a following vowel manifests itself acoustically earlier in the

sonorant steady-state than a following obstruent does.



Comparison with previous studies

The majority of the results that can be directly compared to previous studies replicate those

studies. However, certain findings seem to contradict earlier studies. In this section we attempt to

explain the discrepancies.

The finding that obstruents do not condition incremental coda CS is in direct conflict with the

findings of Munhall et al. (1992): they found that there is a small incremental coda CS effect for

obstruent clusters. The current results may also be taken as a contradiction of Fowler's (1983)

similar findings; that study, however, reported no statistical analysis and made no distinctions by

consonant manner.

There are several possible reasons why the findings might differ. One possibility is that the

measurements are different in the various experiments. The current study did find that the VC

transition shortened in these cases, as discussed above; if part of this interval was included in the

vowel measurement in the other studies (and the descriptions in the Munhall et al. paper suggest

this is probably the case), it would result in a measured incremental CS effect. It is unknown

whether this explanation will generalize to stop-fricative clusters, however, as the current

experiment only examined /Vsp/ items.

A second possibility is that the speech elicited in the other studies was different from the speech

elicited here. In particular, it was probably more rhythmically constrained, due to the repetition

of a single carrier sentence in the Munhall et al. study, and the repetition of words to a

2.4.3



metronome beat in the Fowler study. In chapter 3, I demonstrate how an extra-linguistic, task-

specific constraint enforcing isochrony might lead to extra compression effects beyond those

encountered in normal speech.

A third possibility is that the subjects in the other studies did indeed show the relevant effect, but

the effect doesn't generalize to the population of English speakers. Fowler's data is based only

on utterances from the author. Munhall et al. test three speakers, but perform separate analyses of

variance for each subject. Neither of these procedures allows one to generalize results to the

broader population of English speakers; the statistical issues are discussed in length by Max &

Onghena (1999). In essence, this explanation says that the effect was observed 'by accident', and

if we had observed more speakers it would likely have averaged out to 0. This is always a danger

when we conduct studies with very few subjects.

A final possibility, noted briefly in section 2.4.1, is that there is a very small incremental effect in

obstruent clusters that the current study was unable to detect. This is certainly a plausible

explanation. The effects in the Munhall et al. study are generally rather small (the largest is 36

ms but most comparisons are on the order of 3-10 ms) and vary between subjects. Standard

deviations are also extremely small: reconstructing from the standard error terms given in the

paper, they seem to be on the order of 5-25 ms. This is a fraction of the variance observed in the

current experiment, which would make small effects easier to detect. This difference in variance

is presumably due to the rhythmic factors mentioned above. This explanation, although

plausible, is less conservative than the isochrony explanation, because it assumes there is no



difference in speakers' behavior rather than trying to explain the differences that appear to exist.

For this reason, we pursue the isochrony explanation in the next chapter.

The series of studies by Crystal & House (1982 et seq.) contradict the findings of the current

study and all comparable studies described in this chapter. For instance, they find no strong

evidence for compression effects in stressed syllables, and report that the sonorant/obstruent

distinction has no effect on the duration of a preceding vowel. These studies, however, suffer

from a host of methodological and analytical defects.

First, the authors tend not to control their data for consonantal or vocalic features, nor for the

identity of the speaker. The 1988 paper gives more detail about the context of some of these data,

but consonantal and vocalic features are never specified at the same time. If CS effects are

smaller than inherent duration differences between segments, speech rate effects, cross-subject

differences, or if they differ across various consonants in any way, they wouldn't be visible in

these data. Van Santen (1992) criticizes this work on these grounds, illustrating his point with

several examples of how factor-confounding led Crystal & House to posit spurious effects.

Second, the authors repeatedly state that segmental boundaries were marked using 'standard

criteria' with regard to the speech waveform or the spectrogram, without further specification of

what those criteria are. Because there is no unique set of standard criteria for placing boundaries

even between vowels and obstruents (much less vowels and sonorants), it is impossible to

determine how boundaries were marked in these studies. We can make the charitable assumption

that the boundary criteria were at least consistent between strings containing the same type of



segments; but given that the authors collapse data across segment types, and that the data are not

necessarily balanced for segment type, we have no idea how to interpret their results.

Finally, none of the claims about CS in these papers are presented with statistical analysis. Most

of the data is not presented in sufficient detail to test any hypotheses about CS. In the 1990

paper, for instance, the authors claim that there is no evidence for compression effects in their

corpus. In a comparison of CVC and CVCC syllables, however, the conditions are neither

balanced nor specified for vocalic or consonantal features. Some of the conditions do seem to

show CS effects, but not all of them; this situation is apparently interpreted as an absence of

evidence for any clear pattern.

The point of this critique is not to be dismissive of these researchers' efforts. There are often

valuable insights to be gained from exploratory and descriptive studies, and Crystal & House

undoubtedly uncovered valuable patterns; compression efffects were not the main concern of

their investigation. The argument is simply that a range of other studies with various

methodological and analytical advantages over these ones have found that compression effects

do exist, and that descriptive statistics can not be evaluated on an equal footing with rigorous,

controlled analyses using inferential statistical tests.

2.4.4 The trouble with vowel-length neutralization

As noted earlier, the current study and several previous ones have established that onset

consonants do drive vowel shortening in at least English, Swedish, and Dutch. If neutralization



patterns occur because of shortening, we should find languages where neutralization occurs in

syllables with onsets, but not syllables without onsets. We know of no such language; the

licensing of vowel-length contrasts does not appear to interact with the presence of a preceding

consonant. This means that the relationship between vowel-length contrasts and compression

effects is not fully understood.

A more conclusive answer to the question of what governs the distribution of vowel-length

contrasts can presumably only be answered through detailed studies of the timing and phonology

of many languages. Nonetheless, we offer some speculation here. It is possible that the

perceptual distinctiveness of vowel-length contrasts is affected less by the absolute amount of

duration available to express the contrast than it is by the perceptual sharpness of the vowel

boundaries. This explanation might help us to explain the generalization that licensing of the

contrast sometimes interacts with the presence of a following consonant, but does not appear to

interact with the presence of a preceding consonant. The current study found that transitions

between a vowel and coda consonant are longer than those between a vowel and onset

consonant, while the duration of the steady-state consonant varies inversely with the transition.

This seems to agree with the articulatory observation, mentioned above, that coda consonants

feature constrictions that are weaker in several senses. The perceptual consequence of this could

plausibly be that coda consonants blend more with an adjacent vowel than onset consonants do.

Making the further assumption that articulatory and acoustic blending are antagonistic to

detecting boundaries, we could derive the prediction that the distinctiveness of vowel length

contrasts will be damaged more by a following consonant than by a preceding one.



This hypothesis would predict a hierarchy of contexts where neutralization is more or less likely,

based on the relative crispness of the vowel-consonant boundary. It is not clear that such a rich

typology exists; most of the examples we know of simply concern the presence or absence of a

consonant.

Another possibility is that other languages either fail to display onset-driven CS at all or have an

effect much smaller than that driven by coda consonants. The only languages in which onset-

driven CS is attested, as far as we are aware, are English, Dutch, and Swedish. These represent a

relatively narrow range of (Germanic) languages. If other languages tend to feature only coda-

driven CS, it would explain why onsets do not appear to interact with vowel-length contrasts. To

know whether this is a plausible explanation, of course, would require detailed acoustic studies

of languages with and without neutralization patterns.

Most of the explanations of temporal patterning observed in this study have made recourse to

hypothesized perceptual differences between segments or transitions. Specifically, it was

hypothesized that segments may shorten more when their surrounding context contains more

perceptual cues pertaining to their presence or quality. The next chapter asks what type of

grammar could predict the qualitative patterns of compression observed in this experiment. That

grammar, in turn, will require qualitative assumptions about the relative perceptual properties of

different types of speech event. Chapter 4 reports an experiment that attempts to test those

assumptions.



Appendix 2A

Segmentation criteria used in the study

The table below lists the acoustic criteria used for segmentation. The columns represent the

boundaries between vowel proper and transition, transition and C1, Cl and C2 in cluster items,

and Cl and the adjacent word in singleton items, respectively. Abbreviations are high plateau

(HP), low plateau (LP), onset (on), offset (off), abrupt rise in energy above the ls'formant (ER),

abrupt drop in energy above the ls'formant (ED).



Boundary
V-trans trans-C C-C C-#

F1 HP-on F1 LP-off, ER

1 F2 HP-on F2 LP-off or F1
1L~i F2 H-on LP-off, ER

F1+F2 HP-on F1+F2 LP-off, ER

ER F 1 LP-on, ED

1/a_ F1 HP-off, ED Fl LP-off F LP-off or

_____ 

ED__ 
_ __ _ _ __ _ _ 

F2 LP-off

1/1 ED
~ F2 HP-off, ED F2 LP-off F1 LP-off

ER F3 LP-on

r1-o F3 HP-on F3 LP-off
r/a

r/1i ED F3 LP-off

r/o _

n/ a F2 LP-on

n/_i F2 HP-on F1 LP-off, ER End of silence or F1 LP-on, ED
_____ ___________onset of voicing

n/ o F1 HP-on

n/a. F2 LP-off 1st appearance of
n/1_ F2 HP-off F 1 LP-on, ED aperiodic noise, F 1 LP-off, ER

n/o F2 LP-off ED

P -_ Onset of Onset of aperiodic
ph/_i energy around noise following -- ED

ph/ 0  Fl burst

p/_a F1 HP-on

p/_i F2 HP-on Onset of energy
Fp HP-on or around F Offset of HP of

-__ F2 HP-on or energy above 5

s/a_ F2 LP-off kHz Offset of HP
s/1_ F2 HP-off HP of energy of energy
S/0_above 5 kHz above 5 kHz

s/o F2 LP-off

Onset of energy
around F1

ED, F1-3 HP-off

ED

ER, F1-3 LP-
off

1/_o

segment /
context

d/#_

d/j#

r/_#

1/_a



3 A constraint-based account of English CS

3.1 Introduction

In the preceding chapter, we found that adding complexity to a syllable results in compression of

the units within the syllable, but not all sub-syllabic units pattern identically with regard to this

compression. The question to be addressed in this chapter is what kind of a grammar might

produce such patterns as outputs. We develop a formal system of weighted, violable constraints

that produces qualitative patterns similar to those observed in the production study. In this

account, the presence of compression effects is due to the presence of conflicting constraints on

duration in the grammar. Those effects are sometimes absent when segments shorten to a point

that might jeopardize their recoverability. Asymmetries with regard to compression will be

attributed to hypothesized differences in the perceptual properties of various segments and

transitions.

The principle findings from the production study in chapter 2 are that all segments induce

simplex CS (e.g. /od/ vs. /nod/), but only some induce incremental CS (e.g. /nod/ vs. /snod/).

Liquids condition incremental CS in both onset and coda position, nasals do so only in onset

position, and obstruents don't clearly induce incremental CS in onset or in coda position. In

addition, the amount of incremental CS for items with liquids as the inner consonant appears to

be greater in coda than in onset position, especially for /1/. We proposed that these asymmetries

are related to the perceptual properties of segments and transitions: vowels shorten more when

their auditory features are more perceptible in the adjacent sounds.



The theoretical framework developed here accounts for patterns of CS by positing duration

targets for larger units as well as smaller units within them. For this chapter and much of what

follows, we will assume that the relevant larger units are syllables. This is not a logical necessity;

all of the items analyzed here could equally well result from targets for prosodic feet or words,

intervals from one vowel to the next, or combinations of any of these constituents. Only careful

investigation will reveal which of these alternatives is correct. The goal here is to delineate what

types of patterns emerge in monosyllabic content words; the production experiment was not

designed to test for differences among larger constituents. The smaller units here are taken to be

segments. Again, one could imagine other possible ways of segmenting the speech stream, but

segments will serve our purposes for this analysis.

The two types of duration constraint come into conflict as more complexity is added to a

syllable; the phonetic realization of a given string involves a tradeoff between the competing

constraints. A useful metaphor for understanding the logic of the formalism is the problem of

trying to fit partially-malleable objects into a partially-malleable container. Physically, each

object and the container has some inherent volume, the size that it possesses when not acted

upon by external forces. If the objects to be fit are larger in aggregate than the volume of the

container, then all entities will depart from their inherent volumes to some extent: the objects

will compress and the container will expand. The exact tradeoff in how much each entity is

deformed will be determined by the relative rigidity of the objects and the container.

In this metaphor, the inherent volume of physical entities corresponds to duration targets for

linguistic objects; these are the dimensions that entities 'want' to have. The rigidity of those

entities corresponds to the weighting of constraints, which mediates the ways in which deviations



from targets trade off against one another.

The idea that compression effects are due to pressure from higher-level duration targets is not

new, but has rarely been explicitly formalized. Lindblom & Rapp (1973) mention the idea that

duration trading between segments may be a way to keep syllable duration relatively consistent,

although their formal approach to compression in Swedish is rather different from the one

developed here. Fujimura (1987) proposes a general timing model along these lines, using the

metaphor of nested spring systems rather than nested duration targets or stuffing objects into a

container. He is not explicitly concerned with compression effects, but their existence is a natural

prediction of his model. Formally, his system is similar or identical to a model with weighted,

gradiently-violable constraints on segments and syllables. Clements & Hertz (1996) propose a

model of timing where the syllabic nucleus (in an extended sense that includes transitions and

liquids) is assigned a base duration and this higher-level target constrains the durations of

segments internal to the nucleus, creating trading relations. The framework developed in this

chapter has similarities to each of these earlier models, but will be narrowly focused on

accounting for compression effects, and will be formalized rather differently.

The phenomenon of closed-syllable vowel shortening, a specific form of CS discussed in chapter

2, has received a lot of attention in the phonetic and phonological literature. In this phenomenon,

which is widely attested cross-linguistically, vowels in closed syllables are observed to be shorter

than vowels in open syllables. Analyses of CSVS often make reference to the idea that vowel

compression is due to higher-level duration constraints, on a syllable, rime, or mora. Maddieson

(1985), after reviewing cross-linguistic evidence for vowel-shortening preceding geminate as



opposed to singleton consonants, suggests that the phenomenon may itself be an argument for

treating the syllable rime as a unit of timing. This implicitly suggests that compression effects are

due to higher-level duration targets conflicting with lower-level ones. Myers (1987) invokes this

trading approach in a phonological analysis of English vowel shortening phenomena: he argues

that the particular English rules are phonologizations of a universal phonetic tendency towards

CSVS, and that the universality of CSVS itself follows from the fact that the syllable is a unit of

timing. Flemming (2001) is a more formal approach to CSVS in this vein. He develops a model

with weighted, gradient constraints to characterize the competing pressures on segment and

syllable durations. This is the general framework that we adopt here.

The constraint-based framework developed here builds on ideas developed elsewhere. It is

similar to Optimality Theory (henceforth OT, Prince & Smolensky 1993) in that the output of the

system is a single optimal linguistic form that best satisfies a set of conflicting constraints. There

are two major differences between OT and the current approach; we briefly discuss these

differences before presenting the theory.

In OT, constraints are ranked in a strict-domination hierarchy. This means that, if a constraint a

is ranked above a second constraint P, no number of violations assessed by constraint P will be

enough to 'justify' a violation of c. In other words, if c and s are the only constraints in the

grammar, a form F that doesn't violate c will always be preferred to a form that violates a, no

matter how many times F violates the lower-ranked constraint P. On a first pass, the optimal

form is one that violates the highest-ranked constraint fewer times than all other candidates.



The constraints proposed here, in contrast, are weighted. This means that the ranking between a

and P is represented as a difference between two real numbers that represent the respective

strengths of the two constraints, rather than a categorical domination relation. The constraints

attribute a cost to any candidate linguistic form that is proportional to the weight of the constraint

and the number of times the candidate violates that constraint. The optimal form is one that

minimizes the summed cost of violation across all constraints. Given the scenario described

above, a candidate form that violates a may emerge as optimal, if in doing so it avoids enough

violations of P to result in a lower overall cost. In this respect, the system is more similar to

Harmonic Grammar (Legendre et al. 1990), a theory that is related to OT but makes use of

weighting instead of strict domination.

The second major difference involves gradience. In OT, constraints violations are assessed in a

categorical manner, as a discrete number of marks assigned to each possible output form, one

mark for each instance where a candidate form violates the constraint. The constraints proposed

here, in contrast, are gradiently violable; they pertain to continuous, non-categorical properties

such as the difference between two durations. The cost of violating such a constraint is

proportional to the size of the violation. For instance, in the quadratic framework developed here

the cost of deviating from a target duration by 90 ms is nine times the cost of deviating from that

target by 30 ms, because cost is proportional to the square of the deviance from target. Flemming

(2001) introduces this type of framework and uses it to implement several analyses of phonetic

and phonological phenomena.

The analysis in this chapter attempts to account for the compression effects discovered in the



production experiment from chapter 2. The tools for accomplishing this analysis will include the

weighted constraint formalism, minimal assumptions about the representation of duration and

duration targets, and hypothesized differences in the effect of consonants and transitions upon

the recoverability of an adjacent vowel. In this manner, the analysis will explain the production

asymmetries with reference to independent, falsifiable hypotheses about perception. Some of

those hypotheses, in turn, are experimentally tested in the next chapter.

We proceed by considering asymmetries in temporal patterning one at a time, reviewing the

possible perceptual explanations for these asymmetries, incorporating those putative perceptual

factors into the constraint system, and checking the outputs of the resulting grammar against the

data from the production experiment. If the constraint formalism is adequate for characterizing

compression patterns, then we expect the outputs of the grammar to be qualitatively similar to

the observed data.

Essentially, the objective of this chapter is an existence proof for a grammar that can generate

outputs similar to those observed in the production study. The idea is to show that a system of

weighted, gradiently-violable constraints on the duration of segments and syllables, when

coupled with some assumptions about perceptibility, can derive most of the patterns observed in

the experiment reported in chapter 2. Throughout the discussion, we refer to schematic duration

patterns measured in arbitrary, abstract units of time. We are concerned almost exclusively with

qualitative patterns of relative duration rather than precise quantitative differences. There are

several reasons why attempting a more precise simulation would not be fruitful at this stage.



First, milliseconds themselves are a somewhat arbitrary unit from the standpoint of cognition.

There is no particular reason to believe that they offer an accurate characterization of perceptual

duration; the function from millisecond duration to perceived duration may be linear (highly

unlikely), parabolic, or discontinuous in various ways.1 Duration ratios may offer a more

accurate characterization of perceptual duration. Or the perception of duration may be best

characterized by some other function we have yet to discover. Attempting to mimic the exact ms

values of data from the production experiment will not result in a more principled model than

one that captures relative patterns.

Furthermore, the durations reported for the production experiment are in some ways as abstract

as the numbers used here. They represent averages over various speakers uttering various tokens

at various speech rates. To precisely model minute differences in timing will require some notion

of variability on each of these levels; but the generalizations across all tokens from all speakers

are what particularly interest us here. Those generalizations are taken to be properties of the

grammar shared by all speakers. Given that those generalizations are overlaid by several levels

of variability, modeling average ms durations would be no less of an abstraction than modeling

durations of 10 or 20 arbitrary mental units. It would simply require more fine-tuning of

constraint weights, coefficients, and other parameters of the formalism to be discussed here. Put

another way, it would greatly complicate the fitting of models without increasing our conceptual

understanding of the patterns found in the production study.

1 The statistical models used in chapter 2 in fact measured duration in standard deviations from a
subject's mean value for some set of phonetic forms. This type of measure, which incorporates
variability, might also be an interesting way to think about the perception of duration.



Because the weighted-constraint formalism is not entirely familiar, we begin by introducing

some of the mechanics of constraint formulation and candidate evaluation in this system in

section 3.2. This section also introduces some assumptions and simplifications that will make it

easier to find the optimal forms selected by a grammar. The framework is developed to account

for patterns of compression in subsequent sections.

3.2 The framework

3.2.1 The constraints

The hypothesis we start with is that the duration of speech units within a syllable is a function of

a tradeoff between competing pressures on higher- and lower-level units. In a weighted

constraint system, we can construe each of these pressures as a constraint that will assign a fixed

cost to linguistic forms in proportion to how much they deviate from their target durations.

Producing linguistic forms that trade off the two pressures against each other, then, is equivalent

to finding forms that minimize the summed cost assessed by the constraints.

The basic intuition behind this system is simple: vowels are shortened as consonants are added in

order to keep syllable duration relatively constant.2 Flemming (2001) implements this idea with

two weighted constraints, DURATION-V and DURATION-Q, which assign a cost to linguistic forms

that deviate from auditory duration targets for vowel length and syllable length, respectively.

This is quite similar to the framework developed here; the evaluation of the duration constraints,

2 The question of why a speaker would want to keep syllable duration relatively constant is a
difficult one. It is possible that any tendency toward isochrony in the speech stream, even if
imperfect or incomplete, helps a listener parse the speech stream by creating temporal
expectations that can be used to guide perception (Quen6 & Port 2005).



however, will be somewhat more complicated.

We begin with constraints on the duration of higher-level units (syllables, just for concreteness)

and lower-level units (segments). As complexity is added to a higher-level unit, these constraints

come into conflict. For instance, there's no way to realize 10 segments inside a syllable without

either producing a very long syllable or very short segments. The exact tradeoff between

avoiding long syllables and avoiding short segments will be determined by the weights

associated with the constraints.

The syllable duration constraint can be stated straightforwardly as in (1).

(1) C1 = wi - (t - d )2

The cost C1 assessed by constraint 1 is a function of the weight wi of the constraint and the

difference between the duration target t, for a syllable and the actual duration d, of the syllable.

The difference is squared to eliminate negative numbers and to ensure that cost grows rapidly

with increasing deviations from the target, which will result in tradeoffs.

The segment duration constraint is somewhat more complicated, because it requires a special

notion of duration for the segment. In fact, the concept 'duration of a segment' is an idealization.

While we can pinpoint the division between, for instance, acoustic stop and acoustic vowel with

a fair bit of precision, there is still no definitive point in time where the speech signal switches

from 'only stop' to 'only vowel'. The problem is more obvious with nasals and especially liquids



adjacent to vowels. To incorporate this observation into the model, we allow the duration target

for a segment to be partially satisfied by information contained outside the 'segment proper'. The

recoverability of a segment is related to its duration and cues to its presence or its features that

are contained in other parts of the signal. In this approach, what we refer to as the 'duration' of a

segment is really more like a segment's recoverability over time.

For instance, the recoverability of a vowel will be directly proportional to the duration of its

acoustic steady state times some constant i, plus the duration of the transition to an adjacent

segment times some constant] < i, plus the duration of the adjacent segment times some

coefficient k < i, wherej and k vary across different manner features. The vowel-recoverability

coefficientsj and k represent the relative amount of information about a vowel contained in an

adjacent transition and adjacent segment, respectively. They represent something like the 'vowel

transparency' of those intervals. By hypothesis, liquids have higher vowel transparency than

obstruents and possibly nasals; these predictions are based on the production data presented in

the preceding chapter. We constrain k andj to be lower than i, at least for vowels, because we

assume that internal cues (consisting largely of formant frequencies) contain more information

about a vowel than external cues in adjacent portions of the speech stream.

Conceptually, i,j, and k should be construed as coefficients that correlate with the amount of

'vowel information' contained in any given stretch of an utterance. Vowel information itself will

not be fully explained here; assume for the time-being that it is more or less directly reflected in

subjects' ability to discriminate vowel contrasts at any point in the speech stream. Given these

hypotheses, the segment duration constraint can be stated as in (2).



(2) C2 = W2 - (ts - (ids + jdt + kda)) 2

The cost C2 assessed by this constraint is a function of its weight w2 and the difference between

the target duration and actual duration. However, 'actual duration' here is something more like

recoverability: it is computed as the sum of some coefficient i multiplied by the duration of the

segment proper ds, some coefficientj multiplied by the duration of the adjacent transition dt, and

some coefficient k multiplied by the duration of the adjacent segment da. This constraint will

apply in turn to each segment in a candidate linguistic form.

For the analyses in this chapter, we will generally use values ofj and k between 0 and 1, with i

implicitly set to 1. There is no particular hypothesis behind this; it merely seems like an intuitive

scale to use. If a vowel has an internal recoverability coefficient of 1 (proportional to the amount

of information the vowel contains about itself), an adjacent liquid might have a k value of 0.6,

reflecting relatively high vowel transparency, while a stop might have a value of 0.1. Similarly,

we might assign aj value of 0.6 to modally-voiced formant transitions into or out of a vowel, and

assign a value of 0.2 to formant transitions overlaid by nasalization. These numbers are meant

only to suggest relative patterns.

Given the constraints in (1-2) and a set of values for the variables contained within them, we can

assign a cost to any candidate linguistic form. In order to find out what types of linguistic forms

are predicted to actually surface, we need to find candidates that minimize the summed cost

assessed by constraints. Given a set of values for the parameters that the constraints make

reference to, only one form will emerge as optimal. In the next section we examine several ways
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of finding that form.

We represent the differences between various types of syllable by assigning them different

parameter settings; for example, we represent the difference between la and da as a difference in

the vowel-recoverability coefficient k, as mentioned above. Using a variety of different sets of

parameter values as input to the model, with one set of values for each type of syllable, we can

then observe the array of surface duration patterns predicted by the constraint system. These will

be compared to the experimental data.

3.2.2 Finding a winner

The constraints stated above will assign the following cost to any syllable o consisting of

consonant x and vowel y:

(3) wi - ((dx + d, + dy) - t0)2 + w2 - (ndy + md, + ldx) - tx) 2 + w2 - ((kdx + jdt + idy) - ty)2

where variables i-n are recoverability coefficients for various portions of the speech

stream.

Expression (3) sums the violations from the syllable constraint (first quadratic term), the segment

constraint applied to the consonant x (second term), and the segment constraint applied to the

vowel y (third term). For most of the analyses in this chapter, we will assume that the same

segment constraint applies to consonants and vowels, and therefore has the same weight. This is
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because a system with only one segment constraint is complex enough to capture most of the

data, and there is no reason to add in more complexity at this point.

For the purposes of the current analysis, we simplify the cost function in several ways, in order

to make the optimization problem more tractable. Because we're mainly interested in the effect

of context on vowel duration, we'll remove the recoverability coefficient terms from the

consonant duration target, which reduces the number of free parameters in the model. Also to

simplify, we'll assume that the recoverability coefficient i for a segment itself is 1. Of course, for

segments like stops that have more external cues than internal ones, this may not be realistic.

With these simplifications, the cost function that we need to minimize in order to find an optimal

phonetic form is as shown in (4).

2 d +W2- (d +t+dyty2

(4) Cost = wi - ((dx + dt + dy) - t) + w 2 -(dx-t) 2 +w2 ((kdx +jdt+-d)-ty)

The approach is to assign values for all parameters except the segment durations dx and dy as

input, then determine which values for those durations will minimize the cost function. This

means that we are assuming values for everything except segment steady-state duration (and

syllable duration, which depends on it), and treating phonetic forms with various steady-state

durations as candidate realizations. Any pair of consonant and vowel durations is a possible

candidate; only the one that incurs the smallest cost is the optimal candidate.
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In what follows, parameters that are given values as an input are referred to as constants. Again,

this refers to all parameters except the segmental and syllabic durations. Once we've picked

values for the constants in this expression (constraint weights, target durations, etc.), we can

examine how the cost function changes across different values for the actual duration of x and y.

For the moment, we'll set the constants as follows: wi (syllable constraint) = 1; w2 (segment

constraint) = 2; t3 = 30 arbitrary duration units (ADU); tx = 15 ADU; ty = 25 ADU; dt (duration

of the transition between x and y)= 4 ADU; k = 0.2; j = 0.4. The only crucial assumption

embedded in these numbers is that the sum of the duration targets for segments is greater than

the duration target for syllables; without this property, of course, the system will not predict

compression.

Note that we assume a constant transition duration; this corresponds to the hypothesis that

transitions are essentially interpolation between targets and are not under active control by the

grammar. That assumption could be changed if need be, but we'll begin by manipulating the

fewest number of parameters that are necessary to account for the data.

We now examine four candidate phonetic realizations. Candidate A has relatively much vowel

shortening, in order to better satisfy the other constraints; candidate B shortens the consonant a

lot to better satisfy the other constraints; candidate C lengthens the syllable substantially to

accomodate both of the segments; and candidate D shortens both segments and also lengthens

the syllable, all in moderation.
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Candidate C duration V duration Con 2 V Con 2 C Con 1 Total Cost
A 14 16 42.32 2 16 60.32
B 10 20 3.92 50 16 69.92
C 14 20 0.72 2 64 66.72
D 12 18 18 18 16 52

Table 3.1. Cost assessed to four hypothetical candidate phonetic realizations of a CV syllable.

Columns contain candidate name, realized duration of C and V, cost assessed to V and C by

constraint 2, cost assessed to the syllable by constraint 1, and total cost assessed to the

candidate. Parameter settings are as indicated in the text above.

As can be seen in table 4.1, this system disfavors candidates that egregiously violate any of the

constraints, as in A-C, and favors candidates that 'compromise' by violating each constraint in

moderation, as in D. For a more complete picture, we can examine cost as a function of dx and dy

in three dimensions:

Consonant 12.9

Duration 13.2
13.5

13.8 19.2
18218.7

14.1 17.718.2
17.2

16.7 Vowel Duration
16.2

r60

58
56

54
52

50

20.2

Figure 3.1. Cost as a function of consonant and vowel duration for a CV syllable, with constants

specified above.
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Figure 3.1 shows cost as a function of segment steady-state durations; our cost function maps

every point in the two-dimensional 'durational space' represented by the floor of the graph to a

cost associated with the candidate that is realized with those segment durations. Cost is

represented on the vertical axis. The cost function takes the form of a bowl. The point of lowest

cost, corresponding to the optimal phonetic form, is the point at the bottom of the bowl. It may

be easier to visualize the problem as a relief map viewed from directly above the bowl; this

graph is similar to a topographical map of elevation.

Z ..19.8

19.2

18.6 0
Lo r -ost :

18.0 0

- - - --__ - -- 17.4 "

16.8

16.2

igher cost
15.6

9.6 10.2 10.8 11.4 12.0 12.6 13.2 13.8 14.4
Consonant Duration

Figure 3.2. Cost as a function of consonant and vowel duration for a CV syllable, with constants

specified above. This is figure 3.1 viewed from directly above as a relief map. The area at the

center is lowest, with cost increasing in concentric rings outward from the center. The letters A-

D show the approximate locations of the four candidates from table 4.1.

To determine the predictions of the grammar, we need to determine where the bottom of the

bowl is located in durational space. We can arrive at an approximate solution by examining these
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graphs (or the tables that they're derived from) and identifying the lowest point. Here, it is

somewhere in the area of (12.9, 18.2). This method of identifying optima, however, is unreliable

and inefficient. The exact values that we find will depend on the granularity of our chart.

Regenerating a new table or graph every time we change a parameter setting and searching for

the low point by hand is also time-consuming and prone to errors. Fortunately, we can also

identify optima analytically by examining the cost function itself.

To find the optimal durations for segments x and y with regard to these constraints, we need to

find the bottom of the bowl. Abstractly, that bottom point can be defined as the point where the

bowl stops sloping along the consonant axis and the vowel axis; in other words, it is the point

where the instantaneous slope along both axes is equal to zero. To state the instantaneous slope

of the cost function at any point along each of the two axes, we'll need to consider the partial

derivative of (4) for each variable. These will tell us how the cost assessed by constraints

changes as we change one variable, holding the other constant. Quadratic terms were chosen for

the constraints in part because they have linear derivatives and are relatively easy to differentiate:

the derivative of x2 is 2x. The two partial derivatives are shown in (5-6).

(5) f'(dy) = 2wi - ((dx + dt + dy) - t) + 2w2 - ((kdx + jdt + dy) - ty)

(6) f'y(dx)= 2wi - ((dx + di+ dy) - t) + 2w2 - (dx - tx) + 2w 2k - ((kdx + jdt + dy) - ty)

These expressions give us the instantaneous slope along the two segmental duration axes at any

point in durational space, as a function of the model parameters. We obtain them by

differentiating the full cost function for one variable at a time (dy in (5) and dx in (6)) while
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treating the other variables as constants. We're looking for a point where both of the partial

derivatives are equal to zero. This is a point where the cost function is instantaneously flat or

parallel to the floor; in other words, the bottom of the bowl. First we set one derivative to zero:

(7) 0 = 2wi - ((dx + d1 + dy) - to) + 2w2 - ((kdx + jdt + dy) - ty)

We then solve for the duration of y in terms of x and the constants:

(8) wi - ((dx + dt) -t 0 ) + w 2 - ((kdx + jd,) - ty)
dy =

- (wi + w2)

Expression (8) shows that the duration of the vowel varies inversely with durations of the

consonant and transition; this is exactly the hypothesis that our constraint system was intended to

implement. More precisely, the duration of the vowel is proportional to the amount of syllable

target not filled by the consonant and transition, dx + d, - t(; and the amount of vowel target not

filled by the coefficient-adjusted duration of the consonant and transition, kd, +jd, - ty.

Substituting the expression in (8) back into (6) will allow us to solve for the duration of x solely

in terms of the constants. This means that, given any set of parameter values, we'll be able to

determine the optimal durations for consonant and vowel exactly, without resorting to the trial

and error method used above.

w2 - (1 - k) - (t, - d, - (ty -jdt)) + tx - (wi + w 2)
(9) dx=

W2 - (k2 - 2k + 2) + wi
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Expression (9) shows that the optimal duration for the consonant x is a rather complicated

function of the values associated with targets, constraint weights, and recoverability coefficients.

It is positively correlated with its own target duration, as we would expect. It is also positively

correlated with the quantity of syllable target not accounted for by transition duration, t. - dt,

reflecting the fact that there will be more room for the consonant when the transition is shorter. It

is negatively correlated with the quantity of vowel target not accounted for by the transition, t,

jd,; this is because the vowel will need to be longer when the transition is less informative,

leaving less room for the consonant. When we plug the values we used above into expressions

(8) and (9), it returns values of about 12.93 for dx and 18.23 for dy. This is consistent with what

we concluded from the graphs in figures 3.1 and 3.2.

With the analytical solution in place, we no longer need to examine cost tables or charts to

determine output forms. In what follows, the optimal values for outputs will simply be presented

as predictions of the model.

3.3 Simplex CS phenomena

At this point, we can already begin to analyze some of the phenomena from the production

experiment. Because so far we only have a cost function in place for two segments, we can't

address complexity effects yet. Some relevant patterns, however, obtain between items with the

same number of segments.
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Recall that the duration of the vowel in VC sequences depended in part on the quality of the

transition from the vowel in the into the initial vowel of the target word. When that transition

came in the form of a glottal stop (henceforth closure), the following vowel was much longer

than when the transition consisted of creaky or modal formant transitions (henceforth no

closure). In the current framework, we characterize these two realizations as containing no onset

consonant x but only a transition. The difference between the two realizations lies in the vowel

transparency of the onset transition, as indicated by the vowel-recoverability coefficientj. By

hypothesis, formant transitions contain more information about a following vowel than silence

followed by glottal release does; as such, we assign a higherj value to tokens with the former

realization.

Comparing the outputs of the model for VC stimuli withj set at 0.1 and 0.8, we predict that items

with higherj should have shorter vowels. This means that the steady-state modally-voiced vowel

should be shorter following a glide or formant transition realization than following a realization

with closure. The predictions match the data rather closely. We retain the parameters (exceptj)

from the previous section here: wi = 1; w2 = 2; t, = 30; tx = 15; ty = 25; di = 4; k = 0.2.
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Figure 3.3. Data from the production experiment (left) compared to the predictions of the

constraint system (right) concerning the variable realization of VC items. 'Trans' indicates the

duration of all portions of the syllable up to the onset of modal voicing with steady formants.

Note that this analysis assumes a somewhat arbitrary two-way distinction between stop and glide

realizations. In reality, the transitions observed in this context fall along a continuum, as

discussed in section 2.3. 1. We could incorporate this observation by assigning a continuum of]

values to different realizations, which would correlate with the duration and auditory clarity of

formant structure contained therein; the general prediction would be that realizations with higher

vowel transparency are followed by shorter steady-state vowels. There are several reasons why

we haven't made such fine-grained distinctions here. The various realizations are not balanced

across subjects, vowels, or presumably speech rates; some of the realizations are represented by

very few tokens; consequently, we probably don't have enough data for statistical testing of all

the observed patterns; and the binary distinction used here is enough to illustrate the qualitative
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predictions of the model. A follow-up experiment might elicit a larger number of VC items and

come to more statistically solid generalizations about the relationship between onset realizations

and vowel duration, but the current study was not designed for this purpose.

In figure 3.3 and throughout this chapter, we are more concerned with qualitative patterns of

greater and lesser duration than with precise quantities. We've chosen values for the duration of

transitions and vowels that are similar in their proportions to the ms values from the production

experiment, to make such graphs easier to compare. With further fine-tuning of target durations,

constraint weights, and recoverability coefficients, we could come trivially close to predicting

the actual values observed in the experiment, but this wouldn't gain us anything for the reasons

discussed in section 3.1. What is important in the above graphs is that we observe shorter steady-

state vowels following one type of phonetic realization than following another, and that the

model, when supplemented with a perceptual hypothesis about the two realizations, predicts that

this pattern should hold.

A second pattern concerns the vowel-recoverability coefficient k associated with the vowel

transparency of an adjacent consonant steady-state. We can check the model's predictions for the

difference between consonants with a high value for k and a low one. Again, we predict a shorter

steady-state vowel adjacent to the segment with a higher coefficient. By hypothesis, liquid

steady-states contain more vowel information than stops. The graph below compares consonants

with k values of 0.1 and 0.4 to actual data from onset /ph/ and liquids, respectively. The

qualitative match, again, is rather good. We assume for the purposes of the simulation that a

vowel adjacent to no onset consonant will simply be realized with its target duration.
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Alternatively, we could say that it will be realized with a duration that is a weighted average of

the segment and syllable targets; this makes no qualitative difference in what follows.
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Figure 3.4. Data from the production experiment (left) and model predictions (right) for

consonant manners with high (rightmost bars) and low (center bars) vowel-recoverability

coefficients. For production data, durations are in seconds. The upper bars for vowel-initial

items represent closure and transition durations, in realizations where these categories are

applicable.

The qualitative predictions of the model for simplex CS effects match experimental data fairly

well. In order to generate predictions for complex CS, a few more analytical steps are necessary.

These are outlined in the next section.
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3.4 Complex CS phenomena

3.4.1 Scaling up the optimization routine

The same optimization procedure outlined above will apply to cases with three, four, and up to n

segments. However, every time we add another segment there will be more partial derivatives to

solve and each one will be more complicated. For this reason, the discussion here will be limited

to three segments. Making the same simplifying assumptions as we did earlier, the cost function

for a CCV syllable consisting of string xyz will be as in (10). We simplify further by assuming

that the adjacent consonant contains vowel information but the non-adjacent one does not. This

assumption is plausibly incorrect, but the simplified function will suffice to derive predictions.

(10) wi - (dx + dy + dIt+ dz - t) 2 + W2 - (dx - t,)2 + w2 - (dy - ty)2 + w2 - (kdy + jd + dz - tz)2

In expression (10), the first quadratic term concerns syllable duration; the other three terms

concern outer consonant x, inner consonant y, and vowel z, respectively. The partial derivatives

of this expression are shown in (11).

(11) f'z(x) = 2wi - (dx + dy + dt + dz - t,,) + 2W2 - (dx - t,,)

f'x,z(y) = 2wi - (dx + dy + dt + dz - t0) + 2w 2 - (dy - ty) + 2w 2k - (kdy ± jd+ + dz - tz)

f'xy(z) = 2wi - (dx + dy + dt + dz - t) + 2w 2 - (kdy + jd+ + dz - tz)

Each of these expressions treats one segment duration as a constant and the other two as

variables. Conceptually, they characterize how the cost changes as a function of two segment
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durations, while holding the third constant. Following the same procedure as before, we solve

out for dz in terms of the constants and the durations of the other two segments. The answer is:

(12)

dy - (w 2 - ((k+1) * k + 1) + 2wi) + 2widx + dt - (w2j - (k + 1) + 2w1 ) - w2ty - w2tz - (k + 1) - 2wit0

w2 - (k+l) + 2wi

It should already be clear that the equations and the algebra involved in this analysis are a fair bit

more complicated than the previous example. The rest of the system of equations is shown in

appendix 3A. The subsequent steps involve substituting the expression in (12) back into one of

the derivatives in (11) to solve for y in terms of x, then repeating this solve-and-substitute

process until one of the partial derivatives can be expressed solely in terms of a single variable.

Setting that derivative equal to zero allows us to solve for that variable solely in terms of the

constants, and the remaining variables can then be bootstrapped from the first one.

3.4.2 Incremental CS

The model as it is currently stated will always predict CS when an extra segment is added into

the syllable. This is because avoiding egregious violations of the syllable target will always

justify some amount of segment shortening; changing the weights of the constraints or the

vowel-recoverability coefficients will only affect how much shortening is observed: higher

coefficients for adjacent intervals result in more shortening.

114



We retain the parameter setting from the preceding sections: wi = 1; w2 = 2; t0, 30; tx = 15; ty =

25; dt = 4; k = 0.2; j = 0.4. We assume as well that the two consonants in a cluster have the same

duration target values. These settings will derive the following phonetic realizations for a V -

C1V - C2C1V triplet:

Duration trading
relations

40

3 35

30 - - - -J C2 I
425 - ilC1

20 - iT

10-

V CV CCV

Syllable Type

Figure 3.5. Incremental CS as predicted by the constraint system.

This analysis, then, accounts for cases where incremental CS is observed. If the vowel-

recoverability coefficient k or the weight of the syllable constraint were higher, we would predict

more incremental CS. As currently formulated, however, the analysis can't account for the cases

where no incremental CS is observed. To explain those cases, we need to import an assumption

from the Klatt (1979) duration model. In that model, linguistic objects are associated not only

with an inherent target duration, but a minimum duration past which they may not shorten. This

corresponds to the idea that a segment must have some minimum duration if its presence and/or

quality is to be detected. If this standard idea is incorporated into the model, we predict that for
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some pairs of comparable items CS will not be observed, because the vowel will be unable to

shorten any more without crossing the minimum duration threshold. In what follows, this will be

referred to as afloor effect. Note that the effects here correspond to recoverability floors rather

than duration floors, because they can be partially satisfied by external cues.

One way to incorporate floor effects into the model is to simply recast the vowel-duration

constraint as a discontinuous function that penalizes durations above the minimum in its normal

fashion, but assigns maximum cost to any durations below the minimum. Consider how this

affects candiate evaluation if we set k to 2, w, to 5, the floor threshold to 20, and keep all of the

other values the same. The cost function now looks as shown in the two figures below:

SQP
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150
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12.3
10.5

S Consonant

Vowel Duration - d 7.0 duration
Vowel Duration

Figure 3.6. Cost function for a CV syllable with a vowel floor, in three dimensions (left) and

viewed as a relief map from above (right).

The minimum recoverability requirement has the effect of throwing up a 'wall' in durational

space. If the vowel target only depended on the vowel proper, this wall would be perpendicular

to the vowel axis; because of the vowel-recoverability coefficient, however, it is oriented at a
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slight diagonal in durational space. For this particular set of values, the wall hasn't blocked off

the bottom of the cost function's bowl; the optimum here is still the same as it was before.

Consider what happens, however, when we add another consonant in:

11

10.5
-10

- 95

1000 -- 9
94X 8.5 0

880NI

760

cost 700, 6.5
640 6

520t 10.55
46094.

4 Consonant3

C ~ Duration c nM I

Vowel Duration Vowel Duration

Figure 3.7. Cost function for a CVCC syllable with a vowel floor, in three dimensions (left) and

as a relief map from above (right). C2 duration held constant at 5.5 units.

The wall has now 'cut off what would have been the bottom of the bowl in a model without

floor effects. In other words, the minimum vowel duration keeps the grammar from selecting a

compressed form that would otherwise have been optimal; the grammar in some sense doesn't

have access to duration patterns that lie on the other side of that wall. The vowel-recoverability

coefficients, because they affect how much of the minimum duration needs to be filled by

steady-state vowel duration, correspondingly affect the location and orientation of the wall in

durational space. Adjusting the vowel-recoverability coefficient k has the effect of changing both

the absolute position and angle of the wall relative to the vowel duration axis. This, in turn,

affects which part of the original cost function's bowl is 'cut off from the grammar'. The result is
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that consonants with different values of k induce different amounts of incremental CS: the higher

the k value, the more incremental CS is observed.

Shown below are model predictions and actual data for liquids and obstruents in CVC and

CVCC syllables. The obstruents show no incremental CS, while the liquids do. The crucial

conditions for deriving a difference in the presence of incremental CS between different manners

of consonant are as follows: the consonants or their transitions differ in their vowel-

recoverability coefficients; and the CVC form for the consonant with lower k is sufficiently close

to the vowel floor to preclude further vowel shortening.

The values for this particular simulation are wi = 1000; w2 =10; t, = 35; tx,y = 11; ty = 25; d,= 4;

j = 0.4; vowel floor is 23.1; consonant floor is 7. The vowel-recoverability coefficient k is set at

0.1 for obstruents and 0.6 for liquids. These values were arrived at by attempting to minimally

modify the values used in earlier sections; the floor values are fine-tuned to derive zero

shortening in the low-coefficient case.
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Figure 3.8. Production data (left) and model predictions (right) for obstruents and liquids in

CVC and CVCC syllables. Durations for production data are in seconds. In predicted data, 'V'

= vowel; '0' = obstruent; 'L' = liquid.

Note that in the production data shown above, the transitions from vowel to liquid are clearly

longer than those from vowel to fricative. This observation is confounded, however, by the

different measurement criteria used in the two contexts: boundaries generally track F3 for /r/, and

different combinations of Fl and F2 in other contexts. If the difference in transition duration is

reflecting a real perceptual property rather than measurement differences, then the model's

predicted asymmetry in CS shown here would hold a fortiori, because the prolonged transitions

in the liquid case would contain more vowel information.

As it stands, the analysis of floor effects relies on what are essentially separate constraints for a

segment's target duration and its minimum duration. This is not entirely desirable, because it

attributes to the grammar two independent ways of penalizing the same property, namely making

a segment too short. It would be possible to unify these two constraints by stating them as an
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asymptotic hyperbola function. Such a constraint penalizes segments in proportion to the

reciprocal of how far they deviate from the minimum. As a segment gets shorter and shorter, the

assessed cost 'ramps up' slowly. At a certain point near the minimum, cost spikes suddenly and

approaches infinity. This is shown in two views below; the logarithmic scale makes it easier to

see the slow change in cost at values well above the target (which is now the same as the

minimum), while the normal scale makes it easier to see the sudden spike in cost near the target.

Hyperbolic duration constraint, target = Hyperbolic duration constraint, target =
10 10

100000000 - .120000000 - - - --.

10000000100000
10000001
1000000

100000 80000000

10000 60000000 - -
1 0 0 0 - - -...................00

100 - 40000000

10 -20000000

9 10 _ 0Ji1L.
915 10 10.5 11 11.5 12

0.01 -- --------- 20000000

Duration Duration

Figure 3.9. Hyperbola function for a duration constraint, with a target of 10. Cost is shown on a

logarithmic scale on the left, on a normal scale on the right. This particular constraint assesses

cost equal to the reciprocal of the segment's deviation from target raised to the fifth power.

Negative costs, corresponding to segments shorter than the minimum duration, are declared to

be equal to 108.

This type of constraint has several desirable conceptual properties. It reflects a 'hard' floor past

which no segment can shorten (as the cost would be infinite), and predicts that added duration

above the floor will reduce the cost of candidates, but will generate diminishing returns the more

the segment is lengthened. Shown below is a cost function for CVC syllables and duration
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predictions of a model with hyperbola constraints for obstruents and liquids. It turns out that this

system can only simulate the experimental data with different weights for the vowel-duration

constraint and the consonant-duration constraint. Distinguishing between the two types of

segment constraint might be necessary in any system in order to make precise quantitative

predictions about the magnitude of effects. Values are as follows: wI = 5000; w2c = 1; w2v -

5000; t0 =33; tx,y =0; ty =20; d= 4; j=0.4.

Duration trading relations
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C duration 13. c
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Syllable Type V duration

Figure 3.10. Duration predictions (left) and CVC cost function (right) for a system with the

hyperbola segment-duration constraints introduced above.

Although these constraints are formally and conceptually more elegant than the 'brute force'

option of stipulating a floor value as in the earlier system, they also entail several practical

difficulties. First and foremost, the cost functions generated by such a system are orders of

magnitude more difficult to analyze than the earlier system. This is because expressions with

fractions have more complicated partial derivatives, in turn requiring more complicated algebra

to solve out the resultant system of equations. We can reach approximate solutions for particular
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values of constants by analyzing charts as in the sections above, but, as mentioned in those

sections, this is inefficient and unreliable. It also turns out to be rather difficult to fine-tune the

balance between how fast the cost assessed by various constraints ramps up as candidate forms

approach the minimum duration. This is why the analysis required separate constraint weights

for consonant and vowel target constraints. For these reasons, we will continue to use the

parabola constraints that were introduced first.

3.5 Other asymmetries

Several other asymmetries were observed in the production data: liquids induce more

incremental CS in coda than in onset position; nasals induce incremental CS in onset but not

coda position; and vowel steady-states are shorter following /sp/ clusters than following /ph/. For

the first two cases, this may be explained if the vowel-transparency of the consonant steady state,

represented here by coefficient k, differs systematically between onset and coda position. In that

case, the predictions would be much the same as the asymmetries in incremental CS addressed in

the preceding section: more CS for higher values of k. This might be plausible for liquids, due to

the articulatory differences between initial and final liquids discussed in section 2.4.1: liquids

involve weaker tongue-tip constrictions in final position; plausibly, this could allow the vowel to

influence the acoustic signal more. If this is the correct explanation, however, it would predict

the same asymmetry for nasals, because they display the same tongue-tip constriction

asymmetries. Instead, we found that they induce incremental CS in onset but none in coda

position.
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Because explanation of these asymmetries in terms of the perceptual properties of consonant

steady-states are problematic, we should also entertain the possibility that they are due to

asymmetries in transitions between contexts. As mentioned in section 2.4, liquid-vowel

transitions in onset position are overlaid by fewer liquid gestures than comparable transitions in

coda position. This is true as well for nasals, but the relevant property is that nasalization

intrudes more upon a preceding vowel than a following one. So the perceptual properties of

transitions may prove a more useful explanation of the observed production asymmetries. In this

section, we demonstrate that perceptual differences in the vowel-transparency of transitions

could in principle explain those effects.

For liquids, there was an asymmetry with regard to syllable position: incremental CS was greater

in coda position than in onset position. The hypothesis put forward to explain this asymmetry

was that transitions between vowel and liquid contain more information about the vowel in coda

position than in onset position. In the current model, this hypothesis is represented as a

difference in the transition vowel-recoverability coefficientj between the two contexts. Shown

below are production data and model predictions for this onset-coda asymmetry. Parameters for

the model are the same as above except forj: wi = 1000; w2 = 10; t, = 35; tx,y = 11; ty = 25; dt =

4; k = 0.6; vowel floor is 23.1; consonant floor is 7. Values forj are set to 0.6 in onset position

and 0.8 in coda position.
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predictions (right) for liquid-driven incremental

This simulation shows that a difference in the amount of vowel information contained in pre- as

opposed to post-vocalic transitions could be used to explain the observed differences in vowel

duration between the two contexts. The production-data graphs also show that the steady state of

the consonant tends to be longer in CVCC items than in CVC items; recall, however, that this

effect is confounded with measurement differences due to the following segment, and is common

to all liquid and nasal items.

Another syllable-position asymmetry was observed for nasals. There is incremental CS for

clusters involving nasals in onset position, but not in coda position. It was hypothesized that this

may be due to a difference in the informativity of transitions adjacent to nasals between onset

and coda position.
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These facts can be accounted for by attributing a higher vowel-recoverability coefficientj to n-V

transitions than to V-n transitions. Shown below are production data and model predictions.

Parameters for the model are w, =1000; w2 =10; t =33; ty= 11; ty = 25; di=4; k=0.2; vowel

floor is 21.7; consonant floor is 7. Values forj are set to 0.8 in onset position and 0.1 in coda

position.
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Figure 3.12. Production data (left two graphs) and model predictions (right) for nasals in onset

and coda position. Durations for production data are in seconds.

One final effect concerns items with obstruents in onset position. We observed a tendency for

singleton voiceless stops to be associated with longer steady-state vowels than /sp/ clusters. This

is not a straightforward incremental CS effect, because the two sets of items differ in more than

just the number of segments contained in the syllable. They also differ in the realization of those

segments: the singleton stops involve aspiration, while the clusters instead contain modally-

voiced formant transitions into the vowel.
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This could plausibly reflect the presence of the /s/ in clusters, which might contain some vowel

information even though it is not directly adjacent. The hypothesis to be explored here, however,

is that vowel steady-states are shorter adjacent to formant transitions because formant transitions

contain more vowel information than aspiration does.

If we treat aspiration as a transition between stop and vowel, we would assign it a lower vowel-

recoverability coefficient than the formant transitions in the /sp/ cluster. This corresponds to the

hypothesis above that modally-voiced formant transitions contain more vowel information than

aspiration. The grammar as currently formulated could predict the observed pattern based only

on a difference between the informativeness of transitions; this is shown below. In terms of the

model, this contrast is formally identical to that between a singleton consonant with a low value

for the transition vowel-recoverability coefficientj and a cluster with a higherj value. As such, it

is equivalent to the contrast between Vn and snV in the previous simulation; parameters are

identical to those used above.
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Figure 3.13. Production data (left) and model predictions (right) for aspirated stops and /sp/

clusters. Durations for production data are in seconds.

An additional difference is visible in the production data in figure 3.13: aspiration is generally

longer than formant transitions. Even when such a difference is input into the model (in the form

of different fixed transition durations), it can still predict that the vowel adjacent to the /sp/

cluster will be shorter. This result holds as long as the total vowel-recoverability term from the

transition, jdt, is greater for /sp/.

3.6 Task-specific effects and isochrony

In chapter 2, we noted that many previous experiments on compression effects have used reading

tasks such as word lists or a single repeated carrier sentence. It was hypothesized that using a set

of rhythmically identical stimuli may result in speech that is artificially isochronous and displays

compression effects that are not characteristic of natural speech. Indeed, the less-isochronous

speech elicited in the production experiment failed to display some of the compression effects
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that have been found in earlier studies. For instance, Munhall et al. (1992) find incremental CS

for obstruent clusters in coda position, a result that was not replicated in the current study.

We discussed a number of reasons that the results of these experiments may have come out

different. One possibility is that there really was some incremental CS with obstruent-obstruent

clusters in this study, but they weren't detected because the variance was higher than previous

studies. If this or one of the other explanations discussed in chapter 2 is the correct one, than

nothing further need be said about the differences. However, the isochrony explanation is a way

to explain the differences between experiments while still accepting the validity of all reported

results; as such, it is worth demonstrating that this explanation can in principle work. In this

section, we illustrate how these differences might arise from effects that are specific to highly

rhythmic, isochronous speech.

The facts to be accounted for are that obstruent clusters fail to display incremental CS in natural

speech, but display incremental CS in more rhythmically-constrained speech. The analysis

developed in the previous sections already accounts for the cases where no incremental CS is

observed. So we require a theory of how additional CS effects could arise in rhythmically-

constrained speech.

One account of these effects relies on a task-specific production constraint that acts upon the

output of the grammar.3 We can think of the outputs of the grammar, which are the input to a

3 Note that we could equally well posit an isochrony constraint that is part of the grammar and
affects the parameters (i.e., constraint weights) used by a speaker in any given situation. We
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speech task, as a series of timing units that have relative durations assigned to them by the

grammar, but do not have absolute durations, which depend on speech rate and sundry

performance factors. Isochrony, then, can be conceived of as a manipulation of speech rate at

various points in an utterance; this manipulation will create effects that look like compression,

but don't have their roots in the grammar at all.

In this type of analysis, three repetitions of the carrier phrase 'please say X twice' with different

target words might be represented as below:

please say dis twice please say disp twice please say dif twice20 15 35 35 20 15 40 35 20 15 35 35
Figure 3.14. Relative temporal representation of three repetitions of a carrier sentence with

different target words. Boldface numbers represent relative duration in arbitrary units.

The tendency toward isochrony in multiple repetitions can be characterized as a tendency to keep

the temporal interval between each element in a sentence and its corresponding elements in the

adjacent sentences equal. So, for instance, isochrony would favor keeping the interval between

please in the first sentence and please in the second sentence equal to the interval between please

in the second sentence and please in the third sentence. Exactly where the cognitively relevant

interval begins and ends, and how it should be measured, is a controversial question that has no

universally accepted answer. For concreteness, we'll assume that the relevant interval begins and

develop this extra-grammatical version instead because it is simpler and could in principle be
applied to domains other than speech, such as text-setting or hand-clapping.
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ends at the temporal midpoint of words; this is probably a simplification, but it won't affect the

conclusions of the analysis. Virtually any characterization of the relevant interval will result in

longer measurements when a longer target word is contained within that interval; this is the only

necessary condition to derive the type of compression shown here.

When target words in various sentences are not assigned the same relative duration by the

grammar, preserving isochrony will require some kind of adjustment to the speech stream. This

is shown in figure 3.15, where unequal target words result in relative duration differences

between consecutive intervals of the type relevant to isochrony.

please say dis twice please say disp twice please say dif twice
20 15 35 30 20 15 45 30 20 15 35 30

interval i = 100 interval j = 110

K interval k = 110 interval 1= 100

Figure 3.15. Illustration of the intervals that isochrony acts upon. Isochrony would favor

keeping interval i equal toj and k equal to L. Boldface numbers represent relative duration in

arbitrary units.

Let us assume that relative durations are turned into absolute durations when they are assigned a

speech-rate coefficient, a real number that is multiplied by relative duration. This may be a

simplification, but again, it won't affect our conclusions. Given this implementation of speech

rate, the only way to preserve isochrony will be to either produce the longer target word disp at a

faster speech rate or produce the shorter target words dis and dif with a slower speech rate. These
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solutions are illustrated in figure 3.16. This figure assumes that the domain of speech rate

manipulations is the word; larger or smaller units would work equally well.

Figure 3.16. Using speech rate to preserve isochrony by shortening the longer target word (top)

or lengthening the shorter target words (bottom). Boldface numbers represent relative duration

in arbitrary units, speech-rate coefficient, and absolute duration in arbitrary units, from top to

bottom.

The result of the isochrony constraint is that inherently longer target words are produced at a

faster speech rate than inherently shorter target words. Simplifying again, we'll assume that the

speech-rate coefficient applies equally to all parts of a word; the only crucial part of this

assumption, however, is that speech rate has some effect on vowel duration. Given this theory of

isochrony, we predict the following forms for dis and disp under isochrony:
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Figure 3.17. Incremental CS induced by the isochrony constraint, in a case where the grammar

alone would not predict it.

The vowel, as well as all of the other components, in disp shorten to make it the same duration as

dis. This is despite the fact that the grammar itself predicted no incremental CS for these two

items.

This serves as a demonstration that overly rhythmic speech could induce compression effects

that are not characteristic of more naturalistic speech. It suggests that we should be very cautious

in drawing conclusions about temporal patterning from data that are elicited in such conditions.

The implementation of speech rate and isochrony here is simplified, but the point still stands.

This approach derives dramatic, complete isochrony. In fact, the effects in the Munhall et al.

study were small; most were on the order of 5-10 ms. We could model partial isochrony by

expanding the formalism to include competing weighted constraints on isochrony. Such a model
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would also be able to derive a tendency towards evenly-spaced words, but not complete

isochrony. This might emerge from competition between the pressure to be isochronous and, for

instance, a dispreference for sudden large changes in speech rate. Such a system would not

fundamentally change the conclusions of this section, that the duration of a longer and shorter

target word will be shifted so the two are closer to each other.

3.7 Conclusion

In this chapter, we've developed a formal, constraint-based analysis of compression effects in

English. The analysis relies on the logic of the weighted-constraint system, whereby the phonetic

form of linguistic items is shaped by trying to find the best compromise between a set of

conflicting pressures on timing. For the case of CS, those pressures are duration targets for

segments on the one hand and larger units on the other.

As more segments are 'crowded' into a syllable, the analysis predicts that all of the segments

inside the syllable will shorten to some extent, and the syllable itself will lengthen to some

extent. We also proposed a minimum inherent duration past which segments can not shorten

under any circumstances. CS will not occur when segments are close to their minimum

durations.

Asymmetries in CS between different types of segment, or the same segment in different

contexts, are analyzed in two ways, both concerning perceptual properties. The hypothesis

proposed here is that part of the duration requirements for a segment can be satisfied by portions
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of the speech stream that are not contained in that segment itself. For instance, the duration target

by a vowel can be satisfied by information about that vowel contained in an adjacent transition or

consonant.

For the grammar to produce outputs that are qualitatively similar to the data from the production

experiment, we needed to make a series of assumptions about the relative vowel transparency of

several parts of the speech stream. Those assumptions are:

* Steady states of liquids contain more information about an adjacent vowel than steady

states of obstruents.

e In onset position, nasal steady states or transitions or both contain more vowel

information than those of obstruents, but not in coda position.

- Liquid steady states or transitions or both contain more vowel information in coda

position than they do in onset position.

- Formant transitions following /sp/ clusters in onset position contain more vowel

information than aspiration following /p/, or /s/ and the transient of /p/ contain more

vowel information than just the transient of /p/, or both.

The analysis developed here relates these perceptual facts to compression effects: vowel steady

states can shorten more when there is more information about them dispersed in the surrounding

context. So, for instance vowels can shorten more next to liquids than they can next to

obstruents.
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If the vowel is already close to its minimum duration when adjacent to only one obstruent, we

predict that there will be no incremental CS when a second obstruent is added. This is exactly

what was reported in the production experiment from chapter 2. Because liquids contain more

vowel information, the vowel will not be as close to its minimum duration when adjacent to a

single liquid. When a second consonant is added, we do predict incremental CS. This is the

fundamental asymmetry that was found in the production experiment.

Other asymmetries in compression, between nasals in onset and coda position, liquids in onset

and coda position, and /ph/ versus /sp/ items in onset position, were attributed to some

combination of differences in the vowel-recoverability coefficients of the consonants 'proper'

and the coefficients for transitions between consonant and vowel in the two positions. The

analysis here is able to predict patterns of differential incremental CS based on either the

consonants themselves or their transitions.

When coupled with a simplified model of isochrony and speech rate, the analysis here can also

predict the differences between the current production study and previous studies. While the

current study found no evidence for CS in obstruent clusters, previous studies have. Although

there are several plausible explanations for why these differences might have arisen, we chose to

explain them in terms that would allow us to accept the reported results of all studies, rather than

positing erroneous effects stemming from methodological problems or missing effects due to

variability.
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The important difference is that those studies used more rhythmically repetitive tasks, such as

word lists or a single short repeated carrier sentence. The analysis of the differences between

studies relied on proposals about the extra isochrony involved in the earlier studies. When the

outputs of the constraint system are fed into a separate, task-specific system for enforcing

isochrony, compression effects may emerge that were not present in the output of the grammar

itself. In other words, we can reduce the differences in results between experiments to a

difference in tasks.

In the next chapter, we describe an experiment meant to test the perceptual hypotheses laid out

here. The experiment requires subjects to identify a vowel based only on the adjacent consonant

or on that consonant and part of the transitions to the vowel. If the asymmetries in compression

discovered in chapter 2 turn out to be mirrored by asymmetries in perception, we should strongly

prefer a theory that relates the two sets of facts, such as the one developed in this chapter.
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Equations for solving the three-segment optimization problem

We begin with the cost function:

(1) f(x, y, z)= w - (dx+ dy++ d-t) 2 +w2 - (dx - tx) 2 + w 2 - (dy - ty) 2 + W2 (kdy + jdt + dz - tz) 2

The partial derivatives for x, y, and z, respectively, are as follows:

(2) f'yz(x) = 2wi - (dx + dy + di + dz - t) + 2w2 - (dx - t)

(3) f'x,z(y) = 2wi - (dx + dy + dt + dz - tj) + 2w 2 - (dy - ty) + 2w 2k - (kdy + jdt + dz - tz)

(4) f 'y(z) = 2wi - (d, + dy + dt + dz - tj) + 2W2 - (kdy + jdt + dz - tz

Solving out for z in terms of x and y:

dy - (w2 - ((k+l) - k + 1) + 2wi) + 2widx + dt * (w2j - (k + 1) + 2wi) - w2ty - w2 tz - (k + 1) - 2wit,
(5) z =

w2 * (k+1) + 2wi
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We use this solution to solve out for y in terms of x:

W22 - (k+1) - ((dx - tx) - (k2 + k + 1) - kty -jdt + tz)
+ 2wiW2 - (dt - (k - (k + 1) - di * (k+2)) + dx - (2k2 + 3k + 2) -t (k2 +2k +2)- kty + tz -(k +2)- kt -(k + 1))

+ 4wi2 - (dx - (k+1) - tx + dt - (k -j) - t, + tz - kt,)
(6) y= K=2

2wjw 2 - (k2 -2) - w 2
2 . (k + 1) - 4w]2 -(k- 1)

Finally, we use the expressions in (5) and (6) to solve for x solely in terms of the constants. The solution is:

(2wiw2 -(k+1) + 4w 2 w2) -(dt -(l-j) + ty -(1-k) + tz - t) + tx -(2wiw22 -(k2-k 3-4) - 2w 2
3 -(k+1) + 4wi 2w2 -(2k-k 2 -2))

(7) x =
2wiw2 - (k2 -2) -w22 - (k + 1) -4wi 2 - (k-i1)
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4 An experimental investigation of vowel recoverability from consonants

4.1 Introduction

4.1.1 Preliminaries

The experiment in chapter 2 found that patterns of incremental CS differ across consonants.

Liquids drive incremental CS, while obstruents do not. Nasals drive incremental CS in onset

position but not in coda. For liquids, the incremental CS effect is slightly larger in coda than in

onset position. In chapter 3, we developed a grammar that is capable of characterizing these

asymmetries; that grammar relied on several assumptions about the perceptual properties of

consonants and transitions. In this chapter, we describe an experiment that will test those

perceptual hypotheses. The general finding is that patterns of compression in language

production mirror asymmetries in speech perception.

The hypothesis put forward to explain compression asymmetries is that the amount of vowel

shortening allowed in any context depends on how much perceptual information about that

vowel is present in the context itself. For instance, we hypothesized in the preceding chapters

that liquids contain more information about an adjacent vowel than obstruents do; for this reason,

the interval of 'pure' vowel that is not overlapped with the adjacent consonant can shorten more

next to a liquid than next to an obstruent.

The experimental hypotheses to be tested here, then, have to do with differences in relative

sensitivity to vowel contrasts between cases where the surrounding context is an obstruent and

cases where it is not. Although a fair number of researchers have studied vowel identification
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from adjacent obstruent noise, we know of no previous studies that have investigated subjects'

ability to identify vowels from an adjacent nasal or liquid.

The general hypothesis to be tested is that patterns of CS can be explained by the distribution of

vowel information over time. When adjacent segments contain more information about a vowel,

the steady-state of that vowel can shorten more; the adjacent context helps satisfy the duration

target of the vowel. Patterns of CS in production should be mirrored by patterns of sensitivity in

perception.

Based on the asymmetries in production discovered in chapter 2, we constructed a grammar in

chapter 3 that generated the following predictions about perception:

" Steady states of liquids contain more information about an adjacent vowel than steady

states of obstruents.

* In onset position, nasal steady states or transitions or both contain more vowel

information than those of obstruents, but not in coda position.

- Liquid steady states or transitions or both contain more vowel information in coda

position than they do in onset position.

" Formant transitions following /sp/ clusters in onset position contain more vowel

information than aspiration following /p/, or /s/ and the transient of /p/ contain more

vowel information than just the transient of /p/, or both.

In this chapter we attempt to test these predictions. The experimental paradigm used here is

identification of forward- and backward-gated stimuli. Utterances of the same vowel are
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recorded adjacent to several consonants of interest. The consonants are then extracted from

recordings and played to subjects without the adjacent vowel. Subjects are asked to identify

which word these truncated stimuli came from, which involves an implicit identification of the

vowel. In addition, successive 'gates' add back in small intervals of the transition between vowel

and consonant, making the task easier at each successive gate. Examining the incremental

increases in sensitivity at each gate allows us to test hypotheses about the amount of vowel

information in transitions.

One difficulty that arises in interpreting the results of the experiment pertains to how gross,

global hypotheses about the 'vowel transparency' of various items ought to be reflected in

binary-choice identification data from specific pairs of vowels. Each vowel in a language, of

course, contrasts with a number of other vowels; it is not necessarily the case that all of these

contrasts are affected in the same way by differences in the quality of an adjacent consonant.

When we say that liquids contain more vowel information than obstruents, what exactly does it

mean in perceptual terms?

Given that consonantal differences may have different effects on different vowel contrasts, it

seems unlikely that statements about relative vowel information should hold for every single

vowel contrast in the language. Even if we could test every contrast, which would be an

enormous task, it's plausible that we would find different effects for different contrasts.

In the absence of a perfect characterization of the function from gross vowel perceptibility to

contrast-specific sensitivity, we will work with the assumption that something like 'a
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preponderance of the evidence' from various vowel pairs should agree with our predictions

before we count them as confirmed. In practice, this is a fuzzy and relative notion: the more

vowel pairs that a generalization is valid across, the more confident we can be in that

generalization.

We predict, then, that subjects should show more sensitivity to liquid stimuli than to obstruent

stimuli in both onset and coda position, in the condition where only the consonant is played to

them (referred to as the zero gate). This will be easy to test by simply examining the data from

the zero-gate condition. We expect sensitivity to vowel contrasts to be higher with liquid stimuli

than with obstruent stimuli.

The theoretical model in chapter 3 also made a number of predictions that may hold of the

consonant steady state, the transition, or some combination of the two. For instance, it was

hypothesized that the steady-state of a vowel following a /sp/ cluster may be shorter than that

following /ph/ because the formant transitions in the /sp/ case are more 'valuable' than aspiration,

in the sense of contributing more to vowel perceptibility. Alternatively, the duration asymmetry

may hold simply because the /s/ contains information about the following (non-adjacent) vowel.

And of course, the duration effect could follow from some combination of these two putative

perceptual effects.

The current study also examines two gates where a portion of the transition between vowel and

consonant is included in the stimuli. This allows us to test for any large differences between

segments in the increment to sensitivity given by the transition. We expect, then, that for each
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vowel pair, either sensitivity at the zero gate should be higher for /sp/ than /p/ items, or the

transition increment in sensitivity associated with /sp/ items should be larger than for /p/, or both.

Similarly, we hypothesized differences between onset and coda position in the 'value' of either

transitions or steady states for /n/ and liquids. We predict that zero-gate sensitivity or transition

increases or both should be greater in coda than in onset position for liquids. For /n/, which

patterned with obstruents in coda position (no incremental shortening) but did show shortening

in onset position, we predict that zero-gate sensitivity or transition increases or both should be

greater than those for /p/ in onset position, but not coda position.

4.1.2 Previous studies

Several previous experiments have shown that subjects are able to identify vowels at a level

above chance from adjacent obstruents alone. These studies have used both gating and 'silent-

center' stimuli, where some or all of the vowel in a CVC word is removed. Here I summarize the

findings and note a few analytical issues that figure prominently in our analysis of the results.

In English, subjects identify vowels at a level above chance from both preceding and following

voiceless stops (Winitz et al. 1972). The preceding stops included aspiration; the following ones

consisted only of the burst. They also perform above chance with whispered transients, not

including frication, from preceding voiced stops (Repp & Lin 1989). Subjects identify vowels at

a level above chance from preceding (Yeni-Komshian & Soli 1981) and following (Whalen

1983) sibilant fricatives, both voiced and voiceless. Whalen reports that subjects are above
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chance at discriminating rounding contrasts and height contrasts. Nine of the ten subjects have

higher percent correct for roundness than for height.

Silent-center studies, where almost the entire vowel is excised from CVC stimuli, also provide

relevant data. Parker & Diehl (1984) report that subjects perform above chance with /dVd/

stimuli that have 90% of the syllable duration removed, and replaced with either silence or

broadband noise. Rogers & Lopez (2008) report above-chance identification with /bVb/ stimuli

that only preserve 10 ms after the initial burst and before the final closure.

The same type of results are reported for a few languages other than English. Krull (1990)

reports above-chance vowel identification from preceding voiced stops in Swedish. Bonneau

(2000) reports above-chance vowel identification from preceding voiceless unaspirated stops in

French. Smits et al. (2003) and Warner et al. (2005) report that subjects show good

discrimination of height and backness contrasts from the first third of a vowel, above 60% TI (a

sensitivity measure that ranges from 0 at chance to 100 at perfect disrimination) in Dutch. For

CV sequences, subjects appear to identify the vowel at a level above chance by the time they

hear 2/3 of the preceding consonant, if not sooner.

Some of these studies, though not all, appear to show a ceiling effect when parts of the excised

vowel are added back into stimuli. At some point, subjects reach maximum sensitivity (close to

100% correct), and adding more vowel material back into the stimuli generates diminishing

returns. For studies that report relevant data, it appears that the ceiling tends to occur within the

first 40% of the vowel's duration.
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4.1.3 Reanalysis of previous studies

The studies discussed above have shown that subjects can identify vowels based on adjacent

obstruent noise alone. Given that the current experiment will attempt to extend these findings to

other consonants, and will require choices about which vowels to examine, it would be useful to

know how sensitive subjects are to various vowel contrasts. With the exception of the Warner et

al. (2005) study on Dutch, however, the analyses in these papers are not set up in a way that

allows us to conclude anything about sensitivity to contrasts. We digress to discuss the analytical

issues in greater detail, because they apply to the current study as well.

The problems stem from two related conceptual issues: bias and sensitivity. Roughly speaking,

these studies fail to distinguish between the likelihood of responding to some stimulus a with

response a and the likelihood of responding a in general; this is the issue of response bias. In

addition, these studies fail to distinguish between subjects' accuracyfor a given category and

sensitivity to a given contrast.

All of the statistical analyses in these papers, with the exception of Whalen's, ignore the question

of bias completely when they analyze data. If they find that subjects respond a relatively often to

stimulus a, they conclude that a is easy to identify. In reality, we don't know how much of these

effects are attributable to properties of a stimuli until we compare how often subjects respond a

to non-a stimuli. Factoring out bias is a crucial preliminary to learning about similarities and

differences between stimuli.
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Even after factoring out bias, it doesn't make a lot of sense to talk about accuracy for a given

category. Surely, a subject's likelihood of correctly responding a to an a stimulus depends in

part on what the other possible responses are. For instance, in experiments that use vowel sets

such as {i, a, u}, we generally find that accuracy is very high for /i/ stimuli. But when we add in

vowels such as {e, e, i}, this effect disappears. What these results are telling us is not that i/ is

more identifiable as a category than other vowels; they are telling us that [i-a] and [i-u] are more

distinct contrasts than [u-a], or that there is a bias to respond /i/ more often than /u/ and /a/, or

some combination of the two. All identification errors are not equal and are not generally equally

likely; the likelihood of correctly identifying a stimulus depends in part on a subject's sensitivity

to the contrasts that involve that stimulus. It doesn't make sense to attribute sensitivity to a

category; sensitivity is a property of contrasts.

To learn about sensitivity to contrasts, we must construct a model that distinguishes sensitivity

from bias. Toward that end, some results from three of the studies reviewed here were

reanalyzed: Whalen 1983, Parker & Diehl 1984, and Repp & Lin 1989. These studies either

provided raw count data or provided enough detail that count data could be reconstructed. For

the first two studies, those data were analyzed using a hierarchical log-linear regression model.

The model attempts to predict the log frequencies of each stimulus-response pair by fitting

parameters that represent relative bias for each category present in the experiment and sensitivity

to each contrast present in the experiment. Because it wasn't possible to reconstruct data for each

individual in the experiments, these models inflate the number of observations and consequently

the probability of Type I error (rejecting a true null hypothesis); however, they at least provide us

with an account of the data that takes bias and sensitivity into account. The Repp & Lin study
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was reanalyzed using Luce's (1963) Biased Choice Model, which also distinguishes between

bias and sensitivity. Significance tesing was not carried out for this data set; rather, the distance

and bias parameters of the model were examined to confirm that they are consistent with the

other experiments. Appendix 3A contains a detailed description of each of the reanalyzed

experiments.

The general finding that subjects are able to tell apart some vowels based only on their

surrounding contexts at a level above chance still stands; in fact, this finding shouldn't be

affected by bias or sensitivity anyway. The only possible exceptions are 'one-step' height

contrasts, contrasts between vowels that differ only in being high as opposed to mid. In the

Whalen study, which used only fricative noise, subjects are not significantly above chance for

the [u-o] contrast. In the Parker & Diehl study, which included a few periods from each edge of

the vowel, subjects do appear to be significantly above chance for [i-e], but are significantly

more sensitive to the [I-A] and [C-A] contrasts. In the Repp & Lin study, distances parameters for

one-step height contrasts are by far the lowest; four out of 18 are actually slightly negative,

indicating below-chance discrimination.

Subjects are more sensitive to backness/rounding contrasts than they are to height contrasts. In

the Whalen study, [i-o] and [i-u] are the two most discriminable contrasts. When the effects of

rounding, height, and the combination of the two features are taken into account, the independent

effect of rounding is significant but the independent effect of height is not. In the Repp & Lin

study, backness/rounding contrasts, with the exception of [o-a], are among the most
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discriminable in the experiment. Two-step height contrasts such as [i-e] and [e-o] are nearly as

discriminable in the context of /d/ and /b/, but much less discriminable in the context of /g/.

Acoustic analysis provided by the authors suggests that this is probably due to the fact that /g/

transients show extensive, even allophonic, coarticulation along the backness/rounding

dimension, while the height dimension is compressed.
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Figure 4.1(a). Distance/sensitivity parameters fit to Whalen's (1983) data by a log-linear model.

(b-d). Distance parameters for a subset of Repp & Lin's (1989) data, derived from the Biased

Choice Model. Graphs show d values for vowels differing in one step along the height dimension

(b); differing along the front/back dimension (c); differing in two steps along the height

dimension (d). The data in (b-d) are organized by preceding consonantal context. Bars that go

off the top of the chart represent stimuli that are never confused; they have arbitrarily high d

values.
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Figure 4.1 shows some characteristic sensitvity data from two of the studies. Subjects tend to be

more sensitive to contrasts involving rounding than those not involving rounding; this may

suggest that obstruent noise carries more cues to rounding than to other contrasts. One-step

height contrasts, which generally don't involve rounding, are the most difficult to discriminate.

These studies provide some useful lessons for constraining the design of the current experiment.

They show that subjects can tell the difference between many vowels using only the information

present in an adjacent obstruent. They are most sensitive to contrasts in backness/rounding and

height contrasts that involve more than one step along this dimension; they are less sensitive to

contrasts that involve only one step along the height dimension. When portions of the vowel are

added back into the signal, they reach maximum sensitivity (close to 100% correct) sometime in

the first 40% of the vowel.

4.2 Methods

We constructed pairs of stimuli that differed only in their vowels: the vowel pairs tested are [e-

o], [i-e], and [a-u]. The idea was to check a small number of vowel contrasts that represent the

different types examined in prior studies: one differing along the backness/rounding dimension,

which is generally found to be the most discriminable type of contrast; one differing in more than

one step along the height dimension as well as rounding, which should be roughly comparable to

the backness/rounding contrast; and one differing only in one step on the height dimension,

which is generally found to be the least discriminable type of contrast.
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Stimuli consisted of all combinations of the relevant vowels with the consonants {r, 1, n, p, sp} in

onset position and {r, 1, n, s} in coda position, matching the consonants tested in the production

study. A few stimuli were excluded: the pair [es-os], because there is no single onset consonant

that could combine with both sequences to make a word; and the sequence /ur/, due to its

dubious phonotactic status. To replace [es-os], we included [ep-op]; although it is probably not

the case that /p/ and /s/ contain the same vowel information, the /p/ will at least be comparable to

onset stimuli.

Two native speakers of American English from eastern Massachusetts (1 female, 1 male) were

recorded producing three repetitions of each stimulus item in the carrier sentence 'I bet ___ is the

answer'. All recorded materials were segmented following the procedures of the production

experiment, detailed in sections 2.1-2.2 and appendix 2A. One token of each stimulus from each

speaker was selected for inclusion in the experiment. For each item, the selected token was the

one with consonant and VC/CV-transition durations closest to each subject's mean for the item.

The selected tokens were segmented into several gated stimuli. The first one, referred to as gate

0, contains only the acoustic steady state of the consonant, with none of the transition to or from

the vowel. Succeeding gates incrementally added 20-27 ms. of the VC/CV transition and, in

some cases, vowel steady state (the shortest transitions in the experiment were 35-40 ms). For

any given vowel pair, the gate durations were chosen so as to be maximally close to the marked

boundary between the transition and the vowel steady-state for those tokens where this

consideration was relevant. For instance, in the [i-e] onset condition, the shortest transitions
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clustered in the 45-50 ms range (for obstruents and /n/); a gate duration of 23 ms was used,

meaning that the second-gate stimulus is truncated within 5 ms of the marked transition-vowel

boundary.

The end result is that all stimuli (across consonants) within each crossing of vowel-pair and

syllabic position have the same gate duration, but the gate duration varies slightly between vowel

pairs. The stimuli were truncated at the zero-crossing closest to the chosen gate duration; this

resulted in differences of up to 2 ms in gate duration between items in the same condition. Some

of the stimuli that included stops were edited to remove a noticeable electrical buzz from the

closure portion of the recording. The figure below shows a pair of recordings used to derive

stimuli for the experiment, and the segmentation strategy for creating those stimuli.

e trans g3 g2gU r o trans g3 g2Igt

0 0.3146 0 0.267
Time (s) Time (s)

Figure 4.2. Tokens of/er/ (left) and /or! (right) used in the experiment. Text grid shows three

gates taken from the right edge of the vowel-consonant transition. Non-gate segmentation based

on F3. 0-gate stimuli would consist of only the portion marked 'r' here; successive gates would

add the segments labeled 'g' above to that original 'r', one 'g' section at each gate. Those gate
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sections are part of the transition; in this case, even the longest gate (number 3) wouldn't

include the entire transition. The 'left over'part of the transition is labelled 'trans'.

The intensity and FO of the stimuli were not equalized in any way. Any differences between

segments in these respects may themselves affect the process of determining the quality of an

adjacent vowel, and eliminating differences could alter the identification results in ways that

don't reflect natural speech.

Impressionistically, the sounds were rather easy to distinguish by the second gate, 40-55 ms into

the transition. Short pilot studies were conducted for each vowel pair using gates 0, 1, and 2. The

results indicated that most subjects obtained 80-90% accuracy by the second gate. At gate 0,

accuracy ranged from slightly below chance to around 70%, depending on subject and stimulus.

Subjects performed around chance at all gates for the reverse-gating (coda consonant) [i-e]

condition; this is presumably because /e/ is followed by an offglide that is nearly identical to /i/.

This condition was dropped from the study.

Due to the large number of stimuli, and the difficulty of focusing on an identification task for

long periods of time, the stimuli were split into five groupings that we refer to as separate

conditions. Each subject participated in one of these conditions. Each condition examined a

single vowel pair with either onsets or codas. Each block consisted of one stimulus from each

speaker, with each consonant-vowel pair, at each gate. In the onset conditions, for instance, each
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block would cross two speakers, two vowels, six consonants, and three gates, for a total of 72

trials. As each audio file was played, a choice of two words appeared on the screen; subjects

used a left and right button to identify the corresponding word as the one they had heard part of.

Subjects were given 1 second to respond; after this, the message Timeout! appeared at the center

of the screen for 300 ms. Stimuli were randomized within each block; subjects were given the

option of taking a break after each block except the first. The first block consisted of training

without feedback, with gate 3 of each stimulus item (containing more transition/vowel content

than any of the actual test items) played once. Impressionistically, the design was rather fast-

paced and tended to be surprising at the beginning; the training block was included for this

reason.

All word choices were existing lexical items of English; this sometimes required an orthographic

consonant that wasn't present at all in the auditory stimulus. For instance, subjects were played a

fragment of /ep/ and asked whether it was cape or cope, despite the fact that there was no hint of

a /k/ in the recording. Wherever possible, the choice of this 'fixed consonant' was held constant

across target consonants within each vowel pair (e.g. care-core, kale-coal, cane-cone, cape-

cope); in a few cases this wasn't possible. Word pairs were not balanced for frequency; this

would probably have been impossible given the nature of the task, and we can correct for

frequency effects by interpreting the results with a statistical model that separates the effects of

bias from the effects of similarity. Lexical bias, for instance, might lead subjects to respond with

One consonant in addition to the five mentioned above, /s/, was present in the onset experiment
but was not analyzed in the end, because it was not directly relevant to the production patterns
from the previous experiment.
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knee more often than neigh, but this would show up in the statistical model only as increased bias

toward /i/ in the context of /n/, not as increased sensitivity to the contrast.

For the [e-o] onset condition, 15 subjects were tested. For the [a-u] coda condition, 10 were

tested. For the other three conditions, 11 subjects were tested. All reported being native speakers

of American English who had never been diagnosed with any speech, hearing, or reading

disorders. All subjects were compensated for their time. The tests were run in the Behavioral

Research Lab at MIT, with up to 10 subjects simultaneously at workstations separated by

dividers.

The results were analyzed using a logit mixed effects model, implemented with the lme4

package (Bates 2007) in the statistical platform R. This model is similar to the linear mixed

effects model discussed in chapter 2, except that it attempts to model binary, categorical data in

terms of the binomial distribution. The model is fit using the Laplace approximation. The

dependent variable was one of the two vowel responses. Random effects were speaker and

listener. The model included a fixed effect for each stimulus vowel, each consonant, and the

interactions between them. In such a model, the effects that correspond to sensitivity will be

those that include a term for a stimulus vowel. For instance, the effect of 'stimulus /o/' in the [e-

o] condition, where the dependent variable is 'response /o/', will tell us how much more likely

subjects are (in log odds) to respond with /o/ when the stimulus is /o/ than when the stimulus is

/e/. Further fixed effects included whether or not each trial followed an error on a previous trial,

whether it followed a timeout on a previous trial, and the number of trials that had passed since

the beginning of the experiment. Adding trial number to the models resulted in singular
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convergence for the model-fitting algorithm, indicating that the data is not complex enough to

justify a model with a separate variable for trial number. This variable was therefore excluded

from subsequent models.

Separate models were constructed for the zero-gate data and the transition data. After

constructing a baseline model as described above, variables corresponding to sensitivity terms

were removed from the model if they were clearly not significant, with a p-value greater than

0.1. This allows us to generalize about sensitivity to different categories of contrast; it also

makes the model easier to fit. Variables were added to each model to check whether within-

manner differences between consonants (e.g. /I/ vs. /r/) were significant. By-subject slopes were

then added to the model, to capture differences in bias and sensitivity between subjects and

between speakers. As there were more subjects than speakers (just two in the latter case), and

variation between subjects was much greater than that between speakers, by-subject effects were

tested first.

The second model, which examined the increase in sensitivity when transitions were added back

into the zero-gate stimuli, was somewhat more complicated. This models tested specific

hypotheses about differences in 'transition increments' to sensitivity across combinations of

consonantal manner and syllable position. The modeling routine was identical to that described

above, except fixed-effect interactions were added for the second gate and the particular lexical

item presented was included as a random effect. This allows us to test whether the increase in

sensitivity between gates in one condition is significantly different from another condition. This

model compares differences between differences at many levels of recursion. For instance, we
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might start with the difference between sensitivity to stimuli with /n/ and stimuli with singleton

obstruents; then ask if that difference is larger at the second gate then at the zero gate; then ask if

that difference between differences is larger in onset than coda position. Recall as well that

sensitivity itself is equated with a difference in response likelihoods across two conditions. As

such, the effects of interest are often interactions of relatively high order. This is a logical

consequence of the fact that we're interested in differences in the way that segments and context

interact with contrasts, rather than subjects' absolute ability to tell one vowel from another in

adverse conditions.

Significance-testing is complicated in logit mixed-effects models. The lme4 software package

returns a Wald Z statistic, which can be used to derive a p-value. However, there is some concern

that this method is anti-conservative, tending to increase the probability of Type I Error. An

alternative approach, if one is comparing hierarchically nested models, is to perform a chi-square

test of the likelihood ratio between models with and without the relevant level of the variable;

this approach is taken by Bates (2008), for example. This method generates higher p-values than

those associated with the Z statistic, suggesting it is less anti-conservative than that method.

Statistics reported here come from the likelihood ratio test. Fixed effects will be reported with an

effect size P, representing the change in log odds associated with that effect; a chi-square statistic

from the likelihood-ratio test, and a p-value from that test. Random effects, which are also

evaluated with a chi-sqare test of likelihood ratios, are reported with just the latter two values.
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4.3

4.3.1

Results

Zero-gate stimuli

Among the zero-gate stimuli, those that include no vowel or transition, there is generally higher

sensitivity to vowel contrasts for stimuli containing liquids than any other kind. Stimuli with /n/

and /p/ induce the lowest sensitivity to vowel contrasts, and stimuli with /s/ and /sp/ induce an

intermediate level of sensitivity.

The figure below shows sensitivity to vowel contrasts across stimuli with different manners of

consonant; the sensitivity parameters were fit by a logit mixed model. The data are averaged

across all factors except for consonant manner; as such, they fail to show some large differences

between conditions. Those differences will be discussed below, but we briefly consider gross

patterns of sensitivity first.

Figure 4.3. Sensitivity to zero-gate stimuli by consonant, averaged across subject, speaker, and

condition. The vertical axis shows the sensitivity parameter fit to each contrast by the model, in
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terms of differences in the log odds of a given response across stimulus categories. 'Obs' =

singleton obstruent (/s/ or /p/ depending on condition); 'Liq' = liquid.

The descriptive results here bear on two of our experimental hypotheses. They broadly confirm

the hypothesis that liquid steady states contain more vowel information than other segment types.

And they suggest that /sp/ clusters contain more vowel information than singleton obstruents

(although a tightly-controlled comparison to aspirated stops in onset position won't come until

later in this section). Recall that we also posited a possible asymmetry betwenn /sp/ and /p/

pertaining to transitions; we test this below.

To test the other experimental hypotheses, we will need to examine vowel sensitivity as a

function of the consonant in the stimuli and the particular condition. Shown below are the results

across conditions. Note that some stimuli are not distinguished in this graph, because the model

did not include parameters to distinguish between them. These were cases where collapsing

hierarchically (e.g. one parameter for coda position rather than separate ones for [e-o] in coda

and [a-u] in coda) did not significantly decrease the fit of the model, i.e., cases where it was

appropriate to generalize across related experimental items.
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Figure 4.4. Sensitivity to zero-gate stimuli by consonant and condition. The vertical axis shows

the sensitivity parameter fit to each contrast by the model, in terms of differences in the log odds

of a given response across stimulus categories. The name of each condition consists of the two

vowels tested in the condition followed by 'Ons 'for consonants in onset position or 'Cod'for

coda. Only parameters that significantly improved the model fit are reflected here; contrasts

corresponding to the other parameters are collapsed. The only exception is the difference

between liquid stimuli in [i-e] and [u-u] onset conditions, which is significant but is averaged

here for visual ease.

Figure 4.4 shows that patterns of relative sensitivity are broadly similar across all conditions

except for [e-o] onset, represented by the leftmost series of bars. Except for that condition,

subjects are most sensitive to vowel contrasts in stimuli with liquids. Sensitivity to stimuli with

singleton obstruents and /n/ is statistically indistinguishable. Sensitivity to stimuli with onset /spi

is higher than stimuli with onset /ph/
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All of these patterns are different in the [e-o] onset condition. Here, sensitivity to items with

obstruents (singleton and cluster) is highest. Sensitivity to stimuli with /n/ and liquids is

extremely low; performance with /n/, in particular, is not significantly above chance.

As noted above, distinctions between sensitivity parameters were removed from the model in

hierarchical fashion if they did not significantly contribute to the fit. This was done because it

makes it easier to see generalizations that hold across multiple related items, and because it

allows the model-fitting algorithm to run faster and converge in fewer iterations. The latter point

is relevant because there are a large number of distinctions to be tested in this study and a large

number of data points for each item; fitting the models discussed here, especially those with

more random effects, is time-intensive.

The final model makes no distinction between sensitivity parameters in the [i-e] and [a-u] onset

conditions, except for liquid stimuli. It makes no distinction between sensitivity parameters for

singleton obstruents and nasals, except in the [e-o] onset condition. Finally, it makes no

distinction between sensitivity parameters for items containing /1/ and /r/; they display the same

pattern with regard to other consonant manners, and adding a separate level of manner-dependent

sensitivity to distinguish them does not significantly improve the model fit.

Subjects are more sensitive to vowel distinctions from stimuli involving liquids than stimuli

involving obstruents in four of five conditions. In onset position before [a-u], the difference is

significant: P3= 2.18, x2 = 45.1, p < 0.01; we refer to this as the baseline effect. In onset position

before [i-e], the difference is significantly smaller than the baseline effect: P = -1.21, x2 = 10.4, p
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< 0.01. In coda position following [e-o], the difference is significantly larger than the baseline

effect; = 1.16, x2 = 6.7, p < 0.01. In coda position following [a-u], the difference is

significantly smaller than the baseline effect: p3= -1.32, x2 = 11.2, p < 0.01. In onset position

before [e-o], the effect is reversed: subjects are more sensitive to vowel contrasts from stimuli

involving obstruents. This reversal of the baseline effect across conditions results in a significant

three-way interaction: 13= -3.04, x2 = 43.8, p < 0.01. In the two conditions where the difference

is significantly smaller than the baseline, there is still a large effect in the expected direction.

Subjects are significantly more sensitive to vowel contrasts from stimuli with onset /sp/ than

stimuli with onset /p/ in at least two of the three relevant conditions; the third is ambiguous. In

onset position before [i-e] and [a-u], the difference is significant: 13=0.815, x2 = 11.3, p < 0.01.

In onset position before [e-o], the effect is somewhat smaller; this interaction does not reach

statistical significance in the final model.2 This means that two of the three conditions show

significantly better performance on stimuli with /sp/ than stimuli with /p/, and there is no clear

evidence that the third condition differs from them, although the advantage for /sp/ is somewhat

smaller in that condition.

The difference in sensitivity between items with singleton obstruents and items with /n/ is not

significant in any of the conditions except [e-o] onset. Here, subjects are significantly less

2 This interaction was near-significant before by-subjects effects were added into the model (p-
value of 0.03 with Bonferroni-corrected ax of 0.0125); it was retained for this reason. After
accounting for subject variability with regard to the /p/-/sp/ comparison, however, the effect of
this interaction shifted to become clearly non-significant (p > 0.05 with c = 0.0125).
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sensitive to vowel contrasts from stimuli with /n/ than stimuli with /p/: p = -1.12, X2 = 21.8, p <

0.01.

Subjects differ on their overall accuracy, as well as their relative accuracy for liquid and /sp/

items, respectively, as compared to the other items in the experiment. Adding these differences

into the model as by-subject random slopes significantly improved the fit, as measured by a chi-

square test of likelihood ratios. For overall accuracy: 2= 80.7, p <0.01. For sensitivity to vowel

contrasts from items with liquids: X2 = 24.9, p < 0.01. For sensitivity to vowel contrasts from

items with /sp/: X2 = 20.4, p < 0.01.

Some subjects essentially couldn't perform the zero-gate task. The subject with the largest

negative random slope, for instance, identified 49% of the zero-gate stimuli correctly; chance

performance is 50%. The subject with the largest positive intercept, in contrast, correctly

identified 69% of the zero-gate stimuli. Most subjects lay in between these two extremes.

Subjects also varied in how much of an advantage stimuli with liquids had over stimuli with

singleton obstruents. If we take the grand average for this parameter from the first model used

above, which ignored differences in sensitivity for condition, as a rough guide, it suggests that 55

of the 58 subjects showed an advantage for items with liquids.

Similarly, subjects differed with respect to the advantage of /sp/ over /p/ items. We take the fixed

effect sizes for the various conditions as a baseline to examine whether individual subjects

showed the effect or not. For the [i-e] and [a-u] onset conditions, where the effect was largest, 21
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out of 22 subjects showed an advantage for /sp/. For the [e-o] onset condition, only 8 out of 15

subjects showed the effect; this is why adding in subject effects changed the value of the fixed

effect comparing these conditions. The remainder of the subjects in the [e-o] condition had either

no effect or the opposite one.

Overall sensitivity to stimuli produced by the female speaker was somewhat greater than for the

male speaker. Adding this difference into the model significantly improves the model fit: X2 =

25.2, p < 0.01. The difference, averaged across all stimuli, is on the order of 0.4 logits. This

could mean that the two speakers produced systematically different stimuli, or it could be an

idiosyncratic property of the particular tokens that were recorded.

Finally, there was one significant task-related effect. Subjects performed significantly worse on

trials following an incorrect answer on the previous trial; in other words, errors tended to come

in bunches: P = -0.23, x = 10.1, p <0.01. This suggests that subjects may sometimes be aware

when they answer incorrectly and that this may throw off their next trial. There was an effect of

similar magnitude and in the same direction for trials following a timeout, a failure to answer on

the preceding trial. This effect had much higher standard error associated with it, however, and

did not reach statistical significance. This may be because, even if missing a chance to answer

sometimes breaks a subject's concentration, the timeout message itself introduces an extra 300

ms between trials to recover.
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4.3.2 Transitions

Futher analysis examined the increase in sensivity from adding CV and VC transitions back into

the truncated stimuli from the preceding section. These data are relevant to the experimental

hypotheses concerning the difference between /p/ and /sp/ and syllable-position asymmetries for

liquids and /n/. In each of these cases, we predicted that one type of stimulus should have an

advantage over the other pertaining to consonant steady-states, transitions, or both.

Examining the zero-gate stimuli, we found some evidence for the expected difference between

/p/ and /sp/: all three pairs of vowel examined displayed the expected pattern; it was statistically

significant for two of them. For liquids in onset and coda, one comparison came out in the

expected direction: sensitivity to stimuli with liquids is much higher in coda than in onset

position for [e-o], both in absolute terms and as compared to obstruents in the two conditions.

The other comparison came out in the opposite direction: sensitivity is higher in onset than coda

position for [a-u]. For /n/ in onset and coda position, none of the predicted asymmetries were

observed: relative sensitivity between /n/ and singleton obstruents was the same in all conditions

except [e-o] onset. In that condition, sensitivity to stimuli with /n/ was significantly smaller than

to stimuli with /p/.

This means that several of our hypotheses will need to be confirmed from transition data, as they

were not confirmed from steady-state data. Shown below is what we have confirmed so far.
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/p/-/sp/ yes as expected
/n/-obstruent,
onset vs. coda no 1 of 2 no effect, 1 opposite
liquid-obstruent,
onset vs. coda partially 1 of 2 as expected, 1 opposite

Table 4.1. Summary of results so far, showing what remains to be explained by transition data.

At the very least, then, we hope to find further evidence for the liquid and nasal asymmetries in

the transition data. Patterns of sensitivity increase across gates for /n/, /sp/, and singleton

obstruents are shown below; liquids will be discussed later in this section. Each series of lines

shows sensitivity increasing from gate 0 to gate 1 and from gate 1 to gate 2. Note that the data

from gate 1 are not used in the statistical analysis, because they include a proper subset of the

acoustic material in gate 2 stimuli, and we're mainly interested in the total boost to sensitivity

across the two gates. We do present these data below, however, to confirm that the the

identification function increases as more acoustic material is added in, and to clarify the shape of

that function.
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Improvement with transitions by consonant
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Figure 4.5. Sensitivity by consonant, condition, and gate. The vertical axis shows the sensitivity

parameter fit to each contrast by the model, in terms of differences in the log odds of a given

response across stimulus categories. The name of each condition consists of the two vowels

tested in the condition followed by 'ons'for consonants in onset position or 'cod'for coda.

There are several things to notice about these data. Nasals show a larger transition increment in

sensitivity than /p/ does in at least two of the three onset conditions, with a very small effect in

this direction in the third. In coda, however, the increment in sensitivity associated with nasals

appears to be slightly smaller than that for singleton obstruents. Differences between /p/ and /sp/

are smaller and not so easy to see here, but /sp/ appears to be associated with a larger increment

in two of the three onset conditions.

A slightly more abstract way of viewing the data, which will be more germane to the statistical

models described here, examines the magnitude of the transition increment associated with each

type of stimulus in each condition. That data is shown below, with liquid data now added in; the

figures here reflect the total increase in sensitivity from gate zero to gate two.
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Transition increments by manner and condition
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Figure 4.6. Transition increment to sensitivity by consonant and condition. The vertical axis

shows the change from gate 0 to gate 2 in sensitivity parameters fit to each contrast by the

model, in terms of differences in the log odds of a given response across stimulus categories. The

name of each condition consists of the two vowels tested in the condition followed by 'ons'for

consonants in onset position or 'cod'for coda.

The effects mentioned above for /sp/ and /n/ are slightly easier to see in this presentation. We can

also ask about the asymmetries predicted for liquids. The prediction, recall, was that liquids

should have a greater increment relative to singleton obstruents in coda than in onset position.

This is true for the [a-u] conditions: the obstruent transitions are much more informative than the

liquid ones in onset, but the effect is smaller in coda. For the [e-o] conditions, however, the

pattern is opposite.

The final model collapsed very few fixed-effect parameters for transition increments; partly, this

is because there were a number of interactions across conditions that were almost but not quite

significant; we retained them in case by-subject adjustments changed the picture. With regard to
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transition increments, the coda nasals pattern together; the singleton obstruents in [a-u] onset, [a-

u] coda, and [e-o] coda conditions pattern together; and the /sp/ items in [a-u] onset and [i-e]

onset conditions pattern together. All other contrasts were retained, although not all of them were

significant in the final model.

The reversals between /n/ and singleton obstruents noted above are significant. In [a-u] onset

condition, nasals have a significantly larger transition increment than /p/: p = 1.62, X = 15.3, p <

0.01. In [e-o] onset condition, the effect is smaller, but not significantly so. In both [a-u] and [e-

o] coda conditions, the pattern is reversed: obstruents show a larger transition increment than

nasals. This reversal gives rise to a significant four-way interaction between sensitivity, gate,

consonant quality, and coda position: p = -2.28, x2 = 26.4, p < 0.01.

As we noted above, items with /sp/ display a somewhat larger increment than items with /p/ in

two conditions. Figure 4.6 shows that the pattern reverses in the third condition. Neither the

differences between /sp/ and /p/ nor the reversal between conditions reach statistical significance.

For the comparison of liquid and singleton obstruent stimuli, patterns are more complicated. In

[a-u] onset condition, items with /1/ show a much smaller increment than items with /p/: s = -

1.93, X2 = 43.4, p < 0.01. This effect is much smaller in [a-u] coda condition, leading to a

significant four-way interaction between sensitivity, consonant quality, gate, and coda position: p

169



= 0.84, x2 = 5.1, p = 0.02. This asymmetry is not observed in [e-o] onset and coda conditions;

there, liquid stimuli show a larger increment in onset position and a smaller one in coda.

Similar to the zero-gate model, subjects vary in their overall sensitivity and are more sensitive to

contrasts from the female speaker than the male one. Both effects significantly improve model

fit. For by-subject random slopes: x2 = 634, p < 0.01. For by-speaker random slopes: x2 = 6.1, p

< 0.05.

Also agreeing with the zero-gate model, subject perform significantly worse on trials following

an incorrect response on the previous trial: p = -0.26, x2 = 14, p < 0.01. In this model, the effect

of a timeout on the preceding trial came out nearly significant: p = -0.28, x2 = 2.8, p = 0.09. As

with the zero-gate model, the standard error associated with the timeout effect is larger than that

associated with the incorrect-answer effect, although the size of the effects is comparable.

4.4 Discussion

The findings from this study broadly support the hypotheses put forth in chapter 3 to explain the

production asymmetries observed in chapter 2. Those hypotheses are repeated here:

e Steady states of liquids contain more information about an adjacent vowel than steady

states of obstruents.

* In onset position, nasal steady states or transitions or both contain more vowel

information than those of obstruents, but not in coda position.
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- Liquid steady states or transitions or both contain more vowel information in coda

position than they do in onset position.

- Formant transitions following /sp/ clusters in onset position contain more vowel

information than aspiration following /p/, or /s/ and the transient of /p/ contain more

vowel information than just the transient of /p/, or both.

As for the first hypothesis, it holds in four out of the five conditions examined here. In the fifth

condition, [e-o] onset, /p/ steady states appear to contain more information about the following

vowel than liquid steady states, contra our hypothesis. However, in that condition, transitions in

the liquid stimuli contain more information about the following vowel than aspiration in /p/

stimuli. It is possible that this difference in transitions is large enough to overcome the effect

from the steady state. It is also possible that, although liquids and their transitions offer an

advantage over obstruents for height contrasts, they do not for backness contrasts. Due to the

onset/coda articulatory asymmetries for /1/ discussed in chapters 2 and 3, we would expect the

tongue-tip constriction to be more overlapped with the vowel in onset than in coda position. This

may constrain how much the tongue body is able to move to track the backness contrast in a

following vowel. With a coda /1/ or a /p/ in any position, this constraint would not hold. In this

case, the availability of incremental CS for onset clusters with liquids would be a consequence of

the fact that liquids contain more information about the height of the following vowel, though

not necessarily its backness.

The second prediction, concerning /n/, is confirmed in the transition data. For steady states, we

found no significant differences between /n/ and singleton obstruents except for [e-o] onset
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condition, where the effect went in the opposite direction from what we predicted. In the

transition data, however, transitions between nasals and vowels contained more information

about the vowel than singleton obstruent transitions in onset position, and less in coda position.

This held for both the [e-o] and [a-u] contrasts. The [i-e] contrast also had a large transition-

driven increment in sensitivity for stimuli with /n/, although we have no coda data to compare it

to. Again, the unexpected steady-state result in [e-o] onset condition may have to do with the

articulatory asymmetries between onset and coda /n/ discussed in the preceding chapters, which

are broadly similar to those for /1/. And again, it is possible though not certain that the increased

information in n-V transitions relative to aspiration is enough to make up for this difference.

The third prediction, concerning asymmetries between onset and coda liquids, is confirmed

partially in the steady-state data and partially in the transition data. We predicted that the

transition increment in vowel sensitivity associated with liquid stimuli was larger relative to that

for singleton obstruents in coda than in onset position. This was true for [a-u] but not [e-o].

Because liquid steady states appear to contain less information about the [a-u] contrast in coda

than in onset position, relative to singleton obstruents, this is another case where the transition

effect would need to overcome a steady state effect. For [e-o], the transition effect is the opposite

of what we predicted. Note, however, that there was a massive asymmetry in the predicted

direction for steady states. In [e-o] coda condition, the difference between liquid and /p/ steady

states was the largest observed in the experiment; while in onset, the effect was reversed. The

evidence that compression asymmetries in onset and coda position for liquids correspond to
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perceptual patterns, then, is mixed. Although we have some suggestive results, there are also two

patterns that seem to go against the hypothesis.

The final hypothesis, concerning /p/ and /sp/, is confirmed from steady-state data. Stimuli with

/sp/ contained more information about the following vowel than stimuli with /p/ in all three onset

conditions; the difference was significant in two of them. Transitions adjacent to /sp/ also were

slightly more informative in two of three conditions, but the effect did not reach statistical

significance. The 'odd condition out' for both these effects is the [e-o] onset condition.

Although all of the predictions were confirmed to some extent, almost all of them also ran into

trouble with the [e-o] onset condition. For some of these, we mentioned plausible hypotheses

about why this might be so. But it is also possible that there was something strange about this

condition. Subjects in this condition performed far worse overall than any of the other

conditions. This is despite the fact that [e-o] is one of the easier vowel contrasts to discriminate,

according to the other experiments reanalyzed here. This may indicate that there was something

exceptional about the subjects or the stimuli in this experiment, or both. On the other hand, the

results may simply indicate that, while the predictions of the theoretical model from chapter 3

hold in general, they do not hold for every single vowel contrast.

4.5 Conclusion

The experiment described in this chapter found that many of the production asymmetries in

compression discovered in chapter 2 mirror perceptual asymmetries. The relationship between
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the two types of data is predicted by the duration grammar developed in chapter 3. That grammar

predicted that vowels shorten more when there is more information about them in the

surrounding context.

In chapter 2, we argued that compression effects are more amenable to an auditory explanation

than an articulatory one. Until now, that argument was largely a negative one: there is no clear

way to explain compression asymmetries in terms of gestural coordination, so we should seek

other alternatives. Now, however, we've shown that there is a timing grammar based on auditory

representations that can predict the attested patterns of compression; that that grammar requires

certain perceptual asymmetries to hold in order to predict the attested production patterns; and

that many of those perceptual asymmetries do, in fact, hold. The argument for an auditory

account of compression and compensatory shortening is now considerably strengthened.

Most of this thesis so far has been concerned with small phonetic differences between English

utterances. Very little has been said so far about other languages and about how the timing

grammar interacts with the system of phonological contrasts, if it does at all. In the next chapter,

we lay out a framework for how timing constraints may interact with constraints on phonological

contrasts. Cross-linguistic examples will highlight cases where timing may interact with

phonotactic licensing, and we'll see that the weighted constraint formalism is capable of

analyzing each of these cases.
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Appendix 4A

4A.1 Reanalysis of Whalen 1983

Whalen (1983) tested vowel identification using only post-vocalic fricative noise. Stimuli

crossed the vowels {i, u, o, a} with the consonants {s, z, f, 3} in coda position. Subjects identify

the vowel correctly significantly more often than chance. Using chi-square tests on contingency

tables with data pooled across subjects, he reports that subjects are above chance at

discriminating the rounding contrast and the height contrast.

Count data were reconstructed from the description of the experiment, the conditional probability

table (Table 2) in the paper, and the contingency tables (Tables 4 and 5) by feature and

consonant in the paper. The count data were analyzed with several log-linear models. All models

included terms for each stimulus (eight), and bias terms for each vowel response ({a,i,o,u}) in

each consonant context ({s, J}). Cell counts were the dependent variable in each model; different

phenomena were tested with different cell-grouping factors.

For stimulus-response identity ('subjects identify the vowel significantly above chance level'),

the grouping factor was simply whether subjects provided the correct response vowel, i.e., the

original vowel that the stimulus was adjacent to. For height and roundness, the grouping factors

were whether the subject responded with a vowel that had the correct height and roundness

features, respectively. For bias, individual terms were compared to each other by dropping

factors from the model and performing a likelihood ratio test.
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Subjects identify the vowel correctly from only post-vocalic fricatives significantly more often

than chance: : x2 = 26 on 1 Df; p < 0.0001. Whalen reports that subjects are above chance for /i/

and /u/ stimuli, but not for /a/ and /o/ stimuli. The reanalysis shows that they are significantly

above chance for /i/ and /u/ stimuli, marginally significant for /a/ stimuli, non-significant for /o/.

The Bonferroni-adjusted a criterion is 0.0125. Accuracy for /i/: x2 = 51 on 1 Df; p < 0.0001. /u/:

x2 = 9 on 1 Df; p = 0.0022. /a/: x 2 = 4 on 1 Df; p = 0.0351. /o/: x 2 = 2 on 1 Df; p = 0.1792

Whalen reports that subjects respond with vowels that have the correct height specification

significantly more often than chance; he makes the same claim for rounding. In other words,

matching the stimulus for rounding and for height each independently make responses more

likely. In the paper, this analysis is conducted with separate chi-square tests on contingency

tables for each contrast, as well as each consonant. This entails separate tests on how sensitivity

and bias are affected by roundness, by height, by the interaction of roundness with consonant,

and by the interaction of height with consonant. If any of these factors are correlated (and they

almost certainly are), a chi-square test may fail to give an accurate picture of the independent

significance of each of the effects. Also, these comparisons neglect to consider the interaction of

roundness and height.

The reanalysis shows that height and roundness do interact. To put it slightly differently, once

we separate the effect of getting the vowel completely correct, the independent effects of getting

roundness and height correct become smaller. The effect of roundness is significant: x2 = 7 on 1

Df; p = 0.0098. The effect of height is non-significant: x2 = 0.09 on 1 Df; p = 0.7605. The effect

of the interaction (equivalent to complete identity) is significant: x2 = 8 on 1 Df; p = 0.0036.
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What this means is that, considering just those responses that are not completely identical to the

stimulus (i.e., incorrect answers), subjects are not more likely than chance to get height features

correct.

These results are consistent with subjects being more accurate for roundness than height. To test

this, I compared a model that collapses the two contrasts to one that includes both. The reduced

model includes a single variable that is marked 1 when a subject gets height or rounding correct,

0 otherwise. This test shows that the difference between the contribution of the two features is

significant: x2 = 8 on 1 Df; p = 0.0045.

Response bias differs depending on the following consonant. In the /s/ condition, response bias

follows the scale a < o <u < i. In the If/ condition, bias follows the scale i < a < o <u.

Relative response bias by consonant
and vowel

140 - - -- --- -

120

100

80

M 60

C 40

20 --

s sh
Consonant

Figure 4A.1. Response bias in Whalen's data. Groups of bars represent consonant contexts;

series of bars represent vowel responses.
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Differences in bias between vowels in the /s/ condition are generally significant at two-step

intervals on the scale mentioned above. For instance, the difference between /a/ and /u/ is

significant: X2 = 8 on 1 Df; p = 0.0059. The difference between /a/ and /o/ is not. Differences in

bias between vowels in the /S/ condition show a split between rounded and unrounded: both of

the rounded vowels display significantly higher response bias than both of the unrounded

vowels: x2 > 7 on 1 Df; p < 0.005 for all comparisons. But contrasts within the rounded vowels

and the unrounded vowels are not significant.

The interaction of consonant and response bias for /i/ is significant: x2 = 12 on 1 Df, p = 0.0007.

None of the other interactions between vowel, consonant, and response bias are significant.

There is significant sensitivity (i.e., significantly above 0, which would be chance) for all vowel

contrasts except /o/-/u/. /i/-/u/ is the most distinct contrast. Figure 4A. 1 shows all contrasts; on

this scale, items three steps apart are significantly different in general, while items less than three

steps apart are not. Sensitivity to individual vowel contrasts, to height and roundness contrasts,

and in general (likelihood of correctly identifying the original vowel) does not differ between /s/

and /J/ contexts.

In sum, subjects get a significant amount of vowel information from a succeeding fricative alone.

They get more information about backness/roundness contrasts than they do about height

contrasts. They have a significant bias to respond with higher vowels when they hear an /s/ (i, u

> o > a), and with round vowels when they hear an /5/ / (o, u > i, a).
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4A.2 Reanalysis of Parker & Diehl 1984

Parker & Diehl (1984) examined identification from silent-center and noise-center stimuli; these

are stimuli that have some central portion removed and replaced with either silence or broadband

noise. The stimuli had the form /dVd/ with /i, e, u/ in one comparison set and h, e, A/ in the other.

Count data were reconstructed for 1 condition, 90% deletion, from a conditional probability table

given in appendix B. This data concerns the vowels h /, /e/, and /A/. Other data is not given. The

paper states in one place that there were 12 subjects, in another place that there were 16. I

assumed that the figure of 16 was correct. I constructed a log-linear model with bias parameters

for each vowel, a grouping variable for correct responses, and independent sensitivity variables

for each contrast.

Subjects perform significantly better than chance: x2 = 18.7 on 1 Df; p < 0.0001. They perform

above chance for stimuli containing each of the vowels: x2 > 7 on 1 Df, p < 0.01 for all factors.

They show significant sensitivity to all contrasts: X2 > 40 on 1 Df; p > 0.0001 for all factors.

They are most sensitive to // - /A/, less sensitive to Ie - /A/, least sensitive to /i - /e/. All

differences are significant: x2 > 20 on 1 Df; p > 0.0001 for all factors
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Figure 4A.2. Sensitivity in Parker & Diehl's data.

This is entirely consistent with the results from Whalen reanalyzed above: subjects are

reasonably good at extracting vowel information from adjacent obstruents (and some transition

in this case), and they recover information about backness contrasts more easily than (one-step)

height contrasts.

4A.3 Reanalysis of Repp & Lin 1989

Repp & Lin (1989) investigated vowel identification from isolated transients without frication or

aspiration. These stimuli may have artificially clear spectral properties due to lack of other noise

components which could mask them in natural speech. They tested a wider variety of vowels

than any of the other studies summarized here: consonants were {b, d, g}; vowels were {i, e, E,

X, eu, u, o 3, a}. They report that there are clear vowel spaces present in spectra of the transients,

suggesting an acoustic basis for subjects' ability to distinguish vowels based on only the

transients.
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For the first two studies, we ran statistical analyses by fitting a loglinear model. We did not do so

for this experiment. Due to the large number of items tested in this experiment, the model would

have been extremely complicated to fit and interpret. And because we don't have separate count

results by subject, the statistical tests from such a model would not be completely reliable

anyway.

Count data were instead used to create a Biased Choice Model (henceforth BCM, Luce 1963).

This model analyzes responses in identification experiments, distinguishing between sensitivity

and bias. This model does not come with any statistical tests, but it is much more straightforward

to fit and interpret than the loglinear models discussed above. The main purpose of this

reanalysis was to check that the paramters of the BCM agree roughly with the other studies.

The BCM is stated as in (1):

(1)

p(rj I s) 7 j

I ?1ikbk

It declares that the probability of reponsej given stimulus i (p(rjlsi)) is proportional to the

similarity between i andj ('igj) and the bias to respond withj (bj). The summation term in the

denominator normalizes based on all of the possible responses. I'll notate this term Z in what

follows, for visual and typesetting ease.

181



Similarity ranges from 0 to 1 and is symmetrical. The similarity between any item and itself is 1.

Given our count data, we already have the bias terms (which we equate with response frequency)

and the conditional probabilities. This means that we can solve for the similarity term 11:

Z - p(rjlsi) Z - p(rilsj)
fli =

bj bi

And because the distance between an item and itself is 1:

bi
p(rilsi) =

z

We use the second equivalence to factor the bias terms and Z out of the first, allowing us to state

similarity measures in terms of conditional probabilities:

p(rjlsi) - p(rils)
mij = sqrt

,p(rilsi) - p(rjlsj)

This gives us a measure of similarity with bias factored out. Distance or sensitivity will be

defined as the negative natural logarithm of r, a metric referred to as d.

The BCM shows that bias is generally highest for /i and lowest for /e/, but patterns change by

consonant.

182



Bias by Vowel and Consonant
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Figure 4A.3. Bias in Repp & Lin's data.

Senstivity similarly differs by consonant. For /b/ and /d/, height contrasts in the front of the

vowel space are more distinct than height contrasts in the back of the vowel space. For /g/, height

contrasts in the low part of the vowel space are much worse than height contrasts elsewhere; this

is presumably because of the bottom of the vowel space is compressed with /g/, as shown by the

acoustic analysis in the paper. Height contrasts in general seem to be more distinct with /b/ and

/d/ than with /g/.

Backness contrasts, generally speaking, get less distinct as you go lower in the vowel space. This

is not surprising given the acoustic dimensions of the space. This effect is clearest for /g/, which

has extra compression low in the space. It looks like /b/ might lead to slightly more distinct

backness contrasts than /d/ does, with the exception of /i/-/u/; this may have to do with

compression of the back of the space with /d/.
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Sensitivity to backness contrasts
by vowel-pair and consonant
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Figure 4A.4. BCM dparameters for Repp & Lin's data. Each separate graph shows a different

type of contrast: one-step height, backness/rounding, and two-step height. Negative d values

indicate below-chance performance.

The d parameters show that subjects are best at backness contrasts, less good at two-step height

contrasts (e.g. /i/ vs. /e/), and worst at one-step height contrasts (e.g. /i/ vs. /e/). The other

experiments reviewed here consistently show that backness/rounding is easier to recover than
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height, but they compare backness/rounding contrasts to one-step height. The graphs below show

that two-step height is closer to backness in distinctiveness. This is not terribly surprising;

contrasts like /i/-/u/ make use of the entire back/round dimension, while contrasts like //-/e/

make use of only a small portion of the height dimension.

The advantage for backness contrasts goes away when you consider pairs lower in the vowel

space, such as /o/-/a/. There's no way to tell whether this is because there's no lip-rounding at

issue here or because the vowel space is compressed in the F2 dimension for low vowels, but

these are very similar explanations anyway.
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5 Timing and phonotactics

5.1 Introduction

The preceding chapters have been largely concerned with fine-grained phonetic details of

English. This chapter explores how timing patterns interact with systems of phonological

contrast in English and other languages. We develop a general theory of how timing interacts

with phonological contrast, implemented in the weighted-constraint formalism introduced

earlier. We then illustrate how this system preserves the insights of previous phonetically-based

approaches to phonology, and review some novel predictions that come out of the current

approach. These predictions mainly concern long-distance interactions between phonological

objects; some of them appear to be corect, while others are more difficult to confirm. In the final

section, we discuss the challenges that the typological facts pose for the theory of timing and

phonotactics, and explore ways that the formalism might be constrained if the predictions of the

current approach can not be confirmed.

Timing patterns within and between speech sounds are relevant to many aspects of phonology.

Because constraints governing phonological contrasts make reference to the perceptual

distinctiveness of those contrasts, and the distinctiveness of a contrast sometimes depends on the

details of the timing grammar developed earlier, we predict that timing is relevant to the

licensing of contrasts. This chapter focuses on how timing affects the availability of cues to

phonological contrasts involving singleton consonants and clusters. By focusing on one small set

of phenomena in phonology, we hope to illustrate in detail how the grammar of timing might be

incorporated into phonological theory more generally.
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The line of research pursued here is part of a more general program in phonology (sometimes

called licensing-by-cue) that attempts to explain the availability of phonological contrasts

partially in terms of the perceptual distinctiveness of those contrasts (Flemming 1995, Jun 1995,

Silverman 1995, Steriade 1997, Kirchner 1998, Hayes et al. (eds.) 2004). This theory of

phonology holds that patterns of phonological contrast and neutralization are determined in part

by the presence of auditory cues that help listeners to tell segments apart. We briefly introduce

the main ideas of this approach in the next section.

5.2 A phonetic approach to phonology

5.2.1 Licensing by cue

One of the most comprehensive analyses in this tradition is Steniade's (1997) account of the

licensing of laryngeal contrasts cross-linguistically. The availability of laryngeal contrasts

appears to be subject to a universal implicational hierarchy. One step on the hierarchy consists of

the fact that every language which allows voicing contrasts in positions not immediately

preceding a sonorant segment (e.g. Khasi, Georgian) also allows that contrast in positions that

do precede a sonorant segment. In contrast, languages that allow voicing contrasts before

sonorant segments may or may not (e.g. Lithuanian, Russian) allow the same contrasts before

non-sonorant segments; in the latter context, the voicing contrast is neutralized.'

Steriade's explanation of these facts appeals to differences in the availability of auditory cues to

voicing in different contexts. Specifically, voice onset time (VOT) is an important cue to stop

1 The full implicational hierarchy has more levels. I use this single asymmetry as an illustration.
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voicing contrasts for stops; this cue can be exploited before sonorant segments, but not before

non-sonorant ones. The grammars of individual speakers reflect these speakers' knowledge about

the perceptual distinctiveness of the voicing contrast in various positions; because grammars

refer directly to distinctiveness or perceptual distance, they may favor more distinct contrasts

over less distinct ones. The task of learning a particular grammar, then, consists only in finding

the 'line' that your language draws to determine how distinct a voicing contrast must be to avoid

neutralization.

The same approach can be extended to other phonological phenomena. In particular, the problem

of sonority sequencing can also be analyzed with reference to the availability of cues in various

contexts. Sonority sequencing refers to the tendency for every syllable to contain exactly one

sonority peak, a segment more sonorous than any of the segments adjacent to it.2 One common

statement of the sonority scale is as in (1).

(1) Sonority scale

stops < fricatives < nasals < liquids < glides < vowels

Syllables that conform to sonority sequencing are syllables with a single peak; other segments in

the syllable will decline in sonority as we move away from that peak segment. Sequences such as

/klerp/, /kle/, and /erp/ conform to sonority sequencing. Sequences such as /lkerp/ do not,

2 The exact acoustic correlates of sonority are controversial, but this is not such a concern in the
account sketched here, where the notion of sonority is emergent from phonotactic patterns which
are themselves driven by cue availability.
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because both // and /e/ are local sonority peaks. This chapter will focus mainly on stops and

liquids.

Wright (2004) outlines how certain phonological strings that obey sonority sequencing principles

will tend to maximize the perceptual robustness of phonological contrasts, especially those

involving stops. One of the reasons for this is that many cues to the presence and features of

stops are contained in the transitions to more sonorous segments (e.g. liquids). In the licensing-

by-cue approach, contrasts are preferentially preserved in contexts with more cues or with more

robust cues. This entails, among other things, that stops should be allowed to participate in more

contrasts adjacent to relatively sonorous segments, and fewer contrasts adjacent to relatively less

sonorous segments. The limiting case of 'fewer contrasts' is no contrast at all: in contexts with

poor cue recoverability, the stop may not even be licensed to participate in a contrast between its

own presence and absence. In other words, stops would not be allowed to appear in some

contexts (or, depending on articulatory constraints, might be forced to appear). These would be

contexts with relatively few or relatively weak perceptual cues compared to contexts where stop

contrasts are licensed.

The presence or absence of auditory cues is itself partially determined by timing patterns. For

instance, a burst is a useful cue to the presence and features of a stop. If that stop is tightly

overlapped with a following stop, the burst may not be audible; this reduces the number of cues

available. If instead the two stops are produced with little or no overlap, both bursts will be

audible; this increases the number of cues available. So we don't fully know which cues will be

present in a given phonological string until we know the temporal qualities of that string.
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Work in the licensing-by-cue tradition has generally represented the relationship between timing

and cues in the form of hypotheses about the articulatory gestural organization of sound

sequences and some form of a preference for overlap. For instance, Steriade (1997) suggests

gestural representations for the timing of laryngeal and oral constrictions, while predicting that

those timing relationships could be changed in order to produce better cues to the laryngeal

contrast. Gordon (2001) implements a similar analysis of laryngeal contrasts in Hupa, using a

constraint that prefers overlap between adjacent segments to explain why bursts of pre-

consonantal stops may be obscured. Jun (2002), in a discussion of place assimilation, assumes

that the release of a pre-consonantal stop, and hence the timing of that stop, is governed by a

violable constraint. An important point from these approaches is that we must consider ways that

recoverability and cues could change with timing.

If we are analyzing why stop-stop clusters are not possible word onsets in English, for instance,

we must consider various ways that they could be produced if they were possible. To see this, we

begin with a schematic analysis of the difference between stop-stop and stop-liquid clusters.

Such an analysis might propose that clusters of two stops are not possible word onsets in English

because there are not enough cues to the presence or absence of the first stop. This first stop

would have no VOT or formant transitions following it, and it might have its burst covered up by

the following stop (although this is not always the case with heterosyllabic stop-stop sequences

in English). Stop-liquid clusters, on the other hand, are allowed as word onsets because the stop

will have an audible burst and VOT. This is shown in the diagrams below, which are idealized

depictions of what spectrograms for the two sequences might look like.
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closure closure vowel closure VOT iquid vowel
burst burst burst

(possibly absent) formant transitions

Figure 5.1. Schematic spectrograms for a stop-stop sequence (left) and a stop-liquid sequence

(right), illustrating some differences in cue availability. Note that the presence of and

relationship between VOT and formant transitions depend on the voicing of the stop; the

diagram on the right is meant to clearly illustrate each type of cue, but is not a likely realization

for either type of stop.

5.2.2 Temporal coordination and phonotactics

The schematic explanation above assumed that the cues available in a stop-stop sequence are

known ahead of time, simply from the fact that it is a stop-stop sequence. Of course, this is an

idealization: the presence or absence of cues is itself dependent on how much the two segments

overlap. The analysis so far assumes that, if English had stop-stop sequences as word onsets,

they would not be realized in such a way as to provide good cues to the presence of the first stop,

or that there is no way to realize the first stop that will create good enough cues to license its

presence. While these may be plausible hypotheses, they are not logical necessities.

We've proposed that stop-stop sequences can't serve as word onsets in English because there are

insufficient cues to the presence of the first stop. We could introduce more cues, however, by
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producing the two stops with an open transition between them. This is a period of time when the

first stop has already been released, but the constriction for the second stop has not yet been

formed. It would, first of all, guarantee that the release of the first stop is audible. If the stops are

voiceless, the transition is most likely to take the form of aspiration, which is itself a cue to the

presence of a stop, and also contains formant transitions that signal the presence and features of

the stop. If the stops are voiced, the transition will most likely take the form of an excrescent

vowel (referred to variously in the literature as excrescent vowel/schwa, intrusive vowel/schwa,

svarabhakti vowel, and open transition). This is a period of sonorous, vowel-like periodic sound

that contains formant structure and transitions, which will tend to increase the recoverability of a

preceding stop.

In fact, this is exactly what happens in some languages. In Montana Salish, for instance, where

stop-stop clusters are possible word onsets, they are produced with open transitions (Flemming

et al. 2007). Shown below is a recording of a Montana Salish speaker saying the word /ttwit/

'youngest'.
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Figure 5.2. An utterance of the word /tto wit/ 'youngest'from a native Montana Salish speaker.

Clearly visible in the waveform and spectrogram is an aspirated open transition between the two

initial stops. Glottalization on ?w not annotated; schwa transcribed as /e/. Audio from the UCLA

Phonetics Archive.

In between the release of the first /t/ and the closure of the second /t/ is a clearly visible (and

audible) interval of aspiration. This is an open transition. It contains aperiodic noise and formant

transitions, which serve as cues to the presence and features of at least the first stop.

If phonotactic licensing depends on cues, and cues depend on temporal coordination, then our

toy analysis of English is missing something important. It is not enough to say that English stop-

stop sequences wouldn't contain enough cues to support contrasts; we must explain why English

stop-stop sequences don't surface in a way that would contain more or better cues. In other

words, we must explain why English isn't Montana Salish.

One possibility is that there simply is no such explanation. In this view, temporal coordination is

a parameter that varies between languages and forms part of the input to the phonotactic
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grammar for an individual language. Articulatory patterns are in some sense determined 'before'

phonotactic patterns, perhaps by principles of abstract gestural coordination (Goldstein et al.

2006, Nam et al. 2009). These structures in turn determine which possibilities are available to the

phonological grammar. The desire for robust perceptual cues can not affect the basic properties

of segmental timing, because information in the grammar only 'flows' in the other direction. If

English happened to be like Montana Salish with respect to stop-stop sequence timing, perhaps

/tt3?wit/ would be a word of English.

There are several reasons why this view of the grammar can not be correct. First and foremost,

perceptual information does affect timing patterns. The preceding chapters have argued this point

at length for English. Other researchers have made similar arguments on the basis of rather

different empirical phenomena. Directly relevant to the example above, Chitoran et al. (2002)

and Wright (1996) both argue that cue preservation helps determine patterns of overlap for stop-

stop sequences in Georgian and Tsou, respectively. We return to these languages later in this

chapter.

A related reason for rejecting the 'articulation-first' model sketched above concerns the specific

constraints introduced in chapter 4. The articulation-first model stipulates differences in stop-

stop timing as an irreducible fact about English and Montana Salish. It is not related to other

facts about the grammars of these languages or explainable in terms of any independently-

observed facts. Designating temporal coordination as a primitive precludes any possibility of

explaining it with reference to other properties of speech.
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Deriving the differences between English and Montana Salish from constraints on target

durations and phonotactic licensing, on the other hand, would allow us to relate timing

differences to the ranking or weighting of constraints whose effects are independently observable

in other parts of the grammar. Duration constraints, as we've seen in the preceding chapters, are

independently needed to explain compression effects; this is true regardless of whether stop-stop

clusters are possible word onsets in English, Montana Salish, or no documented language. The

particular constraints on phonological contrast that we will introduce shortly are also

independently needed to explain phenomena unrelated to consonant clusters; for instance,

Flemming (2004) uses them to explain the prevalence of certain kinds of vowel inventories in the

world's languages. 3

In the remainder of this chapter, we integrate the duration grammar from chapter 4 with a

grammar for phonological contrast. Letting the two constraint sets interact generates a range of

predictions about how timing and phonotactics are related. Some of those predictions are

common to any licensing-by-cue approach where the pattern of phonological contrasts can affect

timing patterns; others are specific to the theory proposed here. We will examine some of those

predictions and illustrate them with cross-linguistic evidence. We focus on cluster phonotactics

to illustrate the point; the approach should of course apply to other areas of the grammar as well.

3 A third possible theory would hold that phonotactic patterns are arbitrary and/or parametric,
and the phonetic implementation module simply finds the best way to realize contrasts that are
passed on from the abstract phonology. This theory is to be a priori dispreferred relative to a
licensing-by-cue approach, because the latter explains phonological patterns with reference to
independent facts, while the former requires an extrinsic theory of both abstract symbolic
manipulations and phonetic implementation of the resultant strings of symbols. If the observed
range of phonological patterns turns out to be wildly different than what phonetic motivations
would predict, this abstract theory would be a natural fallback.
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5.3 The unified grammar

5.3.1 Contrast maintenance and distinctiveness

To model any aspect of phonotactics will require constraints that result in categorical outcomes,

i.e., stops are available in context x but not context y. All of the empirical phenomena analyzed

so far, as well as the constraints associated with them, are gradient. This section describes a

constraint system capable of unifying categorical and gradient phenomena. The general

framework and constraints were developed by Flemming (2001, 2004), though the

implementation here differs in some details.

We return to the pattern discussed in the previous section: English allows contrasts between

words like /le/ and /kle/, but not between words like /te/ and */kte/. We can reason about this

situation with the help of two principles. Contrasts between lexical items should preferably be

very distinct, as mediated by cue availability, because it makes listeners more likely to

understand what is being said. And having more contrasting sounds in a context is always

preferable, because it allows us to discriminate between lexical items using fewer phonological

units and hence less time. From this perspective, it would be preferable to allow /to/ and /kto/,

because this offers us more possibilities for contrast; but it is also preferable for /to/ and /kto/ to

be very distinct, so we don't confuse them.

Each of these principles can be formulated as a constraint. All of the constraints introduced so far

are associated with individual linguistic items. Given a set of input parameters, these constraints

will assign a fixed cost to any phonetic form. In order to evaluate contrasts, however, it will be
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necessary to take into account more than one form at once. These constraints will assign a cost to

an entire candidate inventory of contrasting items. For the current demonstration, we'll limit this

inventory to subsets of the four items mentioned above.

The principle of maximizing contrasts (MaCo) assigns a benefit, in the form of negative cost, for

every contrast maintained in the candidate inventory. The number of contrasts for an inventory

of i items will be (i - (i - 1)) + 2. The cost is expressed as follows:

(2) CMaCo = -wMaco - n

Where CMaCo is the cost assessed by MaCo, wMaco is the weight associated with MaCo,

and n is the number of contrasts maintained in the candidate inventory.

The principle of distinctive contrasts is expressed with a minimum distance (MiDi) constraint

that requires contrasts to have some minimal level of perceptual distinctiveness A. It will assign a

cost to each contrast in the candidate inventory proportional to the amount by which that contrast

falls short of A.

(3) CMiDi = wMiDi - (A - D (x, y)) 2 , for D (x, y) < A

Where x and y are members of the candidate inventory, and D (x, y) is the perceptual

distance between them.

This cost is summed across all such (x, y) pairs in the candidate inventory. Note that the segment

duration constraints proposed in chapter 3 were also described as recoverability constraints. This
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means that we now have two sets of constraints with the same functional motivation, although

they differ formally. We return to this issue shortly.

Given these two constraints and a theory of perceptual distance, we can assign a cost to any

inventory. In the next section, we use these constraints to analyze the problem from English

discussed above.

5.3.2 An illustrative analysis

To begin to analyze English, we need a theory of distinctiveness. In our earlier discussion, we

equated this with the availability of cues to a given contrast, and we will continue to work with

this view for the remainder of the chapter. For this simple example, let us assume that perceptual

distance is more or less equal to the number of cues that signal a contrast. The numbers we will

use here are mainly for purposes of illustration; they are just complex enough to illustrate the

point. In an ideal analysis, we could derive perceptual distances directly from existing data on

identification and discrimination; in practice, this is usually not possible.

For pairs like /to/-/kto/, distinctiveness will depend on the timing between the two stops. If the

release of the /k/ is masked by the constriction of the following /t/, the contrast will not be very

distinct at all. Perhaps carryover articulatory effects of the velar constriction will affect the

acoustics of the /t/ burst; we assign this contrast a distance of 1. If the /k/ is audibly released,

there is another cue to this contrast; its distance will then be 2. If an open transition is present
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(most likely aspiration), it will make the contrast more distinct still; this contrast is assigned a

distance of 3.

Pairs like /lo/-/klo/ will have more or less the same distinctiveness as a stop-stop sequence with

open transition: burst and VOT/formant transitions. We therefore assign this contrast the same

distance of 3. Note that this distance doesn't really depend on the timing between the two

consonants; the relatively wide constriction associated with liquids will mask cues to the

presence of the stop less than a following stop will (although possibly more than a following

vowel). Contrasts involving the distance between a liquid and a stop (i.e., /lo/-/to/, /klo/-/kto/)

will be assigned the highest perceptual distance of 4. This is because they differ in both internal

and context-dependent cues.

We set A to 5, ensuring that even the clearest contrasts (with value 4) will still be assessed some

cost. Changing this assumption would have no qualitative effect on the analyses presented in this

chapter as long as the value of A is above the distinctiveness of some contrasts; it would predict

that past some relatively high level of distinctiveness, speakers no longer make the effort to

increase distinctiveness further.

We start off with the duration model developed in chapter 3, with the following parameters: wi

(syllable constraint) =100,000; w2 (consonant constraint) = 1,000; t, (syllable target) = 32; tx,y

(consonant target) = 13; tz (vowel target) = 25; d, (transition duration) = 4; j (vowel

recoverability coefficient for transition) = 0.4; vowel floor is 20.4; consonant floor is 5. The
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vowel-recoverability coefficient k is set to 0.1 for obstruents and 0.6 for liquids. These values

predict incremental CS for liquids but not for obstruents, consistent with the English facts.

Our next task is to figure out what type of an inventory can best strike a compromise between the

pressures from duration targets and the pressures from contrast maintenance. We begin by

considering the context #_L, where L is a liquid. In this context, the contrast between a stop's

presence and its absence will either be licensed or neutralized. In the case of neutralization, the

contrast can either neutralize to the absence of a stop or to the presence of a stop. These

possibilities correspond to the three inventories (labeled A-C) of two items each shown below

with their associated duration-target costs (these will be referred to as markedness costs in what

follows). These markedness costs are obtained by summing the duration constraint violations of

all contrastive forms within each inventory.

(4) Candidate Inventories

Inv. A /k/ dur. /l/ dur. /e/ dur. Cost (k, 1, e, o)
le 12.75 15.25 313
kle 5.25 9.75 13 91,328

Inv. B
le 12.75 15.25 .313

Inv. C
kle 5.25 9.75 13 91,328

One thing to notice is that the solution labeled C, which involves neutralizing to /kle/, incurs a

substantially higher aggregate markedness cost than candidate B, which neutralizes to /le/. This

is because longer syllables are always more marked in our duration framework than shorter ones.
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Because neutralizing to /le/ will always be less costly in this system than neutralizing to /kle/,

and the two inventories don't differ with regard to contrast preservation, it is impossible for

neutralization to /kle/ to emerge as optimal, as long as there is no other constraint that favors

/kle/.4 In the language of OT, we say that Inventory B harmonically bounds Inventory C with

regard to this constraint set.

We can now ask how each of the inventories fares with regard to contrast maximization and

perceptual distinctiveness of contrasts. The answer, of course, depends on the weights assigned

to MaCo and MiDi. In terms of duration constraints, Inventory A incurs a higher cost than

Inventory B. Inventory A also preserves the contrast between a stop and its absence, unlike

Inventory B. If the weight associated with MaCo is larger than the sum of the cost assigned to

the /le/-/kle/ contrast and the difference in markedness costs between the two inventories, then

Inventory A will emerge as optimal. If this condition fails to hold, neutralization will emerge as

optimal. Intuitively, these weightings correspond to situations where maximizing contrasts is

either more important (contrast) or less important (neutralization) than the combined effect of

duration targets and the confusability of /le/ and /kle/. One set of weights that will produce a

contrast is wMaco = 91,600; WMiDi = 100. This is shown below:

4 There are other ways to exclude this possibility. Most plausibly, if the theory includes
constraints on articulatory effort, these constraints will always prefer the singleton consonant as
well. In some cases, such as excrescent stops following nasals, there might be articulatory
constraints that would favor a longer candidate over a shorter one.
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(5) Contrast preserved

Inv. A /k/ dur. /7/ dur. /e/ dur. MarkCost Contrasts CMaCo Dist. CMiDi InvCost

le 12.75 15.25 312.5
kle 5.25 9.75 13 91327.5 1 -91600 3 200 240

Inv. B
le Neut 12.75 15.25 312.5 0 0 -- 0 312.5

Inv. C
kle 5.25 9.75 13 91327.5 0 0 - 0 91327.5

In the table above, markedness costs are followed by the number of contrasts preserved in the

inventory, the benefit associated with the contrast, the perceptual distance associated with the

contrast, the cost associated with that distance, and the summed cost assessed to the complete

inventory. The total inventory cost is the sum of aggregrate durational markedness as described

above, negative cost associated with MaCo, and the aggregate cost assigned by MiDi to all

contrasts in the inventory. In (5), The high weight of MaCo compensates for the markedness

costs incurred by Inventory A, allowing it to emerge as optimal. To instead derive neutralization,

we simply decrease the weight of MaCo, or increase the weight of MiDi. Below are outcomes for

wMaCo = 10,000; wMiDi = 1000, with all other parameters the same. Harmonically-bounded

Inventory C will be excluded from further consideration.

(6) Contrast neutralized

Inv. A /k/dur. /1/ dur. /e/ dur. MarkCost Contrasts CMaCo Dist. CMiDi InvCost

le 12.75 15.25 312.5
kle 5.25 9.75 13 91327.5 1 -10000 3 2000 83640

Inv. B
le 12.75 15.25 312.5
<k>le Neut 12.75 15.25 312.5 0 0 - 0 625
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Having assessed the two candidates above, we need not consider any others. These inventories

contain phonetic forms that are optimal with regard to the duration constraints. If it were possible

to better satisfy the constraints on contrast by altering the temporal properties of these forms,

inventories with such altered forms might emerge as optimal. But because the liquid fails to

mask cues to the stop's presence, altering the temporal properties of the phonetic forms here will

not change the cost assessed by the contrast constraints.5 As such, the optimal durations for

outputs will simply be those selected by the target-duration constraints.

The situation is rather different with stop-stop clusters. As we noted above, the perceptibility of

the first stop will be determined in part by the amount of overlap with the following stop: the less

overlap, the less the burst of the first stop will be masked by the closure of the second. We can

account for this observation by positing a constraint on the audible duration of the stop's burst,

including any following noise. To increase the recoverability of the stop, a speaker may produce

a longer audible burst, including in some cases a full open transition. Because the phenomena

addressed here concern bursts rather than closures, we treat closure duration as a constant and

assume that shortening and lengthening a stop correspond to shortening and lengthening its burst.

For this reason, we appeal repeatedly in what follows to the idea that lengthening a stop results in

a longer audible burst; this statement reflects the simplification made here. The only part of this

assumption that is crucial for the arguments here is that producing a stop with a longer audible

burst requires more time than producing one with a shorter (or null) burst.

5 This is something of an idealization. The liquid may mask cues to the stop's presence to some
extent, and probably masks cues to its place. The general logic of the argument here will hold as
long as this masking is substantially less than that induced by a following obstruent. In addition,
lengthening the liquid would plausibly enhance cues to its presence and quality; we return to this
issue in section 5.4.2.
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We begin by examining the two candidates that correspond to those listed above for stop-liquid

clusters. This is Inventory A, with contrasting CV and CCV forms that are optimal with regard to

markedness costs; and Inventory B, where the contrast is neutralized to the CV item with optimal

duration values. More candidates will be examined below. The optimal duration for /k/ in a /kt/

cluster in this system is 5.25, while its target duration is 13. We'll assume that a stop which is

shortened by more than a third or so from its target duration is unlikely to have an audible burst

when followed by another stop. For this reason, we assign this contrast a perceptual distance of

1. We carry over the weights from (5-6) above: wMaco = 91,600; wMiDi = 100.

(7) Neutralization

Inv. A /k/dur. /t/ dur. /e/ dur. MarkCost Contrasts CMaCO Dist CMiDi InvCost

te 9.5 18.5 27852.5
k'te 5.25 5.25 18.5 239265.6 1 -91600 3 200 175718

Inv. B
te Neutr. 9.5 18.5 27852.5 0 0 -- 0 27853

Given these constraint weights, Inventory B, which neutralizes the /te/-/kte/ contrast, emerges as

optimal. In this case, however, we do need to examine other candidate inventories. Specifically,

lengthening the /k/ will result in more cues to its presence, driving down the cost assessed by

MiDi. For concreteness, let us assume that a stop with duration target 13 must be realized with

duration 8 to have an audible burst, and with duration 11 to have an open transition. This will

have the effect of introducing discontinuities into an inventory's cost function as the duration of

the first stop in a cluster goes up. This is because, at the durations designated above, another cue

will suddenly become audible and the cost of maintaining the contrast will suddenly drop. To
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illustrate this, we vary the duration of /k/ in /kte/ while holding everything else constant. The

weight of MiDi is increased substantially in this chart to make the discontinuities more clearly

visible.

Figure 5.3. Cost assessed to a /te/-/kte/ inventory as a function of/k/-duration in /kte/. The

duration of/t/ and /e/ in /kte/ are held constant at 5.25 and 18.5, respectively. Values for /te/ are

those shown in the tables above. Note the discontinuities at 8 and 1] on the x-axis, where the

addition of cues to /k/'s presence reduces the cost of maintaining the contrast.

Depending on the constraint weights, it would be possible to form an optimal inventory by

lengthening the /k/ in /kte/ to preserve cues to the /te/-/kte/ contrast. This suggests the two

candidates in (8).
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(8) Repair strategies

Inv. C /k/dur. /t/ dur. le/ dur. MarkCost Contrasts CMaco Dist CMiDi InvCost

te 9.5 18.5 27,853
kte 8 5.25 18.5 1,510,453 1 -91600 2 300 1,447,006

Inv. D
te 9.5 18.5 27,853

khte 11 5.25 18.5 4,639,453 1 -91600 3 200 4,575,906

Inventory C lengthens the first stop so as to have an audible burst. Inventory D lengthens it even

more to introduce an open transition. Note that a voiceless unaspirated stop with an audible burst

is notated with no diacritic, while one followed by an open transition is notated as aspirated.

Given these constraint weights, both of the candidates in (8) still incur a higher cost than

Inventory B with neutralization. This is unsurprising, because MaCo is weighted very low

relative to the magnitude of markedness costs. Intuititively, this means that satisfying duration

targets is relatively important compared to maximizing contrasts. We discuss other weightings,

which generate other languages, in the next section.

Given the constraint weights used here, then, we derive an inventory where, word-initial stops

are available before liquids, but not before stops. This is the grammar of English. Note that we

can also evaluate the entire inventory of liquid and stop onsets in one pass, rather than

conducting separate evaluations in each consonantal context. The arithmetic changes somewhat,

so the constraint weights need to change as well. The table below has wMaco = 40,000; wMiDi

10,000.
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(9)

Inv. A /k/dur. C2 dur. /e/dur. MarkCost Contr. CMaco CMiDi InvCost
le 12.75 15.25 313
kle 5.25 9.75 13 91,328
te Neutr. 9.5 18.5 27,853 3 -120,000 60,000 59,492

Inv. B
le 12.75 15.25 313
kle 5.25 9.75 13 91,328
te 9.5 18.5 27,853
kte 8.25 5.25 18.5 1,701,766 6 -240,000 170,000 1,751,258

Inv. C
le 12.75 15.25 313
kle 5.25 9.75 13 91,328
te 9.5 18.5 27,853
khte 11 5.25 18.5 4,639,453 6 -240,000 120,000 4,638,946

Inv. D
le 12.75 15.25 313
kle 5.25 9.75 13 91,328
te 9.5 18.5 27,853
k'te 5.25 5.25 18.5 239,266 6 -240,000 240,000 358,758

Inv. E
le 12.75 15.25 313
te 9.5 18.5 27,853
k'te 5.25 5.25 18.5 239,266 3 -120,000 180,000 327,430

This table compares four-member inventories, integrating the analyses in pre-stop and pre-liquid

position. Inventory A is the English-like pattern; Inventories B-D preserve the /te/-/kte/ contrast

with /k/ as voiceless unaspirated, aspirated (open transition), and unreleased, respectively;

Inventory E neutralizes the /le/-/kle/ contrast while preserving the /te/-/kte/ contrast. With this set

of parameters, Inventory A still emerges as optimal. This is the English-like inventory. The

evaluation of four-member inventories is more complicated than the two-member inventories
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used above. Except for cases where the comparison of more than two forms is crucial, we

continue to use the pair-wise contextual approach in what follows.

5.4 Typology and repairs

5.4.1 Selecting other stop contrasts

We've seen that the duration model developed in chapter 4, when coupled with a theory of

contrast maintenance, can derive an English-like phonotactic pattern for this fragment of the

grammar. The key observation is that English is prevented from 'repairing' stop-stop clusters by

drastically reducing the amount of overlap that obtains within those clusters; the reason for this is

the syllable-duration constraint introduced in chapter 3. On the other hand, when a cluster can be

produced with relatively good cues in the presence of substantial overlap, such as /#kl/, it is

possible to strike a compromise between duration constraints and the desire to maximize

contrasts. The prediction, then, is that less distinct contrasts between singletons and clusters (e.g.

/te/-/kte/) will never be licensed in the grammar when more distinct contrasts (e.g. /le/-/kle/) are

neutralized; this is a general prediction of any cue-based approach. The grammar developed here

goes a step further, explaining in terms of independently-observed constraints why some

deficient contrasts in English can not be turned into more distinct contrasts by altering their

temporal properties.

This property of English is a consequence of the particular constraint weights used in the

analysis above. If we change the relative weights of the constraints, we predict a range of

different phenomena. In this section, we show how the approach developed here preserves the
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insights of the licensing-by-cue approach, while allowing for a unified account of phonological

contrast and non-contrastive duration phenomena. As a first step towards deriving different

patterns of contrast, consider again the four candidate inventories for the presence or absence of

a stop in pre-stop position.

(10)

Inv. A /k/ dur. /t/ dur. /e/ dur. MarkCost Contr. Dist.
te 9.5 18.5 27852.5
k'te 5.25 5.25 18.5 239265.6 1 1

Inv. B
te Neutr. 9.5 18.5 27852.5 0 -

Inv. C
te 9.5 18.5 27852.5
kte 8 5.25 18.5 1510453 1 2

Inv. D
te 9.5 18.5 27852.5
khte 11 5.25 18.5 4639453.1 1 3

Each candidate is associated with an inherent (given these constraint weights) durational

markedness cost assessed by duration constraints. MaCo and MiDi will introduce additional

costs or benefits based on the contrasts preserved in each inventory. Whether the effects of

MaCo and MiDi are enough to overcome differences in inherent markedness between the

inventories is entirely a function of constraint weighting. To favor more marked candidates (A,

C, and D) that preserve contrasts will require a high weight for MaCo. To favor candidates such

as D that incur high markedness costs in order to better preserve cues to contrast will require a

high weight for MiDi as well. Under the hypothesis that differences between languages consist
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partially or completely of differences in constraint weights, each of these possibilities should be

a possible grammar.

To illustrate, we hold the markedness costs constant and adjust the weights of the contrast

constraints. First, we set both contrast constraints relatively high: wMaco = 7,420,000; wMiDi ~

700,000.

(11) Open Transitions

Inv. A MarkCost Contr. CMaCo Dist. CMiDi InvCost

te 27852.5
k'te 239265.6 1 -7420000 1 11200000 4047118

Inv. B
te 27852.5 0 0 5 0 55705

Inv. C
te 27852.5
kte 1510453 1 -7420000 2 6300000 418306

Inv. D
te 27852.5
khte 4639453.1 1 -7420000 3 2800000 47306

Inventory D, which incurs a relatively large cost from duration constraints but creates a very

distinct contrast through open transitions, emerges as optimal under these weights. This grammar

corresponds to languages such as Montana Salish (example above) and Georgian (Chitoran

1998), which typically include an interval of aspiration in word-initial stop-stop sequences.6

6 Note that in Montana Salish, stop-liquid clusters are also repaired, by the insertion of a schwa.
This may pertain to the realization of the glottalization contrast on liquids (Flemming et al.
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By lowering the weight of MaCo and MiDi, we can select either of the other two repaired stop-

stop sequences as optimal. This is shown respectively in (12-13) for wMaco = 4,200,000; wMiDi

300,000, which selects the voiceless unaspirated /kte/; and wMaco = 1,820,000; WMiDi = 100,000,

which selects the unreleased /k'te/.

(12) Voiceless unaspirated

Inv. A MarkCost Contr. CMaCo Dist. CMiDi InvCost
te 27852.5
k'te 239265.6 1 -4200000 1 4800000 867118

Inv. B
te 27852.5 0 0 5 0 55705

Inv. C
te 27852.5
kte 1510453 1 -4200000 2 2700000 38306

Inv. D
te 27852.5
khte 4639453.1 1 -4200000 3 1200000 1667306
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(13) Unreleased

Inv. A MarkCost Contr. CMaCo Dist. CMiDi InvCost

te 27852.5
k'te 239265.6 1 -1820000 1 1600000 47118

Inv. B
te 27852.5 0 0 5 0 55705

Inv. C
te 27852.5
kte 1510453 1 -1820000 2 900000 618306

Inv. D
te 27852.5
khte 4639453.1 1 -1820000 3 400000 3247306

The pattern in (12) corresponds to languages such as Tsou (Wright 1996), which generally

realize word-initial stop-stop sequences with an audible burst for the first stop, but no open

transition. Wright reports that the vast majority of word-initial stop-stop clusters conform to this

description: "In approximately 92% of the cases... the release burst alone was evident in the

signal, but in a few cases the release was accompanied by a brief period of low-amplitude

aspiration." (p. 76)

The pattern in (13) is more problematic. There are few or no reports in the literature of languages

that allow word-initial stop-stop clusters with the first stop unreleased. The apparent rarity of this

pattern may show that the cues here have been inaccurately characterized. We assigned this

contrast a perceptual distance of 1, fitting with our simplified, discrete characterization of

distinctiveness. In reality, the distinctiveness of this contrast may be closer to 0. As noted above,

the only conceivable acoustic difference between the two items in Inventory A would be a slight
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coarticulatory effect of the Cl constriction on the burst of C2. This effect may be so small as to

license a contrast only at extreme weights of MaCo relative to MiDi; the contrast may be nearly

impossible to sustain in a grammar.

Finally, we can predict a grammar where the stop-0 contrast is neutralized before both

obstruents and liquids. This language doesn't allow clusters with liquids and obstruents at all.

The parameters wMaco = 10,000; wMiDi = 10,000 will derive this system.

(14) Neutralization everywhere

Inv. A MarkCost Contr. CMaCo Dist. CMini InvCost
te 27852.5
k'te 239265.6 1 -10000 1 160000 417118

Inv. B
te 27852.5 0 0 5 0 55705

Inv. C
te 27852.5
kte 1510453 1 -10000 2 90000 1618306

Inv. D
te 27852.5
khte 4639453.1 1 -10000 3 40000 4697306

Inv. E
le 312.5
kle 91327.5 1 -10000 3 40000 121640

Inv. F
le 312.5 0 0 5 0 625
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Inventories B and F, both with neutralization, emerge as optimal. This is a language that allows

no clusters in word-initial position, such as Hawaiian (native vocabulary, Elbert & Pukui 1971)

and Yawelmani (Newman 1944).

5.4.2 A note on the formalism

The typological analyses above illustrate a point mentioned earlier in this chapter but put aside

until now: the constraints on segment duration/recoverability and on the distinctiveness of

contrasts are in some sense playing the same role in the analysis. We hypothesized above that

lengthening the burst and release of a stop, for instance, increases its perceptibility. Trying to

produce a stop with a relaively long duration will do much the same thing. For vowels and

liquids, which rely more on internal cues, perceptibility of their presence and features should

increase as their duration increases, all else being equal. This means that the cost assessed to

contrasts involving these sounds will vary with the extent to which they fulfill their target

durations.

This raises the possibility that segmental duration targets may be removed from the theory and

replaced with MiDi constraints. Indeed, in the analyses above, the costs assessed by segment

duration targets for stops always correlate with the costs assessed by MiDi. If we considered

contrasts involving liquids and vowels, the same would be true.

Below are evaluations of a few candidates that cross vowel contrasts, cluster contrasts, and

durational realizations; this analysis eliminates segment duration constraints and floor durations,
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using MiDi constraints in their place. For stops, MiDi is evaluated the same way as it was above.

For vowels, MiDi is assessed solely with regard to duration, completely abstracting away from

differences in quality. The assumption is that differences in formant values of the same size will

be more perceptible with longer than with shorter vowels. We hold formant differences constant

at some value x in order to make the problem more tractable, then set the minimum distance A

for vowel contrasts equal to 25 duration units of formant difference x. This means the cost of

MiDi for vowels will be evaluated exactly the same as the vowel duration targets above, except it

will be assessed to vowel contrasts rather than individual vowels. The cost will be the square of

the shortfall between A and the vowels' duration.

A few additional simplifications are made below. First, for contrasts involving the presence or

absence of a stop, we only assess MiDi violations for minimal pairs with regard to this property.

That is, we assess MiDi violations for [e-te] but not [e-to]. This is simply to make the problem

more tractable. In addition, we make the simplification used earlier that the duration of CV

transitions are set at a constant value and are not manipulated by the grammar. Constraint

weights are all set to one, to show the raw cost profile of the candidates.

The columns show, left to right: the items in each inventory, the duration of each segment, the

duration of the syllable, total durational markedness, the cost assessed by MaCo, the list of

minimal contrasts for each inventory, the cost assessed to each minimal contrast, the total cost

assessed by MiDi for consonant contrasts, and the total cost assessed by MiDi for vowel

contrasts.
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(15) Crossed contrasts, no segment duration constraints

Inv.
A I Durci Durc2 Durv Dur, C, Mark Tot CMaco Contr. CMini Cc CV

10

10

7 7

7 7 14 32 0

o-to

e-te
to-te
to- k'to

te- k'te

k'to-

0 -15 k'te

0

e
to

te
k'to

k'te

Inv.
B
0

e
to

te
k'to

k'te 7 7 18 36 16 32 -15

O-to
e-te
to-te
to- k'to

te- k'te

k'to-

k'te

4
4

19.36

16

16

75.69 40 95.05

4
4

19.36

16

16

22.09 40 41.45

10

10

11 7

11 7 14 36 16

25
25
18
18

25
25

22.4

22.4

25
25
32
32

25
25

36.4

36.4

0
0
0
0

0
0

19.36
19.36

o-to

e-te

to-te
to- khto

te- khte

khto-

32 -15 khte

O-to

e-te
to-te

0 -6

4
4

19.36

4

4

75.69 16 95.05

4
4

19.36
8 19.36

O-to

e-te
to-te

38.72 8 0

216

10

10

7 7

Inv.
C
0

e
to

te
khto

khte

Inv.
D
0

e
to
te

Inv.
E
0

e
to

te I



The table evaluates five candidate inventories. Candidate A preserves all contrasts while

compressing each segment so as to perfectly satisfy the syllable duration constraint. Candidates

B and C also preserve all contrasts, but violate the syllable duration target by lengthening the

vowels and first stops, respectively, in CCV words to enhance contrasts. Candidates D and E

neutralize the CV-CCV contrast, while realizing CV syllables in such a way as to perfectly

satisfy the syllable target and the MiDi for vowels, respectively.

Note that the cost of violating MiDi is on a different scale for vowel contrasts than it is for

consonant contrasts. The former pertains to duration shortfalls, while the latter pertains to

roughly the number of cues available. The claim is not that these two scales of distinctiveness

stand in a fixed quantitative relationship; rather, they may be governed by separate MiDi

constraints. Alternatively, there may be a single MiDi constraint that governs both types of

contrast, with distinctiveness expressed along a single dimension such as confusability. We do

not currently have experimental evidence that would allow us to assess distinctiveness across

these different types of contrast, but such a theory might in principle be possible.

As can be seen in table (15), the cost assessed by MiDi constraints trades off against the costs

assessed by durational markedness; this is how the system captures the duration-trading effects

that originally motivated segmental duration constraints. For instance, candidate C lengthens the

first stop in CCV sequences to enhance its perceptibility; it incurs low MiDi costs relative to the

shorter stop in candidate A, but higher durational markedness. Which candidate emerges as

optimal depends on the relative weights of the two constraints. Whether any candidate preserving
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this contrast emerges as optimal depends on the weight of MaCo relative to MiDi and durational

markedness.

It should be evident that the full range of compression effects can only be derived by evaluating

multiple contrasts in parallel, and that evaluating multiple contrasts in parallel causes the number

of candidates to explode. Only a tiny subset of the possible candidates are displayed above, to

illustrate a general point about the logic of the formalism. Specifically, for a set of n contrasting

items, there will be 2" inventories differing in which contrasts they preserve (including the empty

inventory), and an infinite number of possible durational realizations within each of those

inventory types. As a practical matter, then, we will continue to use the system of segmental

duration targets and to limit our attention to specific contexts in what follows.

There is also a non-trivial theoretical issue at play here. Evaluating a large number of lexical

items in parallel, up to the entire lexicon, involves a huge number of computations. It is not clear

how a language learner could effectively explore the space of possible grammars in such a

system. Therefore, it may be necessary to limit the scope of the evaluation process in some way.

We return to this issue in section 5.5.4 and discuss some possible approaches to constraining the

system.

5.4.3 The interaction of compression and contrast

The simulation above was carried out entirely by adjusting the weights of the contrast

constraints, while holding duration constraints constant in a configuration that produces English-
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like compression effects. Other weights for the duration constraints (and targets) would, of

course, be possible. In fact, only very specific manipulations of the contrast-constraint weights

will result in the preservation of contrast given these specific weights for duration constraints; all

other manipulations result in neutralization.

It is also possible to categorically change the output of the grammar by adjusting the duration

constraints while holding the contrast constraints constant. For instance, lowering the weight of

the syllable-duration constraint will have the effect of licensing more separation between the two

stops; this in turn will render the repaired stop-stop clusters less costly.

The model largely predicts, then, that compression effects and cluster repairs are related in their

motivation but independent in the surface inventory of a language. We could analyze a language

with very strong compression effects in general (e.g. substantial shortening of all segments in

/kle/) but blocking of those effects where preserving consonant duration improves a contrast (e.g.

less shortening of Cl in /kte/). We could also analyze a language with almost no compression in

general but neutralization of just those contrasts which would require substantial syllable-

lengthening in order to be sufficiently distinct. We might predict that languages with more

compression, all else being equal, are less likely to repair clusters using open transitions than

languages with less compression, but this would depend on a theory of how constraint weights

are distributed cross-linguistically. So at first, it appears that the approach makes very few

concrete predictions about the relationship between phonological typology and compression

effects.
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Given that duration constraints are relevant to both types of phenomena, however, we can derive

some more abstract predictions. The logic of the constraint system entails that, even when the

effects of one constraint on some item are obscured by higher-weighted constraints, those effects

may still emerge for other items when the higher-weighted constraints are rendered inactive for

some reason. To be concrete, consider the grammar fragment in (11) above, which produces

outputs as in figure 5.4.

Emergence of the unmarked

45

40

35

% 30
CC2

fA25 CC
20 -T

15

10

te kjhte le kle

Output form

Figure 5.4. Output forms for the constraint system in (11) above.

In this system, /te/ contrasts with /khte/ and /le/ contrasts with /kle/. Examining the /te/-/ khte/

pair, there is substantial shortening of the /t/; but the /e/ doesn't shorten at all and the /k/ is close

to its full target duration, longer even than the /t/ in /te/. With regard to C1 and the vowel, then,

this sequence shows little evidence of compression. In the /le/-/kle/ pair, however, where cue

availability and minimum vowel duration are both less problematic, compression emerges
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strongly for all segments. This phenomenon is similar but not identical to the principle known in

OT as the emergence of the unmarked. Here, the strong effects of the syllable-duration constraint

only emerge completely when extrinsic pressures from conflicting constraints are rendered less

relevant.

This property of the constraint formalism results in a concrete prediction about the relationship

between compression and phonotactic licensing: we can derive patterns like that in figure 5.4,

where the effects of duration constraints become more pronounced in contexts with better cues to

contrasts; but we can never derive a reverse effect. This means that we shouldn't ever observe a

case where items are realized with a relatively marked temporal configuration in an environment

with relatively good cues to a given contrast, while being realized with a less marked temporal

configuration in an environment with fewer or weaker cues to that contrast. So, for instance, we

predict that no language that includes the four strings in figure 5.4 will display compression of

all segments from /te/ to /kte/ but fail to display compression for some segments from /le/ to

/kle/.'

In order to test this putative implicational universal, we need access to detailed data on the

realization of clusters and the presence or absence of compensatory shortening in many

languages. Such data currently does not exist, and might take years to gather. As such, we leave

the confirmation of this prediction for future research.

7 This holds unless some independent fact about cues changes the calculus. For instance, if there
were a contrast that somehow becomes more distinct in the presence of overlap, the prediction
would be reversed.
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5.4.4 Further effects on stop-stop clusters

We saw above that, when duration costs or cue availability are less of an issue, compression

effects are predicted to emerge more clearly. This prediction is borne out in several phenomena

from Tsou and Georgian, which have both been mentioned repeatedly in the preceding

discussion. These effects and the explanation for them were first brought to light by Wright

(1996) for Tsou and Chitoran et al. (2002) for Georgian, but neither effect has been analyzed in a

formal grammatical system. This section implements such an analysis.

5.4.4.1 Place effects

In Georgian, there are asymmetries in timing between different stop-stop clusters. Specifically,

in Cl-C2 clusters where the constriction of C2 is anterior to the constriction of C1 (e.g. /kt/), we

observe less articulatory overlap (Chitoran et al. 2002) and a longer interval of time between the

two acoustic bursts (Chitoran 1999) than we do in clusters where C1 is anterior to C2 (e.g. /tk/).

The explanation for this lies in masking effects. When two stops overlap extensively, the back-

to-front or front-to-back order of the two successive constrictions will produce different acoustic

effects. In a front-to-back sequence such as /tk/, the burst of /t/ will be audible to some extent

even if the /k/ constriction is already being formed as the It/ is released. The burst in this case

presumably won't be as intense as, for instance, before a vowel, because the tongue-body

constriction for /k/ is antagonistic to allowing pressure to build up behind the constriction at the

alveolar ridge, but the burst shouldn't be completely masked unless the /k/ constriction is
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completely blocking flow at the time of release (and even then, there might in principle be some

weak acoustic reflex of the release). In back-to-front sequences, on the other hand, releasing C1

while C2 is already being formed is particularly likely to render the Cl burst inaudible.

Releasing the pressure behind one constriction to allow air to flow forward into a more anterior

constriction won't necessarily have any acoustic effect at all. In other words, the C1 burst is

more likely to be masked in /kte/ than it is in /tke/.

For this reason, we expect that, for stop-stop sequences with a given degree of overlap, Cl will

be obscured less in a front-to-back cluster than in a back-to-front cluster. It also follows that, to

achieve a given level of distinctiveness for the presence of C1, front-to-back clusters will require

less temporal separation than back-to-front clusters.

Chitoran et al. (2002) invoke this explanation for the timing asymmetries, and suggest that it

would be possible to implement in recent versions of the Articulatory Phonology framework

(Browman & Goldstein 2000, Goldstein et al. 2006). In the newer versions of this framework,

consonant gestures are essentially said to repel each other when they occur in sequence. This

property itself is said to emerge from recoverability considerations. The framework can express

greater or lesser tendencies towards repulsion by adjusting the bonding strengths that obtain

between particular sequences. To analyze the Georgian facts, they would say that the bonding

strength governing the repulsion relationship between consonants in sequences like /kt/ is greater

than that for /tk/.
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The analysis adopted here is conceptually similar to this sketch, but implemented in a formalism

rather different from Articulatory Phonology. Rather than specifying different bonding strengths

for sequences that are easier and harder to recover with overlap, we let the overlap facts emerge

from general considerations of cue availability. Because the two types of stop-stop cluster differ

in the amount of time that must separate C1 release and C2 in order for C1 to be perceptible, they

also differ in how long the acoustic burst of C1 must be to achieve some given level of

perceptibility. Note that, in this approach, the grammar does not manipulate articulatory gestures

and overlap per se. but rather the acoustic consequences of that overlap. So, for instance, to

require that the burst from one consonant not be covered by the constriction of the next, we

specify that the first consonant's burst should be realized with some non-trivial auditory

duration; this latency will depend on the acoustic onset of the second consonant's constriction,

thereby indirectly favoring, via acoustics, certain articulatory configurations over others.

Concretely, if the presence of a burst achieves some level of distinctiveness x when separated

from the following closure by y ms in a back-to-front sequence, then a front-to-back sequence

can achieve distinctiveness x with less than y ms separation. We represent this situation in our

formalism by assigning cue-driven increments in perceptual distance to contrasts like /ke/-/tke/ at

shorter durations for the C1 burst; contrasts like /te/-/kte/ will need longer burst durations to

'reach' the cue-driven increments associated with bursts and open transitions.

At a first pass, let us assume that bursts and open transitions emerge 'automatically' after the

burst of Cl in a stop-stop cluster reaches a given duration threshold; this simplification will be

discussed below. We've been working with target durations of 13 for stops; recall that we make
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the simplified assumption that closure remains constant across different realizations, meaning

that burst duration is manipulated by manipulating C1 duration. For front-to-back sequences like

/tk/, we introduce a burst at 7.5 units of duration and an open transition at 10 units. For back-to-

front sequences like /kt/, we hypothesized that to reach comparable levels of distinctness will

require more time. For these sequences, we introduce the first increment at 9.5 units of duration

and the second at 12 units. The table below shows candidate inventories for the context #_ke

with neutralization to 0 and /t/ durations of 7.5, 10, and 12 units. Parameters are wo = 1,000;

wseg = 1,000; wMaco = 170,000; WMiDi =10,000; all other parameters are the same as the previous

analyses.

(16) Front-to-back clusters

Inv. A /t/ dur. /k/ dur. /e/ dur. MarkCost Contr. CMuCO Dist. CMiDi InvCost

ke Neutr. 10.75 19.75 17943 0 0 -- 0 35886

Inv. B
ke 10.75 19.75 17943
tke 7.5 9.5 18.5 106806 1 -170000 2 90000 44749

Inv. C
ke 10.75 19.75 17943
thke 10 6.5 18.25 117063 1 -170000 3 40000 5006

Inv. D
ke 10.75 19.75 17943
thke 12 5.75 18.25 138493 1 -170000 3 40000 26436

With these parameter settings, Inventory C emerges as optimal. This candidate has an open

transition between the two stops. Candidate D has an open transition as well, and presumably a

longer one. But it incurs needless markedness costs by lengthening the first stop past the point
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where an open transition is audible. Because this system directly regulates auditory cues, the

optimal solution here is to lengthen C1 just enough to maximize the cues to its presence or

absence, and no more.

Compare now an evaluation of the context #_te, with the same parameter settings and candidate

inventories.

(17) Back-to-front clusters

Inv. A /k/ dur. /t/ dur. /e/ dur. MarkCost Contr. CMaco Dist. CMiDi InvCost

te Neutr. 10.75 19.75 17943 0 0 -- 0 35886

Inv. B
te 10.75 19.75 17943

k'te 7.5 9.5 18.5 106806 1 -170000 1 160000 114749

Inv. C
te 10.75 19.75 17943
kte 10 6.5 18.25 -117063 1 -170000 2 90000 55006

Inv. D
te 10.75 19.75 17943

khte 12 5.75 18.25 138493 1 -170000 3 40000 26436

The solution here is still to lengthen Cl just until an open transition becomes audible. In back-to-

front clusters, however, this doesn't occur until C1 is 12 units long. The result is a longer audible

Cl burst, and therefore a longer interval between the onsets of the two bursts (continuing to

assume that closure duration is not manipulated).8 This is exactly what Chitoran (1999) finds for

Georgian.

8 Another possibility is that the differences in inter-burst interval reflect a longer duration for the
closure of C2 in back-to-front sequences than front-to-back. In this case, the asymmetry would
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5.4.3.2 Positional effects

A second asymmetry in timing for stop-stop sequences occurs in both Georgian (Chitoran 1998,

Chitoran et al. 2002) and Tsou (Wright 1996): stop-stop sequences are more overlapped and less

likely to display an audible release of C1 in intervocalic position than in word-initial position. In

Tsou, for instance, C1 in word-initial stop-stop clusters is always audibly released, but only

about 60% of comparable stops in word-internal clusters are released.

The reason for this is that word-internally, C1 is preceded by a vowel. The transition from the

vowel into C1 closure provides valuable cues to the presence and features of a stop, so the cues

associated with release become less important. There is a trading relationship between cues in

the preceding transition and cues associated with the burst and succeeding transition.

To analyze this asymmetry in the current framework, we need a theory of how costs are assigned

to sequences of more than one syllable, and a theory of the syllable structure of sequences such

as /akta/. This is not a question with a generally-accepted answer; Chitoran et al. (2002) report

that neither linguists nor native Georgian speakers agree on the syllabic affiliations of the

consonants in such sequences. Wright (1996) notes that Tsou lacks word-final consonants, and

that most but not all clusters attested word-initially are also attested word-medially. These facts

could be seen as evidence that /a.kta/ is the proper syllabification, although this still leaves a

residue of unexplained variation between initial and medial contexts.

still be a case of lengthening the overall duration of a cluster to preserve cues, but the added
duration would come from the inherent minimum duration of closure for C2 rather than the
release of C1.
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For the purposes of this analysis, we will treat intervocalic stop-stop clusters as complex onsets.

The main reason for this move is that it requires no revision to the formalism already introduced,

which has been formulated with syllables in mind. We treat the first vowel as a separate syllable;

presumably it fully satisfies its duration target and incurs 0 cost. The only problem, then, is to

work out the markedness of the second syllable.

Note that the analysis could be modified to work with different assumptions, but these would

require either more computation or revisions to the formalism. For instance, we could assume

syllabification as in /ak.ta/, with the timing between the two stops (and hence the two syllables)

determined by the realized duration of /k/; this wouldn't fundamentally change the analysis but

would add a second markedness computation to each candidate. Alternatively, we could assume

an entirely different domain for duration targets and constraints; nothing we've seen so far would

distinguish between targets for syllables, feet, or prosodic words. Conceivably, there could be

targets for entirely different units, such as bigrams or syllable onsets and codas. Only careful

comparison of timing relations would allow us to distinguish between these possibilities, but we

don't need to know which one is correct in order to analyze the timing patterns described above.

The only crucial assumption is that shorter clusters in /VCCV/ sequences are less marked than

longer ones.

Given our treatment of the first vowel as essentially non-existent for purposes of durational

markedness, the only difference between word-initial and word-internal stop-stop clusters in our

formalism will be the number of available cues to the presence and features of Cl. We assign to

word-initial contrasts the same values that we've been using above; word-internal cluster
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contrasts will be assigned a distance increment of 1 extra unit relative to their respective word-

initial counterparts, reflecting the presence of VC transitions in this context. We begin by

examining word-initial sequences, in the context /#_t/. Having moved on to a different language,

we make a few adjustments to the constraint weights in order to keep costs relatively low in this

illustration: parameters are w0 = 1,000; wseg = 1,000; wMaco = 100,000; wMiDi = 500; stop bursts

emerge at duration 8; open transitions emerge at duration 11.

(18) Word-initial clusters

Inv. A /k/ dur. /t/ dur. le/ dur. MarkCost Contr. CMaCo Dist. CMiDi InvCost
te Neutr. 10.75 19.75 17943 0 0 5 0 35886

Inv. B
te 10.75 19.75 17943
k'te 7.5 9.5 18.5 106806 1. -100000 1 8000 32749

Inv. C
te 10.75 19.75 17943
kte 8 6.5 18.25 107556 1 -100000 2 4500 29999

Inv. D
te 10.75 19.75 17943
khte 11 5.75 18.25 126265 1 -100000 3 2000 46208

Inventory C, with contrast between /te/ and audibly

these parameters. This pattern corresponds to Tsou:

stops are released in word-initial stop-stop clusters.

in the context /V t/.

released /kte/, emerges as optimal given

as noted above, Wright finds that all C1

Consider now what happens word-medially,
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(19) Word-internal clusters

Inv. A /k/ dur. /t/ dur. /e/ dur. MarkCost Contr. CMuCo Dist. CMiDi InvCost

ate 10.75 19.75 17943
a<k>te Neutr. 10.75 19.75 17943 0 0 5 0 35886

Inv. B
ate 10.75 19.75 17943

ak'te 7.5 9.5 18.5 106806 1 -100000 2 1500 26249

Inv. C
ate 10.75 19.75 17943

akte 8 6.5 18.25 107556 1 -100000 3 1000 26499

Inv. D
ate 10.75 19.75 17943

akhte 11 5.75 18.25 126265 1 -100000 4 500 44708

In this context, /ak'te/ with unreleased Cl emerges as optimal. With the extra cues available from

the preceding vowel, the effects of compression emerge, favoring the less durationally-marked

candidate inventory.

As it stands now, the grammar is categorical in its predictions for Cl realization: audibly

released word-initially, unreleased word-internally. In reality, the word-internal realization is

probabilistic: about 40% of Cl stops here are released. We could build probabilistic phenomena

into the model by changing our simplified assumptions about how release is related to duration.

In the current model, an audible burst emerges 'automatically' at some fixed duration threshold

for C1. A more realistic model would reflect the fact that a burst becomes incrementally more

salient as the segment is lengthened. These probabilities could be reflected in the evaluation of

MiDi. For instance, if word-internal C1 with duration of 7.5 units has a 40% chance of being

audibly released (perceptual distance 3) and a 60% chance of being unreleased (distance 2), the
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perceptual distance between that stop and its absence could be construed as a weighted average,

distance 2.4. This would allow the grammar to settle on candidate inventories that have a

reasonable chance of realizing distinct contrasts, without predicting completely categorical and

invariant realizations within each context.

5.5 Some further predictions

All of the phenomena examined so far serve as illustrations of how a licensing-by-cue approach

to phonology can be combined with a gradient theory of timing to give a unified account of

certain phonetic and phonological phenomena. Given a minimally adequate theory of timing,

these phenomena follow more or less straightforwardly from a phonological approach grounded

in phonetics. In such a framework, for instance, a single gradient constraint calling for adjacent

segments to overlap would suffice to derive all of the patterns discussed so far (but would not be

able to capture incremental compression effects of the sort discussed in the preceding chapters).

Because the formalism here incorporates a very specific theory of timing, it generates additional

phonotactic predictions. These mainly involve the possibility of long distance interactions

between segments, mediated by higher-level duration constraints. In this section, we examine a

set of such predictions, and draw some preliminary conclusions about their empirical plausibility.
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Rhotics and clusters in Spanish

Much of the preceding discussion was concerned with repairing certain sequences by increasing

the duration of one of the segments (or part of a segment) in that sequence. The cost of doing this

comes in the form durational markedness assessed by higher-level duration targets. In most of

the asymmetric cases, the difference was between one context where there is pressure to lengthen

a stop in order to achieve open transition, and one context where there is less pressure.

Even across contexts that include equal pressure to lengthen a stop, however, we predict that

there could be differences in a stop's ability to lengthen sufficiently. This would depend on

factors such as the duration of other segments in the sequence or the tendency of those segments

to induce compression. In this section, I argue that certain phenomena in Spanish instantiate this

prediction. In contexts where realizing an open transition will help with stop perceptibility, the

availability of this repair is governed by properties of the adjacent segment and compression

within the syllable.

As a starting point, consider again the analysis of why English doesn't license stop-stop clusters

in word-onset position. That table is shown below.
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(20) Stop-Stop neutralization in English

Inv. A /k/ dur. It/ dur. /e/dur. MarkCost Contrasts CMaCo Dist. CMiDi InvCost
te 9.5 18.5 27852.5
k'te 5.25 5.25 18.5 239265.6 1 -91500 3 200 175818

Inv. B
te Neutr. 9.5 18.5 27852.5 0 0 -- 0 55705

Inv. C
te 9.5 18.5 27853
kte 8 5.25 18.5 1510453 1 -91500 2 300 1447106

Inv. D
te 9.5 18.5 27853
khte 11 5.25 18.5 4639453 1 -91500 3 200 4576006

Inventory D, with an open transition between the two segments in the cluster, is sub-optimal here

because it incurs high durational markedness costs. The long duration of C1 results in a severe

violation of the syllable duration constraint. This could be remedied if it were possible to shorten

the other segments enough to ameliorate the violation of the syllable target, but the CCV item in

Inventory D has already compressed C2 and the vowel close to their respective floor durations.

If C2 were able to crowd further into the vowel, however, it might be possible for a candidate

like Inventory D to win. For this to happen, we would need to shorten C2, crowd it into the

vowel, and lengthen C1 to create an open transition, all without violating the syllable-duration

constraint too severely. For C2 to crowd further into the vowel, it would need to either have a

shorter inherent duration or a very high vowel-recoverability coefficient k.
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While English doesn't have very short stops that carry a lot of vowel information, Spanish has a

segment that fits this description to some extent: the rhotic tap If. This segment is very short,

and in clusters it is realized with a special feature that carries a lot of information about an

adjacent vowel. This feature, to be discussed below, is one difference between the Spanish and

English versions of the tap.

Ladefoged (1971) defines a ballistic tap as "formed by a single contraction of the muscles such

that one articulator is thrown against the other." In apical taps, the tip of the tongue is thrown

against the alveolar ridge, producing a very short period of closure, followed almost immediately

by release. American English post-tonic intervocalic coronal stops (e.g. butter) are ballistic taps.

Given the acoustic nature of this segment, which is an extremely brief cessation of energy in the

speech signal (essentially a very short stop), surrounded by formant transitions, it would not

seem to be a good context in which to realize a stop. Stops, recall, are best perceived adjacent to

segments with high sonority.

Nevertheless, stop-/f/ clusters occur in Spanish. They are repaired by realizing an open transition

between the two segments, in the form of an excrescent vowel. This is illustrated below with an

utterance from a Venezuelan native speaker.
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Figure 5.5. Utterance of nonce-word /tapro/from a Venezuelan Spanish speaker. Clearly visible

in the waveform and spectrogram is an excrescent vowel (labeled 'e. v. ') separating [p] and [r].

There are several properties of this sequence that help maximize cues to the presence and

features of all three segments. First, the presence of an excrescent vowel in between the two

consonantal occlusions guarantees that Cl will have a clear burst that is not masked by the tap,

while also providing formant transitions that could be cues to the presence and features of both

consonants. Second, the excrescent vowel partially tracks the formants of the following vowel,

so it should aid recoverability of that vowel. In fact, Bradley & Schmeiser (2003), building on

earlier work by Gili Gaya (1921), Steriade (1990), Hall (2003), and Bradley, propose that the

excrescent vowel is simply a part of the following vowel: the tap itself has been crowded far

enough into that vowel that part of the vowel is audible before the tap constriction is in place.

Acoustic data from two Venezuelan speakers lend some support to this hypothesis. Compared to

a singleton tap, a stop-tap cluster does result in incremental shortening of the following vowel.

This is shown in figure 5.6. This is in contrast to word-medial stop-stop clusters, which generally
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do not contain open transitions and induce no incremental shortening. So there does seem to be

some crowding of the tap into the following vowel in a way not associated with other clusters.9

Vowel duration by preceding context
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Figure 5.6. Vowel duration in ms of/o/for two Venezuelan Spanish speakers in the contexts

/tar /, /tabr_/ (left graph), /tat_/, and /takt_/ (right graph). The stop-tap clusters result in

incremental vowel shortening, while the stop-stop clusters result in little or none.

There is probably more to the story than a simple shift in the timing of the tap, however.

Recasens & Pallarbs (1999) report that, for rhotic /r/ in the closely-related language Catalan, the

area of the tongue just anterior to the dorsum is lowered to create a concave tongue shape. So

this sound may be more complicated than a simple ballistic tap. Despite the presence of this

tongue-body gesture, the excrescent vowel before a tap does convey information about the

9 That said, clusters other than obstruent-liquid are arguably heterosyllabic. There may be less

pressure to shorten a vowel following /takto/ because it is syllabified as /tak.to/. The motivation
for this syllabification presumably would be that /kt/ is not a possible word onset, so it shouldn't
be a possible syllable onset either. However, it is equally well the case that /k/ is not a possible
word ending, so no independent facts about the language call for such an analysis. In any case,
this is the best comparison that the language offers us for our current purposes.
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following vowel. Shown below is the formant space for the excrescent vowels of subject 1 from

the charts above. This formant space is superimposed on one from stressed vowels and one from

the open phases of apical trill /r/ for comparison. The formant space is derived by measuring the

average formant values internal to the relevant item in the context of various succeeding vowels.

Each point in the space shows the average F 1 and F2 values of the relevant item in the context of

a particular following vowel.

Formant space by context

-4 ---
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AX/
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A
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-7 U- Excr. V

- -A- -Tri1

I -83.......
Z

-9

-10 ------- -

F2 (bark)

Figure 5.7. Formant space for one Venezuelan speaker internal to stressed vowels (largest

space), excrescent vowels in stop-tap sequences (intermediate space), and the open phases of

trilled /r/ (smallest space). Data points within each space are respective average values for {u, i,

e, a, o}, clockwise from top left. Y-axis is inverted to preserve height orientation of vowel chart.

Although the formant space for the excrescent vowel is compressed somewhat relative to a full

stressed vowel, it still obviously retains the general shape of the full vowel space. This means

that it contains acoustic information that can help the listener to discriminate following vowel

contrasts.
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Before we can analyze the licensing of stop-tap clusters, there is one additional preliminary to be

addressed. In word-initial position, these clusters contrast not with a singleton tap, but with a

multiple-cycle apical trill, [r]. For the purposes of this analysis, we assume that [r] results from

shortening [r] past some threshold. In this view, [r] can be though of as a single-cycle trill or

failed trill. [r] is a relatively complex, difficult sound to make; only a narrow range of

aerodynamic conditions in the back cavity can sustain tongue-tip vibration (Sole 1999, 2002).

The constraints that vibration places on tongue position are also extensive: the posterior dorsum

is retracted into the pharynx and the anterior dorsum is lowered to create a concave tongue

shape. These movements allow the tongue tip more room for the vertical oscillation inherent to

trilling (see Recasens & Pallarbs 1999 for Catalan data and further references).

Given the difficulty of producing a sustained apical trill, it seems plausible that creating the

necessary aerodynamic conditions requires a certain amount of time. If the trill is shortened too

much, it may be physiologically implausible or impossible to create these conditions. In this

case, the result is [r]. This sound is acoustically close to a single cycle of the trill: occlusion

followed immediately by release. From an articulatory perspective, it can be thought of as a

shorter version of the tongue-tip constriction and at least the anterior dorsal gesture associated

with [r]. The hypothesis that [r] is a single-cycle or failed trill also offers an account of why [r]

and [f] display positional neutralization in Spanish. In a singleton onset, where syllable duration

effects are not as pressing, the long form [r] emerges. In clusters, where syllable duration effects

are relatively pressing, the short form emerges in a way that helps preserve cues to contrasts in

adjacent positions.
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Another approach could invoke articulatory markedness and prosodic strengthening to explain

these facts. We might say that [r] is dispreferred following stops because it is just harder to

produce than [f]. In syllable-initial position, however, it may be desirable to use a stronger or

more acoustically disruptive realization of /r/ to help signal a prosodic boundary. This would be

in the spirit of Bakovic's (1994) initial strengthening analysis. In fact, the two hypotheses are not

mutually exclusive. Any theory probably needs to say something about initial strengthening in

order to explain why [r] and [r] contrast between tautomorphemic vowels but neutralize to one or

the other realization in other contexts. This would also explain why the contrast neutralizes to

something more like a full trill after unambiguously heterosyllabic consonants such as /n/ and /s/;

although there is an enormous amount of variation in these contexts, as discussed by Hammond

(1999), Lewis (2004), and Bradley (2006), full trill is at least a possible realization.

Figure 5.7 shows that multiple-cycle [r] contains less acoustic information about the following

vowel than the excrescent vowel associated with [fr. We represent this distinction as a difference

in the vowel-recoverability coefficient k. Furthermore, we will assume that [r] 'automatically'

becomes a single-cycle trill (notated as [r]) when it shortens past a certain degree. The excrescent

vowel will be treated as part of [f] in the sense that it results in a high vowel-recoverability

coefficient for [r]. It will also be associated with a preceding stop, because we assume that the

excrescent vowel is only audible when that stop is realized with sufficient temporal distance

from the tap closure. This will affect the perceptual distance of the singleton-cluster contrast.
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Given these assumptions, we can explain why /bre/ is a well-formed syllable in Spanish, while

*/bde/ is not. We start by analyzing stop-stop clusters; the situation here is very much like the

analysis of English in (19). Parameters are: w,= 1,000; wseg = 1,000; wMaCo = 81,000; wMiDi

4,000; t0 = 30; tcons = 13; tvowel = 25; dtrans = 4; j = 0.4. We assume that open transitions following

a stop emerge at duration 11 and [r] becomes [r] when shortened past 8. The vowel-

recoverability coefficient k is set to 0.3 for stops and [r], 0.6 for [r].

(21) Stop-stop neutralization in Spanish

Inv. A /b/ dur. /d/ dur. /e/ dur. MarkCost Contr. CMaCo Dist. CMiDi InvCost

de Neutr. 11.25 17.5 17001 0 0 -- 0 17001

Inv. B
de 11.25 17.5 17001

b'de 7 8.75 16.25 110538 1 -81000 1 64000 110539

Inv. C
de 11.25 17.5 17001
bde 8 8 16.5 112500 1 -81000 2 36000 84501

Inv. D
de 11.25 17.5 17001

b'de 11 7 16.75 137265 1 -81000 3 16000 89266

The table above compares four candidate inventories for the context /#_de/. Note that superscript

'' indicates an excrescent vowel. Given these weightings, neutralization to /de/ emerges as

optimal. Lengthening C1 sufficiently to create good cues to the contrast results in high duration

markedness costs, just like our analysis of English above.
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To consider the situation with /r/I, where the duration of C2 has strong effects on its phonetic

realization, we need to expand our inventories to at least three members. This is because

producing /r/ as a single-cycle trill presumably could make its presence or absence less salient

than a trill realization. To formally reflect this, we need to consider at least the /be/-/bre/ contrast.

We make the minimal necessary assumption, that the /be/-/bre/ contrast is more distinct with trill

realizations than with tap realizations; we assign a distance of 2 to the tap realizations and 3 to

the trill ones. Given the parameters used above, the inventory costs here come out as negative

numbers; because the zero-cost point is arbitrary in this formalism, the fact that the numbers are

negative has no particular meaning. For simplicity, we don't consider candidates that neutralize

/be/ and Ire/.
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(22) Stop-tap clusters in Spanish

Inv. A CI Dur. C2 Dur. V Dur. Mark Cost Contr. CuaCO Pair Dist. Cpair CMii InvCost

be 11.25 17.5 17001
rre Neutr. 11.25 17.5 17001 1 -81000 4 be-re 4000 4000 -42998

Inv. B
be 11.25 17.5 17001 4 be-re 4000
rre 11.25 17.5 17001 2 be-bre 36000

bre 8.5 7.9 14.75 87331 3 -243000 2 re-bre 36000 76000 -45667

Inv. C
be 11.25 17.5 17001 4 be-re 4000

rre 11.25 17.5 17001 2 be-bre 36000

bre 11 7.9 14.25 100581 3 -243000 3 re-bre 16000 56000 -52417

Inv. D
be 11.25 17.5 17001 4 be-re 4000

rre 11.25 17.5 17001 3 be-bre 16000
brre 7 8.75 16.25 110538 3 -243000 2 re-bre 36000 56000 -42460

Inv. E
be 11.25 17.5 17001 4 be-re 4000

rre 11.25 17.5 17001 3 be-bre 16000

bre 11 8 16.5 139500 3 -243000 3 re-bre 16000 36000 -33498
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With the same constraint weights as the table above, we derive a contrast between /re/ and a

stop-tap cluster with excrescent vowel, Inventory C. The increased vowel-recoverability

coefficient of the innermost consonant allows it to crowd into the vowel more, which in turn

allows the stop to achieve enough temporal separation from the following tap to maximize cue

availability.

In the current formalism, where phonotactic licensing is affected by general principles of timing,

we might expect a connection between the licensing of obstruent-/r/ clusters and the licensing of

other clusters. To derive the grammar of Spanish, for instance, we posited a relative weighting

for MaCo and durational markedness that makes it rather costly to preserve contrasts, such as

/de/-/bde/, that add substantial duration to a syllable. Obstruent-/r/ clusters are somewhat

exceptional, in the sense that they offer the possibility of preserving cues to contrast while still

compressing segments a fair bit.

This general weighting configuration has consequences for other clusters. For instance, consider

the situation for /s/-stop clusters. We retain the weights from above, and assume that the

distinctiveness of the /pe/-/spe/ contrast gets better as the /s/ gets longer.
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(23) /s/-stop clusters in Spanish

Inv. A C1 Dur. C2 Dur. VDur. Mark Cost Contr. CMaco Pair Dist. Cair CMii InvCost

se 11.25 17.5 17001
pe 11.25 17.5 17001 1 -81000 se-pe 4 4000 4000 -42998

Inv. B
se 11.25 17.5 17001 se-pe 4 4000

pe 11.25 17.5 17001 se-spe 3 16000

spe 7 8.75 16.25 110538 3 -243000 pe-spe 1 64000 84000 -14460

Inv. C
se 11.25 17.5 17001 se-pe 4 4000

pe 11.25 17.5 17001 se-spe 3 16000
spe 8 8 16.5 112500 3 -243000 pe-spe 2 36000 56000 -40498

Inv. D
se 11.25 17.5 17001 se-pe 4 4000

pC 11.25 17.5 17001 se-spe 3 16000

spe 11 7 16.75 137265 3 -243000 pe-spe 3 16000 36000 -35733
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Given these values, neutralization comes out optimal. This is indeed the grammar of Spanish:

there are no word-initial /s/-stop clusters, and all such clusters. that entered the language from

Latin are repaired by vowel epenthesis, e.g. Latin /studiu/ 'study' becomes Spanish /estudio/

(Lief 2006). Portuguese patterns much the same way.

The analysis as currently stated does not predict that reduction to tap in rhotic clusters always

implies non-availability of sC clusters. It may, however, make a related prediction: absence of

/s/-stop clusters should always imply absence of rhotic clusters with full trills. The

contrapositive, that presence of full trills in rhotic clusters implies licensing of /s/-stop clusters,

would also be predicted. This prediction holds only with certain assumptions in place.

First, we assume that clusters with full trills are always at least as durationally marked as /s/-stop

clusters. Because full trills are difficult to produce, subject to aerodynamic interference from

adjacent segments, and rather long inherently, this assumption seems plausible. If /s/-stop

clusters turn out to be much longer than stop-trill clusters in some languages, the prediction

would not go through.

Second, we assume that the contrast between singleton stop and /s/-stop is (or can be) at least as

distinct as the contrast between trill and stop-trill. More generally, all of the typological

predictions made by the current approach rely on the possibility of comparing the distinctiveness

of different contrasts. This is fairly straightforward in cases where the cues to two contrasts are

in a subset relation, as in the case of released and unreleased stops. It is more difficult to compare

contrasts that rely on different types of cues; in the current case, the contrast involving stop-trill
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clusters relies largely on external cues to the presence and features of the stop, while the contrast

involving /s/-stop clusters relies largely on internal cues to the presence and features of the /s/.

Under the assumption that the distinctiveness of different contrasts can be compared through a

measure such as confusability in noise, it would be possible to test the relative distinctiveness of

these contrasts. If it turned out that the contrast involving stop-trill clusters was more distinct,

then the prediction made here would not be justified. We return to this issue in section 5.5.2.

Given these assumptions, the current formalism makes it impossible for a rhotic cluster with a

full trill to contrast with a singleton while not allowing /s/-stop to contrast with a singleton stop.

To see this, consider candidate inventory E from (22) and D from (23). The two inventories are

identical with regard to the number of contrasts preserved and the distinctiveness of those

contrasts. The inventory with trill clusters is more durationally-marked than the one with /s/-stop

clusters. In order for the inventory with trill clusters to emerge as optimal, the benefit conferred

by MaCo must be larger than the sum of durational markedness and the cost assessed by MiDi.

Because this number is larger for the inventory with trill clusters than the one with /s/-stop

clusters, this entails that some inventory with /s/-stop clusters will also emerge as optimal.

For the inventory with trill clusters to beat out neutralization and clusters with reduced trills, we

need to increase the weight of both MaCo (to beat neutralization) and MiDi (to beat the

inventory with a shorter and less salient /r/). Increasing those weights to 110,000 and 8,000,

respectively, will accomplish this.
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(24) Stop-trill clusters

Inv. A Mark Cost Contr. CMaco Pair Dist. Cpair CMiDi InvCost

be 17001
rre 17001 1 -110000 4 be-re 8000 8000 -67998

Inv. C
be 17001 4 be-re 8000
rre 17001 2 be-bre 72000

bare 100581 3 -330000 3 re-bre 32000 112000 -83417

Inv. E
be 17001 4 be-re 8000
rre 17001 3 be-bre 32000

bre 139500 3 -330000 3 re-bre 32000 72000 -84498

These weights also predict that /s/-stop clusters will be licensed. Inventory D, with a relatively

long /s/, wins given these particular weights. This is shown below.

(25) /s/-stop clusters

Mark
Inv. A C1 Dur. C2 Dur. VDur. Cost CMaCo Pair Dist. Cpair CMDi InvCost

se 11.25 17.5 17001
pe 11.25 17.5 17001 -110000 se-pe 4 8000 8000 -67998

Inv. B
se 11.25 17.5 17001 se-pe 4 8000

pe 11.25 17.5 17001 se-spe 3 32000
spe 7 8.75 16.25 110538 -330000 pe-spe 1 128000 168000 -17460

Inv. C
se 11.25 17.5 17001 se-pe 4 8000
pe 11.25 17.5 17001 se-spe 3 32000

spe 8 8 16.5 112500 -330000 pe-spe 2 72000 112000 -71498

Inv. D
se 11.25 17.5 17001 se-pe 4 8000

pe 11.25 17.5 17001 se-spe 3 32000

spe 11 7 16.75 137265 -330000 pe-spe 3 32000 72000 -86733
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This pattern, with full trills in clusters and /s/-stop clusters allowed word-initially, is exemplified

by Italian. Shown below is a male Italian speaker from Milan producing the nonce-word /brano/.

Clearly visible are three separate occlusion and release cycles internal to the trill.

1-b- 1ci 1c2~a a n0

0 0.5772
Time (s)

Figure 5.8. Utterance of nonce-word /brano/from a native Italian speaker with a multiple

vibrant trill. The [r] contains three cycles, labeled cl-3 in the figure.

This speaker produces the majority of such clusters with full trills. When the trills 'fail', they are

produced as fricatives or approximants, occasionally devoiced, but never as taps. It is not

generally possible to tell whether preceding stops are separated from following trills by an

excrescent vowel, or simply released into the open phase of the trill cycle.

Agreeing with our prediction, Italian allows word-initial /s/-stop clusters, e.g. /spavento/ 'fright',

/stesso/ 'same'. Based on an informal survey of Romance languages, Romanian and French seem

to pattern with Italian in this regard. Recordings from one female speaker of Romanian show that

a full trill is possible in such clusters, although tap may be more common. Accordingly,

Romanian allows words such as /stqigA/ 'left (hand)'. French features a uvular rather than apical
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trill (although not in all varieties); full trill realization in clusters appears to be possible (Haden

1955). French also allows words such as /skandal/ 'scandal' and /spazmo/ 'spasm'.

5.5.2 Onset-coda dependencies I: implicational asymmetries

The general logic of the predictions above concerning /s/-stop and /Cr/ clusters applies to other

types of inventories as well. The idea is that, if one type of timing configuration is more

durationally marked than another and has no advantage with regard to other factors, then

licensing the more marked configuration entails licensing the less marked configuration. This is a

strong prediction of the current theoretical approach; it entails that their are hierarchies of

contrasts based on their relative durational markedness and perceptual distinctiveness. All

languages should conform to these hierarchies: licensing of a more marked contrast entails

licensing of a less marked contrast. This general property makes a number of typological

predictions; to identify these predictions, however, we need to know which phonetic strings are

more temporally marked than others and which phonetic strings result in more distinct contrasts.

In practice, we do not usually have this knowledge.

For instance, in languages like English and Spanish, it seems plausible to assume that stop-liquid

clusters are less durationally marked than a stop-stop cluster with open transitions would be, and

that the cues to singleton-stop clusters are roughly the same in the two strings. It also seems

plausible that stop-liquid clusters result in more distinct singleton-cluster contrasts than stop-stop

sequences without open transitions. Given these assumptions, it follows that licensing of stop-

stop clusters entails licensing of stop-liquid clusters. In cases where these assumptions do not
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hold, however, such as the pre-stopped liquids with contrastive glottalization in Montana Salish

discussed above, the prediction no longer holds. Furthermore, we can't know whether the

prediction holds unless we know the phonetic details of liquids (and stops) in a language and the

system of contrasts that they participate in.

More generally, it is impossible for the current system to make any predictions about typology

without knowledge of the durational patterns at issue and a theory of contrast distinctiveness. In

this chapter, we examine several putative typological predictions and attempt to falsify them. All

of the predictions themselves are contingent on assumptions about duration and distinctiveness

of contrasts. While the theoretical approach developed here in principle makes an almost

unlimited number of such predictions, we limit discussion here to a small number of cases that

don't require outlandish assumptions about duration and perception.

The /s/-stop and stop-trill asymmetry discussed above holds between two types of clusters in

onset position. However, because the timing target is held to be some larger unit such as a

syllable, we predict similar asymmetries between phonological strings at different positions in

that larger unit. So, for instance, any equally perceptible contrast that relies on less durationally

marked configurations than a stop-stop cluster with open transitions should be licensed in

languages where stop-stop clusters with open transitions are licensed. One such contrast might be

the presence of a coda consonant: because a singleton coda stop has transitions from a preceding

vowel, it should need to lengthen its burst less than a preconsonantal stop in order to achieve the

same level of perceptual robustness. Because the coda stop can impinge upon a preceding vowel,

250



it should also result in overall shorter syllables than an initial stop-stop cluster with open

transition.

We predict, then, that any language which licenses onset stop-stop clusters with open transitions

should also license coda singleton stops.10 To see this, first consider a set of weights that licenses

both types of contrast. For the purpose of this simulation, we treat a singleton coda stop

identically to an onset one. All parameter values are carried over from the Romance examples,

except for the contrast constraints: wMaco = 100,000; wMiDi = 4,000.

(26) Complex onsets and codas

Coda Cl C2 Mark
Inv. A Dur. Dur. Dur. VDur. Cost CMaCo Pair Dist. Cpai, CMiDi InvCOSt

de 11.25 17.5 17001 de-deb 3 16000

deb 8 8 12.5 112500 de-bde 3 16000

b'de 11 7 16.75 137265 -300000 deb-bde 4 4000 36000 2766

Inv. B
de 11.25 17.5 17001
deb 8 8 12.5 112500 -100000 de-deb 3 16000 16000 45501

Inv. C
de 11.25 17.5 17001
b'de 11 7 16.75 137265 -100000 de-bde 3 16000 16000 70266

10 Kaye & Lowenstamm (1981) make a related but stronger prediction: every language that
allows branching (complex) onsets should also allow branching rimes (i.e., codas and glides). All
of the languages discussed below could conceivably be problematic for this generalization,
although I will argue that some of them can be analyzed as containing codas. Chiquihuitla
Mazatec, though, would seem to be a clear counterexample. This language allows word-initial
sequences such as /rk/ (where /r/ is described as a tap) that are clearly clusters, but appears to
have no codas.
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Compare now the candidates that collapse the /de/-/b'de/ contrast (inventory B) and the /de/-

/deb/ contrast (inventory C). They fare equally well on the contrast constraints, but inventory C

is more durationally marked. This means that inventory B harmonically bounds inventory C. If

we decrease the weight of MaCo to select a neutralized inventory, that neutralized inventory will

always. retain the coda stop over the onset stop with open transition.

Possible counterexamples to this prediction are languages that license complex onsets with open

transitions, but do not license codas. We are aware of seven languages that have been described

as licensing CCV but no CVC syllables: Arabela, Cheke Holo, Lakhota, Mazateco, Pirahi, Piro,

and Tsou. We briefly examine evidence about syllabification and transition quality in each of

these languages.

Arabela licenses only obstruent-glide sequences in onset position, which presumably do not

contain open transitions (Rich 1963). Furthermore, glides appear to be licensed in coda position,

although these sequences may be analyzed as diphthongs.

Cheke Holo allows only obstruent-liquid clusters (White et al. 1988). No phonetic description is

available, but again, we at least expect that such clusters do not require an open transition to

make the stop perceptible. Additionally, Cheke Holo allows word-medial heteroorganic nasal

clusters, which are not licensed word-initially; these may be analyzed as heterosyllabic (Blevins

2006).
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Lakhota does allow stop-stop clusters word-initially, and they are realized with open transitions

(Albright p.c.). Although word-final consonants are not generally permitted, some do surface in

function words and in casual speech, including voiceless obstruents (Albright 2004). In fact,

Albright proposes that codas are banned only in roots. Whatever is driving this morphological

difference, we would need to say that it is not the grammar of timing in order to preserve the

generalization at issue here.

Mazateco complex onsets can largely be analyzed as complex segments with secondary

articulations. In the Chiquihuitla variety, those that are clearly clusters are /s/-obstruent and /rk/,

where /r/ is described as a voiceless tap (Jamieson 1977); neither is described as having an open

transition. Even if the tap-/k/ clusters do contain an open transition, it might not be problematic

with regard to the prediction above. /r/ is presumably described as a tap in part because it is very

short; as such, it wouldn't necessarily be more durationally marked than a consonant in coda

position.

Pirahi has no complex onsets on the surface. It was only classified as such because one analysis

has surface aspirated stops deriving from geminate onset stops (Blevins 1995).

Piro allows stop-stop onsets word initially. From the description in Matteson (1965), there

appear to be open transitions in these clusters. Word-medial clusters are analyzed as complex

onsets, but only because there are word-initial clusters and no word-final consonants. The

implicit argument would be that treating these medial sequences as complex onsets gives a

unified account of the syllable- and word-level phonotactics. However, this is not correct. There
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are various word-medial clusters that do not occur word-initially, e.g. /hinmunami/ 'tree species',

/pikxka/ 'like, equal to'. Comparison of the cluster chart and dictionary in Matteson (1965)

suggests that at least 15 clusters are attested word-medially but not word-initially. This suggests

that some word-medial clusters will need to be analyzed as heterosyllabic, with the word-final

restriction explained by some other principle. Blevins (1995) notes additionally that vowel length

is in a trading relation with the length of a following consonant; Matteson (1965) appears to

show that there are cooccurrence restrictions between a vowel and following consonant. Both of

these patterns suggest that following consonants are more closely coordinated with a preceding

vowel than a following one; if we take the syllable to be a unit of timing, then these facts would

support an analysis with codas.

Tsou, as we saw earlier, is ambiguous with regard to word-medial syllabification. In any case,

word-initial stop-stop clusters do not normally contain an open transition, as was discussed

earlier.

The status of this putative implicational universal, then, is promising if not entirely certain. Piro

and especially Lakhota look as if they may present problems, but in each case an analysis of the

language as allowing codas is at least possible. We can not solve the problem of why word-final

consonants are disallowed in many of these languages, or more general cases where the set of

word-final consonants is smaller than that of word-medial codas, as in Spanish. All we can say is

that, if these patterns have an explanation grounded in perception or timing, it must pertain to

higher-level prosodic factors that have not been investigated here.
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Onset-coda dependencies II: cooccurrence restrictions

In addition to predicting that the markedness of equally-perceptible contrasts can differ at

different positions in the syllable, the current approach also predicts that the markedness incurred

by adding segments to create a contrast is cumulative and increases exponentially across the

syllable. In other words, every instance of adding a segment increases the markedness of the

syllable, and does so by more than the previous instance. What this means is that we should see

effects of doubly-marked structures: cases where two marked structures are independently

licensed, but instances of both structures occurring within the same syllable are not.

As a concrete example, consider the licensing of complex onsets and codas. Because the

markedness of a CCVC syllable will always be greater than the markedness of a CCV or CVC

syllable, we predict that a language could license the latter two types of syllables while

prohibiting the former. Such a case is shown below. All paramter values are carried over from

the previous examples, except for contrast constraints: wMaCo= 95,000; wMiDi 4,000.
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(26) Doubly-marked structure effects

Coda Dur. CI Dur. C2 Dur. V Dur. Mark Cost Contr. CMacO Pair Dist. Cpair CMDi InvCost

re-red 3 16000

Inv. A re-bre 2 36000

re 11.25 17.5 17001 re-bred 4 4000

red 8 8 12.5 112500 red-bre 4 4000

bre 7 8.75 16.25 110538 red-bred 2 36000

bred 5.25 5.25 5.25 16.25 300438 6 -570000 bre-bred 3 16000 112000 82477

Inv. B
re 11.25 17.5 17001 re-red 3 16000

red 8 8 12.5 112500 re-bre 2 36000

bre 7 8.75 16.25 110538 3 -285000 red-bre 4 4000 56000 11039

Inv. C
CV 11.25 17.5 17001
CCV 7 8.75 16.25 110538 1 -95000 re-bre 2 36000 36000 68539

Inv. D
CV 11.25 17.5 17001
CVC 8 8 12.5 112500 1 -95000 re-red 3 16000 16000 50501

Inv. E
CV 11.25 17.5 17001 0 0 0 17001
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Given these weights, inventory B comes out as optimal. This candidate allows complex onsets

and codas, but never in the same syllable. There is a small amount of evidence that this may be a

well-formed grammar. Such a grammar exists as a stage in the acquisition path of children

learning Dutch (Levelt et al. 2000). It also appears to be similar to the grammar of colloquial

Bamana (Green & Davis 2010). In this language, codas and complex onsets are created by vowel

deletion, e.g. /seli/ 'prayer' surfaces as /sel/ and /koro/ 'old' surfaces as /kro/. In compounds,

multiple deletions may occur in cases where they result in CCV.CCV sequences, e.g. /bila/ 'to

accompany' + /sira/ 'road' surfaces as /bla.sra/ 'to travel a short distance with someone'. But

crucially, multiple deletions are blocked in cases where it would create a CCVC syllable, e.g.

/koro/ 'old' + /muso/ 'woman' surfaces as /korom.so/, */krom.so/ 'old woman'. Although this is

the only such language we know of, it is not necessarily the case that researchers seeking to

describe the syllable structure of some language would be looking for cooccurrence restrictions

of this sort.

The effects of cumulative markedness are not limited to this particular case. The theory would

make exactly the same prediction about the cooccurrence of complex onsets and complex codas.

This also exists as a stage in the Dutch acquisition data (Levelt et al. 2000). Albright (2008)

finds this as a gradient restriction in English, and Levelt & Van de Vijver (2004) suggest there

may be a similar restriction at work in Dutch. Nonetheless, we know of no adult grammar that

displays such a restriction as a categorical effect.

The number of doubly-marked structure effects predicted by this theory is enormous. In

principle, we could analyze a case where, for instance, six consonants are licensed in the onset of
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an open syllable, but only five are licensed in the onset of a closed syllable. Even identifying all

of the predictions made in this regard, much less testing them, is quite difficult. The type of

prediction exemplified by the five-consonant scenario described above, at least, is not to our

knowledge attested in any language.

Finally, there are some long-distance dependencies predicted by the theory that pertain to the

inherent duration of one of the segments. For instance, the theory predicts that a language might

license complex onsets before short vowels, but ban them before long vowels. This is shown

below. Deriving this pattern requires some changes to parameter settings: wi (syllable constraint)

= 5,000; w2 (consonant constraint) = 1,000; t, (syllable target) = 30; tx,y (consonant target) = 13;

d, (transition duration) = 4; j (vowel recoverability coefficient for transition) = 0.4; vowel floor is

16; consonant floor is 5; wMaCo = 72,000; wMiDi = 4,000. The long vowel /a/ is given a target

duration of 28 units, while the short vowel /i/ is given a target of 22.
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(27) Another doubly-marked structure effect

C1 C2 V Mark
Dur. Dur. Dur. Cost Contr. CMaco Pair Dist. Cpair CMiDi InvCost

di-da 3 16000

Inv. A di-bdi 2 36000

di 11.5 15 7303 di-bda 4 4000

da 9 18 53490 da-bdi 4 4000

bdi 6.75 8.5 12 101348 da-bda 2 36000

bda 5.25 7 15.5 188815 6 -432000 bdi-bda 3 16000 112000 30956

Inv. B
di 11.5 15 7303 di-da 3 16000

da 9 18 53490 di-bdi 2 36000

bdi 6.75 8.5 12 101348 3 -216000 da-bdi 4 4000 56000 2141

Inv. C
di 11.5 15 7303
da 9 18 53490 1 -72000 di-da 3 16000 16000 4793

Inv. D
di 11.5 15 7303 0 0 0 7303

Given these weights, inventory B emerges as optimal. This inventory allows complex onsets

before short i/ but not long /a/. It could be described either as neutralizing vowel distinctions

following a complex onset or neutralizing the singleton-cluster distinction before long vowels. It

does not correspond to any language, statistical restriction, or acquisition stage that we are aware

of. This type of prediction, then, is problematic.

5.5.4 Summary and discussion

In this section, we reviewed several kinds of predictions that emerge from the particular

formalization of the timing grammar put forward here and its hypothesized interactions with the

phonological grammar. The predictions reviewed here fall broadly into four classes: (1) licensing
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of a contrast may depend on asymmetries in the temporal realization of a non-adjacent segment;

(2) licensing of temporally marked contrasts within the syllable implies licensing of less

temporally marked contrasts within the syllable, all else being equal; (3) licensing of a contrast

may depend on the presence/absence of a non-adjacent segment; (4) licensing of a contrast may

depend on the inherent duration of an adjacent or non-adjacent segment.

We argued that prediction (1) is instantiated by Spanish complex onsets, where the availability of

open transitions for a stop in a stop-C cluster depends in part upon the cost of allowing the

second C to impinge on the following vowel. We tentatively argued that prediction (2) is borne

out by the typology of Romance clusters involving rhotics and sibilants, and by the typology of

syllable structure and open transitions. We found some evidence for the prediction in (3),

involving colloquial Bamana, language acquisition stages, and statistical tendencies within

languages. Nonetheless, we were unable to identify languages showing the full range of

phenomena that a system with long-distance interactions would predict, and that range of

phenomena is considerable. Finally, we were unable to instantiate prediction (4) in any way.

Developing the theory presented here to better account for the empirical range of attested

phonological phenomena is likely to involve both clarifications of what that empirical range is

and tools for constraining the predictions of the formalism. For instance, previous researchers

have noted the possibility of restrictions on doubly-marked structures, and generally noted that

there is no evidence for such restrictions adult language (Kaye & Lowenstamm 1981, Levelt &

Van de Vijver 2004, Albright et al. in press). Now that researchers have focused their attention

on these cases, however, such evidence is beginning to emerge. Here we noted a statistical
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restriction discovered by Albright (2008) and a categorical restriction discovered by Green &

Davis (2010); it may be the case that we will uncover more such phenomena now that we are

actively looking for them. Accordingly, it may be premature to constrain our grammatical

theories in order to rule out such cases.

The final prediction listed above, exemplified here by neutralization of singleton-cluster

contrasts in the presence of an inherently long but not an inherently short vowel, is as far as we

know completely unattested, as are other phenomena that would fall under the rubric of this

prediction. The example above, using vowels with different inherent durations, would carry over

largely unchanged into predictions about vowels that differ in contrastive length. As another

example, the theory would predict that a language might neutralize singleton-cluster contrasts in

a syllable closed by a long consonant, but not in a syllable closed by a short consonant. All such

predictions are problematic. For this reason, we should at least consider ways of constraining the

formalism, on the assumption that such languages are not going to emerge from future research.

If we conclude that it is desirable to avoid all of the predictions above, we could simply change

our assumptions about the grammar to the view noted above in fn. 3: phonological patterns are

expressed by arbitrary and/or abstract formalisms, and the phonetic implementation reflects an

effort to realize those phonological patterns with desirable perceptual and articulatory properties.

This would allow us to describe all of the patterns above and stipulate that the unattested patterns

are unattested because the formal phonology component simply doesn't consider these kinds of

long-distance dependencies. As we noted above, this is a costly solution. We would lose most of

the gains made by the phonetically-based approach to phonology: that approach holds out the
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hope of explaining patterns of phonological contrast with reference to independent properties of

perception and articulation; treating those patterns as essentially arbitrary is clearly a less

parsimonious theory.

We might attempt to avoid only the long-distance predictions by minimally modifying the

licensing-by-cue approach to include a constraint on the overlap of adjacent segments. This is

essentially the approach taken by Gordon (2001), Jun (2002), and Flemming (2008). With this

approach, we can explain why open transitions appear to be marked, but we make no predictions

about how the availability of open transitions relates to properties of non-adjacent segments in a

phonological string. This approach, however, misses certain generalization, both phonetic and

phonological. First, the constraint favoring overlap should be motivated by independent facts

about language, i.e., even when a contrast is not at stake, sounds tend to overlap. This is true, but

it is not the whole story: the incremental compression effects discussed in the preceding chapters

show that the full pattern of duration-trading phenomena are not explained by a simple

preference for overlap between adjacent segments; they hold within some larger constituent. It

would still be necessary to explain why some temporal patterns affect the availability of contrast

while others appear not to. This approach would also be unable to explain the predictions listed

as (1) and (3) above. If Spanish allows the overlap constraint to be violated for stop-/r/ clusters, it

should allow the same thing for stop-stop clusters. Prediction (3) is on shakier empirical ground,

so we may decide it is worth excluding such predictions from the theory, although I've argued

that this would be premature. The approach of restricting timing effects to adjacent segments

runs the risk, then, of throwing out the baby with the bathwater.
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Another possibility would be to restrict the kinds of inventories over which contrasts are

evaluated. We argued in section 5.4.2 that this will probably be necessary on independent

grounds. This solution turns out to be difficult in practice, and will require an intricate theory of

inventory containment.

To eliminate long-distance predictions, for instance, we could supplement our theory of

inventory evaluation with a principle we refer to as vertical integration: if a contrast between Y

and 0 is licensed in context X_Z, then it is also licensed in all environments that properly

contain the string XZ. For instance, if the contrast between a stop's presence and absence is

licensed in the context /#_re/, it is also licensed in the contexts /#_red/ and /#_ra/. It would not

necessarily be licensed in the contexts /sre/ and /#_de/. This solution, however, is likely to leave

us with no way of analyzing any of the long-distance interactions that arise in phonology, such as

vowel harmony and long-distance dissimilation.

This solution will eliminate both the long-distance predictions and the segment-quality

predictions mentioned above. If we wanted to eliminate only the segment-quality predictions in

(4), we could propose a different version of this principle, which we refer to as horizontal

integration: if a contrast between Y and 0 is licensed in context #XZ#, then it is also licensed

in all contexts #VW#, where V and W bear some specified similarity relation to X and Z,

respectively. This principle says nothing about containment; it simply requires that a contrast in

one environment is extended to another environment if the entire environments are sufficiently

similar. This will obviously require an extrinsic theory of similarity; for our current purposes,

this could be something like 'have the same manner features'. This would ensure, for instance,
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that if the presence between a stop's presence and absence is licensed in the context /#-red/ it is

also licensed in the contexts /#_rad/ and /#_reb/, but not necessarily in the contexts /#s red/ and

/#_redz/.

The main disadvantages of both these theories are that they considerably complicate the

formalism and are somewhat ad hoc. In order to enforce such principles, it must be a formal

property of the theory that either the outcome of some contrast evaluations are known prior to the

calculations of other contrast evaluations, or that all contrasts in all environments are globally

compared as part of the grammar. This means that the theory will require either a theory of

derivation or a global evaluation of the entire set of possible words. We argued earlier that the

latter possibility is likely to be computationally intractable. The former possibility might in

principle work: given the examples discussed here, for instance, we could set up a contrast-

evaluation algorithm that starts with a syllable containing very few segments, compares it to

syllables that differ from it in some circumscribed way (such as a string-edit distance of one, to

be concrete), and then takes the output items of that evaluation as the inputs to the next iteration.

At every step, the global principles sketched above would be enforced, with priority over

inventory-internal contrast constraints.

Needless to say, this considerably complicates the theory, even when we only consider the

schematic description given here. Because the empirical facts are uncertain, we leave both the

question of how the formalism should be constrained and the precise formal implementation of

the eventual answer for future research. What has been accomplished here is the development of
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a theory, the generation of predictions from that theory, and a preliminary attempt to evaluate

those predictions.

5.6 Conclusion

In this chapter, we developed a framework for modeling the interaction of the timing grammar

with phonotactic licensing. The framework was illustrated with examples from several languages

pertaining to the timing of consonant clusters and the licensing of those clusters.

Phenomena involving contrast and neutralization are analyzed by way of constraints on contrast,

following Flemming (2001). These constraints favor candidate inventories with more contrasting

sounds over those with fewer, and contrasts with greater perceptual distance between the

members over those with less. The relative weights of those contrast contraints and duration

target constraints determine the extent to which unmarked temporal patterns can be altered to

'repair' perceptually weak contrasts.

This framework helps explain why some repairs are not available in some languages: we argued

that stop-stop sequences can not be repaired by temporal separation to create an open transition

in English or Spanish because this would incur too much cost from the higher-level duration

constraint independently proposed for the analysis of compression effects. Without a theory of

duration and temporal markedness, it would be difficult or impossible to explain why there are

restrictions on temporal repair strategies.
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We reviewed several phenomena discovered by other researchers where the perceptual properties

of contrasts directly affect the temporal realization of phonetic forms. These pertain to stop-stop

clusters in Georgian (Chitoran 1998 et seq.) and Tsou (Wright 1996). In both cases, the temporal

separation between stops in sequence shows asymmetries that depend on perceptual properties of

the strings in question. Where the context or the articulatory properties of the segments demand a

high degree of separation for good cues to emerge, they are realized with a high degree of

separation. In contexts where cues can be preserved with less separation, we see compression

effects re-emerge: less separation is observed. This falls out naturally from a theory where

temporal properties are shaped by perceptual considerations.

In Spanish, we saw a case where the availability of open transitions is affected by the realization

of an adjacent segment and the ability of other segments in the string to compress or overlap with

each other. This is another situation where the availability of a temporal repair seems to be

affected by perceptual properties of the string in which it appears. This particular pattern can be

explained by the timing theory proposed here, but not by timing theories that posit only

constraints governing the overlap of adjacent segments. We also argued that the facts about

rhotic clusters in Spanish bear a logical relation to facts about other types of clusters, using data

from other Romance languages to explore those logical relations.

The Spanish phenomena pertain to one type of prediction that is generated by the particular

theory of timing proposed here, but not necessarily by other approaches in the licensing-by-cue

tradition. We proceeded to examine a range of other predictions with this property. The empirical

evidence bearing on these predictions was a mixed bag: some appear to be supported, some
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appear to describe rare or under-attested phenomena, and some appear to be completely

unsupported. We discussed ways that the theory might be constrained to obtain a better empirical

fit with the world's languages, but in the end put off a formal statement of these constraints until

the empirical picture is better understood.

The approach taken here was to illustrate a few phenomena in some detail, as a demonstration of

how this approach might work more generally. There should in principle be many other cases of

duration-sensitive perceptual repairs and perception-sensitive temporal patterning. The instances

of doubly-marked structure effects examined here, for instance, are just a tiny fraction of all the

possible doubly-marked structure effects that could logically exist; the theory presented here

predicts more generally that two durationally marked structures may be independently licensed

but banned in combination. Other types of contrast should also affect and be affected by timing;

for instance, most of what was said here about the licensing of the presence of stops should also

apply to the licensing of place contrasts. Most of the cues discussed here (obstruent transients

and noise, formant transitions into and out of an obstruent) are also cues to place contrasts. The

more general argument made here is that, wherever patterns of phonological contrast are affected

by the timing properties of phonological strings, a complete analysis of those patterns requires a

theory of why timing patterns have the properties they do and not some other set of properties.
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6- Conclusion

This dissertation investigated the grammar of timing as it is reflected in compression effects, and

examined how such a grammar might interact with systems of phonological contrast. Here we

summarize the results of the investigations and suggest directions for future research.

We began by investigating compression effects, cases where syllables that contain more

segments also contain shorter segments, in some detail. An English production study revealed

that, while compression effects obtain in a number of contexts, they are not present in every

context, and they vary depending on what types of segments are present in a syllable. The

principle asymmetry uncovered in this study is that vowels shorten in monosyllabic words with

stop-liquid or liquid-stop clusters, relative to their duration in comparable words with singleton

liquids; this pattern does not hold in every context for obstruents or nasals, however.

We developed a theory of timing based on weighted, gradiently violable constraints on the

duration of segments and syllables. The constraints come into conflict as the number of segments

inside a syllable increases, and the weights of the constraints determine what kinds of

compression effects will be observed. We showed that this type of grammar can derive the

qualitative patterns discovered for English, if the constraints are stated in terms of auditory rather

than articulatory representations and if we make certain assumptions about the perceptual

properties of various consonants. The general prediction of the model is that vowels shorten

more when there is more perceptual information about them in the surrounding context.
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A perception study using forward- and reverse-gated stimuli confirmed that most of the

perceptual assumptions that the grammar relies on are correct. There is a correlation between

those segmental environments that allow more vowel compression and those segments that

contain more information about an adjacent vowel. This is a powerful argument that the phonetic

representations relevant to temporal coordination encode perceptual properties of speech events.

Although it is not a logical necessity that the grammar of timing affect systems of phonological

contrast, we offered a preliminary investigation of what such interaction would predict about

phonological systems. The general approach preserves the insights of previous phonetically-

based approaches to phonology, which relied on a more minimal theory of timing that essentially

calls for adjacent segments to overlap. It also generates new predictions that stem from the

details of the particular timing grammar developed here. Some of these predictions correspond to

attested phonological patterns that would be difficult to analyze in previous approaches, but are

straightforward given the current theory. This approach, however, also predicts entire categories

of long-distance phonological dependencies that appear to be unattested in the world's

languages. We outlined several approaches to constraining the current theory, pending

clarification of the empirical facts.

Many of the questions raised here will require extensive cross-linguistic research to be answered.

The timing grammar developed in chapter 3, in particular, is based on English data; although we

summarized previous findings in a variety of languages, none of the studies surveyed were

comprehensive enough to give us a full picture of compression effects in other languages. It

would clearly be useful to examine compression patterns more closely in a variety of languages,
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particularly those languages where vowel-length constrasts interact with the number or manner

of adjacent consonants.

Another domain where compression effects might be of particular interest is sonority-based

phonotactic licensing. If Wright (2004) is correct that the sonority sequencing principle has its

roots in perceptibility concerns, and if the current study is right that compression is also related

to perceptibility concerns, then we predict that compression may well differ between strings that

obey the sonority sequencing principle and strings that do not. Languages such as Georgian and

Russian, which contain a wide variety of both types of phonological strings, might provide

valuable evidence on which factors affect compression and how these patterns interact with

higher-level units such as syllables.

The exploration of phonological implications in chapter 5 was in some ways inconclusive. It

seems clear that a theory in which the flow of information between timing grammar and

phonological grammar is unconstrained will overgenerate, but it is not entirely clear how much it

overgenerates. Some of the long-distance dependencies predicted by such a grammar are

completely unattested as a class; for instance, the prediction that availability of complex onsets

may interact with differences in the inherent duration of a vowel or coda consonant. Other long-

distance dependencies, however, which might appear equally unlikely to a phonologist, do

appear to exist. We argued here that colloquial Bamana (Green & Davis 2010) exemplifies just

such a long-distance dependency. One (enormous) task for future research, then, is to clarify

what types of long-distance dependencies between licensing of phonological contrasts exist.

Although we will never fully accomplish this goal, we can at least hope to learn more.
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Learning more about the existent patterns of long-distance dependency, in turn, will allow us to

constrain the phonological formalism to a suitable degree. We argued that the approach to

phonological contrast explored here accomplishes enough that we don't want to discard it, and

we briefly outlined a number of ways that approach might be constrained. Which constraints on

the approach result in the best theory will depend on what types of languages are attested. With a

better understanding of which patterns exist, we can propose concrete measures to constrain the

formal approach developed here.
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